
Durham E-Theses

A method for maintaining new software

Newton, Jennifer Louise

How t o cite:

Newton, Jennifer Louise (1994) A method for maintaining new software , Durham the se s, Durham
University. Availa ble at Durham E-Theses Online: http://etheses.dur.ac.uk/5873 /

Use p olicy

The full-text may b e used and/or repro duced, and given to third parties in any format or medium, without prior p ermission or
charge, for p ersonal research or study, ed ucational, or not-for -pro�t purp os es provided that:

� a full bibliographic reference is made to the original source

� a link is made to the metadat a record in Durham E-Theses

� the full-text is not changed in any way

The full-text must not b e sold in any for mat or medium without the formal p ermission of the copyright holders.

Please consult the full Durham E-Theses p olicy for further details.

Academic Supp ort O�ce, Dur ham University, Univer sity O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http ://eth es es.d ur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5873/
 http://etheses.dur.ac.uk/5873/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Method for Maintaining New Software

Jennifer Louise Newton

M.Sc. Thesis 1994

Abstract

This thesis describes a novel method for perfective m<iintenaace of software which

has been developed from specifications using formal transformations. The list of applied

transformations provides a suitable derivation liistory to use when changes are made to

the software. The method uses transformations which have been implemented in a tool

called the Maintainer's Assistant for the purposes of restructuring code. The method uses

these transformations for refinement.

Comparisons are made between sequenticd transformations, refinement calculi and

standard proof based refinement techniques for providing a suitable derivation history

to use when changes are made in the requirements of a system. Two case studies are

presented upon which these comparisons are based and on which the method is tested.

Criteria such as scaleability, speed, ease, design improvements and software quality is used

to argue that transformations are a more favourable basis of refinement. Metrics are used

to evaluate the complexity of the code developed using the method.

Conclusions of how to develop different types of specifications into code and on how

best to apply various changes are presented. An approach which is recommended is to use

transformations for splitting the specification so that original refinement paths can still be

used. Using transformations for refining a specification and recording this path produces

software of a better structure and of higher maintainability. Having such a path improves

the speed and ease of future alterations to the system. This is more cost effective than

redeveloping the software from a new specification.

A Method for Maintaining New Software

Jennifer Louise Newton

M.Sc. Thesis

University of Durham

Computer Science Dept.

1994

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

2 8 OCT m

Acknowledgements

I wish to thank Prof. Keith Bennett for his supervision and Mum, Dad and David for

their endless support and encouragement.

Contents

1 Introduction 8

1.1 Problems of Maintainabihty 10

1.2 Techniques 12

1.2.1 Reverse Engineering 12

1.2.2 Restructuring 13

1.2.3 Reengineering 13

1.2.4 Metrics 14

1.2.5 The Use of A.I . in Software Maintenance 16

1.3 Critical Analysis of Moriconi's Papers 18

1.3.1 A Designer/Verifier's Assistant 18

1.3.2 Approximate Reasoning About the Semantic Effects of Program

Changes 22

1.3.3 Problems 23

1.4 Critical Analysis of Baxter's Paper 24

2

1.4.1 Design Maintenance Systems: A Summary 25

1.4.2 Problems 28

1.5 Conclusion from Papers 29

1.6 OutUne of Thesis 30

1.7 Summary 31

2 Maintainability 32

2.1 Analysis Activities 33

2.2 Design Activiries 33

2.3 Implementation Activities 35

2.3.1 Maintainable Software 35

2.4 Refinement 36

2.4.1 Program Transformations and Transformation Systems 38

2.4.2 The Maintainer's Assistant 41

2.5 Summary 44

3 A Method for Maintaining New Software 45

3.1 Ideas for Method 45

3.2 Techniques 48

3.2.1 Morgan's Refinement Calculus 48

3.2.2 IBM Hursley Park Method 50

3.3 Refinement via Transformations 52

3.3.1 Simple Strategies 53

3.3.2 Simple Transformations 54

3.3.3 Case Introduction 54

3.3.4 Introduction of Invariants 55

3.3.5 Embedding 55

3.3.6 Unfold/Fold 55

3.3.7 Introduce Recursion 56

3.3.8 Divide-and-conquer 56

3.4 Description of the Method 57

3.5 Summary 58

4 Integer Square Root Problem 59

4.1 Description 61

4.2 Refinement Using Transformations 61

4.3 Comparisons with Refinement Calculus 66

4.4 Application and Implication of Changes 68

4.4.1 Change to Cube Root 68

4.4.2 Change to real numbers 70

4.5 Summary 76

5 Library Case Study 77

5.1 Description 77

5.2 Refinement Using Transformations 79

5.3 Application and Implication of Changes 80

5.3.1 First Change 82

5.3.2 Second Change 83

5.3.3 Third Change 83

5.4 Comparisons with Z Refinement Method 84

5.4.1 Scaleability 86

5.4.2 Speed 87

5.4.3 Ease of Change 87

5.4.4 Design Improvements 88

5.4.5 Software Quality 88

5.5 Summary 89

6 Results 91

6.1 The Method 91

6.1.1 Computation Intensive 92

6.1.2 Data Intensive 94

6.2 Maintainability of Case Studies 97

6.3 Summary 100

7 Conclusions 101

7.1 Problems Encountered 101

7.2 Problems Solved 102

7.3 Application Of Method 106

7.4 Future Developments 108

7.4.1 The Tool 109

7.5 Summary 113

A W S L Syntax and Semantics 114

A . l Background 114

A.2 The Kernel Language 115

A.2.1 Syntax of Expressions 115

A.2.2 Syntax of Formulae 117

A.2.3 Syntax of Statements 117

A.3 WSL Syntax and Semantics 119

A.3.1 The First Level Language 120

A.3.2 Exit Statements 121

A.3.3 Action Systems 123

A.3.4 Procedures with Parameters and Local Variables 124

A. 3.5 Functions and Boolean Function 125

B Transformations 127

B.l Basic Groups 127

B.2 Transformations Used in Case Studies 133

B. 2.1 Integer Square Root 133

B.2.2 Library Case Study 134

"The copyright of tliis thesis rests with the author.

No quotation from it should be pubUshed without her

prior written consent and information derived from it

should be acknowledged".

Chapter 1

Introduction

Over the past few years it has become cost-effective for organisations to develop products

wliich can easily adapt to changes in the requirements. This has caused organisations

to re-address the question of software development and, in particular, that of software

maintenance. Maintenance is defined as the "modification of a software product after

delivery to correct faidts, to improve performance or other attributes, or to adapt the

product to a changed environment" [1]. It can be seen as work carried out upon a developed

system to keep up to date with any changes necessary. As the system ages, maintenance

develops into a continuing process and becomes a major concern for organisations as more

time and effort is needed to maintain the system.

Software mciintenance activities are often divided into four categories (see [2] [66] [73]):

1. corrective maintenance: performed when the software does not conform to its

specification (for example, iixing bugs discovered upon running a program).

2. adaptive maintenance: performed on a software system when its environment

changes (for example, a new version of the operating system is introduced).

3. perfective maintenance: needed when requirements of the software change (for

example, tax program changed to reflect new tax laws).

4. preventive maintenance: work carried out in anticipation of future malfunctions

and to improve maintainability. This differs from the other categories since it is not

a direct response to a user's request and some authors do not include it in this List

of categories (see [52] [78]).

Lientz and Swanson [51] quantified the amount of effort spent in each area. The distribu

tion is as follows:

Perfective 50%

Adaptive 25%

Corrective 21%

Preventive 4%

The large proportion attributable to perfective maintenance is mainly due to the fact

that, to maintain their competitive edge, companies release new products quickly without

thinking of the future possible changes in the requirements. Hence software cannot be

modified quickly, easily and reliably, resulting in serious delays to changes in the software.

Organisations must now focus on developing products which are easier to maintain, i.e.

products which are more maintainable. Maintainability is the quality which identifies how

maintainable software will be. Longstreet defines it as "the effort required to find and fix

or modify an error in operational software... the effects of software failure, cind ways to

minimize those effects" [55].

Maintainability is a very desirable quality in products where precision and correctness

are of prime importance. Safety-critical systems are examples of such products and the

need for accuracy in these cases has led to the use of formal methods. Formal methods

involve the specification of a system represented with strict mathematical notation and

the development of lower levels from this, so that code can be formally linked with its

specification.

The use of formal notation has provided a new means for producing accurate code and

has led to the evolution of a number of formal specification languages and development

techniques (e.g. Z, VDM). These methods have often focussed on carefully identifying

9

the requirements of the system and the first implementation of that system, but have

not considered the possible implications of changes in the requirements. Having spent so

much effort on the production of such accurate systems, it seems a waste to completely

re-develop a system according to requirement changes and necessary enhancements. It is

this idea which led to the research in this thesis.

The thesis describes a new method which formally specifies and implements code with

a view to future adaptations of the system (in other words, aimed at perfective mainte

nance). By producing software which is easy to change, industry can ehminate many costs

needed to reimplement a system and save a lot of time and effort. The method described

here uses program transformations for forming a refinement path which can be re-used

when necessary. A transformation is defined as the "formal step in which a program is

converted to an equivalent with identical semantics" [12]. The transformations used by

the method originate from Ward's thesis[82] and many have been implemented in a tool

called the Maintainer's Assistant [84] for the purposes of restructuring code. The method

uses these transformations for refinement, "a set of techniques to guide and control the

process of producing a piece of software from a description of it; an implementation from

a specification" [89]. Chapters 2 and 3 will provide further descriptions of these areas so

that the method itself can be understood. This chapter will identify general problems of

maintainabihty and cover basic techniques used in software maintenance which are also

connected to this particular research.

1.1 Problems of Maintainability

Problems associated with producing maintainable software have been outhned by Brooks

[21] and McDermid [58]. One of these is the complexity inherent within software due to

the need to interface complex engineered systems and social or organisational systems;

that is, the complexity is due to the complex systems it describes. Also, software can be

complex at times when no regular structure exists or a system is so large that no single

individual can understand it in its entirety.

Another problem lies in the difficulty of establishing and stabilizing requirements. This is

10

due to users not being able to:

1. know exactly what they want,

2. realize the full limitations and capabilities of computer systems,

3. effectively communicate their needs to the requirements analyst, and

4. provide the complete list of details to produce the system required.

Another cause of this problem is that often requirements need altering due to changes in

the environment and to users wanting functional enhancements of the system, even during

development.

A third problem lies in the fact that it is important to understand the thought processes

which went into writing a program and there are intellectual difficulties in establishing

the relationships between different views and perspectives of a program. This can be

called a problem of "invisibility" since the programmer's ideas and points of view are not

explicitly written down and there is no known way in which to retrieve this information.

This problem, like many in the area of software engineering, eventually reduces itself to

one of intuition and psychological understanding on behalf of the maintainer.

A further problem is caused by the malleability of software. It is deceptively easy to write

and change small programs but when these are part of a large system difficulties arise

due to the interaction between different parts of the system. A programmer might wish

to make changes to a program without realising the effect this will have on several other

programs within the system. This causes an inordinate amount of time and effort to be

spent making the necessary adjustments and then testing the software.

A final problem is that systems are often created in different problem domains; every

time a new system is developed in a new problem domain a new theory needs to be

established. While most engineering disciplines involve the application of existing theory

to the development of a new system, software engineering usually involves the development

of new theories.

Having analysed the problems that software can undergo, it Is evident that a key factor in

11

solving these problems (and ending the software "crisis") would be to find methods and

means to improve and maintain the maintainability of software when it is first written.

Issues concerning a possible solution to this will be discussed in later chapters.

1.2 Techniques

Most maintenance activities occur as a result of requests made by the user for alterations

to the developed system. There are a variety of strategies and techniques available which

can aid these activities. Areas of research involving these include reverse engineering,

restructuring, reengineering, metrics and artificial inteUigence.

1.2.1 Reverse Engineering

The word reverse engineering originates from the analysis of hardware. In a paper on

the reverse engineering of hardware, Rekoff defines it as "the process of developing a set

of specifications for a complex hardware system by an orderly examination of specimens

of that system" [74]. It is this usage of the term which has been directly translated for

software (for instance, Chikofsky [25]).

In software development, the term forward engineering has come to mean the process

of moving from the design of the system to its physical implementation. Hence reverse

engineering is defined as the opposite to this, that is as the "process of analyzing a sub

ject system to identify the system's components and their interrelationships and create

representations of the system in another form or at a higher level of abstraction" [25]. Con

trary to some people's behef, reverse engineering does not involve changing the system or

creating a new system from the reverse engineered system.

There are several subareas of reverse engineering, two of which are commonly referred to as

redocumentation and design recovery. Redocumentation is the simplest and oldest form of

reverse engineering and is defined as the "creation or revision of a semantically equivalent

representation within the same relative abstraction level" [25]. Tools which can perform

12

this include pretty printers, diagram generators and cross-reference listing generators.

According to Biggerstaff, design recovery "recreates design abstractions from a combina

tion of code, existing design documentation (if available), personal experience, and general

knowledge about problem and application domains" [13]. He goes further to insist that

design recovery must "reproduce all of the information required for a person to fully un

derstand what a program does, how it does it , why it does i t , and so forth."

1.2.2 Restructuring

The term restructuring comes from code-to-code transform that takes an unstructured

program and converts it into a structured form. It is defined as the "transformation from

one representation form to another at the same relative abstraction level, while preserving

the subject system's external behaviour (functionality and semantics)" [25].

Thus it is no longer confined to structuring code as it also covers the reshaping of data

models, design plans and requirements structures. A tool which can currently aid the

process of restructuring is the "Maintainer's Assistant", a transformation system developed

at the University of Durham where transformations are applied to unstructured code to

derive its equivalent in a structured form. This system will be described in more depth in

the next chapter.

1.2.3 Reengineering

The term reengineering is also known as renovation or reclamation and is often confused

with the previous terms since it actually involves a form of reverse engineering followed by

some form of forward engineering or restructuring. Reengineering is defined by Chikofsky

and Cross I I as the "examination and alteration of a subject system to reconstitute it in

a new form and the subsequent implementation of the new form" [25].

Another definition of reengineering can be found in Garnett and Mariani's paper on soft

ware reclamation and this states that "reengineering refers to the identification of compo-

13

nents within existing systems possessing reuse potential and quahfying them according to

some reuse-oriented specification technique" [36]. They go on to refer to reuse reengineer

ing as the "construction of new systems by reusing information from foregoing ones", aji

approach wiiich they also call "software reclamation".

1.2.4 Metrics

One important area of software maintenance is the use of metrics to provide a comparative

measure by which software can be made characteristically maintainable at each iteration

of the development process. Metrics integrate maintainability into developing software

by identifying high risk areas in the code. This is done by evaluating software according

to specific criteria and by producing a quantitative measure on a static scale. In other

words, metrics assess the complexity of a procedure by comparing it to other procedures

evaluated in the same manner.

Once problem areas are identified, actions are taken to reduce the complexity of the code

through further abstraction or reimplementation and to test high risk areas so as to uncover

existing errors. Metrics can be described as predictive, e.g. when they are used to foretell

the future by predicting costs, etc., or descriptive, e.g. the use of complexity measures.

According to Conte [27], metrics can be classified as either process or product metrics.

Process metrics will "quantify attributes of the development process and of the develop

ment environment" [27] while product metrics are "measures of the software product" [27]

and are the type of metric usually referred to.

In the method described in this thesis, product metrics are used to assess the maintain

abihty of the code which has been developed. There are three main forms of product

metrics:

1. code metrics

2. structure (or coupHng) metrics

3. hybrid metrics

14

Code metrics determine the complexity of a procedure by analysing the amount of infor

mation within a procedure or by assessing the logical complexity of the code [50] [43] [46].

Structure metrics examine the relationship between a section of code and the rest of the

system [43] [50]. These are also known as coupling metrics [46] or design metrics [10]. Hy

brid metrics combine the internal view of a procedure with the measure of communication

connections between that code and the rest of the system [50].

There are many different metrics but the research described here used only three types of

code metrics for the assessment of the maintainability of the code. These can be described

as follows:

1. Lines of Code

This is a measure of how many lines of code exist in a given procedure: the more

lines of code, the more complex the procedure [50]. A line of code is generally defined

to be "any line of program text that is not a comment or a blank line, regardless of

the number of statements or fragments of statements on the line" [27].

2. Halstead's Software Science

This is also known as Halstead's Effort Metric and was devised in 1977 [50] [43] [57]

[10] [78] [27]. This involves the count of operators and operands in a procedure and

the following initial values are established:

(a) n l = number of unique operators

(b) n2 = number of unique operands

(c) N l = total number of operators

(d) N2 = total number of operands

From these another set of values can be calculated:

(a) Vocabulary Size: n = n l + n2

(b) Length: = i V l + iV2

(c) Program Volume: V = N x log2(n)

(d) Program Level: L = (2 / r i l) x (n2/.'V2)

(e) Language Level: X = x V

15

(f) Effort: E=VIL

The Program Volume is a measure of the size based on the length of implementation

and the size of the vocabulary and the Program Level is an estimate of the level

at which an algorithm is implemented. This level is inversely proportional to the

program difficulty: the lower the level, the more difficult i t is to implement the algo

rithm. The Effort is a quantification of the effort required to generate implemented

code.

3. McCabe's Cyclomatic Complexity Number

This was described in McCabe's paper [57] [50] [43] [46] [78] [27]. It is a count of

independent logical paths through a procedure and is based on graph theory. That is,

the procedure is represented as a strongly connected graph from which measurements

are taken. Each node in the graph represents a sequential block of code and each

edge a logical branching point through the procedure.

From the graph, a calculation of the maximum number of linearly independent cir

cuits (i.e. the cyclomatic number) can be made:

V{G) ^ E- N + 2

where G is the graph, V(G) the cyclomatic number, E the number of edges and N

the number of nodes.

1.2.5 T h e U s e of A . I . in Software Maintenance

The use of Artificial Intelligence has been increasing in the field of software maintenance

over recent years. Techniques within this area promise great improvements in program

ming productivity and reliability and developments in knowledge representation and au

tomated reasoning have occurred through this. An excellent source for papers on this

subject is [75].

The main aim is to develop a form of automatic programming so that the user need only

say what he wants and the program would be developed automatically. An ideal solution

16

would be for the user to state requirements which could automatically be transformed into

formal specifications and from these specifications into code.

The most active area in developing such techniques is the field of program transformations.

Since this is such a large area and most of the work proposed by this report is based upon

the subject, i t wiU be described extensively in a later section. For other surveys of this

area see [69] [34].

Another active area of artificial intelligence research is in techniques for automatically

determining theorem proofs [15] [91]. There are two main forms of this: deductive program

synthesis and program verification.

Deductive program synthesis is "based on the observation that constructive proofs are

equivalent to programs because each step of a constructive proof can be interpreted as a

step of computation" [75]. Constructive proof aims to provide a method for finding an

output corresponding to any given input. At present i t is only possible to produce small

programs from specifications written in logical languages from deductive synthesis since

large programs involve large proofs which current theorem provers cannot as yet deal with.

Program verification uses theorem provers to verify that a program satisfies its formal

specification. Again this is limited by the fact that theorem provers cannot yet deal with

large proofs. Two approaches have been taken to deal with this. The first is that the

prover is given some knowledge about programming areas in the form of lemmas and the

second is to allow human interaction to guide the theorem prover.

Allowing human interaction has, in fact, assisted most applications of A . I . to software

engineering. Since automatic programming is still not possible, artificial intelligence tools

aim to provide assistance to the programmer rather than to replace them. Two of these

"assistants" are the Designer/Verifier's Assistant [60] and KBEmacs [87], which uses a

knowledge base of standard programming forms in programming construction.

The Designer/Verifier's Assistant was developed by Moriconi in 1979. Since i t investigates

changes made at a design and specification level in addition to program verification, a

detailed study of his work was made so that any useful ideas relating this to the work

presented by this thesis could be identified. The following section is a critical analysis of

17

the paper he wrote describing the Designer/Verifier's Assistant,

No work seems to follow on from this until Moriconi's second paper, published in the IEEE

Transactions on Software Engineering [61]. Since this also has implications involving the

thesis, a critical analysis wiU also be made of this paper.

A third paper related to the method is a very recent one by Ira Baxter [8]. This also

involves changes made at the design level and the approach illustrated is similar to that

described by this thesis. I t also deals with transformation systems and the tracing of

design paths from specification to code. The fact that this approach could be successful

and that a thesis was accepted on this topic validates and supports the work presented

here.

1.3 Critical Analysis of IVIoriconi's Papers

1.3.1 A Des igner /Ver i f i er ' s Assistant

This paper describes the first prototype of a system called the Designer/Verifier's As

sistant which reasons about changes to the design of a system. I t represents a theory of

Moriconi's concerning the development and maintenance of large formally verified systems.

The problem which he was trying to solve in 1979 still faces the computer industry today

and is the one which prompted the development of the method proposed by this thesis.

The solution which he proposed was novel but unfortunately the theory was impractical

and too vague for a fu l l system to be implemented at that time.

Moriconi recognized that specifications, programs and proofs involving a system gradually

build up and need frequent revision, so that "developing and maintaining formally verified

programs, especially large ones, is an incremental activity... Consequently, one is faced

not only with the problem of constructing this data, but also with the complex problem

of determining the effects of incremental changes to i t . "

His proposed solution was to develop a system which parses programs and specifications

18

1. Suggest fully defining ExchangeSort — ^ E x p l a i n

2. 1 — W h a t are the effects of fully defining ExchangeSort?

ExchangeSort may have additional V C s .

3. <— W h a t are the effects of changing the exit assertion of Va lueOfMax?

No effects on ValueofMax. T h e verification of other programs is not affected.

4. < — W h y ?

No effects on ValueofMax because it is for specifications only and does not have V C s . No external

effects because properties from ValueOfMax have not been used in proving any V C s .

5. <— W h a t are the effects of changing the exit of I sPerm?

No effects on I s P e r m . T h e verification of other programs is not affected if the formula

Changed exit specification all Z : IntArray, IsPerm{Z, Z)

is true. I f not, the change invalidates the verification of ExchangeSort.

6. < — W h y ?

No effects on laPerm because it is for specifications only and does not have V C s . Invalid verification
because a property from I s P e r m has been used in proving ExchangeSort # 1 .

7. 1 — Done

8. Suggest fully defining ExchangeSort — * E d i t

Figure 1.1: Illustration of dialog with Assistant

and could also generate and prove verification conditions, logical formulae used to ascertain

that a program is consistent with its specification. The system also needs an "understand

ing" of the kinds of structures which can be changed or added and the ways in which they

interact. It must be able to apply its "knowledge" to integrate new or changed information

into the model of the system so that previous work remains valid. To understand more

clearly what Moriconi means by "understanding" and "knowledge", a reproduction of his

description of an actual scenario from the middle of a session will be presented here.

The example used is a sorting program which is being "incrementally designed and ver

ified". A sequence is illustrated of three events which typically occur for each set of

revisions. First, the user converses with the Assistant to gain an understanding of the

effects of the changes which he might make. He makes these changes and fits them into

the current model while keeping intact previous work that remains valid.

Figure 1.1 shows how the system would appear just after the program ExchangeSort

has been partially defined and proved. The Assistant suggests completing the definition

of ExchangeSort but instead of following this suggestion, the user uses the Assistant to

see the effect of intended changes by typing "Explain".

19

9. Suggest fully defining ExchangeSort —>• Read Fi leOfChanges .Sort

function ExchangeSort{A : IntArray] : IntArray =
begin

entry N ge 1;
exit(aUI : int,

I in [1..N] Exchangesort{A)[I]
= ValueOfMax (ExchangeSort (A), 1,1))

and hPerm{A, ExchangeSort{A));
var B : IntArray := A;
var K : int :— N\
keep K in [l..N]\
loop

assertialll: int,Iin[K + 1..N] ^ Value Of Max {B ,1,1))
and K in [1..N] andIsPerm{A, B);

if K — I then leave end;

B Exchange{B, LocationOfMax{B,1, K), K);
^ K : = K - \ ;

end;
result := B;

end;

function ValueOfMax{A : IntArray; I, J : int) : int =
begin

" exit{allk : int,k in[I..J]and I in[l..N]and J in[l..N]
A[k]le ValueOfMaxiAJ, J)) and...;

end;

function IsPerm{X, Y : IntArray) : boolean =
begin

exit{allZ : IntArray, l3Perm{Z,Z))

and{allZ : IntArray,
IsPerm{X,Z) and IsPerm{Z, Y) =J> hPerm(X, Y));

end;

function Location Of Max (A : IntArray; I, J ; int) : int =
begin

entry I in [1..N] and J in [1..N] and I le J;
exit Location Of Max {A, I, J) in [I.-J]

and A[LocationOfMax(A,I, J)] = ValueOfMax{A,I, J);
pending

end;

function Exchange {A : IntArray; I, J : int) : IntArray — ...;

|_ functionIsExchanged{A,B : IntArray; I, J : int) : boolean = ...;

10. E x e c —>• Suggest

Figure 1.2: The changed function (changes are indicated by brackets).

20

11. Suggest generating new V C s for ExchangeSort — • $

Trac ing new path in loop

Assume loop assertion

(a « / # l : / A r T , / # l m [/ i r - h l . .Af]
= i > S [/ # l] = VaiueOfMax(B,l,I#l}]

and K in [1..N]

and I s P e r m (A , B)

Generat ing new verification condition ExchangeSor t#4

E n d of path

Unaffected V C s : E x c h a n g e S o r t # l , ExchangeSort#2 , ExchangeSort#3

12. Suggest proving V C called ExchangeSort#4 —>

Figure 1.3: Impact of changes on ExchangeSort.

After seeing the potential effects of different kinds of changes, the user types "Done" and

the user can invoke a text editor using "Edit". After the editing has finished, the Assistant

needs to verify the altered version of ExchangeSort. Figure 1.2 illustrates the new version of

the function, with brackets around the parts which have been changed. The user can then

see the impact of these changes (see figure 1.3) by accepting the Assistant's suggestions for

generating new verification conditions. The user can carry on the development by having

these new verification conditions proved.

As there are many directions which the development can follow, the Assistant has a mech

anism for providing reasonable suggestions for the next step in design and verification.

This suggestion mechanism assigns priorities to tasks and a scheduling policy chooses the

highest priority task and suggests i t to the user.

In addition to generating and proving verification conditions, the Assistant also builds a

model of the key parts of a program's design and verification and their relationships. This

model is a collection of three models for each task performed by the overall design and

verification; parsing and type checking, generating verification conditions and theorem

proving. Examples of these models can be seen in the paper. The general model for the

scenario displayed in figures 1.1 to 1.3 is also displayed.

Moriconi's paper concludes with experiences in using the Designer/Verifier's Assistant.

He maintains that both its utility and the amount of computational efficiency grow pro-

21

portionately with the size and complexity of the program being developed. However,

although the tool reasons at the appropriate level of detail, sometimes i t would be better

for analysis to take place individually rather than by category (as i t does now) and for

more structuring in explanations.

A method of change where the effort required to make the change is not proportional to

the size of the system would have an advantage over Moriconi's approach. The method

described in this thesis has that objective and will be described in more depth later.

1.3.2 Approx imate Reasoning About the Semantic Effects of Program

Changes

This second paper by Moriconi [61] describes a logic for finding the semantic effects of

changes through a direct analysis of the program. This logic is called approximate since

weak results are sometimes inferred. The approximation is based on the structural in

terpretation of the information-flow relationships among objects in the program. "Infor

mation flow" between objects x and y occurs i f a change in the value associated with

X changes the value associated with y. Reasoning about the semantic effects of changes

is based here on whether any information flows between objects (and not on how much

information flows).

The paper briefly describes the characteristics of this logic before comparing the work to

other work involving the semantic and structural analysis of programs. In 1972 Floyd [35]

described an imagined interaction between a programmer and formal verification system

which allowed the computer to maintain the consistency of specifications, programs and

lemmas following incremental changes.

Moriconi developed a technique from this in 1979 [60], as discussed earlier in section 1.3.1.

This, as are most verification systems, was based on Hoare logic (see [40]). A proof of

a program in Hoare logic is a sequence of steps where each step is either an instance of

a Hoare axiom, a Hoare sentence derived from a previous step by rule of inference or a

theorem in the underlying logic.

22

The remainder of the paper focuses on information-flow, which is outside the theme of the

thesis and so wiU not be described here. The main interest here is that work from Mori

coni's earlier paper is extended and that logic is being applied to software systems. The

application of formal mathematics to the development of systems is a major component

of the method and wiU be described later.

1.3.3 Prob lems

A Designer/Verifier's Assistant

As this work appears not to have been developed further, i t is important to assess those

problems which prevented this. This will help the development of the method described

in this thesis.

First, the Assistant deals with program specifications, a relatively new area at the time.

Not many formal methods had been devised and the notation used by this paper resembles

short sentences in natural English combined with Pascal. This specification language does

not have a rigorous mathematical basis which implies that reasoning is vague and no proofs

can be determined. The validity of these specifications is questionable.

Second, the specification language uses constructs found in Pascal which could cause

confusion during refinement stages. In fact, these stages cannot be determined exactly

since some of the specification can be directly translated from its "Pascal" format while

the rest needs to be converted from English to a programming language. This mixture

of accuracy and ambiguity does not provide a strong basis for deriving programming

languages.

Another problem is that the effects of change are determined by the setting of design

and verification flags. This was a popular method used in the past for verification work

which has become outdated. Although the flags provide some guide to impact analysis

(the investigation of how changes to variables affect other variables, functions, predicates

and modules), they do not provide any details of the variables, procedures, modules or

designs in question.

23

Finally, the paper needed more examples for illustrating the work. The examples which

Moriconi does provide are limited and do not adequately portray the abilities of the

Designer/Verifier's Assistant. I t is difficult to understand from the paper what sort of

examples would work with this tool and how the tool replies to questions in such clear

English.

Approximate Reasoning About the Semantic Effects of Program Changes

Moriconi's paper which has just been discussed ends with a description of further work

which would be to "evolve a genercd mathematical framework that explains how to build

and extend incremental systems, such as the Assistant". The work in this paper appears

to do just this but there are a few problems which can be found here as well.

A major problem is the introduction to the logic and the way in which i t fits into prior

work in information-flow. Pieces of information concerning the logic appear throughout

the opening sections with no apparent order. The inference rides are also presented in a

confusing manner since i t is only at the end of the paper that the main elements of the

logic are described.

However there are few real problems with this work and the examples of the use of the

logic at the end give a good grasp of how the logic can work. The main work in deducing

the effects of program changes lies in a form of impact analysis. To reason more accurately

about the changes i t would be necessary to extend this work so other changes can be made

(i.e. to functions and predicates as well). Reasoning about larger changes could just imply

a recursive extension to the logic or added features. The work in this thesis might be able

to involve this in some way.

1.4 Critical Analysis of Baxter's Paper

This analysis is of a paper written by Ira D. Baxter [8] which was published in April 1992

and is based upon a PhD thesis written by Baxter in November 1990. A description of

the paper will be given followed by any problems which can be identified. Conclusions as

24

to the applicability of the three analysed papers to the research detailed by the thesis will

follow this section.

1.4.1 Des ign Maintenance Systems: A S u m m a r y

This paper suggests that the main objective for the upkeep of systems is design mainte

nance rather than software maintenance, where design maintenance means the updating

of design information as changes are made to the system. The article sketches a basic

design for a design maintenance system which attempts to do this work.

The approach to a Design Maintenance System (or DMS) outlined here involves several

important factors. First, the software system must be formally specified as must be the

maintenance de/iasintegrated within i t . A maintenance delta is an expression representing

desired changes in the program functionality, performance and implementation technology.

Second, the implementation of a DMS must be derived from transformations which, ac

cording to Baxter, are the applications of transforms at certain places called locators. A

transform is any function which maps programs into programs while a locator is the place

in the program where the locator is applied. The denotation for a transformation with

transform t and locator / is t ' .

Other important factors are that a justification exists to prove that the implementation

truly solves the problem stated by the specification and that tools exist for modifying the

design justification. In summary, this approach needs to ensure that the design is correct

and that alterations can be made at this level rather than the implementation level, with

a set path of transformations producing code which corresponds to the design.

The application of transformations is controlled via a library of heuristic methods coded

in a Transformation Control Language (TCL). Each method formally relates a design plan

to a design purpose and a set of such methods can be used to decompose the specification

into solvable subproblems. Each subproblem will have its own specification and can be

solved by executing the plans from the methods chosen.

Design capture can take place given such a transformation system and a transformational

25

planning language such as TCL. The formal specification will describe what is intended

and can be captured easily, while the sequence of transformations will describe how the

generated program was constructed and can be captured as a linear derivation history. The

reason for applying each transformation is captured by storing a trace of the nonprocedural

unfolding of goals during the execution of the TCL methods. This trace is known as the

design history.

In Baxter's own words, the problem of design maintenance is of "updating the specification,

the derivation history, and the design history in a way consistent with any new desire,

stated as a maintenance delta". The implementation can then be generated by applying

the same sequence of transformations in the revised derivation history to the specification.

Maintenance deltas appear in two forms: specification deltas, which affect the problem

definition, and support deltas, which affect the implementation of the solution. Most

deltas are specification deltas and are denoted either as A / , for changes in the system

function, or as A G , for changes in the desired performance. These specifications deltas

are applied to the current specification to revise the specification component of design

information while support deltas are applied to the transformation system components.

A major problem is the one of integrating the maintenance delta into a design history. The

first design history is constructed by either running a transformational implementation on

a chosen specification or by reverse engineering such a history from an existing system.

It can then be revised according to the delta applied by rearranging and pruning the

derivation history and then pruning away the parts of the design history which are no

longer useful. The TCL methods can regenerate any incomplete part of the design history.

The derivation history is rearranged through two actions: a delay and a preserve ac

tion. I f a particular transformation in the derivation history cannot be preserved then

its application is delayed as long as possible. This is done by swapping it with the next

transformation, an action which depends upon the commutativity of the two transforma

tions; i.e. whether the effect of performing the first transformation followed by the second

is equivalent to that of the second transformation followed by the first. The "offending"

transformation continues to be swapped in this manner until i t is no longer commutative

with the next and has thus been delayed as far as possible.

26

Thus the derivation history is revised by scanning the original from beginning to end,

checking the delta for interference with each transformation. When the transformation

interferes with the desired change i t is "banished" (i.e. delayed as far as possible); oth

erwise i t is preserved. The scan stops when neither of the two actions can take place

and the derivation history is then truncated. The delta can then be applied and the

implementation finished using the transformation system itself.

The design history is revised by inspecting its relation to a certain delta and marking

those parts which conflict with the delta. Finding these conflicts depends upon the type

of delta involved and these parts are then removed from the design history, leaving i t

incomplete. The pruning of the design history involves removing all portions of the design

history which axe marked, every agenda item which depends uniquely on some pruned

agenda item and agenda items which are generated as descendants of those marked.

The pruned plan can be repaired by carrying out actions for incomplete agenda items

which could involve the generation of new agenda items. This involves choosing the earliest

incomplete agenda item, as determined by the ordering constraints in the design history,

and then executing i t according to a specific TCL action taken from some TCL method.

The main use for a DMS is the construction of an incremental maintenance system. Deltas

can be applied to only partially completed implementations and new deltas applied as the

implementation grows. A DMS can also be used as the foundation for a reusability system.

Implemented components can be stored in a library together with their specifications and

design histories and a maintainer can choose the component whose specification is near

to his desires. This component can be revised by applying the corresponding delta to the

stored history.

Work which is related to this includes the transformation systems PDS [24] and the Main-

tainer's Assistant [84]. PDS is a system which keeps derivation histories and rederives

components dependent on changed components. The Maintainer's Assistant maintains

existing software by reverse engineering existing concrete programs into abstract ones,

applying functional deltas to the abstract programs and reimplementing the abstract pro

grams.

27

1.4.2 Prob lems

Using design and derivation histories to maintain software is a novel idea and suggests a

useful new approach to solving the problem of software maintenance. Unfortunately the

description of this new technique remains a proposal. There is only one example of how

this might work, added as an Appendix, but this again provides a theoretical approach to

how this method might work rather than how i t actually works.

The method can apparently be used with any transformation system but a concrete ex

ample of how this can occur does not appear in the paper, suggesting that the method

remains theory rather than practice. It would be useful to test this method on an exist

ing transformation system to show its Vcdidity. As i t stands, the method remains simply

a "good idea" and much work needs to be done in order to validate i t scientifically or

evaluate i t from an engineering perspective.

This identifies another major problem with the described method. Transformation systems

vary greatly and the affirmation that this method can be used for any transformation

system needs proof. Work is needed to ascertain which transformation systems can be

involved and how the method must be adjusted in each case.

Another problem is that the method relies upon a design history already existing. This

is often not the case and the problem of recreating one for a specific system outweighs

the problem of changing the system: i t is probably more difficult to describe the system

using formal specifications and formally developing the design history than i t is to apply

formal changes to the system. The author should have attempted to tackle this problem

first before developing the method for change.

As i t stands, the method is a simple one of reusing the design history until i t is no longer

valid and banishing any transformations that are no longer useful, adding extra ones to

complete the derivation history. While this appears a good approach, i t is remains very

subjective, relying upon the maintainer to truncate the design history when transforma

tions are no longer valid and to reapply new correct transformations to complete the

implementation. There is nothing to guide the maintainer as to which transformations

should be banished or which should be introduced: i t remains entirely based upon his

28

judgement.

Furthermore, the method uses a strictly top-down approach. While this allows complete

records of both the derivation and design histories and eases alterations made to both, i t

does not always correspond with the thinking process behind software maintenance. When

making changes to a system, a maintainer might use a combination of a top-down and

bottom-up approach for altering the system more effectively. Unfortunately, the method

allows him only to work in the one direction and might involve more work on his behalf

when trying to introduce new transformations or banish unnecessary ones.

However, this allows for a more systematic maintenance of the system and for one which

is easier to trace as more changes are included and the system diverges from the original.

While a combination of top-down and bottom-up approaches might aid the maintainer

initially, eventually the maintainer might not be able to trace which steps allowed the cre

ation of the new system. I f he did, this information still remains unique to the maintainer

in question and other people might not understand how the new system was eventually cre

ated. This would become a major obstacle for others attempting to maintain the system,

especially i f the original maintainer were no longer accessible.

1.5 Conclusion from Papers

The three papers which were analysed provided ideas as to an original method for pro

ducing maintainable software, that is software which can be easily changed and updated

(this wil l be discussed in more detail in the next chapter).

Moriconi's first paper illustrated that knowledge based systems could be used to reason

about changes made to a design or specification. This supported the use of transformation

systems as a basis for a method of change. Also, the models he referred to help to describe

the relationship between sections of code and the specification. Ideas presented for the

Designer's half of the Assistant could be used to aid work in the development of a method.

The second paper provides ideas on the use of a logic for investigating the effects of program

changes. I t was initially hoped that the method could use a similar logic for determining

29

the semantic effect of changes, but i t was found that this approach was better suited for

changes of variables within the code rather than changes in the specification. The method

currently uses none of the ideas presented in this paper but i t is important to keep these

in mind for future developments.

Baxter's paper is the most relevant to this project since i t proposes a method for the

upkeep of systems based upon a design path built from transformations. However, this

method does not appear to have been tested on any real transformation system so its

claim to hold for any transformation system is not proved. In fact, i t does not hold

for the transformation system upon which the method described by this thesis is based,

the Maintainer's Assistant. Baxter's method of delaying and preserving transformations

proved of no consequence towards the maintenance of the case studies. I f a transformation

cannot take place at a certain point, then swapping i t with the next will not mean that i t

can hold later on.

1.6 Outline of Thesis

This thesis wi l l describe a method which assists the perfective maintenance of software

produced using a formal method and uses ideas from the papers described earlier. As the

method uses program transformations for refinement and for improving maintainability,

these wil l be discussed in Chapter Two of the thesis. This chapter looks at the maintain

ability of software and how activities in the software life cycle might improve this before

considering the applications of transformations to maintainability.

Chapter Three describes the method for producing maintainable software using trans

formations in a tool called the Maintainer's Assistant. A description of how these trans

formations can be used for refinement is provided and a comparison of different refinement

techniques given.

Chapter Four describes how the method could apply to a simple case study of finding

an integer square root. This problem was originally presented as an example of the use of

a refinement calculus in Morgan's book, [59]. The effect of changes to the specification is

30

investigated for this original development and is compared to the method.

Chapter Five describes how the method works with a larger case study which depends

more upon the organisation of data rather than the functionality of the code. Different

types of transformations are needed to refine this and a comparison is made between this

and the original development of the problem. This case study is the description of a library

system described using Z in a paper by King and Sorensen, From specification, through

design, to code: a case study in refinement [45]. How changes affect this development

are investigated in the chapter and compared with the development by transformation

approach. The latter will prove more favourable a refinement technique when considering

perfective maintenance.

Chapter Six revises what was learned from the case studies and provides an assessment

of the maintainability of the software in each case. An indication of how the method could

work for more complex case studies is provided.

Chapter Seven is the conclusion of the thesis. This investigates problems which were

encountered while doing the work and how the method will apply for more general situa

tions. Future work on applying the method to other case studies and the development of

a tool is described at the end.

1.7 Summary

This chapter gave a brief introduction to the field of software maintenance and described

general techniques used to deal with the problem of maintaining large systems. Critical

analyses were made of three papers which used some of these techniques and which pro

vided ideas for the method described in the thesis. The outline of the thesis concluded

the chapter.

31

Chapter 2

Maintainability

The maintainability of a software system is a term which describes how easy it will be to

maintain that system and can be determined before the system is implemented. Accord

ing to Longstreet, "maintainability examines the effects of software failure, and ways to

minimize those effects" [55]. Identifying all the future problems of a system is difficult

and so one can only hypothesize about the qualities that make a system maintainable.

Maintainability can be classed as either internal or external depending upon whether

attributes of the software product or those of the environment are being considered. Ex

amples of attributes of the product which make it more maintainable include modularity,

good documentation and structured code. Those of the environment include the skills of

the maintainers and the tools which are available.

In the next section, both types of attributes will be discussed as they figure in the various

stages of the software life cycle. The actions necessary for the production of maintainable

software wiU be identified as they occur within each stage of the life cycle. Although it

remains difBcult to decide which factors would enhance maintainability at such an early

stage, general guidelines for the way in which each activity should be carried out can be

determined.

It is also possible to examine qualities of the software itself and, judging from past maia-

32

tenance problems, rewrite the code so that it is more maintainable. Issues concerning

maintainable software wiU be discussed once the activities during the software life cycle

phases which may aid maintainability are considered.

2.1 Analysis Activities

During the analysis stage, a variety of activities enhancing software maintainability include

the development of standards and guidelines, the setting of milestones for supporting docu

ments, the specification of quality assurance procedures, the identification of likely product

enhancements, the determination of resources required for maintenance and preliminary

budget estimates [32] [27].

The costs of maintenance are difficult to estimate in advance as they vary depending upon

the specific application used. However, for large software systems, the actual maintenance

cost can be said to be approximately four times development costs [78] [10]. Boehm [16]

uses a formula for approximating the cost of software development but this depends upon

the existence of previous data.

According to Somerville [78], there are mainly five external factors which alfect the cost:

application support, staff stability, the program's lifetime, the external environment and

hardware stability. Maintenance costs are also governed by such internal factors as module

independence, programming language and style, program validation and the quality and

quantity of program documentation.

2.2 Design Activities

Design activities can be divided into two parts: architectural and more detailed design.

Architectural design is the "process of defining a collection of hardware and software com

ponents and their interfaces to establish a framework for the development of a computer

system" [1].

33

The first architectural design activity must be to ensure that the design is clear, modular

and easy to modify. By modular we mean that the design should comprise distinct com

ponents, enabling a change in one area of the design to not affect any other design arejis.

To achieve this ideal design, design concepts such as information hiding, data abstraction

and top-down hierarchical decomposition must be used.

Information hiding and data abstraction involve the suppression of information in some

form or other. Information hiding usually refers to modules in the system hiding the

internal details of its processing activities, especially design decisions that are likely to

change. Data abstraction is effectively a case of information hiding but involves hiding

the data structure, its internal linkage and the implementation details of the procedures

that manipidate i t .

Another activity could be to try to determine where changes or enhancements in the

design might possibly take place and to design the system so as to ensure the ease of these

alterations. This could be aided by the further activity of using standardized notations

such as data flow diagrams and structure charts to make the design easier to understand

and to verify for completeness and consistency.

More detailed design includes "specifying algorithmic details, concrete data representa

tions, and details of the interfaces among routines and data structures" [32]. Again, a

useful activity would be to utilize standard notations to specify algorithms, data struc

tures and interfaces. It would also be advantageous for each routine to be documented,

specifying possible side effects and exception handling (the dealing of events which suspend

normal execution of a program).

Finally, a call graph and cross-reference directory should be included; these can provide the

information which determines the routines and data structures affected by modifications

to other routines.

34

2.3 Implementation Activities

One of the main goals of implementation is to write source code and internal documenta

tion so that modification is eased; this can be aciiieved by making source code as clear and

straightforward as possible. Clarity is enhanced by structured coding techniques, good

coding style, good comments and general documentation.

More specifically, future maintenance wiU be easier if single entry, single exit coding con

structs are used, standard indentation of constructs observed and a simple, dear coding

style employed. It wiU also be improved by symbolic constructs to parameterize software,

by data encapsulation techniques, by margins on resources and by standard documentation

prologues for each routine.

These standard prologues should include details such as the author, date of development,

maintenance programmer and date and purpose of each modification. In addition to this,

one final improvement would be to follow standard internal commenting guidelines when

writing the source code. The following section will describe in more detail the various

implementation activities which will ensure that software is maintainable; i.e. written so

that future modification will be easy.

2.3.1 Maintainable Software

There are certain qualities which software should have to ensure its future maintainability.

If code can be written so that future changes can be implemented easily without drastic side

effects, then it can be termed "maintainable". According to Boehm et al [17], maintainable

software must have three characteristics: testability, modifiability and understandability.

All of these depend upon the system complexity and system modularity.

Complexity can either be computational, when it is difficult to prove the correctness of

the code, or psychological, when it is difficult to understand the code. To minimise these

forms of complexity, one can use high level languages, good documentation (meaningful

comments) and standard coding conventions. By following these guidelines, the code

should be easier to understand and hence alter.

35

Modularity involves the extent to which the system can be decomposed into smaller sec

tions. Software is more maintainable if it remains as independent as possible but yet

includes comprehensive links within itself which "glue" it together. Thus one aims to

provide minimum external coupling and maximum internal cohesiveness [26].

According to Longstreet [55], there are a number of constructs which must be avoided

within a section of code to determine its future maintainability. These are:

• Deeply nested DO loops,

• Excessive IF statements,

• Excessive use of global variables,

• Excessive GOTO statements,

• Embedded parameters, literals, constants,

• Self-modifying code,

• Excessive interaction between modules,

• Multiple entry-exit modules and

• Redundant modules.

Having attempted an assessment of what makes software maintainable by looking at it

through the various life cycle activities, it is now appropriate to consider the technique

which the method described by tliis thesis will use to ensure maintainability; refinement.

2.4 Refinement

Refinement is a technique for developing stricter definitions of specifications and programs

without losing any of the semantics. There are two different refinement processes: op

eration refinement and data refinement. Operation refinement involves the "refinement

of operations (or, more generally, of algorithms) to produce executable equivalents" [53

36

while data refinement involves the derivation of a "formal documentation of the relation

ship between abstract and concrete states" [72]. These two processes usually occur in

tandem but depend upon the refinement technique in question.

There are two forms of refinement technique: refinement methods and refinement calculi

[53]. Refinement methods involve the production of a more concrete version from the more

abstract and a demonstration that the concrete version meets the requirements of the

specification through a sequence of formal proofs. Refinement calculi are based upon the

successive application of provably correct transformation rules and do not require proofs

at each stage of the refinement.

The main refinement methods are the VDM refinement method [42], the IBM Hursley

Park method [45] and the rigorous refinement method for Z [62]. All three follow a sim

ilar approach: operation refinement is performed stepwise while data refinement involves

showing that the abstract and concrete views of the data are analogous. This is done

by defining a retrieve relation which describes the relationship between the two views in

mathematical terms.

There are several versions of a refinement calculus but the most popular is detailed in

Carroll Morgan's Programming from Specifications [59]. This is based upon the work of

Dijkstra, Hoare and Floyd and relies on a series of development steps which are dependent

upon a refinement law. AH refinement calculi use Dijkstra's guarded command language

[30] as the final product of the refinement process and the refinement steps are recdly

for mail sations of Dijkstra's ideas on program development [29].

Morgan's book provides a list of the possible refinement laws which can be used for devel

oping one program into another. It also presents some case studies where specifications

are refined into algorithms which can be easily translated into code. One of these will be

described later for illustrating how the method for implementing change could eventually

work.

A comparison of refinement techniques will be made when describing the method in the

next chapter. Since the method proposes to use transformations for refinement purposes,

these will be described next.

37

2.4.1 Program Transformations and Transformation Systems

Program development by the use of transformations is a "method of software develop

ment in which a program is derived from a formal problem specification by manageable,

controlled transformation steps which guarantee that the final product meets the initial

specification" [7]. In other words, program transformations involve the identification of

changes made to a program which leave it logically equivalent to its original.

Program transformations are useful in software maintenance research as they could identify

ways in which new software might be written so as to achieve ease in future maintenance

of the system. They can also be applied to software that has already been written so that

it can be transformed into a program that will be more easily maintainable or so that

maintenance problems regarding the program can be identified or solved.

Transformations do not necessarily apply to code alone; they can also be involved with the

specifications of the system. Specifications can be "transformed" into sections of code and

vice versa. The achievement of a tool which could do this would benefit maintainability

research immensely; viewing how changes to a specification affect the code could help to

establish a new method for transforming the code into a more maintainable form.

Transformation systems are tools which enable the programmer to transform sections of

code or specifications. The main goals of a transformation system include providing gen

eral support for program modification (for example, optimization of control structures),

generating a program from the formal description of the problem (that is, program syn

thesis), adapting the program to different environments and verifying the correctness of a

program [92].

There are many types of transformation systems; some of these will be discussed in their

chronological order.

Burstall and Darlington

BurstaU and Darlington were the first to work on program transformations in the mid

1970's [23] [92]. They produced two systems which are mainly automatic; i.e. the system

38

selects appropriate rules through the use of built-in heuristics or other strategic consider

ations.

The first system was based on a schema-driven method for transforming recursive programs

into imperative ones and used built-in rules such as recursion removal, the elimination of

redundant computations, unfolding and structure sharing. The main goal here was to

improve efficiency.

The second system was designed to manipulate applicative programs by using only six

basic rules: definition, instantiation, unfolding, folding, abstraction and data-structure

"laws". Other functions can be created by a combination of these rules or by a definition

from the user. The user can enter functions if they are written as a set of equations in a

restricted form of NPL, an applicative language for first order recursion equations.

Balzer

Balzer's work in the early 1980's [4] resulted in an implementation system for program

transformations. This system allowed a formal specification (written in GIST) to be sys

tematically converted into an implementation in three phases: explication, reorganisation

and representation selection.

The explication phase is an attempt to understand the algorithmic structure behind the

specification by converting implicit structures to explicit ones and dealing with any con

straints. The following phase involves the reorganisation of a program so as to mitigate

computational expense. The last phase is to choose a representation suitable for this

reorganized program.

CIP-S

This system derived from the Munich project CIP (Computer-aided Intuition-guided

Programming) which took place between 1976 and 1983 [7] [22] [68]. The main objec

tives of this project were to;

39

• produce a method for guiding the process of formal reasoning in program develop

ment,

• design a "wide-spectrum language" in which to write specifications and programs at

any level as weU as to carry out transformations,

• develop an interactive system for supporting the evolution of programs.

Thus a transformation system was developed in accordance with the CIP view of inferential

programming (see [7]) and involves the transformational manipulation of program schemes.

These schemes are produced by CIP-L (the wide-spectrum language) and are basically

algebraic specifications for introducing data types.

D R A C O

The DRACO system bases its software construction on the paradigm of "reusable soft

ware"; i.e. the reuse of a library program's design but not its code [92]. It is an interactive

system allowing the user to refine a problem written in a high-level language into a LISP

program and enabling the user to define his/her own level of abstraction.

T A M P R

The TAMPR (Transformation-Assisted Multiple Program Realization) system supports

Fortran programming at the Argonne National Laboratory [18]. The system performs

transformations within the Fortran language, aids in the translation of Fortran to Pascal

and transforms LISP programs into Fortran ones.

ZAP

The ZAP system and language was devised by Feather [33] and is based on the fold/unfold

work of Burstall and Darlington mentioned previously. The ZAP language is a language

for expressing transformation and developments but cannot express higher level means of

structuring developments; these need to be applied informally.

40

R E F I N E

REFINE is a programming environment which includes a high level executable specifica

tion language, a specification language compiler, an object oriented database, an editor

interface and tracing and debugging tools [65]. The tool converts code into design, provid

ing an electronic path between code and its corresponding design language. It also allows

the maintainer to edit the structure chart, cut and paste the code and generate high level

documentation to describe the code structure.

The work of Burstall and Darlington and the project CIP were the main influences on the

transformation system upon which this research is based: the Maintainer's Assistant

(described in the next section). Ideas which particularly led to the development of the

method for producing maintainable software are:

• the use of a system with built-in heuristics for transforming programs (Burstall and

Darlington)

• improving efficiency with a schema-driven method for transforming programs (Burstall

and Darlington)

• manipulating programs by combining rules or introducing new definitions (Burstall

and Darlington)

• developing a method for guiding formal program development (CIP)

• using a "wide-spectrum-language" to represent many levels of specification and pro

gram (CIP)

• using the above language for performing transformations (CIP)

• using an interactive system for "evolving" a program (CIP)

2.4.2 The Maintainer's Assistant

The Maintainer's Assistant is a system developed by a reverse engineering project

called ReForra which involved the University of Durham, Durham Software Engineering

41

