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A b s t r a c t 

In the first chapter a brief overview of the principles and techniques of 

high resolution X-ray diffraction and topography is presented. Since the best 

analysis of the measurement is given by simulating the experimental results 

with predictions based on Dynamical theory, a short description of the 

Dynamical theory and its results has been attempted in the chapter 2. This is 

followed by an extended literature review of the Bragg case interferometer 

(chapter 3). 

After that, the Double Crystal Diffraction and Topography experiments 

-chapter 4- have been described. Great effort had been made in fitting 

experimental and theoretically predicted curves. 

The major target of the experiment was to detect change of the 

diffracted reflectivity resulting from "separator" layer thickness changes in an 

interferometer structure sample of InGaAs/AlGaAs on GaAs. No detectable 

variation appeared in the thickness of the "separator" layer showing that the 

layer thickness varied by less than one atomic spacing across the wafer. 

Discussion of the results is presented parallel to the description of the 

experimental work. 



lattice parameters of the substrate 

lattice parameters of the layer 

lattice constant parallel to the interface 

lattice constant perpendicular to the interface 

lattice mismatch 

effective mismatch 

Poisson ratio. 

Bragg angle 

angle between the substrate Bragg planes and the specimen 

surface plane 

electric displacement 

susceptibility 
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velocity of light 

unit cell volume 

structure factor 

wavelength 

wavevector 

polarization factor 

full width at half maximum 

monolayer 



Cfliapteir 1 

High resolution X- Ray Diffraction and 
Topography 

High resolution X-ray Diffraction and Topography are now widely 

accepted techniques for the study of semiconductor devices. In the following 

pages will be presented a brief abstract about the techniques' principles and a 

short review of the methods. 

1.1 Diffraction 
In X-ray Diffraction experiments involve illumination of a sample with 

an X-ray beam. The incidence angle of the beam is varied around the Bragg 

angles of the layers of the sample in order to obtain the diffraction profile of 

the sample (rocking curve). As every layer has possibly a different lattice 

parameter the diffraction profile will contains several peaks. Every peak 

appears at the angle that satisfies the Bragg condition for the corresponding 

layer. 

In single axis diffractometry the Full Width at Half height Maximum 

(F.W.H.M.) of the Bragg peak is determined by: 

i) the collimator geometry, 

ii) the source size and 

iii) the spectral width of the characteristic line in the X-ray 

spectrum and it is also limited by the angular divergence of the incident beam. 

For these reasons the angular resolution becomes crude. 



a) Double Crystal Diffraction 

For high resolution double axis (or double crystal) diffractometry, 

D.C.D., is generally used. In the (+n,-n) parallel mode of DCD, (Figure 1.1) a 

reference crystal is used from the same material as the specimen. After placing 

the reference crystal parallel to the sample the result will be a hkl, -h-k-l 

reflection. In this case the diffraction is non dispersive in wavelength (or in 

energy). 

Since the two crystals are parallel, made of the same material they will 

both be expected to satisfy the same Bragg conditions. That means, that if a 

beam fulfils the Bragg conditions for the reference crystal it will satisfy the 

same Bragg condition for the specimen crystal as well. In the same way 

different wavelengths will be diffracted under different conditions at different 

Bragg points. It is worth noting that even a small displacement of some arcsec 

from the angle that satisfies the Bragg condition might result in losing the peak. 

In order to have a better resolution result a small range of the spectrum 

of X-rays has been used. The K a line is the one that is used as it maximises the 

intensity. According to the conditions mentioned before there is a simultaneous 

diffraction of the Koci and Kot2. 

For non-uniform crystals the sample should be examined in the smallest 

possible parts. Therefore a smaller size of beam is needed in order to limit the 

broadening of the rocking curve. A slit can be placed between the two crystals 

for eliminating the K a 2 line. When a perfect crystal is examined the slit does 

not affect the FWHM of the rocking curve. However, when crystals contain 

sub-grains of comparable size with the beam area the FWHM can be a 

significant function of beam size. 

2 
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Figure 1.1: 
(a) The (+n,-n) geometry double crystal arrangment with identical Bragg plane 
spacing for the reference and specimen. 
(b) The (+n,-m) mode with different reference and specimen Bragg plane 
spacing 
(c) The monochromatic (+n,+n,-m) setting. 

(After Tanner) 
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Figure 1.2(i): 
The Bragg law for the first three orders of diffraction. 

(After Hudson) 
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Finally, the growth of an epitaxial layer with different lattice spacing 

from the substrate leads to a mechanical bending of the wafer and to a 

curvature of the sample. Because of that curvature, a misorientation appeared at 

the lattice planes across the specimen; and that misorientation leads to a 

broadening of the rocking curve. The broadening therefore, is a function of the 

width of the beam in the incident plane. 

In conclusion, 

IF 

the crystals are not curved, 

the Bragg planes are perpendicular to the incidence (scattering) 

plane, * 

and the crystals are perfect, 

T H E N 

the FWHM is just the mathematical correlation, (of the two plane 

waves reflecting ranges) which may be calculated using dynamical theory. 

It should be noted that the FWHM is a function of: 

i) material 

ii) reflection 

iii) wavelength band 

Typically FWHM is about 10 arcsec at 004 reflection X =1.54A in III-V 

compounds. 

For finding the exact point of Koq and K0C2 we can use a dental film or 

a X-ray sensitive detector at the specimen position. However, sometimes both 

Kcq and Kot2 are employed with a consequent 50% improvement of intensity. 

By using DuMond diagrams - which are graphical representations of 

Bragg's law (Figure 1.2(H)) very accurate calculations can be done. Since the 

two crystals are parallel, both made of the same material the two DuMond 

diagrams are the same and so the curves overlap. Thus we get diffraction from 

all the wavelengths and the role of the collimator is just to limit this range. In 

3 
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a) The parallel (+n, -n) setting. 8 1 = 8 
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c) The parallel (+n, -m) setting. 9, 5* 8 

Figure 1.2(H): 
DuMond diagrams for various diffractometer settings. 

(After Hudson) 



that case the reference crystal does not act as a monochromator/ The angular 

range results from the convolution of the two perfect crystals reflecting curves. 

In a (+n,-n) setting a signal-to-noise of at least 10~4 can be managed. 

Care must be taken to shield the scatter from the reference crystal. This can be 

achieved by using a small aperture between the reference and the specimen 

crystal, so that there will be no line of sight between the detector and the 

collimator. Furthermore, we can take better results in signal-to-noise by using a 

proportional counter in place of an scintillation detector. It should also be 

noted that use of a slit in front of the detector to improve signal-to-noise can 

lead to a change in the FWHM of the rocking curve in an imperfect crystal. 

If the lattice parameter of the specimen and the reference crystal differ, 

known as (+n,-m) mode, then the DuMond diagrams differ as well, and of 

course complete overlap, as in (+,-) mode, does not occur. The DuMond 

diagrams intersect at a point which moves rather slowly with angle of 

misorientation. 

Then, the FWHM will be broadened because in this case different 

wavelengths satisfy the Bragg condition at different angles at the specimen 

with respect to the reference crystal. The rocking curve broadens by an angle 8 

0 given by: 

5e = |tanei-tan62l(5XA) (1.1) 

where, 

61 , 02 are the Bragg angle of the specimen and of the reference crystal 

respectively 

8A, is the bandwidth of the X-ray spectrum passed by the collimator 

(this is the approximate wavelength difference between Ka\ and Kcc2 lines). 

Consequently the quantity 5A/A, is the fractional spread in wavelength of the X-

rays reaching the specimen. For C u K a , if both Kcq and Kot2 are present 

4 



5A./A. = 2.5xl(T 3 whereas when only Kcq is present 5X/X = 2.6x 1(T\ which is 

the intrinsic width of the Ka\ line. 

Note that the angular broadening of the rocking curve is zero when 0]= ©2-

Furthermore, the 60 can be quite large only for modest differences in lattice 

parameter when Q\ and 02 become greater than 45°. 

In order to optimise an experiment we must choose the Bragg plane 

spacing of the reference crystal to be close to that of the specimen but the most 

important is to have a highly perfect reference crystal.^ Finally the specimen 

and the reference crystal must be adjusted so that the incident plane contains 

both incident and diffracted beams. By using GaAs as a reference and InP as a 

specimen crystal (or vice versa) the broadening of a C u K a beam at 004 

reflection is about 17arcsec. This means tripling of the rocking curve width and 

reducing of the sensitivity to mismatch of an epilayer to about 150 ppm3. 

In order to reduce the effect of dispersion we can use a second reference 

crystal(Figure 1.3). Settings like (+ n, + n, - m) or (+ n, + n, - m) 

although they do not totally eliminate the wavelength dispersion, act as true 

monochromators. The first crystal produces a small angular divergence beam, 

which contains a range of wavelengths. A very narrow part only, of this 

wavelength band will satisfy the Bragg condition in the second crystal. So the 

beam after the second crystal will be limited in angular and wavelength spread. 

By placing the specimen in a -m setting the region of overlap in DuMond 

diagrams is very small. 

This mode has a very high angular sensitivity to strain. The diffracted 

intensity even for a small angular misorientation of the specimen will be zero. 

This mode can produce a high angular resolution rocking curve for an arbitrary 

lattice parameter specimen. 

The problem is that we can only use this mode for diffractions with 

Bragg angle of the order of 30°. Then the diffractometer body has to be at an 

angle of 120° with respect to the x-ray tube housing. By using a (- n,+ n,+ 

5 
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Figure 1.3: 
(a) The (+n,+n,-m) setting showing true beam monochromatization 
(b) The DuMond diagram for the first two reflections. 
(c) The DuMond Diagram for all the three reflections. The dotted line 3' 
corresponds to the specimen crystal anguralrlydisplaced.No overlap, and hence 
diffracted intensity, results from a very small rotation as in the (+n,-m) setting 
Figure 1.2(h) 

(After Tanner) 

a) 

Specimen 

h) 

Specimen 

Figure i .4: 
(a) The (-n,+n, + nrm) setting giving a convenient beam geometiy and high, 
dispersion-free, sensitivity to lattice strain. 
(b) The four reflection ( >i,+n,+n,-n,-m) setting giving collinear incident and 
conditioned beams. 

(After Tanner) 



n, - m) setting the diffractometer is aligned at the same angle as the single 

reference reflection of the (+ n, - m) setting is. The (- n,+ n,+ n, - n,-

m) setting (Figure 1.4) which DuMond (1935) first described has the attraction 

that the conditioned beam is always colinear with the incident beam. This 

means that we can change the monochromator reflection or wavelength without 

realignment of the specimen. The above setting with which many scientists 

have worked is now commercially available.4-8 

While that setting removes the broadening due to dispersion (when the 

reference and the specimen have different lattice parameters), it does not 

eliminate the broadening due to the specimen curvature. Finally, using that 

mode we can eliminate the tails of the rocking curves. A lot of attempts have 

been made in order to create collimators which have certain advantages, like 

the convenience in the scattering geometry, or like the elimination of tails of 

the angular and wavelength distribution 1. 

b) Triple Axis 

By placing an analyser crystal before the detector we have a result that 

is known as Triple Axis Diffractometry (T.A.D.)9-H (Figure 1.5). The analyser 

crystal has the same axis with the specimen, but it is scanned independently of 

that. A channel-cut Si or Ge analyser crystal is usually suitable for a big range 

of experiments. While in D.C. Diffraction the scattering is integrated over all 

angles, (along a line in reciprocal space), in T.A. Diffraction the scattering 

from the specimen is analysed as a function of angle; and this way the 

specimen is mapped in a plane in reciprocal space(Figure 1.6). 

Thus, diffuse scattering can be separated from coherent scattering and 

more general scattering from various sources can be easily distinguished. 

Scattering due to a defect or scattering from a rough surface occurs in different 

direction in space from that for the perfect crystal. Strain or mismatch can be 

6 
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Figure 1.6: 
Triple crystal diffractometer contour map in reciprocal space with Si(lll) 
monochromator, sample and analyser crystals and a focussing 
configuration. C u K a j , em=e s=0 a=14.22° 

(After Ryan 1986) 



separated from tilt or mosaic spread and therefore the effect of wafer curvature 

is eliminated. Especially, it is possible to determine independently the Bragg 

plane tilts and dilations. The above distinction is very difficult in D.C.D. 

In T.A.D. if the rocking curves are only recorded by scanning the 

specimen, they will only produce a measure of the tilt. But if the analyser is 

stepped around the specimen for each angular position of it, a map of the 

scattering will be provided; which will actually be a map of the reciprocal 

space. Integration along a line in reciprocal space discloses the tilt free quasi-

double-axis rocking curve. 

The signal-to-noise is better than the one of the D.C.D; because the 

fluorescence of the specimen is ehminated by the additional Bragg reflections 

from the analyser. Zaumseil et a l . 1 ^ managed to take measurements with 

signal-to-noise in the order of 10^: 1. 

The scientific results from this technique were progressively 

satisfactory. By using glancing incidence geometry, a single quantum well of 

thickness less than 20nm was readily visible. 13,14 By fitting the rocking 

curves, structural data about ultra thin layers were more detectable. Fewster,1^ 

by using T A D and a four reflection monochromator, removed the effect of the 

curvature and detected interference fringes from a multi-layer (1517 layer 

AlAs/GaAs, very curved) which would not be observed in DCD. Hel6 also 

managed to remove a lot of the parasitic scatter by using a channel-cut-crystal 

as analyser. 

The only disadvantage of T A D , apart from the complexity of the setting 

up of the apparatus is the increase in the time for the collection of the data. The 

above assertion is logical since more data to be collected needs more time. 

7 



c) Applications 

X-ray high resolution diffraction techniques can provide - accurately or 

not, directly or not - almost all the information about an epitaxial grown 

semiconductor sample. We can have, for example, data about: 

the lattice mismatch 

the composition 

the thickness 

the lattice tilt between epilayer and substrate 

the lattice coherency 

the substrate and the layer perfection 

the wafer curvature 

the composition and the thickness variation etc. 

Details about the above can be found in many review papers. 17-20 

A typical rocking curve is shown in figure 1.7 where we can see the 

peak of the substrate and the peak of the layer. The separation of these peaks is 

related to the different lattice parameter. That is measured by using the lattice 

mismatch m: 

where aQ and ar are the lattice parameters of the substrate and the layer 

respectively in bulk form. 

When tetragonal distortion is present -unrelaxed layer- the dimension of the 

unit cell of the layer becomes a xa x c , where c is the dimension 
J o o 

perpendicular to the interface. 

The apparent mismatch m* is then: 

a a 
m o (1.2) 

a o 

* 
m -

c-a o (1.3) 
a o 
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m and m are related by: 

m* = m (1 + v) 
(1-v) 

(1.4) 

where v = Poisson ratio. 

In a symmetric reflection the relationship between peak separation and 

mismatch is found from differentiating Bragg's law. 

where 0B is the Bragg angle and 

AG is the rocking curve peak separation. 

Once m is found, the composition of ternaries can be calculated by using 

Vegard's law (the lattice parameter varies linearly with composition). In order 

to determine the composition of a quaternary layer, the problem is more 

complicated and additional information is required^. 

If the layer is thinner than 0.5 mm the determination of m* by using 

differentiation of Bragg law is not so accurate. As we will see in Chapter 3 the 

maximum of the layer peak shifts significantly as the thickness is reduced. 

Also the measurement of the peak separation is insensitive to accurate 

tilt adjustment^!. 

In reflections where the Bragg planes are asymmetrical with respect to 

the specimen surface we can extract information about the lattice parameter 

parallel to the surface; and hence about the coherence of the layer.22,23 

Consider that <]) is the angle between the substrate Bragg planes (hkl) 

and the specimen surface plane. The X-ray beam is incident either at the angle 

of (0B+<|>) or of (8B-<|)) to the sample surface. 

If d(|) is the misorientation between the Bragg planes of substrate and 

layer and d0B is the difference in Bragg angle of layer and substrate, then the 

peak separation is (d0B +d(j)) for the high angle of incidence (glancing exit) and 

(d0B-d<j)) for the low angle of incidence (glancing incidence). Rocking curves 

m* = = -cot 6 „ AG 
d 

(1.5) 

9 



which are recorded using both beam paths can provide d0B and d<|> from the 

equations: 

dQB = 
dQi+dQe (1.6) 

2 

2 

dG, and d6 e are measured separations in the glancing incidence and glancing 

exit of rocking curves respectively. 

The parameter a and c of the layer can be calculated from the equations: 

If the (001) Bragg plane of the substrate is misoriented by § with 

respect to the substrate surface, then the Bragg peak of the substrate appears in 

two different angles while the sample is rotated about an axis normal to the 

specimen surface. The maximum difference that we can have is then 2$ 

(Figure 1.8). This method is very accurate and is used for the determination of 

the disorientation of the layer as well. 

The thickness of the layer can be determined by various methods. The 

relative height of the layer and the substrate peak can give significant 

information about the thickness of a single layer. However, it is preferable to 

compare the integrated areas under the peaks as the above areas are not related 

with tilt misalignment.24,25 order to determine the thickness of a thin layer 

we can make use of the Bragg case interference phenomenon and the 

Pendellosung oscillations (see Chapter 3). 

cos(<|> + d§) = c 
V2 

+ 1 
a'l 

(1.7) 

sin(9 f l-rfe f l) = ^ 

2,2 I 1 / * 

(1.8) 
2a 
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The only method that can provide accurate results is by simulation of 

the experimental rocking curves with the theoretical curves until a close fit is 

obtained. The theoretical curves are mathematical calculations based on the 

Dynamical theory (see Chapter 2). Variable quantities (as sample curvature, 

crystal quality, layer composition) can be obtained from such studies. 

The full width at half height maximum of a substrate or of a layer 

provides us with a measurement of substrate perfection.26-30 

As it has been mentioned before, the curvature of the sample leads to the 

broadening of the peaks; and by using a small diameter collimator (0.5-1 mm) 

and a slit between the reference crystal and the specimen the above aberration 

can be reduced. If we use a scanning stage, we can have a map where the 

position of the Bragg peak will be a function of the position of the beam on the 

sample (see figures 4.8, 4.13 in Chapter 4). That will provide us with a direct 

measurement of the wafer curvature. In the same way, using a point by point 

measurement of rocking curves, a map of either mismatch or composition 

variation or layer thickness can be drawn. 

n 



1.2 Topography 

X-ray Diffraction Topography is a technique which provides a two-

dimensional map of the distribution of the defects in a crystal. This is managed 

by recording the spatial distribution of the intensity of the diffracted beam from 

the specimen. This method is extremely useful, particularly for crystal growth 

studies and for quality control of crystals. 

We can say that Diffraction Topography is the X-ray cousin of 

Transmission Electron Microscopy but is not so widely used as the T.E.M. 

since a long exposure time is needed and highly perfect single crystals are 

required for resolution of individual defects. 

Generally the spatial resolution of the technique is limited by 

i) the weak scattering 

ii) the instrument geometry 

iii) the film resolution. 

There are several reviews of the x-ray topography in the literature. 1 "5 

There are two appearances of an X-ray image. The Orientation contrast 

and the Extinction contrast. The Orientation contrast is geometrical while the 

Extinction contrast arises principally from the different scattering power 

around the defects. 

In the following pages an attempt will be made to describe briefly the 

methods of 

a) Berg-Barrett 

b) Lang 

c) Double Crystal 

d) Synchrotron Radiation Topography 

12 



a) The Berg-Barrett method 

On the basis of Berg's early work Barrett extended that method which is 

one of the oldest ones. In figure (1.9) the two types^J of the method are 

represented. 

i) The Berg-Barrett Reflection Technique. 

ii) The Berg-Barrett Transmission Technique known as Barth-Hosemann. 

This general method of Berg-Barrett is widely used for reflection in 

which high dislocation density materials are exarnined. One great advantage of 

this method is that no expensive or high-precision components are required. 

Because of the wide source, compared to the specimen, the accuracy of the 

specimen position is not critical. The Bragg reflection is visible within an 

angular range of 1°. 

The negative points of Berg-Barrett Topography are that it is relatively 

insensitive to orientation contrast on one hand, and particularly the bad 

resolution, due to the polychromatic x-ray on the other hand. 

b) Lang's technique 

This is a very sensitive technique to both extinction and orientation 

contrasts and is perhaps the best known among the transmission x-ray 

topographies. There are two types of Lang topography: 

i) section topography^ 

ii) projection topography^ 

13 
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i) Section topography 

In this method, which is the most basic, the specimen crystal and the 

recording film are stationary so only a part of the crystal is investigated each 

time; therefore section topography is not suitable for a general examination. 

Apart from the stationary set up it is important to notice that an incident 

beam is collimated into a narrow ribbon (by a slit about 10 |im in width). 

Obviously the image is only a narrow "section" of the specimen (Figure 1.10). 

Despite the mentioned disadvantage section topography is remarkably 

useful for crystals in which the defects are uniformly distributed or have 

certain symmetries. If the Bragg angle is not too small, from the image of the 

section topography, valuable information can be taken about the flow of energy 

within the crystal and direct depth information can also be gained about the 

defects present. The latter one is explained by Gerward and Lindegaard with a 

step scanned section topography. 10 

Finally more information can be taken by simulating the image to a high 

level of detail. 11 

ii) Projection Topography 

With Projection Topography a two-dimension map of the defect 

structure through the whole crystal is recorded. In this technique which is the 

best known among all topographies, the specimen crystal and the film are 

scanned together across the ribbon beam. (Figure 1.11-The slit is typically 200 

urn wide) 

Because the image width is typically a few microns, an individual 

dislocation can be resolved if the dislocation density is less than 10^ cm^; 

above this, rocking curve broadening becomes apparent. 

14 
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Integration in time of projection topography results in a topography 

equivalent to the one taken by the Berg-Barrett method, where the integration 

is in space. 

Unfortunately by using projection topography we lack information 

(such as energy flow within the crystal) that section topography can provide. 

Of course scanning of the section topography results in the projection 

topography and one often stops at a point on a projection topograph and 

examines the small region chosen with the aid of series of section topographs. 

In order to do it one needs to tune the collimating slits width. For the 

section, described above, the slit width is about 10 jam and for projection 

topographs is approximately 200 Jj.m. 

Another way to determine the position, especially the depth of the 

defects, is to take stereo pairs of projection topographs. This works well only 

for low absorption and it is not sensitive. However, for a qualitative quick scan 

in a large area the method is satisfactory. A similar method was developed in 

1965: to use a single reflection but to take two topographs rotated ±8° about 

the diffraction vector. As it is obvious, those two methods are available only 

for thick crystals. 12 

The most common complaint about X-ray topography is the long 

exposure time. The photographic method while giving excellent resolution and 

contrast, is very slow and not available for dynamic experiments in which the 

defect configuration varies on a time scale of seconds and minutes. 

For semiconductors, where high resolution is not needed, use of fast but 

low resolution film permits a projection topograph to be taken in about a half 

an hour. In the same way medium resolution topography can be used to screen 

semi-insulating GaAs substrates for detect uniformity. 

Apparently the best improvement in speed without losing resolution is 

the curved crystal technique 13. Complete topographs can be recorded in a few 
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minutes time. Unfortunately, it can only be applied to thin plates of brittle 

material and has not been used extensively. 

Very small exposure times can be achieved by using synchrotron 

radiation topography, as will be described later. 

There is a review article of Green 14 concerning viewing systems which had 

been developed until 1971 and a more recent one written by Cringean and 

Tanner15 published in 1986. But day by day new viewing techniques appear. 

Now the common opinion is that the X-ray topography is not particularly slow, 

but observing high resolution X-ray topographs in real time, such as electron 

microscopists do regularly, has not been accomplished yet. 

c) Double Crystal Topography 

Theoretically Single Crystal Topography is sensitive to detect strains of 

an order of 1 part in 10^ but in practice it is very insensitive to show variations 

of lattice parameter until they become of the order of one part in 10^. Therefore 

Double Crystal Topography is used which is able to detect long range strain. In 

D C T sensitivities of parts in 10~8 - 10" ^ are possible in the best silicon. 16 

It is worth noting that the contrast in single crystal topography arises 

principally from the different scattering power around the defect (i.e. extinction 

contrast), while at D C T the contrast is geometrical, (i.e. orientation contrast) 17 

The Double Crystal method of topography, which was developed by 

Bond and Andrus^ and Bonse and Kapplerl^, is not very widely used but has 

the advantage that it can be derive deasily from the DCD instrument by the 

replacement of the pinhole collimator by a large aperture slit. According to the 

name of the method it is obvious that two Bragg reflections are needed. 
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In Double Crystal Topography similar mode of reflections, similar rules 

and conditions are used as used in Double Crystal Diffraction. One type of 

double crystal topography is where a (+,-) parallel setting is applied, and as it is 

mentioned above, it is important to have the Bragg planes of the two crystals 

parallel, and the two crystals of equal lattice spacing. 

Again, the method is non dispersive in wavelength. By the examination 

of the DuMond diagrams we can predict approximately the local image of a 

defect. For a local misorientation in the specimen, the local part of the curve is 

misplaced and no region of overlap occurs for any wavelength, so a local loss 

of the intensity appears. In the same way for a dilation the DuMond diagram, 

changes locally and the angular range over which simultaneous diffraction 

occurs, is very narrow and may be as low as 0.1 second of arc.(Figure 1.12) 

A very important thing in studying Double Crystal Topography is that 

the image must be considered as arising from defects in both crystals. 

Fortunately, in the laboratory the reference crystal is quite far from the 

photographic plate and thus, defects from this crystal appear to be blurred, so 

they are usually not troublesome. This is not the case with synchrotron 

radiation. Of course, we can always distinguish the defects from the two 

crystals by rotating by 90° of one of the crystals. That simple trick was first 

done by H a r t 2 0 in D C T of L O P E X silicon. 

For high resolution topography as happens with the Diffractometry, it is 

crucial to ensure that the tilt between the Bragg planes is small and also the 

same material is used for both of the crystals. However, in such topographs the 

images of dislocations appear very broad as high contrast is obtained from the 

small strains present far from the dislocation core. Therefore, the D C T is not 

very useful for studying crystals with high dislocation densities. 

Although the (+,-) parallel setting is not dispersive to wavelength, 

unfortunately, it is angular dispersive and for that reason images from the same 

defect but from different wavelengths are formed at different points of the film. 
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Figure 1.12; 
a) DuMond diagram corresponding to local rotation of the lattice in the second 
crystal. 
b) DuMond diagrum corresponding to local dilation in the second crystal. 

(After Tanner) 
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That problem is usually solved by using different materials at the two crystals 

(thereby introducing some dispersion) As happens in the (+,+) setting the 

wavelength is limited in the (+n, -m) mode, and therefore the angular 

sensitivity is reduced. As it is obvious, the (+n, -m) setting is a very flexible 

technique. 

The (+,+) setting (equal Bragg plane spacing and non-parallel Bragg 

plane) was first exploited by Kohra and his co-workers^l and developed by 

Nakayama 22, m that mode we can have an image of quite large misorientation 

without loss of intensity. The angular sensitivity is the same as in the Lang 

technique but the defect contrast is complex and therefore the mode is not so 

widely used. 

Use of an asymmetric reflection results in expansion of the beam in 

order to cover the whole of the specimen area. Such beam expansion is 

commercially available. The use of asymmetric reflections in collimators is 

studied by Kikuta and Kohra23 and Kikuta24. By taking two measurements -

the second is done by rotating the specimen about its surface normal (if nearly 

a symmetry axis) - we can distinguish tilts and dilation.25,26 

By using a triple axis formation only the tilts can be detected irnmediately.27 

Very accurate measurements of relative lattice parameter can be 

managed by introducing multiple Bragg reflection in a DC arrangement. 

Hart28 in 1969 succeeded in getting a precision of one part in 10^ by using 

two crystals cut from the same block of silicon. In the first version, two X-ray 

sources were used, but recent arrangements have been designed with the use of 

only one source. 

A very interesting phenomenon appeared when the crystal contains 

regions of misorientation greater then the rocking curve width. Then a stripe of 

contrast is obtained from that part of the crystal. If we step the specimen with 

respect to the reference crystal and expose on the same part of the film, a 

"zebra pattern" of contours will be built up27,29 

18 



Double Crystal Topography in the reflection geometry gives better 

defect contrast than the reflection type of projection topography. Of course, 

projection topography is normally used in transmission geometry which is 

inappropriate for studying defects in epitaxial layers. For incident angles of less 

than 10° the technique is very sensitive to near surface defects. 

d) Synchrotron Radiation Topography 

A large melt-grown compound semiconductor crystal contains effective 

misorientation much larger than the rocking curve width. Furthermore, if 

defects over the whole crystal must be detected by using the above methods it 

is obvious that multiple exposures are necessary. Finally it is well-known that 

the exposure time is unacceptably long for a slow, high resolution recording. 

Using synchrotron radiation topography, all these problems can be solved. 

Based on a method developed by Guinier and Tennevin^O and Tuomi, 

Naukkarinen and Rabe^l performed the first synchrotron topography 

experiments in 1974. 

If an electron is constrained to a circular orbit, it emits electromagnetic 

radiation in a cone form tangential to the electron orbit. That radiation is the 

synchrotron radiation. The beam appears with a small angular divergence (10~4 

radians for 5 GeV) It is polarised in the plane of the orbit and the spectrum of 

the radiation extends from the ultraviolet to the X-ray region. 

By placing the crystal in a beam of synchrotron radiation we can record 

the image of the diffracted beam on I L F O R D L4 plate in a time of some 

seconds. It is highly remarkable that every crystal lattice plane will select a 

particular wavelength for diffraction (Laue pattern). The image that we obtain 

is a number of "spots". Each "spot" is a different image of the crystal. 

19 



The size of the beam is adjustable and can be relatively wide. Therefore, 

scanning of the crystal is not required. The only adjustment we need at the set 

up is to adjust the crystal orientation (approximately 1 °) in order to select the 

approximate wavelength required in any particular diffraction. 

Problems appear when the specimen is far from the recorded medium. 

Then a mixture of extinction and orientation contrast exists and it is difficult to 

disentangle them. Furthermore, the extinction contrast is sometimes 

complicated if more than one diffraction order contributes to the image. 

Double Crystal Synchrotron Radiation Topography was performed for 

experiments in this thesis. A Si crystal was used as a reference crystal. The 

wavelength was A<=1.54lA, the beam size was a rectangle of 40 mmxl5mm 

and the range of the beam current was about 130mA.. For the above condition 

and using I L F O R D L4 photographic plates the exposure time for high 

resolution topographs was 10 min. 

In conclusion 

the basic advantages of the method are: 

o huge beam size 

o small exposure time 

o tuneability of wavelength and polarisation independently 

o extremely easy to perform 

The disadvantages of the method are: 

o need of synchrotron 

o the contrast of the defects is sometimes more complicated 

than that of the other techniques 

Despite the fantastic results from the Synchrotron Topography today the 

challenge is to bring the topography methods back to the laboratory. 
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Chapter 2 

Dynamical Theory 

The most accurate technique for the characterisation of crystals with x-

ray is the theoretical prediction of the results and the comparison with the 

measurements. Simulation can be performed at a basic level using kinematical 

theory, but there exists a more powerful method, namely the dynamical theory. 

In the kinematical theory we have to assume that the amplitudes of the 

scattered waves are small compared to the incident wave amplitude. A complete 

view of kinematical theory can be found in a great number of books. 1 For small 

crystals (where the scattered amplitude is negligible compared with the incident 

amplitude) or for heavily deformed crystals having a mosaic structure, the 

kinematical theory works satisfactorily.For a perfect single crystal, though, 

we need a theory to take into account multiple scattering and depletion of beam 

energy, such as dynamical theory does with time consuming calculations. 

The two theories have a simultaneous attendance in the progress of 

simulation. Moreover the main concepts, for example the structure factor, are 

common to both theories In 1987 Bartels^ used dynamical theory calculations 

for the substrate intensity and that of kinematical for the layer intensity. In 1986 

Tapper and Ploog^ employed Petrashen's semi-kinematical theory. The full 

dynamical theory in the Takagi-Taupin formalism is the one that is widely used 
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today by most of the scientists. For a full description of the dynamical theory one 

should refer to the books of James (1948)1 and Pinsker (1978).2 

2.1 The "Classical" Dynamical Theory 

We assume that the electric displacement vector in vacuum is a plane 

wave. 

D = D o(r)exp{i[(0 ot-2nO o(r)]} (2.1) 

where 4>0 (r) = k0 • f and 

In a general case D satisfies the wave equation in a vacuum: 

V 2 D+—|-D = 0 
c 

(2.2) 

Considering spherical waves for which the radii of curvature are much larger 

than the wavelength A., we have : 

V3> 1 + 0 
(}T\ 

(2.3) 

0 
R2 

are negligibly small terms of higher orders of X/R 

For a nearly plane incident wave we will get 

V<D =k +Ak 
o o o 

(2.4) 

Therefore from (2.3) we have 

M , R 
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When we take a Bragg-reflection inside the crystal, first of all, we have 

to solve Maxwell's equations in a periodic medium. 

VE=4rcp (2.5) 

V H = 0 

VXE: i aft 
c 3t 

V x H = if BE 
c[ dt 

+ 4juJ 

(2.6) 

(2.7) 

(2.8) 
J 

where 

B = uH and D = e E 

By taking the curl of both sides of the (2.7), we obtain: 

VX(VXE) = - I V X ^ = -!1(VXH) 
c dt c dt 

(2.9) 

We know that e = 1 + x and x < < 1 

( L . ( 1 + X ) - I - 1 + ( M ) . x + < i 1 K ^ + . . . . I - X ) 

then 

E = ( l - X ) D (2.10) 

From (2.8), (2.9), (2.10), 
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4 i c V ~ 4 t i 2 -

SO 

V x V x ( l - X ) D = ̂ - D (2.11) 

Furthermore, susceptibility can be expanded as a Fourier series, reflecting the 

periodic structure of the crystal lattice, so that 

X = Z,X« e x P (iTuh-r) (2.12) 

• 2 X 2 

where %m = - 6 " F m (2.13) 
Kmc V 

where 

e = electronic charge 

X = wavelength 

m = electron mass 

c = velocity of light 

V = unit cell volume 

F h = structure factor 

For the general case of an absorbing crystal 

Xo ~ Xor + Xoi > Xh = Xhr + ' Xhi (2-14) 
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The wavefield in the crystal can be expressed as a Bloch wave. 

D = £ D m e x p ( - 2 / < - r ) (2.15) 

where km are linked by the Laue condition : 

km=k0+k (2-16) 

and £ 0 = V<D0 (2.17) 

Substituting (2.12) and (2.15) into (2.11) will give 5 

j\lm-g(*« • D f ) k m - X m - g ( L • km)i>,} = {k2-km • km}Dm (2.18) 
i 

If we draw a sphere of radius k, in reciprocal space, then the condition 

of Bragg reflections is that the sphere will cut a reciprocal lattice point and the 

origin. For the x-ray case the curvature of this Ewald sphere is large, therefore 

the probability of more than two points being cut by the surface of the sphere is 

very small. 

As we did before, we need to consider two beams: one transmitted and 

one diffracted. 

The equation (2.15) then becomes 

D = D 0 exp(-2raJfc0 r) + Dh exp(-2nikh • r) (2.19) 

and the system will be reduced to: 
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(m=h) 

(8=0) xX^^o)k-xXhh)^0 

(g=h) +xM»
 D /X ~Xo(kh ^)D„ 

= {k2-k„ kh}Dh (2.20) 

(m=0) 

(8=0) X A K D , K - X A K - h ) v h 

(g=h) +X0(K^O)K-XO(KK)^O 

= {k2-k0 k0}D0 (2.21) 

where&2 = | k | 

k - j and k = wavevector in vacuum 

X H , X k ^ m e Fourier components of the susceptibility corresponding to the 

reciprocal lattice vector and its inverse. 

It should be noted that k0 • DA = kh • £)h = 0 

(the electric displacements are always transverse) 

We can write now the system as : 

k2CXirn +Wb + X0)-K UD 0 = 0 (2.22) 

{k2{l + Xo)-kh-kk]Dh +k2CXhD0 = 0 (2.23) 

where C = D0-D 
1 for o~ polarization 

cos28Bfor 71 polarization 
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9B = Bragg angle 

and for a non trivial solution 

* 2 ( l + X.)-**-** 
* a(i+xJ-V*. = 0 (2.24) 

We can write : 

(2.25) 

where 

a 2k 
{ka k 0 - k 2 ( l + x0)} (2.26) 

1 
{khkh-k2{l + X o ) } (2.27) 

The equation (2.25) is the equation of the dispersion surface and is the 

fundamental equation linking ka and kh in the crystal. Each wavevector within 

the crystal must lie with its tail on the dispersion surface. A representation of 

this surface will be shown in the next few lines. 

We draw two spheres of radius k around the point O and H respectively 

as in Figure 2.1. The point of intersection, L is called Laue point. Now we 

draw two new spheres of radius nk , where n is the refractive index, (note for 

x-rays n <1). These spheres represent points corresponding to waves far from 

the exact Bragg condition. 

As we can see in Figure 2.2 : 

AB and A'B' are arcs of the spheres of radius k 

C D and C D ' are arcs of the spheres of radius nk 

The tie-point P is the position of a point corresponding to an allowed pair of 

wave vectors. 

PO 
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Figure 2.1 Spheres in reciprocal space about lattice points O and H 
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* * = P H 

a0 and ah are perpendicular distances from the point P to spheres 

CDand C D'. 

The equation (2.25) (dispersion surface) is a hyperboloid of revolution 

about OH and its projection onto the plane of the paper is a hyperbola which is 

split into two branches, (1) and (2). Each branch will be split into parts, 

one corresponding to a - polarisation, 

and one to k - polarisation. 

The dispersion surface is a very meaningful concept. It determines that 

the allowed wavevectors can be shown, also that the direction of energy flow is 

perpendicular to the dispersion surface, and furthermore, it determines the 

amplitude ratio of the component plane waves in the Bloch wave. 
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2.2 The Takagi-Taupin Equations 

The above approach works well for a perfect crystal and plane wave, but 

generally ka and hm are functions of the coordinates. For each point in the 

crystal the vector hm can be determined. 

If the planes in a crystal, denoted by nm are regarded as a continuous 

function of the co-ordinates which take integral values on each plane m we will 

find: 

K = V* m (2.28) 

D = X D B e x p ( - 2 i W D j (2.29) 
m 

^m(r) = ^0(r) + nm(r) (2.30) 

Where 

k„-r=Q„ k =V<D O 0 

i = V O m (2.31) 

hm-r = n h = Vri 
m m m m 

Calculating the left hand side of the equation (2.11) and using the equation 

(2.2), (2.12) and (2.28) we get 

4K2 

]TDmexp(-27C/<Dm) = A (2.32) 

where A is a function in terms of varying magnitude. 

Neglecting small terms (see Pinsker, 1978) we obtain 

29 



a . D m - D„ cosX^ +l2L(kj)f>m = o (2.33) 

Where 

cosX^ is the polarization factor 

an is the variable representing the angular departure from the Bragg 

condition. It is taken as : 

a . = K-'[Hj +2(k. . q = x( > ^ 1 ( 2 . 3 4 ) 

V m m y 

and approximately: 

am = 2AQm sin 29 f f l (2.35) 

Both d m and sin 8 f f l are co-ordinate dependent. 

For propagation of x-rays in a perfect crystal we have to solve this 

system in first order partial derivatives. The variable a m is calculated to allow 

for local deformations at any point in the crystal. For the two-beam case we 

need only consider m=0, m-h 

Allow sg and sh to be unit vectors in the direction of the incident and 

diffracted beam respectively, then 

l = t i 0 sh=Uh (2.36) 

and for any point on the reflection plane 

F = sJ0+shsh (2.37) 

Then the system (2.33) is reduced to 
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- ^ = ( % 0 - « J D A + C X A D 0 (2.38) 

where 

C - cosX oh 

We can include the polarisation factor C in the values %h and Xf by adding 

the symbols a and it , so that 

Xl = x:(|cos2e|)"' = XA-(|cos2e|r (2.39) 
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2.3 The Solution of the Takagi-Taupim Equations 

Equation (2.38) are known as the Takagi-Taupin equations and we can 

use them to calculate the reflectivity of a given crystal in the Bragg case. We 

will assume that the incident wave is plane, and that the variations in 

diffracted intensity will only be a function of depth. The amplitude ratio of the 

incident and diffracted beams is required. 

y0 = sin i 

Y* = - sin e (2.40) 

i,e, the angles of incidence and reflection regarding the surface normal 

For an asymmetric reflection y0 and yh are not equal, 

b = ^ 

For a symmetric Bragg case reflection b = -1 

The depth below the surface z is given by 

z = s0y0 + shyh 

Then (2.38) will become 

i X 3 D „ „ ^ 
— Vo - r f - = to D0 + c X k q 

K az 

- Y ^ = ( X 0 - « J D , + C5CAD0 (2.43) 

In general xh X/r ^ n o t equal in a non-centosymmetric crystal such as the 

zinc-blend structure except in special cases (such as the 001 reflection). 

Let X be the complex reflection coefficient 
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(2.44) 

Then 
d X _ 1 3 q D, dD0 (2.45) 
dz D0 9z 4 9z 

substituting into (2.43) we arrive at 

dX 
dz Xy0 

(2.46) 

If the crystal contains compositional variations, ah will be a function of 

the depth z below the surface. If the crystal is divided into a number of laminae 

of constant composition, we can solve the equation analytically for each lamina 

and match the complex amplitude ratios at each boundary in order to attain the 

reflectively at the surface. 

The equation (2.46) can be written as 

dX 
=i D[A X2+2B X+E ] (2.47) 

d z 

where D = n 

o 

B = (1 -b)^-
v ' 2 

E=~CbXh. 

Equation (2.47) can be written now as 

dX B B 
iDA X+ + A 

(2.48) 
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After solving this equation we obtain 

X = 
kslBB - EA + i(Bk + E) tm(DjBB - EA(z - W)) 

*JBB -EA- i(Ak + B) tm(DjBB -EA(z- W)) 
(2.49) 

Assuming that the reflectively is known at a depth Wand x(w) = k. 

The boundary condition is that k = 0 at a point deep inside the substrate. 

* ->0 , (z -w) —> oo 

tm(a + ib) . , >/ if Im V B B - E A <0 

tm(a + ib)- if I m B B - E A >0 

We can write 
B + yfBB - EASign[lm(y/BB - EA)] 

(2.50) 

For calculating the reflectivity at the substrate, the equation (2.50) is 

used. This value serves as a boundary condition for the first epitaxial layer. For 

calculating the reflectivity at the surface of the layer, the equation (2.49) will 

be employed, and the process repeated for all the layers in the structure. Finally 

the intensity ratio R is calculated from : 

R = (2.51) 
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2.4 Results from the Dynamical Theory 

A detailed treatment of the dynamical theory gives a number of 

important results. 

o The full width at half maximum of the Bragg reflection peak is given by 

FWHM = 2 C ( ^ X * ~ ) E ( 2 . 5 2 ) 
sin29B V y0 

o The integrated intensity of a single crystal rocking curve is given by 

(2.53) 
3 1 1 sin 20 \ ya 

(In case of neglected absorption) 

Note, that for the dynamical theory the intensity is proportional to the 

structure factor, unlike for the kinematical theory where intensity is 

proportional to the square of the structure factor. 

o The refractive index of the crystal causes a shift in the position of the Bragg 

peak compared to the position from the Bragg law. The mentioned shift is 

given by 

A0 = X 
2sin29i, y j 

(2.54) 

When two wavefields propagate within a crystal then oscillations known as 

Pendellosung fringes appear on the rocking curve. The angular spacing of the 

Laue case Pendellosung fringes is given by : 

m=}hobfJr ( 2 5 5 ) 
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where t is the thickness 

I ho Ya The length — J is known as the extinction distance and 
C V Xh%F 

corresponds to the separation of the maxima of the wavefield excited within the 

crystal due to the interference of the two Bloch waves propagating in the 

crystal. 

o Finally, the thickness fringe period for Bragg case is: 

50 = Y A 7 — - — \ (2.56) A (rsin20 B ) 

and is independent of scattering power. 
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Chapter 3 

Bragg case interferometer 

As seen from recent achievements of the Double Crystal Diffractometry; 

the study of the perfection or composition measurements of closely lattice 

matched epitaxial layers is now commonplace. The devices that attract most 

attention today consists of complicated structures with many and thin layers. 

Diffraction profiles from such structures are extremely complex and the only 

way to interpret such rocking curves is by simulations 1. 

The effects that occur in diffraction from such layers are similar to the 

analogous optical interference effects. For example, oscillations can be detected 

in the wings of a single epitaxial layer peak - known as Bragg case 

Pendellosung oscillations - which are subsidiary interference maxima. Rocking 

curves like that, have been reported by many scientists 2-4. The period of the 

subsidiary oscillations can be used to give a direct measurement of the layer 

thickness. The equation for Bragg case Pendelldsung fringes^ is given by: 

56 = 
Xsin(0B +<))) 

(3.1) 
t sin 20 

where t is the layer thickness 

X the X-ray wavelength 

0 B the Bragg angle 

and <j) the angle between the Bragg plane and the crystal surface 
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In this chapter the similar phenomenon that is observed in an'ABA 

structure (where a thin layer of composition B is sandwiched between two 

layers of composition A) will be expounded. For a short X-ray wavelength, 

such as used for X-ray crystallography this kind of structure acts as a Bragg 

case X-ray interferometer. 

Such sandwiches occur quite commonly in quantum well devices and 

semiconductor lasers; where device performance (e.g. threshold current) 

depends on how accurately the thickness of the layers is manufactured. In 

addition current interest in strained layer systems for high electron mobility 

transistors has led to a large number of studies of the rocking curves of 

extremely thin InGaAs layers sandwiched between GaAs or AJGaAs layers. 

Today, Bragg case interferometry is commonly thought of as a very strong 

method for industrial quality control of these structures. 

X-ray interferometry is not a new idea; the first X-ray interferometer 

(Bonse and Hart, 1965^) was fabricated from highly perfect silicon and 

operated in Laue geometry. Later in 1983 Barbee and Underwood^ used a 

solid state Fabry-Perot etalon which worked in the soft X-ray region. 

The most important interference effect is the modulation of the basic 

peak which in some cases leads to peak splitting. There are two types of fringes 

with different periods in that modulation. The one corresponding to the 

thickness of the cap layer A and the other corresponding to the thickness of the 

layer B (interference fringes). A direct method of thickness measurement of 

both of the layers can be provided by using equation (3.1). 

The apparent period corresponding to the cap layer shows a slight 

divergency from the Bragg case Pendellosung period A In figure 3.1 we can 

see that the gradient is not corresponding to the Pendellosung spacing. This 

arises because of the beating of the two periods when cap and layers thickness 

become nearly equal. Use of Fourier transformation techniques^ shows that 

the individual periodicities do correspond to equation 3.1 
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The interference fringe period can sometimes provide us with sub-

monolayer resolution^. That is because the position of the interference peak is 

extremely sensitive to the phase shift which arises from the layer B. 

Considering a specimen of structure ABA; the regions of material A, 

with identical spacing d (say GaAs), contain N\ and N 2 planes respectively. 

Layer B separates the two regions A; it has different lattice spacing from A and 

thickness nd+Ad. 

Ad 
If Ad = 0 , a = — = 0 which we call the in=ptna§e condition 

However there is no interference effect from the 

cap layer. 
1 

If a - — we call that the oimt-of-plhiase condition 

(m is the order of the Bragg reflection) 

Hollo way 10 examined, according to the above, two types of structure 

based on the outer (cladding) layers thickness, when they are different 

(structure A) or the same (structure B). Experimentally, in both structures the 

cap layer should be thick enough to give a Bragg peak with reasonably 

intensity and sharpness and thin enough to transmit a substantial fraction of the 

incident energy to the underlying thick cladding layer. It is worth noting that 

fringe visibility in systems containing only very thin layers, is low.l 1 

By using the kinematical approach, the interference effect is elucidated. 

In the two structures that Holloway discussed, the dynamical theory is 

approximated by simple kinematical theory (Fig. 3.2). The most significant 

difference is a shift of the profiles to slightly larger incident angles. This occurs 

because of the phase change on scattering that gives refractive index, which is 

not calculated in the kinematical approach. 

It should be mentioned that irrespective of the thickness of the two 

interfering regions, the diffraction patterns repeat themselves when the 
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separator is increased by multiples of djm. For (004) reflection d/m-a0/A, and 

a0 is the lattice constant (of GaAs in this case). 

The transition from the in-plane condition (Figure 3.3) shows how 

sensitive the rocking curve profile can be to the phase shift. In the structure A, 

we can see clearly the two sorts of fringes. The spacing of the subsidiary 

maxima of the long period fringes does not depend on the thickness of the 

separator layer**, on the other hand the visibility of these fringes is a periodic 

function of the phase shift of the separator layer 10. 

In structure B the transition from the one condition to the other puts a 

notch into the convoluted profile at the main Bragg peak. Additionally, this 

transition causes a doubling of the spacing of the subsidiary maxima from that 

corresponding to a combined set of 2N planes to that corresponding to the 

individual region with N planes. 

As we can see in Figure 3.4, by increasing the thickness of the 

separator, the two GaAs regions diffract out-of-phase; there is an evident 

reduction of the sensitivity of the peak profile when the thickness of the 

separator is changed. 

Examining the sensitivity to the precision of the separator's thickness 

measurement, we can consider the worst and best cases. 

In what can be called the best case, we assume that we do not have 

broad features such as Compton and diffuse thermal scattering and that there is 

not significant masking by background scattering. The sensitivity of the 

method is limited by the experimental uncertainty to a change in separator 

thickness that will give a root-mean-square (rms) change of a in the calculated 

log intensity 

1 
a = log 1 + 

4N 
(3.2) 

where N the number of counts at each point. 
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By definition, the worst case is when we can just make the distinction 

between the in-phase and the out-of-phase condition. As it is mentioned above, 

the fringe effect is periodic in relation to the change of the separator of d/m. So 

we may expect to measure separations of some fraction of this value. Although 

the precision of the measurement of the separator's thickness is ±d/4m there is 

an uncertainty of some multiples d/m. The latter statement should not trouble 

us at all when the numbers of planes in the separator layer are precisely known 

(RHEED oscillations during the growing or with transmission electron 

microscopy). 

I f the lattice spacing of the separator is dsep =d+dd then each plane of 
( §d\ 

separator contributes ml 1+— period to the change m the diffraction pattern. 
V d ) 

That means that for every new period Atsep = thickness is required. The _ d/m 
bd/d 

magnitude (dd/d)«l w i l l be related to the lattice mismatch. In other words, a 

Bragg plane spacing of the separation is equivalent to a thickness d(\ + m*) 

where m* is the effective mismatch and Atsep = d/Am*. 

The connection of Bragg interferometer theory with the effective 

mismatch gives a new meaning to the topic. Most of the devices which use the 

interferometer system contain a very highly mismatched spacer layer and 

resulting misfit dislocations are very significant for the lifetime and the 

transport properties of the devices. 

The strain energy due to a coherent interface increases with epilayer 

thickness but when the thickness exceeds a critical amount, relaxation of the 

strained layer may occur. The percentage of the relaxation affects the 

characteristics of the rocking curve dramatically. Both the positions of the 

Bragg peaks of the thin strained layers and the capping layer are changed. 

Consider two regions of GaAs separated by a thin layer of In x Gai_ x As 

(x=0.2)10. The lattice spacing of InGaAs (relaxed 5.7345A) is greater than that 

of GaAs (relaxed a^^pS^liSk). When the sample is completely unrelaxed 
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the InGaAs expands normal to the interface. The lattice constant parallel to the 

interface is a„ =0^^ =5.6535A and the lattice constant perpendicular to the 

interface is a± =5.8103*2 For a symmetric (004) reflection the InGaAs Bragg 

peak occurs at a lower angle from that of the GaAs substrate and cap peak. The 

lattice misfit is quite modest (1.4%) according to other commercial systems. 

When the sample is relaxed either fully or partially the Bragg plane peaks start 

to move to higher angles. 

The mismatched layer in an interferometer structure specimen leads to 

the "alliasing" effect described above. Because of this, in near matched systems 

of AlGaAs on GaAs, low sensitivities to thickness changes have been 

reported^, 14 

These expansions or contractions of the lattice spacing normal to the 

interface alter the thickness of the separator layer. For a ful ly relaxed separator, 

the above phenomenon gives an increase of 0.014 for each unit cell of 

alloy of the intermediate layer. For a ful ly unrelaxed separator it doubles the 

amount. In estimations like the above, we need to know accurately the relaxed 

lattice constant of the separator, which is a function of the composition of the 

separator. In the previous example an uncertainty of 1 % of the In composition 

(x=0.2±0.01) corresponds to an uncertainty of 5% to the lattice constant^. 

It is possible to have a rocking curve with two GaAs peaks; one from 

the cap peak and one from the substrate, when one of the two interfaces in 

A B A structure is ful ly relaxed and the other is almost conformally strained. Of 

course, in order to have a better view of the relaxation of the sample, it is 

necessary to use asymmetric reflections. However, the presence of the two 

peaks from the GaAs is a "valuable indication of the presence of the 

phenomenon" 9. 

In some interferometer structures a weak system of fringes has been 

reported. This system of fringes has been attributed to the effect of a thin 

damaged layer between the substrate and the buffer layer. Tapfer and Ploog 1 ^ 
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have reported the above phenomenon in a study of thin sandwiched strained 

layers of InGaAs on GaAs. Green, Tanner and Kigh t l ey 1 1 having studied a 

more complicated structure of AlGaAs, InGaAs and GaAs observed this 

system of finges and attributed it to the existence of a thin ( lnm) mismatched 

layer of GaCo.016^ s0.984 located at the interface of the GaAs buffer layer 

and the GaAs substrate. 

In the majority of the cases the above mentioned layer is created under 

some conditions of MOVPE g r o w t h ^ . The presence of this thin interface layer 

was observed independently by using transmission electron microscopy! 1. 

A very clear view of the phenomenon can be given by a theoretical 

example which can be found in the paper by Tanner^ of a 0.5u,m InGaAS on a 

substrate of InP and capped by 0.5fim of InP. In figure 3.5, we can see two 

profiles of the sample. The dashed curve comes from the diffraction of the 

above sample with abrupt interfaces. The solid curve takes place when a 

sample has 0.3nm of InGaAs at the interface between the epitaxial layers. 

In all the above examples the major change in the rocking curve occurs 

in the modulation of the substrate peak. 

The analysis with the best accuracy, particularly for an indefinitely 

thick substrate, is achieved by simulating the experimental profile. The RADS 

simulation program from Bede Scientific is based on the Takaki-Taupin theory 

(see next chapter). In other works 10, Darwin-Prins equations dynamical theory 

has been applied. Also, Fourier transformation analysis has been applied, in 

order to extract the periodicity of the fringes. Macander and his co-workers*7 

have done this in logarithmic scale. Fourier analysis is a very useful tool 

especially when we can not have precise determination of the layer's thickness. 

Hudson21,22 has studied the precision and problem of this approach in some 

detail. 

The precision in experimental devices seems to be quite satisfactory. 

Chu and Tanner determined the spacer layer thickness to ±100A for 1000A 
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GaAlAs in 1986 1 3 and to ±50A for a 2500A GalnAs layer in 1987 1 8 . The 

new theoretical works make provision for sub-monolayer accuracy. For a small 

change of K/ 16 in phase to a coherent In x Gai_ x As layer sandwiched between 

GaAs regions of substrate and cap, we can detect significant differences in the 

rocking curve, which can provide one atomic change in thickness of the 

separator (practically that can indeed happen for x>0.2)H. The theoretical 

provision also for the best and the worst case that has been mentioned above is 

±0.02A and 0.1 A, respectively. 

In order to examine a big area of a specimen with interference structure, 

Bragg case Moire topography could be applied. In some cases (like the 

theoretical prediction that we shall see in the next chapter), the change of the 

reflectivity can be also so strong that we can have topographs which reveal 

monolayer precision for the thickness of the separator. 

Several attempts have been made by the Durham group in this direction. 

Chu and Tanner 1 3 observed contrast changes along thickness fringe contours 

in an interferometer structure formed by different AlGaAs composition. The 

fringes that appeared in the spatially extended rocking curve of a topograph 

were called Moire fringes because the phenomenon was attributed to the 

Moire effects. Cockerton in 199219 studied the same phenomenon of Moire 

fringes while the specimen was rotated. His results were consistent with the 

original interpretation. 

I f the specimen is curved (something very often for strained layer 

systems) a series of stripes wi l l appear, due to the varying orientation of the 

specimen. We must emphasise that only curvature in the incidence plane wi l l 

appear on the topographic plate. There is thus the possibility of distinguishing 

easily between the changes of intensity which take place either due to 

interference effects or to the varying orientation of the specimen. However, 

despite all the above attempts and the theoretical predictions, atomic layer 

sensitivity topography has not been reported. 
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Chapiter 4 

Experiments 

The philosophy of these experiments is based on a theoretical example 

from Tanner's (1993) paper*.In that example a specimen was considered which 

consisted of two layers of Alo.3Gao.7As grown on a substrate of GaAs and 

separated by a 3nm or 4nm layer of IriQ^Gao.sAs. A change of l n m in the 

separator layer results in a significant change of the diffraction pattern. (Fig. 

4.1) 

In both cases the peak of the layer splits. The dominant difference 

between the two rocking curves (dashed-solid) is the great change of 

reflectivity in both parts of the peak. In the 3nm InGaAs case the above 

splitting gives the impression of two well separated peaks of almost equal 

intensity which could easily be considered to come from two thick Al x Ga] . x As 

layers of different compositions. When such an ambiguity appears in the 

experimental results, the presence of strong interference fringes on the shoulder 

of the layer peak removes any doubt. 

The samples which are examined in this discussion are MBE-grown 

samples obtained from the M B E Research Group of University of Glasgow. 

The samples called B231 and B232 were grown with almost the same structure 

as the structure of the theoretical example. In addition, there are two thin, 3 

monolayer (ML) , GaAs layers at the interfaces of the separator which has a 

thickness of nominally 3nm. These two thin layers of GaAs were grown there 

in order to have well separated layers and sharp interfaces between them. The 

difference between the two samples lies in the rotation of one (B232) during 
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the growing of the InGaAs layer. This rotation usually improves the uniformity 

of the thickness of the layer. Logically the B231 sample is expected to be more 

suitable for the detection of differences in the thickness of the separator layer. 

A check of the reliability of the diffractometer had been accomplished 

before the experiments started. The check consisted of changing the values of 

intensity (mA) of the X-ray generator and measuring the intensity of the GaAs 

substrate peak This procedure was done by scanning first from left to right and 

then by scanning from right to left. The resulting lines (Fig.4.2) were very 

linear and from that we could come to a conclusion, namely that the behaviour 

of the diffractometer was more than satisfactory. 

Peak height as a function of Current. 

18000 T 
h 16000 
e 14000 

P • 12000 
e 10000 
a f 8000 
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1 4000 
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Figure 4.2 
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4.1 Diffractions 

First we obtained a scattering map from the B231 sample. The area 

being examined was a 25mmx25mm square in the middle of the sample. Thirty 

eight diffraction profiles were recorded. The distance between adjacent points 

was 5mm. The counting time was 2 sec per point and the scanning was in steps 

of 0.5 arcsec. A l l plots were taken with CuKoc radiation and a GaAs reference 

crystal in the (+,-) parallel geometry. The 004 reflection was used throughout. 

The interference behaviour of the samples is obvious from figure 4.3, 

where a typical rocking curve is illustrated. The Bragg peak of the InGaAs 

layer did not appear during all the experiments as the scan range was limited. It 

can be said that the absorption of this layer is negligible. This is one of the 

most important assumptions in order to take good interferometer results.^ A 

strong modulation in the peak of AlGaAs exists in all the rocking curves and a 

clear split of the peak occurs in many of the profiles. A significant change of 

the reflectivity which could lead to a complete separation of the two parts of 

the peak was not recorded. The greatest difference of the modulation of the 

peak appeared between the rocking curves B231x58 and B231x78. (Figure 

4.4) The distance between these two points on the sample was about 28mm 

(20V2). 

Using the RADS simulation program from Bede Scientific (based on 

Takagi-Taupin dynamical theory equations)^ some very detailed simulations 

have been performed.(Fig. 4.5) The f i t between the experimental and the 

simulation curves at some points is excellent. From those simulations we saw 

that: 

o The composition of AlGaAs and of InGaAs at all the points of the sample 

is very constant 

48 



oo 

8 
3 

3 
8 CM 

9 

<\J 

3 

C I 

8 O) 

CM 

3 c/3 

CM 

X 

0) 
T 

j CD 



ex P. 
•231. X7B 17,33 20 /11 /1902 Socio RADS 

Reflectivity 

6000 

U0D3 n 

I2G00 H 

J I OKU 

1 KCO 

eooo 

J woo 

2DX 

r S K . Axle 2 
24300 2<350 2 0 0 0 24150 24500 24550 24600 

e/P- B231.X58 17i33 2Q/11/1B92 

Reflectivity 
• 

IBOOO 

14000 

eooo - j 

245C0 24550 2<850 24700 
©«c Kxlo 2 

24800 

Figure 4.4 i); 
Sample B231 
Experimental rocking curves B231x78 and B231x58 



-8 

3 

0) 

CM 

8 
S3 (V 

co 

OJ 

ro 

CM 

CD 

ro CO 

<L> PQ ro 
CD CD X3 

<4-i 

oo ro m <o IT) a x m m ro 
i—t 3 C co r j 

•r) co 
CM GO CN <D 
CP 03 O 

<0 (L> bb c 
0/ 

^ oo H 



B231/.. C23 Si /-! 
B231.X5B 17,33 20 /11 /1892 

Reflectivity 
23CO0 

(a) 
lOCUJ 

fiCCO -< 

14300 

12D30 

cooo 

K B O 

6COO -i 

4000 -4 

2000 

24BOO 24700 24750 24850 24600 24500 24550 

S! BZ31A. G23 
B231.X58 17i33 20 /11 /1992 M P . Brio fUDS 

aoflectlYity 

b) 

0 

I - J 10 

10 
1— r 

24500 24550 24800 24850 24700 24750 24800 

Figure 4.5 i); 
Rocking curves B23lx58 
Fit between experimental and simulated rocking curve. 
a) linear scale 
b) logarithmic scale 



C .:- 8231-70. C02 

B231.X7B 17. 33 20/11/1802 

Roflortlvlty 

(a) 16000 

14000 
1 

12020 -J 

10300 

B30C 

BOO 

4230 

2000 - I 

HOC. Axis 2 2X300 243S0 21400 24450 24500 24550 246C0 

Sl/n B231-78. G02 
eXP. B231.X78 17.33 20 / l l / igg? 

BK4I iUDS rtaf! activity 

(b) 
i 

10 
1 

1 I 243O0 24350 soc Axis 2 244C0 24450 24500 24550 24600 

Figure 4,5 jj); 
Rocking curves B231x78 
Fit between experimental and simulated rocking curve. 
a) linear scale 
b) logarithmic scale 



° AlGaAs contains 31.5±0.5% A l and its thickness varies from 0.95±0.005 

to 0.96±0.005um 

o InGaAs contains 21.75±0.1% In 

Simulations of the points with the greatest difference of modulation (B231x58 

and B231x78), show that the thickness of the GaAs layers is the same for both 

of the points (22.65As 4monolayer) to within ±0.1 A 

The only significant reason for the change on the peak modulation is a 

small variation of the thickness of InGaAs. Very accurate fits of the simulation 

curves show that the thickness of the separation layer at the point of B 231x58 

is between 20.6-21.OA. At the B231x78 point the thickness appeared between 

17.0-18.8A. So the difference in the separator thickness between the two points 

with the greatest difference in modulation there seems to be submonolayer. The 

thickness of the separator layer is very uniform indeed. The results from the 

simulation for these two points is presented in Table 4.1. The accuracy of the 

dynamical theory predictions in such scale of structure makes the above 

estimation a time-consuming procedure and gives the limit on the measurement 

precision. 

POINT B231x5 8 POINT B231x78 
layers thickness (nm) X thickness (nm) X 

A l x G a i . x A s 970 0 .315 960 0.315 
GaAs 2.265 - 2.265 -

I n x G a i _ x A s 2.06-2.10 0.2175 1.70-1.88 0.2175 

curvature 264 m 233 m 

Mapping the F W H M of the GaAs peak (Fig. 4.6) it is obvious that the 

quality of the substrate does not vary substantially. The GaAs F W H M has a 

range between 15.51 and 13.13 arcsec. Having done the same map for the 

AlGaAs peak we could observe that the quality of the AlGaAs was 
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progressively changing from one side of the sample to the other.(Fig. 4.7) Since 

we are aware of the good quality of both the substrate and the separator, we 

deduce that the irregularity must exist on the highest one of the AlGaAs layers. 

It is suggested that the lack of a GaAs cap layer at the top of the sample 

admitted the oxygen of the atmosphere to oxidise the Al of the top layer, but 

even in that case the oxidation might be expected to be the same across the 

whole sample surface. 

Finally, in order to have a view of the curvature of the sample, a map 

was drawn plotting the relevant positions of the GaAs peak from point to 

point.(Fig. 4.8) The sample curvature was found to be very low. The angular 

distance that the GaAs peak "travelled" during the multiple scanning was 267 

arcsec. It is noteworthy, that the area where considerable changes in curvature 

occur almost coincides with that area where changes occur in the FWHM of 

the AlGaAs. 

The same experiment was carried out on the B232 sample. On this 

occasion the counting time was shorter (1.3sec) and the scanning was in steps 

of 0.9 arc sec. The interferometer behaviour of this sample was not so strong as 

in the previous one, and at many points interference fringes did not appear at 

all. As the analysis shows the results mentioned above have nothing to do with 

the rotation during the growth of the separator at the sample B232. It is 

probably related to the structure of the rest of the sample. 

It must be highlighted that at the points of B232 where an interference 

phenomenon appeared, the rocking curves were similar to the rocking curves 

from the B231 sample. From these points, the greatest difference at the 

modulation of the peak was between the rocking curve B232x01 and the 

rocking curve B232xl5 (Fig. 4.9). The distance between these two points is 

10V2mm. 

By simulating many rocking curves from various points from the sample 

B232 it came up that again the separator layer InGaAs was very uniform. The 
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range of variation of the thickness of this layer that appeared during the 

simulation was less than a half monolayer. That was to be expected because of 

the rotation of the sample during the growth of this layer. 

Despite the uniformity of this layer the thickness of all the other layers 

changed from point to point. The thickness of the two layers of GaAs, that 

were highly uniform at the B231 sample, 4ML (monolayer), varied from 0 to 

3 M L in this sample. The lack of interference fringes at one third of the points 

on the sample can be caused by having layers that are not well defined, and 

therefore, there are no sharp interfaces between the layers. All those can be 

explained by the variation of the thickness of the GaAs layers.(Figure 4.9iii, 

Table 4.3) 

Compared to the B231 sample not even the thickness of the AlGaAs 

layers is constant (0.94-0.97|4.m). However the contents of the compounds, 

AlGaAs and InGaAs, are nightly uniform (0.315±0.005 and 0.2175±0.001 

respectively). 

The differences of the structure at the two points of the figure 4.9ii are 

shown at next table: 

Table 4.2 
P O I N T B232x01 P O I N T 6232x15 

layers thickness (nm) X thickness (nm) x 
A l x G a i _ x A s 960 0.3155 940 0.315 

GaAs 1.7 - 1.1 -
I n x G a i _ x A s 1.85 0.2175 2.0 0.2175 

curvature 264 m 233 m 

Table 4.3 
P O I N T B232x06 

layers thickness (nm) X 
A l x G a i _ x A s 970 0.315 

GaAs 0.6 -
I n x G a i _ x As 1.3-2.0 0.22 

curvature 150m 
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The fit between the experimental curves and the theoretical curves at 

points B232x01, B232xl5 is shown in figure 4.10 

The map of the FWHM of the GaAs peaks (figure 4.11) makes it clear 

that the substrate quality was rather poor. It is also very interesting that the area 

of the sample where the FWHM of the GaAs is more than ISarcsec almost 

coincides with the area in which interferometer fringes did not appear. The best 

fit structure to these points remains similar to that of the other points. (Tables 

4.2,4.3)In figure 4.12 we can see the FWHM of AlGaAs map. It has the same 

trends as the GaAs FWHM map but is obviously more uniform. 

Also a map of the position of the peak of AlGaAs has been drawn. The 

curvature, as it is seen from the map, is definitely bigger than the curvature at 

the sample B231. The sample strains in the horizontal direction and remains 

straight in the vertical direction.(Figure 4.13). However, the diffraction 

geometry is not sensitive to curvature out of the incidence plane, and thus only 

twists will appear in the plot. 
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Topography 

While diffractometer measurements indicated a great uniformity in the 

separator layer, there was hope that an examination on a bigger area might 

result in a significant change of the reflectivity. X-ray topography was 

therefore undertaken at the Synchrotron Radiation Station 7.6 at Daresbury 

Laboratory of S E R C . 

We obtained a 333 reflection using a S i ( l l l ) crystal as a 

monochromator. The wavelength, used at this occasion was the same used in 

the diffractions at the laboratory ( X = 1.541 A). By using Polaroid, we aligned 

the sample so that the beam struck the sample. That was the point where the 

only unfortunate event took place during the whole course of the experiments. 

The computer did not plot points on the screen, so we took the rocking curve 

by hand. The peak separation between AlGaAs and GaAs was approximately 

lOOarcsec. (At the 004 diffraction in Durham diffractometer it was about 

131arcsec.) The slits of the beam were tuned so that the effective cross-section 

of the resulting beam was finally a rectangle of 40mmxl5mm. 

For recording the topographs I L F O R D L4 plates were used. The 

exposure time was 10 min and the range of the beam was from 137mA at the 

first topograph to 123mA at the last one. 

The first plate, labelled B231-3 was taken on the AlGaAs peak. Then, 

in order to have an AlGaAs peak from another part of the sample, we rocked 

the sample by 45arcsec. This plate was labelled B231-4. In order to take 

topographs of the GaAs peaks we rocked again the sample in the opposite 

direction as described in figure 4.14 and recorded the plates B231-6 and 

B231-7. 
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Figure 4.14 

[ B231-5 ]< 4 S a r e K £ [ B 2 3 1 - 4 ]c 4 S a r e s e c [ B231 -3 ] 4 S a r c t e c >[ B231-6 ] >[ B 2 3 1 - 7 ] 

On the area of those plates a two dimensional map has been recorded. This 

map represents the spatial distribution of the intensity of the diffracted beam. 

By using a microdensitometer, a rocking curve as from Double Crystal 

Diffractometry can be taken from the plates. In this experiment the J O Y C E -

L O E B L 3CS M I C R O D E N S I T O M E T E R was used. Microdensitometry can 

provide graphical views and measurements of the optical density on 

photographic films, plates and other transparencies. The principle of the 

operation is based on a true double-beam light system. These two beams, both 

produced from a single light source, are switched alternately to a single 

photomultiplier. When the two beams possess different intensity there is a 

signal produced by the photomultiplier which, having been amplified, will 

cause a servo motor to move an optical attenuator, so that the intensity 

difference will be dropped to zero. As the one beam is scarining the examined 

plate a continuously null balancing system is obtained. Using the position of 

the optical attenuator we can record the density at any particular part of a 

specimen. 

The graphs taken from the microdensitometer were very difficult to 

simulate. Nevertheless, the theoretical peak from a 333 reflection which was 

taken by using the RADS programme is very similar to the peaks of the 

microdensitometer graphs. (Figure 4.15) 

Our purpose was again to examine GaAs and AlGaAs peaks which 

have been taken from almost the same area on the sample. Therefore, we 

examine the plates in pairs. The plate B231-3 contains the reflection of the 
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AlGaAs peak. This plate was examined with the B231-7 plate which contains 

the reflection of the GaAs peak from almost the same area. In the same way, 

the plates B231-4 and B231-6 contain the peaks of AlGaAs and GaAs from the 

same area, respectively. 

Measurements were done at every 2.5mm on both of the plates of each 

pair. Great attention has been given to having measurements on the same area 

of the sample for both of the plates. 

In order to avoid the random errors and have a better view of the results, 

the measurements were recorded using two different sizes of beam (0.2,0.3mm) 

Unfortunately, the changing of the scanning point of the plate was done 

manually, and therefore we cannot be sure whether the point, examined with 

the 0.3mm beam is exactly the same as the one examined with the 0.2mm 

beam. 

The reproducibility of the instrument was fairly good, although there 

was a slight progressive change in the parameters of the instrument. Thus a 

continuous checking of the buttons was necessary. 

Results f rom the measurements are presented in Tables 4.4, 4.5, 4.6, 

4.7. In the first column, the points where the measurements were taken are 

indicated with capital letters. The second column, contains the height of the 

peak from the GaAsv The third and the f i f t h show the height of the two peaks 

of AlGaAs indicated "big" and "small", respectively. It is obvious that those 

numbers represent the relative height of the peaks according to the calibration 

of the instrument and they do not have an absolute physical meaning. The 

physical meaning of the measurements can be found in the rest of the columns. 

In the fourth and the sixth columns are the ratios of the height between the 

"big" AlGaAs and the GaAs and the "small" AlGaAs and the GaAs, 

respectively. The last columns represents the ratio between the height of the 

"small" and the "big" peaks. 
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Table : 4.4 
Sample : B231 
Plates : B231-3 .B231-7 

Mncr©deimsitoinnieter beam §nze i ©.3 niminni 
IB231=7 

GaAs 

IB231-3 0.3mm 
AlGaAs 

Points 

IB231=7 

GaAs Big Big/GaAs Small Smail/GaA 
s 

Small/Big 

A 83 82 0.988 50 0.602 61 

B 95 88 0.926 56 0.589 63.6 

C 96 102 1.062 59 0.615 57.8 
D 104 104 1 65 0.625 62.5 
E 115.5 100 0.866 73 0.632 73 
F 112.5 - - - -
G 117 100 0.855 64 0.547 64 
H 108 85 0.787 63 0.583 74 
I 104 91 0.875 64 0.615 70.6 
J 111 97 0.874 68.5 0.617 70 

K 92 95 1.033 54 0.587 56.8 
L 
M 

109 85 0.780 59 0.541 69.4 L 
M 81 82 1.012 32 0.395 39 
N 89 70 

67 
0.787 39 0.438 55.7 

O 70 
70 
67 0.957 37 0.529 55.2 

P 82 82 —-1 - - . - • - - , -



Table : 4.5 
Sample : B231 
Plates : B231-3 ,B231-7 

Mkrodem§n1toiinieter toeamni size s (Oo2 mnra 
B 2 3 1 - 7 

GaAs 

B 2 3 1 - 3 0.2mm 

AlGaAs 
Points 

B 2 3 1 - 7 

GaAs Big Big/GaAs Small Smtall/GaA 
s 

Small/Big 

A 80 82 1.025 52 0.65 63.4 

B 86 88 1.023 60 0.698 68.2 

C 96 101 1.052 64 0.666 63.4 
D 93 106.5 1.145 71 0.763 66.6 
E 110 101 0.958 76.5 0.695 74.7 
F 105 - - - - -

G 104 100 0.961 70 0.673 70 

H 102 90 0.882 69 0.676 76.6 

I 105 93 0.886 71 0.676 76.3 
J 105 100 0.952 73 0.695 73 
K 88 99 1.125 62 0.705 62.6 
L 99 88 0.888 67 0.676 76.1 

M 74.5 81 1.087 42 0.564 48.3 
N 
0 

71 - - - - -N 
0 70 74 1.057 46 0.657 62.2 
P 77 82 1.065 -



Table : 4.6 
Sample :B231 
Plates :B231-6,B231-4 

Mkrodemsatoinnieteir besom mm i O mmni 
B231-4 ©3mm 

AlGaAs 
Points 

• 

GaAs Big Eig/GaAs Small Small 1/GaA 
s 

Small/Big 

1 A 
116 123 1.06 115 0.991 93.5 

B 123 120 0.976 111 0.902 92.5 

C 112 124 1.107 85 0.759 68.5 

D - - - - - -

E 89 107 1.202 64 0.719 60 
F 97.5 108 1.108 70 0.718 64.8 

G 87 116 1.333 72 0.828 62.1 
H 78 112 1.436 66 0.846 58.9 
I 70,5 114 1.617 65 0.922 57 
J 81 103 1.272 52 0.642 50.5 
K 112 115 1.027 66 0.589 57.4 
L 99 117 1.182 75 0.757 64.1 

— M ~ - - 115 125 - 1:087 88 0.765 70.4 

N 103 - - - - -



Table : 4.7 
Sample :B231 
Plates :B231-6,B231-4 

Mteirodemsiltoiimeteir beam-size i ©,2 mm 

1231=6 

GaAs 

1231=4 0.2mnm 
AlGaAs 

Points 

1231=6 

GaAs Big Big/GaAs Small Sinall/GaA 
s 

Small/Big 

A 126 132 1.048 127 1.008 96.2 
B 128 126 0.984 120 0.937 95.2 
C 121 133 1.099 98 0.810 73.7 
D - - - - - -
E 97 114 1.175 73 0.753 64 

65 F 106 117 1.104 76 0,717 
64 
65 

G 98 123.5 1.260 83 0.847 67.2 
H 89 117 1.315 70 0.787 60 
I 86 122 1.419 70 0.814 57.4 
J 89 110 1.236 58 0.652 52.7 
K 123 126 1.024 76 0.618 60.3 
L 110 126 1.145 85 0.773 67.5 
M 122 134 1.098 106 0.869 79.1 
N 113 - - - - • 



From the Tables 4.4, 4.5 we drew the following graphs, which clearly 

represent all the results of the whole experiment. Figure 4.16 shows the relative 

height of the GaAs peak at the corresponding spatial points (Plate B231-7). 

Figure 4.17 represents the equivalent height from the "Big" and "Small" 

components of the AlGaAs peak from the plate B231-3. For all the graphs 

there are two curves. One for the 0.2mm size of the microdensitometer beam 

and another one for the 0.3mm. The ratios between the height of the AlGaAs 

branches peak and the height of the GaAs (fourth and sixth columns, Tables 

4.4, 4.5) are presented in figure 4.18. Finally the ratio between the "Big" and 

the "Small" components (last column Tables 4.4, 4.5) are also represented in 

figure 4.19. 

It obvious that the shape of the GaAs curve is almost the same as that of 

the AlGaAs curves. This shows that the small variations in the curves have 

nothing to do with the change of the thickness of the separator layer (InGaAs) 

but are related to other defects in the structure of the sample. Also from figure 

4.19 it is obvious that the reflectivity between the two parts of the AlGaAs is 

very stable. 

For the pair of plates B231-4 and B231-6 (Tables 4.6, 4.7) we drew the 

graphs of the figure 4.20 and 4.21. The first one represents the relative height 

of the GaAs peak (Plate B231-6) and the second one the height of the two-parts 

of the AlGaAs peak (Plate B 231-4) The topographs of these plates were taken 

from the edge of the sample. It was not surprising that in this area of the sample 

there were more defects. Also the figure 4.20 (GaAs height) shows that the 

quality of the sample in this area must not be satisfactory. Furthermore from 

the shape of the line on the B231-6.B231-4 plates we can understand that the 

measurements taken from below the " L " point cannot be trusted. The curve for 

the ratio between the height of the AlGaAs branches and the GaAs peak 

(fourth and sixth column Tables 4.6, 4.7) has many variations (Figure 4.22) 
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The most valuable results can been taken from the last figure ; the ratio 

between the height of the two parts of the AlGaAs peak, figure 4.23. This line 

is not as stable as the one in the figure 4.19. The difference of the ratios 

between the points "A" and "B" and the rest is the only trace we have that 

reveals a change of the reflectivity between the two branches of the AlGaAs 

peak. 
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Plate B231-3 AlGaAs peak 
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Figure 4.19 
Seriesl: 0.3 mm beam diameter 
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Plate 231-6 GaAs peak 
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Figure 4.20 
Series 1: 0.3 mm beam diameter 
Series2: 0.2 mm beam diameter 
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Chapter 5 

Conclusions and suggestions for further work 

Through the theoretical and the experimental work described in the 

previous pages we were able to see some of the major applications of X-ray 

diffraction and topography methods for the characterisation of 

semiconductors. It was shown that recently there have been developed 

techniques which can provide extremely high resolution measurements. 

The reliability of the diffractometer was verified and the results were 

more than satisfactory. In the analysis of the measurements, simulation 

programs based on the Dynamical Theory are the most accurate. In this 

project, by using the RADS program, the f i t between the experimental and the 

simulation rocking curves was excellent. 

From the literature research as well as from the experimental results it 

was found that for the characterisation of an ABA structure device, X-ray 

diffraction methods are very powerful tools. 

The experiments in this thesis were based on a theoretical prediction of 

dynamical theory. According to this prediction, High Resolution X-ray 

Diffraction is capable of thickness measurements of monolayer precision. 

From the discussion during the presentation of the experimental results in 

chapter 4 we can highlight the following conclusions. 



Firstly, the peak splitting at the AlGaAs peak is clear and the structure 

of the sample agrees with the structure of the theoretical model. By scanning 

point to point, we detect a rather little variation in the thickness and 

composition of the layers. In a way, it is unfortunate that the MBE Research 

Group of University of Glasgow did an "excellent job". The thickness of the 

separator was extremely uniform and thus no significant changes of the 

diffraction pattern appeared. However on the other hand, this shows that the 

separator layer thickness varied by less than half a monolayer atomic spacing 

across the wafer. The accuracy of the dynamical theory predictions on such a 

scale of structure makes, of course, the above estimation a time consuming 

procedure and gives the results a significant uncertainty. In any case it is a 

remarkable achievement. 

In more detail, at the sample B231 we detected that the thickness of the 

layers of A l x G a i _ x A s varied from 0.95 to 0.96 \im with a precision of 0.005 

|i.m and the composition was very constant: 31.5±0.5% A l . The separator 

layer I n x Gai_ x As contained 21.75+0.1% In and its thickness varied less than 

a monolayer. At the points with the greatest difference (B231x58 and B231x 

78) the thickness of the separator differed about 4A at the worst of the cases 

(Table 4.1). The thickness of the GaAs layers was constant 22.65A=4ML 

within 0.1 A. Finally, the quality of the substrate did not vary substantially and 

the sample curvature was found to be very low. 

The sample B232 appeared without interference fringes at the rocking 

curves in one third of its points. At the points of B232, where an interference 

phenomenon appeared, the rocking curves were similar to the rocking curves 

from the B231 sample. The separator layer InGaAs was again very uniform. 

The range of the thickness variation of this layer was less than half a 

monolayer (1.85-2nm)(Table 4.2) and the composition was again 21.75+0.1% 

In. The layer of A l x G a j _ x A s varied from 0.94-0.97|im with a precision of 

0.005|im. The thickness of the two layers of GaAs, that were highly uniform 
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at the B231 sample, varied from 0 to 3 M L in B232. The lack of interference 

fringes in one third of the points on the sample, could have been caused by 

having layers that were not well defined, and therefore, there were no sharp 

interfaces between the layers. A l l those effects can be explained by the 

variation of the thickness of the GaAs layers. The substrate quality was rather 

poor and that is also related with the lack of fringes. Finally, the curvature 

was bigger than the curvature at the sample B231. 

Topographs from the B231 sample did not show any serious variation 

of the thickness of the "separator" layer across the sample, confirming the 

rocking curve data. The topographic plates were examined by using a 

microdensitometer and in recording measurements two different sizes of beam 

(0.2mm, 0.3mm) were used. The results in both cases have consistent trends. 

Two different sets of plates were examined from different areas of the sample. 

First set: Plates B231-3, B231-7. (Tables 4.4, 4.5, Figures 4.16, 4.17, 4.18, 

4.19) Figure 4.16 shows the relative height of the GaAs peak at the 

corresponding spatial points. There are only small changes in the absolute 

peak height which mean good substrate quality and agreement with the 

rocking curve data. Figure 4.17 represents the equivalent height from the 

"Big" and "Small" components of the AlGaAs peak. The variations are similar 

between the two components and similar to the substrate. This indicates that 

there is no variation at the thickness of the separator but they are related to 

other defects in the structure of the sample. The above is confirmed in figure 

4.18 where the ratios between the height of the AlGaAs branches peak and the 

height of the GaAs are presented. Also in figure 4.19 (the ratio between the 

"Big" and the "Small" components) is obvious that the reflectivity between the 

two parts of AlGaAs is stable. At point M the sample has a defect and so the 

change beyond that point is dubious. 

Second set: Plates B231-4, B231-6. (Tables 4.6, 4.7, Figures 4.20, 4.21, 4.22, 

4.23) The topographs of these plates were taken from the edge of the sample, 
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so measurements taken from below the "L" point cannot be trusted. It was not 

surprising that in this area of the sample there were more defects. Figure 4.20 

(GaAs height) shows that the quality of the sample in this area is not 

satisfactory. Figure 4.21 presents the relative height of the two parts of the 

AlGaAs peak. The variation is again similar to the substrate. Finally, figure 

4.23 (ratio between the height of the two parts of the AlGaAs peak) does 

show tentative evidence of a thickness change between the points A, B and 

the others. I f this is confirmed, i t is the first time that atomic-layer sensitivity 

X-ray topography has been reported. 

For developing the technique, MOVPE grown samples could be further 

examined. This technique of growth gives larger variations across the sample. 

Also samples grown under non-rotation condition, non uniform flux, or offset 

sources should be further attempted. (Leeds M B E group have successfully 

grown wedges of CuCo multilayer by MBE. It should be possible) 

Following the way of this thesis simulation programs must be used to 

look for other possible structures of Bragg case interferometers on which to 

experiment. 

Finally Moire topography still seems possible. This experiments have 

not shown i t to be impossible, neither has it proved it is successful. 
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