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Abstract 

The theory of twistors and the theory of integrable models have, for many years, 

developed independently of each other. However, in recent years it has been shown that 

there is considerable overlap between these two apparently disparate areas of mathematical 

physics. The aim of this thesis is twofold; firstly to show how many known integrable 

models may be given a natural geometrical/twistorial interpretation, and secondly to 

show how this leads to new integrable models, and in particular new higher dimensional 

models. 

After reviewing those elements of twistor theory that are needed in the thesis, a gen­

eralisation of the Yang-Mills self-duality equations is constructed. This is the framework 

into which many known examples of integrable models may be naturally fitted, and it also 

provides a simple way to construct higher dimensional generalisations of such models. 

Having constructed new examples of (2 + l)-dimensional integrable models, one of 

these is studied in more detail. Embedded within this system are the sine-Gordon and 

Non-Linear Schrodinger equations. Some solutions of this (2 + l)-dimensional integrable 

model are found using the 'Riemann Problem with Zeros' method, and these include the 

soliton solutions of the SG and NLS equations. The relation between this approach and 

one based the Atiyah-Ward ansatze is dicussed briefly. 

Scattering of localised structures in integrable models is very different from scattering 

in non-integrable models, and to illustrate this the scattering of vortices in a modified 

Abelian-Higgs model is considered. The scattering is studied, for small speeds, using the 

'slow motion approximation' which involves the calculation of a moduli space metric. This 

metric is found for a general AMump vortex configuration. Various examples of scattering 

processes are discussed, and compared with scattering in an integrable model. 

Finally this geometrical approach is compared with other approaches to the study of 

integrable systems, such as the Hirota method. The thesis closes with some suggestions 

for how the KP equation may be fitted into this geometrical/twistorial scheme. 
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Chapter I 

Introduction 

This introduction provides a short outline of some of the historical development of the 

ideas used in the later chapters of this thesis. It describes the history of soliton theory and 

twistor theory, which first appeared during the 1960's. While both areas have physical 

motivations, both use a lot of sophisticated mathematics. Since the late 1970's, with the 

success of the twistor approach in constructing instanton solutions, there has been a large 

interplay between mathematics and physics. This has cumulated in the recent work on 

knot theory, which has benefited both from the mathematical and physical approaches. 

The notion of integrability goes back to the work of Liouville, and the study of Hamil-

tonian systems (which also may be regarded as a one-dimensional field theory, with the 

phase space variables (p, q) being interpreted as the fields depending on one coordinate, 

namely time). Such systems are said to be completely integrable if there are ./V conserved 

quantities (where N is the number of degrees of freedom of the system). Examples of such 

completely integrable Hamiltonian systems are the equations for the Euler, Lagrange and 

Kowalevski spinning tops. However, the concept of integrability in higher dimensions 

developed much latter, and came from soliton theory. 

Despite the large quantities of modern mathematics used in soliton theory today, the 

soliton was first discovered by accident by the naval architect, John Scott Russell, in 

August 1834 on the Edinburgh to Glasgow canal. In his own words 

I believe I shall best introduce this phenomenon by describing the circumstances of my 

own first acquaintance with it. I was observing the motion of a boat which was rapidly drawn 

along a narrow channel by a pair of horses, when the boat suddenly stopped-not so the mass 

of the water in the channel which it had put in motion; it accumulated round the prow of the 

vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great 
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velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined 

heap of water, which continued its course along the channel apparently without change of form 

or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of 

some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot 

to a foot and a half in height. Its height gradually diminished, and after a chase of one or two 

miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first 

chance interview with that singular and beautiful phenomenon which I have called the Wave of 

Translation, a name which it now very generally bears. 

He immediately noticed that this was a new phenomenon, and a major part of his subse­

quent work was on its many properties. Russell's work was slow to be accepted; both Sir 

John Herchel and Stokes gave other, incorrect, explanations. However, in the 1870's both 

Boussinesq and Rayleigh found the hyperbolic secant squared solution to the problem of 

water waves. This work was rederived in 1895 by Korteweg and deVries, and the basic 

equation 

«t + u x x x + 6u.ux = 0 

still bears their names (though often shortened to just the KdV equation). The 'great wave 

of translation' is essentially a nonlinear phenomenon, the tendency of waves to disperse 

or to form shock waves being, in some sense, balanced. This balancing of opposing forces 

is ubiquitous among equations with soliton solutions. 

Another important equation to emerge in the 19 t h century was the sine-Gordon equa­

tion. It arose in the study of hyperbolic geometry,171 where it is the condition for the 

metric 

ds2 = du2 + dv2 — 2 cos 4>{u, v).du.dv 

to have constant negative curvature. Backlund and Bianchi developed a scheme to gener­

ate what now would be called a multi-soliton solution to this equation. The method used 

by Backlund, nowadays called the Backlund transformation, is a way to generate new so­

lutions from old solutions. The same sine-Gordon equation also appeared in 1962, where 

Perrings and Skyrme were using it as a toy model for a nonlinear meson field theory. At 

the time it did not receive much attention, though since then it has been much studied, 

both quantum mechanically and classically. 
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The two meson solution of Perrings and Skyrme was first found numerically, before 

the analytic solution was written down. A lot of progress in nonlinear theories has been 

made in this way. A prime example is the work of Fermi, Pasta and Ulamf8' They were 

studying phonon interactions in a one dimensional anharmonic lattice, using one of the 

first computers, the MANIAC I at Los Alamos. The results obtained were unexpected, 

and like the work of Russell, and Perrings and Skyrme, largely ignored. However, this 

problem was then taken up by Kruskal and Zabusky, though from a continuum point of 

view. In doing so they rederived the KdV equation, then proceeded to solve it numerically. 

They found that the solution to the initial value problem they were looking at broke up 

into a number of solitary waves, which kept their shape after an interaction with another 

solitary wave. They called such solitary waves 'solitons' . 

The next idea to emerge was the infinite number of conservation laws associated with 

a soliton equation. A conservation law (in (1 + l)-dimensions) is an equation like 

dU dF n nr + ir = 0' at ox 

U is called the conserved density, and F the corresponding flux. Conservation Laws, other 

than for energy and momentum, were known to exist, Boussinesq having found the third 

such law for the KdV equation. Higher order laws were discovered by trial and error by 

Zabusky and Kruskal, and by Miura, who went on to show there exists an infinite number 

of such laws. The transformation he used is now known as the Miura transformation.'101 

Undoubtably the most important discovery in soliton theory was the Inverse Scattering 

Transform (or IST for short), originally studied by Gardner, Greene, Kruskal and Miura 

in 1967. |n l Briefly, it involves writing the nonlinear equation as the integrability condition 

for an overdetermined linear system. One of these has the form of a scattering problem 

off a potential given by the initial value of the field. The other gives the time evolution 

of the scattering data. Both of these equations can be solved, and the solution to the 

original nonlinear equation reconstructed. This is shown schematically in Fig 1.1. The 

hard part is the first step; that of writing the equation as the integrability condition for 

an overdetermined linear system. At first this was done by guess work, though later it 
[12] 

was put on a firmer footing by the work of Lax. 

The nonlinear Schrodinger (or NLS) and sine-Gordon (or SG) equations were then 

written in Lax form, and hence their multi-soliton found using the IST. So far the term 
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nonlinear p.d.e., 

plus initial data 

at t = 0. 

direct linear scattering problem 

at t = 0, plus linear 

evolution equation. 

i 

solution to nonlinear 

system for t > 0 . 

linear scattering 

data for t > 0 . 

Fig 1.1. Flow diagram of the method of inverse scattering 

'soliton' has not been defined. A loose definition would be that a soliton is a solution to 

a nonlinear system which 

© Represents a wave of permanent form, 

e is localised, decaying to zero or a constant at infinity, 

9 interacts strongly with other solitons but in such a way that after the 

interaction the individual solitons retain their original form. 

A more technical definition would involve a detailed description of the IST, and will not 

be given here. 

During the 1970's, it was shown by Ablowitz, Kaup, Newell and Segur1"1 (hereafter 

referred to as AKNS) that once an equation was written as the compatibility conditions of 

a linear systems, then an infinite number, or hierarchy, of other equations could be derived, 

and all the 'flows' (i.e evolution with respect to a particular time variable) commuted. 

This scheme has become known as the AKNS hierarchy. A similar scheme known as the 

Derivative Non-Linear Schrodinger (or DNLS) hierarchy also exists, though in effect it is 

no different from the AKNS scheme. This can also be extended to (2 + l)-dimensions, 

while retaining the notion of integrability. For example, the Korteweg deVries (or KdV) 

equation extends to the Kadomtsev-Petviashvili (or KP) equation, and the Non-Linear 

Schrodinger (or NLS) equation extends to the Davey-Stewartson (or DS) equation. 

Parallel to the above developments was the work of Gardner!"' and Zakharov and 

Faddev!15) They showed how the KdV equation could be interpreted as a completely 
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integrable Hamiltonian system. This formalism leads to the quantisation of such systems, 

as well as explaining the infinite number of conservation laws. Also worth mentioning is 

the work of the Kyoto school, in particular the bilinear formalism of Hirota, often called 

Hirota's direct method (see, for example [16]). Rather than writing the equation to be 

solved as the integrability condition of an over-determined linear system (as in the IST 

method), i t is written in a so-called bilinear form. This enables the iV-soliton solution (if 

one exists) to be written down very succinctly. This method also leads to the study of 

vertex operators, infinite dimensional symmetry algebras, and even string theory!18'17' 

Such ideas were not limited to applied mathematics. In theoretical physics many 

people started to study model field theories in two dimensions, known as chiral and 

sigma models (these also have a natural geometrical structure, and are known as harmonic 

maps amongst differential geometers). It was found that such models (in Euclidean space) 

had localised "multi-lump" solutions, and, like the integrable soliton equations, could 

be written as the integrability condition for an over determined linear system. This 

enabled an infinite number of conserved (though non-local) charges and currents to be 

constructed!1 9 , 2 0' Thus these models have a very similar structure to that of the integrable 

soliton equation. 

With such a wide range of 'integrable' equations, from completely integrable dynam­

ical systems to model field theories, together with the diverse methods and techniques 

that had been developed to solve them, there arose the need for a unified point of view, 

that could treat all the above systems on an equal footing. One such view came from the 

'Twistor Programme' of Roger Penrose. 

In 1967 Penrose introduced the idea of a twistor. It was mainly an attempt to 

provide an alternative approach to the problem of the quantisation of gravity. The basic 

notion is that spacetime points are taken as derived objects, the twistors themselves 

being more basic. The aim of his 'Twistor Programme' is to replace spacetime, and the 

description of physical phenomena that take place in spacetime, by the properties of, and 

structures on, twistor space. This transformation to and from physical and twistor space 

is known as the Penrose Transform; the hope is that new insights, and hence a clearer 

understanding of the processes involved, may be obtained in doing so. 

The concepts of the spacetime point, curvature, energy-momentum, angular momen­

tum, quantisation, the structure of elementary particles, linear field theory and gauge 

field theory have all been formulated (to a greater or lesser extent) in terms of the twistor 
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concept. ' The theory itself uses some very beautiful mathematics, both old (e.g. com­

plex projective spaces, the Klein correspondence) and new (e.g. sheaf cohomology). 

Penrose went on the show how the self-dual Einstein equations could be given a 

description in terms of a deformed twistor space, the so-called 'nonlinear graviton con­

struction' ! 2 4 ' The self-dual Yang-Mills equations were shown by Richard Ward' 2 5 ' to also 

admit a twistor interpretation; solutions to the self-dual equations correspond to holo-

morphic vector bundles over projective twistor space. There are two ways to construct 

such bundles; one is as an extension of line bundles, and this led to the Atiyah-Ward' 2 6 ' 

ansatze AN for such fields, and the second is using the method of monads, which led to 

the Atiyah-Drinfeld-Hitchin-Manin (or ADHM) construction. 

The result of this work was the solution of the instanton problem; the construction 

of self-dual (or instanton) solutions to an SU(2) gauge theory of finite energy. It had 

been shown that the general solution must depend on 8k — 3 parameters (where k is the 

topological charge). A family depending on 5k + 4 (though for k = 1,2 these are not 

independent, owing to some extra symmetries) parameters had been found (the t'Hooft-

Corrigan-Fairlie-Wilczek ansatze)'281 but not the ful l solution. 

A problem that was being extensively studied in the early 80's was the construction 

of monopoles. These are static solutions to a Yang-Mills-Higgs field theory on R 3 + 1 . An 

exact solution (in the BPS limit) of topological charge one had been found, but not the 

general solution, which depends on 4A; — 1 parameters (for gauge group SU(2)). Manton' 2 9 1 

noticed that the equations governing static monopoles (the Bogomolny equation) could 

be interpreted as the self-duality equation of a pure Yang-Mills field theory, under the 

assumption that none of the gauge fields depend on one of the coordinates. As such, 

the twistor techniques could be used to construct solutions, and the known charge one 

solution was rederived in this way. The first charge two solution (with an axial symmetry) 

was found by Ward!3 0' and generalised to arbitrary charge (again with axial symmetry) 
F31 32] f33] 

by Prasad and Rossi. ' Ward then found a non-axially symmetric solution, and the 
['34] 

method was generalised to a candidate solution depending on the full ik — l parameters. 

It was still an open problem whether this solution had the required smoothness properties, 

and this was finally answered through the work of Hitchin! 3 5 ' 3 6 1 

Before the full solutions were found, the instanton and monopole equations were solved 

under the imposition of additional symmetries. In doing so it was noticed that the equa­

tions reduced to well known two dimensional integrable models. For example, the first 
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solutions of arbitrary topological charge were the S0(3) invariant SU(2) instantons con-

structed by Witten. Here the equations finally reduce to the Liouville equation, whose 

general solution had been known since the 19 t h century. With higher rank gauge groups 

the result were the Toda lattice equations. Many other models, such as the chiral and 

sine-Gordon equations (both in two dimensions), were also found 'embedded' within the 
M a i 

self-duality equation. As such, they could all be solved using the Penrose correspon­

dence. Also many of the techniques of soliton theory were given a twistor interpretation. 

Recently, the KdV and NLS equations were found to be a reduction of the self-duality 

equations, and their hierarchies given a twistor description.'391 Thus twistor theory pro­

vides a unified approach to disparate equations and techniques of soliton theory. 

There are still many outstanding problems; for example, not all equations which 

are known to be integrable have been shown to fit into the twistor picture, the notable 

exceptions being the Davey-Stewartson and Kadomtsev-Petviashvili equations. While the 

one-dimensional soliton systems are well understood, the higher dimensional systems are 

not, nor is the notion of integrability, other than for the one-dimensional systems. The 

hope is that twistor theory will shed some light on these problems. Also the precise 

connection between the inverse scattering transform, the Ward correspondence and the 

Hirota construction needs clarifying. However, these problems, and many others, are 

currently being investigated. 

With models in 2-Euclidean dimensions (chiral and tr-models) and in 3-Euclidean di­

mensions (magnetic monopoles) possessing localised 'lump'-like solutions, it is a natural 

question to ask how, on introducing a time variable (in such a way that the lumps of the 

underlying models are now the static solutions), these lumps interact with each other. 

Many of these models have 'topological stability', i.e. there exists some integer, depend­

ing only on the topology of the fields, which is constrained to be a constant. Such a 

number may loosely be thought of as the number of lumps. However such stability is not 

enough to avoid chaotic behaviour - as such extensions to higher dimensions destroys the 

integrability of the system. 

One analytic approach to the study of such systems was proposed by Mantonj 4 0 1 and is 

now known as the 'slow motion approximation', 'adiabatic approximation' or the 'geodesic 

approximation'. This involves computing a metric (induced by the integral defining the 

kinetic energy of the fields) on the finite-dimensional space of static solutions, or Moduli 

space. It is the argued that for small speeds the time evolution of the fields may be 



Introduction 8 

approximated by geodesic motion on the moduli space. This idea has been applied to a 

number of models , 1 " '" ' " ' 4 4 ' 1 as well as to the original case of magnetic monopoles. 

This thesis is laid out as follows. Chapter I I outlines some of the elements of twistor 

theory, in particular the Penrose correspondence between spacetime and twistor space, the 

treatment of massless free fields, and the construction of solutions to the Yang-Mills self-

duality equations. Finally a generalisation of the standard twistor space is considered, 

and a system of integrable equations (generalisations of the self-duality equations) are 

constructed, corresponding to certain holomorphic vector bundles over this twistor space. 

Chapter I I I shows how many known examples of integrable models fi t into the twistor-

geometric scheme described in chapter I I . These include the completely integrable Hamil-

tonian dynamical systems, chiral and cr-models, as well as various soliton systems, and 

they all arise as dimensional reductions of the equations studied in previous chapter. In 

particular, the AKNS hierarchy is extended to (2 + l)-dimensions, and examples associ­

ated with Hermitian symmetric spaces are constructed. Finally a hierarchy of models with 

gauge group SU(oo) (interpreted as SDiff(Y?) for some 2-surface £ 2 ) are constructed. 

Before all this a definition of integrability is given. 

In chapter IV one of the integrable (2 + l)-dimensional models constructed in the 

previous chapter (with gauge group SU(2)), and its associated hierarchy is studied in 

more detail. This involves showing how the generalised self-duality equations of chapter 

I I may be solved using the 'Riemann Problem with Zeros' method. Then ansatze are 

developed to ensure that the fields have the correct spacetime symmetries, and hence 

are a solution of the (2 + l)-dimensional hierarchy. This system contains both the sine-

Gordon and Non-Linear Schrodinger equations as further reductions, and it is shown 

how the soliton solution to these may be constructed. For the sine-Gordon equation 

this requires the imposition of an algebraic constraint as well as a spacetime symmetry. 

Within this geometrical framework these two equations are very similar indeed, despite 

their superficial differences. The connection between this approach and the Atiyah-Ward 

ansatze is then discussed briefly. 

The models described in chapters I I I and IV have the special property of being in­

tegrable. These are mathematically very special; most models are not integrable. In 

Chapter V the slow motion approximation, originally proposed for monopole scattering, 

is applied to a modified vortex model. As in the case of monopoles, the equations giving 
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the static solutions are integrable, and this enables the scheme to be completed. The ap­

proximation involves finding a metric on the (finite dimensional) space of static solutions. 

A formula for the general n-vortex scattering is derived, and an example of the interaction 

of two vortices is given. The interaction is fundamentally different from scattering in an 

integrable model, and this point is discussed. 

Finally, chapter V I is an outlook on future research, and describes some of the con­

nections between this and other approaches to the study of integrable systems. The 

appendices contain some of the mathematical definitions used in the thesis, and more 

details of some of the constructions. 
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Chapter I I 

Elements of Twistor Theory 

2.1 Introduction - The Penrose Transform 

[21] rr~\ 

Twistors first appeared in 1967 in a paper by Roger Penrose. The fundamental 

idea behind the theory is that spacetime is not fundamental, but is a secondary structure 

whose properties are derived from an auxiliary manifold known as Twistor space. Phys­

ical structures on spacetime, such as solutions of the wave equation, then correspond to 

geometrical structures over twistor space. The Penrose transform is this transform of geo­

metrical structures of (or on) twistor space, to properties of (or structures on) spacetime: 

Geometric Physical 
V : Structures on —> equations on 

Twistor Space Spacetime 

This transfrom may be defined succinctly using a double fibration 

F 

¥ M 

where F is a fibre bundle over both T and M , with projections fi and v respectively. The 

spaces involved are: 

T : Twistor Space 

M : Spacetime 

F : The correspondence space between TT and M • 

Thus the Penrose transform between points of 7T and the corresponding structure in M is 

denned by the composite map u o / i - 1 between T and M . 
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The geometry of this will be explained in the next section, and in the following sections 

it will be shown how geometric objects over T , like holomorphic line and vector bundles, 

correspond to solutions of various equations in spacetime, such as the helicity ^ equation 

and the self-dual Yang-Mills equations. Finally a generalisation of the standard twistor 

space will be considered which will be used in the next chapter to study certain integrable 

models. 

Notable omissions in this chapter are the discussion of the conformal properties of 

spacetime, and how they may be derived from twistor space, and the importance of the 

local isomorphisms 

2-1 

SL(2,€) —* 0+( l , 3 ) 

and 

2-1 2 -1 

SU(2,2) — • 0(2,4) —> C ( l , 3 ) . 

These, and many more details of the material found in this chapter, may be found in 

[22,23,46,47], and the references contained in them. 

2.2 The Geometry of Twistor Space 

Let M denote Minkowski space, and C M complexified Minkowski space, C M = C 4 , 

with metric ds2 = dt2 — dx2 — dy2 — dz2 . The spinor representation of the spacetime point 

x1* is 

A A' I ( x + iz t - y \ 
x» *-> x A A = —7= 

V 2 \ t + y x - i z ) 

Consider a spinor field f i ^ x ' 1 ) on Minkowski space, which satisfies the equation 

v A , ( A n 5 ) = o, (2.i) 

where S/AA1 = QXAA' • The symmetrization implies that there exists a spinor field -K^' such 

that 



Elements of Twistor Theory 12 

and the absence of curvature in Minkowski space implies that 

and hence that the spinor rrA> 1S constant. Equation (2.1) is known as the twistor equation. 

The solution of this equation (in Minkowski space) is 

SlA = u A - i x A A \ A , , (2.2) 

where u A is a constant of integration. This gives the first definition of Twistor space, 

denoted by TT, namely the solution space to the twistor equation, so Z a GTT, where 

Za = (ilA,rA,), a = 0,1,2,3. 

As a vector space, TT = C 4 . 

Twistor space may be equipped wi th a inner product 

E : ¥ x TT - » EL 

E { z a , z ^ ) = nA7rA + n A ' w A . , 

A- -A' 

= LJ irA + u irAi, 

= z°z2 + Z1Z3 + z°z2 + z x z 3 , 

= Tiafj'Z01 Z^ , 

where Z a € T is the complex conjugate of Za G TT • Since the inner product E is non-

degenerate, i t may be used to identify T wi th TT* , so that primed indicies do not appear!4 7 1 

Complex conjugation is then seen as a map to TT* rather than to "fT : 

Za = -> Za = ( x A , n A ' ) . 

[In spinor theory one has spaces S ,5 ,S* and 5*, and conjugation is a map S —> S , 

a A eS aA' eS s.t. aA' = aA.] 

Another, equivalent, definition of a twistor is in terms of the zero set of the spinor 

field SlA, i.e. 

u A = i x A A \ A , . (2.3) 

This equation gives the correspondence between structures in M and structures in TT. For 
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a general point in "IT, the solution of this equation, x A A , w i l l in general lie in C M rather 

than in M . The condition for the point to be a real spacetime point wi l l be given below. 

The general solution to (2.3) is given by 

„AA' _ A A' , \A„A' 

where XA is an arbitrary spinor and x A A is a particular solution. This defines (for irAi ^ 0 ) 

a 2-plane in C M . This has the properties that 

o every tangent is null , 

o any two tangents are orthogonal, 

® the tangent bivector is self — dual. 

This plane is called an a-plane (a /?-plane is similarly defined in terms of a dual twistor) . 

The plane itself depends only on the proportionality class [Za] of the twistor Z a . This 

enables the projective twistor space I P T to be defined. Thus a point i n P T corresponds to 

an a-plane in C M . The extra information in IT is the scale factor for the spinor irA> . Since 

T = C 4 , i t follows that P I T , and hence P T * are isomorphic to the complex projective 

space C P 3 ( to do this one excludes the point u A = 0 , nAi — 0 , for which (2.3) is t r iv ia l ly 

satisfied for any fini te x A A in C M ) . 

Suppose that an a-plane, corresponding to a twistor Za = (uA,irAi) > contains a real 

point x A A ' , then 

u A f A = i x A A
 TAITA> . 

This implies that E = 0 , and the twistor is said to be null . Conversely, i f E = 0 , then 

OJATTA = ia, a e JR.. 

So 

u A = i x A A \ A , , 

where 

xAA' = ±u>AuA'. o a 

Hence x A A is a real point in the a-plane. Thus, an a-plane contains a real point if and 

only if the corresponding twistor is null. I t follows that the a-plane contains the whole 
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null geodesic given by 

xAA' = xAA' + rTtAnA' rem., 

not just the single real point x A A . 

Twistor space, and projective twistor space, naturally divides into three regions, de­

pending on the sign of the inner product. 

T + and P T + i f E > 0 , 

K and P N i f E = 0 , 

T ~ and F T " i f E < 0 . 

So a nu l l twistor corresponds to a nul l geodesic in M . Suppose that X a and Y a both 

belong to P I N . I t may be shown that the corresponding nul l geodesies in M w i l l meet i f 

and only i f X a Y a = 0 . Since X a X a = 0 and Y a Y a = 0 , the twistor Za = t X a + r)Ya 

also corresponds to a nul l geodesic in M . The locus of such a nul l geodesic defines the nul l 

cone at the point of intersection of the two nul l geodesies corresponding to the twistors 

X a and Y a . The structure i n P T corresponding to this nul l cone is the proportionali ty 

class for the above Z a and is a projective line Lp = C P 1 which lies wholely in P I N . This 

line in P T has the equation u>A = i x A A ir^'> where x A A is the point at which the nu l l 

cone is defined. 

This correspondence may be extended further. Let two points p and q in Minkowski 

space be nul l separated. In P I N , the lines Lp and Lq (corresponding to the points p and 

q respectively) wi l l meet at a point which represents the connecting null geodesic i n M . 

This completes the description of what lines in P I N correspond to in M . Next the 

geometry of arbitrary lines in P T wi l l be considered. This wi l l lead to the famous Klein 

correspondence. 

Let X a and Y a be two arbitrary points in P T . The connecting line may be represented 

by the bivector, or Pliicker coordinates, 

p a p = X a y p _ y a x p _ ( 2 4 ) 

As in the case a-planes, i t is only the proportionality class [P°^] that determines the line. 

Thus the space of all bivectors is isomorphic to C P 5 , and the space of lines i n P T are 

just the simple bivectors (a bivector is simple i f and only i f i t can be writ ten in the f o r m 
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Fig 2.1 The correspondence between points in P I N and null geodesies in M . 

(2.4) for some vectors X a and Y a ) . I t may be shown that a bivector is simple i f and only 

i f 

This equation defines a (compact) quadric Q4 in C P 5 . So, the space of lines in P T is 

isomorphic to a compact complex manifold Q4 embedded in C P 5 . This is known as the 

Kle in correspondence. By defining a conformal metric on Q4, i t is possible to ident i fy Q4 

w i t h complexified, compactified Minkowski spacetime. So a line i n P T corresponds to a 

point in compactified, complexified Minkowski space. 

So far only complexified Minkowski space has been considered. To define a real point 

in this space one uses the Hermitian structure on PT(see [47]). Defining 
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f P 

IPIW 

IPT 3 

Fig 2.2 The correspondence between lines in P W and null geodesies in M . 

one defines a line as real i f 

Pap = K / M ^ 5 • (2-5) 

One may then show that Pa^ is real if and only i f all the points Za on Pa& are nu l l . The 

space of projective bivectors satisfying (2.5) is the real projective space R P 5 , and the 

simple bivectors give a real quadric R Q 4 , embedded wi th in Q4 . 

I n this thesis other spacetime signatures wi l l be used, namely those for the spaces P»,4 

and R 2 + 2 . A n equivalent way to define a real point is via a 'reality structure', and this 

w i l l be used to define a real point for these spaces. This is an anti-holomorphic involut ion, 

o '. Z° t—+ ( j ( Z ) a , 
(2.6) 

s.t. ( a ( Z ) ° , a(Z)\a{Z)\o{Z?) = (Z\ -Z*, Z\-Z*). 

A n y line jo in ing Z to cr(Z) is real, in the sense that i t is invariant under the operation of 

a. Moreover, the twistor equation u>A = i x A A ir^i is invariant under the operation i f and 
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Fig 2.3 The Kle in correspondence: 

only if x A A satisfies 

which implies 

x = 

j l l ' _ _^oo7

) 

X 1 0 = I 0 1 ' . 

1 / - i x ° - f x 3 x 1 - i x 2 

y/2 \ x 1 + ix2 -ix° - x 3 

This corresponds to R 4 ; the different reality structure 

{a{Z)\a{Z)\a{Z)\a{Zf) = { Z \ Z \ Z \ Z 2 ) (2-

gives the 1 R 2 + 2 case. Such structures are not unique; the function defined by 

(a(Z)°,a(Z)\a(Z)\a(Z)3) = ( Z \ T \ T \ & ) 

also gives H 2 + 2 , 



Elements of Twistor Theory 18 

I f one removes the projective line ir0> = iry = 0 , or line at inf ini ty , f r o m P T , the 
resulting space (denoted by T 7 ) corresponds to non-compactified space. This may also be 
thought of as a fibre bundle over C P 1 , since now the irA> axe coordinates on a Riemann 
sphere. This description wi l l be used in section 2.7 where a generalisation of twistor space 
w i l l be constructed. 

2.3 The Geometry of Minitwistor Space 

One natural object that may be defined on M is a Ki l l ing vector field 

• 9 tAA' 9 
dxa s dxAA' ' 

and using equation (2.3) one may work out the corresponding structure on T , namely the 

holomorphic vector field 

d - A d V = SirAi— 1- 8u 
dirA> duA 

where 

STCa, = - \ { d A A ' i A B }TTB' , 

8uA = ixAA'8-KA. + i A A \ A > . 

For example, in M the vector field ^ corresponds to the holomorphic vector field 

Note that this is non-zero in the region T ^ of twistor space (see section 2.2), and this 

enables one to factor out by this field to fo rm the well-defined quotient T ^ / V . This 

quotient is the holomorphic tangent bundle to the Riemann sphere, or r 1 , 0 € P 1 (this 

is also denoted by 0(2): for an explanation of this see section 2.7), and is known as 

minitwistor space. 

The vector field given by (2.8) annihilates the combination 

u: = \(TCQ>UX 4- 7ri/u>°) , 

and i t follows that the relation between P . 2 + 1 and minitwistor space is expressed (on 
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removing, for clarity, the prime superscripts) by 

w = x A B 7 r A 7 r B , (2.9) 

where 

. I t + v x \ 
(2.10) 

analogously to equation (2.3). So given x A B , solving for ( U ; , 7 T A ) gives the correspond­

ing structure in minitwistor space, and vice-versa. The homogeneous coordinates on 

minitwistor are (u>,7rA), where 7rA are the homogeneous coordinates on the base space 

C P 1 , and u> the fibre coordinate. These are defined up to equivalence 

(u ; , 7 r A )~ (A 2 u> ,A7r A ) , VA 6 C \ { 0 } . 

Thus the space IT1 /V is isomorphic to the 0(2) line bundle on C P 1 , i.e. the holomorphic 

tangent bundle to the sphere. 

This may be expressed in the following diagram: 

TT7 <—>CM 
d 
31 

V 

0(2) <—>C2+1. 

Mini twis tor space was first introduced by Hi t ch in 1 3 5 , 3 6 1 in the study of monopoles on 

P 3 ( though i t dates back to the work of Weierstrass on minimal surfaces'7 1 ) . One may 

also factor out by the Ki l l ing vector field on P 4 to get P 3 , so getting a Penrose correspon­

dence between P 3 and minitwistor space. The structure of minitwistor space is induced 

f r o m that of twistor space itself, but one may start directly i n P 3 by considering the 

complexification of the space of oriented straight lines, or, for P 2 + 1 , the complexification 

of the space of null planes. 

So far one has actually been considering the complexification of P 2 + 1 ; to define a 

real point one needs a reality structure. Let a be an antiholomorphic involution on 0 ( 2 ) , 
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4> 

Fig 2.4 The Structure of minitwistor space, 

or reali ty structure, defined by 

a(a;,7ro,7ri) = (tj,7ro,7ri) (2.11) 

where " denotes complex conjugation. The twistor equation (2.9) is invariant under this 

operation i f and only i f the matrix a^ 8 , and hence the spacetime point , is real. Different 

reality structures would correspond to different spacetime signatures, such as the positive-

definite signature relevant to R 3 . 

Defining non-homogeneous coordinates on TT, v = u/iroiri and £ = TTQ/^I > the twistor 

equation (2.9) becomes 

v = * + j f ( < + y) + l r 1 ( * - y ) . (2-12) 

Solving this equation for i A B for a particular point €TT gives the corresponding 

structure in R 2 + 1 . I f are both complex, the solution corresponds to a timelike line 

i n R 2 + 1 w i t h direction vector 

(* ,x > y) = ( l + | ^ , - e - f , l - | € l 2 ) . (2-13) 

The orientation of the line is given by the imaginary part of £ : 

I m £ > 0 line future pointing 

I m £ < 0 line past pointing . 

Points w i t h {u, £} both real correspond to real null planes. The remaining points in ¥ 
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do not correspond to anything in 1 R 2 + 1 . More details may be found in [48]. 

2.4 The solution of the Massless Field Equations 

In 1904, BatemanJ 4 9 1 extending the work of W h i t t a k e r f 0 1 gave an integral formula 

for the general solution to the wave equation D(f> = 0 , 

JT 

</>(x,y,z,t) = J F(xcos 0 + y sin# + iz,y + izsinO + t cos 9,0)d9, (2.14) 
— IT 

This , though unknown at the time, has a natural twistor interpretation, and generalises 

to massless free fields of arbitrary spin, and extends to fields coupled to a background 

self-dual gauge field. The complete description of massless fields involves hyperfunction 

theory and sheaf cohomology, details of which may be found in Ward and Wells. 

The geometry behind this integral comes f rom the double fibration: 

F 

T M 

Starting w i t h a holomorphic function / on T , one pulls the funct ion back to the space 

F ; this w i l l be denoted by the symbol px , so 

Pxf(Za)=Pxf(uA,*A-) 

= f { i x A A irA,,-KAI). 

To get a funct ion on M one integrates along the fibres on v, i.e. the dependence on 

irA' is integrated out, leaving a function on M . This funct ion is constrained by the 

geometry inherent in the double fibration to satisfy some differential equation, as w i l l 

be shown below. Conversely, one could think of the differential equations as having 

'disappeared' into the holomorphic geometry of functions over twistor space. 

So consider the integral 

<t>{x) = ^ . j p x f { Z a ) - K C ' d i r c \ 

1 r / , < 2 - 1 5 ) 
= 27if / ( ? a ; j 4 j 4 ' 7 r ^ ' ' 7 r ^ ' ) 7 r C ' ^ C 

r 
The contour F is any path on the Riemann sphere which avoids the singularities of the 
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integrand, and so cannot be shrunk continuously to a point without crossing a singularity. 

The example below wi l l clarify the choice of contour. 

From the special dependence on x in the above formula, i t follows that 

d2<t> 1 L i \ d 2 / i C ' 
DXAA>dxBB' = ^ p - V Q ^ W B ' V C ' d K , 

which implies 0<f> = 0 . 

For the integral to be well defined on (DP 1, the function / must be homogeneous of 

degree —2 (the TTAI are homogeneous coordinates on C P 1 and so are defined only up to 

the equivalence 

(TTO'.TTIO ~ ( A T T 0 ' , A T T V ) V A e C \ { 0 } , 

and so irc'dTrc is homogeneous of degree + 2 . Thus i f the field <j> is to independent of such 

changes, then / must be homogeneous of degree —2 . ) . By introducing non-homogeneous 

coordinates on (DP1 and suitablely parametrizing the contour, Bateman's formula (2.14) 

is recovered. 

This extends to other zero rest mass equations, for example 

V C A <t>A'...B' — 0 

(^-indices) which describes massless fields of helicity | has as a solution 

<f>A>...B'(x) - ^ j> KA> • • • TrB'Pxf(ZQ)irc>dnc (2.16) 

(where / is homogeneous of degree —s — 2). Similarly, the equation 

(s-indices) which describes massless fields of helicity —| has as a solution 

(where / is homogeneous of degree -fs — 2). 
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E x a m p l e 

Let f ( Z a ) = ^Aa^)(B^H)' t n e n > defining the spinors aA' and fiA' by 

P x ( A a Z a ) = (iAAS^' + AA)irAi = a ^ , 

p X ( B a Z a ) = ( s ^ x ^ ' + £ ^ = fiA\A. 

the integral formula (2.15) gives 

[x) = ir-- I TA> \ToW' x * c * r 

r 

Let A and B be the planes in P T w i t h the equations AaZa = 0 and B a Z a = 0 

respectively, and let Q be the line A f l B . I t w i l l be assumed that A and B are such that 

Q is a line, not a plane. Let R be any line which intersects A and B but not Q . 

R 
K r 

8nR 

Q 

A B 

Fig 2.5 The planes A and B , the lines Q and R , and the contour T. 
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The line R in P T is isomorphic to the Riemann sphere C P 1 . Let U& be the region 

R - { B n R } , and let U-Q be the region R - { A D R } . Then these two open sets cover the 

sphere R . The contour V used in the integration is any closed curve (assumed to have 

winding number one) in the intersection region UA H UB • In a more general situation 

where R is covered wi th more than two open sets, a branched contour integral has to be 

used. More details of this and many other points may be found in [23]. 

Let z be a coordinate on C P 1 defined by TTAI = aA> + zj3A>. Then 

r 
1 

aA'f}A. 

(this, of course, assumes that aA 0A' ^ 0) . I t then follows f r o m the definition of aA and 

PA' that 

^ ( X ) = JAW (x° - q*)(xa - qa) • 

where q is the point corresponding to the line where the two planes AaZa = 0 and 

BaZa = 0 meet. 

Note that i f / is replaced by / + hj^ — h& , where hj^ is holomorphic in U& and 

/iB is holomorphic in UB, then by Cauchy's theorem this gives the same answer as / . 

I n cohomology terms, the integral only depends on the class of functions [ / ] , and the 

above transformation changes / by a coboundary, and so does not alter [ / ] . Such an / , 

homogeneous of degree n , belongs to the cohomology group / ^ ( P T , 0(n)). Thus the 

differential equations 'disappear' into the complex geometry of twistor space. 

So to recap, as long as the line R in P T avoids the singularity region Q, then the 

fields given by these contour integrals wi l l be non-singular. For example, i f Q € P T , 

then the field (f>(x) w i l l be non-singular for all lines R € P T + . I t may be shown that these 

fields have positive frequency, and so the notion of positive and negative frequency has a 

geometrical interpretation. More generally, the field 4> w i l l be non-singular in any region 

of C M corresponding to any region U that does not contain the line Q. 

Similar results hold for the correspondence between P . 2 + 1 and minitwistor space; 

solutions of the wave equation D(j> = 0 on R 2 + 1 are given by the contour integral 
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<f>{x) = j> Pxf(", TTA)ircdTrC , 

where / € tf^T^CP1,0(-2)). 

2.5 The Twistor Correspondence for Gauge Fields 

Before outl ining the twistor correspondence for gauge fields, one first has to define the 

terms self-dual and anti-self-dual. Given a bivector, its dual is defined by 

*Fab = \ e a b

c d F c d . 

As a consequence of the signature of Minkowski spacetime, * * Fab = —Fab . Any bivector 

may be decomposed into a sum of its self-dual and anti-self-dual parts, or Fab = F^b + F~b > 

where 

The bivector is said to be self-dual i f F~b — 0 , and anti-self-dual i f F^ = 0. The factors 

of i appear because of the signature of Minkowski space. One consequence of this is the 

absence of non-trivial 5ti(7V)-valued (anti)-self-dual fields. For i f Fab is an antihermitian 

matr ix , then so is *Fab, and so *Fab = ±iFab implies Fab = 0 . In this thesis the spaces K , 4 

and R , 2 + 2 (equipped wi th the obvious metrics) wi l l be used, and this problem does not 

arise. The notion of (anti)-self-duality appears naturally when the bivector Fab is wr i t ten 

in spinor fo rm , 

Fab = <j>AB£A'B' + <f>A'B'£AB , 

and hence 

*Kb = -i<S>AB£A'B' + i&A'B'ZAB • 

The bivector is self-dual i f <j>AB = 0 , and anti-self-dual i f <f>A'B4 — 0-
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I t is important to note that the essential information about the geometry of (CM is 

contained in the projective twistor space P T , not in T . The extra structure in T is 

a choice of scale for the spinor TTA> associated wi th w i th a-plane. In fact, IT may be 

thought of as a line bundle w i t h base space P T , nA> being the fibre coordinate. However, 

i f X B = XATTB is the tangent vector to the a-plane, the spinor irA> has to satisfy the 

equation 

xhvh*A. = 0 
« ( 2 - 1 8 ) 

i.e. x V B B ' ^ A ' = 0 • 

So, given a solution to this equation, a fibre bundle T may be constructed. Conversely, a 

given bundle provides a solution to this equation. This leads to a way of encoding some 

additional structure on C M as a bundle over projective twistor space, P I T . 

Consider the generalisation of (2.18), given by 

irB'DBB,$ = * B ' { V B B . - iABB,)$ , (2.19) 

for some vector ABB>. This is an overdetermined system of equations, unless the integra-

bi l i ty condition 

V A [ A ' A B I )

A = 0 (2.20) 

is satisfied. 

So i f the vector AAA> satisfies (2.20), then the equation (2.19) is integrable on a-

planes. This defines a holomorphic line bundle over that part of P T corresponding to the 

region in <CM on which the vector AAA> is defined. The fibre of this bundle is the vector 

space of solutions to (2.19). 

On each a-plane the equation 

vA'DAA.$ = 0 (2.21) 

may be solved. Consider all the a-planes through a point p (E<DM. Equation (2.21) 

enables the solution on different a-planes to be compared, by comparing them at the 

point p. Thus the bundle, when restricted to the line Lx in P T , must be t r iv ia l . 
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From the field 

<t>AB = VA'{AAB) ' 

i t follows f r o m (2.20) that <f>As satisfies Maxwell's equation 

VA,A4>AB = 0 , 

i.e. the field AAA> is the potential f rom the Maxwell field <f>AB • Conversely, given any anti-

self-dual Maxwell field, its potential AAA> may be found and hence the bundle constructed. 

This may be summarised as: 

T h e o r e m 2.1 

Let U be an open convex set in C M . There is a natural one-to-one correspondence 

between 

(a) anti-self-dual Maxwell fields on U ; 

and 

(b) complex fine bundles E over the corresponding region 

U of P T such that E restricted to the line Lx is t r iv ia l for all x € U. 

This is known as the twisted photon construction. This is another example of how the 

differential equations on C M 'disappear', under the Penrose correspondence, into the 

complex geometry of holomorphic bundles over projective twistor space. I t is important 

to note that this is a local construction, over a region U of C M . Global solutions, w i t h 

particular boundary conditions, are harder to construct. 

This theorem generalises to non-Abelian gauge groups of arbitrary rank, which is 

remarkable because the equations involved are non-linear. The result is: 
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T h e o r e m 2.2 

Let U be an open convex set in (DM. There is a natural one-to-one correspondence 
between 

(a) anti-self-dual GL(N,(C) gauge fields on U; 

and 

(b) holomorphic rank-N vector bundles E over the corresponding region 

U of P T such that E restricted to the line Lx is trivial for all x G U. 

Suppose the region U is covered by two convesets W and W_. The bundle is determined 

by the N x N transition matrix F(Za), holomorphic on the intersection W D W. As in 

the last section, let px denote the pull back of the (now matrix valued) function F(Za) 

from IT to the correspondence space F . So let 

G{x^A,) = P X F { Z a ) 

• AA' ( 2 - 2 2 ) 

= F(ix i^A'^A')-

As a consequence of the bundle being trivial when restricted to the line Lx, the matrix 

G splits 

G = H.H'1, (2.23) 

where H and H_ are holomorphic in W and W_ respectively. The gauge fields are then 

extracted from the formula 

itA'AAA, = H - l * A , V A A , H , 
(2-24) 

= H - 1 * A V A A , H . 

This last line follows from the fact that the operator irA V A A > annihilates G. It also 

follows from this that the fields AAA> are well defined, i.e. linear in -KA> , as, since both 

expressions are holomorphic in their respective domains, they must be holomorphic on 

the whole of the Riemann sphere given by the projective line Lx • Also the functions are 

homogeneous, so, by an extension of Liouville's Theorem, both expressions must be linear 

in nA>. 
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The splitting (2.23) is not unique. If A(x) is a non-singular matrix, then under the 

change 

HA, 

the function G does not change. However the fields AAA' do change: 

A A ^ A-\AA.A + \ ~ \ V A A , (2.25) 

which is just a gauge transformation. 

So far the gauge group has been GL(iV,<D). To get to the various subgroups, further 

conditions have to be imposed. The easiest subgroup to consider is S L ( i V , C ) . This is done 

by making the bundle E satisfy the further condition det E is trivial, or in terms of the 

patching matrix, det F = 1. To go to a 'real' subgroup like SU(2) , a reality structure on 

P I T has to be introduced. 

So far the gauge fields have been constructed over Minkowski space M or its com­

plexified version C M . However, as mentioned earlier, there are no non-trivial SU(2) anti-

self-dual gauge fields on M . However the twistor construction may be used to construct 

solutions to these equations on Euclidean I R 4 , this class including the instanton and 

monopole solutions, and on the space I R , 2 + 2 . The self-duality equations on these spaces, 

as will be shown in chapters I I I , include large numbers of the two-dimensional integrable 

models. 

Recall that a reality structure is an anti-holomorphic involution on TT, which was 

denoted in section 2.2 by the map a :T—>T. It will be assumed that a interchanges the 

regions W and W that cover the region U of twistor space. This involution lifts to the 

bundle E , and defines a map r from E to its dual, E * . For this to be well defined, the 

diagram 

E - ^ E * 

i 1 
U—>U 

a 

must commute, that is, the fibre of E over Z , under r , gets mapped to the fibre of E * 

over <T(Z) . 

Explicitly, the bundle E is determined by the patching matrix F between W and W_, 

so £ = F{Z).C> , and the dual bundle is similarly defined by £ = p.F(Z)~L. The map 
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r : E —• E * is defined by 

T(Z,C ) = ( < T ( Z ) , O if z e w , 

T(z,g = (a(z),c) x z e w , 

where * denotes the complex conjugate transpose. For consistency these must agree on 

the overlap W n W; so ( = F(Z)( must imply C* = C F{a{Z))~x, which implies that 

F{Z) = [F(a(Z))Y , 

s F(Z? 

The matrix G , defined by (2.23), also satisfies G = , and hence, in terms of the 

matrices H and H_ that split the matrix G, 

H.H~l = G = G f = ( i T . t f - 1 ) 1 = J f f t - 1 . F t 

or H^.H_ = H}.H 

Using the same argument that was used to show the gauge fields were well-defined it 

follows that 

Hi.H = H*.H = Z(xa), 

^* 

Under the gauge transformation (2.25), 

E H . A ' . E . A , 

and this may be used to diagonalise E . It will be assumed that this has been done, and 

that E has p(+l ) ' s and q( — l)'s as its diagonal elements. It then follows from (2.24) that 

A* — —- A - - 1 

and so defines a U(p, q) gauge field. So together with the condition d e t F = 1 , SU(p,g) 

gauge fields may be constructed. The map r is called the real form, and if p = 0 or q = 0 

the form is said to be positive. Note that to construct SU(2)-valued fields, the condition 

d e t F = 1 implies de tE = 1, so E = ± 1 , and hence Aa is SU(2)-valued. All this may be 

summarised in the following theorem: 

(2.26) 
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T h e o r e m 2.3 

Let U be an open convex set in R 4 . There is a natural one-to-one correspondence 
between 

(a) real analytic anti-self-dual SU(iV) gauge fields on U; 

and 

(b) holomorphic rank-N vector bundles E over the corresponding region 

U of P T such that 

(i) E restricted to the line Lx is trivial for all x € U. 

(ii) det E is trivial 

(iii) E admits a positive real form. 

A similar result holds for anti-self-dual fields on 1 R 2 + 2 . 

2.6 The Atiyah-Ward Ansatze 

The last section showed how a solution to the self-duality equations could be encoded 

within the geometry of a holomorphic vector bundle. In this section the correspondence 

will be used to construct explicit solutions to the duality equations, starting from such a 

bundle. 

The self-duality equations have been solved using three different techniques: 

© The Atiyah-Ward Ansatzej 2 6' 

© The Method of Monads (or A D H M construction),'27' 

© The 'Riemann Problem with zeros' method!5'1 

The first two are different methods to construct the holomorphic bundle over twistor 

space that encodes the solution to the self-duality equation. The third is different, in 

the sense that rather than constructing a bundle, it constructs a solution to the linear 

problem by assuming that it has a particular form. However, as shown by Tafel,1"1 from 

such a starting point it is possible to recreate the corresponding bundle, which turns out 

to be equivalent to one in the Atiyah-Ward class. In chapter I V the 'Riemann Problem 

with zeros' method will be used to solve the generalised self-duality equation that will be 
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constructed in the next section, and the connection between this and the Atiyah-Ward 

ansatze will be discussed. 

The hardest part of the construction outlined above is the splitting of the bundle 

transition matrix; given this the rest of the construction is straight forward. In this 

section a series of anstatze, denoted by An , originally proposed by Atiyah and Ward, will 

be given for the bundle's transition matrix. These have the property that they can easily 

be split, and in doing so, they convert a solution to a linear problem into the solution of 

the non-linear self-duality equations. The construction will be given for a gauge group of 

rank two, though the techniques may be extended to groups of higher rank. 

As mentioned in the introduction, one of the ways to construct a holomorphic vector 

bundle is as an extension of a line bundle L\ by another line bundle Li. This means that 

the following sequence of vector bundles is exact 

0 - > Z i - * E - + L 2 - > 0 . 

Suppose that F T (or just some region U of P T ) is covered by two coordinate charts, 

W and W. The bundle E is determined by a transition matrix F(Za) on W fl W of the 

form 

l 
0 

(2.27) 

Here E i and E 2 are transition functions for the line bundles L\ and L2 respectively. The 

off diagonal element T belongs to the sheaf cohomology group Hl(U,G(Li ® L^1)) • 

For the gauge group SL(2,(C) (as opposed to G L ( 2 , C) ) , F has to satisfy the condition 

det F = 1, which implies Hi = E ^ 1 . One may take'46' 

E i ( Z a ) = { f c e x p / ( Z 0 ) , 

where £ = T T O ' / 7 1 " ! ' is a non-homogeneous coordinate on C P 1 , / is a holomorphic function 

on the region W H W_, and k is the negative of the Chern number of the line bundle L\. 

Although such an upper-triangular transition matrix does not satisfy the condition 

F^ = F , it is equivalent to one, denoted F, that does. This means it is possible to find 
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matrices K and K_, holomorphic in W and W_ respectively, so that the combination 

F = K-1.F.K 

does satisfy F^ = F. These equivalent matrices determine the same bundle, and give rise 

to the same gauge fields. 

Although these upper triangular patching matrices do not generate all solutions to 

the self-duality equations, it has recently been shown that (in some appropriate sense) 

they form a dense subset in the set of all patching matrices!53' However, the class does 

provide the matrices which gives rise to the instanton and monopole solutions, and as will 

be shown in chapter IV , the soliton solutions to various integrable models. 

The freedom in the splitting corresponds to the freedom in the gauge. However there 

is a gauge, called the Yang i?-gauge, which leads to a particularly nice form of the gauge 

potentials. 
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T h e o r e m 2.4 

Let Ba be a potential for an anti-self-dual GL(1 , (D)-gauge field (i.e. a complex Maxwell 
field), and let { A r } * ~ j [ _ t be a set of fields satisfying 

if k > 1 : ( V A 0 ' + 2 ^ 0 ' ) = (VAV + 2BAV)&T+1 

for 1 - k < r < k - 2; (2.28) 

if k = 1 : (V„ + 2Ba)(Va + 2Ba)A0 = 0. 

Suppose that Ba and A r are holomorphic on the region U of complexified spacetime. Let 

M be the k x k matrix 

/ A i _ f c . . . A 0 

m = ; •-. ; 

\ A 0 . . . A f c - i 

i.e. MT3 — A r + S _ j f c _ j for 1 < r , s < k. Let i£, F and G be the corner elements of 

its inverse: E = ( M _ 1 ) n , F = ( M _ 1 ) 1 J f c = ( M - 1 ) ^ and G = ( A f - 1 ) * * (assume that 

d e t M 7^ Oon i7). Finally, define a gauge potential Aa (recall Aadxa = AAA'dxAA ) by 

= l_( dA0,F 0 \ 
M'~2F\-2~dM,G -~dM,F)' 

1 (-BAVF -2dM>\ 
A a 1 ' = 2F\ o ^ F J ' 

where da = V a — 2Ba . Then /4 0 is the potential for an anti-self-dual SL(2, C)-gauge field. 

R e m a r k s 

@ The Maxwell field Ba comes from splitting the function / , restricted to the line Lx , 

g = p X f ( Z a ) 

= f { i x A A ^A',^A') 

= h — h , 

where h and h are holomorphic in U and f/ respectively. The field Ba itself comes from 
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the equation 

n A BAA> = T*A ^AA'h = KA ^AA'k • 

o The A r can be constructed using the integral formulae used in section 2.4. Let 

n(x,wA.) = P X T ( Z Q ) 

= T{ixAA'xA'^A')-

The A r are defined by the formula 

oo 

r=—oo 

These from the components of a massless field of helicity k — 1 coupled to the Maxwell 

field BA . For example, if k = 2 , the field <f>A'B' defined by 

<j>0'0' = A i , 

<fo'i' = Ao , 

<f>vv = A _ i . 

satisfied the equation ( V A A > + 2Baa')4>A>B< = 0 . 

© If / = 0 (and so BA = 0) , the A r are just components of a free field of helicity 

k — 1, and (2.29) is just (2.16) written in non-homogeneous coordinates. Once the A r are 

known, gauge potentials may be easily worked out. Thus the solution of a complicated 

nonlinear field theory is reduced to working out a solution to a linear problem. 

The simplest case is when k = 1 , and / = 0. From the Theorem it follows that the 

ansatz A\ gives a solution which is determined purely from the single term Ao given by 

the contour integral 

- i 
2TH J 

0 C 
(2.30) 

which satisfies the equation DAo = 0. The above Theorem then gives the result 

Aa = iaahVb log A 0 , 

(2.29) 
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where the anti-symmetric craf, satisfy 

<?01 = ?23 = 1 _ 
- 2 ^ 1 ' 

<?02 = -0^13 = 

""03 = <7l2 = ^ 3 , 

the <rj being the Pauli matrices. This solution is just the t'Hooft-Corrigan-Fairlie-Wilczek 
f o o l 

ansatz. Taking as a solution to • Ao = 0 , 

gives the 5k -f 4 parameter family of finite energy instantons of topological charge k . The 

higher ansatze An are needed for the complete Sk — 3 parameter solution. 

The next, and final, example gives the general form of the patching matrix which 

generates all the monopole solutions. Let / be real, i.e. / * = / , and 

r = g-1{e/ + (-i)fce- /}, 

where Q = (5ro'""i') P and P(Za) is a homogeneous polynomial of degree 2k which satisfies 

the condition P f = { - l ) k . P . Then 

F = F.K 

= UKef r W O - l \ 

V o C - K e - f ) \ i ckQJ 

r ( - I J V 

This does satisfy the condition F^ = F. 

E x a m p l e 

With the above transition matrix, let k = 1 , 

f = Q = iu1 — iu°/TTQI and 

r = 2 / ~ 1 s i n h / . 

This gives Ao = r~l sinhr , where r 2 = x2 + y2 + z2 , and hence the Higgs field 

<j) — i r - 2 ( r c o t h r — l)(xcri + yo^ — za$). 

This is just the well-known charge one monopole. 
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2.7 Generalisations of the Self-Duality Equations 

In section 2.2 the projective twistor space P T w a s shown to be isomorphic to the space 

C P 3 , which corresponds to complexified compactified Minkowski space. To describe non-

compactified spacetime, the 'point at infinity' has to be removed, and this corresponds 

to removing a single projective line from C P 3 , such as the line {iro> = T\> = 0} , and the 

resulting complex manifold was denoted 7T 7 . This manifold may be thought as a fibre 

bundle over the Riemann sphere. Letting {WA : A = 0,1} (removing the prime super­

script) be homogeneous coordinates on the Riemann sphere; then IT1 may be described 

by the relation 

T / = { ( 7 r o , 7 r 1 , u ; 0 , W

1 ) ; a ; 0 , a ; 1 G C } / ~ , 

where ~ is the equivalence relation defined by 

( T T O . ^ W ) ~ ( A T T C A T T ^ A U A A U ; 1 ) , V A € C \ { 0 } . 

This makes ~TT7 into a fibre bundle over C P 1 with the projection onto the base space being 

defined by pr(irA,u>A) = ir^ . 

This suggests the following generalisation of Twistor space, an extension of the ideas 

of Mason and Sparling!5*1 Let the space Tm,n be defined, for m, n = 1,2 , . . . , by 

T m > „ = { ( T r o , ^ , ^ 0 , ^ 1 ) ; ^ 0 , ^ 1 € C } / ~ , 

where ~ is the equivalence relation defined by 

( T r o , ^ , ^ 0 , ^ 1 ) ~ ( A ^ A T ^ A ^ A " ^ ) , V A < E C \ { 0 } . 

This makes the space T m , n into a fibre bundle over C P 1 (the projection onto the base 

space being defined by pr(irA,ujA) = ir^), with each fibre being a copy of C 2 . So TT^i is 

just H" 7 = C P 3 \ { a projective line} . 

In what follows it will be convenient to introduce inhomogeneous coordinates on Tm,n • 



Elements of Twistor Theory 38 

The sphere (DP 1 may be covered by two coordinate patches defined by 

U = {irAe C P 1 : TTO ± 0} 
(2.31) 

U = {nA € C P 1 : 7T! ^ 0} . 

So over 7̂ and £/ one has coordinates 

(i.2o.2i)=(-.^:^J. 

respectively. On the overlap region U C\U these are related by 

(i.20.21) = (r1,rmiw>,r"i?i). (2.32) 

Let T(B) be the space of global holomorphic sections of a bundle B . A point g € r(TTm,n) 

may be written over U as 

Q(0 = (w>fa)> 

= ( E ^ , E ^ ) - ( 2 M ) 

t=0 j'=0 

These are clearly holomorphic over U, and using (2.32) they are also holomorphic over 

U_, and hence form a global holomorphic section of T m , n • If higher or lower powers of £ 

were included then the section would have poles at £ = 0 (£ = oo) and £ = 0 respectively. 

Thus r [ T m , n ] — ( D m + n + 2 . This correspondence is shown diagrammatically in Fig.2.6. 

On TTm.n it is possible to define a non-vanishing holomorphic vector field 

or, in terms of the inhomogeneous coordinates U, as 

v=d— + c— • 

Since this is non-vanishing there is a well defined quotient TTm.n/V', which is isomorphic 

to Q(m + n), the complex fine bundle of Chern class (m -f n) over the Riemann sphere. 
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C P 

F i ^ 2.6 The Correspondence between < D m + n + 2 and TT 

The coordinates (£,77) on 0(m + n) are defined from those on Tm,n by 77 = £"770 — 771 

(and hence satisfies the equation V{i}) = 0 ) , and similarly the global holomorphic section 

of 0(m + n) may be written in terms of the sections of T m , n - Let 77 € T[0(m + n)] be 

defined by 

77 = f 770 - 7/1 , 

m n—1 

= ^ x , e < + n + ( x 0 - i n ) r - E ^ y -
i = l j'=0 

Note that this only depends on Z Q —1„ , i.e. the dependence on xo + *n has been factored 

out. This corresponds to a symmetry on < C m + n + 2 generated by | ^ — | ^ . For the simplest 

example, with m = n = 1 one has TTi . i / V = 0 ( 2 ) , which is just the 'minitwistor' space 

first studied by Hitchin. All this may be summarised in the following diagram: 

Tm ,„^->r[im j n] = € m+n+2 

v 1 1 sro-^: 
d 

0(m + n) <—>T[0(m + n)] S C m + n + 1 

One could factor out by other non-vanishing vector fields on i r m i „ , but the field considered 

here is special in the sense that physically it corresponds to the removal of a single degree 

of freedom, namely the dependence on Z Q + t n , rather than several such combinations. 
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Next holomorphic vector bundles will be constructed over TTm,n • These will correspond 

to a system of differential equations on ( D m + n + 2 which generalise the well-known Yang-

Mills self-duality equations. Factoring out by the vector field V gives rise to the Bogomolny 

hierarchy introduced by Mason and Sparling, which they used to give a twistor description 

to the A K N S soliton hierarchy. Here it will be assumed that such a symmetry does not 

exist, and this will generate a family of integrable models in ( 2 + 1 ) dimensions, which 

contains the A K N S hierarchy as a special case. 

The construction of such bundles is standard. Let E be a holomorphic vector bundle 

over TTm.n with structure group GL(N, C), with the further property that it is trivial when 

restricted to any global holomorphic section, i.e. an element g of r[TTm,n] • Explicitly, let 

the bundle be defined by the patching matrix F(£,T)X) between the regions of T m , n over 

U and U_. The triviality condition implies that the bundle may be split 

F{t, VA) = * y ) . * - 1 ( £ , xU t j ) , (2.34) 

where $ and $ are holomorphic in U and U_ respectively, and T\& are defined by (2.33). 

The polynomials T}A , A = 0,1 are annihilated by the following differential operators 

d d 
I<k=^ -K— k = l , . . . , m , 

Oxk-i Oxk 

T t 9 9 1 1 

These operators annihilate the left hand side of (2.34) , so 

and similarly for the operators L\. The right hand side of this is holomorphic in U_, and 

the left hand side is holomorphic in U. Hence the whole expression is holomorphic over 

C P 1 and so, by an extension to Liouville's Theorem, it must be linear in £ . This defines 

GL(N, (C)-valued functions (or gauge potentials): 

Rearranging gives a family of linear operators IC and C, 
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/Cjfc$ = 0 fc = l , . . . , m , 

£ , $ = 0 / = ! , . . . , n , 

defined by 

5 

d 
- C M 

"a 
(2.35) 

The gauge potential A, B, C, D are gl(N, €)-valued functions of x,- and t j . Similar equa­

tions also hold for $ . The splitting (2.34) is not unique, different splittings will give gauge 

equivalent fields, the gauge transformation being Ak g~l.A)..g — g-1--§§^ , etc., where 

gixi^eGHN,®). 

The differential equations which these gauge fields satisfy may be found by equating 

the coefficients of the various powers of £ in the following 'integrability' conditions 

= 0 , (2.36) 

Once again, if n = m = 1 then these are just the self-duality equations for a GL(N, €)-

valued gauge field on C 4 , and if the bundle is symmetric under the action of V, the 

reduced system is just the Bogomolny equations. The equations (2.36) thus forms an in-

tegrable system of equations, whose solutions may be constructed using the above Penrose 

correspondence. In the next section it will be shown how to construct various integrable 

hierarchies of equations in (2 + 1) dimensions using these equations. 

Other generalisations of the self-duality equations have been consideredf"1 In par­

ticular by generalising twistor space from (a region of) C P 3 to (a region of) (DP 9 . The 

twistor space considered here may also be obtained by factoring out by an appropriate 

number of non-vanishing holomorphic vectors fields from C P 9 , so the system of equations 

(2.36) could be considered as a reduction of such a system, just as minitwistor space is 

a reduction (under a particular symmetry) of twistor space. However it is convenient to 

use T T m ) n (as will be shown in the next chapter) since the dimension of the twistor space 

is independent of the particular values of m and n . 
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One could also consider the following generalisation of the above; let ~Wmum2,...,mN be 

denned, for m,; = 1,2 , . . . , by 

¥ m 1 , m 2 , . . . , m N = { ( ^ 0 , T T i . w 1 , . . . ,UN) ; u* G <D } / ~ , 

where ~ is the equivalence relation defined by 

(TTQ, TTUU1, . . . , u N ) ~ (ATTQ, A T T J , \ m i u \ . . . , X m N u N ) , V A G € \ {0} . 

The resulting complex manifold, which again is a reduction of the projective space C P 9 

(for some large enough q) , and has complex dimension N + 1 . However, if m,- = 1 V i , 

then 

T i ! , = € P 9 \ { a projective fine} 

q—1 terms 

and this many be compactified by adding in the missing projective fine. 

The above construction yields GL(N,<C)-valued gauge fields, and as in the self-dual 

case, to obtain SU(N)-valued fields further conditions on the bundle have to be imposed. 

T h e o r e m 2.5 

There is a natural one-to-one correspondence between 

(a) Real analytic solutions of (2.36) over a convex region U of ]R, m + n + 2 with 

gauge group SU(N) 

and 

(b) holomorphic rank N vector bundles E over the corresponding region 

U of ~Wm>n such that: 

(i) E | e is trivial for all real sections corresponding to points in U, 

(ii) det E is trivial, 

(iii) E admits a reality structure. 
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The only part of the Theorem that requires elucidation is the definition of reality structure. 

This is the antiholomorphic involution on TTm.n denned by 

where the bar denotes the complex conjugate. Those sections g € r[TTm,n] which are 

preserved by the action of cr are called the real sections, and form a subset T C r [ T m , n ] • 

These are still given by (2.33) but now G R,, so S ] R / » + « + 2 . 

Again, this lifts to the bundle over T T m n . Let U be any region of Tm,n , and let W 

and W_ be a cover for U such that 

er(W) = W, 

o(W) = W. 

Note that this is differs from the usual reality structure which interchanges W and W. 

The map r : E —> E * , is defined as before: 

r(Z ,0=(<r(Z),O, if ZeW, 

r(z, 0=07(Z) ,O, xzew. 

Again, these must be consistent on the overlap region W D W_, so £ = F(Z)(, must imply 

£* = C * F ( a ( Z ) ) ~ 1 (since a does not interchange W and W), so 

F(Z) = {F(a(Z))-1r, 

= F { Z ) \ 

in contrast to equation (2.26). 

In the next chapter the integrable system (2.35) will be used to construct integrable 

models in (2 + l)-dimensions that generalise the standard AKNS and DNLS hierarchies 

in (1 + l)-dimensions. 
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Chapter I I I 

The Twistor Description of Integrable Systems 

3.1 Introduction 

The object of this chapter is to show how many of the integrable equations in math­

ematical physics may be obtained from the self-duality equations for a Yang-Mills theory 
f38l 

in 4 dimensions, with various gauge groups and spacetime signatures. Since these equa­

tions are integrable (by means of the Penrose transform of chapter I I ) , the host of models 

that are obtained as a reduction of the duality equations may be solved by this method. 

Indeed, many of the standard techniques from soliton theory, such as the inverse scat­

tering transform, Backlund transformations and hierarchies may also be interpreted in 

terms of twistors! 3 9 '"' 5 6 ' It seems likely that this is more than just a bookkeeping exercise, 

and the properties of these apparently disparate integrable equations may be more fully 

understood within the geometry of the twistor picture. 

There are many different approaches to the study and construction of integrable mod­

els, and each has its own strengths and weaknesses. The construction that will be consid­

ered here is based on the AKNS scheme, where the integrable system is expressed as the 

compatibility (or integrability) condition for an over determined linear system. Owing to 

the form of this condition, it is often called a zero curvature condition. This overdeter-

mined system has a direct twistorial interpretation, and has the advantage that it may 

be generalised from (1 + l)-dimensions to (2 + l)-dimensions. In this chapter i t will be 

shown how this construction works, initially with the gauge group s/(2,€), or one of its 

real subgroups. Solutions to some of these equations will be constructed geometrically in 

the next chapter, using the 'Riemann problem with zeros' method to achieve (effectively) 

the splitting of the pulled back bundle that was central to the construction described in 

the previous chapter. 
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The construction may be extended by using larger gauge groups. In a series of pa­
pers Fordy and his collaborators have shown how the AKNS scheme works particularly 
effectively when the Lie algebra is one associated with an Hermitian symmetric space. 
Using the substitution £ —f dy they constructed example of integrable models in (2 + 1)-
dimensions, which include the KP and DS equations. While such a procedure does not 
have a twistorial interpretation (though it is generally accepted that one must exist), 
there is a different family of models in (2 + l)-dimensions associated with these Hermitian 
symmetric spaces, and these will be constructed here, and these do have a very natural 
twistorial description. The necessary mathematical definitions and properties of Hermi­
tian symmetric spaces have been relegated to Appendix A. Finally a family of higher 
dimensional integrable models are constructed using the gauge group SU(oo). 

However, before explaining all this in detail it is necessary to clarify the distinction 

between 'solubility' and 'integrability'. 

3.2 Integrability 

The concept of integrability has proved to be extremely useful in one and two dimen­

sions. For example, the following systems are all 'integrable': 

e completely integrable dynamical systems, 

e (1 + l)-dimensional 'soliton' systems such as the KdV, NLS, etc.,etc., 

e (2 + 0)-dimensional field theories such as chiral and a-models. 

However, it is less clear whether the idea is as useful in dimensions greater than two. In­

deed, it is not entirely clear what integrability means in these higher dimensional theories, 

as some definitions are only applicable in two dimensions. 

There is a quagmire of different definitions of integrability, ranging from the classical 

Liouville definition in terms of a sufficient number of functions which Poisson bracket 

commute with each other and with a Hamiltonian, to modern definitions in terms of 

algebraic geometry. The term 'solubility' denotes the existence (perhaps under particular 

boundary conditions) of a solution, while the term 'integrability' refers to something 

special, or extra property of the system or solution (for example, being able to write 

the solution in closed form in terms of elementary functions). So integrability implies 

solubility, but not visa-verse. Indeed, most equations are not integrable, though the 
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integrable ones do appear frequently in the study of non-linear phenomenon, if only as a 

first approximation. 

One therefore wants a universal definition of integrability, which contains the more 

stricter requirements as special cases, holding under certain conditions. This definition 

should then cover both integrable dynamical systems (with a finite number of degrees of 

freedom) as weD as field theories (which have an infinite number of degrees of freedom) in 

both Euclidean in Minkowski metrics. One such definition which is extremely powerful is 

the following: 

Definition 

A system of equations is integrable if it may be written as the compatibility conditions 

for an overdetermined linear system of a certain type. 

That is, an equation is integrable if there is a family of operators d , i = 1 , . . . N, 

such that the compatibility conditions 

[£i,£j]=0, i ^ j = l , . . . N , (3.1) 

imply the original equation or equations. The operators may depend on a spectral param­

eter or a differential operator, and equating the coefficients of different powers of these in 

(3.1) then leads to the integrable equation. Many examples of this construction will be 

given in the rest of this chapter. If the operators depend on a spectral parameter rather 

than a (pseudo)-differential operator, then they have a natural twistorial interpretation, 

and it is these, and hence those integrable models which are derived from such models, 

that will be considered here. 

One such system that falls into the above scheme is the Yang-Mills self-duality equa­

tion 

on a Euclidean space with metric ds2 = dz.dz + dw.dw I " 1 This may be written in the 

following overdetermined linear system: 

{Ds-£Dw}s = 0 
(3.3) 

{ A z , + = 0, 

where = + is the covariant derivative of the Yang-Mills field, and ( is the 

spectral parameter. Such a description is central to the twistor description, and solution, 
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of the self-dual Yang-Mills fields. However, one must add the following caveat; the self-

duality equations (3.2) are defined in any spacetime but they may only be written in an 

overdetermined form (and hence are integrable in) spacetimes which are also self-dual. In 

this case (3.3) takes the concise form 

F A w ( f ) = 0 , 

where F is the field strength written as a two-form, and u> is a non-degenerate two-form 

which defines the background self-dual space!58' Plebanski1591 has shown that any self-dual 

spacetime (one for which i2„j = 0 and whose Weyl tensor is self-dual) can be given in 

terms of the metric 

ds2 = Sl,yizj dy'dzj , y% = y,y, zJ = z,z, 

where f l (y , y, z, z) satisfies the equation (see also section 3.6) 

Qyyy ^izz ^tzy ^iyz = 1 • 

The 2-form u>(£) is then defined by 

u>(£) = dy A dz + £(fi,j/y dy A dy + Cl,Zy dy A dz -f Cl,yz dz A dy + Q,,zz- dz A dz) + £2dz A dz . 

Such forms play a fundamental role in the Non-Linear Graviton construction. 

As an example, consider the non-self dual spacetime R 2 x S 2 , (equipped with the 

standard metric) under an axial symmetry, equation (3.3) (with gauge group SU(2)) 

simplifies to 

V2p = ep - 1, (3.4) 

which is known not to be integrable!601 However, (3.4) has been shown to be soluble, in 
[61] 

the sense that with certain boundary conditions solutions have been proved to exist. 

In the next section many known examples of integrable models will be derived from 

over determined linear system (3.3), but before then it is perhaps worth mentioning that 

the wave equation D<f> = 0 may also be derived from the self-duality equation, with gauge 

group U(l). This is not normally thought of as integrable, but one may construct explicit 

solutions (and more importantly, all solutions'461 ) to this fundamental equations, and i t 

is integrable using the above definition. 
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Twistor theory is a very powerful tool in the study of such systems, as it does two 

important tasks simultaneously: 

o it provides a systematic way to generate and categorise integrable systems, 

and gives such systems a geometrical interpretation. 

o it provides a way to constuct explicit solutions to these equations. 

More significantly, it gives a definite structure to the solution space Ai of solutions (some­

times called the moduli space, see chapter V ) , by relating it with some geometrical struc­

ture over a region of twistor space, via the Penrose transform. For example, for the wave 

equation this is expressed as the isomorphism 

•Myvave equation — H^(Z, 0(—2)) , 

or more generally for any integrable model 

•Mintegrable m o d e l — some natural geometrical structure over twistor space. 

Such a description is central to the twistorial construction of the solution, but it may 

be of use when one needs to manipulate the total structure of the solution space, as, for 

example, in quantizing a classical system. 

3.3 Reductions of the self-duality equations 

The term 'reduction' means the process of reducing the number of variables in an 
f o o no! 

equation. ' There are two different types of reduction; 

(A) Dimensional reduction. 

This involves reducing the number of independent variables by factoring out 

by a subgroup of the Poincare group. This is possible only if the original equations 

are Poincare invariant, which the Yang-Mills self-duality equations are. 

(B) Algebraic reduction. 

This involves reducing the number of dependent variables by imposing al­

gebraic constraints on the dependent fields. This, however, must be done in a 

manner consistent with the original equations. 
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In both cases, a reduction is possible only because of the existence of certain sym­

metries. Complete classification of reductions, especially those involving algebraic reduc­

tions, is clearly a large problem. The rest of this section, and the next, outlines some of 

the reductions possible from the Yang-Mills self-duality equations. Some of the resulting 

equations are well-known integrable systems whose properties have been known for some 

time. However, the fact that they arise as a reduction from a common system provides a 

unifying idea to these otherwise disconnected equations. 

SO(3)-Invariant Instantons 

Historically, the first instanton solution to be constructed was the Belavin-Polyakov-

Schwartz-Tyupkin solution, which has topological charge one. The first solutions with 

topological charge not equal to unit are the S0(3) invariant SU(2) instantons, which were 
. [37] • 

constructed by Witten. Later Manton showed these were gauge equivalent to solutions 

of the t'Hooft-Corrigan-Fairlie-Wilczek ansatze, which were shown in chapter I I to be just 

the Atiyah-Ward ansatz A\. The methods were generalised to higher order gauge groups 
• [63 64] t [65] 11 \ * * 

by Lesnov and Saveliev, ' and by Bais and Weldon. The construction ultimately 

rests in solving the Toda field equations 
V 2 ^ a = Kap exp <pp . (3.5) 

P 

Here Kap is the Cartan matrix of the Lie algebra of the gauge group. These Toda 

equations are an important example of non-linear integrable differential equation, and 

have been much studied. The simplest example is the Liouville equation, which is a 

special case of the Toda equations when the group is SU(2). Another way to reduce the 

self-duality equations to the Toda equations, which also generalises to affine Lie algebras, 

will be given in section 3.5. 

Chi ra l models 

An alternative way of writing the self-duality equations is to express the gauge field 

in terms of a gauge group-valued field, commonly denoted J . By writing — J^d^J 

(if J G Q , then € Cie Q automatically) the equations then take the chiral form 

d-z{J~ldzJ) + dai{J~ldwJ} = 0. (3.6) 

By requiring that the matrix J is independent of one or two coordinates, this reduces to 

the chiral model in 3 and 2 dimensions respectively. 
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So far all the reductions mentioned have only involved reduction by a subgroup of the 

Poincare group; no algebraic constraints (subject, of course, to being consistent with the 

equations in question) have been imposed. To reduce the well known chiral model to a 

non-linear a model, such as the <DPn models, an algebraic constraint has to be applied. 

For example, applying the constraint J2 = 1 gives the equation of motion [.P,QP] = 0, 

where J = 1—2P. This has been extensively studied by Din, Horvath and Zakrzewski.166,181 

Magnet ic Monopoles 

This reduction is achieved by requiring that the gauge fields are independent of 

one of the coordinates, say x± . The equations then become'291 

^ = £ / W > ( 3 J ) 

where <f> = A* . These equations are the Bogomolny equations for a Yang-Mills-Higgs 

system on I R 3 + 1 , where they describe static field configurations known as monopoles. 

The general solution of topological charge n, which may be shown to depend on 4n — 1 

parameters, may be generated from the Atiyah-Ward ansatze An . 

Before the general solution was found, the equations were solved under an additional 

symmetry. This involves imposing a rotational symmetry around a particular axis. The 

equations that result are known as the Ernst equation, 

±dr{rJ-1drJ} + dg{J-1d,J} = 0. (3.8) 

As well as being applicable to monopoles, this equation also is of importance in General 

Relativity. Static, radial symmetric solutions of the vacuum Einstein equations may be 

constructed from solutions to the Ernst equation,'671 and these have some remarkable 

transformation properties.'68'69' 

Rather than assuming a translational symmetry, one could assume a rotational sym­

metry, generated by dg . The solutions of the equations are known as hyperbolic monopoles 

(see chapter V) , since the space on which they are defined is of constant negative curvature. 

These have been studied by Atiyah| 7 0 ' and also by Nash.'7'1 
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The N a h m Equation 

To end this section, a reduction down to one dimension will be considered. By requir­

ing that the gauge field depend only on one coordinate, say t, the self-duality equation 

becomes 
d , 

jtAa = - i e a / h [ A f l , A J ] , (3.9) 

where a, /? ,7 are group, not spacetime, indices. This remarkable equation is, in a sense, 
[72] 

the 'dual' or 'reciprocal' to equation (3.7), and this provides an alternative method of 

constructing monopole solutions, the ADHMN method. This is based on the ADHM 

method of constructing bundles over twistor space by using the method of monads, rather 

than constructing the bundle as an extension, which is the basis of the Atiyah-Ward 

ansatze. 

With the gauge group SU(2) these equations become Euler's equations for a spinning 

top 

ft = 2gh, 

gt = 2hf, (3.10) 

ht = 2fg. 

For larger gauge groups they become the Toda molecule equations. Other reductions lead 

to further completely integrable dynamical systems.'74' 

All the equations mentioned above are elliptic, reflecting the positive-definite metric 

on IR 4 . These reductions are summarised on Table 1. The twistor construction itself is 

fundamentally independent of the spacetime signature, which just arises from a reality 

structure on twistor space. Thus the duality equations on I R 2 + 2 are just as integrable as 

those on I R 4 . Reductions of these lead to parabolic and hyperbolic equations, reflecting 

the indefinite metric on R 2 + 2 . 
A M o d i f i e d Chiral Models in (2 + l)-dimensions 

Taking the self-duality equations on 1R 2 + 2 with the assumption that none of the gauge 

fields depend on one of the coordinates, say X 4 , the equations become 

D^ = lefiaPFQl3, (3.11) 

where <f> = A*. This is similar to the monopole equation (3.7), but the metric is not 

positive-definite, having signature {—| - - f } , and the convention £012 = —1 is adopted. 
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Symmet ry group Name of reduced Equation 

or generator equation 

a 
Si Monopole equation Ffit/ — £fii> DQ<f> 

a 
w Hyperbolic monopoles Ffiv = Da<t> 

a a 
~d~x ' w Ernst Equation \dT{rJ-xdTJ) + d z ( J ~ l d z J ) = 0 

a a 
Si ' Sz Chiral Model d x { J ~ l d x J ) + d y { J - l d y J ) = 0 

m. fc w i t h CP" models — 
algebraic constraints non-linear a models — 

SO(3) Toda equations 1=1 $a = YlpKaP e Xp <j>p 

S0(3) Liouville equation V V = ep 

a a a 
~a~x > ~a~y ' ~a~z Nahm equation 

Table 1 Reductions of the self-duality equations on R 4 . 

f This is a special case of the Toda equations, with gauge group SU(2). 
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This equation also arises as the Bogomolny equation for a system with Lagrangian density 

C ^ ^ T T F ^ F ^ - T r D ^ D ^ . (3.12) 

Note the relative minus sign between the two terms. As a result of this, the conserved 

energy functional for this Lagrangian is not positive definite. Moreover, for solutions to 

(3.11), it is identically zero. 

As in the case of magnetic monopoles, it is possible to rewrite (3.11) in chiral form. 

Explicitly let J : I R 2 + 1 —>SU(2) be a solution of the equations'48' 

At=Ay = U - \ j t - r Jy) 

Ax = —<f> ~ • 

The resulting equation is 

V^d^J-1 d„J) + Vce^d^J-1 dvJ) = 0, (3.14) 

where Va = (0,1,0). This equations, although it appears not to arise from any Lagrangian, 

does have a conserved energy functional. The equation has soliton solutions, both wave­

like and lump-like!"' 7 6 1 

The second term in (3.14) is known as a torsion term, since it contains mixed deriva­

tives. Such a term, which breaks the Lorentz invariance of the equation (it has a residual 

S O ( l , l ) symmetry, but not the full SO(2,l) symmetry needed for Lorentz invariance) 

is needed for the system to be integrable.1771 This gives weight to the conjecture that 

integrable, Lorentz invariant equations do not exist in dimensions greater than two. 

Some solutions to (3.14) may be generated using the 'Riemann problem with ze­

ros' method! 5 1 , 7 5 ' and these include the soliton solutions. Details of this construction may 

be found in the next chapter. Since (3.13) are differential equations, the J description of 

the equation (3.11) contains more information than is contained in the gauge fields. In 

terms of the Penrose correspondence, solutions to (3.13) correspond to framed holomor-

phic vector bundles, while the bundles corresponding to solutions to (3.11) are unframed.'78' 

The extra information in the J descriptions correspond to the details of this framing. 
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Further Reductions 

From this chiral model with torsion other models may be obtained by a further re­

duction. For example, looking at static solutions, or a solution independent of one of the 

space coordinates leads to chiral models on IR 2 and R 1 + 1 respectively. By factorising by 

xdy — ydx (a rotation) or by tdy + ydt (a Lorentz boost) gives the Ernst equation on H 1 + 1 

or R 2 . 

By starting with the full self-duality equations on ffi24"2 and factoring out by dg rather 

than by dz leads to the equation (written in chiral form) 

jdrirJ^drJ) + dx{J~ldxJ) - dt{J~ldtJ) + torsion term = 0, 

the analogue of the hyperbolic monopole equation. Although integrable, this does not 

appear to have any physical applications. 

Soliton Equations 

The KdV and Non-Linear Schrodinger equations have recently been shown to be 

reduction of the self-duality equations under two translational symmetries, one null, and 

the other non-nullj 3 9 1 the different equations coming from the groups SL(2,IR.) and SU(2) 

respectively. Under a null translational symmetry, the equations so obtained are parabolic 

rather than hyperbolic, the other null coordinate playing the role of time (i.e. with dx + dy 

as a null symmetry, the equations are parabolic with (x + y) being interpreted as time). 

Another well known soliton equation, the sine-Gordon equation, arises from a reduc­

tion with two non-null translations, and an algebraic constraint on the fields. These three 

fall into the AKNS scheme, which provides a systematic way to study integrable models 

and their associated hierarchies. The details of this scheme will be outlined in the next 

section, together with the closely related DNLS hierarchy, and shown how they may be 

generalised from (1 4- l)-dimensions to (2 + l)-dimensions. These new systems have a 

natural interpretation as reductions of the generalised self-duality equations constructed 

in the last chapter. 

Table 2 shows a summary of some of these reductions from 1R 2 + 2 . 



The Twistor Description of Integrable Systems 55 

Symmet ry group Name of reduced Equation 

or generator equation 

Chiral model dx{J~ldxJ) + d u ( J ' 1 d v J ) = 0 

with torsion 

f i , % Chiral Model dx{J~ldxJ) - dt{J-l8tJ) = 0 

on JR 1 + 1 

§ j , % Ernst Equation \dT(rJ~1dTJ) - dx(J~ldxJ) = 0 

on 

% — \dr{rJ-ldrJ) + du(J~ldvJ) = 0 

W . — \dr{rJ~ldTJ) + \ d R { R J ' l d R J ) = 0 

, §^ SL(2,R) =>• KdV t i t = ^ « x x x + 31/UXJ; 

SU(2) =» NLS -ty t = 0X X + 2 |^|V 

£7 > 3£ w ' t n sine-Gordon equation <f>yy — + sin (j> = 0 

algebraic constraints 

Table 2 Reductions of the self-duality equations on I R 2 + 2 . 
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3.4 The AKNS Hierarchy and its Generalisation 

As mentioned earlier, a characteristic feature of many integrable models is that they 

be written as the integrability conditions for a system of linear differential operators. The 

AKNS hierarchy starts with a linear system of the form' 1 3 1 

= [cl.A + Q(x,tn)]§ = Ax*, 

* « - = • ( * ' * • ) * ' ] * s ^ * » n ^ 1 - ( 3 ' 1 5 ) 

!=0 

For fixed n the integrability conditions for this system yields a system of equations which 

is said to be the n t h member of the hierarchy. The hierarchy itself is the set of all such 

models. This system, and its generalisation which will be constructed, are reductions of 

the system constructed in section 2.7, hence the use of the same Greek letter $ in the 

above equations. 

The matrices A, Q(x,tn) and Bn-i(x,tn) belong to the Lie algebra s/(2,C), and A 

and Q are of the form 

' l 0 
. K constant, 

•1 I 
\ (3.16) 

0 q(x,tn) \ 

~\p(x,tn) 0 ) ' 

The variables x and t n are space and time respectively. The B n _ t - , as well as the inte­

grable equation itself, are determined by requiring that each of the coefficients of £ in the 

integrability condition for (3.15), namely 

[ d x - A x , d t n - A l n } = 0 , (3.17) 

are identically zero. This assumes that £, which is known as the spectral parameter, is a 

constant. Such a system gives rise to families of integrable models in (1 + 1) dimensions, 

such as the KdV, mKdV and NLS hierarchies. One may also modify the system (3.15) 

and/or enlarge the Lie algebra, and the resulting systems includes such equations as the 

DNLS equations and the Boussinesq hierarchy. 

Thus for each value of n one gets an integrable model, so given some initial field 

configuration one may evolve it (since these systems are parabolic with t n acting as time) 
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using the integrable model defined by n, and such evolution is referred to as the n t h 

order flow. These flows are not independent; they have the important property that they 

commute, i.e. evolving some configuration with respect to the rath order flow, followed by 

an evolution with respect to the m t h order flow results in the same field configuration as 

would be obtained by evolving the fields with respect to the m t h order flow first, followed 

by the ntiL order flow. This shown schematically in Figure 3.1. 

•n 

« C o n 

FigZ.l. Commuting Flows 

These systems have a Hamiltonian structure; the equations of motion for the fields p 

and q may be written in the form 

SHn 

where Hn = J Hndx, the integrand being a conserved Hamiltonian density. These may 

be generated systematically. For a solution Q of (3.15) define matrices P{ by requiring 

them to satisfy the integrability conditions for' 7 9 ' 

oo 

"i=0 

The defines the matrices in Pj in terms of the fields p and q . The quantites Hn , are then 
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defined by 

One may also show that there are an infinite number of conserved quantities associated 

with each member of the hierarchy. The existence of an infinite number of conserved 

quantities is often taken as a definition of integrability. 

Thus all these are integrable models in (1 + l)-dimensions, and so the question arises 

whether there is a generalisation to higher dimensions. One way that this has been 

achieved is to replace the spectral parameter £ by a differential operator such as dy . This 

leads to systems such as the KP and DS equations.'80' In doing so products of matrices 

(rather than just commutators of matrices) appear, so the procedure is no longer Lie-

algebraic. However a different generalisation is possible which avoids this problem, and 

this will be considered here. 

The coefficients of the two highest powers of £ (namely £ n + 2 and £ n + 1 ) in (3.17) are 

required to vanish, and these are 

[A, 5.11 = 0, 

[A,BQ] + [Q,B-1] = 0. 

One possible choice of solution is B-\ = A, BQ = Q. This is a natural solution (though 

not unique l 8 1 ' 8 2 ' ) and leads to local expressions for the resulting integrable equation. Using 

the choice, (3.15) may be rewritten 

= [ M + Q]* , 

n—x 

n-1 

i=0 

n-1 

- . , ' V 
t=0 

The generalisation considered here involves replacing dx in the second equation by dy , so 

the linear system becomes: 

fc, = [ M + Q(a;,y, *„)]$, 
n _ 1 (3.18) 

"i=0 

It will shown below that such a system is a special case of generalised self-duality equations 

constructed in the previous chapter, and hence the solutions correspond to bundles over 

n —l 
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the twistor space TTi.n • The same procedure works for other systems, such as the DNLS 
f83l 

hierarchy, which corresponds to bundles over the twistor space TT2,2n • Of course, i f the 

symmetry dx = dy is imposed, the systems revert to their standard forms. In terms of the 

twistor picture this is equivalent to factoring out by a holomorphic vector on T m , n and 

so considering bundles over 0(m + n) instead. 
In Chapter I I it was shown that the following system of equations 

= 0 k, k' = l , . . . , m , 

= 0 fc,= l , . . . , m , / = 1,. 

[£,,£/*] = 0 / , / ' = ! , . . . , n , 

,n, (3.19) 

where 

dXk-l 

d 

dti-i 

d 
dxk 

-Dk 

(3.20) 

were integrable by means of a Penrose transform to an auxiliary complex manifold T T m n 

known as Twistor space. As the rest of this section will show, this system is very large, 

in the sense that it contains many examples of integrable models, and thus provides a 

systematic way to study these systems. 

Consider the system of equations (3.20) corresponding to the space TTi,n • To this 

impose the symmetry generated by | ^ (so there is a gauge in which the fields, and $ , 

are independent of X Q ) , and the following gauge conditions; 

Ci-i = 0, » = l , . . . , n , 

A0 - -A, 

Dx = Q, 

where A and Q are given by (3.16), but now the functions p and q depend on all the 

coordinates except xo. On relabelling x\ = x and to = y the linear operators (3.20) 

become 

$x = K.A + Q ] * , 

$t. = + , i=l,...,n. 
(3.21) 
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By systematically eliminating §t3 ,j = 1, • . . , (n — 1) , one is left wi th the system 

*x = [ M + Q]*, 

n - l 

«=0 

$ , n > 1 

This is precisely the system (3.18). Thus the solution of such a system may be natural ly 

encoded wi th in the geometry of holomorphic vector bundles over the space T i , n • 

To f ind the corresponding differential equations one has to solve (3.17), and this yields 

the following equations: 

dyQ = [A,Bx\, 

dxBn_i = [A, B n - i + 1 } + [Q, £ „ _ , ] , i = 1 , . . . , (n - 1 ) , (3.22) 

dtnQ = dxBn + [Bn,Q]. 

These simplify further by decomposing 5/(2, € ) = h($m, where h is the Cartan subalgebra, 

so in particular A 6 h and Q € m . On wri t ing Bi = B^+B™ , where B^ € h and B™ Em, 

equation (3.22) decomposes: 

dyQ=[A,B? ] , (3.22)(a) 

dxB?_, = [A, B?_i+1} + [Q, Bh

n_{ ] , i = 0 , . . . , (n - 1 ) , (3.22)(6) 

« . B i _ i = [Q,B!?L, ] , • = 1 , . . •, (n - 1 ) , (3.22)(c) 

dtnQ=dxB™ + [BlQ}. (3.22)(d) 

These may be solved systematically. The solution to equation (3.22)(a) is given by 

and hence (3.22)(c) has solution 

* } = ( „ _ J . (3.24) 

The rest of the procedure is similar. Equation (3.22)(6) gives B™ and equation (3.22)(c) 

gives, after integration, B^ . Once all the Bi have been constructed in terms of the mat r ix 
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Q the equation of motion itself is given by (3.22)(<i). Note that B% contains the pseudo-

differential operator d~l, and hence implici t ly contains information about the boundary 

conditions. This is a generic feature of the models considered here; the hierarchies are all 

of the fo rm 

dtn± = Pn{±), 

where Pn is a polynomial function of ^ = (p, q), its derivatives and the pseudo-derivative 

d " 1 . They may be wri t ten in a local fo rm by introducing a potential function, as the 

examples constructed below wi l l illustrate. 

E x a m p l e n = 1 ( 2 n d order flow) 

When n = 1, the only matr ix that needs to be constructed is B\ which is given 

by (3.23) and (3.24). The equation of motion gives the following (2 + 1)-dimensional 

integrable system: 

2ndtq = dxyq - 2d~1dy\p.q].q , 
(3.25) 

-2/cd t p = d x y p - 2d~1dy[p.q].p. 

By introducing a potential function V(p, q) defined by 

-dxV(p,q) = 2dy\p.q] 

these may be wr i t ten in the local fo rm 

2ndtq = dxyq - V(p, q).q , 

-2ndtp = d x y p - V(p, q).p . 

One may impose algebraic constraints on the fields p and q, for example q — —p = ip. 

This corresponds to using the gauge group su(2) rather than 5/(2, <C). The equations then 

become (wi th K = i/2) 

idtif> = dxytj) + V(V>,^).y>, 

dxV=2dyty\2. 

W i t h the symmetry dx = dy these reduce to the Non-Linear Schrodinger equations. This 

was first shown to be a reduction of the Yang-Mills self-duality equation by Mason and 

Sparling! 3 9 1 They in fact showed something stronger; that the NLS equation was equivalent 

to (rather than just contained within) the su(2) self-duality equations in (2+2) dimensions 

w i t h a nul l and a non-null translational symmetry. 
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E x a m p l e n = 2 ( 3 r d order flow) 

The expressions are best writ ten in terms of 2 potential functions (for general n one 

needs n such functions) V\ and V<i, 

(2K)2dtq = 8xxyq - 2dx[Vx.q\ + 2V2.q, 

(2K)2dtp = d X X 9 p - 2dx[Vi.p] - 2V2.p, 

w i t h the potential functions being defined by 

dxVi = dy\p.q] , 

dxV2 = qdxyp - pdxyq . 

W i t h the symmetry dx = dy these expression become local, 

(2K)2dtq = d x x x q - 6pqdxq , 

w i t h a similar expression for q . W i t h the algebraic constraints p = q or q = 1 these reduce 
fS4l 

to the K d V and m K d V equations respectively. 

Mason and Sparling have shown that the K d V equations may also be obtained as a 

reduction of the self-duality equations (i.e. f r o m bundles over TT^i rather than over "TTj^) 

by using the matrices 

- - ( " ) • 

\ q x - q i - q j 

w i t h the other matr ix being given by the equations (3.22). Such a choice for the constant 

mat r ix is fundamentally different f rom chosing i t to be purely diagonal (and hence in the 

Cartan subalgebra of 3/(2,C) ) , and corresponds to a 'highest weight' in the algebra. This 

approach (along the lines of Drinfel 'd and Sokolov' 8 5 1 ) has been generalised by Bakas and 
• [86] > . 

Depireux. From the view point of the A K N S hierarchy, i t is more natural to th ink of 

the K d V equations as a th i rd order flow. 
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Many more examples could be constructed using different gauge conditions. For ex­

ample wi th the symmetry | ^ (and in a gauge where all the potentials are independent 

of xo) and the gauge conditions 

B{ = 0 , i — l , . . . , n , 

A0 = - A , 

Di = Q, 

the repetition of the above procedure gives the system 

n 

A t first sight i t looks as i f this is a new system, a generalisation of the so-called 'negative 

order' flows. However, the simplest case n = 1 shows that this is not the case, the 

corresponding integrable system is given by (3.25). Thus this equation contains both the 

positive and negative flows as special cases. The standard case negative flow is recovered 

by setting dt = 0 in (3.25), and the positive flow by setting dx = dy . W i t h the first of 

these, and the condition q — —p = tp the system (3.25) becomes 

dxyip = -V(xty).if>, 
(3.26) 

dxV(x,y) = 2dy\i>\2. 

This is a 'complexifed' sine-Gordon equation, for w i th the further algebraic constraints 

V = 4 cos 9 , 
(3.27) 

the equations reduce to the sine-Gordon equation 6 x y + 4sin# = 0. The f o r m of the 

algebraic constraint is very special. One may (by taking higher values of n) construct a 

hierarchy of integrable models of which (3.26) is the first . But the constraint (3.27) which 

reduces (3.26) to the sine-Gordon equation is only consistent wi th this first equation. 

As mentioned at the beginning of section 3.3, algebraic reductions have to be done in a 

manner that is consistent w i th the original equations, and this is an example where (3.27) 

can only be applied to one member of the hierarchy. 
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Consider next the system (3.20) corresponding to the twistor space TT2,2ra • As before, 

impose the symmetry generated by and the conditions 

£ , = 0, i = l , . . . , 2 n , 

Di= 0 , t = 1,2, 

A0 = - A , 

Ax = - Q . 

Relabeling X 2 = x and to = y and repeating the procedure used above yields the system 

2 n . i (3.28) 

i=l 

I f dx — d y then the system becomes the standard fo rm of the DNLS hierarchy. 

E x a m p l e n — 1 ( 2 n d order flow) 

I t w i l l be convenient to make the assumptions that = C™ = 0 . W i t h these the 

integrabili ty conditions for (3.28) are 

dxCh

Q = [Q,C?], (3.28)(a) 

dyQ = -[A,C?}-[Q,C>}, (3.28)(6) 

dhnQ= -dxC?. (3.28)(c) 

These may be solved, giving the integrable system 

2ndtq = - d x y q - 2dx[V{p, q).q], 

2Kdtp= d x y p -2dx[V(p,q).p], 

2ndxV = dy\p.q). 

The th i rd and higher order flows could also be constructed, though the expressions tend to 

get complicated quite quickly. Imposing the algebraic constraint q = —p = ip and setting 

K = i/2 gives the following generalisation to (2 + 1 )-dimensions of the DNLS equation, 

-idrf = [0„0 + 2id;1dy\4>\24]x , (3-29) 

wri t ten wi thout the use of an external potential. 
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The negative order flows of the DNLS hierarchy may also constructed. Indeed, many 

more examples, both new and old, can be constructed using the above methods. Also 

the general case, corresponding to the space T m j „ wi th m and n arbitrary, has not been 

considered at all . In the next section these method wi l l be extended to larger gauge 

groups. 

3.5 Higher Rank Gauge Groups 

I n the last section i t was shown how a large number of integrable systems, together 

wi th their associated hierarchies, could be interpreted in terms of reductions (both di­

mensional and algebraic) of the equations wi th result f r o m holomorphic vector bundles 

over the twistor space T m ) „ . A l l these were associated wi th the gauge group s / (2 ,€) , or 

one of its real forms. The twistor construction itself is independent of the gauge group 

- any Lie group w i l l suffice. The reduction methods however, become considerably more 

complicated as the rank of the gauge group increases. In this section i t w i l l be shown how 

one may deal systematically w i th such higher rank groups. 

One of the most important set of integrable models are the Toda field equations, which 

have been much studied, both classically and quantum mechanically. To each simple 

Lie algebra, or affine Lie algebra, there is a corresponding integrable, Lorentz invariant, 

2-dimensional system, and these may all be obtained as reductions of the self-duality 

equations. The following argument is due to Ward. 

Let {Ha, Ea, E-a} be Chevalley basis for g , a simple Lie algebra, w i t h commutator 

relations 

where Kba is the Cartan matrix. W i t h the following ansatze for the gauge potentials: 

[Ha,E-b] = - K b a E - b , 

[Ha, Eb] = KhaEb, 

[Ea,E-b] = 8abHb, 

[Ha,Hb}=0, 

Y,fa(y,z)H a 
a a 

Au = 2_\ea{y,z)Ea Av = V e a ( r / , z ) £ (3.30) 

a a 
log2<£ a (y,z) 
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the self-duality equations 

[Dy-ZDV]* = Q, 

[ A . + = 0 , 
( where = + A^ ) 

w i t h the symmetry du = dv = 0 are equivalent to the Toda equations 

tank g 

dydz(f>a = - Kabexpfo 
6=1 

(note that these may also be obtained as S0(3)-invariant instantons 
[63,64] 

w i t h gauge 

group G ) . W i t h a slight modification, one may also obtain the affine Toda equations 

rank g 

where Ka\, is the Cartan matrix of the affine algebra corresponding to the simple (non-

affine) Lie algebra g . 

Note that the gauge potential (3.30) had to be in a particular f o r m for the argument 

to work smoothly. While direct computation may easily be done wi th matrices of small 

rank, wi th large matrices other, more algebraic, methods have to be used. I n section 

3.4 i t was the decomposition g = h © m that enabled equation (3.22) to decouple, and 

hence be solved. Of course this decomposition may be used for higher rank groups, 

but the commutator [ e + a , e + J g ] which is tr ivally zero for 3 / (2 ,R) is now no longer zero. 

However, for a class of Lie algebras associated wi th Hermitian symmetric spaces there is 

a subset 0 + of the positive roots $ + for which [e+a, e+p] = 0 . Using such algebra Fordy 

and his col laborators ( 7 9 , 8 0 , 8 3 , 8 4 1 have constructed integrable systems using the A K N S and 

DNLS scheme. As shown in section 3.4 these admit a generalisation to (2 + l)-dimensions 

(corresponding to the twistor spaces TTi n and T2,2n )> a n d these wi l l be constructed here. 

Recall that a homogeneous space of a Lie group G is any differentiable manifold M 

on which G acts transitively ( V p i , p i € M3<7 € G s.t. g.p\ = P2). For a given po £ M , 

let K be defined by 

The manifold M may be identified wi th the coset space G / K , and the Lie algebra g of G 

decomposes as g = k © m , where m may be identified wi th the tangent space T P o ( G / K ) , 

dydz<t>a = - 2I K a b e x p ^ 
6=0 

K = K P O = {9 € G : g.po = p 0 } . 
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and [k, k] C k . I f the further conditions 

[k, m] C m , 

[ m , m] C k 

holds the g is called a symmetric algebra, and G / K is said to be a symmetric space. 

Hermit ian symmetric spaces are very special, and have many interesting differen­

tial/geometric properties. Here i t is the algebraic properties of the associated algebra g 

that w i l l be important . Explici t ly: 

( i ) 3A e h (the Cartan subalgebra of g) s.t. k = C g ( A ) = {B e g : [B, A] = 0} , 

(ii) 3 © + C $ + ,a subset of the positive root system, s.t. m = s p a n { e ± 0 } a e © + ,and 

[h, ea] = ±aea V/i € h and a G 0 ± , 

(Hi) [e a , e / j ] = OVa, /? € 0 + or a,0 € ©~ . 

More details may be found in [87] and in Appendix A. 

The starting point to construct integrable models associated w i t h these Hermit ian 

symmetric spaces is again (3.18) : 

*x = M + Q(z,y, *„)]*, 

n - l 

i=0 
but now the gauge potentials w i l l be g-valued matrices. The constant mat r ix A € h is the 

element tha t generates the algebra k (see condition (i)), and Q(x,y,t) £ k . Again, i t w i l l 

be useful to decompose the matrices JB , w i th respect to the decomposition g = k © m , 

i.e. let B, = B? + B?, where 5 f € k and Bm 6 m . 

The integrablity conditions yield a set of equations similar to (3.22), the only difference 

is that the label h on the matrices is now k, e.g. (3.22)(c) now reads 

i = l , . . . , ( n - l ) . 

One may expand Q in terms of the basis for k , 

Q= £ ( ?

a e a + p a e _ a ) , 

and systematically solve equations (3.22)(a), (6), (c) and (d). 
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The first i teration yields the matrix Bi: 

<*€©+ 

«,/?€©+ 

and this immediately gives the equations for the second order flow: 

Qt = dxB? + [BlQ}. 

Since a+/3—7 is either not a root, or <*+/?—7 G 0 + Va,/?7 £ 0 + since (a+/3—7)(A) = a , 

this last equation decouples : 

a E 9t°ea = E 9 ? » c « + E / • 5 * 1 ^ { 9 7 - P * } - [ e / 9 > [ c 7 > e - « ] ] » 

- o E P?c-« = E P ^ 6 " - + E / 4 1 3 s { p 7 . ? { } . [ e - / , , [ e . 7 , e { ] ] . 

These simplify fur ther by using the definition of the Riemann curvature tensor: 

RClfiy-Sea = [e0, [e7> e s ] \ > 

and by using the linear independence of the e a 's. The resulting integrable system is 

/3 , 7 ) «e0+ 

-ap?=P°y+ E R~a-fi-,S-P3-^1dy{p-'.qS}. 
/?,7,«€© + 

As in section 3.4, i f the symmetry dy = dx is imposed, these simplify to the equations 

studied by Fordy and Ku l i sh j 7 9 ' and correspond to bundles over the mini twistor space 

0(2). Note how the nonlinear terms have a geometrical origin as the curvature of the 

homogeneous manifold G / K at the point po . 
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The th i rd order flow many similarly be constructed; the equation itself is rather long: 

a2-I? = tf„ + a.S: - J? W d J 1 ^ , 

^•Pt = P a

x x y + + R - * . ^ d : ^ 8 , 

where 

s a = R % y _ s q

f i . d ; l d y { q \ p 6 } , 

Ta = R-Q_p_y.d;ldy{p\q

s}, 

and 

a2 T P t = qP p l y _ p , q 0 y + a { q f i T - r _ p - < S P ) . 

This may be wr i t ten in local form by introducing potential functions, as in section 3.4. 

One may similarly derive integrable systems in (2 + l)-dimensions for the generalised 

DNLS hierarchy given by (3.28). 

E x a m p l e s 

These Hermit ian symmetric spaces have been completely classified, and Table 3 shows 

all the possible cases (this has been taken f r o m Helgason, where many more details of these 

spaces may be found). The compact spaces correspond to the reduction pa — qa , and the 

noncompact spaces correspond to pa = —qa (in both cases a = i ) . Such reductions are 

consistent since the Riemannn curvature tensor has the property 

(Rpi-s) = R-p-tS • 

Examples f r o m some of the families of Hermitian symmetric spaces w i l l now be given. 

A I I I SU{r + s)/S[U(r) x U{s)} 

Examples of the second and third order flows, corresponding to the simplest case 

(r = s = 1) have already been calculated, albeit in a different guise, in section 3.4 

(the constants K and a are related by 2K = a). I f r — 1 and s is arbitrary, then the 

corresponding space is in fact the complex projective space ( D P 3 , and in such spaces 

the Riemann curvature tensor is determined f rom the Gaussian curvature K, which is a 
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N a m e N o n c o m p a c t C o m p a c t R a n k D i m e n s i o n 

A I I I SU(p, q)/S[U(p) X U(q)} SU(p + q)/S[U(p) X U(q)\ min(p, q) 2pq 

B D I SO(p,2)/SO(P) x 5 0 ( 2 ) SO(p + 2)/SO(p) x SO(2) min(2 ,p) 2p 

D I I I SO*(2n)/U(n) SO{2n)/U(n) [ i n ] n(n — 1) 

C I Sp{n,R)/U(n) Sp(n)/U(n) n n(n + 1) 

E I I I 32 

E V I I 54 

Tab l e 3 Irreducible Hermitian Symmetric Spaces 

constant. The resulting system is 

i.q?=qa

xy + K{ Y , 9P,-Sd:ldy[q^)}.q\ 

and its complex conjugate. The quantity gp-& is the metric (wi th respect to the root 

vector basis) of the projective space. 

A non-tr ivial example occurs when r = s = 2 . The linear problem is generated by the 

following choice for the potentials A and Q: 
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/ 1 0 o o\ 

li 0 1 0 0 
0 0 - 1 0 

0 0 o-iy 

0 0 91 9 2 \ 

0 0 94 93 
-91 - 9 4 0 0 

- 9 2 - 9 3 0 

which leads to the equations: 

^ql = <lly + 2q\^;%[\q

1\2 + \ q

2 \ 2 ] + 2 q \ ^ ^ [ q ^ + q

2 f ] , 

<9? = 9 , f + 2q\d~%[\q^ + |9

2|2] + * q \ d ? d v t f ? + , 

and two more obtained by the interchange 1 3 and 2 <-+ 4 , together w i t h the complex 

conjugate equations. 
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C I Sp(n)/U{n) 

A n example corresponding to the space Sp(2)/U(2) may easily be constructed f r o m 

the previous example by using the same A and Q, but w i th the constraint 9 4 = 9 2 , so the 

off-diagonal blocks are symmetric. The reason that this works is that there is an inclusion 

Sp(n) SU(2n) 

U(n) C S[U(n) x U(n)] ' 

and so one may think of the resulting equations for a C I space as a reduction of those 

for a A I I I space. 

D I I I S0(2n)/U{n) 

W i t h n = 2 and the following matrix representations 

£.A + Q = 

2 0 0 0 0 91 9 3 9 6 ' 

0 i£ 
2 

0 0 - 9 1 0 9 2 9 5 

0 0 a 
2 

0 - 9 3 - 9 2 0 9 4 

0 0 0 2 - 9 6 - 9 5 - 9 4 0 

0 91 9 3 9 6 it 
2 

0 0 0 

- 9 1 0 9 2 9 5 0 2 0 0 

-93 - 9 2 0 94 0 0 «'? 
2 0 

- 9 6 " 9 5 - 9 4 0 0 0 0 _ i i 
2 

one may construct the following integrable model: 

= Qxy - {d-^Q.Qlj.Q - Q.jdr^Q.Q]} , 

together w i t h the complex conjugate equation. Q is the top corner block matr ix i n Q, 

/ 0 qi 9 3 9 6 \ 

- 9 1 0 q2 9 5 
Q — • 

- 9 3 - 9 2 0 ? 4 

\ - 9 6 ~ 9 5 - 9 4 0 / 

As w i t h the C I family, this is a reduction of one of the A I I I family, which follows f r o m 

the relation 

SO(n) SU(2n) 

U(n) C S[U{n) x U(n)\ ' 

where now the off-diagonal blocks are skew-symmetric. Another consistent reduction is 

to take 9 4 = 9 5 = 9 6 = 0. the resulting model is just the equation associated w i t h (DP 3 , 
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since there is an accidental isomorphism 

SOW * SUM ^ 3 

(7(3) S[U{1) x C/(3)] " 

Further examples for the B D I spaces and the two exceptional cases E I I I and E 

V I I I could also be constructed, using suitable matr ix representations. 

So far all these examples belong to the A K N S hierarchy, but he procedure also works 

for the generalised DNLS hierarchy given by (3.28). The simplest example, corresponding 

to the space SU(2)/S[U(1) x U(l)} ^ C P 1 has already been worked out in section 3.4, 

the equation (3.29) being 

-idti>= [dy^ + 2 i d - l d y \ ^ \ 2 ^ ] x . 

As stressed earlier, such reductions are possible due to the algebraic properties of 

Hermitian symmetric spaces. Such structures are not necessary for integrability, they just 

make the manipulations easier. In the above examples i t was the condition [e^e^] = 

OVa,/? 6 0 + that simplified the calculations. Relaxing this condition (and hence the 

spaces involved w i l l no longer be Hermitian symmetric) leads to the introduction of terms 

which depend on the non-vanishing torsion, this being defined by 

Tap = [eQ,ep], 

in addition to the Riemann curvature tensor. Examples of integrable models w i t h this 

non-vanishing torsion are the N-w&ve hierarchy, where the equations are associated wi th 

spaces such as 

SU(n) A 

S[U(nl)x...xU{nm)]' h i 1 * ' " ' 

There may also be f i t ted into the above scheme, and generalised to higher dimensions, 

though the results are not presented here. 

There are st i l l many interesting questions and problems wi th these higher dimensional 

integrable systems. For example nothing has been said about their Hamiltonian structure 

( i f one exists) or even a possible classical r -mat r ix structure.' 7 9 1 Such structures underlie 

many two dimensional integrable models, but how, i f at al l , they survive the generalisation 

to (2 + l)-dimensions has not been investigated at al l . 
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3.6 Infinite Rank Gauge Groups 

In recent years there has been much interest in infinite rank groups, and their Lie 

algebras. As well as being interesting in their own right, the use of them as gauge groups 

has shown connections between hitherto disconnected areas, such as the self-dual Einstein 

and self-dual Yang-Mills equations.' 5 8 '" ' 8 9 , 9 0 ' 9 1 1 Also various linearisations occur in the large 

N l imi t of SU(N) field theories, Nahm equations}9*1 Toda fields'931 etc.etc. In this section 

the group S D i f f ( T , 2 ) , the group of volume preserving diffeomorphisms of the 2-surface E 2 

w i l l be used as the gauge group for various models. This may be identified w i t h SU(oo), 

though the l imi t ing procedure is subtle, reflecting the different topologies of the surface, 

and this aspect wi l l not be discussed here. 

Let E 2 be a 2-surface with local canonical (or sympletic) coordinates cro and o\, so the 

volume element is given by dA = dao-dcr\. For example, i f E 2 = S2 , the 2-sphere, then 

<7o = <t>, c i = cos 0, where 0 and <p are the standard angles on the sphere. A n element of 

the corresponding Lie algebra s d i f f ( T , 2 ) may be wri t ten using Hamiltonian functionsf 9 4 ' 

Tha t is, i f Lj G sdif/(E2) then this may be wr i t ten as 

and, as may be easily checked, this satisfies the relations 

[Lf,Lg] = L { f t g } , 

[Lf>9] = { />5>, 

where { / , g } is the Poisson bracket 

{ f , g } 

The element Lf transforms (CTO, <J\) —> (cro — • J ^ j - , a n d infinitesimally this preserves 

the volume f o r m da^Adai. The function / may be expanded in terms of a suitably chosen 

basis, for example, i f E 2 = T 2 , the 2-torus, one may take as a basis the functions 

/m 0 ,m, = exp[z(mo<70 + m i < T i ) ] , 
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or if E 2 = 5 2 , the 2-sphere, one may take a basis of spherical harmonics 

flm = Ylm(0,<f>) • 

Thus to each gauge field Ai(x) € *c?i / / (S 2 ) there is a funct ion a,(x,<r) so that 

Ai(x) «—» L a i . 

The associated field strength F{j corresponds to L f t j , where 

f i j = didj — djcti + {ai, aj} . 

Next two examples wi l l be given to show the use of such Lie algebras. 

E x a m p l e 

Taking twistor space to be C P ^ + 1 implies, by the construction of chapter I I , that 

there exists the following family of linear operators corresponding to certain holomorphic 

bundles over the twistor space: 

3 

Imposing the symmetry ^ = 0 and the gauge condition Bk = 0 gives rise to the fol lowing 

integrability conditions for such systems (using the notation d{ = f j - ) : 

diAj - djAi = 0, 

[At,A3} = 0. 

I f the gauge group is taken to be S D i f f ( T , 2 ) then the first of these may be solved by 

taking a, = di$l (recall Ai «-> LGj ) , and the second implies 

L{d,n,d3n} - 0) 

so {diCl, djQ} must be independent of the surface coordinates CTQ,(T\ , and so must be 

a funct ion of the x, only. Taking this function to be 1 (for i < j ) gives the system of 

equations 

djSl} = 1 , i < j , i,j = l,...,N. (3.31) 

[59] 

The first such equations, for N = 2 , is just the Plebanski's First Heavenly Equation 

(which is equivalent to the self-dual Einstein equations for a 4-d spacetime wi th coordi­

nates ( x i , X 2 , CTQ, <TI ) , and so (3.31) may be regarded as an associated hierarchy. 
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In general one has 

{din,dja} = M t j { x ) . (3.32) 

Under certain conditions this may be reduced to the above form. I f there exist functions 

Gi(x) so that 

Gi.Gi = Mij, i < j , (3.33) 

then performing the coordinate transformation 

i , — • wi, —— = G, (no sum) 

reduces (3.32) to (3.31). However (3.33) is (except for the simplest case when N = 2) 

an overdetermined system, so such transforming (3.32) to (3.31) by using such a simple 

coordinate transformation is not possible. Examples of such a construction may be found 

i n [58,88]. 

E x a m p l e 

In this second example the minitwistor space O(N) w i l l be used. This implies the 

existence (under certain gauge condition) of the system 

Ck = d k - A k + \ d k + u k = 0 , . . . , N - l . 

The integrabili ty conditions of such a system are 

dj+iAi - di+1Aj = 0 , 

diAj-diAj + [Ai,Aj] = 0. 

As in the previous example, the firsts of these may be solved by introducing a single 

function Q , such that a,- = <9,+if2. The second equations then implies 

• „ f l + {dlQ, djH] = Hij{x). (3.34) 

[For brevity the linear differential operator 

Dij = di+idj - dj+idi 

has been introduced. The simplest operator, Doi = 3\ — dQd2 is just the (2-f-l)-dimensional 

wave operator.] 
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The funct ion Jl is only defined up to an additive function of x alone, i.e. Cl —> 

0, + M(x) . Under such a change this last equations becomes 

DijD, + {ditt, djtt} = Hij - UijM. 

So i f one can solve the following system for M(x) 

Hij{x)=UijM{x), 

then (3.34) becomes 

DijQ + {ditt, djQ.) = 0. (3.35) 

In the simplest case (N = 2) when there is only one such equations, this is always possible. 

These examples seem to be connected to the theory of hyper-Kahler hierarchies!9 5' 

One important subalgebra of s d i f f ( E 2 ) is the Lie algebra su(2). This is clearly illus­

trated by taking S 2 = S2 , a two sphere, and a basis consisting of spherical harmonics. In 

general 

\Ylm,Yvm'] = £ { y ; m , y ( , m , } , 

l"m" 

= flI'mm'-Yl"m" • 

However, as may be easily checked by using appropriately normalised spherical harmonics, 

the functions Yi-i m satisfies the relations 

[•^1,0. £i ,m] = m.Liiin , 

w i t h all other commutators (wi th / = 1) being zero. These are the su(2) commutator 

relations, and so the set { V / = i > m , m = + 1 , 0 , - 1 } is a representation of this algebra, 

hence su(2) may be embedded wi th in s d i f f ( S 2 ) , su(2) <̂ -> s d i f f ( S 2 ) . 

So any A(x) € su(2) may be expressed as an element of s d i f f ( S 2 ) by first wr i t ing i t 

in terms of the basis {cr+, cr3, a~} , 

A{x) = Am{x)am , m = ( + , 3 , - ) , 

- > A m ( x ) Y l = h m . 

Thus i t should be possible to express models that arise f r o m su(2) gauge groups (such as 

the NLS and SG equations) in this fo rm, using the above procedure. 
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3.7 Comments 

The aim of this chapter has been two fold: 

o To show how many existing examples of integrable models may be given a natural 

twistorial interpretation, which provides a natural geometrical setting for such 

models. 

o To show that this geometrical picture provides a natural framework in which to 

construct new examples of integrable models, including generalisations f r o m 

(1 + 1) to (2 + l)-dimensions. 

Much work remains to be done, both on the systematic classification of models which 

arise f r o m this twistor-geometrical description, as well as the construction and properties 

of the solutions to these models. As has been mentioned earlier, the understanding of 

how (if at all) such systems as the K P and DS equations can be f i t ted naturally into the 

above scheme remains an important outstanding problem. 
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Chapter IV 

lolution Generating Techniques 

4.1 Introduction 

I n this chapter explicit solutions of the generalised self-duality equations derived i n 

chapter I I w i l l be constructed, and in particular solutions of the (2 + l)-dimensional 

integrable equation 

(4.1) 

which arises as a dimensional reduction of such generalised systems. To recapitulate, the 

corresponding linear system for (4.1) is 

(4.2) 

Here A, B and Q are su(2)-valued matrices and A and Q are of the fo rm 

1 0 

2 V 0 - 1 

( o * \ ( 4 3 ) 

This system has two well known integrable equations embedded wi th in i t . Namely, i f 

the symmetry dx — dy = 0 is imposed then (4.1) reduces to the Non-Linear Schrodinger 
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equation 

and if the symmetry d% = 0 is imposed then (4.1) becomes 

dxvil> = -V(xl),$)4, 

dxV = 2dyty\2 . 

This is a 'complexification' of the sine Gordon equation, for i f the algebraic constraints V = 

4 cos <f> and = \dx<$> are imposed i t becomes the sine-Gordon equation, dxy<f>+4 sin <j> = 0 . 

The solutions w i l l be constructed in two stages: 

e Solution of the generalised self-duality equations wi l l be 

constructed using the 'Riemann Problem wi th Zeros' method. 

• Ansatze w i l l be given for the arbitrary functions that appear 

in the above to ensure that the gauge fields have the correct 

symmetries, and are gauge equivalent to (4 .3) . 

The corresponding hierarchies (of which (4.1) is the lowest member) may be similarly 

solved. I t w i l l t u r n out that given a solution (4.1), then solutions to the hierarchy may 

be obtained by a simple change of variable. This is similar to how Hirota's method works, 

and this w i l l be commented on in chapter V I . 

4.2 The 'Riemann Problem with Zeros' Method 

Recall the twistor construction of gauge fields in chapter I I . Fundamental in this is 

the double fibration 

F 
V V 

T M -

One starts w i t h a holomorphic vector bundle on TT, then this is restricted to a global 

holomorphic section, and hence becomes an object defined on F . This is then split , 

providing a solution <E> (again a function on F ) of the equations 

= k = l,...,m, 
(4.4) 

£ , $ = 0 / = l , . . . , n , 

f r o m which the gauge fields (functions on M ) may be extracted. 
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The hardest part of the construction is the spli t t ing of the pull-backed bundle on F , 

and the Atiyah-Ward ansatze define a certain class of bundles on IT for which this spl i t t ing 

may (relatively) easily be achieved. Another approach is the so-called 'Riemann Problem 

w i t h Zeros' method. Rather than starting w i t h a bundle on T T , the starting point is an 

ansatz for the solution $ of the equations 

£ f c $ = 0 k = l , . . . , m , 

£l$ = 0 / = l , . . . , n . 

The reason for the change in notation between this and (4.4) is as follows: the twistor 

construction implies that $ is a holomorphic function of the spectral parameter, while the 

ansatz for \& involves iV-distinct simple poles (see below). From \P one may reconstruct $ 

(though not uniquely, due to gauge invarience), and thence the bundle, which turns out 

to be one in the Atiyah-Ward class AN . This wi l l be explained in more detail latter in 

this chapter. 

Consider the generalised self-duality equations associated wi th the space TTJT^JJ (and 

in the gauge where Ak = 0 and C\ = 0 ) : 

d 
dxk - 4 

axk-i 
'd 

dyi 

q = Dk$!, * = l , . . . , m , 

* = / = ! , . . . , n 

(4.5) 

(the reason for the tildes is that these fields are not the fields B and Q of (4 .2) , but are 

gauge transformations of these). 

A l l the remaining gauge fields may be wri t ten in terms of a single 5^7(2)-valued 

funct ion J(x,y) defined by 

J = y (4.6) 

so 
_! dJ 

Dt = -] 

oyi 

To ensure that the gauge potentials are su(2)-valued the matr ix J has to have uni t de-
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terminant (detJ = 1) and also the 'reality' condition 

^ ( i . y . O ^ - ^ ^ . y . O " 1 , (4-7) 

where 'c.c.t ' denotes the complex conjugate transpose. These are the last vestiges of the 

conditions (b) ( i i ) and (b) ( i i i ) in Theorem 2.5. 

The 'Riemann Problem wi th Zeros' gives a way of generating new solutions, 

f r o m an old solution, \ J / 0 (£) . I t is assumed that $ is of the fo rm 

* ( 0 = 
jfe k 

— Z 

k=i s S f c 

• * . ( 0 . (4-8) 

where m k , nk and & are functions of all the x and t coordinates I t w i l l suffice here to 

take ^£, = 1 , the t r iv ia l solution. 

So, in coordinates, $ has the form 

•«>-=«-
j t = i s ^ 

The ' real i ty ' condition (4.7) imposes constraints on the vectors m and n. Rearranging 

(4.7) gives 

i2*(OabV(OtcX=6ac, 
6=1 

and the right hand side of this is clearly holomorphic in £ . The left hand side appears to 

have simple poles at £ = and £ = £fc . In order to avoid a contradition, the residues at 

these poles have to be zero, and this gives an equation for n in terms of m , namely 

where 
2 - k l 

rkl m a r n a 
r = £ ^ -

The equations for m come f r o m the differential equations (4.5). 
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Again, the expressions involved are holomorphic, so the second and first order poles 

must be removable. The absence of second order poles implies that the must depend 

impl ic i t ly on the coordinates and y\, i.e. they are given by the roots of an equation of 

the f o r m 

M U o ( 0 ^ i ( 0 1 = o , 

for some smooth funct ion h(£, TJQ, rji). For simplicity the following notation w i l l be used: 

m 

8=0 

I n the rest of this chapter i t wi l l suffice to take 

n 

Jt=l 

where the are complex constants. 

The absence of first order poles implies that two-component object m j is a funct ion of 

the real global holomorphic sections at the point £jt, i.e. a funct ion of T]Q and rj^ . Wi thout 

loss of generality one may set m\ = 1 , ra£ = fk{Vo, Vi) > where /fc(f?o,*?i) is a holomorphic 

funct ion of twistor coordinates T/O and 7 / j (possibly wi th singularities). 

To ensure that det J = 1, one has to divide J by y/a, where a is given by 

N 

a = det tf|e=0 = 
Jfc=l 

Finally, this gives the formula for J - 1 , 

(J~'U = jsU* + E TF-Yrtrnt} . (4.9) 
*,/=i ? * 

The above details have been taken from [51,75]. 
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4.3 Ansatze for solutions 

The method described above w i l l now be used to construct solutions to (4 .1) . This 

corresponds to the space T i ) n , i f one is to study solution to the associated hierarchy as 

well. The following lemma provides a sufficient condition for the functions fk so that the 

resultant gauge fields, after gauge transformations, are a solution of the system (4.2) w i t h 

A and Q being in the fo rm (4.3). 

Lemma1 4 1 

Let the functions fk in the above construction be given by the product 

fk{fio,m) = fl(w)-fl(m)> 

where 

fUlo) = exp[ifj0], 

and f l are arbitrary holomorphic functions of the one complex variable. Then the matr ix 

J , given by (4 .9) , generates fields (4.6) which are gauge equivalent to 

and where the funct ion i\) is independent of XQ . This then gives a solution to the general­

isation of the A K N S hierarchy given by (4.2). 

Proof 

W i t h the above ansatze, the functions fk are of the form 

fk(0 = exp [ ix 0 ] - exp [»^x i ] . / f c (^ i ) . 

independent of xo 
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I t then follows f rom the general fo rm of (4.9) that 

T ( 9 fcexp[-t'.i0]\ 2 

J = I r- i - ' M + W = 1 . y - / i e x p [ z . x o j 9 J 

where g and h are independent of xo . Using (4.6) , this gives the following set of gauge 

potentials: 

£ _ Q _ I P 9- e x p [ - i x 0 ] 

\ q. exp[ixo] —p 

~ _ / ri Sj.exp[-ia:o] 

y ^ , . exp[ixo] —ri 

w i t h p,q,rj and 5, all having no dependence on XQ . Recall that the potentials are only 

defined only up to the gauge transformation Ak g~l.A^.g — 9~l--§^ etc.. Choosing g 

to be 

0 exp[—*-f] 

removes the XQ dependence in the above fields, and in addition gives rise to a non-zero 

matr ix A (formerly zero): 

The gauge transformed fields w i l l be writ ten without the t i lde. This construction gives 

the matrices Q and B for the linear system 

[dyi - (dy^V = B,® , Z = l , . . . , m . 

However the resultant matr ix Q in general wi l l not be in the skew symmetric fo rm, 

but may be gauge transformed into one that is. This is achieved wi th 

(exp J pdxi 0 \ 

0 exp — J pdxi J 

As this is independent of xo the matrix A remains unchanged. Finally one is left w i th a 

solution to the system (4.2): 

ip = q. exp 2 J pdx\ . 

The matrices Bi are also left without any dependence on X Q , as required. Solutions of 
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(4.1) are given by putt ing m = 1 in the above construction. Higher values wi l l give 
solutions to the associated hierarchy. 

Example 

Taking the space T i ( i and £ j t = i = a + ib gives the following solution to (4.1), 

tax J 
i> = - 2 6 - ' J 

e~bx + e 6 * | / | 2 ' 

where / = / ^ = 1 ( ^ i ) is a holomorphic function of y + (a + ib)t. Note that for f ixed y and 

t, %jj —• 0 as x —> ± o o . 

©/ = expc?7i, where c is a real constant. 

W i t h this / the solution is 

V> = — &exp[z'(aa; - j - 6d)]sech[6x + c(y + at)], 

and so is an extended wave, whose wave front is the line bx + c(y + at) = 0 . 

©/ = 2cosh[c77i], where c is a positive real constant. 

For fixed t the function has the properties 

/ w exp{+c[y + (a + ib)t]} , as y -* +oo , 

/ w exp{—c[y + (a + i i ) ^ ] } , as y —> —oo . 

Thus for large \y\ the solution looks like a linear wave (as above). More detailed analysis 

shows that the wavefront of 1̂ 1 is v-shaped, rounded at the t ip . 

One of the advantages of this computational scheme i t that i t is easier to compute 

solutions than i t is to f ind the equation i t satisfies. In what follows the one soliton solution 

w i l l be constructed for the nth order flow of the NLS hierarchy (i.e. the standard A K N S 

hierarchy in (1 + 1) dimensions). There is not a closed formula for the corresponding 

n t h order flow evolution equation, though one knows that i t may be computed using the 

techniques used in chapter I I , that is, by iteration. 
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4.4 (1 + l)-Dimensional Soliton Equations 

I n this section the soliton solutions to the Sine-Gordon and the Non-Linear Schrodinger 

equations w i l l be constructed using the above methods. These may be encoded in bundles 

over mini twis tor space, so rather than using T i | n the symmetry w i l l be factored out f r o m 

the start, leaving 0(l + n) (see chapter I I ) . A t this point there is a slight clash in notation. 

The r t h -o rde r flow corresponds to the twistor space 0(r), not 0(r + 1 ) . Thus the second 

order flow comes f r o m n = 1 . 

A slight change of notation wi l l be used here for the global holomorphic sections. 

This amounts to nothing more than a change in the inhomogeneous coordinates on C P 1 , 

the expressions, i f wri t ten in homogeneous coordinates remain unchanged. The global 

holomorphic section of 0 ( 2 ) are given by equation (2.11), namely 

i> = x + £u + £~lv, (4.10) 

where u = \{t + y) and v = ^(t — y). The corresponding spacetime has the metric 

ds2 = dt2 — dx2 — dy2 . Recall that (for real x, y , t ) given a point (£, v) € 0 ( 2 ) w i t h (£, v) 

complex, then the solution of (4.10) is a timelike line in in R 2 + 1 w i t h direction vector 

(* ,x ,y ) = ( l + | £ | 2 , - £ - £ l - | £ | 2 ) . (4.11) 

The orientation of the line is given by the imaginary part of £ : 

I m £ > 0 line future pointing 

I m f < 0 line past pointing . 

Points w i t h {v, £} both real correspond to real null planes, and the remaining points in 

0 ( 2 ) do not correspond to anything in R 2 + 1 . Similarly the global holomorphic section of 

0 ( 1 4- n) w i l l be parametrised by 

n 

v = ex*, 

for some Xi (EH, i = — 1 , . . . , n . 
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The f o r m of (4.9) is unchanged after going f rom T T to a minitwistor space. The only 

change is that now the functions mjjj are functions of the single variable 

n 

i=-l 

and the satisfy the equation 

4.4.1 The Sine-Gordon Equation 

The integrabili ty condition for the linear system 

• • « ( : : ) } - (,:. ? ) • 
(cos 6 s in6 \ • , J®' 

sm <p — cos <p J 

(4.12) 

yield the sine-Gordon equation 

" 4>uv + 4sin<£ = 0 . (4.13) 

[Note the change A —+ 2A and the relabelings of x and y by u and v, compared wi th the 

system (4.2) . These superficial changes are to make the above agree wi th the standard 

f o r m of the Lax pair, as found, for example, in [96].] 

This is clearly a dimensional reduction of the self-duality equations wi th the symmetry 

d w = dT : 

[du + An ~ £{dr + Ar)]V = 0 , 

[dw + A W - £(dv + AV)]V = 0 , 

w i t h the following gauge potentials 

(4.14) 

A - I ° 1 A - i C°S<i> 

0 % J \ sin <p — cos q> 
(4.15) 

Under a gauge transformation wi th g = d iag(e , z , e 1 1 ) , where x = r + u ; , the gauge fields 
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transform to 

( cos <j> — 1 e 2%x sin <j> 
A r = 0 Aw - -i 

e2,x sin tf> 1 — cos </> 

0 i e - 2 l ^ u 

(4.16) 

and these gauge potentials may be generated f rom a J of the f o r m 

cos e"""2'1 sin i \ 
J = 

2t'i 1 —e sin in i<^ c o s i ^ 

where Au = J 1 d u J , Aw = J l d x J, and wi th J satisfying the equation 

d x ( J ~ x d x J ) - d w { J ~ l d u J ) = 0 (4.17) 

which arises f r o m the integrability conditions for (4.14). 

So solving the inverse scattering problem is directly equivalent to constructing a matr ix 

of this fo rm. Note that the spectral parameter of the inverse problem is the coordinate 

on the base space C P 1 of the twistor space 0 ( 2 ) . 

Lemma'31 

I f fk = exp(—2i i /k) , and the set of complex constants is invariant under the operation 

then the J denned by (4.9) is of the fo rm 

( cos 16 e~2,x s'mld>\ 
2 « - U U ' ( 4 - 1 8 ) 

— e£XXsm^(f> cos^</> J 

and so generates a solution of the sine-Gordon equation. 

P r o o f 

I t should first be pointed out that the fo rm of J is not unique. I f J satisfies (4.17), 

then, i f g € SU(2) is a constant matrix, so does the matrix J.g~l. I t wi l l turn out that to 

get J into the form (4.18), such a transformation is required. 

Under the action of the operation £ — £ , the set of constants (assumed to 

be invariant under this operation) splits into two disjoint sets; one consisting of pure-

imaginary numbers, and the other consisting of ordered pairs, {(£,— £) , R e £ > 0} . I t is 

assumed that there are m distinct constants which are pure-imaginary. 
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From the above definition of i t follows that 

fk = exp(-2i i /*) 

= exp(-2ix).fk(y,t), 

and f r o m (4.9), the function a has the f o r m 

n 

i=l 

= ( - i r . 

Using the fact that J is SU(2)-valued, these, together w i th the general formula (4.9), 

imply that J - 1 has the fo rm 

1 ( - l ) m & e x p ( 2 i x ) ( - l ) m a ' " " 

The functions a and b depend only on y and t and are 

jb,/=i 

Under the transform J i—• J.g wi th g = d i a g ( a 2 , a 2 ) , the matr ix J 1 becomes 

/ a — 6. exp(—2ix) \ j ( ° 6exp(—2ix) 

yfe. exp(2ix) a y \ — feexp(2z'x) a 

This changes the fields by a rigid gauge transformation. 

I f a and b are real, one may define a new function <f>(y,t) by a = cos^ ,6 = sin ^ 

(since now a2 + b2 = 1), and so 7 is of the form (4.18), and hence gives a solution to the 

sine-Gordon equation. I t thus remains to show the reality of these functions. 
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For simplicity, consider the special case where the ^ are all pure-imaginary, so f^ = 

ipk for pk € 1R . I t then follows f rom their definition that the functions fk are real-valued. 

The matr ix T then becomes 

+ PI 

and this has the property that 

The reality of a then follows: 

r« = - r kl 

=1+ ^ ( - l K - v ^ - C - i K r - 1 ) * ^ - -

So a, and similarly b, are real. The general case works in the same way, though now the 

individual terms in the summation are either real (corresponding to those £k which are 

pure-imaginary), or occur i n pairs (corresponding to the pairs (£,—£))> ^he s u m °f the 

terms in each pair being real. Hence the overall summation yields a real answer, even 

though the individual terms may be complex. 

Examples 

The 1-soliton solution may be obtained wi th k = 1 ,£ = ip ,p GlR: the above method 

yields (after the rescalings y —> — 2y and t —> —It, which reduces the sine-Gordon equation 

(4.13) to the normal form [dy - d2} <f> = sin <f>) 

where v 1 - t 2 

1+ t 2 

<j> = 4 tan 1 exp 

4 tan 1 exp ± 

2p 

y-vt 

2p 
(4.19) 

VT^v2 

The solution is a kink or an antikink, depending on the sign of I m £ , 

I m £ > 0 kink, 

I m £ < 0 antikink. 
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The velocity vector of the solution is 

(vt,vx,v9) = (l + \(\2,Q,l-\tf). 

These are precisely the twistor relations (4.11). So the velocity vector of the solution, 

and whether it is a kink or an antikink, has a natural interpretation in terms of the 

geometry of 0(2) a kink is generated from a constant £ corresponding to the direction of 

a future pointing timelike line whose direction vector is the same as the velocity vector 

of the kink. Similarly, an antikink is generated from a constant £ corresponding to the 

direction of a past pointing timelike line. 

The breather solution is generated from the pairs (£, — £) . This yields the solution 

_2 J cot \i sin ©i 
<f> = 4 tan" 

cosh 0 r 

where 
cos fl 

_ sin/* 

i - k l 2 

Again the velocity vector of the breather has a natural interpretation in term of the 

geometry of 0(2) this being the sum of the direction vectors corresponding to £ and — £ . 

The amplitude of the breather is governed by the argument of £ . 

On 0(2) there is a natural involution corresponding to the signature of R 2 + 1 , namely 

£•—•£. This reverses the sign of Im£, and so has the effect of interchanging kinks and 

antikinks. The modulus |£| remains unchanged, so this involution does not change the 

velocity of the kinks and antikinks. For breathers, it reverses the sign of \i, but this does 

not change the form of the solution; in effect there is no such thing as an antibreather. 

There is a second natural involution on 0 ( 2 ) , £ t-+ £ - 1 , or inversion in the unit circle. 

This keeps (anti)kinks as (anti)kinks, and breathers as breathers. It does, however, reverse 

the velocity of each (anti)kink or breather. 
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This all extends to the general soliton solution, which consists of an arbitrary number 
of kinks, antikinks and breathers. The lemma assumes that all the solitons are super­
imposed at t — 0; this may be easily extended to give solitons at arbitrary positions by 
replacing fk = exp(2ii/jt) by fk = exp(2ii/jt + cjt) for arbitrary constants c\.. 

4.4.2 The Non-Linear Schrodinger Equation 

In chapter I I it was shown that the NLS equation was contained within the Yang-

Mills self-duality equations for gauge group SU(2). This was first shown by Mason and 

Sparling. In fact they showed that the NLS equation, under appropriate symmetries and 

ignoring a degenerate case, was equivalent to the self-duality equations. 

Theorem 

The self-duality equations, with gauge group SU(2) and a null and a non-null trans-

lational symmetry, are equivalent (ignoring a degenerate case) to the linear system 

*X = [(.A + Q]V, 

with A and Q given by (4.3) and 

B = i / l V > l 2 \ 

-\i>?) 

the integrability condition of which is the Non-Linear Schrodinger equation 

*^« = ^ « . + 2 | 0 | V , (4-21) 

with the null coordinate u playing the role of time. 

After using a gauge transformation to transform A to zero the linear system (4.20) 

becomes 

Thus the J-description of the fields may be used, as above. 

(4.20) 
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Lemma' 2 1 

If /* = exp(if jfci/jt), (no sum), and {( / .} are a set of complex constants, then the gauge 

fields, given by (4.9) and (4.6), provide, after a gauge transformation, solutions of the 

Non-Linear Schrodinger equation. 

Proof 

Since fk = exp(—iv) fk(x,u), it follows from the general solution (4.9) that J has the 

form 

/ a be~iv\ 
J=(-le<> -a )< M' + IH' = 1 . 

where a and b depend only on the coordinates x and t. This generates gauge fields 

9 - 1 

where p ,q,r and s depend only on the x and u coordinates. After a gauge transformation 

with (exp(—i\v) 0 

0 exp(i^u) 

(which removes the v dependence in the above fields) the fields are, perhaps after a further 

gauge transformation to put Q into a skew form, in the form (4.3), and hence contain a 

solution to the Non-Linear Schrodinger equation (4.21). 

Example 

Take k = 1 and f n = i = a + ib, then the above method gives the familiar one soliton 

solution: 

V> = —6 exp[z(a2 — b2)u + iax] sech (2abu + bx). (4.22) 

In the above example the gauge fields are automatically in the form (4.3) so the 

solution may just be read off from the entries in Q without further gauge transformations. 
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The general solution (4.9) is derived from the following ansatz: 

$ = 1 + 

where mk and nk are two-component vectors functions of the coordinates. The generalised 

self-duality equations (4.14), together with a condition (equation (4.7)) needed to ensure 

the gauge fields are su(2)-valued, give equations for mk and nk which lead to the solution 

(4.9). Note that the matrix # has simple poles at the points . The same solution 

may be derived by 'adding' the poles one-by-one, in which case one takes 

mN ® nN 

(-(« 

where ^ 0 is a known solution with N—l simple poles. Then J — ^-1|^_0 = J0-9~l ? where 

J0 = 1^_0 and g depends on the constant ( n as well as the spacetime coordinates. 

Then in terms of the gauge fields 

and A° is the gauge field corresponding to $ 0 . This is just the 'dressing' of Zakharov and 

Shabatj9 7 1 which gives a way to 'add' soliton solutions together to give a multi-soliton 

solution. Thus the lemma gives the ./V-soliton solution to the Non-Linear Schrodinger 

depending on the N complex (i.e. 2N real) parameters . 

The Non-Linear Schrodinger equation is just one of a infinite hierarchy of integrable 

equations, and using the techniques of chapter I I I these may be easily constructed, the 

first few being 

*^<a = + 2|V>|2V', 

-i>t3 = i>xxx + 6\4>\2dxrp , 

-i*Pu = i>xxxx + M2dxi>]x + 2$xxrp + i>xx4>]i> + 6|^| 6 - 2|V>x|V , 

in~ltl)tn = i>x...x + nonlinear interaction terms . 

The n t h order flow corresponds to the twistor space 0{n). The solution to these may 

easily be constructed, or more accurately, given a solution to the first, a solution to the 
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n t h may be obtained by simply replacing j> = z + b y 

71-1 

i=l 

where t n describes the n t h order flow. This is very similar to the Hirota's construction of 

hierarchies.'161 

The single soliton solution for the n flow may thus be constructed, this being 

I _ bex?(i[Rtn + ax]) 
^ I n " order flow" cOsh(/i» + fa) ' 1 ' 

where 

R = » ( a + ib)n , 

/ = 3 ( a + ife)n , 

6 = 1 = a + »6 • 

Note it is easier to construct solutions to the n t h order flow, using this method, than to 

construct the nonlinear partial differential equation it satisfies. Al l these flows commute, 

i.e. given some field configuration and evolving it with respect to t n and then by t m results 

in the same configuration as evolving with respect to t m first, followed by t n . 

Various other equations may be obtained as special cases of the above. For example 

solutions of the modified KdV equation — (f>t = ( f > x x x + ^(jP'^x are just the real valued 

solutions of the 3rd order NLS equation. Such an algebraic reduction is only consistent 

with odd order flows. For example, consider the 4 t h order NLS flow. If t/> was real valued, 

then the right hand side would be real valued, and the left hand side would be pure 

imaginary - a contradiction unless 0 = 0. For the one lump solution this requires a = 0, 

from which follows the vanishing of R. By using a Miura transformation the associated 

solution of the KdV equation may be found. 

4.5 The relation with the Atiyah-Ward Ansatze 

To discuss the relations between the 'Riemann Problem with Zeros' and the Atiyah-
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Ward Ansatze it is convenient to change the coordinates on 0(2) : 

t + * (4.24) 
v i • TJ ~ z\2 — 2it\ — z , z = x + iy . 

The upper and lower half-planes of the (—space transform under this Mobius transforma­

tion to the regions 

U = {\X\<1} 
(4.25) 

t/ = { | A | > l } U { o o } , 

and the reality structure £ >-+ £ changes to A A - 1 . The holomorphic sections of the 

bundle 0(2) that are preserved by this reality structure are known as real sections, and 

these take the form r] = zA 2 — 2it\ — z . The self-duality equations under a translational 

symmetry (sometimes called the Bogomolny equations) in these new coordinates are 

2 (4.26) 
[d3 - ii\dt]Q = As.$ . 

Recall from chapter I I that solutions of (4.26) are generated from rank two vector bundles 

E over 0(2) satisfying: 

I for every real section <rof TT, E| f f is trivial, 

I I det E = 1, and E has a reality structure. 

Explicitly, in terms of a patching matrix F between the regions U and U, condition I I is 

det F = 1 
(4.27) 

F* = F, 

where F^(r), A) = F(—A2//, A - 1 ) * , and * denotes the complex conjugate transpose of the 

matrix. To recover the gauge fields, the matrix F is split: 

F(z\2 -2it\-z,\) = $.$-1, (4.28) 

where $ is holomorphic in U and $ is holomorphic in U. The gauge fields are then 

extracted from the $ and the $ . Condition I implies that the splitting is possible, and 

the choice of H and H corresponds to the choice of gauge. 
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The functions $ and $ are related to ^ , the ansatz defined by 

k=l 

by the relations 

$ = H . V , 

where H and H_ are chosen so that $ and J> have the required analyticity properties. 

Recall from chapter I I , section 6 that two patching matrices F and F are equivalent (that 

is, i f they generate the gauge equivalent fields) if F = K~L .F.K for K and K_ analytic 

in U and U_ respectively. Using this equivalence, and the freedom inherent the choice 

of H_ and H, one may show that (4.29) (with iV-poles) is equivalent to the class AN of 

Atiyah-Ward ansatze, i.e. patching matrices of the form: 

AN : . FN = ( % w . (4.30) 

Details of this may be found in [52,56] 

Examples 

The one Kink solution to the sine — Gordon equation 

This is given by the patching matrix (4.30), with 

r ^ A » = ( i ^ p r ^ ) ( A + A , ) ' ( Q € R ) ' 

h - exp 
2iTj 

1 - a 2 

This generates the one kink solution (4.19). 

The one soliton solution to the NLS Equation 
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This is again given by (4.30), with 

h = exp 

and a is related to £„=i by 

(A — a)(A 1 — a) 

Xr, 

a + l _ 
a — 1 

The gauge fields are calculated in terms of the function Ao defined by 

A 0 = j T[(x - iy)X - 2it - (x + iy)\~\ A] ^ 
|A|=1 

= -—-—r exp[—iv] exp[i(6 2 — a2)u + iax] cosh&fx + 2au], 
1 — aa 

which is automatically a solution of the (2 + 2)-dimensional wave equation 

[dudv-d2

x + d2

z]A0 = 0. 

In Yang's R-gauge (corresponding to a particular choice in the 'splitting' in the construc­

tion of chapter I I ) , the gauge fields have simple expressions in terms of Ao (see Theorem 

2.4). In general, one has to perform gauge and coordinate transformations in order to ex­

tract ip , the solution to the non-linear Schrodinger equation, from these fields. However, 

the profile \tp\ may be easily obtained using Prasad's formula for the length of the Higgs 

field, a gauge invariant quantity. In the present notation this is given by 

2Tr(QQ t) = [dudv -dl + d]] log Ao 

= - w 2 . 

Note that in this example the off-diagonal element in the patching matrix for sin-

Gordon one kink satisfies the equations 

& r = o 
dxT + 2iT = [0], 

where [0] denotes the zero class in the cohomology group. These illustrate how the two 

symmetries (given by the Killing vectors dz and dx ) manifest themselves in terms of 
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the element of the cohomology group that generates the gauge field. While the first is 

essentially trivial, expressing the fact that the bundle is over minitwistor space rather 

than the twistor space (DP3 , the second is non-trivial. Its form is related to the way the 

x coordinate enters the matrix J; the gauge fields (4.15) are independent of x, while 

the J matrix they are derived from does not. Similar remarks apply to the Non-Linear 

Schrodinger equation. In terms of the twistor construction, the two equations are very 

similar, an example of the unifying role of the twistor construction. 
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Chapter V 

The Slow Motion Approximation 

5.1 Introduction 

In this chapter the time behaviour of localised structures is studied in more than one 

spatial dimension. There are a few known examples of integrable models in H 2 + 1 , for 

example the Davey-Stewartson and Kadomtsev-Petviashvili equations, and the integrable 

models constructed in chapter I I I . None of these, however, are Lorentz invariant, and it 

has been conjectured that such models only exist in (1 + 1) dimensions. So in general, a 

model in I R n + 1 will not be integrable. A subclass of such models are those for which the 

equations for the static localised solutions are integrable, and i t is these models that are 

the subject of this chapter. 

The classic example of such a model is provided by the monopole model in R 3 + 1 , 

defined by the action 

S = Jd3+1xiTr{D^D^} + \TT{FltvFil'f}. (5.1) 

The corresponding equations of motion for this model are a set of coupled second order 

hyperbolic partial differential equations, and are not integrable. The localised static 

solutions are given by the solution to the Bogomolony equation 

F[iv — Da(f>. 

These are a set of first order elliptic equation which can (in BPS limit \<f>\ —* 1 as r —• oo ) 

be solved. As was stated in chapter I I I , this equation arises as reduction of a pure 

SU(2) gauge theory on Euclidean R 4 under the action of a translational symmetry. It is 

important to note that the space of static solutions (under physically reasonable boundary 
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conditions) forms a finite dimensional manifold, denoted M°n , and called the moduli space. 

In the above example dim M.°n — 4n — 1, where the parameters may be interpreted as 3n 

positions and in — 1) relative phases. 

Since the equations of motion for the monopoles is Lorentz invariant, it is possible to 

boost a static field configuration to obtain a time dependent one. Apart from such trivial 

solutions, no time dependent solutions are known. One analytic approach to the time 

evolution of the monopole equations and other nonintegrable models is the slow-motion 

(or adiabatic) approximation originally proposed by Manton'" 1 for monopole scattering. 

This involves calculating the geodesic motion on the finite-dimensional parameter space of 

static solutions (the moduli space), with metric induced by the kinetic energy. This serves 

as an approximation to the time evolution of the system for sufficiently low velocities. The 

metric has now been found for the scattering of BPS monopoles by Atiyah and Hitchinj 9 8 1 

using twistor techniques, and the idea has also been applied to a variety of other models, 

notably the C P ^ models'" " 1 and even maximally-charged black holes. 

The slow motion approximation consists of the following steps: 

I Find the manifold ; 

I I Find the metric on M.1^; 

I I I Find the geodesies on M°n ; 

IV For each point m £ Mn find the static solution; 

V use I I I and IV to describe the evolution of the solution. 

The moduli space thus plays a vital role in the approximation, which is why this chapter 

is concerned with models whose static solutions are explicitly known. 

The model that this will be applied to is an Abelian Higgs model in (2 + 1) dimensions 

at critical coupling, whose static solution are known as vortices. However, such a model 

on a flat spacetime background has no known solution. Indeed, the equations giving 

the static solution (which arise as a dimensional reduction of a SU(2) gauge theory on 

S 2 x R 2 under a spherical symmetry) are not integrable. By reformulating the model on 

a particular curved spacetime it is possible to find the static solution. This is not as 

arbitrary as it might first appear; it has been shown1"1 (using Painleve analysis) that 

there is only one metric for which this happens. 
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On a curved spacetime with metric 

ds2 = — dt2 + g^dx^dx" , (p., v = 1,2), 

the static vortex solutions would be constructed from the solutions to the equation 

Dp = e2p - 1 , 

where • is the Laplace-Beltrami operator for the metric g^. In terms of the scalar 

curvature R of the 2-manifold on which g^v is defined, 

V2p' = e 2 f ' - ^ - ( R + 2), 

where p' = p + ^ In y/g . So if R = — 2 this reduces to Liouville's equation 

V V = e2"', 

which is integrable, and its solutions are known in closed form. With this background 

metric explicit vortex solutions may be constructed, and the slow-motion approximation 

applied to them. The static solutions satisfy the self-duality equations in IR 4 under an 

SO(3) symmetry, and are constructed in Appendix B, where the notations used in this 

chapter is also defined. 

5.2 The Vortex Model and its static solutions 

The vortex model under consideration is defined by the action 

5 = | d2+1x^\g~\ {\Di(fD^ + iFijF" + J ( l - |<^| 2) 2) , (5.2) 

V 

where T> is the spacetime IR, x A with metric 

ds2 = -dt2 + ^ _ J _ y 2 y ( d x 2 + dV2) > -°° <* < 0 0 ' ( 5 3 ) 

0 < x2 + y2 < 1. 

The static solutions in the gauge AQ — 0 are giving by the solutions of the Bogomolny 
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(5.4) 

(5.5) 

equations 

D„4> ± ie/Dvt = 0 , 

e^dllAv = ±[\-\<j>\2]. 

The vortex solutions (incorporating the correct boundary conditions) are 

9 d z \ \ - f f ) 

where 

f A 1 — a;z i=o ' 

These coming ultimately from the solution to the Liouville equation 

V2/? = e2p . (5.7) 

Let C° be the space of finite energy solutions. Because of the topological charge, C° 

decomposes into a disjoint union of subspaces each labelled by its topological charge 

n. Of more physical interest is the moduli space M„ of solutions, where gauge equivalent 

solutions are identified: 

M°n*C°n/g, (5.8) 

where Q is the group of gauge transformations. Because the solution is characterised by the 

number and position of the Higgs zeros, and the vortices are classically indistinguishable, 

d i m A 4 ° = 2 n (5.9) 

and 

M°n=An/Sn, (5.10) 

where Sn is the permutation group acting on the a,- 's. [Technically, one has to exclude 

the cases where two or more zeros coincide. However, it will turn out that the metric on 

M°n may be extended by continuity to include such points.] 
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For example, consider the space JKA\. This may be written as M.\ = A x A , so 

a € M°i may be written as ( a c e n , c*rel) > where a c e n G A defines the position of the centre 

of the vortex pair, and o r e i £ A defines the relative positions of the two vortices. The 

space A is the space A with z and —z identified, and so may be thought of as a cone. 

Using the freedom in / to fix its value to be 0 at the centre, taken to be the origin (z = 0 ) , 

charge 2 vortices are defined by 

Note that the points —a and a define the same vortex configuration. Figure 5.1 shows the 

energy density as a function of position for two different vortex solutions with topological 

charge 2. In the first, the two zeros of the Higgs field coincide at the origin (a = 0); and 

in the second, the two zeros are distinct (a = 0.8). 

5.3 Dynamics of the Vortices 

Time is now introduced in such a way that the vortex solutions described above rep­

resent static solutions of the field equations in the gauge AQ — 0 . The (2+l)-dimensional 

action is 

S = J d2+1xy/\g\(^Di<j)W^ + lFt]F^ + J ( l - | < ^ | 2 ) 2 ) , 

V 

where V is the spacetime R x A with metric 

ds2 = -dt2 + - ^ Wr(dx2 + dy2), - c o < i < o o . (5.12) 
(1 - x- - y1)1 

The Lagrangian system is now written as a Hamiltonian system. The gauge condition 

AQ = 0 becomes a constraint on the Hamiltonian system, and using Dirac's methods for 

constrained systems'100' leads to a constraint on the time evolution of the fields, namely 

8S 
6An = 0 , =» ^ T d ^ y / g ^ A l f ) - l m ( U ) = 0 - (5.13) 

AO=0 £V9 

Here / i , v = 1 , 2 , i.e. the spatial coordinates on the disc A , and the dots denote . The 

symbol y/g refers to the metric on A rather than the metric on T> . Since the metric on 
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Energy Denstty 

Energy Denstty 

Fig 5.1 Examples of charge 2 vortices. 
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A is of the form ds2 = Q(x, y) (dx2 + dy2), then yfg = Q , so ^/g g1*" = 6^t, where 6^t is 
just the Kronecker delta, so 

Using this, the constraint may be written as 

y^dpAv-lmiU) = 0 . 

With this, there are well-defined kinetic and potential energies T and V , 

T = J d2xj-g{\\i>\2 +\g^AllAv) 
A 

V = J d2xjg ^D.ctm + + 1(1 - H 2 ) 2 ) . 
A 

The evolution of the fields has a mechanical analogy of a particle moving in the potential 

V with kinetic energy T. 

The space of finite potential energy field configurations C and the moduli space of 

gauge-equivalent configurations M still decompose into a disjoint union of subspaces, 

each labelled with its topological charge, but now they have infinite dimensions (the 

spaces C° and M° defined above now being finite-dimensional subspaces). The kinetic 

energy defines a metric on the space C , though some tangent vectors may have infinite 

length. The constraint equation (5.14) has a geometrical interpretation in terms of the 

configuration space C. Given a point p = (<f>, A^) £ C and tangent vector (assumed to 

have finite length) p = (<f>, AM) G TPC, equation (5.14) ensures that p is orthogonal to the 

gauge group orbit through p, and hence lies in TpM. 

Within each M.n there is a finite-dimensional subspace given by the surface of mini­

mum potential energy. This is just the moduli space of 52-invariant instantons discussed 

in section 2, denoted by M°n . There is an approximation, due to Manton| 4 0 ' for the slow-

motion evolution of the fields. This assumes that low-velocity motion initially tangential 

to the surface M°n will remain tangential, and follow geodesic motion on it, with metric 

induced on the surface by the kinetic energy T. So for a point p = (<f>, A^) € M°n and 

(5.14) 

(5.15) 
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tangent vector p = {S^^SA^) 6 T p Mn, satisfying equation (5.14) , there is a metric on 

M°n given by 

d2s = j d 2 x j g (\8<f>~U + {g^SApSAr) . (5.16) 
A 

I t w i l l t u rn out that this metric is f ini te for all directions in the space T p M„. This is 

to be contrasted wi th the moduli space metric for the C P 1 model where there are some 

directions in the (finite-dimensional) moduli space for which the metric diverges! 4 2 ' 4 3 ' 1 0 1 ' 

The vector p must satisfy the linearised Bogonolny equations around the solution 

corresponding to p . Wr i t ing the perturbation as 

6<p = <f>h, h(z,z)e<C 

( 5 - 1 7 ) 

oA^ = , 

and linearising both (5.4) and (5.14), gives 

d^h + ieli

udl/h — ia^ - f e^a,, = 0, 

e ^ a , * \<f>\2(h + h) = 0, (5.18) 

g'i,/dflal/ + i\cf>\2(h-h) = 0. 
The original boundary conditions applied to these new fields imply h + h = 0 on dA. 

Using the identities y/g g*1" = 6^t and y/gef"/ = e{£t > a n < ^ eliminating between 

these equations yields 

V 2 h = 2e2ph, (5.19) 

where p is the solution of equation (5.7). This is just the linearisation of the Liouville 

equation and this fact w i l l be used to construct its solution. In terms of h, the metric 

(5.16) takes the remarkably simple form 

ds2 = J d2xd-z (hdzh) . (5.20) 

Here dz and dz are the partial derivatives wi th respect to the complex coordinates intro­

duced on A . Note the cancellation of the factor yfg . This expression is valid for any 

metric. 
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I t now remains to solve the linearised Liouville equation (5.19), subject to the con­

straint that the metric (5.16) is finite. Recall the general solution to the Liouville equation 

V 2 / ) = e 2 p is given by 

p = - l n i ( l - / / ) + i l n df 
dz 

(5.21) 

Under an infinitesimal change / i-* / + Sf (where 6 f , like / , is an analytic funct ion) , 

p p + 6p where 

This is a solution of (5.19). Taking 

( W \ , ( d , 6 f \ 
V a , / / + V a,f J 

(5.22) 

df d f 
<5/l = TT~R » £>f2 = ——f , 

oaj da? 

(where a, = otf + iaj is one of the zeros of the Higgs field), and constructing h f r o m 

6 f i — i6f2 gives, up to a constant factor 

h { t ) = T ^ f d * J + T ^ 7 f d o J + 1> 

d z d a i f d z d g j 

d z f + d j 
(5.23) 

Note that this has singularities at the zeros of the field <j> and nowhere else. I t also has the 

property that — 0 on dA. Expanding / as a Taylor series around the zero oti (note 

that , by definition of the zeros of the Higgs field, ^ = 0), / takes the f o r m 

/ = pP + $ \ z - a i y + f t > ( z -atr+. (0/ (5.24) 

W i t h this expansion may be writ ten 

T,S = — l 

(5.25) 

The following properties of the coefficients cf , , which follow f rom (5.23) and (5.24) , w i l l 

be used to show the convergence of the metric (5.20) : 

cfl J 4 = 0 , f o r s = — l , . . . , o o , s ^ 0 , 

„(0 _ j = 0, for r — — 1 , . . . , co , 
(5.26) 

The coefficient c ^ j 0 depends only on the mult ipl ic i ty of the zero <xx. Assuming this 
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mult ip l ic i ty to be m , , then around z = OL{ 

d z f = { z - a , )"" / 

d z d a i f - m , 
— — — = -. r + (nonsingular te rms) , 

d2f (z-cti) 

and hence c^}10 = — ^ m j . I t w i l l be assumed f r o m now on that m,- = 1 for all i. Repeating 

this procedure for each Higgs zero gives as a solution of (5.19) , 

n 

h = Y j c i h ^ , | C W | « 1 . (5.27) 

The arbitrary constants c, are related to the shift in the positions of the zeros of the Higgs 

field 

<f> h-» <f> + 6<j> = <I>{1 + h), c, = 26ai + 0(Sa2). 

Substituting these equations into (5.20) yields 

d s 2 = 4 \ d 2 x d* ( h ( r ) d z h { s ) ) daTdcts . (5.28) 

Using Green's Theorem and remembering that and dzh^ have singularities at z = ar 

and z = a3 respectively, this becomes 

ds2 = 2iJ2 j dz h^dzh^ daTdar 

' T r r \ <529> + 2 *XX f d z + f d z \ h { r ) d z h [ s ) daTda3, 
r * s C(r,c) C{s,t) 

where C(r,e) is a circle of radius e around the point ar. Using the expansion (5.25), and 

(5.26), these integrals are f ini te and the metric reduces to 

n 

ds2 =2x CQJ daTdaT 

' = 1 _ _ (5.30) 
+27r CQ[' daTdas . 

where c j j 3 ^ are the coefficients in the expansion of around z = as. The coefficients 

JQ \ and CQ3[̂  have simple expressions in terms of fl^ and 0 ^ (again this assumes m,- = 1, 
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the result may be easily generalised), namely 

c ( r ) - *d-
C 0 , l _ 4U<*r 

0 P 
(r) P 

c 0 , l ~ AUa> 
P 

(0 P 

Thus the metric ,M£ i is given by 

n 

as 7T dSt¥rUardat s > (5.31) 

where \ lK r ) is defined as 

0 

^From the reality of the metric, $ ( r ) satisfies 

datvV = dar¥°K (5.32) 

A t first sight the metric appears to depend on the particular rational funct ion / . Under 

the change 

the coefficients change /% r ) . However, since p \ r ) = p \ r ) = 0, * W = ^ , and so 

the metric depends only on the positions of the zeros of the Higgs field, and not on the 

particular rational function that generates the field. 

^From the general expression (5.31) i t is easy to show that the metric is Kahler. Recall 

that a metric ds2 = gaidzadzb is Kahler if and only if the corresponding Kahler 2-form 

K = - y ^ g d z 0 A dzb is closed, i.e.dK = 0. Here 

K 
dm 

da,¥rUaTAda S ) 

and so, making use of the reality condition (5.32), 

dK =(d + B)K 

2m 
da.das¥T'dat A daT A da3 

3m 
d a . d a ^ T ' d a t A daT A da s 

dm 
da.daryis>dat Adar Ada 

0 

(5.33) 
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This calculation deals wi th the generic case where the Higgs field has only simple 

zeros, the details can easily be changed to deal wi th multiple zeros. 

5.4 Examples of Vortex motion 

The simplest motion possible is that of a single charge 1 vortex. On symmetry grounds 

the metric describing the motion must be a (two-dimensional) space of constant negative 

curvature. However this does not give the value of the scalar curvature. The vortex is 

generated by 

Z ~ ^ ' (5.34) 
az ) 

Using the above methods gives 

ds2 = 7 -—^ _.0dada, 
(1 — aay 
1 3tt Uada ( 5 " 3 5 ) 

2 2 ( l - a a ) 2 . 

This gives the vortex an effective mass of ^ . 

Before considering general two-vortex motion, the motion of n superimposed vortices 

wi l l be derived. Again by symmetry, the motion should be described by geodesies in a 

space of constant curvature. Using 

— a \ n + i 

\ 1 — az/ 

to generate the vortices (note that the corresponding Higgs field has an n t h order zero at 

z = a, so (5.31) has to be modified to deal wi th the multiple zero) one finds 

= l n n { ^ 4 d a d a 
In—superimposed vortices 2 2 (1 QCt) 

Note that as n —•> oo, the scalar curvature tends to 0, and that the effective mass does not 

grow linearly w i t h the number of vortices. Both these metrics are of constant negative 

curvature, and the geodesies in such spaces are just sections of circles (including the circle 

at in f in i ty ) that intersect the boundary at right angles. 
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Fig 5.2. The trajectories of the points f *(0) for h = 0 , 2 , 4 , . . . , 16. 

Because the model is not defined on a flat spacetime i t is no longer possible to de­

compose the metric into a part describing the motion of the centre of mass, and a part 

describing the relative motion (for a discussion of this point see [102]). However, one may 

easily calculate the relative motion, assuming that the centre of a vortex pair (as defined 

below) remains fixed. As the disc is maximally symmetric, this may be taken, wi thout 

loss of generality, to be the origin. 

Expl ic i t ly , consider the charge 2 vortex system, where the Higgs field has zeros at cti 

and a.2 • F rom these one may construct the rational function / (see Appendix B ) . Here 

occen € A describes the position of the centre of vortex pair, and a T e \ € A describes the 
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relative position of the two vortices. These are defined in terms of c*i and ai by 

aret ~H acen 

1 + 
-<*ret + Qcen 

1 Qcen-Grel 

Under a Mobius transformation 

/ ie ( a + a o a n o = e ' 

a2 

f a + a0 i 
11 + a0.a) 

the coordinates are\ and ar c e n have the following transformations 

iff ( C*cen + Oo ' _ *0 / a c e n + Op \ 
^ c e n ^ 0 1 cen — e • \ Z | I f j 

11 + a 0 . a c e n J 

where 

iff 1 + Q c e n - ^ o e = 
1 + " c e n - ^ o 

To find the metric describing this relative motion wi th the centre of the vortex pair 

fixed, one may, without loss of generality, fix a c e n = 0. The vortices are then generated 

by equation (5.11). The parameters a are not the positions of the zeros of the Higgs field, 

but are related to them by a = a X(a, a) , where A is a real-valued funct ion given by 

2 - l - | a | 4 + V l + 14|a| 4 + lQ|8 

2|a|« 

Using R E D U C E to calculate the coefficients /?2 and /?3 gives the relative motion metric 

to be: 

4(1 + H 4 ) 2 _ 1 4 t M 2 

" 2 ( 1 + H 2 ) 2 
1 + 

y/1 + 14 |a | 4 + H 8 

4dada 
( 1 - H 2 ) 2 ' ( 5 ' 3 7 ) 

where a = \ot\e € A . For large | Q | (i.e. 1 — |Q | <C 1) the metric is approximately given 

by 

, 9 1 4dada 
ds* « - 37T 

2 ( l - l ^ l 2 ) 2 ' 

so asymptotically the effective mass is twice that of a single vortex. This would be 

expected on physical grounds since the interaction between two well separated vortices 

is negligable. In general, the effective mass depends on the distribution of energy in the 

configuration, not just the total energy. 

file:///ot/e
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Because of the identification of opposite points, the space A can be mapped onto the 

space A using the conformal map a t—> u = a 2 , and the metric (5.37) becomes 

( i - H»)» 
= ft(|u>|) du)du 

1 + 4(1 + |u, | 2) 

y/l + 14|W|2 + |w | 4 

duidu 
(5.38) 

where u = \uj\el° € A . Around the point u = 0 , the metric is f la t , thus the space is 

smooth and does not contain a conical singularity that might have been expected f r o m 

identifying opposite points. Because of the existence of the Ki l l ing vector there is a 

conserved 'angular momentum' 

fc = n ( H ) H a ^ , (5.39) 

where r is an affine parameter along the geodesic. For the special case h = 0, the geodesies 

are just given by straight lines through the origin. As such a geodesic passes through the 

origin, 0 changes by IT, and so mapping back to the space A , 6 changes by - | . So in a 

head-on collision of vortices, the scattering angle is 90°. For \u\ close to 1, the metric on 

A is approximated by 

* a " ( i - M a ) a ^ 

and so, as stated above, the geodesies intersect the boundary at right angles. Apar t f r o m 

these, other geodesies have to be computed numerically. Figure 5.2 shows some examples 

of geodesies for several different values of h, and figure 5.3(a)(6) shows the evolutions of 

a two-vortex system wi th a non-zero value for h. 

5.5 Scattering in an Integrable Models in (2 + l)-Dimensions 

The scattering behaviour in non-integrable models, like the modified Abelian Higgs 

system studied in this chapter, is radically different f r o m that in integrable models. As 

an example of an integrable model, consider the modified chiral model which appeared in 

chapter I I I ; 
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1 

4Bk 

|9> 

Fig 5.3(a). Plots of the energy density during the evolution of a two-vortex system, the t ime 

interval between each plot being the same. 
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3 

O 

Fig 5.3(6). The last figure redrawn as a contour plot. 
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(V1" + Vae°"t")dfi(J-1dvJ) = 0, 

where r f v = d iag(—1,+1 ,+1) , ta*v is the alternating tensor (defined by e 0 1 2 = 1) and 

J(x, y, t) is an S£7(2)-valued matrix. Solutions to this equations may be constructed using 

the 'Riemann Problem wi th Zeros' technique described in chapter I V . This model has a 

conserved energy functional, 

E(J) = - ^ [ ( J - ^ J ) 2 + (J-'dyJ)2 + (J-'dtJ)2] . 

This is a positive-definite functional of the field J . 

Figure 5.4(a)(6) shows this energy for the scattering of a two lumps configuration, i n 

the rest frame of one of the lumps. The second lump passes though the first w i th a constant 

speed (i.e. without the experience of a phase shift , as occurs i n (1 + l)-integrable models 

such as the sine-Gordon and Non-Linear Schrodinger equations). This is in contrast to 

the behaviour in the modified Abelian Higgs model. Here, as may be seen f r o m Fig 5.2 

and Fig 5.3(a)(6), non-trivial scattering occurs, and even 90° scattering occurs in a head 

on collisions ( in the centre of mass frame). 

Preliminary numerical studies of this integrable model shows i t to have a very rich 

structure; richer than the family of solutions given by the ansatze used in the 'Riemann 

Problem wi th zeros' method. 

5.6 Comments and Conclusions 

I n this section the properties of the metric constructed above are discussed and com­

pared w i t h those obtained f rom other models. Firstly the accuracy of the slow motion 

approximation is considered for vortices in flat space. I t is a remarkably good approxima­

tion; the results obtained are in close agreement w i th numerical calculations. ' 4 4 , 1 0 3 , 1 0 4 1 The 

vortex models have an intrinsic scale set by the asymptotic size of the Higgs field, and the 

possibility of changing this and other scales is then discussed. Unlike monopoles defined 

on a hyperbolic space,'701 i t turns out that the vortex model is only integrable for special 

values of the parameters. 
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I 

fee-

Fig 5.4(a). Scattering in an Integrable Model in (2 + l)-Dimensions - Surface Plot. 
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Fig 5.4(6). Scattering in an Integrable Model in (2 - f l)-Dimensions - Contour Plot. 
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Since the motion of the vortices described by geodesies on moduli space is just an 

approximation to the true motion, i t is important to know exactly how good the approx­

imation is. In effect, i t ignores radiation; the motion only excites those modes (finite in 

number) which parametrize the static solutions. Numerical studies (which involve numer­

ical integration of the f u l l second-order field equations) for vortex scattering j 1 M l and C P 1 

soliton scattering j 4 4 , 1 0 4 ' have shown that for slow velocities the amount of radiation is very 

small. Further, for the C P 1 model the trajectories are in excellent agreement w i t h the 

geodesic paths obtained using the slow-motion approximation. For monopole scattering i t 

has been shown | 1 0 S ' that i f v is the speed of the monopole, the amount of radiation emitted 

goes like v5 , and is negligible for small speeds. As Ruback has pointed out J41' due to the 

spontaneously broken symmetry the approximation should be better for vortices than for 

monopoles since there are only massive excitation modes. Hence there is a mass gap in 

the energy spectrum, so for small velocities these massive modes would not be excited. 

Thus in other models the approximation has been shown to be extremely good, and there 

is no reason to suppose that i t should not be so for this modified vortex model. 

A common feature of the moduli space metrics used to describe soliton scattering is 

that they are all Kahler, and as one might have suspected the metric constructed above 

also has this property. I t is often possible to show a metric is Kahler without having 

to calculate i t explicitly. For the Atiyah-Hitchin metric, describing charge 2-monopole 

scattering, i t was the hyper-Kahler property that enabled the metric to be found. The 

C P 1 metric is formally Kahler J 4 3 , 1 0 1 ' but unless some of the free parameters are fixed the 

expressions involved diverge. This motion is less well behaved than monopole or vortex 

motion - there is the possibility of the C P 1 solitons becoming spikes in f ini te time.'" 1 

Ultimately this is due to the lack of scale; the C P 1 model in 2 dimensions is conformally 

invariant. I n the gauge theory examples, including the model considered here, the metric 

is well-defined. The solutions have a scale fixed by the asymptotic size of the Higgs field, 

\<t>\asy , and this has the effect of stabilising them. 

As was said in the introduction, the metric for vortices in flat space has not been 

found, owing to the absence of static solutions in closed form. However, by symmetry the 

metric for the relative motion of 2 vortices has to be of the fo rm 

ds2 = / ( r ) dr2 + g(r) dO2 , 0 < 0 < TT , 

and recently i t has been shown' 1 0 2 ' that g(r) = r 2 / ( r ) w i th f ( r ) oc r 2 for r <C 1 , which 
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is in agreement wi th numerical evidence. This is of the same form as (5.37), ignoring 

powers of r 5 and above, so the two models have the same behaviour around the origin. 

The 90° scattering of vortices in both models is just a consequence of the symmetry of 

the modul i space (via the Ki l l ing vector | g ) rather than any detailed knowledge of the 

funct ion f ( r ) . The metric (5.37) cannot be embedded isometrically i n Euclidean R 3 , 

though (like for flat vortices) i t may be thought of as conical i n shape. 

^From now on consider just the equations in 2 dimensions, w i t h no time. As mentioned 

above, the vortices have a scale associated to them, given by the value of |</>|aaj/- I t is 

possible to change its value while stil l retaining the integrability of the model. Consider 

the flat line element in R 4 wri t ten in the fo rm 

%{dr2 + dx2) + R2(d62 + s in 2 0d62)} , 
. r1 J 

where R is an arbitrary positive constant. Repeating the arguments of section 2 there is 

a conformal equivalence 

R 4 - R 1 ~ S 2 ( R ) x H 2 ( R ) . 

Here S 2 (R) is a 2-sphere of radius R, and H 2 ( R ) is a two-dimensional hyperbolic space 

of constant negative curvature —2R - 2 . Under this reduction, the action is of the same 

form as (5.2) , but the Higgs potential becomes 

i(R-W 2) 2-

The reduction fixes the value of \<t>\asy as well as the curvature of the space. I t is possible 

to rescale the Higgs field so that |<^ | a 3 y = 1 , but unlike in flat space, this rescaling changes 

the curvature f r o m — 2 R - 2 to —2. Thus models obtained in this way w i t h different values 

of R are essentially the same. This is to be contrasted wi th hyperbolic monopoles.1"1 These 

use the conformal equivalence 

R 4 - R 2 ~ S 1 x H 3 , 

where S 1 is the unit circle and H 3 is a three-dimensional space of constant negative 

curvature. The reduction does not f ix \(f>\asy; i t remains a free parameter. In terms of 

instantons on R 4 , the instanton number is 02(A) = 2n |^ | a 3 j , , where n is the monopole 

ds 
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number. This leads to the possibility of fractionally charged instantons! 1 0 8 1 Also, by 

carefully taking certain l imi t s l™ 0 7 ' 7 0 ' i t is possible to obtain the normal monopoles f r o m . 

hyperbolic monopoles. This is due to the freedom in the Higgs field, in the vortex case 

this is absent, and i t is not possible to get normal vortices i n this manner. One could 

envisage a family of monopole and vortex models, parametrized by \<f>\aSy and the scalar 

curvature of the space. Consider a graph w i t h axes —R and | ^ | f l S y . For monopoles the 

model is integrable at each point, while for vortices the model is only integrable along the 

line \<f>\asy + R = 0 , which are essentially the same model since one may move f r o m one 

point to another by simple scaling. I t would be interesting to know i f i t would be possible 

to obtain information about solutions and their moduli spaces at points ( |^|oaj/»R) w i t h 

0 < \<j>\asy + R < 1 , i.e. for models which are not integrable but are i n some sense close 

to an integrable one. 

The metric constructed here shares common features w i t h other metrics that have 

been found. Although numerical studies of the f u l l second order equations have not been 

done, f r o m the arguments above one would expect the results to be in close agreement 

those obtained using this approximation. 
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Chapter V I 

Outlook 

Rather than collecting together the individual comments and conclusions f r o m the 

preceding chapters, this chapter is more speculative in character, and outlines some con­

nections between the geometrical view propounded in this thesis and other approaches to 

the study of integrable systems. I t should be emphasised that these are mainly observa­

tions and not rigorous results. Making more sence of these tentative comments w i l l be an 

important area of future research. 

One of the most successful techniques i n soliton theory is Hirota's Direct method, 

which enables the 7V"-soliton solution for many integrable models to be wr i t ten down 

succinctly. For a review see [16]. As an example, consider the K d V equation ut + 6uux + 

Uxxx = 0. In Hirota's method this is wri t ten in a so-called bilinear fo rm 

( D K D t + D j ) / o / = 0 , 

where 

u = 2 
d2 I n / 

dx2 

and 

) *(*) / (*' ) 
d d 

D * W = ( dx dx 

The iV-soliton solution is given by 

l l N 

Ul=0 tin=0 *>j 

AijfiiHj + 

1=1 

(6.1) 
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where rji = k{x — kft, and 

exp A{j — 

the k{ are constants. 

I t is important to note that this method makes no use of the associated over deter­

mined linear system, which is why i t is called Hirota's direct method. Recall that f r o m 

the geometrical point of view, the iV-soliton solution may be encoded in a holomorphic 

vector bundle over the twistor space 0 ( 3 ) . 

Note that the general solution depends on the combination kx — k^t which may be 

seen as half of a global holomorphic section of the bundle 0 ( 3 ) . Thus i t appears that these 

two approaches - the geometrical/twistorial approach and the Hirota Bilinear formalism -

are, in some way, connected. I t therefore seems important to understand the geometrical 

meaning of the Hirota D-operator. [Similar remarks apply to the NLS equations; the 

general TV-lump solution depends on the combination kx + k^t, which seems to suggest a 

connection wi th the mini-twistor space 0 ( 2 ) . ] 

More striking is the similarity in the way the two approaches deal w i t h the associated 

hierarchies. I t was first shown by Sato that a solution to the K d V hierarchy could be 

constructed f r o m (6.1) by replacing rji = k{X — kft by 

Vi = H t j , 
j odd 

where t\ — x, and t n > i are 'times' which define the various commuting flows. This is to 

be compared w i t h the construction in chapter I V ; given a solution to the NLS equations, 

the corresponding solution to the hierarchy could be constructed using a similar change. 

One of the major problems in the twistor description of integrable systems, as has been 

constantly stated throughout this thesis, is that there is no ( satisfactory) interpretation 

for equations such as the K P and DS systems, which occur via the substitution of the 

spectral parameter by a differential operator. The Hirota method for the K P hierarchy 

involve the combination 
oo 

V t = £ k\x3. (6.2) 

This suggest ( i f the above argument carries any weight) that the twistor space 0 (oo) 

might be involved. This is in contrast wi th the ideas of Mason,'9 1 1 where the K P equation 

h + k 
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is shown to be associated wi th twistor space rather than a minitwistor space. Extending 

his argument to include the entire hierarchy would mean introducing the space C P 0 0 

which would not explain the appearance of the combination (6.2) . 

Such ( 2 + 1 )-dimensional integrable models arise f r o m linear operators of the fo rm 

N 

£ x = dx + J2sn(*,y,t)dZ. 

n=0 

Consider the following rather formal 'argument': 

N dx$ = Y / S n ( x , y , t ) d ^ , 
n=0 

N 

= [ ^ S n f x . y . t ) ^ * . * - 1 ] * , 
n=0 
oo 

= [£vmBZ(*,tj\*-

Thus the variable y plays the role of the spectral parameter. Such a linear system may be 

incorporated into a twistorial interpretation by using the space T Q O ^ . The 'argument' 

has several flaws: one has to start wi th a known solution (Sn,$), and so this the above 

is not much use f r o m a computational point of view. Also expanding the combination 

J2n=o S n ^ J / ) * ) ^ ^ . * ! ? - 1 as a power series in y is rather formal, and would be very hard 

to invert. 

However i t does have some interesting features. The gauge group is kept the same 

throughout - there is no need to change the gauge group midway! 8 6 1 Also the dimension of 

the twistor space (and the dimension of the gauge group) remains finite and constant as N 

tends to in f in i ty in O(N), i t is only the Chern number of the bundle (or the degree of the 

internal ' twis t ing ' of the bundle) that grows. Also the idea that the spectral parameter 

could play the role of a new coordinate is interesting, and deserves further study. I t 

is analogous to the way in which the discrete basis of, say, SU(N) becomes continuous 

(becoming the coordinates of the surface E 2 in S D i f f ( T , 2 ) ) as N tends to infini ty. 

Again, i t must be stressed that this is not a rigorous proof, but i t does suggest possible 

avenues for fu ture research. 
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Understanding of the KP equation f rom the twistor view point would also involve an 

understanding of vertex operators. A solution to the K P hierarchy may be 'created' f r o m 

the 'vacuum' by the application of such a vertex operator, and such operators are central 

to many areas of mathematical physics! 1 6 , 1 7 ' 

A n alternative approach to the study of the K P equations and its hierarchy is by way 

of the scalar Lax equation.' 1 0 8 ' Let A be the pseudo-differential operator 

A = d + u2d~l + u 3 d ~ 2 + M ~ 3 + • • • , 

where d = and d~l is an inverse to d satisfying the generalised Leibniz rule 

= E ( - i ) ' ( " t ' _ " n

1 , ) ! / " ) ( ^ a — ' • (« > o) • 

For any pseudo-differential operator f i , the differential operator [ f l ] + is defined to be the 

pure differential part of ft, i.e. i f O = J2n=-oo ° n ^ n t n e n [^1+ = Yn=o a » ^ " • The 

algebra of pseudo-differential operators is associative, so w i t h the definition of the Lie 

bracket given by = fifi' — fi'fi i t forms a Lie algebra (the Jacobi identity follows 

f r o m the associativity of the algebra). 

The scalar Lax equation is 

9 A = [ B » , A ] , (6.3) 

wi th 

Bn = [ A " ] + . (6.4) 

For example 

B2 = d2 + 2u2, 

B3 = a 3 + 3u2d + (3u 3 + 3 u 2 > x ) , 

and in general Bn = ]Cj=o V ; * ^ w > t n ^nn = 1 ,Kn-l = 0- This gives rise to an infini te 

series of equations known as the K P hierarchy. 
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^From (6.3) and (6.4) the following infinite set of equations may be derived for the 

differential operators Bn , 

Fm,n = — " + [Bmi Bn\ = 0 , ra, n = 1 , . . . co , (6.5) 

this being equivalent to (6.3) . Such a system has gauge symmetries and also Backlund 

transformation, and these may be used to construct various solutions.' 1 0 9 ' 1 1 0 ' Next i t w i l l 

be shown how this can be given a natural interpretation in terms of the twistor space 

O(oo ) . 

Given the twistor space O(N) there exist the following set of linear equations 

8 

dtr + 1 
+1 . $ = 0 , r = l , . . . , N , 

corresponding to a certain class of holomorphic vector bundles over O(N). I n what follows 

i t is assumed that this construction holds for the above Lie algebra of differential operators. 

Next the condition Br = Br ,r = 1 , . . . , N is imposed, and for notational simplici ty 

J9/V+1 w i l l be denoted by B ^ + i . The system corresponding to O(oo) is just the large N 

l imi t of this system. The integrabili ty conditions for such an overdetermined linear system 

are 

[£r,Cs]=0, Vr, s = 1 , . . . ,oo. 

which imply the following 

Fr,s = 0, 

Fr+i,s+i — 0 , 

Fr,s+1 + F r + i > s = 0 . 

For these to hold for all r and s one requires Fr>s = 0 V r , s = l , . . . , o o , and this is just 

the K P hierarchy as defined above. 

E x a m p l e 

Consider just the linear system corresponding to the minitwistor space 0{2), the 
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holomorphic tangent bundle to the Riemann sphere. The integrability conditions are 

Fl,2 = 0, 

Fl,3 = 0 , 

•̂ 2,3 = 0 . 

Using the above definitions of Bn , the first two of these yield the t r iv ia l scaling relations 

« 3 , i = W3,<! , 

and the t h i r d gives the K P equation itself 

9_fdu2 1 d3u2 du2\ 3 d2u2 _ 
^ \ d h ~ 1 ^ ~ 2~dx~) ~ l~dq ~ 

Thus the K P equation is a reduction of the Bogomolny equations. 

This gives a geometrical explanation of the appearance of the term X)nLo ^™^n * n ^ e 

solution of the K P hierarchy, as this is a global holomorphic section of the bundle C?(oo). 

A l l the integrable systems studied in this thesis have been classical, but the concept 

of integrabili ty is extremely important in certain quantum field theories. Whether twistor 

theory, originally invented to provide an alternative approach to the problem of quantum 

gravity, w i l l t u rn out be be of use for such integrable quantum field theories is an extremely 

important question, and one that has gained very l i t t le attention. 
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Appendix A 

I n this appendix some definitions and properties of Lie algebras, symmetric and Her-

mi t ian symmetric spaces are presented. Full details may be found in Helgason.1"1 

A . l Simple Lie Algebras 

I n terms of the Cartan-Weyl basis, a complex simple Lie algebra g has the commutator 

relations: 

(i) [hit hj] = 0 , V&i ,hj £ h , 

( i i ) [h, ea] = a(h).ea , V7i € h , a € $ , 

( i i i ) [e 7 , e_ 7] = / i 7 , where hy € h , 

( iv) [ e 7 , ep] = N ^ e y + j 3 , i f 0 ^ 7 + ^ G $ , 

= 0 i f 0 = 7 + / ? £ $ . 

The subset h C g is the Cartan subalgebra, and / is, by definition, the rank of the algebra. 

The set $ are the roots of the space, these being linear maps 

a : h — > € , 

ct{hi) = a,-. 

The corresponding vectors e a are called root vectors, and this may be decomposed into 

3>+ and $ _ , the positive and negative roots, respectively. The coefficients N y j are the 

most complicated part of the algebra, and they satisfy the conditions 

J\L 0,-/? = - N t t i f } , Na>p = N(,-a-(j = ALa-JJ.a • 

A different basis, called the Chevalley basis, is often useful for algebraic purposes. I t is 

defined in terms of the above by: 

Ea = y / 2 / ^ . e a , 

n a = , 
CtjQj 
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and these satisfy the relations: 

[Ha, £Lfc] = —Ki,aE-b, 

[Ha, Eb] = KbaEb > 

[2?a, = 6abHb, 

[ # « , # f c ] = 0 , 

where Kf,a is the Cartan matrix, defined by 

2aa.3 
K 

(a") 

A.2 Homogeneous and Symmetric Spaces 

A homogeneous space of a Lie group G is any di f ferent ia te manifold M on which 

G acts transitively ( V p i , p i 6 M 3 j £ G s.t. g.p\ = p2). For a given pa £ M , let K be 

defined by 

The manifold M may be identified wi th the coset space G / K , and the Lie algebra g of G 

decomposes as g = k © m , where m may be identified wi th the tangent space T p o ( G / K ) , 

and [k, k] C k . 

I f , in addit ion, [k, m ] C m , then G / K is said to be a reductive homogeneous space. 

These have naturally denned connections and torsion and curvature tensors. A t the fixed 

point po, these tensors are given purely in terms of the Lie bracket; 

where the subscripts on the commutators refer to the component of that particular sub-

space. 

I f g satisfies all the conditions 

K = KPo = {g e G : g.p0 = p0}. 

[R(X,Y)Z]P0 = -[{X,Y]k,Z], 

T ( X , Y ) P 0 = - [ X , Y ] m , 
where X , Y, Z 6 m , 

g = k © m , 

[k, m] C m , 

[ k , k ] c k , 

[m , m] C k , 
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(i.e. all the above, and the further condition [m, nn] C k ), then g is called a symmetric 

algebra, and G / K is said to be a symmetric space. Since now [m, m] C k automatically, 

the torsion is identically zero, and the Riemann curvature tensor is just defined by 

[R(X,Y)Z)P0=-[[X,Y],Z], 

or, introducing a basis X{ € T p o ( G / K ) , by 

On a symmetric space there is a natural metric given by the Ki l l ing f o r m of the algebra, 

g(X,Y) = Tr(*AX.adY), 

9ij = g{Xi,Xj), 

and indices may be raised and lowered in the usual way. 

I n certain special cases i t is possible to equip a symmetric space wi th a complex 

structure. This is a linear map endomorphism J : m —> m such that J2 = — 1 . This 

implies that m must be even dimensional (as a real vector space). 

A Hermit ian symmetric space is one where such a structure exists. They have many 

interesting differential/geometric properties, more of which may be found in Helgason. 

Here i t is the algebraic properties of the associated algebra g that w i l l be important . 

Expl ic i t ly : 

(i) 3Aeh (the Cartan subalgebra of g) s.t. k = C g ( A ) = {B € g : [B, A] = 0} , 

(ii) 3 0 + C $ + ,a subset of the positive root system, s.t. m = s p a n { e - t a } a e 0 + , and 

[h, ea] = ±aeQ Vh £ h and a € 0 * , for some constant a, 

(Hi) [ea,ep] = OVa, /? € © + or a,/3 € Q~ . 

(iv) J = adA for a particular scaling of A. 

Given this basis, the Riemann curvature tensor is defined by 

= [ e _ ^ , [ e _ a , e « ] ] . 

These satisfy the hermiticity condition 

These Hermit ian symmetric spaces have been completely classified, there being four 
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different inf ini te families, labelled A I I I * B D I , D I I I and C I , together w i th two 

exceptional cases, labelled E I I I and E V I I . These families are summarised in chapter 

I I I , table 3. 
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Appendix B 

This appendix describes the construction of the f in i te energy axially symmetric SU(2) 

instantons. These are used in chapter V , where they are interpreted as static vortices in 

a modified Abelian Higgs model in (2 + l)-dimensions. The details have been taken f r o m 

[37,1,62]. 

Consider the spherically-symmetric, finite-action solutions of SU(2) gauge theory in 

Euclidean I R 4 , w i th action 

S = \ J dAx FllvF,iV . ( B . l ) 

Under an S0(3) symmetry, the self-duality equations F = *F reduce to the Bogomolny 

equations for an Abelian Higgs model at critical coupling, w i th a U ( l ) gauge field and 

a complex-valued Higgs field <f>. The space on which this model is defined is not flat, but 

has constant negative curvature. To understand how this occurs, consider the flat line 

element on I R 4 , wri t ten in the form 

ds2 = dt2 + dr2 + r2(d92 + s in 2 6d<j>2) 
(B.2) 

= r2(r-2(dr2 + dt2) + d62 + s in 2 9 dcf>2) . 

Since the self-duality equations are conformally invariant in IR 4 , their solutions are also 

solutions i n the space wi th metric 

ds2 = r~2(dr2 + dt2) + d92 + sin 20 d<f>2 . (B.3) 

This is the line element for the space S 2 x H 2 , where H 2 is a two-dimensional hyperbolic 

space of constant negative curvature —2 . The metric (B.3) is singular along the line r = 0. 

Removing this singular line f rom IR 4 gives the conformal equivalence 

IR 4 - IR 1 ~ S 2 x H 2 • (B.4) 

To impose a spacetime symmetry is a gauge theory is problematical, due to the gauge 

symmetry. One requires a set of gauge potentials which (in some gauge) depend only on 
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the coordinates on H 2 , and which respects the axial symmetry. The most general axially 

symmetric su(2) potentials are 

.a _ <j>2 + 1 f x 2 i , j ^ i X j X a 
n-j — ^ 2 tjakXj -+• ^ 3 [ 0 j a r X j X a J i ^ ' 

r 

where <f>Q , <f>\ , Ao and A\ only depend on r and <, i.e. the coordinates on H 2 . Note how 

the spacetime indices j and k are mixed wi th the group index a . Ful l details may be found 

in [62]. 

One then calculates the action given such fields, and integrating over the 2-sphere 

yields 
oo oo 

S = 8TT J dt J dr [{{D^if + \r2Fl + ± r " 2 ( l - <f>\ - <f>2)] . (B.5) 
i=-oo r=0 

I n what follows it w i l l be useful to conformally map the space H 2 onto the unit disc 

A (the symbol A wi l l be used to denote the interior of the disc without any metrical 

structure). A similar ball picture was used by Nash 1 7 1 ' in the construction of hyperbolic 

monopoles. I n these new coordinates (B.5) becomes (where f i , v = 1,2 and <f> = <j>\ + i<f>2 ) 

S = STT J d 2

X y / g {iD.fD^ + IF^F*" + 1(1 - \<f>\2)2) , (B.6) 

A 

the metric on the unit disc being given by 

^ 2 = n 2~ ^ ( d x 2 + dy2), ( x 2 + y 2 < l ) , (B.7) 

and the covariant derivative and the field tensor being defined by 

Dp4> = d^cj) - iA^ 

Ffiu " d^Ay — dvAfi 
(B.8) 

For finite energy one imposes the conditions | ^ | —» 1 and —* 0 as \ / x 2 + y2 —> 1 

These imply that A^ tends to pure gauge as y/x2 + y2 —» 1 , and so F^ —• 0. 
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The Bogomolny argument st i l l works in the curved space. Let F^v 

s^dpAv, and let 

SftuB, so B 

(B.9) 

Here £ M „ is the volume element 

e^j, dx^ A dx" = y/g d2x 

( l - X 2 - t , 2 ) 2 

In terms of B and Q the action (B.6) may be written as 

dx A dy . 
(B.10) 

S = 8TT J d2x 

A 
\Q + \ V a [ B T (i - \<f>\2)}2 ± = F J i v ? ^ * ^ [ ^ M ( B . l l ) 

Note that y/ge^ = e^t.' w n e r e e f l a t * s J u s ^ alternating symbol. Thus 

Using this result (together wi th the divergence theorem and the boundary conditions on 

£?A), the last term in ( B . l l ) integrates to zero. The first two terms of ( B . l l ) are clearly 

positive, so 

S > ± 4 T T J S x y f g B 

= ± 4 T T J d2xdtl[eHlAv\ . 

Using the divergence theorem and boundary conditions this becomes 

S > ±47T j> dSp £f£t ~ 

9A 
i (f> 

^ W 2ri (j> ds 

This last t e rm is just STT2 times the winding number of the map 

<f>\r=1 : S 1 -+ S 1 , (B.12) 

and hence is equal to 87r2n for some integer n. This integer is the topological charge of 
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the field configuration. Thus 

= 8TT J d2x 

A 

> & r 2 | n | , 

i<? + l > M * = F ( i - M 2 ) ] : ± 8 7 r 2 n 
(B.13) 

the upper sign being chosen for n > 0, and the lower sign for n < 0. 

Equali ty occurs i f and only i f 

(B.14) 

These Bogomolny equations are just the self-duality equations on IR. 4, under the reduction 

by SO(3) . In terms of instantons on IR 4 , the topological charge is equal to the second 

Chern (or instanton number), 02(A) = n. Equations (B.14) were first solved by Wit ten , | 3 ? 1 

and i t is interesting to note that Taubes' 6 1 1 has proved that all finite-energy solutions 

are in fact solutions of these first order-equations. The solutions of (B.14) are known as 

vortices, or antivortices, depending on choice of sign in the equations. The vortex solutions 

(corresponding to the positive sign in equation (B.14)) w i l l be constructed below. The 

gauge condition V^A^ = 0 is imposed and so 

A l l = e / d ^ t (B.15) 

where ^ is a real-valued function. Wri t ing <f> = e^u gives the following equations for u 

and ip: 

daU + ienVdvu = 0 
(B.16) 

V f y = v # ( « « e 2 i f r - 1 ) . 

Here V 2 is just the flat-space Laplacian. If complex coordinates z and z are introduced 

on A , defined by z = x + iy and z — x — iy, then 5M + ie^dv is the Cauchy-Riemann 

operator: the functions i t annihilates are those which are functions of z alone. Hence 

u must be a complex-analytic function. Using the argument principle, the topological 

charge defined above is equal to the number of zeros of the analytic function u. Making 

the substitution i/> = p — i ln(uu) — ^ In yjg in the second equation gives the Liouville 
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equation: 

V 2 p = e2f>. (B.17) 

I t is the integrabil i ty of this equation that underpins the solubility of the model. The 

general solution of Liouville's equation is given in terms of an arbitrary complex-analytic 

funct ion / . Expl ic i t ly , 

p = - l n 4 ( l - / / ) + 4 ln 
d£ 2 

dz 
(B.18) 

To avoid singularities in the Higgs field one takes u — ^ . W i t h this choice for u, the 

fields take the f o r m 
df ( \ — zz 

(B.19) 

4f / 1 - zz\ 
9 d z \ \ - f f ) 

" / / ' 

The most general analytic function which satisfies the boundary condition | / | < 1 for 

\z\ < 1 and | / | = 1 for |.z| = 1 is given by 

/ = n r r r ; ' a , € A - ( R 2 0 ) 

However, the funct ion / is not uniquely determined, the fields being invariant under the 

change 

/ ' * "T~~~~7 i c € A . (B.21) 
1 — cf 

So / depends on 2n real parameters, rather than the 2n + 2 parameters that might 

at f irst be expected. The topological charge of this solution (the number of zeros of ^ ) is 

just n. Let oti, i = 1 , . . . , n be the positions of the zeros of the Higgs field (counted w i t h 

mult ipl ici t ies) . These are related to the parameters a,- appearing in (B.20) by the set of 

equations 

df 
dz 

= 0 , i = 1 , . . . , n. 
z=a, 

By invert ing these equations one may express the a,- as functions of the cti, though not 

uniquely, because of equation (B.21) . 
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