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Abstract 
A conformal mapping of the exterior of the unit circle to the exterior of a region of 

the complex plane determines the Faber polynomials for that region. These polynomials 

are of interest i n providing near-optimal polynomial approximations in a wide variety of 

contexts. The work of this thesis concerns the Faber polynomials for an annular sector 

{z : R < \z\ < 1,9 < \ argz\ < T T } , w i th 0 < ^ < TT and is contained in two main parts. In 

the f i rs t part the required conformal map is derived, and the first few Faber polynomials for 

the annular sector are given in terms of the transfinite diameter, p, of the region and two 

parameters a and b. These three numbers are determined numerically. We also give the 

Faber series for 1/z and improve upon a bound given in the literature for the norm of the 

Faber projection, | |xn||- I n the second part of the thesis we give a new hybrid method for 

the iterative solution of linear systems of equations, Ax — b, where the coefficient matr ix, 

A, is large, sparse, nonsingular and non-Hermitian. The method begins wi th a few steps 

of the Arnold i method to produce some information on the location of the spectrum of A. 

Our method then switches to an iterative method based on the Faber polynomials for an 

annular sector placed around these eigenvalue estimates. A n annular sector is thought to 

be a useful region because i t can be scaled and rotated to enclose any eigenvalue estimates 

bounded away f r o m zero. Some examples w i l l be exhibited and we wi l l compare existing 

methods w i t h ours. 
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Chapter 1 

Faber Polynomials 
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1.1 Introduction 

I n this opening chapter we w i l l describe the Faber polynomials for a general region in the 

complex plane. We w i l l also review most of the important properties of Faber polynomials 

(see Section 1.2.2). In Section 1.2.3 we w i l l review the ideas of best and near-best approx­

imat ion . Finally, in Section 1.2.4 we give some examples of regions in the complex plane 

where the Faber polynomials are known analytically. 

1.2 A Review of Faber Polynomials 

I n 1903 Georg Faber published his solution to a classical complex approximation problem. 

The problem was to f ind , for a given region, a set of polynomials { p n ( ^ ) } ^ o such that an 

analytic funct ion f { z ) could be expanded as a convergent series 

CO 

i=o 

where the aj depend on / and the region, but the Pj{z) depend only on the region. His 

solutions are named after h im and called Faber polynomials. They play an important 

role i n complex approximation theory and have been used to provide both polynomial 

and rational approximations in a wide variety of different contexts. For example, near-

min imax polynomial approximations may be obtained by truncating Faber series (Ell iot t 

28], Ellacott [22], Chiu et al. [8] and Coleman and Myers [12]) and by economisation of 

Faber series (Ellacott and Gutknecht [25]). Faber polynomials have been used to produce 

approximations to the solution of ordinary differential equations by both the Lanczos r -

method (Coleman [9] and [10]) and by Clenshaw's method (Ellacott and Saff [27]). Rational 

approximations based on the Faber series were discussed in Ellacott [24], and Ellacott and 

Saff [26]. The Faber polynomials have also been used in applications in linear algebra, 

in particular they have been used to produce iterative methods. For example Starke and 

Varga [76] give a hybrid iterative method using the Faber polynomials for a polygonal region 

placed around some eigenvalue estimates bounded away f rom zero. Other examples in the 

applications of Faber polynomials to iterative methods include the idea of an asymptotically 

opt imal semi-iterative method (see Eiermann [17] and Eiermann et al. [20] for the details). 
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1.2.1 The Faber Polynomials for a General Region 

I n this section we w i l l describe how the Faber polynomials are defined for a general compact 

region, Z), whose complement (C/D) is simply connected in the extended complex plane. 

For such a region D the Riemann mapping theorem tells us that there is a unique function 

(j) such that 

h m ^ = 1 (1.1) 

and such that (j) maps the complement of D conformally onto {w : \w\ > p}, the complement 

of a closed disc of radius p (see Figure 1.1). The number p is called the transfinite diameter, 

or logarithmic capacity of D. The function (f) has a Laurent expansion 

,)=z + ao + ^ + ... (1-2) 

about the point at inf ini ty . To obtain Fn{z), the Faber polynomial of degree n , we simply 

take the polynomial part of the Laurent expansion of [ ^ ( 2 ) ] " . The difficult part in deter­

mining the Faber polynomials, for a region D, is to determine the above conformal map (j) 

(or its inverse ^ ) . For this reason the Faber polynomials are known explicitly for only a 

few types of domain. 

1.2.2 Some Properties of Faber Polynomials 

From now on we w i l l define •0 as the required conformal map f rom the complement of the 

uni t disc, A = {w : \w\ < 1}, to the complement of the region D. We also define the 

transfinite diameter of D as, 

, := h m (1.3) 

Hence, the Laurent expansion of '^{w) about the point at inf ini ty can be wri t ten in the 

f o r m 

^ = ^(u;) = p | | u ; + ^0 + ^ + . - . j (1.4) 

The required conformal mapping f rom the complement of D to the complement of [w : 

w\ < p} is given by 
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z-plane w-plane 

Figure 1.1: The mapping of a general region in the complex plane 

where ?/;~̂  is the inverse mapping of tjj. We note that 

h m - ^ - ^ = hm — = h m = 1, 

SO that <^{z) is indeed the desired mapping. We w i l l now describe some of the properties 

of the Faber polynomials for a general region D , when the mappings ^ and t/) are defined 

as above. 

From the above definition of the required conformal map (/>, the following property is 

satisfied. 

P R O P E R T Y 1 

<;^(^(^y))" = p^vf". 

Previously we defined the Faber polynomial of degree n as the polynomial part of ( ( ^ ( 2 ) ) " , 

so that 

( ^ ( 0 ) " = F„(^) + i f „ ( z ) 

where En{z) = 0{l/\z\) as |^| 0 0 . Using Property 1 we find 

(1.5) 
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and Hn {"^{w)) — 0(\j\w\) as |u;| oo, so that 
P R O P E R T Y 2 

- / 
J T T Z J \ W \ = \ 

Em ( ^ ( ^ « ) ) ^ ^ _ j /f>" i f m = n 
27rz J\w\=i W^+^ "'^ \ 0 \i m ^ n . 

I n the next property we need the concept of a level curve, so we define the level curve 

TR := {z = ^l^{w):\w\ = R>l}. 

P R O P E R T Y 3 

dw 
'4>{w) — z 

The first part of this property follows f rom (1.5), the residue theorem and the fact, Hn{z) = 

0(1/1^1) as 1̂ 1 —> oo. The second part follows by a substitution of { = •^(u;) in the first 

integral. 

We now introduce the scaled Faber polynomials, 

Fn{^) = ^ . n>l. (1.6) 

Using Property 3 we are able to find a generating function for the scaled Faber polynomials 

and f r o m these generate the actual Faber polynomials. This generating function for the 

scaled Faber polynomials is given by 

P R O P E R T Y 4 

il){w) — z ~[ 

To prove Property 4 we simply substitute this expression in Property 3 and use Cauchy's 

residue theorem to give Fn{z) = p^Fn{z). 

Mul t ip ly ing both sides of the expression in Property 4 by •0(io) — 2 , then using equation 

(1.4) and equating coefficients of leads us to an important recurrence relation for the 

Faber polynomials, namely 
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P R O P E R T Y 5 

F,{z) = 1, 

Fr{z) = z-bo, 

F2{z) = {z-bo)F^{z)-2b,, 

Fn+iiz) = {z-bo)F4z)-J2hFn-kiz)-{n + l)b^, f o r n > 2 , 
k=i 

where bj = p^'^^Pj-

The next property of Faber polynomials is an important one. I t appears in many 

articles i n the hterature (see Gaier [38], Ellacott [22], Ell iot t [28], Kovari and Pommerenke 

52] and Pommerenke [65]) in a variety of different notations. 

P R O P E R T Y 6 

I f we define v(t, s) = arg(V'(e'0 - V'(e")) then 

(a) r \d,v{t,s)\<V 
Jo 

(b) Fj (0(e")) = ^ / " ^ ' * ' ^'"(^'' ') ^ 1 

and V is the total rotation of the region D (see Section 3.3.3). 

Proof 

(a) Gaier [38], amongst others, mentions that this is proved in Radon [67 . 

(b) The first part of this result is given in Gaier [38]. I t follows f rom differentiating, 

w i t h respect to lo, a result given in Pommerenke [65], namely 

, ^ ( l y ) - V ( e " ) 1 Z-̂ - / e'*\ , . logri_^ ! 1 ^ _ £ = _ / log 1 dtv{t,s), 
pW IT Jo \ W J 

and then using Property 4. The second part follows f rom Fo{z) = 1. • 
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In Property 4 we gave a generating function for the Faber polynomials. I f we divide the 
expression in Property 4 by w and then integrate wi th respect to w, we can derive another 
generating funct ion for the scaled Faber polynomials. 

P R O P E R T Y 7 

log 
'il}{w) — z 

pw 

The next property we shall describe is one that appeared in a paper by EUacott and 

SafF [27]. The proof we shall give is one by Dr. J. P. Coleman [11 . 

P R O P E R T Y 8 

J Eo{z) = Ei{z) + constant 

jE.iz) : 

Proof 

Using Property 7 we let 

U{w,z) = log 

F2iz) 
— T - ^ - f constant, 

- V bn-mFm{z) + COUStaut 
n + 1 

for n > 2. 
m = l 

xj;(w) — 

pw 

Then we consider partial derivatives of U w i th respect to both w and z giving 

dU _ ^'(w) p ^ ^ F , { z ) = • = V — 
dw tp{w) — z pw ~[ w^'^'^ 

and 

So 

dU_ _ - 1 
dz i(){w) — z 

^ % ) 

dU .,. ^dU 1 
-K- = -W [w)^ . 
OW oz w 

Using the previous three equations and equation (1.4) we find 

f M + i = , 
^ W3+^ w ^ 

1 - ^ kPkW-^'+' E 
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Finally equating powers of it; ' i n this equation, integrating the resulting expressions and 

using equation (1.6) gives us the result. • 

Eiermann and Varga [21] show that the zeros and local extreme points of Faber poly­

nomials are the eigenvalues of certain matrices. Allowing for the different definition of the 

inverse mapping we shall now give their results. We start f rom Property 5 and rearrange 

i t as 
n 

zFn{z) = Fn+l{z) + Yl hFn-k{z) + ub,,. 
k=0 

We then consider this equation for n = 0 , . . . , m — 1 and write this system of equations in 

matrix-vector fo rm as 

z[Fo{z),F^{z),..., Fm-i{z)] = [Fo(z), F i ( z ) , . . . , Fm-^{z)]Fm + [ 0 , . . . , 0 , F m { z ) \ , 

where Fm is the m x m principal submatrix of 

F := 

/bo 2bi 362 • • • \ 
1 bo 61 •• 

1 bo •• 

V 

The next property follows immediately. 

P R O P E R T Y 9 

A 6 C is a zero of Fm{z) i f and only i f A is an eigenvalue of F „ wi th corresponding left 

eigenvector [Fo{X), • . . , i^m-i(A) . 

The last property that we shall describe in this section is one about the coefficients of 

the Faber polynomials (see Ellacott [22] or Coleman and Smith [13]). I f we write 

Fr.iz)^j:C^h'' 
k=0 

then the coefficients satisfy 

P R O P E R T Y 10 

4 n) ^ P _ 

27r̂  J\w\= 

w''{dij)l dw) 

R [•0(ti))]'=+^ 
dw. 
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Proof 

From equation (1.5) and the residue theorem we find 

27ri JTR 

where Tr is the level curve introduced before Property 3. In this expression we make the 

substitution z — il){w) and use Property 1 to find the result. • 

Property 10 provides an alternative to generating the Faber polynomials by a recurrence 

relation (see Property 5). I t allows the coefficients of the Faber polynomials to be calculated 

eflficiently by the trapezium rule. I f we write w = Rexpli9] in the above expression, 

then the integrand becomes periodic and we are integrating over a period therefore the 

integral, and hence the coefficients, can be calculated efficiently by the trapezium rule. 

The trapezium rule idea approximates the coefficients by 

-'^ m=0 

where 

0^ — 2^1711N and A'' is the number of equal sub-intervals used. 

1.2.3 Best and Near-Best Approximation 

As the t i t l e of this section suggests we shall overview the ideas of both best approximation 

and near-best approximation. Both Kovari and Pommerenke [52] and El l iot t [28] have 

shown, for practical values of the degree of the polynomial, that the truncated Faber series 

gives a near-best polynomial approximation. The ideas of Cheney and Price [7] and of 

Geddes and Mason [43] allow the concept of near-best approximation to be made more 

precise (see below). Geddes ([41] and [42]) developed this theory for the complex plane by 

considering the disc and the region bounded by an ellipse. He considers projections f rom 

the space of functions that are continuous on the boundary of the region and analytic on 

its interior onto P „ , the space of polynomials of degree less than or equal to n. For the disc 

he considers a projection given by truncating the Taylor series of the function; for a region 
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bounded by an ellipse he considers a similar projection given by truncating the Chebyshev 
series of the funct ion. 

I n his thesis El l io t t [28] generalised the results of Geddes([41] and [42]), to a general 

region D i n the complex plane, by considering the partial sum of the Faber series of a given 

funct ion. Also in this thesis, El l io t t [28] gives a bound for the error in approximating a 

funct ion by the n-th partial sum of the Faber expansion; a slight error in the bound was 

corrected by EUacott [22]. 

We w i l l now introduce the notation of Ellacott [22]. We denote by A{D) the space 

of functions that are continuous at every point in D , and analytic in the interior of D. 

We also let A{D) denote the set of functions belonging to A{D) that are analytic on the 

boundary of the domain. As above we let P„ denote the space of complex polynomials of 

degree less than or equal to n. 

I f we are given / € A ( D ) , i t is well known that there exists a unique best minimax 

approximation to / f r o m P„ , that is, there exists p„ G P„ such that 

Pnif, D) := 1 1 / - p „ | | c o < 1 1 / - P I I O O for all p G P„ , 

where 

l^fllco = max|5f(z) 

and g G A{D). 

I n this section we w i l l consider approximations to / which are truncated Faber series, 

that is we w i l l consider a map f rom A{D) to P„ , given by truncating the Faber series after 

n + 1 terms. This map is a special case of a family of maps f r o m A{D) to P„ known as the 

projections. A projection P „ : A{D) ^ P„ is a bounded, idempotent linear operator. For 

a project ion we have 

/ - Bnif) = / - p„ + p„ - BM) = f - P n + - / ) , 

SO that 

| | / - P n ( / ) | | o o < | | / - P n | | o o + | | P n ( P n - / ) | | o o 
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B n { P n - f ) 
< | | / - P n | | o o + 

\\Pn - / l l o o 

< | | / - P n | | o o + l l^nl l 1 1 / - P : 

I b n - / l i e 

where 

\Bn\\^ sup ||P„(5r)||oo = sup max\Bn{g){z) 
geA{D) : \\g\\^=l g€A(D) : | | 5 | |oo=l ^^"^ 

This means, for a projection, 

| | / - P n | | o o < ( l + | | 5 „ | | ) | | / - p „ | | o o -

Following Geddes and Mason [43] we call an approximation, M ( / ) , near-best wi th in a 

relative distance r i f 

| | / - M ( / ) | U < ( l + r K ( / , i ) ) , 

where pn{f, D) is, as we defined earlier, the maximum error on D of the best approximation. 

From the previous expression we see a projection is near-best wi th in a relative distance 

\Bn\\- I t is usual to require r < 9 so that not more than one decimal place is lost when 

replacing the best approximation by a near-best approximation. For this reason in later 

sections we require the norm of the Faber projection to be less than nine (see below and 

Section 3.4). Projections are not the only way of producing near-best approximations. For 

example, i n the context of ordinary differential equations, Coleman ([9] and [10]) produces 

near-best approximations by the Lanczos-r method, whereas Ellacott and Saff [27] find 

them by Clenshaw's method. 

Given any / € A{D), the Faber series or Faber expansion is an expression of the form 

oo 

k=o 

where the Uk are defined by 

p is the transfinite diameter of the region and P i > 1 is sufficiently small that / can be 

extended analytically to the closed region bounded by the image under ^ of the circle 

w\ — Ri (see Curtiss [15], Markushevich [57] or Gaier [38]). 
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As previously mentioned, we shall consider the Faber projection, namely 

Xn : A(D) ^ P„ , 

given by truncating the Faber series after n + I terms, that is 

X . ( / ) = E « , F , ( ^ ) (1.8) 
i=o 

and ttj is given by equation (1.7). 

Kovari and Pommerenke [52] give two bounds for the error incurred by approximating 

/ G A{D) by its truncated Faber series Xn{f)- Their Theorem 3 states 

Given any region D whose complement is connected and any function f G A(D) then 

| | / - X n ( / ) | | o o < A n V ( / , ^ ) , 

where A and a < 1/2 are absolute constants. 

The second result (their Theorem 4) says, 

Given any region D whose complement is connected and any function f E A{D) then 

\\f-Xn{f)U<{A\ogn^B)pr.{f,D) 

and the constants A and B will only depend on the domain D. 

El l io t t [28] provided quantitative values for A and 5 , which were then corrected in 1983 

by EUacott [22]. The result f r o m EUacott is given in terms of a bound on | |xn| | , 

Let D he a Jordan region whose boundary V is of total rotation V. We have 

l l X n I I < - | ^ l o g n + B | n > l , 

where B is a certain absolute constant which (from numerical values computed in Geddes 

and Mason [^3]) has the value 1.773 to 3 decimal places. 

The tota l rotation V of a region w i l l be defined in Section 3.3.3. These results are useful 

because, for a convex curve {V = 27r) and practical values of n, they show the approxi­

mations are near-best wi th in a relative distance 9. In fact when V = 2-n- EUacott's bound 
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leads to \\Xn\\ < 9 for n < 835. This bound may not be as useful when V is much larger 
than 27r. For example, when V = 3% the bound gives | |xn|| < 9 for n < 20, and for V = Air 
the bound implies < 9 for n < 3. I t would be interesting to improve on Ellacott's 

bound, or at least to show when V = ATT that | |xn| | < 9 for reasonable values of n. This 

w i l l be considered in Section 3.4. 

1.2.4 Some Examples of Faber Polynomials 

We now give some examples of regions i n the complex plane where the Faber polynomials 

are known analytically. We w i l l also exhibit some of the Faber polynomials of each region. 

(a) The unit disc 

For this region the mapping is given by it; = (f>[z) = z; the transfinite diameter, p, is 

1; and the Faber polynomials are given by Fn{z) = z'^. For this region the Faber series 

for a funct ion / is simply its Taylor series. I f better approximations, of a certain degree, 

to / are required on the unit disc then the disc must be subdivided and approximations 

to / sought on each sub-region. This lead Coleman and Smith [13] to consider the Faber 

polynomials for an obvious subdivision of the unit disc, namely the sector (see (d) below). 

(h) The real interval [a, 6]. 

For this region the inverse mapping is a composition of two conformal maps. The first 

is the Joukowski funct ion, t = {w + l/w)/2, which maps the complement of the unit disc 

to the complement of the interval [—1,1]. The second map is a linear transformation f rom 

C/[—1,1] to C/[a , b]. Hence, the inverse mapping is given by 

z = ^w) = ^-{b -a){w + ^^+ ^{b + a). 

We also find the transfinite diameter p = lim^_^^oo t/^{w)/w = | ( 6 — a). For this interval, the 

Faber polynomials are multiples of the Chebyshev polynomials for the interval [—1,1]. In 

fact when a = - 1 and 6 = 1 we have. 

= f o r n > l , Fo{z) = To{z). 

For this reason Faber polynomials can be thought of as a way of extending the concept of 
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Chebyshev polynomials to other regions in the complex plane. The Faber polynomials for 
an ellipse w i t h foci { - 1 , 1 } are also multiples of the Chebyshev polynomials. 

(c) The circular arc 

The t h i r d example we shall consider is that of the circular arc, which was first considered 

by Ellacott [23]. The exterior of the unit disc is mapped onto the exterior of the circular 

arc w i t h end points 6=*=̂ '̂ , containing the point z = - 1 , where cos(^) = 1/a, by 

w{w-a) ^{w) _ 1 
z = ijj(w) = -7-^ - y , w i th p = l i m 

[ato — 1) ' ^ w-^oo ID a 

I f we now expand the inverse mapping in powers of w we can show that the coefficients 

defined in equation (1.4) are given by 

(3, = p ' - \ p ' - l ) , z>0 

so using Property 5 the first few Faber polynomials are 

Fo{z) = 1, 

F,{z) = z' + 2{l-p')z + l - - p \ 

Fs{z) = z' + 3{l-p')z' + 3{l-p')z + l - p ' . 

(d) The sector of the disc 

El l io t t i n his thesis describes how the mapping for the unit semi-disc can be derived. 

Then in 1987, Coleman and Smith [13], described how to find the inverse mapping and 

hence the Faber polynomials for a sector of the unit disc, 

S'a = : 1 ^ 1 < 1 , 1 arg z\ < —} wi th a > 1. 

I n their paper they show that the unit disc {w : \w\ < 1} is mapped conformally onto the 

complement of the circular sector, Sa, by 

- u + (u^ - 1 ) 2 

V + [V^ - 1)2 
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where 
, , i ( w - l ) , , (2 - a^)(w - 1)^ + Awa^ 

u{w) = r^, v{w) = 
^ ^ 2aw2 a^{w + i y 

w i t h 

a = a " ^ ( 2 a - l ) ^ and p{a) = {1 - a^)^. 

They found that the transfinite diameter of 5*̂  is given by 

^~ {2a-ly-^' 

Coleman and Smith [13] also derive an extremely neat way of generating the coefficients, 

l3i, in the Laurent expansion of the inverse mapping, 

They show that 

where 

tpiw) = p w + Po-\ f - . . . 
V w J 

k-1 

i/=0 

ak = Pk{x) + Pk-i{x) 

and Pn{x) is the Legendre polynomial of degree n and is generated f rom the following 

recurrence relation 

(n + l ) P „ + i ( x ) - (2n + l)a;P„(x) - f nP„_i(a;) = 0, for n > 1, 

w i t h 

P _ i ( x ) = 0, Po(x) = l . 

This enables them to generate the Faber polynomials f rom the recurrence relation (Property 

5). Coleman and Smith [13] find the coefficients of the Faber polynomial of degree n (4"^ 

for k = 0 , 1 , . . . , n ) f r o m Property 10 which is given in Ellacott [22] and Gaier [38], and 

they were then able to compute the coefficients efficiently using the trapezium rule (see 

after Property 10). Properties of the Faber polynomials gave them ways of assessing the 

accuracy of computed coefficients, and in particular they mentioned that was a 

rational number. Gatermann et al. [39], modified the above method by considering the 

scaled Faber polynomials 
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They were able to show that the coefficients were rational, and that the scaled Faber 
polynomials could be generated algebraically in terms of a parameter, c, depending on the 
half angle of the sector ( T T / Q ; ) . 

The first few scaled Faber polynomials are given by, 

m=*. (^), 
where 

$a(z) = ^ - 2 ( l - c ) 

^2{z) = ^ ' - 4 ( l - c ) 2 + ( l - c ) ( 2 - f 2 c ) 

$3(^) = z^ + [ i - c ) \-6z^ + (9 - 3c)z - 2 - i & 

and 

i f 2 - i 
a \ a 

(e) Other regions 

As was mentioned in Section 1.2.1 the conformal mapping, and therefore the Faber 

polynomials, are not known for many regions in the complex plane. In this final part of 

the section we w i l l review most, i f not all , of the remaining regions for which the conformal 

mapping is known. Of course, we may generate the Faber polynomials for any region whose 

conformal map is known, but the regions we give in this section were considered so the 

Faber polynomials could be determined. 

I n his thesis El l io t t [28] gives the mapping f rom the complement of the unit disc onto 

the complement of the square [z : |Re(z)| < 1, | Im(2) | < 1} . The mapping is a Schwarz-

Christoffel map and is given by 

/ • ^ / 1 \ 2 / 1 1 \ 

where D = 1.18034060. Following on f rom this, Ellacott [22] describes the mapping for the 

rectangle {z : \Ke{z)\ < A, \lm{z)\ < B}. 
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Figure 1.2: The complicated domain f rom Elhott 's thesis. 

El l io t t also gives the mapping for a quite complicated region, that is, |z ± a| = a-\/2, 

where a = \ /2 — 1 (see Figure 1.2). The mapping f rom the complement of this region onto 

io| > 2 is given by 

w — (f>{z) a' 
z — 

The mapping for a lemniscate of the fo rm 

\z'' + Ak_rz'-' + ... + Ao\=p', 

is given in Markushevich [57 . 

Eiermann and Varga [21] give the mapping f rom \w\ > 1 onto the complement of a 

hypocycloidal domain. The mapping is given by 

'if)(w) = aw + ^w^~^, 

where p is an integer greater than 1, a > 0, / ? G C and ^ ^ 0. The mapping is conformal 

in the region exterior to the unit disc i f and only i f [p — l ) | ^ | / a < 1. 

I n a recent paper Bartolomeo and He [4] study the Faber polynomials for a regular 

m-star, that is, 

Sm = {xw''; 0 < X < 4 - , ^ = 0 , 1 , . . . , m - 1, w"" = 1}, 
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w i t h m > 2. When m = 2, S2 is the interval [—2,2] (see Section 1.2.4 example (6)). The 
mapping 

z = w(l + 

maps I t i j l > 1 conformally onto the complement of Sm-

Final ly we note that i n a number of articles in the literature (see Ellacott [22], Starke 

and Varga [76], and Papamichael et al. [63]) a numerical conformal mapping package is 

used to generate the conformal map, and hence the Faber polynomials. The reason for this 

is an explicit formulae for the mapping is not known. However, the regions in question 

are polygonal and so a slight modification of Trefethen's SCPACK [77] can be used to 

numerically approximate the conformal map. From this approximate map we can then 

approximate the Faber polynomials. DriscoU [16] has recently adapted SCPACK for use in 

Matlab. He has also added some new features, that is, the ability to approximate exterior 

maps and being able to produce Faber polynomials. 



Chapter 2 

The Faber Polynomials for Annular 
Sectors. 

23 
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2ol I n t r o d u c t i o n 

I n this chapter we w i l l investigate the Faber polynomials for the annular sector, 

Q := {z : R<\z\ <l,e <\aTgz\ <7r}, w i th 0 < ^ < T T . 

The motivat ion for considering an annular sector is an appHcation to the solution of linear 

systems of equations (see Chapter 5). Eiermann et al. [17, 18, 19, 20], in their work on 

semi-iterative methods, consider the Faber polynomials as residual polynomials for the 

solution of linear systems of equations. Also, since our work began Starke and Varga [76 

have given an iterative method using suitably normalised Faber polynomials as the residual 

polynomials (see Section 4.4.5). In their case the Faber polynomials are required for some 

bounded region which contains the estimated locations of matrix eigenvalues produced by 

the Arnold i method or otherwise. Since one is working wi th a rough prediction of the 

eigenvalue spectrum i t is not necessary for the chosen enclosing region to bear any specific 

relation to the estimated eigenvalues. Professor G. Opfer suggested to my supervisor, Dr. 

J. P. Coleman, that an annular sector would be a useful general-purpose region which, by 

scaling and rotation, could be adjusted to enclose any estimated eigenvalue cluster bounded 

away f r o m the origin. This suggestion motivated the work in this chapter, and therefore 

the rest of the thesis. The main theoretical results of this chapter are summarised in the 

five following theorems. 

T H E O R E M 1. The complement of the unit disc {•«; : |io| < 1} is mapped conformally 

onto the complement of the annular sector 

g = {z : P < 1 ^ 1 < 1 ,^ < la rg^ l < T T } , 0 < ^ < T T , 

by 
-C- B{x) 

where 

and 

tp^w) = — exp 

1 

xA{x) 
dx 

( = _ {w' + l ) ( a - 2 - a^) - 2w{a-' + a^) 

A{x) = {x - a'^){x - a' B{x)= [x - b'){x - b-') 
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The parameters a and h satisfy the equations 

.62 

i a 2 

{P-x)(b-^-x) 

and 

\ogR=- ! 
Jb-

5-2 

62 

(x — a^)(a~^ — x) 

{x - b^){b-^ - x) 
{x — a^)(a'"^ — x) 

^ dx 
X 

2 dx 
X 

T H E O R E M 2. The transfinite diameter of the annular sector Q defined in Theorem 1 

IS 

P = 
(1 - a^) 

exp 
a2 ^2 ^ ^-2 _ 2̂ _ ^-2 

A(a;)[A(x)-FB(a;); ' 

T H E O R E M 3. The coefficients of the Laurent expansion 

i;{w) = p{w + /3o + Pxw-^ -t- • • •) 

of the funct ion defined in Theorem 1 may be generated recursively. Given a and 6, in the 

notation of Theorem 1, let 

u 
2a\l + 6 )̂ 
b\\-a^) ' 

Let ai = 0 for z < 0, ao = 1 and, for > 0, 

5 = 2 
1 - a" 

{k-\-l)ak+i = {2k + l){s - u)ak - 2k{s'^ - su - l)ak-i 

+ {2k - l){s - u)ak-2 + {I - k)ak-3 

and 

Cfc+i = afc+i - sttA: - I - ak-i. 

Then /So = C i , = | c 2 and, for n >2, 

n-l 

+ 1)^„ = C„+i - ^ lCn-tl3l. [n 
1=1 

T H E O R E M 4. The Faber polynomial of degree n for the annular sector Q defined in 

Theorem 1 is i ^ n ( ^ ) = p'^Fn{z), where p is the transfinite diameter of Q. The scaled Faber 
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polynomial may be wri t ten as Fn{pz) = + (l)n-i{z) and the ancillary polynomials 

are generated recursively, in terms of the Laurent coefficients of Theorem 3, by the formula 

U ^ ) = { Z - /3o^n-l{z) - J 2 M n - k - l { z ) - ^ A ^ " " ' - ( l + ^ )^n . 
k=l k=0 

T H E O R E M 5. The Faber series for z~^, expressed in terms of the scaled Faber poly­

nomials and the notation of Theorem 1, is 

1 ipa"^ 
z R{1 - a4) 1 + E T T ^ Fn{z) 

n = l 

Theorem 1, which is proved in Section 2.2, provides an expression for the mapping func­

t ion ip, whose inverse is a mult iple of the function 4> of (1.1); if z = ip{w) then (j){z) = pw, 

where p is given by Theorem 2. Section 2.2 also contains checks on the formulae contained 

in Theorems 1 and 2. The checks involve verifying that the mapping and transfinite diame­

ter formulae reduce to known results for the interval, the arc and the circular sector, which 

are all special cases of the annular sector. Section 2.3 establishes the formulae collected 

in Theorem 3, which allow the recursive evaluation of the Laurent coefficients essential for 

the computation of the Faber polynomials by the recurrence relation of Theorem 4. In 

addition to proving Theorem 4, Section 2.4 explores some of the properties of the ancil­

lary polynomials {4>n}, and shows how exphcit expressions for those polynomials may be 

obtained w i t h the help of a computer algebra system such as REDUCE or Mathematica 

or Maple. I n Section 2.5 we consider the mapping of the boundary of the annular sector. 

Section 2.6 considers how to obtain the conformal mapping, for an annular sector wi th 

arbitrary inner and outer radii , f rom the mapping given in Theorem 1, for the annular 

sector Q. As an example of a Faber series, the expansion of 1/z is investigated in Section 

2.7 where we find the simple formula stated in Theorem 5. 
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2.2 The Conformal Mapping for the Annular Sector 

I n this section we w i l l investigate the Faber polynomials for the previously defined annular 

sector 

g = {z : P < |z| < 1, ̂  < I arg 2| < T T } , 

where 0 < ^ < TT (see Figure 2.1). There is no loss of generahty in this choice since 

rotations and magnifications allow us to apply the results to any annular sector. For 

example, to work wi th the annular sector {z : R < \z\ < l , | a r g 2 | < 6} we make the 

transformations z —z and w —> —w, the latter being required to maintain the form of 

(1.1). To investigate the Faber polynomials we wi l l calculate an analytic function, i/^{w), 

which maps the complement of the unit disc, A = {w : \w\ < 1} , conformally onto the 

exterior of the annular sector Q. 

Figure 2.1: The annular sector Q 

The domain obtained by cutting C\Q along its intersection wi th the negative real axis 

is mapped conformally onto the shaded domain E of Figure 2.2 by the function 2 -> log 2, 
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where the principal value of the logarithm is taken. E is the interior of an infinite polygon 

w i t h finite vertices at the points l o g P ± iir, l o g P ± i6, ±i6 and ± iir. Conversely, the 

funct ion z ^ maps E conformally onto the cut version of C\Q, and the infinite edges 

of the boundary of E are mapped onto the cut. 

ITT 

log(R) \ \ 

-ITT 9 ^ 

E 

Figure 2.2: The domain E. 

A Schwarz-Christoffel transformation may be used to map the upper half-plane 

n = : I m u > 0} (see Figure 2.3) conformally onto the domain E, in such a way that the 

real axis is mapped onto the polygonal boundary in Figure 2.2 and the finite vertices of 

that polygon are the images of the points ±a~^, ± ^ ~ ^ ± ^ and i t a, wi th 0 < a < 6 < 1. 

The Schwarz-ChristofFel map has the form 

u{v) = u{a) + K r 
Ja 

where a, b and K are constants to be determined. 

Let 

{w - b){w + b){w - b-^){w + b-^) 
(w — a){w -\- a){w — a~^){w + a"^) 

i 
^ dw 

w 

Aix) = [{x - a'){x - a-')]K B{x) = [{x - b'){x - 6-^)]^ 

Then 

u{v) — u{a) = K 
Ja 

- B{w^) 
wA[w'^) 

dw 

(2.1) 

(2.2) 
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j""^ cosh a — cosh /3 

where we have wr i t ten 

,^ B(w^) - A(w^) , r., f v 

G- ' = e" and fe"'= e^. 

29 

(2.3) 

(2.4) 

Figure 2.3: The upper half-plane 11 

To determine the constant K we note that the positive real axis is mapped onto the 

upper boundary of the polygon in Figure 2.2 and the lower boundary is the image of the 

negative real axis. Therefore, for all v G (0,a), 

27ri = u{v) — u{—v) = K 

f r o m which K = —2. Furthermore, we require 

u[a) = 27r, 

and (2.2) becomes 

log - - log — - —Kiri, 

u ' y ) = zV — / 
J a 

B{x) 
xA{x) 

dx. 
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Assuming that a and h can be determined for any given annular sector, (see Section 3.1), 

the rest of the argument is similar to that of Coleman and Smith [13]. A composition of 

the Joukowski funct ion w —> ~{w''^-\-w) and a hnear transformation w ^ w sinh a —cosh a 

gives 

C = ( w ^ + l)smh.a — 2wcosha , (2.5) 

which maps C \ A , the complement of the unit disc A , conformally onto the slit plane C \ J , 

where J is the interval [—a~ ,̂ —a ]̂ (see Figure 2.4). Let L denote the interval (—oo,0] of 

the real axis. Then the function ( maps the cut plane C\L conformally onto the 

upper half-plane 11. 

By composition of the mappings described here we obtain 

z — tp(w) = — exp 
xA{x) 

dx (2.6) 

which maps C\L conformally onto the cut version of C\Q. A t the end of Section 2.2.2 

i t w i l l be shown that the cut introduced in C\Q may be removed and that C\L is then 

replaced by C \ J . 

Figure 2.4: The mapping ( 
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2.2.1 The defining equations for a and b 

31 

The symmetries inherent i n our choice of the pre-images of the vertices of the polygon, 

under the Schwarz-Christoffel map, preserve the relationships, which are evident in Figure 

2.2, between the lengths of the edges. The two distinct lengths which arise are 

•K — 6 = i [u{b) — u(a) 

and 

-logR = u{b)-u{b-^) . 

These equations, which may be wri t ten as 

TT 
Ja2 

{P - x){b-'- x) 

and 

2 [ ( x - a2)(a~^ - x) 

(x - 62)(6-2 - x) 

dx 

X 

^ dx 

X 

(2.7) 

(2.8) 
(x — a2)(a~2 — x) 

uniquely determine 0 and R for any given a and b such that 0 < a < 6 < 1. Furthermore, 

as the geometrical interpretation in Figure 2.1 requires, 0 < ^ < T T . Since the integrand in 

(2.7) is non-negative the right-hand inequality is true and, since 6̂  + is a decreasing 

funct ion of 6, 

Tr-9< t 
- Ja^ \(x -

1 - X dx 
= TT — 2 sin ^ 

2a 
(2.9) 

[ ( x - a 2 ) ( a - 2 - x ) ] ? X " Va2 + 1, 

i n particular, ^ > 0. The integral in expression (2.9) w i l l be calculated explicitly in Section 

2.2.4. Equation (2.8) may be expressed in a form which is more useful for numerical 

computation, by regarding its right-hand side as a sum of integrals on [6^, 1] and [1, . 

Making the transformation x —> in the second integral we obtain 

• ( x - 6 2 ) ( 6 - 2 - x ) l ^ dx 
\ogR 

762 (x — a2)(a~^ — x)_ 
(2.10) 

The integrals in (2.7) and (2.8) may be expressed in terms of eUiptic integrals of the 

first and th i rd kinds. Considering (2.7) we mul t ip ly the numerator and the denominator 

of the integrand by the numerator itself to give 

[1 - X (62 + 6-2) + .62 

X [(x - a2)(a-2 - a;)(62 - x){b-^ - x)]^ 
— dx. 
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The numerator of the resulting integrand is a polynomial of degree two in x, so the above 

integral can be wr i t ten as the sum of three integrals. Using a standard notation [66] we 

f ind 

Tr-9 = 
2ab 

1 - a262 
c^(^ , . ) + ( < . ^ - « - ) | n ( | . - . ^ M ) - n ( ^ , - A . . 

where 

and 

1 - aH^ 

C = 2(cosh a — cosh P). 

A similar method can be used to show that 

-2ab 

(2.11) 

logR 
1 - aH^ 

where 

h = 
{i-a^y^i-b'^y^ 

ko = 
(1 - b^) 

The functions F and 11 are the elliptic integrals of the first and th i rd kinds, and are defined 

as. 

and 

F{<l>,k)= f -== 
V I -

dr} 

k'^ sin^ 7] 

drj 

•̂ 0 (1 - usm'^r])^Jl - k 2 sin^ rj 

2.2.2 Formulae for ip(w) 

The mapping funct ion ^ may be wri t ten in several different ways, which we list here for 

later reference. 

By using the change of variable x x~^ in the first formula quoted, by taking as 

reference point instead of a as in (2.2), and by using the substitution x —> x~^ again we 

obtain 

-C- B{x) 
z = •\\)(w) = — exp 

xA{x) 
dx (2.12a) 
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where 

= — exp 

= —i?exp 

= —i?exp 

1 

Bixl 
xA{x) 

B{x) 

dx 

i : 

la-^ xA(x 

xA{x) 

-C- B{x) 
dx 

(2.126) 

(2.12c) 

{2.12d) 

( = (w^ + 1) sinh a — 2w cosh a 
2w 

I n some cases, particularly i f the integration interval may include the origin, i t is prefer­

able to remove the logarithmic term f rom the integral, as in the derivation of (2.3). Cor­

responding to the formulae (2.12) we have, wi th C as in (2.11), 

z = â C exp 

= exp 

RC 
= - r e x p 

EC 

L 
c 

2 A{x)[A{x) + B{x)] 
dx 

C 
-2 A{x)[A{x) + B{x) 

C 
2 A{x)[A{x) + B{x) 

dx 

dx 

7a-2 
c 

-2 A{x)[A{x) + B{x) 
dx 

(2.13a) 

(2.136) 

(2.13c) 

(2.13d) 

Other forms of the mapping, which do not involve the intermediate variable ( , may be 

derived f r o m (2.12). We consider, for example, (2.126) wi th the change of variable 

x = 
- 1 
2n 

{fi^ + 1) sinh a — 2fx cosh a 

W i t h this change of variable we find that when x — —( (the upper l imi t of the integral in 

(2.126)), we have either ^ = w or jj. = 1/w. Therefore, when x = —( we choose fi = w so 

that we are considering > 1 when \w\ > 1. We also note that x = a~^ corresponds to 

/ i = — 1 and similarly x = a'^ corresponds to ^ = 1. 
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Using the change of variable we have 

dx (1 — /i^) s inha 
d/j, 2^2 

and 

A{xY = {x - a'){x - a-^) 

1 
(yû  + 1) s inha + ^(a^ — a ^) (/x^ + 1) s inha + ^(a ^ — a^) 

4^2 

16)«2 
- 2^ + 1 fj.^ + 2n + l 

so that 

In a similar way 

w i t h 

A{x) = 
a-' - a' 

4/i 
i,^ - I). 

B{x) 
sinh a 

t = 

2fx 

cosh a — 6̂  

( ^ ' - 2 t / / + l ) ^ ( / f ' - 2 T / i + l ) i 

cosh a — b~^ 
(2.14) 

sinh a ' sinh a 

Therefore, w i t h the change of variable given above, the expression (2.126) finally becomes 

( / i 2 - 2 f ; / + l ) ^ ( / x 2 - 2 T / i + l ) ^ 
z = •0(zu) = — exp 

/
w 

-1 

dn (2.15) 
^(/i2 — 2/xcotha + 1) 

which, as mentioned previously, is an expression for the mapping which does not involve 

the intermediate variable ( . 

We note here that i G [0,1] and r G [—1,1]- From before we remember that 0 < a < 

6 < 1 and this w i l l be useful in the proof. Using —1 < —62 and — 6̂  < — we find 

0 < 
_ (1 - a'Y ^ 1 + - 2a^62 ^ ^ ^ 1 - ^ 

1 + g2 1 - g^ 1 - g ^ 1 - g ' ' 

Using - g ~ 2 < -6~2 and - 6 " ^ < - 1 we can also show that 

-1 = 
g4 - 1 1 + g^ - 2a^b-^ 

< 1 - g ' l 

1 - 2g2 + a'* ^ ^ 
= T < : : = z < 1. 1 - g 4 1 + a 2 — 
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Finally we can also show that t > T . We begin by noting that 6 ^ > 6 ,̂ so — 2a^6^ > 

—2a?b~'^ and therefore 

1 + g-* - 2a^6^ 1 + â  - 2a^6-' 
1 - a" - 1 - a 4 • 

Hence ^ > r for all a, 6 satisfying 0 < a < 6 < 1. 

To complete the proof that the function 0 provides the required mapping, f rom C \ A 

to C \ J , i t is necessary to show that we may remove the cuts introduced in constructing 

ijj. Let 

C 
X (C) = « exp 

= a exp -L 
A{x) [A{x) + B{x) 

C 

dx 

dx 
A{x)[A{x) + B{x)] 

The denominator of the integrand is a single-valued analytic function in C \ J , the region of 

the complex plane exterior to the slit J , and i t does not vanish in that region. Integration 

gives a single-valued analytic function in C \ J and the identity of the two integrals shows 

that i t remains finite as ( —> oo. I t follows that x{C) is a single-valued analytic function in 

C \ J and, consequently, C x ( C ) is also single-valued in C \ J . Since the part of the interval 

L which lies in C \ J is mapped onto that part of the negative real axis which lies in C\Q, 

the funct ion tp given by (2.12) and (2.13) maps C \ A conformally onto C\Q. 

2.2.3 The transfinite diameter 

Given the mapping, z = ip(w), f rom the outside of the unit disc to the outside of the 

annular sector Q, we define, as in Chapter 1, 

p : = hm 
tU—•CO 

(2.16) 

and (t){z) = ptl;'^(z), where denotes the inverse mapping of tp. Then (f>{z) w i l l map 

C\Q conformally onto the complement of the disc {w : \w\ < p}, so the number p is the 

transfinite diameter of the annular sector Q. As to ^ oo, 

( = -w sinh a 
Li 

1 + 0 
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Therefore, f r o m (2.13a) and (2.16), 

(1 - a') 
exp Jo A{x)[A{x) + B{x)] '^'^ 

(2.17) 

2.2.4 Special cases 

There are three special cases of an annular sector which provide useful checks on the 

mapping, the formula for the transfinite diameter and the Faber polynomials themselves. 

I n this section we shall show that the mapping and the transfinite diameter are correct for 

the three special cases namely the real interval, the circular arc and the circular sector. 

C a s e (i) 6 = a. A real interval . 

When 6 = g the upper and lower l imits in the integral of equation (2.7) are the same, so 

the integral is zero; the only possible exception to this is when the integrand is infinite, 

but this only occurs when 6 = g = 0 and we are considering a > 0 so we can ignore this. 

In this case equation (2.7) gives 

^ = 7r. 

Also when 6 = a, equation (2.10) becomes 

Ja? X 
= - 2 [ l o g ( l ) - l o g ( g ^ ) 

From this we have R = a'^ (again wi th the exception of 6 = g = 0). Consequently the 

annular sector Q becomes the interval [—1, — i?] of the real axis. 

From (2.3) i t is evident that 

u{v) = iir - 2 log 

when 6 = g, because cosh a = cosh /? and so the integrand vanishes. Therefore, a,sv = 2, 

z = e- = aH-]:(w + - ) { l - R ) - ^ 1 + R), 
4 V wJ 2 
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which, comparing w i t h Section 1.2.4 example (6), correctly maps C \ A onto the complement 
of the real interval [—1, —R . 

When 6 = g, (2.11) gives us C = 0, so the integrand in (2.17) vanishes, and the 

transfinite diameter in this case is given by 

( l - g ^ ) _ 1 . 

which again agrees wi th Section 1.2.4 example (6) 

C a s e (ii) 6 = 1. A c ircular arc. 

T H E O R E M 6 

When 6 = 1 we have R = 1 and 6 = 2sin"^ [2g(g2 + l ) - i ; . 

Proof 

The first part of Theorem 6 is easy to prove. When 6 = 1 the upper and lower l imits 

of the integral i n (2.8) are the same, so the integral vanishes and we have i? = 1. 

For the second part consider equation (2.7) w i th 6 = 1 , 

— 
•̂ a2 a;(x —g2)2(a — x)2 

We then make the substitution x = e* and remember g"^ = e", so when x = g^ we have 

t = ln{a^) = —a. The equation can now be wri t ten as 

(1 - e*) dt 
T T - e 

J-a [(g2 + a-2je* — 1 — e2*]2 

fO (e"? - el)dt 

J-01 [2 cosh a — e"* — e*]2 

/•o -2 s inh | c? t 

J-a (2 cosh ct — 2 cosh t) 2 

/•o - 2 sinh I 

(2 cosh a - 4 cosh^ | + 2) 2 
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We now make the substitution y = cosh | , and note that 

l + â  

38 

Hence 

cosh ( - — 1 = 

7r-9 

+ 
2a2 2a 

= 7, cosh a + 1 

-idy 

= - 2 

7 [(27)2 -4? /2 ]^ 

sm 
. 7 . 7 

/ l \ 
= - 2 s i n ' ^ - + 2 s i n " ^ ( l ) , 

V 7 / 

and 

e = 2sm-^ 
2a 

(2.18) 

The annular sector Q therefore degenerates, when 6 = 1, to an arc of the unit circle 

z\ = 1, of half-angle TT — 9. The question is do the formulae for the mapping and the 

transfinite diameter agree w i t h the known results for the circular arc. 

When 6 = 1, r = t = co tha - 1/sinh a in (2.15) and 

p^ -2tp + l 
ip(w) = —exp 

/
w 

-1 

= 10 exp 

p{p'^ - 2^co tha 4- 1) 

2 r dp 

dp 

J: sinh a J-i p"^ — 2p coth a -|- 1 

Using partial fractions we have 

sinh 

dp 
p"^ — 2p coth a - f 1 

In 

= In 

sinh a 
+ 

sinh a 

p sinh a — cosh a - f 1 p sinh a — cosh a — \ 

sinh a — cosh a — 1 \ ^ 

j u sinh a — cosh a-\-\j\_^ 

(1 - a > - (1-t-a^)^ 

= In 

(1 - a4)u; - (1 - a2)2 

( l - a 2 ) i o - ( l + a2) 

(1 - a^) 
( l + a2) 

(1 + a'^)xD - (1 - a2 
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Noting that tanh | = (1 — g ^ ) / ( l + g^) the formula for the mapping becomes 

z = •\l){w) = 
io(ti)tanh f — 1) 

w — tanh I 
(2.19) 

Comparing this w i th example (c) f rom Section 1.2.4, we see that this is the desired 

mapping provided that tanh | = cos | , wi th Q given by (2.18). We note that 

cos cos 

COS 

sm - 1 2g 

- 1 

H - a 2 
l - g 2 
1 + g 2 I COS 

l - g 2 
l + g 2 ' 

We choose this value of the cosine because 0 G (0,7r] , so Bj2 G (0,7r/2], and hence 

cos(6'/2) > 0. Finally we have 

cos - 1 

tanh —. 

Hence the mapping function agrees wi th example (c) in Section 1.2.4 and correctly maps 

C \ A onto the complement of the circular arc 

{ z : 1̂ 1 = 1, ^ < | a r g z | < 7 r } , 

where B is given by equation (2.18). 

From the expression (2.19) for ^/'(lu), the transfinite diameter of the arc is 

p = tanh — = = cos -
^ 2 \ l + g2y 2 

which, w i t h allowance for the difference in notation, agrees wi th EUacott [23] (see also 

example (c) i n Section 1.2.4). As a check on formula (2.17) we should confirm that when 

6 = 1 the formula gives the same result for the transfinite diameter. When 6 = 1 formula 

(2.17) becomes 

; i - g4) 
exp i 

2(cosho - 1) dx 
0 A(x)2 + A ( x ) ( x - 1 ) 
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Making the substitution 
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= — ^ (/̂ <̂  + l)sinhQ! — 2/Licosha 
2p 

as i n Section 2.2.2 and wri t ing (see equation (2.38) in Section 2.7) 

. l + â  
w — 1 - a 2 

the transfinite diameter becomes 

P = " — — - e x p 
(1 

4 

(1 
4 

(1 
4 

L' (1 -

4(cosh a — l)dp 

exp 

exp 

/ ' -

p'^) sinh a — (1 -h p'^) sinh a -\- 2/i(cosh a — I ) 

4(coshQ: — 1) dp 

J: 

2//2 sinh a — 2p{l — cosh a) 

2(cosh a — l)dp 

p(p sinh a -|- 1 — cosh a) 

The integrand in the above expression is wri t ten as 

2 sinh a 2 
+ p p sinh a + 1 — cosh a' 

so that the transfinite diameter can then be expressed as 

P = 
(1 - a') 

exp 2 In w * sinh a + 1 — cosh a' 
2 In (sinh a - f 1 — cosh a) 

Finally we note that 

and 

sinh a - f 1 — cosh o; = 1 — â  

w* sinh a + 1 — cosh a = 2 

so the transfinite diameter is now wri t ten as 

(1 - a') 
4 

( 1 - a ^ ) 

exp \ l + a2 / 

( l + a2) 

This agrees w i t h the formula for the transfinite diameter on the previous page. Hence, 

when 6 = 1 , formula (2.17) gives the correct result for the transfinite diameter. 
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C a s e (ii i) a —> 0 and 6 ^ 0. A c ircular sector. 

T H E O R E M 7 

We have 0 an/b and 7? 0 in the l imi t as g —̂  0 and 6 ^ 0 . 

Proof 

I n the integrand of (2.7), x < < 6"^ < a'^ when 0 < g < 6 < < 1. Expanding (6"^ -

x ) 2 ( a ~ 2 — x ) ~ 2 , i n terms of a and 6, we obtain, 

( 6 - 2 - x ) ^ ( g - 2 - x ) - ^ = ^ ( l - ^ 6 \ + 0(6"*)) ( l + ^g^x + 0(g'*)) 

= ^ ( l + O(g^) + 0(6^)) , 

as g —> 0 and 6 ^ 0 . Substituting this in (2.7) we have 

•la^ x (x — g ' 'j2 vo ^ ' / 

We now consider the integral 

6 A 2 a ; ( x - g 2 ) 2 6 J a 2 a; [(x - g2)(62 - x)]^ 

w i t h 

2x = g ' + 62 + ( 6 ' - g 2 ) s i n t , 

the integral becomes 

" ( 6 2 _ a 2 ) _ ( ^ 2 _ ^ 2 ) g j j ^ ^ 
g /• 2 

^ bJ-^ (62 + a2) + ( 6 2 - g 2 ) s i n i 

We now make the substitution t a n f / 2 = s so that 

. _ 2s dt _ 2 

and the integral is now given by 

2(62 _ ^2) (̂ 2 _ 25 + 1) ds 

dt. 

I 6 7 -1 (1 + 52) [(62 + g2)52 + 2s(62 - g2) + (62 + g2)] 
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b 7-1; (62 + a2)52 + 25(62 - a2) + (̂ ,2 + ^2) ^2 + 1 ^ 
ds. 

2a /•! 26^ 
ds 

_ 2a /•! 1 

6 7-1 5 2 - M 6 7-1 (62 + a2)52 + 25(62 _ + (62 + a2) 6 ^ - i 5'̂  + 

Making the substitution 5(6^ + a^) = 2{ab)y + (a^ — 6 )̂ we have 

2a /- i ds 

ds 

I y - a 1 + J/2 6 7-1 1 

t a n - ^ ( y ) ] " ^ - - [ t a n - i ( 5 ) J _ ^ 

7ra 
= TT — 

Substituting this integral into the expression given above for TT — ̂  we find 

Tr-9 = 

so when a 0 and 6 ^ 0 we have 

a-TT 
TT 1 + 0{a^) + 0(6^) 

7ra 

Similarly, f r o m (2.10), 

6 Jb^ x(x - a2)2 ^ 6 A 2 x ( x - a 2 ) ^ 

Making the substitution y"^ = {x - b'^)/{x - a^) we find 

2a y i ( x - 6 2 ) l 2 a r 
Y dx — 

2a fy° 2y^b^-a^)dy 

42 

(2.20) 

lb^x{x-a'^)2 b Jo (62 - a2?/2)(l - y2-) 

w i t h yo = (1 - 6^)2 (1 - a 2 ) ~ 2 . Using partial fractions we are able to evaluate this integral 

as 
2a 

T 
- log(6 - ay) - - log(6 + ay) - log( l - y ) + l og ( l + y) 
a a 

yo 

J O 

Substituting this back into our expression for log R we find 

2a 
l o g i ? = -

, l + yo\ , b b-ayo\ 
log + - log ] — 

\l-yoJ a \b-{-ayoJ 
(1 + 0{a') + 0(62)) 
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From ( 2 . 2 0 ) we see that as a and 6 both tend to zero we may write a = A6. So for small a 

and 6 we find 

So that 

log R^2X 

R 

log 
1 + 2/0/ \l-Xyo^ 

yoV^ (1 + A y o V ^ 

1 + 2/0. ,1 - ho, 

As a -> 0 and 6 0 we have yo = A / I - 6 2 / ^ 1 - g2 1 . Therefore i? ^ 0 as a and 6 

both tend to zero, that is, w i th the exception of A = 1 and A = 0. When A = 0 we note 

that a tends to zero independently of 6 (that is 6 may not be zero). When A = 1 we have 

g = 6 ^ 0 , that is, we are considering the interval case (see case (i) i n Section 2 . 2 . 4 ) in the 

l i m i t as a —> 0. Referring to this case we see that i? ^ 0 as a ^ 0. 

Hence, /? —> 0 as a and 6 both tend to zero. • 

I f we consider the l im i t a —»• 0 and 6 ^ 0 , wi th a = A6, then we can remove the small 

g and 6 argument f r o m the previous proof (see Appendix A for the details). 

Theorem 7 implies that in the l im i t as a and 6 both tend to zero the annular sector Q 

tends to the circular sector 

: |2r| < 1 , ^ < I arg z\ < T T ) 

where 9 = ira/b and so our results i n that l im i t should agree w i t h those of Coleman and 

Smith [13] and of Gatermann et al. [39 . 

To find the transfinite diameter in the required l imi t we write a = A6 in equation ( 2 . 1 7 ) , 

and make the substitution x = /62, to obtain 

( 1 - A''6^) 

where 

/ ( A , 6 ) = / 

p='^ ; ^ e x p [ J ( A , 6 ) ] , 

[64(A2 - 1 ) + A-2 - 1 ] dt 

(A2 - t )^ (A -2 - t64)l [(A2 - t ) t ( A - 2 - t¥)^ + ( 1 - tY^l - bHy2 

I n the l i m i t as 6 0 this reduces to 

p = - exp 
A' ( A ( 1 - 0 ^ 

( A 2 - 0 ^ 

dt 
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Substituting j/2 = (1 _ t)l{X^ - t) we have 

44 

p = - exp r 
2 y { l - \ ' ) d y 

( y 2 - l ) ( A y + l ) J 

and using part ial fractions we are able to convert the integral to a sum of elementary 

integrals and we find 

P = I exp 

4 exp 

= - e x p 

r 

log < 

2A / I - A 1-f A 

\ y - l ^ l + y ~ Ay + l 

{ y - i y - \ y + iy^'\'^ 

. . (Ay + 1)^ L -

j - ( 4 A 2 ( 1 _ A ) A -

l + A • ( 1 - A ) ^ - ( 1 + A) 

I n this Hmit A = ^ / T T , where the half-angle of the sector is TT — ^. We now show that our 

expression for the transfinite diameter agrees w i t h the transfinite diameter in Coleman and 

Smith [13]. I n their notation T T / C K is the half-angle of the sector, so that in our expression 

A = 1 - -

and the transfinite diameter is given by 

P = 
a 

{ 2 a - l f - t 

Comparing this expression w i t h Theorem 2 of Coleman and Smith [13] (see example {d) of 

Section 1.2.4) shows that our expression is the transfinite diameter for a sector of the unit 

disc of half-angle 17 — 9. 

Similar reasoning apphed to the integral in (2.13a) allows us to compute •00, the l imi t 

of the mapping funct ion •!/; as a and 6 both tend to 0. Substituting x = tb"^ into the integral 

i n (2.13a) we find 

z — a^C, exp [—J(A, 6) 
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where the integrand in J(X,b) is the same as the integrand in /(A, 6); however, the lower 

limit on the integral is and the upper hmit is —C~ /̂̂ -̂ Noting that 

1 

as a —0, we find 

iw exp /--0 1 ( A 2 - f ) l J t 

where XQ = 4:X'^w{w — 1) ^. Once again we make the substitution = (1 — t)/(A^ — t) 

(see the transfinite diameter calculation on pages 43 and 44) and find 

z = Aw exp log ( ^ - 1 ) ^ - ^ ( 1 + y) 
(Ay + ly 

l+A 

yo 

where yo = +XQ)j{X^ + XQ). 

We shall show that this expression for the mapping function is the same as the mapping 

function given by Coleman and Smith [13]. To avoid conflicting uses of a we shall slightly 

alter the notation of Coleman and Smith and write for a. Coleman and Smith give the 

mapping function for a sector of the unit disc with 0 < | arg Z\ < ir/a as 

u + ^/u^ — 1 
Z = il;{W) = p{ac) ' 

W l i th 

anc 

u{W) 

v{W) 

l-al--

i{W-l] 

{2-ai\w - \ y ^mai 
ai{w^\y 

a) 
piac) = 1 -

1 

a 
In our case we have shown that A = (1 - 1/a) = p{ac) and 1 - = 
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Coleman and Smith place their sector symmetrically about the positive real axis and we 
place our sector symmetrically about the negative real axis. This means that to compare 
the mapping function of Coleman and Smith with ours we must make the transformations 
Z ^ —z and W —> —u), where the second transformation is used to preserve relation (1.1) 
(see the beginning of Section 2.2). When considering these transformations we must be 
careful to consider the correct branch of the square root in u{W\ We note that \fW is 
real and positive when W is real and positive, that is when w is real and negative. Now 

= -^jti^exp idji where Q is the argument of z«, so when w is real and negative we have 
= i^\w\. So = \/—w ~ ±iy/w = ^^J\w\, and we must have VW — —iy/w to be 

on the correct branch of the square root function. 

This means 

u{W) = u{—iu) = 

and 
(2 - al){w + ly - 4wal v(W) = v{—w) = 

al{l-wy 
Returning to our mapping, we see that it may be written as 

_ (w-iy{l + Xyor ( y o - l \ 
Z — 

AwX^iy'o-l) \yo + lJ ' 

and because p(ac) = A we now prove that 

V + Vv^ - 1 = and [u + yjv? - 1) = — , o TT-

LEMMA 1 
( w - m i + Xyoy 

{u + y/v? - rf 
4wX\yl-\) • 

Proof 

From previous expressions for XQ and T/Q (see page 45) we find 

.2 _ 1 + xo _ 4wX^ + (w - 1) 
" A ^ T ^ ~ A2(u; + 1)2 

Hence 

1 + Ayo = 

2 

10 + 1 + J\wX^ + (lO - 1)2 

W + 1 
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and 

Therefore 

, {i-x'){w-iy 
A2(u; + 1)2 

{w-\y{i + xyoy _ [t» + 1 + \IAWX' ^{W- ly 
AwX\yl-l) Aw{l - A2) 

w + l + y(to + l )2 + 4 ^ / ; ( A 2 - l ) 

iw{\ - A2) 

w + l + ^{w + 1)2 - 4 a > 

= {u + Vu^ - if 

LEMMA 2 

V + = 
'yo±l 
. 2 / 0 - 1 , 

Proof 

We note that v + - /̂v^ — 1 is one of the roots of 

x^ -2xv + l = 0, 

so for the lemma to be correct (yo + l)/{yo — 1) must satisfy 

V 2 / 0 - 1 / \yo-lJ 

Rearranging this equation we find that it is true if and only if 

From before we know 

( i - A ^ ) ( ^ - i r 

(2.21) 

A2(u; + 1)̂  
and yo + I 

, , ^ _ (A^ + l)(u; + l ) ^ - 4 t . ( l - A ^ ) 
x^{w + iy 
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so 

yl + 1 ^ {X' + l){w + i y - i w { l - X ' ) 
vl - 1 (1 - A2)(^^ - \ y 

(2 - al){w + I f - 4wal 
al(w - 1)2 

V. 

This means that v = {y^ + l)/{yl - 1) so from (2.21) 

= V ± \ / u 2 — 1. 
2/0 - 1 

We note that as it» —> 1 then v —> oo so + y/v^ - 1 —>• oo and v - \/v'^ - 1 ^ 0. Finally 

we note that us w 1 then xo ^ oo and yo ^ I so {yo + l)/(?/o - 1) —>• oo and hence 

2/0 + 1 
yo - 1 

= V + v V — 1 . 

These two lemmas confirm that the map we have derived correctly reduces to that for 

a circular sector in the Hmit as a —> 0 and 6 —> 0 with a/b = O/ir. 

2.3 The Laurent expansion of ip{w) about the point 
at infinity 

As in Chapter 1 (see equation (1.4)) the function t/}{w) has a Laurent expansion of the 

form 

i}(w) = p{w + /?o + l^iw-^ + •••) 

about the point at infinity, and as before the coefficients of this expansion are required in 

a recurrence relation used to generate the Faber polynomials (property 5). In this section 

we wil l show how these coefficients, for the mapping '^{w), can be generated from simple 

recurrence relations. 

Differentiation of (2.15) gives 
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where 

M{w,y) = {w^ - 2yw + l ) ^ . 

If we now let lu = and \I'(^) = tp{w), equation (2.22) may be rewritten as 

Since \t\ < 1 and | r | < 1, there is a convergent expansion of the form 
C O 

[M{i,t)M{i,T)]-' = Y.a,e (2.24) 
fc=o 

for 1̂1 < 1. Substitution in (2.23) gives 

where 

Cjt = ak-2 — 2 coth a. ak-i + GA;, k> 0, (2.26) 

with a_2 = a_i = 0. Also, from (1.4), 

for |<f I < 1. We may substitute this in (2.25) and equate coefficients of the powers of ^ on 

both sides to obtain = Ci, /?i = \c2 and, for n > 2, 
71-1 

( l + n ) / ? „ = c „ + i - X : « c „ _ , A . (2.27) 

The recurrence relation in (2.27) and the definition (2.26) allow us to generate Pi,..., 

Pn, for a given positive integer n, when ak is known for = 0 , 1 , . . . , n + 1 . In the case of cir­

cular sectors, Coleman and Smith [13] found a very simple expression for the corresponding 

coefficients in terms of Legendre polynomials. A similar approach can be used here; noting 

that M{w,y) is the reciprocal of a generating function for the Legendre polynomials, that 

i s . 
oo 

M{w,y)-' = (1 - 2yw + w^)-^ = ^ P„(?/)u;", 
71=0 
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where Pn{y) is the Legendre polynomial of degree n. Therefore 

\n=0 / \m=0 / 

n=OTn=0 

The coefficient of in this expression is 

j:Pi{t)PUr). 
1=0 

A comparison with equation (2.24) gives 

k 

/=o 

This formula has the computational disadvantage that as k increases an increasing number 

of Legendre polynomials must be evaluated and stored. For this reason we have derived a 

five-term recurrence relation from which {a^.} may be computed directly. Let f{t,T,^) be 

the function in (2.24). Then, by differentiation and rearrangement. 

+ r - 2^(1 + 2tT) + 3{t + - 2 e ] f i t , T, 0 

2^/1 o^c . c2^9f{t,T,0 

Equating the coefficients of the powers of { on both sides of the equation we obtain 

{k + \)ak+i = {2k + l){t + T)ak - 2k{l + 2tT)ak-i 

+ {2k - l){t + T)ak-2 + (1 - k)ak-i 

for k>0, with ao — I and ai = 0 for i < 0. With 

cosh a , „ cosh /? 
s = 2 -—— and u = 2-—— 

smh a smh a 

this becomes 

{k + l)ak+i = {2k + l)(s - u)ak - 2k{s^ - su - l)ak-i 

+ {2k - l){s - u)ak-2 + (1 - k)ak-3. (2.28) 
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2o4 The Faber Polynomials 

The Faber polynomials, F„{z), satisfy the recurrence relation 

Fn+i{z) = {z- bo)Fr,{z) - ^ hFn-k{z) - ( l + n)6„, n > 0 (2.29) 
k=i 

where = pkp'''^^, p is the transfinite diameter of the region, and the /3k are generated 

from the recurrence relations above. Following Gatermann et al. [39], we introduce the 

scaled Faber polynomials 

Fn{z) = Fn{z)p-'' = $„ I -) (2.30) 
\PJ 

and let 

$„(z) = 2" + <^,_i(z) (2.31) 

where 4>n-i is a polynomial of degree n — 1 for ?2 > 1, and ^_i(z)=0. 

Substitution in (2.29) gives the recurrence relation 

M z ) = {z- l3o)4n-i{z) - E Mn-k-i{z) - ^ A-^"-'^ - (1 + n)^„. (2.32) 
fc=l k=0 

Our notation differs slightly from that used by Gatermann et al. [39], in their work on 

circular sectors, because no factor analogous to their 1 — c is evident, except in the limit 

as a —> 0 and 6 —> 0, when the annular sector tends to a sector of the unit disc. Given the 

Schwarz-Christoffel parameters a and b corresponding to a particular annular sector, the 

Faber polynomials of degree up to nmax may be computed by the following algorithm. 

Algorithm 

5 = 2(1 + a4)/(l - a'*); u = 2a^-^{l + b'')/(l - a% 

a_3 = a_2 = d-i = 0 ; ao = 1; ai = s - u; 

ci = ai - s; l3o = ci; = -^o; 

Fo{z) = l; F,(z) = z + p<l>o. 

For n = l,ninax - 1 

« n + i = [{2n + l){s - u)a„ - 2n{s'^ - su - l)a„_i 

+ (2n - l)(s - u)a„_2 + (1 - n)a„_3]/(n + 1); 
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/Sn = ( C T I + I - Er=i' lcn-i/3i)/{n + l ) ; 

<^77 = (^ - Mn-1 - E ^ l J Wn-k-l + Z--') - (1 + n)l3n - /SQ̂ "; 

end. 

Example Wi th nmax = 2 we obtain 

ao = 1; ai = s — u; 

ci = -u; (3o = -u; 

4>o = u; 

a2 = {s^ -4su + 3u'^ + 2)/2; 

C2 = {-s^ -2su + 3u'^ + 4:)/2; 

/3i = (-5^ - 2su + 3u2 + 4)/4; 

<?ii = 2uz + {s^ + 2su -V? - 4)/2; 

ag = (-5^ - 35^^ + 9su2 - bu^ + 8s - 8u)/2; 

C3 = (-2^3 + ^^ti + 651̂ 2 - 5ti3 + 8s - 10u)/2; 

^2 = (-45^ + + 105^2 _ 7^3 ̂  - 16u)/12; 

3u^2 + (3^2 -f 6su + 3^2 _ l2),?/4 + (25^ + s^u - 25^^ + u^ + 2u- 8s)/2. 
02 =• 

Then 

$1(0) = ^ + u, 

$2(^) = + (̂ 1 = 2u2 + (s^ + 2su - - 4)/2, 

$3(^) =r 3̂ ^ 3uz2 + (35^ + 6su + 3u2 - 12)z/4 + (25^ + s^'u - 2su^ + + 2u - 8s)/2. 

2.4.1 Special Cases of Faber Polynomials 

As mentioned previously there are a few special cases that provide checks on our work. In 

this section we will show that the first few Faber polynomials are in agreement with the 

first few known Faber polynomials for the special case regions. 
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Case (i) b = a 

When b = a we have 
2{l + a') 

In this case 

# i (^ ) = z + 

M^) = z' + 

Mz) = z' + 

2(1 +a') 
(1 - a-*) 
4(1+ a4) 

z + 
4(1.+ a^y 

( l - a - * ) (1-a^)^ 
6(1 + g-̂ ) 
(1 - a-*) 

- 2 

4̂ 2 4(1+ a 
(1 - a^y z + 

2(1 + a-* 
(1 -

4(l+_a^2 
(1 - a'')^ 

so that (see (2.30)) 

z + 
(l+R) 

F,{z) = z' + {l + R)z+^-[2{l + Ry-{l-Ry 

Fs{z) = z' + l{l+R)z' + ^[A{l + R y - { l - R y z 

^32 
4(1 + E)^ - 3(1 + i2)(l - i?)^ 

53 

where we have used p = (1 — R)/A and = R. 

As we saw earlier, in this case the annular sector becomes the real interval [—1, —R . 

The Faber polynomials should then become scaled multiples of the Chebyshev polynomials 

for the interval [—1,1]. For [—1,1] the first few Chebyshev polynomials are 

Ti{x) = X, T2{x) = 2x'^ - 1, T^{x) = 4x3 _ 

Mapping [—1,1] to [—1, —R\ using the transformation 

z = \{l^R)x-\{l + R) 

gives us 

2z ^ 1 + i? 
(1-7?) 1~R 
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_ 8.2 8z{l + R) 2{l + Rf 
' (1 - R y {I-Ry (1 - R y 

P(z) - 32.3 48z\l + R) 2 24(1 + R) 
(1 - Rf (1 - R) 

4(1 + Rf 3(1 + R) 
^ {l-Py ( 1 - i ? ) 

Finally, scaling these polynomials so that they are monic, we see that we have agreement 

with Fi{z), F2{z), F3{z) above. So the first few generated Faber polynomials agree with 

the known results in this special case. 

Case (ii) 6 = 1 

When b — 1 the annular sector becomes an arc. From example (c) in Section 1.2.4 we 

know that the first few Faber polynomials for this region are given by 

F,{z) = z + { l - p ' ) 

F2{z) = z' + 2{l-p')z + {l-p') 

Fs{z) = z' + 3{l-p')z' + 3{l-p')z + {l-p') 

where p = {1 - a^)/( l + a^). Using equation (2.30) we find that 

P 

P P^ 

= 3 ( 1 - ^ , . , 3 ( 1 - ^ , ^ ( 1 ^ . 
p p^ p3 

When 6 = 1 we have 
2(1 + a )̂ _ 4a2 

S = — T T - , U = 
( l - a ^ ) ' ( l - a ' ' ) 

and the first few $i's generated by our algorithm become 

4a2 
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^2{Z) 
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, 8a^ 8a\l + a^) 
z + z 7Z+ ^ ' 

1-a^ [1-a^y 

^ , , , 12a2 , 12a2 4 a 2 ( 3 a ^ + lOa" + 3 ) 
$ 3 ( 2 ) = z^ + - -z^ + - + 

1-a^ (1 - a^y (1 - â )= 

Remembering that p = {1 - a^)/(l + a^), the coefficients of both forms of the above 

polynomials are all the same, for example 

1-p^ 1 + a' 
1 -a2 

; i -
1 -

{1-a^y ( l + a2)2_ 

So that, once again, the first three generated Faber polynomials agree with the known 

special case. 

Case (iii) a 0 , b ^ 0,a/b = X = O/TT 

In the limit as a ^ 0 and 6 —> 0, the annular sector becomes a sector of the unit disc. In 

Section 1.2.4 example (d) we give the first few Faber polynomials for this region in terms of 

a parameter c used by Gatermann et al. [ 3 9 ] . When the half-angle of the sector is written 

as 7r/a the parameter c = (2 — 1/a)/a. 

In this case we have s —* 2 and 

u 2X' = 2 
77 

' T T — w/a^ 

= 2 

= 2 ( 1 - c ) . 

1 - 1 ( 2 
a 

The first few polynomials generated by our algorithm become 

$ i (^ ) = z + 2{l-c) 

^2{z) = z^ +A{l-c)z + 2{l + c){l-c) 

$ 3 ( 2 ) = z^ + 6(1 - c)z^ + ( 9 - 3 c ) ( l - c)z + (1 - c ) ( 4 c ' + 2) 
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Following Coleman and Smith [13], Gaterman et al. [39] considered a sector symmetric 
with respect to the positive real axis. Therefore, to compare the above polynomials with 
those generated by Gatermann et al. [39] we need to symmetrically position our annular 
sector on the positive real axis, this involves the mappings z —> —z and w —> —w (see 
Section 2.2). The overall effect of these changes is that instead of $ „ ( . ) we must consider 
( —1)"$„(—2). A comparison with the polynomials given in Section 1.2.4, example {d), 
shows that our first few generated polynomials once again agree with the known results in 
this case. 

2.4.2 The coefficients of (l)n{z) 

Letting 

M ^ ) = EPn,,z''-' (2.33) 

in the recurrence relation (2.32) gives 

E P n , , ^ " - ^ ' = E - E ^̂ -"E ' Pn-k-^.z""-'-'-^ 
j^O j=0 k=0 J=0 

- " f ^ ' ^ , z - ' = - ( l + n)^„. 
k=o 

In the second sum of the righthand side, we make the substitution j = t — k — 1 and 

therefore 

j : ^ ' ^ ~ j : \ n - k - , , Z - - ' - ' - ' = E E ^ P n - k - l . - k - l Z - - ' . 
k=0 j=0 k=0t=k+l 

Writing EVO EtM as Er=i E1=O implies that 

Ep.,.^""^' = E P n - l . Z - - ' - E E ^ . P n - . - l , - . - l ^ " - ' 
j=Q j=0 i = l A:=0 

- g ^ , ^ " - ' = - ( l + n ) / ? „ . 
k=o 

By equating coefficients of 2 " we find that 

Pn,0 = Pn-1,0 - Po] 
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equating coefficients of z^ implies that 

71-1 

Vn,n = - X] /3kPn-k-l,n-k-l " (1 + •>T')l3n 
k=0 

= -J2l^n-lPl-l,l-l-{l+n)/3n; 

and for z = 1 , . . . , n — 1 equating coefficients of z' implies that 

71-1 —1 

Pn,n-i = Pn-l,n-i - ^ l^kPn-k-l,n-i-k-l - Pn-i 

k=0 

= Pn-l,n-i - X] Pn-\Pl-\,l-i-l - Pn-i-
l=i+l 

Grouping these results together and using po,o = and = — w e find that 

7̂1,0 = Pn-ifi - /3o = {n + l)u, (2.34a) 

P7^,7^ = - E Pn-kPk-i,k-i - (1 + n)Pn (2.346) 
k=i 

and, for i = 1 , . . . , n — 1, 

Pn,n-i = Pn-l,n-i " Pn-kPk-l,k-l-x ~ Pn-i- (2.34c) 
k=i+l 

In the interest of brevity we shall use the term A-polynomial to describe a polynomial 

in two variables, s and u, which is invariant or changes sign, under the planar antipodal 

map (s, u) —>• (—s, —u), according as the degree of the polynomial is even or odd; in other 

words, such a polynomial of even (odd) degree contains only terms of the form s'u-' where 

i + j is even (odd). 

THEOREM 8. The coefficient pnj, for n = 0 , 1 , . . . and j = 0 , . . . , n, is an A-polynomial 

of degree j + 1 in s and u. 

Proof. An induction argument applied to the recurrence relation (2.28) shows that is 

a polynomial in s and u of degree k. Furthermore, since s — u and — su — 1 are A-

polynomials of degree 1 and 2, respectively, the hypothesis that ak is an A-polynomial of 

degree k for k = 0,... ,n leads to the conclusion that the same property holds for A; = n + 1 ; 
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the induction hypothesis is readily confirmed for n = 1. It then follows from (2.26) that 
Cn is an A-polynomial of degree n, and an induction argument applied to equation (2.27) 
shows that I5n is an A-polynomial of degree n + 1. 

Turning now to the equations (2.34), we assume, as an induction hypothesis, that for 

each n the coefficient p „ j is an A-polynomial of degree j ' + 1. Then each term on the 

right-hand side of (2.34c) is an A-polynomial of degree n — z + 1, and (2.346) gives the 

corresponding result for i = 0; finally (2.34a) shows that pn,o is an vl-polynomial of degree 

1. Clearly the hypothesis is true for n = 1. • 

In view of Theorem 8, we may write 

P n ~ l , 0 = 1n\U 

P n - 1 , 1 = 7n2 + 7 n 3 5 ^ + 7n4.SU + 7 „ 5 ^ i ^ 

P n - 1 , 2 = 7 n 6 5 + 7 „ 7 t i + 7n8.S^ + 7n95^W + 7 „ i o 5 U ^ + 7nnW^ 

etc. In keeping with the notation of Gatermann et al. [39] we regard the coefficients 7„i-

as the elements of the n^^ row of a matrix 

r = (7„fc), n = l , 2 , . . . ; A; = 1,2,..., m(n) 

where m{n) is the number of terms in the n'^ row of F. 

THEOREM 9. The elements of the matrix F are rational numbers and the number of 

elements in the n"^ row is 

m{n) = ^{2n^ + 15n^ + 37n - 30) - - f ^^^^ 
^ ^ 24^ ^ 4 L 2 . 

where [x] denotes the integer part of x. 

Proof. I t is clear from the various defining equations that the coefficients of the polynomials 

Pnj are rational numbers. 

A homogeneous polynomial of degree j has j + 1 terms. An A-polynomial of degree 2r 

is a sum of homogeneous polynomials of even degree from 0 to 2r inclusive; it consists of 

E(2/ + l ) = (r + l ) ^ 
/=o 
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terms. Similarly an A-polynomial of degree 2r + 1 has 

r + l 

E 2 / = r^ + 3r + 2 
/=rl 

terms. 

Equation (2.34a) shows that pnfi consists of a single non-zero term. For i > 2, the 

polynomial Pn,i-ii being an A-polynomial of degree z, has | ( i + 2)̂  terms if i is even and 

j{i -\-2y — \ terms if i is odd. For a given n the total number of terms is 

^ n - r 
m{n) = l + \ t { ^ + 2 y - \ 

= ^{2n^ + 15n^ + 37n - 30) - ^ 
n - 1 

A computer algebra system may be used to compute the polynomials p „ j from (2.34), 

as polynomials in s and u. We have used Mathematica and REDUCE for this purpose. 

The polynomials Pn-i,j, for j = 0(l)n — 1 and n = 0(1)15, are fisted in Appendix B where 

Pn-i,j is denoted by p{j), for each value of n. The results given there may be used with 

(2.30), (2.31) and (2.33) to construct the Faber polynomials of degree < 15. 

The first ten rows of the matrix F have the form 

/ 1 
2 - 2 1/2 1 - 1 /2 
3 - 3 3/4 3/2 3/4 - 4 1 1 1/2 - 1 1/2 
4 - 4 1 2 3 -16/3 -8 /3 4/3 5/3 2/3 1/3 
5 - 5 5/4 5/2 25/4 -20/3 -25/3 5/3 10/3 10/3 5/3 
6 - 6 3/2 3 21/2 - 8 -16 2 11/2 7 11/2 
7 - 7 7/4 7/2 63/4 -28/3 -77/3 7/3 49/6 35/3 77/6 
8 - 8 2 4 22 -32/3 -112/3 8/3 34/3 52/3 74/3 
9 - 9 9/4 9/2 117/4 -12 - 5 1 3 15 24 42 

{lO -10 5/2 5 75/2 -40/3 -200/3 10/3 115/6 95/3 395/6 / 

and other entries may be read from Appendix B. As Gatermann et al. [39] found for circular 

sectors, all entries in a column of F are expressible in terms of a polynomial in the row 

index. For example, we find 

29 
7nl n, 12 -n 

S o 1 3 

4 6 
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7n2 — - n . 7 n l 2 

7 n 3 = 
1 
4"' 7 n l 3 

7n4 = 
1 
2"' 7 n l 4 

7n5 = 
1 2 5 - n ra, 

2 4 
7 n l 5 

7n6 = 
4 

n, 
3 7 n l 6 

7n7 
10 2 

- n - n . 7 n l 7 

7n8 = 
1 
3^' 7 n l 8 

7n9 

7 n l 0 

-
7 1 2 

- 1 2 " + ^ ' 
11 1 2 

- ¥ " + 2 " ' 

7 n l 9 

7n20 

' 2 " + 2 ' ^ ' 

" 2 - - 4 - - = 
25 11 2 

3 6 ' 
-65 55 2 

- r ' ^ + 1 2 " -
21 1 2 

9 6 " + 3 2 " ' 
47 11 2 

• - — n + — , 

1 3 

2"' 

24 24 
43 37 
4 8 ^ - ^ 8 " + 8 " ' 
149 

= n 
59 o 1 .̂ i 

2 4 ^ ^ + 4 " ' 24 
539 307 2 5 3 1 4 

+ - 8 " 

2.5 The mapping of the boundary 

Under the mapping tj) the boundary of the unit disc is mapped onto the boundary of the 

annular sector. I t will be useful, particularly when we consider level curves (see Section 

3.5), to know which points on the unit disc map to the corners of the annular sector. For 

this reason we consider the points w = exp{irj) with 0 < rj < 2%. The map ( defined earlier 

(see equation (2.5)) maps these points onto 

I ( e"' 4- I smh a I — cosh a — ̂  
2 

We know that the points ± a , ±a~^, ±b, and ± 6~̂  play a key role in the conformal 

mapping and we also know that the mapping ( = —v"'^ maps the upper half-plane onto 

the cut plane C/L (see Section 2.2). Hence the points on the unit disc that map to the 

important points in the upper half-plane are given by 
_ o 1 

((e^'') = 1 [(e'^' + e-'") sinha (a — a ) COST] — {a + a ) 

= 2 (a~^ - a^) cos 77 - (a ^ + a )̂ , 

where v = ±a, ± a - \ ±6, or ± 6 \ When 

f ±a then cos?; = —1 
V 

±a ^ then cos 77 = 1 

and T] — w 

and 77 = 0. 
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Also when 

V = < 

±b ^ we have cosT]=t so r] = ti or 27r — i i 

±b then COS77 = T and t] = TI or 27r — T J , 

where ti, TJ € [0, TT ] , cos(ti) = t and cos(ri) = r . Previously we have shown that | i | < 1 and 

r I < 1 so solutions to the equations cos rj = t and cos rj = T will exist. We have also shown 

that t > T and therefore because cos 77 is a monotonic decreasing function of 7/ on [0, TT] we 

have 1̂ < Ti. We now remember that the upper half-plane is mapped onto the exterior 

of our annular sector by a combination of the exponential map and a Schwarz-Christoffel 

map. If as before we write u{v) for the Schwarz-Christoffel map, then exp[u(±a"^) = 

-R, exp [u (±a)] = - 1 , exp [u = Re'^, exp [u (-&~^)] = Re~'^, exp [u {b)] = e'\ and 

exp [u {—b)] = e~^^. So considering w = exp(i7/) we find: 

77 = 0 is mapped to —R in the z-plane; 

77 = TT is mapped to —1 in the z-plane; 

T) = ti is mapped to Rexp^iO) in the 2-plane; 

7] = Ti is mapped to exp{i$) in the 2-plane; 

7/ = 27r — Ti is mapped to exp(—z^) in the z-plane; 

rj — 27r — ti is mapped to Rexp(—iO) in the 2-plane. 

Pictorially this can be represented by Figure 2.5. 

This will be important when we consider level plots in Section 3.5, because when we 

consider a curve of radius slightly greater than 1 in the ly-plane, then the part of the curve 

with rj G (0,^i) (that is region A in Figure 2.5) should be mapped under tjj to the arc 

(—i?, —i?e~* )̂ in the 2:-plane (that is A' in Figure 2.5). A similar correspondence should 

occur for regions marked with the same letters in both the w and z planes. 



2.6. Scaling the Annular Sector 62 

z=\|;(w) 

z-plane 
w-plane 

Figure 2.5: A pictorial representation of the mapping of the boundary of the unit disc. 

2.6 Scaling the Annular Sector 

In this section we shall consider the mapping of the complement of the unit disc onto the 

complement of the annular sector 

Q{Rr,R2,e) = < \Z\ <R2,e< |argZ| < T T } . 

There are two main reasons for doing this. Firstly it may not be obvious that the ratio 

of the radii is the important quantity in determining the mapping and hence the Faber 

polynomials. The second reason is concerned with chapter 5 in which we will consider, 

amongst other things, how to find the Faber polynomials for any annular sector placed 

anywhere in the complex plane. The results given in this section are part of this, as is 

the use of the transformations z —> —z and w —w to find the Faber polynomials for 

an annular sector centred on the positive real axis from the annular sector centred on the 

negative real axis (see Section 2.2 and the end of Section 2.4.1). 

We note that by writing R2R = -Ri, the annular sector Q{Ri^R2,9) is simply the 
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annular sector Q scaled so that its outer radius is i?2; that is to the annular sector Q in the 

^-plane we apply the map Z = R2Z to get Q{Ri,R2,9). From Section 2.2, ip{w) maps the 

complement of the unit disc to the complement of the annular sector Q, so ^!{w) = R2'4>{w) 

will map the exterior of the unit disc to the complement of Q{Ri,R2,0). Hence 

hm = R2P, 
W—KX> H) 

and the transfinite diameter of Q{Ri,R2,0) is 

p := R2P = exp 
Jo 

C 
0 A{x)[A{x) + B{x)] 

dx 

see equation (2.17). 

In a similar manner to Section 1.2.2 we define W = $(Z) := R2p'^~'^{Z); this maps 

the complement of (5(i?i, - R 2 , &) to the complement of a disc of radius R2P. Also, 

$ (Z) 
Z—*co Z 
l im Hm 

Z-*oo 

R2P^-\Z) 

= hm —Trn-Y 

lim ^ = 1; 

$ ( Z ) satisfies relation (1.1), and the mapping is the desired one. In this way the expressions 

(2.13) for the mapping become 

z = a^i?2C 6xp 

= a^i?2Cexp 

RiC 
= - ^ e x p 

RiC 

c 
A{x)[A{x) + B{x) 

dx 

c 
A{x)[A{x) + B{x)] 

dx 

C 
a2 A{x)[A{x) + B{x) 

dx 

c 
A{x)[A{x) + B{x)' 

dx 
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The defining equations for a and 6, that is (2.7) and (2.8), remain the same except that R is 
replaced by the ratio of the radii, R\jR2- In this way we see that the quantities determining 
a and b (and hence the mapping and the Faber polynomials), are the half-angle, TT — ^, of 
the sector and the ratio, i2 i / i?2, of the inner and outer radii. 

2.7 The Faber series for z"^ on an Annular Sector 

The Faber series for a function / , analytic in the annular sector is an expression of the 

form 
CO 

Y.^,F,{z). 
3=0 

See Curtiss [15], Markushevich ([57], v. 3, p. 109), or Gaier ([38], p. 44). The coefficients 

are 

where i2i > 1 is sufficiently small that / can be extended analytically to the closed region 

bounded by the image under 4^ of the circle \w\ = Ri. In particular, when f{z) — z~^ the 

Faber series is 

1 1 

z w 
1 + 1 (2.36) 

where Fn{z) is the scaled Faber polynomial introduced in (2.30), and w* is the root of 

magnitude greater than 1 of the equation •tp{w) = 0; in other words, w* is the point which 

tjj maps to the origin in the z-plane. Equation (2.36) may be established either by applying 

Cauchy's residue theorem to (2.35) or, as in Chiu et al. [8], by using a generating function 

for Faber polynomials and the uniqueness of the Faber series. 

We begin with Cauchy's residue theorem. We note that f ( z ) — is analytic in any 

annular sector, Q, with inner radius i? > 0, so if we have such an annular sector we may 

take i?i = 1 in the above formula for the coefficients of the Faber series. Therefore the 

coefficients are given by 

^ 1 
Tlp^ J\w\ = l 
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In this equation we make the substitution w = l/u and note this maps the outside of the 

unit disc to the inside of the unit disc and causes us to integrate around the unit circle in 

the opposite direction (so introducing a negative sign into the calculation). The coefficients 

then become 
1 r 

0^ J\u\=l ( 
du. (2.37) 

27rtp^ J\u\=i ^ ( i ) 

To use Cauchy's residue theorem we must calculate the residues at the poles of this ex­

pression. From the above we know that il){w) = 0 when w = to*, so ^(1/u) = 0 when 

•u = l/w*. Hence at this point the residue of the integrand in equation (2.37) is given by 

1^+^ 1 
l im lim 

^ ( i ) _ ^ (to*) u^l/w- ^ / ^ i ) (u;*)^+V(^«*)' 

From this and equation (2.37) we find the coefficients of the Faber series for 1/z are given 

by 
- 1 

" pi{w*y+'^ijj' (w*)' 

It is straightforward from this expression to see that the Faber series for 1/z is given by 

equation (2.36). 

Chiu et al. [8] give a different and simpler proof of this result. We start from Property 

4 (see Section 1.2.2) and choose w* so that ip[w) = 0. This immediately gives us 

1 + E 
^ n ( ^ ) 

z w*i)'{w*) ' {w*) 

For an annular sector a simple formula can be found for the coefficients in (2.36). It is 

clear from (2.13) that 2 = 0 implies C = 0 and therefore 

w l - a 2 

From (2.13c) and (2.22) we obtain 

, R{l-a') C dx 
A{x)[A{x) + B{x)\ 

M { w , t ) M { w , T ) . 

(2.38) 

(2.39) 

Setting C = 0 in this expression, and noting that 

p = exp r — 
Jo A(x 

C dx 
A{x)[A{x) + B{x)] 



2.7. The Faber series for z ^ on an Annular Sector 66 

and 

M{w\t)M{w*, T = 
2w* 

sinh a 

we obtain 

w*x/j'(w*) — 

(1 - a-'Y 

R{\ - g^) 

Then, from equation (2.36), the Faber series for z ^ is 

1 \pa^ 

R{1 - 1 \ i n = l 

(2.40) 

(2.41) 

As a check on (2.41) it can be shown that it correctly gives a known Chebyshev ex­

pansion when b = a (case (i) of Section 2.2.4). The Faber polynomial of degree > 1 for 

the interval [—1,1] is 2^"'"T„(x), where Tn is the Chebyshev polynomial of degree n. The 

corresponding polynomial for z 6 [—1, — i2] is 

= 2 ( i ^ ) V „ ( ! i ^ ) . 
With the help of results from Section 2.2.4 for this particular case (that is = i? and 

/? = (1 — i?)/4), the expansion (2.41) becomes 

- f l - V R \ \ f 2 z + l + R 
J-n V r , l - R 

(2.42) 

The Chebyshev expansion for l / ( x - 6), with ^ > 1 and x G [-1,1], may be estabhshed 

by a technique used, for example, by Fox and Parker ([34], p. 85). We begin by considering 

1 
-6 n = 0 

where the prime denotes that the first term of the sum is ao/2. Multiplying this equation 

by X — ^ we find 

{ x - 8 ) Y ^ a M ^ ) + -ao{x-8)%{x) 

•1 CO I I 
i ^ a„ { r . + i ( x ) + r„_i(x) - 2<5r„(x)} + -aoUx) - -a^6To{x). 

n = l 
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To obtain this expression we have used the recurrence relation 

r„+i(x) = 1xT^{x) - r„_i(a;), n > 1 

for the Chebyshev polynomials, and the fact that xTo{x) = x = Ti{x). Considering the 

sums separately we can rewrite our expression as 

1 OO 1 CO CO 1 1 

1 = -X :«^ - i r ; t ( a ; ) + - 5 3 a , + a r , ( x ) - ^ ^ a , r , ( a ; ) + -aoTa(.'c)--ao(5ro(x). 
^ k=2 ^ k=0 ^ 

= E W - ^^r. + ^ ] + ( l a , - \ao6) To{x). 

The Chebyshev polynomials are linearly independent. Therefore, equating coefficients of 

the Chebyshev polynomial of degree n on both sides of this expression gives 

tti — ao^ = 2 (2.43a) 

and for n > 1 

a„+a - 26an + a„_i = 0. (2.436) 

The difference equation given by (2.436) can be solved by standard methods, and the 

general solution is 

a„ = A ((5 - V S ^ y + B[6 + VP^Y . 
I t is known, in this case, that the Chebyshev series converges (see Fox and Parker [34]), 

therefore a„ —> 0 as n —oo. This impHes that B is zero (as 6 + v P — 1 > 5 > 1, see 

before). Substituting the expression for a„ into (2.43(z) gives 

These results give the Chebyshev series as 

1 
X — 6 y/6 

= | l + 2 f : - VP^Y UX)^ . (2.44) 

To prove this is the same as expression (2.42) we map [-1,1] to [-1,-R] by the 

transformation 
2Z + 1 + R 

1 - i ? • 
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This results in the left-hand side of equation (2.44) becoming 

1 - R \ -R 
2z^\\R-b{\-R) ~ 2z ' 

if we choose 8 — (1 + i? ) / ( l — i?). From this choice of ^, we find 

2^/R 

an d so 

l - R 

1-VR 
l + y/R' 

Substituting all these expressions into equation (2.44) gives equation (2.42) so verifying 

equation (2.41) in this case. 

The maximum norm of the error in approximating z'^ on the domain Q by a truncated 

Faber series 

is easily bounded. From (2.36) we obtain 

- - qn{z) 
Z 

max 
zeD 

1 °° 

< 
1 

We now use inequality (3.5) from the next chapter and note that the sum in the above 

expression is a geometric series with l / | t f * i < 1- Hence we find 

quiz) < 

(see also [8]) and from (2.38) and (2.40) 

Tr\w*tjj'{w*)\(\w*\ - 1) 

< 
2Vp 

7ri?(l + a2) \ l + a^ 
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69 
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3.1 Introduction 

In this chapter we will discuss the numerical aspects of the Faber polynomials for annular 

sectors. To generate the Faber polynomials for an annular sector, by the algorithm in Sec­

tion 2.4, we need three numbers, namely a, 6 and p. In Section 3.2 we describe our method 

to evaluate these numbers. The parameters a and h are found by combining modified 

Newton iteration with Kronrod-Patterson integration. Once a and h are known, p is found 

by Kronrod-Patterson integration. Any assessment of the accuracy of an approximation 

based on Faber polynomials requires some knowledge of a relevant norm. In Section 3.3 

we introduce the area 2-norm, the line 2-norm and the maximum norm. Examples of these 

three norms are given for various annular sectors. In Section 3.4 we attempt to improve on 

a bound given in Ellacott[22] for the the norm of the Faber projection. Finally, in Section 

3.5, we give a strategy to produce numerical level plots for an annular sector. 

3.2 Numerical evaluation of a, h and p 

To compute the Faber polynomials for a particular sector of an annulus we need to evaluate 

the Schwarz-Christoffel parameters (a and h) and the transfinite diameter p. Given R and 

0 defining a particular sector, a and h are found by solving the pair of non-linear equations 

(2.7) and (2.8). We used a modified Newton iteration in which the partial derivatives in 

the Jacobian were approximated by central-difference formulae of the form 

df{a,h) ^ f{a^D,h)-f{a-D,b) 
da ^ 2D 

The convergence of the Newton iteration depends on having sufficiently good initial 

estimates of a and b. Table 3.1 gives suitable values for certain ranges of R and 6. The 

starting values, in this table, were obtained by trial and error. As 9 tends to 0 or TT and as 

R tends to 0 or 1 the convergence becomes much more sensitive to the choice of starting 

value, but the corresponding regions, which are close to known limits, are less likely to 

be of practical interest than those covered by Table 3.1. This sensitivity means that the 

accuracy of the starting values is more important for R tending to 0 or 1 and 9 tending to 

0 or TT than for values in the centre of Table 3.1. 
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At each step of the Newton iteration it is necessary to evaluate the integrals in (2.7) 
and (2.8) numerically to an accuracy consistent with that required in the Newton itera­
tion. Despite the square-root singularities at the end-points of the integration intervals, 
the NAG routine DOIAHF, which is based on the Gauss-Kronrod-Patterson family of for­
mulae, works satisfactorily. Figures 3.1 and 3.2 show a and b respectively, as functions of 
R and 9, for 0.001 <R< 0.999 and 0.3 < ^ < 3.1414. 

To approximate the integrals in (2.7) and (2.8), integration methods other than the 

Kronrod-Patterson integration, in DOIAHF, may be used. An obvious choice, because 

of the square-root singularities at the end points of these integrals, is Gauss-Chebyshev 

integration (see Section 3.4). This would have the advantage that the nodes and weights 

are fairly simple and easy to calculate. The idea would be to approximate the integral 

in question by Gauss-Chebyshev integration, with a certain number of nodes, and then 

to double the number of nodes and approximate the integral again. Comparing the two 

approximate values would reveal how close the approximation was to the value of the 

integral. I f the difference was too large, then the number of nodes would be doubled 

until the difference between two successive approximations was satisfactory. Alternatively, 

a Kronrod-Patterson integration based on the Gauss-Chebyshev nodes may be used to 

evaluate the integrals. Both these ideas using Gauss-Chebyshev integration could prove 

more efficient that the Kronrod-Patterson integration employed in DOIAHF, but the NAG 

routine works satisfactorily, so we decided to use it anyway. 

The pictures in Figures 3.1 and 3.2 provide a useful visualisation of the special cases 

we have previously considered. For example as i? —> 1 we see that 6 —> 1. Also as ^ —^ TT, 

a and b become the same function of R and we have a —> 6. The case when i? —> 0 is not 

so clear. Certainly for small 6 we see that a and b both seem to tend towards zero (as they 

should). For larger values of 6, the vanishing of a and 6 as i? —> 0 is not so obvious. 

In Table 3.2 we give the a and b values (mostly to 9 decimal places) for some specific 

annular sectors. Most of the values in the table were produced numerically by the method 

described near the beginning of this section. The special cases when 9 = %, R = 0 and 

R = 1 have been added for completeness. These special cases can be found in Section 2.2.4, 

where the formulae used to calculate the values of a and b, in the table mentioned above. 
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can also be found. When R = 0.001 or R = 0.0001 and 9 = 10° we found no starting values 
by our method of trial and error. For this reason there are blanks in Table 3.2. In Section 
3.2.1 we discuss an interesting relationship between a, b and R which enables us to give 
approximate a and b for these annular sectors. The results are contained in Table 3.4. 



3.2. Numerical evaluation of a, b and p 73 

O 

I 
O 
CO 
o 

^1 
cn 

I 
O 
cn 
O 

O 
O 

I 
o 

Cn 

cn 

o 
o 

CO 

I 
cn 

CO 
o h-1 

I 
CO 
o 

X 

o 
I 
o 

I 

to 

o 
I 

o o 
b b 
cn 1—' 

^ o o 
i - " ^1 C n 

p o p 
b t-" b 
O O l cn 

to 

p o o 
b to 1-̂  
o hj^ to 

to 

o o o 
cn tf̂  
to CD 

p p 
cn 4:̂  

^ 1-̂  00 
S " 

I 
0 

X 

CO 
CO 
to 
I 
o i 

CO 

C/3 

0 

< 

01 

o 
i-t 

3 o a-
a> 
a-

o 
0 

ft) 
1-i 

o' 

to =̂  s 
Cn cn 
b b 
X X 
I—" I—' 
o o 

I I 

to a 

o o 
X X 

o o 
I I 

to a 

o o 
X X 

o o 
I I 

00 
b 
X 
1—' 
o 

I 

o 
X 

o 
I 

o p O 
b o b 
O 00 CO 

to 

p p o 
b b b 
O 00 CO 

p p p 
b b b 
O 00 CO 

p o o 
b to J-i 
O hfi. to 

to 

p p p 
b to !- ' 
O *v to 

p p 
CO CO 

O 

to a to o 

p 03 
b b 
X X 

o o 
I I 

p 0 1 
b b 
X X 

o 
I 

CO 

II II II 
p p o 
b b b 
O CO h-" 

p p p 
o !-' b 
0 0 0 

to 

p p p 
b b 
O to CO 

p p 
CO 00 

O O 
00 

to =^ a to a to 

CO 4^ 
b b 
X X 

o 
I 
o 

I 

CO rf^ 
b b 
X X . 0 0 

o- P 

o 
i 
o 

I 

o o 

o 0 1 

p p p 
b I- ' b o to ^1 

C3- P 

p o 
to to 

cn cn 
CO CO 

to ° - a to a 

CO rf^ 
b b 
X X 

o 
I 

o 
I 

CO 
b 
X 

o 
I 

b 
X 

p o 
b b 
o o 
O !-> 

o 
o 
o 
cn 

o o 
b b 

o- P 

p p p 
b i - " b 
0 0 ^ 

o - p 

X P p 
^1 

cn 

O 
to 

o 
to 

o 
b 

o 
b 

o 
o 
cn 

o 
o 
cn 
I 
o 
b 
o 



3.2. Numerical evaluation of a, b and p 74 

Figure 3.1: A graph of a{R,9). 

Figure 3.2: A graph of b{R,9). 
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The integral in equation (2.17), which defines the transfinite diameter, must also be 

evaluated numerically to whatever accuracy we require. Again the NAG routine DOIAHF 

is appropriate. In Table 3.3 we give the transfinite diameters for the annular sectors 

considered in Table 3.2. The transfinite diameters are mostly given to 9 d.p. and were 

calculated using the NAG routine we have just mentioned. Once again the results for the 

special cases were not calculated by this method, but were produced from the formulae 

given in Section 2.2.4. Table (3.3) again contains blanks when 9 = 10° and R = 0.001 or 

R = 0.0001. The transfinite diameter in these cases is given after Table 3.4. 

Table 3.3: Transfinite diameter (p) values for the sectors in Table 3.2. 

e 
R 

180° 170° 135° 90° 45° 10° 

1.0 0.0 0.087155743 0.382683433 0.707106781 0.923879533 0.996194698 

0.9 0.025 0.123238826 0.414254357 0.726271974 0.931163842 0.996846174 

0.5 0.125 0.222485471 0.484814189 0.758648353 0.938181488 0.996916790 

0.1 0.225 0.304659893 0.526040421 0.769377145 0.938784932 0.996918113 

0.01 0.2475 0.320719703 0.530892545 0.769796162 0.938785885 0.996910086 

0.001 0.24975 0.322114753 0.531116172 0.769800336 0.938786047 

0.0001 0.249975 0.322236536 0.531126553 0.769800381 0.938787498 

0.0 0.25 0.322248185 0.531127040 0.769800359 0.938785852 0.996916753 
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3.2.1 An interesting relationship between a, h and R 

The numbers i n Table 3.2 lead to an interesting and informative result. We notice that 

when 0 = 7r/4, there appears to be an approximate linear relationship between the radius 

and the values of a and h. For example, reducing the radius by a factor of 10 f rom i? = 0.1 

to i? = 0.01 appears to have a similar affect on both the a and 6 values. When we consider 

6 = 7r/2, we f ind a different relationship holds; for small a and h values i t appears that 

when we reduce the radius by 10 we reduce the a and h values by a factor of \/T0- For 

both these cases i t appears that, for small values of 6, a reduction in the value of i2 by a 

certain factor, </?, reduces the value of a and 6 by a factor 

(^) 

where A = ^/vr (1/4 i n the first case, 1/2 in the second case). I t would be nice i f we could 

prove this result analytically. 

I n the first theorem of case ( i i i ) in Section 2.2.4 we proved that for "small" 6, 

R = 
1 - 6 2 

.1 + 2/oy \i-XyoJ 

We now expand yo in powers of b so 

yo = ( 1 - 6 ^ ) ^ ( 1 - A V ) - ^ 

1,2 \ f 
1 - / + . . . ) ! + — + 

Using this we f ind 
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1- \yo = 1 - A -

l + Xyo = 1 + A + 

78 

A(A2 - 1)62 
+ 0{b% 

By substituting these expressions into our expression for R we can show that 

[1 - X ^ f \ l + X)^^' 
R=^b 4A + 0{b') 24A(1 _ A)2A2 

and therefore for sufficiently small b we find 

• ( l _ A 2 ) 2 A ( l + A)2^'^ 

1 + 0{b') 

4A 
24A(1 _ A)2A^ 

We are t ry ing to prove for a fixed 6 (or a fixed A because X = O/TT) that when we reduce the 

radius by a certain factor we also reduce both the a and b values by a fixed amount. For 

this reason we w i l l consider another annular sector w i th the same 6 value, but a different 

radius, r, and hence a different "6" value, B. We know f rom the above argument that 

' { i - x ^ y \ i + xy^"' 4A 
24A(i _ xy^' 

so for small b and B we find 
R 
r 

' I 
B 

4A 

Finally i f i? = ipr then, b = ip^/'^^B and the result is proven. We note the same result holds 

for a because for small b, a = Xb and A is a constant. 

Whils t searching for starting values for the modified Newton iteration in Section 3.2, 

we found that i t was diff icul t to find starting values when 9 and R were quite small. The 

above result provides insight into why this is so. For example, i f we consider 6 = 1° and 

R = 0.1, and we reduce the radius by a factor of 10, then we w i l l reduce the a and b values 

by a factor of 10^^°/'' = 1 x lO' '^ So even i f a and b were both 1 when R = 0.1, they would 

both be of the magnitude 10"'*^ by the t ime we reach a radius of 0.01. This explains why 

our search failed. 

The result also helps us to improve upon some results in Table 3.2. In this table the 

last column is not finished. The result we have just proved allows us to produce estimates 
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for a and h when 9 = 10° and R = 0.001 or i? = 0.0001. We begin by presuming that 

the values for a and b when R = 0.5 and 9 = 10°, in Table 3.2, are adequate. We then 

reduce the radius by a factor of 5, to 0.1, and use the above formula to see that a and b 

must drop by a factor of approximately 5^ /̂'* ^ 1398. We then reduce the radius to 0.01 

and once again use the above formula to f ind that these a and b values must reduce by a 

factor of about 10^^/" f« 31623. We can continue this argument to produce new estimates 

of the parameters a and b. In Table 3.4 we give the previous estimated values for a and b 

(where available) and we also give our new estimates for the parameters a and 6. Given 

a pair of a and b values we integrate, using DOIAHF, the integrals in equations (2.7) and 

(2.8). The results we obtained for R and 9 also appear in Table 3.4. 

Table 3.4: Previous and improved values of a and b. 

R 
previous 
a and b 

R 
9 (degrees) 

improved 
a and b 

R 
9 (degrees) 

0.1 1.293 X 10-^ 
2.3279 X 10-^ 

0.10005 
9.9979 

1.293262293 x 10"^ 
2.327873129 x 10"^ 

0.09999999 
9.99999999 

0.01 

0.001 

4.09 X 10-^^ 
7.354 X 10-1° 

0.00995 
10.011 

4.089654458 x 1 0 " " 
7.361381192 x 10-^° 

0.01000002 
9.999996 

1.293262293 x 10-^^ 
2.327873129 x 10-^^ 

9.99999998 x 10"^ 
9.99999999 

0.0001 4.089654458 x 10"^° 
7.361381192 x 10"^^ 

1.00004 X lO- ' ' 
9.999996 

The computed values of R and 9 in this table show that our new estimates for a and 

b are improvements on the values given previously (see Table 3.2). The values of a and 

b given for R = 0.001 and R = 0.0001 give reasonable approximations to the angle and 
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radius i n these cases. Therefore estimates of the parameters in these cases have been found. 

Using these new values for a and b we can complete Table 3.3. I t turns out for i? = 0.1, 

0.01, 0.001, and 0.0001 that the transfinite diameters all agree to 9 decimal places and 

their numerical value is 0.996916756. 

3o3 Norms of Faber Polynomials on Annular Sectors 

Any assessment of the accuracy of an approximation based on Faber polynomials requires 

some knowledge of a relevant norm. For the Faber polynomials on circular sectors Gater-

mann et al. [39] computed three different norms. In this section we shall introduce the 

three norms. Both the area and line versions of the 2-norm may be computed explicitly by 

a slight modification of the work of Gatermann et al. [39]. In Section 3.3.1 we wi l l show 

how to generate the area 2-norm for the annular sector, and we shall give examples of this 

norm for Faber polynomials of various annular sectors. Similarly in Section 3.3.2 we wi l l 

consider the line 2-norm. In Section 3.3.3 we w i l l give a bound for [[-Fnllco and also some 

examples of ||-fli||(x. for the annular sectors given in Table 3.2. 

3.3.1 The area 2-norm 

We begin this section by defining Q~/,R,p, to be the annular sector symmetric w i th respect 

to the positive real axis w i th inner radius R/p, outer radius 1/p and half-angle 7. That is 

Q^,R,p--= <\z\<^; | a r g z | < 7 | . 

Following Gatermann et al. [39], we define the square of the area 2-norm of the scaled 

Faber polynomial for an annular sector (wi th 7 > 0) as 

F 
r 

Fn{z) 
2 J 

z 

Here z = x i- iy. Let t ing z = pu where u = v + iw we find 

^ 2 _ „2 /• 
^ ' - P Jo 

\^.n(u)\ dvdw. 

dx dy (3.1) 
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We then consider 

= (u" + <^„_l(u)) [u^ + <j>n-l{u)) 

= |u|2" + 2Re (u"^„- i (u)) + |<^„-i(u)p. 

Using equation (2.33), which gives an expression for (f)n{z) in terms of the set of real 

coefficients {|>n,j}J=o' 

n-l 

1=0 

. 3=0 

n-l 

i,j=0 

n-l 
= EPn-i ,>l '^" ' '~^ '^ + 2 X : P „ - i , P „ - i . , R e ( u " - i - ' u " - i - ) 

i=o 
i>2 

By substituting these expressions into the formula for the area 2-norm we find 

n-l n-l 
= -̂ n,n + 2 ^ P„_lj/n-l-j,n + ^ j-^n-l-j ,n-l- j 

i=o i=o 
n-l 

+ 2 ^ Pn-ijPn-l,kIn-l-j,n-l-k (3-2) 
J>k 

where 

To evaluate this norm for any annular sector we need to evaluate I^^t for any values of 

s and t. I n the expression for I^^t we change to polar coordinates, that is we make the 

substitution u = r cos t?, iv = r sin so that u = v + iw = r exp(i??). Hence we find 

Re (u'u') = Re 

and 

Is, = p'J\'^*^Ur£cos[{s-m 
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I f we now evaluate the integrals in this expression we find 

2p -s-t s'm{s — t)'y 
( s - t ) 

p-'^jl - i?2^+2)7 

S + 1 

1 - R'+'+^ 
s + t + 2 

i f s 7̂  f 

\{s = t. 

As R ^ 0 these expressions reduce to those of Section 3.1 of [39], when account is 

taken of the difference in notation mentioned after equation (2.32) above. 

Table 3.5: The area 2-norm, | |Fio(2)| |2) for the annular sectors f rom Table 3.2. The 
significance of the symbols * and f is explained in the text. 

9 
R 

180° 170° 135° 90° 45° 10° 

0.9 0.44665283 0.08381187* 0.31934928t 0.56434232 0.59282140 0.49837668 

0.5 0.99874608 0.14538911* 0.3538866lt 0.62940677 0.66964105 0.53124163 

0.1 1.33995848 0.21210244t 0.32372056^ 0.47043032 0.71859599 0.53374537 

0.01 1.40536038 0.22569208t 0.32993196t 0.47251876 0.72256602 0.53383978 

0.001 1.41173386 0.22666794t 0.33061425t 0.47259666 0.72260876 0.53384072 

0.0001 1.41236963 0.22674697t 0.33064103t 0.47259752 0.72260495 0.53384073 

0.0 1.41244025 0.22675445t 0.3306423lt 0.47259761 0.72260977 0.53384076 

From the above expression for Is,t i t is straightforward to produce numerical values for 
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the area 2-norm of the Faber polynomials for an annular sector. In Table 3.5 we show 

these calculated numerical values for the annular sectors f rom Table 3.2. 

The only values in Table 3.5 that we have not explained how to derive are those for 

which 7 = TT —^ = 0. In this case (see Section 2.2.4) the annular sector becomes the interval 

— 1,—R] and the Faber polynomials become multiples of the Chebyshev polynomials for 

this interval. In fact for [—1, —R] we find the monic Faber polynomials are given by 

'2Z + 1 + R' 
Fniz) = (1 - i?)"2^-2" COS n cos 

-1 
1-R 

and p = (1 - -R)/4, so 

Hence we find 

Fn{z) = 2 COS n COS 
2Z + 1 + R 

1 - R 

R 

COS ncos 
2Z + 1-VR 

1 - R 
dz 

= 2(1 - R ) r cos\n^)smd 
Jo 

dd 

(1 - R) r 
r {sin(2n + l)i9 + 2sin^- sin(2n - l)i?} 

Jo 
dd 

= 4(1-R) 
' 2 n ' - l 

\v? - 1 

I n what follows, by double precision we wi l l mean double precision in IEEE notation, 

that is, fifteen or sixteen significant figures of a number wi l l be stored. By quadruple 

precision we w i l l mean that about th i r ty significant figures of a number are stored. The 

stars and daggers i n Table 3.5 indicate that quadruple precision has been used to obtain 

8 decimal places of accuracy. To calculate the area 2-norm by equation (3.2) we must 

first evaluate the three sums in this equation. I f one or more of these sums is larger 

than 10^^, then in a double precision calculation vi ta l information is lost. To check the 
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accuracy of our double precision calculations we carried out the same calculations using 
quadruple precision. Occasionally the sums mentioned above are so large that using double 
precision would give an obviously incorrect result. In this case the value in the table is 
that obtained f r o m the quadruple precision calculation. We indicate this occurence wi th 
a star. Sometimes the double precision calculation was correct to a few decimal places 
of accuracy, though not to the 8 decimal places required in the table. In this case the 
result of the quadruple precision calculation is given in the table and i t is marked wi th a 
dagger. For example, when 72 = 0.1 and 9 = 170°, the double precision calculation gives 
|7^io(-2)||2 = 0.21223559 to 8 decimal places, whereas, the quadruple precision calculation 

gives | | l^io(^)| |2 = 0.21210244. For another example, we consider R = 0.0001 and 9 = 135°. 
To 8 decimal places, the double and quadruple precision calculations give the area 2-norm 
as 0.33064100 and 0.33064103, respectively. For the other results in the table, the double 
and quadruple precision calculations agree to 8 decimal places. I t may be possible to 
rewrite equation (3.2) and evaluate the expression in a more stable manner, but for the 
purposes of the table our solution was to use quadruple precision. 

Final ly in this section, we note that Table 3.5 does not contain the values of the area 

2-norm when R = 1. In this case the annular sector is an arc and the area and line 2-norms 

become the same norm, namely the standard 2-norm. We do not include these values in 

the table, and refer the reader to Table 3.6 for them. 

3.3.2 The line 2-norm 

In this section we consider the line 2-norm, H-Fnlh- Again following Gatermann et al. [39 

we define the square of the fine 2-norm as 

2 
ds, (3.3) 

where s is the arc length in the ^-plane and dQjfi^i is the boundary of the annular sector 

Q-y,R,i- Again we make the substitution u - z / p = {x + iy)/p = v + iw and find 

= p f \^n{u)f da, 
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where a is the arc length in the u-plane. By similar reasoning to the arguments of Section 

3.3.1 (the area 2-norm section) we can show 

n - l n - l 

3=0 3=0 
n - l 

+ 2 Pn-i^^Pn-\,kin-\-i,n-\-ki 
3>k 

(3.4) 

where 

ist = P Re (u^u^) da 

= p [ r '+* cos(6 - t)^ da. 
JdQ^ p „ 

To obtain the second integral f rom the first we have made the substitution u = rexp(ii?). 

We now refer to Figure 3.3 where we consider the four line integrals that wi l l make up this 

integral around the boundary. When the angle of the sector is held constant and equal to 

7 (line 1 in Figure 3.3) and we move along the arc in the direction of the arrow the radius 

is increasing and so da = dr. When we fix the radius equal to 1/p (arc 2), the angle is 

decreasing in the direction of the arrow and so da = - ( l / p ) dd. The other two regions are 

similar, when we fix the angle to be —7 (fine 3), da = —dr and when we hold the radius 

equal to R/p (arc 4), da = {R/p)d'd. 

Using this information we find 

/•7 / 4- l \ 
,4 = /9 / 2r"+* cos[(5 - t)-f] dr + p cos[(5 - f)t?] diS 

J R / P J-y \ p^ j 

U _ ^ . . * . i ) / c o s ( ^ \ s in( . - 0 7 / ^ . - . . . i 
2p 

2p -2s iis = t. 

These formulae can be used to calculate the line 2-norm for all annular sectors except 

the arc (when R = 1) and the interval (when 7 = 0). In these cases, the annular sector 

becomes a single line and i f we used the above formulae we would have twice the desired 

result. Therefore when i? = 1 or 7 = 0 the correct result is obtained by dividing these 
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0 

Figure 3.3: A plot of the boundary of the annular sector Q.y,R,f 

formulae by 2. We see that as 72 —> 0 the expressions for Is,t once again agree wi th the 

results of Gatermann et al. [39 . 

Table 3.6 shows the values of the line 2-norm for the annular sectors given in Table 3.2. 

As in Table 3.5, the stars indicate a result for which one or more of the sums in equation 

(3.4) become so large that a double precision calculation gives a silly result. I n contrast the 

quadruple precision calculation gives the result shown in the table. As previously a dagger 

indicates a case where the double and quadruple precision calculations agree to a few 

decimal places. For this case the values in the table are those obtained f rom the quadruple 

precision calculation. For example, when R = O.l and 9 — 170° the double precision 

calculation gives ||-Fio(-2)||2 = 1.48165870 to 8 decimal places, whereas, the quadruple 

precision calculation gives ||-fio('2)||2 = 1.48267206. For another example we consider 

R = 0.01 and 9 = 135°. The double precision calculation gives | |Fio(2)|l2 = 1.88913940 to 8 

decimal places, whereas, the quadruple precision calculation gives ||-Fio('?)||2 = 1.88913935. 
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Once again, the rest of the table contains cases where the double and quadruple precision 

calculations agree to 8 decimal places. 

Table 3.6: | |Fio(2)i |2 for the sectors in Table 3.2. 

9 
R 

180° 170° 135° 90° 45° 10° 

1.0 0.83449231* 1.77010715t 2.50101566 2.76170834 2.47397306 

0.9 0.92914373* 1.86194054t 2.83880238 2.99729213 2.63381778 

0.5 0.99874608* 1.23523861* 1.8397671lt 2.40673907 2.60706091 2.51536336 

0.1 1.33995848t 1.48267206t 1.87626564t 2.27527297 2.58849508 2.51455994 

0.01 1.4053603lt 1.54955152t 1.88913935t 2.27123691 2.57989399 2.5143340 

0.001 1.41173386t 1.55988055t 1.8901308lt 2.26930506 2.57865920 2.51430999 

0.0001 1.41236963t 1.56101175t 1.89022818t 2.26907291 2.57850119 2.51430756 

0.0 1.41244025t 1.5614677lt 1.89018755 2.26905018 2.57852166 2.51430733 

The spaces in the table are cases where the sums we must calculate are so large that 

even quadruple precision is not enough to produce a sensible result. We note that when 

9 = 180°, the annular sector becomes an interval. Therefore the line 2-norm and the area 

2-norm must become one and the same, namely the standard 2-norm for an interval. For 



3.3. Norms of Faber Polynomials on Annular Sectors 88 

this reason, the values in tables 3.5 and 3.6 should agree when 9 = TT. Comparing the 

results f r o m the two tables, when R = 0.5, 0.1, 0.01, 0.001 and 0.0001, we see this is true. 

Therefore the blanks i n Table 3.6 may be filled in f rom the results in Table 3.5. 

3.3.3 The maximum norm 

In this section we w i l l exhibit upper and lower bounds on the maximum norm of the scaled 

Faber polynomials. The upper bound involves the total rotation of the boundary of the 

annular sector. We shall now introduce the idea of a curve of bounded rotation and then 

define the total rotation (see Ellacott[22], EUiott[28], Kovari and Pommerenke[52]). 

We consider a smooth Jordan curve, F* : ^ ( r ) , and denote the angle between the 

tangent to F* at 5'(r) and the positive real axis by ^pir). Here r is a parameter for the 

curve, not the constant given in equation (2.14). We then define the total rotation of F* as 

the change in (/?(r) as we traverse the curve F*. The total rotation of F* is therefore given 

by 

Jr* Jr* 

dip 

dr 
dr. 

z= \|/(w) 

w-plane 
z-plane 

Figure 3.4: A level plot for an annular sector. 
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Let tp(w) map \w\ > 1 onto the exterior of F, an arbitrary Jordan curve, and let 
denote the level curves of the mapping, {z = ip(w) : \w\ = r } , (see Figure 3.4 where we 
show a level curve for an annular sector). Kovari and Pommerenke [52] state that V{r), 
the to ta l rotat ion of F^, is a decreasing function of r . I f V{r) is bounded, F is said to be 
of bounded rotation, and 

V = s u p y ( r ) = l i m y ( r ) 

is called the tota l rotation of F. 

The boundary of the annular sector is composed of simple arcs, therefore V is fairly 

easy to calculate for an annular sector. We now calculate V for an annular sector wi th a 

half-angle 7. To do this we consider two cases: 

Case (i) 7 < T T / 2 . 

Figure 3.5: A general annular sector f rom case (i). 

I n figure 3.5 we show a general annular sector of this type. A t the corners of the annular 

sector we have shown the tangent vector before and after the discontinuity. We see that 

at every corner the change in the tangent vector is 7r/2. To complete the calculation of 

V we must evaluate the change in the tangent vector along the arcs AB and CD. By 

elementary geometric considerations the tangent vector at A , along AB, makes an angle 
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of 7r/2 — 7 w i t h the positive real axis. ( We note that i f 7 > 7r/2 then the angle would be 

27r — (7 — 7r/2) = 57r/2 — 7.) Similarly the angle the tangent vector makes wi th the positive 

real axis at i? is 7 - f 7r /2. So the change in the angle of the tangent vector along AB is 

^ + 2 - 1 2 - ^ 27. 

Considering the line CD we see that the angle the tangent vector makes wi th the positive 

real axis at C is 7 - f 37r/2 and at D is 37r/2 — 7. Therefore 

[Ofc = 
37r 

7 7 + 
37r 

= 27. 
2 ' V' 2 

By combining the above results we find that for this annular sector 

y = 4 ( - ) + 27 + 27 = 27r -F 47. 

Case (ii) 7 > 7r /2. 

Figure 3.6: A general annular sector f rom case (ii). 

In figure 3.6 we show a similar diagram to figure 3.5, but this t ime for a general annular 

sector of case [ii). As before we consider the tangent vector along AB. The tangent vector 

at A makes an angle of 57r/2 —7 wi th the positive real axis, and the angle at B remains the 

same as in case {%). Considering the arc CD we see that the tangent vector at C makes an 
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angle of 7 — 7r/2 w i t h the positive real axis, and the angle the tangent vector at D makes 

w i t h the positive real axis remains the same as case (i). Hence 

and 

7 + 7 7 

37r 

V2 7 

TT 

= 27r - 27 

= 2%- 27. 

Remembering that the change in the angle of the tangent vector at each corner of the 

annular sector is T T / 2 we find 

TT 
V = 4 - 27r - 27 + 27r - 27 = 67r - 47. 

We now consider bounds on the maximum norm. 

î n = max 
00 zeQ 

Fn{z) 

of a scaled Faber polynomial; by the maximum principle that maximum value occurs on 

the boundary of the domain Q. Let 

Tn{z) = 2 " -F a „ _ i z " - ^ + • • • + ao 

be the Chebyshev polynomial of degree n for the annular sector Q, the monic polynomial 

of smallest maximum modulus on Q. I t is known (Walsh [80], p.320) that | | r „ | | o o > p'^ 

and therefore, since no monic polynomial of degree n can have smaller norm, | |Fn| |oo > 1-

For this norm Ellacott [23] provides an upper bound independent of the degree of the 

polynomial , n. His result is 

Combining these bounds we have 

1 < 

00 TT 

00 TT 
(3.5) 

and for an annular sector of interior angle 27 we have just shown that 

V 

TT 
27r + 47 for 0 < 7 < -

z 

TT 
67r — 47 for — < 7 < T T . 
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Starke and Varga [76], who used a different normalization for the Faber polynomials, 

provided bounds in terms of the norm of the corresponding Chebyshev polynomials. Their 

Theorem 3.4, for non-convex regions, is applicable to annular sectors, and ^(0) , which 

appears in their bounds, is given in closed fo rm by equation (2.38) (for their theorem see 

Section 5.3.3). 

Table 3.7: | |Fio(2)| |oo for the sectors in Table 3.2. 

e 
R 

180° 170° 135° 90° 45° 10° 

1.0 1.99960919 1.99995177 2.00759567 
(2.01319547) 

2.34237091 1.56576321 

0.9 2.00006288* 1.53144187 1.56424045 1.78175708 
(1.81060258) 

1.80153021 
(1.81802087) 

1.44681530 

0.5 2.00002296 1.51451514 1.51397749 1.71816450 1.33195921 1.43410186 

0.1 2.00000000 1.55385355 1.49193299 1.48215499 1.38135082 1.43410173 

0.01 2.00000000 1.48534007 1.50889957 1.49420633 1.38143109 1.43410173 

0.001 2.00000000 1.81413232 1.51036632 1.49433074 1.38141090 1.43410173 

0.0001 2.00000000 1.87656534 1.51214934 1.49433164 1.38122929 1.43410173 

0.0 2.00000000 1.88579763 1.51534272 1.49433250 1.38143177 1.43410218 

I n Table 3.7 we show the value, given to 8 decimal places, of ||-fio||oo for the annular 

sectors given i n Table 3.2. The maximum value occurs on the boundary of the annular 
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sector and there fore t o calculate the value of H-Fnlloo we mus t j u s t consider the value of 

Fn{z)\ over t he bounda ry of the annular sector. T h e values i n Table 3.7 were produced by 

s a m p l i n g | F i o ( 2 ) | at 200 poin ts placed around the boundary of the annular sector. F o r t y -

n ine po in t s were placed along each edge. T h e r e m a i n i n g four points were placed at the 

corners. I n F igu re 3.7 we show, fo r a specific annular sector, a p lo t of the value of \Fio{z) 

over t he po in t s we have j u s t ment ioned . T h e f i r s t po in t is pos i t ioned at i?exp[^(7^ — 9)], 

where 0 is g iven i n the d e f i n i t i o n of Q (see Section 2.2). F r o m here we label the points 

i n a c lockwise sense u n t i l we r e t u r n t o this po in t again. I f the m a x i m u m value occurs at 

a corner, w h i c h is t he case fo r a l l b u t three of the examples i n Table 3.7, then we w i l l 

k n o w the value of the m a x i m u m n o r m f r o m our search. I f , however, the m a x i m u m value 

does n o t occur at a corner, t hen we m a y not know the m a x i m u m value exact ly, b u t we 

w i l l have a reasonable a p p r o x i m a t i o n fo r b o t h i ts value and the po in t ( s ) where i t occurs. 

I n Sect ion 3.3.4 we w i l l give a s t rategy fo r i m p r o v i n g the approx ima te m a x i m u m value 

i f t he m a x i m u m does no t occur at a corner. W e have used this m e t h o d to i m p r o v e the 

a p p r o x i m a t e values of the m a x i m u m n o r m , i n Table 3.7, w h i c h do not occur at corner. We 

show th i s i m p r o v e d value i n brackets below the a p p r o x i m a t i o n we achieved f r o m our i n i t i a l 

search. 

F i g u r e 3.7: A p l o t of \Fio{z)\ a round the boundary of the annular sector when R = 0.5, 
and 9 = 135° , so a = 0.500945881, b = 0.675703499 and p = 0.484814189. 

T h e star i n Table 3.7 indicates t h a t f o r th is ca lcu la t ion quadruple precision was used. 
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W h e n ca l cu l a t i ng the value of the Faber p o l y n o m i a l a round the annular sector we first 

ca lcula te t he coeff icients and then by a Horner scheme we calculate the value of the poly­

n o m i a l at specific po in t s a round the annular sector. W h e n R = 0.9 and 6 = n, i n te rmedia te 

values i n t he Horne r scheme become larger t h a n 10^^ and therefore using double precision 

causes v i t a l i n f o r m a t i o n t o be lost; our so lu t ion is to use quadruple precision. 

3.3.4 Improving the estimate of the mciximum norm 

I n th i s sect ion we shal l use Newton ' s m e t h o d to improve the approx ima te value of the 

m a x i m u m n o r m w h e n t h a t m a x i m u m value does not occur at one of the corners of the 

annula r sector. The re are three examples of th is i n Table 3.7, and i n a l l these examples the 

m a x i m u m value occurs on the bounda ry | ^ | = 1. Therefore i n th is section we w i l l suppose 

t h a t w h e n the m a x i m u m value does not occur at a corner, i t occurs on the boundary 

l ^ l = 1. I f t h i s is no t the case, t hen modi f i ca t ions of the procedure we w i l l describe w o u l d 

a l low i m p r o v e m e n t s i n the app rox ima te value of the m a x i m u m n o r m . 

W e beg in by consider ing 

i=o 

on t he b o u n d a r y \z\ = 1, t h a t is ^ = exp(z^). W e have denoted the j-th coeff icient of the 

scaled Faber p o l y n o m i a l , Fn{z), by d j . W r i t i n g z = exp{i6) i n th is expression we find, 

|2 

dj cos[(n — j)9] + 1^2*^3 s in [ (n — j)9 
j=0 3=0 

C{6f + S{6f 

where C{B) = E i = o dj cos[(n - j)e] and S{e) = E"=o dj s in [ (n - j)e]. We w r i t e M{e) fo r 

-F„(e*^)| , and suppose t h a t we have a reasonable i n i t i a l a p p r o x i m a t i o n , to the po in t 

where the m a x i m u m of | i ^„ (e ' ^ ) | occurs. Th i s is usual ly possible f r o m our search, and i f i t 

is n o t we c o u l d ref ine our search. F r o m (3.5) we know t h a t Fn{z) does not vanish near a 

m a x i m u m of | F „ ( 2 ) | . Hence, w i t h the above 9Q we know t h a t M{9) is d i f fe ren t iab le and 

no t zero. W e have 
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so 

2MM' = 2CC' + 2SS\ 

where the p r i m e means d i f f e r e n t i a t i o n w i t h respect to 9. For a s ta t ionary po in t (and i n 

p a r t i c u l a r f o r a m a x i m u m ) of M{9) we require M'{9) = 0 and this gives 

g{9) = CC' ^ S S ' = 

where C'{9) = - E ; = o ( « - j ) d j s i n [ (n - j)9] and S'i9) = E]=o{n - j ) d j cos[(n - j)9 . 

S u b s t i t u t i n g these expressions i n t o g{9) we f i n d 

n n 
9(0) = - ^ d k cos[(n - k)9] ^ ( n - j ) d j s in [ (n - j)9 

k=o j=o 
n n 

+ Y,dk s in [ (n - k)9] ^ ( n - j ) d j cos[(n - j)9] 
k=o j=o 

n 
= X I dki^ — j ) d j {cos[{n — j)9] s in [ (n — k)0] — cos[(n — k)9] s in [ (n — j)9]} 

j,k=0 
n 

= dk{n - j ) d j s i n [ ( j - k)9 . 

j,k=0 

W e sp l i t t h i s double s u m i n t o three sums; one where k < j; one where k = j and one 

where k > j and observe several th ings . F i r s t l y when j = n the terms of the series vanish, 

secondly the second s u m vanishes because ^ = J , and f i n a l l y we can r ewr i t e the t h i r d sum 

so t h a t i t becomes the negat ive of the first sum. These three observations i m p l y 

j=0 k=0 

G i v e n an i n i t i a l a p p r o x i m a t i o n , ^o, we use Newton ' s m e t h o d to improve the approx ima te 

value, t h a t is 

6 n ^ r = 9 . - ^ , n > 0 . 
g'{On) 

F r o m t h e above expression f o r g{9) we find 

9{0) = E E dAik - j ) ( j - k)[cos{j - k)9]. 

j=0 k=0 

For the th ree examples f r o m Table 3.7, use o f Newton ' s m e t h o d w i t h the above expres­

sions p r o d u c e d i m p r o v e d app rox ima te values fo r the m a x i m u m n o r m of the scaled Faber 

p o l y n o m i a l s . I n Table 3.7 these i m p r o v e d values are shown i n brackets. 
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3.4 Improving the bound on x 

96 

As was m e n t i o n e d i n Section 1.2.3, EUacot t [22] derives a b o u n d fo r ||xrv|| where Xn{f) is 

t he t r u n c a t e d Faber series f o r / . T h i s is a useful b o u n d when the t o t a l r o t a t i o n , V, is 27r 

( t h a t is w h e n the region i n quest ion is convex) . For an annular sector V <i-K (see Section 

3.3.3). For values of V close t o Air the b o u n d m a y not be as useful . For example , when 

V = Air t he b o u n d gives < 9 f o r values of 7̂  < 3; as we w i l l see | | xn | | < 9 f o r larger 

values of n t h a n 3. W e w i l l now give EUacott 's p roof of his result . T h e reason fo r this is 

t w o - f o l d , firstly i t is a nice p roo f and secondly we w i l l i m p r o v e on the result la ter i n this 

sect ion. 

W e reca l l f r o m Section 1.2.3 t h a t 

\Xn\\ = sup \\Xn{g)\\c 
5e^(0):||s||oo=l 

sup max\xn{g){z)l 
geA{D):\\g\\^=l 

T h e f u n c t i o n Xn{g){z) is s i m p l y a p o l y n o m i a l , so the m a x i m u m pr inc ip le tells us t h a t 

\Xn{9){z)\ a t t a ins i t s m a x i m u m value a t some p o i n t , ZQ = ip ( e ' ^ ° j , on the boundary o f 

t he reg ion D. T h e r e is a difference i n n o t a t i o n between this thesis and the paper by 

EUaco t t [22]. O u r m a p , ^ / J , maps the complement of the u n i t disc onto the complement 

of Z) , whereas EUacot t considers t he m a p p i n g f r o m the complement of a disc of radius p. 

Equa t ions (1.7) and (1.8) give 

Xn{g)\\oo = 
f -^ 27ri/9-? J\w\=i 

g{ip{w)) 

< — 
^ gi^{w))F,{zo) 

dwFj{zo) 

1 

2% 

< 

[ E 

LI 
27r J\w\=i 

~ \ . 
dw 

dw 

w 

since \\g\\co = 1 and Fj{z) = p^Fj{z). P rope r ty 6(6) i n Section 1.2.2 now impHes 

dw\ 
- - I e''''d,v{s,9o} 
nronJ In 

i=o 
w 
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< 
1 r^^ 

27r2 / / 
Jo J\w\=l 3=0 

I e dw 

w 
\dsv{s,9o)\ 

I n t h e second in t eg ra l of th i s expression we make the subs t i t u t i on w = exp[—i{t — s)] g i v i n g 

dw I 

l\w\=\ 3=0 

I e t j s 

W - L 

- L 

i=o 

ijt dt 

27r 

2v 

1 

3=0 

dt 

3=0 

ijt dt + T T . 

(3.6) 

(3.7) 

The re fo re us ing p r o p e r t y 6(a) i n Section 1.2.2 we find 

where Tn = f 
27r Jo 

X n | | < - ( r „ + -

gi(n+l)i _ I 

e'' - 1 
dt. 

T h e or ig ins of r „ l ie w i t h the classical Lebesgue constant 7„ (see Cheney [6]) . Cheney 

defines S'„, t he Four ier p r o j e c t i o n of degree n, f o r a real continuous per iodic f u n c t i o n , / , 

by a m a p p i n g of / on to i ts Fourier series. T h a t is . 

( S n f ) {x) = — + J2"'k s in kt + hk cos kt, 
^ k=i 

w here 

Gk — — f { t ) s i n ( H ) dt and bk = — f{t) cos{kt) dt. 

Cheney [6] t h e n shows t h a t 

\Snf\\ < \ \ f h n , where | | ^ | | = i nax [^(a;)!, 

and , as r epo r t ed i n Geddes and Mason [43], 7 „ = r2„ . T h e value of r „ is considered by 

Geddes and M a s o n [43]. I n pa r t i cu l a r they show 

4 

where r} = 0 . 9 8 9 4 1 . . . and o ( l ) tends to zero mono ton i ca l l y as n increases. I n Table 3.8 

we give the value of r „ fo r sma l l n as compu ted by Geddes and Mason. 
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Table 3.8: T h e value of T„ f o r 1 < n < 10. 

98 

n 1 2 3 4 5 6 7 8 9 10 

1.273 1.436 1.552 1.642 1.716 1.778 1.832 1.880 1.923 1.961 

I n EUacot t ' s b o u n d the constant , B (see Section 1.2.3), is chosen so the bound holds fo r 

a l l n; the re fore th i s constant is chosen t o be 1/2 + T I = 1.773 . . . . Th i s is res t r ic t ive , i n the 

sense t h a t the value of n , g iven by the bound , to o b t a i n an a p p r o x i m a t i o n t h a t is near-best 

w i t h i n a r e l a t ive distance r is less t h a n the ac tua l value of n requi red . I t is res t r ic t ive 

because 41og(n)/7r2 + 1.773 is bigger t han r „ - M / 2 f o r a l l n > 2. T h e values i n Table 3.8 

i m p l y f o r V = iir t h a t | | X T I | | < 9 when n < 5; this is an improvemen t on ?̂  < 3 given 

i n Sect ion 1.2.3. W e can, however, do be t te r t han th is . T h e p r o b l e m w i t h the de r iva t ion 

of EUacot t ' s b o u n d occurs i n d e r i v i n g the bound i n (3.7) f r o m the bound i n (3.6) . W h e n 

the reg ion is convex, EUacot t ' s b o u n d gives n < 835 to achieve an a p p r o x i m a t i o n t h a t is 

near-best w i t h i n a re la t ive distance 9. I n most , i f no t a l l , p rac t i ca l s i tuat ions we w o u l d 

be h a p p y w i t h th i s value of n. A n annular sector is not convex, i n fac t V can be as large 

as ATT; as we have m e n t i o n e d w i t h such an annular sector the b o u n d is res t r ic t ive and we 

need n < 3 t o achieve an a p p r o x i m a t i o n t h a t is near-best w i t h i n a re la t ive distance 9. 

T h i s provides m o t i v a t i o n t o i m p r o v e E l l aco t t ' s bound . To i m p r o v e the bound we consider 

a n u m e r i c a l ca l cu l a t i on of the in t eg ra l ( w h i c h we define t o be r * ) given i n equat ion (3.6) . 

T h e s u m i n th i s expression is a geometr ic series and therefore i n a s tandard way (Geddes 

and M a s o n [43] and E l l a c o t t [22]) we find 

| e . ( n + i ) t _ i I 

~ 2 < = i j=o 
dt r 

Jo 

2-K 

- 1 

int 
e x p l — 

dt 

W e n o w m a k e the s u b s t i t u t i o n ^ = 2u so 

r 
Jo 

" ., 1 

j=o ^ 
dt 

Jo 

sm{n + l)u _ 1 ^_ .„„ 

sinu 2 

'sin ^ t 1 

~ 2 

du 

dt. 



3.4. I m p r o v i n g the b o u n d on | | X T I | | 99 

•f 
Jo 

s m ( n + l)u 1 / N \ 1 . 2/ ^ J 

: cos(nu) + - sm (nu) du 
s m u 2 / 4 

1 . 

i'^ sm(n + l)usm(nu)cos(u) 1 
2 / \l — + -du. 

sm u 4 

W e c o u l d now in tegra te th is expression numer i ca l l y f o r d i f ferent values of n . I t is possi­

ble , however , t o w r i t e th i s i n a f o r m where Gauss-Chebyshev quadra ture can be used to 

a p p r o x i m a t e th i s i n t eg ra l . W e begin by w r i t i n g 

s'm{nu) cos(u) = - [ s i n ( n -|- l ) u + s in (n — 1 ) ^ 
LI 

and t h e n col lect t he f r ac t ions inside the square-root over a c o m m o n denominator . F i n a l l y 

i n the n u m e r a t o r we subs t i tu te 

s i n ( n - f l ) u s in (n — l ) u — ^[cos 2u — cos(2nu)] , 

s in^(n -|- l ) u = ^ [ 1 — cos(2n - f 2 )u 

and 
. , 1 — cos 2u 

sm u = , 

so the i n t eg ra l becomes 

r \ n " " " ^ " ' ^ ' '. 2 " " " ^ - " ^ du. 
Jo 

r /I - cos(2n + 2)u + l cos(2u) - cos(2nu) 
sin^ u 

I n t h i s expression we subs t i tu t e u = cos ^{x) and note t h a t 

du 1 
:, sinu = Vl — a;̂ , and cos{mu) = Tm{x), 

dx x / r ^ ^ 

where Tm{x) is the Chebyshev p o l y n o m i a l of degree m. Remember ing tha t 

T2{x) ^ 2 x ^ - 1 

and 

T2n+2{x) + T2n{x)=2xT2n+l{x), 
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t h e expression finally yie lds 
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Jo 3=0 

3t dt i: 
where 

I - 2xT2n+l{x) + X'^ 

dx, (3.8) 

As we have m e n t i o n e d the expression (3.8) is i n an ideal f o r m to use Gauss-Chebyshev 

quad ra tu re . W e note t h a t the apparent s ingular i t ies , i n the expression fo r f { x ) , at a; = ± 1 

are removable . T h i s is because T2n+i{l) = 1 and r 2 „ + i ( - l ) = ( - l ) ^ " + \ and therefore the 

n u m e r a t o r i n P{x) also has a fac tor of (1 - x'^). Gauss-Chebyshev quadra ture produces 

an a p p r o x i m a t i o n t o the r i g h t h a n d side of (3.8) of the f o r m 

m dx ^ ^ H i f { x i ) , 
1=1 

where Hi = Tr/m and Xi = cos[(2i - l ) 7 r / ( 2 m ) ] (see Fox and Parker [34]). Hence 

l-2x,T2n+l{x^) + x f ' 

Jo 3=0 

dt 
1=1 

1 - X ? 

• l - 2 cos { ^ } cos { ^ ^ ^ ^ ± ^ } + cos^ { i ^ } -

1 — s ^ { ^ } 

I n a l l cases ( t h a t is f o r a l l values of n used) we began w i t h m = 16 and produced an 

a p p r o x i m a t i o n t o the in t eg ra l by the above f o r m u l a . W e then doubled m to 32 and produced 

another a p p r o x i m a t i o n . I f the difference between these t w o approximat ions was not less 

t h a n some tolerance (1G~^) m u l t i p l i e d by the i n i t i a l a p p r o x i m a t i o n , then we cont inued to 

double the n u m b e r of poin ts ( m ) u n t i l t w o successive approx imat ions d i f fe red by less t han 

the tolerance m u l t i p H e d by the i n i t i a l a p p r o x i m a t i o n . W h e n this was so we used the l a t t e r 

a p p r o x i m a t i o n as our value f o r the in tegra l . T h e results fo r 1 < n < 30 are shown i n Table 

3.9 t o 4 d e c i m a l places. I n Table 3.9 we also give the value of r * / 2 7 r . Th i s is i m p o r t a n t 

because our new b o u n d f o r | | x„ | [ is 

VT: 
\Xr. < 27r2 
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Tab le 3.9: T h e value of the in t eg ra l given by equat ion (3.6) fo r 1 < n < 30. We also 
give the value of th is in tegra l d iv ided by 27r. 

n r * 
n 

n T * 
n 

n 

1 6.6824 1.0635 11 11.8684 1.8889 21 13.4620 2.1425 

2 7.9804 1.2701 12 12.0809 1.9227 22 13.5778 2.1610 

3 8.8377 1.4066 13 12.2769 1.9539 23 13.6885 2.1786 

4 9.4782 1.5085 14 12.4589 1.9829 24 13.7947 2.1955 

5 9.9895 1.5899 15 12.6287 2.0099 25 13.8965 2.2117 

6 10.4151 1.6576 16 12.7879 2.0352 26 13.9945 2.2273 

7 10.7797 1.7156 17 12.9378 2.0591 27 14.0888 2.2423 

8 11.0985 1.7664 18 13.0793 2.0816 28 14.1798 2.2568 

9 11.3819 1.8115 19 13.2134 2.1030 29 14.2676 2.2708 

10 11.6368 1.8521 20 13.3407 2.1232 30 14.3525 2.2843 

W h e n y = 47r we find, f r o m Table 3.9, t h a t | |xnl l < 9 f o r n < 27. T h i s is a m u c h bet ter 

value t h a n the one g iven by EUacott ' s bound ( n < 3) , and shows tha t f o r p rac t i ca l values 

of n t he t r u n c a t e d Faber series is near-best w i t h i n a re la t ive distance 9. 

3.4.1 The improved constant 

W e shal l now i m p r o v e the constant i n EUacott 's b o u n d (see Section 1.2.3), t h a t is, B = 

1.773 W e beg in b y b o u n d i n g T*/2TT above and below. T h e upper bound is g iven i n 

EUacot t [22]. Us ing ja] - < |a - 6| < |a| + \b\ we find 

rn - 2 - ~ 27r - 27r i o 

i(n+\)t _ Y I 

- 1 

r* TT 1 
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T h e results of Geddes and Mason [43] i m p l y t h a t 

4 : l o g n + 0 . 9 8 9 4 1 . . . < ^logn-\-r] + 0 ( l ) < 4 7 l o g n + 1 . 2 7 3 
TT̂  TT^ TT̂  

C o m b i n i n g the t w o previous expressions therefore gives 

- ^ l o g n + 0 . 4 8 9 4 1 . . . < ~ < ^ l o g n + 1 .773 . . . . 
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27r ~ TT̂  

F r o m th i s we see t h a t T* /27r behaves Hke 4 l o g n / 7 r ^ , at least as n —> oo. I n Table 3.10 we 

consider the value of r*/27r — 41ogn/7r^ fo r smal l n, specif ical ly 1 < n < 30. 

Table 3.10: T h e value of T*/2Tr -ilogn/TT^ fo r 1 < n < 30. 

n T * / 2 7 r - 41ogn/7r^ n r * / 2 7 r - 41ogn/7r^ n T * / 2 7 r — 41og?i /7r^ 

1 1.0635 11 0.9171 21 0.9087 

2 0.9892 12 0.9156 22 0.9082 

3 0.9613 13 0.9144 23 0.9078 

4 0.9467 14 0.9133 24 0.9074 

5 0.9376 15 0.9124 25 0.9071 

6 0.9314 16 0.9116 26 0.9068 

7 0.9270 17 0.9109 27 0.9066 

8 0.9236 18 0.9102 28 0.9063 

9 0.9210 19 0.9096 29 0.9060 

10 0.9189 20 0.9091 30 0.9058 

T h e values i n Table 3.10 suggest t h a t r * / 2 7 r - 4 logn /7 r^ is a mono ton ica l l y decreasing 

f u n c t i o n of n . I f th i s is t r u e t hen 

— < 4 l o g n + 1 .0635 . . . . 
27r T T ^ 
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Hence, we have 

X n | | < - ( ^ < - - l o g n + 1 .064 . . . , 

and we have i m p r o v e d the constant i n E l laco t t ' s bound (see Section 1.2.3 and [22]) f r o m 

1.773 t o 1.0635. W h e n the region is convex ( V = 27r), th is new bound impl ies t h a t | | xn | | < 9 

f o r n < 4813. W h e n V = Sir we find | | x n | | < 9 f o r n < 118, and when y = 47r we find 

IXnI I < 9 f o r n < 18. T h e new bound is s t i l l pessimist ic , bu t i t is an improvemen t on the 

one g iven i n E l l a c o t t [22]. 

3.5 Level plots 

I n th i s sect ion we describe a numer i ca l ca lcu la t ion of level plots fo r an annular sector. I n 

Sect ion 1.2.2 we def ined a level curve, F^, to be 

= {z = tplw) : = r > 1} , 

t h a t is, t he image of -0 app l i ed to the circle of radius r i n the ly-plane. I n Section 2.2.2 we 

de r ived f r o m (2.126) an expression f o r the con fo rma l m a p p i n g given by 

z = ij;(w) — — exp 
( / x ^ - 2 ^ ^ - f l ) ? ( / / ^ - 2 r / x - H ) ? 

p{p'^ — 2 ^ c o t h a -f- 1) 
(3.9) 

A s i m i l a r s t ra tegy can be appUed to equat ion (2.12c) p roduc ing another expression fo r the 

m a p p i n g . 

z — •0(u;) — —Rexp 
{p? - 2tii + 1)^( / /^ - 2 r / i + 1 )^ 

J\ p{p'^— 2pcoih.a-{-\) 
(3.10) 

T h e r e are a vast n u m b e r of d i f fe ren t f o r m s fo r the con fo rma l map (see Section 2.2.2), so 

m a n y d i f f e r en t f o r m u l a e m a y be used t o approx ima te the level curves numer ica l ly . T h e 

b r a n c h po in t s t h a t exist when eva lua t ing the in tegrand i n the expressions above can cause 

c o m p u t a t i o n a l p rob lems because a compu te r m a y calculate the value o f the square root 

f u n c t i o n on a d i f f e ren t b ranch to the desired one. Th i s m a y cause some of the aforemen­

t i o n e d f o r m u l a e t o give poor level p lots and fo r th is reason we describe a m e t h o d we f o u n d 

t o w o r k sa t i s fac tor i ly . We begin w i t h (3.9) and (3.10), subs t i tu te p = l / u , and produce 
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t w o m o r e f o r m s of t he m a p p i n g , t h a t is 

i / t" (i /2 _ 2 i z / - M ) l ( i / 2 - 2 T J / + 1)? 
z = •^(w) = — exp 

and 

z = %l){w) = —Rexp 

i: z/(i/2 - 2iycotha + 1) 
dv (3.11) 

i/w (^2 _ 2 i j , + i ) 2 ( i / 2 - 2 r j / + 1)2 

i / ( j / 2 - 2 i ' c o t h a + l ) ^ 
(3.12) 

W e t h e n consider ce r t a in po in ts on the curve \w\ = r, r > 1, in pa r t i cu la r the points 

w = rexp(ir]) where 77 = 27rk/n w i t h k = 0 , 1 , . . . , n . We note t h a t k = n gives us the 

same p o i n t i n t he iw-plane as when k = 0. Our s trategy is to use (3.11) i f cos 77 < 0 and 

(3.12) i f cos r) > 0. W e chose to use t w o fo rmulae to calculate the m a p p i n g because i t seems 

n a t u r a l t o choose the f o r m u l a w h i c h is best sui ted fo r the po in t we are considering at t h a t 

t i m e , t h a t is, we choose t o use (3.11) i f the po in t is closer to —1 and (3.12) i f the po in t 

is nearer 1. Once we have chosen w h i c h expression to use, t h a t is whether COST] > 0 or 

cos 7 < 0, t h e n we use Gauss-Kronrod-Pat terson in t eg ra t ion to app rox ima te the in tegra l . 

I n do in g th i s we consider the in tegra l along a s t ra ight l ine f r o m —1 ( i f we use (3.11)) or 

1 ( i f we use (3 .12)) t o the p o i n t 1/w. T h e in tegrand i n expressions (3.11) and (3.12) has 

poles at z/ = 0, v = {1 + a^)/(1 — a^) and v = {I — a ^ ) / ( l - f a^); th is gives rise t o a p rob l em 

i n our s t ra igh t l ine i n t e g r a t i o n . T h e p rob l em occurs when the radius , r , of our level curve 

is greater t h a n (1 + a ^ ) / ( l — 0?) and the angle, 77, of the po in t i n the lo-plane is close to 

0 or 27r. W h e n th i s occurs the s t ra ight l ine in t eg ra t ion w i l l pass close to or go t h r o u g h a 

s i n g u l a r i t y i n t he i n t eg rand and our numer ica l image p o i n t w i l l be a poor a p p r o x i m a t i o n to 

the t r u e image p o i n t . I n th is case i t w o u l d be possible t o find a reasonable a p p r o x i m a t i o n 

t o the image p o i n t b y consider ing a d i f fe ren t p a t h to in tegra te along. For example , we 

cou ld use an arc j o i n i n g the poin ts 1 and l/w. I n figure (3.8) we show the level plots 

p roduced , as we have described, f o r the annular sector of half-angle 7r/4 radians and inner 

radius 1/2. R e f e r r i n g t o Table (3.2) we see t h a t fo r th is annular sector a = 0.500945881 

and b = 0.675703499. Hence, (1 - f a^)l{l - a^) = 1.6700372 and we on ly have a p rob l em 

i n our level p l o t s i f r > 1.6700372. I n figure (3.8) we show the level plots w i t h r a d i i , 

1.67, 1.5, 1.2, 1.1, 1.01, and 1.001. T h e level p lo t w i t h radius 1.001 provides, at least as 

f a r as t he eye can see, a decent a p p r o x i m a t i o n t o the desired annular sector. 
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To get a good p l o t of the annular sector and i ts level curves i t w o u l d be nice to have 

the same n u m b e r of po in t s along each arc m a k i n g up the boundary of the annular sector. 

T h e m e t h o d we have j u s t described does not have th is proper ty . However, re fe r r ing to 

Sect ion 2.5 i t w o u l d be possible to do th is . We w o u l d s i m p l y consider w h i c h parts of the 

curve \w\ = r m a p t o w h i c h par ts of the annular sector and d i s t r i bu t e the poin ts evenly 

over each of these. 

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 

F i g u r e 3.8: Leve l p lots f o r an annular sector of half-angle 7r /4 and inner radius 1/2. 

3.5.1 The Fejer points 

T h e b o u n d a r y of the annular sector is a Jordan curve (s imple closed curve) , therefore 

(see Gaier [38], pg . 67) the m a p p i n g i f ) f r o m { u ; : > 1}. onto C/Q can be extended 

con t inuous ly t o a m a p p i n g f r o m {w : \w\ > 1 } . T h e images under ^ of the ( n -|- l ) - s t roots 

of u n i t y are cal led the Fejer poin ts of order n on D. T h e Fejer points are therefore given 
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by 
( „ • ) , / f 2%ik 1 \ , , 

4 = ^ ( ^ e x p | - - ^ | j fo r ^ = 0 , l , . . . , n . 

W h e n i n t e r p o l a t i n g a f u n c t i o n , f [ z ) ana ly t i c on D ( i n this case the annular sector Q ) , 

at an a r b i t r a r y set of po in t s i n Z), t hen as we take more and more poin ts the i n t e r p o l a t i n g 

p o l y n o m i a l , Ln{z), need not t e n d t o the f u n c t i o n we are t r y i n g to approx imate . Gaier [38] 

in t roduces the idea of a set of u n i f o r m l y d i s t r i b u t e d poin ts . He shows t h a t the Fejer points 

are u n i f o r m l y d i s t r i b u t e d , and t h a t the i n t e r p o l a t i n g po lynomia l s , Ln{z), t end to f { z ) as 

n —> oo i f and o n l y i f we in te rpo la te / at a set of u n i f o r m l y d i s t r i bu t ed poin ts . T h e set 

of Fe je r po in t s are no t the on ly u n i f o r m l y d i s t r i b u t e d set of poin ts , b u t they are easy to 

ca lcula te i f t he c o n f o r m a l m a p , t/), is k n o w n . I n figure (3.9) we show approx imat ions to the 

Fe je r po in t s z^^\ k = 0,1,... ,n where n = 50 fo r the annular sector, Q, of half-angle 7r/4 

and inne r rad ius 1/2. T h e Fejer poin ts shown are on ly app rox ima te because we ac tua l ly 

f o u n d the po in t s 
, f f 2Trik ] \ 

V rex^<——\ 

where r was chosen to be 1.001. To do this we used exac t ly the same technique as we used 

i n Sect ion 3.5. 
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0.4 -0.3 

F i g u r e 3.9: T h e a p p r o x i m a t e Fejer po in ts , ' w i t h A; = 0 , 1 , . . . , 50 fo r an annular sector 
of ha l f -angle 7r /4 and inner radius 1/2. 
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4.1 Introduction 

One of the most important problems in numerical computation is the solution of nonsin-

gular systems of linear equations, 

= b , (4.1) 

where A G C ^ ^ ^ , x and b G C^ . Linear systems of this type occur in many different 

areas. For example they occur when solving partial differential equations by finite element 

or f in i te difference methods. When the size of the matrix in (4.1) is small, the usual 

approach is to use direct methods such as Gaussian Elimination. Gaussian Elimination, 

like other direct methods, involves a factorisation of the matrix A. For this reason when 

the size of the linear system is large, direct methods can become costly in terms of both 

computing t ime and storage. I t is often better (and sometimes the only option) to use 

iterative techniques to solve (4.1), especially when the coefficient matr ix . A, is sparse. The 

coefficient mat r ix is certainly sparse in the examples we have already mentioned, that is 

when the linear system arises f rom discretising a partial differential equation; for these 

examples an iterative method may work well. 

The aim of this chapter is to review iterative methods for the solution of (4.1) and to 

describe which methods are suitable for various classes of coefficient matrix. We wi l l start 

w i t h the very basic iterative techniques known as stationary methods, an example of which 

is the Jacobi iteration. Stationary methods involve splittings of the coefficient matrix and 

usually exhibit slow convergence at least compared wi th the methods we wi l l describe 

in the later sections of this chapter. After a very brief discussion of stationary methods 

we w i l l then describe some of the most popular nonstationary methods, such as CG (for 

symmetric, positive, definite matrices), GMRES, Q M R and Bi-CG (for nonsymmetric, 

nonsingular matrices). Most of the methods we describe belong to a class of methods 

known as Kry lov subspace methods. In the last section of this chapter we wi l l review 

hybr id methods. Hybr id methods involve two stages. In the first stage they use a method 

to produce some information about the coefficient matr ix. In the second stage they use a 

parameter dependent method and the information obtained f rom the first stage, to improve 

the estimate of the solution. 
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4.2 Stationary Iterative Methods 

Some of the oldest and easiest to implement iterative techniques are the stationary iterative 

methods. For these methods the coefficient matr ix, A, is split in the form 

A = M-Q, 

where the mat r ix M is nonsingular. The problem (4.1) is then equivalent to Mx ~ Qx + b 

and this suggests the iterative scheme 

Xk+i=M-'Qxk + M-'h. (4.2) 

The methods are called stationary because M~^Q and M~^h do not depend on the iteration 

number k, and so the methods do not vary f rom iteration to iteration. Methods of this 

type include Jacobi's method, the Gauss-Seidel method and the successive overrelaxation 

methods. 

We define the error at the k-th step as 

e f c : = x - X f c , (4.3) 

and say that the method (4.2) is convergent if Hmfc_,oo ek = 0. We now define T = M~^Q, 

and therefore 

efc = x - X f c 

= Tek-i 

= T'eo. 

Consequently for any consistent matr ix norm, the error satisfies 

ek = < eo 

I t is well known that —> 0 as A; ̂  oo if and only i f p{T) < 1 (see most numerical 

analysis undergraduate texts, for example Atkinson [2], Burden and Faires [5] and Kreysig 

51]). This result means the iterative method converges, provided the eigenvalue of T w i th 

largest modulus, is less than one. We w i l l now briefly consider four standard iterative 

methods. 
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4.2.1 Jacobi's Method 

To describe Jacobi's method we begin wi th the i-th equation of the linear system (4.1) 

that is, 
N 

i = i 

K n r = i (^ii 7̂  0? can produce an iterative method whereby the A;-th iterate of the i-th 

component of x is found f rom 

V / 

This is Jacobi's method for solving the system (4.1). Following a standard notation we 

wri te A = D — L — U, where the matrices D, L and U contain the diagonal, strictly lower 

triangular and strictly upper triangular parts of the matr ix A, respectively. In the notation 

of Section 4.2 we find M = D and Q = L -\- U. Consequently Jacobi's method may be 

wr i t t en as 

Xk = D-\L + U)xk-i + D-'h. 

4.2.2 The Gauss-Seidel Method 

The Gauss-Seidel method is a modification of the Jacobi method. The idea is to use the 

new approximation to x^'^ as soon as i t becomes available. Therefore the Gauss-Seidel 

method is wr i t ten 

\ 3<i 3>i J 

provided OILi «n 7̂  0 ô ĉe again. I f we split the coefficient matrix as we did for Jacobi's 

method we find M - D-L and Q = U ioT the Gauss-Seidel method. So in matr ix notation 

the Gauss-Seidel method can be wri t ten 

xu = {D- L)-^Uxu-i + {D- L)-'h. 
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4.2.3 The Overrelaxation Methods 

I n this section we consider the Successive Overrelaxation Method (SOR) and Symmetric 

Successive Overrelaxation Method (SSOR). SOR is a stationary iterative method that 

contains a parameter, to, which can be set by the user. In the notation of Section 4.2 this 

method is represented hy M = {D — wL)/w and Q = [{1 — w)D + wU]/w. Therefore in 

mat r ix notation SOR is wri t ten 

Xk = iD- wL)-^ [(1 - w)D + wU] Xk-i + w{D - wL)'^h. 

When w = 1 this reduces to the Gauss-Seidel method. 

The SSOR method combines two SOR-like iterations, the difference being in the second 

iteration where the roles of L and U are interchanged. We define 

M l = -{D - wL), Qi = - [(1 - w)D + wU], 
w w 

M2 = -{D-wU), Q2 = -[{l-w)D + wL], 
W W 

and then the SSOR method is given by the following two equations, 

and 

This may also be wr i t ten as 

Xk+i = M^^Q2M-^QiXk + wi2 - w)(D - wU)-^D{D - wL)-%. 

A good review of all these stationary iterative methods is given in Barrett et al. [3 . 

According to this and the references therein, the SSOR convergence rate wi th an optimal 

w is slower than the SOR convergence rate wi th an optimal w. For this reason the SSOR 

method is rarely used, except maybe as a preconditioner for symmetric matrices (see [3 

for the details). 

Stationary iterative methods were once popular. However, nowadays this is not the case 

because more powerful techniques have been developed. For most matrices, stationary 
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iterative methods suffer f r o m slow convergence. The SOR method wi th an optimal w, 
usually converges quicker than the others, but compared to the methods of the next section 
i t is slow. Stationary iterative methods do have the advantages of being easy to explain 
and implement. 

4.3 Nonstationary Iterative Methods 

4.3.1 Krylov Subspace Methods 

In this section we w i l l introduce Krylov subspace methods. Most of the modern iterative 

methods for solving (4.1) belong to this set of methods. Krylov subspace methods begin 

w i t h an in i t i a l approximation Xo to the solution of (4.1), x = A~^h. From this in i t ia l 

approximation the method produces a sequence of iterates of the form 

Xnexo + Kn{ro,A), (4.4) 

where TQ = b — AXQ and /<'„(ro,v4) is the n-th Krylov subspace generated by FQ and A, 

that is, 

Kn{ro, A) = span { F Q , ATQ, A " " ^ r o } . (4.5) 

A general element of this Krylov subspace is 

aoro + aiAro + ... + a „_ iA""^ ro = g„_i(A)ro, (4.6) 

where G Pn-i, the set of polynomials w i th degree less than or equal to n — 1 (as 

defined in Section 1.2.3). The n-th residual is defined as 

r„ = b - Axn = Ae„ , (4.7) 

that is the difference between the right-hand side b and the approximation Ax„ . In this 

equation we have also noted the n-th residual is the n-th error, (as defined by (4.3)), 

multipHed by A. In view of equations (4.4) and (4.6) we find 

r„ = A{x - Xn) = ro - Aqn-iiA)ro 

= Pn{A)ro, (4.8) 
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where 

P„ 6 Pn w i th Pn{0) = 1. 

114 

(4.9) 

The polynomials qn-i are known as iteration polynomials, whereas the p„ are known as 

residual polynomials. We note that Pn{z) = 1 — zqn--i{z). 

As a motivat ion for Krylov subspace methods, we suppose A has a set of orthonormal 

eigenvectors { v j } ^ i (that is A is a normal matr ix) and corresponding eigenvalues {Xj}, 

and we wri te the in i t i a l residual as a linear combination of these eigenvectors that is 

N 

i = i 

Then 

and so 

N N 
r„ = Pn{A)ro - X ] 7 j i ' n ( ^ ) V j = J2-fjPn{>^j)yj, 

"̂112 

Therefore finally 

= E 7 X ( A . ) 
i = i 

- ,inax b „ ( A ) n | r o | | ^ 

r„| |2 < max |p„(A)| | |ro | |2, (4.10) 

where cr{A) is the spectrum of the matr ix A. This means the n - t h residual is small provided 

Pn\ is small on the spectrum of A. I t seems therefore that Krylov subspace methods could 

be a good idea. 

The above result can be extended to non-normal matrices (see for example [37]). We 

begin by supposing that the coefficient matrix, A, is diagonalisable, that is there exists a 

mat r ix , X, such that X~^AX = D = D i a g ( A i , . . . , A N ) . Therefore 

| |r„| |2 = \\pn{XDX-')voh 

= \\Xpr.{D)X-'voh 

< | | J^ | |2 | |Diag(p„(Ai) , . . . ,Pn(A;v)) | |2 | |^- i2 | | ro | |2 

< \\X\\2\\X-'\\2 m&x \pniX)\\\ro\\2. (4.11) 
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This again shows that the n-th residual is small provided is small on the spectrum 
of A, that is, provided K2{X) is small. The inequality (4.11) differs f rom (4.10) by a 
factor of K2{X) — \\X\\2\\X~^\\2. For normal matrices K2{X) — 1 and we again obtain the 
inequality (4.10). For highly non-normal matrices K2{X) can be extremely large and the 
bound given in (4.11) may not be a useful one. 

One of the aims of this chapter is to arrive at hybrid methods as a sensible idea for 

solving the linear system (4.1). As previously mentioned, hybrid methods involve two 

stages. I n the first stage a parameter-free scheme is used to gain some information about A. 

I n the second stage a parameter-dependent scheme is used, where the residual polynomial, 

p„ , or i teration polynomial, qn-i-, is constructed f rom the information gained in the first 

stage. This second stage is usually, i f not always, a Krylov subspace method. A n example 

of the information gained in the first stage, would be the knowledge of a compact set G 

which contains the eigenvalues of A^ but does not contain the origin, that is 

\{A) CGcC, O^G. 

Given such a set G, Freund et al. [37] suggest a good set of polynomials to choose as the 

residual polynomials would be those satisfying 

m a x K ( A ) | = ^ ^ m m ^ ^ 

that is the best approximations to zero on the set G. They also note that this approxi­

mat ion problem can only be solved analytically in a few special cases, such as the case of 

the interval, where the Chebyshev polynomials are optimal. Usually when these polyno­

mials are not known exactly, the way forward is to choose polynomials that are near-best 

approximations to zero, or to choose polynomials which are asymptotically optimal (for 

semi-iterative methods see Eiermann et al. [20]). For a review of hybrid methods see 

Section 4.4. 

4.3.2 The Method of Conjugate Gradients ( C G ) 

The method of conjugate gradients (CG) is one of the oldest and most popular methods 

used for a linear system (4.1) whose matr ix A is Hermitian and positive definite. Hestenes 
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and Stiefel [50] introduced this method in 1952 as a direct method (see Barrett et al. [3]). 
In the 1960's CG became less popular because on a computer the search directions (see 
below) w i l l eventually lose their A-orthogonality. In the seventies, however, CG was shown 
to be an effective iterative procedure and once again interest grew in the method. There 
have been many papers and articles wri t ten about CG; an excellent introduction to the 
method and its ideas is given in Shewchuk [71], a good review of the method is contained 
in Barret t et al. [3] and a nice section on the subject is contained in Golub and Van Loan 

CG was introduced to improve upon the ideas of steepest descent, where the new iterate 

is the old iterate plus a particular multiple of the residual. The idea of CG is not to use 

the residual, r,-, to improve the iterate, but to use some other search direction, p,-. The 

search directions in CG are chosen to be >l-orthogonal [pfApi = 0 iov i ^ j). This is an 

important property because i t means, in exact arithmetic, CG w i l l converge in at most A'̂  

steps (where TV is the size of the matr ix A). Given an ini t ia l approximation to the solution, 

X o , and hence an in i t i a l residual, TQ, the method begins by setting the first search direction 

to be po = To, and then updates the iterates by 

r ^ r 
x , + i = Xi + aiPi, where = ^ ' • 

Pi 

The residuals are updated by 

r , + i = Ti - a^Ap,. 

Final ly the new search direction is found f rom 

Pi+l = Ti+i + A+iPi , 

where 

The beauty of CG is contained in two wonderful properties. Firstly i t is based on 

three simple two-term recurrences. Secondly the n- th iterate, x „ 6 X Q -̂ Kn(rc A), found 

by running the CG algorithm for n steps minimises the A-novm of the error, where the 

A-norm is defined as : = {u, Au)^. By (4.7) this result may be wri t ten in terms of the 
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minimisat ion of the residual in a different norm, that is 

| r n | | y i - i = | |b - A x „ | U - i = min | | b - A x | U - i . (4.12) 
xexo+A„(ro,A) 

Freund et al. [37] state for a general non-Hermitian matr ix that || is not a norm, so 

usually the minimisation in expression (4.12) is replaced by one of two conditions. They 

suggest replacing (4.12) by 

|r„| |2 = min | |b — i4x||2 
xexo+A'„(ro,A) 

and this gives rise to methods known as min imum residual (MR) methods. As an alterna­

tive they suggest replacing (4.12) w i th a Galerkin condition, 

s ^ r „ = 0 for all s G K„{ro, A), 

that is the n-th. residual is made orthogonal to all vectors f rom the n-th Krylov subspace. 

Methods satisfying (or using) this condition are called orthogonal residual (OR) meth­

ods. For Hermit ian indefinite hnear systems, Paige and Saunders [62] gave two algorithms, 

M I N R E S (based on the M R property) and S Y M M L Q (based on the OR property). They 

also showed that these methods can be implemented using short recurrences. For a gen­

eral non-Hermitian matr ix i t would be interesting to ask when is i t possible for a CG-like 

scheme, characterised by an M R or OR property, to be implemented using short recur­

rences. A result due to Faber and Manteuffel ([32] and [33]) provides the answer. Their 

result states that 

A CG-like scheme satisfying an MR or OR property can be implemented using short 

recurrences only if the matrix A is of the form 

A = e'\T + ( j / ) , where T = T^,eeR, and a G C. 

Finally i n this section we note that a convergence bound for the CG algorithm can be 

derived (see Elman [29], Golub and Van Loan [44] or the references in Barrett et al. [3] for 

the details). The bound depends on the spectral condition number of the matr ix A and 

f r o m this i t can be shown that the number of iterations required to achieve a set accuracy 

is proportional to this condition number (see for example Golub and Van Loan [44]). 
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4.3.3 C G on the Normal Equations 

We now consider general non-Hermitian linear systems of equations, that is linear systems 

(4.1), whose matr ix A is a non-Hermitian matr ix. A n ini t ia l ly attractive idea is to use CG 

to solve a linear system of equations wi th A^A (or AA^) as its matr ix. We note A^A 

is an Hermit ian positive semi-definite matr ix (see Atkinson [2], p.478), therefore if A is 

nonsingular A^A is positive definite and we can use CG. 

There are two approaches to obtain a linear system of this kind (known as the normal 

equations), firstly we mul t ip ly (4.1) throughout by A^, that is we solve, 

A" Ax = b i w i th b i = A ^ b ; 

this approach is known as CGNR. The second approach is to write x = A^y and so 

AA^'y = b , 

solving this equation by CG is known as CGNE. 

I n general both of these approaches are not favored because the convergence rate of CG 

is governed by the condition number of the matr ix A, so for these systems the convergence 

depends on the square of the condition number of this coefficient matrix. Freund et al. [37 

review some cases that are optimal in the sense that CGNR and CGNE are equivalent 

mathematically to CG-type methods based on the M R or OR conditions. Nachtigal et 

al. [59] suggest that solving the normal equations is often ignored as a method to solve a 

linear system, when in fact this method may converge quite quickly. 

4.3.4 The General IVIinimum Residual JMethod ( G M R E S ) 

CG, S Y M M L Q and MINRES are all based on the Hermitian Lanczos process (see Barrett 

et al. [3] and Elman [29]). The general min imum residual method (GMRES) is a method 

for general non-Hermitian matrices which is based on the Arnoldi algorithm [1]. The result 

of Faber and Manteuffel ([32] and [33]) means that, for a general non-Hermitian matrix, a 

method which minimises some norm cannot contain short recurrences. So in GMRES all 
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the previously calculated orthogonal vectors must be stored and therefore the amount of 
work and storage w i l l grow linearly wi th the number of iterations. 

We w i l l begin by describing Arnoldi 's method. Given an ini t ia l vector V i such that 

((vi|(2 = 1, Arnoldi 's method produces an orthonormal basis for the Krylov subspace 

span { v i , . . . , ^ ' " " ^ V i , . . . } . This is constructed via the Gram-Schmidt process, that is for 

J = 1 ,2 , . . . we set 

h j ••= v f ^ V j 2 = l , . . . i 

v,+a : = A v , - ^ / i , , V i (4.13) 

•= l | v i + i | | 2 , and V j + i : = •'^^ , 

provided hj+ij is different f rom zero. These equations may be writ ten more succinctly 

in mat r ix fo rm. For example, i f we consider m steps of this algorithm (that is take j = 

l , . . . , m ) and i f we define Vm := [ v i , . . . , v j (so G C^^™) and Hm : = [/i,,j]i<,<j<m 

(therefore Hm G C"^^"^ is an upper Hessenberg mat r ix) , then 

AVm = VmH^ + Ym+ie^ (4.14) 

w i t h Cm = ( 0 , . . . , 0 , 1 ) ^ G C " . The Gram-Schmidt process produces an orthonormal 

basis, and so f r o m (4.14) we find 

V^AVrn = Hm. (4.15) 

The Arnold i method for eigenvalues is to use the eigenvalues of Hm as approximations to 

the eigenvalues of A. Most of the hybrid methods we shall describe later in this chapter 

(see Section 4.4) produce eigenvalue estimates by Arnoldi's method. Indeed, in Chapter 5 

we w i l l describe our hybrid method which also uses Arnoldi's method to produce eigenvalue 

estimates. 

To enable us to describe the GMRES algorithm neatly we define Hm G C<'"+^)''™ to 

be the mat r ix containing Hm in its first m rows and ( 0 , 0 , . . . , 0, /im-i-i.m) as its last. Any 

iterate of the f o r m x ^ G Xo + Km ( ro , A) can be wri t ten i n terms of the orthonormal basis 

for Km ( ro , A ) found by Arnoldi 's method, starting wi th V i = r o / | | r o | | 2 . That is, any such 
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iterate can be wr i t t en 

X „ 6 Xo + Vmym, 

for some y„i € C'"^^ Therefore, 

r „ = b - Axm = ro - A K x y , 

(4.16) 

From (4.14) we find 

r™ = ro - {VmHm + /Jm+i ,mVm -ne^)y„ 

Vr m-l-l 

where ei = ( 1 , 0 , . . . , 0 ) G C^^'+^^^'K The GMRES algorithm produces iterates x „ G 

Xo + /^m (ro , A ) such that | |rm| |2 is min imum over all such choices. The v,- are orthonormal, 

and therefore . 

r™ 2 ro 2^1 - Hmyn (4.17) 

Hence, minimising | |rm| |2 is equivalent to choosing to solve a least-squares problem 

involving the right hand side of this expression. The GMRES algorithm solves this least-

squares system by first finding a QR factorisation of the matr ix i f ^ . That is 

QHrr 
Rm 
0 

where Q is a unitary matr ix and Rm is upper triangular, that is. 

R-n 

As Q is unitary we find 

2 

/ r2 i . . . rira \ 

0 r22 . . • 

V 0 . . . 0 Tmrn ) 

Wri t ing (5||ro||2ei = (-^i, • • - . z ^ + i f then | |r™||2 is minimised when 
/ m \ 

i=2 
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Once ym is known then a new iterate can be found f rom equation (4.16). We note that Hm 
contains Hm-i as a submatrix. Therefore in principle Rk can be updated f rom Rk-i and i t 
can be shown (see [29]) that x ^ and ||rm||2 can be obtained at essentially no cost, at least 
compared to the cost of producing the next vector in the orthonormal basis for /<'„(ro. A). 

We know all the previous orthonormal vectors are needed to calculate the next vector 

in the basis. Hence, the work and storage requirements, for GMRES, grow linearly wi th 

the number of iterations. Therefore i f a large number of iterations is required to obtain 

convergence, then there are large computational costs and storage requirements. One way 

around this problem is to restart the algorithm after s steps, replacing the old in i t ia l iterate 

w i t h the new iterate obtained f r o m the GMRES algorithm after s steps. The skill in this 

idea, is deciding when to restart, that is the value of s. I f s is too small then the method 

w i l l take a long t ime to converge; i f s is too large then more work wi l l be done than is 

necessary. Another problem wi th this idea is that there exist matrices for which GMRES 

has very slow convergence unt i l the last step (see Nachtigal et al. [59]). For such matrices 

restarting before the last step w i l l result in slow convergence. 

Final ly in this section we once again mention that the Arnoldi /GMRES idea is the 

main method used in stage 1 of hybrid algorithms (see Section 4.4). The idea is to use 

Arnoldi 's method for eigenvalues to produce some eigenvalue estimates and at the same 

t ime to use GMRES to produce a new ini t ial iterate for the second stage. 

4.3.5 BiConjugate Gradient Method ( B C G ) 

For a general non-Hermitian matr ix , as we have already mentioned, the conjugate gradient 

method is not suitable because the residual vectors cannot be made orthogonal wi th short 

recurrences (see Faber and Manteuffel [32] and [33], and Section 4.3.2). The GMRES 

algori thm (see Section 4.3.4) produces a minimisation of residuals, but at the expense of 

using long recurrences. Another approach is that used by the biconjugate gradient (BCG) 

method. This method begins wi th two non-zero vectors, ro and ro; usually one sets ro to 

be ro, Fo, or a random vector. From these ini t ia l vectors the BCG algorithm produces two 



4.3. Nonstationary Iterative Methods 122 

mutual ly orthogonal sequences of vectors r„ and r „ , that is, 

' •' [ 0 otherwise. ^ ^ 

The B C G algorithm does this using short recurrences, but does not provide a minimisation. 

Once we have FQ and T Q , the algorithm, taken f rom Freund et al. [37], is as follows: 

Set : qo = ro, qo = fo , po — ro-

For n = l , 2 , . . . 

= q^_ iAq„_ i 

« n - l = Pn-\j(^n-\ 

Xn = Xn-1 + an-iq„-l 

r„ = r„_i - an-iAqn-i 

= r „ - i - an-iA^qn-i 

Pn = f l r „ 

= Pn/Pn~l 

q n = rn + ^ n Q n - l 

q„ = r„ - f Pn^n-l-

The choices 

O n - i = ^ — and = :zf , 

ensure the bi-orthogonality relations 

? f = 0 = q j A q j i f i / 

The main advantages of BCG are its short recurrences and the fact that i t is often as 

accurate as GMRES, at the cost of two matr ix vector products per iteration. BCG, how­

ever, suffers f r o m a few drawbacks. Firstly, i t often exhibits erratic convergence behaviour. 

Secondly, each iteration of the method involves a multiplication by both A and A^. This 

would be a problem i f the matr ix A^ was not available, for example, i f we were given a 
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routine to calculate a matr ix vector product, but not the matr ix itself. Finally the BCG 
algori thm can suffer f r o m breakdowns. Looking at the above algorithm this occurs when 

(7„_i = 0 and r„_ i ^ 0, r„_ i ^ 0, 

or i f 

pn-\ = 0 and r„_i ^ 0 , r „_ i 7^ 0. 

Freund et al. [37] discuss the sources of these breakdowns and also the look-ahead Lanczos 

algori thm, which is a method that handles most breakdowns in the BCG algorithm. The 

next few methods we describe t ry to improve on one, or more, of the aforementioned prob­

lems of the BCG algorithm. Good reviews of BCG, and related algorithms, are contained 

in Freund et al. [37] and Barrett et al. [3]. 

4.3.6 The Conjugate Gradient Squared Method (CGS) 

I n 1989, Sonneveld [75] introduced his conjugate gradients squared algorithm (CGS). This 

was the first method, based on the BCG algorithm, avoiding the multiplications by A^. 

I t is relatively straightforward to prove that the vectors r „ and r „ , i n the BCG algorithm, 

satisfy r „ = pn{A)ro and r„ = pn{A'^)ro for some Pn ^ Pn- Therefore, we find that 

Pn = r'^ [Pn{A)f ro, 

and Pn can be calculated without the A-^ multiplication. In a similar way we find that 

an = roA[g„(A)]^ro , 

for some G P„ . Sonneveld [75] showed that both /?„ and cr„ can be updated by using 

short recurrences. Algorithms for the implementation of CGS are contained in Nachtigal 

et al. [60] and Barrett et al. [3]. I t turns out, for the CGS algorithm, that 

r2„ = {pniA)fro, 

where Pn(A) is the residual polynomial for the BCG algorithm. That is, the CGS residual 

polynomials are just the squares of the BCG residual polynomials. For this reason the 

CGS algori thm shows even more erratic convergence than the BCG algorithm. When 

B C G diverges CGS w i l l diverge, but when BCG converges, CGS may sti l l diverge. 



4.3. Nonstationary Iterative Methods 124 

4.3.7 B i C G S T A B and B i C G S T A B 2 

In this section we w i l l discuss BiCGSTAB, the method of Van der Vorst [79], and 

BiCGSTAB2, the method of Gutknecht [47]. These methods were developed to avoid 

the erratic convergence of both the CGS and BCG algorithms. For the CGS algorithm one 

obtains iterates of the fo rm 

X2„ = Xo - I - K2niro, A), (4.19) 

where as mentioned above 

r2n = {PniA)fro, (4.20) 

and Pn{A) is the BCG residual polynomial. BiCGSTAB generates iterates satisfying equa­

t ion (4.19), but in contrast to (4.20), the residuals are found f rom 

r2n = Pn{A)Gn{A)ro, 

where Gn is a polynomial of degree n , wi th Gn(0) = 1. The G„ satisfy G„(a;) = (1 — 

9nx)Gn-i{x)., where the parameters ^„ are found by determining local steepest descent 

solutions. We refer the reader to Freund et al. [37] and Van der Vorst [79] for the details. 

B i C G S T A B often exhibits smoother convergence than both BCG and CGS. 

Instead of linear factors, Gutknecht [47] introduces quadratic factors into the polyno­

mia l Gn- His reason for doing so is to allow Gn{x) to have complex as well as real roots. 

For real A, the BiCGSTAB method w i l l only give rise to real gn, even i f the eigenvalues of 

A are complex. Therefore, the method of Gutknecht could be a useful one. The method 

is known as BiCGSTAB2. 

4.3.8 The Quasi-Minimal Residual algorithm (QMR) 

The Q M R algorithm of Freund and Nachtigal [36] is a method designed to overcome some 

of the short falls in the BCG algorithm; in particular its breakdowns. As in the BCG algo­

r i t h m , i t produces two sets of mutually orthogonal vectors, { v j } and { v f j } , (see Equation 

(4.18)). To avoid breakdowns that occur in the BCG algorithm, the Q M R algorithm uses 
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the look-ahead Lanczos process. The idea of this procedure is to get around cases when 
w ^ v „ = 0, but neither w „ , nor v„ are zero. I t does this by relaxing the biorthogonahty 
condition (see Equation (4.18)) when a breakdown occurs (see Freund et al. [37] for the 
details). As i n Section 4.3.4, i f we start the method wi th V i = ro/ | | ro | |2 , then, after n steps 
of the Q M R method, the set { v i , . . . , v „ } spans the Krylov subspace Kniyo, A). Therefore 

x„ = xo + /i '„(ro, A ) = Xo + K y n , (4.21) 

for some G C", w i t h Vn = [ v i , . . . , v „ ] as in Section 4.3.4. The look-ahead Lanczos 

process produces vectors V i such that 

= K + i ^ n , (4.22) 

where Hn € C^""*" '̂̂ " is an upper Hessenberg block tridiagonal matr ix (see Freund et al. [37 

or Freund and Nachtigal [36]). From Equations (4.21) and (4.22) we find 

r „ = b - A x „ 

= K + l ( | | ro | |2f l - ^ n Y n ) , 

where ei is given in Section 4.3.4. Unlike in the GMRES algorithm (see Section 4.3.4), 

Vn+i is not a uni tary matr ix . To f ind y „ , however, the Q M R algorithm st i l l solves 

|||ro|(2ei - i / ' „ y „ | | ^ = mm|| | |ro| |2ei - i / n y l ^ . 

As mentioned above Hn is an upper Hessenberg matrix. Therefore this minimisation may 

be solved efficiently by the QR algorithm as in Section 4.3.4. The residual, r „ , is not 

actually minimised by this process. Therefore the solution is viewed as a quasi-minimal 

residual and this gives rise to the method's name. Like the BCG algorithm, the Q M R 

algori thm involves multiplications by A and A-^. There exist transpose free methods based 

on the Q M R algorithm, such as T F Q M R (see Freund et al. [37]). 

4.4 Hybrid Methods 

I n this section we w i l l review hybrid algorithms for the solution of linear systems of equa­

tions (4.1). Hybr id methods were introduced to overcome problems wi th Krylov subspace 
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methods. For example, the GMRES algorithm (see Section 4.3.4) can be very costly in 
terms of both storage and the number of vector operations required to converge. As is 
mentioned in Section 4.3.4 a way around this problem is to restart the GMRES algorithm; 
unfortunately this can lead to slow convergence. A completely different approach is that 
taken by hybr id methods. A hybrid method contains two stages. In the first stage a method 
like COS, GMRES or Q M R is used. The purpose of this stage is to gain some information 
about the coefficient matr ix , A. Once a few steps of Stage 1 have been completed then 
the method switches to the second stage. In this stage a method is used that applies the 
informat ion obtained in the first stage. A n example of such a method is Chebyshev itera­
t ion (see Section (4.4.1)). A good review of Hybrid methods is contained in Nachtigal et 
al. [60]. I n this review they summarise hybrid methods as follows: 

Stage 1. Acquire information about A via an iteration requiring no a priori information 

about A. 

Stage 2. App ly this information via a method requiring a priori information about A. 

As mentioned previously hybrid methods were designed to overcome the high cost of 

both work and storage in methods Hke GMRES. The methods used in stage 2 tend to 

cost less per step than those used in stage 1. Therefore the change f rom a stage 1 type 

method to a stage 2 type method could be useful. In methods like BCG (see Section 

(4.3.5)) multiphcations by A^ (or A^) are required. Sometimes this matr ix is either not 

available or costly to compute. I n these cases hybrid methods wi l l have an advantage over 

methods such as BCG. I f A'^ (or A^) is available or easy to compute then hybrid methods 

may or may not compete w i t h such methods. To quote Nachtigal et al. [60], "the natural 

realm of applicability of hybrid methods is to problems where Krylov subspace methods 

take fewer steps than the alternatives." By this they mean that hybrid methods might be 

used successfully for matrices where methods like GMRES outperform methods like CGS, 

BCG and CGNR. 

We w i l l now review the existing hybrid methods, beginning wi th Manteuffel's algorithm 

which appeared in 1978. 
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4.4.1 ManteufFel's algorithm 

The first hybr id method to appear in the hterature is one by Manteuffel [56]. In his paper 

he gives three methods for estimating a few of the extreme eigenvalues of the matrix A, one 

of which is a modified power iteration. A n eUipse is then placed around these eigenvalue 

estimates. From this eUipse two parameters, c and d, are found. Given these parameters the 

algori thm then switches to an iteration based on the Chebyshev polynomials (Chebyshev 

i terat ion). The iteration is carried out as follows: 

ro = b - Axo, Ao = Vo , X i = Xo + AQ, 
a 

and then for n = 1,2, . . . 

r„ = b - A x „ , A „ = Q;„r„ + /9„A„_i , x „ + i = x„ + A „ , 

where 

and Tn{z) is the n- th Chebyshev polynomial. From a property of Chebyshev polynomi­

als, that is, the recurrence relation (see Section 2.7), these parameters may be calculated 

recursively by 

1 -1 

, /?„ = dan - 1-2^ ^ 1 
2J2 - c 

C^2 

We define 

T ( ^ - ^ ] IT { ^ \ 

P n ( A ) = r „ / r „ - , 
V c y / \ c ) 

and then using the recurrence relation for the Chebyshev polynomials, and the definitions 

of a „ and i t is relatively straightforward to see that the Chebyshev iteration gives rise 

to an iterative method w i t h residual polynomials given by the scaled and shifted Chebyshev 

polynomials, p„(A). That is r„ = p„(A)ro . 

The Chebyshev iteration is simple to implement provided that c and d can be calculated. 

Manteuffel [56] gives an adaptive procedure to estimate the convex hull of the spectrum 

of A. I t is based on estimating extremal eigenvalues by the power method (or a modified 
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version of i t ) . The estimate of the convex hull is then placed inside an ellipse and the 
parameters, c and c?, for this ellipse can be found by a strategy given in Manteuffel [55 . 
I n the notation of Nachtigal et al. [60], Manteuffel's algorithm may be represented by 

Modif ied Power method —̂  eigenvalue estimates —> ellipse Chebyshev iteration. 

The Chebyshev iteration, and therefore Manteuffel's hybrid method, can be used to 

solve nonsymmetric linear systems where the matr ix A has eigenvalues that He in the right 

( lef t) half plane. This means that Manteuffel's method, like many other hybrid iterative 

methods, w i l l f a i l when the origin belongs to the convex hul l of the spectrum of A. The 

method w i l l work well when the spectrum of the matr ix can be well approximated by an 

ellipse not containing the origin. 

4.4.2 The method of Smolarski and Saylor 

A problem wi th Manteuffel's algorithm is that i t only works well for matrices whose spectra 

may be well approximated by an ellipse. In 1981 Smolarski and Saylor [74] proposed a 

modification of Manteuffel's algorithm which replaces the ellipse wi th a more general region 

in the complex plane. Again they begin wi th the modified power iteration and obtain some 

eigenvalue estimates. They then place a polygonal region around these estimates and to find 

a residual polynomial they solve a least-squares approximation problem on the polygon. 

They define an i 2 -op t ima l polynomial, to be a polynomial of degree n for which 

is a min imum, where 

\\f\\i = ifj)^ = jlmWMWM. 
7 is a curve in the complex plane, L = \dX\ is the length of the curve 7, and w is some 

weight funct ion. The contour 7 is chosen to be the above polygonal region enclosing the 

eigenvalue estimates. I f -R„(A) = 1 + 7;iA -|- . . . -|- ?;„A", then 

\\Rn\\l = {v.Bv\ (4.23) 

where ?7 = (1,?7i, . . . ,r]n)^, B = is the modified moment matr ix associated wi th the 

basis { 1 , A , . . . , A"} and /3ij — {X\\^)iu. We refer the reader to Smolarski and Saylor [74 
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for a procedure to minimise expression (4.23). Once this min imum is found, the residual 
polynomial , i?„, is implemented by Richardson iteration. 

I n 1991 Saylor and Smolarski [70] modified their method to include the Arno ld i / GM­

RES algori thm. Their new method uses the link between the Arnoldi and GMRES algo­

r i thms to obtain both a good ini t ia l iterate for stage 2 of the hybrid method, and eigenvalue 

estimates. I n the notation of Nachtigal et al. [60] i t may be represented as 

Arno ld i /GMRES —> eigenvalue estimates —>• polygon 

i^ -op t imal polynomial —y Richardson iteration. 

4.4.3 The method of Elman, Saad and Saylor 

In 1986 a very important modification of ManteufFel's algorithm was introduced by Elman 

et al. [30]. They were the first people to replace the modified power iteration of stage 1 by 

the Arnold i algorithm. Most of the hybrid methods introduced after this algorithm use this 

idea, including the method of Saylor and Smolarski [70] which we have just described. The 

big advantage of using the Arnoldi algorithm to obtain eigenvalue estimates is its l ink wi th 

the GMRES algorithm (see Section 4.3.4). Therefore at the end of stage 1 of the hybrid 

method one has a better in i t ia l solution to the linear system, as well as eigenvalue estimates. 

The rest of this algorithm proceeds as Manteuffel's did. That is, Elman et al. [30] place an 

ellipse around the eigenvalue estimates, and then use the Chebyshev polynomials for this 

ellipse as the residual polynomials. Once again their method wi l l only work well when the 

spectrum of the coefficient matr ix can be well approximated by an eUipse. In the notation 

of Nachtigal et al. [60] this method is represented by 

Arno ld i /GMRES eigenvalue estimates —> ellipse —> Chebyshev iteration. 

4.4.4 The method of Saad 

The hybr id method of Youcef Saad [69] was pubhshed in 1987. I t is based on the method 

of Smolarski and Saylor [74] (see Section (4.4.2)) wi th two notable differences. Firstly, he 

obtains eigenvalue estimates by the Arnold i /GMRES algorithm, and secondly, he improves 
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the stabili ty of the method by constructing a well-conditioned basis of shifted Chebyshev 
polynomials, before finding the X^-optimal polynomial. 

As mentioned above the method begins wi th a few steps of the Arnoldi /GMRES al­

gor i thm to produce both a good in i t ia l solution for stage 2 and eigenvalue estimates. A 

polygonal region, H, is then placed around these estimates. Smolarski and Saylor [74 

give their method w i t h respect to the basis { 1 , A , . . . , A-'}. Unfortunately, for this basis, 

the modified moment matr ix , B (see Section ( 4 . 4 . 2 ) ) , is ill-conditioned and therefore the 

method is unstable. Saad [69] considered a more stable basis, namely { ! , . . . , ^ j ( A ) } , where 

the tj{X) are scaled and shifted Chebyshev polynomials. Along each edge, E^, of H he 

considers a weight funct ion w^, (see Saad [69] for the details). He then defines an inner 

product, 

{p,qU= [ p{X)^w{X)\dX\ = j2 [ K A ) 9 ( A ) M A ) | ^ A | , 
JdH J El, 

where ^ -\-I \s the number of edges of the domain H. 

I n the paper he describes how to generate the modified moment matrix for this more 

stable basis. Along each edge for = 1 , . . . , ^ he expresses the polynomials tj{X) in 

terms of the Chebyshev polynomials, Ti{()^ for the edge E^. That is he writes 

i=0 

where depends on A. By using the recurrence relation for Chebyshev polynomials, Saad 

is able to calculate, for each v = 1 , 2 , . . . , / i , the coefficients -y-'j (see Proposition 2 in Saad 

69] for the details). He is then able to calculate the coefficients, rriij = of the 

modified moment matr ix , M n , f r o m these (see Proposition 3 in Saad [69]). The beauty 

of this method, for calculating the coefficients of M „ , is that i t explicitly calculates the 

required integrals. As in Smolarski and Saylor [ 7 4 ] , once the matrix M„ is known, the 

residual polynomial, Pn(A) , (or iteration polynomial, 9n(A)) is found by minimising 

\\Pn{X)\U = 111 - ^qn{X)\U = ( l - Ag„(A), 1 - Xqn{X))\ 

Wri t ing p{X) = ^"=0 vM^) and q{X) - ^"-^q ^ i^ i (A) then the inner product, given above, 

becomes 
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where rj = (T/O, • • •, Vn)"^ and 6 = {6o,..., On)'^- Using this expression for the inner product 

and wr i t ing g„(A) = ^"=0^ ??iii(A) then 

lk(A)| |^ = [ e i - r „ 7 7 ] ^ M „ [ e a - r „ 7 7 ] , 

where ei = ( 1 , 0 , . . . , 0)^ , T/ = {rjo,... ,T]n-if, 

( OLO Si 

P\ Ol 2̂ 

V 

Pn-l OCn-1 

/3n J 

and ai, and Si are the coefficients in the recurrence relation for the polynomial ^,.|.i(A). 

The mat r ix Af„ is a symmetric positive definite matr ix and therefore there exists a Choleski 

factorisation M „ = LL^ (see Golub and Van Loan [44]). Noting that L ^ e i = lu^i and 

wr i t ing L-^Tn = Fn, where Fn is an (n -|-1) x n upper Hessenberg matrix we find 

bn(A) |U = IKiiei - F„T7||2. 

This expression can be minimised, by using the QR algorithm, in a similar way to minimis­

ing expression (4.17) in the GMRES algorithm (see Section 4.3.4). Once the coeflficients 77 

are known the iteration polynomial, 5n(A), is implemented using a second-order Richardson 

i teration (see Saad [69] for the details). Nachtigal et al. [60] summarise this method as 

Arno ld i /GMRES —>• eigenvalue estimates —> polygon Chebyshev basis —> 

Z-^-optimal polynomial —»• second-order Richardson iteration. 

4.4.5 The Arnoldi/Faber method of Starke and Varga 

I n this section we w i l l review the Arnoldi/Faber method of Starke and Varga [76]. This 

method is the major motivation for our work in Chapter 5. In fact the only essential 

difference between the two methods is that Starke and Varga use the Faber polynomials 

for a polygonal region, whereas we use the Faber polynomials for an annular sector. Starke 

and Varga's method begins, as usual, wi th a few steps of the Arnoldi /GMRES algorithm. 
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Therefore, at the start of stage 2 we have eigenvalue estimates and a good ini t ia l solution. 
The method, as set up in their paper, is only suitable for matrices whose eigenvalues 
are symmetric w i t h respect to the real axis. Starke and Varga mention the possibility of 
implementing their method for a general non-Hermitian matr ix , but they do not give the 
details and i t would seem that their ideas must change to be able to do this. Once some 
eigenvalue estimates are known, then a polygonal region is placed around these estimates 
(see Starke and Varga [76] for the details) and a numerical conformal mapping package 
is used to find the required conformal map. The mapping package used is SCPACK (see 
Trefethen [77]) which is only set up to find interior mapping functions. The polygonal 
region they obtain is symmetric w i th respect to the real axis. Therefore, they are able to 
use a " tr ick" given by L i in his thesis, (see Starke and Varga and the references therein) 
to find the exterior conformal map. From this numerical conformal map they are able to 
find the Faber polynomials for the polygonal region. These Faber polynomials, suitably 
normalised, are then used as the residual polynomials in stage 2 of Starke and Varga's 
method. The iteration polynomials, obtained f rom this choice of residual polynomials, are 
implemented using a Horner iteration. In the notation of Nachtigal et al. [60] this method 
is represented by 

Arno ld i /GMRES -> eigenvalue estimates polygon Faber polynomials 

conformal map Horner iteration. 

Starke and Varga [76] choose the Faber polynomials as residual polynomials for two. 

main reasons. Firstly, they, amongst others, show that the Faber polynomials, for a region 

D in the complex plane, are near-best approximation to zero (see Sections 1.2.3 and 5.3.3). 

Secondly, the Faber polynomials are small on level sets (see Section 3.5) of the domain D. 

As Starke and Varga point out this is an important property when dealing wi th non-normal 

matrices, because for these matrices the convergence behaviour of polynomial iterations 

does not only depend on the spectrum of A, but also on neighbourhoods of the domain 

(for example, see Trefethen's e-pseudospectra [78]). 

We would like to finish this review of the Arnoldi/Faber method by pointing out some of 

its disadvantages. Firstly, the method requires a numerical conformal mapping package to 

produce the Faber polynomials. I t would be better i f we could avoid this by considering a 
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region in the complex plane whose Faber polynomials are known analytically (see Chapter 
5 and the Faber polynomials for an annular sector). Secondly, as i t is set up in Starke and 
Varga's paper, the method can only be applied to matrices whose spectra are symmetric 
w i t h respect to the real axis. They do mention that i t is possible to apply their method to 
matrices w i t h eigenvalue estimates situated almost anywhere in the complex plane. Their 
method, however, would have to change to enable this. For example, their method for 
placing a polygonal region around the eigenvalue estimates would change i f the eigenvalues 
were not symmetrically placed about the real axis. I t would be better i f we could have 
a general purpose region which could be scaled and rotated to anywhere in the complex 
plane. Therefore, the method would be the same no matter where the eigenvalues were 
situated. The annular sector would seem to be such a region (see Chapter 5). 

4.4.6 Hybrid GIVIRES 

This section contains a review of the hybrid method of Nachtigal et al. [60]. Their method 

was the first hybr id method not to use an eigenvalue estimator. They give two reasons 

for dropping the eigenvalue estimates f rom their method. Firstly, for non-normal matrices 

considering only the eigenvalues may not provide enough information about the matrix. 

Nachtigal et al. [60] give a simple example of a polynomial which is small on the spec­

t r u m of a particular matr ix , but when used in stage 2 of a hybrid method i t leads to 

divergence. Instead of considering the spectrum of a matr ix they suggest considering its 

pseudospectrum. The second problem wi th eigenvalues is the existence of matrices whose 

eigenvalues and pseudospectra are far f rom zero, but whose eigenvalue estimates are small 

or even zero (see Nachtigal et al. [60] for an example). Nachtigal et al. [60] note that the 

first problem is not really a problem, because eigenvalue estimates tend to estimate the 

pseudospectrum of a matr ix rather than its spectrum. As mentioned above, i t is usually 

the pseudospectrum that governs the convergence of the method, not the spectrum. The 

second problem is more important and is something one must be aware of when using an 

eigenvalue estimator such as the the Arnoldi algorithm. For these two reasons, Nachtigal 

et al. [60] propose their hybrid GMRES algorithm, without an eigenvalue estimator. In 
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their notation the method may be represented as 

GMRES —> GMRES polynomial Richardson iteration. 

Their method begins wi th a few steps of the GMRES algorithm. They then calculate the 

GMRES polynomial explicit ly and implement i t iteratively. After n steps of the GMRES 

algori thm they have a matr ix , K , whose columns span the Krylov subspace Kn{^o, A) (see 

Section 4.3.4). They write Kn for the matrix whose columns are the Krylov vectors, that 

is, 

/ C : = [ r o , . . . , A " - ^ r o ] . 

Therefore, as the columns of Vn and Kn span the same space, they find that K = KnCn 

for some upper triangular matr ix 

' c n . . . c i „ ^ 

\ Cnn ) 

Equation (4.16) gives, 

X„ = Xo Ky™ = Xo KnCnYn-

As the i teration proceeds, Nachtigal et al. [60] generate the elements of C„ column by 

column. Once the matr ix C„ and the vector y„ are known, they fo rm the vector C„y„ = 

(ao, • • • 5 otn-iY and then 

Xn = xo + (ao/ + . . . + VQ. 

The GMRES residual polynomial is then found f rom 

Pn{z) = 1 - zqn-i{z), where 5„_i(z) = ao + . •. + O n - i z ' ' ' ^ 

Nachtigal et al. [60] choose to implement this polynomial in a Richardson iteration. To 

do this they begin by numerically finding the roots of the polynomial and factorising i t as 

Pn{z) = O L i (1 - ^/Ci)- This polynomial is then implemented in a Richardson iteration 

as in Smolarski and Saylor [74], that is 

For j = 1 to n 

X j = X j _ i - f r j _ i / ( j , where r j _ i = b - A x j _ i . 
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Out of an interest in stability, they choose to apply the roots in an order governed by the 
weighted Leja ordering (see Nachtigal et al. [60] and the references therein). Assuming the 
roots are distinct then this ordering is defined by 

j - i i - i 

61 n - = i ^ ' i n 1 6 - i = 1 , 2 , . . . , n - 1 , 
i=\ i=l 

where the first step is = m a x i < i < „ . 

This is the gist of the hybrid GMRES method. They do, however, discuss when to 

switch f r o m the first to the second stage of the hybrid algorithm, and the possibihty of 

cycling back to the first stage i f the second stage convergence rate is slow. We refer the 

reader to their paper for the details. 

4.4.7 Other hybrid methods 

There are two other hybrid methods in the literature. The first is a method proposed by 

Elman and Streit [31]. I t begins, as most recent hybrid methods do, wi th a few steps of the 

Arno ld i /GMRES algorithm. After obtaining a polygonal region around some eigenvalue 

estimates they solve an L°°-approximat ion problem on this domain and then implement 

the polynomial using Horner iteration. In 1991, L i [53] gave a hybrid iterative method 

based on a conformal map. The steps to produce a polygonal region are the same as in 

most of the hybrid methods we have described, that is, 

Arno ld i /GMRES —> eigenvalue estimates —*• polygon. 

He then uses a conformal mapping package, SCPACK (see Trefethen [77]), to find the 

conformal map f r o m the exterior of the polygonal region onto the exterior of the unit disc. 

Next he produces a rational approximation based on the conformal map and implements i t 

in a (A;,/)-step iteration (see L i [53] for the details). In this paper, L i [53] also reviews the 

semi-iterative methods (SIM's) of Eiermann et al. [17, 18, 19, 20], for which the generalised 

Faber series play an important role. In Eiermann [17] three SIM's are given; SIM 1, qn-i{z) 

is the truncated generahsed Faber series for 1/(1 — z ) ; SIM 2 where qn-i{z) is the truncated 

Faber series for 1/(1 - z); and SIM 3 where Pn{z) is chosen to be Fn{z)/Fn{l). The Faber 

polynomials i n these cases are defined for a region D in the complex plane such that 
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1 ^ D. Our Faber polynomials are defined on a domain D such that 0 ^ D. Allowing for 
this difference the three SIM's become; SIM 1, qn-i{z) is the truncated generalised Faber 
series for 1/z; S IM 2 where qn-i{z) is the truncated Faber series for 1/z; and SIM 3 where 
Pn{z) is chosen to be F „ ( ^ ) / F „ ( 0 ) . 

Final ly i n this section, we would like to note the existence of methods which become 

hybr id methods when we add an eigenvalue estimation routine, such as Arnold i /GMRES, 

to them. We have already mentioned the SIM's given in Eiermann [17] based on Faber 

polynomials and Faber series. For other such methods, we refer the reader to the references 

given in Nachtigal et al. [60 . 
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5.1 Introduction 
I n this chapter we w i l l give a hybrid method to solve the linear system (4.1), based 

on the Faber polynomials for an annular sector. The coefficient matr ix . A, for this linear 

system w i l l i n general be, a large, sparse, non-Hermitian, complex matrix. Our method 

w i l l be similar to Starke and Varga's method (see Section 4.45). In the first stage, like the 

Arnoldi-Faber method of Starke and Varga [76], and many other hybrid iterative methods, 

we w i l l use Arnoldi 's method to produce some eigenvalue estimates for A. In their method, 

Starke and Varga placed a polygonal region around these estimates and f rom the conformal 

mapping, produced by a numerical conformal mapping package, they were able to find the 

Faber polynomials for this polygonal region. They then use these polynomials as the 

i teration polynomials in the second stage of their method. Here, in contrast, we wi l l place 

an annular sector around the eigenvalue estimates. Then in the second stage we w i l l use 

the Faber polynomials for this annular sector as the iteration polynomials. There are 

a few reasons for this choice: firstly an annular sector can easily be placed around any 

eigenvalue estimates bounded away f rom zero, secondly the Faber polynomials are known 

analytically for an annular sector, and finally using an annular sector allows us to consider 

cases of matrices that Starke and Varga's method could not deal w i th (for real matrices, 

specifically when we get two eigenvalue estimates A i , A2 such that Ai < 0 < A2). Once 

we have found the desired Faber polynomials we shall implement them in a Horner-type 

iteration. Therefore in the notation of Nachtigal et al. [60] our method is given by 

Arno ld i /GMRES —>• eigenvalue estimates annular sector 

—> Faber polynomials —> Horner iteration. 

5.2 The Faber Polynomials for any Annular Sector 

I n Chapter 2 we described how to generate the conformal mapping and hence the Faber 

polynomials for an annular sector of the fo rm 

Q = {z : R<\z\<l,9 <\8iTgz\<n}, 0 < ^ < T T . 

I n this section we w i l l describe how to generate the Faber polynomials for any annular 

sector placed anywhere in the complex plane. The preliminaries to this were given in 



5.2. The Faber Polynomials for any Annular Sector 139 

Chapter 2. In Sections 2.2 and 2.4.1 we described how to find the Faber polynomials for 

an annular sector placed symmetrically about the positive real axis f rom an annular sector 

Q. I n Section 2.6 we described how to determine the mapping f rom the complement of 

the uni t disc onto the complement of Q{Ri,R2,9), an annular sector placed symmetrically 

about the negative real axis, wi th inner radius outer radius R2 and half-angle ir — 6. We 

found that the mapping is given by Z = R2Z = R2tJ){w), where ij;{w) maps the complement 

of the uni t disc onto the complement of the annular sector Q = Q{R, 1,6), w i th R = R1/R2. 

We also found that the transfinite diameter of Q{Ri,R2,6) is given by p* = R2P, where p 

is the transfinite diameter of Q (see Section 2.2.3). From equation (1.4) we find 

( 01 \ 
Z = p* to + ^ o + — + ••• • V w ) 

Therefore the Laurent coefficients of this mapping are the same as those for the mapping 

il){w) and the polynomial $ „ ( 2 ) is unaltered (see equation (2.30)). Hence, the Faber 

polynomial , of degree n, for the annular sector Q{Ri,R2,0) is given by 

Fn{Z) = {p*T^n = ^2 /= '"$n ( - ] = R^2Fn{^) = ^ 2 ^ n f l " ) • (5 -1) 

Figure 5.1: The annular sector Q. 

When considering matrices whose eigenvalue estimates are not symmetric wi th respect 

to the negative real axis, i t w i l l be important that we can find the Faber polynomials for 
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the annular sector 

Q = {Z •.Ri<\Z\<R2, e-r,<?iXgZ <2T:-6- rj]. (5.2) 

Figure 5.1 shows the annular sector (Q, which is simply the annular sector Q{Ri,R2,9) 

rotated through an angle —r/ where rj G [0, 27r) is the angle, measured in the anti-clockwise 

direction, which the bisecting ray of the sector makes wi th the negative real axis. We note 

that the exterior of Q{R, 1,9) is mapped onto the exterior of Q by 

Z = R2e-'''z. 

Then Fn{z) — Fn{Ze''^/R2) and the corresponding monic Faber polynomial for Q is 

/Ze''^\ 
F „ ( Z ) = " i ^ ^ — - . (5.3) 

V -n-2 / 

As a check on this expression we note that i t gives the same polynomials as equation (5.1) 

when 7] — 0. 

5.3 The hybrid method 

In this section we w i l l introduce our hybrid method which uses the Faber polynomials for 

an annular sector as the iteration polynomials. In Section 5.3.1 we find some eigenvalue 

estimates w i t h the use of Arnoldi 's method. Then in Section 5.3.2 we place an annular sec­

tor around these estimates. Section 5.3.3 gives, amongst other things, reasons for choosing 

the Faber polynomials as a sensible choice for the residual polynomials. Finally in Section 

5.3.4 we give some implementation details. 

5.3.1 Eigenvalue estimation by Arnoldi's method 

As we have mentioned, in the first stage of the hybrid method we wi l l use Arnoldi's method 

(see Section 4.3.4) to compute m eigenvalue estimates of the non-Hermitian matrix, A € 

f^NxN^ Af te r running Arnoldi 's algorithm for m steps we obtain an orthonormal basis for 

the Kry lov subspace Km •- span { v i , . . . , A ' ^ ' V i } , where V i = ro/||ro||2- Referring to 

equation (4.15) we find that 
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where Hm is an upper Hessenberg matrix and Kn = [ v i , . . . , v ^ ] (see Section 4.3.4). We 
will use the eigenvalues of Hm as approximations to the eigenvalues of A. The NAG 
library contains routines to approximate the eigenvalues of an upper Hessenberg matrix. 
For example, the NAG routine F02APF calculates all the eigenvalues of a real upper 
Hessenberg matrix, whereas the routine F02ANF calculates all the eigenvalues of a complex 
upper Hessenberg matrix. Hm will be real for some of the examples in Section 5.4 and we 
will use F02APF, otherwise we use F02ANF. In this way we find m eigenvalue estimates, 
{'^i}T=ii matrix A. 

5.3.2 Sector determination 

Given some eigenvalue estimates {Aj}™ ^, the next step is to place an annular sector around 

the eigenvalue estimates, and use the known, suitably scaled, Faber polynomials for this 

region as iteration polynomials. 

The modulus and argument of each eigenvalue are found, with the arguments defined 

on (—TTJTT]. We set i?rnm to be the smallest eigenvalue modulus and Rmax to be the 

largest eigenvalue modulus. We then place the eigenvalue arguments in increasing order, 

{ ^ i } ^ - ^ , so that the smallest is first (^ i ) and the largest is last {pim)', and look for the largest 

separation between adjacent arguments. That is we set x to be the largest of 27r — {pirn — fJ-i) 

and ^ i+ i — /^ i for z = 1 , . . . , m — 1. The half-angle of the required sector is fj, = (27r — x)/2. 

Finally we must determine 77, which as mentioned previously is the angle the bisecting ray 

of the sector makes with the negative real axis. If a; = Hj+i — [ij for some j G { 1 , . . . , m — 1} 

then 

77 = [TT — Hj+i — /i](mod27r) e [0,27r), 

otherwise if a; = 27r — — fJ^i) then 

rj = [TT — fj,i — n]{mod2n) G [0,27r). 

We have now found an annular sector of the form Q (see equation (5.2)) containing the 

eigenvalue estimates (see Figure (5.2)). As stated above, the Faber polynomials for this 

region are used as iteration polynomials. To determine these Faber polynomials we begin by 

finding the Faber polynomials for an annular sector Q{R., 1,0), that is, the annular sector 
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Rmin 

Rmax 

Figure 5.2: An annular sector placed around some eigenvalue estimates with the radii, 
the half-angle and the rotation from the negative real axis marked. 

symmetric with respect to the negative real axis, having inner radius R = Rmin/Rmax, 

outer radius 1 and angle 9 — 'K — jx. Referring back to Chapter 2 (specifically Section 2.4) 

we find that the Faber polynomials for Q{R^ 1^0) are determined by two parameters, a and 

b, and the transfinite diameter p. As we described in Section 3.2 the parameters, a and 

6, are found by modified Newton iteration combined with Kronrod-Patterson integration. 

The transfinite diameter may also be found by numerical integration (see Section 3.2). 

Equation (5.3) generates the Faber polynomials for Q from the Faber polynomials for 

Q{R, 1,0). Therefore once a, b and p are determined for Q{R, 1,9) we can easily obtain 

the desired Faber polynomials for Q from equation (5.3). 

5.3.3 The iteration polynomial 

As we have already mentioned in Chapter 4, many iterative methods for solving (4.1) can 

be written as 

= Xo + qm-i{A)ro, 

where qm-i is a polynomial of degree m - 1 (see Sections 4.3 and 4.4). The error and residual 

of such methods are defined by equations (4.3) and (4.7), respectively. The equations are 

Gm, — X Xn and Ae™ = b - Ax„ 
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Then 

r™ = b - A(xo + qm-i{A)ro) = ( / - Aqm-i{A))ro 

and 

Bm = A-^Tm = ( / " Aqm-l{A))eo. 

With the residual polynomial Pm{z) = l-zqm-i{z), so that Pm{0) - 1, these two equations 

can be written as r „ = pm{A)ro and = Pm{A)eo (see Section 4.3.1). Therefore, for any 

consistent pair of matrix and vector norms on 

" ||rm|| < |bm(A)|| ||ro|| and Hê H < ||pm(A)|| ||eo|| (m > 1), 

and the aim is to choose polynomials pm, in the set 

Jim — { polynomials of degree m | ^^(0) = 1}, 

such that ( (PTO(^ ) I I is as small as possible. For our residual polynomial, we will choose 

~ Fm{0)' 

where Fm(z) is the Faber polynomial, of degree m, for the annular sector, Q, determined 

in Section (5.3.2). 

We have now described our choice of residual polynomials, but why do we think this 

will be a successful choice? Eiermann et al. [20] show that 

lim ||p„,(yl)||'" = lim max |pr7i(A)| 

where cr{A) is the spectrum of A, and || || is any matrix norm. In other words the conver­

gence of the iterative method asymptotically depends on the spectrum of A. The annular 

sector chosen in the previous section, contains the eigenvalue estimates, and therefore this 

annular sector may be considered as an approximation to the spectrum of A. In choosing 

a residual polynomial we wish to find a polynomial of degree m, with ^^(0) = 1, so that 

Pm (z) I is small on the annular sector. 

For a general region, Z), in the complex plane, Starke and Varga [76], amongst others, 

have shown that the Faber polynomials can be very useful for polynomial matrix iterations. 
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They show that the suitably normalised Faber polynomials, Fm{z)/Fm(0), are near-best 
approximation to zero with respect to the maximum norm (see their theorem below). 
Indeed they show for large m that the maximum value of Fm{z)/Fm{0) is no larger than 
Vpm{0,D)/-K, where V is the total boundary rotation of D and pmif,D) is the smallest 
possible error, over D, obtained when approximating a function / by a polynomial of degree 
m (see Section 1.2.3). When considering non-normal matrices, it is often found that the 
convergence of a polynomial iterative method does not depend only on the spectrum of A 
(compare the above asymptotic result), but on larger sets containing o-(A), for example, the 
e-pseudospectra of Trefethen ([78] and [68]). For this reason Starke and Varga [76] wanted 
their residual polynomials to be small on larger regions than D. They proved that the 
Faber polynomials are not only nearly optimal on D, but also that they are nearly optimal 
on level sets of D (see Section 3.5). In particular their Theorem 3.4, in our notation, states, 

Let D he of hounded houndary rotation with 0 ^ D, and let V denote the total boundary 

rotation of D. Then, the normalised Faber polynomials, associated with D, satisfy 

V/TT 
pm{0,D) < max 

W*\m _ (1 + V/TT) 

|u;*r 

for all m > log(l + V/ir)/([og \w*\). Moreover, if 1 < r < \w*\, then 

Fm{z) 

Fm{z) < 
F™(0) 

(1 + V A ) 

pm{0,Dr) < max 
Fm{0) 

< ,^P^{0,D.), 
l - { l + V{r)M ( i ^ ) ' 

is valid for all m > log(l + V(r)/ir)/(log \ w* \ - logr). 

By V{r) we mean the total rotation of a level curve F^ (see Section 3.3.3) and by Dr we 

mean the set bounded by F^. The point in the lo-plane that ^ ( l o ) maps to the origin in 

the z-plane is denoted by w* (for an annular sector see equation (2.38)). 

This theorem is in two parts. The first part shows that Fm{z)/Fm{0) is near-best to zero. 

The second part shows that the maximum value of Fm{z)/Fm{0) is also small on level sets 

of the region. This is an extremely useful property of Faber polynomials, especially when 

dealing with non-normal matrices. The main reasons for choosing the Faber polynomials 

as residual polynomials lie in the results of this theorem. 
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5.3.4 Implementation 

We define a vector operation to be scalar multiplications and N scalar additions, where 

N is the dimension of the hnear system we are trying to solve. As in Nachtigal et al. [60 

and Starke and Varga [76] we will use the number of vector operations as an indication 

of the speed of convergence of the method. If we let / denote the average number of non­

zero elements per row in the matrix A, then a matrix-vector multiplication costs / vector 

operations. 

Firstly we must consider the cost of Arnoldi's method (see Section 4.3.4), that is, 

how many vector operations it takes to obtain mi eigenvalue estimates for the matrix A. 

For the j - t h step, j = l , . . . , m i , of Arnoldi's method, calculating ŵ - = Avj involves / 

vector operations, calculating hij = v f w j for i = involves j vector operations, 

computing V j + i = W j — J2izzi hijVi requires j vector operations, computation of the norm 

requires one vector operation and finally the calculation of V j + i requires about one vector 

operation. So in total the number of vector operations involved in Arnoldi's method is 

mi 
+ + = "^1 [/ + 3 + m i ] . 

i= i 

Secondly we consider how many vector operations are involved in implementing a poly­

nomial iterative method using a Faber polynomial of degree m. As in Starke and Varga 

76] we will implement the iteration polynomial, qm-i{z) - {Fm{0) - Fm{z))/Fm{0)z = 

Q!o,m + cti,mZ "t" . . . + am-i,mz"^~^ in a Horner-type iteration. This requires m{l + 1) vector 

operations. The Horner iteration is of the form 

Wo = ttm-l,mrold, 

Wj = AWj_i + am~l-j,mrold, i = 1, • • • , "7 - 1, 

Tnew = b — AXnew 

In the examples, we neglect the work involved in choosing the particular sector of the 

annulus, as this should be negligible compared to the work involved in the iterations. 
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In this section we consider a number of examples of Hnear systems which we will solve by 

our method. In all these examples, except where stated, we will choose the degree of the 

residual polynomial to be the same as the number of steps taken in the Arnoldi algorithm. 

Example 1 

We consider discretising the boundary value problem 

-^u + TU^ = f{x,y), { x , y ) e S 

u{x,y) = g{x,y), {x,y) £ dS, 

(5.4) 

by central differences on the unit square S := (0,1) x (0,1) with boundary dS. This leads 

to solving a system of equations 

Ax = {B®I^ + In® C)x = b (5.5) 

Wl i th n = 1 + l/h, 

B 

( 2 - 1 

- 1 ••• 

V 

-1 

/ 2 - 1 + ^ 

an d C = 
- \ - p 

\ - 1 2 / . 

and p — T(/i/2), where h is the meshsize of the discretisation. 

The eigenvalues of a tridiagonal matrix, 

- \ - p 2 / 

/ a b 
c a b 

V c a / 

are given by A = a -|- 2\/6c cos(s7r/(n + 1)), for 5 = 1,2,..., n, with corresponding eigen­

vectors. 

u = [Uj = 
C\ 2 . / JITS 
- sm 
bJ Vn-t-1 

(5.6) 
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(see for example Smith [73]). In these formulae care must be taken when finding the 

square-root. If we write c = (c| exp{i9) and b = \b\ exp(z^) then 

c \z{9-cf>)] 
b exp 2 

(5.7) 

Now u = [uj], given by equation (5.6), is an eigenvector of the tridiagonal matrix if 

cuj_i + auj + buj+i = Xuj. From equation (5.6) we find 

cuj_i + auj + buj-^.1 = c ( \ / ^ ^ sm ij - 1) ns 

n + 1 
-f auj + b sm 

( i + l)7r5 
n -\- 1 

Using equation (5.7) and some algebra gives 

cuj_i -|- auj + bujj^i = 2c exp 
z{<i>-9) 

cos 
57r 

n + 1 
(5.8) 

As stated above the eigenvalues of the tridiagonal matrix are a -\- 2\/6ccos (57r/(n -|-1)), 

with care taken over the square-root. For the matrix we have a = 2, and b = c— —1. 

Therefore equations (5.6), (5.7) and (5.8) give the eigenvalues of the matrix B as \ = 

2 — 2 cos{s'7r/{n + 1)) with corresponding eigenvector u = [uj] = [sin(j7rs/(n -|- 1))]. The 

matrix C has a = 2, 6=—1-|-;U and —1 — p. With p > I, the same equations similarly give 

the eigenvalues of C as A = 2 4 - 2 i ^ | l - / i^ l cos(i7r/(n +1)) = 2 + 2^1 - p'^ cos{tTr/{n +1)), 

with corresponding eigenvector v = [u/], where 

vi = 
- 1 - p 

sm 

The matrices B ® In and /„ ® C have a common set of eigenvectors, namely w, whose 

entry in index I -{- { j — \)n is 

- l - p • f iT^t \ . ( JTTS 
sm I r I sm ^-l + p j \n + l j " Vn + 1 

The eigenvalues of the matrix B (g) /„ -f 4 <8) C are therefore given by 

4 - 2 cos ] +2Jl- p^ cos — -
Vn + 1 / V Vn-1-1/ 

where = 1,2,... n , / = 1,2,... n . 

(5.9) 
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This is Example 2 in Starke and Varga [76]. They give this as an example of a linear 

system, not as a method for solving (5.4). By this we mean that they fix the mesh size for 

the discretisation, by setting h = 1/31, that is, n = 32. Starke and Varga then consider 

this linear system with different p values, and therefore different r . By varying the value 

of p they are therefore considering the solution of dilferent partial differential equations. 

We remark that to solve equation (5.4), by our method, one would fix r and then discretise 

the system with different h values. Hence, the size of the linear system will vary with the 

different h values chosen. For this example, we will consider Starke and Varga's approach, 

that is fix / i = 1/31. We do this for two reasons, firstly, like Starke and Varga we use this 

as an example of a linear system not as a means to solve equation (5.4), and secondly our 

approach will allow us to compare the results of Starke a nd Varga [76 . 

Figure 5.3: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the 
annular sector for example 1, with random starting vectors and p = 2. 

To allow this comparison with the results of Starke and Varga [76], we consider solving 

this linear system with a random righthand side b and a random initial solution X Q . The 

random vectors were produced from the normal distribution, A''(0,1), using MATLAB. We 

run 16 steps of the Arnoldi process and therefore obtain 16 eigenvalue estimates for the 
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matrix A = i ?®/„ - ( - / „ (8 )C . We then place an annular sector around these estimates. In 

Figure (5.3) we give a plot of the chosen annular sector when p = 2, we also show the 16 

eigenvalue estimates as stars and the actual eigenvalues (see Equation (5.9)) as dots. In 

Figure (5.5) we give a similar plot for p = i. 

Table 5.1: The parameters for example 1 with random starting vectors, p = 2, and 4,8,12, 
and 16 eigenvalue estimates. 

eigenvalue estimates 4 8 12 16 

Rmax 6.260696017 6.748047954 7.054200525 7.158911226 
Rmin 4.411842781 3.591748348 2.982998352 2.296100365 

a 0.676716469 1.003314661 1.024454495 1.098733207 
a 0.607634387 0.443468572 0.398907110 0.337930265 
b 0.789967884 0.661702264 0.598031851 0.523064535 

P 0.407267775 0.564861966 0.583701576 0.617875205 

500 1000 1500 

vector operations 

2500 

Figure 5.4: Convergence curves for example 1 with random starting vectors, // = 2, 
and 4,8,12 and 16 eigenvalue estimates. 

In the next stage of our algorithm we use the Faber polynomial of degree 16, for this 
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annular sector, as the residual polynomial. We need an initial solution to start this stage 

of the algorithm. It would be possible to use the Hnks between the GMRES algorithm and 

Arnoldi's algorithm (see Section 4.3.4) to produce an improved initial solution. However, 

in this example, we chose to use the same initial solution X Q as we did in the first stage 

of our algorithm. In Figure (5.4) we plot, for p = 2, the log of the Euclidean norm of 

the residual, | | rA: | |2 , versus the number of vector operations. The dotted fine represents 

our method using 16 eigenvalue estimates. In this figure we also show the convergence 

curves for the method with 4 (dashed line), 8 (dash-dot line) and 12 (solid line) eigenvalue 

estimates. We note that with 8 eigenvalue estimates the method converges to 10~" in 

the least number of vector operations, whereas with 16 eigenvalue estimates the method 

converges, again to 10"̂ "*, in the greatest number of vector operations. The parameters 

a, 6, p, Rmax, Rmin, and p required in the second stage of the algorithm are given in Table 

5.1. For this example the eigenvalues and their estimates are symmetric with respect to 

the positive real axis and therefore rj = IT. 

Figure 5.5: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the 
annular sector for example 1, with random starting vectors and p = A. 

A similar convergence curve is shown in Figure (5.6) this time for p = A. Once again the 
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O 

500 1000 1500 2000 

vector operations 

2500 3000 3500 

Figure 5.6: Convergence curves for example 1 with random starting vectors, p = 4, 
and 4,8,12 and 16 eigenvalue estimates. 

method with 16 eigenvalue estimates is represented by dots, and the methods with 12, 8 

and 4 eigenvalue estimates are represented by solid, dash-dot and dashed lines, respectively. 

This time the method with 4 eigenvalue estimates converges very slowly compared to the 

others. This is because not enough information about A is obtained with only 4 eigenvalue 

estimates. The convergence curves with 8, 12 and 16 eigenvalue estimates all contain 

regions where the convergence slows for a short time and then accelerates again. Observing 

Figure (5.5) we see that even with 16 eigenvalue estimates the annular sector only contains 

part of the spectrum. If we consider 32 eigenvalue estimates then the annular sector 

contains much more of the spectrum and the convergence curve is smoother. However, 

because we have taken more eigenvalue estimates, the method takes more vector operations 

to converge to 10~^^ than the method with 16 eigenvalue estimates. The parameters used 

in the methods, whose convergence curves are contained in Figure (5.6), are given in Table 

5.2 Once again rj = n. 

We now compare the results we have just given with those of Starke and Varga [76]. 
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Table 5.2: The parameters for example 1 with random starting vectors, = 4, and 4,8,12, 
and 16 eigenvalue estimates. 

eigenvalue estimates 4 8 12 16 

Rmax 7.699739638 9.081252758 9.348770592 9.548432785 
Rmin 7.107633830 6.422866965 6.127775211 4.778122352 

1.046397859 1.234935314 1.269103190 1.276539785 
a 0.549738053 0.427390580 0.402484467 0.353756280 
b 0.881078425 0.726933361 0.693535419 0.604823601 
P 0.522259695 0.631252220 0.649191755 0.665315835 

A summary of these results when p = 2 and p = A \s contained in Table 5.3. The table 

contains results from five different methods; Arnoldi/Faber, which is the method of Starke 

and Varga; GMRES, the generalised minimum residual method restarted after so many 

steps; Hybrid GMRES, the method of Nachtigal et al. [60]; Arnoldi/Chebyshev, the method 

of Elman et al. [30]; and finally our method. When using the Hybrid GMRES algorithm, 

Table 5.3: The approximate number of vector operations to converge to the specified 
tolerance, for example 1, with random starting vectors. 

Method p = 2 p = i 

Arnoldi/Faber(16) 
GMRES(16) 

Hybrid GMRES(16) 
Arnoldi / Chebyshev( 16) 

Our Method(16) 

1800(10-") 
4200(10-1°) 
1800(10-") 
2300(10-") 
1700(10-") 

2100(10-") 
4800(10-1°) 
2200(10-") 
2600(10-") 
2100(10-") 

Starke and Varga fix the number of steps used in the GMRES part of the algorithm. They 

do this to allow comparison between the methods. The actual Hybrid GMRES algorithm 

may cycle back to the GMRES stage and carry out more steps if necessary. In the table we 

show the approximate number of vector operations required so the log of the residual norm 

is less than the tolerance given in brackets. After the method name there also follows a 
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number in brackets. This number indicates the number of steps, of the GMRES or Arnoldi 

algorithm, that is taken before either restarting, in the case of GMRES, or switching to 

stage 2, for all other methods. Starke and Varga also considered solving this system with 

CGS (see Section (4.3.6)) and CGNR (see Section 4.3.3) but they report that these methods 

showed no signs of convergence. The starting vectors used in these examples were random; 

therefore the results only show that our method is comparable to both Arnoldi/Faber and 

Hybrid GMRES. 

As well as these examples with random vectors, Starke and Varga [76] consider the 

solution of this linear system with a more structured b and X Q . They give two such 

examples and these will allow a better comparison between the methods. We begin by 

considering b = ( - 1 , 1 , . . . , -1,1)-^ and X Q = 0, with p = 2. In Figure (5.7) we show the 

eigenvalue estimates obtained after 16 steps of the Arnoldi algorithm. For these starting 

vectors, the convergence curves for 4, 8, 12 and 16 eigenvalue estimates are shown in Figure 

(5.8). In Table 5.4 we give the parameters used by these methods. 

Figure 5.7: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the 
annular sector for example 1, with xo = 0, b = ( - 1 , 1 , . . . , -1 ,1)^ , and p = 2. 
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Table 5 . 4 : The parameters for example 1 , with X Q = 0, b = ( — 1 , 1 , . . . , — 1 , 1 ) - ' ' , p = 2. 

eigenvalue estimates 4 8 1 2 1 6 

Rmax 5 . 0 4 3 3 0 8 0 2 8 7 . 1 9 1 6 0 1 8 4 9 7 . 3 9 4 8 2 1 0 4 3 7 . 4 8 0 9 1 3 8 4 9 

Rmin 2 . 6 7 9 9 0 6 7 9 5 1 . 3 9 3 1 6 2 9 4 8 1 . 3 4 9 9 0 2 0 9 7 1 . 3 2 0 9 6 4 6 3 5 

0 . 8 6 1 1 5 6 2 7 5 0 . 9 8 3 2 9 4 8 6 4 1 . 0 1 9 9 4 6 0 5 9 1 . 0 4 0 0 3 8 2 1 9 

a 0 . 4 8 7 5 4 4 6 4 5 0 . 3 0 6 5 6 6 3 0 5 0 . 2 9 0 5 4 1 9 7 0 0 . 2 8 1 8 9 2 9 7 7 
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Figure 5 . 8 : Convergence curves for example 1 with X Q = 0, b = ( - 1 , 1 , 

and 4 , 8 , 1 2 and 1 6 eigenvalue estimates. 

2500 

- 1 , 1 ) ^ , ; . = 2 , 

In Table 5 . 5 we summarise Starke and Varga's results for this example and also include 

the results for our method. In this case our method converges to 1 0 ~ ^ ^ sHghtly faster than 

the Arnoldi/Faber method, and both methods converge faster than Hybrid GMRES. 
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Table 5.5: The approximate number of vector operations to converge to the specified 
tolerance, for example 1, with structured starting vectors and p = 2. 

Method 
b = ( - l , l , . . . , - l , l ) ^ 

Xo = 0 Method 
b = ( l , l , . . . , l ) ^ 

Xo = 0 

Arnoldi/Faber(16) 
GMRES(16) 

Hybrid GMRES(16) 
Our Method(16) 

2400(10-") 
5000(10-^) 
4800(10-^) 
2000(10-") 

Arnoldi/Faber(32) 
GMRES (32) 

Hybrid GMRES(40) 
Our Method(32) 

5200(10-11) 
9800(10-11) 
7200(10-11) 
3900(10-") 

Figure 5.9: A plot of 16 eigenvalue estimates (stars), the actual eigenvalues (dots) and the 
annular sector for example 1, with X Q = 0, b = ( 1 , 1 , . . . , 1)^, and p — 2. 

Finally we consider solving (5.5) when X Q = 0, b = ( 1 , 1 , . . . , 1)-̂  and p = 2. In Figure 

(5.9) we show the eigenvalue estimates obtained by the Arnoldi stage of our algorithm 

after 16 steps. The annular sector, placed around these 16 estimates, encloses more of the 

actual eigenvalues than the polygonal region of Starke and Varga [76], but our method still 

diverges. Taking 24 eigenvalue estimates gives convergence. When solving a linear system 
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by our method it is therefore important that enough steps of the Arnoldi algorithm are 

taken. If however, the method seemed to be diverging it would be possible to go back to 

the first stage and find some more estimates. 

Table 5 . 6 : The parameters for example 1 , with X Q = 0, b = ( 1 , 1 , . . . , 1 ) ^ , and p = 2. 

eigenvalue estimates 1 6 2 4 3 2 4 0 

Rmax 6 . 6 4 8 4 9 0 9 8 5 6 . 8 9 0 6 1 5 8 4 4 7 . 0 6 8 7 4 0 0 4 7 7 . 1 4 3 2 2 3 5 2 7 

Rmin 0 . 2 4 1 6 9 5 6 7 3 0 . 4 5 9 1 5 4 0 9 0 0 . 4 7 8 1 9 7 5 9 8 0 . 6 6 3 5 7 9 5 6 2 

P 1 . 0 7 0 1 2 8 0 9 7 1 . 1 6 5 6 5 6 1 0 9 1 . 2 5 1 2 1 5 9 3 2 1 . 2 5 4 7 6 8 5 0 5 

a 0 . 1 5 0 2 9 3 4 0 6 0 . 1 7 0 1 8 4 7 1 2 0 . 1 5 4 8 9 3 0 3 4 0 . 1 7 6 0 5 4 2 9 3 

b 0 . 2 2 7 9 8 4 9 3 1 0 . 2 7 0 7 1 4 1 8 5 0 . 2 5 7 5 3 0 1 8 0 0 . 2 9 3 3 5 5 8 7 2 

P 0 . 6 2 2 2 8 1 7 9 3 0 . 6 5 1 5 1 6 2 6 2 0 . 6 7 7 7 5 4 7 1 4 0 . 6 7 8 3 2 4 9 4 3 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
vector operations 

Figure 5 . 1 0 : Convergence curves for example 1 with X Q = 0, b = ( 1 , 1 , . . . , 1 ) ^ , p = 2, 
and 1 6 , 2 4 , 3 2 and 4 0 eigenvalue estimates. 

In Figure ( 5 . 1 0 ) we show a plot of the log of the residual norm against the number of vec­

tor operations using our method with 1 6 , 2 4 , 3 2 and 4 0 eigenvalue estimates. In Table 5 . 6 
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we show the parameters used in these methods and in Table 5.5 we show a comparison 
between our results and those of Starke and Varga [76]. We see f rom Table 5.5 that our 
method, w i t h 32 eigenvalue estimates, is superior to Arnoldi/Faber wi th the same number 
of estimates. I t is interesting to note that Arnoldi/Faber(40) converges to 10~^^ faster 
than Arnoldi/Faber(32), whereas our method wi th 32 eigenvalue estimates converges to 
10~^^ faster than our method wi th 40 eigenvalue estimates. In fact considering a tolerance 
of 10~-^\ our method wi th 32 estimates is the fastest to converge, then Arnoldi/Faber(40), 
then our method w i t h 40 estimates, and then Arnoldi/Faber(32). A l l these methods have 
superior convergence to Hybr id GMRES and GMRES. In fact Hybrid GMRES(32) actually 
diverges. 

Example 2 

The Grcar mat r ix example. In this example we consider the matrix 

A 

1 1 1 \ 
- 1 ^ 1 1 1 

10 . ^ 10)1024x1024 

V ••• ••• ••• ••• 

This is Example 6.3 i n Starke and Varga's paper, i t is a shifted version of a matr ix in a 

paper by Trefethen [78], which originated in a paper by J. Grcar [45]. Starke and Varga 

[76] chose i t to illustrate that their method would even work i f some of the spectrum of 

the mat r ix was situated in the lef t -half plane. Starke and Varga also point out that i t is 

surprising their method would even work at all because some of the spectrum of the matrix 

is not included in their polygonal region. 

We use this example for two reasons, firstly, we can once again compare our results 

w i t h those of Starke and Varga and secondly this is an example whose convex hull of 

the spectrum contains the origin and therefore the Arnoldi/Chebyshev algorithm [30] (see 

Section 4.4) w i l l f a i l to converge. For this example, we solve the linear system wi th random 

vectors for the in i t i a l approximation and righthand side. 

I n Figure (5.11) we plot the log of the residual norm against the number of vector 

operations. I n the graph we show three convergence curves, the solid line represents our 

method taking 24 eigenvalue estimates, the dashed line 48 eigenvalue estimates and the 
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dash-dot line 32 eigenvalue estimates. W i t h 32 eigenvalue estimates, our method has a 

residual norm less than 10"^'' after about 8800 vector operations. We also observe that 

i t converges to this tolerance faster than the methods wi th both 24 and 48 eigenvalue 

estimates. 
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Figure 5.11: Example 2, convergence curves wi th random starting vectors, and 24, 32, and 
48 eigenvalue estimates. 

Table 5.7: The parameters for example 2, the Grcar matr ix, wi th random starting vectors. 

eigenvalue estimates 24 32 48 

Rmax 2.993374182 3.039322633 3.115282305 

Rmin 1.812674158 1.507586450 1.422573506 

/" 1.771079535 1.869182867 1.859730317 
a 0.252591979 0.200454514 0.192404532 
b 0.591032839 0.500442075 0.475803666 

P 0.810665346 0.839748298 0.838368199 
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In Table 5.7 we give the parameters we calculated for these methods, once again rj — -k. 

I n Table 5.8 we compare our results w i th those of Starke and Varga [76]. For this example, 

i t appears that the method of Nachtigal et al. [60] is the best. Considering 48 eigenvalue 

estimates our method is comparable wi th Starke and Varga's, but both are beaten by 

Hybr id GMRES. I t is interesting that our method wi th 24 eigenvalue estimates converges 

whereas Arnoldi/Faber(24) diverges. Our method, however, is slow to converge compared 

to H y b r i d GMRES(24). 

Table 5.8: The approximate number of vector operations to converge to the specified 
tolerance, for example 2, w i th random starting vectors. 

Method Number of Vector Operations 
(tolerance) 

Our Method(24) 13500(10-14) 

Our Method(32) 8800(10-14) 

Our Method(48) 9200(10-14) 
Arnoldi/Faber(24) diverges 
Arnoldi/Faber(48) 9200(10-14) 

Hybr id GMRES(24) 9200(10-14) 
Hybr id GMRES(48) 8000(10-14) 

GMRES (24) 15000(10"^) 
GMRES (48) 15000(10-4) 

Example 3 

The coefficient matrices in the next two examples are shifted matrices f rom a paper by 

Reichel and Trefethen [68]. In the first example we consider the matrix 

/ 4 
2i 

A 

0 1 .7 
4 0 1 .7 

2i 4 0 1 

2i 4 0 

2i 4 

\ 

B1024X1024 

which is Example 3 in a paper by Gutknecht [47]. We choose this particular example to 
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illustrate that our method works well when the eigenvalue estimates are not symmetric wi th 

respect to the positive (or negative) real axis. Although Starke and Varga [76] note that 

their method could be applied to a complex matr ix, they do not give the details. In fact 

their method for placing a polygonal region around the eigenvalue estimates must change 

i f the estimates are not symmetric wi th respect to the positive (or negative) real axis. 

For our method, there is h t t le difference in placing an annular sector around eigenvalue 

estimates symmetric w i t h respect to the positive (or negative) real axis, and those that 

are not (see Section 5.2). Therefore, for a complex matr ix our method should be easier 

to implement than Starke and Varga's. Once again we consider solving the linear system 

w i t h b and X Q given by random vectors. 
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vector operations 
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Figure 5.12: Example 3, convergence curves for our method wi th 8 (solid), 12 (dashed) 
and 16 (dotted) eigenvalue estimates. The lower curves are the same method, 
but w i t h a new in i t ia l iterate for the second stage in our algorithm. 

For the previous two examples the l ink between the Arnoldi and GMRES algorithms 

was not taken into account. We ignored the l ink because producing a new ini t ia l iterate, 

by the GMRES algorithm, did not vastly alter the number of vector operations required 
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to converge to a specific tolerance. The situation is different for both this and the next 

example. Figure (5.12) shows a plot of the log of the residual norm against the number of 

vector operations for our method wi th 8 (solid), 12 (dashed), and 16 (dotted) eigenvalue 

estimates. In each case two curves are plotted; one employing the GMRES algorithm to 

produce a new in i t ia l solution; and one using the in i t ia l solution f rom the first stage of 

our algori thm. The lower curves correspond to the new ini t ia l solution being used for 

the second stage of our algorithm. When 16 steps of the Arnoldi algorithm are taken 

we see that using the new in i t ia l iterate can speed up the convergence by almost 200 

vector operations. I n Figure (5.13) we show the convergence curves for CGNR, CGS and 

GMRES(16). For GMRES(16) we only plot the log of the residual norm obtained before 

each restart. We note that CGS stagnates, whereas, CGNR converges, but slower than our 

method w i t h 16 eigenvalue estimates. GMRES(16) also converges, but in about twice as 

many vector operations as our method with 16 eigenvalue estimates. In Table 5.9 we give 

the parameters required by our method. 

I n all the other examples we consider we wi l l now exploit the link between the Arnoldi 

and GMRES algorithms to produce a new ini t ia l iterate for the second stage of our algo­

r i t h m . 

2 

0 

- 2 

: - 4 
J 
1 
1 - 6 
> 

T) 
> 

-10 

-12 

-14 

-16 

1 r 

C G S 

\ 

\ 

-

-
V 

\ 

GMRES(16) 

-

s 

CGNR 

\ 
N. 

— J 1 1 

0 200 400 600 800 1000 1200 1400 1600 1800 
vector operations 

Figure 5.13: Example 3, the convergence curves for CGNR, CGS and GMRES(16). 
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Table 5.9: The parameters for example 3, wi th random starting vectors. 
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eigenvalue estimates 8 12 16 

Rmax 6.318322543 6.372127226 6.360749188 

Rmin 1.065257802 1.008595806 0.984856615 
0.436699747 0.479291832 0.497019179 
3.069432036 3.054225337 3.066771724 

a 0.449478135 0.427205882 0.418712433 
b 0.522741301 0.504802220 0.498089123 

P 0.394321512 0.411610653 0.418604483 

Example 4 

I n this example we consider another shifted Reichel and Trefethen [68] matr ix which 

was also considered by Gutknecht [47]. For this example the coefficient matr ix is given by 

A = 

/ 2 1 
0 2 
1 0 

1 

V 

1 
2 

0 

1 
2 

1)1024x1024 

and we consider random b and X Q . 

Table 5.10: The parameters for example 4, wi th random starting vectors. 

eigenvalue estimates 8 12 16 

Rmax 3.831448773 3.833247733 3.889711330 

Rmin 1.817542827 1.788237848 1.674694109 

P- 0.985672968 1.000343712 0.998750492 
a 0.428990716 0.421809306 0.409286367 
h 0.632892801 0.626389581 0.606359549 

P 0.564506685 0.570726575 0.573686080 

Figures (5.14) and (5.15) show similar plots to those given in Figures (5.12) and (5.13). 

Once again employing the l ink between the Arnoldi and GMRES algorithms reduces the 
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Figure 5.14: Example 4, convergence curves for our method wi th 8 (dotted), 12 (dashed) 
and 16 (solid) eigenvalue estimates. The lower curves are the same method, 
but w i t h a new ini t ia l iterate for the second stage in our algorithm. 

GMRES(16) 

2-10 

CGNR 

-16 0 200 400 600 800 1000 1200 1400 1600 1800 
vector operations 

Figure 5.15: Example 4, the convergence curves for CGNR, CGS and GMRES(16). 
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number of vector operations our method takes to converge to a specific tolerance. For this 

example, CGNR converges to 10-i4 in the least number of vector operations. Our method 

w i t h 16 steps of the Arno ld i /GMRES algorithm is about comparable wi th CGS, though 

the convergence curve is much smoother. We find that 8 steps of the Arnoldi /GMRES 

algori thm is sufficient to obtain a reasonable approximation to the effective spectrum of 

the mat r ix . Therefore, because of the linear growth in computer t ime of the GMRES 

algori thm, our method w i t h 8 eigenvalue estimates is the best of those exhibited in Figure 

(5.14). I n fact i t is almost comparable to CGNR. In Table 5.10 we once again give the 

required parameters for our method; 77 = TT. 

Example 5 

I n at least two papers i n the literature, namely L i [53] and Smolarski and Saylor [74], 

a mat r ix is devised that has spectrum contained in a "boomerang"-shaped region in the 

complex plane. A n annular sector is a natural region to enclose this type of domain. 

Therefore our method may be useful in solving a linear system wi th a coefficient matr ix of 

this type. 

Figure 5.16: The left region contains the eigenvalues of T , whereas the right region contains 
the eigenvalues of T — 3/. 

I n the left-half of Figure (5.16) we show a plot of the aforementioned "boomerang"-

shape. We consider a 1024 x 1024 matr ix , T , w i th eigenvalues in this region. Following 

Smolarski and Saylor [74] we place four eigenvalues at the points (1,4), (1 , - 4 ) , (5,0) and 
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(6, 0). The other 1020 are spread uniformly along the fines f rom (2,4) and (2, - 4 ) to (6,0) 

and the lines f r o m (3,4) and (3, —4) to (7, 0). That is each of these four lines contains 255 

eigenvalues. 

For example, considering the fine f rom (2,4) to (6,0) the real parts of the eigenvalues 

are given by 

^j='^ + jl for j = l , . . . , 2 5 5 , 

w i t h corresponding imaginary part 

The eigenvalues, w i t h the exception of the two real ones, occur in complex conjugate pairs. 

We f o r m the real tridiagonal matr ix , T, f rom 2 x 2 block submatrices, the eigenvalues of 

which yield one of the conjugate pairs. I f the complex conjugate pair is x + iy and x — iy 

then the 2 x 2 submatrix is chosen to be 

X y 

- y X 
(5.10) 

For the real eigenvalues we consider a 1 x 1 block containing the eigenvalue itself. 

GMRES(16) 

Our 16 

CGNR 

0 200 400 600 800 1000 1200 1400 1600 1800 
vector operations 

Figure 5.17: Convergence curves for various methods and coefficient matrix T. 

In Figure (5.17) we show the convergence curves for various methods starting wi th the 

same random b and X Q . For this matr ix , CGNR converges, to a tolerance of 10"^^, in the 
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least number of vector operations. Even wi th 8 eigenvalue estimates our method is slower 

to converge to lO"^' ' than CGS. 

•K -10 

-15 

-20 

1 1 . . . . , , . 1 , 

" ~ - - ^ GMRES(16) 

k Our(16) 

• CGNR 

1 ' 

^ \ C G S 

1 1 1 1 

500 1000 1500 2000 
vector operations 

2500 3000 3500 

Figure 5.18: Convergence curves for various methods and coefficient matrix T — 3/. 

Out of interest we perturb this example so that, like example 2, the convex hull of 

the spectrum contains the origin. That is we consider the matr ix T — 31. In the right-

half of Figure (5.12) we show a region containing the eigenvalues of T — 3/. As we have 

mentioned this region encloses the origin and therefore the Arnoldi/Chebyshev method wi l l 

fa i l to converge. Figure (5.18) shows the convergence curves for various methods, namely 

CGNR, CGS, our method wi th 16 eigenvalue estimates, and GMRES(16). W i t h 8 or 12 

eigenvalue estimates our method shows no signs of convergence, but wi th 16 eigenvalue 

estimates our method converges to 10~^^ in about 2300 vector operations. As Starke and 

Varga pointed out for their method wi th example 2, this highlights the need to produce 

enough information in the first stage of a hybrid method. In our case this means carrying 

out enough steps of the Arnoldi algorithm. W i t h this matr ix CGS does slightly better 

than our method w i t h 16 eigenvalue estimates, but once again CGNR outperforms all the 

other methods. The convergence of CGNR depends on the singular values of the coefficient 

mat r ix , in this case T or T — 37, (see Nachtigal et al. [60]). For both of these examples 

the ma t r ix is well conditioned, i n fact K-iiT) — 1.69 and K2{T — 3/) = 2.24, to 2 decimal 
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places, where / \ 2 ( ^ ) is the 2-norm condition number of the matr ix X . Therefore, CGNR 
has fast convergence for these matrices. We also note that T^T and {T ~ 2>I)^{T — 3/) 
are diagonal. I f we consider forming another matr ix, T i , f rom submatrices of the form 

then Ti and Ti — 3 / are not as well conditioned. To 2 decimal places K2{T\) = 4.20 and 

K2{Ti — 31) = 7.04. Therefore, CGNR wi l l not converge as fast as i t did wi th submatrices 

given by (5.10). In fact, considering T i—3/ , CGNR has a residual norm less than IQ- i^ after 

about 1100 vector operations. On the other hand, CGS and our method wi th 16 eigenvalue 

estimates have convergence curves very similar to those i n Figure (5.18). CGNR is st i l l 

the best in this case, but not by such a large margin. 

Example 6 

I n examples 2, 4 and 5 we have CGNR converging faster than all the other given meth­

ods. We have given two examples where our hybrid method, and others, can converge faster 

than CGNR. To find another such matr ix, we consider the examples given in Nachtigal et 

al. [59]. This paper gives 6 examples, for which one of CGS, CGNR or GMRES does best 

and one does worst, that is, in terms of the number of iterations to converge to a specific 

tolerance. The example they give for which CGS "wins" and CGN "loses" is a diagonal 

mat r ix , 

D = dia.g{xi,...,XN), 

where 
1 / f 7 - l ) 7 r \ 

= 1 + ^ ( 7 ^ - 1 ) 1 - f c o s ^ ^ ^ 1 < ; < A ^ . 

For the example here we choose N = 1024 and K = 20. 

Figure (5.19) shows convergence plots for various methods, where we have solved the 

linear system w i t h the same random b and X Q . The matr ix , D, is real and diagonal 

and the Arnoldi algorithm produces eigenvalue estimates that are also real. This causes 

a problem in our numerical evaluation of the parameters a and b (see Section 3.2), be­

cause when the half-angle is zero (or alternatively 9 = TT) we do not have starting values 

for our modified Newton iteration. As we saw in Section 2.2.4, when ^ = TT we have 
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a = 6 = v ^ , /9 = (1 — i?)/4 and the Faber polynomials are the suitably scaled Chebyshev 

polynomials for the interval [R,l] (see Section 2.4.1). Therefore we should use these pa­

rameters for our method. We note that wi th these parameters our method is actually the 

Arnoldi/Chebyshev algorithm of Elman et al. [30]. Alternatively we could choose a small 

angle for the half-angle of the sector, for example {i = 0.14 radians, and find a, h and p for 

this annular sector and then use these parameters in our method. In Table 5.11 we give 

both these sets of parameters found f rom eigenvalue estimates produced after 16 steps of 

the Arno ld i /GMRES phase of our algorithm. In Figure (5.19) we show both these plots, 

the lower one (dash-dot) is the Arnoldi/Chebyshev method and the upper one (dashed) is 

our method w i t h n = 0.14. 

CGNR 

GMRES 16 

Our(.18) 

600 800 1000 
vector operations 

1600 

Figure 5.19: Convergence curves for various methods and coefficient matrix D. The star 
on Our(16) reminds us that two curves are pictured here. 

Al though CGS has a residual norm less than lO"^'' in fewer vector operations than both 

of our methods (that is, Arnoldi/Chebyshev wi th fi = 0.0 and our method wi th fi = 0.14), 

the slopes of our methods are steeper than those of CGS and i t would appear that our 

method would beat CGS i f higher precision was required. As was stated above, for this 

mat r ix , CGNR is the slowest to converge, not just in terms of the number of iterations, 

but also i n terms of the number of vector operations. 
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Table 5.11: The parameters for example 6, wi th random starting vectors. 
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eigenvalue estimates Arnoldi/Chebyshev Our method(16) 

Rmax 19.957514299 19.957514299 
1.056885688 1.056885688 

0.0 0.14 
a 0.479711788 0.415066055 
b 0.479711788 0.434455942 

P 0.236760805 0.299907255 

Example 7 

Dr. G. Opfer [61] mentioned to my Supervisor, Dr. J.P. Coleman, that he thought 

i t would be useful to solve linear systems of equations wi th coefficient matrices whose 

eigenvalues (or eigenvalue estimates) are situated close to the n - t h roots of unity. He 

suggested applying the transformation Z — z'^ so that the eigenvalues (or their estimates) 

are situated about the positive real axis. His idea was then to use the Faber polynomials, 

Fm{Z), for an annular sector placed around these estimates, as the residual polynomials. 

As a simple example we consider the matr ix 

/ 1 

A 

1 \ 
•1 1 

1 1 
- 1 

V 

e 
D 2 0 0 x 2 0 0 

which has its eigenvalues at the points 1 and - 1 . We note that the eigenvalues are situated 

on both sides of the origin and therefore the Arnoldi/Faber method of Starke and Varga, 

as i t is described, cannot be used to solve this example. We begin by trying to solve 

Ax = b. (5.12) 

w i t h a random X Q and b. 

I n Figure (5.20) we show convergence curves for various methods. The fastest to con­

verge is CGNR, followed by CGS. I t is interesting to see that our method for solving 
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equation 5.12, w i t h 16, 32 or 48 eigenvalue estimates, diverges ini t ia l ly and then converges. 

We also note that in all cases our method stagnates. I f the residual norm rises to 10^, say, 

then our method, using double precision, w i l l stagnate when the residual norm is about 

10~^. We have not produced a satisfactory reason for this. In Table 5.12 we give the 

parameters one would require to run our methods for this example. 

Table 5.12: The parameters for example 7, wi th random starting vectors. 

eigenvalue estimates 16 32 48 

Rmax 1.309407302 1.352849882 1.378345068 

Rmin 0.323257614 0.255873833 0.102660078 

P' 1.967132252 2.086166027 2.223948399 

V 1.595575242 1.566125230 1.568494460 
a 0.110696486 0.073014090 0.023615741 
h 0.296529065 0.217430031 0.080850177 

P 0.886040399 0.891161542 0.917063783 

Our(16) 

Our(48) 

GMRES(16 

Our(32) CGNR 

-20 1000 2000 3000 4000 5000 6000 7000 
vector operations 

Figure 5.20: Convergence curves for solving (5.12) by various methods 

We now consider mul t ip ly ing the finear system (5.12) by A, that is, exploit the idea of 
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G. Opfer, and t ry to solve 

A^x = b i , (5.13) 

w i t h b i = Ah. I f we find a solution to this linear system then we wi l l have a solution to 

the original linear system (5.12). The eigenvalues of are simply the eigenvalues of A 

squared. Therefore the idea is to square the approximate eigenvalues we obtained above, 

then place an annular sector around these squared estimates and use the Faber polynomials 

for this region as the residual polynomials. 

To compare results we need to calculate how many vector operations we use to imple­

ment the above method. The number of vector operations required to carry out m steps of 

the Arnold i algorithm and produce m eigenvalue estimates is the same as before, namely 

m[l - f 3 + m) vector operations. The number of vector operations to implement 

= Xo qm-i(A'^)vo, 

i n a Horner-type iteration, w i l l be different because two matr ix multiplications are required 

where previously we only required one. As in Section 5.3.4 the Horner iteration is as follows, 

I'old ~ ^I 'new) 

Wo = am-i,mroid, 

Wj- = + „roid, ; = 1,..., m - 1, 

l*new — b A X n e w 

This requires a total of m{2l + 1) vector operations. 

In Figure (5.21) we show plots for solving the linear system (5.13) by our method. 

I n all cases the methods do not diverge for as long as they did previously, and therefore 

the methods stagnate at a smaller tolerance than they did in Figure (5.20). The number 

of vector operations, required to converge to a specific tolerance, is less when solving 

the linear system (5.13) than solving (5.12). For example, our method to solve (5.12) 

w i t h 16 steps of the Arno ld i /GMRES algorithm converges to l O ' i in about 3000 vector 
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operations, whereas, when solving (5.13) our method converges to 10~^ in about 1900 

vector operations. I n fact our method wi th 16 eigenvalue estimates for solving (5.13) is 

comparable w i t h CGNR for solving (5.12). We also note that when solving (5.13) our 

method w i t h 32 eigenvalue estimates is comparable to CGS for solving (5.12). These 

results show that when the eigenvalues (or their estimates) are t ightly clustered around 

the roots of uni ty the idea of G. Opfer may be a useful one. In Table 5.13 we give the 

parameters we used in this example. That is, the parameters for the annular sectors placed 

around the squared eigenvalue estimates. 

Table 5.13: Example 7, w i t h random starting vectors. The parameters for an annular 
sector placed around the squared eigenvalue estimates. 

eigenvalue estimates 16 32 48 

Rmax 1.714547483 1.830202803 1.899835127 

Rmin 0.104495485 0.065471418 0.010539092 

P 0.842229681 1.040081594 1.310907878 
a 0.231168909 0.154764191 0.049199872 
b 0.316014282 0.231410936 0.084431146 

P 0.547503339 0.612776474 0.696272420 

S -2 

-10 

-12 

/ \ -

\ \ Our(48) -

Our(16) \ \ Our(32) \ 

1 1 

V -

1000 2000 3000 4000 5000 6000 7000 
vector operations 

Figure 5.21: Convergence curve for solving (5.13) by our method. 
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For clarity, we would like to point out that the results given for methods other than our 

own were carried out by us and not taken f rom the literature. This is wi th the exception 

of examples 1 and 2, where the results given are those f rom a paper by Starke and Varga 

76;. 

5 . 5 C o n c l u s i o n s 

I n this chapter we have given a new hybrid iterative method based on the Faber polynomials 

for an annular sector. The method is closely related to that of Starke and Varga [76]. I f 

the spectrum, or rather the e-pseudospectrum (see Trefethen [78]), of the matr ix can be 

well approximated by an annular sector then the method should work well. Our method 

has two major differences over the method of Starke and Varga. Firstly, the annular sector 

is an easy region to scale and rotate so that i t encloses any eigenvalue estimates situated 

anywhere i n the complex plane. On the other hand the method of Starke and Varga [76 

is set up only for eigenvalue estimates situated symmetrically about the real axis. Starke 

and Varga do state that their method can be applied to a general non-Hermitian matrix. 

However, for a general non-Hermitian matr ix, their method for placing a polygonal region 

around the eigenvalue estimates and their method for finding the conformal mapping must 

change. Therefore, their method would seem more complicated to implement than ours. 

Secondly, the Arnoldi/Faber method requires a numerical conformal mapping package to 

generate the Faber polynomials, whereas, the Faber polynomials for an annular sector are 

known analytically (see Chapter 2). Of course, to generate the Faber polynomials, we need 

to determine the numbers a, b and p numerically. Therefore, we can either generate the 

Faber polynomials for a polygonal region using a numerical conformal mapping package, 

or use the Faber polynomials for an annular sector known exactly in terms of the numbers 

a, b and which we only know numerically. 

I n the examples of this chapter we have shown how our method compares wi th many 

of the methods we described in Chapter 4. In particular, COS, CGNR, GMRES, Hybrid 

GMRES and Arnoldi/Faber. Our method seems to perform quite well for the examples 

we have given. As w i t h all methods, there exist matrices for which our method wi l l 
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perform badly. In agreement wi th the method and examples of Starke and Varga [76], our 

examples show that our method is sensitive to the amount of information obtained during 

the Arno ld i /GMRES stage. That is, i f too few steps of the Arnoldi /GMRES algorithm 

are taken then the method may converge slowly, or even diverge. I f too many steps of the 

Arno ld i /GMRES algorithm are taken then more work is done in stage 1 than is required. 



Chapter 6 

Conclusions and future work 
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In this thesis we have considered the Faber polynomials for annular sectors. The conformal 

map f r o m the complement of the unit disc to the complement of the annular sector was 

given in Chapter 2. In this chapter we also derived the Faber polynomials for an annular 

sector and gave the Faber series for l / z . In Chapter 3 we considered numerical aspects 

of the Faber polynomials for an annular sector. The numerical approximation of the 

transfinite diameter and the parameters a and b were considered. We also gave three norms 

of Faber polynomials and exhibited some numerical values for various annular sectors. At 

the end of the chapter we improved upon a bound for the Faber projection given in a 

paper by EUacott [22]. In Chapter 5 we gave a new hybrid method for the iterative 

solution of linear systems of equations. The method is similar to the Arnoldi/Faber method 

developed by Starke and Varga [76], but wi th a few major differences. For Example 1, w i th 

a structured righthand side, b, and in i t ia l solution X Q the residual norm converged faster 

w i t h our method than i t did wi th Starke and Varga's. In most of the given examples the 

method seemed promising. As wi th Starke and Varga's method, however, our method is 

sensitive to the amount of information obtained in the first stage of the hybrid method, 

namely the Arno ld i /GMRES algorithm. 

Chapters 2 and 3 are mainly complete. Most of the future work wi l l lie in Chapter 5 

and extensions of ideas contained in i t . A t present, no convergence estimate exists for the 

method and i t would be nice to obtain one. Of course the method needs further testing, 

especially on real world examples. As for possible extensions to the work contained in 

Chapter 5, we have arrived at three or four different ideas for residual polynomials which 

could be implemented in an iterative method. 

• The first idea combines the residual polynomials f rom the Hybrid GMRES method of 

Nachtigal et al. [60] and our method f rom Chapter 5. A hybrid iterative method, employing 

this idea, would carry out a few steps of the Arnold i /GMRES algorithm and obtain some 

eigenvalue estimates, a good starting guess, and the GMRES polynomial, 5'„(A). Then 

one would find the Faber polynomials, -F„(A), for an annular sector placed around the 

eigenvalue estimates and iterate w i th a residual polynomial given by 

i?2n(A) = a ^ „ ( A ) F 4 A ) , 

where cr is a constant chosen so that -R2n(0) = 1. The strength of this idea is that Hybrid 
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GMRES seems to perform poorly when b and XQ are structured, whereas, our method ap­

pears to do better. Hybr id GMRES, however, does not rely on any approximate eigenvalue 

informat ion which can be misleading (see Nachtigal et al. [60]). Hopefully this idea would 

lead to a method wi th the advantages of both Hybr id GMRES and our method. 

• The second idea is very similar to the first. Instead of GMRES as the first step 

of the method, why not t ry the BCG algorithm or, to avoid some of the breakdowns, 

the Q M R algorithm? As in Equation (4.22), after n + 1 steps of the BCG algorithm, 

AVn = Vn+iHn- Freuud et al. [37] therefore suggest using the eigenvalues of i J„ as estimates 

of the eigenvalues of A. For this idea we may consider a similar hybrid iterative method to 

that proposed in the first idea given above. This t ime wi th a residual polynomial given by 

R2n{\) - (7V ' r^ (A)F„(A) , 

where once again a is chosen so that -R2re(0) = 1 and i^^'^^ is the residual polynomial of 

degree n for the B C G algorithm. We note that this idea could be motivated along similar 

lines to B iCGSTAB and BiCGSTAB2. By this we mean that the BCG polynomial is 

mul t ip l ied by another polynomial of degree n . This t ime, however, no local minimisation 

problem is solved (see Section 4.3.7). 

• The t h i r d idea comes f rom the work of Eiermann [17] on semi-iterative methods (see 

L i [53] for an overview). As in Section 4.4.7, we once again note that, in our case, we 

must consider the Faber series for l / z not l/{z — 1). The idea here is to use the truncated 

generalised Faber series for l / z as the residual polynomial (see S I M l in Eiermann [17]). An 

alternative would be to use the truncated Faber series for l / z as the residual polynomial 

(see SIM2 in Eiermann [17]). The latter Faber series is readily available and given by 

Equation (2.41) in Section 2.7. 

The three given ideas may or may not be of use and we leave their consideration to 

fu ture researchers. 

Finally, we consider an idea for future research in a completely different area of Nu­

merical Analysis. That is, the approximation, in the complex plane, of a function which 

satisfies an ordinary differential equation (ODE). The idea would build on the work of 

Coleman [9, 10]. In this work, Coleman subdivides the complex plane into circular sectors. 
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and solves the differential equation on these subdivisions of the plane by using the Lanczos 

r -method and the Faber polynomials for a circular sector. I f better approximations are 

required, than those given by this method, then one could further subdivide the circular 

sector into a smaller circular sector and an annular sector (see Figure 6.1). The idea would 

Figure 6.1: The large circular sector is subdivided into a smaller one and an annular sector. 

proceed by solving the ODE on the smaller circular sector, using the ideas of Coleman 

9, 10]. Then i t would solve the ODE on the annular sector, using the Lanczos r-method 

and the Faber polynomials for this annular sector. 

The problem w i t h this idea is in obtaining a sensible starting point for the solution of 

the O D E on the annular sector. Many ideas could be thought of to solve this problem, for 

example, 

• Use the original in i t i a l solution for the ODE; 

• Consider a point on the common boundary between the circular and annular sectors. 

Find an approximation to the value of the function at this point, using the approximation 

to the funct ion obtained on the small circular sector. Use this estimate of the value of the 



179 

funct ion as the starting point for the approximation on the annular sector. 

Other possibilities may exist, but we leave these and the implementation of this idea 

as matters for fu ture research. 
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In this appendix we give another proof of Theorem 7 in section 2.2.4. The result is as 

a ^ 0 and 6 ^ 0 then i? ^ 0 and ^ ATT where a = Xb. 

Considering a — Xb then (2.7) becomes 

7r-e= / 
(62 - x){b-^ - x) ^ 2 dx 

IxH^ [{x - X^^){X-^-^ - x) 

In this we make the substitution x = tb^, hence. 

X 

7r-e= C 
iA2 

{ l - m - b H ) dt 
/a2 [ ( ^ - A 2 ) ( A - 2 - 6 4 ^ ) J t 

When 6 —> 0 the integral becomes elementary, and the expression may be wri t ten as 

•1 { l - t ) U t 
•K-e^X j 

1x2 t(t-X^)^ 

In this we make the substitution y'^ = [l - t)/{t - A^) and therefore dt/ dy = 2y{X'^ 

IT 
fO 2(A2 - l)r/2 

V o o (2/2 + 1)(1 + A V ) ^ 

2 [A arctan(?/) - arctan(A?/)]^ 

ATT TT 

T ~ 2, 
TT — ATT 

Therefore X — 9/% as was proven in section 2.1.4. 

When we substitute a - Xb equation (2.10) becomes 

{x - 62)(6-2 - x) 
logR 

{x - A262)(6-2A-2 _ x)_ 

^ dx 
x 

( A . l ) 

In this expression we again substitute x = tb^ and obtain 

r ( i _ 1)(1 - tb') 
log iJ = - 2 / 

T 

62 

(t - A2)(A-2 - 64t) 

{i-y){y-b') V dy 
( l - j / A 2 ) ( A - 2 y - 6 ^ ) J 2/ ' 
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when welet t = l / y . In the l im i t as 6 —>• 0 this then becomes 

log7J = 2 A / ° < l ^ . 
• / i 2 / ( l - A 2 y ) 2 

A substitution of t'^ = [1 — y)/{l — X'^y) gives us 

By using part ial fractions we obtain 

/ • I / 1 1 
logi? = 2X ( - - — - — , + 

Jo \ I -

dt. 

1 

t + 
1 

t + 1 1-Xt 1 + Xt 
dt 

1 

= log 
o'\i + xy 

t , i + xt 
+ log 1 -

(A.2) 
[i-xy 

From this we obtain i? = 0, the only exception being when the expression in (A.2) is 

undefined that is when A = 1. In this case ( A . l ) gives R = b^, for all b, so here 6 = 0 and 

we have = 0. So the result holds even for the case when A = 1. This proves the above 

result and finishes off this appendix. 
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From Section 2.4, we know that 

where 

The polynomials 

are given by 

Fn{z)^p^^n{-

$ „ ( z ) = z'̂  + ^„_i ( z ) . 

i = o 

Degree of Faber Polynomial: 1 
p ( 0 ) : U 

Degree of Faber Polynomial: 2 
p ( 0 ) : 2*U 

p ( l ) : (S"2+2*S*U-U^2-4)/2 

Degree of Faber Polynomial: 3 p(0) 
P ( l ) 
P(2) 

3*U 
(3* (S-^2+2*S*U+U'^2-4) ) /4 
(2*S"3+S-"2*U-2*S*U'"2-8*S+U"3+2*U) /2 

Degree of Faber Polynomial: 
p(0) 
p { l ) 
P(2) 
p{3) 

4*U 
S"2+2*S*U+3*U'"2-4 
(4*S'"3+5*S"2*U+2*S*U"2-16*S+U"3-8*U) /3 
(11*S"4-4*S'"3*U-6*S^2*U"2-48*S"2+12*S*U"3 
+32*S*U-5*U'^4-16*U'^2+16) /8 

Degree of Faber Polynomial: 5 
p { 0 ) : 5*U 
p ( l ) : (5* (S'-2+2*S*U+5*U'^2-4) )/4 
p(2) : (5* {S"3+2*S'^2*U+2*S*U'^2-4*S+U'^3-5*U) ) /3 
p(3) : (5* (9*S-^4+8*S'^3*U+4*S'^2*U'^2-42*S^2+4*S*U'^3 

-20*S*U-U'^4-10*U'^2+24) ) /24 
p(4) : (12*S'^5-13*S'^4*U+8*S'^3*U^2-56*S'-3+14*S''2*U'^3 

+ 60*S'-2*U-20*S*U'"4-72*S*U'^2+32*S+7*U-"5+28*U'"3+8*U) /8 

Degree of Faber Polynomial: 6 
p ( 0 ) : 6*U 
p ( l ) : (3* (S"2+2*S*U+7*U'^2-4) )/2 
p(2) : (4*S'^3+11*S'^2*U+14*S*U'^2-16*S+11*U'^3-32*U)/2 
p(3) : (39*S'^4+76*S^3*U+74*S''2*U'-2-192*S'"2+44*S*U"3 

-256*S*U+7*U'~4-128*U'-2 + 144) /16 
p(4) : (46*S'^5+31*S^4*U+34*S'^3*U"2-248*S-^3+22*S'^2*U'^3 

-120*S'^2*U-20*S*U'^4-136*S*U"2+256*S+7*U'^5+24*U'^3 
+104*U)/20 

p(5) : (21*S''6-34*S''5*U+65*S''4*U'^2-100*S'^4-20*S'^3*U"3 
+112*S'^3*U-65*S'^2*U'-4-312*S'^2*U'^2+72*S'^2+70*S*U'^5 
+304*S*U'^3 + 144*S*U-21*U-^6-100*U'^4-72*U'^2-32) /16 



185 

< D < p D 
D * D + * 
•k in m * M in 
VO < < OJ * >H 
c W ui < oi r-
CO * •*• W + 

U) * "d" CO 
iH * 
o r- I •53' 

> CO r-
! 00 O 

o CO -a" 1 
i n < <H I 

in * o 
I D + OJ <H 00 
* r o < + 

I ^ < W CN rH 
< w * < 

I CO * o D — 
* O VD -K 

I o CO ^^ w * 
r>j KD o j * 00 

I r ~ tH o (N 
. O I + O r-l 
\ r-i Oi CO + 
I + < < O) 
I f-1 : D ^ ^ < 
< * * I I D 

I 3 m CM * 
•k < < < O 

I W W D CO 
< • ! • * * 

I W O O W -d" 
+ O CM * + 

I o •<* >H o in 
vo CO r- o < 

p r- m in •cj" ^ CO • 
I in ( 

l O i - H * * r o o ) D + 
+ < < CO W W < 
< • * O O O O J * 

^ D C 0 0 0 V O U ) C N t H ^ O 
U ) * u j o o m r H i n t H 
f o ^ r ~ o O ( N r - c s o 
• 5 j ' C N i n ' ^ M r o ( N i n 
1 — 1 I I + I + 

m 
< < < 

* 
CO CO * 

* * CM 
< < < 

r-
in 

a\ 
cn 

ID 
< 

< 
ID 

CO 
* 

CM 
< + 

CO 
+ o H 

< 
CO 

CD * ID CO in + •K 
•K i n in * CO < ID 

D CO < < o CM in to < in 
* CO (N * ID ID 

o C>) + * + CM + 00 * CO 
00 r-l lO in U) CO in rH 

CM CM < + < * "d" 
+ CO CM ID CO CM 

< + + * < * + in ID 
O < CO o ID CM CM o < 

CO < * * i n CM kO 
CT> * CO 00 CM rH vo n + < + r-
+ <T\ 1 CO < •̂ r CO 1 CO + CM * •K (M < CO 
* CM CM CM < o CO CO en * 

< * ID * CO < 
i-t ID CM * * o 

* CM < + r- CO in cn o 
CM ID CO < iH en o 

CM < < rH + CO 1 CO CO o + 
CO + CO + rH * in rH 

* + o m < + 1 CM + CO CM < CO CO r- ID ro + 00 ID * t-l o * < o < < in 
CO rH CM O CO < 

+ O 00 + < •(• + < + CO m < CO CO CM * CO 
D + + + + + r- * < rH CO * 
•K CO ID + in m VD CO vo 
i n CM * CO < •K r - rH 

CO < + CO «3 m o CO CT\ rH 1 ^ + CO < o ID rH O VO + r-
* CO CM * + rH U3 ro CO < rH 

* CO l> •K CM H 1 rO O + < rH 
CO CM + CO + m in 1 •'J * + 
* + rH (Ti 0 00 CM m < (N tH * * in 00 

in 
n < 

ID 
O CO 

< D < CM m < 
ID * CO * m * CO D vo * < 
^ < CM u> CO CO < CM CO 
< CO in o CO r- < < * 
CO + 00 ^ CO CO < U) * CO o 
* CO in ID o CO CO CO < * o 

CO ID * o o in <J\ CM * CO < CM 
CO -sj CO o < m in p- < lO CO * to < in 
in in rH * o CO ro iH vo * (0 + 
o a\ 
\0 rH 

t 00 ID * 
N CM rH 
: rH o o 
D in 
t + \o 
N m CM t n 
io D I 

< in D r~- I 
D c * < CO 
* D m ^3 < 
in * < * ID 

cn * 
CM ID 

r- * 
ro CO 00 ^ 
+ in H «D 
CO rH 00 ! 

< o o 
I D o ^ 

* CM 

CO O 
a\ rH 
in 
+ rH 

' o < 
1 CM CO 

• oa 'd' D 

CO CM + rH 
. - .- . - * < D + 
CO< * < COCOCMCMt^*-!* 
* co-<*co* * o c n * in< 
o * o * <M'^m'^vo< CO 
n - d - r H i D i n o j + r a c co* 

CO I CO * O 
rH < CM * ^ O 
rH D < lO O 
in * ID p- r- o 
rH vo * Cr» -̂ J CO 

I o i n t 

I i n u> i 
t m a> • 

+ VD I r -

co * + < 
+ o in D 
o o < * 
O O D VD 

CO I 

< in < VD 1 in < f o * c-j ' 
I 

> KO < ID < CM 
rH in < CM in i T j t o * m * CO* i D ( 

D in * 'd' ID ID 

m •rt <y\ I 
< < CO CO 

in m oj D ID VD < 
* * tn ID 
CO CM H * 

CO CO + < < 

o I + -d" 
CO D vo ID vo VD 

* CO + . 

c M C O ^ c o m o o O ( 
^ C O r - * l < i n r H r H C M f 

1 
r- in < 
CM I 
m CM ( 
I < ' 
D 3 I 

cri ID in '31 
c o o i c o * i n ' * * < < 

in VD CO CO 

CO o 
o o 
en CO 
1 i n 

O CM vo CO ( 
rH rH < * t 
rH o^ D o) + . 
CO O •»• r- I CM 
I in 00 H ro < 

fO vo 
m vo 
CM r -

in CO ( 
• rH * 

I O CO 
^ in 
r- CM 
CO + 

i I a\ 
CO • 

ID CO •tf O 
+ * 00 ^ 
cr* o in o 
< r- r-
CO O CD CO 

'J I I 

£l CO 'd- 1 
nJ D — — • 
[1. * * -K • 

o in in I 
UH rH — — • 

* in < < • 
• CO < CO 3 
I -K CO * * 
- O * O CO 
CM fO VD O 

I m 'd' o^ CO 

^ m 'd' rH in 
_ < rH in + < < 
* i n - d i f o r ^ D + v o D I ^ I D 
vo< < < < * r - H * * * 
< cococococo< H-r-in'* 

+ ' < * ( N r H < < * < * C 0 < C O * * * * * !DO< < < 
+ COCO'^C0CO< CO* V D C O V O O O * HCOCOCO 

CO (N * VD 
* rH o en 
in cn f o 
cn ro O O 

_ _ in rH rH rH • 
I I — I + + • 

CO CO CO * * 
CO * * * fO 

O VD "d" •" 
I vo m VD t 
I in in "d" > 
1 cn in VD • 

'd' vo 
(N CO 
VD ro 

I * * D * CM r- -d- I 
1 CM * •<d' H r-

t n cn cn ro CM VD 
"d" CO < 
CN VD i 
VD vo ' 
CO •d' I 

, CO vo < 

I — + + I + t — 

CO in 
in 00 
in 

ro rH - t j in 00 in vo 

CO o o o 
* CM O CM 
r- in c-' 
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ED tŷ  * rH VD 
* ro CM + in 
in + < in og 
< "d" CO < + 
CO < * ED CM 
* CO o * < 
vo * VD CO D 
ch o ro * * 

vo in CM •«» 
OI en rH in oj 
I + I p- o 
vo M VD O rH 
< < < rH I 
CO ED E3 + -d-
* * * r- < 
VD •sj- CM < ED 
in < < D * 
CM CO CO * o 
I * * CO vo 
CM O Td" * rH 
< CM O 00 ^ 
D cn VD -d" I 
* rH CM CO vo 

O < 
CM CO 
in * 
CM CM 

0^ r-
in < 
•̂d- CO 
rH * 

ID CO < 00 
* < CO 00 
^ CO * VO 
< * CM O) 
CO O [- I 
* VO O CO 
O en ro < 
in CO ( ED 

I + * CM I 
< rH i n ro < 

CO H i CO CO * CO 
* * o * 

I O) O 00 CO 
P- CO CM "d" 

I o vo P- o 
1 ro r- H CM 

§ 
H 
g 
u 
Q) 

* ( 
UH cn -

CM D 'd' ED 
< * + * 
ED CO D rH 
ro CO CO rH 

og CO 
I VD 
CM CO 
< + 
O CM 

• * < 
- CO ED 
- < * - to W 
) * * 
) CM CO 
• -5* CO 
I CM r-

+ I 
O ^ 
* < 
^ ED 
< * 

. to to 
* * 

CO o 
* m 

+ 
- 00 < vo in O 00 < 

O CM • 
CO CM t 

I < I + CM to en 
CO CM in cn * VD 

1 * < < O VD rH 
o D CO in cn rH 

I VD * * + CD + 
CM ̂  eg CM I P-

vo I 
r rH rH ^ 

+ CM C 

c-j D e * VD 

+ < r- * CM < 

o in CM H 
CM < < ( 
-V, to CO ^ 

* < • 
1 vo ED . 
CM * 

CM + to D * < 
< ro * * CO CO 

m * 
) — * — o 
- * CO + I 

ro en m vo I 

rH CM + + 
+ CO VD D 
D in < * 
* + to ro 
CM fO * < 

< O CO 
D VD * 

H CO 

VD CO in • 
en « rH ^ ( 
•<J ro r 
ro O 
+ rH I 
CO VO H 

ED 3 * CO 
* * CO r-
•<» ro o vo 
< < VD I 
CO CO o D 
* • o * 

VD vo o ro CO 
< O CO t * 
to CO CM CM vo 
* in < in 

t H D 00 
H * CO 
fO < + CM 
r- D ro < I 
Oi * < CO ro 
I ED * < 
CM < * VO ED 
e CO CO n * 
D * < CO 
* CM CO vo * 
vo H * ^ 
< CM CM O 
CO rH en I cn 
* ro ̂  cn 
•ej + -^j < in 
en D fO D CM 
O * rH * + 
00 in + CM in 
H < in < < 
+ CO < to D 
- D * • CM • 

I CM O 
+ VO 

I •q- i n 

00 

D r- < CM ED — 
* < CO < * D 
CO CO * CO to * 

O rH 
CM VO 

rH 

VD rH ro ro 
' CO r-t in rH VD 

' CO p- (7\ ro rH * 
< O < CO o 
to O to O VO 
* CO * o 
CM H to CM H 
H I CM I CO 
•5J fO (M VD rH 
o < en < + 
CM D + D 
+ * -d" * < 
CO in < CM D 
< < to < * 
to CO * to CO 
* * VD * * 
r- CM in ̂  CM 
CM in 00 m 
VD tn in in o 
rH ej\ p- ^ o 
H CO CM 'J r o 
— I + I + 

O rH CM CO 
a P. a a Q a a a a Q a a a a 



186 

CO 

h 00 to 
* * < * * l > 

( * CO VD 
00 to CO 00 rH m 
o * * i-H i n VO < CM 
o CO o + in < 

< o to < i n < * * CO 
o in r- * VD < * CO 
CO * o VO o i n 4; * < < 

< VO tN tH VD 1 VD to CO ro + CM CO < in to 00 •c * o 
< < VO in m < CO < i n CO VO .H 

m i n < < o * CO CM i n o r- o 
ro < * to < en * o * cn o in o 
fO in * + to + 00 r- o CM (T» VD 00 
O i n * +• < VD CO <n r- CO H in w o W < m CO <f to o VD O CD ffi in CN ro in < * < CO OJ D CO * VD iH CO i n o + o CO CO + in VO * <y\ H 1 00 H CM 

o "J CTi CTl to i n CN r - + CN CN H < 
fO iy\ VD <N in o a\ iH m ID < + i 

< r- CN CN VO i n m + ID i n CO * 
< o CN in i n + m ) in * < < CM 

< * i-l u> + o in VO < ID ID < 
* r- + ID < < r- CO < * * to 

r-t + + * < o + < to -K to CN •K 
< + CN * in + r- * CO O * < < 

in r~- VO < < m •K o * -a" VD CO to CO VO + < i n o < CO to CN 1 o CM * pa * to < < CN <n •d- ro t-
a\ + * 00 CO < CM to r- (N r- CO •g" CTl in in CO O VO i n VO in o ro 00 + m VD CO CN 00 i n VD m o cr\ ro CM in + 00 o fO to cn en O VD o ro 

VO < (T\ m in n i n CO in H i n CM 
•"J o VO VD VD 00 < r - CN + O 1 
m in ID * m tH m VO 00 ID <Tx + + 

•5* * 1-1 tH + + CN VO 00 * r - 1 CN < + < 
ro o 1 + iH Oi < ID ID 

< OJ O < < + CO < * ID * * 
1 CO 00 < ID < in H o + * in |D PJ 

* r- CO CO < + CO o * VO < 'J' < < 
to V£> * i n VD to < CO 
< 
to < CN + vo < < + < < CO * to < * * to * 1 m < w CO < ID CO CO * CO VD CM 

* CO •tt * to < + < * •"J o * ro i n 
* < O * •̂y * to CO D CO i n VO (T\ r-

(T\ o ID O * o OJ CN •K * •K in in 'd' H o in co in + VD OJ r- •5* CO CN m CM VO a\ in ro eg ro cri in rH VO CN 00 VO <T> iH CN o 00 O VO 
O m i-i CO (N in CO r- m i n m r- •3" CM r~ CO 

O rO o CN o t> m CI^ CN O o o VD i n tH 
00 rH in CN CO in ro CM + + + —- + i 1 1 + 1 + + ' 1 1 + ' 

' O CM 1 
I O < -
I CO ID I 

) CM 00 
• VO i n 
! O (H 
1 OJ + 
I O CM 

ro <Ti 
ro VO 
00 tH 
i n VO 
CM CM 
H tH 
+ I 

ID to 
* * ^ < UJ o 
CO CN < to * CO 

iH O CO * 

CO 
CO CO 

ro 
VO 

cr\ < 
< D 

CO i n 
CM o 
CO r-o 

CN CM 
cr^ r-r- o 
a\ o 

VD 
fH tH 
CM in 
VO iH 
p to 
CN O 

CM 
O CM 
cn o 
in rH < 
CT̂  m < in r- • 
CM CM ( 

in in 
ro 
VO t -

CN < 
+ P 
< r-to < * to o * 
O VD 
VD H 
cn CO 
CO i n 

CN 
CM ro 

CM * * D D < ro < CM 
ID 00 ro cn P P < 
* < 00 in < * P 
i n to CO < < P p o CM 
< in * < * VO to * to * CM < CM 

VD CO < 00 D CM + + CO CO a\ to < 
•K D < CM * ro ID o o < CO ro « in to to O to CM CM o O CO to in < o in CM < < 
o VD < to CO H CO * CM CO P CO VD ro ro CO P to o 

00 CO to ffi * CM CM 00 < ID o CO < * VO 
VD to o * tH 00 to in to <n 00 D VO CM VD ro P n o o r- en CN rO o VD * o CO ro < < CN n < + ro 

CO cn o O) en t n O p- VO o ro VD VO < to VO + P to ro tN •>» 
CN CO cn in VD CO < VO < tH in < < to * iH ro + * < CM in tH 
VO in VO en r- CO o •sj- in to D to CM o + < P to + iH 

r- tH + rH •d" * CM •K 1 * ID * < •>3' iH p CO (O to 1 
t- + tH o ro r~ o * ro 00 ro VO * ••3' o CO CO o tH * tH ô  tH 00 CM < 
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