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A Method for Maintaining New Software 

Jennifer Louise Newton 

M.Sc. Thesis 1994 

Abstract 

This thesis describes a novel method for perfective m<iintenaace of software which 

has been developed from specifications using formal transformations. The list of applied 

transformations provides a suitable derivation liistory to use when changes are made to 

the software. The method uses transformations which have been implemented in a tool 

called the Maintainer's Assistant for the purposes of restructuring code. The method uses 

these transformations for refinement. 

Comparisons are made between sequenticd transformations, refinement calculi and 

standard proof based refinement techniques for providing a suitable derivation history 

to use when changes are made in the requirements of a system. Two case studies are 

presented upon which these comparisons are based and on which the method is tested. 

Criteria such as scaleability, speed, ease, design improvements and software quality is used 

to argue that transformations are a more favourable basis of refinement. Metrics are used 

to evaluate the complexity of the code developed using the method. 

Conclusions of how to develop different types of specifications into code and on how 

best to apply various changes are presented. An approach which is recommended is to use 

transformations for splitting the specification so that original refinement paths can still be 

used. Using transformations for refining a specification and recording this path produces 

software of a better structure and of higher maintainability. Having such a path improves 

the speed and ease of future alterations to the system. This is more cost effective than 

redeveloping the software from a new specification. 
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Chapter 1 

Introduction 

Over the past few years it has become cost-effective for organisations to develop products 

wliich can easily adapt to changes in the requirements. This has caused organisations 

to re-address the question of software development and, in particular, that of software 

maintenance. Maintenance is defined as the "modification of a software product after 

delivery to correct faidts, to improve performance or other attributes, or to adapt the 

product to a changed environment" [1]. It can be seen as work carried out upon a developed 

system to keep up to date with any changes necessary. As the system ages, maintenance 

develops into a continuing process and becomes a major concern for organisations as more 

time and effort is needed to maintain the system. 

Software mciintenance activities are often divided into four categories (see [2] [66] [73]): 

1. corrective maintenance: performed when the software does not conform to its 

specification (for example, iixing bugs discovered upon running a program). 

2. adaptive maintenance: performed on a software system when its environment 

changes (for example, a new version of the operating system is introduced). 

3. perfective maintenance: needed when requirements of the software change (for 

example, tax program changed to reflect new tax laws). 



4. preventive maintenance: work carried out in anticipation of future malfunctions 

and to improve maintainability. This differs from the other categories since it is not 

a direct response to a user's request and some authors do not include it in this List 

of categories (see [52] [78]). 

Lientz and Swanson [51] quantified the amount of effort spent in each area. The distribu

tion is as follows: 

Perfective 50% 

Adaptive 25% 

Corrective 21% 

Preventive 4% 

The large proportion attributable to perfective maintenance is mainly due to the fact 

that, to maintain their competitive edge, companies release new products quickly without 

thinking of the future possible changes in the requirements. Hence software cannot be 

modified quickly, easily and reliably, resulting in serious delays to changes in the software. 

Organisations must now focus on developing products which are easier to maintain, i.e. 

products which are more maintainable. Maintainability is the quality which identifies how 

maintainable software will be. Longstreet defines it as "the effort required to find and fix 

or modify an error in operational software... the effects of software failure, cind ways to 

minimize those effects" [55]. 

Maintainability is a very desirable quality in products where precision and correctness 

are of prime importance. Safety-critical systems are examples of such products and the 

need for accuracy in these cases has led to the use of formal methods. Formal methods 

involve the specification of a system represented with strict mathematical notation and 

the development of lower levels from this, so that code can be formally linked with its 

specification. 

The use of formal notation has provided a new means for producing accurate code and 

has led to the evolution of a number of formal specification languages and development 

techniques (e.g. Z, VDM). These methods have often focussed on carefully identifying 
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the requirements of the system and the first implementation of that system, but have 

not considered the possible implications of changes in the requirements. Having spent so 

much effort on the production of such accurate systems, it seems a waste to completely 

re-develop a system according to requirement changes and necessary enhancements. It is 

this idea which led to the research in this thesis. 

The thesis describes a new method which formally specifies and implements code with 

a view to future adaptations of the system (in other words, aimed at perfective mainte

nance). By producing software which is easy to change, industry can ehminate many costs 

needed to reimplement a system and save a lot of time and effort. The method described 

here uses program transformations for forming a refinement path which can be re-used 

when necessary. A transformation is defined as the "formal step in which a program is 

converted to an equivalent with identical semantics" [12]. The transformations used by 

the method originate from Ward's thesis[82] and many have been implemented in a tool 

called the Maintainer's Assistant [84] for the purposes of restructuring code. The method 

uses these transformations for refinement, "a set of techniques to guide and control the 

process of producing a piece of software from a description of it; an implementation from 

a specification" [89]. Chapters 2 and 3 will provide further descriptions of these areas so 

that the method itself can be understood. This chapter will identify general problems of 

maintainabihty and cover basic techniques used in software maintenance which are also 

connected to this particular research. 

1.1 Problems of Maintainability 

Problems associated with producing maintainable software have been outhned by Brooks 

[21] and McDermid [58]. One of these is the complexity inherent within software due to 

the need to interface complex engineered systems and social or organisational systems; 

that is, the complexity is due to the complex systems it describes. Also, software can be 

complex at times when no regular structure exists or a system is so large that no single 

individual can understand it in its entirety. 

Another problem lies in the difficulty of establishing and stabilizing requirements. This is 
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due to users not being able to: 

1. know exactly what they want, 

2. realize the full limitations and capabilities of computer systems, 

3. effectively communicate their needs to the requirements analyst, and 

4. provide the complete list of details to produce the system required. 

Another cause of this problem is that often requirements need altering due to changes in 

the environment and to users wanting functional enhancements of the system, even during 

development. 

A third problem lies in the fact that it is important to understand the thought processes 

which went into writing a program and there are intellectual difficulties in establishing 

the relationships between different views and perspectives of a program. This can be 

called a problem of "invisibility" since the programmer's ideas and points of view are not 

explicitly written down and there is no known way in which to retrieve this information. 

This problem, like many in the area of software engineering, eventually reduces itself to 

one of intuition and psychological understanding on behalf of the maintainer. 

A further problem is caused by the malleability of software. It is deceptively easy to write 

and change small programs but when these are part of a large system difficulties arise 

due to the interaction between different parts of the system. A programmer might wish 

to make changes to a program without realising the effect this will have on several other 

programs within the system. This causes an inordinate amount of time and effort to be 

spent making the necessary adjustments and then testing the software. 

A final problem is that systems are often created in different problem domains; every 

time a new system is developed in a new problem domain a new theory needs to be 

established. While most engineering disciplines involve the application of existing theory 

to the development of a new system, software engineering usually involves the development 

of new theories. 

Having analysed the problems that software can undergo, it Is evident that a key factor in 
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solving these problems (and ending the software "crisis") would be to find methods and 

means to improve and maintain the maintainability of software when it is first written. 

Issues concerning a possible solution to this will be discussed in later chapters. 

1.2 Techniques 

Most maintenance activities occur as a result of requests made by the user for alterations 

to the developed system. There are a variety of strategies and techniques available which 

can aid these activities. Areas of research involving these include reverse engineering, 

restructuring, reengineering, metrics and artificial inteUigence. 

1.2.1 Reverse Engineering 

The word reverse engineering originates from the analysis of hardware. In a paper on 

the reverse engineering of hardware, Rekoff defines it as "the process of developing a set 

of specifications for a complex hardware system by an orderly examination of specimens 

of that system" [74]. It is this usage of the term which has been directly translated for 

software (for instance, Chikofsky [25]). 

In software development, the term forward engineering has come to mean the process 

of moving from the design of the system to its physical implementation. Hence reverse 

engineering is defined as the opposite to this, that is as the "process of analyzing a sub

ject system to identify the system's components and their interrelationships and create 

representations of the system in another form or at a higher level of abstraction" [25]. Con

trary to some people's behef, reverse engineering does not involve changing the system or 

creating a new system from the reverse engineered system. 

There are several subareas of reverse engineering, two of which are commonly referred to as 

redocumentation and design recovery. Redocumentation is the simplest and oldest form of 

reverse engineering and is defined as the "creation or revision of a semantically equivalent 

representation within the same relative abstraction level" [25]. Tools which can perform 
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this include pretty printers, diagram generators and cross-reference listing generators. 

According to Biggerstaff, design recovery "recreates design abstractions from a combina

tion of code, existing design documentation (if available), personal experience, and general 

knowledge about problem and application domains" [13]. He goes further to insist that 

design recovery must "reproduce all of the information required for a person to fully un

derstand what a program does, how it does it , why it does i t , and so forth." 

1.2.2 Restructuring 

The term restructuring comes from code-to-code transform that takes an unstructured 

program and converts it into a structured form. It is defined as the "transformation from 

one representation form to another at the same relative abstraction level, while preserving 

the subject system's external behaviour (functionality and semantics)" [25]. 

Thus it is no longer confined to structuring code as it also covers the reshaping of data 

models, design plans and requirements structures. A tool which can currently aid the 

process of restructuring is the "Maintainer's Assistant", a transformation system developed 

at the University of Durham where transformations are applied to unstructured code to 

derive its equivalent in a structured form. This system will be described in more depth in 

the next chapter. 

1.2.3 Reengineering 

The term reengineering is also known as renovation or reclamation and is often confused 

with the previous terms since it actually involves a form of reverse engineering followed by 

some form of forward engineering or restructuring. Reengineering is defined by Chikofsky 

and Cross I I as the "examination and alteration of a subject system to reconstitute it in 

a new form and the subsequent implementation of the new form" [25]. 

Another definition of reengineering can be found in Garnett and Mariani's paper on soft

ware reclamation and this states that "reengineering refers to the identification of compo-
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nents within existing systems possessing reuse potential and quahfying them according to 

some reuse-oriented specification technique" [36]. They go on to refer to reuse reengineer

ing as the "construction of new systems by reusing information from foregoing ones", aji 

approach wiiich they also call "software reclamation". 

1.2.4 Metrics 

One important area of software maintenance is the use of metrics to provide a comparative 

measure by which software can be made characteristically maintainable at each iteration 

of the development process. Metrics integrate maintainability into developing software 

by identifying high risk areas in the code. This is done by evaluating software according 

to specific criteria and by producing a quantitative measure on a static scale. In other 

words, metrics assess the complexity of a procedure by comparing it to other procedures 

evaluated in the same manner. 

Once problem areas are identified, actions are taken to reduce the complexity of the code 

through further abstraction or reimplementation and to test high risk areas so as to uncover 

existing errors. Metrics can be described as predictive, e.g. when they are used to foretell 

the future by predicting costs, etc., or descriptive, e.g. the use of complexity measures. 

According to Conte [27], metrics can be classified as either process or product metrics. 

Process metrics will "quantify attributes of the development process and of the develop

ment environment" [27] while product metrics are "measures of the software product" [27] 

and are the type of metric usually referred to. 

In the method described in this thesis, product metrics are used to assess the maintain

abihty of the code which has been developed. There are three main forms of product 

metrics: 

1. code metrics 

2. structure (or coupHng) metrics 

3. hybrid metrics 
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Code metrics determine the complexity of a procedure by analysing the amount of infor

mation within a procedure or by assessing the logical complexity of the code [50] [43] [46]. 

Structure metrics examine the relationship between a section of code and the rest of the 

system [43] [50]. These are also known as coupling metrics [46] or design metrics [10]. Hy

brid metrics combine the internal view of a procedure with the measure of communication 

connections between that code and the rest of the system [50]. 

There are many different metrics but the research described here used only three types of 

code metrics for the assessment of the maintainability of the code. These can be described 

as follows: 

1. Lines of Code 

This is a measure of how many lines of code exist in a given procedure: the more 

lines of code, the more complex the procedure [50]. A line of code is generally defined 

to be "any line of program text that is not a comment or a blank line, regardless of 

the number of statements or fragments of statements on the line" [27]. 

2. Halstead's Software Science 

This is also known as Halstead's Effort Metric and was devised in 1977 [50] [43] [57] 

[10] [78] [27]. This involves the count of operators and operands in a procedure and 

the following initial values are established: 

(a) n l = number of unique operators 

(b) n2 = number of unique operands 

(c) N l = total number of operators 

(d) N2 = total number of operands 

From these another set of values can be calculated: 

(a) Vocabulary Size: n = n l + n2 

(b) Length: = i V l + iV2 

(c) Program Volume: V = N x log2(n) 

(d) Program Level: L = (2 / r i l ) x (n2/.'V2) 

(e) Language Level: X = x V 
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( f ) Effort: E=VIL 

The Program Volume is a measure of the size based on the length of implementation 

and the size of the vocabulary and the Program Level is an estimate of the level 

at which an algorithm is implemented. This level is inversely proportional to the 

program difficulty: the lower the level, the more difficult i t is to implement the algo

rithm. The Effort is a quantification of the effort required to generate implemented 

code. 

3. McCabe's Cyclomatic Complexity Number 

This was described in McCabe's paper [57] [50] [43] [46] [78] [27]. It is a count of 

independent logical paths through a procedure and is based on graph theory. That is, 

the procedure is represented as a strongly connected graph from which measurements 

are taken. Each node in the graph represents a sequential block of code and each 

edge a logical branching point through the procedure. 

From the graph, a calculation of the maximum number of linearly independent cir

cuits (i.e. the cyclomatic number) can be made: 

V{G) ^ E- N + 2 

where G is the graph, V(G) the cyclomatic number, E the number of edges and N 

the number of nodes. 

1.2.5 T h e U s e of A . I . in Software Maintenance 

The use of Artificial Intelligence has been increasing in the field of software maintenance 

over recent years. Techniques within this area promise great improvements in program

ming productivity and reliability and developments in knowledge representation and au

tomated reasoning have occurred through this. An excellent source for papers on this 

subject is [75]. 

The main aim is to develop a form of automatic programming so that the user need only 

say what he wants and the program would be developed automatically. An ideal solution 
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would be for the user to state requirements which could automatically be transformed into 

formal specifications and from these specifications into code. 

The most active area in developing such techniques is the field of program transformations. 

Since this is such a large area and most of the work proposed by this report is based upon 

the subject, i t wiU be described extensively in a later section. For other surveys of this 

area see [69] [34]. 

Another active area of artificial intelligence research is in techniques for automatically 

determining theorem proofs [15] [91]. There are two main forms of this: deductive program 

synthesis and program verification. 

Deductive program synthesis is "based on the observation that constructive proofs are 

equivalent to programs because each step of a constructive proof can be interpreted as a 

step of computation" [75]. Constructive proof aims to provide a method for finding an 

output corresponding to any given input. At present i t is only possible to produce small 

programs from specifications written in logical languages from deductive synthesis since 

large programs involve large proofs which current theorem provers cannot as yet deal with. 

Program verification uses theorem provers to verify that a program satisfies its formal 

specification. Again this is limited by the fact that theorem provers cannot yet deal with 

large proofs. Two approaches have been taken to deal with this. The first is that the 

prover is given some knowledge about programming areas in the form of lemmas and the 

second is to allow human interaction to guide the theorem prover. 

Allowing human interaction has, in fact, assisted most applications of A . I . to software 

engineering. Since automatic programming is still not possible, artificial intelligence tools 

aim to provide assistance to the programmer rather than to replace them. Two of these 

"assistants" are the Designer/Verifier's Assistant [60] and KBEmacs [87], which uses a 

knowledge base of standard programming forms in programming construction. 

The Designer/Verifier's Assistant was developed by Moriconi in 1979. Since i t investigates 

changes made at a design and specification level in addition to program verification, a 

detailed study of his work was made so that any useful ideas relating this to the work 

presented by this thesis could be identified. The following section is a critical analysis of 
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the paper he wrote describing the Designer/Verifier's Assistant, 

No work seems to follow on from this until Moriconi's second paper, published in the IEEE 

Transactions on Software Engineering [61]. Since this also has implications involving the 

thesis, a critical analysis wiU also be made of this paper. 

A third paper related to the method is a very recent one by Ira Baxter [8]. This also 

involves changes made at the design level and the approach illustrated is similar to that 

described by this thesis. I t also deals with transformation systems and the tracing of 

design paths from specification to code. The fact that this approach could be successful 

and that a thesis was accepted on this topic validates and supports the work presented 

here. 

1.3 Critical Analysis of IVIoriconi's Papers 

1.3.1 A Des igner /Ver i f i er ' s Assistant 

This paper describes the first prototype of a system called the Designer/Verifier's As

sistant which reasons about changes to the design of a system. I t represents a theory of 

Moriconi's concerning the development and maintenance of large formally verified systems. 

The problem which he was trying to solve in 1979 still faces the computer industry today 

and is the one which prompted the development of the method proposed by this thesis. 

The solution which he proposed was novel but unfortunately the theory was impractical 

and too vague for a fu l l system to be implemented at that time. 

Moriconi recognized that specifications, programs and proofs involving a system gradually 

build up and need frequent revision, so that "developing and maintaining formally verified 

programs, especially large ones, is an incremental activity... Consequently, one is faced 

not only with the problem of constructing this data, but also with the complex problem 

of determining the effects of incremental changes to i t . " 

His proposed solution was to develop a system which parses programs and specifications 
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1. Suggest fully defining ExchangeSort — ^ E x p l a i n 

2. 1 — W h a t are the effects of fully defining ExchangeSort? 

ExchangeSort may have additional V C s . 

3. <— W h a t are the effects of changing the exit assertion of Va lueOfMax? 

No effects on ValueofMax. T h e verification of other programs is not affected. 

4. < — W h y ? 

No effects on ValueofMax because it is for specifications only and does not have V C s . No external 

effects because properties from ValueOfMax have not been used in proving any V C s . 

5. <— W h a t are the effects of changing the exit of I sPerm? 

No effects on I s P e r m . T h e verification of other programs is not affected if the formula 

Changed exit specification all Z : IntArray, IsPerm{Z, Z) 

is true. I f not, the change invalidates the verification of ExchangeSort. 

6. < — W h y ? 

No effects on laPerm because it is for specifications only and does not have V C s . Invalid verification 
because a property from I s P e r m has been used in proving ExchangeSort # 1 . 

7. 1 — Done 

8. Suggest fully defining ExchangeSort — * E d i t 

Figure 1.1: Illustration of dialog with Assistant 

and could also generate and prove verification conditions, logical formulae used to ascertain 

that a program is consistent with its specification. The system also needs an "understand

ing" of the kinds of structures which can be changed or added and the ways in which they 

interact. It must be able to apply its "knowledge" to integrate new or changed information 

into the model of the system so that previous work remains valid. To understand more 

clearly what Moriconi means by "understanding" and "knowledge", a reproduction of his 

description of an actual scenario from the middle of a session will be presented here. 

The example used is a sorting program which is being "incrementally designed and ver

ified". A sequence is illustrated of three events which typically occur for each set of 

revisions. First, the user converses with the Assistant to gain an understanding of the 

effects of the changes which he might make. He makes these changes and fits them into 

the current model while keeping intact previous work that remains valid. 

Figure 1.1 shows how the system would appear just after the program ExchangeSort 

has been partially defined and proved. The Assistant suggests completing the definition 

of ExchangeSort but instead of following this suggestion, the user uses the Assistant to 

see the effect of intended changes by typing "Explain". 
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9. Suggest fully defining ExchangeSort —>• Read Fi leOfChanges .Sort 

function ExchangeSort{A : IntArray] : IntArray = 
begin 

entry N ge 1; 
exit(aUI : int, 

I in [1..N] Exchangesort{A)[I] 
= ValueOfMax (ExchangeSort (A), 1,1)) 

and hPerm{A, ExchangeSort{A)); 
var B : IntArray := A; 
var K : int :— N\ 
keep K in [l..N]\ 
loop 

assertialll: int,Iin[K + 1..N] ^ Value Of Max {B ,1,1)) 
and K in [1..N] andIsPerm{A, B); 

if K — I then leave end; 

B Exchange{B, LocationOfMax{B,1, K), K); 
^ K : = K - \ ; 

end; 
result := B; 

end; 

function ValueOfMax{A : IntArray; I, J : int) : int = 
begin 

" exit{allk : int,k in[I..J]and I in[l..N]and J in[l..N] 
A[k]le ValueOfMaxiAJ, J)) and...; 

end; 

function IsPerm{X, Y : IntArray) : boolean = 
begin 

exit{allZ : IntArray, l3Perm{Z,Z)) 

and{allZ : IntArray, 
IsPerm{X,Z) and IsPerm{Z, Y) =J> hPerm(X, Y)); 

end; 

function Location Of Max (A : IntArray; I, J ; int) : int = 
begin 

entry I in [1..N] and J in [1..N] and I le J; 
exit Location Of Max {A, I, J) in [I.-J] 

and A[LocationOfMax(A,I, J)] = ValueOfMax{A,I, J); 
pending 

end; 

function Exchange {A : IntArray; I, J : int) : IntArray — ...; 

|_ functionIsExchanged{A,B : IntArray; I, J : int) : boolean = ...; 

10. E x e c —>• Suggest 

Figure 1.2: The changed function (changes are indicated by brackets). 
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11. Suggest generating new V C s for ExchangeSort — • $ 

Trac ing new path in loop 

Assume loop assertion 

( a « / # l : / A r T , / # l m [ / i r - h l . .Af] 
= i > S [ / # l ] = VaiueOfMax(B,l,I#l}] 

and K in [1..N] 

and I s P e r m ( A , B ) 

Generat ing new verification condition ExchangeSor t#4 

E n d of path 

Unaffected V C s : E x c h a n g e S o r t # l , ExchangeSort#2 , ExchangeSort#3 

12. Suggest proving V C called ExchangeSort#4 —> 

Figure 1.3: Impact of changes on ExchangeSort. 

After seeing the potential effects of different kinds of changes, the user types "Done" and 

the user can invoke a text editor using "Edit". After the editing has finished, the Assistant 

needs to verify the altered version of ExchangeSort. Figure 1.2 illustrates the new version of 

the function, with brackets around the parts which have been changed. The user can then 

see the impact of these changes (see figure 1.3) by accepting the Assistant's suggestions for 

generating new verification conditions. The user can carry on the development by having 

these new verification conditions proved. 

As there are many directions which the development can follow, the Assistant has a mech

anism for providing reasonable suggestions for the next step in design and verification. 

This suggestion mechanism assigns priorities to tasks and a scheduling policy chooses the 

highest priority task and suggests i t to the user. 

In addition to generating and proving verification conditions, the Assistant also builds a 

model of the key parts of a program's design and verification and their relationships. This 

model is a collection of three models for each task performed by the overall design and 

verification; parsing and type checking, generating verification conditions and theorem 

proving. Examples of these models can be seen in the paper. The general model for the 

scenario displayed in figures 1.1 to 1.3 is also displayed. 

Moriconi's paper concludes with experiences in using the Designer/Verifier's Assistant. 

He maintains that both its utility and the amount of computational efficiency grow pro-
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portionately with the size and complexity of the program being developed. However, 

although the tool reasons at the appropriate level of detail, sometimes i t would be better 

for analysis to take place individually rather than by category (as i t does now) and for 

more structuring in explanations. 

A method of change where the effort required to make the change is not proportional to 

the size of the system would have an advantage over Moriconi's approach. The method 

described in this thesis has that objective and will be described in more depth later. 

1.3.2 Approx imate Reasoning About the Semantic Effects of Program 

Changes 

This second paper by Moriconi [61] describes a logic for finding the semantic effects of 

changes through a direct analysis of the program. This logic is called approximate since 

weak results are sometimes inferred. The approximation is based on the structural in

terpretation of the information-flow relationships among objects in the program. "Infor

mation flow" between objects x and y occurs i f a change in the value associated with 

X changes the value associated with y. Reasoning about the semantic effects of changes 

is based here on whether any information flows between objects (and not on how much 

information flows). 

The paper briefly describes the characteristics of this logic before comparing the work to 

other work involving the semantic and structural analysis of programs. In 1972 Floyd [35] 

described an imagined interaction between a programmer and formal verification system 

which allowed the computer to maintain the consistency of specifications, programs and 

lemmas following incremental changes. 

Moriconi developed a technique from this in 1979 [60], as discussed earlier in section 1.3.1. 

This, as are most verification systems, was based on Hoare logic (see [40]). A proof of 

a program in Hoare logic is a sequence of steps where each step is either an instance of 

a Hoare axiom, a Hoare sentence derived from a previous step by rule of inference or a 

theorem in the underlying logic. 
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The remainder of the paper focuses on information-flow, which is outside the theme of the 

thesis and so wiU not be described here. The main interest here is that work from Mori

coni's earlier paper is extended and that logic is being applied to software systems. The 

application of formal mathematics to the development of systems is a major component 

of the method and wiU be described later. 

1.3.3 Prob lems 

A Designer/Verifier's Assistant 

As this work appears not to have been developed further, i t is important to assess those 

problems which prevented this. This will help the development of the method described 

in this thesis. 

First, the Assistant deals with program specifications, a relatively new area at the time. 

Not many formal methods had been devised and the notation used by this paper resembles 

short sentences in natural English combined with Pascal. This specification language does 

not have a rigorous mathematical basis which implies that reasoning is vague and no proofs 

can be determined. The validity of these specifications is questionable. 

Second, the specification language uses constructs found in Pascal which could cause 

confusion during refinement stages. In fact, these stages cannot be determined exactly 

since some of the specification can be directly translated from its "Pascal" format while 

the rest needs to be converted from English to a programming language. This mixture 

of accuracy and ambiguity does not provide a strong basis for deriving programming 

languages. 

Another problem is that the effects of change are determined by the setting of design 

and verification flags. This was a popular method used in the past for verification work 

which has become outdated. Although the flags provide some guide to impact analysis 

(the investigation of how changes to variables affect other variables, functions, predicates 

and modules), they do not provide any details of the variables, procedures, modules or 

designs in question. 
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Finally, the paper needed more examples for illustrating the work. The examples which 

Moriconi does provide are limited and do not adequately portray the abilities of the 

Designer/Verifier's Assistant. I t is difficult to understand from the paper what sort of 

examples would work with this tool and how the tool replies to questions in such clear 

English. 

Approximate Reasoning About the Semantic Effects of Program Changes 

Moriconi's paper which has just been discussed ends with a description of further work 

which would be to "evolve a genercd mathematical framework that explains how to build 

and extend incremental systems, such as the Assistant". The work in this paper appears 

to do just this but there are a few problems which can be found here as well. 

A major problem is the introduction to the logic and the way in which i t fits into prior 

work in information-flow. Pieces of information concerning the logic appear throughout 

the opening sections with no apparent order. The inference rides are also presented in a 

confusing manner since i t is only at the end of the paper that the main elements of the 

logic are described. 

However there are few real problems with this work and the examples of the use of the 

logic at the end give a good grasp of how the logic can work. The main work in deducing 

the effects of program changes lies in a form of impact analysis. To reason more accurately 

about the changes i t would be necessary to extend this work so other changes can be made 

(i.e. to functions and predicates as well). Reasoning about larger changes could just imply 

a recursive extension to the logic or added features. The work in this thesis might be able 

to involve this in some way. 

1.4 Critical Analysis of Baxter's Paper 

This analysis is of a paper written by Ira D. Baxter [8] which was published in April 1992 

and is based upon a PhD thesis written by Baxter in November 1990. A description of 

the paper will be given followed by any problems which can be identified. Conclusions as 
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to the applicability of the three analysed papers to the research detailed by the thesis will 

follow this section. 

1.4.1 Des ign Maintenance Systems: A S u m m a r y 

This paper suggests that the main objective for the upkeep of systems is design mainte

nance rather than software maintenance, where design maintenance means the updating 

of design information as changes are made to the system. The article sketches a basic 

design for a design maintenance system which attempts to do this work. 

The approach to a Design Maintenance System (or DMS) outlined here involves several 

important factors. First, the software system must be formally specified as must be the 

maintenance de/iasintegrated within i t . A maintenance delta is an expression representing 

desired changes in the program functionality, performance and implementation technology. 

Second, the implementation of a DMS must be derived from transformations which, ac

cording to Baxter, are the applications of transforms at certain places called locators. A 

transform is any function which maps programs into programs while a locator is the place 

in the program where the locator is applied. The denotation for a transformation with 

transform t and locator / is t ' . 

Other important factors are that a justification exists to prove that the implementation 

truly solves the problem stated by the specification and that tools exist for modifying the 

design justification. In summary, this approach needs to ensure that the design is correct 

and that alterations can be made at this level rather than the implementation level, with 

a set path of transformations producing code which corresponds to the design. 

The application of transformations is controlled via a library of heuristic methods coded 

in a Transformation Control Language (TCL). Each method formally relates a design plan 

to a design purpose and a set of such methods can be used to decompose the specification 

into solvable subproblems. Each subproblem will have its own specification and can be 

solved by executing the plans from the methods chosen. 

Design capture can take place given such a transformation system and a transformational 
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planning language such as TCL. The formal specification will describe what is intended 

and can be captured easily, while the sequence of transformations will describe how the 

generated program was constructed and can be captured as a linear derivation history. The 

reason for applying each transformation is captured by storing a trace of the nonprocedural 

unfolding of goals during the execution of the TCL methods. This trace is known as the 

design history. 

In Baxter's own words, the problem of design maintenance is of "updating the specification, 

the derivation history, and the design history in a way consistent with any new desire, 

stated as a maintenance delta". The implementation can then be generated by applying 

the same sequence of transformations in the revised derivation history to the specification. 

Maintenance deltas appear in two forms: specification deltas, which affect the problem 

definition, and support deltas, which affect the implementation of the solution. Most 

deltas are specification deltas and are denoted either as A / , for changes in the system 

function, or as A G , for changes in the desired performance. These specifications deltas 

are applied to the current specification to revise the specification component of design 

information while support deltas are applied to the transformation system components. 

A major problem is the one of integrating the maintenance delta into a design history. The 

first design history is constructed by either running a transformational implementation on 

a chosen specification or by reverse engineering such a history from an existing system. 

It can then be revised according to the delta applied by rearranging and pruning the 

derivation history and then pruning away the parts of the design history which are no 

longer useful. The TCL methods can regenerate any incomplete part of the design history. 

The derivation history is rearranged through two actions: a delay and a preserve ac

tion. I f a particular transformation in the derivation history cannot be preserved then 

its application is delayed as long as possible. This is done by swapping it with the next 

transformation, an action which depends upon the commutativity of the two transforma

tions; i.e. whether the effect of performing the first transformation followed by the second 

is equivalent to that of the second transformation followed by the first. The "offending" 

transformation continues to be swapped in this manner until i t is no longer commutative 

with the next and has thus been delayed as far as possible. 
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Thus the derivation history is revised by scanning the original from beginning to end, 

checking the delta for interference with each transformation. When the transformation 

interferes with the desired change i t is "banished" (i.e. delayed as far as possible); oth

erwise i t is preserved. The scan stops when neither of the two actions can take place 

and the derivation history is then truncated. The delta can then be applied and the 

implementation finished using the transformation system itself. 

The design history is revised by inspecting its relation to a certain delta and marking 

those parts which conflict with the delta. Finding these conflicts depends upon the type 

of delta involved and these parts are then removed from the design history, leaving i t 

incomplete. The pruning of the design history involves removing all portions of the design 

history which axe marked, every agenda item which depends uniquely on some pruned 

agenda item and agenda items which are generated as descendants of those marked. 

The pruned plan can be repaired by carrying out actions for incomplete agenda items 

which could involve the generation of new agenda items. This involves choosing the earliest 

incomplete agenda item, as determined by the ordering constraints in the design history, 

and then executing i t according to a specific TCL action taken from some TCL method. 

The main use for a DMS is the construction of an incremental maintenance system. Deltas 

can be applied to only partially completed implementations and new deltas applied as the 

implementation grows. A DMS can also be used as the foundation for a reusability system. 

Implemented components can be stored in a library together with their specifications and 

design histories and a maintainer can choose the component whose specification is near 

to his desires. This component can be revised by applying the corresponding delta to the 

stored history. 

Work which is related to this includes the transformation systems PDS [24] and the Main-

tainer's Assistant [84]. PDS is a system which keeps derivation histories and rederives 

components dependent on changed components. The Maintainer's Assistant maintains 

existing software by reverse engineering existing concrete programs into abstract ones, 

applying functional deltas to the abstract programs and reimplementing the abstract pro

grams. 
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1.4.2 Prob lems 

Using design and derivation histories to maintain software is a novel idea and suggests a 

useful new approach to solving the problem of software maintenance. Unfortunately the 

description of this new technique remains a proposal. There is only one example of how 

this might work, added as an Appendix, but this again provides a theoretical approach to 

how this method might work rather than how i t actually works. 

The method can apparently be used with any transformation system but a concrete ex

ample of how this can occur does not appear in the paper, suggesting that the method 

remains theory rather than practice. It would be useful to test this method on an exist

ing transformation system to show its Vcdidity. As i t stands, the method remains simply 

a "good idea" and much work needs to be done in order to validate i t scientifically or 

evaluate i t from an engineering perspective. 

This identifies another major problem with the described method. Transformation systems 

vary greatly and the affirmation that this method can be used for any transformation 

system needs proof. Work is needed to ascertain which transformation systems can be 

involved and how the method must be adjusted in each case. 

Another problem is that the method relies upon a design history already existing. This 

is often not the case and the problem of recreating one for a specific system outweighs 

the problem of changing the system: i t is probably more difficult to describe the system 

using formal specifications and formally developing the design history than i t is to apply 

formal changes to the system. The author should have attempted to tackle this problem 

first before developing the method for change. 

As i t stands, the method is a simple one of reusing the design history until i t is no longer 

valid and banishing any transformations that are no longer useful, adding extra ones to 

complete the derivation history. While this appears a good approach, i t is remains very 

subjective, relying upon the maintainer to truncate the design history when transforma

tions are no longer valid and to reapply new correct transformations to complete the 

implementation. There is nothing to guide the maintainer as to which transformations 

should be banished or which should be introduced: i t remains entirely based upon his 
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judgement. 

Furthermore, the method uses a strictly top-down approach. While this allows complete 

records of both the derivation and design histories and eases alterations made to both, i t 

does not always correspond with the thinking process behind software maintenance. When 

making changes to a system, a maintainer might use a combination of a top-down and 

bottom-up approach for altering the system more effectively. Unfortunately, the method 

allows him only to work in the one direction and might involve more work on his behalf 

when trying to introduce new transformations or banish unnecessary ones. 

However, this allows for a more systematic maintenance of the system and for one which 

is easier to trace as more changes are included and the system diverges from the original. 

While a combination of top-down and bottom-up approaches might aid the maintainer 

initially, eventually the maintainer might not be able to trace which steps allowed the cre

ation of the new system. I f he did, this information still remains unique to the maintainer 

in question and other people might not understand how the new system was eventually cre

ated. This would become a major obstacle for others attempting to maintain the system, 

especially i f the original maintainer were no longer accessible. 

1.5 Conclusion from Papers 

The three papers which were analysed provided ideas as to an original method for pro

ducing maintainable software, that is software which can be easily changed and updated 

(this wil l be discussed in more detail in the next chapter). 

Moriconi's first paper illustrated that knowledge based systems could be used to reason 

about changes made to a design or specification. This supported the use of transformation 

systems as a basis for a method of change. Also, the models he referred to help to describe 

the relationship between sections of code and the specification. Ideas presented for the 

Designer's half of the Assistant could be used to aid work in the development of a method. 

The second paper provides ideas on the use of a logic for investigating the effects of program 

changes. I t was initially hoped that the method could use a similar logic for determining 
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the semantic effect of changes, but i t was found that this approach was better suited for 

changes of variables within the code rather than changes in the specification. The method 

currently uses none of the ideas presented in this paper but i t is important to keep these 

in mind for future developments. 

Baxter's paper is the most relevant to this project since i t proposes a method for the 

upkeep of systems based upon a design path built from transformations. However, this 

method does not appear to have been tested on any real transformation system so its 

claim to hold for any transformation system is not proved. In fact, i t does not hold 

for the transformation system upon which the method described by this thesis is based, 

the Maintainer's Assistant. Baxter's method of delaying and preserving transformations 

proved of no consequence towards the maintenance of the case studies. I f a transformation 

cannot take place at a certain point, then swapping i t with the next will not mean that i t 

can hold later on. 

1.6 Outline of Thesis 

This thesis wi l l describe a method which assists the perfective maintenance of software 

produced using a formal method and uses ideas from the papers described earlier. As the 

method uses program transformations for refinement and for improving maintainability, 

these wil l be discussed in Chapter Two of the thesis. This chapter looks at the maintain

ability of software and how activities in the software life cycle might improve this before 

considering the applications of transformations to maintainability. 

Chapter Three describes the method for producing maintainable software using trans

formations in a tool called the Maintainer's Assistant. A description of how these trans

formations can be used for refinement is provided and a comparison of different refinement 

techniques given. 

Chapter Four describes how the method could apply to a simple case study of finding 

an integer square root. This problem was originally presented as an example of the use of 

a refinement calculus in Morgan's book, [59]. The effect of changes to the specification is 
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investigated for this original development and is compared to the method. 

Chapter Five describes how the method works with a larger case study which depends 

more upon the organisation of data rather than the functionality of the code. Different 

types of transformations are needed to refine this and a comparison is made between this 

and the original development of the problem. This case study is the description of a library 

system described using Z in a paper by King and Sorensen, From specification, through 

design, to code: a case study in refinement [45]. How changes affect this development 

are investigated in the chapter and compared with the development by transformation 

approach. The latter will prove more favourable a refinement technique when considering 

perfective maintenance. 

Chapter Six revises what was learned from the case studies and provides an assessment 

of the maintainability of the software in each case. An indication of how the method could 

work for more complex case studies is provided. 

Chapter Seven is the conclusion of the thesis. This investigates problems which were 

encountered while doing the work and how the method will apply for more general situa

tions. Future work on applying the method to other case studies and the development of 

a tool is described at the end. 

1.7 Summary 

This chapter gave a brief introduction to the field of software maintenance and described 

general techniques used to deal with the problem of maintaining large systems. Critical 

analyses were made of three papers which used some of these techniques and which pro

vided ideas for the method described in the thesis. The outline of the thesis concluded 

the chapter. 
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Chapter 2 

Maintainability 

The maintainability of a software system is a term which describes how easy it will be to 

maintain that system and can be determined before the system is implemented. Accord

ing to Longstreet, "maintainability examines the effects of software failure, and ways to 

minimize those effects" [55]. Identifying all the future problems of a system is difficult 

and so one can only hypothesize about the qualities that make a system maintainable. 

Maintainability can be classed as either internal or external depending upon whether 

attributes of the software product or those of the environment are being considered. Ex

amples of attributes of the product which make it more maintainable include modularity, 

good documentation and structured code. Those of the environment include the skills of 

the maintainers and the tools which are available. 

In the next section, both types of attributes will be discussed as they figure in the various 

stages of the software life cycle. The actions necessary for the production of maintainable 

software wiU be identified as they occur within each stage of the life cycle. Although it 

remains difBcult to decide which factors would enhance maintainability at such an early 

stage, general guidelines for the way in which each activity should be carried out can be 

determined. 

It is also possible to examine qualities of the software itself and, judging from past maia-

32 



tenance problems, rewrite the code so that it is more maintainable. Issues concerning 

maintainable software wiU be discussed once the activities during the software life cycle 

phases which may aid maintainability are considered. 

2.1 Analysis Activities 

During the analysis stage, a variety of activities enhancing software maintainability include 

the development of standards and guidelines, the setting of milestones for supporting docu

ments, the specification of quality assurance procedures, the identification of likely product 

enhancements, the determination of resources required for maintenance and preliminary 

budget estimates [32] [27]. 

The costs of maintenance are difficult to estimate in advance as they vary depending upon 

the specific application used. However, for large software systems, the actual maintenance 

cost can be said to be approximately four times development costs [78] [10]. Boehm [16] 

uses a formula for approximating the cost of software development but this depends upon 

the existence of previous data. 

According to Somerville [78], there are mainly five external factors which alfect the cost: 

application support, staff stability, the program's lifetime, the external environment and 

hardware stability. Maintenance costs are also governed by such internal factors as module 

independence, programming language and style, program validation and the quality and 

quantity of program documentation. 

2.2 Design Activities 

Design activities can be divided into two parts: architectural and more detailed design. 

Architectural design is the "process of defining a collection of hardware and software com

ponents and their interfaces to establish a framework for the development of a computer 

system" [1]. 
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The first architectural design activity must be to ensure that the design is clear, modular 

and easy to modify. By modular we mean that the design should comprise distinct com

ponents, enabling a change in one area of the design to not affect any other design arejis. 

To achieve this ideal design, design concepts such as information hiding, data abstraction 

and top-down hierarchical decomposition must be used. 

Information hiding and data abstraction involve the suppression of information in some 

form or other. Information hiding usually refers to modules in the system hiding the 

internal details of its processing activities, especially design decisions that are likely to 

change. Data abstraction is effectively a case of information hiding but involves hiding 

the data structure, its internal linkage and the implementation details of the procedures 

that manipidate i t . 

Another activity could be to try to determine where changes or enhancements in the 

design might possibly take place and to design the system so as to ensure the ease of these 

alterations. This could be aided by the further activity of using standardized notations 

such as data flow diagrams and structure charts to make the design easier to understand 

and to verify for completeness and consistency. 

More detailed design includes "specifying algorithmic details, concrete data representa

tions, and details of the interfaces among routines and data structures" [32]. Again, a 

useful activity would be to utilize standard notations to specify algorithms, data struc

tures and interfaces. It would also be advantageous for each routine to be documented, 

specifying possible side effects and exception handling (the dealing of events which suspend 

normal execution of a program). 

Finally, a call graph and cross-reference directory should be included; these can provide the 

information which determines the routines and data structures affected by modifications 

to other routines. 
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2.3 Implementation Activities 

One of the main goals of implementation is to write source code and internal documenta

tion so that modification is eased; this can be aciiieved by making source code as clear and 

straightforward as possible. Clarity is enhanced by structured coding techniques, good 

coding style, good comments and general documentation. 

More specifically, future maintenance wiU be easier if single entry, single exit coding con

structs are used, standard indentation of constructs observed and a simple, dear coding 

style employed. It wiU also be improved by symbolic constructs to parameterize software, 

by data encapsulation techniques, by margins on resources and by standard documentation 

prologues for each routine. 

These standard prologues should include details such as the author, date of development, 

maintenance programmer and date and purpose of each modification. In addition to this, 

one final improvement would be to follow standard internal commenting guidelines when 

writing the source code. The following section will describe in more detail the various 

implementation activities which will ensure that software is maintainable; i.e. written so 

that future modification will be easy. 

2.3.1 Maintainable Software 

There are certain qualities which software should have to ensure its future maintainability. 

If code can be written so that future changes can be implemented easily without drastic side 

effects, then it can be termed "maintainable". According to Boehm et al [17], maintainable 

software must have three characteristics: testability, modifiability and understandability. 

All of these depend upon the system complexity and system modularity. 

Complexity can either be computational, when it is difficult to prove the correctness of 

the code, or psychological, when it is difficult to understand the code. To minimise these 

forms of complexity, one can use high level languages, good documentation (meaningful 

comments) and standard coding conventions. By following these guidelines, the code 

should be easier to understand and hence alter. 
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Modularity involves the extent to which the system can be decomposed into smaller sec

tions. Software is more maintainable if it remains as independent as possible but yet 

includes comprehensive links within itself which "glue" it together. Thus one aims to 

provide minimum external coupling and maximum internal cohesiveness [26]. 

According to Longstreet [55], there are a number of constructs which must be avoided 

within a section of code to determine its future maintainability. These are: 

• Deeply nested DO loops, 

• Excessive IF statements, 

• Excessive use of global variables, 

• Excessive GOTO statements, 

• Embedded parameters, literals, constants, 

• Self-modifying code, 

• Excessive interaction between modules, 

• Multiple entry-exit modules and 

• Redundant modules. 

Having attempted an assessment of what makes software maintainable by looking at it 

through the various life cycle activities, it is now appropriate to consider the technique 

which the method described by tliis thesis will use to ensure maintainability; refinement. 

2.4 Refinement 

Refinement is a technique for developing stricter definitions of specifications and programs 

without losing any of the semantics. There are two different refinement processes: op

eration refinement and data refinement. Operation refinement involves the "refinement 

of operations (or, more generally, of algorithms) to produce executable equivalents" [53 

36 



while data refinement involves the derivation of a "formal documentation of the relation

ship between abstract and concrete states" [72]. These two processes usually occur in 

tandem but depend upon the refinement technique in question. 

There are two forms of refinement technique: refinement methods and refinement calculi 

[53]. Refinement methods involve the production of a more concrete version from the more 

abstract and a demonstration that the concrete version meets the requirements of the 

specification through a sequence of formal proofs. Refinement calculi are based upon the 

successive application of provably correct transformation rules and do not require proofs 

at each stage of the refinement. 

The main refinement methods are the VDM refinement method [42], the IBM Hursley 

Park method [45] and the rigorous refinement method for Z [62]. All three follow a sim

ilar approach: operation refinement is performed stepwise while data refinement involves 

showing that the abstract and concrete views of the data are analogous. This is done 

by defining a retrieve relation which describes the relationship between the two views in 

mathematical terms. 

There are several versions of a refinement calculus but the most popular is detailed in 

Carroll Morgan's Programming from Specifications [59]. This is based upon the work of 

Dijkstra, Hoare and Floyd and relies on a series of development steps which are dependent 

upon a refinement law. AH refinement calculi use Dijkstra's guarded command language 

[30] as the final product of the refinement process and the refinement steps are recdly 

for mail sations of Dijkstra's ideas on program development [29]. 

Morgan's book provides a list of the possible refinement laws which can be used for devel

oping one program into another. It also presents some case studies where specifications 

are refined into algorithms which can be easily translated into code. One of these will be 

described later for illustrating how the method for implementing change could eventually 

work. 

A comparison of refinement techniques will be made when describing the method in the 

next chapter. Since the method proposes to use transformations for refinement purposes, 

these will be described next. 
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2.4.1 Program Transformations and Transformation Systems 

Program development by the use of transformations is a "method of software develop

ment in which a program is derived from a formal problem specification by manageable, 

controlled transformation steps which guarantee that the final product meets the initial 

specification" [7]. In other words, program transformations involve the identification of 

changes made to a program which leave it logically equivalent to its original. 

Program transformations are useful in software maintenance research as they could identify 

ways in which new software might be written so as to achieve ease in future maintenance 

of the system. They can also be applied to software that has already been written so that 

it can be transformed into a program that will be more easily maintainable or so that 

maintenance problems regarding the program can be identified or solved. 

Transformations do not necessarily apply to code alone; they can also be involved with the 

specifications of the system. Specifications can be "transformed" into sections of code and 

vice versa. The achievement of a tool which could do this would benefit maintainability 

research immensely; viewing how changes to a specification affect the code could help to 

establish a new method for transforming the code into a more maintainable form. 

Transformation systems are tools which enable the programmer to transform sections of 

code or specifications. The main goals of a transformation system include providing gen

eral support for program modification (for example, optimization of control structures), 

generating a program from the formal description of the problem (that is, program syn

thesis), adapting the program to different environments and verifying the correctness of a 

program [92]. 

There are many types of transformation systems; some of these will be discussed in their 

chronological order. 

Burstall and Darlington 

BurstaU and Darlington were the first to work on program transformations in the mid 

1970's [23] [92]. They produced two systems which are mainly automatic; i.e. the system 
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selects appropriate rules through the use of built-in heuristics or other strategic consider

ations. 

The first system was based on a schema-driven method for transforming recursive programs 

into imperative ones and used built-in rules such as recursion removal, the elimination of 

redundant computations, unfolding and structure sharing. The main goal here was to 

improve efficiency. 

The second system was designed to manipulate applicative programs by using only six 

basic rules: definition, instantiation, unfolding, folding, abstraction and data-structure 

"laws". Other functions can be created by a combination of these rules or by a definition 

from the user. The user can enter functions if they are written as a set of equations in a 

restricted form of NPL, an applicative language for first order recursion equations. 

Balzer 

Balzer's work in the early 1980's [4] resulted in an implementation system for program 

transformations. This system allowed a formal specification (written in GIST) to be sys

tematically converted into an implementation in three phases: explication, reorganisation 

and representation selection. 

The explication phase is an attempt to understand the algorithmic structure behind the 

specification by converting implicit structures to explicit ones and dealing with any con

straints. The following phase involves the reorganisation of a program so as to mitigate 

computational expense. The last phase is to choose a representation suitable for this 

reorganized program. 

CIP-S 

This system derived from the Munich project CIP (Computer-aided Intuition-guided 

Programming) which took place between 1976 and 1983 [7] [22] [68]. The main objec

tives of this project were to; 
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• produce a method for guiding the process of formal reasoning in program develop

ment, 

• design a "wide-spectrum language" in which to write specifications and programs at 

any level as weU as to carry out transformations, 

• develop an interactive system for supporting the evolution of programs. 

Thus a transformation system was developed in accordance with the CIP view of inferential 

programming (see [7]) and involves the transformational manipulation of program schemes. 

These schemes are produced by CIP-L (the wide-spectrum language) and are basically 

algebraic specifications for introducing data types. 

D R A C O 

The DRACO system bases its software construction on the paradigm of "reusable soft

ware"; i.e. the reuse of a library program's design but not its code [92]. It is an interactive 

system allowing the user to refine a problem written in a high-level language into a LISP 

program and enabling the user to define his/her own level of abstraction. 

T A M P R 

The TAMPR (Transformation-Assisted Multiple Program Realization) system supports 

Fortran programming at the Argonne National Laboratory [18]. The system performs 

transformations within the Fortran language, aids in the translation of Fortran to Pascal 

and transforms LISP programs into Fortran ones. 

ZAP 

The ZAP system and language was devised by Feather [33] and is based on the fold/unfold 

work of Burstall and Darlington mentioned previously. The ZAP language is a language 

for expressing transformation and developments but cannot express higher level means of 

structuring developments; these need to be applied informally. 
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R E F I N E 

REFINE is a programming environment which includes a high level executable specifica

tion language, a specification language compiler, an object oriented database, an editor 

interface and tracing and debugging tools [65]. The tool converts code into design, provid

ing an electronic path between code and its corresponding design language. It also allows 

the maintainer to edit the structure chart, cut and paste the code and generate high level 

documentation to describe the code structure. 

The work of Burstall and Darlington and the project CIP were the main influences on the 

transformation system upon which this research is based: the Maintainer's Assistant 

(described in the next section). Ideas which particularly led to the development of the 

method for producing maintainable software are: 

• the use of a system with built-in heuristics for transforming programs (Burstall and 

Darlington) 

• improving efficiency with a schema-driven method for transforming programs (Burstall 

and Darlington) 

• manipulating programs by combining rules or introducing new definitions (Burstall 

and Darlington) 

• developing a method for guiding formal program development (CIP) 

• using a "wide-spectrum-language" to represent many levels of specification and pro

gram (CIP) 

• using the above language for performing transformations (CIP) 

• using an interactive system for "evolving" a program (CIP) 

2.4.2 The Maintainer's Assistant 

The Maintainer's Assistant is a system developed by a reverse engineering project 

called ReForra which involved the University of Durham, Durham Software Engineering 
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