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THE APPLICATION OF SEDIMENTOLOGICAL ANALYSIS AND 
LUMINESCENCE DATING TO WATERLAIN DEPOSITS FROM 
ARCHAEOLOGICAL SITES 

Romola Parish 

The thesis follows an interdisciplinary approach combining sediment analysis and 
luminescence dating of sediments from selected archaeological sites. The work 
aims to assess the role of sediment analysis for luminescence dating, and the 
potential of TL and IRSL for dating waterlain material of Holocene age. 

A comparative chronology based on radiocarbon, stratigraphic and 
archaeological grounds is important. However, the viability of comparing different 
dating techniques is considered in the light of the dating results. 

The novel IRSL and established TL techniques were shown to successful for 
dating waterlain sediments, provided that a suitable light source is used for 
laboratory bleaching. Age comparisons between the luminescence techniques 
was excellent. Disparities between luminescence and C-14 ages is largely 
explained on a sedimentological basis. 

The role of sediment analysis is shown to be of great importance for luminescence 
dating. Certain sedimentological and luminescence characteristics are shown to 
be closely linked. The relationship between undated sediments affected by 
instability or low intensity of signals, and weathering in the strata from which the 
samples were taken is tested by experiment. This demonstrates that weathering 
of feldspars in the stratum severely affects the luminescence signals and therefore 
the potential for dating these samples. This represents a step towards the 
recognition of problematic samples in the field. 

In conclusion, it is shown that luminescence is suitable as an absolute dating 
technique for a wide variety of inorganic sedimentary material between 0-200 000 
years old. This exceeds the C-14 technique both in range of material and in age 
limits. The main source of error is associated with variations in water content, 
which with the recognition of the significance of weathering, demonstrates the 
importance of sediment analysis in support of luminescence dating studies. 
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CHAPTER 1 INTRODUCTION 

This thesis comprises an interdisciplinary study of the relationships between sedimentological 

analysis and luminescence dating of selected waterlain sediments taken from archaeological 

contexts. The project aims to test the viability of luminescence dating of waterlain sediments of 

Holocene age, and explore the ways in which sedimentary analysis of the strata being dated can 

aid the selection of samples of greatest potential for dating. Sections 1.1 and 1.2 are general 

introductory summaries outlining the context of the research. Detailed discussions and references 

are given in later chapters. 

1.1 Sediment Dating. 

The establishment of absolute chronologies in Quaternary studies and archaeology is vital for the 

accurate interpretation and correlation of events of environmental change and anthropogenic 

activity. The advent of radiocarbon dating in 1955 enabled absolute dating (based on a calibrated 

method) to be applied to organic materials within the archaeological timescale up to c.60 000 years 

ago. Radiocarbon dating has also facilitated the construction of curves of sea-level rise during the 

post-glacial period as in the East Anglian Fenland, (Shennan, 1985a,b) and 'tied down' floating 

chronologies based on archaeological artefact typology. Radiocarbon is still the most common 

method of dating both in archaeology and in more recent Quaternary studies. However, 

luminescence dating of sediments has the potential to rival radiocarbon in importance in the future. 

This is due to two main reasons: luminescence dating techniques can be applied to a wide range of 

inorganic sedimentary deposits which are unsuitable for radiocarbon dating, and the techniques 

cover a much greater timespan, up to 200 000 years at present. 

In addition to the reasons stated above, luminescence dating can potentially be of greatest value 
~- ~ .. 

to archaeology during thE: .!erst: v1/1i 1\e-vi(uvi/\.: BC, where the radiocarbon calibration curve is at its 

flattest. Here, luminescence can replace radiocarbon dating, and provide a more accurate 

chronology. The accuracy of luminescence dates is generally around 10% of the age, but in 

certain sediments, as discussed in Chapter 5, accuracies of 20% of the age may still be acceptable. 

The development of other scientific dating techniques has enabled an increasing range of 

sediments and contexts to be dated, such as U-Th on calcite over time spans of 50-500 000 years 

with accuracies of ± 1 0% (Edwards et al, 1987) and K-Aron volcanic material over timespans of 

1000-30 000 years,± 1000 years (Gillot and Cornette, 1986). To this suite of absolute dating 

techniques, luminescence can provide a valuable contribution. 



Luminescence dating can be applied to most inorganic sediments, provided they have been 

exposed to heat (eg. tephra) or light (eg. loess) before burial. The techniques most commonly 

date the quartz and feldspar minerals in deposits, whose luminescence behaviour is relatively well 

understood. The almost ubiquitous presence of these minerals in sedimentary deposits and on 

archaeological sites means that most inorganic materials are potentially suitable candidates for 

dating. 

Luminescence dating has approximate age limits of 0 to c. 200 000 years although claims ·~iJlllcwe. 

recently bee~<? made for dating back to 1 Ma (Berger, 1992), depending on the radioactivity in the 

local enviroment. Luminescence techniques therefore overlap the whole radiocarbon age range, 

and also overlap the ranges of other absolute techniques applied to the earlier Quaternary, such as 

Electron Spin Resonance (ESR) which is related to luminescence in that it measures the electric 

charge that has accumulated in crystals, usually of calcite and tooth enamel; K-Ar and magnetic 

polarity methods. These tect.~1_i7u~J.Sare applied to the oldest sites of human evolution in Africa, 

where the application of luminescence dating would potentially be of great value as an additional 

absolute dating technique. Of primary concern in this project is the contribution of luminescence 

to the Holocene (last 1 0 ka) as an additional techique to radiocarbon and to replace it where 

appropriate. 

All absolute dating techniques have problems in terms of the accuracy of dates and sources of 

error. In order to assess the value of luminescence in the dating of sediments of Holocene age 

when other archaeological and radiocarbon techniques are more firmly established, a comparative 

chronology is needed to detemine the accuracy of the newer techniques. This project tests the 

viability of luminescence against established chronologies for a selection of sites. Below, a brief 

outline is given of luminescence dating in order to introduce the aspects which are most relevant to 

this study. 

1.2 Luminescence Dating 

Luminescence dating techniques were first established for burnt clay materials, particularly pottery. 

The techniques are based on the measurement of trapped electrons derived from the decay of 

naturally occurring radioisotopes. Natural sources of radiation include U, Th and K-40 which occur 

naturally within the soil or sediment environment. These isotopes emit ionizing radiation and 

electrons as products of decay which are trapped in defects in the crystal structure of the minerals 

in the sedimentary environment. 

The trapped electrons are evicted when the sediment is heated, as in the process of firing pottery 

or as a result of volcanic activity, or exposed to light, eg. during the transport and deposition of 

2 



sediments. The crystals are then said to be 'zeroed' with respect to trapped electric charge, as 

following eviction, the electrons recombine with 'holes' in the crystal structure (see Chapter 5) 

giving rise to the emission of light (the luminescence signal). 

The rate of accumulation of electrons in the crystals of the minerals is controlled largely by the 

degree of radioactivity in the soil and the length of time in which the crystal has been exposed to 

that radiation field. The age of the sediment is estimated from the amount of trapped charge. This 

is measured by the intensity of the luminescence signal and determined by the Equivalent Dose 

(ED), which is then divided by the dose-rate (DR); ie. AGE= ED/DR. The ED represents the 

amount of artificial radiation dose given to the sample which gives rise to a signal of the same 

intensity as that in the natural samples. The dose-rate is the annual radiation dose from the 

sedimentary environment. 

Laboratory measurements of the accumulated radiation dose since zeroing are made by heating 

the sample (TL or thermoluminescence) or exposing the sample to artificial light sources (OSL, or 

Optically Stimulated Luminescence). In OSL, the light sources used are generally either a green 

argon-ion laser (514.5 nm) or infra-red diodes (880.:i80 nm). The latter is known an Infra-red 

stimulated luminescence (IRSL) and was used in conjunction with TL in this study. Both TL and 

optical signals are sensitive to optical bleaching and are suitable for sediment dating. 

There are, however, problems in the application of luminescence dating to sediments, which affect 

the accuracy of age determination. Those problems which most concern this project are those 

related to the bleaching of the luminescence signal by sunlight prior to burial of the sediment; to 

the past water-content of the sample and to the effects of post-depositional change on the stability 

and intensity of the luminescence signal over the time spans involved. The first and second 

problems have been investigated to some extent during the development of luminescence dating 

of sediments, and are discussed fully in chapters 3 and 5; the final problem has not been 

subjected to such detailed investigation, and is an important part of this study. These elements are 

outlined briefly below. 

In the dating of sediments by luminescence the bleaching of the signal by sunlight during transport 

and deposition is fundamental to the technique. For windblown sediments the particles have 

usually received sufficient light exposure to be well-bleached at deposition, leading to the success 

of the luminescence dating of loess and dune sands. For waterlain material, however, the sunlight 

spectum may be attenuated by water depth, turbulence or suspended sediment load. This may 

result in some particles not receiving sufficient exposure to light to have bleached the total sunlight 

sensitive signal. Such sediments are referred to as being 'partially bleached'. 
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The identification of partially bleached sediments in the laboratory is difficult. The level to which the 

sample was bleached before deposition cannot be determined from the luminescence signal 

measured in the laboratory. The determination of the degree of bleaching is important as it may 

lead to inaccurate ED evaluation. This phenomenon is particuarty relevant to waterlain material 

such as that sampled in this study, and is discussed fully in Chapter 5. The use of appropriate 

sources of light for laboratory bleaching experiments, which reflects the conditions under which 

the sample was bleached at deposition is important in the determination of the correct ED. This is 

also investigated in Chapter 5. 

Additional problems in luminescence dating which are investigated here include the effect of water 

content on the dose-rate to the sample. The presence of water in the pores of soil ot:>ediment has 

an attenuating effect on the paths oF the electons emitted as a product of radioactive decay, and 

therefore on the dose-rate to the crystals. The correction for water-content is a major component 

in the error of the age, and is likely to be a significant problem for sediments which lie at or below 

the present water-table, and which are likely to have been saturated for much of their burial history. 

This is typical of the samples investigated here. 

Finally, the effects of post-depositional change on the sediment during the period of burial are 

important. These include compaction, which will reduce the pore-space in which water can be 

held; soil formation processes and chemical weathering which may have an effect on the stability of 

the luminescence signal through time. These effects are relatively unknown and are a major part of 

this study. The relationships between sedimentary processes and the potential and accuracy of 

TL and IRSL dating therefore require some investigation in order to increase the accuracy of 

luminescence dates, and the range of materials to which the techniques can be applied. 

1.3 Sedimentary Processes and Luminescence Dating. 

Very few studies involving integrated sedimentological analysis with luminescence dating have 

been performed, with a few exceptions, such as that of Pye and Johnson (1988). The 

sedimentary environment has received some attention with respect to the problems associated 

with bleaching of waterlain material and of different sediment fractions in different depositional 

environments (Berger, 1990; Rendell, 1992; Stokes, 1992). However, less attention has been 

given to pedogenic and weathering processes and their effect on luminescence signals. 

The dating of soils has exposed some problems, particularly with respect to bleaching of the 

crystals (Wintle and Catt, 1985b) and bioturbation was evoked as the mechanism of bleaching. 

However, problems remain in relation to the dating of soil B horizons, as dates on these deposits 

may reflect the age of the parent material rather than the phase of soil formation. This is potentially 
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disappointing as palaeosols are often important stratigraphic markers in the Quaternary and are 

ubiquitous in most archaeological sites. They can be dated relatively by dating the material above 

and below. This has been done successfully for loess sequences (eg. Stremme, 1989), but this 

may not be possible on many archaeological sites. A number of pedogenic horizons are sampled 

in this project. It is therefore important to identify strata in which pedogenesis has occurred in 

order to eliminate them, as these layers may be subject to erroneous ED evaluation due to 

insufficient bleaching. 

Detailed sedimentary analysis can also give important indicators of the depositional environment 

within which particular strata were laid down. The particle size distribution of the sample indicates 

the conditions of water velocity and depth, which may enable an assessment to be made regarding 

the potential bleaching efficiency of the environment. These conditions will also depend on the 

source and distance travelled by the sediment, which may be determined from wider 

environmental interpretations of available data. These effects are discussed in Chapter 3. 

The sites selected were subjected to detailed sedimentary analysis, in order to assess the value of 

such analysis for luminescence dating applications. An integrated approach to dating the 

sediments by TL and IRSL, and observations of the sedimentological characteristics of the material 

allows such an assessment to be made. Three main aspects are of primary importance arising from 

the detailed sedimentary analyses; first, the value of such detailed study in the selection and 

identification of the most suitable sediment samples for dating; second, the effects of weathering 

of feldspars on the luminescence signal, and finally, the effects and identification of compaction of 

sediments on the past water content of the sample. 

The effects of weathering of feldspars, which was the main mineral group dated in this project (see 

Chapter 5) is considered to be of some importance. Chemical weathering operates by ion 

exchange and dissolution at specific points in the crystal, which include the defects in which the 

traps and luminescence centres occur which give rise to the signal. Any disruption of the chemical 

nature of the crystal can therefore potentially affect the luminescence signal. This has not been 

investigated before, and serves to test the conclusions drawn from the observed relationships 

between sedimentological and luminescence characteristics for the samples in this study and is 

discussed in Chapter 7. 

In addition, the effects of compaction and the recognition of compacted deposits with respect to 

the evaluation of the past water content of the deposits is considered which is a major source of 

error in the age evaluation. The correction of the dose-rate for water content gives rise to a 

significant proportion of the total error on the luminescence age, and is likely to be of greater 
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relevance to 'wet' sediments such as those sampled in this study, than for 'dry' sediments such as 

loess and dune sands. 

1.4 Chronological Control. 

In order to assess the accuracy of these relatively new dating techniques, it is necessary to 

compare the luminescence dates with an established chronology. In most cases, this is based on 

radiocarbon dates, which immediately arouses questions concerning the viability of the 

comparison between different dating techniques, which the user needs to be aware of. Additional 

stratigraphic control is given by archaeological material stratified between sediment samples, and 

from stratigraphic correlations of deposits which have been dated elsewhere. The archaeological 

component of the chronological control is therefore an important part of the assessment of the 

success of the luminescence dating, and also demonstrates the potential value of luminescence 

techniques for archaeological horizons within the Holocene. 

Different absolute dating techniques relate to specific events which are dated. In the case of 

radiocarbon, the event dated is that of the death of the organism, when C-14 ceases to be in 

equilibrium with the environment and the C-14 content falls with time as a result of radioactive 

decay. In the case of luminescence dating of sediments, the event dated for sediments is the last 

exposure to sunlight before burial. The comparison of C-14 and luminescence ages for a 

sedimentary deposit may therefore not agree because they relate to different events. For 

example, organic material associated with prehistoric occupation and dated by radiocarbon may 

not match a chronology based on the luminescence dating of sediments which are related to the 

last exposure to sunlight of the samples. These samples may not have been bleached 

immediately before deposition in their present context. In the case of U-Th dating direct 

comparisons of U-Th on secondary minerals cannot be made with the TL on the host minerals 

(Nanson et al, 1991). The last exposure to sunlight of the sediment may not relate to its present 

depositional environment. 

Radiocarbon dating is based on the calibration of measurements of activity against a standard 

reference or against a dendrochronological curve. The calibration curve is non-linear and in the flat 

regions of the curve can produce the same calibrated age range for different C-14 ages. This 

increases the error on the age determination, particularly in specific regions of the calibration curve, 

such as around 1000 BC. However, C-14 is still the most common dating technique with which 

luminescence dates are compared and to a large extent, comparisons are good and disparities 

between dating techniques can often be accounted for on the basis of the events to which each 

technique is related, ct. Nanson and Young (1987), although careful studies of the agreement 

between different dating methods are rare. 
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Standardisation of the radiocarbon ages, in terms of the source of calibration is therefore important 

to retain the same level of accuracy in the comparison between techniques. In this study, the 

radiocarbon dates upon which the chronological control for each site is based are generally quoted 

in the literature as uncalibrated dates in C-14 years BP. In order to overcome the problems 

associated with the comparisons of absolute luminescence ages with uncalibrated radiocarbon 

ages, all the radiocarbon dates have been calibrated. This was done using the 'CALIS' programme 

produced by the University of Washington Quaternary Isotope Laboratory in 1987. This 

programme is based on a 20 year atmospheric record extending back to 7210 cal BC (c. 8100 C-14 

BP). All dates quoted in the text are the calibrated ranges followed by a number in brackets. This 

number refers to the location of the date in Appendix A where the uncalibrated dates, laboratory 

numbers and sources are listed. 

Both luminescence and radiocarbon techniques are affected by error of measurement and 

counting statistics, and the age determination of C-14 is further affected by contamination effects 

and other sample conditions; in the case of luminescence, the age range of .a sample is affected by 

uncertainties associated with the water content correction, signal stability and dose-rate evaluation. 

The importance in the archaeological element in the project lies in its role as an additional 

independent source of comparative chronology. 

The luminescence dating of different grain-size fractions in the sediment, and dating the fractions 

by both optical and TL techniques may be used to gain some degree of internal consistency, 

despite the fact that the TL and OSL techniques are based on different, but related, physical 

principles. This needs to be justified on sedimentological grounds, as the different size fractions in 

a waterlain sediment may have been subject to different methods of transport (eg. suspension as 

opposed to saltation) and so have been exposed to different wavelengths and intensities of 

sunlight bleaching. This is discussed in Chapter 3. 

Finally, it is important to remember the potential of luminescence in dating inorganic sequences 

which cannot be dated by other relative or absolute methods within the Holocene timespan. 

Luminescence provides potentially valuable methods of dating which have been proven for 

aeolian material and which is applicable to a very wide variety of sediment types, and to acceptable 

degrees of accuracy (c. 10% of the age). In cases where the error on the age determination is 

greater than 20%, the luminescence age may still be better than no age at all, where there is no 

other means of dating the sediment. 
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1.5 Aims of the thesis. 

The aim of the thesis is primarily to address some of the problems outlined above, primarily the 

bleaching of waterlain sediments, and the effects of post-depositional change (in particular, the 

weathering of feldspars and past water content) on the stability of the luminescence signal over the 

timespan of interest. The work also tests the viability of the technique as applied to waterlain 

sediments of Holocene age, following an interdisciplinary approach. The selection of suitable sites 

is of great importance and is discussed in section 1.6 below. The approach of the project 

combines the investigation of the sedimentary and luminescence characteristics of selected 

deposits and dating of the coarse and fine grain fractions by TL and IRSL where appropriate. 

The luminescence behaviour of the samples is considered in the light of their sedimentary 

characteristics and conclusions are drawn relating to the observed relationships. The conclusions 

regarding the effects of weathering of feldspars are tested in the laboratory. Finally, the role of 

sedimentary analysis in luminescence dating is assessed, with a view to defining a series of criteria 

which may be applied to select the sediments which are potentially more suitable for dating. 

The accuracy of the dates is compared to established chronologies based on radiocarbon and 

archaeology, and the viability of the luminescence dates is evaluated with respect to the dating of 

Holocene waterlain and archaeological sediments. 

An outline of the thesis is given below: 

Chapter 1; Introduction to the role of luminescence in dating sediments and sedimentary analysis, 

comparative chronologies, and some of the major problems the thesis seeks to address; site 

selection criteria. 

Chapter 2; The sites selected for study; their Quaternary histories, archaeology and chronological 

control. 

Chapter 3; Processes in the formation of sedimentary deposits, and how these affect the 

luminescence stability and bleaching of samples; sedimentological techniques adopted in this 

study. 

Chapter 4; Results of sedimentological analysis; SEM studies; characteristics of samples selected 

for dating. 

Chapter 5; Luminescence dating techniques; the luminescence process; investigations into 

bleaching and water content; methods adopted in the study. 

Chapter 6; Results of dating; accuracy of dates; success of TL versus IRSL dating. 

Chapter 7; Relationships between luminescence dating and sedimentary analysis; effects of 

weathering of feldspars on the luminescence signal, and its implications for dating. 
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Chapter 8; Summary and Conclusions; evaluation of the exercise; assessment of the role of 

sedimentary analysis; identification of 'datable' samples'; future research. 

1.6 Site Selection Criteria. 

The selection of sites was based on a number of essential criteria, outlined below: 

1. Chronological Control 

The sites were required to have an established chronological control against which to compare the 

luminescence dates. This was primarily based on radiocarbon, but in most sites, additional control 

was provided by archaeological horizons correlated with the sequences sampled, as at Williamsons 

Moss. In the case of Flag Fen, the radiocarbon chronology is based on very large numbers of 

dates, and is considered to be secure and reliable .. In addition to this, sites were sought which had 

an archaeological dating context, and relevance to sea-level changes during the later Quaternary. 

2. Sedimentary Environment 

Waterlain sediments were selected for a number of reasons. Until recently, problems associated 

with incomplete bleaching of waterlain material rendered them less attractive for TL dating. 

However, with the advent of the recently developed optical dating techniques, waterlain material 

has been less affected by partial-bleaching problems, and research has extended into this area. 

Waterlain sediments also proved to be the most abundant in the sedimentary sequence of lowlying 

areas, and contained additional environmental information relating to depositional environments. 

3. Environmental Reconstruction 

The availability of material relating to the changing environment in the Quaternary was deemed to 

be of value in order to add weight to the interpretations regarding depositional environments of the 

sediments. Regional environmental changes, reflected in changes in vegetation, sea-levels and 

soil formation and erosion are reflected in the sedimentary sequence. The presence of diatoms, 

'·', b c.L · useful indicatoc of conditions of water depth etc. but these were rare in the samples 

dated and so were not an important consideration of the environmental analysis. 

4. Accessibility 

Access to the site was needed in order not only to take the samples, but to return to retrieve the 

dosimetry monitoring equipment left in the ground for one year. This proved to be a significant 

element in the final selection of sites. 

Those sites which were finally selected as meeting all the criteria comprised Flag Fen (East Anglia), 

Williamsons Moss and Stubb Place (Eskmeals, Cumbria), Hartlepool Bay (Cleveland) and the 
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Hazendonk and Slingeland in the Netherlands. With the exception of Stubb Place, all these sites 

have a good=', chronological control. The inclusion of Stubb Place, which lacks a chronological 

control, is based on the selection of a test site for the application of luminescence to deposits of 

relatively 'unknown' age. This sit~therefore, tests the viability of 'blind' applications and the 

internal consistency of luminescence techniques. 
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CHAPTER 2 THE SITES 

The selection of sites for this study was based on the criteria discussed in Chapter 1. The selected 

sites are all located in areas extensively affected by Holocene sea-level changes. These have 

controlled both coastal development and opportunities for human occupation and activity. 

Chronologies for the sites are based on radiocarbon dating and associated archaeological material, 

either on site or adjacent to the sampling site. Samples were taken where the stratigraphy 

represented the most complete sequences of both archaeological and geomorphological 

sediments. The sites are discussed in turn below, outlining an environmental history and 

chronological control during the period of relevance to this study ie. the last 12, 000 years. 

The key to stratigraphic figures is located in Appendix B. 

2.1 EAST ANGLIAN FENLAND. 

The Fen land of East Anglia lies in the eastern part of Britain, south of the Wash (figure 2.1 ). The 

site sampled in this study is located to the east of Peterborough near the fen-edge. The Fens 

have been extensively affected by sea-level changes during the Holocene, and this has affected 

the depositional environments and human activity in the area. The Fens have been intensively 

studied both with respect to the construction of an absolutely dated curve of relative sea-level 

change based on stratigraphic interpretation and radiocarbon dating, and for the rich 

archaeological remains buried in the peat. 

2.1.1 Quaternary History 

The main stratigraphic units deposited during the Quaternary in the Fens were described by 

Skertchly (1877) and Godwin (1978). They comprise Lower Peat, Fen Clay, Upper Peat and Upper 

Silt. These basic stratigraphic units still apply to present interpretations although complexities 

relating to local topographic and geomorphologic processes can cause problems in the correlation 

of sequences. Correlations of the major transgressions and regressions have been drawn with 

deposits in NW England and the Netherlands (eg. Tooley, 1978a; Shennan et al, 1983). 

Work by Shennan (1985a,b) has made a significant contribution to the establishment of an 

absolute chronology for sea-level changes in the Fens, based on 112 radiocarbon dates. This 

chronology is therefore related to the sequences of deposits observed at Flag Fen and provid~, 

with the archaeological evidence, a dating control for the application of luminescence dating. 

Supporting evidence from pollen and diatom analysis allow an estimation of contemporary 
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depositional environments relevant to the bleaching of sediment samples. His work forms the 

basis of the chronology outlined below. For individual radiocarbon dates on which this chronology 

is based, the reader is referred to Shennan (1985a, b). 

Since c.4500 BC sea-level changes have been the major factor affecting the rates and patterns of 

sedimentation in the Fenland (Shennan 1985a) Alternating phases of freshwater fen and intertidal 

marine sedimentation are reflected in changes in vegetation and deposition over a wide area. 

Marine and brackish water sediments are recorded up to 45 km inland. Transgressions and 

regressions reflect positive and negative tendencies of sea-level. Evidence for these tendencies 

is found in stratigraphic sequences, which develop under the influence of sea-levels and coastal 

processes (Shennan et al1983). These changes are not synchronous and local and regional 

factors may dominate at different times. 

Shennan's (1985b) sequence of events recognises 7 cycles of transgression (Wash) and 

regression (Fenland) phases from 4000 BC onwards. Wash 1 (pre 4500 BC) comprised a 

transgression which was confined by local topographic and hydrologic conditions. This is recorded 

at -Sm OD at Adventurers Fen (see figure 2.1 for locations), and represents a low energy marine 

sedimentary environment. The succeeding regression phase (Fen land 1) is represented by 

continued peat formation at Holme Fen and Shippea Hill between 4350 and 4250 BC. Wash 2 

represents a phase of rising water tables and low energy tides between 4050 and 3650 BC, and 

Fenland 2 a phase of peat formation between 3650 and 3450 BC. 

The Wash 3 and 4 phases represent the deposition of Fen Clay over much of the southern Fens. 

The Fen Clay deposit is a fine silty-clay loam, and is overlain by the Upper Peat formed during the 

Fenland 4 phase (2550-2250 BC). This peat formation is controlled by local hydrologic conditions, 

demonstrated by the change of fen woodland to raised bog (Godwin, 1978). Further 

transgression and regression cycles 1 _ _ _ (Wash 5, Fen land 5, Wash 6 and Fenland 6) 

occurred before the deposition of the Upper Silt. During Fenland 6 local silting up of channels 

occurred which led to partial abandonment of land in the 3-4C AD (Hallam, 1970). During Wash 7, 

the Romano-British transgression deposited the Upper Silt between 400-800 AD. This 

transgression was responsible for the silting up of the drainage system with clastic deposits which 

are now in places upstanding above the shrinking peat surface as roddons, and can be traced by 

aerial photography over much of the Fens. 

The agricultural development of the Upper Silt deposits seems to have occurred, on 

archaeological evidence, around AD 50 (Salway, 1970; Potter, 1981 ). Two further cycles of 

transgression and regression (Wash and Fenland 7 and 8) were expressed as changes in water 

tables and fluvial clastic sedimentation and flooding from AD 800-1000 and AD 1000 onwards. 
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The sedimentary environments represented by the deposits of Fen Clay and Upper Silt have been 

described by Shennan (1985b). Fen Clay is characterised by 55% clay, 45% silt and <5% sand. In 

the roddons and creeks, the deposit is a finely laminated silty loam or sandy silt. The Upper Silt is 

characterised by 50% silt, 47% clay, 3% sand, but contains over 70% sand in channels. Clastic 

sedimentation is characteristic of low energy environments dominating much of the deposition 

processes of these major units. The freshwater fen was protected by tidal flats and salt marsh 

which would have dispersed much of the energy of the tides. Silty clay deposits indicate quiet 

water deposition on and behind natural levees. High Spring tides would have been the greatest 

cause of flooding. Local sedimentation rates were not evaluated in Shennan's study, as local 

trends and processes would have exerted a significant influence which is difficult to evaluate. 

The deposition of the four main stratigraphic units, as recognised by Godwin (1978) and Shennan 

(1985a,b) are therefore constrained by a chronology based on the means of a significant set of 

radiocarbon dates. The transgression and regression phases would not have been synchronous 

all over the Fens, and local topographic features, eg. the sand islands of Whittlesey and Thomey, 

and hydrologic factors are recognised as being of great significance. However, the age limits for 

the Wash-Fenland cycle illustrated above give a chronological control for the transgression-related 

deposits identified in the samples from Flag Fen. Archaeological material gives an additional 

control for the upper part of the sequence. 

2.1.2 Archaeology 

The Fen-edge has significant evidence of occupation from the Mesolithic but sites of Mesolithic, 

Neolithic and Early Bronze Ages are relatively rare (Pryor, 1985). The location of the settlements 

would have been largely determined by the prevailing conditions with respect to sea-levels and 

local ground water tables. The area has been subject to much archaeological investigation, and 

the reconstruction of the ancient landscape by analysis of pollen, soils and archaeological remains 

allows a reasonably detailed picture to be drawn of the human occupation, resource use and 

environment through time. 

The upper fen-edge, is located just to the east of Peterborough, and would have been exposed 

as higher, drier land on the edge of swampy fen carr. Isolated sandy 'islands' such as those of 

Whittlesey and Thomey existed as the upstanding remnants of the undulating Pleistocene till 

surface. Occupation would have concentrated on these drier areas, near the rich resources of the 

swampy fen. The peat fen area was not occupied permanently, but was used as grazing land 

(Pryor, 1986; 1988) in a similar situation to the Somerset Levels (Coles and Coles, 1986) and the 

Dutch River-dune area (Louwe Kooijmans, 1974). 
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The Pleistocene terraces of the Weiland and Nene valleys draining into the fen at the fen-edge 

have also been foci of occupation. The extensive area of managed landscape of the Fengate site 

(see figure 2.1 b) is located on the first of the Weiland terraces and comprises extensive field 

systems. The site at Fengate represents several phases of occupation from mid-Neolithic onwards 

(Pryor, 1986). There is a phase of abandonment during the Bronze Age, demonstrated by 

localised silting of the site, and reoccupation in the Romano-British period. This was ended by the 

3rd Century transgression, during which ditches were largely filled with clay, and the site partially 

covered. 

Prehistoric occupation of the Fens occurred over a variety of environments within the Fenland. At 

Maxey, continuity of occupation has been demonstrated from Neolithic to Romano-British times on 

areas of drier land without alluvial covers (Pryor and French, 1985; Crowther et al, 1985). In areas 

where significant alluvial deposition has occurred, as at Etton and Borough Fen, Neolithic 

occupation dominates, as the landscape became too wet for later occupation except on the sandy 

islands. An extensive Neolithic buried soil survives below the alluvial cover on the Fen-edge and 

islands (Hall, 1987). 

The investigation of the soils buried under alluvium on the sandy islands has contributed to the 

picture of human activity. French (1988a, b, 1992) investigated the micromorphology of the soils 

at the Eye gravel peninsula north of the Flag Fen site. Four phases of pedogenesis were 

identified; first under the Boreal-Atlantic forest where soils developed under the woodland; 

secondly under a phase of less dense woodland cover, marked by increased incorporation of 

organic material in clay coatings, indicating minor disturbance; this may be related to local clearance 

by Mesolithic cultures. The third phase is one of partial truncation of the horizons relating to a 

period of clearance and erosion, and finally burial by freshwater flood deposits. There is no 

evidence that the soils were waterlogged on the islands, prior to burial. 

During the mid-Neolithic, the site was occupied by people of a culture similar to that at Shippea Hill, 

where the mid-Neolithic occupation phase was stratified between Mesolithic and Bronze Age 

material (Clark and Godwin, 1962). There is evidence of prehistoric clearance in the pollen record 

at Shippea Hill, but not at Fengate except in the buried soils. The pottery at Fengate is 

characteristic of the middle Neolithic, and occupation is interpreted as a small scale non-nucleated 

settlement, with seasonal exploitation of the peatlands. Wetter conditions in the 4th and 3rd 

millennium BC would have rendered fire clearance of forest unlikely (Pryor et al, 1986). There is a 

break in continuity of occupation which is contemporary with the Fen Clay deposition. 
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The Fengate site was reoccupied in the mid-3rd to late 2nd millennia BC. Large scale management 

of the surrounding land is demonstrated by extensive linear ditches and enclosures and evidence 

of cultivation of wheat and barley, and maintenance of the ditches. Occupation evidence is similar 

to that of the nearby Iron Age enclosures at Maxey, and also in southern Lincolnshire. The 

Northey 'island' also has evidence of linear ditches. During the 1st millennium, the settlement 

became more nucleated, possibly due to the increasing wetness of marginal lands. Settlement was 

concentrated above the 4.5m contour. Re-use of this settlement in 1-2C AD may be related to the 

proximity to the Roman Fen Causeway across the Fens, which followed an Iron Age ditch 

alignment. During the Upper Silt transgression, the site was abandoned due to flooding. 

Regionally, the Fens represent an area of abundant Neolithic occupation, extending into the 

Upper Valleys of the Ouse and Nene during the Bronze Age. These areas were cleared of 

woodland by the beginning of the Bronze Age (Godwin and Vishnu-Mittre, 1975). Sites at Maxey 

and Barnack in the Weiland Valley were also cleared (Crowther et al, 1985) The Nene Valley was 

occupied in the Iron Age, with an extensive, dispersed pattern of settlement. Increasing 

competition for resources, and environmental change encouraged nucleation of settlement and 

the construction of defensive hillforts (Pryor et al, 1986). 

2.1.3 Flag Fen 

The site at Flag Fen comprises a substantial timber platform constructed in an ancient channel 

between the fen-edge east of Peterborough and the sandy Northey island. It is of Bronze Age 

date, and was constructed and occupied during the phase of abandonment at the Fengate site. 

The wetlands and Flag Fen site are characterised by abundant metalwork finds. The area is one of 

sparse pre-Roman defensive occupation, and Pryor et al (1986) suggests that Flag Fen represents 

a late Bronze Age defensive site. 

The site was discovered during a dyke survey in 1982. Timbers protruded over a distance of 80 m 

from the dyke sides, and underneath the Roman Fen Causeway, and separated from it by some 

60cm of alluvium. A radiocarbon date on one of the protruding timbers gave an age of 11 00-853 

BC (1 ). The lattice of timbers rests on organic muds related to the Neolithic and earlier land 

surfaces. The site area is estimated to be 11 0 m by 50 m, based on auger surveys. The Fen 

Causeway follows the alignment of an earlier wooden trackway linking the platform with higher land 

to the east. The platform itself was constructed within the channel between the fen-edge and the 

Thomey sand island. 

The platform consists of a lattice of timbers with upright stakes forming the remains of a palisade. 

There is the foundation of a long rectangular building incorporated into the platform, and 
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associated Bronze Age pottery sherds. Environmental evidence from the site indicates that the 

rise in freshwater table levels around 1 000 BC drowned the Neolithic and Early Bronze Age 

occupation sites, possibly based at Fengate. The timbers are of local wetland species, and so local 

in origin (willow, alder, ash), but the oak timbers were all around 50 years at felling, suggesting 

some form of woodland management to provide standard timbers. The environment comprised 

open water and freshwater fen. Woody and detrital peat accumulated before construction, but 

after abandonment, the peat is more humic and mixed with clay and silt, reflecting rising water 

levels. 

Dendrochronological investigations of the timbers have produced a master curve extending over 

206 years and two others of 108 and 148 years from the Flag Fen site, and 200 years from a nearby 

site at the power station. These have been matched to produce a 397 year curve for the site and 

felling of the trees is estimated to have occurred between c.1250 and 967 BC, with most clustered 

around the last 150-200 years of occupation (Neve, 1992). The sequence was matched at Belfast, 

but there is an unresolved disparity between the radiocarbon dates and the age based on 

dendrochronology.This indicates the problems in accurate absolute dating and correlation 

between techniques. 

The pollen evidence indicates open fen with alder carr and grass and reed communities. Diatoms 

from deposits at the dyke side and to the south of the site indicate shallow water fen carr and 

swampy carr. They are more poorly preserved in the lower layers, indicating some drying, possibly 

due to seasonal exposure of the surface. Above the platform, conditions have remained wet and 

diatoms are much better preserved (Pryor, 1986). The silty clay peat deposits demonstrate a 

return to open water conditions after abandonment. The site appears to have been built and 

occupied in damp but stable conditions. It must have been deliberately constructed in rising damp 

conditions in a marginal location for a purpose, and it has been suggested for these reasons that it 

represents a defensive site. 

2.1.4 Chronological Control 

The core site sampled for this project lies at the edge of the Flag Fen platform, between it and 

Catswater dyke. The stratigraphic sequence is discussed in Chapter 4, but a brief summary of the 

chronological control available for the site is given below. The basal part of the sequence is 

correlated with dated sea-level contexts, while the ages of the upper sediments are further 

controlled by the archaeological evidence. 

At the base of the sequence is the Anglian boulder clay and late-glacial fluvioglacial deposits, 

including weathered and reworked till. These date from the end of the Devensian during a period 
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of fluvioglacial meltwater activity, and before the first peat or transgression deposits. This is 

succeeded by a silty sand and represents a local variation of the Fen Clay deposit, being sandier in 

the channel. The Fen Clay was deposited between maximum time limits of 3450 and 1350 BC, 

depending on location and local differences in altitude and distance from the coast (see 2.1.1 

above). The position of the sample in the channel between the fen-edge and island would have 

maximised the time limits for the transgression phases operating in the area. 

The Fen Clay deposit is covered by the peat deposits in which the platform is embedded. The 

peat comprises a lower woody peat and an upper silty detrital peat. The platform lies at the contact 

between these deposits and its radiocarbon date in the dyke section is given above. Above the 

peat are the silts of the Romano-British transgression laid down during the Wash VII phase, 

between 400 and 800 AD. The Fen Causeway was constructed on the surface of the alluvium and 

is covered by further sandy silts of local fluvial origin, with the sandy material probably derived from 

the sandy islands nearby. These upper deposits are of recent origin, with the present soil surface 

developed into the upper part. 

2.1.5 Summary 

The Flag Fen sequence, sampled some 1Om north-west of the timber platform comprises a series 

of deposits correlated with phases of sea-level changes within the Fenland (Shennan, 1985a, b). 

The archaeological importance of the site, in terms of major a Bronze Age occupation site in the 

Fens is significant, and provides a dating control for the sedimentary sequence. 

The sequence consists of a basal Anglian till overlain by late-glacial fluvial sands. This is covered by 

the Fen Clay deposits laid down between c. 3450-1350 BC. These are overlain by peats in which 

the Bronze Age timber structures are stratified. The platform has been dated by radiocarbon to 

1100-852 BC (1) and by dendrochronology to between 1250 and 967 BC. The peats are overlain 

by silts of the Romano-British transgression deposited between 400-800 AD. The Roman Fen 

Causeway was built on top of the silts, and this is covered by local alluvial deposits into which the 

modern soils have formed. 

2.2 ESKMEALS, CUMBRIA 

The Cumbrian lowlands have been extensively altered during the Holocene by the interplay of 

coastal, aeolian and anthropogenic activity. The distribution of prehistoric sites of different ages 

is: directly related to the changes in sea-levels during the Holocene. The north west of England 

has been subject to extensive research on sea-level change, particularly in Lancashire (eg. 
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Tooley, 1978a) and the Cumbrian coast has been comprehensively surveyed for its archaeological 

remains (Cherry and Cherry, 1983 to 1987), and excavated as at Eskmeals (Bonsall et al, 1986, 

1989). The vegetational history of the coastal lowlands and the uplands has been investigated by 

Walker (1966) and Pennington (1975). There is therefore, a relatively detailed picture of changing 

environments during prehistoric times. 

Two sites were sampled from the Cumbrian coast (figure 2.2); one at Williamson's Moss in a small 

channel adjacent to a Mesolithic occupation site; the second at Stubb Place, a depression to the 

south where concentrations of Mesolithic flint debris has been found. A close chronological 

control exists for the former, but only a maximum age for the beginning of deposition in the second 

site, as the radiocarbon dates from an adjacent borehole are difficult to correlate with the sequence 

in the sample borehole (see below). 

2.2.1 Quaternary History 

The Cumbrian coastal zone is topographically diverse, comprising a flat coastal plain, dunes and 

the glaciated upland massif which extends inland to the Lake District. The lowland area was 

covered by. . ~ Lake District ice during the last glaciation (Huddart et al, 1977 .). 

Deglaciation is thought to have been complete in the area by 14,000 years ago (Andrews et al, 

1973; Coope and Pennington, 1977) with meltwater deposits of sand and gravel being deposits in 

channels and as sheets at Morecambe Bay (Gale, 1985). The cliffs at St Bees, Eskmeals and Drigg 

contain archaeological material stratified within peat and clastic sediments. 

The oldest marine transgression in Cumbria occurred at Black Dub, north of Allonby (Eastwood et 

al, 1968) where a peat within clay was dated to 8480±205 C-14 BP (2). (NB. this date could not be 

calibrated as it extends beyond the timescale of the calibration curve.) These have been 

interpreted these as fossil dune slacks occurring at high sea-levels (Kidson and Tooley, 1977). A 

further transgression is recorded at Bowness Common between 5749-5640 BC (3) and 5051-

4500 BC (4) (Walker, 1966) and also at Wedholme Flow between 5820-5640 BC (5) and 4510-

3827 BC (6) (Huddart et al, 1977' 1). 

These transgression phases, of which the second and third are the most significant at Eskmeals, 

are important in relation to the sedimentary sequences sampled. The deposits of the second and 

third transgressions overlie the Mesolithic occupation evidence in the peat deposits, and predate 

the Neolithic activity on the foreland. The detailed chronology and formation of the individual sites 

are considered in relation to the individual sites below. 
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At Drigg, shingle representing a phase of high sea-level is covered by fluvioglacial sediments and 

peat containing fragments of wood which were dated to 5315-4945 BC (7) and 5694-5500 BC (8) 

and which is overlapped by shingle to seaward, representing another period of higher sea-level 

(Andrews et al, 1973). These deposits are overlain by aeolian sands in which hearths of late 

Neolithic-Early Bronze Age are stratified; these are dated to 2310-2138 BC (9) and 2878-2611 BC 

(10) (Cherry, 1982). Hearths of Mesolithic age have also been found at Haverigg where a 

palaeosol within dune sands containing Neolithic artefacts was dated to 362-40 BC (11) and 2273-

1772 BC (12) (Tooley, 1990). 

In south-west Cumbria, several phases of dune building are represented in the stratigraphic 

sequence, and these are dated to the end of Flandrian II (Tooley, 1990) with a period of stability 

represented by the Drigg hearths. These are correlated with the Older Dunes of the Western 

Netherlands (Tooley, 1978a). In Lancashire, a second period of stability has been dated to 50 BC

AD 530 (13) and AD 606-688 (14) and finally around AD 1150 at Starr Hills (Tooley, 1990) which 

correlates with dune building in Cumbria dated on shells at the base of the dunes to AD 680-953 

(15) and AD 420-622 (16) (Andrews et al, 1973). The younger dunes of the Netherlands were 

constructed from AD 1200 onwards (Jelgersma et al, 1970). 

2.2.2 Archaeology 

The vegetation history and archaeology of the area indicate a long period of human activity, at 

different locations according to the prevailing contemporary climate and sea-level. Disturbance in 
Ql"' 

the tree cover in Mesolithic times, before the elm decline is recorded in the Pennines up to,,altitude 

of 450m (Switsur and Jacobi, 1975) in the Lake District and Cumbria (Walker, 1966; Pennington, 

1975) and it has been suggested that early Mesolithic occupation and disturbance of the lowlands 

must also have been significant, but possibly drowned by later sea-level rises (Huddart et al, 1977). 

Mesolithic occupation is believed to be widespread due to the number of hearths and scatters of 

flint artefacts that have been located and dated to this period. Occupation on a similar scale is 

absent from the uplands, and these areas may have been used on a seasonal basis (Bonsall, 

1981) as occurred elsewhere in Britain (Clarke, 1972). 

The environmental record is one of complex, fluctuating conditions during the amelioration of 

climate during the Post-Glacial (Gale, 1985). Differences between the faunal and floral evidence 

indicates rapid rates of change, and anthropogenic activity has been shown to have been 

significant in terms of forest clearance and soil erosion around the tarns of the uplands, and in the 

lowlands (Birks, 1982). 
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A detailed survey of the occupation sites of the Cumbrian coast conducted by Cherry and Cherry 

(1983, 1984, 1985, 1986, 1987) has revealed the distribution of material of Mesolithic, Neolithic 

and Bronze Age dates. Particular concentrations of material occur in the Eskmeals area around 

Williamsons Moss, discussed further below. Stone circles and mounds of Bronze Age date have 

been located at Seascale, Annaside and Gutterby. At Drigg a timber structure embedded in grey 

sand and covered by peat and associated with Bronze Age material was found stratified above the 

previously mentioned Mesolithic hearths. 

In summary, the results of Cherry and Cherry's survey shows some differentiation in the distribution 

of artefacts of different ages. Mesolithic material is clustered in the northern part of the coastal 

area. Neolithic material, which is of a similar form, age and degree of patination throughout the 

area, is concentrated in the southern part of the coast. The Bronze Age material occurs primarily to 

the south of the Neolithic concentrations on Eskmeals. There are scatters of material occurring 

beyond these observed divisions, which are based on the main concentrations of material. On the 

sandhills of Eskmeals, much of the material is of Bronze Age date, and includes a higher proportion 

of 'imported' artefacts, as distinct from the dominance in earlier cultures of local material derived 

from the beach. 

Modification of the local Mesolithic woodland is indicated in the pollen spectra from Barfield Tam 

(Pennington, 1970) and at Ehenside Tarn (Walker, 1966). Clearance, cultivation and soil erosion 

are related to phases of activity in between periods of partial recovery of the forest cover. 

Mesolithic occupation is concentrated in areas where there is easy access to the beach where 

abundant supplies of flint for tools was available, as well as the resources afforded by the sea itself. 

The pollen and archaeological evidence typical of prehistoric occupation of Eskmeals is 

considered in more detail below with respect to the sites sampled, in particular, Williamson's Moss. 

2.2.3 Williamson's Moss 

The Moss lies in an enclosure formed by shingle ridges pushed up against the rising till surface, at 

an altitude of between +5 m and +7 m OD. The Moss is bounded by shingle ridges to the west, on 

which the dunes have formed; by the estuary of the River Esk to the north, and by a till ridge 

incorporating Skelda Hill to east and south where the coastal plain narrows. Marine clay is 

deposited in the base of the depression which is thought to be a former route of the River Esk 

before it was diverted to the north by the formation of the shingle ridges and dunes (Huddart and 

Tooley, 1972). The basal deposit is a blue-grey clay of estuarine origin, containing brackish water 

diatoms, and covered by a gyttja dated to 5345-5227 BC (17) (Huddart et al, 1977). This dates the 

regressive overlap prior to the isolation of the Moss. Isolation from the sea is estimated to have 
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occurred before the elm decline around 5000 BP (Tooley, 1972). A stream, Eskmeals Pool, flows 

northwards through the Moss to the present Esk estuary. 

A series of shingle ridges have protected the coast from erosion, and controlled the development 

of the foreland. The innermost ridges, which instigated the formation of Williamson's Moss, were 

formed during the regression which deposited the estuarine clays. Later ridges formed north of 

Skelda Hill, pivoting round the till ridge. There are three groups identified on the basis of altitude, 

relating to three successively lower sea-level stands (Bonsall et al, 1986, 1989). These occur at 

heights of +7.5, +6.4 and +5.5m OD. 

The beginning of lagoonal sedimentation in the Moss is marked by the formation of the inner 

shingle ridge, dated by an underlying organic layer to 4530-4407 BC (18). The second series of 

ridges were formed between 3260-2919 BC (19) and 2126-1889 BC (20) and the third by 1121-

898 BC (21) (Bonsall et al. 1989). 

Peat development on the estuarine clay began around 2123-1777 BC (22) and ended at 1685-

1518 BC (23) after which a phase of aeolian dune building began on the ridges. A thin peat within 

the sand was dated to AD 118-322 (24) to AD 543-652 (25). Within the estuarine sedimentation 

area, Bonsall et al. (1986, 1989) has identified two land surfaces, at 5.8-6 m and 4.64 mOD, 

formed when sea-levels were 2-2.2 and 0.8 m lower than present. The dunes were later built up 

on the tops of the ridges, covering the earlier occupation levels, and were themselves occupied 

during the Bronze Age. 

2.2.3.1 Archaeology 

A number of flint concentrations were discovered on the edges of the bog, at a level 

corresponding to the shoreline when the Moss was connected to the sea and of much greater 

eastern extent (Cherry, 1969). Much Neolithic material, including imported Borrowdale Volcanic 

artefacts, was exposed by ploughing of the former bog edges. The seaward edge of the shingle 

bank has mainly Bronze Age material; the north and east edges mainly Mesolithic. The Monk 

Moors site located to the north of Williamson's Moss is dominated by Mesolithic material 

concentrated in shallow soils developed on the boulder clay. Four hearths were dated from this 

soil to 6570-5844 BC (26) and 5740-5490 BC (27) (Bonsall, et al. 1986). The dunes cover flint 

scatters and hearths on the raised beach, also of Mesolithic age, which closely follow the 8 m 

contour around the former edges of the bog. Later Neolithic and Bronze Age material occurs at 

lower levels and on top of the dunes, reflecting changes in the coastal configuration and 

topography. 
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The Williamson's Moss site lies on the crest of a till ridge within the Moss, and was excavated 

between 1981 and 1985 (Bonsall et al, 1986) along with an adjacent site at Monk Moors. A narrow 

channel is cut into the till to the south of the site, from which the core taken for luminescence 

dating was taken. Alluvial deposits in the base of the channel were initiated by the silting up 

following the ridge formation. A buried land surface lies below this alluvium, and represents a 

sealed archaeological context. This land surface occurs as a thin layer of sand on top of the till. 

The sand layer is much thicker in the channel, possibly resulting from erosion. The sand is 

interpreted as the remnant of a minerogenic soil and can be traced over much of the site (Bonsall et 

al, 1989). 

Stratigraphic and radiocarbon dates indicate that there was around two millennia of occupation, 

throughout which the style and technology of the flint work remains noticeably uniform. Three 

main areas of occupation were identified: the till ridge, the lower lying ground, and the channel 

infill. The till ridge had high concentrations of worked stone, but no indications of settlement 

structures. Artefacts were mainly Mesolithic, but some later material was incorporated. The lower 
Be. 

areas contained three hearths at different levels in the alluvium, and dated to 2134-19821\ (28) for 

the shallowest hearth, 2320-1987 BC (29) and 3950-3526 BC (30) for the deepest hearth 

(Bonsall et al. 1986). The earliest occurred just above the Mesolithic land surface and represents 

the first phase of Neolithic occupation of the Moss. 

The channel fill contained the most substantial remains on the site. The channel is less than 30m 

wide at its widest point and 3m deep. Several timber structures were recovered from the channel 

fill, comprising lattices of timber with bark and brushwood flooring. There was also evidence of 

made ground comprising dumps of sand, clay and stones held in by revetments of timber. These 

may have been constructed to stabilise the land surface when it was much wetter. The timbers 

were dated to between 5049 and 4355 BC (31, 32, 33) and the bark to 4462-4435 BC (34, 35). 

There were no associated diagnostic artefacts. 

Pollen analysis at the site reveals substantiallanduse changes in the Moss and small scale 

deforestation around 3650 BC, before the elm decline (c.3490 BC). Partial regeneration occurred 

c.3200 BC and the vegetation remained as alder-birch woodland until arboreal pollen frequencies 

fall from 2900 BC onwards, primarily associated with human exploitation. 

2.2.3.2 Chronological Control 

The dating control for this site is relatively good for the archaeological strata, providing an excellent 

test site for the application of luminescence techniques. 
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The basal deposit is the Devensian till, overlain by aeolian sands which correspond to the 

Mesolithic land surface. The till is a fine-grained deposit, indicating that it cannot have been the 

sole source for the soil material. The sand is the remnant of the Mesolithic soil, and probably is 

derived from fluvial sands deposited during deglaciation possibly with a wind-blown component, 

on top of the till. The Mesolithic activity is dated to a mean of 6570-5490 BC (26, 27)on hearths 

stratified within the soil at Monk Moors, and from the timber structures and associated artefacts 

sealed below the alluvium at Williamson's Moss. 

In the deeper parts of the Moss, a grey clay above the sand is covered by an organic gyttja, dated 

to 5345-5227 BC (17) (Kidson and Tooley, 1977). The upper alluvial deposit at the excavation site 

comprises clay with some organic matter. The incorporation of the woody and organic material into 

the clay is interpreted as the effects of trampling during occupation (Bonsall et al, 1986). Three 

hearths stratified within the alluvial deposits at the site date the alluvial sediment to between 3950-

1982 BC ( 28, 29, 30). Above this are recent peat and alluvial deposits incorporating wind-blown 

sand which may be contemporary with the later phase of dune building, dated to between 1350 

BC and AD 150. 

2.2.3.3 Summary 

Williamson's Moss in Eskmeals, Cumbri~ formed in an enclosure cut off from the sea by shingle 

ridges. The Eskmeals area has abundant remains of prehistoric occupation from the Mesolithic to 

Bronze Age. In the Moss itself, Mesolithic timber structures were found sealed below alluvium. 

Elsewhere on the Moss, periods of occupation can be correlated with contemporary sea-levels; for 

example, Mesolithic activity is concentrated along the 8 m contour around the Moss. 

The stratigraphic sequence at the Moss site is located in a channel adjacent to the timber 

structures evcavated. The sequence comprises a basal Devensian till covered by a sandy deposit, 

interpreted as the remains of the Mesolithic land surface, eroded into the channel. This land 

surface is contemporary with the timber structures at the Moss, dated to between 4355 and 5049 

BC (31, 32, 33). Elsewhere in the Moss a basal clay deposit has been dated by an overlying gyttja 

to 5227-5345 BC (17). This deposit represents the period before isolation of the Moss by the 

shingle ridges. 

The sand is overlain by a blue-grey clay. Hearths stratified within the alluvium have been dated to 

between 1982-3950 BC (28, 29, 30), giving a relatively close dating control for this alluvial unit. 

The upper part of the alluvium contains organic material incorporated by trampling during 

occupation phases. The upper part of the sequence contains sediments consisting of alluvium 

and blown sand, and represent more recent historical and modern soil horizons. The close dating 
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control for the sedimentary sequence, particularly for the alluvium, makes Williamson's Moss a 

valuable site for testing the viability of luminescence dating in an archaeological context. 

2.2.4 Stubb Place 

The site is a depression located to the south of the Skelda Hill till outcrop. It is protected by shingle 

ridges formed at the same time as the inner ridges at Williamsons Moss; the later ridges only formed 

to the north of Skelda Hill. The ridges to seaward of Stubb Place are not complete; ie. there is a 

small outlet which may have allowed later inundation by the sea to occur. This was not the case for 

Williamson's Moss. Sedimentation within the depression may have begun at the same time as at 

the Moss, ie. after c.4345 BC, but this is not certain. 

A transect of borings was made previously across the depression (Tipping, pers.comm.) which 

demonstrated considerable variability in the profile of the sediments infilling the basin (figure 2.3). 

The sample core was taken in the deepest part of the basin, where a channel appears to have cut 

into the till. Radiocarbon dates for the upper part of an adjacent core are difficu~ to correlate due to 

the great variation in type of deposit at equvalent depths in the sample core. The dates relate to an 

upper peat deposit 45-50 em below the surface and to a lower humic sand at 120 em below the 

surface. The dates have not been published and are not used in this study because of the 

difficulties in correlation of the strata between the dated core and the remainder of the transect. 

Pollen analysis of the upper of these peat samples indicates a grass and herb dominated 

vegetation, with a fall in arboreal pollen in the upper part of the layer, associated with increases in 

abundance of Gal/una, Plantago lancel~ta and Cyperaceae. 

The depression is filled with alternating clastic and biogenic deposits up to a depth of 6.5 m at the 

point of sampling for this study. The basal deposit lies on till which corresponds to that at the base 

of the Moss. The dating of the clastic layers would enable correlation of the sequence of deposits 

with those at the Moss and with those relating to younger {post 4050 BC) sea-level changes. The 

transect indicates that the depression is divided by a till ridge between two depressions. Peat has 

formed in the deepest parts, overlain by silty clays and clay-sands with intercalated peats on the 

edges of the infilling depressions. It is possible that marine flooding could have occurred in the 

seaward depression, but not in the landward one, as more minerogenic sedimentation occurs in 

the former, but peat forms in the latter, at equivalent altitudes. 

2.2.4.1 Chronological Control 

The C-14 dates available for these sites lack sufficient reference to the samples taken. The 

correlation of deposits between the dated core and the core taken for luminescence dating is too 
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poor to allow the radiocarbon dates to be applied as a chronological control. The sediment 

sequence in the core taken for luminescence dating is more complete, and represents a deeper 

sample than that dated by radiocarbon, and includes a greater number of inorganic strata suitable 

for luminescence dating. For this reason, the core was included in this study, rather than that 

dated. The core is important as a test site for the application of luminescence without a 

chronological comparison. 

2.2.4.2 Summary 

The site is located to the south of Williamson's Moss, and although Mesolithic flint material has 

been found scattered over the surface, there is no archaeological material represented within the 

sequence. Sedimentation within the basin in the till may have begun at a similar time to that at 

Williamson's Moss, as both areas were cut off from the sea by the same phase of shingle ridge 

formation; ie. around 4345 BC. 

The sequence consists of alternating organic and inorganic strata. Radiocarbon dates available 

from a core within the basin have not been used as a chronological control due to difficulties in 

correlation of the deposits across the basin. However, the site has been included as a test site for 

dating sediments where no other dating method has been applied in order to assess the 

contribution of the luminescence techniques as a primary dating method. 

2.3 HARTLEPOOL BAY, CLEVELAND. 

Hartlepool Bay lies on the NE coast of England (figure 2.4) and is significant in terms of sea-level 

change studies, because it represents one of a relatively few locations on the north-east coast of 

England where marine transgression deposits have been recorded. Its archaeological significance 

is demonstrated by the discovery of a skeleton buried in the intertidal peats, in addition to a variety 

of prehistoric artefacts recorded from the area. 

The site is important for this study because as the sediments come from an intertidal context, the 

relevance of mixing of sediments during the tidal cycle is important, although this is relevant only to 

the upper part of the sequence, and in that the sampling strategy was different; samples were 

taken in monolith tins, rather than from boreholes. The intertidal location of these samples is also 

important because the sediments are saturated with saline water, and are likely to have been for 

much of their burial history. 
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2.3.1 Quaternary History 

The Tees Valley and adjacent lowlands are covered by a Devensian till, which is a brown-grey 

deposit extending from Northumberland to Holderness. During deglaciation, laminated silts and 

clays were deposited in lakes and depressions. The solid geology of the Bay comprises Permo

Triassic rocks to the north, separated from the Bunter Sandstone to the south by the West 

Hartlepool fault. The till lies on these rocks and has been modified by the later cold interstadial, and 

covered by post-glacial marine deposits. 

The Slake, which lies to the north of the Bay, is a buried valley infilled with uninterrupted biogenic 

sedimentation which has been analysed for its pollen content, giving a picture of the regional 

vegetation change of the Bay area. The Bay itself contains intercalated biogenic and clastic marine 

sediments reflecting changing sea-levels during the Holocene. To the north are saltmarshes 

which represent the remnant of a tombolo feature behind which the Slake formed (Tooley, 1984). 

Transgressions in the north-east of England have generally occurred to a lesser extent than in the 

north-west (Tooley, 1978a) mainly due to the local topography. The main transgression deposit in 

the Bay, which is the oldest marine deposit in the region, has been dated at its upper and lower 

contacts with biogenic material to between 4328-3990 BC (36) and 4331-3820 BC (37) (Tooley, 

1978b). The Tees estuary at this time was inundated and a grey silty-clay was deposited, 

containing molluscs characteristic of estuarine conditions and indicating a phase of quiet water 

sedimentation. The radiocarbon dates for the marine deposit represent a very short time span for 

the deposition of some 1. 7 m of material. 

The transgression deposits at Hartlepool Bay are difficult to correlate with similar deposits in the 

Humber estuary. Here two transgressions are dated; one beginning at a mean of 6785 BP (Gaunt 

and Tooley, 1974), and a second, associated with the prehistoric boats at Brigg, at c. 2543 BP 

(McGrail and Switsur, 1975). There is no evidence of the transgression directly contemporaneous 

to that dated at Hartlepool Bay. In north-west England, however, a marine transgression is 

contemporaneous with that at Hartlepool Bay, but occurs at a higher altitude due to the 

subsidence of eastern England (Tooley, 1978a,b) 

The deposits at Hartlepool were described by Trechmann (1936, 1947) who gave details of the 

mollusca, vertebrate fauna and flint artefacts. A red deer antler was found, dated to 7064 BC (38) 

to 8700±180 BP (39) (Barker and Mackey, 1961). The first of these dates was at the limits of the 

calibration programme so no calibrated range could be given; the second date could not be 

calibrated because it extended beyond the age range of the calibration programme. 

26 



The biogenic deposits lying on the till surface were by their pollen estimated to be of Atlantic age -

ie. younger than 5050 BC (Trechmann, 1947). The intertidal deposits are variable laterally and in 

composition. Recent transects of borings have demonstrated that the units comprise a woody 

detrital peat changing into a rooty gyttja (Phragmites roots), and to a silty clay at the low tide mar1< 

(Tooley, 1984). These are overlain by 1.7 m silty clay, thickening landwards, and containing the 

mollusc Scrobicularia plana da Costa, in situ. This clay deposit is that constrained by the 

radiocarbon dates given above. Above this clay are a series of sandy, silty limnic deposits 

comprising eroded peat and marine material. 

The stratigraphy of the core sample taken for dating (labelled WH20 on figure 2.4), has been 

correlated to the nearby core of WH19, with its radiocarbon dates. These are illustrated in figure 

2.5. There are some lateral differences in the deposits; sample WH1 in the core WH20, comprises 

an upper grey clay as in WH19, but also a lower grey clay with a limus component, which may be 

derived from local incorporation of eroded peat during the initial phases of inundation. The lower 

sample, WH2 in core WH20 comprises a silty-clay with sand, with much less organic material than 

appears in WH19. This deposit either represents a fluvial or marine deposit laid onto the boulder 

clay, or more likely represents the weathered till and remnant of the Mesolithic soil identified by 

Trechmann (1936,1947). 

2.3.2 Archaeology 

Pollen analysis of the intertidal peats at the Slake has indicated significant disturbance of the 

natural vegetation by human activity. Archaeological evidence supports this, in the form of scatters 

of Mesolithic flints, flakes and wood fragments in the intertidal zone. The flakes include Langdale 

tuff material and an axe made from Borrowdale volcanic rock. Flint flakes, microliths and blades of 

Mesolithic affinity were found in levels containing pollen evidence indicating clearance. The 

Mesolithic land surface at Hartlepool is represented by the weathered surface of the till below the 

earliest biogenic deposits, formed in depressions in the till surface. Trechmann (1947) suggests 

the weathered till is the remnant of a mineral soil of Mesolithic age. 

In 1972, a partial skeleton was uncovered in the intertidal peat further up the shore, together with a 

number of artefacts. The bones were dated to 3631-3380 BC (40) and described as a male of 25-

38 years old, who had suffered two blows to the head during life (Tooley et al, in press)). The peat 

deposit in which it was found is the remains of a submerged forest in which many Neolithic artefacts 

were found which are primarily of Neolithic age. In the peat surface, stake holes and stratified 

charcoal indicate occupation of some sort at the site (Tooley, 1978b). 
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Figure 2.5 Hartlepool Bay stratigraphic correlation between sample core WH20 
and adjacent core WH19 with radiocarbon dates (WH19 from Tooley, 1984) 
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The pollen evidence from the Slake indicates four phases of human disturbance and clearance. 

Initially low values of arboreal pollen and open water taxa are succeeded by reedswamp. Forest 

recession before the elm decline is recorded, and attributed to rising sea-levels or human activity. 

Rising water tables would promote the growth of reedswamp, but charcoal, and ruderal herb 

species indicate human interference. There is evidence of clearance preceding the elm decline at 

Williamson's Moss (see section 2.2.3.1 above) and in other parts of Britain (Pennington, 1975). 

This phase is followed by much more extensive clearance, with increased frequencies of hazel, 

grasses and charcoal. This phase ends with the elm decline, and the vegetation becomes 

dominated by open herb taxa and some coastal species. The Slake sequence is correlated with 

the short sequence from the peats in the Bay. The intertidal peat has a darker upper layer rich in 

birch, and a lower more silty layer containing charcoal. This lower zone has been dated to 4315-

4006 BC (40) , which coincides with the elm decline, which is dated in the north east of England to 

between 4364-4241 BC (42) and 4222-3990 BC (43) (Bartley et al, 1976), but appears earlier in 

the uplands of the Pennines. 

2.3.3 Chronological Control 

The stratigraphy of the sample site (WH20) is correlated to the sequence dated nearby (WH19) by 

Tooley (1988) and is shown in figure 2.5. The upper sample, WH1 is closely dated to between 

5052-4770 BC (44) and 4466-4337 BC (45). The lower sample, (WH2) lies between the biogenic 

deposits dated to 5240-4949 BC (46) and the weathered boulder clay surface which represents 

the Mesolithic land surface of c. 7064 BC (39), based on the artefacts found on the beach by 

Trechmann. The close control on the samples provides an excellent site for luminescence dating 

of the sediments. The sediments comprise a marine/estuarine clay deposited under quiet water 

conditions (WH1) and a silty clay sandy deposit (WH2), interpreted as weathered till, or the remains 

of the mineral soil of the Mesolithic land surface. 

2.3.4 Summary 

This site is at present in an intertidal location and was the only site sampled using monolith tins 

instead of by coring (see chapter 3). Its present location has implications regarding the water 

content of the samples in the past, and the possibility of mixing of sediments during erosion and 

deposition during the tidal cycle. The site experienced intertidal and lagoonal conditions in the 

past, during the deposition of some sedimentary units. This is discussed further in Chapters 3 and 

4. 
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The site sampled is located on the seaward end of a transect of borings (see figure 2.4). The 

depositional sequence comprises a Devensian till overlain by a sandy weathered boulder clay 

containing charcoal fragments. This is interpreted as the remnants of a mesolithic land surface. 

The top of this deposit is dated to 5240-4949 BC (46). This is overlain by a peaty sandy clay which 

is variable in composition. This is covered by a silty clay which thickens landwards, dated to 

between 5052-4770 BC (45) and 4466-4337 BC (45). 

The relatively short timespan during which the upper deposit was laid down is important in this 

context as it serves to test the accuracy of luminescence dating compared to radiocarbon in this 

context. The top of the sequence consists of recent sandy deposits which were not sampled, due 

to uncertainties regarding their age and the effects of reworking under recent intertidal conditions. 

2.4 THE RIVER DUNE AREA OF THE WESTERN NETHERLANDS. 

The Quaternary history of the Western Netherlands has been one in which sea-levels have played 

a dominant role by directly affecting sedimentation and environment in the coastal and tidal flat 

areas, and indirectly, through the control of the level of groundwater tables, the sedimentation and 

environment of the river dune area inland. The river dune area is investigated in this study, 

because of the opportunities for occupation afforded by the river dunes (donken) and stream 

ridges acting as drier islands above the wetter peat areas (figure 2.6). 

The investigation of the archaeology of the river dune area is based on the occupation of the 

dunes, and on the investigation of the sequences of sea-level changes which controlled the 

potential for occupation of the dunes during the Holocene. Investigation of sea-level changes has 

been a dominant research interest due to its important role in the Holocene. Three zones of 

deposition are recognised; coastal barriers, lagoonal and tidal flats, and river dune areas. These will 

be considered below in relation to the sea-level changes and the distribution of prehistoric 

settlement, before concentrating on the formation and archaeology of the donken. The river dune 

region lies within that defined as the 'perimarine' zone by Hageman (1969) which is defined as an 

area in which sedimentation is controlled by sea-level changes, but one in which no marine or 

brackish water deposits are found. 

2.4.1 Quaternary History 

The Netherlands lie in a subsiding basin with a relatively flat coast, so small changes in sea-level can 

have significant effects far inland (Pons et al, 1963). Sea-levels are estimated to have risen by 

60crnlcentury during the Boreal/Atlantic periods, with the rate of rise slowing down during the mid 
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Figure 2.6 
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and late Atlantic. The limits of the most extensive transgression are marked by the 15 m contour. 

The sea-level curve for the Netherlands was established by Jelgersma (1966) based on the 

radiocarbon dating of compaction-free peat samples. The transgression sequence consists of 

Calais and Dunkirk sequences of deposits, laid down during the time limits established by 

Hageman ( 1969) and given below in table 2.1. 

TABLE 2.1 Transgression sequence of the Western Netherlands (after Hageman, 1969) and 

associated archaeological occupation (after Louwe Kooijmans, 1974, 1976). 

Transgression Dates(BP) Archaeological period* 

Dunkirk Ill AD1100- Medieval 

Dunkirk II Early Iron Age- Roman 

Dunkirk I 1949-2111 BC (49) Late Bronze Age 

Dunki!ls Q Earll£ 6rQnz~ ACJ~ 

Calais IV 3044-3332 BC (50) Later Neolithic (VIaardingen) 

Calais Ill 3695-3782 BC (51) Mid-Neolithic (Hazendonk) 

Calais II 4043-4237 BC (52) Early Neolithic (Swifterbant) 

Calais I 

* Archaeological occupation during Dunkirk phases occurred during the regression phase 

following the transgression indicated. Occupation during the Calais phases occurred during the 

transgression phase itself. 

Dates are based on those obtained from the Hazendonk. 

The main Holocene stratigraphic units in the Netherlands together with the stream ridges and 

donken discussed below are embedded in the Holland Peat, formed during the Boreal period over 

much of the Netherlands and North Sea basin. During the Boreal, the coast of the Netherlands was 

protected by barriers with tidal inlets (Hageman, 1969). In the lagoonal and tidal-flat area behind 

the barriers, the Holland peat is succeeded by a series of freshwater lagoonal deposits intercalated 

with peat, as the area was largely protected from marine inundation by the coastal barriers until the 

Dunkirk 0 transgression. 

In the beach and dune area, successive stages of coastal barrier systems reflect sea-level 

changes. These systems moved eastwards during the Atlantic when sea-level rise was rapid. 

Erosion and breaching of the barriers during the Dunkirk 0 transgression allowed marine 

inundation to occur, but from c.3000 BC, accumulation of the barrier systems associated with 

slower rates of sea-level rise allowed the systems to become fossilised as the Older Dunes. These 
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have been largely eroded in the south-west, but the Younger Dunes, forming from AD 1200 

onwards have developed in the north-west coastal zone (Jelgersma, 1966; Hageman, 1969). 

The coastal barriers themselves were occupied during certain periods, as well as the levees of the 

estuarine and tidal flat creek systems, during regression periods. The Calais and Dunkirk deposits 

have their direct counterparts in the Gorkum and Tiel deposits respectively, of the perimarine area. 

2.4.2 The Perimarine area and the Donken 

The perimarine area comprises the river dune and wood peat districts of the Netherlands. Sea

levels did not significantly influence fluvial sedimentation and peat formation until the later Atlantic 

phase of rapid sea-level rise (Hageman, 1969). During this time locally high water tables resulted in 

the deposition of heavy blue-grey clays. In the mid and late Atlantic, however, the lower courses of 

the rivers were inundated and silted up with fine sand and clay. An unstable braided river system 

developed with local peat growth and channel and gully infilling until the river system became more 

stabilised during the period of slower sea-level rise. 

The Gorkum deposits of the perimarine area are directly correlated with the Calais transgression 

sequences, and the Tiel with the Dunkirk. The Gorkum deposits comprise sandy channel fills, with 

clay deposition on and behind levees. The Tiel deposits can be laterally differentiated into heavy 

basin clay deposits and sandy stream deposits. The latter are the forerunners of the later 

upstanding stream ridges on which later prehistoric occupation was concentrated. 

The donken are aeolian dunes consisting of sand of mainly 200-300 ll (Pons et al, 1963) formed 

during the Allemd phase on the final stages of a braided river system. The dunes were blown up 

from the dry river beds in the Younger Dryas, and formed dunes on the right hand banks of the late 

glacial braided river system (Verbraek et al, 1974). Near to Nijmegen (figure 2.6), these dunes are 

buried by 1.5m river clay (referred to in the Netherlands as loam), but in the Alblasserward district, 

they c , · standir• · above the Holocene deposits as isolated islands. They are elongated SW-NE 

and generally little eroded. The NW faces dip steeply at c.20°, and theSE slope tails off gently. 

The dunes lie on top of the 10-1 OOcm thick late-glacial clays. 

Occupation of the oonken began in the early Neolithic and continued intermittently throughout 

the Bronze Age. Occupation of the nearby stream ridges occured simultaneously, but began later, 

after the formation of the stream ridges. The latter are narrow sinuous ridges of sand which are the 

infill of stream beds, which became upstanding features during the Neolithic due to the 

compaction of the surrounding peat and clay. Their formation is closely related to the 

transgression sequence on the coast. They all predate the present Lek, Linge and Hagenstein 
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rivers (Verbraek et al, 1974). The stream ridges in Molenaarsgraaf, the area of study, date to the 

Calais Ill and II transgressions. 

The period of occupation of the dunes and stream ridges coincides with the period of swamp 

forest that existed in the river-dune area. This was controlled by the level of the groundwater 

tables, and alternated between phases of fluvio-lagoonal and fluvio-lacustrine environments (Van 

der Woude,1983, 1984). During the Neolithic, the fluvio-lagoonal environment consisted of open 

water bodies, with extensive alder carr and reedswamp. On the natural levees of the rivers, and on 

the higher dunes, a deciduous forest with oak, elm and birch was maintained. 

Peat formation continued with the slow rise of water tables from 4050 BC to c.3650 BC when a 

sudden expansion of the lagoons took place, and extensive drowning of the swamp forest, 

creating a fluvio-lacustrine environment. The water bodies joined up, and the area of forest 

reduced. This was facilitated both by rising water tables above a critical point, and by compaction of 

the sediments in the lagoon. Fluvial clay was deposited on the levees and basin floors. Around 

3650 BC swamp forest expanded, but was drowned again c.3950 BC. Occupation of the dunes, 

such as at Hazendonk coincided with the fluvio-lacustrine phases of relatively high water levels, 

when the donken would have been separated by contiguous water bodies with rich resources of 

fish, exploited by the Neolithic people. 

2.4.3 Archaeology 

Prehistoric occupation of the Western Netherlands is concentrated on the donken and stream 

ridges and coincided with periods of relatively lower sea-levels. Very few finds of Mesolithic and 

older date have survived, being drowned in the North Sea basin or buried under significant depths 

of deposits. The Neolithic period is that best represented on the donken and stream ridges. 

Occupation evidence from the donken comprises primarily of stratified layers of a black deposit, a 

few centimetres thick. These layers contain abundant remains of settlement, including sherds, 

flints, worked stone, charcoal, small animal and fish bones. 

The Hazendonk is located near to the Schoonrewoerd stream ridge in Molenaarsgraaf polder. It 

has seven layers of occupation extending from the Neolithic into the Bronze Age covering an area 

of 100m by 40-50 m (Louwe Kooijmans, 1974). Pollen evidence from the Hazendonk indicates 

human influence on vegetation from c.3400 BC. The oldest period of occupation is represented 

by the Swifterbant culture, named after an extensive early Neolithic site in East Flevoland. The 

coastal barriers by this time had to a large extent been reworked or broken down into dunes with no 

evidence of occupation except in the river-dune region. There are a number of Neolithic cultures 

represented on the Hazendonk, including the 'Hazendonk' culture first recognised there, stratified 
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between the previously known Swifterbant and later Vlaardingen culures (Louwe Kooijmans, 

1974). 

The late Neolithic Vlaardingen culture is the best represented of the prehistoric cultures in the 

Netherlands, and occupation has been found on the coastal barriers between the rivers Rhine and 

Meuse, as well as on the donken. The coastal barriers were inhabited from the Vlaardingen culture 

onwards, but in the estuarine and river dune areas, marked periodicity is evident (Louwe 

Kooijmans, 1974, 1976). In the estuarine region, settlement is concentrated on the natural levees 

of the creeks relating to the Calais IV transgression. They also concentrated on the Older Dunes 

where abundant resources from forest, sea and river were readily available. 

The dunes were not attractive for permanent agriculture and occupation due to their small size. No 

sites have been found north of the Rhine (Louwe Kooijmans, 1974, 1976) but indications of 

activity are given by scattered finds of the Vlaardingen culture on the dunes of the oldst coastal 

barriers. Settlement comprised small rectangular houses which were permanently occupied. The 

coastal barriers were used for grazing or limited cultivation. Relationships with the early Bell beaker 

cultures resulted in changes of landuse, with clearances occurring after trade contacts were 

established with the Protruding Foot Beaker culture (PFB). 

Occupation by the Bell Beaker culture was curtailed by the onset of the Calais IV transgression 

which covered the levees and caused flooding. The following Bronze Age beaker cultures, those 

of the Veluwe and Barbed Wire beakers (the former from 1900-1700 BC and the latter from 1700 

to 1500 BC) are found on the coastal barriers and on the dunes of the river clay district. 

Communication was by the then active streams, from which the stream ridges later formed. The 

Middle Bronze Age and later is marker by fewer settlements on the coastal barriers, which were 

eroded or buried by the Younger Dunes. Middle Bronze Age occupation is abundant in the river 

dune area, although no evidence from the estuaries of the Meuse and Rhine have been found. 

Flooding and clay deposition resulting from the Calais 0 ("Cardium") and Dunkerque 0 

transgressions buried some sites, and caused depopulation of the coastal and estuarine regions. 

There are several parallel trends in settlements in the Western Netherlands and in the Fenlands, 

which have been discussed by Louwe Kooijmans (1988). Both are to some extent concentrated 

on islands and controlled by sea-level changes as at Shippea Hill and Peacocks Farm (Clarke and 

Godwin, 1962). 
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2.4.4 Hazendonk and Slingeland 

Two donken were sampled for dating in this study. The Hazendonk in Molenaarsgraaf polder is 

important because of its significance to the Neolithic sequence of occupation in the Netherlands. 

The Slingeland donk is one of a group of donken in the Noodeloos region, and supports up to five 

layers of occupation, rather than the seven demonstrated at Hazendonk. The correlations 

between cultural layers and dating at these sites is given below in figures 2.7 and 2.8. 

Detailed investigations of the Hazendonk by Louwe Kooijmans (1974) identified four main 

sedimentary units in the area (figure 2.7); the sandy clays of the flooding from the creek system; 

the sandy fill of the creek bed; thick clay with sandy lenses which is a flood deposit and occurs as a 

clay wedge associated with the stream ridges; the 'Aiblasserwaard Cover', which is the cover clay 

deposited by the 16C transgression. The clay deposits are thicker away from the donk reflecting 

the depth of water at the time of deposition. Radiocarbon ages for the periods of clay deposition 

are given by van der Woude (1983) for a standard boring in the Molenaarsgraaf study area. These 

are given in table 2.2 below. 

Table 2.2 Chronology of clay deposition in the Molenaarsgraaf area after van der Woude (1983). 

Clay4 -2.5 to -4.0 m NAP 3302-1523 BC (61, 62) 

Clay3 -6.0 to -7.3 m NAP 4506-3108 BC (59, 60) 

Clay 2b -8.2 to -9.5 m NAP 5490-4863 BC (57, 58) 

Clay2a -9.5 to -9.7 m NAP 5540-5245 BC (55, 56) 

Clay 1 -9.9 to -10.4 m NAP 5646-5539 BC (53, 54) 

Estimates of compaction have been made for the four clay deposits (Louwe Kooijmans, 1974, 

which are of particular relevance when the past water contem of the sediments is being estimated 

for the purpose of luminescence dating. The surface clay (clay 4) has been compacted by 80-100 

em, based on the difference in height on the donk slope and the river basin. Clay 3 is estimated 

to have been compacted by 60-120 em during deposition, and only 30-60 em after; clay 2 has 

undergone a total of 200 em reduction, again primarily during deposition, rather than by the weight 

of later overburden. Clay 1 at the base is estimated to have compacted by about 3 m, of which 1.7 

m are attibuted to clay loading. South of the donk, compaction is much less, due to the tailing off of 

the donk slope, giving a well-founded base for the deposits. 
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Pollen analysis of the donk demonstrates varying degrees of clearance and cultivation coinciding 

with the dated culture layers. In general, cereal cultivation increases towards the later Neolithic and 

Bronze Age. Cultivation must have been severely restricted due to the lack of available land and 

wetness of the lower lying areas. The dune tops do not appear to have been extensively cleared 

in the earlier stages of occupation, suggesting that fishing was an important part of the economy 

inttially. Grazing must have been limited by the small amount of available land, and communtties 

may have had different specialisms depending where they lived (Louwe Kooijmans, 1976). 

The Slingeland donk is similar to the Hazendonk, but larger in size, supporting bigger populations 

and greater variation in economy (Verbruggen, pers.comm.). 

2.4.5 Chronological Control 

The dates obtained by radiocarbon from the cultural layers and the peat deposits are directly 

related to the dates obtained for the sea-level curves on peat deposits near the coast. The 

chronologies of the Hazendonk and Slingeland dunes are based on a series of radiocarbon dates 

on the material of the cultural layers. The Hazendonk 1 level has been dated to 4149-4181 BC (63) 

(Louwe-Kooijmans, 1974), and the equivalent layer on the Slingeland dune to 4146-4179 BC (64) 

(Verbruggen, pers.comm.) 

However, another date on the same material from the Hazendonk site gave a date of 3962-4000 

BC (65), but was thought too young and not published. Verbruggen (pers.comm.) has suggested 

that this may be a more accurate date for the Hazendonk 1 layer, as it tns more accurately with the 

material from Slingeland and other dunes, and with Jelgersma's (1966) sea-level curve. However, 

the difference between the calibrated age ranges for Hazendonk 1 level consists of a minimum of 

148 and maximum of 219 years. The application of luminescence in this case may contribute to the 

resolution of this disparity. 

The clay deposits occurring in the Hazendonk core are the later Clay 3 and Clay 4 deposits. The 

former was laid down in the Molenaarsgraaf area between 3108 and 4506 BC (59, 60). The latter 

Clay deposit was laid down between 1523 and 3302 BC (61, 62). In the Slingeland core also, 

Clays 3 and 4 are identified. 

2.4.6 Hazendonk and Slingeland; summary 

Hazendonk in the Western Netherlands is an example of a 'donk', or sandy dune formed during 

the Younger Dryas from aeolian sand blown up from the dry river beds. Slingeland is one of a 
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Figure 2.8 Slingeland; transect through the sediments covering the dune (after Verbruggen, pers. comm.} 
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number of river dunes, formed when the sandy channel infill became upstanding from the 

surrounding landscape due to the shrinkage of the surrounding peat. The river dunes form series 

of sinuous disjointed ridges, and along with the donken, were foci for prehistoric occupation. They 

represented areas of relatively dry land within the lagoonal swampy environment of the region. 

A number of periods of Neolithic and Bronze Age occupation are represented on the dunes. The 

sedimentary sequences consist of alternating peat and minerogenic horizons, although peat is 

more abundant in the sequences. The Hazendonk stratigraphic sequence includes three clay 

deposits which occur widely throughout the river dune region. Each of these were sampled. The 

ages of the clay deposits are determined by the intervening archaeological material, and can be 

correlated with a number of donken in the Western Netherlands. 

The Slingeland sequence includes five layers of occupation compared to the maximum of seven 

on Hazendonk. The inorganic material, which represents periods of flooding, all post-date the 

Vlaardingen 1b culture phase, dated to 3044-3332 BC (46). The clays were laid down during the 

Dunkirk 0 and 1 periods of high sea-level stand, corresponding to Tiel 0 and 1 of the river-dune 

area. The clay deposits identified are the Clay 3 and Clay 4 units laid down between 3108-4506 

BC and 1523-3302 BC respectively. 

2.5 SUMMARY 

All the sites selected for study, with the exception of Stubb Place, have an independent 

chronological control based on radiocarbon dates, calibrated to a standard curve. Stubb Place is 

included as a test site for luminescence dating of sediments without a chronological control. The 

sites have an additional dating control provided by an archaeological context, based on artefact 

and environmental (pollen) evidence as well as C-14. Additional environmental information is 

provided by sea-level data as in the Fenland (Shennan, 1985a, b), palaeosols and diatoms. 

The archaeological context of the sites is important, not only as a dating control, but also as a 

demonstration of the application of luminescence to sediments from archaeological sites, in order 

to assess its value as ~alternative dating technique to radiocarbon, for the time span of c.0-1 0 

000 years. Most of the sites fall into the Neolithic and Bronze Age archaeological periods, and in 

many cases, the sedimentary deposits are close in age. The earliest occupation represented by 

the sites is of Mesolithic age, demonstrated at Eskmeals in Cumbria and at Hartlepool Bay. 

Neolithic occupation occurs at Hartlepool Bay, Cumbria and on the Dutch donken and river dunes. 

Bronze Age occupation is represented primarily by the major timber structure at Flag Fen. No 

archaeological horizons occur at Stubb Place. 
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CHAPTER 3 THE FORMATION OF SEDIMENTARY DEPOSITS, AND IMPLICATIONS FOR THE 

APPLICATION OF LUMINESCENCE DATING. 

This chapter is in two parts; the first discusses the formation of sedimentary deposits, with particular 

reference to those processes which are directly relevant to later discussion of luminescence dating 

(chapter 5). These include exposure to sunlight during transport and deposition, and post

depositional effects such as those resulting from diagenesis and weathering. These processes 

affect the dose-rate to sediments and the physical state of minerals of importance for dating. The 

second part of the chapter presents the sedimentary analyses used in this study in order to 

examine selected aspects of the samples, such as mineralogy, particle size distribution and 

physical appearance. 

The analysis of stratigraphic sequences is of great importance in the reconstruction of past 

environments of deposition and in wider environmental interpretations of climatic change. A 

sequence of deposits represents fluctuations in the depositional environment through time. For 

example, a change from marine to freshwater sedimentation may be represented by change in 

sediment type, rates of deposition and floral and faunal assemblages. This information can be 

used in support of luminescence dating in order to reconstruct the conditions under which 

sediments are likely to have been deposited, eg. to give an indication of water depth, sediment 

source and mode of transport. In this study, selected analyses of sediment samples are used in 

conjunction with luminescence dating, in order to assess the potential for dating waterlain material 

of Holocene age. 

A graded boundary between two layers indicates a gradual change in depositional conditions, 

whereas a sharp contact generally results from a period of erosion followed by rapid burial (see 

section 3.1.2.2 for examples). The hiatus represented by the sharp contact may be of unknown 

duration, with an unknown depth of deposits removed. An example of this is at Chapel Point, 

Lincolnshire, where radiocarbon dating was applied to sediments relating to sea-level changes 

(Tooley, 1978a; p.155). Here erosional contacts were identified as the cause of discontinuities in 

the ages of the peats, and altitudinal differences in the contemporary overlying deposits. This 

stresses the importance of careful selection of dating samples, and, where possible, relying on the 

stratigraphic context of samples, and on additional independent dating techniques. 

The type of sedimentary deposit is often indicative of the contemporary sedimentary environment. 

A sandy deposit indicates a higher energy flow than clays which settle in deeper, still water 

conditions. Peat formation indicates a period of saturation, or regular waterlogging, while 

pedogenesis indicates dryer conditions and surface exposure, allowing vegetation to develop, 

and soils to form. A deposit with graded or rhythmic layers within it may result from seasonal or 
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other cyclic control over sediment supply and deposition. Source and supply of sediment is itself a 

major controlling factor in the formation of deposits. A quantitative assessment of water depth and 

energy of flow cannot be made accurately, because so much depends on the source and 

abundance of the sediment supply, as well as local climatic conditions and the relationship to 

contemporary base-level. 

Environmental reconstruction of sequences is problematic because of the 'pinhole' view afforded 

by cores. Lateral sections will reveal local variations in a layer while an individual core will not be 

able to do this, unless transects are made across a topographic feature. Correlation with nearby 

samples, can, therefore be difficult and erroneous, as in the case of Stubb Place. It is therefore 

important to have additional information relating to the stratigraphy of a site to enable correlation of 

sedimentary units to be made. 

The identification of the depositional environment is important in terms of /urnin~Scence dating as 

transport and depositional processes affect the degree of exposure to light that the sedimentary 

particles receive before burial. Post depositional processes and activity associated with 

archaeological occupation may affect the stability of the luminescence signals over the timespan 

involved. Sedimentary processes are considered below in terms of the potential relevance to 

luminescence dating studies. 

3.1 FORMATION OF SEDIMENTARY DEPOSITS 

Sediments comprise minerogenic and organic material which may be derived from different 

sources and incorporated at different stages of transport, deposition or post-depositional alteration 

of a deposit. The formation of sedimentary deposits follows a cycle of erosion, transport, 

deposition and diagenesis. This simplified cycle of processes may be interrupted at any point and 

sediments may be reworked and redeposited several times before undergoing diagenesis. Each 

stage in this cycle will be considered in terms of its role in the luminescence dating potential of the 

deposits, and in identifying potential sources of error caused by these processes. 

Stokes (1992) differentiates between multiple and single cycle deposits for the purposes of 

luminescence dating. Multiple cycle deposits include aeolian, beach and low energy fluvial 

sediments, and in this analysis are represented by sediments from the fluvial systems of the Dutch 

donken and the intertidal deposits at Hartlepool Bay. These sediments received repeated and 

more thorough exposure to sunlight before burial. 
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Single cycle deposits include fluvial flood, glacial and glacio-marine and colluvial deposits, which 

are exemplified by the tills at the base of the sequences in Cumbria and at Flag Fen. Such 

sediments tend to be 'dumped' in one event and are unlikely to be well-bleached during 

deposition. However, it should be noted that not all sediments in the 'multiple cycle' category may 

be sufficiently bleached. In some instances, the depth of water in a fluvial channel and the 

concentration of suspended sediment load is such that poor bleaching conditions prevail. 

Forman and Ennis (1992) conclude that the depositional environment is a primary factor in the age 

determination of glacial sediments, and that present analogous contemporary environments are 

not necessarily good indicators of past environments, particularly where sea-level and climate 

changes are rapid. This applies to environments other than glacial, and emphasises the 

importance of the identification of the depositional environment by sediment analysis as an integral 

part of luminescence dating. 

The comparison between testing the effectiveness of bleaching in known environments and 

using this as a key to past bleaching environments is difficult. The balance between sediment and 

water conditions is complex and so accum.~l'\ reconstruction is not possible in many cases. 

3.1.1 Transport and deposition 

Sediments in this study were primarily transported by water, either fluvial, estuarine or marine. At 

some sites, such as Williamson's Moss, the sequences of waterlain material contain aeolian material 

derived from local dunes. As the dating of minerals by luminescence is based on exposure of the 

minerals to sunlight, the identification of different components which may differ in their bleaching 

histories (eg. by wind or water transport) is important in terms of the degree of zeroing before burial 

and the effect this may have on the age determination of the sample. 

The mode of transport of minerals is reflected in the dominance of a narrow grain-size range, 

characteristic depositional structures, and in the surface appearance of grains (Reineck and Singh, 

1980). Waterlain material is more rounded than aeolian grains, although the size and degree of 

sphericity will depend on the resistance of the mineral and the distance and conditions of the 

transporting water body. The marks of impact between airborne particles often forms crescentic 

hollows and the surface develops a matt finish, being abraded and slightly opaque. Grains are 

generally more angular than those transported by water. 

('!,ill-) 
Aeolian deposits fall into two main grain-size categories; loess,, and sand sheets or dunes. Both 

are carried in the atmosphere. In the case of silt-sized loess this may be at considerable altitudes 

and therefore conditions for the solar resetting of the luminescence signal (bleaching) are ideal. 
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Loess has been deposited over extensive areas of Europe and Asia to depths of hundreds of 

metres. It was derived from devegetated landscapes under periglacial conditions during the last 

ice-age. Loess is not found at the sites selected, but sand dunes and sheets are locally extensive 

in Cumbria. The significance of the recognition of the aeolian component in these sediments has 

already been mentioned. 

Several types of waterlain depositional environments are found at the sites investigated and each 

will be considered. These include fluvial (eg. Hazendonk, Slingeland), intertidal and lagoonal or 

lacustrine (eg. Williamson's Moss and Eskmeals) and estuarine and marine deposition (eg. Flag 

Fen and Hartlepool). A summary table of the potential effectiveness of bleaching in the different 

environments is given in Table 3.1. The application of luminescence dating may aid the 

identification of past depositional environments and the of the grain-size fraction of greatest 

potential for accurate age determination in different environments. 

TABLE 3.1 Comparison of effectiveness of bleaching of different sedimentary environments 

Sediment 

aeolian 

fluvial 
lacustrine 

intertidal 

Soils 

Tills/glacial 

Likely Degree of Exposure 

full sunlight; good exposure 

Reduction in UV and short 
nm with depth 

full exposure at each low 
tide 

Variable; generally poor 

Negligible by sunlight: 

Other Controlling Factors 

re-exposure and reworking 
of dunes. 

Depth at which sediment is 
in suspension, turbidity, 

References, 

Wintle & 
Huntley, 1980 

Berger, 1990 
Kronber_g, 

U1'33) 
amount of suspended load 
incorporated bed/bank material 

Gemmell, 1988 

rate of deposnion per tidal cycle, Rendell, et al, 
mixing and reworking 1989 

Berger, 1990 

Forman et al, bioturbation, incorporation of 
other material eg. aeolian 
weathering 

1988 
Wintle & Catt, 1985 

Rendell & Townsend, 1988 

grinding thought to be main 
zeroing mechanism. 
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Lamothe, 1988 
HOtt & Yungner, 

1992 
Forman, 1988 



3.1.1.1 Fluvial Environments 

Sediment is transported by rivers either as bed-load, suspended load or as solutes. Here we are 

primarily concerned with the suspended and bed-loads of the river. The differentiation is based on 

grain size and the carrying capacity of the water body. The suspended sediment load generally 

consists of the silt and clay fractions. The sediment may be derived from a wide range of terrestrial, 

aeolian and marine sources, depending on location and environment. Different fractions of the 

sediment load are likely to have undergone different degrees of exposure, depending on 

previous modes of transport, grain-size, etc. Within the river, different fractions may be bleached 

to different degrees depending on distance or the depth at which they are carried in the water 

body (eg. Gemmell, 1988). 

The grain size of the sediment may give an indication of the fluvial conditions but will also depend 

on the supply of sediment. Coarser material is deposited more rapidly in the event of a reduction in 

river velocity, whereas finer material may remain in suspension for considerable periods of time. 

Finer sediments tend to reflect slower velocities and deeper water. It is not possible to reconstruct 

the flow velocity a11d depth of water from the grain-size of sediment alone, as the source of supply, 

climate, channel configuration etc. are important controlling factors (Reineck and Singh, 1980). 

The main concern with fluvially transported material to be dated by luminescence is the 

effectiveness of bleaching during transport and deposition. Some work has been done on the 

variation in intensity and wavelength of bleaching light with depth, turbidity and sediment load. 

Kronberg (1983) studied the attenuation of bleaching light with depth, and found that up to 0. 7 m 

depth, there was no significant reduction in the efficiency of TL bleaching. However, an estimation 

of 50% reduction in efficiency under 7 m of lake water was observed. This indicates that relatively 

short bleaching times (c.17 hrs.) are needed for complete bleaching in relatively clear water of <1m 

depth. 

Gemmell (1988) investigated the effect of distance on the degree of bleaching of sediment in a 

fluvioglacial stream. This was found to increase non-linearly with distance from source, and this was 

attributed to the incorporation of 'older' unbleached material from the bed and banks. This created 

a significant discrepancy in age estimations of fine-grained material. Berger (1990) distinguishes 

between the bleaching of different waterlain deposits from different environments; the 2-11 J.lm 

fraction from sandy river bars was more effectively bleached than an associated silt bar deposit, and 

Berger suggests that Holocene fluvial sediments are only suitable for dating where the sand 

fraction is selected. 
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Poor bleaching of rapidly-deposited glaciofluvial sediments was also a problem encountered by 

HOtt and Jungner (1992). High levels of suspended material reduce the effective bleaching of 

sediments (Ervanne et at, 1992) andqrt a factor of greater importance than turbulence where 

suspended levels are high (>0.05 g/1), whereas low suspended sediment loads (<0.02 g/1) had 

little effect on the bleaching of the sediment (Ditlefsen, 1992). Comparisons between bleaching 

of the TL and IRSL components of the signal show that the IRSL bleaches by 95%, but the TL by 

only 25-50% for given levels of turbulence (Ditlefsen, 1992). Sediments carried in fluvial 

environments may also undergo some chemical alteration and changes in compos~ion. There is 

generally an increase in the proportion of resistant quartz minerals, and a reduction in feldspars 

with time and distance. Clays become increasingly dominated by kaolinite and vermiculite types 

(Johnson and Meade, 1990). 

The deposition of fluvial material results from a reduction in the velocity and therefore carrying 

capacity of the water. This may be due to entering a lake or the sea, or changes in the gradient of 

the river bed, or recession of flood waters from an alluvial plain. In the last case, exposure to 

sunlight is likely to be enhanced. In the former cases, the finer material is generally carried further 

out into the lake and will settle out more slowly and thus may receive additional bleaching light. 

Coarser material will often form a delta or fan depos~ near the entrance of the lake, so only the 

surface may be completely bleached. This will depend on the depth of water, rate of depos~ion 

and amount of reflection from fine material in suspension. 

The advantage of using IRSL in these conditions is that the sunlight sens~ive luminescence signal 

within the crystals ~is; measured using this technique rather than the sunlight insensitive signals 

which are not measured using optical techniques, but are measured using TL. This is important 

where samples may have been exposed to attenuated light for shorter periods of time. The size of 

the unbleachable residual is less important in measurements of the IRSL than in the case of TL 

(see Chapter 5). Examples of s~es where the material is predominantly fluvial in origin are the 

Dutch river dune sites at Hazendonk and Slingeland. IRSL measures the signal predominantly 

from the feldspar fraction, which is known to be more sensitive to bleaching under sunlight; 

Ervanne et at (1992) demonstrated the effective bleaching of the TL of the feldspar fraction in 

alluvial sediments, but not of the quartz fraction. Feldspars in these cases are therefore the 

preferred mineral for dating. 

3.1.1.2 Intertidal Environments 

The sites sampled at Hartlepool Bay and in Cumbria experienced intertidal or perimarine conditions 

in the past. The Neolithic age peat at Hartlepool now exposed at the surface at low water is 

presently being eroded. The surface deposit comprises a mixture of eroded limnic material and 
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sand. The intertidal zone here includes a fossil tidal slack, mudflat or lagoonal deposit formed 

behind a ridge of till to seaward (Tooley, 1978b). These are the intertidal environments of greatest 

concern here. The formation of tidal mudflats occurs when the velocity of the wave is zero at high 

and low tides, and greatest at mid-tide (Pethick, 1984). Under these conditions, material is moved 

onshore and deposited faster than it is moved offshore. The material is exposed at each low tide 

and therefore well bleached before subsequent layers are deposited by succeeding high tides. 

The upper limit of mudflats lies at just below mean high tide, ensuring their exposure during each 

tidal cycle. Sand deposition occurs in a similar manner and the rolling of grains by currents 

increases the chance that they are adequately bleached. For this reason, intertidal deposits are 

likely to be well suited to luminescence dating. This argument is supported by Berger (1990) who 

suggests that such sediments are the most suitable coastal facies for dating. 

However, if intertidal sediments are shown by luminescence to be poorly bleached,~ may be 

inferred that they were deposited under different conditions, such as in a lagoon of relatively deep 

water, recharged with sediment at each high tide, or deposited as a deeper water marine facies 

under conditions of higher sea-level. In these cases, the use of diatoms and other micro

organisms can be valuable environmental indicators. TL could be used as a diagnostic tool in the 

identification of past depositional environments in such cases, together with biogenic, stratigraphic 

and other evidence. 

3.1.1.3 Lagoonal and Lacustrine Environments 

Sediments may be deposited in lagoons formed behind tidal barriers. These barriers may be 

sufficient to prevent all but the highest tides from entering, or they may be landlocked only at low 

tide. If they do not drain completely at low water, the sediment may remain in suspension, and so 

become bleached while in suspension. Alternatively, bleaching may be reduced for material which 

settles out faster. If the lagoon drains at low tide, the surface sediment is likely to be well bleached 

during each low tide period, and a layered effect may result from alternating bleached and 

unbleached sediment. This would require high rates of deposition at each tidal cycle, and minimal 

mixing of layers. In most tidal environments, these conditions are less likely than conditions where 

sediment deposited at each tide is mixed with material from the previous tide, and the amount 

deposited is such that it is all exposed to sunlight before burial. 

The archaeological site at Flag Fen is constructed on a marshy area which was thought to have 

been open water at the time of occupation (Pryor et al, 1986). Deposition into a lake such as this 

would be differentiated according to grain-size, with coarser material forming a fan at the point of 

entry into the lake, and finer material settling in the open water area. Bleaching would depend on 

the depth of water, and degree of reflection from suspended sediment. In the Dutch river dune 
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area, where deposition results from alternating lagoonal and lacustrine environments, bleaching 

may not be complete during periods of flood deposition or greater water depth. This is difficult to 

estimate from the sediments alone. In addition, the incorporation of an aeolian component eg. at 

Williamson's Moss, where sand is derived from nearby coastal dunes, may increase the complexity 

of the sediment with respect to its bleaching history. 

An influx of coarser material may be due to flood events from higher run-off from rivers, or tidal 

washover. The use of diatoms can aid the identification of the source of sediment (ie. 

predominantly fresh or marine water conditions). Berger (1985) studied the deposition of material 

in a glacio-lacustrine environment and observed no significant resetting of the silt fraction of a 

rapidly deposited silt of known age. He suggests that such material is not suitable for dating. The 

quartz fraction was also found to be insensitive to wavelengths above 400 nm, but the feldspar 

fraction was sensitive to all visible wavelengths. This supports the proposal of this study to date 

the feldspar fractions by IRSL in order to sele<t :t:r,t~:. m~;.:.I.:;(GI-·~J"'~.;r,iy.;uitable fraction from deposits. 

3.1.1.4 Estuarine and Marine Environments 

Estuaries function as sediment sinks. Material is trapped by the estuarine circulation and tidal 

current patterns; by a reduction in current competence (ie. ability to carry sediment) and by 

flocculation of clays and organic complexes. During river flood periods, material leaves the estuary, 

but during high tides, material is trapped within the estuary, which represents a highly dynamic 

environment. There are no truly estuarine deposits identified in this study. Those demonstrating 

brackish water conditions from their fauna tend to occur in tidal slack lagoons, eg. Eskmeals and 

Williamson's Moss. Marine deposition occurred over the Fenlands and on the Cumbrian Lowlands 

as a result of Post-Glacial sea-level rise, when large spreads of clays and silts were deposited over 

the Fens and other areas of low-lying land around the British Isles. Such material may not have 

been sufficiently bleached due to the depth of water, rate of deposition and amount of suspended 

material. These deposits can be differentiated from lacustrine deposits due to their fauna, extent 

and associated changes in vegetation. The application of the IRSL may enable age determinations 

where TL is less successful. 

The source of the marine-deposited material is important as it may affect its bleaching history. 

Deposits derived from terrestrial sources and transported by rivers may be more thoroughly 

bleached than that derived from marine sources. The identification of the source of material may 

be difficult, but the Fen Clay and marine silts on the Fenland are generally thought to derive from 

marine sources. If these were laid down under deep water conditions, bleaching may not be 

complete. The Fen Clay depositional environment is interpreted as one of quiet water 

sedimentation (Shennan, 1985a) but the depth of water is difficult to assess. 
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3.1.2 Post-depositional change 

Following deposition of material, there are several processes which alter the nature and 

composition of the sediment. In terms of the application of luminescence dating these may affect 

the dose-rate and the ability of minerals to accumulate and store this radiation charge in a stable 

manner. The processes of greatest importance here are compaction and diagenesis, 

pedogenesis (soil-formation} and weathering of minerals in situ. The effects of human occupation 

on sediments is also relevant, in terms of trampling, inc<;>rporation of material from other sources, 

and disturbance of soils. 

Properties of freshly-deposited material are controlled in part by the conditions of the depositional 

environment (Krumbein, 1942} and change is controlled by the diagenetic environment, such as 

pH, Eh, chemical activity and availability of ions for exchange. In addition, compaction affects the 

water content of the sediment, and the resultant reduction in porosity reduces the movement of 

water and ions, such as weathering products or radioactive isotopes. Water content has significant 

implications for the dose-rate to minerals. Pedogenesis involves the incorporation of organic 

material from vegetation and microfauna and allogenic minerals (eg. aeolian of alluvial deposits} into 

the profile, mixing older and younger material, and affecting the dose-rate by the presence of 

organic material. Weathering of minerals, such as during soil-formation, alters the crystal structure 

and may therefore affect the stability of a mineral with respect to storing trapped charge. 

The identification of these processes in a sedimentary sequence is therefore of significance with 

respect to luminescence dating, as these processes may lead to greater errors or incorrect age 

determinations. Such potentially problematic samples could be avoided if identified before 

extensive laboratory measurements have been conducted. 

3.1.2.1 Compaction and Diagenesis 

As the depth of burial of a sediment increases with further deposition on the surface, the sediment 

will undergo some compaction or consolidation. These two processes are not synonymous; 

compaction is defined as "a decrease in bulk volume or thickness of, or porespace within, a body of 

fine-grained sediments in response to increasing weight of overlying material from continued 

deposition, or to pressures resulting from earth movements within the crust. It is expressed as a 

decrease in porosity due to tighter packing of sediment particles" (Bates and Jackson, 1980}. 

Consolidation is defined as a "gradual compression of cohesive soil due to a mass acting on it, 

which occurs as water is driven out of soil voids" (Barker, 1981}. Compaction is often seen as a 
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'natural' process while consolidation is caused by artificial pressures, such as construction works 

(Gillott, 1990). 

The main result of compaction (ie. the 'natural' form of the process) is a reduction in porespace and 

consequently the water held within the sediment. Water is observed to have an attenuating effect 

on the dose-rate to sediments (Aitken, 1985; 22), but this is likely to have greatest effect where 

the water is stored in larger voids, which contribute to the attenuation of alpha rays in particular. 

Tooley (1978a) refers to primary compaction (up to 50% of the total volumetric reduction) which 

occurs very rapidly after deposition, and secondary compaction occurring much more slowly, at 

rates which may be linear with log-time (Barden, 1968). Compaction can also affect the 

environmental interpretation of sequences. Van de Plassche (1980) illustrates this in the 

Netherlands where peat overlying sand has become compressed, forming a more graded 

boundary between sand and peat than was originally laid down. Consolidation of sand is very 

slight, but peat may be reduced 90% by volume (Jelgersma, 1961). 

The state of overcompaction, in which the sediments have been compressed beyond their 

. capacity to recover their previous open structure when the overburden has been removed, is of 

great importance in the estimation of past water contents. Overcompaction will significantly reduce 

the pore space available for water, and this change will be permanent. However, it may also be 

thought to 'stabilise' older sediments, by reducing variations in water content through time. The 

packing of sands and the infilling of voids by silts and clays may significantly reduce the amount of 

water, and the freedom of flow through even relatively large-grained material. To some extent this 

will serve to reduce the amount of short term fluctuation in water content. 

Estimates of the degree of compaction which the clays at the Hazendonk have undergone 

provides valuable information in terms of the estimation of past water contents. In this case, the 

compaction has been evaluated from differences in height of contemporary deposits (both upper 

and lower contacts) between the donk slope, where the sediments are 'well-founded' (ie. they 

have a firm, non-compactable base) and sediments lying in the centre of the basins between the 

donken. Louwe Kooijmans (1974) attributed much of this compaction to deposition under quiet 

water conditions. These sediments have been waterlogged since deposition, and therefore the 

measurement of the present porosity, and assumptions regarding minimal deviation from saturated 

conditions are more applicable here than in cases of sediments compacted after deposition. Such 

sediments may include those containing a mixture of grain sizes, and lying in the upper layers of a 

sequence, and have thus been affected by pedogenesis and possible water-table fluctuations, 

eg. the upper layers of the Cumbrian cores. 
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3.1.2.2 Water Content 

Water content in sediments lying below the groundwater table or below base level, will vary 

primarily as a result of the grain size distribution and packing, which controls the amount of 

interparticle space, and on the degree of compaction, discussed above. Skempton (1970) 

observed that fine silts and clays laid down under transgressive conditions which settled slowly 

without disturbance may be laid down with 95% compaction (eg. at Hazendonk). There is a direct 

relationship between the amount of clay and the porosity of a sediment, but this cannot be used to 

predict the amount of compaction a sediment has undergone. Coarse grained sediments are less 

affected by compaction and resultant water content changes are less than for finer clays and silts. 

However, variations in compacted silts and clays will be less than for compacted sands. 

Modern delta deposits investigated by Skempton (1970) were deposited at rates of several metres 

per year, and had higher porosities, although this was in part related to the higher organic content. 

Estuarine sediments from the early part of the Holocene were deposited at rates of around 0.002 

metres per year (2 m/kyr). The depositional water content of these consolidated clays could be 

estimated from the Atterberg limits of the deposits, in relation to the water content of the top 25 em 

of the unconsolidated material. This would not apply to the sediments which are consolidated at 

the top of a stratum, or which have been truncated by erosion or exposed at the surface for 

sufficient time to allow desiccation to occur. 

Over-consolidation of deposits is permanent and so the water content of the material will be 

effectively stabilised with respect to significant variation, and the value of the water content will be 

the same for the period since overconsolidation was complete. The length of time since this 

occurred may be difficult to evaluate and so this value cannot be taken as the assumed water 

content for the whole burial time. 

3.1.2.3 Pedogenesis 

Sediments exposed at the surface may be subject to pedogenic (soil-forming) processes. 

Palaeosols can be difficult to identify within stratigraphic sequences, especially where younger 

soils have developed into older ones, or profiles have been truncated by erosion. Different 

processes can lead to the same soil characteristics. Particular formations can result from different 

processes or combinations of processes. Changes in climate, landuse, drainage and particularly 

vegetation, whether natural or anthropogenically induced, can reverse processes, and breakdown 

formations already developed. This reflects the dynamic nature of soil as a cause and effect of 

vegetational change and other local factors. 
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Micromorphological analysis is generally required for the identification of soil horizons. However, 

this requires that the samples have not been significantly affected by compaction either during 

burial or sampling, and the latter case was a problem affecting the application of such analysis in all 

core samples in this study. The sequences at Flag Fen, Stubb Place and Williamson's Moss 

contain layers which are remnants of old soils or land surfaces, but the firm identification of these as 

such rests on their archaeological associations, described in the previous chapter, and in the 

structures identified in the profiles of corresponding strata from different sites or samples. The 

descriptions of the Fenland buried soils (French, 1988a, b) are an important environmental 

indicator, although the soils themselves are not represented in the Flag Fen profile. 

Soil development can only begin when sediments are no longer affected by regular seasonal 

waterlogging or conditions of continuous saturation. This is effected by a lowering in the local 

.water table by artificial drainage or by changes in climate and sea-levels. This enables a flow of 

water through the sediment along moisture gradients, and associated movement of elements in, 

through and out of strata, leading to the development of soil horizons. Where significant peat 

accumulation has occurred, soils will often only develop once most of the overlying peat has 

wasted away (Catt, 1979). 

The process of soil formation is of greatest importance in terms of luminescence dating for several 

reasons. Soils can form important stratigraphic markers in Quaternary sequences, eg. the Valley 

Farm and Barham Soils in southern East Anglia (Kemp, 1985; Rose et al, 1985). Their accurate 

dating is therefore of great value to regional Quaternary chronologies. The processes of primary 

concern are those related to bleaching of the minerals (translocation and bioturbation), dose-rate 

to minerals (incorporation of organic matter) and alteration of minerals (weathering). This last case is 

discussed in the following section. 

Bleaching of minerals in soils has been recognised as a problem in the application of luminescence 

dating generally. Soils comprise material derived from weathered bedrock or from colluvial, alluvial 

or aeolian material. Much of this material may not be exposed to sunlight during soil development. 

The incorporation of well-bleached aeolian material results in a deposit containing material of very 

different 'ages'. Mixing occurs by bioturbation and by translocation of fine particles by percolating 

groundwater. Pedogenesis may be very slow, and exposure of individual components limited to 

the surface only. For this reason, many soils have been dated successfully, despite lack of close 

chronological control, producing an age estimate for the time of burial of a soil, by dating the upper 

'A' horizon. 

Dating of the A horizon has been successful in loess sequences (eg. Wintle and Catt, 1985), 

although Berger and Huntley (1986) indicate that A horizons developed in alluvium or colluvium 
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are not suitable. Wintle and Catt (1985) found stratigraphic reversals in their dated sequence. This 

was attributed to the reworking of B horizon material, but they also refer to 'some process 

associated with soil development' which had partially reset the TL of feldspars in loess. Forman et 

al. (1988) demonstrate some difficulties in dating soils developed into colluvial and alluvial 

sediments due to incomplete zeroing. 

Translocation of material in profiles increases the complexity of the bleaching history of a soil. The 

material may be redeposited at depth and if derived from near the surface, will be more completely 

bleached than the surrounding material. This mobility will affect the choice of grain-size to be 

dated. The movement of clay minerals within profiles often results in the coating of mineral grains 

by clay particles. If the clay coating is sufficiently thick, it may reduce the potential bleaching of the 

mineral grains before burial. Coatings of clay minerals are proposed as a cause of incomplete 

bleaching of quartz (Prescott and Fox, unpublished data) and for low intensities of luminescence 

emissions (Ouestiaux, 1991). 

Translocation includes the movement of ions and water, which has repercussions in terms of the 

variation in water content and in the movement of radio-isotopes. The incorporation of organic 

material, which preferentially absorbs isotopes such as uranium, can also affect the dose-rate if 

present in large quantities. Grains extracted from peat may be affected by dose-rate problems. 

This makes them difficult to date, as clays can absorb organic matter which is enriched in uranium 

and will be more affected than larger grains due to their greater surface-area to volume ratio. 

3.1.2.4 Weathering 

Weathering of minerals results in the physical or chemical alteration of minerals. Physical 

weathering processes are based first on changes in temperature, which exploit the differential heat 

capacity of minerals, particularly in arid regions with a high diurnal range of temperature; secondly 

on the crystallization of salts causing local pressures, and thirdly of water as in freeze-thaw action 

which also relies on temperature change. Chemical weathering processes are of greater 

importance, particularly in temperate and tropical climates where temperatures and water supply are 

likely to be sufficient to activate the processes throughout much of the year. Chemical weathering 

affects the structure of minerals, especially quartz and feldspar, causing compositional change 

which may alter their ability to accumulate trapped electric charge. 

Hydrolysis is a chemical process involving the H+ and oH- ions from water and is very important in 

the breakdown of feldspars. The reaction of orthoclase (potassium feldspar, KAISi308) and water 

for example, produce potassium hydroxide and alumino-silicic acid, which, together with carbon 

dioxide from the atmosphere, produce potassium carbonate and water. The alumino-silicic acid is 
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unstable and breaks down to form clay minerals and colloidal silica which is removed in solution, 

following the formulae given in the following section. This process is accelerated by the presence 

of carbon dioxide. 

The presence of humic acids produced from the breakdown of organic matter is important in the 

mobilisation of metals from otherwise insoluble solids, by the process of chelation. Chemical 

complexes form between organic molecules and metal ions, particularly iron and aluminium, which 

are then removed by leaching. Humic acids are generally stronger than carbonic acids and so have 

a greater effect. Organic acids also attack minerals in wetter conditions, producing soluble ions and 

clay minerals. Proximity of samples to acidic influence therfore, needs to be considered in 

stratigraphic sequences. 

The stability of minerals varies with their structure and presence of impurities. Quartz is highly 

resistant to both chemical and physical weathering and clay minerals tend to be inert except 

through lattice impurities. However, it has been demonstrated (Bennett, 1991) that the presence 

of organic electrolytes increases the solubility and mobility of silica at near neutral pH and low 

temperature conditions. Simple dissolution is the dominant process in quartz weathering, and 

causes an increase in the porosity of the material (Nahon, 1991), especially in soils where water 

flow is unimpeded and compaction is minimal. The presence of organic acids in natural water 

greatly enhances the rate of feldspar dissolution compared to dissolution in water of a similar pH, 

but with no organic acids (Lundstrom and Ohman (1990). 

The potassium feldspars are the most resistant of the feldspar group and the calcium varieties are 

the least, due to the high susceptibility and mobility of the calcium component. Where suitable 

ions are present, kaolinite formation is favoured in acid conditions, and montmorillonite in more 

alkaline and wet conditions. Clay minerals are formed during weathering, and may be deposited as 

grain coatings, thus impeding further degradation of the coated mineral. The expanding layer clays 

(2:1) are highly susceptible to further breakdown, mainly by ion exchange, but the 1 :1 layer clays, 

such as kaolinite, are more resistant to alteration, having a more stable structure. 

The effects of the weathering of feldspars is considered in more detail in Chapter 7. This is 

important in this study because feldspars are the main mineral from which luminescence 

measurements are made. This is because felds~rs are abundant in most sediments, they 

possess a strong luminescence signal and can be measured using both IRSL and TL dating. 
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3.1.3 Summary 

A variety of sedimentary environments are demonstrated by the selected sites. These include 

fluvial, intertidal, lagoonal-lacustrine and marine environments. The analysis of the sedimentary 

environment is important with respect to luminescence dating for two main reasons. First, the 

potential bleaching of the sediments before burial will depend on the conditions under which they 

were deposited. The spectrum and intensity of sunlight is reduced by depth and turbidity of water, 

and the concentration of suspended sediment load. The environment of deposition can to some 

extent be inferred from the sediments of a stratigraphic unit, although this will also be determined 

by other factors such as source of sediment. 

Secondly, post-depositional changes may also extensively affect the chemical and physical 

properties of a sediment, and therefore its luminescence signals. Such changes include 

compaction, which reduces the pore-space, and hence water-content, and the effects of 

pedogenesis and weathering in situ. Uncertainties in the evaluation of past water-contents 

contribute a significant proportion of the total error of luminescence dates which may be reduced 

for sediments shown to have been compacted at deposition, rather than later in their burial history 

as a result of loading. This is the case for the Dutch river-dune sediments. 

Pedogenesis may be difficult to recognise in sedimentary sequences. Exposure of minerals in 

soils is facilitated by bioturbation and the incorporation of material at the surface, eg. aeolian 

material. In the latter case whereas aeolian material may be of younger luminescence age, related 

to exposure before incorporation, but material in the soil profile may not have been exposed and 

may therefore reflect the age of the parent material rather than the period of soil formation. The 

recognition of such events in the soil profile is important as it may determine the most suitable 

fraction for luminescence dating. The sequences at Willliamson's Moss and Stubb Place both 

indicate that material has been incorporated from an aeolian source. 

Finally, the weathering of minerals, particularly feldspars in the sediment profile after burial is a 

process which has not been studied before with reference to luminescence dating of sediments. 

Examination of the sediments and the evidence of weathering is an important aspect included in 

this study, and is investigated in detail in Chapter 7. 
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3.2 TECHNIQUES OF SEDIMENT ANALYSIS 

There are a wide variety of techniques available for the analysis of sedimentary deposits. The 

techniques selected for this study are those which give the best indications of the origin, transport, 

environment of deposition and post-depositional processes affecting deposits sampled. 

For the purposes of this investigation, the emphasis is first on the reconstruction of the "bleaching 

history" of a sediment, and the potential effectiveness of bleaching under the indicated conditions 

of transport and deposition. Secondly, post-depositional processes may have affected the dose

rate or crystal structures of quartz and feldspar which will cause errors in measurements of trapped 

charge as a function of dose-rate and time since deposition. Thirdly, changes in water content are 

due to compaction and to variations in groundwater tables; these may be recognised in a 

stratigraphic sequences by recurrence surfaces and soil formation. Finally, the stratigraphic 

sequence as a whole is an important source of information regarding changes in environmental 

conditions relevant to the dose-rate. This is considered in more detail in Chapter 5. Interfaces 

between minerogenic and highly organic sediments may be centres of enhanced weathering 

activity and variable dose-rate to sediments. Sampling near to such interfaces needs to be treated 

with caution. 

The characteristics selected for study were the particle size distribution, mineralogy and elemental 

composition, physical state of the grains, and organic carbon and water contents. In order to 

evaluate the variability within the deposit and to identify evidence of post-depositional change, 

associated particularly with diagenesis, the particle size distribution, water content and the level of 

organic carbon were also measured at 1 0 em intervals throughout the minerogenic parts of the 

cores. The sediment sequences were described using Troels-Smith's (1955) method of 

classification, and interpretations of the depositional environment with respect to luminescence 

dating were made based on the descriptions and results of the analyses. These are presented in 

the following chapter. 

3.2.1 Sampling 

Samples were taken using a piston corer, which enables samples of the sediment to be taken 

without exposure to daylight. The corer extracts a 1 m long sample, 6 em diameter, in steel tubes. 

These were then extruded under controlled red light conditions in the laboratory. There is a 

significant amount of compaction of the sediments during sampling and in order to correct for this, 

a narrow bore Dutch auger sample was made first, and the stratigraphy and depths recorded in the 

field, using the system devised by Troels-Smith (1955). The piston core holes were then made 

immediately adjacent to this control, and the stratigraphy matched up with the Dutch auger record. 
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After extrusion, the cores were split horizontally. One half was then wrapped in black plastic for 

dating, while the matching half was used for sedimentary analysis. 

In the case of HartlepooiBay, a machine trench was dug, and the sample face cleaned and 

recorded. The samples were taken in 0.5 m long monolith tins, wrapped in black plastic and 

returned to the laboratory. Samples were extracted from the centre of the units in the tins, to 

ensure that the part sampled for dating had not been exposed to light. 

3.2.2 Dosimetry 

The dose-rate to samples is measured by the placement of sealed copper capsules containing 

annealed natural calcium fluoride into the ground for one year, after which they are retrieved and 

measured. For the sections sampled at Hartlepool Bay, the dose rate was measured using a 

portable gamma ray spectrometer. Where possible it is advantageous to use both methods and 

then make a comparison. However, for most deep core samples, it was not possible to take 

gamma-ray spectrometry measurements, and at Hartlepool Bay, dosimeters could not be left in 

situ. 

The dosimeters were suspended level with the minerogenic and organic strata in the boreholes, at 

depths determined from the Dutch auger core. This enabled dose-rate measurements to be made 

for the different sample layers and intercalating peats throughout the depth of the cores. 

Dose-rate measurements can also be made from the sample, using alpha counting, beta TL 

dosimetry and XRF analysis of the potassium content. These are discussed in Chapter 5. This was 

performed on all samples, both as a comparison with the dosimeters, and as primary dose-rate data 

for one site (Stubb Place) where the dosimeters could not be retrieved. 

3.2.3 Water Content 

Changes in water content of sediments is known to have significant effects on the dose-rate and is 

a major component of the error in calculated ages which increases with greater water contents of 

samples (Aitken, 1985; 250). The present water content of samples is easily measured, but it is 

not always appropriate to extrapolate this back through several thousand years, eg. Rendell 

(1983) identified collapse structures in loess resulting from loading which significantly reduced the 

saturation water content of the material, as compared to uncollapsed material from the upper part of 

the section. The effects of compaction of waterlain sediments is important and has been 

discussed above with respect to sediments, and in Chapter 5 with respect to luminescence dating 

techniques. 
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The recognition of such evidence is important in terms of the evaluation of the past water content. 

The water-content at the time of sampling and saturation water-content values are measured and a 

correction factor applied for the attenuation of the dose-rate due to the presence of water in the 

pores. Aitken (1985) used a figure of 80% of the saturation value with an error margin of 20%. The 

validity of this is assessed in terms of the measured water contents of the samples in Chapter 5. 

The variation in water content between layers is also important; fine-grained silts can hold more 

water than freely draining sands, because of the great abundance of small interstitial pores. 

However, water flow through fine material is restricted by the small size of pores, so weathering 

products may not be carried away as quickly as in coarser sediments. Sands are dominated by 

quartz which is highly resistant to weathering. The advantages of free leaching will not always 

therefore result in faster rates of degradation, except where the coarser deposits contain relatively 

susceptible minerals such as some feldspars. Changes in water content of coastal areas will in part 

reflect changes in sea-level. During periods of higher sea-levels, the local groundwater table will 

rise. 

Water content is normally calculated as a percentage of dry weight or wet weight of soil which has 

been oven dried at 1 05°C for about 24 hours. Reconstructions of the water holding capacity 

(consisting of void space and pore space) can be achieved by soaking sediments and calculating 

the volume of water absorbed. This gives a maximum saturation value for the sediment, relevant to 

the error used for age evaluations. However, this requires that the sample has been structurally 

undisturbed. This will not be the case in samples extracted using some coring devices including 

the piston corer used here. 

3.2.4 Particle Size Distribution 

The analysis of the particle size distribution of a sediment is a fundamental sedimentological 

technique and is important in the reconstruction of the environment of deposition. For example, 

compared to material deposited by coastal or fluvial processes, aeolian sediments tend to have a 

very narrow range of sizes, predominantly silt in the case of loess, or sand in the case of dunes 

(Reineck and Singh, 1980). The size distribution of waterlain material will reflect the supply of 

sediment and the velocity of the water body and the energy of the depositional environment. This 

does depend on the source and supply of the sediment. Floodplain material is often characterised 

by a fine 'tail' in its particle size distribution; the fines are left on the surface as the floodwaters drain 

away. Fine-grain river channel deposits do not have this tail, as the very fine fraction is maintained 

in suspension, even at very low velocities. 
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Particle size analysis (PSA) is important in the context of this study as it is an indicator of the 

depositional environment. It does not, for example, distinguish between aeolian and fluvial 

material. PSA however should not be used alone as the physical appearance (shape, roundness 

and surface texture) of the grains will also reveal features characteristic of transporting agents. The 

use of core samples requires a correlation with the sediment sequences identified in the 

surrounding area; eg. the Rhine-Meuse delta area has been extensively researched and a regional 

environmental reconstruction through time can be proposed, into which the sample core is fitted. 

Thus the regional interpretation, which may include the wider contemporary processes and 

sediment sources is of great importance in the identification of past environments. PSA can serve 

as a tool for the correlation of sediment types within such a region. 

The grain-size of a sediment is to some extent an indication of the mode of water transport; coarser 

material is more likely to travel as bed-load and therefore may not be so completely bleached as the 

suspended silt fraction. PSA will also determine the modal grain-size, which may determine the 

most representative size fraction to be selected for dating a particular sediment. 

The measurement procedure followed that described by the 8811377(1975) procedure. The 

subsample was sieved. The fraction above 63 ~ was sieved further using 2 mm, 600 11m and 21 0 

11m sieves. The percentage proportions of the sand fractions were calculated using the formula 

1 OOWf/Wb, where Wf represents the weight of a given sieve fraction, and Wb the weight of the 

original air-dried sample. 

The material finer than 63 11m was subdivided by sedimentation in 500 ml water containing 20 ml 

sodium hexametaphosphate as a deflocculating agent. The sedimentation extraction times were 

based on a mean sample specific gravity of 2.65, so an extract was taken after 4m 5s, 46m and 6h 

54m. These were dried and cooled in a desiccator and weighed. A control extraction of the 

sodium hexametaphosphate in water was also taken, weighed (P) and this was subtracted from the 

weight of the original dry sedimentation sample. 

The calculations for the percentage proportions of the original sample were made using the 

pretreated weight (Wb). The proportions were evaluated by M = (W/Vp)500g where M is one of 

the extraction weights, M1 (4m 5s), M2 (46m), M3 (6h 54m) or M4( weight of deflocculant), W is the 

weight of solid material in the 500 ml suspension for the different extraction times (ie. 

corresponding W1, W2, W3, and W4), and Vp is the calibrated volume of the pipette (here 9.9238 

ml). 

The percentage proportions of the sample size fractions of the original sample are calculated by : 
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medium silt (0.02-0.006mm) = (M1-M1/Wb)100 

fine silt (0.006-0.002mm) = (M2-M3/Wb)100 

clay (<0.002mm) = (M2-M3/Wb)1 00 

and the coarse silt fraction by interpolation. 

In addition to this, selected samples were measured using a Fritsch laser particle sizer, to obtain 

more accurate data for samples consisting almost entirely of silt-sized material. This was done at 

the Hydraulics Research Laboratory, Wallingford. 

3.2.5 Mineralogy 

The main purpose of analysing the mineralogy was to assess the amounts of quartz and feldspars 

in samples and to determine where possible the type of feldspar, which was the main mineral used 

for dating (especially in IRSL). The identification of the presence of minerals such as metal oxides 

and carbonates which cause spurious luminescence (ie. additional signals which are not part of the 

signal used for dating measurements) is also important. It is also useful to analyse the total amount 

of clay minerals present in the samples. Clays are relatively inert with respect to luminescence 

(Ouestiaux, 1991) and an abundance may 'dilute' the signals emitted for other minerals. They are 

also an indicator of feldspar weathering, particularly an abundance of mixed-layer types. 

X-ray diffraction (XRD) is a widely used technique for the study of minerals and sediments, 

especially for the study of weathering processes. It is primarily used for clays but will identify most 

minerals. Samples are settled on glass slides and subjected to X-rays which are diffracted at angles 

determined by the interplanar (d-) spacing of the crystal structure. This produces a pattern of 

diffraction peaks on a chart. By comparing the pattern with that produced from known standards, 

the mineralogy of the sample is identified. The samples were analysed using a CoKa source of x

rays (Hardy and Tucker, 1988). 

Clay minerals are phyllosilicates, and have a layered structure. When allowed to settle undisturbed, 

they will orientate preferentially parallel to their basal plane (001 ). If randomly orientated, definition 

only between subgroups rather than individual species can be made as the diffraction angle will not 

be restricted to the basal plane alone. Various chemical treatments can be applied such as heating 

and impregnation with ethylene glycol to refine the identification of clays, but these were not 

applied here. The clays were settled slowly from evaporation of water rather than acetone. This 

proved sufficient to identify the abundance of the main groups of clays, such as kaolinite, 

montmorillonite and illite, and the abundance of amorphous and mixed-layer clays. 
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Mineralogically similar clays will be produced under different weathering conditions, depending on 

the availability of ions, but they will differ in chemical composition and structure, which is reflected in 

the diffraction pattern (Carroll, 1970). Kaolinite forms where there is a deficit of cations which are 

removed in free draining conditions; halloysite tends to form directly from the alteration of 

plagioclase; montmorillonite forms in drier environments and requires the presence of some 

cations (Degens, 1975). Amorphous iron and aluminium oxides and quartz and feldspars of clay 

size are identified, but highly amorphous material, including clays, will tend to produce a high 

background luminescence signal (see Chapter 5), compared to samples without these minerals. 

Quantitative estimation of minerals is difficult to obtain, requiring the additions of known quantities 

of a pure mineral to compare its diffraction response. Careful selection of an appropriate type and 

size of control is necessary. However, a semiquantitative estimate of the relative abundance of the 

major identifiable minerals can be made by calculating the areas under diagnostic diffraction peaks 

(Hardy and Tucker, 1988) which was sufficient for samples in this study. This was supported by 

SEM analysis which is particularly useful for clay mineral identification. 

Each of the fractions obtained from the sedimentation particle size analysis was examined by XRD 

to assess variations in mineralogy between consecutive size fractions, including the medium and 

fine silt fractions used for fine grain dating. The objective of this was to assess the variability in the 

abundance of minerals relevant to dating (quartz and feldspar) with grain-size fractions. Thus the 

difference in mineralogy between the fraction selected for dating and the modal grain-size could 

be evaluated, where the latter was of an unsuitable size for dating. 

3.2.6 Elemental Composition 

Elemental analysis by XRF (X-ray fluoresence) of luminescence dating samples is performed in 

order to evaluated the K20 content of the bulk sample. This is used to determine the amount of K-

40. This can be used to evaluate the gamma radiation contribution to the total dose-rate. This is 

used in conjunction with alpha counting and beta TLD to evaluate the dose-rate from the sample in 

the laboratory. This is discussed further in Chapter 5. 

Elemental composition is also useful in the analysis of the degree of weathering in a profile. The 

relative proportion of soluble to insoluble ions is used to give a weathering or chemical alteration 

index for a sediment (Fairchild et al. 1988). These have been used to differentiate between 

degrees of weathering in strata within a stratigraphic sequence (eg. Pye and Johnson, 1988). 

Weathering indices have been applied selectively in this study to sediments which have been 

affected by weathering, either in the past or at present. The ratios and applications are discussed 

in the following chapter. 
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XRF is a process by which a sample is bombarded with x-rays causing emission of secondary 

radiation which is dependent in its wavelength and intensity on the type and abundance of 

elements present. Comparisons are made with calibrated standard samples. The Energy 

Dispersive (ED) technique was used rather than the Wave Dispersive (WD) XRF, as it identifies a 

wider range of minerals (Jenkins and de Vries, 1970; Fairchild et al, 1988). Samples are prepared 

using a compressed powder of the sample impregnated with resin. This gives a sample which is of 

similar packing density to all others, and is homogenised with respect to its composition. The 

elements identified include the more common elements Si, AI, Mg, K, Ca, Fe, Na, Ti, S and P, as 

well as trace metals such as Pb, Zn, Cd, Cr and Mn. 

3.2. 7 Weathering Indices 

The degree of weathering that minerals have undergone can be measured by the application of 

weathering indices to the samples (Parker, 1970). These generally comprise an evaluation of the 

ratio between mobile and less mobile cations as measured by XRF analysis; eg. Ca. Na, K : AI, Si, 

Fe. The comparison of the weathering index of the parent rock and of the soiVsediment derived 

from it indicates the degree of alteration that has been effected, and the potential for further 

alteration at different depths in the profile. 

Weathering indices were applied to loess sequences with some success (Pye and Johnson, 

1988) based on the assumption that the original composition of the loess did not vary greatly and 

that through time, progressive leaching and soil formation has altered the elemental composition. 

The ratio used in this case was AI203 + Fe20/Na20 + K20. Other elements were also measured, 

and it should be noted that the U concentrations did not vary significantly with depth, but that Th 

concentrations were higher in the weathered loess, than the unleached loess. They have also 

been applied to brickearths in South-East England for the purpose of determining provenance 

and uniformity of loess (Parks and Rendell, 1992). 

However, in the above case concerning loess, comparisons are based on a common original 

composition, and in the case of rock weathering studies, the composition of the parent material is 

known. In the case of the present study, such comparisons are not available as the sediment has 

been transported for some distance away from its source, and is derived from more than one such 

source. The homogeneous nature of many of the strata sampled suggests that there has not been 

significant weathering within the strata. Differences between weathered and unweathered parts 

of the stratum are difficult to identify in many cases, and may reflect differences in depositional 

environment rather than weathering or leaching. The application of weathering indices in these 
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cases would only reflect the mineralogy of the sample, rather than its past or potential alteration by 

weathering, and therefore represents an inappropriate technique for the purposes of this study. 

3.2.8 Physical Appearance of Grains 

High resolution microscopic examination of individual grains is a valuable source of data relating to 

the mode of transport and the effects of processes such as weathering. Comparisons between 

size-fractions and samples are facilitated by the use of photography. Both optical and scanning 

electron microscopy were employed in this study. This was in order to evaluate the effects of 

weathering on selected samples, and to aid the identification of the types and forms of the clay 

minerals where these were particularly abundant. 

Characteristic features such as etch pits and delineated cleavage planes develop in feldspars as a 

result of weathering. Additional features resulting from redeposition of elements, and clay 

formation and alteration were investigated and observed. These are discussed in the following 

chapter. 

Selected samples were prepared by using the discs prepared for luminescence dating 

measurements (see Chapter 5). The sediment is settled onto aluminium discs. These were either 

discs which had been measured, or additional discs prepared for the SEM, as the exposure to 

white light subsequently invalidates their use for dating. The discs were gold coated and 

examined under a variety of magnifications (xSO to x2000) at working distances of between 6 and 

38 mm. Photographs of some of the samples are given in the following chapter. In addition, the 

sphericity of grains and features diagnostic of different modes of transport could also be identified; 

eg. the opaque surface and crescentic impact marks of windblown grains is diagnosic of aeolian 

transport (Culver et al, 1983). The clarity of these features would suggest that additional transport 

modes had not affected the sediment thereby 'blurring' the features. 

3.2.9 Feldspar Identification 

In a few cases, samples were subjected to Cathodoluminescence. The application of CL is 

primarily in the study of limestones and dolomites, but has also been applied to feldspars and 

quartz of a sedimentary origin (Marshall, 1989). Samples are bombarded with electrons, stimulating 

luminescence of characteristic wavelength to be released. Ruppert (1987) used the technique to 

distinguish between allogenic quartz and feldspar derived from igneous or metamorphic parent 

rocks which produce luminescence, and authigenic minerals formed in situ which do not. This 

gave an indication of the weathering environment to which the sediment had been subjected. 
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Different types of feldspar, have different major cationic comonents. This will produce different 

emission spectra which can be used to identify the feldspar (Marshall, 1989). For example, albite 

(sodium-plagioclase) produces a weak emission in the blue waveband, and a more strongly 

detected signal in the orange-red band. Orthoclase (potassium feldspar) has a much stronger blue 

signal, and weaker orange-red. This has important implications in the detection of the signal 

stimulated by infa-red light during optical dating as it is primarily the blue signal which is detected 

and measured and if this is weak due to the predominance of albite, it may give the appearance of a 

very young sample. 

Although the CL emission from feldspar is not directly related to the TL or IRSL emission, each 

technique stimulates different combinations of traps, so it may be used as a method of feldspar 

identification. Albite, for example, is known to have a low IRSL emission. The identification of 

proportions of feldspars which are highly sensitive to IRSL, or which are less responsive, can aid 

the resolution of problems of low signal counts, which arose in a number of samples. These are 

discussed in Chapter 5. 

3.2.1 0 Organic Carbon Content 

There is no direct method of measuring the amount of organic matter in a sediment, as this may 

exist in a variety of chemical complexes. The most common method is to measure the amount of 

organic carbon in the sample by the loss on ignition method. A dry sample is heated for 2 hr at 

1 050°C. The percentage weight loss can be multiplied by a factor of 1. 7 (Brady, 1990) to give an 

approximate measure of organic matter. 

The organic component is important with respect to the dose-rate to minerals; peat is known to 

preferentially absorb uranium. The amount of organic matter may therefore relate to the dose-rate. 

The evaluation of the organic carbon content also allows a more accurate evaluation of the relative 

elemental components as measured by XRF. 

3.2.11 Summary 

The sediments sampled for dating were subjected to a selection of analytical techniques, in order 

to determine their environment of deposition and changes due to post-depositional processes. 

The Particle size distribution of the samples identifies the size fractions present, and the 

relationship between the modal grain size and that isolated for dating. The mineralogy, examined 

by X-ray diffraction and X-ray fluorescence, and the physical appearance of the grains is important 

with respect to the minerals present (which may affect the signal intensity or stability observed in 
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luminescence measurements) and in the recognition of alteration of minerals such as feldspars 

due to weathering. 

The PSD, water and carbon contents were measured at 1 0 em intervals throughout some cores. 

This enables an assessment to be made of the homogeneity of individual strata, which is indicative 

of turbation during pedogenesis or reworking during deposition. This may affect the bleaching of 

the bulk sediment and identify cases where later incorporation of material with a potentially 

different bleaching history has occurred, or the dose-rate where significant quantities of organic 

matter may have accumulated within the profile. The techniques selected, together with standard 

stratigraphic description, can therefore be valuable tools in the identification of processes affecting 

sediments which may affect their suitability for luminescence dating. 
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CHAPTER 4 RESULTS OF SEDIMENTOLOGICAL ANALYSES 

4.1 Preliminary Considerations 

The results of the various sedimentological investigations are discussed below by site, 

concentrating primarily on the considerations listed below. These best characterise the samples 

with regard to the mode of transport, depositional environment and post-depositional alteration 

that the samples have undergone. 

- Stratigraphic position; giving estimated age and relationship between strata 

-Estimated age; aided by chronological control, eg. radiocarbon 

-Thickness of strata; for dose-rate calculation, and possible post-depositional alteration 

- Over- and underlying strata; for dose-rate calculation and interstratal relationships 

- Particle size distribution; environment of deposition, weathering 

- Mineralogy: feldspar type, clay minerals; burial alteration, depositional environment 

- Mixed layer clays; weathering during burial 

-Microscopy; abundance, distributions and state of mineral grains; mode of transport, weathering 

-Variation within strata; pedogenesis. 

XRF datanfc..presented in Table 4.1. The particle size, water and loss on ignition profiles are given 

on compound stratigraphic diagrams within the text, together with the particle size distribution 

and silt minerai'6Jgy of samples taken for dating. The key ' to the stratigraphic figures is located in 

Appendix B. 

4.2 Sediment analysis by site 

4.2.1 FLAG FEN, PETERBOROUGH TL 2270-9890 Ground Altitude + 1.33 m OD. 

4.2.1.1 Stratigraphy (figure 4.2.1) 

0-57cm 

57-82cm 

Stratum confusum - dump material from excavations. 

Sh2,Ag2,Ga+,Th1+ 
Nig3, str1, elas3, sicc2, lim.sup3 
Well-humified dark humic silt with some plant fragments and sandy, 
oxidised inclusions. 
Sample FF1 
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Table 4.1 Results of XRF analyses for all samples 

~ Si02 Al203 Fe203 Mao cao Na20 K20 TQ2 MrO P205 s 
FF1 57.46 16.79 11.89 1.27 8.54 0.31 2.16 0.8 0.1 0.36 0.32 
FF2 51.76 16.32 17.2 1.37 9.26 0.22 1.89 0.77 0.12 0.38 0.71 
FF3 46.05 6.92 18.0 0.93 24.74 0.31 1.43 0.62 0.23 0.25 0.23 
FE4 80.67 2.34 3.91 0.13 11.35 0.22 0.7 0.1 0.02 0.22 0.33 
WM1 72.72 17.21 2.58 1.91 0.09 0.86 3.39 0.85 0.02 0.34 0.12 
WM2 72.71 17.09 2.46 1.99 0.08 0.93 3.38 0.89 0.02 0.35 0.09 
WM3 75.58 14.75 2.49 1.95 0 0.93 3.08 0.78 0.02 0.23 0.19 
WM4 85.07 8.13 1.83 1.08 0.09 0.79 1.99 0.46 0.01 0.26 0.37 
WM5 91.98 3.58 1.43 0.56 0.18 0.67 1.03 0.31 0.02 0.13 0.21 
SP1 65.3 21.61 4.23 1.97 0.27 1.02 3.83 1.23 0.02 0.37 0.15 
SP2 78.16 11.98 2.67 1.57 0.08 1.05 3.06 0.8 0.23 0.15 0.46 
SP3 65.13 15.99 7.14 2.76 0.39 0.92 3.47 0.92 0.06 0.22 3.25 
SP4 66.32 14.28 6.63 2.16 1.6 1.54 3.02 0.9 0.08 0.47 2.83 
SP5 61.13 19.02 7.28 3.52 0.22 1.07 4.18 1.05 0.08 0.2 2.26 
SP6 67.25 15.9 6.26 3.08 0.06 1.08 3.61 0.95 0.08 0.18 1.57 
SP7 59.5 18.38 7.9 3.39 0.34 0.86 4.13 1.03 0.08 0.15 4.22 
SP8 77.22 11.72 3.58 2.02 0.34 0.98 3.0 0.65 0.03 0.13 0.32 
SP9 77.26 10.46 5.22 1.86 0.16 1.46 2.81 0.57 0.04 011 0.05 
WH1 68.73 12.7 2.0 1.22 0.41 3.83 2.21 0.75 0.01 0.06 0.4 
V\IH2 65.99 13.83 2.0 1.24 0.34 1.44 2.36 0,83 0.01 0.07 02 
HAZ1 88.78 4.76 1.47 0.31 0.81 0.89 1.74 0.16 0.01 0.13 0.95 
HAZ2 58.21 18.16 12.67 2.36 3.36 0.39 2.7 0.85 0.14 0.56 0.59 
HAZ3 67.87 17.26 5.89 2.71 1.35 0.61 3.1 0.82 0.03 0.17 0.18 
SLG1 59.91 15.16 6.53 3.25 10.59 0.62 2.68 0.76 0.09 0.28 0.12 
SLG2 66.89 17.13 6.56 2.74 1.39 0.68 3.16 0.8 0.04 0.21 0.41 
SLG3 83.28 8.57 2.74 1.38 0.71 058 1.98 0.37 0.02 0.32 0.05 

All figures are in%. Error is+/- 0.05%. 



Figure 4.2.1 Flag Fen stratigraphy 
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82-95cm Sh2, As1, Dl1. 
Nig4, strO, elas2, sicc2, lim.supO 
Humic silty peat with abundant woody detritus. 

95-125cm Ag2, As1, Gg(min)1, Gg(maj)+, Dh+. 
Nig1, strO, elasO, sicc3, lim.sup1. 
Brown silty soil with some fresh plant remains and gravel. 
Sample EE2 

125-180cm Sh3, Th31, Ga+, Dh+. 
Nig4, str2, elasO, sicc3, lim.supO. 
Dark humified detrital Phragmites peat with some fine sand. 

180-183cm Ag2, As1, Gg(min)1, Gg(maj)+, Dl+. 
Nig1, strO, elasO, sicc3, lim.sup1. 
Brown sandy silt with gravel and plant fragments. 

183-299cm Sh3, Ga1, Ag+. 
Nig4, strO, elaso, sicc3, lim.sup1. 
Dark, well humified peat with some fine sand. 

299-350cm Ag2, As1, Ga1, Sh+. 
Nig1, strO, elas1 ,sicc4, lim.supO. 
Pale brown sandy silt with fine sand and humus towards the top. 
Sample EF3 

350cm- Ga2, Gg(maj)1, Gg(min)1. 
Nig2, strO, sicc1, elasO, lim.supO. 
Red-brown wet gravelly sand. 
Sample EE4 

4.2.1.2 Sample Descriptions 

ill 

This stratum lies above EE2 and is separated from it by 13cm silty peat. FE1 lies below the present 

soil surface, and incorporates the lower B horizon of the modern soil. It consists of a brown humic 

silt with plant fragments of stems and roots. There were also some oxidised inclusions, indicating 

that the stratum had experienced aerated conditions, and therefore the assumption of a saturated 

level of past water content for much of the burial history are invalid. 

The particle size distribution was dominated by silts (66%) and sand (25%), both of which were 

extracted for dating on coarse and fine-grain fractions. The mineralogy of the silt fraction 

comprised mainly clay minerals (kaolinite and chlorite), including abundant mixed-layer clays. 

Potassium feldspars were more abundant than plagioclases, but both were heavily weathered 

with adherent clay minerals on their etched surfaces. This stratum is the lower part of the modem 

soil, which would account for the degraded state of the feldspars and abundance of mixed-layer 

clay minerals (figure 4.2.2). 
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Figure 4.2.2 Sample FF1 showinQ the overall degraded nature of the sediment prains, 
which are heavily etched and partially clay-covered. The appearance of the grams In 
this sample is typical of samples from strata affected by pedogenesis. 
WD 7 mm; x500; 1 an-15 JJ.m. 



The organic carbon content of the stratum (25%) is similar to that of the FF2 sample, although FF1 

is darker in colour. The water content is high (70%) but less than for FF2 which is exceptional. 

The proximity of the stratum to the surface would enhance desiccation of the layer during dry 

periods, and annual variation in water content is therefore likely to be significant. The stratum is a 

soil developed into the transgressive and flood deposits of the channel, and is of relatively recent 

date. 

ill 
This stratum was a silty soil, 30cm thick, overlying the fine detritus peat which buried the Bronze 

Age platform. It is equivalent to the Romano-British transgression deposits. The matrix contains 

some decomposed fragments of unidentified plant stems and roots, and a small amount of gravel. 

The deposit was well-mixed, with a sharper upper contact and a lower contact graded over 2-3cm. 

The particle size distribution was dominated by silt and clay (77.5%) with some sand (14%). The 

coarse and fine-grain fractions were both extracted for dating. The mineralogy of the sand fraction 

is dominated by quartz with some feldspar (mainly potassium types), although this has been 

severely weathered. The silt fraction was also dominated by quartz and clays; the latter being more 

abundant in the medium and fine-grain silt fractions where they account for 64% of the identified 

minerals. 

The samples contained a significant quantity of organic carbon (23%), which together with the 

observed indications of severe weathering of the feldspar and abundance of clays, suggests that 

pedogenic processes have operated in the stratum. The water content of the sample was 

extremely high (217%) which suggests that accuracy of the luminescence dates may be severely 

reduced, due to the greater uncertainty and correction of the dose-rate necessary for such a high 

water content. 

The water content and loss on ignition do not vary significantly with depth, but the abundance of 

clay minerals increases lower down the profile. There were no mixed-layer clay minerals observed, 

suggesting that weathering of the feldspars and formation of the clay mineral products has been 

in equilibrium with the available ions in solution. This would be enhanced by a high water content 

surrounding the individual grains, which would facilitate both the dissolution of ions and their 

mobility within the soil matrix. 

The sample appears to have been affected by active pedogenic processes which have degraded 

the feldspar grains to a significant extent. The high water content of the sample will affect the 

accuracy of the luminescence dates. The stratum represents an ancient soil of Iron Age or later 
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date, and may in part have developed into the silts deposited from the Romano-British 

transgression over the Fenland. 

ill 

This stratum was 51cm thick, and directly overlies the red sand of the FF4 sample. It was overlain 

by a dark, well-humified peat. FF3 comprised a pale brown sandy silt with some fine sand and 

humic material incorporated into the upper part of the matrix where the stratum grades into the 

overlying peat over an interface of 2-3cm. 

The particle size distribution was dominated by the silt fractions (54%) forming a homogenous 

matrix, with some fine sand and clay. The fine-grain fraction was isolated for TL and IRSL dating. 

The silt mineralogy varies between size fractions: quartz was more abundant in the coarse fraction 

while feldspars and clay minerals were more abundant in the fine fractions. This reflects the 

differential breakdown of the more susceptible feldspars relative to the more resistant quartz 

minerals. The feldspar grains comprised similar proportions of plagioclase and potassium types 

and the grains were in a partially degraded condition. 

The loss on ignition value was higher (9.4%) than for FF4, reflecting a higher humic content, even 

though the sample was taken from the middle of the stratum, away from the greater concentration 

of humic matter observed near the top of the layer. A significant amount of mixed-layer clays were 

observed in the XRD trace, likely to originate from breakdown of the feldspars. In some cases the 

clays were observed to be adherent to the surfaces of the feldspar grains although they did not 

cover the total grain surface and formed discrete clusters (figure 4.2.3). This, together with the 

humic content, mixed grain size and the weathered nature of the feldspar grains suggests that 

some pedogenic processes have operated within the stratum. 

The abundance of mixed layer clays may be due either to incomplete alteration or the paucity of 

necessary cations required for the formation of pure clays. The XRF results (table 4.1) show a 

relative abundance of Ca, which is due to the chalky nature of the underlying stratum, and relative 

rarity of Na, K and Mn, which are required for the formation of some clays. The water content of 

the stratum is higher than for FF4 (40%) due to the uncompacted nature and mixed matrix of the 

sample. 

This sample represents the Fen Clay deposit. Here it is sand-rich due to its position in the deeper 

channel. The pedogenesis of the FF3 sample is not strongly developed as the site lies at a lower 

level than the other sites where the soils were found and would have been an open water 

environment. However, the slightly weathered nature of the feldspars may be a relict 

characteristic of the material deposited during the Fen Clay transgression. The sand grains are 
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sub-rounded to sub-angular, and may in part be derived from erosion of the nearby sandy islands 

and fen-edge. The peat overlying this stratum is the Upper Peat in which the Bronze Age 

structures were recovered. The Lower Peat between the glacial deposits and the Fen Clay is 

absent from the sequence examined. The depth of the channel may have locally prevented peat 

formation during this time. 

ill 
This sample was a fluvial sand (90% sand) and likely to be an outwash deposit related to the 

terraces in the Nene and Ouse valleys. It was on these terraces that the Fengate site was 

constructed. The stratum comprised a red-brown sand with gravel. The dominant size fraction is 

the medium sand size. There was a fine silt and clay component of the sand matrix (9% of the size 

distribution) which was isolated for dating. The sand fraction was predominantly quartz in 

composition, thus making it unsuitable for IRSL dating, although it was measured by TL. 

Feldspars were more abundant in the fine-grain fraction (14% of identified minerals) and were 

dominated by plagioclases. The fine-grain fraction also contained significant quantities of calcite, 

probably derived from incorporation of material eroded from the underlying chalky boulder clay of 

the Fenland, during transport and deposition. The calcite was removed from dating samples. 

The sand grains were predominantly sub-rounded in shape and of even size (0.2-0.6 mm) and in 

an undegraded condition. Clay minerals were relatively rare, and were not adherent to the grain 

surfaces as is the case where the clays were derived from weathering of the larger grains. The 

size and shape of the grains, and the narrow sand size range indicates a fluvial mode of transport 

for the sediment. The water content of the stratum was quite low (25% dry weight) due to the 

compact nature of the sand and silt matrix. Organic carbon content was very low (3.4%). 

This sediment is related to outwash deposition following the last glacial. The sand is mixed with a 

fine silt and clay component which may be derived from erosion of exposed till surfaces. It would 

be expected that under fluvial conditions, the sand and fine-grain fractions would be adequately 

bleached in terms of the IRSL signal of the feldspars, but the TL of the quartz fraction, which 

comprises the greatest source of luminescence signal for this fraction, may be only partially 

bleached. The mineral grains were in a clean, unweathered condition, indicating that no 

weathering had taken place before or after burial. 

4.2.1.3 Summary 

The samples selected for dating from the Flag Fen sequence are the basal fluvioglacial sands. 

This sample is FF4. The sand was dominated by quartz, but feldspars formed 14% of the finer 

fractions. FF3 is the local Fen Clay unit. The sediment is a sandy silt. The si~ fractions (54%) 
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contained 45% feldspars. Quartz was more abundant in the coarser grain size fractions. The 

sample contained an abundance of clay material, which may be a result of weathering of the 
&it1.sl.1 

feldspars. FF2 is a silty sediment representing the deposits of the Romano}ransgression. The 

mineralogy is dominated by quartz. The feldspars show abundant evidence of weathering. FF1 

lies below the present soil and is a humic silt. Feldspar are heavily weathered, and potassium 

feldspars are more abundant that plagiocalses, which may reflect differential susceptibility to 

weathering. 

4.2.2 WILLIAMSONS MOSS; TL3085 4917 Altitude +7.5 mOD 

4.2.2.1 Stratigraphy (figure 4.2.4) 

0-18cm Ag2, As2, Sh+, Th4. 
Nig3, strO, elasO, sicc3, lim.sup.O. 
Dark brown crumbly topsoil; base marked by large rounded to sub 
angular pebbles. 

18-76cm Ag2, Ga1, As1, Th2(Phra}+ 
Nig1, strO, elasO, sicc3, lim.sup.O. 
Mid brown sandy-silt, with occasional humic fragments. 
Sample WM1 

76-110cm As2, Sh2, Dh+, Gs+. 
Nig3, str1, elas2, sicc2, lim.sup.1. 
Dark brown well humified clayey peat with small rootlets; 
some sharp flint inclusions (<2mm). 

11 0-130cm As2, Ag1, Gs1 , Dl, Sh. 
Nig1, str1, elasO, sicc3, lim.sup.1. 
Grey sandy silt with occasional horizontally lying woody inclusions 
(<20mm) 
SampleWM2 

130-190cm As2, Ag1, Ga1, Dl. 
Nig2, str.O, elasO, sicc3, lim.sup.O. 
Grey to blue-grey silty clay; compact and homogeneous; some 
humus flecks, fine sand grains and occasional fresh woody fragments. 
SampleWM3 

190--280cm Ga3, As1 ,Ag+, Sh+. 
Nig2, strO, elasO, sicc3, lim.sup.O. 
Wet, grey sandy deposit with silt-clay matrix, with 
organic fragments. 
SampleWM4 

280cm ---- As2, Ag1 , Ga 1. 
Nig2, strO, elasO, sicc2, lim.sup.O. 
Red boulder clay; homogeneous and fine-grained. 
SampleWM5 
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Figure 4.2.4 Williamson's Moss stratigraphy 
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4.2.2.2 Sample Descriptions 

WM1 

This stratum lies below the present topsoil and represents the subsoil horizon. It is a sandy-silt, 

58cm thick and mid-brown in colour. There are occasional humic fragments but the loss on 

ignition value of the matrix is only 2%. This is however higher than for the other samples from the 

Moss. 

The particle size distribution was dominated by the silt and clay fractions (50%) and coarse and 

medium sand (50%). The abundance of the clay fraction may be due to illuviation from the upper 

horizons. Much of the clay was of mixed-layer types, which partially coated the mineral grains 

(figures 4.2.5, 4.2.6 and 4.2.7). This is characteristic of clay illuvial horizons. The sand is similar in 

character to that from WM2 below, but larger in size (0.6-2 mm), indicating either that the source is 

different or climatic conditions (ie. wind strength) were different and dunes were closer to the site. 

The quartz-rich coarse-grain fraction of the sand was isolated for TL dating and the fine-grain 

fraction for IRSL and TL dating. 

SEM analysis revealed significant weathering of the feldspars and abundant fresh mica, both 

indicating active pedogenic processes. Fragments of Phragmites were identified in the matrix of 

WM1, but were not present in the top soil. This suggests that the WM1 sample may contain 

material derived from the underlying peat horizon, although no Phragmites could be identified 

from this peat, and the organic content of WM 1 is only 2%. 

This sample is part of the lower horizons of the modern soil. It is likely to be subject to significant 

variations in water content. 

~ 

This stratum overlies WM3 and was a grey silty-sandy, 20cm thick. It is separated from WM1 by a 

peat. WM2 is a sandy (40%) silt (50%) with some clay, containing some woody fragments. It 

represents the upper part of the alluvium in which the Neolithic hearths were found and is the 

younger of the two land surfaces identified by Bonsall et al (1986, 1989) on the Moss. The clay 

content increased with depth, indicating that the soil developed into the alluvium with the 

incorporation of components from different sources. 

The silt fractions were dominated by feldspars, with potassium types being more abundant than 

plagioclases (by a ratio of approximately 2:1 ). There were no mixed-layer clay minerals identified. 

Kaolinite and chlorite were abundant particularly in the fine silt fraction. The organic carbon 
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Figure 4.2.5 SEM of sample WM1 showing a large mineral grain coated with 
clay minerals. The formation of such coatings may prevent optical bleaching at 
deposition. 
WD 6 mm; x500; 1 cm=15 ~m 



Figure 4.2.6 Higher magnifiCation of grain in 4.2.5, showing the oontinuous nature of the 
clay mineral ooating over the mineral surface. These clay minerals may be derived from 
weathering of the feldspars or from translocation of clays within the profile. 
WD 6 mm; x2000; 1cm=3 f.Lm. 



content of the sample is negligible. This is consistent with a minerogenic 8 soil horizon rather 

than with an organic A horizon of a soil. 

The water content decreased with depth; the value was 80% in the middle of the stratum. The 

sample was dominated by coarse and medium silt fractions together with fine sand. The sand was 

mainly quartz and the grains tended to be sub-angular in shape with some opaque facets 

indicative of an aeolian origin, in this case most probably from the dunes nearby. This has been 

incorporated into the alluvial matrix during pedogenesis or possibly during trampling associated 

with occupation nearby. 

The stratum is likely to represent the minerogenic remnant of a soil which has developed into the 

surface of the underlying alluvium. An aeolian sand component was incorporated when the soil 

was exposed at the surface. It has been affected by trampling, creating an upper compacted layer 

and lower uncompacted layer with a correspondingly higher water content. If the incorporation of 

the aeolian component is contemporary with soil formation, the age of the sand fraction should 

reflect the age of the soil. The fine-grained fraction may not have been exposed to sunlight 

during soil formation and may reflect the age of the alluvial deposit (WM3) from which it is derived, 

rather than the soil and associated with occupation. 

WMJ 
This stratum comprises the main alluvial unit deposited over the Moss after the formation of the 

shingle ridges, when water was ponded up behind the ridge. This is assumed to be fresh water 

although there were no diatoms in the deposit to verify this. WM3 is a 70cm thick blue-grey clayey 

silt which is compact. Some humic flecks and fine sand were observed in the matrix and 

occasional woody fragments, but the loss on ignition value of the matrix was negligible. This 

deposit is equivalent to the alluvium on the Moss surface in which the Neolithic hearths were 

stratified. 

The particle size distribution was dominated by the coarse silt fraction (30%). The silt and clay 

fractions combined to comprise 67% of the particle size distribution. The fine-grain fraction was 

taken for TL and IRSL dating. The silt mineralogy was primarily feldspars, with the potassium 

types being more abundant than plagioclases. Clay minerals were also very abundant, including 

some mixed layer clays (figure 4.2.7). The water content was relatively low (49%) and it is likely 

that this predominantly fine-grained deposit was laid down in a compacted manner as was the case 

for the clays in the Dutch river dune area. The error on the water content estimations would 

therefore be subject to less uncertainty than, for example, in the cases of FF1 and FF2. 
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Figure 4.2.8 SEM of clay mineral forms observed in sample WM3. The thin cylinders 
are curled up flaked of montmorillonite, although some needles may be filaments of illite. 
To the left, mid way down are the pseudo-hexagonal flakes of kaolinite which when 
undisturbed form stacks. Here the flakes are end-on. 
WD 7 mm; x1 0 000; 1 cm-0.8 JUTl . 



Figure 4.2.9 SEM of sample WM3. In the centre of the picture are larger grains partially 
coated with clay minerals, surrounded by clusters of clays. 
WD 7 mm; x2000; 1 cm=3 J.Lm. 



Figure 4.2.7 SEM of large mineral grain from sample WM1 partially covered by clay 
minerals forming layers on the surface. The grain may be mica, due to the layering 
exhibited at the edges. To the left is a heavily eroded spherical grain, possibly quartz. 
WD 7 mm; x2000; 1 cm=3 Jlm. 



During SEM analysis, a number of amorphous silica nodules were observed, deposited within the 

matrix figure 4.2.1 0 and 4.2.11 ). This occurs when the surrounding solutions are saturated with 

respect to silica and the amorphous material is deposited. Because these nodules are 

amorphous, they are not suitable for dating as there is no crystal structure. The appearance of 

these is inconsistent with the lack of diatoms, as an abundance of silica in the solutions tends to 

preserve diatoms. However, there may have been an absence or paucity of diatoms in the original 

deposit. 

This deposit is likely to be highly suitable for luminescence dating due to the predominance of 

feldspars, and the likelihood that the sediment was exposed to sufficient sunlight during 

deposition in quiet water conditions, particularly in the case of the more sensitive IRSL signal, to 

be fully bleached at deposition. Berger (1990) however, indicates that silt-rich alluvial deposits 

should be avoided in the case of TL dating, due to a variable relict TL signal remaining after burial, 

which was not the case for the clay fractions. The application of both techniques to this sediment 

serves to test this. 

This is a wet grey sandy sediment, with a silty clay matrix containing some organic fragments. It 

overlies the boulder clay and is covered by alluvium. WM4 is 90cm thick and of a fairly 

homogeneous appearance throughout its depth. The fine matrix has a negligible organic carbon 

content. 

The particle size distribution was dominated by medium sands (45%), fine sands (26%) and 

medium silts (14%). The fine-grain fraction was isolated for dating by IRSL and the coarse-grain for 

TL. The mineralogy of the sand fractions was primarily quartz, with small amounts of plagioclase 

feldspars. The silt fractions were dominated by plagioclase feldspars and quartz, but clay 

minerals were relatively rare compared to other samples such as FF1 and FF2. This may reflect the 

nature of the depositional environment. 

This deposit represents the channel equivalent of the Mesolithic land surface of Williamson's 

Moss, which occurs as a thin sandy layer above the till in which Mesolithic artefacts were stratified. 

The thickness of the channel deposit is attributed to erosion of the land surface and drainage of 

the surrounding area into the channel, where the sands and coarser silts were deposited and the 

fine silts and clays were carried away. 

The organic carbon content is low indicating that little topsoil material has been deposited in the 

channel. The WM4 deposit is likely to represent the eroded mineral soil component. Some 

mixed-layer clays were observed which may be derived from material affected by weathering 
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Figure 4.2.11 Higher magnification of nodules in figure 4.2.10. The furry appearance of 
the surfaces of the nodules may be due to authigenic christobolite . 
WD 6 mm; x1 0 000; 1 em= 0.8 pm. 



during pedogenesis. The water content was high (93%) due both to the uncompacted nature of 

the sediment and to its present location below the water table. 

WM.5 
The basal stratum from the Williamson's Moss channel is a red boulder clay (WM5) which is 

homogenous in texture, and fine-grained. The dominant size-fractions were the fine sand (20%), 

coarse and medium silts (22%) and clay (20%). The fine-grain fraction was extracted for TL and 

IRSL dating. The coarse fraction was also isolated for IRSL. 

The mineralogy of the silt fraction was dominated by quartz in the coarser fraction but by 

plagioclase feldspars in the medium and fine fractions. No mixed-layer clays were observed, as 

would be expected from a relatively unaltered and compact fine-grained till. Clay minerals were 

abundant, but these were not adherent to the grain surfaces and formed discrete aggregates of 

similar grain size to the silt fractions (figure 4.2.12). 

The sample had a very low water content (16%) due to its compact nature, and a negligible organic 

carbon content. The mineral grains were relatively unaffected by weathering, with only very slight 

etching and delineation of cleavage plane. 

The zeroing of glacial tills is thought to occur by grinding during transport rather than by exposure 

to light (Lamothe, 1988), and it is recognised that the zeroing of basal till deposits is likely to be 

partial and may cause problems in the evaluation of the ED. By comparing the dates obtained 

from the various fractions, some internal consistency may determine the apparent age of the 

material. However, only a minimum age can be determined for this deposit. 

4.2.2.3 Summary 

Five samples were taken for dating. The upper two samples, WM1 and WM2 are both pedogenic 

horizons, being part of the modern B horizon and a remnant of an ancient soil respectively. These 

sediments contained weathered feldspars. They had low organic carbon contents. WM3 is an 

alluvial deposit containing silts and clays which are dominated by potassium feldspars. The water 

content is relatively low reflecting the compact nature of the deposit. WM4 is a sandy deposit with 

a silty matrix. The deposit is an eroded remnant of the Mesolithic land surface and contined some 

partially eroded feldspars but few mixed layer clays. The water content was high, as this sediment 

is below the water table and uncompacted. WM5 is the basal Devensian boulder clay. Quartz is 

dominant in the sand fractions, and feldspars in the finer fractions. The sediment is highly 

compact and has a very low water content. 
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Figure 4.2.12 Sample WMS; in the centre of the picture are grains which are partially 
coated with clay minerals. Surrounding these grains are concentrated clusters of clay 
mineral fragments forming discrete particles. 
WD 7 mm; x2000; 1cm-3 J.lm 



4.2.3 STUBS PLACE, ESKMEALS TL3080 4906 Altitude 5.5 mOD. 

4,2,3.1 Stratigraphy lfigure 4,2,13) 

0-10cm 

10-47cm 

47-97cm 

97-135cm 

135-198cm 

198-236cm 

236-341cm 

341-435cm 

435-472cm 

472-540cm 

540-627cm 

As2, Ag2, Lf+. 
Nig2, str.O, elasO, sicc3, lim.supO. 
Brown silty clay with some orange ferric mottles. 

As3, Gg(min)l, Ag+, Sh+. 
Nig2, strO, elasl, sicc3, lim.sup.O. 
Brown silty clay with some sand and humic matter near base. 
Sample SPl 

Sh2, Th 12, Ga+, As+. 
Nig3, strl, elas2, sicc2, lim.sup.l. 
Dark moss peat with some partly broken down stem and root near top. 

Ag2, Ga2, As+, Sh+. 
Nig2, strO, elas3, siccl, lim.sup.O 
Grey-brown silty sand with some humic matter near top. 
Sample SP2 

Sh2, Th 1 Phra1, Asl, Ga+. 
Nig3, strO, elasO, siccl, lim.sup.l. 
Dark Phraamites peat wnh large plant remains, clay and some fine quartz. 

Ag2, Ga2, As+, Sh+. 
Nig2, strO, elas3, siccO, lim.sup.O. 
Dark grey sandy silt with reddish colour at peat contacts. 
Sample SP3 

Sh2, Tl2, As+, Ga+. 
Nig3, strO, elas2, siccl, lim.sup.O. 
Dark mossy peat. 

As2, Gg(min)2, Ag+, Shl. 
Nig3, strO, elas2, siccl, lim.sup.O. 
Dark grey-brown silty-clay, finely laminated; some organic matter at top. 
Sample SP4 

Ag3, Asl, Sh+. 
Nig2, strl, elasl, sicc.2, lim.sup.O. 
Grey, slightly laminated clay-silt, with a large piece of softwood. 
Sample SP5 

As2, Ag2, Sh+. 
Nig2, strO, elasl, sicc2, lim.sup.O. 
Blue-grey clay, with some small scattered humic inclusions. 
Sample SP6 

As2, Ag2, Ga+, Dl+. 
Nig2, strl, elasO, sicc3, lim.sup.O. 
Brown-grey silty-clay; fine sand content; woody fragments at 4100mm. 
Sample SP7 
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Figure 4.2.13 Stubb Place stratigraphy 
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627-680cm 

680cm --

Ag2, As1, Ga1, Sh+. 
Nig2, str1, elas1, sicc3, lim.sup.O. 
Brown-grey silt; becomes mixed with underlying layer. 
Increased sand with depth. 
Sample SP8 

Ag2, Ga2, AS+, Gg(maj)+. 
Nig2, strO, elasO, sicc2, lim.sup.O. 
Wet, red sand with clay and gravel. 
Sample SP9 

4.2.3.2 Sample Descriptions 

This stratum is a brown siny clay with some humic matter near the base where it grades into a dark 

mossy peat. It is dominated by coarse to medium silts. Clay minerals are the most abundant (40%) 

in all fractions. Quartz is the next most abundant mineral especially in the sand fractions, and then 

feldspars (18%), which co·nsist mainly of potassium types. Variation in mineralogy between silt 

fractions is minor. The water content of the sample is 70.8% which is relatively high, and loss on 

ignition is10.3%, which reflects the humic content mentioned above. This stratum is the B 

horizon of the modern soil. A dark mossy peat separates SP1 and 2, which contains some fine 

sand. The grains showed some signs of chemical weathering. 

This sample is a grey-brown silty sand. The sand grains are rounded to sub-angular, which appear 

slightly opaque under microscopic examination. This suggests that they have been transported 

by wind, probably from the nearby beach. This is likely to account for the origin of the sand in the 

peats in the upper part of the core, as well as the minerogenic layers. The sample has a significant 

silt content (up to 79%), which decreases slightly with depth. 

The water content (116%) increases slightly with depth, probably reflecting the unconsolidated 

nature of the material, and proximity to the water table. The silt sized fraction comprised mainly 

quartz, which is the most abundant mineral in all fractions. Feldspars, predominantly potassic, are 

of variable abundance in the different silt fractions, with a mean of 28.8% of identified minerals. 

No mixed layer clays were identified. Chlorite and kaolinite are the most abundant clay minerals. 

The coarse grain fraction was extracted for TL and IRSL dating. 

This stratum lies below a second peat, which is dark and contains fragments of Phragmites within 

its matrix, together with more aeolian sand. This layer is a dark grey sandy silt with clay and sand. 

Quartz strongly dominates the mineralogy of the coarse silt fraction and clays increase with a 
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Figure 4.2.14 Quartz grain from SP3 showing relatively clean fracture face on the right, 
which has the conchoidal form and stepped features characteristic of quartz. 
WD 7 mm; x1 0 0000; 1 em= 0.8 J,Lm. 



Figure 4.2.15 Sample SP3 showing an unidentified (possibly salt) crystal within the 
sample. The recognition of such inclusions In a sediment demonstrates the importance 
of isolating feldspar emissions from minerals whose emissions may be unstable in 
terms of dating (see Chapter 5). 
WD 7 mm; x1 0 0000; 1 em= 0.8 J.Lm. 



decrease in grain size. Feldspars are less abundant than in SP2, but potassium types are more 

abundant. This layer has a high water content ( 128%) and the amount of organic carbon 

increases slightly with depth (mean 17. 7%). This represents a greater variation than in the other 

samples. The fine-grain fraction was extracted for TL and IRSL dating. 

A significant quantity of mixed layer clays was identified. Together with the abundance of clay 

minerals, this suggests that some alteration of the finer grained minerals, especially feldspars has 

occurred. Mineral grains under SEM showed some features of weathering, and relatively fresh 

fracture faces did not demonstrate totally clean faces (figures 4.2.14). There were also some 

unidentified sharply defined crystals in the samples, which are of unknown type and origin (figure 

4.2.15). The reddish upper and lower contact of this layer indicates oxidation or exposure before 

and after deposition. There may be greater aeration on the interface between the peat and the 

minerogenic deposit. A third peat separates SP3 and 4. This is dark, well humified and mossy, 

similar to that between SP1 and 2 . 

.s£..4 
This stratum is a grey brown silty sand, which is semi-stratified, with the highest organic carbon 

content in the core, and increases slightly with depth, except in the basal sample where the value 

is much less. Water content is 92%, and fluctuates within the layer, but is less at the base, where 

clays are more abundant. Clay minerals dominate all silt fractions, and mixed-layer clays are quite 

common. 

This sample appears to be highly heterogeneous, although its semi-stratified structure indicates a 

fluvial mode of deposition, with variations in the energy of flow or supply of sediment. Although 

care was taken to take representative samples of the layer for analysis, some of this variation may 

be attributed to changes associated with the stratified nature of the deposit. However, overall, the 

homogeneity of the deposit is poor, in terms of the problems related to dose rates and equivalent 

dose evaluation. The fine-grained fraction was isolated for dating. 

~ 

This layer has graded upper and lower contacts, into SP4 above, and SP6 below, and has the 

appearance of a transitional deposit between different depositional conditions. The sediment is a 

compact grey clayey silt and contains much less sand than the overlying layers. It also contains 

mixed-layer clays. The feldspars are dominated by plagioclases which are almost equal to quartz in 

abundance, except in the coarse silt fraction where the quartz dominates. Loss on ignition values 

were negligible. SEM examination revealed the remains of diatoms, although these could not be 

isolated in samples taken for diatom analysis. In addition, a number of 'fresh' mineral grains were 

seen, which carried impact marks on the surfaces characteristic of quartz (figures 4.2.16 and 
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Figure 4.2,16 Sample SPS showing the presence of fragments of diatoms In centre and 
to rlaht. Quartz and feldspar grains In this sample are not affected by clay mineral 
coatings. Diatoms are not suitable for luminescence dating as the snlca Is In an 
amorphous form and so cannot absorb or emit luminescence. 
WD 7 mm; x2000; 1 em- 3 Jim. 



Figure 4.2.17 Higher magnification of SPS showing quartz grain on right with 
characteristic stepped fracture resulting from impact during transport. The edges of the 
grains have not been eroded by transport. To the left is a fragment of diatom skeleton. 
WD 7 mm; x1 0 0000; 1 em= 0.8 ~m. 



4.2.17). These grains appeared unweathered suggesting little alteration during transport or 

burial. 

The particle size distribution contains an even mix of different grain sizes. The organic carbon 

content is significantly lower than SP4, as is the water content (42%), which also reflects the more 

compact, less sandy structure of this layer. The deposit indicates a shallowing of water conditions, 

and increased turbulence, resulting in the mixing of suspended silts and clays with the bed load of 

sandy material. Both the coarse and fine-grain fractions were extracted for dating . 

.s£..2 
This is a blue-grey clayey silt with a negligible sand content compared to the upper layers of the 

core. The water content decreases with depth, and organic carbon is very low. The compact 

nature of the lower layers of this deposit probably accounts for the decreasing water content, and 

the low organic component (2%) may reflect a marine rather than a terrestrial source of the 

sediment, although there were no diatoms present to aid identification of the depositional 

environment. 

Feldspars (particularly potassium feldspars) are the most abundant minerals, except in the medium 

silt fraction where quartz is more abundant. The water content has a mean value of 30%, and 

decreases with depth. This may be due to compaction of the deposit. This stratum grades into 

the underlying SP7, without any indication of a break in sedimentation. 

This stratum contains slightly more sand, which increases with depth. It is a brown silty clay, and 

the colour suggests a significant iron content. The water content increases as the proportion of 

sand rises up to a value of 50%, when the water content value remains constant. The sand in this 

layer appears to be of a fluvial origin, having none of the cloudy appearance of the aeolian sand in 

the upper strata. Loss on ignition (mean 1 0%) rises near the upper boundary, and remains 

constant throughout the deposit. 

Plagioclase feldspars are the most abundant mineral in the coarse silt and quartz dominates the 

medium and fine silt fractions. Clays however, are less abundant, and no mixed-layer clays were 

identified. The occurrence of large feldspar grains (mainly potassium types), and relative paucity 

of clays suggests a minimum amount of alteration by post depositional weathering. This is 

supported by the homogeneity of the sample, and the graded boundaries reflecting changing 

depositional environments rather than soil horizonation. 

75 



.s..E..B. 
This stratum underlies SP7. The sample is a silty sand, with very little clay. It has a much lower 

water (33%) and organic carbon (1.4%) contents than the layer above. In the case of the water 

content, this reflects the relative amount of compaction that the overlying layer has undergone, 

reducing the amount of available pore space, but also the abundant silt matrix which would serve 

to fill any remaining voids, reducing porosity. Quartz is the most abundant mineral in all size 

fractions. The sand content is variable throughout the stratum, indicating variations in the 

depositional environment. 

Clay minerals are relatively rare, comprising only 14% of identified minerals. No mixed-layer clays 

were identified. Feldspars were dominated by plagioclases, which were not severely degraded. 

There were with few adherent clay particles which indicated minimal post-depositional alteration of 

the feldspar in this stratum. This is consistent with a sediment that is relatively compact and has 

not been exposed before burial, as indicated by the apparent continuity of deposition throughout 

the lower part of the core. 

The basal sample is a red sand with a silty matrix. It is a fluvial deposit associated with the 

Devensian boulder clay. SP9 has the lowest water (28%) and organic contents in the core due to 

its compact structure. The silt mineralogy is dominated by quartz, although feldspar becomes 

increasingly abundant in the finer grain size fractions. Clay minerals are rare, and feldspars 

comprised 24% of identified minerals. 

The sample was very compact and SEM analysis of the grains showed an abundance of evenly 

sized, angular grains, with rare adhering flakes. A few pitted and partly rotted grains of feldspar 

(primarily plagioclases) were visible, but these, and the clay aggregates, which formed discrete 

clusters, were sparse. The appearance of the grains suggests a mode of transport which was of 

short distance, or which did not result in excessive abrasion of the grains. Quartz grains from 

glacial environments tend to be angular with blocky and conchoidal fractures, such as these sand 

grains. These do not appear to have been significantly altered in their present burial position. 

4.2.3.3 Summary 

The sediments in the lower part of the core do not appear to have been significantly altered since 

deposition. The upper strata may have undergone pedogenesis and weathering of mineral grains 

in situ. This may have been accelerated by the abundance of decomposing organic material and 

organic acids provided by the peat layers. 
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The close packing of the lower sediments may make irrelevant the impacts of the high water table 

levels near to the coast in all but the upper, uncompacted layers. Estimations of past water 

contents in compacted sediments will be more accurate, unless the compaction is recent and 

reduction in pore volume significant. In some fine-grain material, this may not be the case. 

An overall fall in the amount of sand with depth may indicate a deeper water depositional 

environment at the beginning of the deposition of this stratum, and consequently a lower input of 

aeolian sand. Samples SP2, 3 and 4 are similar in the heterogeneous nature of the material. In the 

first two cases, this may be attrributed to pedogenic processes in operation during burial. This is 

reflected by high clay contents, abundance of amorphous clays and, as each is adjacent to peat, 

there is a ready supply of organic acids for chelation and mineral dissolution processes. The fluvial 

environment of deposition should allow sufficient bleaching before burial, particularly of the IRSL 

signals. 

It is possible, from the degree of similarity between SP9 and 8, that the latter is derived from the 

basal boulder clay, and may contain a mixture of glacially derived and fluvial material. It grades into 

the minerogenic sequence of SP7, 6, and 5, and then into 4. This last contains sand of a 

probable aeolian origin, which appears in all the overlying peat and mineral layers. The lower 

minerogenic part of the core seems to represent deposition resulting from a deepening of a 

basin, with calmer water conditions, and then shallowing with a mixed sand and silt deposit, some 

of this sand being aeolian in character. The upper layers were deposited during alternating 

periods of waterlogging with peat formation, and submergence when sandy silts were deposited. 

The abundance of aeolian sand in the mineral layers strongly suggests periods of surface 

exposure or soil development, allowing input of wind blown sands. This sand fraction is more 

likely to have been well bleached than the waterlain sands, but the silt matrix, which is either 

aeolian or pedogenic, may not have been bleached in the latter case. 

4.2.4 HARTLEPOOL BAY, CLEVELAND. NZ 5140 3210 Altitude -0.37 mOD 

4.2.4.1 Stratigraphy (figure 4.2.18) 

0-4mm 

4-5cm 

5-Scm 

surface sand and algae 

Ld3, Agl, Ga+. 
Nig3, str1, elas+, sicc2, struc. laminated. 
Black limus with sand and some si~. 

Ld33, Ag1, Ga+, Th Phra+ 
Nig2, str2, elas2, sicc2, struc. laminated. 
Laminated buff sandy silty limus with Phragmites. 
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Figure 4.2.18 Hartlepool Bay stratigraphy 
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8-20cm 

20-38cm 

38-49cm 

49-63cm 

63-89cm 

89-102cm 

Ld23, ThPhra1, Dl+. Ag+. Ga+. 
Nig2+, str3, elas3, sicc2, struc. laminated. 
Brown well laminated limus with Phragmites in laminations. 

Ag3, As+, Ga1, ThPhra+ 
Nig2, strO, elas2, sicc2, struc. buttery. 
Battleship grey clayey, fine sandy silt with Phragmites . 
Gamma-spectrometer probe at 28-35cm 
Sample WH1. 

Ag3, As+, Gal, Ld+, Dh+. 
Nig2, strO, elasO, sicc2, struc. malleable. lim.sup. Scm variation. 
Battleship grey clayey sandy silt with flecks of eroded limus; some mica. 

Ld4, Dh+, Ag+, Ga+. 
Nig3, str1, elas+, sicc2, struc. slightly laminated. 
Slightly laminated sandy limus with rare herbaceous woody detritus. 

As2, Ag1, Gal, Anth+, Gg(maj)+, Gg(min)+. 
Nig2, strO, elasO, sicc2, struc. malleable. 
Battleship grey sandy silty clay with coarse sand partings, and rotten 
pebbles/gravel. Rare charcoal and limnic and peaty partings. 
Sample WH2 

As3, Ag1, Gg(maj)+. Gg(min)+. 
Tenacious red boulder clay. 
Water depth 52cm. 

4.2.4,2 Sample oescriptions 

This stratum is a silt (70%), with some sand (1 0%) and clay (20%). It is of very homogenous 

composition with a consistently high water content (125%). This relates to the uncompacted 

nature of the material, and to its present intertidal position. It has a low organic carbon content, 

which suggests a marine rather than a terrestrial source for the silt. The siij mineralogy is 

dominated by quartz. Little feldspar or clay was identified. There is a small amount of calcite in the 

sample and a high sodium content. This may be related to the abundance of relatively soluble 

salts from the sea water. This is also reflected in particularly high content of sodium in the XRF 

analysis, compared with the underlying sample. 

WH1 lies between two sandy silty limus deposits and is thought to have been derived from 

contemporary land surfaces. The notable homogeneity of the silt indicates a consistent 

depositional environment, and a constant source of material. No post-burial change has been 

observed, and its present intertidal position would prevent pedogenesis from occurring. The 

absence of mixed layer clays and the clarity of the grains under SEM, also reflect the nature of the 

deposit (figures 4.2.19 and 4.2.20). Mica was abundant in these micrographs, but this may be 

expected where there is an abundance of elements in solution. In the centre of figure 4.2.20, is a 

larger grain which appears to have a very open 'skeletal' structure. This cannot be firmly 
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Figure 4.2.19 Sample WH1 showing clearly defined grains forming the matrix of the 
deposit. These grains show little signs of weathering. The inclusion in the centre of the 
photgraph. is sh~wn at greater magnification In figure 4.2.20. 
WD 6 mm, xSOO, 1 em= 15 J!.m. 



Figure 4.2.20 Sample WH1. This inclusion has a very open 'honeycomb' structure. It 
appears to consist of mica and clay minerals loosely joined together. Such inclusions 
are unlikely to affect the luminescence as these minerals are relatively inert with respect 
to luminescence. 
WO 6 mm; x2000; 1 em= 3 ~m. 



identified, but it may represent a cluster of clay and mica grains. The quartz tended to be blocky, 

with rare platy aggregates adherent to the surfaces. The water content of the sample is high 

(125%) due to its uncompact nature and its intertidal position. 

The depositional environment of this sediment is likely to be marine with the fine material settling 

out in lagoonal or lacustrine conditions, ponded up behind the low till 'ridge'. There are no 

laminations or shells which are common in many intertidal mud deposits. 

This stratum lies below the lower sandy silty limus deposit. It is a silty clay containing15% coarse 

sand with charcoal and rotten pebbles. The charcoal is rare, so a low organic carbon content (2%) 

is consistent. However, there is some increase with depth of the clay sized fraction. The silts are 

predominantly quartz and clay minerals are more abundant than in WH1. Feldspars are also rare 

and both calcite and the high sodium contents of WH1 are absent from this layer. This reflects the 

more compacted nature and greater depth of this sediment. No mixed layer clays were seen, and 

clay minerals were mainly stable kaolinites, illites and chloriijes. This sample does not appear to 

have been weathered as there are no intermittent phases of clay formation or amorphous material. 

WH2 is underlain by weathered boulder clay. It may in part be derived from this, and mixed wijh 

runoff deposits from the contemporary land surface. There was also evidence of pedogenic 

mixing before submergence. This would account for the charcoal and other material, as well as 

the mixed grain size content. The boulder clay has significantly more clay and less sand than 

WH2, but if mixed with other material, it could be derived in part from the boulder clay. The water 

content of this sample is similar to WH1 (c.125%) which increases the uncertainties associated 

with dose-rate corrections for water content, and thus reduces the accuracy of the date. The fine

grain fraction was dated by TL and IRSL. 

4.2.5 HAZENDONK, MOLENAARSGRAAF 1165 4313. Altitude 0.6 m NAP 

4.2.5.1 Stratigraphy (figure 4.2.21) 

0-24cm 

24-30cm 

As2, Sh1, Th01. 
Nig4, strO, elasO, sicc2, lim.sup.O. 
Soft humic clay, with some rootlets and humus. 

As3, Ag1, Sh+. 
Nig3, strO, elasO,sicc3, lim.sup.1. 
Dark humic clay-silt. 
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Figure 4.2.21 Hazendonk stratigraphy 
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30-48cm 

48-57cm 

57-124cm 

124-143cm 

143-149cm 

149-180cm 

180-322cm 

322-327cm 

327-348cm 

348-351cm 

351-363cm 

363cm-

Ag2, Ga2, As+, Th+. 
Nig1, strO, elasO, sicc1, lim.sup.O. 
Reddish sandy-silt; crumbly, with many rootlets. 
Sample HAZ1 

Ag3, As+, Ga+, Th3+, Ld+. 
Nig1, strO, elas1, sicc2,1im.sup.O. 
Reddish silt with whtte shelly fragments and angular sand grains (>I= 1mm). 
Sample HAZ2 

As2, Ag1, Ga1, Tb+. 
Nig2, str1, elasO, sicc2, lim.sup.O. 
Grey sandy silty clay with intermittent, thin peaty layers. 
Sample HAZ3 

Ld02, As1, Ag1. 
Nig3, str1, elas3, sicc3, lim.sup.O. 
Silty-clay peat, semi-stratified, dark brown. 

Sh2, Ag1, Ldo1, Th+, part test moll+, anth+. 
Nig3, str1, elas1, sicc3, lim.sup.1. 
Cultural layer; shelly fragments, charcoal in dark silty 
peat. 

Sh2, Ag1, As1. 
Nig3, str1, elasO, sicc2. lim.sup.O. 
Silty-clay peat, semi-stratified. 

Ld03, Tl21, Ag+. 
Nig2, strO, elas2, sicc2, lim.sup.O. 
Woody peat as lumps within silty peat. 

Sh2, Ag1, Ld1, Th3+, part test moll+, anth+. 
Nig3, str1, elasO, sicc3, lim.sup.1. 
Cultural layer with shelly fragments and charcoal. 

Sh3, As1. 
Nig3, strO, elas1, sicc2, lim.sup.O. 
Soft dark homogeneous peat. 

Sh2, Ag1, Ld1, Th3+, part test moll+, anth+. 
Nig3, strO, elasO, sicc2, lim.sup.1. 
Cultural layer, with shell fragments and charcoal. 

Sh4, Th3+. 
Nig4, strO, elas2, sicc2, lim.sup.O. 
Humic peat. 

Gg(min).2, Gs.2, m2 
Nig1, strO, elasO, sicc2, lim.sup.1. 
Dune sand; quartzite, poor matrix, with large piece of wood. 
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4.2.5.2 Sample Pescriptions 

.tiAZ..1 

HAZ1 lies beneath the topsoil, which was not sampled. It was a reddish sandy-silt, comprising a 

mixture of grain sizes. The organic carbon content was low (1 .2%) but the water content was high 

(1 02%). The silt mineralogy was dominated by clays (including some mixed-layer clays) and 

quartz which decreases in the finer fractions. Feldspars were predominantly plagioclases and 

were relatively rare. The particle size distribution was dominated by the sand fractions. The high 

water content is attributed to the open structure of the deposit which lies at or below the ground 

water table. 

This near surface sample may be undergoing subsoil processes at present, as the B horizon, 

although it has a low organic content. It contains some mixed layer clays, which may represent 

intermediate phases of feldspar dissolution. Under SEM examination, the clays were shown to 

have a very open structure (figure 4.2.22) and occasional large mineral grains were coated with 

adherent clay minerals (figures 4.2.23 and 4.2.24). The fine-grain fraction was extracted for TL 

and IRSL dating, and the quartz-rich sand for TL. This however was not suitable for IRSL. 

This stratum comprises a red silt which lies directly below the HAZ1 layer. It contains 

predominantly silts with very little clay or sand. HAZ2 has a relatively high organic carbon content 

(12%), which may be incorporated with clay minerals into silt-sized complexes. The lower water 

content (74%) is related to the more compact nature of the deposit relative to the overlying layer. 

HAZ2 contains some shelly fragments, which may account for some of the carbon content. The 

presence of shelly fragments is indicative of a cultural horizon. The sediment may be primarily a 

fluvio-lagoonal deposit incorporating eroded terrestrial debris from occupation on the donk 

surface. This deposit may therefore represent a denuded cultural horizon. The cultural horizons 

on the donken consist of thin layers of charcoal, shells, small animal bones, flint and pottery 

sherds. 

SEM analysis of this layer indicates an abundance of clayey aggregates, including mixed-layer 

forms. However these tend to form discrete particles, rather than adhering to grains. Quartz 

grains are slightly weathered on some older surfaces, but the fresh fractured surfaces are clean 

and show clear conchoidal fractures. Some feldspar grains are weathered, and have adhering clay 

flakes, indicative of feldspar weathering. Potassium feldspar types are more abundant than 

plagioclases. The fine-grain fraction was extracted for dating. 
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Figure 4.2.22 Sample HAZ1 showing the abundance of highly amorphous particles 
comprising largely of clays, of which many were identified by XRD to be mixed layer 
types. Few quartz and feldspar grains were observed in this sample. 
WD 7 mm; x2000; 1 em= 3 J.Lm. 



Figure 4.2.23 Sample HAZ1 - occasionallar~er mineral grains observed in this sample 
tended to be clay-coated and weathered, as 10 the case of this feldspar grain. 
WD 6 mm; x500; 1 em= 15 IJ.m. 



Figure 4.2.24 Higher magnification of clay coating of feldspar grain in figure 4.2.23. The 
coating consists of overlapping clay flakes resulting from deposition from percolating 
water. 
WD 6 mm; ><2000; 1 em= 3 Jlm. 



HAZ3 is a grey sandy silty clay. It is relatively homogeneous in its particle size distribution, 

dominated by the silt and clay fractions. The silt mineralogy of HAZ3 is dominated by clay minerals, 

including some mixed-layer types, except in the fine silt fraction where quartz is more abundant. 

Feldspars are dominated by plagioclases. The water content is 93%, suggesting that the 

sediment has not been highly compacted. This also reflects its present position below the local 

water table. 

Under SEM, the grains appeared to contain clean, fresh edged grains, with visible conchoidal 

fractures characteristic of quartz. Older surfaces, similar to those in HAZ2, tends to be more rough 

and with some adhering flakes. Water content and the organic carbon content of this sample 

tends to increase with depth, particularly at the interface with the overlying peat, indicating some 

mixing and possibly active weathering at this point. 

This deposit is a fluvio-lagoonal sediment and appears to have been little altered since burial. 

However, the high proportion of clay minerals and mixed layer clays may indicate either some 

alteration, or that the material deposited was already in a degraded state when deposited. 

Bleaching of the sediment is potentially good under quiet water conditions and in shallow water. 

The former conditions are likely to have applied, but it is not possible to estimate the depth of 

water at deposition. The IRSL signal is likely to be better bleached than the TL in these 

conditions. 

4.2.6 SLINGELAND, NORDELOOS 1230 4333. Altitude -0.8 m NAP. 

4 2.6.1 Stratigraphy (figure 4,2,25) 

0-23cm 

23-35cm 

35-51cm 

51-70cm 

As2, Ag2, Ga+. 
Nig1, strO, elasO, sicc3, lim.sup.1. 
Reddish clay. 

As3, Dh1. 
Nig3, strO, elas2, sicc2, lim.sup.1. 
Peaty clay, eroded upper boundary. 

Ag3, As1. Sh+. 
Nig2, strO, elasO, sicc3, lim.sup.O. 
Grey clay silt, some humic flecks. 
Sample SLG1 

As3, Sh1, 012. 
Nig3, strO, elaso, sicc2, lim.sup.O. 
Humic clay with woody fragments. 
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70-180cm 

180-295cm 

295-324cm 

324-370cm 

370cm -> 

As2, Sh2, Tl2. 
Nig2, str.O, elas1, sicc2, lim.sup.1. 
Peaty clay, with woody fragments. 

Ag2, As1, Ga1, Sh+. 
Nig2, strO, elasO, sicc3, lim.sup.O. 
Grey clay silt with peaty inclusions and layer of fine sand at 272-276cm. 
Sample SLG2 (220-230cml 
Sample SLG3 (272-276cm) 
Sample SLG4 (282-184cm) 

Ag1, Sh1, Ld1, Ga1, part test moll+, anth+, OS+. 
Nig3, strO, elasO, sicc3, lim.sup.O. 
Cultural layer with shell, sand, bone and charcoal in an 
organic sitt matrix. 

Sh4, As+. 
Nig3, strO, elas2, sicc2, lim.sup.1. 
Organic peat. 

Gs2, Ga1, Gg(min)1. 
Nig1, strO, elasO, sicc2, lim.sup.O. 
Dune sand. 

4.2.6.2 Sample Descriptions 

SLG1 lies below the modern topsoil. It is a grey clayey silt with humic flecks, overlain by a silty 

peat. This has an eroded upper contact, suggesting exposure prior to peat formation. The silt 

content falls abruptly in the lower parts of the SLG1 layer. Water content is 58%, which may be 

reduced due to a degree of compaction during deposition. Most of the clays are illites and 

chlorites (together 42% of identified minerals), but no mixed layer clays were found. Clay minerals 

dominated the silt sized fractions, and the particle size distribution is skewed towards the coarse 

silt fraction. Feldspars are dominated by plagioclases which were significantly degraded by 

chemical weathering. 

The higher organic matter content is caused by the distribution of humic flecks throughout the 

deposit, and some mixing of the layers may have occurred during or after formation of the 

overlying peaty clay. The high clay content of this sample suggests deeper, still water lagoonal 

conditions. The abundance of aggregates suggests that pedogenesis and chelate-related 

translocation may have occurred, although average quantities of aluminium and iron remain in the 

profile. The rarity of feldspars, and their degraded state also suggests alteration on a significant 

scale. Free draining conditions would have been necessary to maintain a state of disequlibrium 

between solution and solid, and this will have been restricted in such a fine-grained deposit. 
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SLG2 and SLG4 

This stratum is another grey clayey silt, separated from SLG1 by a peaty clay. This layer contains 

more sand (20%) than SLG1. The particle size distribution is dominated by fine silt and clay 

fractions. Clay minerals are the most abundant mineral in the silts, although to a lesser degree 

than in SLG1. Quartz and feldspars are more abundant in this sample, even in the fine silt fraction. 

Feldspars are mixed potassium and plagioclase types. 

This layer is 115cm thick, and contains a thin sandy band at 275cm (sample SLG3). The clay 

above and below the sand layer were both sampled for TL and IRSL dating. SEM analysis of 

SLG2 revealed a high proportion of micas and clay aggregates (including mixed-layer clays) , 

which in some cases form characteristic open honeycomb structures. Visible quartz grains appear 

clean and sub-rounded, without clay adherence. The layer exhibits considerable variation in water 

content which shows an overall reduction with depth, particularly just above the sandy layer 

(75%). Below the sand layer, water contents are lower (73%) than in the upper clay. This reflects 

a greater degree of compaction. Organic carbon decreases with depth but not very significantly. 

SLG2 and 4 are both very similar deposits, indicating that they essentially relate to a similar 

depositional environment, interrupted by a period of higher energy flow, depositing the sand 

layer. The clay was deposited in a lagoonal/lacustrine environment. The organic carbon 

component (9.4%) is derived from eroded humic flecks and possibly chemical complexes 

between silt and organic particles. 

This thin stratum is a sandy layer within the grey clay described above. It probably represents a 

high energy flood event, and a different source of material. The silty matrix may be derived from 

the grey clay, and there may have been some erosion of the clay. The sand contains no organic 

mattter, and water content is higher than for the sand (95%) than for the clay due to its more open 

structure. The mineralogy of the matrix is variable, with clays more important in the finer fractions. 

The particle size distribution is dominated by medium sized sand. The silt-sized material 

comprises a small proportion of this layer, and the application of luminescence dating to this 

fraction would not be representative of the bulk material. The sand fraction was isolated for TL and 

IRSL dating, although the abundance of feldspars was low (23%). The feldspars were, however, 

dominated by potassium types. 

SEM analysis shows the grains to be blocky with some possible secondary overgrowths of 

amorphous silica. Some adhering flakes occur, and abundant aggregates, especially kaolinite 

which occurs as disturbed pseudohexagonal stacks. Some of this disturbance may be caused 
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during sample preparation. Overall, the grains do not have the 'woolly' appearance of weathered 

material. 

4.3 DISCUSSION 

The samples can be roughly divided into two groups; the relatively unaltered 'depositional' types 

and the more obviously degraded 'pedogenic' types. This classification is based on the 

characteristics of a layer, particularly its degree of homogeneity, variability of silt mineralogy, 

abundance and form of clay minerals and evidence of weathering of the grains. 

The 'pedogenic' type of sediment is characterised by a variation in the profile of particle size 

distribution, and water and organic carbon contents. This variation is due in part to mixing of the 

sediment by bioturbation, and by translocation of clays and organic-metal complexes by 

percolating groundwaters. The silt mineralogy of these sediments tends to be dominated by clays 

with smaller proportions of feldspars and quartz in the finer silt fractions. Mixed layer clays are 

common and often abundant. The grains are generally weathered, with significant amounts of 

adherent material on their surfaces. These included samples FF1, 2, 3; WM1, 2, 3; SP1, 3, 4; 

HAZ1, 2; SLG1. 

The 'depositional' type of sediment is characterised by a much greater degree of homogeneity 

within the profile, including more constant values of organic carbon and water content. The silt 

mineralogy is less dominated by clay minerals, and there is a greater abundance of feldspars and 

quartz in the finer grain fractions. There tends to be no mixed layer clay material in these samples. 

Some do have high clay contents, but these are likely to have been deposited at the same time as 

the remaining fractions. These clays tend to be the more stable end products of weathering -

kaolinite, chlorite and illite. Under SEM, the grains are clean, and in some cases, the edges and 

fractured faces are still sharp and clear, although older surfaces are rougher, but with very few 

adherent flakes. Mica grains, which are structurally relatively weak, are also well preserved in these 

samples. 

The samples appear to have undergone some alteration, but not a significant amount, and not all 

the grains are affected. The abundance of the clays may be due in part to allogenic material rather 

than authigenic. Without micromorphological analysis, this is however difficult to determine. The 

restricted through-flow of ground water may have prevented significant alteration since 

deposition, and the low water contents, even when below ground water levels tends to support 

this. The grains themselves, for the most part, do not appear to be significantly altered. These 

include samples FF4; WM4, 5; SP2, 5, 6, 7, 8, 9; WH1, 2; HAZ3; SLG 2, 3, 4. 
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The degree of alteration in the pedogenic sediments may be signficant, and affect the potential of 

the sample for luminescence dating. Provided they have been sufficiently bleached at 

deposition, sediments should be suitable for dating, with respect to the form and preservation of 

the mineral grains. 

The low porosity and permeability of fine grained silts and clays, results in a closed system with 

respect to the mobility of ions within the sediment body. This is to be compared with open soil 

systems, where exposure at the surface, and an active mixing of the components, enhances the 

movement of elements and particles within and without the profile. The reduced mobility of ions 

will prevent excessive dissolution within a closed system, indicating that alteration observed in 

grains from a sediment characterised as 'depositional' is more likely to have occurred prior to burial, 

or prior to deposition in the present state. This will be most applicable to those sediments which 

were laid down in a compacted state before burial, as in the case of the Dutch clay deposits. 

Work by Manheim (1970) shows that the ionic diffusion rates in sediments are 1/2 to 1/20 that of 

free solutions when the sediments have porosities between 100-20% (ie. sandy-silts and silty

sands). Where swelling clays are present, they will expand to fill the porespace of sands thus 

reducing their permeability significantly. In the case of sands, porosity may be as low as 9.6% 

where the grains are very densely packed. For this reason, the water content of sandy deposits 

may be very low, even below the water table level. Water contents of well sorted sands are 

generally lower than for poorly sorted sands (Meade, 1966). Water content increases with the 

type of clay mineral present, ascending in the order Kaolinite-illite-montmorillonite. 

For most of the sediments considered here, it is likely that soil forming processes occurred when 

the deposit was a part of an active soil profile. If this was a subsoil B horizon the bleaching of the 

deposits at the time of burial may be difficult to assess. In terms of bleaching, the 'depositional' 

type of sediments are most likely to be controlled by the mode, rate and distance of transport. 

The finer grain sizes are more likely to be carried within the suspension load, and so exposed to 

sufficient sunlight to bleach the signal. The heavier sandy deposits may not have been bleached 

if carried in shallow water. 

The samples examined in this study exhibit evidence of weathering. Some samples contained 

concentrations of badly degraded grains (eg. FF2, WM1, 2), with clear etch pits and cracks on the 

surfaces. Many of these samples also had high proportions of clay material, some of which still 

adhered to grain surfaces after treatments including washing and sieving. 
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Quartz grains were often heavily coated with flakes. They also had flakes lifting off the older 

surfaces, indicating either that material had been deposited by percolation or weathering of grains 

had occurred with the precipitation of amorphous silica on the surfaces. These tended to be 

samples which displayed other indications of pedogenic processes, implying that deviation from 

saturated water content conditions prevailed for sufficient periods of time to allow at least partial 

development of soils. Other strata were thinner and were stratified between peaty deposits 

where an abundance of organic acids would have been available to facilitate the mobilisation of 

aluminium, which is a major element in the crystal lattice of feldspars. 

Many samples did not display evidence such as etching which could be regarded as indicative of 

weathering. These samples included deeper clay and silt deposits and those not juxtaposed with 

peat. It is not possible to distinguish between the clays formed from the weathering or alteration 

of minerals in the deposit from those laid down initially, particularly in relatively disturbed samples 

such as those obtained from coring. However, some of these samples were high in clay minerals 

(eg. SLG2, HAZ2), which are more likely to be allogenic, because the feldspar grains were not 

highly degraded. Some grains showed some cracks and others were coated with flaky platelets 

which may have formed during suspension before deposition, with grains forming a nucleus to 

which clay plates may have been electrostatically attracted. If these bonds were strong, it would 

not be surprising for the platelets to survive soneration during preparation, and desiccation of the 

sample may be the cause of them lifting away. 

Many of the clays identified in the less eroded samples were kaolinite and illite-type minerals, 

which represent the more stable, end products of a weathering sequence. This may suggest that 

no further alteration of the primary minerals in these samples occurred during burial. Kaolinites 

and illites were also abundant in highly degraded samples. These often occurred as aggregates 

and may originate in two ways. First, they may be depositional minerals, originating from the 

unaltered material. Secondly, they may be the end products of mineral alteration in situ. The latter 

case may suggest that either weathering conditions occurred very rapidly, or without the formation 

of intermediate phase minerals, or that they operated over significant periods of time. In many 

calculations, the formation of clay minerals in soils is very slow, although very difficult to measure 

and highly dependent on variable factors such as the chemistry of percolating waters, local 

climate, vegetation and drainage. In the case of feldspars, variation in rates will depend on the 

amount of defects or crystal dislocation and twinning. These are often higher in plagioclases and 

igneous rocks of shallower, rapidly cooling origin which makes them relatively more susceptible 

to dissolution. 

Experiments investigating the effects of pH and grain size on the dissolution of alkali feldspar 

(Speyer, 1986) have shown that mildly acid conditions do not influence the release of silica, but 
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aluminium is preferentially released. This is likely to be the result of chelating processes, where 

the acidity is induced by organic acids and mobility by chelation bonds and leaching. The effect of 

grain size was shown to be less than might be expected from available surtace areas. This 

however reflects the localised nature of weathering related to the defect sites, rather than surtace 

area. Larger grains, which break down into smaller fragments, may be expected to have a greater 

proportion of defect sites, but this depends on the structure of individual grains. 

The effect of weathering on feldspar grains in particular, in terms of its relationship to the potential 

for luminescence dating, is considered in Chapter 7. 
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CHAPTER 5. LUMINESCENCE TECHNIQUES 

This chapter is divided into five sections. The first presents the principles of luminescence as a 

dating technique; 5.2 describes the different luminescence techniques and 5.3 the methods 

adopted in this study. A review of previous work done on the TL and IRSL dating of waterlain 

sediments is incorporated into sections 5.3 and 5.4; the latter section discusses the 

investigations into selected aspects including optical bleaching (referred to hereafter as 

bleaching), water content and sensitivity changes affecting the samples. The final section 

comprises a summary of the method adopted for dating in this study. Figure 5.1 is a summary of 

the techniques in luminescence dating, and the sections in which they are discussed in this 

chapter. 

5.1 INTRODUCTION 

Luminescence dating is based on the measurement of trapped electric charge. The charge is 

derived from the radioactive decay of naturally occurring isotopes of uranium (238, 235u), thorium 

(232Th) and potassium (40K). These isotopes emit ionizing radiation which is absorbed by 

matter, such as mineral crystals, and stored in defects in the crystal structure, known as traps. The 

trapped charge is evicted by a thermally assisted process, stimulated by heating or exposure to 

light such as natural sunlight, or artificial sources, eg. green lasers (Huntley et al, 1985) or infra-red 

diodes (Poolton and Bailiff, 1989). Following eviction, electrons may be re-trapped or recombine 

with a 'hole' (an ion from which an electron is missing) (figure 5.2.1 ). Recombination of electrons 

and holes may be radiative (ie. with emission of light) or non-radiative (Aitken, 1985); in the former 

case, the recombination occurs at luminescence centres, and the light emitted is the 

luminescence measured for the sample. 

The minerals most commonly used for sediment dating are quartz and feldspar. This is because 

they are ubiquitous in most sediments and their luminescence characteristics are better 

understood than for many other minerals. Both of these minerals emit relatively bright 

luminescence signals and are able to retain their absorbed charge in traps which are stable for 

long periods of time, exceeding the present age range of the technique (c. 200 ka.). Quartz and 

feldspar are also sensitive to sunlight bleaching: ie. on exposure to sunlight, their stored charge is 

evicted, thus 'resetting' the luminescence 'clocks' to zero. 

The exposure of sediments to sunlight is the key to sediment dating. The event that is dated is 

the last exposure of a crystal to light before burial. Problems associated with incomplete, or partial 

bleaching due to insufficient exposure, or to attenuated intensity and spectrum of the sunlight, as 
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Figure 5.1 Flow Chart showing luminescence techniques and locations in 
chapter 5. 
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Figure 5.2.1 Diagrammatic representation of the luminescence process 

a. During ionization, electrons and holes 
(ions from which an electron is missing) 

are trapped and stored at defects in the 
crys.r.ll structure. The lifetime of these trap 
s is determined by their depth, E. 

b. Heating causes vibrations in the 
crystal lattice which evict the electrons. 
These diffuse through the conduction 
band and recombine with holes, or are 
retrapped in deeper traps. 
Recombination at luminescence 
centres is radiative, and light is emitted. 
Recombination at killer centres is 
non-radiative and no light is emitted. 

c. In the case of IRSL, eviction is a 
two-stage process. First thermal 
assistance cauces eviction through 
lattice vibrations. Optical stimulation 
then 'lifts' electons in the 
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and later recombine as for TL. 

~~ 

light 

-e
hole 

f-··-. ..... ::_•, 

light 
t: ......... ~, 

-e-

El 
-+

electron 

I 

--+-

r--!-
thermal 
assistance 



in the case of waterlain sediments, are discussed with reference to laboratory measurements in 

section 5.4. Chapter 3 discusses bleaching with reference to sedimentological processes. 

Following bleaching and burial, the crystals absorb radiation charge from isotopes in the 

sedimentary environment. The amount of trapped charge measured in the laboratory is related to 

time, and to the annual dose-rate to the crystals. The dose-rate is related to the natural 

radioactivity of the sedimentary environment. The age of a sediment since deposition is therefore 

described by the equation: 

AGE= EQUIVALENT POSE 

ANNUAL DOSE = X D + 1(DA +D +D \ aax p 'Y C' 

where the Equivalent Dose (ED) represents the amount of trapped charge in the sample at 

deposition and x and xi represent the sample sensitivity to alpha radiation and light ionizing a 

radiation respectively; D represents the respective dose-rate components derived from a, ~. 'Y 

and cosmic respectively. 

5.2 LUMINESCENCE TECHNIQUES 

There are a number of methods by which the trapped charge can be evicted, and the emitted light 

signal (the luminescence) measured. The charge can be thermally evicted by heating up to c. 

500 oc, which is the case for thermoluminescence (TL), or by optical stimulation from a light 

source. Optically stimulated luminescence (OSL) refers mainly to stimulation by light from a green 

argon-ion laser (c. 514.5 nm.), as distinct from infra-red stimulation by LED's (IRSL). There are 

other optical methods involving phototransfer of trapped charge, using UV light as a stimulation 

source, but this is applied more commonly to pottery rather than unburnt sediment, and not 

directly relevant to this study. 

5.2.1 TL Measurement 

TL was first applied to loess in the USSR (Morozov, 1968) using a method based on the 

techniques established for dating pottery. Huntley and Johnson (1976) took the next step by 

applying TL to siliceous shells from ocean sediments. They recognised an increasing intensity of 

TL signal with depth, which was derived from the sediment adhering to the grains, rather than the 

siliceous tests. Since then, the development of TL dating of a wide variety of sediments has been 

rapid, including volcanic materials, ocean sediments, varves, glacial tills and with greatest success 
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to dune sands and loess. The dating of aeolian materials is facilitated by the intense bleaching 

that occurs by direct exposure to sunlight during transport of the material. 

The TL apparatus used was a semi-automated system,used at Durham for the Dating Service 

(Bailiff and Younger, 1988). The oven is controlled by a Servo unit, and the glow curves recorded 

on an X-Y recorder. The photomultiplier (EMI9635 QB) was equipped with a Chance Pilkington 

HA-3 heat filter, and either Corning 5-60 or 7-51 light filters through which the emissions passed 

(see below). The irradiation sources are described in section 5.2.6. During all measurements, the 

oven was flushed with oxygen-free nitrogen, to reduce spurious TL, and using a standard heating 

rate of 10 °C/sec. 

Samples are prepared in the laboratory (see 5.3.1) and selected grain size fractions (coarse = 90-

120 ~m; fine= 4-11 ~) are deposited on a number of aluminium or stainless steel discs. 

Measurements are made of the natural signal emitted from the sample discs, and of signals 

resulting from irradiation and laboratory bleaching of the discs in order to construct a growth curve. 

The growth curves are used to evaluate the ED of the sample (see 5.2.5). 

A pause of a few hours was allowed between irradiation of samples and preheating as described in 

5.3.4. Normalization was by weight, except where significant scatter (> ±5%) in the natural 

samples required otherwise. In these cases the post-measurement procedure was used (see 

5.3.2). After each disc had been measured, a black-body (background) measurement was made 

and subtracted from the measurement signal. The black-body measurement checks for any 

regenerated signals after measurement, on the sensitivity of the detection apparatus, and for 

contamination in the heating chamber. 

The selection of optical filters is of great importance in the dating of polymineralic samples, as the 

emissions from different grains can be selected or blocked. This allows growth curves to be 

constructed from the signals from, for example, feldspars rather than quartz. This is important 

where the bleaching of the former may be significantly more complete than the latter, and the 

regeneration ED will reflect this disparity. The Chance Pilkington HA-3 filter is a heat absorbing 

filter, and used (or its equivalent) in all combinations, in order to remove spurious emissions arising 

during the heating process. 

The wavebands detected in the emissions of feldspars were studied in detail by Huntley et al 

(1988). They show that the main wavebands relevant to TL dating lie at 390, 450 and 570 nm. 

The 570 nm band only occurs in plagioclases and is thought to arise from the substitution of Ca by 

Mn. The blue emission, which is of greatest importance for dating, comprises both the 390 and 

450 nm bands. Strong emis~bn from quartz and feldspar in wavebands other than blue was 
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demonstrated by Akber and Prescott (1985) and Bailiff et al, (1977). It was also shown that 

emissions from polymineralic samples was dominated by green, red and infra red wavebands. 

A wide range of filters is used for TL measurements to select the detected wavelengths from 

samples. A blue filter such as the BG-39 was commonly used for TL dating. However, other filters 

have been used to overcome certain problems observed during dating. Debenham and Walton 

(1983) used a Schott UG-11 (see figure 5.2.2) with a near UV pass to separate out the non-quartz 

emissions from detected signals. These emissions had been shown to be sensitive to optical 

bleaching but caused underestimations in the ED. A similar effect was recognised using a 

Corning 5-58 (Proszynska-Bordas, 1985, Proszynska-Bordas et al, 1988) which gave lower EDs 

than with a Schott BG-12. These problems are most significant for samples which are much older 

(c. 120 ka.) than those in this study. 

The Corning 7-51 /HA-3 filter combination used here has been shown to enhance feldspar 

emission peaks and produced good results for old and young TL samples (Griin et al, 1989; Li 

and Aitken, 1989; Strickertsson, 1989). Balescu and Lamothe (1992) compared the efficiency of 

UG-11 and Schott 7-51 on the EDs of old samples. The error was reduced using the 7-51 filter, 

although there was still an underestimation inthe EDs of very old samples. This is unlikely to be a 

significant problem in the samples studied here, as they are all less than approximately 12 ka in 

age. 

The application of TL to waterlain sediments is hampered by the problem of incomplete zeroing of 

the sediments at deposition due to the attenuation of the sunlight spectrum by water. During 

dating measurements, samples are bleached in the laboratory in order to assess their response to 

applied radiation doses. In the case of TL, an unbleachable residual remains even after prolonged 

exposure, representing charge which is held in traps (eg. defects) which are not sensitive to 

sunlight stimulation. There is no adequate physical justification for this yet. An insufficient 

exposure, or exposure under attenuated light conditions, as in the case of waterlain sediments 

(see Chapter 3), may result in a larger residual, leading to uncertainties in the complete zeroing of 

sediments (Kronberg, 1983; Mejdahl et al, 1984). It is the violation of the assumption of total 

bleaching which has stimulated a number of workers both to investigate the zeroing mechnanisms 

of minerals, and to develop methods of evaluating the equivalent dose (ED) which account for 

partial bleaching. These are discussed in section 5.2.5. 

5.2.2 IRSL Measurement 

The Photoluminescence technique was first proposed by HOtt et al (1988) as a development of 

the earlier optical dating work by Huntley et al (1985) on the stimulation of quartz by a green laser 
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source. Hutt and Jaek (1989) used a xenon lamp with a monochromator, to measure the 

stimulation spectrum of feldspars using an infra red laser (860 nm), and later 930 nm wavelengths. 

The IRSL signal of feldspars is zeroed completely in daylight and more rapidly than for the TL 

signal (Godfrey-Smith et al, 1988). The potential of this method was taken up by Poolton and 

Bailiff (1989) who built an array of IR emitting LEOs (950 nm) as a stimulation source for feldspars. 

Both this system, and the 880 nm LED array recently developed at the Ris0 laboratory as an 

addition to their automated TL system (B0tter-Jensen and Mejdahl, 1984; B0tter-Jensen, 1988), 

are used in this project. 

Two infra-red systems were used in this study; first the original semi-automated system built at 

Durham using 950 nm diodes (Poolton and Bailiff, 1989), and secondly the Ris0 semi-automated 

system (B0tter-Jensen, 1988) using 880 nm diodes. The first was applied to all samples in a 

survey exercise in order to select the most promising samples for further dating, and to 

characterise the signals emitted from the samples with respect to the sedimentological and 

mineralogical characteristics. The dating measurements were all performed on the Ris0 set. 

The Durham set is described fully in Poolton and Bailiff (1989), but its features are outlined below. 

The diode array comprises sixteen 15mW, 950 nm (1.3eV) LEOs (Telefunken TSUS 5402) which 

are connected in parallel, and mounted at 30° to the horizontal, pointing inwards onto the sample. 

The array fits over a standard TL oven, with the sample resting on the heater plate, which allows 

temperature regulation during measurement. The same photomultiplier tube was used as for TL, 

but the filters comprised Scott BG-38 or BG -39, which reduced detection of the red-light 

emission, which may in part derive from the stimulation source. 

The characteristics of the 950 nm LEOs were shown to be uniform across the sample disc, and 

output was proportional to power up to a maximum level which stabilised after 1 0 sees. This power 

level was used to ensure a rapid settle down of the diodes during measurement. A shutter 

system was incorporated to ensure uniform output of the LEOs onto the sample, which fell 

substantially after switch-on (Poolton and Bailiff, 1989); Spooner and Franks, (1990). Stabilisation 

was within ±0.5% of the mean level of emission of the diodes, giving a power of <60 mW/cm2 on 

the sample. The comparative bleaching time to zero of the samples using both sources are given 

in table 5.2.1. The samples were bleached faster by the 880 nm wavelength, and it was noted 

that the initial signal values were lower for the same sample using 950 nm than for 880 nm diodes. 

Each sample was exposed for up to 10 mins., but the background level was often attained within 5 

mins. 
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TABLE 5.2.1 Comparison of initiaiiRSL intensity stimulated by different wavelengths. 

Sample *lo 950 nm *lo 880 nm 

FF3 1008 1254 

FF4 207 606 

WM3 396 1603 

WM4 101n 16613 

WM5fg 1889 2527 

HAZ2 2405 3950 

SLG3 5250 7031 

WH1 18340 19063 

WH2 12242 22091 

SP2 526 734 

SP3 937 128 

SP4 407 739 

SP6 1224 1606 

SP8 5630 6555 

SP9 973 1234 

*lo refers to the inital intensity in photon counts during the first second. 

The Ris0 set comprised a TL automated unit (B0tter-Jensen,1988), with the addition of a diode 

array similar to the Durham design, but with 31 diodes (880~80 nm) wired together and arranged 

in two circles. Up to 24 samples could be placed in a rotating holder at any one time. The software 

programme allowed irradiation, measurements of samples and background, but did not allow for 

the irradiation or measurement of IRSL samples at higher temperatures. However, the signal 

intensities of most of the dated samples were high enough not to require this treatment (see 

below). 

The physical processes involved in the emission of luminescence stimulated by IR light were 

studied by HOtt and Jaek (1988, 1989a, b). They suggested that the emission resulted from a 

two-step process of thermo-optical eviction of trapped charge. This process involves the 

excitation of charge by IR stimulation, and the transfer of the excited charge into the conduction 

band by the acquisition of additional thermal energy (see figure 5.2.1). Only small amounts of 
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thermal energy are needed for the eviction of charge,and thus there is a substantial luminescence 

signal at room temperature. 

Work by Bailiff and Poolton (1991) has shown that this is substantially reduced at liquid nitrogen 

temperatures, and that stimulation at elevated temperatures increases the rate of emission, as 

there is a direct transition into the conduction band at higher temperatures (HOtt and Jaek, 1989a, 

b). This supports the theory of the two-step process, in which the thermal assistance accounts for 

the temperature dependence of the emission. 

The sunlight bleaching of the IRSL signal from feldspars is relatively rapid when compared with the 

bleaching of the TL signal. The IRSL signal also has the advantage of there being a negligible 

residual level, thus eliminating the problems associated with evaluation of the correct TL residual 

level. The form of the IRSL decay curve has been shown to decay under constant stimulation in a 

manner described by non-first order kinetics, as predicted by a thermally assisted process (Bailiff 

and Poolton, 1989, 1991). 

Quartz and feldspar have different sensitivities to optical bleaching. Quartz is measured using a 

green laser source and its sensitivity both to sunlight and green laser stimulation has been 

studied by Spooner (1992). Feldspar has been shown to bleach rapidly and 50% of the feldspar 

signal may be removed during 5 minutes of sunlight exposure (HOtt and Jaek, 1989a). This 

indicates that for waterlain material the feldspars are likely to have been bleached despite potential 

attenuated sunlight conditions. The optical bleaching of feldspars still results in an unbleachable 

residual signal remaining after exposure. This residual level is reached faster for feldspars than for 

quartz (Spooner and Questiaux, 1989). The bleaching of feldspars is dependent on wavelength, 

and the effects of charge transfer induced by sunlight bleaching are discussed in 5.4.1. 

The ED values are calculated using the additive and regeneration techniques as for TL, and 

constructing the growth curves using either the integral of the photon counts, or the initial signal 

value. These should result in similar EDs if the sample is following the predicted kinetic behaviour 

proposed by HOtt and Jaek (1989a, b). 

Problems experienced with low signal intensities were significant for a number of samples. The 

behaviour predicted by HOtt et al (1989a, b) predicts that an increase in temperature at which the 

IRSL measurement is made will result in an increase in the intensity of emission. This is because 

of an increased thermal eviction of traps. An increase in the power of the stimulation source 

should also increase the intensity of emissions. 
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This was tested on sample FF3 in order to assess the potential for increasing the intensity of low

emitting samples (table 5.2.2). This was determined by first measuring the IRSL signal emitted 

from a disc to which 15 Gy have been given. Immediately after this measurement, a second 

measurement of the same disc was made to determine the background level. This was repeated 

for different voltages. An increased voltage resulted in an increase in emission intensity, but also 

affected the signal to noise ratio such thct u~ background signal detected comprised an 

increased proportion of the total signal detected, at higher voltages. Therefore, measurements 

made at lower voltages are less intense, but more accurately defined from the background level. 

TABLE 5.2.2 Effect of voltage on the initial intensity and signal:noise ratio of the IRSL of FF3. 

Power (kV) lo(cps) S:N ratio 

1250 154 17.1 

1350 179 6.2 

1450 228 3.04 

1550 359 5.5 

The switch-on characteristics of the 880 nm diodes were measured, as there is no shutter system 

incorporated into the Rise system. These were measured for different power settings, but the 

greatest deviation was 0.005% of the mean stabilised value, which settled within 3 seconds. This 

represents a minor source of error, which would be the same for all individual discs, so should not 

affect the ED. The background and LED emission levels were measured at the beginning and 

end of long programmed runs (2-4 hours). Each measurement of a disc was for the maximum of 

160 sees., but a second, and if needed, a third run was used to obtain the background count after 

all !A-sensitive signal had been removed. 

5.2.3 Relationship between TL and IRSL 

The relative novelty of IRSL compared with TL has resulted in some confusion in published work 

over the relationship between the traps associated with the two signals, and the assumptions that 

can be applied to IRSL based on the knowledge of the TL process. HOtt et al (1988) showed that 

exposure to IRSL reduced the 310 oc TL peak, but later work by Li and Aitken (1989) showed 

reduction in both 280 and 330 oc peaks; the disparity was attributed by the latter authors to the 

differences in preheating treatments of the samples. It may als~ how eves be due to different 

heating rates or sample types. For samples in this study, some reduction was noted in the 325°C 

96 



TL peak after exposure to IR stimulation, which may also be due to phototransfer. In a few 

samples, which were not suitable for dating (see discussions below), there was a notable rise in 

lower temperature TL peaks after IR exposure, suggesting charge transfer effects, possibly 

associated with unstable traps in these samples. 

However, the fact that the stable traps (in terms of fading; see section 5.3.4) associated with the 

glow curve peaks used for TL dating are those which also give rise to all, or part of the IRSL signal, 

has given rise to the assumption that these traps are sufficiently stable for dating by IRSL. This 

has been extended to cover the assumptions that the procedures used with respect to fading 

and bleaching for TL are equally applicable to IRSL. 

The emissions from feldspar have been shown to correlate with their elemental composition; the 

feldspars were shown to have peak emissions at c. 390, 450 and 570 nm which are used for TL 

dating (Huntley et al, 1988) with the 570 nm band only occurring in plagioclases, associated with 

Mn ions. The blue emissions which are the main detection wavebands for IRSL comprise a 

combination of the 390 and 450 nm bands. Bailiff and Poolton (1991) demonstrate similarities 

between the emission spectra of IRSL and specific TL glow curve regions of feldspars. They also 

demonstrated a UV emission peak at <340 nm. Potassium feldspars (microcline and orthoclase) 

correspond primarily with the 200-400 oc region, albite with the 350-400 oc region, and sanidine 

with the 300-400 oc region. Jungner and Huntley (1991) demonstrated a strong emission from K

feldspars under 633 nm stimulation in the 400 nm waveband, weaker emission at 340 nm and little 

at 300 and 500 nm which were very similar to the TL emissions from the same samples. 

Bailiff and Poolton (1991) demonstrated the relationship and similarity in the emission spectra of 

feldspars under IRSL stimulation with specific regions of the TL glow curves. Under 950 nm 

stimulation, the spectrum of emission was similar to that for the 200-400 oc TL glow curve for 

microcline and orthoclase, 350-400 oc for Albite and 300-400 oc for sanidine. Godfrey-Smith et al 

(1988) and B0tter-Jensen et al (1991) found that erasure of the IRSL signal of feldspars left the 

TL signal of the same samples unchanged, suggesting that the trap spectrum for IRSL is different 

to that for TL, although the emission spectra may be similar. The similarity between the emissions 

of the TL glow curve regions and the IRSL indicates that the major source of the IR signal comes 

from stable regions of the glow curve, and is therefore suitable for dating within the Quaternary 

timespan. However, some uncertainty remains over the stability of the traps giving rise to artificially 

stimulated IRSL. 
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5.2.4 Other OSL techniques 

IRSL of feldspar was developed after work established on the green-stimulated OSL of quartz 

using a green laser was first published by Huntley et al (1985). This was shown to be successful 

for aeolian quartz. IRSL does not stimulate pure white quartz, but does stimulate some emission 

from pink quartz. IRSL has thus been used as a method for testing the purity of such quartz 

extracts (eg. Rhodes, 1990). Feldspar inclusions in quartz will, however, be sensitive to IR 

stimulation, but this is likely to be of greater value in dating single grains due to the high variability 

of the inclusions, and the size of the grains involved. 

OSL using green lasers has become a widespread technique for dating aeolian quartz, and can 

be used as a complementary technique for optical dating of polymineralic sediment extracts. 

Some comparative work has been done using both techniques (Spooner and Questiaux, 1989). 

OSL dating of quartz formed the basis of the IRSL technique, in terms of the analysis of the signal 

data. This technique was not used in this study due to the dominance of the sample 

luminescence emissions by feldspars, and the availability of equipment. 

Other optically based techniques include phototransferred TL (PTIL) which uses the easily 

transferred component of the TL signal of quartz from 320 oc peak to the 110 oc by exposure to 

UV light (Bailiff et al1977). This does not affect the stable 370 oc peak in many samples, but the 

process does not have significant advantages over standard techniques for pottery (Aitken, 

1985, 168). Wheeler (1988) describes possible methods of using phosphorescence stimulated 

by exposure of quartz and feldspar samples to 514 nm laser sources. The phosphorescence 

lasts only a few seconds, and is too weak to be accurately measured for dating. 

5.2.5 ED evaluation and the age equation 

The TL ED can be evaluated in three main ways. First the additive technique (developed for 

pottery dating) where the growth characteristic of the sample is measured by giving artificial 

radiation doses. These are measured, and the growth curve constructed (see figure 5.2.3a) of the 

luminescence (ie. peak height for a given temperature) against added radiation dose. The growth 

curve is extrapolated to a point on the abscissa, giving the ED value in grays; the point on the 

abscissa is not equal to zero due to the subtraction of a residual value, which is the amount of 

luminescence remaining in the sample after a long bleach, as for the total bleach method given 

below. This residual represents the unbleachable part of the signal, and is therefore not a part of 

the sunlight-sensitive signal used for sediment dating. The growth curve is generally linear for 

Holocene age sediments, but for older samples, a sublinear curve may result, indicating the onset 
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Figure 5.2.3 Methods of ED evaluation 
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of saturation of the sample. Samples in this study were generally characterised by linear growth 

curves. 

The second method of evaluating TL ED is by the regeneration technique (figure 5.2.3b). Here, 

the natural signal is measured, and all other samples are bleached to a laboratory determined 

residual level. A growth curve is constructed by adding different radiation doses to sample discs, 

and plotting the curve as before. The ED is given on the dose axis, where the second glow curve 

crosses the point equivalent to the natural signal level. 

For most TL samples, both growth curves are constructed in order to check that the response of 

the sample to artificial irradiation approximates to that experienced under natural conditions with 

respect to the linearity and gradient of the growth curve. Changes in the linearity (slope) between 

the two growth curves (ie. they are not parallel), indicates changes in sensitivity of the dose

response of the sample, as a result of heating, bleaching or irradiation. Sensitivity changes arising 

from bleaching are discussed in section 5.4.2. 

The third method of ED evaluation is the partial bleach technique proposed by Wintle and Huntley 

(1982), and advocated by a number of TL workers, notably Berger (1985a, 1990). This method is 

based on the assumption that exposure of sub-samples of a sediment, some of which have been 

given an additional artificial radiation dose, to optical bleaching will reduce the signal intensity of all 

sub-samples by the same proportion. Additive and partial bleach regeneration curves are 

constructed. The intersection of these two curves represents the ED value (figure 5.2.3c). The 

correct time of light exposure can be determined by plotting an 'ED plateau', which represents the 

ED determinations over the peak TL temperature range, for different bleaching times. The 

longest plateau is taken to represent the correct bleach time. 

The total bleach technique, adopted by Singhvi et al (1982) is where the additive curve and a 

regeneration curves following a long, total, bleach of the subsamples are constructed, and the ED 

is given where these intersect. Again, as for the regeneration method, the problem of sensitivity 

changes in the sample can result in erroneous ED evaluations due to changes in slope of the 

growth curve. 

For IRSL dating, both the additive and regeneration techniques can be used. The growth curves 

are plotted using the initial signal intensity (photon counts) or the integrated signal count over the 

total exposure time, against dose. The ED is determined in the same way, on the dose axis. 

In this study the additive and regeneration techniques were used for ED evaluation. In the 

calculations for age determination the additive intar:ept was used in each case. This is justified for 
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these samples as they are relatively young, and problems of non-linearity of the growth curve, eg. 

due to saturation of the sample, were not anticipated. The regeneration growth curve was used in 

order to determine the level of the unbleachable residual, and to check for sensitivity changes 

after laboratory bleaching. 

In order to demonstrate good reproducibility between discs and consistency in the points on the 

additive and regeneration glow curves, up to 6 measurements were made at each point on the 

growth curves, and up to fifteen points were constructed on the growth curve, giving a total of up 

to 90 measurements on each growth curve. This enables greater confidence to be placed in 

measurements from samples showing poor reproducibility by weight normalisation. 

The errors on a luminescence date are divided into 'systematic' errors which comprise errors in the 

calibration of radiation sources, uncertainties in dose-rates due to water content attenuation, 

uncertainties in the evaluation of past water content and sampling errors. The 'random' error 

component comprises the error in ED and dose-rate evaluations. These are calculated by the 

system developed by Aitken and Alldred (1972). There is no other published method of error 

evaluation. 

5.2.6 Irradiation 

In order to evaluate the palaeodose, or the ED, as described in 5.1.3, a number of discs are 

irradiated for different times to construct the growth curve of a sample. For this study a beta and 

an alpha source were used to measure the growth response to alpha and beta radiation 

respectively. For TL and IRSL using 950 nm diodes the irradiation facility described by Bailiff 

(1980) was used, and for IRSL using 880 nm diodes a source incorporated into the Rise 

automated system was used. The dose rate is different for fine and coarse grains, and details are 

given below in Table 5.2.3. The alpha source used for all measurement was an AM-241 delivering 

0.45 J..lffi-2/min (units of track length of alpha particles). 

TABLE 5.2.3 Beta radiation sources and dose-rates (after Bailiff, 1992) 

Source Laboratory Dose to fine grains Dose to coarse grains 

designation of quartz (Gy/min.) of quartz (Gy/min.) 

90sr190y B(40) 1.08 1.22 

B(42) 0.55 0.70 
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5.2. 7 Dosimetry 

Sediment extracts, such as the fine grain fraction, are a part of the bulk material, and 

measurements of the radioactivity of the bulk material, as opposed to that of the separated fraction 

are necessary. These measurements give the environmental dose-rate. On-site dosimetry using 

gamma-ray spectrometry and laboratory measurements of the alpha activity and beta dosimetry are 

made to test for disequilibrium in the decay series. The greatest source of error is in the 

estimation of past water content in the sample, an aspect which has been investigated by Rendell 

(1983, 1985) with respect to loess. 

Radioisotopes of U, Th and K decay with the emission of alpha, beta and gamma radiation, which, 

with a minor cosmic component, make up the components of the annual dose-rate to a sample. 

The dose-rate can be evaluated in a number of ways, including direct measurement by dosimetry 

and indirect measurement of the activity of a sample, and converting it into dose-rate. 

The sources of radiation contributing to the dose-rate may be internal or external to the crystal. 

External dose is derived from the isotopes present in the sample matrix, and internal dose is 

derived from isotopes present within the crystal. The differences in energy of particles emitted 

during decay have different effects on the crystal, as the attenuating effects of the crystal lattice 

reduces the ionization by particles of lower energy. The effect of grain-size is therefore important. 

Measurement of the dose-rate is done on-site by gamma-spectrometry and calcium-fluoride 

dosimetry, or in the laboratory by measurement of the concentrations of elements, or the activity 

of the samples. The values for the dose-rates for all samples are given in Appendix C, Table 1. 

For fine grain dating, the most important components of the dose-rate are the beta radiation from 

potassium and the alpha radiation from uranium and thorium. 

5.2.7.1 Alpha radiation. 

Alpha radiation arises during the decay of U and Th. It comprises heavily ionizing particles with 

relatively low penetration distances. The range of penetration of alpha particles is 1 0-50 Jlm. The 

particles follow straight paths through mineral grains. Alpha radiation is measured in track length 

which is a function of their energy. Typically, an alpha particle with an energy of 5 MeV will travel 

20 Jlm (Bowman, 1976). Fine-grains are considered to have received a complete alpha dose as 

their diameter is less than the penetration distance of the alpha particles. However only the outer 

portion of coarse grains are affected by alpha radiation, due to the inability of the alpha rays to 
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penetrate further into the crystal. The outer part of coarse grains is therefore removed by etching 

leaving a core which is unaffected by external alpha radiation. 

Alpha radiation is measured in track lengths, as the amount of luminescence arising from alpha 

radiation is proportional to the total length of tracks passing through the minerals. The efffective 

TUGy of alpha rays is less than that for beta radiation by a factor of 0.05 to 0.5, depending on the 

substance (Aitken, 1985; Appendix K). The ratio of this difference is referred to as the a-value. 

However the a-values for the optical and TL dates for the same sample are consistently different, 

an effect not as yet understood. The a-values for samples in this study are given and discussed in 

Chapter 6. 

The alpha component of the dose-rate is measured indirectly by thick-source alpha-counting, ie. a 

measurement of the alpha activity of the sample (Aitken, 1985; 86). A layer of powdered sample is 

laid onto a 42 mm diameter ZnS scintillation screen. The screen detects scintillations arising from 

the collision of alpha particles against the screen. The detector window is set to exclude the lower 

energy beta and gamma emissions. The term 'thick-source' of an 'infinite' matrix refers to the 

relative thickness of the sample with respect to the maximum 50 1JI11 penetration of the alpha 

particles, so emissions from the lower two thirds of the sample are measured. 

Typical alpha counting values for samples investigated are 800-1200 counts per day. Values are 

usually based on the assumption of equal activity of U and Th but if the alphas are all emitted from 

one isotope the variation in this value is less than 5%. Samples are counted sealed and unsealed 

(ie. with or wtthout a lid). This measures the escape of radon gas which is a source of 

disequilibrum in the decay chain. Ratios of sealed:unsealed above 1.2 indicate a problem of this 

nature and such samples were rejected. The alpha dose for fine grains is treated as entirely 

external to the grains as they are so small. For coarse grains, part of the alpha dose is derived from 

internal sources of isotopes contained within the grain. The external alpha dose must be 

corrected for water content attenuation (see 5.4.3) 

5.2.7.2. Beta Radiation 

Beta radiation is emitted by the decay of U, Th and K isotopes, and is measured by laboratory 

dosimetery. This measures the dose-rate directly, assuming an infinite medium of material and 

corrected for grain-size and water-content. Beta radiation has a higher penetration distance than 

alpha, but is less heavily ionizing. 

Dosimetry measurements are made by placing c.1 g of powdered sample into a lead container. An 

annealed calcium fluoride dosimeter is placed above the sample. The container is sealed and left 
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for two weeks, after which the beta radiation absorbed by the Calcium Fluoride is measured by TL 

(heating rate 5 °C/sec; up to 300 °C}. This measures the beta activity of the sample (Bailiff, 1982). 

A correction for water-content is applied, as the dose-rate is measured in the dry state (see below) 

and a correction for grain-size is also applied. Aitken (1985; 259) gives values of 1.0 for fine

grains, and 0.9 for coarse grains due to attenuation by the crystal lattice. The measurement of 

beta dose is made assuming equal activity of U and Th, which is important due to the different 

energies, and therefore penetration distances of betas emitted by these isotopes. For 40K the 

beta particle energies range from 0-1.32 MeV, with the most common particle energy being 

around 0.4 MeV. Beta radiation comprised between 24 and 56% of the total dose-rates of 

samples (table 2, Appendix C). 

5.2.7.3. Gamma Radiation 

Gammas are emitted by the decay of U, Th and K and is commonly measured by spectrometry in 

the field. Here, the gamma activity of a stratum is measured using a portable gamma spectrometer. 

The probe of the spectrometer containing a scintillator is placed within the stratum. The scintillator 

detected the passage of radiation through the probe. The measurements on a four-channel 

spectrometer are converted into U, Th, K and cosmic concentrations (based on the different 

energies of emitted particles). The spectrometer used for this study was a Nutmaq Harwell 

95/0466-1/6 model with a sodium iodide crystal. Counts were collected over a period of 60-90 

mins. and the response of the detector checked with a calibrated thorium source impregnated in 

resin. 

Gamma radiation has a range of 0.3 min a homogeneous soil matrix, depending on the energy of 

the particles. Typical energies range from 0.1 to 3 MeV. The gamma dose may be an important 

component of the dose-rate. The attenuation of the gamma dose is complex as there is a wide 

range of energies represented by the particles. In a low activity environment, the gamma dose 

attenuation is more significant. Assumptions of uniformity of a sedimentary deposit with 0.3 m of a 

sample are difficult to apply in many cases, and a sample may have a significant contribution from 

the over- or underlying strata. It is therefore useful to evaluate the contribution from adjacent 

strata, particularly where the sedimentary sequence is complex. The density and water-content of 

the soil can be used to assess the attenuation of gamma particles of specific energies (Aitken, 

1985; 73). 

In this project, the gamma dose contributions were calculated using computer software authorised 

to I K Bailiff based on data from Levborg and Kirkegaard (1974) for samples where the thickness 

was less than 0.3 m, or for complex and long sequences, where the contribution from adjacent 
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strata can be evaluated. For most samples, the gamma dose ca~ntirely from within the sample 

stratum, but in a few cases the adjacent strata contributed a small proportion of the total gamma 

dose. 

The gamma dose comprised 17-36% of the total dose rate for samples. The gamma component is 

more significant for fine-grains where the external dose (ie. not from inside the mineral grains) is 

more important. Alkali feldspars contain potassium which is an important internal and external 

source of gamma radiation. 

5.2.7.4 Cosmic radiation. 

The cosmic component of the radiation dose is relatively small in most environments, except 

where the natural radioactivity is very low, and the sample is near the surface. Aitken (1985; 74) 

gives typical values of 150 11Gy/a at 1 m depth, twice this at the surface and half this at a depth of 

Sm. 

5.2.7.5 Calcium Fluoride dosimetry 

The burial of dosimeters containing annealed calcium fluoride allows an average annual dose-rate 

of the gamma component to be measured. The alpha and beta rays are stopped by the capsule 

walls. The dose-rate varied throughout the year according to changes in water-content and 

temperature, so an average annual value is more accurate than the value measured at the time of 

sampling which represents current conditions in the stratum. 

Natural Calcium Fluoride is a sensitive phosphor. It is annealed at 400°C for 20 mins. and sealed in 

0.1-0.2 mg quantities in copper capsules. These are buried in the ground, suspended by wire in 

the borehole from which the sample was taken. The capsules lie within a narrow plastic drainpipe 

to aid retrieval. The levels at which the capsules are suspended can be carefully measured, and 

allows measurement to be made of a variety of strata in the core, including peat layers as well as 

minerogenic strata. 

After at least one year, the capsules are retrieved, and the absorbed dose measured. A beta 

dose giving rise to a signal of equivalent signal intensity is administered, and a subtraction made 

for the self-dose of the phosphor (1 00 11Gy/a). A correction is made for the attenuation effect of 

the copper capsule walls; for 0.7 mm wall, the dose received by quartz is x1.1 0 that received by 

the phosphor (Aitken, 1985;98). 
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Significant problems were experienced with the retrieval of dosimeters in the field. For capsules 

which were recovered from Williamson's Moss and the Dutch sites, dose-rate evaluation was 

within 7% of the values determined by laboratory techniques. In calculations for age 

determination, the laboratory data was used for all samples. 

5.3 ADDITIONAL ASPECTS RELEVANT TO DATING 

5.3.1 Sample preparation 

Sediments usually comprise a variety of different sized grains of contrasting mineralogies. For 

dating, the fine-grain fraction (4-11 Jlffi) or the coarse-grain fraction (90-120 Jlm) are most 

commonly used for dosimetry reasons (Aitken, 1985). The advantage of fine grains is that in the 

waterlain sediments of this project, these are often the most dominant grain size fraction, and thus 

more representative of the sediment. Also, during transport they are more likely to have been 

carried in suspension and thus more effectively bleached than coarse grains. 

Fine-grain samples were prepared based on the technique of Zimmerman (1971). The sample is 

dried and gently broken up into its constituent grains, taking care not to crush individual grains. 

Calcium carbonate is removed by standing the sample in 2% acetic acid for two hours, or until an 

HCI test indicates that no carbonate remains. The organic material is removed by treatment with 

30% H202. This was added until all frothing stopped, and gentle heating to temperatures no 

higher than 40°C was applied to ensure all reaction had ceased. The residue was removed by 

thorough washing with distilled water. 

The sample is then carefully washed several times in distilled water, meths. and acetone to 

remove traces of reagents. The sample is centrifuged to precipitate the sediment after washing, 

and an ultra-sonic bath to agitate during washing. When cleaned, the sample is examined, and if 

substantial flocculation of the clay minerals has occurred, these are dispersed by using sodium 

oxalate in distilled water, before cleaning again with distilled water, meths. and acetone. 

Once the sample is clean and floes are dispersed, the fine-grain size fraction (4-11 Jlffi) is 

separated by sedimentation in acetone for 2 and 20 mins (the Stokes' law settling times for 

suspension in 6 em depth of acetone). The separated fraction is suspended in acetone. A 1 ml 

fraction is taken from this suspension, shaking the tube each time to ensure even mixing of the 

sediment, The fraction is deposited on abraded and cleaned aluminium discs placed in a in a flat 

bottomed tube. The acetone is evaporated overnight in a warm oven (50°C). Around 120 discs 

were prepared for each sample. 
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The fine-grain fraction is polymineralic, containing mainly quartz and feldspar, with smaller amounts 

of clay minerals. The quartz and feldspar could not be successfully separated by density 

separation techniques due to the overlap in specific gravities for the two minerals. Etching the 

sample can only isolate the quartz fraction, and is in any case less suitable for fine grains as the 

quartz is more susceptible to acid attack. 

The coarse grains are sieved, to isolate the 90-120 Jlm fraction. These grains were cleaned as for 

fine grains, including the dispersal of floes, which were often present in this size fraction after 

drying. After the carbonates had been removed, and the grains cleaned, they were etched in HCI 

for 40 mins. This was done in order to remove the extemallayer exposed to alpha radiation, and 

to remove coatings of clay minerals and oxides from the grain surfaces, which are often strongly 

adherent even after treatments. 

The cleaned grains are settled onto abraded aluminium or stainless steel discs in the following 

way; a drop of silicone oil is deposited in the centre of the disc, keeping the outer surface 

millimetre clean. The discs were inverted into the grains, and tapped to remove loose grains. This 

ensured that a monolayer of grains was deposited on the discs, which is important with respect to 

the measurement of the dose-response of coarse grains to irradiation. 

The prepared sets of fine or coarse grain discs were stored in disc libraries at room temperature 

and in the dark, unless undergoing treatments for fading, or prior to measurement. 

5.3.2 Normalization 

The normalization of the intensity of emissions from sample disc is necessary to reduce the 

effects of scatter in the data which results from the distribution of the grains contributing to the 

luminescence. In fine grain samples, the luminescence may be derived from many grains which 

are evenly distributed between discs, resulting in similar intensities of luminescence with respect 

to the natural signals and to discs which had received an artificial radiation dose. However, the 

signal may arise primarily from a few bright grains, which are not evenly distributed between discs, 

and so the relative intensities of different natural and additive discs will be highly variable. 

Normalization is a method of correcting for this variability. 

There are three main ways of normalizing a set of sample discs; for TL fine grains weight 

normalization is often adopted, whereby the amount of luminescence emitted is assumed to be 

emitted from an equal weight of grains deposited on each disc. This is often appropriate for fine 

grain polymineralic samples. If the scatter in intensities between discs of one sample is 

106 



significant, the luminescence is likely to have been emitted from a few bright grains. Weight 

normalisation was used for most TL samples in this study. 

Weight normalization, however, is not always sufficient, and some form of dose normalization is 

used, where the response to a standard small radiation dose is measured. If this is done before 

measurement, it is known as the equal pre-dose technique. 

The most widely used technique for TL, and the one adopted here, is normalization by second 

glow, where the response to a standard test dose is given directly after measurement of the 

natural signals. This can be complicated because of the sensitivity changes induced by heating, 

bleaching and irradiation, but it can be standardised if they all show the same behaviour. 

In this study, weight normalization was acceptable for most samples, having a disc-to-disc 

reproducibility of < ±5%. Some samples showed very poor reproducibility, and in three cases this 

was associated with fading of the signal without reaching a stable level, and these were rejected 

as not suitable for dating (see section 5.3.5). In two further cases of TL dated samples, the post

measurement normalization was carried out, because the assumed weight normalization before 

measurement was not sufficient. In all other cases, a parallel check on the suitability of weight 

normalization was done by applying the second glow method to discs selected at random. 

For IRSL measurements, a short exposure of one second was given before measurement and 

other treatment of the discs (eg. bleaching), and the number of photon counts recorded. The few 

discs which exceeded the ±5% level of variation within the sample were discarded. The short 

exposure did not significantly reduce the initial signal level of the measurement exposure, and in 

most cases the initial count was similar for both the one second normalization and the 

measurement exposure. The integrated number of counts detected during the normalization is 

less than 5% of the total integrated counts, and so would not significantly affect the signal used 

for dating. The percentages of the total integrated count for the natural of each sample 

represented by the normalizer are given in table 5.3.1 below. 

TABLE 5.3.1 IRSL Normalization as a% of total emission (signal+ background). 

Sample 

FF3 

FF4 

WM3 

N% 

4.6 

4.7 

3.2 
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WM4 3.1 

WM5fg 2.9 

WM5cg 2.7 

HAZ2 4.8 

SLG2 3.6 

SLG3 3.2 

SLG4 2.4 

WH1 1.3 

WH2 1.2 

SP2 3.2 

SP3 2.4 

SP4 4.8 

SP6 2.7 

SP8 3.6 

SP9 3.3 

The use of IRSL normalization for TL is not considered to be appropriate. The TL signal is derived 

from many other traps which are different to those which give rise to IRSL. Also they may not be 

stimulated by IR light and therefore not normalized. 

5.3.3 Stability of the luminescence signal 

TL and IRSL age range is determined by the level of saturation of minerals with absorbed radiation 

dose, and by the stability of the traps in which the charge is held. The saturation level is higher for 

quartz than feldspar and thus the potential age range (assuming equal dose-rates) will be greater 

for quartz. In the case of TL, the age range may be substantially reduced by the incomplete 

zeroing of the signal at deposition; and may only extend to 5-10 ka. Howeve~it may be over 200 

ka for quartz rich dunes with low dose rates (Aitken, 1985). 

For TL and IRSL, there are two main considerations with respect to stability. The first is the 

emission stimulated from traps which are not stable over archaeological timescales, and therefore 

not suitable for dating. Secondly, there are traps which for kinetic reasons are considered stable 

over these timescales, and therefore suitable for dating, but which are in fact unstable (see 

discussion on anomalous fading in 5.3.4). The unstable and short-lived components of the signal 

therefore need to be removed from the stable signal in order to obtain an accurate ED. 
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The stability of the charge held in traps is determined by their lifetimes. The lifetimes of many traps 

decreases with increasing temperature of storage; Wintle and Huntley (1980) predicted lifetimes 

of 10-1 00 ka for ocean floor sediments stored at 4 °C, but this is reduced by a factor of five at 1 0 

°C, by predictions based on measurements of known age samples. The lifetimes of K-feldspar TL 

traps as evaluated by Stickertsson (1985) are given in table 5.3.2, which indicates that the 280, 

320 and 350 oc peaks (at heating rates of 1 0°C) are sufficiently stable for dating purposes, 

particularly in this study where sediments are estimated to be less than 12 ka. 

Hutt et al (1988; Hutt and Jaek, 1989a, b) identified two traps wich contribute to the IRSL signal at 

depths of 1.62 and 2 eV. The former corresponds to the 310 oc TL peak which has a similar 

lifetime as the 280 oc trap given in table 5.3.2. These traps correspond to maximum ages of 500-

600 ka, but this is reduced by saturation effects, fading and incomplete bleaching at deposition. 

At a meeting in Oxford (1989), the short and long range limits for OSLand TL were discussed, 

and most of the older-age limits average around 100 ka for both techniques. This limit was first 

established by Debenham (1985), and has not been substantially extended. However, for the 

purpose of this study, where the sediments are of Holocene age (ie. <12 ka), saturation effects 

are only a problem where little resetting of the signal at deposition has occurred. The older age 

limit may be up to 200 ka where the dose-rate of the environment is very low, as in the case of 

quartz dune sands. 

TABLE 5.3.2 Trap depths and lifetimes for TL of K-feldspar at 15 oc assuming first order kinetics. 

(data from Strickertsson, 1985) 

*Temp (0 C) Depth (eV) Lifetime (yr) 

90 0.76 0.16x1o-3 

110 1.10 43x1o-3 

210 1.40 3.6x 103 

280 1.62 3.9 X 106 

320 1.60 1.0x109 

350 1.68 9.2x 109 

• refers to the TL glow curve peak temperatures 
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5.3.4 Anomalous fading in feldspars 

Anomalous fading is the loss of signal in a sample which has been stored following artificial 

irradiation, but it also affects the natural signal. In samples where the luminescence is dominated 

by a few bright grains, the signal loss may not be significant if these grains do not fade, but a great 

problem if they do. Significant fading of the luminescence signal was observed in three samples 

in this study. These samples were rejected for dating. Severe fading refers to samples which do 

not fade to stable levels and which experienced a loss of over 40% of the signal arising from 

artificial irradiation. The loss observed in the samples is shown in table 5.3.3. 

TABLE 5.3.3 Loss by fading observed in three samples, FF1, FF2, HAZ1. 

Sample TL6wk50°C( RT) TL6mth50°C 

FF1 30 (28) 

FF2 43 (40) 

HAZ1 49 (48) 

Figures are% of original signal intensity. 

(AT) refers to storage at c.18°C. 

46 

68 

73 

IR6wk50°C(RT) 

22 (15) 

29 (26) 

45 (44) 

Figures in () refer to losses observed after storage under RT conditions. 

IR6mth50°C 

38 

48 

64 

Because of the significant loss observed in these samples and the variation between the TL and 

IRSL signal losses, a detailed consideration of fading of feldspars is necessary. The causes of 

fading are not well understood, but they may be related to mineralogical or sedimentological 

characteristics. An account of the mechanisms of fading is given below, and the relationship 

between samples which faded and their sedimentological characteristics is discussed in Chapters 

6 and 7. 

Fading was first observed by Wintle (1973, 1974) in plagioclase feldspars. It is now known to be 

common in most minerals used for dating, particularly feldspars. Wintle observed losses of 17-

40% after 17 hours storage. This was concentrated in the 350-400 °C TL peak, which is normally 

considered the stable region suitable for dating. The loss in some minerals is temperature

dependent, and increases with higher storage temperatures. Loss in Wintle's (1973) work was 

not affected by the type of radiation used, except that it was 10% faster for alpha due to the 

shorter effective range of alpha rays. 
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Non-volcanic and loessic feldspars are less prone to significant fading, but are still affected 

(Berger, 1984, Lamothe, 1984, Lamothe and Huntley, 1988 for waterlain sediments). Berger 

(1988) observes that in dating studies little attempt is generally made to identify the feldspar types 

which contribute to the signal. There are however some exceptions to this (eg. Rendell et al, 

1983; Lundqvist and Mejdahl, 1987), in part because of the range of feldspar compositions and 

difficulties in their evaluation. More recently, attempts have been made to correlate the amount of 

fading with feldspar types. Spooner (1991) observed fading in plagioclases and one alkaline 

feldspar sample, which had been shown to fade in other TL work. Not all these samples faded to 

stable levels, even with thermal acceleration of the decay. 

Akber and Prescott (1985) related observed fading to composition of plagioclase feldspars. 

These are classified by their relative sodium:calcium contents and were shown to suffer increased 

fading and decreased emission in the yellow waveband with increasing calcium. This implied more 

intense fading in calcium-rich types, and the authors suggested filtering the yellow emission with 

which the fading is associated. Hasan et al (1986) showed that high temperature forms (ie. having 

a disordered structure) showed little fading compared with low temperature forms (ordered 

structure). Hasan et al also imply that preheating will only successfully remove the unstable 

component of the signal if a favourable mixture of high and low structural forms is present. 

Differences in laboratory techniques may also lead to differences in the observation of fading in 

the same material (eg Wintle (1974) and Berger (1984) for an Alaskan loess). Rendell et al (1983) 

attempted a correlation between bulk composition of feldspar using the AI:Si ratio as an indicator 

(see Chaper 3) and the amount of relatively bright feldspar, and TL sensitivity to dose. This 

proved difficult and the AI:Si ratio showed poor correspondence with sensitivity to dose for a 

polymineralic loess, containing quartz, feldspar, calcite, mica and clays. This may be due to the 

range of sensitivities represented by the polymineralic bulk sediment. Differences in the fading of 

5% and 15% for similar silt deposits were attributed to compositional changes by Berger 

(1985a,b). 

The traps associated with IRSL or green-OSL signals, are in part those which give rise to TL (see 

5.1.3). Fading may relate to these or to other traps which are related to the form, composition and 

thermal history. Spooner (1991) shows that it occurs with IR and green stimulation, and that it 

correlated with composition but not to the luminescence sensitivity of the samples. The brightest 

samples were Na- and K-rich, and the dimmest were dominated by Ca, which has been shown to 

be more prone to fading (Akber and Prescott, 1985). 

The greater losses observed in samples FF1 and FF2 for the TL signal probably reflect the 

stabilities of traps associated with TL rather than IRSL signals. There is some temperature-

111 



dependence as losses are marginally higher for storage at 50 oc than at room temperature. 

However, this is not very significant. 

Some samples in this study were affected by fading; they tended to be derived from weathered 

strata. This connection was observed during an experiment investigating the effect of artificial 

weathering on the IRSL signal, where fading was observed in a previously stable sample, as 

described in Chapter 7. The inducement of fading by chemical weathering could be related to the 

destabilisation of traps due to chemical exploitation of the defects. 

5.3.4.1 Mechanisms of Fading 

Two models have been adopted to illustrate the process of anomalous fading; the Quantum 

Mechanical Tunnelling model (QMT) and the Localised Transition Model (L TM). The former 

illustrates the process of activation of electrons in traps but only sufficient to reach the conduction 

band, without passing through it (Visocekas et al, 1976). Charge can leak away and become re

trapped elsewhere. The initial rapid rate of decay observed in samples is attributed to the number 

of empty traps (holes) nearby which can trap leaking charge. The rate of loss decreases with time 

as the holes only exist further away. 

Tunnelling is likely where energy differences between electrons and holes are relatively small, or if 

the electrons are in an excited (higher energy) state. This thermally assisted process (where 

raised temperatures 'excite' the electrons) increases the rate of loss, and competes with athermal 

loss after irradiation at lower temperatures. The athermal component is thought to represent the 

continual fading in Spooner's (1991) samples, which did not become stable even after 

preheating. Thermal assistance accounts for the temperature dependence of the process, and 

may explain why shallower traps are less stable and more prone to fading than deeper traps (Bailiff, 

1976 with references). 

The LTM (Chen and Kirsh, 1981; Clark and Templer, 1988) explains the significant temperature 

dependence of fading in some minerals and polymineralic fine-grains. The electron-and-hole 

(pairs) transitions occur without electrons passing into the conduction band and are thus limited to 

moving to localised holes only; spatially remote transitions (greater than a few A) require passage 

within or through the conduction band. 

Wintle (1978) isolated stable and unstable components of the TL signal which were separated by 

storage at increased temperatures (preheating). This accelerates the rate of decay without 

eroding the natural, stable signal, because it is not activated by the temperatures at which the 

unstable component is removed. Rates of decay at ambient temperatures are very slow, but 

thought to be complete, or in equilibrium with the lower dose rates in the natural environment. 
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Clark and Templer (1988) identified two unstable components, one of which had a faster rate of 

decay and was eliminated with preheating, and another which was temperature independent and 

much slower. Treatment of fading samples is dealt with under preheating (5.2.5). Mejdahl 

(1988b) investigated fading in feldspars and their long-term stability, and calculated corrections 

which could be applied for older samples, based on estimates made from the measurements of 

infinte age samples. These were not necessary in the samples examined in this study, because 

they were all estimated to be of Holocene age. Thus the effect in ED evaluation of a long term 

component would be much less than for samples approaching 1 00 ka. 

5.3.4.2 Tests for fading 

The samples in this project were given a beta dose of 30 Gy, and then stored at 50 oc for up to six 

months before preheating and measurement. Three samples were rejected for dating because 

the signal had not decayed to a stable level even after prolonged storage (see table 5.3.3). The 

natural signals did not decay for these samples, indicating that the signal had reached stability in 

situ, which may be due to the lower natural dose rate when compared to artificial sources. 

However, the time when stability was reached in situ is not known, and large errors in the ED 

value would result from this uncertainty. Mejdahl (1988b) introduced a correction for long-term 

fading in TL, referred to above. 

5.3.5 Preheating 

Preheating is a treatment applied to dating samples involving storage at elevated temperatures for 

variable periods of time. It is applied in order to evict the unstable component of the trapped 

charge. It was first used by Wintle (1985) for TL, but has since been widely adopted for TL and 

IRSL. This is done in order to remove the unstable component of the signal induced by 

irradiation. Any fading components in the signal (see section 5.3.4) are removed by accelerating 

the process by thermal treatment. All samples dated in this study were preheated before 

measurement. 

Clark and Templer (1988) suggest two methods; one is to preheat all samples so if erosion of the 

stable component of the signal occurs, it applies to the same degree in all samples. The 

alternative method is that a post measurement test is applied. The former procedure is better for 

bright samples and is the method adopted by most workers. The latter is more complicated but is 

best for weak samples. 

Zoller and Wagner (1989) discussed the process of 'thermal washing' of samples before TL 

measurement of loess. Two treatments were explored; 'Strong thermal washing' (STW) designed 

so that the partially unstable 250 oc polymineral fine-grain peak was completely annealed. 'Partial 

113 



Figure 5.3.1 Effect of different preheat times at 160°C on sample WM4 
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thermal washing' (PTW) comprised 1 hour at 160 oc based on a suggestion by Aitken to the 

authors, supported by kinetic considerations (not described). Both procedures showed good 

agreement with ED values based on non-preheated samples, but the alignment of peaks to the 

natural glow curve was less easy for the PTW method, but after PTW none of the sensitivity 

changes was observed that occurred for STW. 

Li and Aitken (1989) and Spooner and Questiaux (1989) studied the optimum storage conditions 

and preheats for feldspars. The former recommend 2 hrs at 160 °C and 3 days at 100 °C. The 

latter authors confirm this, and plotted a preheat plateau which showed that after 30 mins at the 

higher temperature, the natural and additive samples were behaving in a similar manner with 

respect to thermal stability. This was compatible with Zoller et al's PTW method. This was used 

here for TL and IRSL samples- ie. 2 hours 160 oc and 3 days at 100 °C. 

Li (1991 ), however, in a study of three K-feldspar samples and two different preheating 

arrangements recommended a short, hot preheat of 220°C for 1 Omins or a , preheat of160°C 

for 5 hours. He found that the preheat of 1 0 mins. at 220°C removed the lower temperature TL 

peaks and isolated the stable TL signal. This was not the case for samples which had not been 

preheated. The preheat at 160°C demonstrated that after 30 mins at this temperature the same 

TL response was observed from samples, and the OSL was observed to arise from a similar 

temperature range. The longer preheats at 160°C ensured removal of the unstable component. 

However, Spooner (1992) demonstrated that some feldspar samples are affected by athermal 

decay; ie. a fading signal where loss is not accelerated at higher temperatures. On this basis, it is 

not always certain whether the unstable signal has been removed by preheating, and he 

recommends long term monitoring of the fading signal. This was followed for samples in this 

study, where samples were stored for up to 6 months. 

For the samples in this study, a preheat of 160°C for 2 hours and 1 oooc for 3 days was adopted. 

The efficiency of the preheat can be tested by comparing the TL glow curves for irradiated and 

natural discs, both having been preheated. The low temperature peak arising after irradiation is 

unstable and should have been removed, and the plateau test should be met both for TL and 

IRSL samples. 

In figure 5.3.1, a plot of the initiaiiRSL signal is given for different preheat times at 160 oc, but all 

having 3 days at 1 00 °C. There is a sharp fall off in the intensity of the signal after 2 hours at the 

higher temperature. This corresponds with the findings of Spooner and Questiaux. However, 

three samples were stored for three months at 50 oc, and their initial signals correspond closely 

with the initial signals of the preheated samples (table 5.3.4), indicating that for these samples, a 
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long storage at lower temperatures was sufficient to remove any unstable component. However, 

it is not always convenient to store all samples for this length of time, and it may not remove the 

unstable components in all cases. Consequently, the higher temperature preheat was given as a 

standard treatment before measurement to all discs, including TL, IRSL and fade tests. 

TABLE 5.3.4 Comparison of initiaiiRSL signal from preheated and stored samples. 

Sample Preheat1 Preheat2 Long Storage 

FF3 1254 632 1176 

WM4 16613 9876 16214 

WH1 22091 16370 21763 

SP8 6555 2784 6398 

Preheat 12hr 160°C + 3 days 100°C; Preheat2 4hr 160°C + 3 days 100°C; 

Long storage 3mth. at 50°C. Figures are photon counts in first 5 sees. 

5.4 CONTRIBUTIONS OF THIS STUDY 

5.4.1 Bleaching studies 

Samples are optically bleached in the laboratory in order to check for supralinearity at low doses 

(see 5.1.1 ), for the regeneration technique of ED determination, and to check for changes in 

sensitivity in the luminescence signal. The light source employed is usually natural sunlight or a 

solar simulator, but these do not resemble the attenuated spectrum which occurs under water. 

The reduction of the UV component of the bleaching source reduces the effects of phototransfer 

of charge. This is because the UV wavelength region which is primarily responsible for 

phototransfer and which forms the basis of the PTIL method referred to in 5.1.4. 

Laboratory overbleaching by too long an exposure compared to that received at deposition, or 

the induction of transfer effects by using different bleaching wavelengths to those in antiquity, will 

result in an erroneous ED value. This is caused by the fact that overbleaching of the residual level 

determined by laboratory bleaching to lower levels than the residual level contained wnhin the 

sample at deposition. This results in an overestimate of the ED and hence the age of the sample. 
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The partial bleach technique used for TL involves the administration of a short bleach. The ED 

plateau for different times indicated whether the correct (ie. similar to natural) bleaching conditions 

have been given. Overbleaching (ie, exceeding the natural bleaching level) causes a systematic 

rise in regenerated ED values with increasing TL glow curve temperature, while underbleaching 

(below the natural level) results in a fall in regenerated ED values with glow curve temperature. 

Thus a flat plateau is assumed to predict the correct bleaching conditions in the laboratory, and 

thus the correct ED value (Wintle and Huntley, 1982; Berger, 1985a,b; Proszynska-Bordas et al, 

1988). 

Robertson et al (1991) investigated the bleaching of TL of feldspars under sunlight. The high K 

and Na feldspars were the brightest samples but the least easily bleached. Those with an 

intermediate K and Na content bleached comparatively quickly. All samples, however, were 

sufficiently bleached after 16 hr exposure to be suitable for dating. Only one oligoclase sample 

has an identifiable TL peak which was selectively more bleachable (280 °C}. All samples bleached 

rapidly initially, but rates slowed with time. This is consistent with the results of studies by 

Kronberg (1983), Dijkmans et al (1988) and others. Robertson et al also suggest a connection 

between highly bleachable signals and samples which faded, and suggest that a bleaching test 

could indicate a propensity to fade. In this study, however, it was the least bright samples which 

tended to fade. 

A number of problems exist during laboratory bleaching of dating samples. These include 

phototransfer of charge, changes in sensitivity of the signal, failure of the TL plateau test and 

recuperation of the signal after bleaching. With the exception of the last, all of these effects were 

observed in samples in this study and were primarily associated with the source of light used for 

bleaching. 

Charge transfer is a process whereby charge is evicted by optical bleaching and is retrapped. The 

charge may therefore be transferred from sunlight sensitive to traps which are not sensitive to 

sunlight or laboratory bleaching. The transferred charge therefore contributes to the 

unbleachable residual measured in the laboratory and therefore results in lower ED values and 

underestimation of the age. 

For waterlain sediments charge transfer may be a substantial problem because of differences 

between the wavelengths contributing to the bleaching by sunlight (or attenuated sunlight) and 

the laboratory bleaching source. In this case the use of, for example, sunlight or white light for 

laboratory bleaching of sediments which were laid down under sunlight attenuated by water depth 

may result in significant problems relating to the residual levels of the TL and IRSL signals. 

116 



Work by Berger and others (Berger et al, 1984, Berger, 1984, 1990) illustrates the importance of 

bleaching wavelengths and stresses that the wavelengths shorter than 550 nm need to be cut 

out, as these would not be present in the subaqueous spectrum. He also suggests eliminating 

the red band of the spectrum (650-700 nm) and has produced accurate EDs by blocking all 

wavelengths below 660 nm. Red light does cause bleaching -this is the basis on which the IRSL 

technique rests. A comparison between the attenuated spectra of sunlight underwater and 

transmission of white light through a BG-39 filter (used in the studies below) is shown in figure 

5.4.1. 

Dijkmans and Wintle (1989) observed a failure of the TL plateau in the additive growth 

characteristic of K-feldspars bleached under direct sunlight. This could not be rectified by altering 

the exposure times of the samples. Poor plateaux may be due to non-linear growth of the TL, 

greater errors due to lower sensitivity at higher TL glow curve temperatures, second-order kinetics 

and inappropriate bleaching light sources used in experiments. In the last case, bleaching 

waterlain sediments under full sunlight may cause poor TL plateaux as the spectrum of light differs 

from that to which the sample was exposed at deposition, and therefore samples a different trap 

spectrum in the measured signal. Sensitivity changes due to optical bleaching of minerals was not 

significant for samples bleached under sunlight and mercury lamp (Biuszcz, 1988) but this may 

not apply for waterlain sediments bleached under sunlight. 

Filtered bleaching sources (ie. where some wavelengths have been selectively blocked) have 

been used in a number of studies, particularly for dating waterlain material. Rendell et al (1989) 

used a 300 W sunlamp intercepted by a sheet of glass to cut out the wavelengths less than 320 

nm for the zeroing of TL in dune and beach sands. Spooner et al (1989) refer to a 1000 W solar 

simulator 'adjusted to resemble sunlight' but no details are given. In a study of the sunlight an UV 

bleaching of quartz and feldspars Jungner (1988) used a UV lamp. with a range of 320-400 nm. 

This effectively cuts out both the shorter and longer wavelengths similar to underwater conditions 

where the peak wavelengths are in the green region. He also observed that there was no 

difference in the ED plateau for sunlight and lamp bleaching in feldspars, but there was a 

significant change in quartz. 

Bowall et al (1987) studied the effect of the temperature at which a sample is held while a bleach is 

administered. The rate of signal decay was much faster at +50 oc than at 0 oc or -35 oc, which is to 

be expected as the eviction of charge is thermally assisted. Whether this is affected by 

populations of traps evicted under the same light at different temperatures is not indicated. A filter 

cutting out <430 nm reduced the effect of a sunlamp bleach by 18%. 
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An additional problem associated with bleaching is that of recuperation of the signal (Aitken et al, 

1989), recognised at Oxford. Several types of recuperation were proposed and this was 

observed in quartz samples bleached by green laser, and stored for short periods of time, after 

which a regenerated, phototransferred signal could be measured (Aitken et al, 1989, Rhodes, 

1990). Recuperation has not been recognised in the TL or IRSL of feldspar or polymineralic 

samples in this study, or in previous samples studied at Durham (Bailiff and Poolton, 1991). This 

was checked for by remeasuring after storage at 50 oc and at room temperature (c.18 °C) for a 

period of up to six weeks after IRSL measurement. 

5.4.1.1 Laboratory bleaching 

All the samples in this study were initially exposed to natural sunlight for bleaching. In the case of 

IRSL samples given the same treatment, an unexpected and significant residual was observed. 

However, bleaching of untreated discs of the same sample using a 240 W tungsten halogen lamp, 

intercepted by a BG-39 filter which transmits a spectrum closer to that of underwater conditions, 

eliminated the residual from the IRSL signal and substantially reduced that of many of the TL 

samples. The residual levels are given in table 5.4.1, and plots of the reduction in TL and IRSL 

signal against time for the first 3 hours for sample WM4 bleached under both conditions in given 

in figure 5.4.2. Sensitivity changes observed in the signal after bleaching are discussed in the 

following section. The observation of a residual in IRSL samples was useful in the identification of 

the problem, as a residual after bleaching of TL samples is expected, although the level is 

unknown. 

-------------------------------------------------------------------------------
TABLE 5.4.1 Bleaching residuals after exposure to sunlight and filtered artificial light. 

Sample TL(SL) TL(F) IRSL(SL) IRSL(F) 

FF3 26 24 3.9 0.03 

FF4 39 23 1.04 0.04 

WM3 15 6.5 11.6 0.08 

WM4 66 38 7.40 0.01 

WMS 24 18 9.30 0.01 

HAZ2 27 16 11.4 0.01 

SLG2 34 17 17.2 0.08 

SLG3 29 23 11.7 0.03 

SLG4 38 15 13.1 0.01 

WH1 20 11 6.70 0.06 

WH2 24 16 9.40 0.06 
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SP2 30 24 3.60 0.01 

SP3 40 23 9.70 0.10 

SP4 33 21 14.8 0.06 

SPS 36 19 15.3 0.04 

SP6 44 26 16.3 0.07 

SP7 41 26 19.2 1.20 

SP8 39 28 18.2 0.04 

SP9 64 27 2.60 0.03 

All figures represent % reduction of the unbleached natural signal. 

The significant differences between the residuals using the different bleaching sources is 

attributed to charge transfer effects. These have been investigated by Bailiff and Poolton, (19"9 l.) 
t Poolkon '- 13o-f lA f' 1 

(19S'1). These authors show that the effects of transfer need to be understood as they can 

substantially affect the ED value of a sample. In order to solve the problem of charge transfer 

during bleaching under sunlight, samples were then exposed to a bleaching source which 

comprised light from a tungsten-halogen lamp which was passed through a BG-39 filter. 

The BG-39 filter transmits wavelengths from 300-700 nm (figure 5.4.2), with a peak range of 320-

560 nm (>50% of these wavelengths are passed). The comparison between Berger's (1990) 

underwater transmission data for 0.3m depth is closer to the BG-39 transmission than the 2m 

depth spectrum. However, Kronberg (1983) demonstrated that no significant changes were 

observed in sunlamp bleaching up to 0.7m. Thus, the bleaching spectrum used in the study is 

closer to sediment carried at water depths of around 1 m, depending on the turbidity and 

suspended sediment load. However, total bleaching of the samples in this study using this 

spectrum has produced dates consistent with expected ages in the majority of cases, suggesting 

that at some point in their bleaching history the majority of sediment samples were exposed to 

relatively shallow water spectra for sufficient time to bleach the signal. 

Berger (1990) stresses the need for short bleach times, based on evidence of incomplete 

zeroing of suspended sediment samples. This work, however, has concentrated on the partial 

bleach method whereby a short bleach can be used for ED evaluation so long as it is less than the 

exposure the samples had undergone at deposition. It is difficult in these cases to check for 

charge transfer, which may only be observed in the residual after total bleaching. 

However, in this study filtered bleaching has produced a correct ED (ie. one which agrees with 

known age or zero age samples) where the bleach was total rather than partial. The relatively short 

times needed under filtered light to remove all the IRSL signal and all the bleachable (under 
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Figure 5.4.2 Reduction in natural signal of TL and IRSL of WM4, afte 
bleaching with different light sources. 
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filtered light) TL signal, given in table 5.4.1 and figure 5.4.2 indicate that in the majority of cases, 

even for waterlain material, the regeneration or related techniques are appropriate. 

5.4.2 Sensitivity changes in the luminescence signal. 

Changes in the sensitivity of the luminescence signal can be induced by laboratory treatments 

such as irradiation, bleaching and heating of unburnt materials during measurement of the TL 

signal, and are widely recognised in sediment dating (eg. Wintle and Huntley, 1980; Wintle, 1982; 

Rendell et al, 1983; Berger, 1984; Rendell and Townsend, 1988). Changes in sensitivity are 

caused by changes in the luminescence efficiency (amount of charge evicted), or in the number 

of traps available for retrapping or eviction of charge. 

These may be identified in the TL signal by changes in the slope of the growth curve, peak shifts 

and disruption of the plateau. Sensitivity changes in the IRSL signal of feldspars has not been 

widely studied due to the novelty of the technique. The observations of the IRSL emissions in 

this study are considered below. Figure 5.4.3 illustrates changes in the form of the TL growth 

curve of WM4 under different bleaching conditions. Filtered bleaching induces no sensitivity 

changes as sunlight bleaching does. 

Li and Wintle (1991) found that IRSL ED values were consistently smaller than predicted for 

colluvial samples. Sensitivity changes were observed after bleaching with a solar simulator and 

with IR. These were related to the degree of sunlight exposure the sample received prior to 

deposition. A reduced sensitivity in the IRSL signal was not found for loess samples which are 

well-bleached at deposition, only for the poorly bleached colluvial material. 

In samples in this study, some sensitivity changes were observed in the IRSL signal. This was 

identified by plotting the ratio of the decay curves of N+bleach+P1 to N+bleach+P2, where N is the 

natural signal and f31 and f32 are two irradiation doses of different sizes given after bleaching and 

prior to measurement. Aliquots of sample WM4 were measured under the same conditions, 

except that for one ratio plot bleaching was under direct sunlight and the other was for bleaching 

under filtered light as discussed above. These are shown in figure 5.4.4. 

The sloping ratio plot in the figure represents the sunlight bleached aliquots and the horizontal, 

flat ratio plot the aliquots given filtered bleaching. The changes in form and rate of the IRSL decay 

curve cause the ratio plot to deviate from the horizontal. 

Changes in sensitivity were also observed in the TL signal. These were primarily recognised as 

failure of the plateau test. In two cases where peak shifts were observed after measurements, 
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Figure 5.4.3 Bleaching-induced TL sensitivity changes for WM4. The 
non-linearity of the sunlight bleached growth curve demonstrates the 
sensitivity change, which has not occurred under filtered bleaching. 

40 

30 

(arbitrary 20 
units) 

10 

0 
0 10 20 30 40 50 60 

Dose (Gy) 



4.0 

3.5 

3.0 

2.5 
Ratio 
N+bi+B1/ 
N+bi+B2 2.0 

1.5 

1.0 

0.5 

Figure 5.4.4 I RSL decay curve ratios for WM4 showing change in the form of 
decay. The ratio curves are calculated using decay curves of a bleached natural 
signal plus beta doses 1 and 2, where beta dose1 is larger and is divided by the 
curve of the signal from the smaller beta dose. The upper ratio plot (A) shown 
here represents sub samples bleached under filtered light conditions; the lower 
curve (B) shows sub samples bleached under direct sunlight. The sunlight 
bleached ratio plot is sloping and the represents a change in the form and rate of 
decay of the IRSL decay curve. 

0 80 160 

Time (seconds) 



second order kinetics was thought to be the cause. Berger and Huntley (1982; Berger, 1985)) 

observed such peak shifts in fine-grain sediment samples. This was overcome by matching the 

additive and regenerated TL peaks before applying the plateau test, using physical justifications 

given by Chen et al (1983). 

Where this has been used, Berger has produced acceptable ages, and this practice was adopted 

in two cases where the peak shifts were relatively minor. In a number of samples in this study, 

however, the shifts were too great to justify using this approach, as the changes in sensitivity 

caused by heating were too large to be dismissed. These samples had other problems, which are 

discussed in Chapter 7. 

Bowall et al (1987) observed non-linearity in the regenerated growth curves after bleaching for 1 

hour. This was caused by the rapidly decaying component of the bleaching signal. This non

linearity did not occur after 8 and 16 hours bleaching after which the residual was reached (in the 

280-320 oc TL region). These results suggest that shorter bleaches such as those given in the 

partial-bleach technique may result in sensitivity changes which would not occur using total

bleach and regeneration. Advocates of the partial-bleach technique would undoubtedly concur 

that the laboratory bleach administered would be too short to cause this effect to any extent. 

(opc<r) 
Bowall et al's work also demonstrated an initial rise in sensitivity after 1.5 hours bleaching of +4 to 

+8%, but a decrease after 5 hours of -1 0 to -20%. Storage after bleaching, but before irradiation 

for 2 months, caused a 50% decrease in the signal. However storage after bleaching and 

irradiation induced no change in the signal. The delay between bleaching and irradiation also 

caused a shift from 260 to 290 oc peaks. This was attributed to the variety of minerals and 

luminescence behaviours contained within a polymineralic fine-grained sample. It held significant 

implications for the ability to separate the bleachable part of the natural TL and regenerated 

signals. 

Sensitivity changes may also arise following irradiation treatments of samples. Wintle (1985) 

proposed a dose-dependent sensitivity change on exposure to light for loess TL, and Rendell 

and Townsend (1988) modelled this in terms of changes in the TL efficiency caused by laboratory 

treatment, although dose-dependence did not appear to be the cause of sensitivity changes. 

Natural bleaching at deposition may induce some transient changes, but the natural accumulation 

rate is so low that these changes do not affect long term sensitivity. In laboratory measurements, 

the dose rate is around x1 os that of the natural, and may be more affected by such short term 

changes. This may well explain the findings by Bowall et al. Berger (1988) attributed dose 

dependent sensitivity changes to individual sample characteristics. Even the partial-bleach 

technique cannot infallibly separate the post-depositional (accumulated) signal from the relict TL. 
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Zhou and Wintle (1989) tested the model developed by Rendell and Townsend (1988) for 

sensitivity changes induced by delayed irradiation after bleaching. They applied a 16 hour 140 oc 
preheat between bleaching and irradiation which eliminated the sensitivity changes observed in 

the unpreheated sample. The preheated sample produced the same ED as for a sample given a 

preheat of16 hours at 175 oc after irradiation. They concluded that sensitivity changes did not 

occur in younger samples, and that this supported the model of Rendell and Townsend. If the 

occurrence of sensitivity changes was due to time-dependent changes as suggested by 

Debenham (1985), the ED would be affected regardless of the method used. 

Sensitivity changes may therefore arise in samples as a result of laboratory treatments such as 

bleaching, irradiation and heating. The IRSL plot of the ratios of decay curves can be used, as it 

has been here, as an indication that changes in the form and rate of the IRSL decay have 

occurred. In this study, such c~es were observed as a result of the use of sunlight rather than 

the filtered bleaching source which did not cause such changes. 

TL samples affected by sensitivity changes were recognised by failure of the plateau test. Minor 

peak shifts in two samples were afi-:1buted to second order kinetics. Samples were stored for a 

short time between treatments such as bleaching and irradiation, before measurement in order to 

overcome possible transient changes in sensitivity in the samples arising from these treatments. 

5.4.3 Water Content 

The estimation of past water contents is a potential source of error and a significant limitation to the 

accuracy of luminescence ages (Fleming, 1979 31-34; Aitken, 1985, 74-76; Aitken, 1988) and 

must be closely monitored. This is because water absorbs more radiation than air when present in 

pores. In effect this attenuates the dose rate to sediments. Measurements of the dose-rates are 

made on dry samples, so the presence of water in the natural state must be corrected for. 

An underestimate of the saturation water content results in ages which are too low. The effects of 

groundwater movement on the leaching of isotopes (Fleming, 1979) and the effects of de

watering by compaction or artificial drainage (see Chapter 3), may result in significant changes in 

the saturation water content through time. The structural changes in sediments may be 

identifiable in stratigraphic sections. These may be important indicators of such changes 

(Rendell, 1983 with respect to loess). Seasonal and longer term fluctuations in groundwater 

levels, and the effects of compaction and de-watering on the dose rate to sediments also 
" contribute to the errors in the evaluation of the annual dose. 
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The saturation level of the water uptake sample (porosity) gives an upper limit for the amount of 

water the sample can hold. In most burial conditions including those studied here, sediments are 

close to saturation. Important exceptions occur in very arid regions and in elevated, freely draining 

sand dunes. The corrections applied to dose rate calculations are given by Aitken (1985, 

Appendix B). Measurements are made of the saturation water content (W) and the fractional 

uptake (F) which is the amount of water in the sample at the time of sampling. Some 'typical' 

values of the percentage error in the age resulting from water content using samples from this 

study are 12.6% for a water content of 50%; 22.4% for 90% water content and 29.6% for 120% 

water content (the error percentages refer to a percentage of the total error in the age). 

Aitken's error values are based on an 80% fractional uptake of water (F = 0.8 ±0.2) but it is the 

variation in the F value which is most important and contributes to the uncertainty on with the error 

values are based. In order to test whether this is an appropriate value for the sediments in this 

study, the saturated water content (see Chapter 3), and the water content of the sample at the 

time of sampling (F) are plotted in figure 5.4.5. The mean value ofF is 81% (F = 0.81) which 

supports the use of Aitken's recommendations. The error should not be reduced, because of the 

unknown effects of drainage and sea-level change on the water content through time. 

Zimmerman (1971) calculated that water absorbs 50% more alpha radiation, 25% more beta 

radiation and 14% more gamma radiation than air. The corrections are based on the specific 

stopping powers and absorption coefficients of water and soil. The reduction in the alpha dose

rate assumes that water is present in pores which are smaller than the alpha particle range. 

Correction factors are given for an estimated mean of the range of energies present in alpha, beta 

and gamma radiations. 

The corrections calculated by Zimmerman (1971) and Bowman (1976) are 1.49 for alpha and 1.25 

for beta. Zimmerman's value for gamma correction is 1.14, but Bowman (1976) suggests 1.0, 

based on a different spectrum of energies. Aitken and Xie (1990) recalculated Zimmerman's 

(1971) correction factors for gamma dose, but did not recommend modifications of them. Aitken 

and Xie (1990) did however point out that the ratio would be affected by compaction of 

sediments, as the ratio of water to mineral would be further reduced. This was not taken further in 

the paper, nor was any change made to Zimmerman's correction of 1.25 for the beta component. 

The work here adopted the Zimmerman values of 1.14 for gamma and 1.25 for beta and 1,49 for 

alpha. 

For sediments used in this study, the uncertainty in the saturation value, is taken to be 20%, is an 

overestimate of the variation likely to have occurred in the sediments in situ . Figure 5.4.5 also 

shows that except in a very few cases, the sediments were to close to saturation with respect to 
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Figure 5.4.5 Saturated versus fractional uptake water content values for all 
samples. This graph shows that most samples were at of near to saturation at 
the time of sampling. It should be noted that it is the uncertainty in the water 
content variation that contributed to the error on lumines;ee!hce dates, not the 
actual water content itself. The measurement uncertainty in these values is 1% . 
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their water content. Variation in this value may have arisen due to periods of drying associated 

with better drainage, lower sea-level stands, or wetting due to subsidence or submergence, or 

changes associated with partial compaction or consolidation of the sediments with time. For these 

reasons, the error value was not reduced, but it is unlikely to have been exceeded. This is 

supported by the sedimentological evidence, such as the lack of recurrence or compaction 

surfaces associated with exposure or desiccation. The effect of applying a 90% fractional uptake 

and 10% error for water-content of some compacted samples is discussed in Chapter 6. 

5.5 SUMMARY OF DATING PROCEDURE 

A summary of the conditions of TL and IRSL measurement are given in table 5.5.1 below. This 

includes the aspects concerning the apparatus, preheating and other conditions. 

TABLE 5.5.1 Summary of procedures used. 

1. PREPARATION 

(5.3.1) 

2. SEPARATION 

(5.3.1) 

3. NORMALIZATION 

(5.3.2) 

4. IRRADIATION 

(5.2.6) 

5. BLEACHING 

(5.4.1) 

6. PREHEAT 

(5.3.5) 

Carbonate removal 

Organic removal 

Deflocculation 

Fine-grains 

Coarse-grains 

Disc preparation 

TL 

IRSL 

TL 

IRSL 

Alpha source 

2% Acetic Acid 2 hrs. or until rxn. ceases 

30%H202 until reaction ceases 

Calgon (sodium oxalate) 

Sedimentation 4-11J.Lm (2 & 20 min settling) 

Sieving 90-120 J.Lm 

120 discs per sample. 

Weight or post-measurement dose response 

I second exposure before measurement 

13(40) 90sr 1.08 and 1.22 Gy/min to fg and cg 

f3(42)90srt90v; 0.55 and 0.7 Gy/min to fg and cg 

(TL and IRSL) Am-241, 0.45 J.Lm-2/min. 

240W Tungsten-Halogen lamp passed through BG-39 filter 

2 hrs 160°C and 3 days at 1 oooc 
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Figure 5.5.1 TL plateaux for WM1 (failed) and WM§"(passed) 
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Figure 5.5.2 TL growth curves for WM5 (top), showing linear growth and no 
change in form of growth curve after filtered bleaching; and HAZ3 (bottom) 
showing non-linear growth and changes in form of growth curve after filtered 
bleaching. 
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Figure 5.5.3 IRSL decay curves; high intensity WM5, and low intensity HAZ3. 
Decay curves measured with 880 nm LEOs at 18°C; background subtracted. 

IRSL 
(photon 
counts/sec.) 

500,-----------------------------------------~ 

400 

300 

0 

.. 
·~· 

·:. .... 
···-···· 

100 200 300 400 500 600 

Time (3.75 units= 1 second) 



7. TL MEASUREMENT 

(5.2.1) 

8. IRSL MEASUREMENT 

(5.2.2) 

9. FADE TESTS 

(5.3.4) 

10. DOSIMETRY 

(5.2.7) 

Manual set; heat-rate 1 0°C/sec. 

Corning 7-51 and Chance Pilkington HA-3 filters. 

Up to six repeat measurements per point on growth curves 

Durham set, semi-automated: 950 nm leds; 600 sec exposure 

Risa set, automated: 880 nm leds; 160 sec exposure per run 

Up to six repeat measurements per point on growth curve 

N+30Gy (13); store at RT (c.18°C) 

50°C for 6 weeks and 6 months 

Thick source Alpha-counting 

Beta- TLD 

XRF for potassium content (Gamma) 

Calcium Fluoride dosimetry in field 

Portable Gamma spectrometry in field 

The identification of such criteria is important, in order to select those samples most suitable for 

dating before lengthy experimental work has been done on them. The relationships between 

accepted and rejected samples, and their sedimentological characteristics which aid their 

recognition, are discussed in Chapter 7. 

1. Samples of Holocene age ( <1 Oka) are expected to show a linear growth characteristic with 

added radiation dose, and samples which exhibit signs of saturation are likely to have been 

insufficiently bleached at deposition (cf. figure 5.5.2). 

2. The TL plateau is still accepted by many as an indication of stability in the region of the glow 

curve corresponding with traps of suitable lifetimes for luminescence dating. This criterion was 

used here, and failure of the plateau test was taken to represent instabiity or changes in sensitivity 

of the sample to radiation or bleaching (figure 5.5.1 ). 

3. The form of the regenerated and additive growth curves should be similar (ie. parallel and 

producing similar EDs), and demonstrate measurable growth with added dose (figure 5.5.2). 

4. The intensity of the measured signal should exceed the background levels by a factor of at 

least 4 (ie. a signal-to-noise ratio of 4.0 or above). This was introduced because of the problems 
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experienced in some samples under infra-red stimulation, which had signals too close to 

background to allow accurate measurement (figure 5.5.3). 

5. The samples should show no signs of fading. 

6. There should be no indication of radon loss during alpha counting. 

7. The TL residual after bleaching should be less than 10% of the total signal; any more than this 

level indicates a significant amount of charge which is not sensitive to sunlight and may affect the 

accuracy of ED evaluation. A large residual level may also indicate a proportion of transferred 

charge following bleaching, which does not represent the true unbleachable residual. 

8. There should be no indication of sensitivity changes after bleaching or irradiation or preheating 

treatments, which may affect the ED values. 
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CHAPTER 6 LUMINESCENCE DATING RESULTS 

The results of luminescence dating are presented in table 6.1. Additional data relating to the dose

rate and to measurements of TL and IRSL signal characteristics are given in tables 1 and 2 in 

Appendix C. These include stability, intensity and correlation coefficients of the fit of the growth 

curve data to the weighted linear regression programme used for all ED evaluations. The additive ED 

was used for age determination in all cases and the residual levels were determined by laboratory 

bleaching under filtered light as described in section 5.4.1. As all samples were relatively young 

(less than 1 0 000 years) the growth characteristic of the sample was expected to be linear. The 

correlation coefficients of the fit of additive growth curve data to the weighted linear regression curve 

were all >0.84. 

6.1.1 Flag Fen 

Four samples were taken for dating, as described in section 4.2.1. Two samples, FF1 and FF2 from 

the upper part of the sequence were rejected due to problems with disequilibrium of the radioactive 

decay chain. This was mainfested as radon escape and detected during alpha counting. The ratio of 

sealed:unsealed counts was 1.39 for FF1 and 1.26 for FF2 indicating radon escape amounting to c. 

40% and 25% respectively. 

Both these samples also demonstrated marked instability of the signal, detected during fading tests. 

Loss due to fading after 6 months storage at 18°C was 32% of the TL signal of FF1 and 28% of the 

IRSL signal. FF2 faded by 57% for TL and 49% for IRSL. The unstable component of the signal was 

not removed by preheating at 160°C for 2 hours plus 1 oooc for 3 days. The I RSL signal was also of 

low intensity for these samples. The initial intensity in the first second amounted to 334 counts for 

FF1 and 299 counts for FF2. This gave signal-to-noise ratios of 3.1 and 2.8 respectively, which were 

considered too low for accurate measurement. 

Samples FF3 and FF4 were both dated by TL and IRSL (figure 6.1.1) on the fine-grain fraction. FF3 

was dated to 3750±71 0 BC for TL and 3320±600 BC for IRSL. These age ranges are therefore 

4460-3040 BC for TL and 3920-2720 BC for IRSL. There is good agreement between the 

luminescence age ranges for FF3. The age ranges overlap for 880 years, representing 51% of the 

age range of both dates. The luminescence dates are also in close agreement with the C-14 based 

chronology. The calibrated C-14 age range for the deposit is 3450-1350 BC with 35% of this falling 

within the luminescence age range. The errors on the luminescence ages for FF3 are 18.9% for TL 

and 18.1% for IRSL. This falls within the 20% 'limit' of acceptability proposed by Aitken and 

discussed in Chapter 5. 
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Table 6.1 Luminescence age estimate data 

Laboratory AGE Random Overall Dose-rate a-value Water Additive Regen. 
Code (YrBC) error(Yr)¢ error(Yr)¢ (Gy/a):t: content% ED (Gy):t: ED (Gy):t: 

Dur90TL.FF3 3750 280 710 3.65±0.5 0.28 40.6 23.6±1.5 20.5±1.1 
Dur901R.FF3* 3320 190 600 3.75±0.5 0.15 40.6 16.66±0.3 15.4±0.9 
Dur90TL. FF4 * 9420 830 1250 3.33±0.2 0.2 25.14 38.09±0.4 31.1±1.2 
Dur901R.FF4 8010 520 940 3.13±0.2 0.15 25.14 29.07±0.9 27.6±1.2 

Dur901R.WM3 2100 300 600 4.18±0.2 0.13 49.02 16.92±0.4 15.3±1.3 
Dur90TL.WM4 3090 710 1430 2.62±0.5 0.35 93.0 17.36±0.6 16.9±0.9 
Dur901R.WM4 3030 470 1200 2.62±0.5 0.07 93.0 10.42±0.4 11.03±0.7 
Dur90TL. WM5 8580 760 960 2.62±0.3 0.11 16.5 30.43±0.9 28.5±1.1 
Dur901R.WM5 8470 550 800 2.62±0.3 0.08 16.5 28.44±0.7 27.6±1.1 
Dur901R.WM5* 10180 820 1040 2.82±0.3 0.05 16.5 28.74±0.3 22.1±0.7 

Dur90TL.HAZ2 3050 590 1600 2.75±0.1 0.06 74.7 13.88±0.8 11.3±0.5 
Dur901R.HAZ2 2080 280 1290 2.75±0.1 0.04 74.7 10.8±0.9 18.3±0.9 

Dur90TL.SLG2 2200 220 840 4.56±0.2 0.26 132.95 20.8±0.8 17.7±0.6 
Dur901R.SLG2 2320 330 890 4.56±0.2 0.2 132.95 18.61±2.7 15.7±0.5 
Dur901R.SLG3* 2940 220 1170 3.36±0.2 0.17 45.72 16.42±0.6 45.28±1.3 
Dur90TL.SLG4 5060 1060 1790 4.45±0.9 0.5 133.95 47.18±1.7 39.73±1.4 
Dur901R.SLG4 3490 480 1100 4.45±0.9 0.12 133.95 28.99±1.8 27.5±0.9 

Dur90TL. WH 1 13960 1720 5500 4.49±0.4 0.41 125.13 80.2±1.1 78.19±1.3 
Dur901R.WH1 11470 950 4300 4.49±0.4 0.16 125.13 53.2±1.6 54.26±1.6 
Dur90TL. WH2 17450 950 6200 3.72±0.5 0.18 125.79 70.1±2.9 68.32±2.1 
Dur901R.WH2 19050 890 7030 3.72±0.5 0.34 125.79 87.06±3.2 86.79±2.3 

Dur901R.SP2* 610 140 450 2.51±0.3 0.11 116.76 6.56±0.2 7.3±0.3 
Dur901R.SP3 2390 410 1400 2.38±0.2 0.11 128.12 10.31±0.7 9.8±0.4 
Dur901R.SP4 3420 1060 1600 2.12±0.3 0.08 92.61 11.39±0.4 10.3±0.6 
Dur90TL.SP6 4390 660 970 4.82±0.5 0.29 40.35 34.54±0.8 31.7±1.3 
Dur901R.SP6 4410 490 1120 4.82±0.5 0.14 40.35 27.65±0.4 25.6±0.7 
Dur90TL.SP8 6070 340 890 5.22±0.6 0.47 32.91 73.95±3.2 71.84±1.9 
Dur901R.SP8 4960 250 660 5.22±0.6 0.12 32.91 46.1±0.9 48.21±0.9 
Dur90TL.SP9 8570 520 1090 4.86±0.7 0.34 29.26 89.31±1.1 88.36±1.7 
Dur901R.SP9 7760 770 1060 4.86±0.7 0.06 29.26 62.24±0.6 63.45±1.1 

*denotes coarse grain sample; :t: see tables in Appendix C for details;¢ at 68% confidence level 



Figure 6.1.1 Flag Fen age comparison 
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FF4 was also dated by TL and IRSL. The ages were 9420±1250 BC for TL and 8010±940 BC for 

IRSL. These ages are also in good agreement, with 25% of the age range overlapping between the 

two dates. There is no independent C-14 based chronology for this stratum, but the luminescence 

ages are in agreement with the identification of the stratum as a post-glacial outwash sand deposited 

after the Devensian cold stage between 1 0 000 and 8000 years ago. The errors on the FF4 dates 

are 13.3% for TL and 11.7% for IRSL. These are less than for FF3 due to the reduced uncertainty in 

past water content history. 

6.1 .2 Williamson's Moss 

Five samples were taken from this sequence which is described in 4.2.2. Two samples, WM 1 and 2 

from the upper part of the sequences were rejected for dating. This was due to low intensities of 

IRSL signals. The initial natural signal of WM 1 was 329 counts and for WM2 177 counts. This gave 

signal-to-noise ratios of 3.0 and 1.6 respectively (table 2, Appendix C) which were not considered 

sufficient for accurate measurement. Both WM1 and 2 failed the TL plateau test, indicating instability 

in the signals used for dating. 

WM3 was dated by IRSL only to 21 00±600 BC (figure 6.1.2). The TL signal of this sample was not 

considered sufficiently stable as the plateau only extended over 25 °C. All other TL samples dated 

have plateaux extending over 50°C or more. The range demonstrated by WM3 was thought 

insufficient in terms of the relatively small number of traps represented within the 325-350 oc region 

of the plateau. The correlation coefficient of the additive growth curve is also very low (0.21) 

indicating a poor fit of the data to the linear regression. This would result in an unacceptable degree 

of uncertainty in the ED evaluation. 

The IRSL age for WM3 however, agrees with the calibrated C-14 age range for the stratum. Forty 

percent of the IRSL age range falls within the C-14 age range for the deposit. The error in age 

determination is 28%. This is higher than the 20% 'limit' but when viewed in terms of the agreement 

between luminescence ant independent chronology, the age is acceptable despite the error. The 

error is due mainly to uncertainty in the evaluation of past water content. 

Samples WM4 and WM5 were both dated by TL and IRSL. In the case of WM5 both the coarse and 

fine grain fractions were dated by IRSL. WM4 was dated to 3090±1430 BC (TL) and 3030±1200 BC 

(IRSL). The age ranges are in close agreement as the IRSL age range falls entirely within the TL age 

range. However, both these ages are younger than the calibrated C-14 range of 6570-5844 BC for 

the deposit. The C-14 ages were based on material derived from hearths stratified within the 

sediment. The disparity represents a minimum of 1324 years between ages determined by the 

different techniques and is discussed in section 6.2. 
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WMS was dated to 8580±860 BC (TL), 8740±800 BC (IRSL fine grain) and 10180±1040 BC (IRSL 

coarse grain). The TL age ranges falls within the fine grain IRSL age range demonstrating good 

agreement between the techniques. The IRSL age of the coarse grain fraction however is slightly 

older (1440 years) than the fine grain IRSL age. However, the younger age limits of the coarse grain 

age overlap the older limits of the fine grain age by 300 years (14% of the coarse grain age range). 

This demonstrated a wider disparity between ages than for the fine grain TL and IRSL ages. The 

possible reasons for this difference are considered in the discussion. 

The error limits for the three luminescence ages are all around1 0% of the age. This demonstrates a 

high degree of accuracy in the ages and reinforces the close agreement between the fine grain 

ages. 

6.1.3 Stubb Place 

Nine samples were taken from this site as described in section 4.2.3. Six samples were dated by 

both luminescence techniques and three (SP1, 5 and 7) were rejected after initial measurements. 

There is no independent dating control for this sequence but the site is important as a test site for 

the application of luminescence to sediments of relatively 'unknown' age. 

SP1 was rejected because of disequilibrium in the decay chain. Radon escape was detected during 

alpha counting, where the sealed-to-unsealed alpha count ratio was 1.12, indicating c.15% radon 

loss. There was also evidence of instability in the signal. The TL signal faded by 12% over 6 months, 

although the IRSL signal remained stable. The instability in TL emissions resulted in failure of the 

plateau test. The IRSL signal was of low intensity, giving 394 counts in the first second and a signal

to-noise ratio of 3.0. This is considered too low for accurate measurements. 

SP2 was dated by IRSL only to 61 0±450 BC (figure 6.1.3). The IRSL signal was stable over the test 

conditions and of sufficient intensity (signal-to-noise ratio of 5.6). The TL signal however failed the 

plateau test test indicating that instability or changes in sensitivity had occurred which did not affect 

the IRSL signal. The error in the IRSL age is 78%. This is primarily attributable to uncertainties in the 

evaluation of past water content. This is particularly important in samples from strata near the surface, 

such as SP2, which are exposed to seasonal variations in water tables. 

SP3 was also only dated by IRSL, to 2390±400 BC. This is stratigraphically consistant with the SP2 

date. The error is less (58%) reflecting lower uncertainties in past water contents. The age range 

however, is still significant and overlaps the SP2 age range by 60 years, although the strata are 

separated by a peat. The TL signal of the stratum had a very short plateau, extending over a 
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Figure 6.1.3 Stubb Place age comparison 
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maximum of 25 °C. This is likely to represent too small a proportion of the total number of traps giving 

rise to the luminescence signal, as in the case of WM3. The short plateau indicates that only a small 

proportion of the traps giving rise to the signal are sufficienty stable for dating. 

Sample SP4 was similar to SP3 in that it was dated by IRSL and the TL signal characteristics were 

similar. Here, the plateau was only 15 oc in extent. The IRSL age was 3420±1600 BC. This date is 

stratigraphically consistent with the ages of the overlying strata. The error is less than for SP3, being 

46% of the age. The age ranges of SP3 and 4 overlap by 1370 years, which is 42% of the age range 

of SP4, although these samples are separated by a peat stratum. However, the mean ages for the 

samples are stratigraphically consistent, and tha age ranges are largely a function of the uncertainties 

in water content history. 

Sample SP5 was rejected due to saturation of the TL and IRSL signals. This is demonstrated by lack 

of growth in signal intensity with added radiation dose. Saturated samples are usually either very old 

(ie. near to the limits of the luminescence age range) or they have not been bleached at deposition. 

Both TL and IRSL signals were saturated. This indicates that bleaching did not occur at deposition, 

as the IRSL signal which is very sensitive to optical bleaching was also saturated. Saturated samples 

cannot be dated because the time at which the onset of saturation occurred is not known. The 

onset of saturation is also accompanied by changes in the form of the growth curve, becoming 

sublinear. 

SP6 was dated by TL and IRSL to 4390±970 and 441 0±1120 BC respectively. These age ranges 

overlap and the TL age range falls entirely within the IRSL age range. The ages are also 

stratigraphically consistent with overlying strata. Both signals showed good stability and linear 

growth characteristics. The error on the dates are 22% for TL and 25% for IRSL, representing a 

higher degree of accuracy than that obtained for samples in the upper part of the sequence. 

Samples SP7 was rejected due to saturation of the signal, similar to SP5. 

Samples SP8 and 9 were both dated by TL and IRSL. SPa was dated to 6070±890 BC (TL) and 

4960±660 BC (IRSL). The dates show some disparity between the different luminescence 

techniques. However, there is an overlap in the age ranges for each date of 33% of the IRSL age 

range and 24% of the TL age range. This is sufficient to demonstrate that within the levels of 

accuracy attained by the luminescence ages, there is agreement between TL and IRSL age ranges. 

In the absence of an independent dating control, these ages have given a time span for the 

deposition of the stratum. The errors on these ages are 15% and 13% of the age for TL and IRSL 

respectively. This supports the agreement between the dates as the overlap between age ranges 

occurs within a relatively small range, compared to the age ranges evaluated for samples in the upper 

part of the sequence. 
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SP9 was dated to 8570±1090 (TL) and 7760±1060 (IRSL) BC. The IRSL age range falls within the 

TL age range, despite the difference of 810 years between the mean ages. These dates are 

sttratigraphically consistent with overlying strata (see figure 6.1.3). The errors are low; 13% for TL 

and 14% for IRSL. It should be noted that there is a trend for decreasing error limits with depth for 

this sequence. This reflects the reduction in uncertainties associated with water content evaluation 

and can be seen in the falling proportion of the systematic (ie. non-random) error of the overall error 

with depth. The greater compaction and depth of the lower strata result in less seasonal variation in 

water contents. 

6.1 .4 Hartlepool Bay 

Two samples were dated from this sequence by TL and IRSL (see section 4.2.4). The dates for WH1 

were 13960±5500 (TL) and 11470±3400 (IRSL) BC (figure 6.1.4). The dates for WH2 were 

17450±6200 (TL) and 19050±7030 (IRSL) BC. These ages are stratigraphically consistent and for 

both samples the TL and IRSL ages agree. For WH1 94% of the IRSL age falls within the TL age 

ranges and for WH2 this overlap is 95%. 

The significant degree of agreement between techniques indicates that these dates are acceptable 

as ages for the deposits. The errors however are 35% for TL and 37% for IRSL for both samples. 

The error is mainly derived from water content uncertainties. 

The chrpnology based on calibrated C-14 dating however, demonstrates significant differences to 

that based on luminescence. WH1 is dated by C-14 to between 4770-4460 BC, which is 12835 

years younger than the WH1 TL age and 14435 years younger than the IRSL age. WH2 is younger 

than 5240 BC based on calibrated C-14 dates and is thought to be the remnant of the Mesolithic soil 

surface from which artefacts were dated to around 8100 BP (uncalibrated; see Appendix A). Even 

bearing in mind the approximate age of the soil, the luminescence ages for WH2 are significantly 

older than the radiocarbon chronology implies. 

This disparity is discussed in section 6.2. Suffice to say here, that the luminescence ages are as 

acceptabl~ based on their error limits and the measurement criteria which were met, as the samples 

from other sequences in this study whose luminescence ages agree with the radiocarbon dates. 

This demonstrates the difficulties of using independent dating techniques as a comparative 

chronology where the methods are based on different materials and different events. Hartlepool 

Bay is an important example of this problem. 
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Figure 6.1.4 Hartlepool Bay age comparison 
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6.1.5 Hazendonk. 

Three samples were taken for dating from the sequence described in section 4.2.5. Only one 

sample was dated. HAZ1 from the top of the sequence was rejected because of fading of the 

signals. The TL signal faded by 64% in 6 months at 18 oc while the IRSL signal faded by 60% under 

the same conditions. This fading component could not be removed by preheating. The IRSL signal 

intensity was also very low; the natural signal had a signal-to-noise ratio of only 1.4. 

HAZ2 was dated to 3050±1600 BC by TL and 2080±1290 BC by IRSL. This is consistent with the C-

14 ages for the underlying sediment (figure 6.1.4). However, no closer comparison is available for 

the luminescence ages. The agreement between the luminescence ages is good. The IRSL age 

range overlaps the TL age range by 75%, although the mean ages differ by 970 years. The errors 

are 52% for TL and 62% for IRSL. This high uncertainty is mainly due to water contnet variations. 

This is significant for near surface samples particularly those affected by drainage of the land surface 

as in the river dune area of the Netherlands. 

Sample HAZ3 was rejected due to saturation of the signals, similar to samples SPS and SP7 

discussed in section 6.1.3 above. 

6.1 .6 Slingeland 

Four samples were taken from the sequences described in 4.2.6. Only one sample was rejected for 

dating, SLG1. This was due to failure of the TL plateau indicating instability in the luminescence 

signal. The IRSL signal was also of low intensity, with only 206 counts detected in the initial natural 

signal. This gave a signal-to-noise ratio of 1.9 which is too low for accurate measurements. 

SLG2 was dated by TL to 2200±840 BC and by IRSL to 2320±890 BC (figure 6.1.6). These ages 

overlap by 96% of the IRSL age range, indicating good agreement between dates. The lower age 

limit of the luminescence ages are however 300 years (TL) and 130 years (IRSL) younger than the 

calibrated C-14 age range. This differences may be accounted for by local variations in the dates of 

deposition of the peat and clay units on which the C-14 chronology is based. Possible erosion of 

interfaces may also be important although there is no stratigraphic evidence for this. The differences 

between C-14 and luminescence ages, however are not so great when comparisons are made of 

age ranges rather than dates themselves. Error in the luminescence ages are 38% due to 

uncertainties in water content. 

SLG3 is a sandy layer wtthin the clays of SLG2 and SLG4. The samples was dated by IRSL to 

2940±1170 BC. The TL signal was saturated and so could not be dated. This is an example of the 
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Figure 6.1.5 Hazendonk age comparison 
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Figure 6.1.6 Slingeland age comparisons 
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importance of optical techniques for use in waterlain sediments where bleaching may be incomplete 

for the less sensitive TL signal. The IRSL signal was dated using the additive technique, and the 

comparison between additive and regeneration EDs demonstrates that the IRSL signal was fully 

bleached at deposition, despite the TL signal not having been bleached. The error in the IRSL age 

is 40%, again due to the water content uncertainties. The IRSL date, however, is younger than the 

C-14 determined range for the deposit by 400 years. The older age limits overlap by 770 years (33% 

of the IRSL range). The age ranges are in some agreement therefore, even though the actual dates 

differ. 

SLG4 is a sample very similar in physical characteristics to SLG2. It was dated by TL to 5060±1760 

BC and by IRSL to 3490±11 00 BC. The overlap in age ranges is 59%, indicating good agreement 

between dates. However, the IRSL age is 1570 years younger than the mean TL age and falls within 

the C-14 age range where the TL age range does not. The age range of the TL date, however, does 

overlap the C-14 range by 30% (1070 years) and therefore is in some agreement with the C-14 age, 

but less so than for the IRSL date. The errors in the TL and IRSL ages were 35% and 31% 

respectively. 

6.2 DISCUSSION 

Seventeen out of 27 samples were dated sucessfully, of which only two (WH1 and 2) differed 

significantly from the predicted age range based on radiocarbon. Agreement between IRSL and TL 

ages was good with varying degrees of overlap in the respective age ranges. The main factor 

affecting accuracy of the dates was the uncertainty relating to past water content history. 

The comparisons between luminescence techniques and radiocarbon dating was based on age 

ranges rather than mean ages. For the purposes of this study such a basis for comparison was 

considered more appropriate, particularly where different techniques based on different materials 

are under consideration. The calibrated C-14 dates are given as age ranges from the calibration 

programme. It is important to include the error limits in considering a date, and this is better done 

using the age range for comparison. The comparison between techniques based on age ranges 

also allows the degree of overlap in the age ranges to be assessed. 

6.2.1 TL versus IRSL versus C-14 

The samples demonstrate good agreement between TL and IRSL ages. Figures 6.2.1, 6.2.2 and 

6.2.3 illustrate the close agreement obtained between TL and IRSL ages and C-14 age ranges. The 

correlation coefficients for the plot of TL against IRSL was 0.977, indicating a very high degree of 

correlation betwen the two luminescence techniques. This is important as they are based on 
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Figure 6.2.1 Plot of IRSL ages against TL ages where data is available, 
demonstrating good correlation between the ages. 
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Figure 6.2.2 Correlation between calibrated C-14 and TL dates, 
where direct comparative data is available. 
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Figure 6.2.3 IRSL ages plotted against calibrated C-14 ages, 
where data is availiable 
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• 
different physical principles so direct comparison between TL and optical techniques has been 

questioned. The data here indicate that the techniques appear to be comparable. The correlation 

between TL and C-14 and IRSL and C-14 is less close (r=0.497 and r=0.568 respectively). 

However, the trend in the data is largely that of agreement. The problems in the comparison of 

different dating techniques based on different material is discussed below. 

Both luminescence techniques therefore have been shown to be appropriate for dating primarily 

waterlain sediments of Holocene age. The differences between TL and IRSL ages for individual 

samples are generally relatively small. The proportion of overlap in the age ranges for these 

techniques ranges from 25-1 00%. For the degree of accuracy of the mean ages this may be 

considered to indicate that the techniques are in overall good agreement. The TL dates are 

generally slightly older but this effect is not of great importance here. 

It is however, worth noting that in other studies of comparisons between TL and OSUIRSL ages the 

TL ED's are generally older than the optical ED's (Li and Aitken, 1989; Duller, 1992). Li and Aitken 

(1989) attribute this difference to bleaching of the optical signal during sampling, incomplete 

bleaching of the TL signal at deposition or lack of stability of the OSL signal. The last of these 

possibilities is unlikely for sediments in this study. The optical signal showed no signs of instability in 

dated samples. The problem of incomplete bleaching of the TL signal may be difficult to detect. 

However, in many samples studied here, the difference between TL and IRSL ages was negligible. 

This indicates that in using a total bleach technique for determination of the residual level, the TL 

signal must have been fully bleached at deposition of the ages would not be in such close 

agreement. It is possible that this problem could account for differences in ages for example in the 

case of WM4. 

The possibility of bleaching of the sensitive optical signal during sampling and treatments is a 

problem which is difficult to identify. The samples were taken under sealed conditions during coring 

and no exposure to white light occurred. Within the laboratory, exposure to the red light conditions 

was kept to a minimum. In only two samples the overlap in age ranges was less than 50% (TL and 

IRSL for FF4 and the IRSL coarse and fine grain ages for WMS). This demonstrates that differences 

between the techniques was of minor importance for samples in this study. 

Duller (1992) compared the TL and IRSL EDs of K-feldspars from dune sands and found no 

significant differences although the regeneration EDs were consistently higher, but within the error 

limits of 10%. Duller does, however, point out that this agreement between EDs does not imply that 

the EDs themselves are correct. For samples in this study, however, the agreement of the ages with 

each other and with independent chronologies suggests that the EDs are correct, and that any 

differences in ages falls largely within the error limits of the ages. 
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There are however, a few cases where this is not so. For example, the IRSL ages of the coarse and 

fine grain fractions of WM5 differed to the extent that only 14% of the age ranges for these dates 

overlapped. This may be due to differences in the bleaching of coarse and fine grain fractions arising 

from different conditions of transport and deposition. The coarse grain fraction may have been 

carried under deeper water conditions or otherwise exposed less to the bleaching source. In this 

case, laboratory overbleaching to a negligible residual level may have occurred resulting in a higher 

ED. However, the length and conditions of exposure to laboratory bleaching sources for the fine 

and coarse grained material were identical. It may be that the coarser fractions have a different 

degree of sensitivity to optical bleaching, such that the fine grain fraction bleached faster both in the 

natural and laboratory conditions and under IR stimulation. 

Differences between C-14 and luminescence ages are generally easier to explain. For WM4, the TL 

and IRSL ages are in very close agreement (100% overlap) but both ages are younger than the C-14 

age range by a minimum of 1324 years. The luminescence dating samples are from a sandy deposit 

representing the minerogenic remnants of an ancient soil and the radiocarbon measurements are 

based on charcoal and wood from hearths stratified within the deposit. 

A number of explanations may be evoked to account for this difference. The radiocarbon dates may 

in part be based on old wood which was burnt on the hearth, thus making the radiocarbon ages older 

than the real age of the hearth. The luminescence ages may reflect a later period of exposure to 

sunlight which occurred during erosion of the soil material leaving the sandy lag deposit in the 

channel. 

The luminescence samples were taken from the middle of the deposit, at a level enclosed by the 

radiocarbon chronology. However, local differences in erosion and exposure of the soil material may 

have resulted in variation in bleaching of the sediment both laterally and vertically. The samples were 

taken from the same stratum in which the hearths were dated, but not at the time when the hearths 

were excavated. This illustrates an important problem in dating material from archaeological sites 

where samples are not taken from the site at the time of excavation. Local variations in the sediment 

sequence and in its depositional history can result in such differences illustrated by WM4 and the 

Hazendonk sample where the ages of the clay deposits are based on cores and dates which may not 

exactly match the sequence from other, nearby cores. 

The case of Hartlepool Bay stands out as another example of the problems of comparison of ages 

based on different techniques and materials. The luminescence ages for this site are in close 

agreement (with overlaps in the age ranges of 94% and 95%) but the ages are much older than 

predicted based on the C-14 chronology. The difference is between 14435 and 12835 years. For 
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WH1 it is likely that the age of the minerogenic deposit is related to a previous bleaching event to that 

of its present context. However, if the sediment had been partially bleached during deposition in its 

present context, the use of the additive and regeneration techniques based on a total bleach may 

have been inappropriate. 

The sensitivity of the luminescence signals to optical bleaching under filtered light was such that the 

IRSL signal bleached to negligible levels within a very short space of time (c.15 mins.) The TL signal 

was bleached down to the residual level within 2 hours. Therefore if limited exposure occurred 

before burial, it would be expected that the IRSL signal would be more completely bleached and 

hence give rise to a lower ED than for the partially unbleached TL signal. In both samples, the 

agreement between IRSL and TL is so close that this case seems unlikely. It is probable that the 

sample was fully bleached at a time indicated by the luminescence date, which was not the 

depositional event in the present context. 

Sample WH2 consists of the minerogenic remnant of a mesolithic soil, Artefacts from this soil have 

been dated by radiocarbon to 8100 BP (uncalibrated date; see section 2.3). The luminescence 

ages indicate an age for the sediment predating this. The sediment may contain material eroded 

from the soils and the underlying weathered boulder clay. The close agreement between IRSL and 

TL ages argues against bleaching of only the IRSL signal at deposition. However, the radiocarbon 

dating of stratified artefacts is problematic as the origin of the material and the point in time at which it 

became incorporated in the sediment is often unknown. Therefore this does not provide a tight 

comparative chronology for this sediment, even if it could be calibrated. 

The luminescence ages for WH1 and 2 need to be accepted as correct dates for the last exposure of 

these samples to sunlight. That this may not represent the event during which deposition in the 

present sequence occurred. This again stresses the difficulties in 'proving' the viability of one 

technique by comparison with a chronology based on another. Merely because the dates do not 

comply with expectation, is no basis on which to reject them. They need to be accepted with the 

same confidence as dates which do happen to fit into existing chronologies, as the method and 

criteria for age and error evaluation and criteria for acceptance are the same for all samples. 

The Stubb Place test site is an excellent example of the potential of luminescence dating for 

sedimentary sequences of Holocene age. This sequence has no existing chronology, but this has 

been provided by luminescence dating. The ages determined by TL and IRSL have produced a 

stratigraphically consistent chronology where the two techniques agree where they have been 

applied to the same sample. Therefore, the establishment of an absolute chronology for previously 

undated material demonstrates the viability of the technique. 
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6.2.2 Accuracy of luminescence dates 

The errors in luminescence age determination are divided between random and systematic errors 

(see 5.2.5). The greatest source of uncertainty is that relating to the evaluation of past water 

contents. This is a significant problem for samples which are uncompacted and which lie in the upper 

part of sediment sequences and are therefore exposed to greater variations in seasonal water 

contents. 

Figure 6.2.4 shows the close relationship between the water content of the sample and the overall 

error. However, it should be stressed that it is the uncertainty in the water content variation which is 

the source of error, not the water content itself. In these samples, samples with higher water 

contents were often those nearer the surface and subject to greater uncertainties. This is also 

demonstrated by Stubb Place where the overall error falls systematically with depth, and at the same 

time the random error component becomes relatively more important as the error associated with 

water content is reduced. This primarily a result of compaction of the lower lying sedimentary units 

and of a reduction in the effects of water table fluctuations on the water content. 

The errors in the dates range from 11.2% to 52.4% of the TL age and 9.4% to 73.8% of t~e IRSL 
)~ 

age. In most of these cases, samples with errors greater than 20% (19 out of 30 dates) thi~primarily 

due to the water content uncertainties described above. This therefore is the greatest obstacle to 

increasing the accuracy of the luminescence ages particularly for waterlain material. However, even 

for the dates with error limits of greater than 50% (4 dates) the luminescence date has provided an 

absolute date for that sediment even if the accuracy is severely affected by water content related 

errors. This is important where sediments may not be dateable by any other technique. 

Other sources of error, such as errors in calibration of sources, measurements and ED evaluation are 

less important. The correlation coefficient of the fit of the additive growth data to a weighted linear 

regression curve for all samples dated was >0.84. Samples with correlation coefficients >0.9 

demonstrated a lower uncertainty in ED evaluation due to the improved fit of the data. However, no 

samples were dated which demonstrated a poor fit of the data to the regression curve. 

Finally, an observation concerning the a-value of the samples. The a-value is a measure of the 

relative efficiencies of alpha-to-beta radiation (see chapter 5 and table 6.1 ). The causes of 

differences in a-values between TL and optical techiques has not yet been explained. The 

definition of what constitutes an 'acceptable' a-value for a sample has not been determined by 

luminescence workers. For dates in this study the TL a-values were slightly higher than the IRSL 

values, but the significance of this is not yet known. Other workers, such as Questiaux (1989) 

observed similar trends but these were not explained. There is not consistent relationship between 
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Figure 6.2.4 Total error versus water content for all samples 
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a-value and technique, mineralogy or grain-size but this is not necessarily to be expected as the 

relative efficiencies of alpha and beta radiation and the a-value is based on physical processes 

operating within the crystals which are not wholly related to characteristics of the mineral grains. It is 

however, an area worthy of further investigation. 

6.3 Conclusions 

The application of luminescence dating has been demonstrated to have been successful for 

waterlain and archaeological sediments of Holocene age. Both IRSL and TL techniques have 

proved to be suitable for such applications. In all cases agreement between different luminescence 

techniques was good which suggests that the use of TL and optical techniques could be used in 

conjunction in order to increase the confidence that can be placed t;·"1• the iesults if this is though I:. 

necessary. This agreement is important as it demonstrates that the techniques are dating the same 

event to similar degrees of accuracy despite the fact that each technique has a different physical 

basis (see section 5.2). 

Agreements between C-14 and luminescence age ranges is generally good, except in the case of 

Hartlepool Bay and to a lesser extent WM4. The differences in the age ranges for these cases is 

explained on sedimentological grounds by differences in the type of material and event that the 

different techniques are based on. The luminescence dates which do not agree with the C-14 

chronology should not be dismissed as 'wrong' because they are evaluated in the same way as 

those dates which do match the C-14 chronology. It is important however, to identify the types of 
; 

event and sedimentological processes which may affect the bleaching of luminescence signals. It is 

also important to assess how appropriate for comparison are the C-14 dates on which the 

established chronol~j is based. In the case of WH2Jwhere the C-14 age is based on an antler 
t1'>c9:o .. n:. 

incorporated in the sediment, problems relating to the derivation of the antler and the length of time 
" 

elapsed between shedding and incorporation in the ancient soil at that position. In this case, the 

luminescence date may be more reliable than the C-14 date for the deposit. 

The success of the Stubb Place test site has shown that both TL and IRSL techniques can provide a 

stratigraphically consistent chronology for undated sediments. In this case IRSL provided a greater 

number of dates and is likely to be a more suitable technique for waterlain sediments. 

The water content is the greatest obstacle to accuracy in luminescence dates. This is largely 

unavoidable where samples are derived from unconsolidated sediments which are affected by 

significant flucuations in water content. This uncertainty is reduced for compacted sediments which 

are not exposed to such variations, and is demonstrated by the systematic reduction in the error of 

the Stubb Place samples with depth. 
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The advantages of IRSL over TL lie in the fact that it is more sensitive to sunlight bleaching, so under 

conditions of attenuated sunlight such as underwater, the minerals are more likely to be bleached in 

terms of their optical signal than their TL signal. For samples in this study, however, saturation of the 

signal occurred for both TL and IRSL signals (HAZ3, SPS, 7). IRSL dating of the upper Stubb Place 

samples (SP2, 3 and 4) was by IRSL only as the TL signal was shown to be unstable. The IRSL 

signal also bleached down to negligible residual levels, and therefore problems with charge transfer 

caused by use of inappropriate bleaching. sources in the laboratory can be easily detected. Such 

effects may not be detected in the case of TL. 

Both IRSL and TL techniques have been shown to be viable and potentially very important methods 

of establishing absolute chronologies. The techniques are applicable to a wide range of 

sedimentary material which may not be dateable by other methods such as radiocarbon. 

Luminescence dating is an absolute technique so is not affected by problems such as the calibration 

of radiocarbon dates. The age range is from approximately 0 to around 200 000 years, completely 

overlapping the radiocarbon age range. 
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CHAPTER 7 SIGNIFICANCE OF CHEMICAL WEATHERING OF FELDSPARS AND IRSL 

In the analyses of the relationships between luminescence dating and sediment characteristics of 

samples in this study, several trends emerge. These trends form the basis of the grouping of 

samples into three categories which are discussed below. The relationships between sediment 

and luminescence characteristics are primarily connected with chemical weathering of the feldspar 

grains. The processes of feldspar weathering are discussed below. An experiment was 

conducted to test the observed relationships between weathering and luminescence 

characteristics, and the implications for dating are discussed. 

7.1 Relationships between luminescence and sedimentology 

Three types of sample could be recognised, which are discussed individually below, and outlined in 

table 7.2.1 as groups1, 2 and 3. These groups form the basis of conclusions relating to the 

relationships between luminescence and sedimentology. 

TABLE 7.2.1 Summary of characteristics of designated groups of samples. 

Characteristic 

Appeararance of 

mineral grains 

Dominant clay minerals 

Mixed layer clays 

Stratigraphic position 

Group1 

Clean faces, 

no adherent flakes 

unweathered 

Kaolinite 

Rare 

Group2 Group3 

clean faces abundant adherent 

some adherent flakes flakes 

some weathering severely weathered 

kaolinite/illite illite/montmorillonite 

some present abundant 

deep/middle deep/middle surface 

Luminescence intensity high high or moderate low 

Growth characteristic 

Fading 

(IRSL Signal:noise = <4.0 for low signal samples) 

linear 

(r=>0.8) 

none 

linear 

(r=>0.8) 

none 
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7.1.1 GROUP 1. 

These comprise all those samples which were dated by either technique. These nine samples were 

FF4, WM4, WM5, WH1, WH2, SLG3, SP6, SP8 and SP9. These samples also possessed certain 

sedimentological characteristics; the feldspar and quartz grains were unweathered, in a good state of 

preservation, and grains were clearly defined (figure 7.1.1 ). There were only small amounts of clay 

coatings adhering to the grain surfaces, and a low occurrence of mixed-layer clays. The identified 

clay minerals were dominated by kaolinite, which is a 1 :1 clay mineral with a low cation exchange 

capacity (CEC) and the stable end-product of K-feldspar breakdown. 

7.1.2 GROUP 2. 

This group included samples which had been dated, but which contained mineral grains in a partial 

state of degradation. The samples were FF3, WM3, HAZ2, SLG2, SLG4, SP2, SP3 and SP4. The 

grains, primarily quartz and feldspar, had some of the characteristics of weathered material such as 

etch pits and delineation of cleavage planes. There was a higher proportion of adhering clay flakes 

forming discontinuous coatings on some grains. The clay minerals were again dominated by 

kaolinite, but with a higher proportion of illite in several samples. Illite is a transitional product of 

weathering. There was a low abundance of mixed-layer clays. 

The grains in some samples had been exposed to a weathering environment at some point in their 

history, but in their present environment, the continuous process has been interrupted by prevailing 

equilibrium conditions. Depositional structures such as fine laminations were well preserved in some 

of these samples in contrast to the samples from the subsequent group. This equilibrium situation 

could arise from a reduced water percolation rate, which would result from fine-grained material being 

closely packed or slightly consolidated. Reduction in water flow restricts the primary agent of 

chemical weathering. 

7.1.3 GROUP 3. 

These samples were characterised by those which could not be dated for reasons other than 

saturation of the luminescence signal. The samples were FF1, FF2, WM1, WM2, HAZ1, HAZ3, 

SLG1, SP1, SP5, SP7. These were affected by fading, weak signals and changes in sensitivity. 

These samples contained a high proportion of severely degraded feldspar. The quartz, being more 
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Figure 7.1.1 SEM of sample WM5, an example of clean grains, unaffected by chemical 
weathering or clay coating. (x500; WD 7 mm; 1 em = 15 ~) 

• 



resistant, was less affected. Howeve.') the quartz signal is not stimulated by IRSL and is less sensitive 

to attenuated sunlight bleaching, so it is a less suitable mineral in these circumstances. 

The clay minerals were dominated by illite, smectite and montmorillonite groups. The former are 2:1 

expanding lattice clays with higher CECs than kaolinite. They are more unstable in weathering 

environments, and easily altered. They are transitional products of feldspar weathering. Illites form 

when only partial removal of potassium in solution has occurred (see Chapter 3). 

There was a high abundance of flaky clay coatings, forming discontinuous coverings of the grains. 

They may comprise a significant proportion of the mixed-layer clays, and are difficult to remove by 

soneration. The flakes form from alteration of the feldspar surface. The grains themselves were 

heavily etched and pitted. This is s~own for sample FF2 in figure 7.1.2. 

Stratigraphically these samples were in most cases those nearer the surface than those from groups 

1 and 2. The distribution of organic matter, and soil-type features suggest active pedogenic 

processes in the B soil horizons, or those affected by free percolation of ground waters. This 

relationship between weathering processes, environment and luminescence is explored more fully 

below. 

7.1.4 Significance of categories 

The importance of the identification of the three groups of samples given above lies in the fact that it 

underlines the underlying cause of the failure to date a proportion of the samples in this study. The 

groups demonstrated a close connection between the physical appearance of mineral grains, the 

clay mineral content of the samples and the success of the luminescence dating. Samples which 

could not be dated are derived from strata which are undergoing active pedogenesis and feldspar 

weathering. Samples which at some time in the past had been exposed to chemical attack, but in 

their present context are no longer undergoing chemical alteration, were dated to a similar degree of 

accuracy as those samples showing no signs of alteration. 

This distinction between 'active' and 'interrupted' weathering is significant and may have an important 

bearing on the identification of 'dateable' samples in the field. This may save significant amounts of 

laboratory measurement time, and aid the selection of potentially the most suitable samples for 

dating. However, it is also important to explain why the action of chemical weathering should affect 

feldspars in this way as it is highly relevant in terms of the intensity of luminescence signals and the 

stability of the trapped charge which gives rise to the emissions used for dating. 
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Figure 7 .1.2 SEM of sample FF2, an example of weathered grains showing the 
characteristic 'woolly' appearance of grains caused by erosion of the surface and clay 
mineral formation. (x500; WD 7 mm; 1 em= 15 J,Lm) 
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7.2 Structure of feldspars 

Feldspar minerals are constructed of Si02 tetrahedra in which all the oxygen atoms are shared, 

forming a stable structure. The incorporation of cations can only occur by replacement of Si by AI 

in proportions of one in four up to a maximum of one in two atoms. A number of feldspar groups 

exist based on their cation content. The alkali feldspar group included the potassium feldspars 

(KAISi30a) which are important minerals for dating. Examples of potassium feldspars include 

sanidine, microcline and orthoclase, which all differ in their crystal form. Plagioclase feldspars 

include the sodium (NaAISi30a) and calcium (CaAI2Si20a) feldspars which are known as albite 

and anorthite respectively. The group contains a number of variations based on the relative 

proportions of albite and anorthite. 

The optical properties of feldspars are variable and each type is associated with different 

luminescence emission wavelengths, intensities and stabilities. The sodium and potassium 

feldspars are the most important for dating (see chapter 5). All feldspars possess good cleavage 

parallel to their basal plane which is important with respect to the weathering of these minerals. 

7.3 Weathering of feldspars 

Weathering of feldspars is of significance to this project as the feldspars are the minerals most widely 

used for luminescence dating, particularly in the case of IRSL. Some detailed consideration of the 

weathering of feldspars is therefore relevant to this study, because chemical or physical alteration of 

the grains may affect their stability with respect to trapped charge, as well as the size and mineralogy 

of grains available for dating. 

The weathering of feldspars proceeds by ion-exchange and dissolution. Removal of soluble cations 

and replacement with ions of lower valency within the Si-02 lattice alters the chemical composition 

and nature of the defects in which trapped charge may be held. The clay minerals formed depend on 

the rate of change and the available ions. Orthoclase breaks down into illite or muscovite and 

releases soluble silica. Illite is ill-defined chemically (Blatt, 1982; 29) but has slightly less potassium 

than muscovite. Both minerals are further altered to kaolinite. Kaolinite is the end-product of feldspar 

alteration, and has a low cation-exchange capacity, being chemically stable. 

If the type of clay minerals present can be identified, the cation-exchange capacity of the sediment 

can be estimated. In conditions of chemical disequilibrium this gives an indication of the sediments' 

propensity for change.;' ' · .: , ··"' · · ··· - · :. An example of the chemical transformation of albite with 

the formation of kaolinite is given below: 
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Two mechanisms are thought to explain the rate and form of the dissolution process. Correns and 

von Engelhart (1938) introduced the concept of a protective surface layer as the system which 

regulates the rate of dissolution. This is supported by studies such as those of Wollast (1967) and 

Helgeson (1971). The formation of a layer depleted in Si and cations, and which thickens with time 

was thought to be the factor causing the fall off in the rate of dissolution with time, and linear increase 

in released elements. It also accounted for the greater quantity of Si and cations such as Na, K and Ca 

in solution, compared to AI, relative to the composition of the parent material and has yet to be 

observed in the natural state (Berner and Holdren,1977,1979; Holdren and Berner, 1979). 

An alternative theory explaining the results of Petrovic (1976) and of Lagache (1965, 1976) is that 

there is no coating or that it is not a protective one. Petrovic concludes that the coating of precipijate, 

if formed, does not limit the diffusion rate through it. Berner and Holdren (1979) support this idea as 

an explanation for the observed parabolic rate of dissolution with time, the lack of uniform coatings on 

grains, and the ease with which much of the coating can be removed by soneration in an ultra-sonic 

bath. If it does occur, the coating may take the form of amorphous alumina material, thereby 

accounting for the relative paucity of AI in solutions. XPS (X-ray photoelectron spectroscopy) analysis 

indicated that the surfaces of grains without apparent coatings were not significantly different in 

composition compared to the inner grain. The clay coatings, however, were of very different 

composition to the feldspar, but similar to coatings deposited on quartz grains. This may be explained 

by selective translocation of material by percolating waters. Finally, the coatings were seen to crack 

on drying, indicating a permeable nature, which could not therefore serve as a barrier to diffusion 

(Berner and Holdren, 1979). Such coatings are illustrated by sample WM1 in figures 4.2.5, 4.2.6 and 

4.2.7. 

Further investigations of the altered layer on the surface of weathered feldspars (Casey et al. 1989a) 

demonstrate that an amorphous, Si and H enriched coating, depleted in AI, Ca and Na, forms in 

environments of pH <4.0. An increase in pH is marked by an increase in H in the layer. However, this 

does not penetrate beyond the outer few units of feldspar (Casey et al1989b). The thickness of the 

altered layer depends on the pH of the reactant (Muir et al, 1989, 1990) with the thickness increasing 

in proportion to pH. Feldspar type is also relevant, And the thickness of the layer increases from a few 

1 OO's A to many 1 OO's A in the order albite < oligoclase < labradorite < bytownite. This emphasises 

the central role of hydrolysis in the initial weathering process. 

Microscopic evidence of dissolution is provided by the development of highlighted twinning, such as 

distinctive cross-hatching on microcline. Later evidence includes the formation of prismatic etch pits 

and cracks along dislocations and defects (figures 7.3.1 and 7.3.2), or 'sites of excess energy' 

(Berner and Holdren, 1979). These pits enlarge and coalesce, forming a honey-comb like structure, 
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Figure 7.3.1 Mineral grains from sample FF2 demonstrating etching of cleavage 
planes by chemical weathering. (x500; WD 6 mm; 1 em = 15 IJ.m) 



Figure 7.3.2 Mineral grains from sample FF2 demonstrating formation of etch 
pits by chemical weathering. These will eventually coalesce and fragment the 
grain. (x2000; WD 6 mm; 1 em= 3 J.Lm) 



which is easily fragmented into finer feldspar grains. Laboratory simulation of etching in 5%HF and 

1%H2S04 have replicated this sequence of weathering indicators and the appearance of eroded 

grains (Berner and Holdren,1979). Lundstrom (1970) observed similar forms on oligoclase. 

Plagioclases (Na-K feldspars) were found to be more susceptible to weathering than sodic feldspars 

in the same weathering environment, and oligoclase weathers faster than microcline. James et al 

(1981) state that 'regardless of climate, detrital plagioclase .... is generally 15-20% more altered than 

potassium feldspar". This affirms the work of Berner and Holdren (1979). In acidic soils (pH 2.5), the 

weathering was enhanced and aluminium was not deposited. This is common in soii'A' horizons 

where organic acid complexes increase the mobility of AI. The effect of aqueous cations in solution is 

to reduce the thickness of the altered layer on the surface of grains, possibly due to competition 

between the cations and hydrogen for active surface sites (Muir and Nesbitt, 1991). 

The implications for luminescence dating of material which has been subject to weathering may be 

very significant. First, it is the sites of excess energy, eg. defects and dislocations, twinning planes 

and cleavage fractures and other zones of weakness, which are initially selectively exploited (Berner 

and Holdren, 1979; Holdren and Speyer, 1985, 1987) As the defects are also potential sites for 

trapping the electric charge which gives rise to the luminescence signal, weathering may affect the 

ability of the sample to retain trapped charge. Secondly, the coalescence of etch pits breaks up 

larger grains into smaller fragments which may be too small to be suitable for luminescence dating. 

Thirdly, the substitution of cations at defect sites, along with the dissolution of the crystal, is likely to 

significantly change the composition of the grain, and therefore reduces its suitability and stability as a 

crystal for use in dating. 

7.4 The Weathering Experiment 

A fine-grained, feldspar-dominated sample (WM4) from Group 1 was subjected to artificial 

weathering following Wollast's (1967) procedure. The 6-11 ~m fraction of the sample was 

separated by sedimentation. Buffer solutions of pH 6.0 and pH 8.0 (composition of buffers were 

made up as described in Wollast, 1967) were made up in a polythene bottle to 1 litre. Fifty grams 

of the sample wr~~ added to one litre of buffer. In addition, a control sample was made with 50 g of 

sample in de-ionized water (pH 7.0). These were kept in a water bath at 20°C for 6 weeks. They 

were covered to prevent optical bleaching under the red light conditions of the laboratory and 

were agitated frequently. 

Subsamples of c. 50 ml were abstracted at 10 day intervals from each bottle. Six discs were 

prepared from each subsample using standard preparation techniques and settling onto abraded 

aluminium discs in acetone. The remainder of the dried sample was used for XRD analysis (using a 
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Coa. tube and orientated samples). The surfaces of the prepared discs were examined by a Jeol-

840 SEM. Discs were gold coated and examined at magnifications of up to x1 0 000, at a working 

distance of 6 - 7 mm. 

TL and IRSL measurements (3 discs for each) were made of the natural signal before weathering 

using a Ris0 automated system. For TL a Corning 7-51 filter and a heat rate of 1 0°C/sec were 

used, and for IRSL, 880 nm diodes and an exposure time of160 seconds. The three discs from 

each subsample per batch were normalised before measurement using a 1 second IR exposure. 

The natural signals, and mineralogy were compared to the characteristics of the original material, 

and the control sample. 

7.4.1 Results. 

The XRD analysis showed a significant change in the proportions of the identified minerals. There 

was a fall in the amount of feldspar and increase in the amount of clays, which were dominated by 

mixed-layer forms. This is shown in figure 7.4.1. The XRD proportions are calculated as the peak 

areas tor identified mineral peaks, and expressed as percentages of total identified minerals. The 

changes observed were similar for both acid and alkaline buffers, and no significant change was 

observed in the control. 

Under SEM analysis, the grains of the control remained clearly defined, without significant 

abundance of clay flakes. In the pH buffers, however, after 40 days, the grains exhibited some of 

the characteristic etch pits associated with weathering. The development of flaky clay coatings 

associated with mineral breakdown was also observed. The change between the original material 

and that in a buffer after 40 days is shown in figures 7.4.2 and 7.4.3. 

The initial intensity of the natural IRSL signal fell dramatically with duration of exposure in the 

buffered samples, but not with the control (figure 7.4.4). The control therefore indicates that this 

reduction is not due to external effects, such as bleaching under laboratory light. This reduction 

reached levels as low as 27% of the original signal from initial intensites of 1 065 counts to levels of 

187 counts over the first 2 seconds. These levels are typical of those samples in Group 3. 

The natural TL signal was measured, and seen to suffer less reduction than the IRSL signal, but a 

significant change in the 280°C peak shape was observed, both for acid and alkaline buffers 

{figure 7.4.5). The flattening out of the peak indicates that some charge transfer is taking place, 

which may result from changes in the surface distribution of luminescence centres associated with 

weathering (Bailiff, pers. comm.). This may also be a cause of the signal loss. 
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Figure 7.4.1. Effect of pH buffers on mineralogy; XRD analysis. The changes in mineralogy are 
similar for both acid and alkaline buffers; reduction in proportion of feldspar, and increase in 
clays, particularly illite. The control remains relatively unchanged. 
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Figure 7.4.2 SEM of sample WM4 before weathering. Note the clarity of the 
grains and absence of abundant clay minerals. (x500; WD 7 mm; 1 em= 15 J.Lm) 
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Figure 7.4.3 SEM of sample WM4 after 40 days laboratory weathering at pH 6.0. 
The mineral grainshave taken on the 'woolly' weathered appearance similar to 
that in figure 7.1.2. (x500; WD 7 mm; 1 em= 15 JJ.m) 
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Figure 7.4.4 Reduction in IRSL intensity after weathering 
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Figure 7.4.5. Changes in the shape of the 280°C TL peak after 40 
days in the buffer solutions. The control was unchanged from the 
original sample (not shown). The acid and alkaline buffers have 
been scaled up by x2 to account for the loss of signal intensity. 
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Another significant observation was the onset of fading of the sample (figure 7.4.6), which had 

previously shown no sign of instability. The control continued to remain stable (101±0.6 over six 

months at 1 ooc storage). but the IRSL signal of the buffered samples , .. ·-~ Jaded significantly, 

losing up to 45% of the signal intensity. This fading component was not removed by the 

preheating treatment, similar to those samples in Group 3 which faded. The TL signal also faded 

by similar proportions. 

7.4.2 Conclusions. 

Chemical weathering selectively exploits the defects in feldspar crystals, and causes a loss of 

signal, and the onset of instability, manifest as fading and changes in the structure of the TL peak. 

After 40 days exposure of a selected Group1 sample to buffers of pH 6.0 and 8.0, the sample 

acquired the mineralogical and luminescence characteristics of a sample from Group 3. The 

control sample in de-ionized water remained unchanged, and thus retained the characteristics of 

the original material. 

Artificial weathering, by inducing disequilibrium between solution and sample has been observed 

to cause a number of changes. Mineralogically, the indicators of active weathering develop, ie. 

the accumulation of mixed-layer clays and the etching of feldspar grains. With respect to the 

luminescence signal, a significant loss in intensity is observed, together with the onset of fading. 

The observed correlation between weathering indicators and poor luminescence signals has 

been confirmed in this study, in that the same correlation has been induced by active weathering 

as observed in Group 3 samples, as opposed to a stable-state of grains in equilibrium with their 

present environment as demonstrated by Group 2 samples. 

7.4.3 Implications for Dating. 

With respect to dating sediments, the identification of actively weathering environments is 

important, especially with respect to feldspars which are more susceptible to weathering than, for 

example, quartz. Detailed stratigraphic analyses, such as the examination of preserved 

microstructure~ can indicate that weathering is active. The microscopic examination of individual 

grains for evidence of degradation and formation of weathering-related clay coatings (as opposed 
\$ 

to those resulting from the translocation of fines within a profile)"in support of the stratigraphic 

analysis. This is a useful indicator of the state of the mineral grains in terms of processes operating 

within the profile. 
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Figure 7.4.6 Loss of IRSL initial signal intensity due to fading after 
laboratory weathering (see text for details). 
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In the case of sediments classified as Group 2 in this study, the grains may have been affected by 

weathering, but the sedimentary structures such as fine laminations have been preserved in the 

sedimentary section. This indicates that leaching and mixing of minerals associated with active 

weathering has not occurred. 

Other indicators of active weathering are in the clay mineralogy and the presence of mixed-layer 

clays. Clays dominated by kaolinne have a low CEC, and thus remain more stable in active 

weathering environments. Clays dominated by mixed-layer or expanding lattice types such as illite 

and montmorillonite are less stable, and more easily affected by cation exchange. 

It is the combination of these characteristics that is most useful, rather than elements taken 

individually. It is the active weathering environment which appears to affect the dating potential of 

sediments; a stable environment containing either weathered of unweathered grains is not, in 

these samples, necessarily a cause for concern. 

For sediments from archaeological sites, the identification of weathered horizons may be difficu~. 

Anthropogenic activity can affect the chemical stability of minerals in a number of ways. Trampling 

and the incorporation of organic material derived from human occupation may increase the rates of 

weathering of minerals, as the presence of organic acids can increase the rate of dissolution of 

feldspars. Activity associated with construction of ditches or buildings can lead to exposure of 

strata to pedogensis. 

However, archaeological material can also be useful in the identification of ancient landsurfaces 

and buried soils. For example, at Williamson's Moss and Hartlepool Bay the minerogenic remnants 

of Mesolithic land surfaces were identified by the presence of artefacts and charcoal. Thus 

archaeological material in these cases can identify strata which may have been affected by 

pedogenesis in the past. If the strata are in equilibrium in their present context, such samples fall 

into the Group 2 category and may be dateable by luminescence. 

It is therefore important that careful selection of samples is made, and consideration given to their 

past weathering history as indicated by their stratigraphic and archaeological contexts, and their 

sedimentological contexts. Identification of weathered samples which may be a problem in terms 

of dating can further be made by tests on the stability and the intensity of the luminescence 

emissions. This can be done, and Group 3 type samples eliminated before extensive laboratory 

measurement procedures have been carried out. It is important, however, that the evidence from 

sedimentological and luminescence analyses are used in conjunction, particularly at this early 

stage in the identification of the causes of problems of stability and intensity of IRSL signals. This 

il.xr-"'-tt"'"c.n',. ·J ~however, an important step in this direction . 
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CHAPTER 8 SUMMARY AND CONCLUSIONS 

The study which has been presented in the foregoing chapters has demonstrated the viability of 

luminescence dating techniques for Holocene sediments. This is particularly important in the case of 

the new IRSL technique which has only recently been established as a potential method of 

sediment dating. It has also established the importance of sedimentary analysis in identifying the 

environment of deposition and post-depositional changes affecting sedimentary strata selected for 

dating. 

The application of detailed sedimentary analysis, particularly SEM examination of the samples is a 

new departure in the field of luminescence and has been shown to be of significant value in the 

identification of samples which are likely to be problematic in terms of their luminescence behaviour. 

For example, the relationship between chemical weathering and characteristics of the luminescence 

signals has been identified and tested in a laboratory experiment. This experiment demonstrated 

that active chemical weathering of feldspars has a significant effect on the stability and intensity of 

the luminescence signals used for dating, and also explains the failure to date a number of samples 

in this study. 

This chapter summarises the work that has been undertaken and the conclusions that have been 

drawn. Subsequent sections assess the justification of the luminescence metha:!G'cgy adopted in this 

study, the importance of the sedimentary analyses and of the weathering experiment and finally, the 

significance of the work for archaeological and Quaternary dating studies. 

8.1 Summary of work undertaken 

An interdisciplinary approach was adopted to investigate the potential of luminescence dating 

techniques for waterlain sediments of Holocene age. The approach combined detailed 

sedimentological analysis of selected samples in conjunction with TL and IRSL dating. This was 

done in order to assess the environment of deposition and post-depositional changes affecting the 

samples and which may affect the luminescence signals of the samples. The selection of sites was 

based on a number of criteria including the availability of environmental reconstruction data and an 

independent chronology based on C-14, archaeology and stratigraphy. 

The sites selected were Flag Fen, Cambridgeshire; Williamson's Moss and Stubb Place, Cumbria; 

Hartlepool Bay, Cleveland and Hazendonk and Slingeland in the River-dune district of the Western 
(.0(~}-- Sl-L<bb f/Qa.) 

Netherlands. All these snes~nad an Independent chronology based on C-14 and archaeology. They 

were also lowlying areas which had been substantially affected by sea-level changes during the 
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Holocene and which added important information relating to the environment of deposition of the 

sedimentary units. 

The Quaternary history and archaeology of each site were discussed, with particular reference to 

material relating to the existing chronology of the sites. The radiocarbon dates used for 

chronological control were all calibrated according to a standard calibration curve, described in 

Chapter 1. The sedimentary sequences sampled were described and the minerogenic strata 

sampled for sedimentary and luminescence analysis. 

The sedimef"'iill?'Jical investigations of the samples involved the analysis of the minerogenic and 

elemental composition by XRD and XRF techniques, particle size distribution, water and organic 

content and physical examination of grains under SEM. The same samples were dated by TL and 

IRSL techniques. The luminescence characteristics of the sediments were required to meet several 

criteria in order to be acceptable for dating. These included stability of the signal, linear growth 

characteristics and optical signal intensities of at least four times the background levels. 

The investigation of laboratory bleaching of the luminescence signals is an important aspect of 

dating waterlain material. The use of an appropriate bleaching source is vital, in order to avoid the 

effects of transfer of charge and resultant higher residual levels. This effect was noted in IRSL 

samples which bleached down to an unexpected residual under sunlight. This residual was not 

observed after bleaching with filtered white light. The filter cuts out the shorter wavelengths 

responsible for charge transfer. The residual of TL samples was reduced after filtered light 

bleaching. The importance of this lies in the fact that under water, sunlight is attenuated by depth, 

turbulence and suspended sediment. The filtered bleaching light source more closely resembled 

these conditions than sunlight bleaching. This technique was used for all sediments and has 

produced ages consistent with each other and with the C-14 chronology. 

The dating of the samples was very successful, with 17 out of 27 samples being dated. Three 

samples which were rejected were saturated with respect to the luminescence signal, and the 

remainder were affected by instablility (fading) and low signal intensities. The ages evaluated by TL 

and IRSL were in close agreement between techniques and with the independent C-14 

chronologies. The agreement between the luminescence techniques was very good (r=0.977). 

Agreement between C-14 and luminescence techniques was less close (r=0.568 for IRSL and 

r=0.497 for TL). In three cases where the luminescence techniques were more disparate, the 

difference is attributed to sedimentological processes in which the signals were not bleached at 

deposition in the present context, eg. for the coarse grain fraction of a sediment where the IRSL 

ages of different grain size fractions differed (WM4), or for the bulk sediment where the 

luminescence ages did not agree with C-14 (WH1, 2). 
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These ages however, should be accepted as absolute dates of the last exposure of the minerals in 

that deposit to light, even if they do not fit into the existing chronology. This illustrates the problems 

associated with comparative chronologies based on different materials and events. In the 

comparisons discussed in Chapter 6 the age ranges of the dates were compared which is likely to be 

more appropriate than comparing dates of specific materials within deposits, particularly where these 

materials differ in their contexts. 

The relationships between sedimentological and luminescence characteristics revealed several 

trends. The samples could be categorised into three groups based on these characteristics. Group 

1 comprised nine samples which were dated by one or both luminescence techniques and in which 

the sediment grains were unaffected by weathering and the clay minerals formed discrete particles 

rather than coatings. Group 2 comprised eight samples which were dated by one or both techniques 

but differed from Group 1 samples in their sedimentological characteristics. These samples 

exhibited some indications that the grains had been weathered but the clay minerals did not form 

coatings on the grains and the preservation of sedimentary structures in the stratum indicated that 

the sediments were not undergoing pedogensis or weathering in their present contexts. 

Group 3 samples, of which there were 10, where not dated. These failed the criteria established for 

the acceptance of samples for dating. They were affected by substantial fading of the signal and low 

signal intensities. The grains tended to be heavily weathered and clay mineral coatings were 

abundant, together with mixed layer clay minerals. These samples tended to be located in the upper 

parts of the sediment sequences and were undergoing active pedogenesis at the time of sampling. 

The relationship between weathering of grains and failure to date samples was explored further and 

tested by an experiment in which a Group 1 sample was exposed to artificial weathering and the 

changes in luminescence characteristics observed. This sample took on the characteristics of the 

Group 3 samples, with etching of the grains, abundant clay minerals, inducement of fading and 

reduction in signal intensities. This is an aspect of sedimentological analysis and luminescence 

dating which has not been investigated before. It represents an important step forward both in the 

explanation for why certain samples could not be dated in this study, and on the effects on the 

luminescence sensitivity and efficiency of samples exposed to physical and chemical alteration. 

Overall, luminescence has proved to be a suitable and viable technique for Holocene sediments and 

that sedimentological analysis has an important role to play in the identification of suitable samples 

and in the explanation of differences in age determinations between techniques. 
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8.2 Justification of the luminescence methodology 

The novelty of the IRSL technique has meant that a number of procedures adopted during 

measurements of samples in this study have had to be based on other optical dating work, and on 

assumptions of similarity between the source and behaviour of TL and IRSL luminescence 

emissions. The techniques used here are based on those of other workers (cited in the text) 

examining similar sedimentary material to that studied here; ie. polymineralic fine grain material, 

dominated by feldspar emissions. 

First, the type of sediment examined in this study was primarily silt rich waterlain sediments. Work by 

Berger (1988, 1990) recommends that silt-rich sediment should be avoided in dating samples. This 

is drawn from his work in which clay-rich sediments were more successfully dated than silt-rich 

sediments. This was attributed to problems in the zeroing of silt sized material and in sensitivity 

changes and reproducibility of the signal. However, in this study many of the sediment samples 

were silt-rich and these were dated successfully. The problems affecting rejected samples were 

related to characteristics other than grain size. 

Secondly, the method of ED evaluation used in this study was that of the total bleach and 

regeneration method for determining the level of the TL residual, and the additive technique for ED 

evaluation. This was justified on the basis that the samples were young ( <1 0 000 years) and that the 

effects of the onset of saturation were not expected. The dating of waterlain material is often 

thought to be affected by partial bleaching of the signal. This was overcome by the development of 

the 'partial-bleach' technique of ED evaluation (see section 5.2.5). This technique is recommended 

by workers such as Berger (1988, 1990) for TL dating of waterlain material. 

Samples were successfully dated using filtered bleaching and total bleaching of the signal. This is 

likely to be appropriate for IRSL signals which bleach to negligible residual levels within very short 

exposure times. This can then be used to compare the success of dating the same sediments by TL 

using the same conditions to determine the level of the unbleachable residual. For samples in this 

study, very close agreement was obtained using this method for both IRSL and TL signals. This 

indicates that the use of the total bleach technique for waterlain sediments is appropriate in these 

cases, provided that a suitable source of laboratory bleaching light is used. 

8.3 Role of sedimentary analysis analysis in luminescence dating 

The sedimentary techniques adopted in this study examined the mineralogy, elemental 

composition, water and organic contents of the samples and physical appearance under SEM 
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examination. These analyses have been shown to be a key aspect in luminescence dating studies 

for several reasons. 

First, the identification of the conditions under which sedimentary deposits were laid down is 

important with respect to the bleaching of the mineral grains. In some waterlain sediments, bleaching 

may have been incomplete due to attenuation of sunlight by water depth, turbulence or suspended 

sediment load. These conditions may be difficult to recognise in individual sedimentary units but 

indicators of the environment of deposition may be available, such as diatoms and the particle size 

distribution of the sediment. 

Secondly, the effects of post-depositional change are relevant to luminescence dating in three main 

ways. The effects of compaction of sediments are primarily related to changes in the water content 

history of the sediment. The variation in water content within a deposit throughout the burial history 

of the samples is a major source of error in the age. Compaction reduces both the total water content 

and the uncertainty in its variation. This can be determined from some sedimentary units by their 

physical nature and particle size distribution - eg. between a compact and a loosely packed clay or a 

silt with sand. The particle size distribution can also identify sediments which are more likely to be 

relatively compact at deposition, such as clays and silty clays laid down under slow running water. 

Such sediments are laid down in a compact state, as is the case for the clay deposits in the Western 

Netherlands. 

Thirdly, the effects of pedogenesis are also important as this can result in significant changes in the 

mineral grains. The formation of clay coatings due to percolation or weathering of grains may reduce 

the potential effects of sunlight exposure in minerals re-exposed at the surface. Bioturbation can 

result in some pockets of sediment which has been bleached at a later date than the bulk of the 

sediment, and therefore is 'younger' in luminescence age. The bleaching of soils is discussed in 

Chapter 3, particularly with reference to the uncertainty in bleaching of the mineral grains. 

Closely related to pedogenesis are the effects of weathering. The weathering of feldspars has been 

discussed in detail in Chapter 7. The relationship between sediments which have been weathered 

and cannot be dated due to disruption of the stability and intensity of the luminescence signal has 

been demonstrated in the weathering experiment. This is a very important and novel discovery in 

the field of luminescence. 

The samples could be grouped in three categories based on their sedimentological characteristics 

and luminescence behaviour. Group 1 samples were unweathered a~contained few mixed layer 

clays or clay coatings; these sediments were dated. Group 2 sediments had been weathered but 

not in their present sedimentary context. These samples were dated and also contained few clay 
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mineral coatings on quartz and feldspar grains. Group 3 samples were heavily weathered and 

derived from strata in which weathering was taking place at the time of sampling. These sediments 

could not be dated due to low signal intensities and fading of the TL and IRSL signals. This 

observed relationship was confirmed by experiment. 

The recognition of active weathering processes is therefore an important step towards the 

identification in the field of potential dating samples. The luminescence dating procedure is long 

and complex, requiring many measurements and repetitions to ensure accuracy. If potentially 

problematic samples could be identified in the field or by simple sedimentary analysis, much time 

could be saved in the laboratory. It is necessary, however, to extend the experiments given in 

Chapter 7 both in the type of sediment investigated and by varying the conditions under which 

weathering was induced. 

The extensive use of SEM analysis of the samples dated in this study is a novel combination of 

techniques and has been of key importance in the categorisation of the samples into the three 

groups mentioned above. Such examination of dating samples needs to be increased and applied 

to a wider variety of deposits. It should also be more widely used in dating laboratories a~ o.. 

supplementary technique to those associated with dating. SEM examination not only reveals the 

physical (and inferred chemical) state of the grains being dated, but also reveals the form and 

distribution of clay minerals within the sediment. An abundance of clay minerals, and presence of 

coatings which may survive the treatments given during preparation of dating samples can cause 

reduction in intensity of emissions from grains. This has been discussed in chapter 3. Its importance 

in terms of dating is relatively little known, but it likely to be more significant in waterlain and 

pedogenic samples which are clay-rich, compared to coarsr grain sizes and sediments such as sand 

dunes. 

Archaeological material represented within the sediment sequences is important in a number of 

ways. It can provide a useful additional comparative chronology for the sample contexts, particularly 

where it is stratified with the sequences. However, this can give rise to problems where the 

luminescence and C-14 chronologies (the latter being based on archaeological material) do not 

entirely agree as in the case of WM4. However, even here, the archaeological material gives an 

approximate age range, as distinct from that provided by the C-14 dates, into which the 

luminescence ages fit. This is important where C-14 dates are based on artefacts which are 

'imported' or incorporated into the sediment and hence may give an incorrect age range for the 

deposition or formation of the sedimentary unit, as in the case of WH2. 

Archaeological evidence in a stratum may also take the form of trampling of ancient surfaces and 

incorporation of 'foreign' material. This material may be younger than the bulk sediment as it may 
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have been bleached at a later date. The recognition of such horizons is important in terms of sample 

selection, as the most representative portion of the stratum should be used for dating, in order to 

avoid incorporation of material~cted in such a way. Trampling has a similar effect to compaction in 

that it reduces the water content of the sediment. Archaeological horizons are often associated with 

the remains of ancient soils. The problems of dating some soil material has been discussed above, 

and the archaeological material may aid the identification of these horizons. This may help to explain 

any luminescence behaviour which is unexpected during sample measurement. 

8.4 Implications of this study for archaeological and Quaternary studies. 

The use of TL and IRSL techniques for dating Holocene sediments has been shown to be 

appropriate in this study. The techniques have produced stratigraphically consistent chronologies 

for sediment sequences which included waterlain sediments and buried soil horizons. The 

importance of the establishment of luminescence techniques for dating sediments arise from a 

number of advantages and applications that luminescence has over, for example, the most 

commonly used technique of radiocarbon dating. 

Luminescence is an absolute dating technique and so does not experience the problems of 

calibration common in C-14 dating. The techniques are widely applicable to a very wide range of 

inorganic sedimentary material which is not suitable for C-14 dating, and over a longer timespan, 

currently 0-200 000 years. 

The basic requirement of samples for luminescence dating is that they have been exposed to light 

before burial, and that the trapped charge which accumulates within the crystal is stable during the 

timespans and under the burial conditions of the sediment. Exposure occurs during the transport 

and deposition of most terrestrial sedimentary deposits and in cases where bleaching of the TL 

signal is incomplete, the optical signal can be used as this is more sensitive to even attenuated 

sources of light. The IRSL signal primarily stimulates the signal of feldspars. These minerals are 

almost ubiquitous in sedimentary deposits, so there are few instances where IRSL could not 

potentially be used to date sediments. 

The advantages of the IRSL signal over the TL signal are that it is more sensitive to optical bleaching 

and that it bleaches down to a negligible residual level. This last characteristic can be important in the 

dating of waterlain material concerning the choice of suitable laboratory bleaching source. This can 

then be applied to the TL signal of the same sediment. 

The comparisons between IRSL and TL dates have been very close in samples studied here. 

However the techniques have a different physical basis and have different strengths and 
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weaknesses. The weaknesses of TL lie in problems of high residual levels in young sediments. 

IRSL has a greater tendency towards instability than TL. However, TL signals can be equally 

unstable but there is less uncertainty in the laboratory determination of the IRSL residual. This 

indicates that IRSL is potentially more widely applicable in the case of waterlain material. However, 

both techniques have contributed positively to the establishment of absolute chronologies for the 

sites investigated. 

The overall advantage of both techniques is the great variety of sediments to which they can be 

applied. This is potentially very important for archaeological sites. For example, provided careful 

selection of samples is made, different elements of site formation can be dated. Not only can the 

burnt inorganic material present in a hearth be dated, but also the sediment lying above and below n. 
This would give an age for the formation of the landsurface, the date of human activity and the date 

when the hearth was buried. This is likely to represent a more detailed and reliable chronology for 

such samples than only dating the charcoal from the hearth itself. 

Luminescence dating can also be of great importance during the periods of significant flatness in the 

radiocarbon calibration curves, such as l~;tgs,~ mtf2(li&IBC. Different C-14 ages in this region may 

represent the same calibrated age range. The application of luminescence dating to material of this 

age may resolve potential dilemmas in selection of the 'correct' C-14 date. 

At present, the main problem associated with the accuracy of luminescence ages is that of water 

content. For aeolian material error limits of around 10% are common for luminescence dates. For 

compact sediments with low uncertainties in the water content variation, such as SP8 and 9 and 

WM5, the error limits are equal to these. Therefore, in the future luminescence dating has the 

potential to rival or surpass the accuracy of radio-carbon dating, on a wider range of material and over 

greater timespans. 

Sample selection is a vital part of successful dating. Consideration must be given to the context of 

the sediments with respect to the dose-rate of the sample. This can be closely monitored by on-site 

dosimetry provided that the sample contexts are accessible. The gamma dose-rate component 

which is significant in sediments, can be considered to be unaffected by the activities of adjacent 

strata for a distance of 30 em from the sample. The contribution from adjacent strata can, however be 

assessed by measurement of activities of these strata and use of computer programmes to evaluate 

the relative contributions. 

The strata from which samples are taken needs to be examined carefully to assess the degree of 

disturbance and post-depositional change to which the samples have been exposed. The degree 

of disturbance may be considerable on archaeological sites with complex stratification. However, this 

156 



need not be a problem so long as the sequence is examined with a view to assessing the points 

given above. All samples are potentially suitable for luminescence dating, and it is only by extending 

the 'repertoire' of applications that the limitations of the technique can be established. It is also 

significant that many of the fundamental problems of luminescence dating, such as bleaching, 

stablility and water content are sample-driven, and it is only by assessing individual samples that any 

can be ruled out for dating. 

8.5 The future of luminescence dating 

In the future luminescence dating is likely to become a more important and widely used suite of 

techniques. This is due to its wide applicability and age range. The new optical dating techniques 

such as IRSL have been shown to be highly suitable for waterlain material. The work undertaken 

here has demonstrated the potential of the technique and has also given important insights to 

further developments of the techniques. 

The importance of sedimentary analysis has been discussed and this needs to be more widely 

applied within luminescence dating studies. There is much to be derived from simple examination 

and analytical procedures which is of relevance to luminescence dating. The main areas in which this 

should be developed is in the extension of studies relating to the weathering of feldspars. The 

experiments performed here need further replication. They also need to be applied to different 

types of feldspar and to different minerals such as quartz in order to clarify and extend the 

explanations for certain luminescence characteristics put forward in these initial studies. This is a 

very novel aspect of luminescence studies and worthy of attention in the future. 

The problems associated with bleaching of waterlain sediments and thedifferent environments in 

which the techniques can be applied have been an area of investigation for luminescence workers 

for some time (see discussion on bleaching in chapter 3). However, certain aspects of the 

sedimentary environment have up to now been dismissed. These aspects include the uncertainties 

in water content variation. This is a major problem in refining the accuracy of techniques. In this work 

it has been shown that in most cases the water content uncertainty is related to compaction and 

depth of sedimentary deposits. This aspect needs to be taken further and methods developed of 

reducing the uncertainty in water content variation. This may lie in sedimentological analysis and 

methodology rather than in luminescence methodology. This reinforces the potential of increased 

interaction between sedimentologists and physicists towards the refinement of luminescence. 

Finally, the comparison of C-14 and luminescence ages as a basis of establishing the latter as viable 

dating techniques needs to be examined. There are relatively few instances where great care has 

been taken to ensure the viability of the C-14 chronology, particularly with regard to calibration of the 
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dates. This is likely to become ever more important as the accuracy of luminescence increases and 

therefore the importance of the difference between an uncalibrated and a calibrated radiocarbon 

date used as a comparison yvill become more important. Even in the comparative work by Pye and 

Johnson (1988) the com~ive C-14 chronology is based on uncalibrated dates. This raises the 

issue, discussei above, of the viability of such comparisons between different techiques. This too, 

is an aspect worthy of future discussion. 

Luminescence dating, however should be considered as a valuable source of absolute chronology, 

of wide applicability and of an age range which extends beyond radiocarbon, and which is being 

extended further back as new development in the technique are made. The techniques have been 

shown to be valid for archaeological sediments of Holocene age and it only remains for this potential 

to be taken up by the archaeological community for TL, and more particularly IRSL, to become the 

most important absolute dating techniques of the future. 
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APPENDIX A Radiocarbon data for all ages cited in the text. 

Calibration is to 68% confidence level, using the 'CALIS' programme of the University of Washington 

Quaternary Isotope Unit, 1987. 

Ref. Lab. No. C-14 date BP Cal. BC range Reference 

1 BM2123 2830±20 1100-853 Pryor et al, 1992 
2 • 8480±205 ** Huddart et al, 1977 
3 Hv208 6850±60 5749-5640 Walker, 1966 
4 Hv207 5875±220 5051-4500 Walker, 1966 
5 Hv5228 6870±95 5820-5640 Tooley, 1978b 
6 Hv4713 5385±280 4510-3827 Tooley, 1978b 
7 Y2606 6200±140 5315-4945 Andrews et al, 1973 
8 Y2600 6720±100 5694-5500 Andrews et al, 1973 
9 UB905 3780±55 2307-2138 Cherry, 1982 
10 UB906 4135±55 2878-2611; Cherry, 1982 
11 Y2597 2120±100 362-40 Tooley, 1990 
12 Y2387 3630±160 2273-1772; Tooley, 1990 
13 Hv5214 1795±240 50BC-AD530 Tooley, 1990 
14 Hv4708 1370±85 AD688-606 Tooley, 1990 
15 Y2598 1210±100 AD680-953 Andrews et al, 1973 
16 Gak1929 1530±80 AD420-622 Andrews et al, 1973 
17 Hv5227 6320±85 5345-5227; Huddart et al, 1977a 
18 SRR8658 5640±50 4530-4407 Bonsall et al, 1986 
19 SRR2659 4395±70 3260-2919 Bonsall et al, 1986 
20 SRR2660 3612±70 2126-1889 Bonsall et al, 1986 
21 SRR3060 2825±90 1121-898 Bonsall et al, 1986 
22 SRR3061 3580±100 2123-1777 Bonsall et al, 1986 
23 SRR3062 3310±70 1685-1518 Bonsall et al, 1986 
24 SRR3063 1810±70 AD118-322 Bonsall et al, 1986 
25 SRR3064 1460±70 AD543-652 Bonsall et al, 1986 
26 01356 7380±370 6570-5844; Bonsall et al, 1986 
27 BM1216 6750±155 5740-5490 Bonsall et al, 1986 
28 UB2568 3665±40 2134-1982; Bonsall et al, 1986 
29 BM1396 3736±104 2320-1987; Bonsall et al, 1986 
30 UB2711 4925±165 3950-3526; Bonsall et al, 1986 
31 UB2544 6015±75 5049-4809; Bonsall et al, 1986 
3·2 UB2545 5650±50 4574-4460; Bonsall et al, 1986 
33 UB2544 5555±40 4461-4355; Bonsall et al, 1986 
34 UB2712 5520±85 4462-4336; Bonsall et al, 1986 
35 UB2713 5500±70 4455-4335; Bonsall et al, 1986 
36 Hv4712 5285±120 4328-3990; Tooley, 1978b 
37 Hv3459 5240±170 4331-3820; Tooley, 1978b 
38 BM90 8100±180 7064* Barker and Mackey, 1961 
39 BM80 8700±180 ** Barker and Mackey, 1961 
40 Hv5217 5315±80 4315-4006; Tooley et al, in press. 
41 Hv5220 4640±60 3631-3380 Tooley et al, in press. 
42 SRR102 5465±80 4364-4241 Bartley et al, 1976 
43 SRR476 5235±70 4222-3990; Bartley et al, 1976 
44 02661 5975±120 5052-4770; Tooley, 1984 
45 02662 5530±90 4466-4337 Tooley, 1984 
46 02660 6180±100 5240-4949 Tooley, 1984 
47 02663 4945±50 3785-3695 Tooley, 1984 
48 02664 4770±50 3637-3387 Tooley, 1984 
49 GrN6212 3630±35 2111-1949 Louwe Kooijmans, 1976 
50 GrN6213 4480±40 3332-3044 Louwe Kooijmans, 1976 
51 GrN6214 4935±40 3782-3695 Louwe Kooijmans, 1976 



52 GrN6215 5320±40 4237-4043:f: Louwe Kooijmans, 1976 
53 GrN8382 6720±70 5646-5539 van der Woude, 1983 
54 GrN8383 7370±100 6381-6100 van der Woude, 1983 
55 GrN8351 2420±70 5474-5245 van der Woude, 1983 
56 GrN8303 6520±100 5540-5340 van der Woude, 1983 
57 GrN7864 6060±80 5198-4863:f: van der Woude, 1983 
58 GrN8380 6500±90 5490-5340:f: van der Woude, 1983 
59 GrN8932 4570±75 3374-3108 van der Woude, 1983 
60 GrN8379 5590±70 4506-4357 van der Woude, 1983 
61 GrN7862 3340±80 1740-1523 van der Woude, 1983 
62 GrN8377 4370±120 3302-2900 van der Woude, 1983 
63 GrN5173 5320±40 4181-4149 Louwe Kooijmans, 1976 
64 GrN5179 5165±40 4000-3962 Verbruggen, pers.comm 
65 GrN8935 5290±45 4179-4146 Verbruggen, pers.comm 

* denotes calibrated age without error, as the date was at the limits of the range of the calibration 
programme 
** demotes age not calibrated, as it was beyond the range of the calibration programme 
:f: denotes a mean age determined from more than one calibrated date; in these cases the mean date 
of three or five is given here 
ti This date is cited in the reference given (page 139) but no laboratory number is given here or in 
associated references in the text. 



Appendix B Key to stratigraphic diagrams 

T:A-6U: BJ Key to stratigraphic diagrams (Chs. 2,4,and 6) 

(after Troels-Smith, 1955) 
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Table 8.2 Key to sedimentological analyses for Chapter 4. 

PSD I LOI I H20 

r. ,r,a,.a,l''' 'I :;:J., ;;::.J, / , ... , /' 

sand 

I~~~~~~~ I silt 

clay 

• LOI 

PSD = particle size distribution 
LOI = loss on ignition 
H20 = water content 

all as 0 - 1 00% 

"' H20 (values > 100% written beside bar) 

Sample PSD 
PSD of sample taken for dating 

NB 
coarse sand = coarse grain fraction 
medium/fine silt = fine-grain fraction 
for dating 

0 FF 1 = location of dating samples 

Silt mineralogy 
top bar = coarse silt 
middle bar = medium silt 
bottom bar = fine silt 



Table C1 Dosimetry data for all samples 

aOtal* ratio Mean Potassium fractional doses (%) 
aO/al* BTLD %±0.05 alpha beta gamma cosmic FF1 

FF2 8.84/12.31 1.39 1.76±0.5 1.8 FF3 8.71111.01 1.26 1.32±0.7 1.55 35 36 23 4 FF4 8.75/9.37 1.07 1.66±0.1 1.34 45 24 24 5 
8.91/9.24 1.04 0.89±0.2 0.6 WM1 

WM2 12.1/12.37 1.02 2.69±0.2 2.82 WM3 9.84/10.01 1.02 2.97±0.3 2.96 27 43 25 3 WM4 10.91/11.4 1.04 2.73±0.2 2.96 19 43 30 7 WM5 9.42/9.52 1.01 1.76±0.1 1.84 24 41 28 5 
7.25/7.86 1.08 1.26±0.1 1.18 HAZ1 

HAZ2 9.53/9.91 1.04 3.33±0.2 1.55 11 55 27 5 HAZ3 14.39/15.4 1.07 3.46±0.1 2.0 
14.56/15.09 1.04 3.25±0.1 2.73 

SLG1 
SLG2 11.86/12.05 1.02 2.64±0.1 2.42 36 39 21 3 SLG3 12.01/12.61 1.05 2.97±0.2 2.68 34 39 21 4 SLG4 11.33/11 .82 1.04 2.53±0.3 1.87 25 44 25 4 

11.34/11.78 1.04 2.67±0.1 2.63 WH1 4 WH2 12.6112.7 1.01 3.38±0.2 3.47 29 42 23 3 
12.46/13.25 1.06 2.72±0.3 2.4 50 28 17 SP1 

SP2 11.06/12.34 1.12 3.2±0.3 3.08 5 SP3 8.85/9.24 1.04 2.79±0.1 2.57 19 50 24 6 SP4 8.62/9.31 1.08 2.61±0.2 2.61 21 48 24 7 SP5 12.05/12.63 1.05 1.13±0.2 1.88 29 27 36 SP6 4.81/5.47 1.14 1.02±0.1 3.49 SP7 9.99/10.96 1.1 2.62±0.4 3.07 28 43 24 3 SP8 12.51/13.32 1.06 3.76±0.3 3.31 SP9 12.47/13.04 1.05 3.24±0.1 2.56 26 47 23 2 
12.39/13.13 1.06 3.57±0.3 2.47 15 56 25 3 

* aO/al denote sealed and unsealed alpha counts in cts/ksec/42mm diameter screen 



Table C.2 Measurement data for all samples 

Correlation Bleach 
IRSL IRSL 

Stability Tlplateau signal: noise initial signal 
coefficient* oc:t residual% oc ratio (cts in1st sec.) 

Dur90TL.FF1 68±3 none 
Dur901R.FF1 72±4 3.1 334 
Dur90TL.FF2 43±4 none 
Dur901R.FF2 51±6 2.8 299 
Dur90TL.FF3 0.85 100±5 9.1 325-375 
Dur901R.FF3 0.87 101±2 0.03 6.3 682 
Dur90TL.FF4 0.88 100±3 7.0 325-375 
Dur901R.FF4 0.84 100±3 0.04 7.3 786 
Dur90TL. WM1 96±6 none 
Dur901R. WM1 98±4 3.0 329 
Dur90TL. WM2 94±3 none 
Dur901R.WM2 101±1 1.6 177 
Dur90TL.WM3 100±5 6.5 325-350 
Dur901R. WM3 0.21 100±4 0.08 9.1 984 
Dur90TL. WM4 0.91 101±3 5.7 325-375 
Dur901R.WM4 0.95 100±3 0.01 32.6 3525 
Dur90TL.WM5 0.90 100±2 10.0 325-400 
Dur901R. WM5 0.88 101±1 0.01 19.25 2079 
Dur901R. WM5* 0.89 101±4 0.06 16.5 1783 
Dur90TL.HAZ1 36±9 none 
Dur90IR.HAZ1 40±8 1.4 156 
Dur90TL.HAZ2 0.93 100±5 16/25 325-375 
Dur901R.HAZ2 0.87 103±2 0.01 4.4 476 
Dur90TL.HAZ3 101±4 325-350 
Dur901R.HAZ3 100±3 10.9 1186 
Dur90TL.SLG1 0.85 101±2 none 
Dur901R.SLG1 0.88 102±4 1.9 206 
Dur90TL.SLG2 0.3 100±2 5.8 325-400 
Dur901R.SLG2 0.80 101±5 0.08 4.7 508 
Dur90TL.SLG3 0.91 103±5 4.75 325-400 
Dur901R.SLG3 0.87 1 01±1 0.03 6.2 669 
Dur90TL.SLG4 0.93 100±4 8.3 325-400 
Dur901R.SLG4 0.95 102±2 0.01 7.1 764 
Dur90TL.WH1 0.97 104±2 6.7 325-400 
Dur901R.WH1 0.97 101±3 0.06 34.2 3695 
Dur90TL. WH2 0.98 101±3 4.6 325-400 
Dur901R. WH2 0.97 99±2 0.06 34.4 3718 
Dur90TL.SP1 88±3 none 
Dur901R.SP1 101±1 3.6 394 
Dur90TL.SP2 99±1 7.3 none 
Dur901R.SP2 0.93 102±3 0.01 5.6 605 
Dur90TL.SP3 100±2 8.3 325·350 
Dur901R.SP3 0.89 100±4 0.1 7.7 834 
Dur90TL.SP4 101±1 7.3 325-380 
Dur901R.SP4 0.9 100±3 0.06 7.3 791 
Dur90TL.SP5 100±5 3.9 325-400 
Dur901R.SP5 102±2 0.04 28.4 3072 
Dur90TL.SP6 0.91 1 01±1 6.4 325-400 
Dur901R.SP6 0.83 100±6 0.07 6.4 687 
Dur90TL.SP7 100±3 5.6 none 
Dur901R.SP7 101±3 1.2 18.6 2007 
Dur90TL.SP8 0.85 100±5 2.8 325-375 
Dur90IR.SP8 0.87 101±1 0.04 7.4 801 
Dur90TL.SP9 0.89 1 01±1 3.7 325-380 
Dur90IR.SP9 0.94 100±2 0.03 8.8 954 

* fit of data to weighted linear regression curve. :t at 18°C for 6 months 


