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Abstract

A conformal mapping of the exterior of the unit circle to the exterior of a region of
the complex plane determines the Faber polynomials for that region. These polynomials
are of interest in providing near-optimal polynomial approximations in a wide variety of
contexts. The work of this thesis concerns the Faber polynomials for an annular sector
{z:R<|2| <1,0 <|argz| < 7}, with 0 < § < 7 and is contained in two main parts. In
the first part the required conformal map is derived, and the first few Faber polynomials for
the annular sector are given in terms of the transfinite diameter, p, of the region and two
parameters a and b. These three numbers are determined numerically. We also give the
Faber series for 1/z and improve upon a bound given in the literature for the norm of the
Faber projection, ||xx||- In the second part of the thesis we give a new hybrid method for
the iterative solution of linear systems of equations, Ax = b, where the coefficient matrix,
A, is large, sparse, nonsingular and non-Hermitian. The method begins with a few steps
of the Arnoldi method to produce some information on the location of the spectrum of A.
Our method then switches to an iterative method based on the Faber polynomials for an
annular sector placed around these eigenvalue estimates. An annular sector is thought to
be a useful region because it can be scaled and rotated to enclose any eigenvalue estimates

bounded away from zero. Some examples will be exhibited and we will compare existing

methods with ours.
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1.1 Introduction

In this opening chapter we will describe the Faber polynomials for a general region in the
complex plane. We will also review most of the important properties of Faber polynomials
(see Section 1.2.2). In Section 1.2.3 we will review the ideas of best and near-best approx-
imation. Finally, in Section 1.2.4 we give some examples of regions in the complex plane

where the Faber polynomials are known analytically.

1.2 A Review of Faber Polynomials

In 1903 Georg Faber published his solution to a classical complex approximation problem.
The problem was to find, for a given region, a set of polynomials {p.(2)}s% such that an

analytic function f(2) could be expanded as a convergent series
o
> a;pi(2)
i=0

where the a; depend on f and the region, but the p;(z) depend only on the region. His
solutions are named after him and called Faber polynomials. They play an important
role in complex approximation theory and have been used to provide both polynomial
and rational approximations in a wide variety of different contexts. For example, near-
minimax polynomial approximations may be obtained by truncating Faber series (Elliott
(28], Ellacott [22], Chiu et al. [8] and Coleman and Myers [12]) and by economisation of
Faber series (Ellacott and Gutknecht [25]). Faber polynomials have been used to produce
approximations to the solution of ordinary differential equations by both the Lanczos 7-
method (Coleman [9] and [10]) and by Clenshaw’s method (Ellacott and Saff [27]). Rational
approximations based on the Faber series were discussed in Ellacott [24], and Ellacott and
Saff [26]. The Faber polynomials have also been used in applications in linear algebra,
in particular they have been used to produce iterative methods. For example Starke and
Varga [76] give a hybrid iterative method using the Faber polynomials for a polygonal region
placed around some eigenvalue estimates bounded away from zero. Other examples in the
applications of Faber polynomials to iterative methods include the idea of an asymptotically

optimal semi-iterative method (see Eiermann [17] and Eiermann et al. [20] for the details).
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1.2.1 The Faber Polynomials for a General Region

In this section we will describe how the Faber polynomials are defined for a general compact
region, D, whose complement (C/D) is simply connected in the extended complex plane.

For such a region D the Riemann mapping theorem tells us that there is a unique function

¢ such that
lim @

Z2—00 z

=1 (1.1)

and such that ¢ maps the complement of D conformally onto {w : |w| > p}, the complement
of a closed disc of radius p (see Figure 1.1). The number p is called the transfinite diameter,

or logarithmic capacity of D. The function ¢ has a Laurent expansion
23]
¢(z)=z+a0+7+... (1.2)

about the point at infinity. To obtain F,(z), the Faber polynomial of degree n, we simply
take the polynomial part of the Laurent expansion of [¢(z)]". The difficult part in deter-
mining the Faber polynomials, for a region D, is to determine the above conformal map o)

(or its inverse ). For this reason the Faber polynomials are known explicitly for only a

few types of domain.

1.2.2 Some Properties of Faber Polynomials

From now on we will define 3 as the required conformal map from the complement of the
unit disc, A = {w : |w| < 1}, to the complement of the region D. We also define the
transfinite diameter of D as,

p = lim v,[)_(w_) (1.3)

wW—00 w
Hence, the Laurent expansion of ¢(w) about the point at infinity can be written in the
form
z=¢(w)=p(w+ﬂo+%+...) (1.4)
The required conformal mapping from the complement of D to the complement of {w :

|w| < p} is given by
¢(z) = b7 (2),



1.2. A Review of Faber Polynomials

- =<
L TR

a

z-plane w-plane

Figure 1.1: The mapping of a general region in the complex plane

where 11 is the inverse mapping of ¢. We note that
-1
PTG T . ) B

Z—00 A =00 z = U}I—PII(}O w(w) = 17

so that ¢(z) is indeed the desired mapping. We will now describe some of the properties
of the Faber polynomials for a general region D, when the mappings ¢ and ¢ are defined

as above.

From the above definition of the required conformal map ¢, the following property i1s

satisfied.

PROPERTY 1

Previously we defined the Faber polynomial of degree n as the polynomial part of (¢(2))",
so that

$(2)" = Fu(2) + Ha(2) (1.5)

where H,(z) = O(1/|2]) as |z| — oo. Using Property 1 we find

Fo($(w)) = p"w" — Hy (p(w))
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and H, (¥(w)) = O(1/|w|) as |w| — o0, so that
PROPERTY 2

2me wntl 0 if m#n.

1 Fn L =
L W’(“’))dw:{ i m=n
[w|=1
In the next property we need the concept of a level curve, so we define the level curve

I'r:={z=9¢(w):|w|=R>1}.

PROPERTY 3

py = L[ O 1 /Iw|=anwn¢'<w) o

T om raf—z °  2m (w) — 2

The first part of this property follows from (1.5), the residue theorem and the fact, H,(z) =
O(1/)z]) as |2| — oco. The second part follows by a substitution of { = ¥(w) in the first

integral.

We now introduce the scaled Faber polynomials,

n>1. (1.6)

Using Property 3 we are able to find a generating function for the scaled Faber polynomials

and from these generate the actual Faber polynomials. This generating function for the

scaled Faber polynomials is given by

PROPERTY 4

To prove Property 4 we simply substitute this expression in Property 3 and use Cauchy’s
residue theorem to give F(z) = p"Fo(2). |

Multiplying both sides of the expression in Property 4 by 1(w) — z, then using equation
(1.4) and equating coefficients of w7 leads us to an important recurrence relation for the

Faber polynomials, namely
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PROPERTY 5

(z) = 1,
(2) = z—bo,
Fy(z) = (z—bo)Fi(z) — 20y,
(2) = (22— bo)Fn(z) — :Zi bpFo_i(z) — (n+1)b,, forn >2,

where b; = p’*10;.

The next property of Faber polynomials is an important one. It appears in many

articles in the literature (see Gaier [38], Ellacott [22], Elliott [28], Kovari and Pommerenke

[52] and Pommerenke [65]) in a variety of different notations.

PROPERTY 6

If we define v(t,s) = arg(y(e”) — ¢(e*)) then

(a) [ ldatts) < v
(b) , F; (;b(eis)) = %/0% e dyv(t,s) for j>1

B (¢(eis)) — 2%/0% div(t, s).

and V is the total rotation of the region D (see Section 3.3.3).

Proof
(a) Gaier [38], amongst others, mentions that this is proved in Radon [67].
(b) The first part of this result is given in Gaier [38]. It follows from differentiating,
with respect to w, a result given in Pommerenke {65], namely
it

log 2L =¥ (<) _ 1/02” log (1 - %) dio(t, ),

pw s

and then using Property 4. The second part follows from Fo(z) = 1. o
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In Property 4 we gave a generating function for the Faber polynomials. If we divide the
expression in Property 4 by w and then integrate with respect to w, we can derive another

generating function for the scaled Faber polynomials.

PROPERTY 7 ~
log [ML—Z-} -y 5

pw

The next property we shall describe is one that appeared in a paper by Ellacott and
Saff [27]. The proof we shall give is one by Dr. J. P. Coleman [11].

PROPERTY 8

(z) + constant,

~—
=
O
I
e

F
/Fl(z) = 22(2) + constant,
Fn+1(2) n-l n-—m
= - br—m Fm tant  forn > 2.
/Fn(z) —— 1;1 - (z) + constan or n

Proof

Using Property 7 we let

U(w,2) = log | A=

U _ Yw)  p Iiﬁj(z)

Ju P A wh
and oUu 1 F’( )
. o 7
5 W) T A w
So

Using the previous three equations and equation (1.4) we find

Eoo: "+1 +—=p|l- i kﬂkw_(k+1)} [i IZJ—(Z)] :
w? = wl

w ot
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Finally equating powers of w™ in this equation, integrating the resulting expressions and

using equation (1.6) gives us the result. o

Eiermann and Varga [21] show that the zeros and local extreme points of Faber poly-
nomials are the eigenvalues of certain matrices. Allowing for the different definition of the

inverse mapping we shall now give their results. We start from Property 5 and rearrange

it as
2F(2) = Frpa(z) + Z b Fr_k(2) + nby.
k=0
We then consider this equation for n = 0,...,m — 1 and write this system of equations in

matrix-vector form as
2[Fo(2), Fi(2), ..., Fro1(2)] = [Fo(2), Fi(2), - -+ Fnea (2)[ Fin + [0, ..., 0, Fu(2))],

where F,, is the m x m principal submatrix of

bo 2b1 3b2
1 bo bl
F .=

1 b

The next property follows immediately.

PROPERTY 9

A € C is a zero of F,,(z) if and only if A is an eigenvalue of F,, with corresponding left

eigenvector [Fo(A), ..., Fno1(X)].

The last property that we shall describe in this section is one about the coeflicients of

the Faber polynomials (see Ellacott [22] or Coleman and Smith [13]). If we write

then the coefficients satisfy

PROPERTY 10

b2 Sk [(w)]FH
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Proof

From equation (1.5) and the residue theorem we find

ORI /F ",

k 2711 Zk+1

where T'g is the level curve introduced before Property 3. In this expression we make the

substitution z = ¢(w) and use Property 1 to find the result. o

Property 10 provides an alternative to generating the Faber polynomials by a recurrence
relation (see Property 5). It allows the coefficients of the Faber polynomials to be calculated
efficiently by the trapezium rule. If we write w = Rexp[:f] in the above expression,
then the integrand becomes periodic and we are integrating over a period therefore the
integral, and hence the coefficients, can be calculated efficiently by the trapezium rule.
The trapezium rule idea approximates the coefficients by

n N-1

ci”) ~ %7 > Gi (Rexplibfn))

m=0

where
2/)/(w)wn+1

0,, = 2rm/N and N is the number of equal sub-intervals used.

Gk(w) =

1.2.3 Best and Near-Best Approximation

As the title of this section suggests we shall overview the ideas of both best approximation
and near-best approximation. Both Kévari and Pommerenke [52] and Elliott [28] have
shown, for practical values of the degree of the polynomial, that the truncated Faber series
gives a near-best polynomial approximation. The ideas of Cheney and Price [7] and of
Geddes and Mason [43] allow the concept of near-best approximation to be made more
precise (see below). Geddes ([41] and [42]) developed this theory for the complex plane by
considering the disc and the region bounded by an ellipse. He considers projections from
the space of functions that are continuous on the boundary of the region and analytic on
its interior onto P,, the space of polynomials of degree less than or equal to n. For the disc

he considers a projection given by truncating the Taylor series of the function; for a region



1.2. A Review of Faber Polynomials 14

bounded by an ellipse he considers a similar projection given by truncating the Chebyshev

series of the function.

In his thesis Elliott [28] generalised the results of Geddes([41] and [42]), to a general
region D in the complex plane, by considering the partial sum of the Faber series of a given
function. Also in this thesis, Elliott [28] gives a bound for the error in approximating a
function by the n—th partial sum of the Faber expansion; a slight error in the bound was

corrected by Ellacott [22].

We will now introduce the notation of Ellacott [22]. We denote by A(D) the space
of functions that are continuous at every point in D, and analytic in the interior of D.
We also let A(D) denote the set of functions belonging to A(D) that are analytic on the

boundary of the domain. As above we let P, denote the space of complex polynomials of

degree less than or equal to n.

If we are given f € A(D), it is well known that there exists a unique best minimax

approximation to f from Py, that is, there exists p, € P, such that
pn(f, D) = |If = palle S =Pl forallpe Py,

where

lglloo = max|g(2)|

and g € A(D).

In this section we will consider approximations to f which are truncated Faber series,
that is we will consider a map from A(D) to P,, given by truncating the Faber series after
n+1 terms. This map is a special case of a family of maps from A(D) to P, known as the

projections. A projection B, : A(D) — P, is a bounded, idempotent linear operator. For

a projection we have
f_B'n.(f) :f_Pn+pn"Bn(f) :f_pn+Bn(pn_f)>
so that

I1f = Ba(Nlleo < I = Palloo + 1Ba(pn = Hlleo
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fon— Tlln |, ™~ =

IN

Ilf - anOO +

< I = palleo + IBrll [1f = palles

where

| Bnll = sup | Br(9)lloo = sup max | B (g)(2)| -
9€A(D) : llgllo=1 g€A(D) : lgllo=1 Z€

This means, for a projection,

Ilf = Bulloo < (14 1Ball) lf = Pallco-

Following Geddes and Mason [43] we call an approximation, M(f), near-best within a

relative distance 7 if

If = M(Hlleo < (1 +7)pa(f, D),

where p,(f, D) is, as we defined earlier, the maximum error on D of the best approximation.
From the previous expression we see a projection is near-best within a relative distance
| Bn||. It is usual to require 7 < 9 so that not more than one decimal place is lost when
replacing the best approximation by a near-best approximation. For this reason in later
sections we require the norm of the Faber projection to be less than nine (see below and
Section 3.4). Projections are not the only way of producing near-best approximations. For
example, in the context of ordinary differential equations, Coleman ([9] and [10]) produces
near-best approximations by the Lanczos-7 method, whereas Ellacott and Saff [27] find
them by Clenshaw’s method.

Given any f € A(D), the Faber series or Faber expansion is an expression of the form
(0]
Z aka(z),
k=0

where the a; are defined by

1 /Mle f@W)) . (1.7)

= 2mipk wkl
p is the transfinite diameter of the region and R; > 1 is sufficiently small that f can be
extended analytically to the closed region bounded by the image under % of the circle
lw| = Ry (see Curtiss [15], Markushevich [57] or Gaier [38]).
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As previously mentioned, we shall consider the Faber projection, namely
Xn @ A(D) = B,
given by truncating the Faber series after n + 1 terms, that is
Xa(f) = D_ a;F;(2) (1.8)
=0
and a; is given by equation (1.7).

Kévari and Pommerenke [52] give two bounds for the error incurred by approximating

f € A(D) by its truncated Faber series x,(f). Their Theorem 3 states

Given any region D whose complement is connected and any function f € A(D) then

If = Xa(Nlleo < An®pu(f, D),

where A and o < 1/2 are absolute constants.

The second result (their Theorem 4) says,

Given any region D whose complement is connected and any function f € A(D) then
If = xn(£)lleo < (Alogn + B)pn(f, D)
and the constants A and B will only depend on the domain D.

Elliott [28] provided quantitative values for A and B, which were then corrected in 1983
by Ellacott [22]. The result from Ellacott is given in terms of a bound on || Xzl

Let D be a Jordan region whose boundary T is of total rotation V. We have

V(4
el < ;{ﬁlognJrB} n>1,

where B is a certain absolute constant which (from numerical values computed in Geddes

and Mason [43]) has the value 1.773 to 3 decimal places.

The total rotation V of a region will be defined in Section 3.3.3. These results are useful
because, for a convex curve (V = 2r) and practical values of n, they show the approxi-

mations are near-best within a relative distance 9. In fact when V = 27 Ellacott’s bound
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leads to |[xn|| < 9 for n < 835. This bound may not be as useful when V' is much larger
than 27. For example, when V = 37 the bound gives ||xx|| < 9 for n <20, and for V = 4r
the bound implies ||x.|| < 9 for n < 3. It would be interesting to improve on Ellacott’s

bound, or at least to show when V = 47 that ||x,|| < 9 for reasonable values of n. This

will be considered in Section 3.4.

1.2.4 Some Examples of Faber Polynomials

We now give some examples of regions in the complex plane where the Faber polynomials

are known analytically. We will also exhibit some of the Faber polynomials of each region.

(a) The unit disc

For this region the mapping is given by w = ¢(z) = 2; the transfinite diameter, p, is
1; and the Faber polynomials are given by F,(z) = 2". For this region the Faber series
for a function f is simply its Taylor series. If better approximations, of a certain degree,
to f are required on the unit disc then the disc must be subdivided and approximations
to f sought on each sub-region. This lead Coleman and Smith [13] to consider the Faber

polynomials for an obvious subdivision of the unit disc, namely the sector (see (d) below).

(b) The real interval [a,b].

For this region the inverse mapping is a composition of two conformal maps. The first
is the Joukowski function, ¢ = (w + 1/w)/2, which maps the complement of the unit disc
to the complement of the interval [—1,1]. The second map is a linear transformation from

C/[-1,1] to C/[a,b]. Hence, the inverse mapping is given by
1 1 1
z=9(w) = Z(b_ a) (w + E) + §(b+a).

We also find the transfinite diameter p = lim,_,o, ¥(w)/w = 3(b— a). For this interval, the
Faber polynomials are multiples of the Chebyshev polynomials for the interval [-1,1}. In

fact when @ = —1 and b = 1 we have,

Fu(z) = 1217;(_21), forn > 1, Fy(z) = To(z).

For this reason Faber polynomials can be thought of as a way of extending the concept of
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Chebyshev polynomials to other regions in the complex plane. The Faber polynomials for

an ellipse with foci {—1,1} are also multiples of the Chebyshev polynomials.

(¢) The circular arc

The third example we shall consider is that of the circular arc, which was first considered

by Ellacott [23]. The exterior of the unit disc is mapped onto the exterior of the circular

arc with end points e*?8  containing the point z = —1, where cos(f) = 1/a, by
z =P(w) = M, with p = lim M —
(aw —1) w00 a

If we now expand the inverse mapping in powers of w we can show that the coefficients

defined in equation (1.4) are given by
Bi=p(p*—1), i20

so using Property 5 the first few Faber polynomials are

Fo(z) = 1,

Fi(z) = z+(1=p"),

Fy(z) = 224201 —pYz+1-p%,

Fi(z) = 24301 -p)2" +3(1—-p")z+1-p°

(d) The sector of the disc

Elliott in his thesis describes how the mapping for the unit semi-disc can be derived.
Then in 1987, Coleman and Smith [13], described how to find the inverse mapping and

hence the Faber polynomials for a sector of the unit disc,
T .
Sy={z:|z| <1,|argz| < =} with a>1
v o

In their paper they show that the unit disc {w : |w| < 1} is mapped conformally onto the

complement of the circular sector, S,, by
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where
B (w—1) o) = (2 — a®)(w — 1)% + 4wa?
u(w) - ) ( ) - az(w n 1)2

1
2aw?

with
a=a'(2a—-1)7 and pa)=(1- a®)z.

They found that the transfinite diameter of S, is given by

a2

P = o — 1%
Coleman and Smith [13] also derive an extremely neat way of generating the coefficients,

B:, in the Laurent expansion of the inverse mapping,
P
P(w) =p w-I—,BO-I-E-{—... .

They show that
k-1

(k+ 1) = ary1 — Y vBuak—v,

v=0
where

ar = Pi(z) + Pioa(z)
and P,(z) is the Legendre polynomial of degree n and is generated from the following

recurrence relation
(n+ 1) Poyi(z) — (2n + 1)z Po(z) + nPry(z) = 0, for n > 1,

with
P.i(z)=0, P(z)=1.

This enables them to generate the Faber polynomials from the recurrence relation (Property
5). Coleman and Smith [13] find the coefficients of the Faber polynomial of degree n (cfcn)
for k = 0,1,...,n) from Property 10 which is given in Ellacott [22] and Gaier [38], and
they were then able to compute the coefficients efficiently using the trapezium rule (see
after Property 10). Properties of the Faber polynomials gave them ways of assessing the
accuracy of computed coefficients, and in particular they mentioned that cfcn)pk‘" was a

rational number. Gatermann et al. [39], modified the above method by considering the

scaled Faber polynomials
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They were able to show that the coefficients were rational, and that the scaled Faber
polynomials could be generated algebraically in terms of a parameter, ¢, depending on the

half angle of the sector (r/a).

The first few scaled Faber polynomials are given by,

Fi(s) = o, (;) ,

where

@0(2) = 1

®1(z) = z-2(1-¢)

®y(2) = 22—4(1—¢c)z+(1—-¢)(2+2¢)

Pa(z) = 22+ (1—c)[~622+ (9 —3c)z — 2 — 4c?]
and

(e) Other regions

As was mentioned in Section 1.2.1 the conformal mapping, and therefore the Faber
polynomials, are not known for many regions in the complex plane. In this final part of
the section we will review most, if not all, of the remaining regions for which the conformal
mapping is known. Of course, we may generate the Faber polynomials for any region whose
conformal map is known, but the regions we give in this section were considered so the

Faber polynomials could be determined.
In his thesis Elliott [28] gives the mapping from the complement of the unit disc onto

the complement of the square {z : |Re(z)| < 1, |Im(2)| < 1}. The mapping is a Schwarz-

Christoffel map and is given by

w 1\? 11
e=p [ (14 5) do=D(v-gatgr )
where D = 1.18034060. Following on from this, Ellacott [22] describes the mapping for the
rectangle {z : |Re(z)| < A, |Im(z)| < B}.
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- o

Figure 1.2: The complicated domain from Elliott’s thesis.

Elliott also gives the mapping for a quite complicated region, that is, |z £ o = av/2,
where a = /2 — 1 (see Figure 1.2). The mapping from the complement of this region onto
|w| > 2 is given by

w=¢(z)=2z— —.

z

The mapping for a lemniscate of the form
|2+ Ap_1 2"V L+ Ag| = pF,

is given in Markushevich [57].

Eiermann and Varga [21] give the mapping from |w| > 1 onto the complement of a

hypocycloidal domain. The mapping is given by
p(w) = aw + fuw' 7,

where p is an integer greater than 1, & > 0, 8 € C and § # 0. The mapping is conformal
in the region exterior to the unit disc if and only if (p — 1)|8|/a < 1.
In a recent paper Bartolomeo and He [4] study the Faber polynomials for a regular

m-star, that is,

S = {zwh; 0< 2 <4m k=0,1,...,m—1, w™ =1},
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with m > 2. When m = 2, 5; is the interval [—2, 2] (see Section 1.2.4 example (b)). The

mapping
2

1 \m
s=w(1+—)
wm

maps |w| > 1 conformally onto the complement of S,.

Finally we note that in a number of articles in the literature (see Ellacott [22], Starke
and Varga [76], and Papamichael et al. [63]) a numerical conformal mapping package is
used to generate the conformal map, and hence the Faber polynomials. The reason for this
is an explicit formulae for the mapping is not known. However, the regions in question
are polygonal and so a slight modification of Trefethen’s SCPACK [77] can be used to
numerically approximate the conformal map. From this approximate map we can then
approximate the Faber polynomials. Driscoll [16] has recently adapted SCPACK for use in
Matlab. He has also added some new features, that is, the ability to approximate exterior

maps and being able to produce Faber polynomials.



Chapter 2

The Faber Polynomials for Annular
Sectors.

23



2.1. Introduction 24

2.1 Introduction

In this chapter we will investigate the Faber polynomials for the annular sector,
Q:={z:R<|2|<1,0 <|argz] <7}, with0<8d<m.

The motivation for considering an annular sector is an application to the solution of linear
systems of equa,tions' (see Chapter 5). Eiermann et al. [17, 18, 19, 20], in their work on
semi-iterative methods, consider the Faber polynomials as residual polynomials for the
solution of linear systems of equations. Also, since our work began Starke and Varga [76]
have given an iterative method using suitably normalised Faber polynomials as the residual
polynomials (see Section 4.4.5). In their case the Faber polynomials are required for some
bounded region which contains the estimated locations of matrix eigenveﬂues produced by
the Arnoldi method or otherwise. Since one is working with a rough prediction of the
eigenvalue spectrum it is not necessary for the chosen enclosing region to bear any specific
relation to the estimated eigenvalues. Professor G. Opfer suggested to my supervisor, Dr.
J. P. Coleman, that an annular sector would be a useful general-purpose region which, by
scaling and rotation, could be adjusted to enclose any estimated eigenvalue cluster bounded
away from the origin. This suggestion mot-ivated the work in this chapter, and therefore

the rest of the thesis. The main theoretical results of this chapter are summarised in the

five following theorems.

THEOREM 1. The complement of the unit disc {w : lw|'< 1} is mapped conformally

onto the complement of the annular sector

Q={z:R<|2|<1,0 <|argz| <7}, 0<f<m,

by ) 0 B(a) )
Ylw) = —exp [_ /a2 TA(z) :v]
where
(= 11; [(w2 +1)(a”? = a®) — 2w(a™® + az)]
and
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The parameters a and b satisfy the equations

SRy = e

e = —2)

and

ogB=- [ [(w — (6~ - ””)] : .

B CERICEEn

THEOREM 2. The transfinite diameter of the annular sector ) defined in Theorem 1

1s
4

_(l—a)ex @ gl 4+aq?—p?—b? .
P p[o A@»«@+Bwnd]

THEOREM 3. The coefficients of the Laurent expansion

ph(w) = p(w + fo + Prw ™" + )

of the function defined in Theorem 1 may be generated recursively. Given a and b, in the
notation of Theorem 1, let

_ 2a*(140Y) B 21 + a*
b1 —-at)’ ST T

Let a; =0 for: <0, ap =1 and, for k > 0,

(k+ Dagg = 2k + (s —w)ay — 2k(s* — su—1)ap
+ 2k —1)(s —uw)ar—2 + (1 — k)ax-3

and

Crt1l = Qg1 — SAg + Gp_1.

Then By = ¢1, 1 = —02 and, for n > 2,

(n + 1 =Cny1 — Z lcn 1181

THEOREM 4. The Faber polynomial of degree n for the annular sector ¢) defined in
Theorem 1 is F,,(z) = p"Fn(z), where p is the transfinite diameter of (). The scaled Faber
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polynomial may be written as F,(pz) = 2™ 4+ ¢n_1(2) and the ancillary polynomials {¢,}

are generated recursively, in terms of the Laurent coefficients of Theorem 3, by the formula
n—1 n—1
pn(z) = (2 — Bo)pn-1(2) — Z Bidn—k-1(2) — Z ﬂkzn—k — (14 n)B,.
k=1 k=0

THEOREM 5. The Faber series for 27!, expressed in terms of the scaled Faber poly-

nomials and the notation of Theorem 1, is

o B () R

n=1

Theorem 1, which is proved in Section 2.2, provides an expression for the mapping func-
tion v, whose inverse is a multiple of the function ¢ of (1.1); if z = ¥ (w) then ¢(z) = pw,
where p is given by Theorem 2. Section 2.2 also contains checks on the formulae contained
in Theorems 1 and 2. The checks involve verifying that the mapping and transfinite diame-
ter formulae reduce to known results for the interval, the arc and the circular sector, which
are all special cases of the annular sector. Section 2.3 establishes the formulae collected
in Theorem 3, which allow the recursive evaluation of the Laurent coefficients essential for
the computation of the Faber polynomials by the recurrence relation of Theorem 4. In
addition to proving Theorem 4, Section 2.4 explores some of the properties of the ancil-
lary polynomials {¢,}, and shows how explicit expressions for those polynomials may be
obtained with the help of a computer algebra system such as REDUCE or Mathematica
or Maple. In Section 2.5 we consider the mapping of the boundary of the annular sector.
Section 2.6 considers how to obtain the conformal mapping, for an annular sector with
arbitrary inner and outer radii, from the mapping given in Theorem 1, for the annular
sector Q). As an example of a Faber series, the expansion of 1/z is investigated in Section

2.7 where we find the simple formula stated in Theorem 5.
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2.2 The Conformal Mapping for the Annular Sector

In this section we will investigate the Faber polynomials for the previously defined annular
sector
@={z:R<|z|<1,0 <|argz| <7},

where 0 < 6§ < 7 (see Figure 2.1). There is no loss of generality in this choice since
rotations and magnifications allow us to apply the results to any annular sector. For
example, to work with the annular sector {z : R < |z| < 1,|argz| < 0} we make the
transformations z — —z and w — —w, the latter being required to maintain the form of
(1.1). To investigate the Faber polynomials we will calculate an analytic function, ¥(w),
which maps the complement of the unit disc, A = {w : |w| < 1}, conformally onto the

exterior of the annular sector Q).

Figure 2.1: The annular sector @)

The domain obtained by cutting C\@Q along its intersection with the negative real axis

is mapped conformally onto the shaded domain E of Figure 2.2 by the function z — log z,
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where the principal value of the logarithm is taken. FE is the interior of an infinite polygon

with finite vertices at the points log R & iw, log R £ ¢0, +:0 and =+ ix. Conversely, the

function z — ¢” maps E conformally onto the cut version of C\@, and the infinite edges

of the boundary of F are mapped onto the cut.

Figure 2.2: The domain F.

A Schwarz—Christoffel transformation may be used to map the upper half-plane

II = {v:Imv > 0} (see Figure 2.3) conformally onto the domain F, in such a way that the

real axis is mapped onto the polygonal boundary in Figure 2.2 and the finite vertices of

that polygon are the images of the points +a™!, +b™', tband +a, with0 <a <b< 1.

The Schwarz—Christoffel map has the form

w—b)(w+ b)(w—b")(w+b7")
o) = ) + € [ [ 2w+ o)(w— ) (wt o)

where a,b and K are constants to be determined.

Let

Then

u(v) —u(a) = K/:wﬁA(-ZU—Q))dw

(2.1)

(2.2)
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= & ’ B(w;)flzw’;l)(w) dw + K log (S)

_ v>  cosh o — cosh A v
= K[, 250y ey K <;) (2.3)

where we have written
e =¢* and b7%=¢" (2.4)

Figure 2.3: The upper half-plane II

To determine the constant K we note that the positive real axis is mapped onto the
upper boundary of the polygon in Figure 2.2 and the lower boundary is the image of the

negative real axis. Therefore, for all v € (0,a),

omi = u(v) — u(—v) = K [log (3> ~ log (—S)] = —Kri,
a
from which K = —2. Furthermore, we require
u(a) = er,

and (2.2) becomes

‘ ? B(z)
u(v) =r — /a2 A) dz.
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Assuming that a and b can be determined for any given annular sector, (see Section 3.1),

the rest of the argument is similar to that of Coleman and Smith [13]. A composition of

the Joukowski function w — 1(w™' +w) and a linear transformation w — wsinh & —cosh e

gives

17, .
(= 50 [(w + 1) sinh @ — 2w cosh a] , (2.5)

which maps C\A, the complement of the unit disc A, conformally onto the slit plane C\J,
where J is the interval [—a=%, —a?] (see Figure 2.4). Let L denote the interval (—oo,0] of

the real axis. Then the function { — 2( % maps the cut plane C\L conformally onto the

upper half-plane II.

By composition of the mappings described here we obtain

2 = () = —exp [_ / A :Z(g) dx] (2.6)

which maps C\L conformally onto the cut version of C\@Q. At the end of Section 2.2.2
it will be shown that the cut introduced in C\@Q may be removed and that C\L is then

replaced by C\J.

AN

\

I

74 \// 7

.

/

oA’
0 //4// 7

.

\\\\\

\\

Figure 2.4: The mapping ¢
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2.2.1 The defining equations for a and b

The symmetries inherent in our choice of the pre-images of the vertices of the polygon,
under the Schwarz—Christoffel map, preserve the relationships, which are evident in Figure

2.2, between the lengths of the edges. The two distinct lengths which arise are
™ — 0 =1i[u(b) — u(a)]

and

—log R = u(b) — u (b_l) .

These equations, which may be written as

r—0= /b2 [((5_“;;8_2 - "’”)} ‘dz (2.7)

and

ogh=— [ [("” Ll ] e 23)

2 |(z—a*)(a?—2)| =
uniquely determine # and R for any given a and b such that 0 < a < b < 1. Furthermore,
as the geometrical interpretation in Figure 2.1 requires, 0 < § < 7. Since the integrand in

(2.7) is non-negative the right-hand inequality is true and, since b* + b2 is a decreasing

/ -2 1@:71'—2Si1’1_‘1< 2 >; (2.9)
[(z—a?)(a?2-2z)z = a? +1

in particular, § > 0. The integral in expression (2.9) will be calculated explicitly in Section

function of b,

2.2.4. Equation (2.8) may be expressed in a form which is more useful for numerical

computation, by regarding its right-hand side as a sum of integrals on [b?,1] and [1,57?].

Making the transformation ¢ — z~! in the second integral we obtain

oghe 2 [ [(x—bz)(b*—:c)rg 2.10)

2 |[(z—-a¥)(a?—2)| =

The integrals in (2.7) and (2.8) may be expressed in terms of elliptic integrals of the
first and third kinds. Considering (2.7) we multiply the numerator and the denominator
of the integrand by the numerator itself to give

o 1—:1:(b2+b ) + 27
S -2 = o)(B - 2)(b? — )]

dz.
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The numerator of the resulting integrand is a polynomial of degree two in z, so the above

integral can be written as the sum of three integrals. Using a standard notation [66] we

find

_ 2ab m 2 2 T 9 T k
Peb= [CF<2,k>+(a a ){H(Q, ak,k)~n(§,—p,k)”

where \ \
b* —a
k= 1 — a%b?
and
C = 2(cosh o — cosh ). (2.11)

A similar method can be used to show that

—2ab T s 9 T 1 T a?
IOgR = m I:CF <§,k1> + (b —4a ){H (5,]{22,]61) - ;2—63[[ (—2', 'b—ka,kl) }:l

where ) .
(1 —a*)z(1-0b%)2 b = (1-— 0%
(1 —a2b?) 2T (- a2

The functions F and II are the elliptic integrals of the first and third kinds, and are defined

k’lz

as,

F(é k)_/¢__‘l77_
o /1 —k%sin?q
dn

¢
(¢, v, k) = .
/0 (1 —vsin?n)y/1 — k2sin’q

2.2.2 Formulae for ¢(w)

and

The mapping function 1 may be written in several different ways, which we list here for

later reference.

By using the change of variable z — z~! in the first formula quoted, by taking a~! as

reference point instead of a as in (2.2), and by using the substitution z — z™' again we

obtain

s p(w) = —exp [— / < B dml (2.120)
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= —exp [/a:: Q:Bfl((x:c)) d:c] (2.12b)
= —Rexp /a;C f;(a;)) da:} (2.12¢)
= —Rexp :— /a:j_l ;Z(ZB)) d:c] (2.12d)

where

]. 2 .
(= %0 [(w -I-l)SInha—chosha] )

In some cases, particularly if the integration interval may include the origin, it is prefer-
able to remove the logarithmic term from the integral, as in the derivation of (2.3). Cor-

responding to the formulae (2.12) we have, with C as in (2.11),

2 F_ - C

z = a“(exp . /a2 A [A) + BE) d:EJ (2.13a)

= a*Cexp [ ¢ d:c- (2.13b)
Joz A()[A(z) + B(z)] |

= —R—Cex [ ¢ m- c
= 7| TR e (2.13¢)
= R—Cex [ ¢ T
- 2P i /(1—2 A(z)[A(z) + B(z)] d ] ' (2.13d)

Other forms of the mapping, which do not involve the intermediate variable ¢, may be

derived from (2.12). We consider, for example, (2.12b) with the change of variable
T = -1 [(,u2 + 1) sinh @ — 2 cosh a]
2u '

With this change of variable we find that when @ = —( (the upper limit of the integral in

(2.12b)), we have either g = w or 4 = 1/w. Therefore, when £ = —( we choose p = w so

2

that we are considering |u| > 1 when |w| > 1. We also note that z = a™ corresponds to

¢ = —1 and similarly z = a® corresponds to p = 1.
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Using the change of variable we have

dz (1 —p?)sinhe

@ B 2u?
and
AP = (- ad)(z—a?)
1
= ELE [(/142 + 1) sinh « + ,U«(a,2 — a—Z)] [(#2 + 1) sinh o + H(a_2 _ az)]
a2 — q2)?
so that 2 2
a‘—a
Alz) = ———(u* = 1).
(2) » (v* 1)
In a similar way
inh
B(:C) = Sl;’u,a(lug _ 2t/.t 4 1)%(/"’2 _ 27_’1, + 1)%,
with 2 2
cosha — b cosha — b~
po O TY _ cosha —b7* |
sinha '’ T sinh o (2.14)

Therefore, with the change of variable given above, the expression (2.12b) finally becomes

ey w(p? = 2p 4 1)F(u2 —2rp+1)3
z =9(w) = —exp [/_1 (7 —2pcotha + 1) dp| , (2.15)

which, as mentioned previously, is an expression for the mapping which does not involve

the intermediate variable (.

We note here that ¢ € {0,1] and 7 € [—1,1]. From before we remember that 0 < a <
b < 1 and this will be useful in the proof. Using —1 < —b? and —b? < —a? we find

—a? _ 42)2 4 _ 9,272 4
0§1 a:(l a?) S1—I—a 2ab:t§1 ¢ _
14 a2 1 —at 1 —at 1-—at
Using —a~2 < —b7% and —b7% < —1 we can also show thaf
4 4 o 272 9.2 4 2
_1_a 1<1+a 2a°b :'r§1 2a° 4+ a l—a <1

Tl gt 1—ad 1—a®  1+4a2-
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Finally we can also show that ¢ > 7. We begin by noting that 4=2 > b?, so —2a%h® >

—~2a2b~? and therefore
1 4 a* — 2422 S 1+ a* — 2a%b72
1 — a4 - 1 —at '

Hence ¢t > 7 for all a, b satisfying 0 < a < b< 1.

To complete the proof that the function 3 provides the required mapping, from C\A

to C\J, it is necessary to show that we may remove the cuts introduced in constructing

. Let

— 2

—¢ C
x(€) = a“exp [ o2 Az)[A(z) + B(z)] dle

= @ l‘ I : A(z) [A(f) +B(2)] d””} |

The denominator of the integrand is a single-valued analytic function in C\J, the region of

the complex plane exterior to the slit J, and it does not vanish in that region. Integration
gives a single-valued analytic function in C\J and the identity of the two integrals shows
that it remains finite as ¢ — oco. It follows that x({) is a single-valued analytic function in
C\J and, consequently, {x({) is also single-valued in C\J. Since the part of the interval
L which lies in C\J is mapped onto that part of the negative real axis which lies in C\@,
the function % given by (2.12) and (2.13) maps C\A conformally onto C\@Q.

2.2.3 The transfinite diameter

Given the mapping, z = %(w), from the outside of the unit disc to the outside of the

annular sector @), we define, as in Chapter 1,

p:= lim () (2.16)

and ¢(z) = pty~1(z), where ¢~ denotes the inverse mapping of . Then ¢(z) will map
C\Q conformally onto the complement of the disc {w : |w| < p}, so the number p is the
transfinite diameter of the annular sector (). As w — oo,

(= %wsinha [1 +0 <l>] :

w
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Therefore, from (2.13a) and (2.16),

ey [ c )
SR p[/o A@NAR) 1 B@)] (217)

2.2.4 Special cases

There are three special cases of an annular sector which provide useful checks on the
mapping, the formula for the transfinite diameter and the Faber polynomials themselves.
In this section we shall show that the mapping and the transfinite diameter are correct for

the three special cases namely the real interval, the circular arc and the circular sector.

Case (i) b = a. A real interval.

When b = a the upper and lower limits in the integral of equation (2.7) are the same, so
the integral is zero; the only possible exception to this is when the integrand is infinite,

but this only occurs when b = ¢ = 0 and we are considering a > 0 so we can ignore this.

In this case equation (2.7) gives

0 =m.
Also when b = a, equation (2.10) becomes
de
log R = / 7
[ — log(a )J

From this we have R = a* (again with the exception of b = a = 0). Consequently the

annular sector ) becomes the interval [—1, — R] of the real axis.

From (2.3) it is evident that
u(v) = im — 2log <2>
a
when b = a, because cosh a = cosh § and so the integrand vanishes. Therefore, as v = £ -3,

1
z:e“’:a2C:i(w-{—%)(l—R)—-i(l-{—R),
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which, comparing with Section 1.2.4 example (b), correctly maps C\A onto the complement

of the real interval [—1, —R].

When b = a, (2.11) gives us C = 0, so the integrand in (2.17) vanishes, and the
transfinite diameter in this case is given by

o=l _4(14) = i(l - R),

which again agrees with Section 1.2.4 example (b).

Case (ii) b= 1. A circular arc.

THEOREM 6
When b =1 we have R =1 and 0 = 2sin™" [2a(a® + 1)7].

Proof

The first part of Theorem 6 is easy to prove. When b = 1 the upper and lower limits

of the integral in (2.8) are the same, so the integral vanishes and we have R = 1.

For the second part consider equation (2.7) with b =1,

71__9:/: (1—-z)de

2 g(z — a?)2(a"? — )T

2

We then make the substitution z = e' and remember a2 = e®, so when z = a? we have
b

t = In(a?) = —a. The equation can now be written as

T—0

/0 (1—e")dt

o [(a? + a~2)et — 1 — )3

/0 (e‘%—e%)dt

@ [2cosha — et — et]?

/0 —2sinh L dt
-a (2cosh o — 2 cosh t)z

/0 —2sinh £ dt
~a (2 cosh @ — 4 cosh? £ + 2)2
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We now make the substitution y = cosh %, and note that

_ 1 2 2)\2
cosh(—a>= ta =7 Cosha+1:m—a).

2 2a 2a?
Hence
1 _
r—0 — / _ﬂf
v [(27) - 4y?)?
1
-
’Y Y
g1 -1
= —2sin (—) + 2sin™" (1),
Y
and
L 2a
6 = 2sin 1<1+a2>' o (2.18)

The annular sector @) therefore degenerates, when b = 1, to an arc of the unit circle
|z| = 1, of half-angle 7 — 8. The question is do the formulae for the mapping and the

transfinite diameter agree with the known results for the circular arc.

When b=1,7 =t = cotha — 1/sinh @ in (2.15) and

o) = e[

~1 pu(p? = 2pcotha +1)

= wex 2 /w dy
B Plsinha /o p? —2ucotha+ 1|

Using partial fractions we have

2 /w du B / sinh & i sinh &
sinho Jo1 p? — 2ucotha+1 psmha —cosha+1 psinha—cosha —1

,usmhoz—cosha—l
psinha —cosha+1/] |




2.2. The Conformal Mapping for the Annular Sector 39

Noting that tanh § = (1 — a?)/(1 + a®) the formula for the mapping becomes

w(wtanh § — 1)

w — tanh%

z=1p(w) = (2.19)

Comparing this with example (¢) from Section 1.2.4, we see that this is the desired

mapping provided that tanh § = cos % , with 6 given by (2.18). We note that

o 5 i~ ()]
s{=] = ¢
C 5 os |sin T+
1 1—a?
= cos |cos
1+a?

1 —a?

1+ a?

We choose this value of the cosine because § € (0,7], so /2 € (0,7/2], and hence

cos(0/2) > 0. Finally we have
(2] s
cos | = | = tanh —.
2 2

Hence the mapping function agrees with example (¢) in Section 1.2.4 and correctly maps

C\A onto the complement of the circular arc
{Z: IZI'__ L, < 'a‘rgzl S”T}a

where 6 is given by equation (2.18).

From the expression (2.19) for ¢(w), the transfinite diameter of the arc is

e 1—a® 0
PZta,nhEZ = Cos ¢

14+ a? 2

which, with allowance for the difference in notation, agrees with Ellacott [23] (see also
example (¢) in Section 1.2.4). As a check on formula (2.17) we should confirm that when

b = 1 the formula gives the same result for the transfinite diameter. When b = 1 formula

(2.17) becomes

_(1—-aY) o ¢ 2(cosha — 1) dz
=Ty O [/o AR+ A(z)(z - 1)
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Making the substitution

1
T = “on [(;ﬂ + 1)sinh o — 2ucosha] ,

as in Section 2.2.2 and writing (see equation (2.38) in Section 2.7)

., l+ad?
W= ——,
1 —a?
the transfinite diameter becomes
_ (1-daY) ox F/1 4(cosha — 1) du
P= 4 P e (1 — p?)sinha — (1 4 p?)sinh o + 2p(cosh a — 1)

(1—a*) _/1 4(cosha — 1) du
w —2p? sinh @ — 2p(1 — cosh )

(1—a?) .-/’”' 2(cosha — 1) du
1 p(psinha + 1 — cosh o)

The integrand in the above expression is written as

2 2sinh o

7 + psinha + 1 — cosha’

so that the transfinite diameter can then be expressed as

— 4 * 1 —_—
(1 4a )exp [QIn (w sinha + 1 cosha) —2ln(sinha + 1 — cosh @)

w*

p:

Finally we note that

sinha+1—cosha =1 — a?

and

w*sinha + 1 — cosha = 2,

so the transfinite diameter is now written as
1 —at) 21 — a?
= (TCL—lexp [2111 (%) —2In(1 - az)]
(1 -a?)
(1 +a?)

This agrees with the formula for the transfinite diameter on the previous page. Hence,

when b = 1, formula (2.17) gives the correct result for the transfinite diameter.
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Case (iil) a — 0 and b — 0. A circular sector.

THEOREM 7
We have § — ar/band R — 0 in the limit as ¢ — 0 and b — 0.
Proof

In the integrand of (2.7), z << b2 < a7% when 0 < a@ < b << 1. Expanding (672 —

1, . _L . .
z)2(a”? — z)7%, in terms of a and b, we obtain,

Wf=

@—%¥z+0@ﬂ)ﬁ+%ﬁx+omﬂ)
(1+0(a®) + 0(8Y),

(b7 —2)i(e —a)”

SR o R

as a — 0 and b — 0. Substituting this in (2.7) we have

v $)2 2
w_o_Lz( ﬁﬁ< @+0()+0@»)a.
We now consider the integral

P (-2} o P (P-a)
I = - ——dz =~ - dz;
b z(z — a?)? b /a2 z[(z — a?)(0? — 2)]?

with
2z = a® 4 b* 4 (b* — a?)sint,

the integral becomes -

5 [(6* — a?) — (b — a®)sint it
b —z [ (0% + a?) + (b? — a?)sint]

We now make the substitution tant/2 = s so that

25 dt_ 2
14 52’ ds 1+ s?

sint =

and the integral is now given by

2(b* — a?) (s —2s 4+ 1) ds
b (1 + s2)[(b% + a?)s? + 25(b% — a?) + (b + a?)]

I
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2a 20? 1 d
b Joa \ (8% + a?)s? + 25(02 — a?) + (02 +a?) s2+1 5

_ 2a ! 207 q 2¢ 11 p
b Joa (b2 4 a?)s? 4 2s(b% — a?) + (8% + a?) T a1 ®

Making the substitution s(b% + a?) = 2(ab)y + (a® — b?) we have

2 1
| 2/:1 dy _2a ds
a ] 4 y? 11452

= 2 [tan_l(y)ﬁ% - 2%1 [tan_l(s)]l_
= 71— T

Substituting this integral into the expression given above for 7 — § we find

r—0= (“‘T) [1+0(a?) +0(8?)]

so when ¢ — 0 and b — 0 we have

0 2. (2.20)

Similarly, from (2.10),

2 ("’ — bZ)ﬂ de [1+0(a?) + O(%)] .

log R =~
& b (x—aQ)f

Making the substitution y* = (z — b%)/(z — a*) we find

% [t (z—b%)? p 2a [w  2y*(b? — a?)dy
St [ G S /A
b J» z(z — a?)2 b Jo (b*—a%y?)(1-1y?)

with yo = (1 — )3 (1 — a?)~%. Using partial fractions we are able to evaluate this integral

as
Yo

22 [t - ) 2 og(s -+ ) log(1 =) +log(1 4 i)

0

Substituting this back into our expression for log R we find

_ 2_a 1+ é b — ayo 2 2
log R =~ llog(l_y0)+alog(b+ayo)] (1+0(a?) +0(4%))
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From (2.20) we see that as @ and b both tend to zero we may write a = Ab. So for small a

and b we find
I —yo 14 Ayo
log B =~ 2\ |1 Al
% [Og (1 +yo> s (1 ~Ayo>]

P a (1 ~yo)” (1 +/\y0>2,\2

14+ yo 1 — Ayo .
As a — 0 and b — 0 we have yo = /1 —b2/\/i—a2 — 1. Therefore B — 0 as a¢ and b
both tend to zero, that is, with the exception of A =1 and A = 0. When A = 0 we note

So that

that a tends to zero independently of b (that is b may not be zero). When A = 1 we have
a = b— 0, that is, we are considering the interval case (see case (i) in Section 2.2.4) in the

limit as @ — 0. Referring to this case we see that R — 0 as a — 0.
Hence, R — 0 as a and b both tend to zero. o

If we consider the limit @ — 0 and b — 0, with a = Ab, then we can remove the small

a and b argument from the previous proof (see Appendix A for the details).

Theorem 7 implies that in the limit as @ and b both tend to zero the annular sector @

tends to the circular sector
{z:ll <1, 0< |arge] < )

where § = wa/b and so our results in that limit should agree with those of Coleman and

Smith [13] and of Gatermann et al. [39].

To find the transfinite diameter in the required limit we write @ = Ab in equation (2.17),

and make the substitution z = tb?, to obtain

p= L2 i),

where
I\ ) = /Az [ -1+ A7 1] di
T e S E(E - i) (2 — 1302 — b+ (1 — )31 — b)5]

In the limit as & — 0 this reduces to

1 S IDYEE )
p= Zexp [/0 {—M

op= g
—
——

N
| I——



2.2° The Conformal Mapping for the Annular Sector 44
Substituting y? = (1 — ¢)/(A\? — ¢) we have

1 [ 0 2y(1—/\2)dy}

p= ZeXP -1 (y2—1)()\y—l—1)

and using partial fractions we are able to convert the integral to a sum of elementary

integrals and we find

1 [ -2 144 2 ),
= 1P o y—1 14y Ay+1 Y

= iexp [log {(y - 1();:::?/1; = H :o—l

- doolo ) s )|
(1 ,\)141(1 + A

In this limit A = #/7, where the half-angle of the sector is 7 — . We now show that our
expression for the transfinite diameter agrees with the transfinite diameter in Coleman and

Smith [13]. In their notation 7/« is the half-angle of the sector, so that in our expression

1
A=1—-—
«
and the transfinite diameter is given by
P = a-1%

Comparing this expression with Theorem 2 of Coleman and Smith [13] (see example (d) of

Section 1.2.4) shows that our expression is the transfinite diameter for a sector of the unit
disc of half-angle m — 0.

Similar reasoning applied to the integral in (2.13a) allows us to compute o, the limit
of the mapping function ¢ as a and b both tend to 0. Substituting z = tb? into the integral

in (2.13a) we find
¢ = @ exp[-J(\,B)]
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where the integrand in J(A,b) is the same as the integrand in I(), b); however, the lower

limit on the integral is A? and the upper limit is —(~!/b?. Noting that

(= —— [(w—1)* + O(a*)]

da?w

as a — 0, we find

)%

where zo = 4)\?w(w — 1)72. Once again we make the substitution y* = (1 —t)/(A* — 1)

N=] op=

R N e PYCETY)
tho(w) = p[/_%{_—w_t)

(see the transfinite diameter calculation on pages 43 and 44) and find

o

4w
o

(w—1)*(Ayo +1)*
4wA?(yo — 1)1~ (yo + 1)1+

where yo = \/(1 + 20)/(A? + o).

We shall show that this expression for the mapping function is the same as the mapping
function given by Coleman and Smith [13]. To avoid conflicting uses of a we shall slightly
alter the notation of Coleman and Smith and write a, for a. Coleman and Smith give the

mapping function for a sector of the unit disc with 0 < |arg Z] < 7/« as

~[utveE=a)

Z=yW)= e
o+ vo?=1]"
with
uw) = WL
2a. W2
(2 —a2)(W —1)2 +4Wa?
v(W) (W + 1)
and ,
' 1
1—az:<1—l), pla.)=1——.
a a

In our case we have shown that A = (1 — 1/a) = p(a.) and 1 — a? = A%,
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Coleman and Smith place their sector symmetrically about the positive real axis and we
place our sector symmetrically about the negative real axis. This means that to compare
the mapping function of Coleman and Smith with ours we must make the transformations
7 — —z and W — —w, where the second transformation is used to preserve relation (1.1)
(see the beginning of Section 2.2). When considering these transformations we must be
careful to consider the correct branch of the square root in u(W). We note that VW is
real and positive when W is real and positive, that is when w is real and negative. Now
Vw = \/m exp ¢0/2 where 8 is the argument of w, so when w is real and negative we have
Vw = z\/]_w‘| So VIV = /—w = tiyw = :F\/m, and we must have VW = —i\/w to be

on the correct branch of the square root function.

This means
w+1

- 2a./w’

(2 — a?)(w + 1)? — 4wa?
a?(1 —w)? '

Returning to our mapping, we see that it may be written as

(= 1*(1 + \go)? (90 —1)"
(B —1) \po+1)

u(W) = u(—w)

and

v(W) =v(—w) =

z =

and because p(a.) = A we now prove that

2 _ (w—=1*(1 + Myo)®
C 4w (yg-1)

Yo —

v+¢ﬁt_:(%+i) and (u+vuZ—1)

LEMMA 1

2 2 _ (w — 1)2(1 '*‘/\?JO)2
(Ve == -1

Proof

From previous expressions for o and yo (see page 45) we find

o l4me  4wh 4 (w-1)
D= Ntz N(w 1)

Hence

w+1+\/47.0/\2—l-(w~—1)2
w+1

1+)\y0:
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and

2 _ (1- /\2)(“’ - 1)2
Yo T T e (w 1)

Therefore

(w10 a0 _ [0 14 RN (w17
4wA?(yg — 1) - 4w(l — A?)

[w+ 14 /(w+1)? +4w(X? - 1)j2
4w(l — A?)

[w+1+ \/(w—l—l)2 —4a2wr

4aw

= (u+\/u2—1)2. o

LEMMA 2

v+\/v2———=(y°+1).

Yo— 1
Proof

We note that v + vVv% — 1 is one of the roots of

g2 —2zv+1=0, (2.21)

so for the lemma to be correct (yo + 1)/(yo — 1) must satisfy

2
1 1
(y°+ ) —2v(y0+ )+1:o.
Yo — 1 Yo — 1

Rearranging this equation we find that it is true if and only if

Yo+ 1
v=——".
Yo — 1
From before we know
— )\ —1)? A2 41 1)2 — 4w(l — \?
PO (5 (T | P G 1 R et T2

A2 (w+1)? N (w +1)2
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SO

yo+1 (P +1D)(w+1)? —4w(l —)?)
-1 (1 =A%) (w—1)?

(2 — a®)(w +1)* — 4wa?
2w~ 1)

This means that v = (y2 + 1)/(y2 — 1) so from (2.21)

1
Yo + =vEVovi-1.

Yo —1

We note that as w — 1 then v — oo so v + v/v2 —1 — o0 and v — yv? — 1 — 0. Finally

we note that as w — 1 then zo — oo and yo — 1 so (yo + 1)/(yo — 1) — oo and hence

1
Yo + =v+ V-1 a

Yo — 1

These two lemmas confirm that the map we have derived correctly reduces to that for

a circular sector in the limit as @ — 0 and b — 0 with a/b = 0/7.

2.3 The Laurent expansion of ¥(w) about the point
at infinity

As in Chapter 1 (see equation (1.4)) the function t(w) has a Laurent expansion of the
form

$(w) = plw + fo+ frw + )

about the point at infinity, and as before the coefficients of this expansion are required in
a recurrence relation used to generate the Faber polynomials (property 5). In this section

we will show how these coefficients, for the mapping 1 (w), can be generated from simple

recurrence relations.

Differentiation of (2.15) gives
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M(w,t)M(w, )

w(w? —2wcotha + 1) (2:22)

2g = PW)

where

M(w,y) = (v* — 2yw + 1)z,
If we now let w = 7! and ¥(£) = ¥(w), equation (2.22) may be rewritten as

g~ 2% cotha + 1) dU(E)
YO= e omen (2:23)

Since [t| <1 and |7] < 1, there is a convergent expansion of the form

MEOME )] = S ot (2.24)
k=0
for |£] < 1. Substitution in (2.23) gives
- (E) (2] o
k=0
where

Cr = Qp—g — 2cothaai_1 + ag, k>0, (2.26)

with a_, = a_; = 0. Also, from (1.4),
1
() =p Z+ﬂ0+ﬂlf+“'
for |£] < 1. We may substitute this in (2.25) and equate coefficients of the powers of £ on

both sides to obtain By = ¢1, f1 = 3¢2 and, for n > 2,

(14 n)Bn = cny1 — "Z‘: 1Cn_if3;. (2.27)

The recurrence relation in (2.27) and the definition (2.26) allow us to generate fo, b1, - - -,
$3,,, for a given positive integer n, when aj is known for k = 0,1,...,n+1. In the case of cir-
cular sectors, Coleman and Smith [13] found a very simple expression for the corresponding
coefficients in terms of Legendre polynomials. A similar approach can be used here; noting
that M(w,y) is the reciprocal of a generating function for the Legendre polynomials, that
is,

M(w,y)™" = (1 - 2yw+w’)”
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where P,(y) is the Legendre polynomial of degree n. Therefore

meomen™ = (3 nwe) (3 o)

A comparison with equation (2.24) gives
ag = Z Pi(t) Pe—i(

This formula has the computational disadvantage that as k increases an increasing number
of Legendre polynomials must be evaluated and stored. For this reason we have derived a
five—term recurrence relation from which {a;} may be computed directly. Let f(t,,£) be

the function in (2.24). Then, by differentiation and rearrangement,

[t 4+ 7 —26(1 + 2t7) + 3(t + 7)€ — 263 f(t,7,€)

= (1-26+&)(1—-27¢+ 52)M

9¢

Equating the coefficients of the powers of ¢ on both sides of the equation we obtain

(k + Dager = (2k + 1)(t + 7)ar — 2k(1 + 2t7)ar-1
+ (2k — 1)(t + 7)ag—2 + (1 — k)ar_s

for k > 0, with ap = 1 and a; = 0 for ¢ < 0. With
cosh « cosh 3
an =

this becomes

(k+ Dagtr = 2k 4+ 1)(s —u)ar — 2k(s” — su —1)ax_1
+ (2k — 1)(s — u)ak—2 + (1 — k)ag—3. (2.28)
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2.4 The Faber Polynomials

The Faber polynomials, F,(z), satisfy the recurrence relation
Fn+1( ) (Z — bo Z bk n— k 1 + TL)b n > 0 (229)

where b, = Biyp*t!, p is the transfinite diameter of the region, and the fj are generated
from the recurrence relations above. Following Gatermann et al. [39], we introduce the

scaled Faber polynomials

Fu(s) = Fa()p™ = 0, (—) (2.30)

and let
D,(2) = 2" + pn-1(2) (2.31)

where ¢, is a polynomial of degree n — 1 for n > 1, and ¢_; (2)=0.

Substitution in (2.29) gives the recurrence relation

$n(2) = (2 = Bo)¢n-1( Zﬂkqﬁn k-1 Zﬂkz — (14 ). (2.32)

Our notation differs slightly from that used by Gatermann et al. [39], in their work on
circular sectors, because no factor analogous to their 1 — c is evident, except in the limit
as a — 0 and b — 0, when the annular sector tends to a sector of the unit disc. Given the
Schwarz—Christoffel parameters @ and b corresponding to a particular annular sector, the

Faber polynomials of degree up to nmax may be computed by the following algorithm.
Algorithm
=2(1+a*)/(1 —a'); u=2a%"2(1+b%)/(1 - a*);
a_s=a_q9=a_1=0; ap=1; a1 =5 —u;
¢ = a3 —s; Bo=c1; $o=—Po;
Fo(z) = 1; Fi(z) = z + pgo.
Forn =1,nmax — 1

g1 = [(2n 4+ 1)(s — w)an, — 2n(s* — su — 1)an—
(20— 1)(s — wan_s + (1 = m)ans}/(n + L)

Cny1 = Ap41 — SQq + Ap—1;
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/Bn = (CTL+1 - lnz_ll lcn—-lﬂl)/(n + 1))

bn = (2 = Bo)bn-1 — Li2q Br(bnp—1 + 2"7%) = (1 4+ 1) B — foz"

¢, = 2"+ dy; Fn+1(z) = pn+1q)n+1 (i> )

p
end.

Example With np., = 2 we obtain

a=1;, a =s5—u

a=-u fo=—u

Po = u;

ay = (s — dsu + 3u® 4+ 2)/2;

ey = (—s% — 2su + 3u® + 4)/2;

B = (—s% — 2su + 3u® + 4)/4;

¢1 = 2uz + (% + 2su — u® — 4)/2;

az = (—s> — 3s%u + 9su? — 5u’ + 8s — 8u)/2;

cs = (=28 + s%u + 6su? — 5u® + 8s — 10u)/2;

By = (—4s* + s*u + 10su? — Tu + 165 — 16u)/12;

¢r = 3uz? + (352 + 6su + 3u? —12)2/4 + (25° + s’u — 2su® + w® + 2u — 8s)/2.

Then

®.(z) = 24w,
Oy(z) = 224 ¢y = 2uz + (87 + 2su —u® —4)/2,

bl

52

Bs(z) = 2%+ 3uz?+ (3% +6su+ 3u® —12)z/4 + (283 + s*u — 2su® + u® + 2u — 8s)/2.

2.4.1 Special Cases of Faber Polynomials

As mentioned previously there are a few special cases that provide checks on our work. In

this section we will show that the first few Faber polynomials are in agreement with the

first few known Faber polynomials for the special case regions.
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Case (i) b=a
When b = a we have
_2(14a%)
 (I—-a%)
In this case
o i+aY
d,(2) = T—a)
41 +a?) 41+ a*)?
_ 2 _
Qy(z) = z°+ (1_a4)z+ (1= a7 2

N = 3 6(1 + a4)z2 4(1 + a*)? 1, 2(1 + a*) [4(1 + *)? B
o) = e | - T [

so that (see (2.30))

Fi(z) = z—l—(i-;—R)

Fyz) = 2+(1+R)z+ é 201+ R - (1 - R)?]
Fi(z) = 22+ ;(1 + R)2* + % [4(1+ R? - (1 - R)] 2
+3i2 [4(1 + R)* -3(1+ R)(1 - R)2] :

where we have used p = (1 — R)/4 and a* = R.

As we saw earlier, in this case the annular sector becomes the real interval (-1, —R].
The Faber polynomials should then become scaled multiples of the Chebyshev polynomials
for the interval [—1,1]. For [—1,1] the first few Chebyshev polynomials are

Ty(z) =z, To(z) =221, Ts(z)=42"—3z.
Mapping [—1,1] to [—1, —R] using the transformation
z = %(I—R):E—%(l—I—R)

gives us




2.4. The Faber Polynomials 54

822 82(1+ R)  2(1+R)*

BE) = G-t uoRr TR !
322 482%(1 + R) 24(1 + R)? 6 4(1+R)® 3(1+R)
Py(z) = (1—R)3+ (1 - R)3 tz (1-R)3 _(1_R) (1 -R)3 - (1-R)

Finally, scaling these polynomials so that they are monic, we see that we have agreement
with Fi(z), Fz(z), F3(z) above. So the first few generated Faber polynomials agree with

the known results in this special case.

Case (ii) b=1

When b = 1 the annular sector becomes an arc. From example (c) in Section 1.2.4 we
know that the first few Faber polynomials for this region are given by

R(z) = z+(1—p)

Fy(z) = 224201 -p")z+(1-p")

Fy(z) = 2°4+3(1—=p")2" +3(1~p")z+(1-¢°)

where p = (1 — a?)/(1 + a*). Using equation (2.30) we find that

1_ 2
@1(2) — Z+_(—P)_
P
2 4
by - e 2= 0=
P P
3(1 — p? 3(1 — p? 1—p8
Qs(z)zzaJr(pp)g (p2p)z+(p3p)
When b =1 we have
21 +aY) _4d?
D R ()

and the first few ®;’s generated by our algorithm become

442

@1(2’) = Z+1_a4
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8a? 8a?(1 + a*)

— 2
©alz) = ST aEt Ty

12a? 12a? 4a*(3a® + 10a* + 3)
i) — 3 2
() = FH T Tt T oy

Remembering that p = (1 — a?)/(1 + a?), the coefficients of both forms of the above

polynomials are all the same, for example

1—p* 1+a (1—a®?]  4ad®
p  l—a? (14 a?)?

S (1-af)

So that, once again, the first three generated Faber polynomials agree with the known

special case.

Case (iii) a = 0,6 = 0,a/b=X=0/n

In the limit as ¢ — 0 and b — 0, the annular sector becomes a sector of the unit disc. In
Section 1.2.4 example (d) we give the first few Faber polynomials for this region in terms of
a parameter ¢ used by Gatermann et al. [39]. When the half-angle of the sector is written

as m/a the parameter ¢ = (2 — 1/a)/c

In this case we have s — 2 and

u— 22 = 2

The first few polynomials generated by our algorithm become

®1(2) = z+2(1—¢)
By(2) = Z2+4(1—c)z+2(1+¢c)(1—¢)
B3(z) = 2246(1—c)22+(9-3c)(1—c)z+ (1 —c)(4c’ +2)



2.4. The Faber Polynomials 56

Following Coleman and Smith [13], Gaterman et al. [39] considered a sector symmetric
with respect to the positive real axis. Therefore, to compare the above polynomials with
those generated by Gatermann et al. [39] we need to symmetrically position our annular
sector on the positive real axis, this involves the mappings z — —z and w — —w (see
Section 2.2). The overall effect of these changes is that instead of ®,(z) we must consider
(—=1)"®,(—2z). A comparison with the polynomials given in Section 1.2.4, example (d),
shows that our first few generated polynomials once again agree with the known results in

this case.

2.4.2 The coefficients of ¢n(2)

Letting

2) = pnj" (2.33)
7=0

in the recurrence relation (2.32) gives

- n—k-1

n ) n-1
an,jzn_] = an——l,jz Zﬂk Z Prn—k- l,gzn k=1-j
7=0 7=0
Z Brz" " — (1 + n)pn.

In the second sum of the righthand side, we make the substitution j = ¢t —k — 1 and

therefore
— n—k—1 1o B
Zﬂkzprwkl,]n J_ZZﬂkPnkltklz .
] k=0 t=k+1
Writlng Zz;é E?:k-}-l as Z?:l ZZ:;IO imphes tha’t
n ] n—1 ] n t—1
an,jzn_] = Z Pn—l,jzn_J - Z Z ﬁkpn—k—l,t—k—l P
7=0 7=0 t=1 k=0

Z Brz" " — (1 4+ n)Bn.

By equating coefficients of 2™ we find that

Pno = Pn-1,0 — ﬂo;
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equating coefficients of 2° implies that

n—1

P = — Z /kan—k—l,n—k—l - (1 + n)ﬁn

k=0

= - Zn:ﬂn_zpl—l,t—l — (14 n)Bn;

=1

and for ¢ = 1,...,n — 1 equating coefficients of 2* implies that
n—1—1
Pnn—i = Pn-1pn—i — Z ,kan—k—l,n—i—k—l - /Bn—i
k=0

n
= Pr-in—i — Y BnoiPi-1-i—1 — Bai.
=141

Grouping these results together and using poo = u, and fp = —u we find that
Pno = Pn-10 — Po = (n+ L)y,
Pnn = — Z ﬂn—kpk—l,k—l - (]- + n)ﬂn
k=1

and, fore=1,...,n —1,

n
Prnei = Pninmi — 9, ProkPr—1h-1-i — Pn—i.
k=41
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(2.34a)

(2.34b)

(2.34¢)

In the interest of brevity we shall use the term A-polynomial to describe a polynomial

in two variables, s and u, which is invariant or changes sign, under the planar antipodal

map (s,u) — (—s, —u), according as the degree of the polynomial is even or odd; in other

words, such a polynomial of even (odd) degree contains only terms of the form s'u? where

2+ 7 is even (odd).

THEOREM 8. The coefficient p,, ;, forn =0,1,...and j = 0,...,n, is an A-polynomial

of degree j + 1 in s and u.

Proof. An induction argument applied to the recurrence relation (2.28) shows that ay is

a polynomial in s and u of degree k. Furthermore, since s — u and s? —su — 1 are A-

polynomials of degree 1 and 2, respectively, the hypothesis that a; is an A-polynomial of

degree k for k = 0,...,n leads to the conclusion that the same property holds for k£ = n+1;
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the induction hypothesis is readily confirmed for n = 1. It then follows from (2.26) that
¢, is an A-polynomial of degree n, and an induction argument applied to equation (2.27)

shows that £, is an A-polynomial of degree n + 1.

Turning now to the equations (2.34), we assume, as an induction hypothesis, that for
each n the coefficient p, ; is an A-polynomial of degree j + 1. Then each term on the
right-hand side of (2.34c) is an A-polynomial of degree n — ¢ + 1, and (2.34b) gives the
corresponding result for ¢ = 0; finally (2.34a) shows that p, ¢ is an A-polynomial of degree
1. Clearly the hypothesis is true forn =1. ©

In view of Theorem 8, we may write

Pn-10 = Yn1lU
Prii = Yn2 + Tn3S® + YnaSU + st
Pro12 = YneS + Ynrt + Ynss® + Yno8’U + Yrr08u” + Y1

etc. In keeping with the notation of Gatermann et al. [39] we regard the coefficients ynx

as the elements of the n'* row of a matrix
I' = (Ynk), n=12,...; k=12,...,m(n)
where m(n) is the number of terms in the n*" row of T.

THEOREM 9. The elements of the matrix I' are rational numbers and the number of

elements in the nt® row is

1 1[n-1
m(n) = £(2n3 + 15n% 4+ 37n — 30) — 1 [n 5 ]

where [z] denotes the integer part of z.

Proof. It is clear from the various defining equations that the coefficients of the polynomials

Pn,; are rational numbers.

A homogeneous polynomial of degree j has j +1 terms. An A-polynomial of degree 2r

is a sum of homogeneous polynomials of even degree from 0 to 2r inclusive; it consists of

T

> (@ +1)=(r+1)*

=0
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terms. Similarly an A-polynomial of degree 2r + 1 has

r+1
do2l=rt+3r+2

=1
terms.
Equation (2.34a) shows that p,o consists of a single non-zero term. For z > 2, the

polynomial p, ;—1, being an A-polynomial of degree :, has %(z + 2)? terms if 7 is even and

(1 +2)? — § terms if ¢ is odd. For a given n the total number of terms is

) = e [
1

1 -1
= ﬂ(2n3+15712—|—37n—30)—Zl-[n2 ] o

A computer algebra system may be used to compute the polynomials p, ; from (2.34),
as polynomials in s and u. We have used Mathematica and REDUCE for this purpose.
The polynomials p,_1 ;, for j = 0(1)n —1 and n = 0(1)15, are listed in Appendix B where
Pn_1; is denoted by p(j), for each value of n. The results given there may be used with

(2.30), (2.31) and (2.33) to construct the Faber polynomials of degree < 15.

The first ten rows of the matrix I have the form

—2 1/2 1 -1/2

~3 3/4 3/2 3/4 —4 1 1 12 -1 1/2
4 1 2 3 —16/3 -—8/3 4/3 5/3 2/3 1/3
5/4 5/2 925/4 —20/3 —25/3 5/3 10/3 10/3 5/3
6 3/2 3 21/2 -8 -6 2 11/2 T 11/2
7 7/4 T/2 63/4 —28/3 —TT/3 T/3 49/6 35/3 T1/6
8 2 4 22 —32/3 —112/3 8/3 34/3 52/3 74/3
—9 9/4 9/2 17/4 -12 =51 3 15 24 42
5/2 5 75/2 —40/3 —200/3 10/3 115/6 95/3 395/6

0GR W
I
&)

—_
o
I
—_
(el

and other entries may be read from Appendix B. As Gatermann et al. [39] found for circular

sectors, all entries in a column of I' are expressible in terms of a polynomial in the row

index. For example, we find
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3 1
Tn2z = TN, Y12 = —zn + 0,
2" T g
1 11
Yoz = o, Y1z = —=n — —n?,
2" T 1
_ 1 _ 2 U,
Ynd ’ Yn1a = 3 6 y
n = 3 - 71 nl5 — 10 — 5N,
s 2™ T 1 s = e 12" "2
1 2a 1,
- = —-=n, 'n = —nNn —n,
s 3 Te16 = 56" T 39
= vy = iy W
" 3 ’ i o4 o4
1 43 37, 14
n. = S nl8 = TN — 5N sno,
Tns 3 Tnis =g T 8" T8
AN 149 59 , 1,
Mo = TR T e = ot T o T
TSNS 539 307, 55 1,
o = —— -n*, 20 = ——— —n" —-n’ 4+ —n".
Tn10 6" 9 M0 = "9 96 g Tag"

2.5 The mapping of the boundary

Under the mapping % the boundary of the unit disc is mapped onto the boundary of the
annular sector. It will be useful, particularly when we consider level curves (see Section
3.5), to know which points on the unit disc map to the corners of the annular sector. For
this reason we consider the points w = exp(in) with 0 <7 < 27. The map ( defined earlier

(see equation (2.5)) maps these points onto
i\ _ Lo —in\ o L o 2, 2
C(e") =35 [(e”-}—e ") smha] —cosha = 5 [(a —a*)cosn — (a™*+a )] )
We know that the points a, *a™!, £b, and + b~! play a key role in the conformal
-2

mapping and we also know that the mapping ( = —v~? maps the upper half-plane onto

the cut plane C/L (see Section 2.2). Hence the points on the unit disc that map to the

important points in the upper half-plane are given by

—v7 %= % [(a‘2 —a%)cosn— (a7% + aZ)] ,
where v = +a, £a™', £b, or b '. When
+a then cosn = —1 and n=m7

+a7!  then cosp=1 and n=0.
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Also when

+571 we have cosnp =1 so n=1t or 2w —1

+b then cosp=r7 and n=m or 27 — T,

where t,, 7 € [0, 7], cos(t1) = t and cos(r1) = 7. Previously we have shown that [¢| < 1 and
|7| < 1 so solutions to the equations cosn =t and cosn = 7 will exist. We have also shown
that ¢ > 7 and therefore because cos 7 is a monotonic decreasing function of 7 on [0, 7] we
have t; < 7. We now remember that the upper half-plane is mapped onto the exterior
of our annular sector by a combination of the exponential map and a Schwarz-Christoffel
map. If as before we write u(v) for the Schwarz—Christoffel map, then exp [u (+a™")] =
—R, explu(a)] = —1, exp[u(b1)] = Re®, exp[u(—b7")] = Re™*, exp[u(b)] = e, and

exp [u (—b)] = e™*. So considering w = exp(in) we find:

n =0 is mapped to —R in the z-plane;
n = is mapped to —1 in the z-plane;

n =t; is mapped to Rexp(:0) in the z-plane;

n =7 is mapped to exp(:0) in the z-plane;
n =27 — 7, is mapped to exp(—%0) in the z-plane;

n =27 —t; is mapped to Rexp(—if) in the z-plane.

Pictorially this can be represented by Figure 2.5.

This will be important when we consider level plots in Section 3.5, because when we
consider a curve of radius slightly greater than 1 in the w-plane, then the part of the curve
with n € (0,;) (that is region A in Figure 2.5) should be mapped under ¥ to the arc
(—R,—Re™*) in the z-plane (that is A’ in Figure 2.5). A similar correspondence should

occur for regions marked with the same letters in both the w and z planes.
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~

B ,
CI
¢ \ A Z=\(w)
[
N \;
F
D o’
E
w-plane z-plane

Figure 2.5: A pictorial representation of the mapping of the boundary of the unit disc.

2.6 Scaling the Annular Sector

In this section we shall consider the mapping of the complement of the unit disc onto the

complement of the annular sector
Q(R1,Ry,0) = {Ry < |Z| < Ry, 0 < |arg Z| < 7}.

There are two main reasons for doing this. Firstly it may not be obvious that the ratio
of the radii is the important quantity in determining the mapping and hence the Faber
polynomials. The second reason is concerned with chapter 5 in which we will consider,
amongst other things, how to find the Faber polynomials for any annular sector placed
anywhere in the complex plane. The results given in this section are part of this, as is
the use of the transformations z — —z and w — —w to find the Faber polynomials for
an annular sector centred on the positive real axis from the annular sector centred on the

negative real axis (see Section 2.2 and the end of Section 2.4.1).

We note that by writing RyR = Ry, the annular sector Q(Ry, Rz,0) is simply the
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annular sector () scaled so that its outer radius is Ry; that is to the annular sector ¢} in the
' z-plane we apply the map Z = Ryz to get Q(Ry, Rz,0). From Section 2.2, ¥(w) maps the
complement of the unit disc to the complement of the annular sector @), so ¥(w) = Ryp(w)

will map the exterior of the unit disc to the complement of Q(Ry, K2, 8). Hence

V]
fim 2 _ Rap,
w

and the transfinite diameter of Q(R;, Rz, 0) is

cp _B(-a) T ¢ .
p:= Ryp = 1 P[/O A(x)[A(x)+B(x)]d ’

see equation (2.17).

In a similar manner to Section 1.2.2 we define W = ®(Z) := Ryp¥~!(Z); this maps
the complement of Q(Ry, R,,0) to the complement of a disc of radius Rap. Also,

. ®(2) . Ryp¥YZ)
Jim ——= = Jim ————

= lim —-VV—
W ()

_ i Bew _
T e (w)

W(Z) satisfies relation (1.1), and the mapping is the desired one. In this way the expressions
(2.13) for the mapping become

2 el ¢
z = a RZC exp -—‘ /(12 A(m)[A(x) + B((U)] d$:|
\ [ ¢ C
= a’Ry(exp Ja2 A(2)[A(2) + B(z)] d:c]
B _RLC o [ ¢ C :1:
= g2 &P / A(z)[A(z) + B(z)] ’ ]

—¢? C
T e TP - A(z)[A(z) + B(2)] d”‘]'
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The defining equations for a and b, that is (2.7) and (2.8), remain the same except that R is
replaced by the ratio of the radii, R;/R;. In this way we see that the quantities determining
a and b (and hence the mapping and the Faber polynomials), are the half-angle, 7 — 8, of

the sector and the ratio, R;/R;, of the inner and outer radii.

2.7 The Faber series for 27! on an Annular Sector

The Faber series for a function f, analytic in the annular sector @), is an expression of the

form

éaij(Z)-

See Curtiss [15], Markushevich ([57], v. 3, p. 109), or Gaier ([38], p. 44). The coefficients

are

L /|w|=R1 FE) 4y (2.35)

a; = —— ,
T 2mipl wlt!

where R; > 1 is sufficiently small that f can be extended analytically to the closed region
bounded by the image under % of the circle jw| = Ry. In particular, when f(z) = 27! the

Faber series is

11 x. F,(2)
-~ | S o] (2:39)

z n=1

where F‘n(z) is the scaled Faber polynomial introduced in (2.30), and w* is the root of
magnitude greater than 1 of the equation ¥ (w) = 0; in other words, w” is the point which
1) maps to the origin in the z—plane. Equation (2.36) may be established either by applying
Cauchy’s residue theorem to (2.35) or, as in Chiu et al. [8], by using a generating function
for Faber polynomials and the uniqueness of the Faber series.

We begin with Cauchy’s residue theorem. We note that f(z) = 27! is analytic in any
annular sector, ), with inner radius R > 0, so if we have such an annular sector we may

take Ry = 1 in the above formula for the coefficients of the Faber series. Therefore the

coefficients are given by

1 / 1 g
= : ——— dw.
% 271107 Jjwl=1 P(w)wi+
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In this equation we make the substitution w = 1/u and note this maps the outside of the
unit disc to the inside of the unit disc and causes us to integrate around the unit circle in

the opposite direction (so introducing a negative sign into the calculation). The coefficients

then become

To use Cauchy’s residue theorem we must calculate the residues at the poles of this ex-
pression. From the above we know that i(w) = 0 when w = w*, so ¥(1/u) = 0 when

u = 1/w*. Hence at this point the residue of the integrand in equation (2.37) is given by

1 1—1 ;
(u — ?> u? ] Wt 1

lim = lm ——s=- ' ’
us1ju® of (1) — 3 (w*) u_>1r}1w- b (%) (w0 ) g (w*)

u

From this and equation (2.37) we find the coefficients of the Faber series for 1/z are given

by
-1
a; = — ‘ :
' P )
It is straightforward from this expression to see that the Faber series for 1/z is given by

equation (2.36).

Chiu et al. [8] give a different and simpler proof of this result. We start from Property
4 (see Section 1.2.2) and choose w* so that ¢)(w) = 0. This immediately gives us

1 1[“’}7’]

2

’n,=

z  w(w*

For an annular sector a simple formula can be found for the coefficients in (2.36). It is

clear from (2.13) that z = 0 implies { = 0 and therefore

, 144
W= (2.38)
From (2.13¢) and (2.22) we obtain
R(1 —a* C dx
! M(w,t)M . 2.39
i) = Mg [ [ e | Momn. @)

Setting ¢ = 0 in this expression, and noting that

(-a) [ Cde
=P [/0 A(z)[A(z) + B(m)]}
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and
. . 2w*
M(w*, )M (w*,7) = =
: sinh
_ 4a?
(1 -a?)?
we obtain
* (1f % R(l _a4)

1

Then, from equation (2.36), the Faber series for 27" is

(
.i_ _ _Ré _2a [ + Z ( 2)n F (z)} . (2.41)

As a check on (2.41) it can be shown that it correctly gives a known Chebyshev ex-

pansion when b = a (case (i) of Section 2.2.4). The Faber polynomial of degree n > 1 for
the interval [—1,1] is 2!="T},(z), where T, is the Chebyshev polynomial of degree n. The

corresponding polynomial for z € [~1,—R] is

1 —R\" 224+1+R
F”‘(z)_2< 4 )T"< 1-R >

With the help of results from Section 2.2.4 for this particular case (that is a* = R and
p = (1 — R)/4), the expansion (2.41) becomes

-l eE (A ) e

The Chebyshev expansion for 1/(z —§), with § > 1 and = € [~1, 1], may be established

by a technique used, for example, by Fox and Parker ([34], p. 85). We begin by considering

1 -y
—5 = Z anTy(2)
n=0
where the prime denotes that the first term of the sum is ao/2. Multiplying this equation
by z — § we find

1 = Z a,Tn(z) + ;ao(x — 6)To(z)

_ 1 Z 0 {Tos1 (2) + T (2) — 26T0(2)} + %aoTl(:v) - %aoéTo(:x).
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To obtain this expression we have used the recurrence relation
Tos1(z) = 22T, (2) — Tra(2), n>1

for the Chebyshev polynomials, and the fact that 275(z) = 2 = Ti(z). Considering the

sums separately we can rewrite our expression as

1 & ad 1 1
ak~1Tk($) + 5 Z ak+1Tk($) ) Z aka(:v) + —2—a0T1(.’13) — ’2—(1,06T0(1B).
k=0 k=1

- n— n 1 1
= 3 Tu(x) [“2 L _ San + “2“] + (-2—a1 - §a05> To(z).

The Chebyshev polynomials are linearly independent. Therefore, equating coeflicients of

the Chebyshev polynomial of degree n on both sides of this expression gives

a1 —agd =2 (2.43a)

and for n > 1

any1 — 260, + an—y = 0. (2.43b)
The difference equation given by (2.43b) can be solved by standard methods, and the
general solution is

a4 =A(5—VE-1)" +B(6+VE—1)".

It is known, in this case, that the Chebyshev series converges (see Fox and Parker [34]),
therefore a, — 0 as n — oo. This implies that B is zero (as 6 + V62 —1 > 6 > 1, see
before). Substituting the expression for a, into (2.43a) gives

2

P —
52— 1

These results give the Chebyshev series as

1 1 oo .
m—(s:_\/gz‘_—l{1+2;(5—\’5 —1) Tn(w)}- (2.44)

To prove this is the same as expression (2.42) we map [—1,1] to [~1,—R] by the

transformation

_2z+1+R
==
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This results in the left—-hand side of equation (2.44) becoming

1-R _1-R
224+1+R—-6(1-R) 2z °

if we choose § = (1 + R)/(1 — R). From this choice of ¢, we find

Vi1 = Y

and so

82 _ _1_\/1_?‘
b- Ve 14+VR

Substituting all these expressions into equation (2.44) gives equation (2.42) so verifying

equation (2.41) in this case.

The maximum norm of the error in approximating z~! on the domain Q by a truncated
PP g y

Faber series

0(5) = ~ s (1+Z F)

is easily bounded. From (2.36) we obtain

1 1 s -
BREIC R W,c_%l(w*)m(z)

ol ml (o)

| k n+1

We now use inequality (3.5) from the next chapter and note that the sum in the above

expression is a geometric series with 1/|w*| < 1. Hence we find

e

o = TRl - D
(see also [8]) and from (2.38) and (2.40)

< 2Vp 1—a?\"
w  mR(1+a?)\1+a%)

”%—qdd
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3.1 Introduction

In this chapter we will discuss the numerical aspects of the Faber polynomials for annular
sectors. To generate the Faber .polynomials for an annular sector, by the algorithm in Sec-
tion 2.4, we need three numbers, namely a,-b and p. In Section 3.2 we describe our method
to evaluate these numbers. The parameters a¢ and b are found by combining modified
Newton iteration with Kronrod-Patterson integration. Once a and b are known, p is found
by Kronrod-Patterson integration. Any assessment of the accuracy of an approximation
based on Faber polynomials requires some knowledge of a relevant norm. In Section 3.3
we introduce the area 2-norm, the line 2-norm and the maximum norm. Examples of these
three norms are given for various annular sectors. In Section 3.4 we attempt to improve on
a bound given in Ellacott[22] for the the norm of the Faber projection. Finally, in Section

3.5, we give a strategy to produce numerical level plots for an annular sector.

3.2 Numerical evaluation of a, b and p

To compute the Faber polynomials for a particular sector of an annulus we need to evaluate
the Schwarz—Christoffel parameters (a and b) and the transfinite diameter p. Given R and
6 defining a particular sector, @ and b are found by solving the pair of non-linear equations
(2.7) and (2.8). We used a modified Newton iteration in which the partial derivatives in

the Jacobian were approximated by central-difference formulae of the form

8f(a,b) _ fla+D,b)— f(a—D,b)

~ .

da 2D

The convergence of the Newton iteration depends on having sufficiently good initial
estimates of a and b. Table 3.1 gives suitable values for certain ranges of R and §. The
starting values, in this table, were obtained by trial and error. As 6 tends to 0 or 7 and as
R tends to 0 or 1 the convergence becomes much more sensitive to the choice of starting
value, but the corresponding regions, which are close to known limits, are less likely to
be of practical interest than those covered by Table 3.1. This sensitivity means that the

accuracy of the starting values is more important for R tending to 0 or 1 and 6 tending to

0 or 7 than for values in the centre of Table 3.1.
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At each step of the Newton iteration it is necessary to evaluate the integrals in (2.7)
and (2.8) numerically to an accuracy consistent with that required in the Newton itera-
tion. Despite the square-root singularities at the end-points of the integration intervals,
the NAG routine DO1AHF, which is based on the Gauss—Kronrod-Patterson family of for-
mulae, works satisfactorily. Figures 3.1 and 3.2 show a and b respectively, as functions of

R and 6, for 0.001 < R <0.999 and 0.3 < 0 < 3.1414.

To approximate the integrals in (2.7) and (2.8), integration methods other than the
Kronrod-Patterson integration, in DO1AHF, may be used. An obvious choice, because
of the square-root singularities at the end points of these integrals, is Gauss-Chebyshev
integration (see Section 3.4). This would have the advantage that the nodes and weights
are fairly simple and easy to calculate. The idea would be to approximate the integral
in question by Gauss-Chebyshev integration, with a certain number of nodes, and then
to double the number of nodes and approximate the integral again. Comparing the two
approximate values would reveal how close the approximation was to the value of the
integral. If the difference was too large, then the number of nodes would be doubled
until the difference between two successive approximations was satisfactory. Alternatively,
a Kronrod-Patterson integration based on the Gauss-Chebyshev nodes may be used to
evaluate the integrals. Both these ideas using Gauss-Chebyshev integration could prove
more efficient that the Kronrod-Patterson integration employed in DO1AHF, but the NAG

routine works satisfactorily, so we decided to use it anyway.

The pictures in Figures 3.1 and 3.2 provide a useful visualisation of the special cases
we have previously considered. For example as R — 1 we see that b6 — 1. Also as § — ,
a and b become the same function of R and we have a — b. The case when R — 0 is not
so clear. Certainly for small § we see that @ and b both seem to tend towards zero (as they

should). For larger values of §, the vanishing of @ and b as R — 0 is not so obvious.

In Table 3.2 we give the a and b values (mostly to 9 decimal places) for some specific
annular sectors. Most of the values in the table were produced numerically by the method
described near the beginning of this section. The special cases when 6 = 7, R = 0 and
R = 1 have been added for completeness. These special cases can be found in Section 2.2.4,

where the formulae used to calculate the values of @ and b, in the table mentioned above,
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can also be found. When R = 0.001 or R = 0.0001 and § = 10° we found no starting values
by our method of trial and error. For this reason there are blanks in Table 3.2. In Section
3.2.1 we discuss an interesting relationship between a, b and R which enables us to give

approximate a and b for these annular sectors. The results are contained in Table 3.4.
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Table 3.1. Starting values for modified Newton iteration.

R 0.999 — 0.1 0.1 —0.02 0.02 — 0.01 0.01 — 0.005 0.005 — 0.001
6
3.1414 — 3.0 a = 0.489 a =0.3760 a = 0.3107 a = 0.26591 a=0.17774
b=0.513 b= 0.3761 b= 0.3108 b= 0.26592 b=0.17775
D=10x10"%| D=10x10"°%| D=10x10"" | D=1.0x10"% 1.0 x 10~°
30-1.9 a = 0.49 a=0.12 a=0.09 a = 0.07 a = 0.07
b=0.52 b=0.24 b=0.12 b=0.12 b=0.10
D =0.001 D =0.001 D = 0.001 D =0.001 D =0.001
1.9 -1.57 a=0.12 a=0.12 a = 0.06 a = 0.06 a=0.01
b=0.24 b=0.24 b=0.10 b=0.10 b=0.02
D = 0.001 D =0.001 D = 0.001 D = 0.0001 D = 0.0001
1.57 — 1.00 a=0.05 a=0.03 a = 0.01 a=0.01 a = 0.0005
b=0.16 b=0.08 b=0.03 b=0.03 b = 0.001
D =0.001 D = 0.001 D = 0.001 D =0.0001 D = 0.0001
1.00 — 0.75 a=0.05 a = 0.03 a=6.0x10"% a=4.0x10"° a=4.0x10"°
b=0.07 b =0.08 b=6.0x 10~* b=3.0x10"* b=3.0x10"°
D=10x10"° D =0.001 D=10x10"5| D=1.0x10"°% D=10x10"°
0.75 — 0.50 a=0.01 a=0.03 a=6.0x10"% a=4.0x10"° a=40x10"°
b=0.06 b=0.08 b=6.0x10* b=3.0x10"* b=3.0x10"°
D=10x10"° D =0.001 D=10x10"°| D=10x107°? D=10x10"%
0.50 — 0.30 a=11x10"* a=250x10"° a=10x10"° a=10x10"" a=1.0x10""?
b=1.6x10"3 b=>5.0x10"% b=1.0x10"° b=1.0x10"° b=28.0x10""?
D=10x10%| D=10x10%| D=1.0x10"7 | D=1.0x10"% | D=1.0x 10710
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Figure 3.2: A graph of b(R,0).
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3.2. Numerical evaluation of a, b and p

Table 3.2. Values of the parameters ¢ and b for various annular sectors

) 180° 170° 135° 90° 45° 10°
R
1.0 a = 1.000000000 a =0.916331174 | a = 0.668178637 | a = 0.414213562 | « = 0.198912367 a = 0.043660942
b = 1.000000000 b = 1.000000000 b = 1.000000000 | &= 1.000000000 | b = 1.000000000 b = 1.000000000
0.9 a = 0.974003746 a = 0.878017363 a = 0.631148942 | @ = 0.382782478 | a = 0.172755451 a = 0.025602384
b =0.974003746 b= 0.937060963 b=10.881912354 | b =0.825095684 | b = 0.738067365 b= 0.466272263
0.5 a = 0.840896415 a = 0.736685430 a = 0.500945881 | @ = 0.275209691 | a = 0.093177072 a = 0.001807389
b = 0.840896415 b= 0.781324107 b=0.675703499 | b =0.558217352 | b = 0.374320705 b=0.032533016
0.1 a = 0.562341325 a = 0.476465167 a=0.288194124 | ¢ = 0.121766367 | « = 0.018590391 a = 0.000001293
b =0.562341325 b= 0.504594140 b =0.384667636 | b = 0.243653596 | b = 0.074362063 b = 0.000023279
0.01 a = 0.316227766 a = 0.258611523 a = 0.133528561 | a = 0.038490176 | a = 0.001859032 | a = 4.09 x 10~11
b =0.316227766 b= 0.273828481 b=0.178046649 | b= 0.076980733 | b= 0.007436128 | b= "7.354 x 10~1°
0.001 || a = 0.177827941 a = 0.140567495 a = 0.061973392 | « = 0.012171613 | a = 0.000185903
b =0.177827941 b= 0.148836384 b=0.082631374 | b= 0.024343227 | b = 0.000743613
0.0001 || @ = 0.100000000 a = 0.076414197 a = 0.028765391 | a = 0.003849002 | « = 0.000018590
b = 0.100000000 b = 0.080909160 b =0.038353859 | b= 0.007698004 | b = 0.000074361
0.0 a=5b=100 a=5b=0.0 a=5b=0.0 a=5b=00 a=b=0.0 a=b=0.0
A=afb=10 |A=a/b=0.944444 | A =a/b=0.75 A=a/b=0.5 A=a/b=0.25 | A =a/b=0.035556
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The integral in equation (2.17), which defines the transfinite diameter, must also be

evaluated numerically to whatever accuracy we require. Again the NAG routine DO1AHF

is appropriate.

In Table 3.3 we give the transfinite diameters for the annular sectors

considered in Table 3.2. The transfinite diameters are mostly given to 9 d.p. and were

calculated using the NAG routine we have just mentioned. Once again the results for the

special cases were not calculated by this method, but were produced from the formulae

given in Section 2.2.4. Table (3.3) again contains blanks when # = 10° and R = 0.001 or

R = 0.0001. The transfinite diameter in these cases is given after Table 3.4.

Table 3.3: Transfinite diameter (p) values for the sectors in Table 3.2.

0 180° 170° 135° 90° 45° 10°
R
1.0 0.0 0.087155743 | 0.382683433 | 0.707106781 | 0.923879533 | 0.996194698
0.9 0.025 | 0.123238826 | 0.414254357 | 0.726271974 | 0.931163842 | 0.996846174
0.5 0.125 | 0.222485471 | 0.484814189 | 0.758648353 | 0.938181488 | 0.996916790
0.1 0.225 | 0.304659893 | 0.526040421 | 0.769377145 | 0.938784932 | 0.996918113
0.01 0.2475 | 0.320719703 | 0.530892545 | 0.769796162 | 0.938785885 | 0.996910086
0.001 | 0.24975 | 0.322114753 | 0.531116172 | 0.769800336 | 0.938786047
0.0001 || 0.249975 | 0.322236536 | 0.531126553 | 0.769800381 | 0.938787498
0.0 0.25 0.322248185 | 0.531127040 | 0.769800359 | 0.938785852 | 0.996916753
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3.2.1 An interesting relationship between a, b and R

The numbers in Table 3.2 lead to an interesting and informative result. We notice that
when 6§ = 7 /4, there appears to be an approximate linear relationship between the radius
and the values of @ and b. For example, reducing the radius by a factor of 10 from R = 0.1
to R = 0.01 appears to have a similar affect on both the a and b values. When we consider

= /2, we find a different relationship holds; for small @ and b values it appears that
when we reduce the radius by 10 we reduce the a and b values by a factor of v/10. For
both these cases it appears that, for small values of b, a reduction in the value of K by a

certain factor, v, reduces the value of a and b by a factor
(9)7,

where A = 0/7 (1/4 in the first case, 1/2 in the second case). It would be nice if we could

prove this result analytically.

In the first theorem of case (iii) in Section 2.2.4 we proved that for “small” b,

2) 2)2
I—yo 1+ Ayo 9 . [ 1— b2
= 1 th yg =/ ————.
R <1+y0) (I—Ayo) [ + O(b )] with yo YT

We now expand yq in powers of b so

yo = (1—b%)2(1—A2%)"%

1, A2p?
= (1—— 5 4-.“> (1-+ ot

(A2 — 1)p?

= 1+ +0(b%).
Using this we find
A —1)b?
14y = 2+(_T)_+O(b4)
1 — A\?)b?
l—y = (—L—i—O(b‘*)

2
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AAZ — 1)p?

T—— +0(t")

A(N2 — 1)p?

5 +0(t").

14+dyo = 142+

By substituting these expressions into our expression for R we can show that

(1 _ /\2)2,\(1 1 )\)2)\2
24A(1 _ /\)2)\2

R =4 { 1 0(b2)} [1+00%)],

and therefore for sufficiently small b we find

(1 _ /\2)2)\(1 + )\)2,\2J
24,\(1 _ )‘)2/\2

sz‘”[

We are trying to prove for a fixed 8 (or a fixed A because A = /7) that when we reduce the
radius by a certain factor we also reduce both the a and b values by a fixed amount. For
this reason we will consider another annular sector with the same 6 value, but a different
radius, 7, and hence a different “b” value, B. We know from the above argument that

(1 _ )\2)2/\(1 + /\)2/\2]
24A(1 _ /\)2/\2 ’

R b 4
ra(s)”

Finally if R = ¢r-then b = ©'/**B and the result is proven. We note the same result holds

r%B4’\l:

so for small b and B we find

for a because for small b, a = A\b and X is a constant.

Whilst searching for starting values for the modified Newton iteration in Section 3.2,
we found that it was difficult to find starting values when 6 and R were quite small. The
above result provides insight into why this is so. For example, if we consider § = 1° and
R = 0.1, and we reduce the radius by a factor of 10, then we will reduce the a and b values
by a factor of 10'8%/4 = 1 x 10%. So even if a and b were both 1 when R = 0.1, they would
both be of the magnitude 10~ by the time we reach a radius of 0.01. This explains why

our search failed.

The result also helps us to improve upon some results in Table 3.2. In this table the

last column is not finished. The result we have just proved allows us to produce estimates



3.2. Numerical evaluation of a, b and p 79

for @ and b when 6 = 10° and R = 0.001 or R = 0.0001. We begin by presuming that
the values for ¢ and b when R = 0.5 and 6 = 10°, in Table 3.2, are adequate. We then
reduce the radius by a factor of 5, to 0.1, and use the above formula to see that ¢ and b
must drop by a factor of approximately 5'/* ~ 1398. ‘We then reduce the radius to 0.01
and once again use the above formula to find that these a and b values must reduce by a
factor of about 10'¥/* ~ 31623. We can continue this argument to produce new estimates
of the parameters @ and b. In Table 3.4 we give the previous estimated values for a and &
(where available) and we also give our new estimates for the parameters ¢ and b. Given
a pair of @ and b values we integrate, using DO1AHF, the integrals in equations (2.7) and

(2.8). The results we obtained for R and § also appear in Table 3.4.

Table 3.4: Previous and improved values of ¢ and b.

previous R improved R
R a and b 6 (degrees) a and b 6 (degrees)
_
0.1 1.293 x 107 0.10005 1.293262293 x 10~° 0.09999999
2.3279 x 107° 9.9979 2.327873129 x 10~° 9.99999999
0.01 4.09 x 107" 0.00995 | 4.089654458 x 10~ 0.01000002
7.354 x 10710 10.011 7.361381192 x 1071° 9.999996
0.001 1.293262293 x 107'% | 9.99999998 x 10~*
2.327873129 x 1074 9.99999999
0.0001 4.089654458 x 10720 1.00004 x 10—
7.361381192 x 1071° 9.999996

The computed values of R and 6 in this table show that our new estimates for a and
b are improvements on the values given previously (see Table 3.2). The values of a and

b given for R = 0.001 and R = 0.0001 give reasonable approximations to the angle and
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radius in these cases. Therefore estimates of the parameters in these cases have been found.
Using these new values for ¢ and b we can complete Table 3.3. It turns out for R = 0.1,
0.01, 0.001, and 0.0001 that the transfinite diameters all agree to 9 decimal places and
their numerical value is 0.996916756.

3.3 Norms of Faber Polynomials on Annular Sectors

Any assessment of the accuracy of an approximation based on Faber polynomials requires
some knowledge of a relevant norm. For the Faber polynomials on circular sectors Gater-
mann et al. [39] computed three different norms. In this section we shall introduce the
three norms. Both the area and line versions of the 2-norm may be computed explicitly by
a slight modification of the work of Gatermann et al. [39]. In Section 3.3.1 we will show
how to generate the area 2-norm for the annular sector, and we shall give examples of this
norm for Faber polynomials of various annular sectors. Similarly in Section 3.3.2 we will
consider the line 2-norm. In Section 3.3.3 we will give a bound for ||F,||e, and also some

examples of ||F, || for the annular sectors given in Table 3.2.

3.3.1 The area 2-norm

We begin this section by defining @+, ,, to be the annular sector symmetric with respect

to the positive real axis with inner radius R/p, outer radius 1/p and half-angle v. That is

R

QR = {; <lz| £ = largz| < 7}-

1
p

Following Gatermann et al. [39], we define the square of the area 2-norm of the scaled
Faber polynomial for an annular sector (with v > 0) as

171 | (3
2 . Q-y,R,l " p

Here z = z + ty. Letting z = pu where v = v 4 1w we find

2

]’f‘n(z)l2 dz dy :/ dz dy (3.1)

Q'y,R,l

E,

1Fn|2 = o /Q 1B (w)|? dv du.
¥,7p
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We then consider

@a()* = [u" + uma(w)]’
= (" + pur () (@ + $ua(w))
= |ul" + 2Re ("1 (w)) + |dna (w)

Using equation (2.33), which gives an expression for ¢,(z) in terms of the set of real

coefficients {p,; }_y, we find

n—1
|¢n—l(u)'2 = an—l,jun 1-7
n—1
= Z Ipn 1:][ IulQ(n 1_])+ Z Pn— 1zpn 1,5 U _l_zﬂn_l_:l
. j=0 ii=0

i#£]

n—1
= SopEoy ) 2 Z Pn—1,i Pa1,; Re(u™™ 17 a7 177)

3=0 1,J=0
1>7

By substituting these expressions into the formula for the area 2-norm we find

”F H —Inn+2zpn l,Jn -1—jn + an 1]“ 1-jn—1-j

=0
n—1

+ zzpn 1,_7pn—1 k]n 1-jn-1-k (32)

>k

where
=p / dv dw.

To evaluate this norm for any annular sector we need to evaluate I, for any values of
s and t. In the expression for I,; we change to polar coordinates, that is we make the

substitution v = rcos?, w = rsin¥ so that u = v + 1w = rexp(:J). Hence we find
Re (u%zt) = Re [rseiSﬁrte‘itﬁ}

and

I, = p? /R; retiH dp /7 cos|(s — t)d] dd.

1
- ¥
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If we now evaluate the integrals in this expression we find

1 _ Rs+t+2

2p—s—t SiIl(S — t)7

p—25(1 _

=

R2s+2),>,

s+1

s+t+2

} if s £1

if s=1t.

82

As R — 0 these expressions reduce to those of Section 3.1 of [39], when account is

taken of the difference in notation mentioned after equation (2.32) above.

Table 3.5: The area 2-norm, || Fyo(2)||z, for the annular sectors from Table 3.2. The
significance of the symbols * and 1 is explained in the text.

0 180° 170° 135° 90° 45° 10°
R
0.9 0.44665283 | 0.08381187* | 0.319349281 | 0.56434232 | 0.59282140 | 0.49837668
0.5 0.99874608 | 0.14538911* | 0.353886611 | 0.62940677 | 0.66964105 | 0.53124163
0.1 1.33995848 | 0.212102447 0.323720561 | 0.47043032 | 0.71859599 | 0.53374537
0.01 | 1.40536038 | 0.225692081 | 0.320931961 | 0.47251876 | 0.72256602 | 0.53383978
0.001 | 1.41173386 | 0.226667941 | 0.33061425% | 0.47259666 | 0.72260876 | 0.53384072
0.0001 || 1.41236963 | 0.22674697T | 0.330641037 | 0.47259752 | 0.72260495 | 0.53384073
0.0 1.41244025 | 0226754457 | 0.330642311 | 0.47259761 | 0.72260977 | 0.53384076

From the above expression for I it is straightforward to produce numerical values for
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the area 2-norm of the Faber polynomials for an annular sector. In Table 3.5 we show

these calculated numerical values for the annular sectors from Table 3.2.

The only values in Table 3.5 that we have not explained how to derive are those for
which v = 7 —6 = 0. In this case (see Section 2.2.4) the annular sector becomes the interval
[-1, —R] and the Faber polynomials become multiples of the Chebyshev polynomials for
this interval. In fact for [—1, —R] we find the monic Faber polynomials are given by

22+1+R)]

F.(2) = (1 — R)"2'"*" cos [n cos™} < "R

and p = (1 — R)/4, so

Fn(Z) = 2cos [n cos™ ! (%)] .

Hence we find

N -R
|Falls = 4/-1 cos? [ncos_1 <211+—_1—;;£>] dz

kig

= 2(1—R)/ cosz(nﬁ)sinﬂdﬂ

0

_ -5 —2 k) /7r {sin(2n + 1)¥ + 2sin ¥ — sin(2n — 1)} dd
0

1 1
o (1—R)<2n+1+2_2n—1>

= 4(1-R) (iZ;:i)

In what follows, by double precision we will mean double precision in IEEE notation,

that is, fifteen or sixteen significant figures of a number will be stored. By quadruple
precision we will mean that about thirty significant figures of a number are stored. The
stars and daggers in Table 3.5 indicate that quadruple precision has been used to obtain
8 decimal places of accuracy. To calculate the area 2-norm by equation (3.2) we must
first evaluate the three sums in this equation. If one or more of these sums is larger

than 106, then in a double precision calculation vital information is lost. To check the
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accuracy of our double precision calculations we carried out the same calculations using
quadruple precision. Occasionally the sums mentioned above are so large that using double
precision would give an obviously incorrect result. In this case the value in the table is
that obtained from the quadruple precision calculation. We indicate this occurence with
a star. Sometimes the double precision calculation was correct to a few decimal places
of accuracy, though not to the 8 decimal places required in the table. In this case the
result of the quadruple precision calculation is given in the table and it is marked with a
dagger. For example, when R = 0.1 and 6 = 170°, the double precision calculation gives
||l7’10(z)||2 = 0.21223559 to 8 decimal places, whereas, the quadruple precision calculation
gives || Fyo(2)]|2 = 0.21210244. For another example, we consider R = 0.0001 and § = 135°.
To 8 decimal places, the double and quadruple precision calculations give the area 2-norm
as 0.33064100 and 0.33064103, respectively. For the other results in the table, the double
and quadruple precision calculations agree to 8 decimal places. It may be possible to
rewrite equation (3.2) and evaluate the expression in a more stable manner, but for the

purposes of the table our solution was to use quadruple precision.

Finally in this section, we note that Table 3.5 does not contain the values of the area
2-norm when R = 1. In this case the annular sector is an arc and the area and line 2-norms
become the same norm, namely the standard 2-norm. We do not include these values in

the table, and refer the reader to Table 3.6 for them.

3.3.2 The line 2-norm

A~ A

In this section we consider the line 2-norm, || Fy||2. Again following Gatermann et al. [39)
we define the square of the line 2-norm as

Aﬁnﬁ;:/ Fo(z 2d3:/ q;n(f)
\Fallz = | Q%R’Il (2)] 0 n, )

where s is the arc length in the z-plane and 0Q), g is the boundary of the annular sector

2
ds, (3.3)

Q..r1- Again we make the substitution v = z/p = (z +1y)/p = v + 1w and find

Fﬂ:/ o, (u)[? do,
Fll=p [, 18 do
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where o 1s the arc length in the u-plane. By similar reasoning to the arguments of Section

3.3.1 (the area 2-norm section) we can show

RN . n-~1 . n—1 .

”Fn % = In,n +2 Z pn—l,j-[n~1—j,n + Z pi_l,]‘-[n—l—j,n—l—-j
n—1 .

+ 2 Puc1iProtplnc1ojmm1-k, (3.4)
>k
where
fs = Re (v®a@!) do
£ P (wa)
= p r*tt cos(s — t)d do.
aQ'y,R,p

To obtain the second integral from the first we have made the substitution u = r exp(:9).
We now refer to Figure 3.3 where we consider the four line integrals that will make up this
integral around the boundary. When the angle of the sector is held constant and equal to
v (line 1 in Figure 3.3) and we move along the arc in the direction of the arrow the radius
is increasing and so do = dr. When we fix the radius equal to 1/p (arc 2), the angle is
decreasing in the direction of the arrow and so do = —(1/p) dd. The other two regions are

similar, when we fix the angle to be —v (line 3), do = —dr and when we hold the radius

equal to R/p (arc 4), do = (R/p) d¥.

Using this information we find

. VI v [ R+ 4
I,; = p /o 2rett COS[(S - t)'Y] dr + p/_’y (ps_+t+l_> COS[(S — t)ﬂ] dd
p — (1 B Rs+t+1) cos(s — t)y . sin(s — t)y (Rs““"l n 1) fs £t
s+t+1 (s —1t)
1 — R2s+1
—2s 2s5+1 . —
\ 2p [(——23+1 )-l—’)/(R +1>] if s=1t.

These formulae can be used to calculate the line 2-norm for all annular sectors except
the arc (when R = 1) and the interval (when v = 0). In these cases, the annular sector
becomes a single line and if we used the above formulae we would have twice the desired

result. Therefore when R = 1 or ¥ = 0 the correct result is obtained by dividing these
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Figure 3.3: A plot of the boundary of the annular sector Q- g,,-

formulae by 2. We see that as R — 0 the expressions for fs,t once again agree with the

results of Gatermann et al. [39].

Table 3.6 shows the values of the line 2-norm for the annular sectors given in Table 3.2.
As in Table 3.5, the stars indicate a result for which one or more of the sums in equation
(3.4) become so large that a double precision calculation gives a silly result. In contrast the
quadruple precision calculation gives the result shown in the table. As previously a dagger
indicates a case where the double and quadruple precision calculations agree to a few
decimal places. For this case the values in the table are those obtained from the quadruple
precision calculation. For example, when R = 0.1 and 6 = 170° the double precision
calculation gives ”F’lo(z)ﬂz = 1.48165870 to 8 decimal places, whereas, the quadruple
precision calculation gives nﬁlo(z)ﬂz = 1.48267206. For another example we consider
R = 0.01 and 0 = 135°. The double precision calculation gives nF10(Z)|]2 = 1.88913940 to 8

decimal places, whereas, the quadruple precision calculation gives nFlo(Z)ﬂg = 1.88913935.
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Once again, the rest of the table contains cases where the double and quadruple precision

calculations agree to 8 decimal places.

Table 3.6: ﬂﬁlo(z)ﬂz for the sectors in Table 3.2.

0 180° 170° 1350 90° 45° 10°
R
1.0 0.83449231% | 1770107151 | 250101566 | 2.76170834 | 2.47397306
0.9 0.92914373* | 1.861940541 | 2.83880238 | 2.99729213 | 2.63381778
0.5 | 0.99874608* | 1.23523861% | 1.839767111 | 2.40673907 | 2.60706091 | 2.51536336
0.1 | 1.339958481 | 1.482672067 | 1.876265641 | 2.27527207 | 2.58849508 | 2.51455994
0.01 | 1.405360311 | 1.549551527 | 1.889139357 | 2.27123691 | 2.57989399 | 2.5143340
0.001 | 1.411733861 | 1.55988055 | 1.890130811 | 2.26930506 | 2.57865920 | 2.51430999
0.0001 || 1.412369631 | 1.561011751 | 1.89022818T | 2.26907291 | 2.57850119 | 2.51430756
0.0 | 1.412440257 | 1.561467711 | 1.89018755 | 2.26905018 | 2.57852166 | 2.51430733

The spaces in the table are cases where the sums we must calculate are so large that

even quadruple precision is not enough to produce a sensible result. We note that when

@ = 180°, the annular sector becomes an interval. Therefore the line 2-norm and the area

2-norm must become one and the same, namely the standard 2-norm for an interval. For
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this reason, the values in tables 3.5 and 3.6 should agree when § = 7. Comparing the
results from the two tables, when R = 0.5, 0.1, 0.01, 0.001 and 0.0001, we see this is true.
Therefore the blanks in Table 3.6 may be filled in from the results in Table 3.5.

3.3.3 The maximum norm

In this section we will exhibit upper and lower bounds on the maximum norm of the scaled
Faber polynomials. The upper bound involves the total rotation of the boundary of the
annular sector. We shall now introduce the idea of a curve of bounded rotation and then

define the total rotation (see Ellacott[22], Elliott[28], Kévari and Pommerenke[52]).

We consider a smooth Jordan curve, I'* : S(r), and denote the angle between the
tangent to I'* at S(7) and the positive real axis by (7). Here 7 is a parameter for the
curve, not the constant given in equation (2.14). We then define the total rotation of I'* as

the change in ¢(7) as we traverse the curve I'*. The total rotation of I'* is therefore given

by
{ doo| :/
T+ r*

NN

w-plane

dp

—d_T d’T.

K__,ﬂ

z-plane r

Figure 3.4: A level plot for an annular sector.
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Let 1 (w) map |w| > 1 onto the exterior of I, an arbitrary Jordan curve, and let T,
denote the level curves of the mapping, {z = ¢¥(w) : |w] = r}, (see Figure 3.4 where we
show a level curve for an annular sector). Kévari and Pommerenke [52] state that V(r),
the total rotation of I',, is a decreasing function of r. If V(r) is bounded, T' is said to be

of bounded rotation, and
V=supV(r) = lirrll Vir)

r>1

is called the total rotation of I'.

The boundary of the annular sector is composed of simple arcs, therefore V is fairly

easy to calculate for an annular sector. We now calculate V for an annular sector with a

half-angle . To do this we consider two cases:

Case (i) v < m/2.

?&B

¥

A

Figure 3.5: A general annular sector from case (2).

In figure 3.5 we show a general annular sector of this type. At the corners of the annular
sector we have shown the tangent vector before and after the discontinuity. We see that
at every corner the change in the tangent vector is 7/2. To complete the calculation of
V we must evaluate the change in the tangent vector along the arcs AB and C'D. By

elementary geometric considerations the tangent vector at A, along AB, makes an angle
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of w/2 — ~ with the positive real axis. ( We note that if v > /2 then the angle would be
2 —(y—7/2) = 57 /2 —+.) Similarly the angle the tangent vector makes with the positive
real axis at B is v + /2. So the change in the angle of the tangent vector along AB is

B _ T_(F_ _
[0]"*‘7+2 (2 7)’ 27-

Considering the line C'D we see that the angle the tangent vector makes with the positive

real axis at C is v + 37/2 and at D is 37/2 — . Therefore

3 3r
[0]22 7"7"(’)’%—7)’:27.

By combining the above results we find that for this annular sector

V:4<g>+2fy+27=27r+47.

Case (i) v > 7/2.

Figure 3.6: A general annular sector from case (z2).

In figure 3.6 we show a similar diagram to figure 3.5, but this time for a general annular
sector of case (i7). As before we consider the tangent vector along AB. The tangent vector
at A makes an angle of 57/2 —~ with the positive real axis, and the angle at B remains the

same as in case (i). Considering the arc CD we see that the tangent vector at C' makes an
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angle of v — 7 /2 with the positive real axis, and the angle the tangent vector at D makes
with the positive real axis remains the same as case (z). Hence

[9]§=‘7+g—<5—2{—7>‘:2w—27

and

37 T
[ ]c 9 7 Y 9 2m — 2y

Remembering that the change in the angle of the tangent vector at each corner of the

annular sector is 7/2 we find

V=4<g)+27r—27+27r—27=67r—47.

We now consider bounds on the maximum norm,

”Fn“ = max

oo z€Q

Fo(2)

of a scaled Faber polynomial; by the maximum principle that maximum value occurs on

the boundary of the domain ). Let
Tn(2) = 2" + ap2" 7 + -+ ag

be the Chebyshev polynomial of degree n for the annular sector @, the monic polynomial
of smallest maximum modulus on @. It is known (Walsh [80], p.320) that ||T,||c > p"
and therefore, since no monic polynomial of degree n can have smaller norm, HFnHoo > 1.

For this norm Ellacott [23] provides an upper bound independent of the degree of the

polynomial, n. His result is
Fy

A<

(A

o0

Combining these bounds we have

F,

IN
3 <

3

1§|

o0

and for an annular sector of interior angle 2+ we have just shown that
o + 4y forOSng
V =
s
6m — 4y for§§7§7r.
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Starke and Varga [76], who used a different normalization for the Faber polynomials,

provided bounds in terms of the norm of the corresponding Chebyshev polynomials. Their

Theorem 3.4, for non-convex regions, is applicable to annular sectors, and ¢(0), which

appears in their bounds, is given in closed form by equation (2.38) (for their theorem see

Section 5.3.3).

Table 3.7: || Fio(2)||eo for the sectors in Table 3.2.

9 180° 170° 135° 90° 45° 10°
R
1.0 1.99960919 | 1.99995177 | 2.00759567 | 2.34237091 | 1.56576321
(2.01319547)
0.9 | 2.00006288* | 1.53144187 | 1.56424045 | 1.78175708 | 1.80153021 | 1.44681530
(1.81060258) | (1.81802087)
0.5 | 2.00002296 |1.51451514 | 1.51397749 | 1.71816450 | 1.33195921 | 1.43410186
0.1 | 2.00000000 | 1.55385355 | 1.49193299 | 1.48215499 | 1.38135082 | 1.43410173
0.01 | 2.00000000 | 1.48534007 | 1.50889957 | 1.49420633 | 1.38143109 | 1.43410173
0.001 | 2.00000000 | 1.81413232 | 1.51036632 | 1.49433074 | 1.38141090 | 1.43410173
0.0001 | 2.00000000 | 1.87656534 | 1.51214934 | 1.49433164 | 1.38122929 | 1.43410173
0.0 | 2.00000000 | 1.88579763 | 1.51534272 | 1.49433250 | 1.38143177 | 1.43410218

In Table 3.7 we show the value, given to 8 decimal places, of || Fio||e for the annular

sectors given in Table 3.2. The maximum value occurs on the boundary of the annular
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sector and therefore to calculate the value of ||F, || we must just consider the value of
|F(2)| over the boundary of the annular sector. The values in Table 3.7 were produced by
sampling |Fio(z)| at 200 points placed around the boundary of the annular sector. Forty—
nine points were placed along each edge. The remaining four points were placed at the
corners. In Figure 3.7 we show, for a specific annular sector, a plot of the value of |Fio(z)|
over the points we have just mentioned. The first point is positioned at Rexp[:(m — )],
where 6 is given in the definition of ) (see Section 2.2). From here we label the points
in a clockwise sense until we return to this point again. If the maximum value occurs at
a corner, which is the case for all but three of the examples in Table 3.7, then we will
know the value of the maximum norm from our search. If, however, the maximum value
does not occur at a corner, then we may not know the maximum value exactly, but we
will have a reasonable approximation for both its value and the point(s) where it occurs.
In Section 3.3.4 we will give a strategy for improving the approximate maximum value
if the maximum does not occur at a corner. We have used this method to improve the
approximate values of the maximum norm, in Table 3.7, which do not occur at corner. We

show this improved value in brackets below the approximation we achieved from our initial

search.

s L L L
0 20 40 60 80 100 120 140 160 180 200

Figure 3.7: A plot of |Fyo(2)| around the boundary of the annular sector when R = 0.5,
and 6 = 135°, so a = 0.500945881, b = 0.675703499 and p = 0.484814189.

The star in Table 3.7 indicates that for this calculation quadruple precision was used.
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When calculating the value of the Faber polynomial around the annular sector we first
calculate the coefficients and then by a Horner scheme we calculate the value of the poly-
nomial at specific points around the annular sector. When R = 0.9 and § = =, intermediate
values in the Horner scheme become larger than 10'® and therefore using double precision

causes vital information to be lost; our solution is to use quadruple precision.

3.3.4 Improving the estimate of the maximum norm

In this section we shall use Newton’s method to improve the approximate value of the
maximum norm when that maximum value does not occur at one of the corners of the
annular sector. There are three examples of this in Table 3.7, and in all these examples the
maximum value occurs on the boundary |z| = 1. Therefore in this section we will suppose
that when the maximum value does not occur at a corner, it occurs on the boundary
|z] = 1. If this is not the case, then modifications of the procedure we will describe would

allow improvements in the approximate value of the maximum norm.

We begin by considering

2

Fo(2)

n .
L n—j
Z djz
=0

on the boundary |z| = 1, that is z = exp(:0). We have denoted the j-th coefficient of the
scaled Faber polynomial, F,(z), by d;. Writing z = exp(i8) in this expression we find,

2

E, (e“’)\2 = édj cos|(n — j)0]+z'§%dj sinf(n — 7)0]
= C(0) + 5(6)*

where C(6) = Y7_, d; cos[(n — j)6] and S(0) = ¥7_ d;sin[(n — 7)0]. We write M(6) for
|F’n(ei9)|, and suppose that we have a reasonable initial approximation, o, to the point
where the maximum of |F},(¢%)| occurs. This is usually possible from our search, and if it
is not we could refine our search. From (3.5) we know that F,(z) does not vanish near a

maximum of |F,(z)|. Hence, with the above 6 we know that M(0) is differentiable and

not zero. We have
M?=C*+ 5%
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S0
2MM' =2CC" 4285,
where the prime means differentiation with respect to 8. For a stationary point (and in

particular for a maximum) of M () we require M’(f) = 0 and this gives
g(0)=CC"+ 855" =0,

where C'(0) = — X7 o(n — j)d;sin[(n — 5)0] and S'(0) = E7_o(n — 7)d; cos[(n — 5)8].

Substituting these expressions into g() we find

9(6) = —kidkcos[(n—k)e]im—j)djsm[(n—j)e]

+ zn: di sin[(n — k)4 Z(n — 7)d; cos[(n — 7)9]

k=0 j=0

di(n — j)d; {cos[(n — 7)8] sin[(n — k)8] — cos[(n — k)0] sin[(n — 7)0]}

0

dr(n — j)d;sin[(j — k)4].

0

7

NERTNE

o
Il

D

We split this double sum into three sums; one where £ < j; one where ¥ = j and one
where k > j and observe several things. Firstly when j = n the terms of the series vanish,
secondly the second sum vanishes because k£ = j, and finally we can rewrite the third sum
so that it becomes the negative of the first sum. These three observations imply

n—173=1

= Y5 dyda(k — §)lsin(j — K]
7=0 k=0
Given an initial approximation, 6y, we use Newton’s method to improve the approximate
value, that is o)
9(0x
Opyr = 0, — %, > 0.
+1 g'(en) n=>0
From the above expression for g(f) we find
n—17—1
= > > didi(k — j)(j — k)[cos(j — k)b].
7=0 k=0

For the three examples from Table 3.7, use of Newton’s method with the above expres-
sions produced improved approximate values for the maximum norm of the scaled Faber

polynomials. In Table 3.7 these improved values are shown in brackets.
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3.4 Improving the bound on |x,||

As was mentioned in Section 1.2.3, Ellacott [22] derives a bound for ||x.|| where x,(f) is
the truncated Faber series for f. This is a useful bound when the total rotation, V, is 27
(that is when the region in question is convex). For an annular sector V < 47 (see Section
3.3.3). For values of V close to 47 the bound may not be as useful. For example, when
V = 47 the bound gives |[x.|| < 9 for values of n < 3; as we will see ||x,| < 9 for larger
values of n than 3. We will now give Ellacott’s proof of his result. The reason for this is

two-fold, firstly it is a nice proof and secondly we will improve on the result later in this

section.

We recall from Section 1.2.3 that

IXall = sup  fxa(@llo=  sup  max|xa(g)(2)]
g€A(D)i(lglleo=1 g€AD)|lgllo=1 %€

The function x,(g)(z) is simply a polynomial, so the maximum principle tells us that
|xn(g9)(2)] attains its maximum value at some point, zp = ¢ (e’“), on the boundary of
the region D. There is a difference in notation between this thesis and the paper by
Ellacott [22]. Our map, ¥, maps the complement of the unit disc onto the complement

of D, whereas Ellacott considers the mapping from the complement of a disc of radius p.

Equations (1.7) and (1.8) give

i L /|w|=1 90D 4 (20)

Ixn(9lleo =

i 2mip? wit!
/ )F (Zo) dw
2 | Jjw)= 1] prJ"'l
< L Z”:Ff(%’o) dw
T 21 = | W w

since ||g|le = 1 and Fj(z) = p? F;(2). Property 6(b) in Section 1.2.2 now implies

dw
z]s
2 . / dsv(s, )| |—

ool < o [ |5
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27
< L / /
— 272 Jo Jwi=1

In the second integral of this expression we make the substitution w = exp[—i(t —s)] giving

2 n
dw _ m Ieiﬁ
[w]|=1 —Jo Z
= prt

w

i7s

n/e
2

: J
j=0 ¥

dw
—'L_U—‘ | dS'U(S, 00)' .

n 178
Z/ e di

j
i=o ¥

IS it _ L] g
= it 2| dt .
/ IRES (3.6)
2r |
< / S el dt 4 7. (3.7)
o |5
Therefore using property 6(a) in Section 1.2.2 we find
|4 1 I
ol < 7 (ratg)  vhere m=g-f —_r' #

The origins of 7, lie with the classical Lebesgue constant v, (see Cheney [6]). Cheney
defines S,, the Fourier projection of degree n, for a real continuous periodic function, f,

by a mapping of f onto its Fourier series. That is,

(S.f) (z) = %0- + > aksin kt + by, cos kt,

k=1
where

a4 = % /_ " f(t)sin(kt)dt and b=~ / " F(t) cos(kt) dt.

T J—7

Cheney [6] then shows that
150 fIl < Uf v, where il = max_g(z)],

and, as reported in Geddes and Mason [43], ¥, = 72n. The value of 7, is considered by

Geddes and Mason [43]. In particular they show
4
T = —logn 47 +0(1),

where 1 = 0.98941... and o(1) tends to zero monotonically as n increases. In Table 3.8

we give the value of 7, for small n as computed by Geddes and Mason.
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Table 3.8: The value of 7, for 1 < n < 10.

7 || 1.273 | 1.436 | 1.552 | 1.642 | 1.716 | 1.778 | 1.832 | 1.880 | 1.923 | 1.961

In Ellacott’s bound the constant, B (see Section 1.2.3), is chosen so the bound holds for
all n; therefore this constant is chosen to be 1/2 4+ 7 = 1.773.... This is restrictive, in the
sense that the value of n, given by the bound, to obtain an approximation that is near-best
within a relative distance 7 is less than the actual value of n required. It is restrictive
because 4log(n)/m? + 1.773 is bigger than 7, + 1/2 for all n > 2. The values in Table 3.8
imply for V = 4 that ||x.|| < 9 when n < 5; this is an improvement on n < 3 given
in Section 1.2.3. We can, however, do better than this. The problem with the derivation
of Ellacott’s bound occurs in deriving the bound in (3.7) from the bound in (3.6). When
the region is convex, Ellacott’s bound gives n < 835 to achieve an approximation that is
near-best within a relative distance 9. In most, if not all, practical situations we would
be happy with this value of n. An annular sector is not convex, in fact V' can be as large
as 4m; as we have mentioned with such an annular sector the bound is restrictive and we
need n < 3 to achieve an approximation that is near-best within a relative distance 9.
This provides motivation to improve Ellacott’s bound. To improve the bound we consider
a numerical calculation of the integral (which we define to be 7,}) given in equation (3.6).
The sum in this expression is a geometric series and therefore in a standard way (Geddes
and Mason [43] and Ellacott [22]) we find

_ /027r eint)t _ 1 _ l‘ ”

n

> -

2m
* —
=

o |izo

et — 1 2

_ /ZW <mt) sin ’Bllt 1 it
b P\ sin% 21

We now make the substitution ¢t = 2u so

ieiit— dt = 2/7r

/27r
0 j=0

sin(n sin(n + 1)u Du 1 _,.
—e
sin u 2

du
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- 2/ \J (sm ntlu %cos(nu))2 + isinz(nu) du

sin u

sm U

_ / \/sm n+1) usm(nu) cos(u) + 1 p
i

We could now integrate this expression numerically for different values of n. It is possi-
ble, however, to write this in a form where Gauss-Chebyshev quadrature can be used to

approximate this integral. We begin by writing
. 1. :
sin(nu) cos(u) = g[sm(n + 1)u + sin(n — 1)u]

and then collect the fractions inside the square-root over a common denominator. Finally

in the numerator we substitute

1
sin(n + lusin(n — )u = §[cos 2u — cos(2nu)],

sinf(n + )u = %[1 — cos(2n + 2)u]

and

sin“y = ——,

so the integral becomes

du.

/ \/— —cos(2n 4+ 2)u + = cos(2u) — cos(2nu)

sm u

In this expression we substitute u = cos™!(z) and note that

1
du =-——F—, sinu=+v1-z? and cos(mu) = T (z),

dz 11—z

where T,,,(z) is the Chebyshev polynomial of degree m. Remembering that

TQ(CE) = 2]32 -1

and

T2n+2(w) + Ton(z) = 2272011 (z),
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the expression finally yields

/27r
0

/_11 {(_@mz dz. (3.8)

where
1 — 22T5n11(z) + 22
2 . 2n+1
f (.’II) - (1 _ .’122)

As we have mentioned the expression (3.8) is in an ideal form to use Gauss-Chebyshev

quadrature. We note that the apparent singularities, in the expression for f(z), at z = +1
are removable. This is because Th,11(1) = 1 and Tyny1(—1) = (=1)?"*, and therefore the
numerator in f*(z) also has a factor of (1 — z?). Gauss-Chebyshev quadrature produces
an approximation to the righthand side of (3.8) of the form

/ mdacNZHf:Ly

where H; = n/m and z; = cos[(2: — 1)1 /(2m)] (see Fox and Parker [34]). Hence

o 1 r &[] = 22,7, (:12')+x2 3
gt ~ — : n+l i K
/0 ;)e 5 dt m; - s
| m g [Lm 2oos (B con {4 ol )
miz | 1 — cos? {Q%H}

In all cases (that is for all values of n used) we began with m = 16 and produced an
approximation to the integral by the above formula. We then doubled m to 32 and produced
another approximation. If the difference between these two approximations was not less
than some tolerance (107%) multiplied by the initial approximation, then we continued to
double the number of points (m) until two successive approximations differed by less than
the tolerance multiplied by the initial approximation. When this was so we used the latter
approximation as our value for the integral. The results for 1 < n < 30 are shown in Table

3.9 to 4 decimal places. In Table 3.9 we also give the value of 7;/27. This is important
because our new bound for ||xx|| is

Vrr
< Ly
Ixall < 52
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Table 3.9: The value of the integral given by equation (3.6) for 1 < n < 30. We also

give the value of this integral divided by 2.

n 0 T /2m n T T /2% n T T [2n
1 6.6824 1.0635 11 | 11.8684 | 1.8889 21 | 13.4620 | 2.1425
2 7.9804 1.2701 12 | 12.0809 | 1.9227 22 | 13.5778 | 2.1610
3 8.8377 1.4066 13 | 12.2769 | 1.9539 23 | 13.6885 | 2.1786
4 9.4782 1.5085 14 | 12.4589 1.9829 24 | 13.7947 | 2.1955
5 9.9895 1.5899 15 | 12.6287 | 2.0099 25 | 13.8965 | 2.2117
6 10.4151 1.6576 16 | 12.7879 | 2.0352 26 | 13.9945 | 2.2273
7 10.7797 | 1.7156 17 | 12,9378 | 2.0591 27 | 14.0888 | 2.2423
8 11.0985 | 1.7664 18 | 13.0793 | 2.0816 28 | 14.1798 | 2.2568
9 11.3819 | 1.8115 19 | 13.2134 | 2.1030 29 | 14.2676 | 2.2708
10 11.6368 1.8521 20 | 13.3407 | 2.1232 30 | 14.3525 | 2.2843

When V = 47 we find, from Table 3.9, that ||x.|| < 9 for n < 27. This is a much better

value than the one given by Ellacott’s bound (r < 3), and shows that for practical values

of n the truncated Faber series is near-best within a relative distance 9.

3.4.1

The improved constant

We shall now improve the constant in Ellacott’s bound (see Section 1.2.3), that is, B =

1.773.. ..

Ellacott [22]. Using |a| — |b] < |a — b] < |a| 4 |b] we find

™ — 5 = Tn

2

1

_ L <« -
2 T 27

/‘27\'
0

ei(n+1)t -1

et — 1

We begin by bounding 7,;/27 above and below. The upper bound is given in
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The results of Geddes and Mason [43] imply that
4 4 4
— logn +0.98941... < —logn + 7+ O(1) < —logn +1.273....
T s T
Combining the two previous expressions therefore gives
4 Y 4
2 logn +0.48941... < % < Zlogn + 1.773....
72 2r T w2
From this we see that /27 behaves like 4log n/7?, at least as n — co. In Table 3.10 we

consider the value of 7*/27 — 4logn/n? for small n, specifically 1 < n < 30.

Table 3.10: The value of 7*/27 — 4logn/7? for 1 < n < 30.

n | m}/2r —4logn/w? || n |73/2r —dlogn/7® || n | 1r/2r —4logn/n?
1 1.0635 11 0.9171 21 0.9087
2 0.9892 12 0.9156 22 0.9082
3 0.9613 13 0.9144 23 0.9078
4 0.9467 14 0.9133 24 0.9074
5 0.9376 15 0.9124 25 0.9071
6 0.9314 16 0.9116 26 0.9068
7 0.9270 17 0.9109 27 0.9066
8 0.9236 18 0.9102 28 0.9063
9 0.9210 19 0.9096 29 0.9060
10 0.9189 20 0.9091 30 0.9058

The values in Table 3.10 suggest that 7*/27 — 4logn/7? is a monotonically decreasing
function of n. If this is true then
4
72

= |§ﬂ*
IN

logn 4+ 1.0635. ...
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Hence, we have

Vry V4
Il = — (T—”> < — (—1ogn+ 1.064...),

2r T \7?
and we have improved the constant in Ellacott’s bound (see Section 1.2.3 and [22]) from
1.773 to 1.0635. When the region is convex (V = 2), this new bound implies that ||x.| < 9
for n < 4813. When V = 37 we find ||x,|| < 9 for n < 118, and when V = 47 we find
llxa]| <9 for n < 18. The new bound is still pessimistic, but it is an improvement on the

one given in Ellacott [22].

3.5 Level plots

In this section we describe a numerical calculation of level plots for an annular sector. In

Section 1.2.2 we defined a level curve, T, to be
I, ={z=9w):|w=r>1},

that is, the image of ¥ applied to the circle of radius r in the w-plane. In Section 2.2.2 we

derived from (2.12b) an expression for the conformal mapping given by

_ _ w(u2—2t#+1)%(u2—2m+1)%
z=Y(w) = —exp l/‘l W7 — 2pcotha + 1) du} . (3.9)

A similar strategy can be applied to equation (2.12¢) producing another expression for the

mapping,

w (p? = 2p 4+ 1)5(p? — 2rp +1)7
/1 (v* —2tp +1)2(p* — 27p + 1) dﬂ}. (3.10)

= - _R
z = 1p(w) exp u(p? = 2ucotha + 1)

There are a vast number of different forms for the conformal map (see Section 2.2.2), so
many different formulae may be used to approximate the level curves numerically. The
branch points that exist when evaluating the integrand in the expressions above can cause
computational problems because a computer may calculate the value of the square root
function on a different branch to the desired one. This may cause some of the aforemen-
tioned formulae to give poor level plots and for this reason we describe a method we found

to work satisfactorily. We begin with (3.9) and (3.10), substitute 4 = 1/v, and produce
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two more forms of the mapping, that is

Vw (v = v +1)2(v? — 27v + 1)z
2= p(w) = —exp [_ /_1 v(v? —2vcotha + 1) dv (3:11)
and
Vw (42 — 2ty + 1)2(v? — 2rv + 1)7
— (w) = —Rexp |~ / . .
2= v(w) P v(v? —2vcotha + 1) dv (3.12)
We then consider certain points on the curve |w| = r, » > 1, in particular the points

w = rexp(in) where n = 27k/n with £ = 0,1,...,n. We note that £ = n gives us the
same point in the w-plane as when k£ = 0. Our strategy is to use (3.11) if cosn < 0 and
(3.12) if cosp > 0. We chose to use two formulae to calculate the mapping because it seems
natural to choose the formula which is best suited for the point we are considering at that
time, that is, we choose to use (3.11) if the point is closer to —1 and (3.12) if the point
is nearer 1. Once we have chosen which expression to use, that is whether cosnp > 0 or
cosn < 0, then we use Gauss-Kronrod-Patterson integration to approximate the integral.
In doing this we consider the integral along a straight line from —1 (if we use (3.11)) or
1 (if we use (3.12)) to the point 1/w. The integrand in expressions (3.11) and (3.12) has
poles at v = 0, v = (1 +a?)/(1 —a?) and v = (1 —a?)/(1 + a?); this gives rise to a problem
in our straight line integration. The problem occurs when the radius, r, of our level curve
is greater than (1 + a?)/(1 — a?) and the angle, 7, of the point in the w-plane is close to
0 or 2r. When this occurs the straight line integration will pass close to or go through a
singularity in the integrand and our numerical image point will be a poor approximation to
the true image point. In this case it would be possible to find a reasonable approximation
to the image point by considering a different path to integrate along. For example, we
could use an arc joining the points 1 and 1/w. In figure (3.8) we show the level plots
produced, as we have described, for the annular sector of half-angle /4 radians and inner
radius 1/2. Referring to Table (3.2) we see that for this annular sector a = 0.500945881
and b = 0.675703499. Hence, (1 + a?)/(1 — a*) = 1.6700372 and we only have a problem
in our level plot s if » > 1.6700372. In figure (3.8) we show the level plots with radii,
1.67, 1.5, 1.2, 1.1, 1.01, and 1.001. The level plot with radius 1.001 provides, at least as

far as the eye can see, a decent approximation to the desired annular sector.
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To get a good plot of the annular sector and its level curves it would be nice to have
the same number of points along each arc making up the boundary of the annular sector.
The method we have just described does not have this property. However, referring to
Section 2.5 it would be possible to do this. We would simply consider which parts of the

curve |w| = r map to which parts of the annular sector and distribute the points evenly

over each of these.

0.8f

0.6

0.4r

0.2f

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Figure 3.8: Level plots for an annular sector of half-angle 7/4 and inner radius 1/2.

3.5.1 The Féjer points

The boundary of the annular sector is a Jordan curve (simple closed curve), therefore
(see Gaier [38], pg. 67) the mapping % from {w: |w| > 1} onto C/Q can be extended
continuously to a mapping from {w : |w| > 1}. The images under % of the (n + 1)-st roots

of unity are called the Féjer points of order n on D. The Féjer points are therefore given
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" 2mek
Z’(C):d)(eXp{nzfl}) for k=0,1,...,n.

When interpolating a function, f(z) analytic on D (in this case the annular sector @),

by

at an arbitrary set of points in D, then as we take more and more points the interpolating
polynomial, L,(z), need not tend to the function we are trying to approximate. Gaier [38]
introduces the idea of a set of uniformly distributed points. He shows that the Féjer points
are uniformly distributed, and that the interpolating polynomials, L,(z), tend to f(z) as
n — oo if and only if we interpolate f at a set of uniformly distributed points. The set
of Féjer points are not the only uniformly distributed set of points, but they are easy to
calculate if the conformal map, v, is known. In figure (3.9) we show approximations to the
Féjer points z,(gn), k=0,1,...,n where n = 50 for the annular sector, @), of half-angle = /4

and inner radius 1/2. The Féjer points shown are only approximate because we actually

2mik
({25

where r was chosen to be 1.001. To do this we used exactly the same technique as we used

found the points

in Section 3.5.
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Figure 3.9: The approximate Féjer points, z,(c ) with k = 0,1,...,50 for an annular sector

of half-angle 7 /4 and inner radius 1/2.
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4.1 Introduction

One of the most important problems in numerical computation is the solution of nonsin-

gular systems of linear equations,
Ax = b, (4.1)

where A € CV*¥ . x and b € CV. Linear systems of this type occur in many different
areas. For example they occur when solving partial differential equations by finite element
or finite difference methods. When the size of the matrix in (4.1) is small, the usual
approach is to use direct methods such as Gaussian Elimination. Gaussian Elimination,
like other direct methods, involves a factorisation of the matrix A. For this reason when
the size of the linear system is large, direct methods can become costly in terms of both
computing time and storage. It is often better (and sometimes the only option) to use
iterative techniques to solve (4.1), especially when the coefficient matrix, A, is sparse. The
coefficient matrix is certainly sparse in the examples we have already mentioned, that is
when the linear system arises from discretising a partial differential equation; for these

examples an iterative method may work well.

The aim of this chapter is to review iterative methods for the solution of (4.1) and to
describe which methods are suitable for various classes of coeflicient matrix. We will start
with the very basic iterative techniques known as stationary methods, an example of which
is the Jacobi iteration. Stationary methods involve splittings of the coefficient matrix and
usually exhibit slow convergence at least compared with the methods we will describe
in the later sections of this chapter. After a very brief discussion of stationary methods
we will then describe some of the most popular nonstationary methods, such as CG (for
symmetric, positive, definite matrices), GMRES, QMR and Bi-CG (for nonsymmetric,
nonsingular matrices). Most of the methods we describe belong to a class of methods
known as Krylov subspace methods. In the last section of this chapter we will review
hybrid methods. Hybrid methods involve two stages. In the first stage they use a method
to produce some information about the coefficient matrix. In the second stage they use a

parameter dependent method and the information obtained from the first stage, to improve

the estimate of the solution.
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4.2 Stationary Iterative Methods

Some of the oldest and easiest to implement iterative techniques are the stationary iterative

methods. For these methods the coefficient matrix, A, is split in the form
A=M—-Q,

where the matrix M is nonsingular. The problem (4.1) is then equivalent to Mx = @Qx+b

and this suggests the iterative scheme
Xpg1 = ]W_IQX}C + M™1b. (42)

The methods are called stationary because M ~1Q and M ~'b do not depend on the iteration
number k, and so the methods do not vary from iteration to iteration. Methods of this

type include Jacobi’s method, the Gauss-Seidel method and the successive overrelaxation

methods.

We define the error at the k-th step as
€r = X — Xk, (43)

and say that the method (4.2) is convergent if limj_,,, ex = 0. We now define T'= M1Q,

and therefore

e, = X—Xi
= Ter

= TkEO.
Consequently for any consistent matrix norm, the error satisfies
lewll = [T*eo] < 7] Tieoll

It is well known that ||T*|| — 0 as k — oo if and only if p(T) < 1 (see most numerical
analysis undergraduate texts, for example Atkinson [2], Burden and Faires [5] and Kreysig
[51]). This result means the iterative method converges, provided the eigenvalue of T' with

largest modulus, is less than one. We will now briefly consider four standard iterative

methods.
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4.2.1 Jacobi’s Method

To describe Jacobi’s method we begin with the i-th equation of the linear system (4.1)
that is,

N
Z Clijl'(j) = b0,
J=1

If [T, a;; # 0, we can produce an iterative method whereby the k-th iterate of the ¢-th

component of x is found from

( Za”xk 1) [
J#

This is Jacobi’s method for solving the system (4.1). Following a standard notation we
write A = D — L — U, where the matrices D, L and U contain the diagonal, strictly lower
triangular and strictly upper triangular parts of the matrix A, respectively. In the notation

of Section 4.2 we find M = D and @ = L + U. Consequently Jacobi’s method may be

written as

Xp = D_I(L + U)xp-1 + D™'b.

4.2.2 The Gauss-Seidel Method

The Gauss-Seidel method is a modification of the Jacobi method. The idea is to use the

new approximation to :vgj) as soon as it becomes available. Therefore the Gauss-Seidel

method 1s written

:z: (b(l Za” Zamxk 1) [aii,

j<i >t

provided [%, a; # 0 once again. If we split the coefficient matrix as we did for Jacobi’s
method we find M = D—L and Q = U for the Gauss-Seidel method. So in matrix notation

the Gauss-Seidel method can be written

X, = (D — L)_IUXk_l + (D - L)_lb.
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4.2.3 The Overrelaxation Methods

In this section we consider the Successive Overrelaxation Method (SOR) and Symmetric
Successive Overrelaxation Method (SSOR). SOR is a stationary iterative method that
contains a parameter, w, which can be set by the user. In the notation of Section 4.2 this
method is represented by M = (D — wL)/w and @ = [(1 — w)D + wU]/w. Therefore in

matrix notation SOR is written
xp = (D —wl) " [(1 — w)D + wlU] x4-1 + w(D —wl)™'b.
When w = 1 this reduces to the Gauss-Seidel method.

The SSOR method combines two SOR-like iterations, the difference being in the second

iteration where the roles of L and U are interchanged. We define

M, = %(D—wL), leé[a-w)DwU],
M, = %(D—wU), QQ:%[(I—w)D-{-wL],

and then the SSOR method is given by the following two equations,

Xppl = Ml_llek + Ml_lb

and

Xk4+1 = M2_1Q2Xk+% + M{lb
This may also be written as

X1 = M{1Q2Mf1Q1Xk +w(2 —w)(D - wl)™'D(D - wLl)™'b.

A good review of all these stationary iterative methods is given in Barrett et al. [3].
According to this and the references therein, the SSOR convergence rate with an optimal
w is slower than the SOR convergence rate with an optimal w. For this reason the SSOR

method is rarely used, except maybe as a preconditioner for symmetric matrices (see [3]

for the details).

Stationary iterative methods were once popular. However, nowadays this is not the case

because more powerful techniques have been developed. For most matrices, stationary
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iterative methods suffer from slow convergence. The SOR method with an optimal w,
usually converges quicker than the others, but compared to the methods of the next section

it is slow. Stationary iterative methods do have the advantages of being easy to explain

and implement.

4.3 Nonstationary Iterative Methods

4.3.1 Frylov Subspace Methods

In this section we will introduce Krylov subspace methods. Most of the modern iterative
methods for solving (4.1) belong to this set of methods. Krylov subspace methods begin
with an initial approximation Xo to the solution of (4.1), x = A~™'b. From this initial

approximation the method produces a sequence of iterates of the form
)‘(n € X+ [(n(r(), A), (44)

where ry = b — Axg and K, (ro, A) is the n-th Krylov subspace generated by ry and A,
that is,

K,(ro, A) = span {ro, Arg, ..., A”'lro} . (4.5)
A general element of this Krylov subspace is
aorg + alAro +...+ an_lA"_lro = qn_l(A)ro, (46)

where ¢,_1 € P,_;, the set of polynomials with degree less than or equal to n — 1 (as

defined in Section 1.2.3). The n-th residual is defined as
r, = b — Ax, = Ae,, (4.7)

that is the difference between the right-hand side b and the approximation Ax,. In this
equation we have also noted the n-th residual is the n-th error, e, (as defined by (4.3)),

multiplied by A. In view of equations (4.4) and (4.6) we find

r, = A(X—x%,)=ro— Agn_1(A)ro
= pa(A)ro, (4.8)
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where
pn € P, with p,(0)=1. (4.9)

The polynomials ¢,_; are known as iteration polynomials, whereas the p, are known as

residual polynomials. We note that p,(z) =1 — zg,—1(2).

As a motivation for Krylov subspace methods, we suppose A has a set of orthonormal
eigenvectors {v;}}L; (that is A is a normal matrix) and corresponding eigenvalues {\;},

and we write the initial residual as a linear combination of these eigenvectors that is

N
g = Z ’)’]‘Vj.
=1

Then

N N
r, = Z 'Yjpn Z 7Jpn VJ )
and so
eall3 = Z%Pn
< Z,
< jmax P2 (M)[*lIroll;
Therefore finally
[rallz < Jmax [pn(A)] [|Tol|2, (4.10)

where o(A) is the spectrum of the matrix A. This means the n-th residual is small provided

|p,| is small on the spectrum of A. It seems therefore that Krylov subspace methods could
be a good idea.
The above result can be extended to non-normal matrices (see for example [37]). We

begin by supposing that the coefficient matrix, A, is diagonalisable, that is there exists a
matrix, X, such that X"'AX = D = Diag(\y,..., An). Therefore

Irallz = llpa(XDX ™ )rofl2
= || Xpa(D)X x|
< 1 X)2lIDiag(pa(M); - - - Pa(AN)) 2l X~ l2]lroll2
< ||X||2||X_1||2Afé}7?§) [P ()] [Irol2- (4.11)
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This again shows that the n-th residual is small provided |p,| is small on the spectrum
of A, that is, provided Ky(X) is small. The inequality (4.11) differs from (4.10) by a
factor of K2(X) = || X||2/|X~!)l2. For normal matrices K2(X) = 1 and we again obtain the
inequality (4.10). For highly non-normal matrices K3(X) can be extremely large and the

bound given in (4.11) may not be a useful one.

One of the aims of this chapter is to arrive at hybrid methods as a sensible idea for
solving the linear system (4.1). As previously mentioned, hybrid methods involve two
stages. In the first stage a parameter—free scheme is used to gain some information about A.
In the second stage a parameter-dependent scheme is used, where the residual polynomial,
p,, or iteration polynomial, ¢,—1, is constructed from the information gained in the first
stage. This second stage is usually, if not always, a Krylov subspace method. An example
of the information gained in the first stage, would be the knowledge of a compact set G

which contains the eigenvalues of A, but does not contain the origin, that is
MA)CGcCC, 0¢G.

Given such a set GG, Freund et al. [37] suggest a good set of polynomials to choose as the

residual polynomials would be those satisfying

max lpn ()| = i, | max Ip(M)],

that is the best approximations to zero on the set G. They also note that this approxi-
mation problem can only be solved analytically in a few special cases, such as the case of
the interval, where the Chebyshev polynomials are optimal. Usually when these polyno-
mials are not known exactly, the way forward is to choose polynomials that are near-best
approximations to zero, or to choose polynomials which are asymptotically optimal (for

semi-iterative methods see Eiermann et al. [20]). For a review of hybrid methods see

Section 4.4.

4.3.2 The Method of Conjugate Gradients (CG)

The method of conjugate gradients (CG) is one of the oldest and most popular methods

used for a linear system (4.1) whose matrix A is Hermitian and positive definite. Hestenes
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and Stiefel [50] introduced this method in 1952 as a direct method (see Barrett et al. [3]).
In the 1960’s CG became less popular because on a computer the search directions (see
below) will eventually lose their A-orthogonality. In the seventies, however, CG was shown
to be an effective iterative procedure and once again interest grew in the method. There
have been many papers and articles written about CG; an excellent introduction to the
method and its ideas is given in Shewchuk [71], a good review of the method is contained

in Barrett et al. [3] and a nice section on the subject is contained in Golub and Van Loan
[44].

CG was introduced to improve upon the ideas of steepest descent, where the new iterate
is the old iterate plus a particular multiple of the residual. The idea of CG is not to use
the residual, r;, to improve the iterate, but to use some other search direction, p;. The
search directions in CG are chosen to be A-orthogonal (pJHApi =0 for ¢ # 7). This is an
important property because it means, in exact arithmetic, CG will converge in at most N
steps (where N is the size of the matrix A). Given an initial approximation to the solution,
Xo, and hence an initial residual, ry, the method begins by setting the first search direction
to be po = rp, and then updates the iterates by

H
I'i r;

PyAPf

Xiy1 = X; + a;p;, where ;=

The residuals are updated by

Tiy1 =T — o Ap;.

Finally the new search direction is found from
Pi+1 = Tiy1 + Biy1Pi,

where

H ..
Bra =~
‘ I‘iHI‘,'

The beauty of CG is contained in two wonderful properties. Firstly it is based on
three simple two-term recurrences. Secondly the n-th iterate, X, € X¢ + Kn(ro, 4), found
by running the CG algorithm for n steps minimises the A-norm of the error, where the

A-norm is defined as ||ul|4 := (u, Au)%. By (4.7) this result may be written in terms of the
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minimisation of the residual in a different norm, that is

alla=t = |[b = Ay 41 = i — Ax||g-1. .
Irallams = [ = Ascollams = min b= Ax|L4- (412)

Freund et al. [37] state for a general non-Hermitian matrix that || |[4-1 is not a norm, so
usually the minimisation in expression (4.12) is replaced by one of two conditions. They

suggest replacing (4.12) by

Il =, minllb = Ax]l,

and this gives rise to methods known as minimum residual (MR) methods. As an alterna-

tive they suggest replacing (4.12) with a Galerkin condition,
sfr, =0 forall se€ K, (ro, A),

that is the n-th residual is made orthogonal to all vectors from the n-th Krylov subspace.
Methods satisfying (or using) this condition are called orthogonal residual (OR) meth-
ods. For Hermitian indefinite linear systems, Paige and Saunders [62] gave two algorithms,
MINRES (based on the MR property) and SYMMLQ (based on the OR property). They
also showed that these methods can be implemented using short recurrences. For a gen-
eral non-Hermitian matrix it would be interesting to ask when is it possible for a CG-like
scheme, characterised by an MR or OR property, to be implemented using short recur-

rences. A result due to Faber and Manteuffel ([32] and [33]) provides the answer. Their

result states that

A CG-like scheme satisfying an MR or OR property can be itmplemented using short

recurrences only if the matriz A is of the form

A=e®T +ol), where T=T7,0€cR, and 0 € C.

Finally in this section we note that a convergence bound for the CG algorithm can be
derived (see Elman [29], Golub and Van Loan [44] or the references in Barrett et al. [3] for
the details). The bound depends on the spectral condition number of the matrix A and
from this it can be shown that the number of iterations required to achieve a set accuracy

is proportional to this condition number (see for example Golub and Van Loan [44]).
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4.3.3 CG on the Normal Equations

We now consider general non-Hermitian linear systems of equations, that is linear systems
(4.1), whose matrix A is a non-Hermitian matrix. An initially attractive idea is to use CG
to solve a linear system of equations with Af A (or AA¥) as its matrix. We note A¥A
is an Hermitian positive semi-definite matrix (see Atkinson [2], p.478), therefore if A is

nonsingular A¥ A is positive definite and we can use CG.

There are two approaches to obtain a linear system of this kind (known as the normal

equations), firstly we multiply (4.1) throughout by A¥, that is we solve,
APAx =b; with b, = Afb;
this approach is known as CGNR. The second approach is to write x = Afy and so
AAfy = b,

solving this equation by CG is known as CGNE.

In general both of these approaches are not favored because the convergence rate of CG
is governed by the condition number of the matrix A, so for these systems the convergence
depends on the square of the condition number of this coefficient matrix. Freund et al. [37]
review some cases that are optimal in the sense that CGNR and CGNE are equivalent
mathematically to CG-type methods based on the MR or OR conditions. Nachtigal et
al. [59] suggest that solving the normal equations is often ignored as a method to solve a

linear system, when in fact this method may converge quite quickly.

4.3.4 The General Minimum Residual Method (GMRES)

CG, SYMMLQ and MINRES are all based on the Hermitian Lanczos process (see Barrett
et al. [3] and Elman [29]). The general minimum residual method (GMRES) is a method
for general non-Hermitian matrices which is based on the Arnoldi algorithm [1]. The result
of Faber and Manteuffel ([32] and [33]) means that, for a general non-Hermitian matrix, a

method which minimises some norm cannot contain short recurrences. So in GMRES all
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the previously calculated orthogonal vectors must be stored and therefore the amount of

work and storage will grow linearly with the number of iterations.

We will begin by describing Arnoldi’s method. Given an initial vector v; such that
lvil]l = 1, Arnoldi’s method produces an orthonormal basis for the Krylov subspace

span {vy,..., A" 1vy,...}. This is constructed via the Gram-Schmidt process, that is for

7 =1,2,... we set

hi’j = VlHAVj 221,]
J
Vip = Avi—=Y higv (4.13)
1=1
) Vs
hj+1,j = ||Vj+1”2a and Vgl = h.J R
J+1,7

provided h;4q ; is different from zero. These equations may be written more succinctly
in matrix form. For example, if we consider m steps of this algorithm (that is take j =
1,...,m) and if we define V;, := [vi1,...,vn] (so Vi, € (CNX’") and Hp, := [hijlici<j<m

(therefore H,, € C™*™ is an upper Hessenberg matrix), then
AV = Vi Hy + V12 (4.14)

with e, = (0,...,0,1)f € C™. The Gram-Schmidt process produces an orthonormal

basis, and so from (4.14) we find
VEAV, = H,. (4.15)

The Arnoldi method for eigenvalues is to use the eigenvalues of H,, as approximations to
the eigenvalues of A. Most of the hybrid methods we shall describe later in this chapter
(see Section 4.4) produce eigenvalue estimates by Arnoldi’s method. Indeed, in Chapter 5

we will describe our hybrid method which also uses Arnoldi’s method to produce eigenvalue

estimates.

To enable us to describe the GMRES algorithm neatly we define H,, € Clmtixm 44
be the matrix containing H,, in its first m rows and (0,0,...,0, Bm+1,m) as its last. Any
iterate of the form X,, € Xo + K, (ro, A) can be written in terms of the orthonormal basis

for K,, (ro, A) found by Arnoldi’s method, starting with vy = ro/||roll2. That is, any such
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iterate can be written
Xm € X0 + Vin¥Vm, | (4.16)
for some y,, € C™*!. Therefore,
r, =b—Ax, =ro — AV,,yn.
From (4.14) we find

rm, = ro— (VuHy + hm+1,mvm+1e5)ym
= |[Iroll2v1 = V41 Hn¥m
= Vit [rollzes = Hnym) ,
where €, = (1,0,...,0) € C™V*1 The GMRES algorithm produces iterates X, €

X0+ K (ro, A) such that |12 is minimum over all such choices. The v; are orthonormal,

and therefore
Iemle = || Ivollz€1 — Hnym], - (4.17)

Hence, minimising ||r,||2 is equivalent to choosing y, to solve a least-squares problem
involving the right hand side of this expression. The GMRES algorithm solves this least-
squares system by first finding a QR factorisation of the matrix H,.. That is

— R,
.- (1)

where @ is a unitary matrix and R,, is upper triangular, that is,

™M1 721 ... Tim
0 29 ... Tom

R, =
0 ... 0 7rmm

As () is unitary we find

Rm ).
Iralls = [@lrelaes = ( ) v

2

Writing Q||roll2€1 = (21, - -, Zm41)” then [ry |2 is minimised when

ym = zm/rmm, ey yl = (Z] ol Z’I‘h‘yi) /7"11.
1=2
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Once y,, is known then a new iterate can be found from equation (4.16). We note that H,
contalns f{\m_l as a submatrix. Therefore in principle Ry can be updated from Rj_; and it
can be shown (see [29]) that X,, and ||r,,||2 can be obtained at essentially no cost, at least

compared to the cost of producing the next vector in the orthonormal basis for K,(rg, A).

We know all the previous orthonormal vectors are needed to calculate the next vector
in the basis. Hence, the work and storage requirements, for GMRES, grow linearly with
the number of iterations. Therefore if a large number of iterations is required to obtain
convergence, then there are large computational costs and storage requirements. One way
around this problem is to restart the algorithm after s steps, replacing the old initial iterate
with the new iterate obtained from the GMRES algorithm after s steps. The skill in this
idea, is deciding when to restart, that is the value of s. If s is too small then the method
will take a long time to converge; if s is too large then more work will be done than is
necessary. Another problem with this idea is that there exist matrices for which GMRES
has very slow convergence until the last step (see Nachtigal et al. [59]). For such matrices

restarting before the last step will result in slow convergence.

Finally in this section we once again mention that the Arnoldi/GMRES idea is the
main method used in stage 1 of hybrid algorithms (see Section 4.4). The idea is to use
Arnoldi’s method for eigenvalues to produce some eigenvalue estimates and at the same

time to use GMRES to produce a new initial iterate for the second stage.

4.3.5 BiConjugate Gradient Method (BCG)

For a general non-Hermitian matrix, as we have already mentioned, the conjugate gradient
method is not suitable because the residual vectors cannot be made orthogonal with short
recurrences (see Faber and Manteuffel [32] and [33], and Section 4.3.2). The GMRES
algorithm (see Section 4.3.4) produces a minimisation of residuals, but at the expense of
using long recurrences. Another approach is that used by the biconjugate gradient (BCG)
method. This method begins with two non-zero vectors, ro and To; usually one sets To to

be ro, To, or a random vector. From these initial vectors the BCG algorithm produces two
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mutually orthogonal sequences of vectors r, and T, that is,

0 otherwise.

3 1 if =7
€m={ L= (4.18)

The BCG algorithm does this using short recurrences, but does not provide a minimisation.

Once we have ry and Ty, the algorithm, taken from Freund et al. [37], is as follows:

Set : qo = ro,qo = To, po = FoTI'o-
For n=12,...
Op—-1 = ﬁf_lAqn_l
Qp—1 = Pn-1 /Un—l
Xp = Xp_1 + Op_1qn-1
pn =Tp1 — an—lAqn—l

=~ T
In =Tpo1 —op A gn-1

Pn = Fgrn
ﬂn = pn/pn-—l

qn = Iy + ﬂnqn—l
(’i'n, = F'n. + ﬁné’ln—l‘

The choices
~T ~T

r ) (g r.r

n—1'n—1 n-n

Qp_1 = :,—T‘A— and ﬂn = 5
9n-14qn-1 Im—1Tn-1

ensure the bi-orthogonality relations

Tr; =0=glAq; if i#7.

The main advantages of BCG are its short recurrences and the fact that it is often as
accurate as GMRES, at the cost of two matrix vector products per iteration. BCG, how-
ever, suffers from a few drawbacks. Firstly, it often exhibits erratic convergence behaviour.
Secondly, each iteration of the method involves a multiplication by both A and AT. This

would be a problem if the matrix A7 was not available, for example, if we were given a
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routine to calculate a matrix vector product, but not the matrix itself. Finally the BCG

algorithm can suffer from breakdowns. Looking at the above algorithm this occurs when
Opn—1 =0 and Tp_q #0,r,—1 #0,

or if

' pno1 =0 and Fooq #0,ra y #0.
Freund et al. [37] discuss the sources of these breakdowns and also the look-ahead Lanczos
algorithm, which is a method that handles most breakdowns in the BCG algorithm. The
next few methods we describe try to improve on one, or more, of the aforementioned prob-
lems of the BCG algorithm. Good reviews of BCG, and related algorithms, are contained
in Freund et al. [37] and Barrett et al. [3].

4.3.6 The Conjugate Gradient Squared Method (CGS)

In 1989, Sonneveld [75] introduced his conjugate gradients squared algorithm (CGS). This
was the first method, based on the BCG algorithm, avoiding the multiplications by AT,
It is relatively straightforward to prove that the vectors r, and ¥y, in the BCG algorithm,
satisfy r, = p,(A)ro and ¥, = pn(AT)F for some p, € P,. Therefore, we find that

pn = T4 [pa(A))" 1o,

and p, can be calculated without the AT multiplication. In a similar way we find that
On = F(I;A [Qn(A)]Z To,

for some g, € P,. Sonneveld [75] showed that both p, and o, can be updated by using
short recurrences. Algorithms for the implementation of CGS are contained in Nachtigal

et al. [60] and Barrett et al. [3]. It turns out, for the CGS algorithm, that
r2n = (pa(4))" 1o,

where p,(A) is the residual polynomial for the BCG algorithm. That is, the CGS residual
polynomials are just the squares of the BCG residual polynomials. For this reason the
CGS algorithm shows even more erratic convergence than the BCG algorithm. When

BCG diverges CGS will diverge, but when BCG converges, CGS may still diverge.
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4.3.7 BiICGSTAB and BiCGSTAB2

In this section we will discuss BiCGSTAB, the method of Van der Vorst [79], and
BiCGSTAB2, the method of Gutknecht [47]. These methods were developed to avoid
the erratic convergence of both the CGS and BCG algorithms. For the CGS algorithm one

obtains iterates of the form

Xon = Xo + I(zn(ro, A), (419)

where as mentioned above
r2n = (pa(A))” ro, (4.20)

and p,(A) is the BCG residual polynomial. BICGSTAB generates iterates satisfying equa-
tion (4.19), but in contrast to (4.20), the residuals are found from

Ion = pn(A)Gn(A)rOa

where G, is a polynomial of degree n, with G,(0) = 1. The G, satisfy Gn(z) = (1 —
9n2)Gr_1(z), where the parameters g, are found by determining local steepest descent
solutions. We refer the reader to Freund et al. [37] and Van der Vorst [79] for the details.
BiCGSTAB often exhibits smoother convergence than both BCG and CGS.

Instead of linear factors, Gutknecht [47] introduces quadratic factors into the polyno-
mial G,,. His reason for doing so is to allow G,(z) to have complex as well as real roots.
For real A, the BICGSTAB method will only give rise to real gn, even if the eigenvalues of
A are complex. Therefore, the method of Gutknecht could be a useful one. The method

is known as BiCGSTAB2.

4.3.8 The Quasi-Minimal Residual algorithm (QMR)

The QMR algorithm of Freund and Nachtigal [36] is a method designed to overcome some
of the short falls in the BCG algorithm; in particular its breakdowns. As in the BCG algo-
rithm, it produces two sets of mutually orthogonal vectors, {v;} and {w;}, (see Equation

(4.18)). To avoid breakdowns that occur in the BCG algorithm, the QMR algorithm uses
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the look-ahead Lanczos process. The idea of this procedure is to get around cases when

wlv, = 0, but neither w,, nor v, are zero. It does this by relaxing the biorthogonality

condition (see Equation (4.18)) when a breakdown occurs (see Freund et al. [37] for the
details). As in Section 4.3.4, if we start the method with vy = ro/||rol|2, then, after n steps
of the QMR method, the set {vy,...,v,} spans the Krylov subspace K,(ro, A). Therefore

Xn = Xo + Kn(ro, A) = Xo + Vo Yn, (4.21)
for some y, € C*, with V,, = [vy,...,V,] as in Section 4.3.4. The look-ahead Lanczos
process produces vectors v; such that

AV, = Vo H,, (4.22)

where H, € C"*V*" is an upper Hessenberg block tridiagonal matrix (see Freund et al. [37]

or Freund and Nachtigal [36]). From Equations (4.21) and (4.22) we find
r, = b-—Ax,
= ro— AV, y.
= Van (||I'0||261 - EnYn) )

where €, is given in Section 4.3.4. Unlike in the GMRES algorithm (see Section 4.3.4),

V41 is not a unitary matrix. To find y,, however, the QMR algorithm still solves

JiIrollz€x - ﬁn)’nnz = min lllrollze1 — Hay |2-
As mentioned above H,, is an upper Hessenberg matrix. Therefore this minimisation may
be solved efficiently by the QR algorithm as in Section 4.3.4. The residual, r,, is not
actually minimised by this process. Therefore the solution is viewed as a quasi-minimal
residual and this gives rise to the method’s name. Like the BCG algorithm, the QMR

algorithm involves multiplications by A and AT There exist transpose free methods based

on the QMR algorithm, such as TFQMR (see Freund et al. [37]).

4.4 Hybrid Methods

In this section we will review hybrid algorithms for the solution of linear systems of equa-

tions (4.1). Hybrid methods were introduced to overcome problems with Krylov subspace
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methods. For example, the GMRES algorithm (see Section 4.3.4) can be very costly in
terms of both storage and the number of vector operations required to converge. As is
mentioned in Section 4.3.4 a way around this problem is to restart the GMRES algorithm;
unfortunately this can lead to slow convergence. A completely different approach is that
taken by hybrid methods. A hybrid method contains two stages. In the first stage a method
like CGS, GMRES or QMR is used. The purpose of this stage is to gain some information
about the coefficient matrix, A. Once a few steps of Stage 1 have been completed then
the method switches to the second stage. In this stage a method is used that applies the
information obtained in the first stage. An example of such a method is Chebyshev itera-
tion (see Section (4.4.1)). A good review of Hybrid methods is contained in Nachtigal et

al. [60]. In this review they summarise hybrid methods as follows:

Stage 1. Acquire information about A via an iteration requiring no a priori information

about A.

Stage 2. Apply this information via a method requiring a priori information about A.

As mentioned previously hybrid methods were designed to overcome the high cost of
both work and storage in methods like GMRES. The methods used in stage 2 tend to
cost less per step than those used in stage 1. Therefore the change from a stage 1 type
method to a stage 2 type method could be useful. In methods like BCG (see Section
(4.3.5)) multiplications by A” (or AT) are required. Sometimes this matrix is either not
available or costly to compute. In these cases hybrid methods will have an advantage over
methods such as BCG. If A® (or A7) is available or easy to compute then hybrid methods
may or may not compete with such methods. To quote Nachtigal et al. [60], “the natural
realm of applicability of hybrid methods is to problems where Krylov subspace methods
take fewer steps than the alternatives.” By this they mean that hybrid methods might be
used successfully for matrices where methods like GMRES outperform methods like CGS,

BCG and CGNR.

We will now review the existing hybrid methods, beginning with Manteuffel’s algorithm

which appeared in 1978.
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4.4.1 Manteuffel’s algorithm

The first hybrid method to appear in the literature is one by Manteuffel [56]. In his paper
he gives three methods for estimating a few of the extreme eigenvalues of the matrix A, one
of which is a modified power iteration. An ellipse is then placed around these eigenvalue
estimates. From this ellipse two parameters, ¢ and d, are found. Given these parameters the
algorithm then switches to an iteration based on the Chebyshev polynomials (Chebyshev
iteration). The iteration is carried out as follows:

1
o = b — AX(), Ao = —()—{ro, X1 = Xgo + Ao,

and then for n =1,2,...

r, = b — Axn, A, =oply + ﬂnAn—la Xn41 = Xp + An,

where

=TT (Y P T (4

¢l (;) ot (;)

and T,(z) is the n-th Chebyshev polynomial. From a property of Chebyshev polynomi-
als, that is, the recurrence relation (see Section 2.7), these parameters may be calculated
recursively by

2d
2d%? — ¢

ap =

We define

r=n (1) (8)

and then using the recurrence relation for the Chebyshev polynomials, and the definitions
of a,, and f,, it is relatively straightforward to see that the Chebyshev iteration gives rise

to an iterative method with residual polynomials given by the scaled and shifted Chebyshev
polynomials, p,(A). That is r, = pp(A)ro.
The Chebyshev iteration is simple to implement provided that ¢ and d can be calculated.

Manteuffel [56] gives an adaptive procedure to estimate the convex hull of the spectrum

of A. Tt is based on estimating extremal eigenvalues by the power method (or a modified
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version of it). The estimate of the convex hull is then placed inside an ellipse and the
-parameters, ¢ and d, for this ellipse can be found by a strategy given in Manteuffel [55].
In the notation of Nachtigal et al. [60], Manteuffel’s algorithm may be represented by

Modified Power method — eigenvalue estimates — ellipse — Chebyshev iteration.

The Chebyshev iteration, and therefore Manteuffel’s hybrid method, can be used to
solve nonsymmetric linear systems where the matrix A has eigenvalues that lie in the right
(left) half plane. This means that Manteuffel’s method, like many other hybrid iterative
methods, will fail when the origin belongs to the convex hull of the spectrum of A. The
method will work well when the spectrum of the matrix can be well approximated by an

ellipse not containing the origin.

4.4.2 The method of Smolarski and Saylor

A problem with Manteuffel’s algorithm is that it only works well for matrices whose spectra
may be well approximated by an ellipse. In 1981 Smolarski and Saylor [74] proposed a
modification of Manteuffel’s algorithm which replaces the ellipse with a more general region
in the complex plane. Again they begin with the modified power iteration and obtain some
eigenvalue estimates. They then place a polygonal region around these estimates and to find

a residual polynomial they solve a least-squares approximation problem on the polygon.

They define an Ly-optimal polynomial, R,, to be a polynomial of degree n for which

| Rl is a minimum, where

91 = (7, D)o = 7 [ FOTOI() I

~ is a curve in the complex plane, L = [ |d)] is the length of the curve v, and w is some
weight function. The contour v is chosen to be the above polygonal region enclosing the

eigenvalue estimates. If R,(A) =14+ mA+... +7,A", then
RIS = (n, Bn), (4.23)

where 7 = (1,71, .- -,7)%, B = (fi;) is the modified moment matrix associated with the

basis {1,),...,A"} and B;; = (A, M),. We refer the reader to Smolarski and Saylor [74]
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for a procedure to minimise expression (4.23). Once this minimum is found, the residual

polynomial, R,, is implemented by Richardson iteration.

In 1991 Saylor and Smolarski [70] modified their method to include the Arnoldi/ GM-
RES algorithm. Their new method uses the link between the Arnoldi and GMRES algo-
rithms to obtain both a good initial iterate for stage 2 of the hybrid method, and eigenvalue

estimates. In the notation of Nachtigal et al. [60] it may be represented as

Arnoldi/GMRES — eigenvalue estimates — polygon —

L*-optimal polynomial — Richardson iteration.

4.4.3 The method of Elman, Saad and Saylor

In 1986 a very important modification of Manteuffel’s algorithm was introduced by Elman
et al. [30]. They were the first people to replace the modified power iteration of stage 1 by
the Arnoldi algorithm. Most of the hybrid methods introduced after this algorithm use this
idea, including the method of Saylor and Smolarski [70] which we have just described. The
big advantage of using the Arnoldi algorithm to obtain eigenvalue estimates is its link with
the GMRES algorithm (see Section 4.3.4). Therefore at the end of stage 1 of the hybrid
method one has a better initial solution to the linear system, as well as eigenvalue estimates.
The rest of this algorithm proceeds as Manteuffel’s did. That is, Elman et al. [30] place an
ellipse around the eigenvalue estimates, and then use the Chebyshev polynomials for this
ellipse as the residual polynomials. Once again their method will only work well when the
spectrum of the coefficient matrix can be well approximated by an ellipse. In the notation

of Nachtigal et al. [60] this method is represented by

Arnoldi/GMRES — eigenvalue estimates — ellipse — Chebyshev iteration.

4.4.4 The method of Saad

The hybrid method of Youcef Saad [69] was published in 1987. It is based on the method
of Smolarski and Saylor [74] (see Section (4.4.2)) with two notable differences. Firstly, he
obtains eigenvalue estimates by the Arnoldi/GMRES algorithm, and secondly, he improves
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the stability of the method by constructing a well-conditioned basis of shifted Chebyshev
polynomials, before finding the L?-optimal polynomial.

As mentioned above the method begins with a few steps of the Arnoldi/GMRES al-
gorithm to produce both a good initial solution for stage 2 and eigenvalue estimates. A
polygonal region, H, is then placed around these estimates. Smolarski and Saylor [74]
give their method with respect to the basis {1,,...,\}. Unfortunately, for this basis,
the modified moment matrix, B (see Section (4.4.2)), is ill-conditioned and therefore the
method is unstable. Saad [69] considered a more stable basis, namely {1,...,¢;(A)}, where
the ¢;(\) are scaled and shifted Chebyshev polynomials. Along each edge, E,, of H he

considers a weight function w, (see Saad [69] for the details). He then defines an inner

product,

— l’l’ —
() = [ NN eI = X [ p()gw(V]dA
v=1 v
where u + 1 is the number of edges of the domain H.
In the paper he describes how to generate the modified moment matrix for this more

stable basis. Along each edge E, for v = 1,...,u he expresses the polynomials t;(A) in
terms of the Chebyshev polynomials, T;(¢), for the edge E,. That is he writes

tj(/\) = Z:'Y:Jﬂ(f)a

where ¢ depends on A. By using the recurrence relation for Chebyshev polynomials, Saad
is able to calculate, for each v = 1,2,..., u, the coefficients 4, (see Proposition 2 in Saad
[69] for the details). He is then able to calculate the coefficients, my; = (ti,¢;)w, of the
modified moment matrix, M,, from these 7/; (see Proposition 3 in Saad [69]). The beauty
of this method, for calculating the coeflicients of M,, is that it explicitly calculates the
required integrals. As in Smolarski and Saylor [74], once the matrix M, is known, the

residual polynomial, p,(A), (or iteration polynomial, ¢,(})) is found by minimising

1

IPa (W)l = 111 = Aga (W)l = (1 = Aga(X), 1 = Aga(A)).

Writing p(A) = S n:ti(A) and ¢(A) = 7 0;t;(A) then the inner product, given above,

becomes

(P, @)w = (Mn7, 8),
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where i = (7o, ..., nn)T and @ = (0g,...,0,)T. Using this expression for the inner product
and writing ¢,(\) = Y% n:ti(A) then

a2 = [e1 ~ Tun)™ M, [e1 — Tum],

where e; = (1,0,...,0)T, 7= (0, - -,7n-1)7,

a O
Bi a1 b
Tn—'—‘ )
6n—1
ﬁn—l Op—1
B

and «;, B;+1 and §; are the coefficients in the recurrence relation for the polynomial ¢;41(A).
The matrix M, is a symmetric positive definite matrix and therefore there exists a Choleski
factorisation M,, = LLT (see Golub and Van Loan [44]). Noting that LTe; = lj3e4 and

writing LTT, = F,, where F), is an (n 4+ 1) x n upper Hessenberg matrix we find

1Mo = [[l181 = Fanll2.

This expression can be minimised, by using the QR algorithm, in a similar way to minimis-
ing expression (4.17) in the GMRES algorithm (see Section 4.3.4). Once the coefficients n
are known the iteration polynomial, g,(), is implemented using a second-order Richardson

iteration (see Saad [69] for the details). Nachtigal et al. [60] summarise this method as

Arnoldi/GMRES — eigenvalue estimates — polygon — Chebyshev basis —

L?*-optimal polynomial — second-order Richardson iteration.

4.4.5 The Arnoldi/Faber method of Starke and Varga

In this section we will review the Arnoldi/Faber method of Starke and Varga [76]. This
method is the major motivation for our work in Chapter 5. In fact the only essential
difference between the two methods is that Starke and Varga use the Faber polynomials
for a polygonal region, whereas we use the Faber polynomials for an annular sector. Starke

and Varga’s method begins, as usual, with a few steps of the Arnoldi/GMRES algorithm.
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Therefore, at the start of stage 2 we have eigenvalue estimates and a good initial solution.
The method, as set up in their paper, is only suitable for matrices whose eigenvalues
are symmetric with respect to the real axis. Starke and Varga mention the possibility of
implementing their method for a general non-Hermitian matrix, but they do not give the
details and it would seem that their ideas must change to be able to do this. Once some
eigenvalue estimates are known, then a polygonal region is placed around these estimates
(see Starke and Varga [76] for the details) and a numerical conformal mapping package
is used to find the required conformal map. The mapping package used is SCPACK (see
Trefethen [77]) which is only set up to find interior mapping functions. The polygonal
region they obtain is symmetric with respect to the real axis. Therefore, they are able to
use a “trick” given by Li in his thesis, (see Starke and Varga and the references therein)
to find the exterior conformal map. From this numerical conformal map they are able to
find the Faber polynomials for the polygonal region. These Faber polynomials, suitably
normalised, are then used as the residual polynomials in stage 2 of Starke and Varga’s
method. The iteration polynomials, obtained from this choice of residual polynomials, are

implemented using a Horner iteration. In the notation of Nachtigal et al. [60] this method

is represented by

Arnoldi/GMRES — eigenvalue estimates — polygon — Faber polynomials

— conformal map — Horner iteration.

Starke and Varga [76] choose the Faber polynomials as residual polynomials for two.
main reasons. Firstly, they, amongst others, show that the Faber polynomials, for a region
D in the complex plane, are near-best approximation to zero (see Sections 1.2.3 and 5.3.3).
Secondly, the Faber polynomials are small on level sets (see Section 3.5) of the domain D.
As Starke and Varga point out this is an important property when dealing with non-normal
matrices, because for these matrices the convergence behaviour of polynomial iterations

does not only depend on the spectrum of A, but also on neighbourhoods of the domain

(for example, see Trefethen’s e-pseudospectra [78]).

We would like to finish this review of the Arnoldi/Faber method by pointing out some of
its disadvantages. Firstly, the method requires a numerical conformal mapping package to

produce the Faber polynomials. It would be better if we could avoid this by considering a
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region in the complex plane whose Faber polynomials are known analytically (see Chapter
5 and the Faber polynomials for an annular sector). Secondly, as it is set up in Starke and
Varga’s paper, the method can only be applied to matrices whose spectra are symmetric
with respect to the real axis. They do mention that it is possible to apply their method to
matrices with eigenvalue estimates situated almost anywhere in the complex plane. Their
method, however, would have to change to enable this. For example, their method for
placing a polygonal region around the eigenvalue estimates would change if the eigenvalues
were not symmetrically placed about the real axis. It would be better if we could have
a general purpose region which could be scaled and rotated to anywhere in the complex
plane. Therefore, the method would be the same no matter where the eigenvalues were

situated. The annular sector would seem to be such a region (see Chapter 5).

4.4.6 Hybrid GMRES

This section contains a review of the hybrid method of Nachtigal et al. [60]. Their method
was the first hybrid method not to use an eigenvalue estimator. They give two reasons
for dropping the eigenvalue estimates from their method. Firstly, for non-normal matrices
considering only the eigenvalues may not provide enough information about the matrix.
Nachtigal et al. [60] give a simple example of a polynomial which is small on the spec-
trum of a particular matrix, but when used in stage 2 of a hybrid method it leads to
divergence. Instead of considering the spectrum of a matrix they suggest considering its
pseudospectrum. The second problem with eigenvalues is the existence of matrices whose
eigenvalues and pseudospectra are far from zero, but whose eigenvalue estimates are small
or even zero (see Nachtigal et al. [60] for an example). Nachtigal et al. [60] note that the
first problem is not really a problem, because eigenvalue estimates tend to estimate the
pseudospectrum of a matrix rather than its spectrum. As mentioned above, it is usually
the pseudospectrum that governs the convergence of the method, not the spectrum. The
second problem is more important and is something one must be aware of when using an
eigenvalue estimator such as the the Arnoldi algorithm. For these two reasons, Nachtigal

et al. [60] propose their hybrid GMRES algorithm, without an eigenvalue estimator. In
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their notation the method may be represented as

GMRES — GMRES polynomial — Richardson iteration.

Their method begins with a few steps of the GMRES algorithm. They then calculate the
GMRES polynomial explicitly and implement it iteratively. After n steps of the GMRES
algorithm they have a matrix, V;,, whose columns span the Krylov subspace K,(ro, A) (see

Section 4.3.4). They write K, for the matrix whose columns are the Krylov vectors, that
1s,

]{n = [I'(), N A”"lro].
Therefore, as the columns of V,, and K, span the same space, they find that V,, = K,C,

for some upper triangular matrix

Equation (4.16) gives,

Xn = Xo + VaYn = Xo + KnCr¥n.
As the iteration proceeds, Nachtigal et al. [60] generate the elements of C, column by
column. Once the matrix C, and the vector y, are known, they form the vector C,y, =

(o, - - -5 n—1)T and then
X, = Xp + <C¥0] + ...+ an_lA”—l) Io.

The GMRES residual polynomial is then found from
pu(2) =1 — 2gn-1(2), where gn_1(z) =0 +...+ any 2"

Nachtigal et al. [60] choose to implement this polynomial in a Richardson iteration. To
do this they begin by numerically finding the roots of the polynomial and factorising it as
pn(2) = T[Ty (1 — z/&;). This polynomial is then implemented in a Richardson iteration

as in Smolarski and Saylor [74], that is

For =1 ton

X; = xj_1+r]-_1/£j, where ri—1 = b — AXj_l.
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Out of an interest in stability, they choose to apply the roots in an order governed by the
weighted Leja ordering (see Nachtigal et al. [60] and the references therein). Assuming the
roots are distinct then this ordering is defined by

§<i<n

j—1 7—1
,€JI H |€J - gll = max |€l, H I€I '—éila .7 = 1727"')”‘ - 1)
i=1 1=1

where the first step is [£1] = maxi<i<n [&)-

This is the gist of the hybrid GMRES method. They do, however, discuss when to
switch from the first to the second stage of the hybrid algorithm, and the possibility of
cycling back to the first stage if the second stage convergence rate is slow. We refer the

reader to their paper for the details.

4.4.7 Other hybrid methods

There are two other hybrid methods in the literature. The first is a method proposed by
Elman and Streit [31]. It begins, as most recent hybrid methods do, with a few steps of the
Arnoldi/GMRES algorithm. After obtaining a polygonal region around some eigenvalue
estimates they solve an L°°-approximation problem on this domain and then implement
the polynomial using Horner iteration. In 1991, Li [53] gave a hybrid iterative method
based on a conformal map. The steps to produce a polygonal region are the same as in

most of the hybrid methods we have described, that is,
Arnoldi/GMRES — eigenvalue estimates — polygon.

He then uses a conformal mapping package, SCPACK (see Trefethen [77]), to find the
conformal map from the exterior of the polygonal region onto the exterior of the unit disc.
Next he produces a rational approximation based on the conformal map and implements it
in a (k,l)-step iteration (see Li [53] for the details). In this paper, Li [53] also reviews the
semi-iterative methods (SIM’s) of Eiermann et al. [17, 18, 19, 20], for which the generalised
Faber series play an important role. In Eiermann [17] three SIM’s are given; SIM 1, ¢n_1(2)
is the truncated generalised Faber series for 1/(1—z); SIM 2 where ¢,_1(z) is the truncated
Faber series for 1/(1 — z); and SIM 3 where p,(z) is chosen to be Fy,(z)/F,(1). The Faber

polynomials in these cases are defined for a region D in the complex plane such that
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1 ¢ D. Our Faber polynomials are defined on a domain D such that 0 ¢ D. Allowing for
this difference the three SIM’s become; SIM 1, ¢,-1(z) is the truncated generalised Faber
series for 1/z; SIM 2 where ¢,_1(z) is the truncated Faber series for 1/z; and SIM 3 where

pn(z) is chosen to be F,(z)/F,(0).

Finally in this section, we would like to note the existence of methods which become
hybrid methods when we add an eigenvalue estimation routine, such as Arnoldi/GMRES,
to them. We have already mentioned the SIM’s given in Eiermann [17] based on Faber

polynomials and Faber series. For other such methods, we refer the reader to the references

given in Nachtigal et al. [60].
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5.1 Introduction

In this chapter we will give a hybrid method to solve the linear system (4.1), based
on the Faber polynomials for an annular sector. The coefficient matrix, A, for this linear
system will in general be, a large, sparse, non-Hermitian, complex matrix. Our method
will be similar to Starke and Varga’s method (see Section 4.45). In the first stage, like the
Arnoldi-Faber method of Starke and Varga [76], and many other hybrid iterative methods,
we will use Arnoldi’s method to produce some eigenvalue estimates for A. In their method,
Starke and Varga placed a polygonal region around these estimates and from the conformal
mapping, produced by a numerical conformal mapping package, they were able to find the
Faber polynomials for this polygonal region. They then use these polynomials as the
iteration polynomials in the second stage of their method. Here, in contrast, we will place
an annular sector around the eigenvalue estimates. Then in the second stage we will use
the Faber polynomials for this annular sector as the iteration polynomials. There are
a few reasons for this choice: firstly an annular sector can easily be placed around any
eigenvalue estimates bounded away from zero, secondly the Faber polynomials are known
analytically for an annular sector, and finally using an annular sector allows us to consider
cases of matrices that Starke and Varga’s method could not deal with (for real matrices,
specifically when we get two eigenvalue estimates A1, A; such that Ay < 0 < A;). Once
we have found the desired Faber polynomials we shall implement them in a Horner-type

iteration. Therefore in the notation of Nachtigal et al. [60] our method is given by

Arnoldi/GMRES — eigenvalue estimates — annular sector

— Faber polynomials — Horner iteration.

5.2 The Faber Polynomials for any Annular Sector

In Chapter 2 we described how to generate the conformal mapping and hence the Faber

polynomials for an annular sector of the form
Q={z:R<|z|<1l,0<]argz| <7}, 0<f< 7.

In this section we will describe how to generate the Faber polynomials for any annular

sector placed anywhere in the complex plane. The preliminaries to this were given in
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Chapter 2. In Sections 2.2 and 2.4.1 we described how to find the Faber polynomials for
an annular sector placed symmetrically about the positive real axis from an annular sector
@. In Section 2.6 we described how to determine the mapping from the complement of
the unit disc onto the complement of Q(R;1, R, 6), an annular sector placed symmetrically
about the negative real axis, with inner radius R, outer radius K, and half-angle 7 —§. We
found that the mapping is given by Z = Ryz = Ry1(w), where ¢(w) maps the complement
of the unit disc onto the complement of the annular sector @ = Q(R, 1,0), with R = R;/R,.
We also found that the transfinite diameter of Q( Ry, Rs,0) is given by p* = Ryp, where p
is the transfinite diameter of () (see Section 2.2.3). From equation (1.4) we find

Z:p*(w-l—ﬂg—l—%-{-...).

Therefore the Laurent coefficients of this mapping are the same as those for the mapping
¥(w) and the polynomial ®,(z) is unaltered (see equation (2.30)). Hence, the Faber
polynomial, of degree n, for the annular sector Q( R, R, 8) is given by

Fo(Z) = (p")"®, (pg) = R0, (%) = RiF,(z) = R'F, (%) . (5.1)

C

I+n

Figure 5.1: The annular sector Q.

When considering matrices whose eigenvalue estimates are not symmetric with respect

to the negative real axis, it will be important that we can find the Faber polynomials for
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the annular sector
Q=1{Z R <|Z|<Ry, 0—-n<argZ <2r —0—n}. (5.2)

Figure 5.1 shows the annular sector @), which is simply the annular sector Q(R;, Rz, 6)
rotated through an angle —n where 7 € [0, 27) is the angle, measured in the anti-clockwise
direction, which the bisecting ray of the sector makes with the negative real axis. We note

that the exterior of Q(R,1,6) is mapped onto the exterior of §) by

7 = Rye™ 2.

Then F,(z) = Fn.(Ze"/R;) and the corresponding monic Faber polynomial for Q) is

- . 2
F.(Z) = Rie=™F, (Z ° ) . (5.3)
R,

As a check on this expression we note that it gives the same polynomials as equation (5.1)

when n = 0.

5.3 The hybrid method

In this section we will introduce our hybrid method which uses the Faber polynomials for
an annular sector as the iteration polynomials. In Section 5.3.1 we find some eigenvalue
estimates with the use of Arnoldi’s method. Then in Section 5.3.2 we place an annular sec-
tor around these estimates. Section 5.3.3 gives, amongst other things, reasons for choosing
the Faber polynomials as a sensible choice for the residual polynomials. Finally in Section

5.3.4 we give some implementation details.

5.3.1 Eigenvalue estimation by Arnoldi’s method

As we have mentioned, in the first stage of the hybrid method we will use Arnoldi’s method
(see Section 4.3.4) to compute m eigenvalue estimates of the non-Hermitian matrix, A €
CN*N  After running Arnoldi’s algorithm for m steps we obtain an orthonormal basis for
the Krylov subspace K,, := span{vy,..., A" 'vi}, where vi = ro/|[roll2. Referring to
equation (4.15) we find that

VH AV, = H,,
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where H,, is an upper Hessenberg matrix and V,, = [vy,...,v,,] (see Section 4.3.4). We
will use the eigenvalues of H,, as approximations to the eigenvalues of A. The NAG
library contains routines to approximate the eigenvalues of an upper Hessenberg matrix.
For example, the NAG routine FO2APF calculates all the eigenvalues of a real upper
Hessenberg matrix, whereas the routine FO2ANF calculates all the eigenvalues of a complex
upper Hessenberg matrix. H,, will be real for some of the examples in Section 5.4 and we

will use FO2APF, otherwise we use FO2ANF. In this way we find m eigenvalue estimates,
{Xi},, for the matrix A.

5.3.2 Sector determination

Given some eigenvalue estimates {\; }'-,, the next step is to place an annular sector around

the eigenvalue estimates, and use the known, suitably scaled, Faber polynomials for this

region as iteration polynomials.

The modulus and argument of each eigenvalue are found, with the arguments defined
on (—m,w]. We set Rni, to be the smallest eigenvalue modulus and Rmg. to be the
largest eigenvalue modulus. We then place the eigenvalue arguments in increasing order,
{p: )™, so that the smallest is first (1) and the largest is last (%), and look for the largest
separation between adjacent arguments. That is we set ¢ to be the largest of 21 — (pim — pi1)
and pigq — pi for ¢ = 1,...,m — 1. The half-angle of the required sector is pp = (27 — z)/2.
Finally we must determine n, which as mentioned previously is the angle the bisecting ray
of the sector makes with the negative real axis. If ¢ = p; 4, —p; for some j € {1,...,m—1}

then
1= [ — i — pl(mod2r) € [0, 2r),

otherwise if £ = 27 — (s — 1) then
n = [ — p1 — p)(mod2r) € [0, 27).

We have now found an annular sector of the form @ (see equation (5.2)) containing the
eigenvalue estimates (see Figure (5.2)). As stated above, the Faber polynomials for this
region are used as iteration polynomials. To determine these Faber polynomials we begin by

finding the Faber polynomials for an annular sector Q(R, 1,0), that is, the annular sector
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Rmin

Rmax

Figure 5.2: An annular sector placed around some eigenvalue estimates with the radii,
the half-angle and the rotation from the negative real axis marked.

symmetric with respect to the negative real axis, having inner radius R = Rpin/Rmoz,
outer radius 1 and angle § = 7 — u. Referring back to Chapter 2 (specifically Section 2.4)
we find that the Faber polynomials for Q(R,1,6) are determined by two parameters, a and
b, and the transfinite diameter p. As we described in Section 3.2 the parameters, a and
b, are found by modified Newton iteration combined with Kronrod-Patterson integration.
The transfinite diameter may also be found by numerical integration (see Section 3.2).
Equation (5.3) generates the Faber polynomials for () from the Faber polynomials for
Q(R,1,0). Therefore once a, b and p are determined for Q(R,1,0) we can easily obtain
the desired Faber polynomials for @ from equation (5.3).

5.3.3 The iteration polynomial

As we have already mentioned in Chapter 4, many iterative methods for solving (4.1) can

be written as

Xm = Xo + ¢m-1(A)ro,

where g1 is a polynomial of degree m—1 (see Sections 4.3 and 4.4). The error and residual

of such methods are defined by equations (4.3) and (4.7), respectively. The equations are

e, =X—Xn, and r,=Ae,=Db—Ax,.
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Then
rm = b — A(Xo + gm-1(A)ro) = (I — Agn_1(A))ro

and
en=A""r, = (I — Agn_1(A))eo.

With the residual polynomial p,,(z) = 1 —zgm—1(2), so that p,(0) = 1, these two equations
can be written as r,, = pn(A)ro and e,, = p,,(A)eo (see Section 4.3.1). Therefore, for any

consistent pair of matrix and vector norms on C"
e rmll < Ipm(Alllkol and  flemll < lpn(A)l lleall  (m > 1),
and the aim is to choose polynomials p,,, in the set
II,, = { polynomials of degree m | p,(0) = 1},

such that ||p,(A)|| is as small as possible. For our residual polynomial, we will choose

where F,,(z) is the Faber polynomial, of degree m, for the annular sector, @, determined

in Section (5.3.2).

We have now described our choice of residual polynomials, but why do we think this
will be a successful choice? Eiermann et al. [20] show that

lim, [lpm (A)[% = lim (max lpm(A)I> |

m—+00 m—0o0 /\Ga(A)

where o(A) is the spectrum of A, and || || is any matrix norm. In other words the conver-
gence of the iterative method asymptotically depends on the spectrum of A. The annular
sector chosen in the previous section, contains the eigenvalue estimates, and therefore this
annular sector may be considered as an approximation to the spectrum of A. In choosing
a residual polynomial we wish to find a polynomial of degree m, with p,,(0) = 1, so that

|pm(2)] is small on the annular sector.

For a general region, D, in the complex plane, Starke and Varga [76], amongst others,

have shown that the Faber polynomials can be very useful for polynomial matrix iterations.
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They show that the suitably normalised Faber polynomials, F,,(z)/F,,(0), are near-best
approximation to zero with respect to the maximum norm (see their theorem below).
Indeed they show for large m that the maximum value of F,(z)/Fy(0) is no larger than
Vpm(0,D)/7, where V is the total boundary rotation of D and p,(f, D) is the smallest
possible error, over D, obtained when approximating a function f by a polynomial of degree
m (see Section 1.2.3). When considering non-normal matrices, it is often found that the
convergence of a polynomial iterative method does not depend only on the spectrum of A
(compare the above asymptotic result), but on larger sets containing o(A), for example, the
e-pseudospectra of Trefethen ([78] and [68]). For this reason Starke and Varga [76] wanted
their residual polynomials to be small on larger regions than D. They proved that the
Faber polynomials are not only nearly optimal on D, but also that they are nearly optimal

on level sets of D (see Section 3.5). In particular their Theorem 3.4, in our notation, states,

Let D be of bounded boundary rotation with 0 ¢ D, and let V denote the total boundary

rotation of D. Then, the normalised Faber polynomials, associated with D, satisfy

pm(0,D) < max ?ZES; R —V(/17r+ V/n)
< ﬁﬂ—) Pm(oavD),
w
for all m > log(1 + V/7)/(log |w*|). Moreover, if 1 < r < |w*|, then
pm(O,Dri) < g%aD)f ?mgg; < ) V(r)/ﬂ— -\ pm(OaDr))
O 1 -+ veym ()

is valid for all m > log(1 + V(r)/7)/(log |w*| — logr).

By V(r) we mean the total rotation of a level curve I'; (see Section 3.3.3) and by D, we
mean the set bounded by I',. The point in the w-plane that 1 (w) maps to the origin in

the z—plane is denoted by w* (for an annular sector see equation (2.38)).

This theorem is in two parts. The first part shows that F,(z)/F,(0) is near-best to zero.
The second part shows that the maximum value of F,,(2)/F.(0) is also small on level sets
of the region. This is an extremely useful property of Faber polynomials, especially when
dealing with non-normal matrices. The main reasons for choosing the Faber éolynomials

as residual polynomials lie in the results of this theorem.
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5.3.4 Implementation

We define a vector operation to be NV scalar multiplications and N scalar additions, where
N is the dimension of the linear system we are trying to solve. As in Nachtigal et al. [60]
and Starke and Varga [76] we will use the number of vector operations as an indication
of the speed of convergence of the method. If we let [ denote the average number of non-

zero elements per row in the matrix A, then a matrix-vector multiplication costs [ vector

operations.

Firstly we must consider the cost of Arnoldi’s method (see Section 4.3.4), that is,
how many vector operations it takes to obtain m, eigenvalue estimates for the matrix A.
For the j-th step, 7 = 1,...,my, of Arnoldi’s method, calculating w; = Av; involves [
vector operations, calculating h;; = viw; fori = 1,...7 involves j vector operations,
computing V,41 = w; — Y°7_, hi jV; requires j vector operations, computation of the norm
requires one vector operation and finally the calculation of v;;; requires about one vector

operation. So in total the number of vector operations involved in Arnoldi’s method is

S+ +7+2)=m[l+3+m].

=1

Secondly we consider how many vector operations are involved in implementing a poly-
nomial iterative method using a Faber polynomial of degree m. As in Starke and Varga
[76] we will implement the iteration polynomial, gm_1(2) = (Fn(0) = Fin(2))/Fr(0)z =
S aomFaimzt.. .t Qm_1,mz™ ! in a Horner-type iteration. This requires m({+ 1) vector

operations. The Horner iteration is of the form
Wo = Om-—1,mFold,
wW; = AW]'_l + Qm—1-jmTold; 7=1...,m—1,
Xnew = Xold T Win—1,
Fnew = b — AXpew-

In the examples, we neglect the work involved in choosing the particular sector of the

annulus, as this should be negligible compared to the work involved in the iterations.
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5.4 Examples

In this section we consider a number of examples of linear systems which we will solve by
our method. In all these examples, except where stated, we will choose the degree of the

residual polynomial to be the same as the number of steps taken in the Arnoldi algorithm.

Ezxample 1

We consider discretising the boundary value problem

—Au+t+Tu; = f(may)a ("an)e S (54)

u(z,y) = g(z,y), (z,y)€ s,

by central differences on the unit square S := (0, 1) x (0,1) with boundary 8S5. This leads

to solving a system of equations
Ax=(BIL,+1,8C)x=b (5.5)

with n =1+ 1/h,
2 1 29 _14u

12 ) . 1-p 2
and g = 7(h/2), where h is the meshsize of the discretisation.

The eigenvalues of a tridiagonal matrix,

E CTLXTL,

[ a

are given by A = a 4 2v/bc cos(st/(n + 1)), for s = 1,2,...,n, with corresponding eigen-

o= [0 (25 r

vectors,
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(see for example Smith [73]). In these formulae care must be taken when finding the

square-root. If we write ¢ = [c|exp(¢0) and b = |b|exp(i¢) then

o= e [ i(0—9) } (5.7)

Now u = [u,], given by equation (5.6), is an eigenvector of the tridiagonal matrix if

cu;j_y + au; + bujp; = Auj. From equation (5.6) we find

i-1 1 j+1 ;
cuj_1 +au;+bujpy = ¢ ( % sin [%} +au;+b (\/9 sin [(]T:—_l)lls} .

Using equation (5.7) and some algebra gives

b

c

cuj_1 +auj+bujp = |a+2c

exp [Zw; 0)} cos <n8-|7—r1>} . (58)

As stated above the eigenvalues of the tridiagonal matrix are a + 2v/bccos (s7/(n + 1)),

with care taken over the square-root. For the matrix B, we have ¢ = 2, and b = ¢ = —1.
Therefore equations (5.6), (5.7) and (5.8) give the eigenvalues of the matrix B as A =
9 — 2cos(sm/(n + 1)) with corresponding eigenvector u = [u;] = [sin(j7s/(n +1))]. The
matrix C hasa = 2, b= —14+p and —1 —p. With g > 1, the same equations similarly give

the eigenvalues of C as A = 2+ 241/|1 — p?|cos(tn/(n+1)) = 242/1 — p? cos(tr/(n+1)),

with corresponding eigenvector v = [v], where

I
—1—4\? ¢

v = i sin il .
—1+u n+1

The matrices B ® I, and I, ® C have a common set of eigenvectors, namely w, whose

entry in index [ 4 (j — 1)n is

—1—pu 3 ) [rt 'n< j7rs>
) = U U = sin si .
W= = U= T n+1 n+1

The eigenvalues of the matrix B ® I, + I, ® C' are therefore given by

ST tr
o T e (15) 59
n+1>+ A V| (59)

4—2cos<

where £k =1,2,...n,1=1,2,...n.
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This is Example 2 in Starke and Varga [76]. They give this as an example of a linear
system, not as a method for solving (5.4). By this we mean that they fix the mesh size for
the discretisation, by setting A = 1/31, that is, n = 32. Starke and Varga then consider
this linear system with different y values, and therefore different 7. By varying the value
of u they are therefore considering the solution of different partial differential equations.
We remark that to solve equation (5.4), by our method, one would fix 7 and then discretise
the system with different h values. Hence, the size of the linear system will vary with the
different h values chosen. For this example, we will consider Starke and Varga’s approach,
that is fix » = 1/31. We do this for two reasons, firstly, like Starke and Varga we use this
as an example of a linear system not as a means to solve equation (5.4), and secondly our

approach will allow us to compare the results of Starke a nd Varga [76].
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Figure 5.3: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the
annular sector for example 1, with random starting vectors and p = 2.

To allow this comparison with the results of Starke and Varga [76], we consider solving
this linear system with a random righthand side b and a random initial solution Xq. The
random vectors were produced from the normal distribution, N(0, 1), using MATLAB. We

run 16 steps of the Arnoldi process and therefore obtain 16 eigenvalue estimates for the
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matrix A = B® I, + I, ® C. We then place an annular sector around these estimates. In
Figure (5.3) we give a plot of the chosen annular sector when p = 2, we also show the 16
eigenvalue estimates as stars and the actual eigenvalues (see Equation (5.9)) as dots. In

Figure (5.5) we give a similar plot for y = 4.

Table 5.1: The parameters for example 1 with random starting vectors, p = 2, and 4, 8,12,

and 16 eigenvalue estimates.

eigenvalue estimates 4 8 12 16
Rz 6.260696017 | 6.748047954 | 7.054200525 | 7.158911226
Roin 4.411842781 | 3.591748348 | 2.982998352 | 2.296100365
a 0.676716469 | 1.003314661 | 1.024454495 | 1.098733207
a 0.607634387 | 0.443468572 | 0.398907110 | 0.337930265
b 0.789967884 | 0.661702264 | 0.598031851 | 0.523064535
p 0.407267775 | 0.564861966 | 0.583701576 | 0.617875205
4
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Figure 5.4: Convergence curves for example 1 with random starting vectors, pu = 2,
and 4,8,12 and 16 eigenvalue estimates.

In the next stage of our algorithm we use the Faber polynomial of degree 16, for this
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annular sector, as the residual polynomial. We need an initial solution to start this stage
of the algorithm. It would be possible to use the links between the GMRES algorithm and
Arnoldi’s algorithm (see Section 4.3.4) to produce an improved initial solution. However,
in this example, we chose to use the same initial solution xo as we did in the first stage
of our algorithm. In Figure (5.4) we plot, for p = 2, the log of the Euclidean norm of
the residual, ||rg||2, versus the number of vector operations. The dotted line represents
our method using 16 eigenvalue estimates. In this figure we also show the convergence
curves for the method with 4 (dashed line), 8 (dash-dot line) and 12 (solid line) eigenvalue
estimates. We note that with 8 eigenvalue estimates the method converges to 10™'* in
the least number of vector operations, whereas with 16 eigenvalue estimates the method
converges, again to 107! in the greatest number of vector operations. The parameters
a, b, p, Rmazy Bmin, and p required in the second stage of the algorithm are given in Table
5.1. For this example the eigenvalues and their estimates are symmetric with respect to

the positive real axis and therefore n = 7.

10

-8r

-10 . . . .
0 2 4 6 8 10

Figure 5.5: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the
annular sector for example 1, with random starting vectors and p = 4.

A similar convergence curve is shown in Figure (5.6) this time for 4 = 4. Once again the
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-16
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Figure 5.6: Convergence curves for example 1 with random starting vectors, p = 4,
and 4,8,12 and 16 eigenvalue estimates.

method with 16 eigenvalue éstimates is represented by dots, and the methods with 12, 8
and 4 eigenvalue estimates are represented by solid, dash-dot and dashed lines, respectively.
This time the method with 4 eigenvalue estimates converges very slowly compared to the
others. This is because not enough information about A is obtained with only 4 eigenvalue
estimates. The convergence curves with 8, 12 and 16 eigenvalue estimates all contain
regions where the convergence slows for a short time and then accelerates again. Observing
Figure (5.5) we see that even with 16 eigenvalue estimates the annular sector only contains
part of the spectrum. If we consider 32 eigenvalue estimates then the annular sector
contains much more of the spectrum and the convergence curve is smoother. However,
because we have taken more eigenvalue estimates, the method takes more vector operations
to converge to 107 than the method with 16 eigenvalue estimates. The parameters used

in the methods, whose convergence curves are contained in Figure (5.6), are given in Table
5.2 Once again n = 7.

We now compare the results we have just given with those of Starke and Varga [76].
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Table 5.2: The parameters for example 1 with random starting vectors, p = 4, and 4, 8,12,
and 16 eigenvalue estimates.

eigenvalue estimates 4 8 12 16
Roor 7.699739638 | 9.081252758 | 9.348770592 | 9.548432785
Roin 7.107633830 | 6.422866965 | 6.127775211 | 4.778122352
© 1.046397859 | 1.234935314 | 1.269103190 | 1.276539785
a 0.549738053 | 0.427390580 | 0.402484467 | 0.353756280
b 0.881078425 | 0.726933361 | 0.693535419 | 0.604823601
p 0.522259695 | 0.631252220 | 0.649191755 | 0.665315835

A summary of these results when g = 2 and g = 4 is contained in Table 5.3. The table
contains results from five different methods; Arnoldi/Faber, which is the method of Starke
and Varga; GMRES, the generalised minimum residual method restarted after so many
steps; Hybrid GMRES, the method of Nachtigal et al. [60]; Arnoldi/Chebyshev, the method
of Elman et al. [30]; and finally our method. When using the Hybrid GMRES algorithm,

Table 5.3: The approximate number of vector operations to converge to the specified
tolerance, for example 1, with random starting vectors.

Method p=2 p=4
Arnoldi/Faber(16) 1800(10713) | 2100(107*3)
GMRES(16) 4200(10719) | 4800(10~*°

Hybrid GMRES(16)
Arnoldi/Chebyshev(16)

(
(10~
9200(1072
(10~
Our Method(16) (

)
)
2600(10713)
)

2100(107*2

(

(
1800(10713
(
1700(10-23

)
)
2300(10723)
)

Starke and Varga fix the number of steps used in the GMRES part of the algorithm. They
do this to allow comparison between the methods. The actual Hybrid GMRES algorithm
may cycle back to the GMRES stage and carry out more steps if necessary. In the table we
. show the approximate number of vector operations required so the log of the residual norm

is less than the tolerance given in brackets. After the method name there also follows a
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number in brackets. This number indicates the number of steps, of the GMRES or Arnoldi
algorithm, that is taken before either restarting, in the case of GMRES, or switching to
stage 2, for all other methods. Starke and Varga also considered solving this system with
CGS (see Section (4.3.6)) and CGNR (see Section 4.3.3) but they report that these methods
showed no signs of convergence. The starting vectors used in these examples were random;

therefore the results only show that our method is comparable to both Arnoldi/Faber and
Hybrid GMRES.

As well as these examples with random vectors, Starke and Varga [76] consider the
solution of this linear system with a more structured b and xo. They give two such
examples and these will allow a better comparison between the methods. We begin by
considering b = (—1,1,...,—1,1)T and xo = 0, with x = 2. In Figure (5.7) we show the
eigenvalue estimates obtained after 16 steps of the Arnoldi algorithm. For these starting
vectors, the convergence curves for 4, 8, 12 and 16 eigenvalue estimates are shown in Figure

(5.8). In Table 5.4 we give the parameters used by these methods.
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Figure 5.7: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the
annular sector for example 1, with xo = 0,b = (-1,1,...,-1, DT, and p = 2.
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Table 5.4: The parameters for example 1, with xo = 0,b = (=1,1,...,-1,1)T, p = 2.
eigenvalue estimates 4 8 12 16
Rz 5.043308028 | 7.191601849 | 7.394821043 | 7.480913849
Roin 2.679906795 | 1.393162948 | 1.349902097 | 1.320964635
I 0.861156275 | 0.983294864 | 1.019946059 | 1.040038219
a 0.487544645 | 0.306566305 | 0.290541970 | 0.281892977
b 0.681063116 | 0.447513112 | 0.431339831 | 0.422442742
p 0.510474705 | 0.587113047 | 0.600067798 | 0.607065941
5
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Figure 5.8: Convergence curves for example 1 with xo = 0,b = (-1,1,...,—
and 4,8,12 and 16 eigenvalue estimates.

In Table 5.5 we summarise Starke and Varga’s results for this example and also include
the results for our method. In this case our method converges to 1072 slightly faster than

the Arnoldi/Faber method, and both methods converge faster than Hybrid GMRES.
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Table 5.5: The approximate number of vector operations to converge to the specified
tolerance, for example 1, with structured starting vectors and p = 2.

b=(-1,1,...,-1,1)T b=(1,1,...,1)F
Method Xo=0 Method Xo=0
Arnoldi/Faber(16) 2400(10713) Arnoldi/Faber(32) 5200(10711)
GMRES(16) 5000(10~7) GMRES(32) 9800(10~11)
Hybrid GMRES(16) 4800(1078) Hybrid GMRES(40) 7200(10711)
Our Method(16) 2000(10713) Our Method(32) 3900(10713)
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Figure 5.9: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the
annular sector for example 1, with xo = 0,b = (1,1,...,1)T, and p = 2.

Finally we consider solving (5.5) when xo = 0, b = (1,1,...,1)" and y = 2. In Figure
(5.9) we show the eigenvalue estimates obtained by the Arnoldi stage of our algorithm
after 16 steps. The annular sector, placed around these 16 estimates, encloses more of the
actual eigenvalues than the polygonal region of Starke and Varga [76], but our method still

diverges. Taking 24 eigenvalue estimates gives convergence. When solving a linear system
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by our method it is therefore important that enough steps of the Arnoldi algorithm are

taken. If however, the method seemed to be diverging it would be possible to go back to

the first stage and find some more estimates.

Table 5.6: The parameters for example 1, with xg = 0,b = (1,1,...,1)T, and u = 2.

eigenvalue estimates 16 24 32 40
Roos 6.648490985 | 6.890615844 | 7.068740047 | 7.143223527
Rin 0.241695673 | 0.459154090 | 0.478197598 | 0.663579562
7 1.070128097 | 1.165656109 | 1.251215932 | 1.254768505
a 0.150293406 | 0.170184712 | 0.154893034 | 0.176054293
b 0.227984931 | 0.270714185 | 0.257530180 | 0.293355872
p 0.622281793 | 0.651516262 | 0.677754714 | 0.678324943
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Figure 5.10: Convergence curves for example 1 with xo = 0,b = (1,1,...
and 16,24, 32 and 40 eigenvalue estimates.

In Figure (5.10) we show a plot of the log of the residual norm against the number of vec-

tor operations using our method with 16,24, 32 and 40 eigenvalue estimates. In Table 5.6
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we show the parameters used in these methods and in Table 5.5 we show a comparison
between our results and those of Starke and Varga [76]. We see from Table 5.5 that our
method, with 32 eigenvalue estimates, is superior to Arnoldi/Faber with the same number
of estimates. It is interesting to note that Arnoldi/Faber(40) converges to 10~!! faster
than Arnoldi/Faber(32), whereas our method with 32 eigenvalue estimates converges to
10~!3 faster than our method with 40 eigenvalue estimates. In fact considering a tolerance
of 107!, our method with 32 estimates is the fastest to converge, then Arnoldi/Faber(40),
then our method with 40 estimates, and then Arnoldi/Faber(32). All these methods have
superior convergence to Hybrid GMRES and GMRES. In fact Hybrid GMRES(32) actually

diverges.

FEzample 2

The Grear matrix example. In this example we consider the matrix

9
1_01 % 1 i 1

_ 10 1024x1024

A= -1 2 1 1 1 € R

This is Example 6.3 in Starke and Varga’s paper, it is a shifted version of a matrix in a
paper by Trefethen [78], which originated in a paper by J. Grear [45]. Starke and Varga
[76] chose it to illustrate that their method would even work if some of the spectrum of
the matrix was situated in the left-half plane. Starke and Varga also point out that it is
surprising their method would even work at all because some of the spectrum of the matrix

is not included in their polygonal region.

We use this example for two reasons, firstly, we can once again compare our results
with those of Starke and Varga and secondly this is an example whose convex hull of
the spectrum contains the origin and therefore the Arnoldi/Chebyshev algorithm [30] (see
Section 4.4) will fail to converge. For this example, we solve the linear system with random

vectors for the initial approximation and righthand side.

In Figure (5.11) we plot the log of the residual norm against the number of vector
operations. In the graph we show three convergence curves, the solid line represents our

method taking 24 eigenvalue estimates, the dashed line 48 eigenvalue estimates and the
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dash-dot line 32 eigenvalue estimates. With 32 eigenvalue estimates, our method has a
residual norm less than 107 !* after about 8800 vector operations. We also observe that

it converges to this tolerance faster than the methods with both 24 and 48 eigenvalue

estimates.

log of the residual norm
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Figure 5.11: Example 2, convergence curves with random starting vectors, and 24, 32, and
48 eigenvalue estimates.

Table 5.7: The parameters for example 2, the Grecar matrix, with random starting vectors.

eigenvalue estimates

24

32

48

Rmaa:
Rmin
7

a
b
p

2.993374182
1.812674158
1.771079535
0.252591979
0.591032839
0.810665346

3.039322633
1.507586450
1.869182867
0.200454514
0.500442075
0.839748298

3.115282305
1.422573506
1.859730317
0.192404532
0.475803666
0.838368199
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In Table 5.7 we give the parameters we calculated for these methods, once again n = 7.
In Table 5.8 we compare our results with those of Starke and Varga [76]. For this example,
it appears that the method of Nachtigal et al. [60] is the best. Considering 48 eigenvalue
estimates our method is comparable with Starke and Varga’s, but both are beaten by
Hybrid GMRES. It is interesting that our method with 24 eigenvalue estimates converges

whereas Arnoldi/Faber(24) diverges. Our method, however, is slow to converge compared

to Hybrid GMRES(24).

Table 5.8: The approximate number of vector operations to converge to the specified
tolerance, for example 2, with random starting vectors.

Method Number of Vector Operations
(tolerance)

Our Method(24) 13500(10~")
Our Method(32) 8800(10~'4)
Our Method(48) 9200(10~)
Arnoldi/Faber(24) diverges
Arnoldi/Faber(48) 9200(107*)
Hybrid GMRES(24) 9200(10-14)
Hybrid GMRES(48) 8000(10~4)
GMRES(24) 15000(10-%)
GMRES(48) 15000(10~%)

Example 3

The coeflicient matrices in the next two examples are shifted matrices from a paper by

Reichel and Trefethen [68]. In the first example we consider the matrix

40 1 .7
% 4 0 1 1

2?’ 4 0 1 1024x1024

A= % 4 0 €R ’
% 4

which is Example 3 in a paper by Gutknecht [47]. We choose this particular example to
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illustrate that our method works well when the eigenvalue estimates are not symmetric with
respect to the positive (or negative) real axis. Although Starke and Varga [76] note that
their method could be applied to a complex matrix, they do not give the details. In fact
their method for placing a polygonal region around the eigenvalue estimates must change
if the estimates are not symmetric with respect to the positive (or negative) real axis.
For our method, there is little difference in placing an annular sector around eigenvalue
estimates symmetric with respect to the positive (or negative) real axis, and those that
are not (see Section 5.2). Therefore, for a complex matrix our method should be easier
to implement than Starke and Varga’s. Once again we consider solving the linear system

with b and xp given by random vectors.
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Figure 5.12: Example 3, convergence curves for our method with 8 (solid), 12 (dashed)
and 16 (dotted) eigenvalue estimates. The lower curves are the same method,
but with a new initial iterate for the second stage in our algorithm.

For the previous two examples the link between the Arnoldi and GMRES algorithms
was not taken into account. We ignored the link because producing a new initial iterate,

by the GMRES algorithm, did not vastly alter the number of vector operations required
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to converge to a specific tolerance. The situation is different for both this and the next
example. Figure (5.12) shows a plot of the log of the residual norm against the number of
vector operations for our method with 8 (solid), 12 (dashed), and 16 (dotted) eigenvalue
estimates. In each case two curves are plotted; one employing the GMRES algorithm to
produce a new initial solution; and one using the initial solution from the first stage of
our algorithm. The lower curves correspond to the new initial solution being used for
the second stage of our algorithm. When 16 steps of the Arnoldi algorithm are taken
we see that using the new initial iterate can speed up the convergence by almost 200
vector operations. In Figure (5.13) we show the convergence curves for CGNR, CGS and
GMRES(16). For GMRES(16) we only plot the log of the residual norm obtained before
each restart. We note that CGS stagnates, whereas, CGNR converges, but slower than our
method with 16 eigenvalue estimates. GMRES(16) also converges, but in about twice as
many vector operations as our method with 16 eigenvalue estimates. In Table 5.9 we give

the parameters required by our method.

In all the other examples we consider we will now exploit the link between the Arnoldi
and GMRES algorithms to produce a new initial iterate for the second stage of our algo-

rithm.
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Figure 5.13: Example 3, the convergence curves for CGNR, CGS and GMRES(16).
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Table 5.9: The parameters for example 3, with random starting vectors.

eigenvalue estimates

8

12

16

Boos 6.318322543 | 6.372127226 | 6.360749188
Roin 1.065257802 | 1.008595806 | 0.984856615
© 0.436699747 | 0.479291832 | 0.497019179
n 3.069432036 | 3.054225337 | 3.066771724
a 0.449478135 | 0.427205882 | 0.418712433
b 0.522741301 | 0.504802220 | 0.498089123
p 0.394321512 | 0.411610653 | 0.418604483

Frample 4

In this example we consider another shifted Reichel and Trefethen [68] matrix which

was also considered by Gutknecht [47]. For this example the coeflicient matrix is given by

2 1
0 2 1
A= 1 0 2 1 c R1024XI024
1

and we consider random b and X;.

Table 5.10: The parameters for example 4, with random starting vectors.

eigenvalue estimates

8

12

16

Rmaz
Rmin
L

a
b
p

3.831448773
1.817542827
0.985672968
0.428990716
0.632892801
0.564506685

3.833247733
1.788237848
1.000343712
0.421809306
0.626389581
0.570726575

3.889711330
1.674694109
0.998750492
0.409286367
0.606359549
0.573686080

Figures (5.14) and (5.15) show similar plots to those given in Figures (5.12) and (5.13).
Once again employing the link between the Arnoldi and GMRES algorithms reduces the
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Figure 5.14: Example 4, convergence curves for our method with 8 (dotted), 12 (dashed)
and 16 (solid) eigenvalue estimates. The lower curves are the same method,
but with a new initial iterate for the second stage in our algorithm.
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Example 4, the convergence curves for CGNR, CGS and GMRES(16).
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number of vector operations our method takes to converge to a specific tolerance. For this
example, CGNR converges to 107'* in the least number of vector operations. Our method
with 16 steps of the Arnoldi/GMRES algorithm is about comparable with CGS, though
the convergence curve is much smoother. We find that 8 steps of the Arnoldi/GMRES
algorithm is sufficient to obtain a reasonable approximation to the effective spectrum of
the matrix. Therefore, because of the linear growth in computer time of the GMRES
algorithm, our method with 8 eigenvalue estimates is the best of those exhibited in Figure
(5.14). In fact it is almost comparable to CGNR. In Table 5.10 we once again give the

required parameters for our method; n = 7.

Erample 5

In at least two papers in the literature, namely Li [53] and Smolarski and Saylor [74],
a matrix is devised that has spectrum contained in a “boomerang”-shaped region in the
complex plane. An annular sector is a natural region to enclose this type of domain.

Therefore our method may be useful in solving a linear system with a coefficient matrix of

this type.

4

N

0 5 7 0 2 4

/

Figure 5.16: The left region contains the eigenvalues of T', whereas the right region contains
the eigenvalues of T' — 31.

In the left-half of Figure (5.16) we show a plot of the aforementioned “boomerang”-
shape. We consider a 1024 x 1024 matrix, T, with eigenvalues in this region. Following

Smolarski and Saylor [74] we place four eigenvalues at the points (1,4), (1,—4), (5,0) and
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(6,0). The other 1020 are spread uniformly along the lines from (2,4) and (2, —4) to (6,0)
and the lines from (3,4) and (3, —4) to (7,0). That is each of these four lines contains 255

eigenvalues.

For example, considering the line from (2,4) to (6,0) the real parts of the eigenvalues
are given by _
z; =2+ for y =1,...,255,
with corresponding imaginary part

y; =6 —2;.

The eigenvalues, with the exception of the two real ones, occur in complex conjugate pairs.
We form the real tridiagonal matrix, 7', from 2 x 2 block submatrices, the eigenvalues of
which yield one of the conjugate pairs. If the complex conjugate pair is z + 1y and = — iy

then the 2 x 2 submatrix is chosen to be

( _‘”y ) ) . (5.10)

For the real eigenvalues we consider a 1 x 1 block containing the eigenvalue itself.
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Figure 5.17: Convergence curves for various methods and coefficient matrix T'.

In Figure (5.17) we show the convergence curves for various methods starting with the

same random b and xo. For this matrix, CGNR converges, to a tolerance of 107!*, in the
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least number of vector operations. Even with 8 eigenvalue estimates our method is slower

to converge to 107'* than CGS.
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Figure 5.18: Convergence curves for various methods and coefficient matrix 7' — 31.

Out of interest we perturb this example so that, like example 2, the convex hull of
the spectrum contains the origin. That is we consider the matrix T — 3/. In the right-
half of Figure (5.12) we show a region containing the eigenvalues of T — 31. As we have
mentioned this region encloses the origin and therefore the Arnoldi/Chebyshev method will
fail to converge. Figure (5.18) shows the convergence curves for various methods, namely
CGNR, CGS, our method with 16 eigenvalue estimates, and GMRES(16). With 8 or 12
eigenvalue estimates our method shows no signs of convergence, but with 16 eigenvalue
estimates our method converges to 1071 in about 2300 vector operations. As Starke and
Varga pointed out for their method with example 2, this highlights the need to produce
enough information in the first stage of a hybrid method. In our case this means carrying
out enough steps of the Arnoldi algorithm. With this matrix CGS does slightly better
than our method with 16 eigenvalue estimates, but once again CGNR outperforms all the
other methods. The convergence of CGNR depends on the singular values of the coefficient
matrix, in this case T or T — 31, (see Nachtigal et al. [60]). For both of these examples
the matrix is well conditioned, in fact Ko(T) = 1.69 and Ky(T — 31) = 2.24, to 2 decimal
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places, where K3(X) is the 2-norm condition number of the matrix X. Therefore, CGNR
has fast convergence for these matrices. We also note that 77T and (T — 3I)"(T — 3I)
are diagonal. If we consider forming another matrix, T3, from submatrices of the form

( P y/2)7 (5.11)

-2y =z

then Ty and Ty — 3I are not as well conditioned. To 2 decimal places K>(T7) = 4.20 and
K,(Ty —3I) = 7.04. Therefore, CGNR will not converge as fast as it did with submatrices
given by (5.10). In fact, considering 73 —31, CGNR has a residual norm less than 107"° after
about 1100 vector operations. On the other hand, CGS and our method with 16 eigenvalue
estimates have convergence curves very similar to those in Figure (5.18). CGNR is still

the best in this case, but not by such a large margin.

FEzample 6

In examples 2, 4 and 5 we have CGNR converging faster than all the other given meth-
ods. We have given two examples where our hybrid method, and others, can converge faster
than CGNR. To find another such matrix, we consider the examples given in Nachtigal et
al. [59]. This paper gives 6 examples, for which one of CGS, CGNR or GMRES does best
and one does worst, that is, in terms of the number of iterations to converge to a specific
tolerance. The example they give for which CGS “wins” and CGN “loses” is a diagonal
matrix,

D = diag(zy,...,zN),

where

1 (j—Dr .

For the example here we choose N = 1024 and K = 20.

Figure (5.19) shows convergence plots for various methods, where we have solved the
linear system with the same random b and xo. The matrix, D, is real and diagonal
and the Arnoldi algorithm produces eigenvalue estimates that are also real. This causes
a problem in our numerical evaluation of the parameters a and b (see Section 3.2), be-
cause when the half-angle is zero (or alternatively § = 7) we do not have starting values

for our modified Newton iteration. As we saw in Section 2.2.4, when § = 7w we have
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e« =b=+R, p=(1—R)/4 and the Faber polynomials are the suitably scaled Chebyshev
polynomials for the interval [R,1] (see Section 2.4.1). Therefore we should use these pa-
rameters for our method. We note that with these parameters our method is actually the
Arnoldi/Chebyshev algorithm of Elman et al. [30]. Alternatively we could choose a small
angle for the half-angle of the sector, for example = 0.14 radians, and find @, b and p for
this annular sector and then use these parameters in our method. In Table 5.11 we give
both these sets of parameters found from eigenvalue estimates produced after 16 steps of
the Arnoldi/GMRES phase of our algorithm. In Figure (5.19) we show both these plots,
the lower one (dash-dot) is the Arnoldi/Chebyshev method and the upper one (dashed) is
our method with ¢ = 0.14.
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Figure 5.19: Convergence curves for various methods and coefficient matrix D. The star
on Our(16) reminds us that two curves are pictured here.

Although CGS has a residual norm less than 107'* in fewer vector operations than both
of our methods (that is, Arnoldi/Chebyshev with = 0.0 and our method with p = 0.14),
the slopes of our methods are steeper than those of CGS and it would appear that our
method would beat CGS if higher precision was required. As was stated above, for this
matrix, CGNR is the slowest to converge, not just in terms of the number of iterations,

but also in terms of the number of vector operations.
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Table 5.11: The parameters for example 6, with random starting vectors.

eigenvalue estimates | Arnoldi/Chebyshev | Our method(16)
Rpoz 19.957514299 19.957514299
Roin 1.056885688 1.056885688
" 0.0 0.14
a 0.479711788 0.415066055
b 0.479711788 0.434455942
p 0.236760805 0.299907255

Ezample 7

Dr. G. Opfer [61] mentioned to my Supervisor, Dr. J.P. Coleman, that he thought
it would be useful to solve linear systems of equations with coefficient matrices whose
eigenvalues (or eigenvalue estimates) are situated close to the n—th roots of unity. He
suggested applying the transformation Z = z" so that the eigenvalues (or their estimates)
are situated about the positive real axis. His idea was then to use the Faber polynomials,
F,.(Z), for an annular sector placed around these estimates, as the residual polynomials.

As a simple example we consider the matrix

A= 1 1 € [R200%200

?

which has its eigenvalues at the points 1 and —1. We note that the eigenvalues are situated
on both sides of the origin and therefore the Arnoldi/Faber method of Starke and Varga,

as it is described, cannot be used to solve this example. We begin by trying to solve
Ax = b, (5.12)

with a random xg and b.

In Figure (5.20) we show convergence curves for various methods. The fastest to con-

verge is CGNR, followed by CGS. It is interesting to see that our method for solving
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equation 5.12, with 16, 32 or 48 eigenvalue estimates, diverges initially and then converges.
We also note that in all cases our method stagnates. If the residual norm rises to 107, say,
then our method, using double precision, will stagnate when the residual norm is about
1078,

parameters one would require to run our methods for this example.

We have not produced a satisfactory reason for this. In Table 5.12 we give the

Table 5.12: The parameters for example 7, with random starting vectors.

eigenvalue estimates 16 32 48
Roor 1.309407302 | 1.352849882 | 1.378345068
Roin 0.323257614 | 0.255873833 | 0.102660078
I 1.967132252 | 2.086166027 | 2.223948399
i 1.595575242 | 1.566125230 | 1.568494460
a 0.110696486 | 0.073014090 | 0.023615741
b 0.296529065 | 0.217430031 | 0.080850177
p 0.886040399 | 0.891161542 | 0.917063733
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Figure 5.20: Convergence curves for solving (5.12) by various methods

We now consider multiplying the linear system (5.12) by A, that is, exploit the idea of
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G. Opfer, and try to solve
A*x = by, (5.13)

with b; = Ab. If we find a solution to this linear system then we will have a solution to
the original linear system (5.12). The eigenvalues of A? are simply the eigenvalues of A
squared. Therefore the idea is to square the approximate eigenvalues we obtained above,
then place an annular sector around these squared estimates and use the Faber polynomials

for this region as the residual polynomials.

To compare results we need to calculate how many vector operations we use to imple-
ment the above method. The number of vector operations required to carry out m steps of
the Arnoldi algorithm and produce m eigenvalue estimates is the same as before, namely

m(l + 3 + m) vector operations. The number of vector operations to implement
Xm = Xo + qm-1(A%)T0,

in a Horner-type iteration, will be different because two matrix multiplications are required

where previously we only required one. As in Section 5.3.4 the Horner iteration is as follows,
Told = Arnewa

Wo = Om—1,mlold;
W, = A2Wj_1 + Qm—1—jmTold, g=1,...,m—1,
Xnew = Xold + Wm—1,
Fnew = b — AXnew.
This requires a total of m(2! + 1) vector operations.

In Figure (5.21) we show plots for solving the linear system (5.13) by our method.
In all cases the methods do not diverge for as long as they did previously, and therefore
the methods stagnate at a smaller tolerance than they did in Figure (5.20). The number
of vector operations, required to'converge to a specific tolerance, is less when solving
the linear system (5.13) than solving (5.12). For example, our method to solve (5.12)
with 16 steps of the Arnoldi/GMRES algorithm converges to 107" in about 3000 vector



5.4. Examples 172

operations, whereas, when solving (5.13) our method converges to 10~® in about 1900
vector operations. In fact our method with 16 eigenvalue estimates for solving (5.13) is
comparable with CGNR for solving (5.12). We also note that when solving (5.13) our
method with 32 eigenvalue estimates is comparable to CGS for solving (5.12). These
results show that when the eigenvalues (or their estimates) are tightly clustered around
the roots of unity the idea of G. Opfer may be a useful one. In Table 5.13 we give the
parameters we used in this example. That is, the parameters for the annular sectors placed

around the squared eigenvalue estimates.

Table 5.13: Example 7, with random starting vectors. The parameters for an annular
sector placed around the squared eigenvalue estimates.

eigenvalue estimates 16 32 48
Rios 1.714547483 | 1.830202803 | 1.899835127
Roin 0.104495485 | 0.065471418 | 0.010539092
B 0.842229681 | 1.040081594 | 1.310907878
a 0.231168909 | 0.154764191 | 0.049199872
b 0.316014282 | 0.231410936 | 0.084431146
p 0.547503339 | 0.612776474 | 0.696272420
6
ot
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E of
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Figure 5.21: Convergence curve for solving (5.13) by our method.
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For clarity, we would like to point out that the results given for methods other than our
own were carried out by us and not taken from the literature. This is with the exception
of examples 1 and 2, where the results given are those from a paper by Starke and Varga

[76].

5.5 Conclusions

In this chapter we have given a new hybrid iterative method based on the Faber polynomials
for an annular sector. The method is closely related to that of Starke and Varga [76]. If
the spectrum, or rather the e-pseudospectrum (see Trefethen [78]), of the matrix can be
well approximated by an annular sector then the method should work well. Our method
has two major differences over the method of Starke and Varga. Firstly, the annular sector
is an easy region to scale and rotate so that it encloses any eigenvalue estimates situated
anywhere in the complex plane. On the other hand the method of Starke and Varga [76]
is set up only for eigenvalue estimates situated symmetrically about the real axis. Starke
and Varga do state that their method can be applied to a general non-Hermitian matrix.
However, for a general non-Hermitian matrix, their method for placing a polygonal region
around the eigenvalue estimates and their method for finding the conformal mapping must
change. Therefore, their method would seem more complicated to implement than ours.
Secondly, the Arnoldi/Faber method requires a numerical conformal mapping package to
generate the Faber polynomials, whereas, the Faber polynomials for an annular sector are
known analytically (see Chapter 2). Of course, to generate the Faber polynomials, we need
to determine the numbers a, b and p numerically. Therefore, we can either generate the
Faber polynomials for a polygonal region using a numerical conformal mapping package,
or use the Faber polynomials for an annular sector known exactly in terms of the numbers

a, b and p, which we only know numerically.

In the examples of this chapter we have shown how our method compares with many
of the methods we described in Chapter 4. In particular, CGS, CGNR, GMRES, Hybrid
GMRES and Arnoldi/Faber. Our method seems to perform quite well for the examples

we have given. As with all methods, there exist matrices for which our method will
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perform badly. In agreement with the method and examples of Starke and Varga [76], our
examples show that our method is sensitive to the amount of information obtained during
the Arnoldi/GMRES stage. That is, if too few steps of the Arnoldi/GMRES algorithm
are taken then the method may converge slowly, or even diverge. If too many steps of the

Arnoldi/GMRES algorithm are taken then more work is done in stage 1 than is required.



Chapter 6

Conclusions and future work
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In this thesis we have considered the Faber polynomials for annular sectors. The conformal
map from the complement of the unit disc to the complement of the annular sector was
given in Chapter 2. In this chapter we also derived the Faber polynomials for an annular
sector and gave the Faber series for 1/z. In Chapter 3 we considered numerical aspects
of the Faber polynomials for an annular sector. The numerical approximation of the
transfinite diameter and the parameters a and b were considered. We also gave three norms
of Faber polynomials and exhibited some numerical values for various annular sectors. At
the end of the chapter we improved upon a bound for the Faber projection given in a
paper by Ellacott [22]. In Chapter 5 we gave a new hybrid method for the iterative
solution of linear systems of equations. The method is similar to the Arnoldi/Faber method
developed by Starke and Varga [76], but with a few major differences. For Example 1, with
a structured righthand side, b, and initial solution xo the residual norm converged faster
with our method than it did with Starke and Varga’s. In most of the given examples the
method seemed promising. As with Starke and Varga’s method, however, our method is
sensitive to the amount of information obtained in the first stage of the hybrid method,

namely the Arnoldi/GMRES algorithm.

Chapters 2 and 3 are mainly complete. Most of the future work will lie in Chapter 5
and extensions of ideas contained in it. At present, no convergence estimate exists for the
method and it would be nice to obtain one. Of course the method needs further testing,
especially on real world examples. As for possible extensions to the work contained in
Chapter 5, we have arrived at three or four different ideas for residual polynomials which

could be implemented in an iterative method.

e The first idea combines the residual polynomials from the Hybrid GMRES method of
Nachtigal et al. [60] and our method from Chapter 5. A hybrid iterative method, employing
this idea, would carry out a few steps of the Arnoldi/GMRES algorithm and obtain some
eigenvalue estimates, a good starting guess, and the GMRES polynomial, gn(A). Then
one would find the Faber polynomials, F,,()), for an annular sector placed around the

eigenvalue estimates and iterate with a residual polynomial given by
Ron(X) = 0gn(A)Fu(A),

where o is a constant chosen so that Rs,(0) = 1. The strength of this idea 1s that Hybrid
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GMRES seems to perform poorly when b and xg are structured, whereas, our method ap-
pears to do better. Hybrid GMRES, however, does not rely on any approximate eigenvalue
information which can be misleading (see Nachtigal et al. [60]). Hopefully this idea would
lead to a method with the advantages of both Hybrid GMRES and our method.

o The second idea is very similar to the first. Instead of GMRES as the first step
of the method, why not try the BCG algorithm or, to avoid some of the breakdowns,
the QMR algorithm? As in Equation (4.22), after n + 1 steps of the BCG algorithm,
AV, = V11 H,,. Freund et al. [37] therefore suggest using the eigenvalues of H, as estimates
of the eigenvalues of A. For this idea we may consider a similar hybrid iterative method to

that proposed in the first idea given above. This time with a residual polynomial given by
Ron(3) = o9 F (),

where once again o is chosen so that R,,(0) = 1 and ¥29C is the residual polynomial of
degree n for the BCG algorithm. We note that this idea could be motivated along similar
lines to BiCGSTAB and BiCGSTAB2. By this we mean that the BCG polynomial is
multiplied by another polynomial of degree n. This time, however, no local minimisation

problem is solved (see Section 4.3.7).

e The third idea comes from the work of Eiermann [17] on semi-iterative methods (see
Li [53] for an overview). As in Section 4.4.7, we once again note that, in our case, we
must consider the Faber series for 1/z not 1/(z — 1). The idea here is to use the truncated
generalised Faber series for 1/z as the residual polynomial (see SIMI in Eiermann [17]). An
alternative would be to use the truncated Faber series for 1/z as the residual polynomial
(see SIM2 in Eiermann (17]). The latter Faber series is readily available and given by
Equation (2.41) in Section 2.7.

The three given ideas may or may not be of use and we leave their consideration to

future researchers.

Finally, we consider an idea for future research in a completely different area of Nu-
merical Analysis. That is, the approximation, in the complex plane, of a function which
satisfies an ordinary differential equation (ODE). The idea would build on the work of

Coleman [9, 10]. In this work, Coleman subdivides the complex plane into circular sectors,
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and solves the differential equation on these subdivisions of the plane by using the Lanczos
7-method and the Faber polynomials for a circular sector. If better approximations are
required, than those given by this method, then one could further subdivide the circular

sector into a smaller circular sector and an annular sector (see Figure 6.1). The idea would

Figure 6.1: The large circular sector is subdivided into a smaller one and an annular sector.

proceed by solving the ODE on the smaller circular sector, using the ideas of Coleman
[9, 10]. Then it would solve the ODE on the annular sector, using the Lanczos 7-method

and the Faber polynomials for this annular sector.

The problem with this idea is in obtaining a sensible starting point for the solution of

the ODE on the annular sector. Many ideas could be thought of to solve this problem, for

example,
e Use the original initial solution for the ODE;

e Consider a point on the common boundary between the circular and annular sectors.
Find an approximation to the value of the function at this point, using the approximation

to the function obtained on the small circular sector. Use this estimate of the value of the



179

function as the starting point for the approximation on the annular sector.

Other possibilities may exist, but we leave these and the implementation of this idea

as matters for future research.



Appendix A

An alternative proof of Theorem 7
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In this appendix we give another proof of Theorem 7 in section 2.2.4. The result is as

a — 0 and b — 0 then R — 0 and 8§ — Ar where a = Ab.

Considering a = Ab then (2.7) becomes

SR e L

In this we make the substitution z = ¢b%, hence,

ol @-na—b) 17 dt
mo0= [(t—A2><A—2—b4t>] t

When b — 0 the integral becomes elementary, and the expression may be written as

1(] —t)3
W_gz,\/ u_di
2 g(t— A?)2

In this we make the substitution y2 = (1 — t)/(t — A?) and therefore dt/dy = 2y(A\* —
1)/(y* +1)?, so

' o 2N 1)y’
=6 = A/oo (y2+1)(1+/\2y2)dy

- 2)\/0 ! ! d
B 00 y2+1 1-|-/\2y2 y

= 2[Aarctan(y) — arCt&H(/\y)]go

-2-(5-3)

= 7= A7

Therefore A = /7 as was proven in section 2.1.4.

When we substitute a = A\b equation (2.10) becomes

[ (e-0)(b2—z) 17 da
lgft =2, [(:c —A202)(b-2A 2 — x)} =z (A1)

In this expression we again substitute z = tb? and obtain

o2 [ (¢ —1)(1 — tb?) 7 gt
log £t = 2/ [t—/\2 )\2—b4t)} T

R e
B (1—yA)(A 2y —b4)] o’

W=
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when we let t = 1/y. In the limit as 6 — 0 this then becomes

0 (1—y)7dy

log R = 2)\ -
voy(l =A%)

A substitution of 2 = (1 —y)/(1 — A%y) gives us

log R = 4/\/ 1_t2 1_m2)dt

By using partial fractions we obtain

| 1 1
log B = 2/\/( )dt
8 P I VLI

1t 1+ ]t
= 21Xl log ————
[ %61 t+ogl—/\tL
02/\(1+/\)2
= log ————* .
og 0= (A.2)

From this we obtain R = 0, the only exception being when the expression in (A.2) is
undefined that is when A = 1. In this case (A.1) gives R = b*, for all b, so here b = 0 and

we have R = 0. So the result holds even for the case when A = 1. This proves the above

result and finishes off this appendix.
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From Section 2.4, we know that

where

The polynomials

are given by

Degree
p(0):

Degree
p(0):
p(l):

Degree
p(0):
p(l):
p(2):

Degree
p(0):
p(l):
p(2):
p(3):

Degree
p(0):
p(l):
p(2):
p(3):

p(4):
Degree
p(0):
p(l):
p(2):
p(3):

p(4):

p(5):

Fo(z) = p"®, | =
p

®,(2) = 2" + dn-1(2).

n—1
bn-1(z) = ijz”_j_l for 1 <n <15,
i=0

of Faber Polynomial: 1
U

of Faber Polynomial: 2
2*U
(§"~2+42*35*U-U"2-4) /2

of Faber Polynomial: 3
3*U
(3*(S"2+2*S*U+U"2-4)) /4
(2*S"3+8S72*U-2*S*U~2-8*S+U"3+2*U) /2

of Faber Polynomial: 4
4*U
SM242*S*U+3*Ut2-4
(4*S73+45%87°2*U+2*S*U 2-16*S+U"3~-8*U) /3
(11*S74-4*S"3*U-6*8"2*U"2-48*3"2+12*S*U"3
+32*S*U-5*U~4-16*U~2+16) /8

of Faber Polynomial: 5
5*U
(5% (S"2+2*S*U+5*U~2-4)) /4
(5% (S"342*8"2*U+2*5*U"2-4*S+U"3-5*U) ) /3
(5% (9*S 4+8*S 3 *U+4*S 2*U"2-42*S"2+4*S*U"3
-20*8*U-U~4-~10*U"2+24)) /24
(12*S~5-13*S"4*U+8*S"3*U~2-56*S"3+14*35°2*U"3
+60*S72*U-20*%S*U N4 -72*S*U"2+32*S+7*U~5+28*U"3+8*U) /8

of Faber Polynomial: 6
6*U
(3% (87242*5*U+7*U"2-4}))/2
(4*S73+11*S"2*U+14*S*U"2-16*S+11*U"3-32*U) /2
(39*S 4+T76*S 3 *U+T4*S"2*U"2-192%572+44*S*U"3
-256*S*U+7*U"~4-128*U"2+144) /16
(46*875+31*S N4 *U+34*S 3*U"2-248*S"3+422*5"2*U"3
—120*872*U-20*S*U"4-136*S*U"2+256*S+7*U"5+24*U"3
+104*U) /20
(21*S76-34*S"5*U+65*S"4*U"2-100*S"4-20*S"3*U"3
+112*873*U-65*S"2*U"4-312*8"2*U"2+72*5"2+70*S*U"5
+304*S*U~3+144*%S*U-21*U~6-100*U"4-72*U"2-32}/16
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