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Abstract

This thesis describes a novel method for perfective maintenance of software which
has been developed from specifications using formal transformations. The list of applied
transformations provides a suitable derivation history to use when changes are made to
the software. The method uses transformations which have been implemented in a tool
called the Maintainer’s Assistant for the purposes of restructuring code. The method uses
these transformations for refinement.

Comparisons are made between sequential transformations, refinement calculi and
standard proof based refinement techniques for providing a suitable derivation history
to use when changes are made in the requirements of a system. Two case studies are
presented upon which these comparisons are based and on which the method is tested.
Criteria such as scaleability, speed, ease, design improvements and software quality is used
to argue that transformations are a more favourable basis of refinement. Metrics are used
to evaluate the complexity of the code developed using the method.

Conclusions of how to develop different types of specifications into code and on how
best to apply various changes are presented. An approach which is recommended is to use
transformations for splitting the specification so that original refinement paths can still be
used. Using transformations for refining a specification and recording this path produces
software of a better structure and of higher maintainability. Having such a path improves
the speed and ease of future alterations to the system. This is more cost effective than

redeveloping the software from a new specification.
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Chapter 1

Introduction

Over the past few years it has become cost-effective for organisations to develop products
which can easily adapt to changes in the requirements. This has caused organisations
to re-address the question of software development and, in particular, that of software
maintenance. Maintenance is defined as the "modification of a software product after
delivery to correct faults, to improve performance or other attributes, or to adapt the
product to a changed environment” [1]. It can be seen as work carried out upon a developed
system to keep up to date with any changes necessary. As the system ages, maintenance
develops into a continuing process and becomes a major concern for organisations as more

time and effort is needed to maintain the system.

Software maintenance activities are often divided into four categories (see [2] [66] [73]):

1. corrective maintenance: performed when the software does not conform to its

specification (for example, fixing bugs discovered upon running a program).

2. adaptive maintenance: performed on a software system when its environment

changes (for example, a new version of the operating system is introduced).

3. perfective maintenance: needed when requirements of the software change (for

example, tax program changed to reflect new tax laws).



4, preventive maintenance: work carried out in anticipation of future malfunctions
and to improve maintainability. This differs from the other categories since it is not
a direct response to a user’s request and some authors do not include it in this list

of categories (see [52] [78]).

Lientz and Swanson [51] quantified the amount of effort spent in each area. The distribu-

tion is as follows:

Perfective 50%
Adaptive 25%
Corrective 21%
Preventive 4%

The large proportion attributable to perfective maintenance is mainly due to the fact
that, to maintain their competitive edge, companies release new products quickly without
thinking of the future possible changes in the requirements. Hence software cannot be

modified quickly, easily and reliably, resulting in serious delays to changes in the software.

Organisations must now focus on developing products which are easier to maintain, i.e.
products which are more maintainable. Maintainability is the quality which identifies how
maintainable software will be. Longstreet defines it as "the effort required to find and fix
or modify an error in operational software... the effects of software failure, and ways to

minimize those effects”[55].

Maintainability is a very desirable quality in products where precision and correctness
are of prime importance. Safety-critical systems are examples of such products and the
need for accuracy in these cases has led to the use of formal methods. Formal methods
involve the specification of a system represented with strict mathematical notation and
the development of lower levels from this, so that code can be formally linked with its

specification.

The use of formal notation has provided a new means for producing accurate code and
has led to the evolution of a number of formal specification languages and development

techniques (e.g. Z, VDM). These methods have often focussed on carefully identifying



the requirements of the system and the first implementation of that system, but have
not considered the possible implications of changes in the requirements. Having spent so
much effort on the production of such accurate systems, it seems a waste to completely
re-develop a system according to requirement changes and necessary enhancements. It is

this idea which led to the research in this thesis.

The thesis describes a new method which formally specifies and implements code with
a view to future adaptations of the system (in other words, aimed at perfective mainte-
nance). By producing software which is easy to change, industry can eliminate many costs
needed to reimplement a system and save a lot of time and effort. The method described
here uses program transformations for forming a refinement path which can be re-used
when necessary. A transformation is defined as the "formal step in which a program is
converted to an equivalent with identical semantics” [12]. The transformations used by
the method originate from Ward’s thesis[82] and many have been implemented in a tool
called the Maintainer’s Assistant [84] for the purposes of restructuring code. The method
uses these transformations for refinement, ”a set of techniques to guide and control the
process of producing a piece of software from a description of it; an implementation from
a specification” [89]. Chapters 2 and 3 will provide further descriptions of these areas so
that the method itself can be understood. This chapter will identify general problems of
maintainability and cover basic techniques used in software maintenance which are also

connected to this particular research.

1.1 Problems of Maintainability

Problems associated with producing maintainable software have been outlined by Brooks
[21] and McDermid [58]. One of these is the complexity inherent within software due to
the need to interface complex engineered systems and social or organisational systems;
that is, the complexity is due to the complex systems it describes. Also, software can be
complex at times when no regular structure exists or a system is so large that no single

individual can understand it in its entirety.

Another problem lies in the difficulty of establishing and stabilizing requirements. This is
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due to users not being able to:

1. know exactly what they want,
2. realize the full limitations and capabilities of computer systems,
3. effectively communicate their needs to the requirements analyst, and

4. provide the complete list of details to produce the system required.

Another cause of this problem is that often requirements need altering due to changes in
the environment and to users wanting functional enhancements of the system, even during

development.

A third problem lies in the fact that it is important to understand the thought processes
which went into writing a program and there are intellectual difficulties in establishing
the relationships between different views and perspectives of a program. This can be
called a problem of ”invisibility” since the programmer’s ideas and points of view are not
explicitly written down and there is no known way in which to retrieve this information.
This problem, like many in the area of software engineering, eventually reduces itself to

one of intuition and psychological understanding on behalf of the maintainer.

A further problem is caused by the malleability of software. It is deceptively easy to write
and change small programs but when these are part of a large system difficulties arise
due to the interaction between different parts of the system. A programmer might wish
to make changes to a program without realising the effect this will have on several other
programs within the system. This causes an inordinate amount of time and effort to be

spent making the necessary adjustments and then testing the software.

A final problem is that systems are often created in different problem domains; every
time a new system is developed in a new problem domain a new theory needs to be
established. While most engineering disciplines involve the application of existing theory
to the development of a new system, software engineering usually involves the development

of new theories.

Having analysed the problems that software can undergo, it is evident that a key factor in

11



solving these problems (and ending the software "crisis”) would be to find methods and
means to improve and maintain the maintainability of software when it is first written.

Issues concerning a possible solution to this will be discussed in later chapters.

1.2 Techniques

Most maintenance activities occur as a result of requests made by the user for alterations
to the developed system. There are a variety of strategies and techniques available which
can aid these activities. Areas of research involving these include reverse engineering,

restructuring, reengineering, metrics and artificial intelligence.

1.2.1 Reverse Engineering

The word reverse engineering originates from the analysis of hardware. In a paper on
the reverse engineering of hardware, Rekoff defines it as "the process of developing a set
of specifications for a complex hardware system by an orderly examination of specimens
of that system” [74]. It is this usage of the term which has been directly translated for
software (for instance, Chikofsky [25]).

In software development, the term forward engineering has come to mean the process
of moving from the design of the system to its physical implementation. Hence reverse
engineering is defined as the opposite to this, that is as the "process of analyzing a sub-
ject system to identify the system’s components and their interrelationships and create
representations of the system in another form or at a higher level of abstraction” [25]. Con-
trary to some people’s belief, reverse engineering does not involve changing the system or

creating a new system from the reverse engineered system.

There are several subareas of reverse engineering, two of which are commonly referred to as
redocumentation and design recovery. Redocumentation is the simplest and oldest form of

reverse engineering and is defined as the "creation or revision of a semantically equivalent

representation within the same relative abstraction level” [25]). Tools which can perform

12



this include pretty printers, diagram generators and cross-reference listing generators.

According to Biggerstaff, design recovery "recreates design abstractions from a combina-
tion of code, existing design documentation (if available), personal experience, and general
knowledge about problem and application domains” [13]. He goes further to insist that
design recovery must “reproduce all of the information required for a person to fully un-

derstand what a program does, how it does it, why it does it, and so forth.”

1.2.2 Restructuring

The term restructuring comes from code-to-code transform that takes an unstructured
program and converts it into a structured form. It is defined as the "transformation from
one representation form to another at the same relative abstraction level, while preserving

the subject system’s external behaviour (functionality and semantics)” [25].

Thus it is no longer confined to structuring code as it also covers the reshaping of data
models, design plans and requirements structures. A tool which can currently aid the
process of restructuring is the ”Maintainer’s Assistant”, a transformation system developed
at the University of Durham where transformations are applied to unstructured code to

derive its equivalent in a structured form. This system will be described in more depth in

the next chapter.

1.2.3 Reengineering

The term reengineering is also known as renovation or reclamation and is often confused
with the previous terms since it actually involves a form of reverse engineering followed by
some form of forward engineering or restructuring. Reengineering is defined by Chikofsky
and Cross II as the "examination and alteration of a subject system to reconstitute it in

a new form and the subsequent implementation of the new form” [25].

Another definition of reengineering can be found in Garnett and Mariani’s paper on soft-

ware reclamation and this states that "reengineering refers to the identification of compo-
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nents within existing systems possessing reuse potential and qualifying them according to
some reuse-oriented specification technique” [36]. They go on to refer to reuse reengineer-
ing as the ”construction of new systems by reusing information from foregoing ones”, an

- approach which they also call ”software reclamation”.

1.2.4 Metrics

One important area of software maintenance is the use of metrics to provide a comparative
measure by which software can be made characteristically maintainable at each iteration
of the development process. Metrics integrate maintainability into developing software
by identifying high risk areas in the code. This is done by evaluating software according
to specific criteria and by producing a quantitative measure on a static scale. In other
words, metrics assess the complexity of a procedure by comparing it to other procedures

evaluated in the same manner.

Once problem areas are identified, actions are taken to reduce the complexity of the code
through further abstraction or reimplementation and to test high risk areas so as to uncover
existing errors. Metrics can be described as predictive, e.g. when they are used to foretell

the future by predicting costs, etc., or descriptive, e.g. the use of complexity measures.

According to Conte [27], metrics can be classified as either process or product metrics.
Process metrics will ”quantify attributes of the development process and of the develop-
ment environment” [27] while product metrics are ”measures of the software product” [27]

and are the type of metric usually referred to.

In the method described in this thesis, product metrics are used to assess the maintain-

ability of the code which has been developed. There are three main forms of product

metrics:

1. code metrics

2. structure (or coupling) metrics

3. hybrid metrics
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Code metrics determine the complexity of a procedure by analysing the amount of infor-
mation within a procedure or by assessing the logical complexity of the code [50] [43] [46].
Structure metrics examine the relationship between a section of code and the rest of the
system [43] [50]. These are also known as coupling metrics [46] or design metrics [10). Hy-
brid metrics combine the internal view of a procedure with the measure of communication

connections between that code and the rest of the system [50].

There are many different metrics but the research described here used only three types of
code metrics for the assessment of the maintainability of the code. These can be described

as follows:

1. Lines of Code

This is a measure of how many lines of code exist in a given procedure: the more
lines of code, the more complex the procedure [50]. A line of code is generally defined
to be "any line of program text that is not a comment or a blank line, regardless of

the number of statements or fragments of statements on the line” [27].

2. Halstead’s Software Science
This is also known as Halstead’s Effort Metric and was devised in 1977 [50] [43] [57]
[10] [78] [27]. This involves the count of operators and operands in a procedure and
the following initial values are established:
(a) nl = number of unique operators
(b) n2 = number of unique operands
(¢) N1 = total number of operators

(d) N2 = total number of operands
From these another set of values can be calculated:
(a) Vocabulary Size: n = nl+ n2

(b) Length: N = N1+ N2

(¢) Program Volume: V = N X log,(n)

(d) Program Level: L = (2/nl) x (n2/N2)

(e) Language Level: A= LZx V

15



(f) Effort: E= V/L

The Program Volume is a measure of the size based on the length of implementation
and the size of the vocabulary and the Program Level is an estimate of the level
at which an algorithm is implemented. This level is inversely proportional to the
program difficulty: the lower the level, the more difficult it is to implement the algo-
rithm. The Effort is a quantification of the effort required to generate implemented

code.

3. McCabe’s Cyclomatic Complexity Number

This was described in McCabe’s paper [57] [50] [43] [46] [78] [27]. It is a count of
independent logical paths through a procedure and is based on graph theory. That is,
the procedure is represented as a strongly connected graph from which measurements
.are taken. Each node in the graph represents a sequential block of code and each
edge a logical branching point through the procedure.

From the graph, a calculation of the maximum number of linearly independent cir-

cuits (i.e. the cyclomatic number) can be made:
V(G)=E-N+2

where G is the graph, V(G) the cyclomatic number, E the number of edges and N

the number of nodes.

1.2.5 The Use of A.L in Software Maintenance

The use of Artificial Intelligence has been increasing in the field of software maintenance
over recent years. Techniques within this area promise great improvements in program-
ming productivity and reliability and developments in knowledge representation and au-

tomated reasoning have occurred througﬁ this. An excellent source for papers on this

subject is [75].

The main aim is to develop a form of automatic programming so that the user need only

say what he wants and the program would be developed automatically. An ideal solution
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would be for the user to state requirements which could automatically be transformed into

formal specifications and from these specifications into code.

The most active area in developing such techniques is the field of program transformations.
Since this is such a large area and most of the work proposed by this report is based upon
the subject, it will be described extensively in a later section. For other surveys of this

area see [69] [34].

Another active area of artificial intelligence research is in techniques for automatically
determining theorem proofs [15] [91]. There are two main forms of this: deductive program

synthesis and program verification.

Deductive program synthesis is "based on the observation that constructive proofs are
equivalent to programs because each step of a constructive proof can be interpreted as a
step of computation” [75]. Constructive proof aims to provide a method for finding an
output corresponding to any given input. At present it is only possible to produce small
programs from specifications written in logical languages from deductive synthesis since

large programs involve large proofs which current theorem provers cannot as yet deal with.

Program verification uses theorem provers to verify that a program satisfies its formal
specification. Again this is limited by the fact that theorem provers cannot yet deal with
large proofs. Two approaches have been taken to deal with this. The first is that the
prover is given some knowledge about programming areas in the form of lemmas and the

second is to allow human interaction to guide the theorem prover.

Allowing human interaction has, in fact, assisted most applications of A.l. to software
engineering. Since automatic programming is still not possible, artificial intelligence tools
aim to provide assistance to the programmer rather than to replace them. Two of these
”assistants” are the Designer/Verifier’s Assistant [60] and KBEmacs [87], which uses a

knowledge base of standard programming forms in programming construction.

The Designer/Verifier’s Assistant was developed by Moriconi in 1979. Since it investigates
changes made at a design and specification level in addition to program verification, a
detailed study of his work was made so that any useful ideas relating this to the work

presented by this thesis could be identified. The following section is a critical analysis of

17



the paper he wrote describing the Designer/Verifier’s Assistant.

No work seems to follow on from this until Moriconi’s second paper, published in the IFEFE
Transactions on Software Engineering [61]. Since this also has implications involving the

thesis, a critical analysis will also be made of this paper.

A third paper related to the method is a very recent one by Ira Baxter [8]. This also
involves changes made at the design level and the approach illustrated is similar to that
described by this thesis. It also deals with transformation systems and the tracing of
design paths from specification to code. The fact that this approach could be successful

and that a thesis was accepted on this topic validates and supports the work presented

here.

1.3 Critical Analysis of Moriconi’s Papers

1.3.1 A Designer/Verifier’s Assistant

This paper describes the first prototype of a system called the Designer/Verifier’s As-
sistant which reasons about changes to the design of a system. It represents a theory of
Moriconi’s concerning the development and maintenance of large formally verified systems.
The problem which he was trying to solve in 1979 still faces the computer industry today
and is the one which prompted the development of the method proposed by this thesis.
The solution which he proposed was novel but unfortunately the theory was impractical

and too vague for a full system to be implemented at that time.

Moriconi recognized that specifications, programs and proofs involving a system gradually
build up and need frequent revision, so that "developing and maintaining formally verified
programs, especially large ones, is an incremental activity... Consequently, one is faced
not only with the problem of constructing this data, but also with the complex problem

of determining the effects of incremental changes to it.”

His proposed solution was to develop a system which parses programs and specifications
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1. Suggest fully defining ExchangeSort — Explain
2. +— What are the effects of fully defining ExchangeSort?
ExchangeSort may have additional VCs.
3. «— What are the effects of changing the exit assertion of ValueOfMax?
No effects on ValueofMax. The verification of other programs is not affected.
4, — Why?
No effects on ValueofMax because it is {or specifications only and does not have VCs. No external
effects because properties from ValueOfMax have not been used in proving any VCs.

5. «— What are the effects of changing the exit of IsPerm?
No effects on IsPerm. The verification of other programs is not affected if the formula

Changed ezit specification = all Z : IntArray, IsPerm(Z, Z)

is true. If not, the change invalidates the verification of ExchangeSort.

6. «—— Why?
No effects on IsPerm because it is for specifications only and does not have VCs. Invalid verification
because a property from IsPerm has been used in proving ExchangeSort#1.

7. «— Done

8. Suggest fully defining ExchangeSort — Edit

Figure 1.1: Dlustration of dialog with Assistant

and could also generate and prove verification conditions, logical formulae used to ascertain
that a program is consistent with its specification. The system also needs an "understand-
ing” of the kinds of structures which can be changed or added and the ways in which they
interact. It must be able to apply its "knowledge” to integrate new or changed information
into the model of the system so that previous work remains valid. To understand more
clearly what Moriconi means by "understanding” and "knowledge”, a reproduction of his

description of an actual scenario from the middle of a session will be presented here.

The example used is a sorting program which is being ”incrementally designed and ver-
ified”. A sequence is illustrated of three events which typically occur for each set of
revisions. First, the user converses with the Assistant to gain an understanding of the
effects of the changes which he might make. He makes these changes and fits them into

the current model while keeping intact previous work that remains valid.

Figure 1.1 shows how the system would appear just after the program ExchangeSort
has been partially defined and proved. The Assistant suggests completing the definition
of ExchangeSort but instead of following this suggestion, the user uses the Assistant to

see the effect of intended changes by typing ”Explain”.
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9. Suggest fully defining ExchangeSort — ReadFileOfChanges.Sort

function ExchangeSort(A : IntArray) : IntArray =
begin
entry N ge 1;
ezit(all [ : int,
Iin[1..N] = EzchangeSort(A)[l]
= ValueOfMaz( EzchangeSort(A),1,I))
and IsPerm(A, EzchangeSort(A));
var B : IntArray .= 4;
var K :int .= N;
keep K in[1..N];
loop
assert(alll i int, I in[K +1..N] = ValueOfMaz(B,1, I})
and K in[1..N]and IsPerm (A4, B);
if K =1 thenleave end;
B := Ezchange(B, LocationOfMaz(B,1, K), K);
K:=K-1,
end;
result .= B;
end;

function ValueOfMaz (A : IntArray; I,J : int) : int =
begin
exit(allk :int,kin[l..J]and I in[1..Njand J in{1..N]
= A[k}le ValueOfMaz(A,I,J)) and..;

end;

function IsPerm(X, Y : IntArray) : boolean =
begin
ezit(all Z : IntArray, [sPerm(Z, Z))
and(all Z : IntArray,
[ IsPerm(X,Z) and IsPerm(Z, Y) = IsPerm(X, Y));

end;
[ function LocationOfMaz (A : IntArray; I,J : int): int =
begin
entrylin[1..Nland Jin[1..N]andIle J;
ezit LocationOfMaxz(A,1,J}in[l..])]
and A[LocationOfMaz(A,1, J)] = ValueOfMaz(A,1,J);
pending
end;
function Ezchange(A : IntArray; I,J : int): IntArray = ...;
| function IsExchanged(A,B : IntArray; I, J : int) : boolean = ...;

10. Exec — Suggest

Figure 1.2: The changed function (changes are indicated by brackets).

20



11. Suggest generating new VCs for ExchangeSort — §
Tracing new path in loop
Assume loop assertion

(all I41 : INT, I#1in[K +1..N]
= B[I#1] = ValueOfMaz(B,1, [#1))

and K in [1..N]
and IsPerm(A,B)

Generating new verification condition ExchangeSort#4

End of path
Unaffected VCs: ExchangeSort#1, ExchangeSort#2, ExchangeSort#3
12. Suggest proving VC called ExchangeSort#4 —

Figure 1.3: Impact of changes on ExchangeSort.

After seeing the potential effects of different kinds of changes, the user types "Done” and
the user can invoke a text editor using "Edit”. After the editing has finished, the Assistant
needs to verify the altered version of ExchangeSort. Figure 1.2 illustrates the new version of
the function, with brackets around the parts which have been changed. The user can then
see the impact of these changes (see figure 1.3) by accepting the Assistant’s suggestions for
generating new verification conditions. The user can carry on the development by having

these new verification conditions proved.

As there are many directions which the development can follow, the Assistant has a mech-
anism for providing reasonable suggestions for the next step in design and verification.
This suggestion mechanism assigns priorities to tasks and a scheduling policy chooses the

highest priority task and suggests it to the user.

In addition to generating and proving verification conditions, the Assistant also builds a
model of the key parts of a program’s design and verification and their relationships. This
model is a collection of three models for each task performed by the overall design and
verification; parsing and type checking, generating verification conditions and theorem

proving. Examples of these models can be seen in the paper. The general model for the

scenario displayed in figures 1.1 to 1.3 is also displayed.

Moriconi’s paper concludes with experiences in using the Designer/Verifier’s Assistant.

He maintains that both its utility and the amount of computational efficiency grow pro-
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portionately with the size and complexity of the program being developed. However,
although the tool reasons at the appropriate level of detail, sometimes it would be better
for analysis to take place individually rather than by category (as it does now) and for

more structuring in explanations.

A method of change where the effort required to make the change is not proportional to
the size of the system would have an advantage over Moriconi’s approach. The method

described in this thesis has that objective and will be described in more depth later.

1.3.2 Approximate Reasoning About the Semantic Effects of Program
Changes

This second paper by Moriconi [61] describes a logic for finding the semantic effects of
changes through a direct analysis of the program. ‘This logic is called approzimate since
weak results are sometimes inferred. The approximation is based on the structural in-
terpretation of the information-flow relationships among objects in the program. ”"Infor-
mation flow” between objects x and y occurs if a change in the value associated with
x changes the value associated with y. Reasoning about the semantic effects of changes
is based here on whether any information flows between objects (and not on how much

information flows).

The paper briefly describes the characteristics of this logic before comparing the work to
other work involving the semantic and structural analysis of programs. In 1972 Floyd [35]
described an imagined interaction between a programmer and formal verification system
which allowed the computer to maintain the consistency of specifications, programs and

lemmas following incremental changes.

Moriconi developed a technique from this in 1979 [60], as discussed earlier in section 1.3.1.
This, as are most verification systems, was based on Hoare logic (see [40]). A proof of
a program in Hoare logic is a sequence of steps where each step is either an instance of

a Hoare axiom, a Hoare sentence derived from a previous step by rule of inference or a

theorem in the underlying logic.
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The remainder of the paper focuses on information-flow, which is outside the theme of the
thesis and so will not be described here. The main interest here is that work from Mori-
coni’s earlier paper is extended and that logic is being applied to software systems. The
application of formal mathematics to the development of systems is a major component

of the method and will be described later.

1.3.3 Problems

A Designer/Verifier’s Assistant

As this work appears not to have been developed further, it is important to assess those
problems which prevented this. This will help the development of the method described

in this thesis.

First, the Assistant deals with program specifications, a relatively new area at the time.
Not many formal methods had been devised and the notation used by this paper resembles
short sentences in natural English combined with Pascal. This specification language does
not have a rigorous mathematical basis which implies that reasoning is vague and no proofs

can be determined. The validity of these specifications is questionable.

Second, the specification language uses constructs found in Pascal which could cause
confusion during refinement stages. In fact, these stages cannot be determined exactly
since some of the specification can be directly translated from its "Pascal” format while
the rest needs to be converted from English to a programming language. This mixture
of accuracy and ambiguity does not provide a strong basis for deriving programming

languages.

Another problem is that the effects of change are determined by the setting of design
and verification flags. This was a popular method used in the past for verification work
which has become outdated. Although the flags provide some guide to impact analysis
(the investigation of how changes to variables affect other variables, functions, predicates

and modules), they do not provide any details of the variables, procedures, modules or

designs in question.
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Finally, the paper needed more examples for illustrating the work. The examples which
Moriconi does provide are limited and do not adequately portray the abilities of the
Designer/Verifier’s Assistant. It is difficult to understand from the paper what sort of

examples would work with this tool and how the tool replies to questions in such clear

English.

Approximate Reasoning About the Semantic Effects of Program Changes

Moriconi’s paper which has just been discussed ends with a description of further work
which would be to "evolve a general mathematical framework that explains how to build
and extend incremental systems, such as the Assistant”. The work in this paper appears

to do just this but there are a few problems which can be found here as well.

A major problem is the introduction to the logic and the way in which it fits into prior
work in information-flow. Pieces of information concerning the logic appear throughout
the opening sections with no apparent order. The inference rules are also presented in a
confusing manner since it is only at the end of the paper that the main elements of the

logic are described.

However there are few real problems with this work and the examples of the use of the
logic at the end give a good grasp of how the logic can work. The main work in deducing
the effects of program changes lies in a form of impact analysis. To reason more accurately
about the changes it would be necessary to extend this work so other changes can be made
(i.e. to functions and predicates as well). Reasoning about larger changes could just imply

a recursive extension to the logic or added features. The work in this thesis might be able

to involve this in some way.

1.4 Critical Analysis of Baxter’s Paper

This analysis is of a paper written by Ira D. Baxter [8] which was published in April 1992
and is based upon a PhD thesis written by Baxter in November 1990. A description of

the paper will be given followed by any problems which can be identified. Conclusions as
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to the applicability of the three analysed papers to the research detailed by the thesis will

follow this section.

1.4.1 Design Maintenance Systems: A Summary

This paper suggests that the main objective for the upkeep of systems is design mainte-
nance rather than software maintenance, where design maintenance means the updating
of design information as changes are made to the system. The article sketches a basic

design for a design maintenance system which attempts to do this work.

The approach to a Design Maintenance System (or DMS) outlined here involves several
important factors. First, the software system must be formally specified as must be the
maintenance deltas integrated within it. A maintenance delta is an expression representing

desired changes in the program functionality, performance and implementation technology.

Second, the implementation of a DMS must be derived from transformations which, ac-
cording to Baxter, are the applications of transforms at certain places called locators. A
transform is any function which maps programs into programs while a locator is the place
in the program where the locator is applied. The denotation for a transformation with

transform ¢ and locator [ is t'.

Other important factors are that a justification exists to prove that the implementation
truly solves the problem stated by the specification and that tools exist for modifying the
design justification. In summary, this approach needs to ensure that the design is correct
and that alterations can be made at this level rather than the implementation level, with

a set path of transformations producing code which corresponds to the design.

The application of transformations is controlled via a library of heuristic methods coded
in a Transformation Control Language (TCL). Each method formally relates a design plan
to a design purpose and a set of such methods can be used to decompose the specification
into solvable subproblems. Each subproblem will have its own specification and can be

solved by executing the plans from the methods chosen.

Design capture can take place given such a transformation system and a transformational
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planning language such as TCL. The formal specification will describe what is intended
and can be captured easily, while the sequence of transformations will describe how the
generated program was constructed and can be captured as a linear derivation history. The
reason for applying each transformation is captured by storing a trace of the nonprocedural
unfolding of goals during the execution of the TCL methods. This trace is known as the

design history.

In Baxter’s own words, the problem of design maintenance is of "updating the specification,
the derivation history, and the design history in a way consistent with any new desire,
stated as a maintenance delta”. The implementation can then be generated by applying

the same sequence of transformations in the revised derivation history to the specification.

Maintenance deltas appear in two forms: specification deltas, which affect the problem
definition, and support deltas, which affect the implementation of the solution. Most
deltas are specification deltas and are denoted either as Ay, for changes in the system
function, or as Ag, for changes in the desired performance. These specifications deltas
are applied to the current specification to revise the specification component of design

information while support deltas are applied to the transformation system components.

A major problem is the one of integrating the maintenance delta into a design history. The
first design history is constructed by either running a transformational implementation on
a chosen specification or by reverse engineering such a history from an existing system.
It can then be revised according to the delta applied by rearranging and pruning the
derivation history and then pruning away the parts of the design history which are no

longer useful. The TCL methods can regenerate any incomplete part of the design history.

The derivation history is rearranged through two actions: a delay and a preserve ac-
tion. If a particular transformation in the derivation history cannot be preserved then
its application is delayed as long as possible. This is done by swapping it with the next
transformation, an action which depends upon the commutativity of the two transforma-
tions; i.e. whether the effect of performing the first transformation followed by the second
is equivalent to that of the second transformation followed by the first. The ”offending”

transformation continues to be swapped in this manner until it is no longer commutative

with the next and has thus been delayed as far as possible.
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Thus the derivation history is revised by scanning the original from beginning to end,
checking the delta for interference with each transformation. When the transformation
interferes with the desired change it is "banished” (i.e. delayed as far as possible); oth-
erwise it is preserved. The scan stops when neither of the two actions can take place
and the derivation history is then truncated. The delta can then be applied and the

implementation finished using the transformation system itself.

The design history is revised by inspecting its relation to a certain delta and marking
those parts which conflict with the delta. Finding these conflicts depends upon the type
of delta involved and these parts are then removed from the design history, leaving it
incomplete. The pruning of the design history involves removing all portions of the design
history which are marked, every agenda item which depends uniquely on some pruned

agenda item and agenda items which are generated as descendants of those marked.

The pruned plan can be repaired by carrying out actions for incomplete agenda items
which could involve the generation of new agenda items. This involves choosing the earliest
incomplete agenda item, as determined by the ordering constraints in the design history,

and then executing it according to a specific TCL action taken from some TCL method.

The main use for a DMS is the construction of an incremental maintenance system. Deltas
can be applied to only partially completed implementations and new deltas applied as the
implementation grows. A DMS can also be used as the foundation for a reusability system.
Implemented components can be stored in a library together with their specifications and
design histories and a maintainer can choose the component whose specification is near
to his desires. This component can be revised by applying the corresponding delta to the

stored history.

Work which is related to this includes the transformation systems PDS [24] and the Main-
tainer’s Assistant [84]. PDS is a system which keeps derivation histories and rederives
components dependent on changed components. The Maintainer’s Assistant maintains
existing software by reverse engineering existing concrete programs into abstract ones,

applying functional deltas to the abstract programs and reimplementing the abstract pro-

grams.
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1.4.2 Problems

Using design and derivation histories to maintain software is a novel idea and suggests a
useful new approach to solving the problem of software maintenance. Unfortunately the
description of this new technique remains a proposal. There is only one example of how
this might work, added as an Appendix, but this again provides a theoretical approach to

how this method might work rather than how it actually works.

The method can apparently be used with any transformation system but a concrete ex-
ample of how this can occur does not appear in the paper, suggesting that the method
remains theory rather than practice. It would be useful to test this method on an exist-
ing transformation system to show its validity. As it stands, the method remains simply
a "good idea” and much work needs to be done in order to validate it scientifically or

evaluate it from an engineering perspective.

This identifies another major problem with the described method. Transformation systems
vary greatly and the affirmation that this method can be used for any transformation
system needs proof. Work is needed to ascertain which transformation systems can be

involved and how the method must be adjusted in each case.

Another problem is that the method relies upon a design history already existing. This
is often not the case and the problem of recreating one for a specific system outweighs
the problem of changing the system: it is probably more difficult to describe the system
using formal specifications and formally developing the design history than it is to apply
formal changes to the system. The author should have attempted to tackle this problem

first before developing the method for change.

As it stands, the method is a simple one of reusing the design history until it is no longer
valid and banishing any transformations that are no longer useful, adding extra ones to
complete the derivation history. While this appears a good approach, it is remains very
subjective, relying upon the maintainer to truncate the design history when transforma-
tions are no longer valid and to reapply new correct transformations to complete the
implementation. There is nothing to guide the maintainer as to which transformations

should be banished or which should be introduced: it remains entirely based upon his
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judgement.

Furthermore, the method uses a strictly top-down approach. While this allows complete
records of both the derivation and design histories and eases alterations made to both, it
does not always correspond with the thinking process behind software maintenance. When
making changes to a system, a maintainer might use a combination of a top-down and
bottom-up approach for altering the system more effectively. Unfortunately, the method
allows him only to work in the one direction and might involve more work on his behalf

when trying to introduce new transformations or banish unnecessary ones.

However, this allows for a more systematic maintenance of the system and for one which
is easier to trace as more changes are included and the system diverges from the original.
While a combination of top-down and bottom-up approaches might aid the maintainer
initially, eventually the maintainer might not be able to trace which steps allowed the cre-
ation of the new system. If he did, this information still remains unique to the maintainer
in question and other people might not understand how the new system was eventually cre-
ated. This would become a major obstacle for others attempting to maintain the system,

especially if the original maintainer were no longer accessible.

1.5 Conclusion from Papers

The three papers which were analysed provided ideas as to an original method for pro-
ducing maintainable software, that is software which can be easily changed and updated

(this will be discussed in more detail in the next chapter).

Moriconi’s first paper illustrated that knowledge based systems could be used to reason
about changes made to a design or specification. This supported the use of transformation
systems as a basis for a method of change. Also, the models he referred to help to describe
the relationship between sections of code and the specification. Ideas presented for the

Designer’s half of the Assistant could be used to aid work in the development of a method.

The second paper provides ideas on the use of a logic for investigating the effects of program

changes. It was initially hoped that the method could use a similar logic for determining
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the semantic effect of changes, but it was found that this approach was better suited for
changes of variables within the code rather than changes in the specification. The method
currently uses none of the ideas presented in this paper but it is important to keep these

in mind for future developments.

Baxter’s paper is the most relevant to this project since it proposes a method for the
upkeep of systems based upon a design path built from transformations. However, this
method does not appear to have been tested on any real transformation system so its
claim to hold for any transformation system is not proved. In fact, it does not hold
for the transformation system upon which the method described by this thesis is based,
the Maintainer’s Assistant. Baxter’s method of delaying and preserving transformations
proved of no consequence towards the maintenance of the case studies. If a transformation

cannot take place at a certain point, then swapping it with the next will not mean that it

can hold later on.

| 1.6 Outline of Thesis

This thesis will describe a method which assists the perfective maintenance of software
produced using a formal method and uses ideas from the papers described earlier. As the
method uses program transformations for refinement and for improving maintainability,
these will be discussed in Chapter Two of the thesis. This chapter looks at the maintain-
ability of software and how activities in the software life cycle might improve this before

considering the applications of transformations to maintainability.

Chapter Three describes the method for producing maintainable software using trans-
formations in a tool called the Maintainer’s Assistant. A description of how these trans-

formations can be used for refinement is provided and a comparison of different refinement

techniques given.

Chapter Four describes how the method could apply to a simple case study of finding
an integer square root. This problem was originally presented as an example of the use of

a refinement calculus in Morgan’s book, [59]. The effect of changes to the specification is
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investigated for this original development and is compared to the method.

Chapter Five describes how the method works with a larger case study which depends
more upon the organisation of data rather than the functionality of the code. Different
types of transformations are needed to refine this and a comparison is made between this
and the original development of the problem. This case study is the description of a library
system described using Z in a paper by King and Sgrensen, From specification, through
design; to code: a case study in refinement [45]. How changes affect this development
are investigated in the chapter and compared with the development by transformation
approach. The latter will prove more favourable a refinement technique when considering

perfective maintenance.

Chapter Six revises what was learned from the case studies and provides an assessment
of the maintainability of the software in each case. An indication of how the method could

work for more complex case studies is provided.

Chapter Seven is the conclusion of the thesis. This investigates problems which were
encountered while doing the work and how the method will apply for more general situa-
tions. Future work on applying the method to other case studies and the development of

a tool is described at the end.

1.7 Summary

This chapter gave a brief introduction to the field of software maintenance and described
general techniques used to deal with the problem of maintaining large systems. Critical
analyses were made of three papers which used some of these techniques and which pro-

vided ideas for the method described in the thesis. The outline of the thesis concluded

the chapter.
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Chapter 2

Maintainability

The maintainability of a software system is a term which describes how easy it will be to
maintain that system and can be determined before the system is implemented. Accord-
ing to Longstreet, "maintainability examines the effects of software failure, and ways to
minimize those effects” [55]. Identifying all the future problems of a system is difficult

and so one can only hypothesize about the qualities that make a system maintainable.

Maintainability can be classed as either internal or external depending upon whether
attributes of the software product or those of the environment are being considered. Ex-
amples of attributes of the product which make it more maintainable include modularity,
good documentation and structured code. Those of the environment include the skills of

the maintainers and the tools which are available.

In the next section, both types of attributes will be discussed as they figure in the various
stages of the software life cycle. The actions necessary for the production of maintainable
software will be identified as they occur within each stage of the life cycle. Although it
remains difficult to decide which factors would enhance maintainability at such an early

stage, general guidelines for the way in which each activity should be carried out can be

determined.

It is also possible to examine qualities of the software itself and, judging from past main-
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tenance problems, rewrite the code so that it is more maintainable. Issues concerning
maintainable software will be discussed once the activities during the software life cycle

phases which may aid maintainability are considered.

2.1 Analysis Activities

During the analysis stage, a variety of activities enhancing software maintainability include
the development of standards and guidelines, the setting of milestones for supporting docu-
ments, the specification of quality assurance procedures, the identification of likely product

enhancements, the determination of resources required for maintenance and preliminary

budget estimates [32] [27].

The costs of maintenance are difficult to estimate in advance as they vary depending upon
the specific application used. However, for large software systems, the actual maintenance
cost can be said to be approximately four times development costs [78] [10]. Boehm [16]
uses a formula for approximating the cost of software development but this depends upon

the existence of previous data.

According to Somerville [78], there are mainly five external factors which affect the cost:
application support, staff stability, the program’s lifetime, the external environment and
hardware stability. Maintenance costs are also governed by such internal factors as module
independence, programming language and style, program validation and the quality and

quantity of program documentation.

2.2 Design Activities

Design activities can be divided into two parts: architectural and more detailed design.
Architectural design is the ”process of defining a collection of hardware and software com-

ponents and their interfaces to establish a framework for the development of a computer

system” [1].
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The first architectural design activity must be to ensure that the design is clear, modular
and easy to modify. By modular we mean that the design should comprise distinct com-
ponents, enabling a change in one area of the design to not affect any other design areas.
To achieve this ideal design, design concepts such as information hiding, data abstraction

and top-down hierarchical decomposition must be used.

Information hiding and data abstraction involve the suppression of information in some
form or other. Information hiding usually refers to modules in the system hiding the
internal details of its processing activities, especially design decisions that are likely to
change. Data abstraction is effectively a case of information hiding but involves hiding
the data structure, its internal linkage and the implementation details of the procedures

that manipulate it.

Another activity could be to try to determine where changes or enhancements in the
design might possibly take place and to design the system so as to ensure the ease of these
alterations. This could be aided by the further activity of using standardized notations
such as data flow diagrams and structure charts to make the design easier to understand

and to verify for completeness and consistency.

More detailed design includes ”specifying algorithmic details, concrete data representa-
tions, and details of the interfaces among routines and data structures” [32]. Again, a
useful activity would be to utilize standard notations to specify algorithms, data struc-
tures and interfaces. It would also be advantageous for each routine to be documented,
specifying possible side effects and exception handling (the dealing of events which suspend

normal execution of a program).

Finally, a call graph and cross-reference directory should be included; these can provide the

information which determines the routines and data structures affected by modifications

to other routines.
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2.3 Implementation Activities

One of the main goals of implementation is to write source code and internal documenta-
tion so that modification is eased; this can be achieved by making source code as clear and
straightforward as possible. Clarity is enhanced by structured coding techniques, good

coding style, good comments and general documentation.

More specifically, future maintenance will be easier if single entry, single exit coding con-
structs are used, standard indentation of constructs observed and a simple, clear coding
style employed. It will also be improved by symbolic constructs to parameterize software,
by data encapsulation techniques, by margins on resources and by standard documentation

prologues for each routine.

These standard prologues should include details such as the author, date of development,
maintenance programmer and date and purpose of each modification. In addition to this,
one final improvement would be to follow standard internal commenting guidelines when
writing the source code. The following section will describe in more detail the various
implementation activities which will ensure that software is maintainable; i.e. written so

that future modification will be easy.

2.3.1 Maintainable Software

There are certain qualities which software should have to ensure its future maintainability.
If code can be written so that future changes can be implemented easily without drastic side
effects, then it can be termed "maintainable”. According to Boehm et a/[17], maintainable
software must have three characteristics: testability, modifiability and understandability.

All of these depend upon the system complexity and system modularity.

Complexity can either be computational, when it is difficult to prove the correctness of
the code, or psychological, when it is difficult to understand the code. To minimise these
forms of complexity, one can use high level languages, good documentation (meaningful
comments) and standard coding conventions. By following these guidelines, the code

should be easier to understand and hence alter.



Modularity involves the extent to which the system can be decomposed into smaller sec-
tions. Software is more maintainable if it remains as independent as possible but yet
includes comprehensive links within itself which ”glue” it together. Thus one aims to

provide minimum external coupling and maximum internal cohesiveness [26].

According to Longstreet [55], there are a number of constructs which must be avoided

within a section of code to determine its future maintainability. These are:

o Deeply nested DO loops,

o Excessive IF statements,

o Excessive use of global variables,

¢ Excessive GOTO statements,

¢ Embedded parameters, literals, constants,
¢ Self-modifying code,

o Excessive interaction between modules,

e Multiple entry-exit modules and

o Redundant modules.

Having attempted an assessment of what makes software maintainable by looking at it
through the various life cycle activities, it is now appropriate to consider the technique

which the method described by this thesis will use to ensure maintainability; refinement.

2.4 Refinement

Refinement is a technique for developing stricter definitions of specifications and programs
without losing any of the semantics. There are two different refinement processes: op-
eration refinement and data refinement. Operation refinement involves the “refinement

of operations (or, more generally, of algorithms) to produce executable equivalents” [53]

36



while data refinement involves the derivation of a "formal documentation of the relation-
ship between abstract and concrete states” [72]. These two processes usually occur in

tandem but depend upon the refinement technique in question.

There are two forms of refinement technique: refinement methods and refinement calculi
[53]. Refinement methods involve the production of a more concrete version from the more
abstract and a demonstration that the concrete version meets the requirements of the
specification through a sequence of formal proofs. Refinement calculi are based upon the
successive application of provably correct transformation rules and do not require proofs

at each stage of the refinement.

The main refinement methods are the VDM refinement method [42], the IBM Hursley
Park method [45] and the rigorous refinement method for Z [62]. All three follow a sim-
ilar approach: operation refinement is performed stepwise while data refinement involves
showing that the abstract and concrete views of the data are analogous. This is done

by defining a retrieve relation which describes the relationship between the two views in

mathematical terms.

There are several versions of a refinement calculus but the most popular is detailed in
Carroll Morgan’s Programming from Specifications [59]. This is based upon the work of
Dijkstra, Hoare and Floyd and relies on a series of development steps which are dependent
upon a refinement law. All refinement calculi use Dijkstra’s guarded command language

[30] as the final product of the refinement process and the refinement steps are really

formalisations of Dijkstra’s ideas on program development [29)].

Morgan’s book provides a list of the possible refinement laws which can be used for devel-
oping one program into another. It also presents some case studies where specifications
are refined into algorithms which can be easily translated into code. One of these will be

described later for illustrating how the method for implementing change could eventually

work.

A comparison of refinement techniques will be made when describing the method in the

next chapter. Since the method proposes to use transformations for refinement purposes,

these will be described next.
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2.4.1 Program Transformations and Transformation Systems

Program development by the use of transformations is a "method of software develop-
ment in which a program is derived from a formal problem specification by manageable,
controlled transformation steps which guarantee that the final product meets the initial
specification” [7]. In other words, program transformations involve the identification of

changes made to a program which leave it logically equivalent to its original.

Program transformations are useful in software maintenance research as they could identify
ways in which new software might be written so as to achieve ease in future maintenance
of the system. They can also be applied to software that has already been written so that
it can be transformed into a program that will be more easily maintainable or so that

maintenance problems regarding the program can be identified or solved.

Transformations do not necessarily apply to code alone; they can also be involved with the
specifications of the system. Specifications can be "transformed” into sections of code and
vice versa. The achievement of a tool which could do this would benefit maintainability
research immensely; viewing how changes to a specification affect the code could help to

establish a new method for transforming the code into a more maintainable form.

Transformation systems are tools which enable the programmer to transform sections of
code or specifications. The main goals of a transformation system include providing gen-
eral support for program modification (for example, optimization of control structures),
generating a program from the formal description of the problem (that is, program syn-

thesis), adapting the program to different environments and verifying the correctness of a

program [92].

There are many types of transformation systems; some of these will be discussed in their

chronological order.

Burstall and Darlington

Burstall and Darlington were the first to work on program transformations in the mid

1970°s [23] [92]. They produced two systems which are mainly automatic; i.e. the system
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selects appropriate rules through the use of built-in heuristics or other strategic consider-

ations.

The first system was based on a schema-driven method for transforming recursive programs
into imperative ones and used built-in rules such as recursion removal, the elimination of
redundant computations, unfolding and structure sharing. The main goal here was to

improve efficiency.

The second system was designed to manipulate applicative programs by using only six
basic rules: definition, instantiation, unfolding, folding, abstraction and data-structure
”laws”. Other functions can be created by a combination of these rules or by a definition
from the user. The user can enter functions if they are written as a set of equations in a

restricted form of NPL, an applicative language for first order recursion equations.

Balzer

Balzer’s work in the early 1980’s [4] resulted in an implementation system for program
transformations. This system allowed a formal specification (written in GIST) to be sys-

tematically converted into an implementation in three phases: explication, reorganisation

and representation selection.

The explication phase is an attempt to understand the algorithmic structure behind the
specification by converting implicit structures to explicit ones and dealing with any con-
straints. The following phase involves the reorganisation of a program so as to mitigate
computational expense. The last phase is to choose a representation suitable for this

reorganized program.

CIP-S

This system derived from the Munich project CIP (Computer-aided Intuition-guided
Programming) which took place between 1976 and 1983 {7] [22] [68]. The main objec-

tives of this project were to:
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o produce a method for guiding the process of formal reasoning in program develop-

ment,

o design a "wide-spectrum language” in which to write specifications and programs at

any level as well as to carry out transformations,

e develop an interactive system for supporting the evolution of programs.

Thus a transformation system was developed in accordance with the CIP view of inferential
programming (see [7]) and involves the transformational manipulation of program schemes.
These schemes are produced by CIP-L (the wide-spectrum language) and are basically

algebraic specifications for introducing data types.

DRACO

The DRACO system bases its software construction on the paradigm of "reusable soft-
ware”; i.e. the reuse of a library program’s design but not its code [92]. It is an interactive
system allowing the user to refine a problem written in a high-level language into a LISP

program and enabling the user to define his/her own level of abstraction.

TAMPR

The TAMPR (Transformation- Assisted Multiple Program Realization) system supports
Fortran programming at the Argonne National Laboratory [18]. The system performs
transformations within the Fortran language, aids in the translation of Fortran to Pascal

and transforms LISP programs into Fortran ones.

ZAP

The ZAP system and language was devised by Feather [33] and is based on the fold /unfold
work of Burstall and Darlington mentioned previously. The ZAP language is a language
for expressing transformation and developments but cannot express higher level means of

structuring developments; these need to be applied informally.

40



REFINE

REFINE is a programming environment which includes a high level executable specifica-
tion language, a specification language compiler, an object oriented database, an editor
interface and tracing and debugging tools [65]. The tool converts code into design, provid-
ing an electronic path between code and its corresponding design language. It also allows
the maintainer to edit the structure chart, cut and paste the code and generate high level

documentation to describe the code structure.

The work of Burstall and Darlington and the project CIP were the main influences on the
transformation system upon which this research is based: the Maintainer’s Assistant
(described in the next section). Ideas which particularly led to the development of the

method for producing maintainable software are:

the use of a system with built-in heuristics for transforming programs (Burstall and

Darlington)

e improving efficiency with a schema-driven method for transforming programs (Burstall

and Darlington)

e manipulating programs by combining rules or introducing new definitions (Burstall

and Darlington)
e developing a method for guiding formal program development (CIP)

e using a "wide-spectrum-language” to represent many levels of specification and pro-

gram (CIP)
e using the above language for performing transformations (CIP)

¢ using an interactive system for “evolving” a program (CIP)

2.4.2 The Maintainer’s Assistant

The Maintainer’s Assistant is a system developed by a reverse engineering project

called ReForm which involved the University of Durham, Durham Software Engineering
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