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Abstract

Motivated by the holographic principle, within the context of the AdS/CFT Cor-

respondence in the large t’Hooft limit, we investigate how the geometry of certain

highly symmetric bulk spacetimes can be recovered given information of physical

quantities in the dual boundary CFT. In particular, we use the existence of bulk-cone

singularities (relating the location of operator insertion points of singular boundary

correlation functions to the endpoints of boundary-to boundary null geodesics in the

bulk spacetime) and the holographic entanglement entropy proposal (relating the

entanglement entropy of certain subsystems on the boundary to the area of static

minimal surfaces) to recover the bulk metric.

Using null and zero-energy spacelike boundary-to-boundary geodesic probes, we

show that for classes of static, spherically symmetric, asymptotically AdS space-

times, one can find analytic expressions for extracting the metric functions given

boundary data. We find that if the spacetime admits null circular orbits, the bulk

geometry can only be recovered from the boundary, down to the radius of null circu-

lar orbits. We illustrate this for various analytic and numerical boundary functions

of endpoint separation of null and spacelike geodesics. We then extend our analysis

to higher dimensional minimal surface probes within a class of static, planar sym-

metric, asymptotically AdS spacetimes. We again find analytic and perturbative

expressions for the metric function in terms of the entanglement entropy of straight

belt and circular disk subsystems of the boundary theory respectively. Finally, we

discuss how such extractions can be generalised.
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Chapter 1

Introduction

This chapter is a review of background material written in the author’s own words.

1.1 The Search for Quantum Gravity

In the field of theoretical physics, we search for fundamental physical theories which

provide us with a conceptual structure that we develop and use in order to organise

and understand the world, and make predictions about it. Theories of this type

have been applied throughout history to help us develop the physics and technology

that we now take for granted. In the modern era, there have been two crucial

theories which have extensively exhibited such properties: General Relativity (GR)

and Quantum Field Theory (QFT)1.

In 1905 [5], Albert Einstein proposed his theory of Special Relativity (SR), to

explain the constancy of the speed of light required by Maxwell’s field equations

and remove the unwanted ether. This introduced an apparent contradiction with

Newton’s theory of gravitation [6]. Newton described gravity as an instantaneous

“action-at-a-distance” force. This conflicted with the fundamental tenet of SR,

where an upper bound exists on how quickly information can travel, namely the

speed of light c. Einstein resolved this contradiction by proposing his Theory of

General Relativity [7]. He showed that gravity, is in fact, just geometry. More

1General Relativity is covered extensively in [3], whereas [4] gives a good introduction to all
aspects of Quantum Field Theory.

1



1.1. The Search for Quantum Gravity 2

specifically, spacetime is a dynamical object which is warped by a gravitational

field. This is a radical departure from the Newtonian notion of absolute time. The

fact that spacetime is warped by gravitational fields is encapsulated by Einstein’s

field equations

Gµν = 8πGNTµν . (1.1)

Gµν is called the Einstein tensor, and since it contains second order terms in the

derivative of the metric gµν , provides information of the curvature of the space-

time. Tµν is called the stress-energy tensor and provides information about the

matter/energy distribution. GN is Newton’s constant.

GR has proved to stand up to all experimental observations thus far, from cosmo-

logical distances to millimetre scales. It has also made predictions (the classical tests

of GR) which were later observed, including Eddington’s observation of the bend-

ing of light around the Sun, the anomalous precession of the perihelion of Mercury

and the gravitational red shift of light. Applications of GR have lead to relativistic

astrophysics, cosmology and GPS technology. The wealth of experimental data and

verifiable predictions allows us to call GR a fundamental theory of nature.

In the 1920’s, quantum theory was developed in an attempt to understand the

strange phenomena occurring at the atomic scale. Through multiple experiments

around the turn of the 20th century, it was found that phenomena at small scales

from a fraction of a millimetre down to 10−19 metres are probabilistic in nature.

Heisenberg relation

∆x∆p ≥ ~
2
, (1.2)

where 2π~ = h = 6.62 × 10−34 m2kgs−1 is Planck’s constant, is a realisation of

the fact that the position (x) and momentum (p) of a particle cannot be measured

simultaneously and are thus manifestly uncertain. In quantum mechanics, matter

content of a system is encapsulated by a wave function, Ψ, whose dynamics is

described by Schrödinger’s equation,

i~
∂

∂t
Ψ = ĤΨ, (1.3)

where Ĥ = − ~2

2m
∇2
~x + V (~x) is the Hamiltonian operator.
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Due to work by Dirac and others in the late 1920’s and 1930’s, quantum me-

chanics was made Lorentz invariant and thus combined with SR to form quantum

field theory (QFT). QFT was applied to describe the electromagnetic force (QED),

and then the weak and strong nuclear forces (QCD). This has helped explain many

observations at the small scale. The best example comes from QED which has been

verified by agreement in precision tests of the fine structure constant to within ten

parts in a billion. Applications of QFT have led to atomic physics, nuclear physics,

particle physics, condensed matter physics, semiconductors, lasers, computers and

quantum optics. The wealth of experimental data and verifiable predictions allows

us to call QFT a fundamental theory of nature.

No known fundamental interactions fall outside the frameworks of GR and QFT.

None the less, these two pillars of modern physics contradict each other. QFT is

formulated using a fixed non-dynamical background, whereas GR is formulated on

a dynamical spacetime. QFT requires that dynamical fields be quantised, whereas

GR requires the fields to be deterministic and sit on a smooth Riemannian manifold.

With all their immense empirical successes, QFT and GR have left us with an under-

standing of the physical world which is unclear and badly fragmented. With this in

mind, many prominent theoretical physicists including Dirac, Feynman, Weinberg,

DeWitt, Wheeler, Penrose, Hawking, t’Hooft and notable others sought a resolution

to this conflict in the form of a theory of quantum gravity (QG). But, despite some

80 years of active research, no one has yet formulated a consistent and complete

QG. In fact, it took until 1986 [8] to show that GR cannot be quantised using con-

ventional quantum field theoretical techniques. This begs the question, why search

for such a theory?

The philosophical answer is the unification of physics. Throughout history, there

have been many examples of contradictions between known theories, leading to the

discovery of a more general theory which provided a new conceptual picture of

the world. For example, the contradiction between Maxwell’s theory of light and

Newtonian mechanics lead to the discovery of special relativity. The contradiction

between quantum mechanics and special relativity lead to quantum field theory.

The contradiction between Newtonian gravity and special relativity lead to general
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relativity. The hope is that a theory of quantum gravity will lead to a deeper

understanding of the universe as we know it and its applications will lead to new

physics and technology. QG also may provide the answers to conceptual questions

persisting in existing theories. GR predicts singularities, but an initial singularity in

cosmological models causes problems. The hope is that QG might determine those

initial conditions.

QG is also motivated from inconsistencies in QFT. It has been suggested that the

divergences which appear in perturbation theory at the ultraviolet (UV) scale arise

from our ignorance of a more fundamental theory, which might provide an automatic

cut-off at the Planck scale (the scale at which QG effects become important) [9].

As a final motivation, we would like to develop QG to understand the physics of

massive but small phenomena, where both gravitational and quantum effect become

important. This is most notable in the study of black holes, for which there are many

unresolved issues.

Motivating QG is one thing, it is quite another to formulate it consistently2.

The two main approaches which have borne most fruit in recent times have been

quantum geometry and string theory. Quantum geometry or loop quantum gravity

(LQG) is regarded as a non-perturbative candidate for QG via the quantisation of

GR in the canonical formalism. Whereas string theory, which will be described in a

lot more detail in the §1.2, is a more ambitious project in that it attempts not only

to recover QG, but to describe all the fundamental interactions of nature. In this

sense, string theory can be considered as a “theory of everything”. It achieves this by

quantisation of the perturbative string, and so provides a perturbative formulation

of QG3. Although there are no experimental constraints on QG outside the regimes

of validity of GR and QFT, both LQG [12] and string theory [13] have recovered

one of the major theoretical constraints on QG, which is the Bekenstein-Hawking

2For a more complete picture of the current status of QG, refer to [10,11]
3However, as will be noted in §1.2 and §1.3, recent progress has lead to a non-perturbative

description of string theory, which will prove fundamental to the work presented in this thesis.
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entropy SBH of a black hole with horizon area A [14–16]

SBH =
A

4G~
. (1.4)

Despite the progress towards QG, both approaches come with disadvantages. LQG

still has not found a consistent way of imposing the Hamiltonian constraint to control

the dynamics of the theory, whereas imposing consistency in string theory requires

us to live in a fanciful world of extra dimensions with multiple unobserved particles.

Some have suggested this a symptom of a more fundamental problem, which is our

lack of understanding of what exactly the quantisation of spacetime really means.

Both theories may still prove successful, or maybe even an amalgamation of the

two [17], but these problems have lead many to consider other, more extreme alter-

natives. These include causal set theory [18], twistor theory [19], the null surface

formalism [20] and non-commutative geometry [21]

1.2 String Theory

As we have already noted, string theory (or superstring theory) is one of the main

candidates for a consistent and complete theory of quantum gravity. In this section

we explore the history of its creation and development, its basic features, and its

relevant applications.

String theory describes relativistic one dimensional objects which can either be

open (where the string has end points) or closed (where the string forms a loop).

These strings sweep out a worldsheet in a target spacetime similar to particles

sweeping out world-lines. Since string theory is a relativistic quantum field theory

including gravity, it must contain the three respective fundamental constants c, ~

and G. Thus strings have a characteristic length scale ls, which can be estimated

by the Planck length

lP =

(
~G
c3

)3/2

= 1.6× 10−33cm. (1.5)

Since the Planck scale is way beyond what any present particle detector can probe,
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strings would look like point particles to current accelerators, and is thus consistent

with current observations.

String theory was formulated in the 1960’s by Veneziano [22] as an attempt to

describe the strong interactions between large numbers of mesons and hadrons. Ex-

citement in this approach grew as the S-matrix scattering amplitudes matched those

found in meson scattering experiments. However, by 1973, it was shown that the

correct quantum field theory for strong interactions was quantum chromodynamics

(QCD), and so interest waned. In the following years, it was shown that the strong

force, along with the electromagnetic and weak forces (which had already been uni-

fied into Glashow, Salam and Weinberg’s electroweak theory by 1967 [23]) could be

combined to form what is known as the “Standard Model” of elementary particles.

The standard model is a gauge theory (a theory which is invariant under gauge

transformations) with gauge group SU(3)×SU(2)×U(1). The gauge fields combine

to represent the force carrying bosons of the model. These include the photon for

electromagnetic force, the W and Z bosons for the weak nuclear force, and the

gluon for the strong nuclear force. SU(3) is the gauge group of QCD with three

colours of quarks, and SU(2)× U(1) is the gauge group of electroweak theory. The

standard model, combined with GR, describes all the fundamental interactions of

particle physics, and is consistent with virtually all physics down to scales probed

by particle accelerators (approximately 10−16cm)4.

Unfortunately, this theory is not complete. If one tries to combine gravity with

quantum theory, one ends up with a non-renormalisable quantum field theory, which

hints at new physics at very high energy scales. If one analyses quantum gravity

as a quantum field theory, where the graviton interaction has a coupling constant

proportional to Newton’s constant GN , one finds that the perturbation theory is

divergent, and breaks down at energy scales greater than the Planck mass MP =

G
1/2
N = 1.22 × 1019 GeV. This lead many theorists in the mid 1970’s to find a new

direction to combine gravity (or its conjectured spin-2, force carrying boson, the

4At the time of writing, there is a particle accelerator at CERN called the Large Hadron Collider
(LHC) which is probing to smaller scales. The hope is to find the one remaining undetected particle
in the standard model, the Higgs boson, which is required by the theory to give masses to the
fermions.
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graviton gµν) with the rest of particle theory. It was string theory that provided

the answer, where in 1974 it was found that a spin-2 particle which interacts like

a graviton was one of the massless states within the string spectrum [24, 25]. This

lead to the first formulation of what is now known as bosonic string theory. This

discovery was subsequently followed by the fact that fermions could be combined

to such a theory via the requirement that the theory be supersymmetric. This led

to the first example of a supersymmetric string theory, or “superstring” theory for

short. Since string theory naturally includes GR, it was therefore proposed as a

unified theory of all the fundamental forces of nature.

For all the successes of superstring theory, there were still mathematical incon-

sistencies, including many divergent quantities. It was only until 1985 that these

problems were resolved, using what is known as Green-Schwarz anomaly cancella-

tion [26]. The main consequence of this was the limitation of the number of consis-

tent superstring theories to five, and the restriction that all these theories must live

in ten spacetime dimensions (9 space and 1 time). This is what is now known as the

“first superstring revolution”. The five consistent superstring theories are known

as Type I (a theory of unoriented strings), Type IIA and IIB (theories of oriented

strings, with the difference being that IIB is chiral where as IIA is not) and the

heterotic string theories SO(32) and E8 × E8. If superstring theory was to be pro-

posed as a fully fledged “theory of everything”, the apparent contradiction between

strings living in a 10-dimensional spacetime, and our 4-dimensional observed reality,

was resolved through the notion of “compactification”. By compactifying six of the

nine spatial directions on a small enough space so that it could not be resolved with

current microscopes, one could make 9+1 dimensional space look 3+1 dimensional.

This was achieved consistently via the use of “Calabi-Yau” manifolds [27].

Up until 1995, this was the status of string theory. The classical theory was

well understood with the classical equations of motion resembling GR. Quantum

string perturbation theory was also well understood. However, a non-perturbative

description of string theory was needed to explain quantum gravitational effects

at strong coupling. This requirement lead to the “second superstring revolution”,

where in 1995, Witten suggested a candidate for a non-perturbative description of
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11 d Supergravity

Type IIB Type I

SO(32) 
Heterotic

M -Theory

Type IIA

E8 ´E8 Heterotic

Figure 1.1: This is a schematic diagram expressing the fact that M-theory is related
to all five superstring theories and 11D supergravity

string theory. The proposal was that the five existing superstring theories were just

certain limits of an eleven dimensional theory, known as “M-Theory” [28]. This

was motivated by the existence of dualities between the ten dimensional superstring

theories and eleven dimensional supergravity, which is the low energy limit of M-

theory. Eleven dimensions is the maximum number of spacetime dimensions to

which one can formulate a consistent supersymmetric theory of gravity [29]. The

central idea of string duality is that the strong coupling limit of one string theory is

equivalent to another theory in the weak coupling limit. Via a process known as “T-

duality”, which inverts the size of a compactified direction of spacetime along which

the string propagates, and “S-duality”, which inverts the string coupling constant, all

five 10-dimensional superstring theories can be related to one another. M-theory is

then realised as the strong coupling limit of Type IIA or E8×E8 heterotic superstring

theories (see figure 1.1). Since the string dualities relate weak and strong coupling,

fundamental perturbative string states in one theory are related to non-perturbative

solitonic objects in another. These non-perturbative objects exist in M-theory in the

form of “p-branes”, where p is the number of spatial extensions. A special class of

such branes, discovered by Polchinski [30], were found by T-dualising the Neumann

boundary conditions of strings to give Dirichlet boundary conditions. These are
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known as Dirichlet p-branes or “D-branes”. The stringy description of such objects

are given as a topological defect on which the ends of open strings are constrained

to move. It is this discovery of D-branes which has lead to the rapid growth in the

understanding of the non-perturbative aspects of string theory. It was the use of D-

branes in counting microstates of a black hole that lead to a microscopic explanation

of black hole entropy [13], and it was the non-relativistic dynamics of D-branes that

allowed the probing of distances smaller than the Planck length [31]. D-branes can

be directly applied in brane-world scenarios in which the universe is modelled as one

big D-brane [32]. Finally, D-branes have lead to the most important discovery in

theoretical physics in recent times, namely Maldecena’s AdS/CFT correspondence,

which we will describe in the next section.

1.3 The AdS/CFT Correspondence

It was mentioned in §1.2 that it was the study of D-branes which led to Maldacena’s

AdS/CFT conjecture [33–36]. This is because open string states which act as gauge

fields correspond to fluctuations of D-brane geometry (see §2.1.3 for more detail).

Thus one can describe D-branes using gauge theory. Equivalently, D-branes warp the

geometry of the spacetime. So they can also be described in terms of a gravitational

theory. It was this relationship or “duality” between gauge theory and gravity in

the context of D-branes which lead Maldacena to his conjecture.

Maldecena’s AdS/CFT correspondence states that

Conjecture 1.1 Type IIB superstring theory with AdS5 × S5 boundary conditions

is equivalent to N = 4, SU(N) Super-Yang-Mills theory (SYM) in 3 + 1 dimensions.

N = 4, SYM in four dimensions is a non-Abelian supersymmetric gauge theory

with conformal symmetry. Anti-de Sitter, or AdS space, is a maximally symmetric

solution of Einstein’s equations with negative cosmological constant. This implies

that the AdS/CFT correspondence is a duality between a four dimensional gauge

theory and a five dimensional gravitational theory. In some sense, it is useful to think

of the gauge theory as “living on the boundary” of the bulk AdS spacetime. Infrared
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effects in AdS space correspond to ultraviolet effects in the boundary theory, known

as the UV/IR connection. The fact that the physics in the bulk AdS space can be

described by a field theory of one less dimension is one example of the “holographic

principle”. In a quantum gravity theory, all physics within some volume can be

described in terms of some theory on the boundary which has one bit of information

per Planck area. This holographic bound is the physical interpretation of the UV/IR

connection [37].

The idea of a holographic interpretation of a quantum gravity theory in terms of

a boundary gauge theory lead Polchinski and Horowitz [38] and others to propose a

“gauge/gravity duality”. This asserts that

Conjecture 1.2 Hidden within every non-Abelian gauge theory, even within the

weak and strong nuclear interactions, is a theory of quantum gravity.

Such a duality can be motivated without the notion of string theory, although one

finds string theory is hidden within this description.

The fact that gauge theories and string theories are related is not unusual. It

had already been noted by t’Hooft [39] in 1973 that the large N limit (where N

is the number of colours) of certain gauge theories at strong coupling correspond

to worldsheet string perturbation theory at weak coupling. It is this strong/weak

coupling duality in AdS/CFT that allows us to study the non-perturbative regime

of string theory by looking at weakly coupled gauge theories.

An immediate application of AdS/CFT was proposed by Witten [35], where

he found a one-to-one correspondence between operators in the field theory and

fields propagating in AdS space by equating the generating functional of correlation

functions in the CFT to the full partition function of string theory. This allows

computation of correlation functions in the gauge theory in terms of supergravity

Feynman diagrams. This is an explicit manifestation of the AdS/CFT correspon-

dence and provides us with a dictionary from which one can relate observables in

the bulk to observables on the boundary. In particular, since AdS/CFT relates weak

and strong coupling, bulk physics with high curvature is related to weakly coupled

field theories where one can perform perturbation theory. This has been applied in
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a process known as holographic renormalization where one can obtain renormalized

QFT correlation functions by performing computations on the gravity side of the

correspondence [40]. This has been used to compute such quantities as the expec-

tation value of the boundary CFT stress-energy-momentum tensor associated with

a gravitating system in asymptotically anti-de Sitter space [41].

By relating thermodynamic properties on both sides of the correspondence, it

was shown [42] that N = 4 SYM theory in a thermal state is dual to a large mass,

AdS-Schwarzschild black hole. This was developed by [43] to argue that an eter-

nal black hole in AdS spacetime can be holographically described by two identical

copies of the dual CFT associated with the spacetime and an initial entangled state.

This allowed a whole swathe of research on trying to understand the basic non-

perturbative aspects on both sides of the correspondence. Characteristic properties

of confinement and asymptotic freedom in QCD have been investigated using the

AdS/QCD correspondence [44–47], where one can perform calculations in a weakly

coupled string theory. More recently, superfluidity and superconductivity in, for

example, strongly coupled plasmas have been studied by applying AdS/CFT to

condensed matter systems, known as AdS/CMT [48–51]. On the gravity side, prop-

erties such as causal structure, event horizons and singularities could equally well

be understood using strongly coupled gauge theories. In particular, one might hope

to better understand the physics of black holes, including the description of physics

behind the horizon.

By identifying field theoretic observables, in particular boundary correlation

functions, work was done on identifying signals of the bulk curvature singular-

ity [52–57]. It was observed that signals of black hole singularities in the bulk

can be identified by considering nearly null spacelike probes. These provide a large

contribution to the boundary field theory correlation function, giving rise to “light-

cone” like singularities. These results, however, were limited to static geometries,

and one would prefer to investigate properties of CFT correlators which correspond

to manifestly time-dependent spacetimes, such as gravitational collapse scenarios.

Fortunately, it was shown by [58] that this can be achieved by examining the struc-

ture of singularities for generic Lorentzian correlators. It is already known that CFT
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correlators will exhibit light-cone singularities when the operator insertion points are

connected by strictly null geodesics. However, by considering boundary-to-boundary

null geodesics which penetrate the bulk, the CFT correlator exhibits additional sin-

gularities inside the boundary light cone, called“bulk-cone singularities” [58].

Through this relationship, one can probe the geometry of certain asymptotically

AdS spacetimes given information of boundary data, namely the locus bulk-cone

singularities. More specifically, one can attempt to reconstruct the metric of certain

classes of spacetimes given such boundary data. This was achieved numerically

in [59], for a general class of static, spherically symmetric, asymptotically AdS (d+2)-

dimensional spacetimes with metric

ds2 = −f(r) dt2 + h(r) dr2 + r2 dΩ2
d. (1.6)

In the simplified case where h(r) = 1
f(r)

, [59] was able to extract the metric func-

tion f(r) given information of the locus of endpoints of boundary-to-boundary null

geodesics encapsulated by the function’s worth of information ∆t(∆φ). ∆t and ∆φ

are the time and angular separation of null geodesic boundary endpoints respec-

tively. Complementing this work, we show [1] in chapter 3 that one can achieve the

extraction analytically via the observation that the expression for ∆t(∆φ) in terms

of f(r) reduces to a standard integral equation with known solution. By applying

this solution to various expressions for ∆t(∆φ), we were able to recover the same

limitation on the extraction as illustrated in [59], namely that spacetimes admitting

null circular orbits with radius rm can only be recovered in the region r ∈ (rm,∞).

Unique to this analytical approach, we also show in §3.4.1, that given ∆t(∆φ) as

a convergent series, one can always find a convergent series solution for the met-

ric function f(r). This is verified in the case of the AdS-Schwarzschild black hole

solution.

Pursuing the theme of extracting metric data given information of the dual CFT,

one can look for alternative bulk geodesic probes corresponding to some observable

in the dual CFT which go behind the region r ∈ (rm,∞). As identified in the

review [60], for fixed energy and angular momentum, boundary spacelike geodesics
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provide such a probe. Thus, by identifying boundary observables corresponding to

such a probe, one may attempt to learn more about the bulk geometry. This was

achieved in [61,62], which related the area of co-dimension 2 static5 minimal surfaces

anchored to the boundary, with the entanglement entropy of some subsystem in the

boundary CFT. In the specific case of a 2+1-dimensional bulk, the area of the static

minimal surface is the proper length of a zero-energy boundary spacelike geodesic.

It had been known for a while [64] that black hole entropy, which can be cal-

culated from the horizon area using (1.4), is related to a quantity known as en-

tanglement entropy (or geometric entropy) of a QFT. This is defined as the von

Neumann entropy of a reduced density matrix by tracing out the degrees of free-

dom of a certain subsystem. Thus it measures how closely entangled a quantum

system is. Since the eternal black hole in AdS is related to an entangled state in the

CFT [65], it is natural to assume a relationship between horizon area in the bulk,

and entanglement entropy on the boundary. It was this proposal by Ryu et.al. that

lead to the existence of such a holographic description6 exist in the form of minimal

surface areas. More specifically, it was shown that

Conjecture 1.3 The entanglement entropy SA of a static subsystem A in a (d +

1)−dimensional CFT can be determined from a d-dimensional static minimal sur-

face γA, in the dual (d + 2)-dimensional bulk, whose boundary is given by the

(d − 1)-dimensional manifold ∂γA = ∂A. The entropy is given by applying the

usual Bekinstein-Hawking area/entropy relation

SA =
Area(γA)

4G
(d+2)
N

. (1.7)

It is this proposal which was used in [67] to numerically recover the metric function

h(r) in a (2 + 1)-dimensional bulk described by the metric (1.6). The boundary

observable in this case is the entanglement entropy SA(l) in an infinitely long one

dimensional system where A is an interval of length l. This was combined with

bulk-cone singularities in null boundary probes to show the one can extract both

5In this thesis, we restrict our analysis to static spacetimes where ∂t is Killing. However one
can extend this relationship to time-dependent cases such that the area/entropy formula is fully
covariant [63]. Extensions to these cases are discussed in chapter 6.

6For a good review of all aspects of holographic entanglement entropy, see [66].
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metric functions in (1.6) in (2 + 1)-dimensions. Following the same reasoning, in

chapter 4 we show [1] that expressions for ∆t(∆φ) and SA(l) reduce to simple in-

tegral equations in terms of the metric functions f(r) and h(r). Thus providing an

analytical method for determining metric (1.6). We show that for spacetimes with

an event horizon, h(r) can be extracted in the region r ∈ (r+,∞), where r+ is the

horizon radius. Since for all physical spacetimes r+ ≤ rm, this method allows one

to reconstruct deeper regions of the bulk, thus agreeing with the analysis of [60].

A major limitation of the extraction methods laid out in chapter 4, is the restric-

tion to a (2 + 1)−dimensional bulk spacetime. As is pointed out in [60], for sensible

spacetimes the surfaces anchored to the boundary of higher dimensionality probe

deeper into the bulk. So, by not restricting ourselves to 1-dimensional probes, and

utilising the full form of (1.7), one would hope to recover a larger region of the bulk.

This is the main motivation behind chapter 5, where we consider the static, planar

symmetric asymptotically AdS metric

ds2 = R2

(
−h(z)2 dt2 + f(z)2 dz2 +

∑d
i=1 dx

2
i

z2

)
, (1.8)

and ask whether one can recover the real metric function7 f(z) given the entangle-

ment entropy of certain multi-dimensional subsystems of the boundary CFT using

(1.7). This is discussed in the context of two particular simple subsystems defined

in [66], namely the infinite strip AS and the circular disk AD. We will show [2] that

in the case of the infinite strip, one can again reduce the problem to a known integral

equation, thus solving for f(z) in terms of the entanglement entropy SAS(l). We find

the solution consistent with the known pure AdS result and find a series solution for

f(z) in perturbed AdS spacetimes. We then turn our attention to the circular disk

AD. We find [2] that the reduction in symmetry of the minimal surface equations

means that we must resort to a perturbative analysis. We outline a method for

determining the area of minimal surfaces anchored to ∂AD by perturbing around

the pure AdS solution of a hemisphere and recover analytical expressions at first

7Since we are considering only static surfaces, expressions for the area do not depend on h(r),
and so cannot be determined using the method outlined.
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order. By doing so, we illustrate in the simple case of the planar black hole, the

positive correlation between surface dimension and the depth probed in the bulk.

In the next chapter we make the relationships and concepts outlined here more

quantitative by building up the string/field theoretical framework required to de-

scribe them.



Chapter 2

Background

This chapter is a review of background material taken from other authors’ published

work.

In this chapter, we introduce the basic framework required to describe the re-

lationships and concepts in this Thesis. The aim of this chapter is to build up

towards two main results, namely the holographic interpretation of entanglement

entropy [61,62,66], and bulk-cone singularities in CFT correlators [58]. Both results

stem from the properties of a gauge/gravity duality known as the AdS/CFT corre-

spondence introduced in §1.3. Therefore, to fully understand these two results, one

must begin by motivating and explaining AdS/CFT. This will be achieved in this

chapter by looking at both sides of the correspondence: String theory and super-

gravity on the one side; gauge theory and D-branes on the other. Once AdS/CFT

has been fully motivated, the correspondence will be stated and its basic properties

explained, most notably the operator/field correspondence and the correspondence

at finite temperature. Once this is done, the two main relationships will have been

given more context and will be explained in more detail.

2.1 String Theory

As has already been outlined in the introduction, string theory [68–70] serves as

the underlying framework for all the results used in this thesis. It is therefore

16
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prudent and illustrative to provide an outline of the main features and results that

string theory has provided. We will begin by describing the bosonic string and the

superstring, followed by certain objects which must exist within string theory, most

notably D-branes1.

The string is a relativistic one-dimensional object which sweeps out a worldsheet

with coordinates (σ1, σ2) ≡ (τ, σ). The string’s path in a (d + 1)−dimensional

spacetime is described by the (d+ 1)−dimensional vector field xµ(τ, σ), embedding

the worldsheet in a target (background) spacetime with metric gµν(x) where µ, ν =

0, 1, · · · , d (see figure 2.1). The induced metric on the worldsheet is given by the

pull-back of the background metric

hab = ∂ax
µ∂bx

νgµν (∂a ≡ ∂/∂σa). (2.1.1)

This is the natural two-dimensional extension of the one-dimensional relativistic

point particle which traces out a worldline xµ(τ) .

Figure 2.1: This a diagram of the open string worldsheet parametrised by the co-
ordinates (τ, σ), embedded in a target spacetime with coordinates xµ and metric
gµν(x). The grid lines are lines of constant σ and τ .

1See, for example, [71] for a more detailed introduction to the subject.
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2.1.1 The Bosonic String

Bosonic string theory is the original and the most basic string theory as it contains

no fermionic excitations. As such, it cannot be a fundamental theory, but it is useful

to describe the framework and its basic properties, as these persist when one studies

superstrings.

We can define the bosonic string action (Nambu-Goto action) in a similar way

to the action of a point particle of mass m, given by

S = −m
∫
ds = −m

∫
dτ
√
−gµν ẋµẋν , ẋµ = ∂τx

µ(τ), (2.1.2)

where s is the total length of the particle’s trajectory defined by the worldline xµ(τ).

Since strings are massless, the natural physical quantity to parametrise the string

is its tension T , with the action given as the total area A of the string worldsheet,

S = −T
∫
dA = −T

∫
dτdσ

√
−h, h = det(hab), (2.1.3)

where T is related to the characteristic length scale of the string ls, and the “universal

Regge slope” α′ by,

T ≡ 1

2πl2s
=

1

2πα′
. (2.1.4)

The Nambu-Goto action can be rewritten without the awkward square root by

including a rank two symmetric tensor field γab(τ, σ) such that

S = −T
∫
d2σ
√
−γγabhab (2.1.5)

This is known as the Polyakov action and one can think of γab as the metric on

the string worldsheet. The Nambu-Goto action is then recovered by applying the

Virasoro constraints,

Tab ≡
−2
√
γ

δS

δγab
= 0. (2.1.6)

This constraint on the energy-momentum tensor Tab represents two symmetries of
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(2.1.5), namely reparametrization invariance

(τ, σ)→ (τ ′(τ, σ), σ′(τ, σ))), (2.1.7)

and Weyl invariance

γab → γ′ab = e2f(τ,σ)γab, (2.1.8)

where f is some arbitrary real valued function. Weyl invariance, combined with

Poincaré invariance of the worldsheet metric requires the Polyakov action be con-

formally invariant.

The worldsheet metric γab is a symmetric 2× 2 matrix, thus it has three degrees

of freedom. The reparametrisation and Weyl invariance of the metric reduces this

number to one degree of freedom. Thus we can pick a particular gauge which makes

this manifest. Some useful choices are the “conformal gauge”

γab = eφ(τ,σ)ηab, (2.1.9)

and the “static gauge”, which identifies the worldsheet time with the background

time

x0(τ, σ) = τ, ∀σ ∈ R. (2.1.10)

Extremising the Polyakov action δS
δxµ

= 0 in the conformal gauge leave us with

the bulk equation of motion

ηab∂a∂bx
µ(τ, σ) = 0, (2.1.11)

and the boundary term

x′µδxµ|σ=0,π = 0, x′µ = ∂σx
µ. (2.1.12)

The bulk equation is the two-dimensional wave equation, as would be expected

from an oscillating string. The boundary term provides us with different boundary

conditions for closed and open strings. For closed strings, we need the endpoints to
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join up in a smooth fashion, and so we have

xµ(τ, 0) = xµ(τ, π) and x′µ(τ, 0) = x′µ(τ, π). (2.1.13)

For open strings, two types of boundary conditions are allowed. “Neumann”

boundary conditions are defined by

x′µ(τ, σ)|σ=0,π = 0. (2.1.14)

These correspond to the open string having zero momenta at the endpoints. Alter-

natively, “Dirichlet” boundary conditions are defined as

δxµ(τ, σ)|σ=0,π = 0. (2.1.15)

This condition fixes the endpoints of the string. We will see later in §2.1.3 that the

spacetime points xµ(τ, 0) and xµ(τ, π) on which the open string end define objects

called “D-branes”.

Quantisation of bosonic string theory leads to an infinite number of simple har-

monic oscillators. Requiring that the states of the Fock space be physical, by satisfy-

ing the Virasoro constraints Tab = 0, the number of background dimensions is fixed

to be 26. The ground states of both the open and closed string spectra are tachyonic

with m2 < 0. This means bosonic string theory is not a consistent quantum theory.

As well as an infinite tower of massive states (m2 > 0), there are massless states

(m2 = 0), which are given as follows:

Open Strings Aµ

• Aµ is the massless spin 1 gauge field with U(1) gauge symmetry. It

has 24 physical polarizations, which is the same number required by a

background photon field. Thus the low-energy oscillations of bosonic

open strings correspond to a U(1) gauge theory.

Closed Strings Bµν , gµν , Φ

• Bµν is the massless anti-symmetric spin 2 tensor called the “Neveu-
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Schwarz B-field”. It couples to strings with charge q through a term

in the action of the form

q

∫
d2σ εab∂ax

µ∂bx
νBµν , (2.1.16)

and is thus sourced by the fundamental string. This is analogous to a

relativistic particle with worldline xµ(τ) and charge q sourcing an elec-

tromagnetic potential Aµ through the term q
∫
dτẋµ(τ)Aµ.

• Φ is the massless spin 0 scalar field called the dilaton. Φ determines the

string coupling constant gs through

gs = e〈Φ〉, (2.1.17)

where 〈Φ〉 is the vacuum expectation value (vev) of the dilaton.

• gµν is the symmetric, traceless spin 2 tensor known as the graviton. Thus

the low-energy oscillations of closed bosonic strings correspond to classical

gravity.

These are the only states that remain in the low-energy (T → ∞, α′ → 0) limit

where strings look like point particles. These massless background fields can be

consistently added to the string action such that the β-functions vanish requiring

the bosonic theory remain conformal beyond quantisation. This requirement implies

that the worldsheet theory is a (1 + 1)−dimensional conformal field theory (CFT).

Since CFT’s are scale invariant, the β-functions of the closed string massless fields

must vanish. These equations turn out to be the equations of motion of the fields

Bµν , gµν ,Φ for a particular Einstein-Hilbert action, with spacetime gµν , containing

background fields Bµν and Φ. This is known as the closed bosonic “string frame”

action given by

Scl =
1

4πα′

∫
d26x
√
−ge−2Φ

(
Rg + 4∇µΦ∇µΦ− 1

12
H2 +O(α′)

)
, (2.1.18)

where H = dB and Rg is the Ricci scalar for the metric gµν .
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One can do the same for the open string field Aµ whose β-function equation is

the equation of motion of a particular gauge theory with open string frame action

Sop = −C
∫
d26x e−ΦTr(F 2) +O(α′), (2.1.19)

where F = dA and C is a dimensionful constant.

Worldsheet quantum string theory provides the structure to its background

spacetime by fixing the metric, dimension and field content. In fact, since the string

coupling constant is also fixed by the vev of the dilaton, the only free parameter in

string theory is its tension T . This remarkable fact makes it a good candidate as a

fundamental theory.

2.1.2 Superstrings

Unfortunately, as was already noted in the previous section, quantisation of bosonic

string theory leads to tachyonic ground states. Once we require that string theory

be invariant under supersymmetry, the theory stabilizes, and we find that ground

states no longer have negative mass squared. The requirement of supersymmetry

also adds spacetime fermions to the theory, which is a step towards a theory of

everything.

The Polyakov action (2.1.5) of the bosonic string can be extended to include

fermions. The worldsheet action for superstring theory in the conformal gauge then

takes the form

S = −T
2

∫
dτdσ

(
∂ax

µ∂axµ − iψ̄µρa∂aψµ
)
, (2.1.20)

where ψ is a two-component Majorana spinor and ρa, a = 0, 1 are 2 × 2 Dirac

matrices.

Due to the addition of fermions, additional boundary conditions can be imposed

on the Dirac fields. These are the periodic “Ramond” (R) sector

ψµ(τ, 0) = ψ̄µ(τ, 0) and ψµ(τ, π) = ψ̄µ(τ, π), (2.1.21)
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and the anti-periodic “Neveu-Schwarz” (NS) sector

ψµ(τ, 0) = −ψ̄µ(τ, 0) and ψµ(τ, π) = −ψ̄µ(τ, π). (2.1.22)

In a similar way to the bosonic string, quantisation fixes the number of spacetime

dimensions. The “superstring critical dimension” in this case is

d = 10. (2.1.23)

The ground states of the NS sector in the open and closed superstring spectra are

again tachyonic. However, the requirement of supersymmetry allows the spectrum

to admit a consistent truncation known as the Gliozzi-Scherk-Olive or “GSO pro-

jection” [72], which removes half the number of fermionic excitations. In particular,

the physical masses in the spectrum are only allowed to be integer multiples of 1/α′,

removing the tachyonic m2 = − 1
2α′

ground state. The R sector vacuum energy

vanishes via the convention of the boundary conditions (2.1.21), and the action of

GSO projection in this case introduces a chirality into the spacetime spinors ψµ.

Thus GSO projection stabilises quantum superstring theory, and so it is worthwhile

studying this truncated spectrum.

The GSO projected open string spectrum has two sectors, R and NS. The NS

massless sector describes the eight physical polarizations of the spacetime photon

field. The massless R sector gives rise to a sixteen component spacetime Dirac

fermion which satisfies the massless Dirac wave equation. It decomposes into two

possible Majorana-Weyl spinor ground states depending on the spacetime chirality.

It was already noted that GSO projection of the R sector selects out a particular

chirality. This reduces the number of physical polarizations of the massless R sector

to eight, which is equal to the number of spacetime bosons in the NS sector. Thus

the physical states of the massless open string sector is the same number required for

spacetime supersymmetry, and in particular they form the vector supermultiplet of

the d = 10 supersymmetric Yang-Mills theory. This analysis can be extended to in-

clude massive states to show that fully interacting superstring theory has spacetime

supersymmetry [73].
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The GSO projected closed superstring spectrum is analogous to the open super-

string sector except now there is a tensor product of left and right-moving modes.

This leads to four distinct sectors: the bosonic sectors NS-NS and R-R, and the

fermionic sectors NS-R and R-NS. The massless states of the NS-NS sector are, in

analogy with that of the closed bosonic string massless spectrum, the dilaton Φ,

the symmetric two-form Bµν , and the graviton gµν , except now in ten spacetime

dimensions. The NS-R and R-NS massless sectors produce gravitino and dilatino

fields. The massless R-R fields are anti-symmetric tensors of rank n = 0, 1, · · · , 10,

or n-forms Fn. Whether the rank of Fn is even or odd depends on the action of

the GSO projection on the R-R states. If we take the opposite GSO projection on

the two R sectors, n is even, and the resulting theory is chiral. This is known as

Type IIA superstring theory. If we take the same GSO projection on the two R

sectors, n is odd, and the resulting theory is non-chiral. This is known as Type IIB

superstring theory. The NS-NS and R-R massless spectra together form the bosonic

components of d = 10 Type IIA or Type IIB supergravity respectively. This result

can be generalised to show that the low-energy limit of a superstring theory is a

supergravity theory, and is the natural supersymmetric extension of the low energy

limit of the closed bosonic string spectrum corresponding to a gravitational theory

(see equation (2.1.18).

The fields Fn satisfy the equivalent of Maxwell’s equation of motion dFn = 0 and

therefore one can define a R-R gauge potential Cn−1 such that Fn = dCn−1. One

finds that it is the R-R fields which couple to the string, and not the R-R potentials.

As we have already seen in bosonic string theory, the fact that the NS-NS B-field

couples to the fundamental string means that the string carries charge under the

B-field. This means that perturbative string states cannot carry any charge with

respect to the R-R potentials. This requires string theory to be complemented by

non-perturbative objects which carry the R-R charges of the potentials Cp+1. These

objects are known as “Dirichlet p-branes”, or “Dp-branes”. In the next section

we will show how D-branes arise naturally through an inherent symmetry in string

theory known as “T-duality”. It is through the study of D-branes that we will get

our first look at a correspondence between gauge theory and gravity.
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2.1.3 D-Branes

D-Branes are most easily understood in the context of a symmetry which exist within

string theory, called “T-duality”. Consider the closed bosonic string with embedding

function xµ(τ, σ). Let us compactify the coordinate x25 on a circle of radius R. The

string can wind around the spacetime circle w number of times, where w ∈ Z is the

“winding number” such that

x25 ∼ x25 + 2πR, (2.1.24)

where 2πwR is the length of the string.

For the embedding to be single valued, it is also required that the centre of mass

momentum in the x25 direction be quantised such that

p25
0 =

n

R
, n ∈ Z. (2.1.25)

These conditions modify the mass spectrum of the closed string, giving

m2 = −pµpµ =
n2

R2
+
w2R2

α′2
+ (original oscillator terms). (2.1.26)

The first term in (2.1.26) contributes a tower of Kaluza-Klein momentum states,

whereas the second term is a purely stringy phenomenon contributing a tower of

winding states. T-duality arises from examining what happens to these two terms

as one considers the extreme limits of R. If we consider the limit as R → ∞, the

winding states become infinitely heavy, and the momentum states and the w = 0

state becomes a continuum. This is now the usual mass spectrum where we have

decompactified the x25 direction. Now consider the limit as R→ 0. The momentum

states become energetically unfavourable, but the winding states form a continuum,

and we have an effective uncompactified dimension. Thus, the two limits of R

provide the same mass spectra. This can be made more precise by noting that the

mass formula (2.1.26) is invariant under the transformations

n↔ w and R↔ R′ ≡ α′/R. (2.1.27)
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which is equivalent to a spacetime parity transformation on the right movers defined

by

x25(τ, σ) = x25
L (τ+σ)+x25

R (τ−σ)←→ x′25(τ, σ) = x25
L (τ+σ)−x25

R (τ−σ). (2.1.28)

This transformation is known as a “T-duality” and the theory compactified on the

circle of radius R′ is known as the “T-dual” theory. Since all physical quantities,

even after quantisation, are invariant under this transformation, the R and the T-

dual R′ theories are physically equivalent. T-duality is an exact quantum symmetry

of perturbative closed string theory.

Now let us consider T-duality in the case of the bosonic open string. The first

thing to note is that there is no equivalent of a winding number for open strings and

so no winding states in the mass spectrum of equation (2.1.26). This means, in the

limit as R→ 0, open strings look like a quantum field theory in one less dimension.

More precisely, we can again compactify the x25 coordinate on a circle of radius R

such that

x25 ∼ x25 + 2πR, (2.1.29)

and so the momentum in the x25 direction is again quantised such that p25
0 =

n/R, n ∈ Z. The embedding coordinate is given as a solution of the bulk string

equation of motion (2.1.11),

xµ(τ, σ) = xµ(τ + σ) + xµ(τ − σ), (2.1.30)

where

xµ(τ ± σ) = 1/2(xµ0 ± x
′µ
0 + 2α′pµ0(τ ± σ)) + (oscillator terms ∝ ein(τ±σ)). (2.1.31)

The T-dualised coordinate x′25(τ, σ), compactified on a circle of radius R′ = α′/R,

is found by using the spacetime parity transformation in (2.1.28) to give

x′25(τ, σ) = x25(τ + σ)− x25(τ − σ) = x′25
0 + 2α′p25

0 σ + (oscillator terms ∝ sin(nσ)).

(2.1.32)
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The first thing to note is that

p′25
0 =

∫ 2π

0

dσ
∂x′25

∂τ
= 0, (2.1.33)

and so the T-dual open string has no momentum in the x′25 direction. The second

point is that the oscillator terms vanish at the endpoints. Thus the usual Neu-

mann boundary conditions for the original coordinate ∂σx
25 |σ=0,π= 0 have been re-

placed by Dirichlet boundary conditions for the T-dualised coordinate ∂τx
′25 |σ=0,π=

δx′25 |σ=0,π= 0. This fixes the separation of the endpoints

x′25(τ, π)− x′25(τ, 0) =
2πα′n

R
= 2πnR′, (2.1.34)

where n ∈ Z is defined as the open string winding number. The T-dual string

endpoints are free to move in the extra 24+1 dimensions and so defines a hyperplane

called a D-brane. More generally, if one T-dualises m spatial directions, the T-dual

open string endpoints are fixed to a hyperplane with p = 25−m spatial dimensions

called a Dp-brane.

T-duality not only exists in bosonic string theory, but in superstring theory

as well. Thus D-branes are natural objects which exist in superstring theory as

has already been argued in the previous section. For the specific case of Type II

superstrings, T-duality flips the chirality of the GSO projection since it is essentially

a parity transformation. Thus, T-duality interchanges Type IIA and IIB superstring

theories and explains part of figure 1.1. Now we can begin to describe D-branes more

formally within superstring theory and explain their relevance for the later sections.

A Dp-brane is a (p + 1)-dimensional hypersurface, where p is the number of

spatial directions, onto which end points of open strings attach. In analogy with the

2-dimensional worldsheet of string theory, Dp-branes sweep out a (p+1)-dimensional

worldvolume. It is specified by choosing Neumann boundary conditions parallel to

the hypersurface and Dirichlet boundary conditions in the transverse directions,

∂σx
µ |σ=0,π = 0 , µ = 0, 1, · · · , p ,

δxµ |σ=0,π = 0 , µ = p+ 1, · · · , 9 . (2.1.35)
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In string perturbation theory, the position of the Dp-brane is fixed by the boundary

coordinates xp+1, · · · , x9 in spacetime, corresponding to a particular string theory

background, while strings are free to move in the x0, · · · , xp directions. Dp-branes

couple to R-R potentials Cp+1 and are thus a source of closed strings. This can

be seen via worldsheet duality (see fig 2.2). D-branes also have a non-perturbative

Figure 2.2: In this diagram we have a string worldsheet fixed between two D-branes.
One can interpret this as an open string with endpoints fixed on each D-brane moving
in a circle. Alternatively, one can see this as a closed string being produced on one
brane and absorbed on the other brane. This alternative descriptions of the same
object is due to the reparametrisation invariance of the worldsheet string action in
equation (2.1.7).

description. This is because massless modes of the open string are associated with

the fluctuation modes of the D-branes themselves, so non-perturbatively, D-branes

become dynamical p-dimensional objects. We have seen that the massless open

string spectrum contains the gauge field Aµ(x). The gauge field decomposes into

fields living on the brane, and those transverse to it. In particular, a 10-dimensional

gauge field Aµ(x), µ = 0, 1, · · · , 9 splits into a U(1) gauge field Aa(x), a = 0, 1, · · · , p

living on the Dp-brane, and scalar fields Φm(x), m = p + 1, · · · , 9 describing the

fluctuations of the Dp-brane in the 9− p transverse directions.

The low-energy dynamics of D-branes can be described in terms of a gauge

theory on the worldvolume. One can write down an action (known as the “Dirac-

Born-Infeld” (or DBI action) which describes the low-energy dynamics of a Dp-brane
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in a flat background

SDBI = −Tp
gs

∫
dp+1ξ

√
− det(ηab + ∂axm∂bxm + 2πα′Fab), (2.1.36)

where ξa = xa, a = 0, 1, · · · , p+1 are the p+1-brane coordinates, Fab = ∂aAb−∂bAa
is the field strength of the gauge fields Aa(ξ) living on the brane, and Tp is the tension

of the p-brane, given by,

Tp =
1√
α′

1

(2π
√
α′)p

(2.1.37)

SDBI can be easily interpreted when one switches off gauge field fluctuations, in

which case the DBI action becomes

SDBI
A→0
= −Tp

gs

∫
dp+1ξ

√
−h (2.1.38)

where hab = ηµν∂ax
µ∂bx

ν is the pull-back of the flat background metric to the Dp-

brane.

This is the Nambu-Goto action for strings extended to p-branes (see (2.1.2)) and

so the DBI action can be geometrically interpreted as the Nambu-Goto action for

p-branes with the addition of worldvolume gauge fields. It is a good low-energy ap-

proximation to the full D-brane dynamics in the static gauge and for slowly-varying

field strengths Fab. One can generalise the DBI action to include supergravity fields

of the massless NS-NS closed string sector, thus representing D-branes living in a

curved background as

SDBI = −Tp
gs

∫
dp+1ξe−Φ

√
− det(gab +Bab + 2πα′Fab), (2.1.39)

where gab, Bab are pull-backs of the spacetime supergravity fields to the Dp-brane

worldvolume.

The exact gauge theory that lives on the Dp-brane can be found by expanding

SDBI in the low-energy limit (in powers of α′) and comparing the field content with

a known gauge theory. In the case of a flat space background, the theory on the

Dp-brane is equivalent to the dimensional reduction to p + 1 dimensions of U(1)
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Yang-Mills theory in 10 spacetime dimensions, defined by the action

SYM = − 1

4g2
YM

∫
d10xFµνF

µν . (2.1.40)

One must take the Yang-Mills fields to depend on the p+ 1-brane coordinates Aa =

Aa(ξ), Am = 1
2πα′

xm(ξ), and identify the Yang-Mills coupling constant

g2
YM = gsT

−1
p (2πα′)2. (2.1.41)

This result can be generalised to supersymmetric spacetimes with multiple D-branes,

leading to the following result [74]:

Conjecture 2.1 The low-energy dynamics of N parallel, coincident Dirichlet p-

branes in flat space, is described in the static gauge by the dimensional reduction to

p + 1 dimensions, of N = 1 supersymmetric Yang-Mills theory (SYM), with gauge

group U(N) in ten spacetime dimensions.

This result makes the relationship between D-branes and gauge theory mani-

fest. Since D-branes source closed strings (see fig 2.2), and the low-energy dynamics

of closed strings is described by a gravitational theory, this is the first indicator

of a deeper relationship between gauge theory and gravity. We will see more evi-

dence for this in the next sections which will eventually lead us to the AdS/CFT

correspondence.

2.2 Gauge Theories

2.2.1 Supersymmetric Yang-Mills Theories

In this section, we describe the basic properties and symmetries of supersymmetric

Yang-Mills (SYM) theories. As we have seen in §2.1.3, the low-energy dynamics

of D-branes are described by a gauge theory, in particular SYM theories. We will

see in the later sections that a particular configuration of a stack of N D3-branes

gives rise to a particular SYM theory, namely N = 4 SU(N) in 3 + 1 dimensions.
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This will be the CFT side of AdS/CFT and so it will be useful to describe its basic

properties.

N = 4 SYM in four dimensions can be recovered from the ten dimensional action

of N = 1 SYM with gauge group U(N), given by

SSYM =
1

2g2
YM

∫
d10xTr

(
−FµνF µν + 2iψ̄ΓµDµψ

)
, (2.2.1)

where Γµ are 16× 16 Dirac matrices,

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (2.2.2)

is the field strength of the U(N) gauge field Aµ,

Dµψ = ∂µψ − i[Aµ, ψ] (2.2.3)

is the covariant derivative, and ψ is a 16 component Majorana-Weyl spinor which

transforms in the adjoint (N × N) representation. This action preserves 16 super-

symmetries, which is the smallest algebra in (9 + 1)−dimensions.

Via dimensional reduction of (2.2.1) on a flat 6-dimensional torus T 6, we recover

[36] a (3 + 1)-dimensional action. The ten-dimensional gauge field Aµ reduces to a

four-dimensional gauge field Aa and six scalar fields φi, and the Majorana spinor ψ

reduces to four 4-dimensional Weyl spinors λaα where a = 1, 2, 3, 4. This is the field

content of N = 4 SYM in 3 + 1 dimensions with action given by

SN=4 =

∫
d4xTr

{
− 1

2g2
YM

F abFab +
θI

8π2
F abF̃ab − iλ̄σ̄aDaλ

−(Daφi)
2 +

g2
YM

2

∑
i,j

[φi, φj]
2 + fermion-scalar terms

}
, (2.2.4)

N = 4 SYM has a remarkable number of symmetries due to its maximal number

of supersymmetries. Classically, it is Weyl (scale) invariant. It is also has SO(1, 3)

Poincaré invariance. These two symmetries combine to form a larger conformal

symmetry with group SO(2, 4) ∼= SU(2, 2). The theory also has N = 4 Poincaré

supersymmetry, which endows it with 16 Poincaré supercharges. Since the theory is
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also conformally invariant, it has an additional 16 conformal supersymmetries so the

theory has 32 supercharges in total. The requirement of supersymmetry enlarges

the algebra so that it is invariant under superconformal transformations. Upon

perturbative quantisation, N = 4 SYM exhibits no ultraviolet divergences. As a

result, the renormalisation group β-function vanishes identically. Thus conformal

symmetry is protected at the quantum level, which means that the theory is a

conformal field theory (CFT).

The Montonen-Olive conjecture states that the quantum theory of N = 4 SYM

is invariant under a global discrete transformation. If we combine the Yang-Mills

coupling gYM and the real instanton angle θI into a single complex coupling

τ ≡ θI
2π

+ i
4π

g2
YM

, (2.2.5)

then the quantum theory is invariant under the S-duality group SL(2,Z), generated

by

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z. (2.2.6)

Finally, the theory exhibits an R-symmetry. This is a global symmetry which rotates

the 6 scalars φi, and thus has symmetry group SO(6)R ∼= SU(4)R. This symme-

try combines with the SU(2, 2) conformal symmetry group to form the supergroup

PSU(2, 2|4) ⊃ SU(2, 2)× SU(4)R.

2.2.2 Large N Gauge Theories

Gauge theories have been extremely useful in describing the physics of strong and

electroweak interactions, as shown by the consistency of the Standard Model with

experimental evidence. In particular, strong interactions are described in terms of an

SU(3) gauge theory (QCD). Gauge theories of this type have negative beta function,

meaning that the theory suffers from confinement at low energies and asymptotic

freedom at high energies. In the low energy regime one cannot do perturbation the-

ory as the coupling is large, so it would be useful to search for another dimensionless

parameter in which one can do perturbation theory at and below the QCD scale

ΛQCD where the gauge theory may simplify. One such parameter is the integer num-
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ber N in SU(N) gauge theories, where one can perform a perturbative expansion

in powers of 1/N for large N .

Let us consider an SU(N) pure Yang Mills theory with coupling gYM . The beta

function equation is given by

β(gYM) ≡ µ
dgYM
dµ

= −11

3
N
g3
YM

16π2
+O(g5

YM). (2.2.7)

One can show that if we take the limit N →∞, but keeping the quantity λ ≡ g2
YMN

fixed, the order of the terms in the beta function does not change. This is known as

the t’ Hooft limit, and λ is known as the t’Hooft coupling. We will now show that

in this limit, gauge theories behave like string theories.

We have already seen from equation (2.1.40) that the Yang Mills Lagrangian is

of the form

LYM ∼ −
1

g2
YM

Tr(F 2) = −N
λ

Tr(F 2). (2.2.8)

We can see from the Feynman rules for such a theory that each vertex has a coef-

ficient proportional to N/λ, and each propagator has a λ/N factor. The fermionic

fields in this theory live in the adjoint (N × N dimensional) representation of the

gauge group, and so can be represented and a direct product of fields in the funda-

mental and anti-fundamental irreducible representations of SU(N). Thus we draw

the propagators in Feynman diagrams as two lines, carrying indexes in the funda-

mental and anti-fundamental irreps. Since each index has N possible values, a closed

loop will contribute a factor of N . Thus, a diagram with E edges (propagators), V

vertices (interactions) and F faces (closed loops), comes with a contribution

NχλE−V , (2.2.9)

where χ = F − E + V = 2− 2g is the Euler number of the closed oriented surface,

and g is the genus. So if we take the t’Hooft limit, the diagrams which dominate

have genus zero with contribution of order N2, and so lie on a sphere (plane). We

call these planar diagrams. World-sheet string perturbation theory tells us that all

world-sheet diagrams for closed oriented strings are characterized by their Euler
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number, with contribution of order g−χs , where gs is the string coupling. Planar

diagrams in perturbative string theory have a contribution g−2
s . Thus we can identify

perturbation theory of closed oriented strings and perturbation theory of SU(N)

gauge theories in the t’Hooft limit if we let gs ∼ 1/N . This relation is one of the

strongest cases for believing that string theories and gauge theories are related.

In this section we have built up a lot of evidence for a connection between gauge

theories and string theory, thus motivating the CFT side of AdS/CFT. In the next

section we will be more specific about the AdS side of the correspondence, showing

how a gravitational theory with AdS structure can arise from string theory.

2.3 Supergravity

One important fact about superstring theory is that its low-energy dynamics can be

described in terms of a local supersymmetric field theory, or “supergravity” theory.

This can be motivated by looking at the massless spectra of superstring theories and

comparing it with the field content of supergravity theories (SUGRA). Of particular

importance to the AdS/CFT conjecture presented here is that the low energy limit

(α′ → 0) of Type IIB superstring theory is Type IIB supergravity. The bosonic

action for Type IIB superstring theory can be written in a similar way to the bosonic

string frame action (2.1.18)

SIIB =
1

(2π)7l8s

∫
d10x
√
−g
(
e−2Φ(Rg + 4(∇Φ)2

− 1

12
H ∧H)− 2

(8− p)!
F 2
p+2 − 2(dK)2

)
, (2.3.1)

where Fp+2 is the field strength of the R-R (p + 1)-form Cp+1 (p = −1, 1, 3, 5, 7, 9),

H is the field strength of the NS-NS B field, and Φ, K are the dilaton and the

R-R scalar field (axion) respectively. The R-R four form C4 is self-dual such that

F5 = ∗F5.

This action is invariant under the non-compact symmetry group SL(2,R). If we

identify the axion-dilaton field as τ ≡ K + ie−Φ, then the action of the SL(2,R)
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group on τ leads to a Möbius transformation of the form,

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ R (2.3.2)

Referring to conjecture 2.1, it is useful to consider geometric solutions of Type IIB

SUGRA which describe the low-energy dynamics of N coincident Dp-branes in Type

IIB superstring theory. We can then begin to relate a specific gauge theory (namely

SYM) with a specific gravitational theory. One important fact about D-branes is

that its Dirichlet boundary conditions are only invariant under half the background

spacetime supersymmetries, meaning that D-branes are “1/2-BPS” states where

the conserved charge is equal to the mass of the state. The solitonic geometries

which correspond to such states are known as extremal black p-branes. They have

conserved charge N with respect to the R-R (p + 1)-form Cp+1 equal to the mass

M of the black hole with horizon radius r+. A spherically symmetric solution in

(10− p) dimensions with a R-R source at the origin,

∫
S8−p

∗Fp+2 = N, (2.3.3)

is given by the metric

ds2 = Hp(r)
−1/2ηµν dx

µdxν +Hp(r)
1/2(dr2 + r2dΩ2

8−p), (2.3.4)

where µ, ν = 0, · · · , p, and,

e2Φ = g2
sHp(r)

3−p
2 ,

Hp(r) = 1 +
(r+

r

)7−p
,

r7−p
+ = dpgsNl

7−p
s ,

Cp+1 = g−1
s (1−Hp(r)

−1) dx0 ∧ · · · ∧ dxp. (2.3.5)

gs is the asymptotic string coupling constant and dp is the numerical factor,

dp = 25−pπ
5−p

2 Γ

(
7− p

2

)
. (2.3.6)
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For p > 6, there is no curvature singularity. When 3 < p ≤ 6, the horizon and the

singularity coincide at r = 0, since the radius of the S8−p vanishes there, and so

there is a null singularity. In the special case of p = 3, the horizon has finite size

at r = 0, where r4
+ = 4πgsα

′2N , since the S5 does not vanish. In the limit where

r � r+, and so H3(r) ∼ (r+/r)
4, the metric in equation (2.3.4) reduces to

ds2 =
r2

r2
+

ηµνdx
µdxν +

r2
+

r2
dr2 + r2

+dΩ2
5, (2.3.7)

where µ, ν = 1, · · · , 4.

This metric looks singular at r = 0, but via a change of coordinates z = r2
+/r,

the metric becomes

ds2 = r2
+

(
ηµνdx

µdxν + dz2

z2
+ dΩ2

5

)
. (2.3.8)

We see that this is the geometry of AdS5×S5 in Poincaré coordinates if we identify

r+ with the AdS radius R.

Alternatively, if we take the the asymptotic limit where r � r+, and so H3(r) ∼

1, we see that the extremal 3-brane solution reduces to Minkowski space in 10-

dimensions. Thus, the stack of D3-branes back-reacts on the spacetime to provide

us with a “deep throat” geometry which has finite size where the branes are located

(see figure 2.3).

The classical supergravity description of the black p-brane is only valid when

stringy effects are small, i.e. when ls � r+, since r+ sets the size of the black hole.

To suppress string loop corrections, we also need the effective string coupling eΦ to

be small. When p = 3 the dilaton is constant everywhere and so the string coupling

gs can be set less than one through the entire spacetime, and thus lP < ls. Thus,

using the definition of r+, the supergravity approximation for p = 3 is valid when

1� λ < N, (2.3.9)

where λ = gsN is the t’Hooft coupling.
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6

r = 0

Figure 2.3: This is a graphical representation of how a stack of D3-branes back-
reacts on the target spacetime, resulting in a “deep throat” geometry. Inside the
throat , the horizon radius is kept constant by the finite size of the S5 (represented
here by an S1), leading to the AdS5 × S5 geometry in equation (2.3.8). Away from
the throat at asymptotic infinity the space is flat, and so we have a Minkowski R1,9

geometry.

2.4 Anti-de Sitter Spacetimes

AdS space was mentioned in the previous section as a particular limit of the geometry

of a stack of D3-branes. As different coordinate patches of AdS space will be used

throughout this and the remaining chapters, it will be useful to explain its basic

properties before we proceed to examining AdS/CFT in its full glory.

Anti-de Sitter spacetimes (or AdS spaces) are maximally symmetric solutions of

Einstein’s equations with negative cosmological constant Λ. This requires that the

Riemann tensor Rµνρσ satisfies

Rµνρσ ∝ gµρgνσ − gµσgνρ, (2.4.1)

where gµν is the AdS metric and is a solution to

Rµν −
1

2
Rgµν + Λgµν = 0, where Λ = −d(d+ 1)

2R2
. (2.4.2)
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Anti-de Sitter space in d + 2 dimensions (AdSd+2) has a natural geometric repre-

-� ρ ∞∞

τ

Figure 2.4: This is AdS2 in global coordinates given in (2.4.5). The geometry is that
of the hyperboloid H1,1 embedded in R2,1. Closed timelike curves can be removed
by decompactifying the time direction τ and working with the universal covering
space CAdS2.

sentation as a Lorentzian hyperboloid H1,d+1 embedded in the flat spacetime R2,d+1

in d+ 3 dimensions with signature (−,−,+,+,+, · · · ).

The flat spacetime R2,d+1, with coordinates {X−1, X0, X1, · · · , Xd+1}, has the

metric

ds2 = −dX2
−1 − dX2

0 +
d+1∑
i=1

dX2
i . (2.4.3)

The spacetime is homogeneous and isotropic with isometry group SO(2, d+ 1).

The hyperboloid H1,d+1 ⊂ R2,d+1 is defined by the condition

−X2
−1 −X2

0 +
d+1∑
i=1

X2
i = −R2, (2.4.4)

where R is defined as the AdS radius.

To find the induced metric on H1,d+1, we find a solution to (2.4.4) as an em-

bedding of (2.4.3). One such solution which covers the entire hyperboloid once is
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known as “global” coordinates on AdS. These are defined as

X−1 = R cosh ρ cos τ,

X0 = R cosh ρ sin τ,

X1 = R sinh ρ cos θ1,

X1<N<d+1 = R sinh ρ cos θN

N−1∏
i=1

sin θi,

Xd+1 = R sinh ρ
d∏
i=1

sin θi. (2.4.5)

This set of equations satisfies equation (2.4.4) by iterative use of the trigonometric

and hyperbolic identities sin2 θ + cos2 θ = 1 and cosh2 ρ− sinh2 ρ = 1.

By substituting the set of equations (2.4.5) into (2.4.3), we find the metric on

AdSd+2 in global coordinates is given by

ds2 = R2(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
d), (2.4.6)

where2 0 ≤ ρ < ∞, 0 ≤ τ ≤ 2π, and dΩ2
d is the metric on the Euclidean d-sphere

Sd ⊂ Rd+1. This space is represented for d = 0 in figure 2.4. Via a change of

coordinates r = R sinh ρ, the metric in (2.4.6) can be rewritten3 as

ds2 = −
(

1 +
r2

R2

)
dt2 +

(
1 +

r2

R2

)−1

dr2 + r2 dΩ2
d, (2.4.7)

where the boundary of this spacetime is at r =∞. It is this coordinate patch of the

metric which will be used in chapters 3 & 4.

Via a different change of coordinates, cosh ρ = 1+y2

1−y2 , the metric in (2.4.6) is

2Since the choice of coordinates identifies τ = 0 and τ = 2π, AdSd+2 has closed timelike
curves. These can be removed by passing to the universal covering space CAdSd+2 where τ is
decompactified to cover the whole real line. This process does not change the metric, but gives it
an SO(d)× Rτ symmetry

3From this point on we will consider AdS space to be its universal covering space CAdS. As
such we will only consider the decompactified time coordinate t.
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converted to

ds2 =
R2

(1− y2)2

{
−(1 + y2)2dt2 + 4dy2 + 4y2dΩ2

d

}
, (2.4.8)

where 0 ≤ y < 1 with boundary at y = 1.

It is often convenient to make the coordinate transformation r = R tanχ with

χ ∈ [0, 2π]. The metric in (2.4.7) then becomes:

ds2 =
R2

cos2 χ

(
−dt2 + dχ2 + sin2 χdΩ2

d

)
(2.4.9)

Thus AdSd+2 has the topology of an d+ 1-dimensional sphere times the real line or

6t

Figure 2.5: AdSd+2 can be viewed as a “soup-can” with conformal timelike boundary
Sd ×R. Poincaré coordinates only cover half of AdSd+2, which can be seen here for
AdS3 as the space in-between the two slices, known as a Poincaré wedge. The
boundary in these coordinates is Minkowski space, which can be viewed here for
R1,1 as a handkerchief pinched at two corners, thus wrapping the Poincaré wedge.
The second half of AdSd+2 can be covered by labelling the hyperboloid as in (2.4.10)
but now letting −∞ < z ≤ 0. These two patches together cover AdSd+2, while to
cover CAdSd+2 one assembles a vertical tower of such patches.

Sd+1 × R. The boundary of the spacetime at χ = π/2 is timelike and has topology

R×Sd, which is otherwise known as the Einstein static universe in d+1 dimensions

(ESUd+1). Thus AdSd+2 maps to half of ESUd+2. In general, if a spacetime can be
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conformally compactified into a region which has the same boundary structure as

one half of the Einstein static universe, the spacetime is called asymptotically AdS.

Another solution of (2.4.4) is given by the set of equations,

X−1 =
1

2z
(z2 + ~x2 − t2 +R2), X0 = R

t

z

Xd+1 =
1

2z
(z2 + ~x2 − t2 −R2), X0<i<d+1 = R

xi
z
, (2.4.10)

which gives a metric of the form,

ds2 = R2

(
−dt2 + dz2 + d~x2

z2

)
, (2.4.11)

where ~x is a vector in Rd, t, xi ∈ R and z ∈ [0,∞).

These are known as Poincaré coordinates or local coordinates. Due to the range

of the z coordinate, they only cover one half of the hyperboloid and thus one half of

AdSd+2 (see fig. 2.5). The boundary at z = 0 is conformal to flat Minkowski space

R1,d. However, the boundary only covers half of the cylindrical boundary of global

AdSd+2. It is this coordinate patch of the metric which will be considered in chapter

5.

2.5 The AdS/CFT Correspondence

We have now built up all the machinery to describe the main example of the

AdS/CFT correspondence as proposed by Maldacena [33], relating a five dimensional

bulk gravity theory to a four dimensional boundary CFT. Other such examples in

different dimensions include: AdS3/CFT2 (see [33,75]); AdS4/CFT3, where one con-

siders a stack of M2-branes (the main examples of which are ABJM theories [76]);

and AdS7/CFT6, where one considers a stack of M5-branes [77].

Consider N parallel coincident D3 branes extended in (3 + 1) dimensions in a

(9 + 1) dimensional spacetime. The string theory consists of open strings ending

on the branes (they can end on the same brane, on different branes, or can be

open-ended) describing excitations of the D-branes, and closed strings describing

excitations in the bulk. In the low energy limit (α′ → 0), only massless string
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modes exist and so we can write an effective action given by

S = Sbulk + Sbrane + Sint. (2.5.1)

In the low energy limit, open strings and closed strings decouple and interactions

between the brane and the bulk disappear. This means that the interaction term in

the effective action Sint vanishes. Sbrane is the effective action on the the stack of D3

branes and so, in a similar way to conjecture 2.1, is just the action of N = 4SU(N)

SYM theory in 3 + 1-dimensions given in equation (2.2.4). Sbulk is the effective

action of the bulk, and so we only have massless NS-NS field excitations, meaning

the action is given by SUGRA in a (9+1)-dimensional Minkowski background. This

is equivalent to (2.3.1) with the massless R-R fields turned off.

We can now compare this to the extremal 3-brane description in the low energy

limit. We see that the theory decouples to an AdS5 × S5 geometry close to r = 0

(the location of the D3 branes) and SUGRA in 9 + 1-dimensional Minkowski space

for large r. Since the two decoupled theories in the asymptotic region are equivalent,

one can make the conjecture that

Conjecture 2.2 Type IIB superstring theory with AdS5 × S5 boundary conditions

and string coupling gs, where both AdS5 and S5 have the same radius R, and where

the 5-form F5 has integer flux N =
∫
S5 F5, is equivalent to N = 4SU(N) super-

Yang-Mills theory in 3 + 1 dimensions with Yang-Mills coupling gYM .

Using equations (2.1.37) and (2.1.41), and taking p = 3, we see that the rela-

tionship between the couplings of the two theories is given by

g2
YM = 2πgs. (2.5.2)

We also have the following relationships between the physical parameters

R4 = 4πα′2gsN, 〈K〉 = θI , (2.5.3)

where 〈K〉 is the axion vev given in equation (2.3.1), and θI is the real instanton
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angle given in equation (2.2.4).

The theories are “equivalent” in the sense that there is a precise relationship

between the physical observables of both theories, not in the sense that it has been

proven (despite concentrated effort). The fact that we have taken the low-energy

limit does not mean this conjecture would not hold for massive stringy excitations,

since the limit is taken for an observer at infinity, and so high energy excitations

would be heavily red-shifted. This equivalence provides unexpected connections

between seemingly different structures, and the absence of a proof suggests that

there are still new insights to be found. However, we can still look for necessary

(but not sufficient) conditions of the validity of the correspondence. The first of

these is outlined in §2.5.1.

2.5.1 Mapping the Symmetries

A necessary check of the correspondence is that the global symmetries of the two

theories must match. We have already identified certain symmetries of N = 4 SYM.

Firstly the theory is invariant under the conformal symmetry SO(2, 4). This can

be identified with the SO(2, 4) isometry group of AdS5. Since conjecture 2.2 refers

to string theory (gravity) with AdS5 × S5 boundary conditions, one can have any

number of geometric or topological deformations in the bulk spacetime. As such, the

only possible SO(2, 4)-invariant relation between AdS5×S5 and the background 3+1

Minkowski space (M4) of N = 4 SYM is to make the identification ∂AdS5 ≡ M4.

Thus one can think of the field theory as “living of the boundary” of the bulk

spacetime containing gravity.

N = 4 SYM is also invariant under the R-symmetry SO(6). This can imme-

diately be identified with the rotational symmetry group of S5. We also note that

N = 4 SYM has 32 supersymmetries, which is exactly the number of Killing spinors

of the AdS5 supergroup. Finally, N = 4 SYM has a discrete SL(2,Z) global sym-

metry from the Montonen-Olive conjecture. We recall that type IIB SUGRA has

an SL(2,R) symmetry of the axion-dilaton field. However, the correspondence per-

tains to the fully quantised type IIB superstring theory. In this scenario, the axion

expectation value is quantised such that 〈K〉 ∈ Z, and so τ ∈ Z. Therefore, the
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allowed Möbius transformations must be elements of SL(2,Z) ⊂ SL(2,R) which

matches the symmetry group of the Montonen-Olive duality.

Apart from matching the global symmetries, another non-trivial check is match-

ing the spectra of the two theories. It was shown (see [34] for a review) that there

is a one-to-one correspondence between the spectrum of chiral primary operators in

N = 4 SYM and the spectrum of fields in Type IIB superstring theory on AdS5×S5.

2.5.2 Limits of the Correspondence

Conjecture 2.2 is referred to as the “strong form”, as it holds for all values of N

and gs and so is non-perturbative. However, quantising string theory is notoriously

hard on curved backgrounds such as AdS5 × S5. So it is useful to look at limits of

the correspondence where one can perform calculations. We do this by looking at

different limits of the ’t Hooft coupling λ ≡ g2
YMN = 2πgsN which was identified as

a natural parameter of gauge theories in the previous section.

λ fixed, N →∞:

This is known as the ’t Hooft limit. We have seen (see §2.2.2) that this limit

allows a 1/N expansion of N = 4 SYM. Since 1/N ∼ gs → 0 , but λ ∼ R/ls is kept

fixed, the other side of the correspondence is classical Type IIB string theory.

λ large, N →∞:

This is the large λ limit which gives a 1/
√
λ expansion of N = 4 SYM. This

corresponds to large R/ls and so stringy effects become negligible. Thus in this limit,

which was given in (2.3.9), we have Type IIB supergravity. It is in this limit that

the following chapters will be most concerned with as one can use the technology of

classical GR to provide insight into strongly coupled gauge theories.

The next sections will be concerned with the properties and applications of the

correspondence in the various limits outlined above. This will eventually lead us to

our two main results outlined at the start of this chapter.
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2.5.3 The Holographic Principle

One of the most important aspects of the AdS/CFT correspondence is that it is

“holographic”, in the sense that it obeys the holographic principle. In this section

we explain what the holographic principle is, why it is important and what it has

to do with AdS/CFT.

The holographic principle [78–81] arose by asking questions of what happens

when one studies the physics of black holes using quantum mechanics. Hawking

and Bekenstein raised deep questions about the nature of black holes by considering

what happens to information that falls into a black hole. Hawking argued that

information is irretrievably lost when matter falls behind the horizon of the black

hole [82, 83]. This led to the idea that black holes are thermodynamic objects with

specific temperature TH and entropy SBH given by [14–16]

TH =
κ

2π
and SBH =

A

4
, (2.5.4)

where κ is the surface gravity of the black hole and A is its horizon area.

Consider a gravitating system in a region of space Γ with boundary ∂Γ = A.

Consider a thermodynamic system within Γ. The maximum amount of mass that

can be contained within Γ is the mass of a black hole of horizon area A. Thus from

the second law of thermodynamics it must be the case that

S ≤ SBH =
A

4
, (2.5.5)

and so the maximum entropy of Γ is proportional to the area of ∂Γ measured in

Planck units. This is called the spherical entropy bound. Bousso [81,84] generalised

this bound by making it covariant as follows:

Let A(B) be the area of an arbitrary d− 1 dimensional spatial surface B (which

need not be closed). A d dimensional hypersurface L(B) is called a light-sheet of B

if L is generated by light rays which begin at B, extend orthogonally away from B

to a caustic (where the light rays intersect). Let S be the entropy on any light-sheet
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of B. Then

S[L(B)] ≤ A(B)

4
. (2.5.6)

Thermodynamic entropy has a statistical interpretation in terms of measuring the

lack of knowledge we have about the details of the microscopic theory given a macro-

scopic theory. Therefore the covariant entropy bound expresses the fact that infor-

mation contained within L(B) is somehow related to information on the boundary

B. Using Boltzmann’s formula for entropy, S = lnN , to find the number of states

N , the covariant entropy bound can be recast (using [84]) as:

The Holographic principle

The covariant entropy bound is a law of physics which must be manifest in an

underlying theory. This theory must be a unified quantum theory of matter and

spacetime. From it, Lorentzian geometries and their matter content must emerge in

such a way that the number of independent quantum states describing the light-sheets

of any surface B is manifestly bounded by the exponential of the surface area:

N [L(B)] ≤ eA(B)/4. (2.5.7)

This contradicts the intuition that degrees of freedom are local in space, and so

complexity grows with volume. The holographic principle implies a radical reduction

in the number of degrees of freedom we use to describe nature. It exposes quantum

field theory, which has degrees of freedom at every point in space, as a highly

redundant effective description, in which the true number of degrees of freedom is

obscured.

The most concrete example of a holographic theory to date (within a limited

set of spacetimes) is the AdS/CFT correspondence. Anti-de Sitter spacetimes have

a natural boundary on which holographic data can be stored and evolved forward

using a conformal field theory.

To describe the holographic nature of this correspondence, it will be useful to
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consider the following form of the metric on AdS5 × S5 (see (2.4.8)),

ds2 =
R2

(1− r2)2

{
−(1 + r2)2dt2 + 4dr2 + 4r2dΩ2

3

}
+R2dΩ2

5, (2.5.8)

The radius of curvature R, is related to the flux N (defined in 2.2), by the formula

R = N1/4, (2.5.9)

in Planck units.

If we apply a conformal rescaling by a factor of R2/(1− r2)2 on our metric, the

new metric becomes

ds2 =
{
−(1 + r2)2dt2 + 4dr2 + 4r2dΩ2

3

}
+ (1− r2)2dΩ2

5. (2.5.10)

This has the topology of a 4-dimensional open ball times the real time axis times

the five-sphere. As we approach the boundary at r = 1, the 5-sphere shrinks to zero,

leaving us with a 3 + 1 dimensional boundary with topology R × S3. This is the

conformal boundary of AdS5× S5. We observe that this is the same dimensionality

of the spacetime in which the dual CFT resides. Since the CFT is conformal, and

complementing the arguments in §1.3 and §2.5.1, this is another way of saying that

the dual CFT “lives” on the boundary of AdS5 × S5.

This property of AdS/CFT, namely that boundary data completely describes all

physics in the interior, is suggestive of the holographic principle. But to check if this

is indeed the case, one need to compute the CFT’s degrees of freedom Ndof , which

must not exceed the boundary area A.

The proper area of the boundary of AdS5 is divergent, as is the degrees of

freedom of a conformal field theory due to scale invariance. Thus to compare these

two quantities, one need to find a natural regulator. This was achieved in [37] by

making use of the following fact about AdS/CFT: Infra-red effects in AdS space

correspond to ultraviolet effects in the boundary theory. This relation is known as

the UV/IR connection, and is key to the information bound that is an important

part the holographic principle.
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In AdS space the boundary is at an infinite proper distance from the bulk, but

light can reach the boundary in finite time. It can be shown that a null geodesic

going form r = 0 to r = 1 and back again does it in time t = πR. We can then make

the approximation that AdS space behaves like a finite cavity of size O(R). With

this assumption we can now count the degrees of freedom of such a space. In order

to do this we need to regulate the boundary of AdS by introducing a cut-off surface

L with topology S3 × S5 at r = 1− δ. Then the area A of L is approximately

A ∼ R3

δ3
R5 (2.5.11)

To count the degrees of freedom of the CFT on the boundary, we note from the

UV/IR connection that the infrared cut-off δ in the bulk corresponds to an ultraviolet

cut-off in the CFT. We have argued that the CFT lives on a spacial 3-sphere, and

so δ partitions the sphere into δ−3 cells. A U(N) gauge theory has roughly N2

independent quantum fields, and assuming one stores one bit of information per

cell, per quantum field, the total number of degrees of freedom is given by

Ndof ∼
N2

δ3
(2.5.12)

Using (2.5.9), we find that the CFT number of degrees of freedom saturates the

holographic bound,

Ndof ∼ A (2.5.13)

2.5.4 The Field ↔ Operator Correspondence

Witten [42] gave a precise description of the AdS/CFT correspondence by relating

the physical observables of the two theories.

Consider a scalar field φ propagating in 10-dimensional AdS5 × S5 space. We

can decompose this field via Kaluza-Klein reduction on S5, so effectively all fields

φ∆(~z, z), where ~z = (t, ~x), are on AdS5 (in Poincaré coordinates)

φ(~z, z, y) =
∑

∆

φ∆(~z, z)Y∆(y), (2.5.14)
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where Y∆(y) are the spherical harmonics on S5 labelled by the rank ∆ of the totally

symmetric traceless representations of SO(6).

The action of the massive scalar field is given by

Sφ∆
=

∫
dz d4~z

√
g

(
1

2
gµν∂µφ∆∂νφ∆ +

1

2
m2

∆φ
2
∆

)
. (2.5.15)

Close to the boundary, bulk interaction terms disappear, and so the dynamics as

z → 0 are given by the Klein-Gordon equation

(∇2 +m2
∆)φ∆ = 0 where m2

∆ = ∆(∆− 4). (2.5.16)

The boundary fields φ0
∆ in the full interacting theory are associated with the non-

normalizable solutions to (2.5.16) (see [42] for more detail) and are thus defined

by

φ0
∆(~z) = lim

z→0
z4−∆φ∆(~z, z). (2.5.17)

To evolve data such as φ∆ on a spacetime, the Cauchy problem must be well defined.

I.e. given φ∆ on some spacelike hypersurface at t = t0, can one determine φ∆ on

some spacelike hypersurface at t > t0? This is not the case for AdS space due to

its timelike boundary. Thus one must add boundary conditions for φ∆∀t. This can

be achieved by adding a term to the Lagrangian of N = 4 SYM which includes

the boundary fields φ0
∆. These fields should couple to the dynamical observables of

the theory, which are the local gauge invariant CFT operators O∆ giving a term∫
d4~z φ0

∆(~z)O∆(~z).

Bulk fields sourced by such a boundary term are given by

φ∆(~z, z) =

∫
d4~zK∆(~z, z, ~u)φ0

∆(~u), (2.5.18)

where the bulk-to-boundary propagator is given by

K∆(z, ~z, ~u) = C∆

(
z

z2 + |~z − ~u|2

)∆

, (2.5.19)
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with

C∆ =
Γ(∆)

π2Γ(∆− 2)
. (2.5.20)

One can define a generating functional W [φ0
∆] for all the correlators of O∆ in terms

of the source fields φ0
∆,

exp(−W [φ0
∆]) ≡

〈
exp

(∫
d4~zφ0

∆(~z)O∆(~z)

)〉
, (2.5.21)

then one can define a map between observables for any operators/fields via the

Witten prescription,

exp(−W [φ0
∆]) = Zstring[φ∆|z=0 = φ0

∆], (2.5.22)

where the right hand side is the full string theory partition function whose boundary

fields are defined by (2.5.17).

In the large λ limit, stringy effects are ignored, and one can approximate the

string partition function by exp(−SSUGRA), where SSUGRA is the supergravity action,

and so (2.5.22) becomes,

W [φ0
∆] ' extrSSUGRA[φ∆]. (2.5.23)

One can apply this prescription to obtain the 2-point correlation function of oper-

ators O∆(~x) in N = 4 SYM. More specifically we use the AdS bulk-to-boundary

propagator and extract the z∆ behaviour as z → 0, giving

〈O(~z)O(~u)〉 = lim
z→0

z−∆K∆(~z, z, ~u) = C∆(2∆− 2)
1

|~z − ~u|2∆
. (2.5.24)

This result is what one would expect from the conformal invariance of the CFT with

operators having conformal dimension ∆.

2.5.5 The Correspondence at Finite Temperature

We arrived at the correspondence between N = 4 SYM and gravity in AdS5×S5 by

taking the near horizon limit of the extremal D3-brane solution. If one applies the
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same procedure to the non-extremal case we find the solution is at finite temperature.

If we consider the action in equation (2.3.1), find a non-extremal spherically

symmetric solution, and take the near-horizon limit r � r± at p = 3. Then the

resulting metric, written in AdS Poincaré coordinates, is given by

ds2 = R2

(
−h(z) dt2 + h(z)−1dz2 + d~x2

z2
+ dΩ2

5

)
, (2.5.25)

where

h(z) = 1− (z/z+)4, z+ = (πT )−1. (2.5.26)

This is the planar black hole in AdS5 times a five-sphere. It is a particular limit of

the AdS-Schwarzschild black hole (AdSBH), which we shall now describe.

The AdSBH is a d ≥ 3 dimensional, two-parameter family of solutions, given by

the size of the black hole (the horizon radius r+) and the AdS radius R. The metric

for AdSBH in d+ 2 dimensions, with topology R2 × Sd−1, is written in global AdS

coordinates by,

ds2 = −f(r) dt2+
dr2

f(r)
+r2dΩ2

d, where f(r) = 1+
r2

R2
−r

d−1
+

rd−1

(
1 +

r2
+

R2

)
, (2.5.27)

which solves the vacuum Einstein equations with a negative cosmological constant

Rµν = Λgµν , Λ = −d(d+ 1)

2R2
, (2.5.28)

and has mass (in Planck units)

M = Vol(Sd)
rd+(d− 1)

16π

(
1 +

r2
+

R2

)
. (2.5.29)

Black holes are thermodynamic objects, and the AdSBH is no different. Via the

usual procedure of Wick rotating to a Euclidean time tE = it, and demanding that

the geometry in the near-horizon limit be smooth, the temperature of the black hole

is given by the period β of tE as

T =
1

β
=
r2

+d+R2(d− 1)

4πR2r+

. (2.5.30)
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T (r+) or equivalently T (M) has a minimum at r+ =
√

(d− 1)/(d+ 1)R given by,

Tmin =

√
(d+ 1)(d− 1)

2πR
. (2.5.31)

For r+ <
√

(d− 1)/(d+ 1)R, the specific heat C = ∂M/∂T of the black hole is

negative, which means the black hole is thermodynamically unstable. This is known

as the small AdSBH. For r+ >
√

(d− 1)/(d+ 1)R, where M is large, has C > 0,

and so is thermodynamically stable. This is known as the large AdS black hole. If

we take r+ � R, and make the coordinate transformation z = R2/r, we reproduce

the planar black hole given in equation (2.5.25).

It was proposed by Maldacena [43] that there is a dual non-perturbative descrip-

tion of the maximally extended version of the AdSBH spacetime. From AdS/CFT,

when we are given a particular asymptotically AdS spacetime, we know there is a

holographic dual CFT in a particular state. If we let H = H1 ×H2 be the Hilbert

space consisting of two copies of the associated CFT labelled by 1, 2. The wave

function |Ψ〉 ∈ H is given by

|Ψ〉 =
1√
Z(β)

∑
n

e−βEn/2|En〉1 ⊗ |En〉2, (2.5.32)

where |En〉 are the energy eigenstates of the two copies of the CFT and Z(β) is the

partition function of one copy of the CFT at temperature β−1, then it was argued

that

Conjecture 2.3 Two copies of the CFT in the particular pure (entangled) state

given by (2.5.32), is approximately described by gravity on the extended AdSBH

spacetime [43].

2.6 Probing the Bulk

Examining the 2-point function given in (2.5.24), we see that it is singular when

|~z − ~u|2 = 0, i.e. when the boundary points are null separated. From properties

of pure AdS spacetimes, we know that all boundary-to-boundary null geodesics end
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at the same point, including those coinciding with the light cone of the boundary

manifold. Thus, we can assert that in pure AdS spacetimes, a boundary correlation

function G(~x, ~x′) = 〈O(~x)O(~x′)〉 is singular if there is a null geodesic connecting ~x

and ~y. It is then natural to investigate properties of 2-point functions in the case

of more general asymptotically AdS spacetimes, more specifically those containing

a singularity. This is useful in the context of quantum gravity where one would

like to understand the physics inside the horizon of black holes. Much work has

been done in this fashion by considering boundary-to-boundary geodesic probes

with endpoints connected by boundary correlators [53–55, 65, 85]. In particular, by

considering nearly-null spacelike boundary-to-boundary geodesics in eternal AdSBH

spacetimes, it was shown [52] that the boundary CFT correlators contain “light-

cone” like singularities. Motivated by this, one can consider whether correlators have

similar properties for null geodesics in perturbed asymptotically AdS spacetimes.

Such analysis leads to additional singularities called “bulk-cone singularities”, as

the following argument taken from [58] will imply.

In the large λ, N → ∞ limit of AdS/CFT, where the bulk theory reduces to a

classical Einstein-Hilbert action (see §2.5.2), one can define the boundary correla-

tion function G(x, x′) in terms of the bulk propagator G(x, r;x′, r′) in global AdS

coordinates (see §2.4), in a similar way to (2.5.24) as

G(x, x′) = 2ν lim
r,r′→∞

(rr′)∆G(x, r;x′, r′), (2.6.1)

where the gauge invariant operators O(x) have conformal dimension ∆, and are dual

to free scalar field of mass m living in a d+ 1 dimensional bulk where

∆ =
d

2
+ ν, ν =

√
m2 +

d2

4
. (2.6.2)

We now want to determine the behaviour of G(x, x′) from G(x, r;x′, r′) given x and

x′ are null separated in the bulk.

In the limit of large m so that ∆ ∼ m (from (2.5.16)), one can regularise the bulk

propagator by introducing a cut-off surface r = r′ = Λ→∞. Then, if one considers

two spacelike separated points A = (x,Λ) and B = (x′,Λ) on the cut-off surface, the
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behaviour of G(A,B) in the semi classical WKB approximation (see [53]) is given

by

G(A,B) ∝ e−md(A,B), (2.6.3)

where d(A,B) is the proper distance between A and B in the bulk.

If one considers some point C(x′′,Λ) where x′′ is in the neighbourhood of x′ on

the boundary and using (2.6.1), then

G(x, x′) = lim
x′′→x′

G(x, x′′) ∼ 2m
1

(δx2)m
, (2.6.4)

where δx is the proper distance between x and x′ on the boundary.

And soG(~x, ~x′) = 〈O(~x)O(~x′)〉 is singular if there exists null geodesics connecting

x and x′. Thus, boundary-to-boundary null geodesics with endpoints ~x and ~x′ in

asymptotically AdS spacetimes can be divided into two types, ones that lie on the

boundary (Type A) and those that enter the bulk (Type B). Type A null geodesics

give rise to the standard light-cone singularities of G(~x, ~x′). Type B null geodesics

for perturbed AdS spacetimes give rise to additional singularities of G(~x, ~x′), such

singularities are called “bulk-cone singularities”. It is precisely this relationship that

will be used in the following chapters to determine the geometry of certain perturbed

asymptotically AdS spacetimes.

2.7 Entanglement Entropy

In this final section of chapter 2, we motivate the second important result which will

be used in the following chapters. In contrast to §2.6, where one was focused on the

properties of correlation functions of local operators in the CFT, here we find that

properties of non-local quantities are equally useful in probing the bulk. We have

already seen in §2.5.5 that the entropy of the AdSBH has a holographic dual in the

entanglement entropy of two copies of the boundary CFT. So entanglement entropy

might provide such a quantity from which one can can find a certain holographic

dual. This is what will be shown below after first introducing entanglement entropy

more formally.
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Consider a quantum mechanical system at zero temperature. The total quantum

system is described by the pure ground state |Ψ〉. The density matrix is then given

by the pure state

ρ = |Ψ〉〈Ψ|. (2.7.1)

The von Neumann entropy is the quantum extension of the classical statistical en-

tropy and is given in terms of the density matrix of a system as

S(ρ) = −tr(ρ log ρ). (2.7.2)

In the case of a pure state, the entropy is zero.

The concept of entanglement entropy provides a way of expressing how closely

entangled a subsystem is with the other subsystems. More specifically, consider

dividing the total system into two subsystems A and B. The total Hilbert space can

be written as a direct product of two spaces H = HA ⊗ HB corresponding to the

subsystems A and B respectively. The reduced density matrix for the subsystem A

is defined by tracing of the degrees of freedom in subsystem B giving

ρA = trBρ. (2.7.3)

The entanglement entropy of the subsystemA is defined as the von Neumann entropy

of the reduced density matrix ρA

SA = −trA(ρA log ρA). (2.7.4)

One can immediately apply such a concept to a QFT defined on a d+1 dimensional

spacetime manifold ∂M living on the boundary of a bulk gravitational theory with

d+2 dimensional asymptotically AdS spacetime M with conformal boundary ∂M a

la AdS/CFT. Assume that ∂M allows the foliation by d dimensional spacelike time-

slices ∂Nt as ∂M =
∏

t ∂Nt×Rt. Consider a subsystem At ⊂ ∂Nt at a fixed time t.

Denote the complement of At with respect to ∂Nt by Bt such that At ∪ Bt = ∂Nt.
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Then the entanglement entropy of At is given in a similar way as

SAt(t) = −tr(ρAt(t) log ρAt(t)). (2.7.5)

Consider the case of a static system such that At = A. One can then calculate the

entanglement entropy associated with the region A. For an ordinary QFT, there

are infinitely many degrees of freedom, thus the entanglement entropy suffers from

ultraviolet divergences. These can be regulated by introducing a lattice spacing a.

Then SA is proportional to the area of the boundary ∂A of the subsystem A as

follows

SA = α
Area(∂A)

ad−1
+ sub-leading terms. (2.7.6)

Since the AdS/CFT correspondence relates physical quantities in the bulk to phys-

ical quantities on the boundary, it is natural to consider if there is a geometrical

representation in the bulk of the boundary entanglement entropy. This was found

to be the case in [61, 62]. We note that the foliation of the boundary manifold ∂M

by spacelike time-slices ∂Nt can be extended into the bulk, due to the existence

of a timelike Killing field, such that the bulk manifold M is foliated by spacelike

time-slices Nt giving M =
∏

tNt × Rt. If we consider the case of a static system

again, we can construct a minimal surface γA in the bulk which ends on ∂A ⊂ ∂N .

This is then related to the entanglement entropy associated with region A via the

formula

SA =
Area(γA)

4Gd+2
N

, (2.7.7)

where Gd+2
N is the d+ 2 dimensional Newton constant.

Motivated by the Bousso’s bound (2.5.6), the authors of [63] made the above

statement fully covariant

SA(t) =
Area(γA(t))

4Gd+2
N

, (2.7.8)

where γA(t) is the extremal surface in the entire Lorentzian spacetime M with

boundary condition ∂γA(t) = ∂A(t).

We will see in chapters four and five how the holographic entanglement entropy

proposal can be used to extract information of bulk geometries.



Chapter 3

Recovering the Bulk I

This chapter is the author’s original work based on [1].

In chapter two, we motivated two main results using AdS/CFT, namely the exis-

tence of bulk-cone singularities, and the holographic interpretation of entanglement

entropy. Using such results, and motivated by the discussion in chapter one, it is

natural to consider how much information of the bulk spacetime can be determined

given boundary CFT data. More specifically, this and the remaining chapters will

be concerned with the following question:

Given a d-dimensional boundary CFT where one has knowledge of the location

of its singular boundary correlators and knowledge of its entanglement entropy for

certain subsystems of the boundary CFT, can one determine the bulk geometry of

the d+ 1-dimensional perturbed asymptotically AdS spacetime dual to this CFT?

In this chapter, we consider a limiting version of the above question, where one

has knowledge of the location of the bulk-cone singularities only. To answer such a

question, one must first build up the framework upon which the question is to be

analysed. As was stated in §2.6, bulk-cone singularities arise in boundary correlators

when they are connected by Type B boundary-to-boundary null geodesics, and so

it is necessary to describe the properties of such objects.

57
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3.1 Boundary-to-Boundary Null Geodesics in AdS

As with most problems in GR, we begin with a metric. We consider a minimal

generalised version of the metric of AdS space in global coordinates (see equation

(2.4.7)), which corresponds to a class of static, asymptotically AdS metrics with

spherical symmetry, given in (d+ 2)−dimensions as

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

d. (3.1.1)

f(r) is a well behaved real function of one variable and we recover AdS space when

we set f(r) = 1 + (r/R)2, where R is the AdS radius. In general, this spacetime is

asymptotically AdS, which requires the condition for r →∞,

f(r)→ r2

R2
+ 1 +O

(
1

rd−1

)
. (3.1.2)

The main example of a solution to Einstein’s equations which satisfy such a condition

is the AdS black hole in d+ 2-dimensions, given in equation (2.5.27).

To simplify the problem of solving for the null geodesic equations of motion,

we use spherical symmetry to pick a particular spatial plane on which the null

geodesics live. A helpful choice is the equatorial plane, where {θ1, θ2, · · · , θd} =

{φ, π/2, · · · , π/2} (using the coordinate set given in (2.4.5)). Then the equations of

motion for t and φ yield 2 constants of motion

ṫ f(r) = E and r2φ̇ = J, (3.1.3)

where ẋ = dx
dλ

and λ is the affine parameter.

For null trajectories, ds = 0, thus the equation of motion for r is given by

ṙ2 = E2 − f(r) J2

r2
. (3.1.4)

By redefining the affine parameter Jλ→ λ, we can just consider the ratio α = E
J

to
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parametrise the null trajectories. Thus, the geodesic equations of motion become

ṫ =
α

f(r)
, φ̇ =

1

r2
, ṙ2 = α2 − V (r), (3.1.5)

where V (r) = f(r)/r2 is the effective potential in the radial direction.

This gives us two equations of motion

dt

dr
=

α

f(r)
√
α2 − V (r)

and
dφ

dr
=

1

r2
√
α2 − V (r)

. (3.1.6)

Now we can quantify the location of the singularities of the correlation functions

in the CFT in terms of the boundary coordinates of the bulk metric. Considering

the metric given by equation (3.1.1), we see that these quantities can be described

in terms of a function ∆φ(∆t), where if G(x, x′) is some singular correlator on the

equatorial plane between the points x = (t, φ) and x′ = (t′, φ′), then ∆t = t′ − t

and ∆φ = φ′ − φ. Given that the quantities ∆φ and ∆t are also the location of the

endpoints of boundary-to-boundary null geodesics of the bulk metric, one can also

express them in terms of the geometry of the bulk. Thus using the null geodesic

equations of motion, we have

∆t(α) = 2

∫ ∞
rmin(α)

α dr

f(r)
√
α2 − V (r)

, (3.1.7)

and

∆φ(α) = 2

∫ ∞
rmin(α)

dr

r2
√
α2 − V (r)

, (3.1.8)

where α = E/J parametrises the null geodesics, and rmin(α) is the minimum radius

that the null geodesic, with angular momentum J = E/α, reaches into the bulk.

The factor of 2 comes from the fact that the null trajectory goes from the boundary,

down to the minimum value rmin(α), then back to the boundary at r =∞.

For AdS space where f(r) = 1+r2/R2, integrals (3.1.7) and (3.1.8) can be solved

to find that ∆t(α) = Rπ and ∆φ(α) = π with rmin(α) = 1/
√
α2 − 1/R2. Thus all

boundary-to-boundary null geodesics in AdS space with radius R which start at

the same point, end at the same point. The same will be shown not to be true for
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perturbed asymptotically AdS spacetimes.

Now we can quantify the distinction between Type A and Type B boundary-to-

boundary null geodesics referred to in §2.6. Type A geodesics sit on the boundary

at r =∞, and so from (3.1.5) and condition (3.1.2), we have αA = 1/R. For Type

B geodesics, we have αB > 1/R since ṙ2 > 0. The upper bound on αB is set by

the radius of null circular orbits, rm, for which null geodesics going inside such a

radius will not return to the boundary. The quantity rm is defined by the global

maximum of the potential, i.e. where rm is the smallest real root of V ′(r) = 0. Then

using (3.1.5), the upper bound is given by
√
V (rm), and so αB ∈ (1/R,

√
V (rm)).

See figure 3.1 to see the trajectories of boundary-to-boundary null geodesics in a

spacetime containing null circular orbits. Of course for spacetimes where the global

maximum is infinity, such as AdS space, there is no upper bound on αB. Since

0 r+ rm ¥

r+ rm R ¥
r0

Π

2 Π

t

Figure 3.1: These are 2-dimensional plots of boundary-to-boundary null geodesics
in a small AdS-black hole geometry with metric given by (3.1.1) with f(r) =
1 + r2− 0.1/r2, where d− 1 angular directions have been projected out. To plot the
null trajectories, the spacetime has been compactified using the coordinate trans-
formation r = tan(r̃), thus the boundary is a timelike cylinder with radius r̃ = π

2
.

The left figure illustrates the quantity ∆φ(α) via projection of the null geodesics
on the r-φ plane at constant t. The right figure illustrates the quantity ∆t(α) via
projection of the null geodesics on the r-t plane, where α = E

J
parametrises the null

curves.

α is purely a bulk quantity, expressions (3.1.7) and (3.1.8) do not yet provide a

relationship between the data in the CFT and the geometry of the bulk. But it

can be shown [1, 59] that one can relate the bulk quantity α with the boundary
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Π 1.5Π 2 Π 2.5Π
DΦΠ

1.5Π

2 Π

2.5Π

Dt

Figure 3.2: This is a plot of ∆t(∆φ) for the AdSBH given in (3.1.1) with d = 3
and f(r) = 1 + r2 − µ/r2. The dashed curve ∆t = ∆φ is the Type A boundary
null geodesic. The blue curve represents the spacetime depicted in figure 3.1 with
µ = 0.1. The purple, green and red curves correspond to µ = 0.2, 0.05, and 0.01
respectively. We see that all curves converge to the AdS solution ∆t = ∆φ = π as
α→ 1, and that ∆t < ∆φ for α > 1.

quantities ∆φ and ∆t.

Starting with equations (3.1.7) and (3.1.8), we introduce a regulator at r = Λ→

∞, such that one can compare divergent peices of the derivatives. Multiplying each

term top and bottom by V ′(r), we have

∆t(α) = 2 lim
Λ→∞

(∫ Λ

rmin

αV ′(r)

V (r)
√
α2 − V (r)

dr

r2V ′(r)

)
, (3.1.9)

and

∆φ(α) = 2 lim
Λ→∞

(∫ Λ

rmin(α)

V ′(r)√
α2 − V (r)

dr

r2V ′(r)

)
. (3.1.10)

Integrating both expressions by parts, we have

∆t(α) = − 4 lim
Λ→∞

[
arctanh

(√
α2 − V (r)

α

)
1

r2V ′(r)

]Λ

rmin(α)

+ 4 lim
Λ→∞

∫ Λ

rmin(α)

arctanh

(√
α2 − V (r)

α

)(
1

r2V ′(r)

)′
dr,(3.1.11)
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and

∆φ(α) = − 4 lim
Λ→∞

[√
α2 − V (r)

1

r2V ′(r)

]Λ

rmin(α)

+ 4 lim
Λ→∞

∫ Λ

rmin(α)

√
α2 − V (r)

(
1

r2V ′(r)

)′
dr. (3.1.12)

Using the fact that V (rmin(α)) = α2, we see that the boundary terms at rmin(α)

vanish. Now taking derivatives with respect to α yields

∆t′(α) = − 4 lim
Λ→∞

(
1√

α2 − V (Λ)

1

Λ2V ′(Λ)

)

+ 4 lim
Λ→∞

∫ Λ

rmin(α)

1√
α2 − V (r)

(
1

r2V ′(r)

)′
dr, (3.1.13)

and

∆φ′(α) = − 4α lim
Λ→∞

(
1√

α2 − V (Λ)

1

Λ2V ′(Λ)

)

+ 4α lim
Λ→∞

∫ Λ

rmin(α)

1√
α2 − V (r)

(
1

r2V ′(r)

)′
dr, (3.1.14)

where primed functions are partial derivatives with respect to α. We have utilised

the Leibniz rule where if a(α), b(α), c(α, r) are continuous, well behaved functions,

then

a(α) =

∫ ∞
b(α)

c(α, r) dr

⇒ a′(α) = −b′(α) c(α, b(α)) +

∫ ∞
b(α)

c′(α, r) dr. (3.1.15)

By identifying the limits of (3.1.13) and (3.1.14), we can write

∆φ′(α) = α∆t′(α), (3.1.16)

which can be rewritten in terms of the function ∆t(∆φ) as

d∆t(∆φ)

d∆φ
=

1

α
. (3.1.17)
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For Type A geodesics, we know that αA = 1/R, and so using (3.1.17) we have

∆tA(∆φA) = R∆φA. Note that ∆tA(π) = Rπ, which is consistent with the pure

AdS result. For Type B geodesics, αB > 1/R, and so ∆tB < R∆φB ∀αB (see figure

3.2).

Through equation (3.1.17), we have found a way to relate the bulk parameter α

to the boundary parameters ∆φ and ∆t, and so equations (3.1.7) and (3.1.8) indeed

become relationships between purely bulk data and purely boundary data. Thus

these are the equations we need to use to find an expression for f(r) and thus the

metric itself.

3.2 Solving for the Metric

Given that we know ∆t(α) and ∆φ(α) from boundary data, we can now proceed to

solve for f(r) given equation (3.1.8)1.

The extraction of f(r) is complicated by the fact that equation (3.1.8) is non-

linear in f(r). Non-linearity in any type of equation makes finding an analytical

solution much harder, so it would be useful to find a quantity which is linear in the

integrand and invert that instead. This can be done by identifying a linear equation

which control the trajectory of the null geodesics. Such an equation is the “energy

equation” taken from (3.1.5)

ṙ2 + V (r) = α2. (3.2.1)

Instead of integrating over the variable r, let us perform a substitution to integrate

over the variable V = V (r) instead. If we let rmin(α) = x, we see an immediate

simplification for the expression of ∆φ(α),

∆φ(x) = 2

∫ ∞
x

dr

r2
√
V (x)− V (r)

. (3.2.2)

1one can equally well use equation (3.1.7) for this purpose but (3.1.8) is a slightly simpler
expression so we will choose this one
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Now if we perform the substitution V (r) = V , and integrate over V , we have

∆φ(x) =

∫ V (x)

V (∞)

p(V ) dV√
V (x)− V

, where p(V ) = −2
dr(V )

dV

1

r(V )2
. (3.2.3)

We can now see that the integrand is linear in p(V ). To make the integral easier to

digest, we let V (x) = Vmax, and applying the asymptotically AdS condition (3.1.2),

we have

∆φ(Vmax) =

∫ Vmax

1/R2

p(V ) dV√
Vmax − V

. (3.2.4)

It is first noted that equation (3.2.4) is an integral equation of the first kind. The

simplest equation of this type is a(x) =
∫ x

0
b(r) dr, which has the trivial solution

b(r) = a′(r). More precisely, equation (3.2.4) is a Volterra equation of the First

Kind. It is a particular form of Abel’s equation [86] (see Appendix A), which is of

the form ∫ x

a

y(t)√
x− t

dt = f(x), (3.2.5)

with solution,

y(t) =
1

π

d

dt

∫ t

a

f(x) dx√
t− x

. (3.2.6)

Applying this to equation (3.2.4), we have,

p(V ) =
1

π

d

dV

∫ V

1/R2

∆φ(Vmax) dVmax√
V − Vmax

. (3.2.7)

Now substituting back in for the original variables,

−2
dr

dV
r−2 =

2

π

d

dV

∫ √V
1/R

α∆φ(α)√
V − α2

dα. (3.2.8)

Integrating up, and applying the boundary conditions V (r) = V and V (∞) = 1/R2,

we finally arrive with,

∫ √V (r)

1/R

α∆φ(α)√
V (r)− α2

dα− π

r
= 0. (3.2.9)

Thus, given the location of the endpoints of null geodesics by the function ∆t(∆φ),



3.3. Analysing the Extraction 65

one can find ∆φ(α) using equation (3.1.17), and in principle, solve for the metric

function2 f(r) = r2V (r) using (3.2.9). In the next section, we will define what we

mean by “in principle” by analysing the method of extraction using test functions.

3.3 Analysing the Extraction

Before considering the limits of the extraction method, it is useful to check the

validity of (3.2.9) in simple cases where ∆φ(α) is known, namely AdS space.

Given f(r) = 1 + r2/R2, we know that ∆φ(α) = π. So substituting this result

into (3.2.9) we have,

∫ √V (r)

1/R

α√
V (r)− α2

dα =
1

r

⇒
√
V (r)− 1

R2
=

1

r

⇒ f(r) = r2 V (r) = 1 +
r2

R2
. (3.3.1)

Thus (3.2.9) has reproduced the the known result for pure AdS space.

We can also test the extraction for a known perturbed AdS solution, namely the

AdSBH. In this case we take the metric in (3.1.1) with f(r) = 1 + r2 − 0.1/r2 (see

figure 3.1), use this to find a numerical solution for ∆φ(α), and then numerically

solve for V (r) = f(r)/r2 using (3.2.9). The result is shown in figure 3.3. Here we find

the first limitation of the extraction method outlined in the previous section. We see

that the spacetime can only be probed down to the radius of null geodesics rm. This

makes sense as Type B geodesics do not exist for α < αm, where3 αm =
√
V (rm).

Now we can analyse the extraction for a more general type of function V (r). We

2One can use the same method to recover f(r) using ∆t(α) instead via equation (3.1.7). In this
case, using the same inversion techniques, we find

V (r)
∫ √V (r)

1/R

∆t(α)√
V (r)− α2

dα− 2
∫ √V (r)

1/R

∆t(α)
√
V (r)− α2 dα− π

r
= 0 (3.2.10)

3see the argument in §3.1
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Figure 3.3: This is a plot of V (r) = 1+1/r2−0.1/r4 (blue), compared with the data
extracted using (3.2.9) (red). The dashed line is pure AdS. Notice the spacetime
can only be extracted up to the maximum of the potential at rm =

√
0.2.

do this by adding some Gaussian “bumps” to an AdSBH solution so that

V (r) =
f(r)

r2
= 1 +

1

r2
− 1

5r4
+

3∑
i=1

Ai√
2πσi

e
− (r−µi)

2

2σi
2 , (3.3.2)

where Ai = (0.05, 0.03, 0.1), µi = (1, 1.3, 2) and σi = (0.1, 0.1, 0.3). The extracted

data is given in figure 3.4. Again, we have the same limitation that the metric can

only be determined down to rm. This is only true if V (r) is monotonically decreasing

for r > rm, if there are additional local maxima, then the range of r for which f can

be extracted is more complicated. This is illustrated in figure 3.5.

3.4 The Series Solution

Now that we have the expression (3.2.10) for the metric function f(r) in terms of

∆φ(α), we can now start to look for general examples where the integral in equation

(3.2.9) can be solved analytically in the form of a series solution. In this section we

explore the limitations of such a process.



3.4. The Series Solution 67

0 1 2 3
r

1.5

2

VHrL

Figure 3.4: This is a plot of V (r) given in (3.3.2) (blue), compared with the data
extracted using (3.2.9) (red). The dashed line is pure AdS. Notice the spacetime
can only be extracted up to the maximum of the potential at rm =

√
0.4.

Α

0 rm R 2 R 3 R
rR-2

2R-2

3R-2

4R-2

5R-2

Αm
2

VHrL

Figure 3.5: This figure illustrates how much of the domain of the metric f(r) can
be recovered by firing null geodesic probes from the boundary (shown here by the
parallel red lines), for a potential V (r) = r2f(r) (plotted in blue) with multiple
maxima. The turning points of the null geodesics are shown by the thick red lines.
We see that the presence of the maxima causes the null probes to “miss” parts of
the spacetime, thus restricting the domain of f which can be recovered.
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3.4.1 The Method

Given a generic function ∆φ(α) which describes a perturbed AdS spacetime, we

can always expand about the pure AdS solution ∆φ(α) = π in a power series by

introducing a parameter ε > 0 such that

∆φ(α) = π + π

∞∑
n=1

anε
n(α2 − 1/R2)n/2. (3.4.1)

The parameter ε is a bookkeeping tool to count the order of the perturbation, but

its value is unimportant and will eventually be set to 1.

From the energy equation of null geodesics,

ṙ2 + V (r) = α2, (3.4.2)

we have the boundary values α → 1
R

as r → ∞, and so equation (3.4.1) has the

correct boundary behaviour ∆φ(1/R) = π, since all boundary null geodesics end at

the antipodal point.

We can then ansatz a power series solution

V (r) =
1

r2
+

1

R2
+
∞∑
n=1

εnVn(r), (3.4.3)

where we have expanded about the pure AdS potential
1

r2
+

1

R2
in powers of ε. To

have the correct AdS asymptotics (see (3.1.2)), Vn(r) ∼ O(1/rd+1+n) for large r,

where d+ 2 is the dimension of the spacetime.

One can now solve for the the functions Vn(r) by substituting (3.4.1) and (3.4.3)

into (3.2.9), and solving order by order in powers of ε.

Substituting (3.4.1) into (3.2.9) and solving the integral, we have

√
V (r)− 1

R2
+

√
π

2

∞∑
n=1

anε
nΓ(2+n

2
)

Γ(3+n
2

)

(
V (r)− 1

R2

)n+1
2

=
1

r
. (3.4.4)

Now substituting in the series (3.4.3), and performing a Taylor series expansion

about ε = 0, we can solve for the functions Vn(r) order by order in powers of ε. The
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first terms in the series are given by,

V1(r) = −π
2
a1

1

r3
,

V2(r) =

(
5π2

16
a2

1 −
4

3
a2

)
1

r4
,

V3(r) = −π
(

7π2

32
a3

1 − 2a1a2 +
3

8
a3

)
1

r5
,

...

Vn(r) =
bn(a1, a2, · · · , an)

rn+2
. (3.4.5)

By setting ε = 1, we have the metric given as a power series solution,

f(r) =
r2

R2
+ 1 +

∞∑
n=1

bn
rn
. (3.4.6)

The range of values of r for which (3.4.6) is a good approximation of the actual

geometry is determined by the convergence of the power series. Using the ratio test

for convergence, we find the range of validity

rc < r <∞, (3.4.7)

where rc = limn→∞ | bn+1

bn
| is the radius of convergence.

Thus, given any boundary data for which the function ∆φ(α) which can be writ-

ten as the series of the form (3.4.1), one can determine the geometry of the perturbed

AdS bulk with metric (3.1.1), over the region (3.4.7) to good approximation.

3.4.2 An Example: the “star” geometry

In §3.4.1, we described the general method for determining f(r) as a series solution.

In this section we will check the results with a known solution that behaves like the

interior of a star4.

4The geometry described here is a simplified version of the “star” geometry considered in [58],
where we have let the metric depend on one function only. See the referenced paper for an analysis
of the full geometry
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A class of boundary functions which model the angular separation of the end-

points of Type B null geodesics in star geometries is given by (see fig 3.6)

∆φ(α) = π + A

√
α2 − 1

R2
exp

(
−B
√
α2 − 1

R2

)
, (3.4.8)

where R is the AdS radius, and A,B are arbitrary positive constants.

By performing a Taylor series expansion of (3.4.8) about
√
α2 − 1/R2 = 0, we

can reproduce the form of ∆φ given in (3.4.1) with ε = 1 and an = A
π

(−B)n−1

(n−1)!
.

One can then immediately use the method in the previous section to determine the

constants bn, such that the star metric f(r) can be written as a series solution.

The series solution is compared with the numerical solution for the specific case of

(3.4.8) in figure 3.7. It illustrates that one can extract the metric function f(r)

perturbatively to high enough orders as long as the series is convergent. Given that

the range of convergence is given by (3.4.7), and from the analysis of figure 3.8,

we can make the approximation that limn→∞ | bn+1

bn
| ∼ A(1 + B), the perturbation

extraction using (3.4.8) is valid for

A(1 +B) . r <∞. (3.4.9)

3.4.3 Recovering the AdSBH Solution

An alternative approach to check the consistency of the perturbation is to start with

a known metric function and recover the boundary function which reproduces it as

a series. This can then be compared with the numerical result.

The AdSBH in d+ 1 dimensions (d > 2) has metric (3.1.1), where

f(r) =
r2

R2
+ 1− rd−2

+

rd−2

(
1 +

r2
+

R2

)
. (3.4.10)

Comparing this with (3.4.6), we can match the terms by setting bn 6=d−2 = 0. This

is achieved perturbatively by setting a1<n<d−2 = 0 and picking an>d−2 such that
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Figure 3.6: To the left is a plot of ∆φ given in (3.4.8) for A = R = 1 and B =
{0.2, 0.3, 0.5, 1}. We see the correct boundary behaviour where ∆φ(1) = π. We
also notice that as α → ∞, ∆φ → π. This represents the behaviour of radial null
geodesics where J → 0. To the right is a plot of ∆t(∆φ) by using the relation
(3.1.17) on the ∆φ(α) curves in the left plot. The dashed curve is the Type A null
boundary curve ∆t = ∆φ. We see as ∆t,∆φ→ π we recover the behaviour of Type
A boundary null geodesics. For radial null geodesics we see a shift in ∆t due to the
presence of matter in the bulk. These plots are very similar to the full star geometry,
and so we are justified in using the expression for ∆φ(α) given in (3.4.8)

bn>d−2 = 0. Using the results in section 3.4.1, and setting ε = 1 as before, we have

f(r) =
r2

R2
+ 1 +

bd−2

rd−2
, (3.4.11)

where

bd−2 = −ad−2

√
π

Γ(d
2
)

Γ(d+1
2

)
. (3.4.12)

Comparing with the AdSBH metric, we have

ad−2 =
rd−2

+√
π

Γ(d+1
2

)

Γ(d
2
)

(
1 +

r2
+

R2

)
. (3.4.13)

The other non-zero coefficients such that bn6=d−2 = 0 are ap(d−2) where p ∈ N. The
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Figure 3.7: Here we compare the perturbative solution of (3.4.6) given the boundary
function ∆φ in (3.4.1) with A = 0.5 and B = 0.1, to the actual geometry solved
numerically (shown in black). The order n of the perturbation is given by (n = 1) =
Purple, (n = 2) = Blue, (n = 10) = Green, (n = 25) = Red. The pure AdS metric
with radius R = 1 is given by the dashed line. We see that for r � R, all solutions
tend to the AdS solution, which must be true by construction. For increasing order
n, the series solution converges to the numerical solution for r & 0.6.
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Figure 3.8: This plot shows the absolute value of the ratio of coefficients bn+1/bn of
the series (3.4.6) for increasing number of terms n. The series shown in figure 3.7
is represented by the red points, with similar series solutions given by (A = 1, B =
0.1) = Blue, (A = 1, B = 0.2) = Yellow, (A = 1, B = 1) = Green. We see that
the quantity limn→∞ | bn+1

bn
| exists for all values of A and B, where limn→∞ | bn+1

bn
| ∼

A(1 +B).
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first few are given by,

a2(d−2) =
(2d− 1)

4

r
2(d−2)
+√
π

Γ(2d−1
2

)

Γ(d− 1)

(
1 +

r2
+

R2

)2

,

a3(d−2) =
(1− 4d+ 3d2)

8

r
3(d−2)
+√
π

Γ(3d−3
2

)

Γ(3d−4
2

)

(
1 +

r2
+

R2

)3

,

...

ap(d−2) = Pp−1(d)
r
p(d−2)
+√
π

Γ(3+p(d−2)
2

)

Γ(2+p(d−2)
2

)

(
1 +

r2
+

R2

)p
, (3.4.14)

where Pp−1(d) is an order p− 1 polynomial in d.

Now we can determine the range of values of α for which the expansion of ∆φ(α)

given in (3.4.1) is convergent. Using the ratio test, we have

1

R2
< α2 <

1

R2
+ lim

p→∞

∣∣∣∣ ap(d−2)

a(p+1)(d−2)

∣∣∣∣ 2
d−2

. (3.4.15)

For large p, we can make the approximation Pp−1(d) ∼ (2d/3)p−1, so substituting

for the coefficients ap(d−2), the convergence condition reduces to

1

R
< α .

1

R

√
1 +

R2

r2
+

[
2d

3

(
1 +

r2
+

R2

)]− 2
d−2

. (3.4.16)

Thus for a small black hole where r+ < R, the range of α for which the series (3.4.1)

is a good approximation, is larger than for a large black hole where r+ > R. This

reflects the fact that for a large black hole, the geometry is more perturbed, so the

expansion around AdS will probe smaller distances away from the boundary. The

range of α is also limited by a physical upper bound set by the radius of null circular

orbits rm. Type B null geodesics entering the region r < rm do not return to the

boundary due to the presence of the singularity. In the specific case of the AdSBH,

rm is determined by the the global maximum of the potential V (r) = f(r)/r2, and

so
dV (r)

dr

∣∣∣
r=rm

= 0 ⇒ rm = r+

[
d

2

(
1 +

r2
+

R2

)] 1
d−2

. (3.4.17)
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The value of α at r = rm is given by the energy condition,

α2
m = V (rm) =

1

R2
+

(
d− 2

d

)
1

r2
m

=
1

R2
+

(
d− 2

d

)
1

r2
+

[
d

2

(
1 +

r2
+

R2

)] 2
2−d

, (3.4.18)

and so the range of α which parametrises Type B null geodesics in a d+1 dimensional

AdSBH is given by

1

R
< α <

1

R

√
1 +

(
d− 2

d

)
R2

r2
+

[
d

2

(
1 +

r2
+

R2

)] 2
2−d

. (3.4.19)

And so, we see that the power series (3.4.1) is convergent for the entire physical

range of α when

1

R

√
1 +

(
d− 2

d

)
R2

r2
+

[
d

2

(
1 +

r2
+

R2

)] 2
2−d

.
1

R

√
1 +

R2

r2
+

[
2d

3

(
1 +

r2
+

R2

)]− 2
d−2

⇒ d & 2. (3.4.20)

This is illustrated in figure 3.9 for d = 3, 4.
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Figure 3.9: Here are graphs of ∆φ(α) given an AdSBH spacetime with metric f(r) =
1 + r2 − 0.1/rd−2 with d = 3 (left) and d = 4 (right). The numerical result is
shown in black and is compared with the perturbative solutions with increasing
order n = {1, 2, 5, 10, 20}. We see that for large enough orders, the series given in
(3.4.1) can recover the AdSBH metric up to the radius of null circular orbits rm = 3µ

2

for d = 3 and rm =
√

2µ for d = 4.
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3.5 Summary

In this chapter, we have shown how one can extract a special class of asymptotically

AdS metrics (3.1.1), given the location of singular correlation functions in the dual

boundary CFT. This was achieved via an integral inversion and was verified using

known cases. The limitations of such an extraction were discussed, and it was shown

that for spacetimes admitting a singularity at the origin, the metric function could

only be determined down to the radius of null circular orbits. Extracting the metric

as a series solution was also investigated, and a general method was discovered. This

was again tested using some known examples.

In the next chapter, we will investigate a more general class of spacetimes where

there are two unknown metric functions. In this case the knowledge the locus of

bulk-cone singularities expressed in terms of the location of the endpoints of Type

B null geodesics will not be enough to determine the metric. One will require the

knowledge of the entanglement entropy in special subsystems of the boundary CFT

as mentioned at the beginning of this chapter.



Chapter 4

Recovering the Bulk II

This chapter is the author’s original work based on [1].

In the previous chapter, we showed how to solve for a simple bulk metric (3.1.1),

given information of the location of singular correlators in the dual boundary CFT.

We then used this solution to probe the bulk spacetime given different functions of

the endpoints of null geodesics ∆t(∆φ). Building on the previous chapter, we can

now turn our attention to a more general class of spacetimes. As we will explain,

knowledge of the location of the endpoints of null geodesics alone will not be enough

to fully determine the metric. More information, in the form of the entanglement

entropy between two points on the boundary, will be required to recover the metric.

As with the example in the previous chapter, it will be modified forms of Abel’s

equation which are used for the inversion.

We begin with a class of metrics for static, spherically symmetric, asymptotically

AdS spacetimes, which is given in d+ 2 dimensions by

ds2 = −f(r) dt2 + h(r) dr2 + r2 dΩ2
d. (4.0.1)

This is a generalisation of (3.1.1) by including an additional real function h(r).

The main physical example of such a spacetime described by (4.0.1) is the “star”

geometry in AdS1.

1see [58] for more details

76
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The inclusion of another function’s worth of information requires a modifica-

tion to a number of results given in §3.1. Firstly, the requirement that (4.0.1) be

asymptotically AdS puts a condition on both metric functions, such that as r →∞,

f(r)

r2
,
r2

h(r)
→ 1

R2
+

1

r2
+O

(
1

rd+1

)
. (4.0.2)

The modified equations of motion become,

ṫ =
α

f(r)
, φ̇ =

1

r2
, and ṙ2 =

1

f(r)h(r)

[
α2 − f(r)

r2

]
. (4.0.3)

The time and angular separation of the endpoints of Type B geodesics in metric

(4.0.1) become

∆t(α) = 2

∫ ∞
rmin(α)

α
√
h(r)√

f(r) (α2 − V (r))
dr, (4.0.4)

and

∆φ(α) = 2

∫ ∞
rmin(α)

√
f(r)h(r)

r2
√
α2 − V (r)

dr, (4.0.5)

where V (r) = f(r)/r2 as in §3.1.

In addition, one finds by an analogous calculation to §3.1 that relation (3.1.17)

indeed holds in this case also. This means we can follow a similar procedure for

extracting f(r), though complicated by the fact that there is another undetermined

function h(r). We will provide an analytical method in this chapter for how one can

extract h(r) in the specific case of 2 + 1 dimensions. To show this, we need to first

understand the nature of boundary-to-boundary spacelike probes.

4.1 Boundary-to-Boundary Spacelike Geodesics in

AdS

In §2.7, it was shown that there is a relationship between the area of a minimal sur-

face γ and the entanglement entropy SA of static subsystem A in the dual boundary

CFT such that ∂γ = ∂A (see (2.7.7)). In the specific case of (2 + 1)−dimensional

bulk static spacetimes, the dual CFT is 1 + 1 dimensional, and so A reduces to a
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closed subset [φ1, φ2] ∈ S1, where φ is the angular coordinate in the bulk. In this

case, γ is a boundary-to-boundary zero energy spacelike geodesic connecting φ1 and

φ2. It then follows that the area of this minimal surface is just the proper length L

of the spacelike geodesic, where L depends on the angular separation ∆φ = φ2−φ1.

The (2 + 1)−dimensional Area/Entropy law is then given by,

SA =
L(∆φ)

4G
(3)
N

(4.1.1)

We will find that an expression for L for the bulk metric (4.0.1) can be obtained

using the function h(r) alone, and so given the entanglement entropy SA, one can,

in principle, solve for the metric function h(r).

To calculate an expression for L, we use the fact that the trajectory of spacelike

geodesics in spacetime (4.0.1) is described by the Lagrangian

L = −f(r) ṫ2 + h(r) ṙ2 + r2φ̇2 = ε,
dx

dλ
= ẋ, (4.1.2)

where ε > 0 and can be normalised to 1 by redefining the affine parameter λ.

In the specific case of zero energy boundary-to-boundary spacelike geodesics, we

have ṫ = 0, and so the spacelike geodesic equations become

h(r) ṙ2 + r2φ̇2 = 1 and r2φ̇ = J. (4.1.3)

Combining the two equations gives us

ṙ =

√
r2 − J2

h(r) r2
, (4.1.4)

where J is the angular momentum of the spacelike geodesic, and thus parametrises

their trajectory.

The definition of the proper length L for any path through a metric gµν is given

by

L =

∫ √
gµν ẋµẋν dλ. (4.1.5)
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From the definition of spacelike geodesics we know that L = 1, and so

L =

∫
dλ =

∫
dr

ṙ
. (4.1.6)

Since we are considering boundary-to-boundary spacelike probes, we can define a

minimum radius rmin(J), which the maximum radial distance the geodesic probes

the bulk before returning to the boundary. Since the minimum radius is defined by

the condition ṙ |rmin(J)= 0, (4.1.4) implies

rmin(J)2 − J2

h(rmin(J)) rmin(J)2
= 0

⇒ rmin(J) = J or h(rmin(J)) =∞. (4.1.7)

h(r) =∞ defines the event horizon for which zero energy spacelike geodesics cannot

cross, and so we have the relation rmin(J) = J .

Since the spacetime is asymptotically AdS, and the boundary of AdS space is

infinite, any proper length of geodesics ending on the boundary will be divergent.

To regulate L, we introduce a cut-off boundary at r = rb, thus defining the region

of integration rb ≥ r ≥ J . This procedure is valid due to the UV/IR connection,

where rb corresponds to a UV cut-off (or lattice spacing) a, in the dual CFT. The

relationship for large rb/R is given by

rb
R

=
L

2πa
, (4.1.8)

where R is the AdS radius and L is length of the compactified space in which the

CFT lives.

Putting this all together, the final expression for L is given by,

L(J) = 2

∫ rb

J

r

√
h(r)

r2 − J2
dr. (4.1.9)

Again, we find the same situation as in §3.1, namely that J is a bulk parameter and

so equation (4.1.9) is not yet a relationship between the boundary function L(∆φ)

and the metric function h(r). To achieve this, one can proceed in a similar manner
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to §3.1, and so taking a derivative with respect to J and using the Leibniz rule, we

have
d

dJ
L(J) = 2J lim

r→J

(
−
√

h(r)

r2 − J2
+

∫ rb

r

r̃
h(r̃)

(r̃2 − r2)
3
2

dr̃

)
. (4.1.10)

A definition for the angular separation of boundary-to-boundary spacelike geodesics

can be found from the geodesic equations,

dφ

dr
=

φ̇

ṙ
=
J

r

√
h(r)

r2 − J2
,

⇒ ∆φ(J) = 2

∫ rb

J

J

r

√
h(r)

r2 − J2
. (4.1.11)

Taking a derivative, we have,

d

dJ
∆φ(J) = 2 lim

r→J

(
−
√

h(r)

r2 − J2
+

∫ rb

r

r̃
h(r̃)

(r̃2 − r2)
3
2

dr̃

)
. (4.1.12)

Now comparing equations (4.1.10) and (4.1.12), we see that

d

dJ
L(J) = J

d

dJ
∆φ(J), (4.1.13)

which gives
d

d∆φ
L(∆φ) = J. (4.1.14)

Now from equation (4.1.14), we have a relationship between the CFT quantities

L (from the area/entropy law (2.7.7)) and ∆φ, and the bulk quantity J . Thus J

can be fully expressed in terms of boundary variables, which in turn implies that

the function L(J) can be recovered from boundary data alone. This means that

equation (4.1.9) does indeed relate boundary data to bulk data, and so can be used

to extract the bulk geometry given boundary information.
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0 ¥ 0 r+ ¥

Figure 4.1: These 2 dimensional polar plots illustrate the behaviour of zero energy
boundary-to-boundary spacelike geodesics in asymptotically AdS spacetimes given
by (4.0.1). Both boundaries are compactified onto a circle of radius π

2
via the

substitution r → arctan(r)(see equation (2.4.9)), and d − 1 spacial directions are
projected out. The left diagram is AdS space where h(r)−1 = 1 + r2. The geodesics
are parametrised by their angular momentum J and the set of geodesics J ∈ [0,∞)
cover the entire spacetime. Notice that the geodesics always meet the boundary at
a right-angles. The diagram on the right represents a black hole located at r = 0 in
an AdS background with metric function h(r)−1 = 1 + r2 − 3

4r2 . The spacetime has

an event horizon at r+ = 1/
√

2 which is shown here as the inner circle. Comparing
the two diagrams, we see that for large values of J , the geodesics are more or less
the same. But, as J → r+, the geodesics are deformed by the presence of the
singularity and begin to wrap around the horizon. Notice zero energy spacelike
geodesics cannot enter the black hole as they have no timelike component, and so
have no spacial extension inside the horizon. This means the set of zero energy
boundary-to-boundary spacelike geodesics J ∈ (r+,∞) only cover the same range
of r, since J is the minimum value of r.
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4.2 Extracting the Metric using Spacelike Probes

We can now proceed with extracting h(r) given L(∆φ) via the inversion of equation

(4.1.9).

Using the substitution y(r) = −2r
√
h(r), one finds that

L(J) =

∫ J

rb

y(r)√
r2 − J2

dr. (4.2.1)

Notice this is a linear integral equation and is in fact a modified version of Abel’s

equation (see Appendix A), which has solution,

y(r) = − 2

π

d

dr

∫ r

rb

JL(J)√
J2 − r2

dJ. (4.2.2)

Substituting back in for h(r), we have

h(r) =

(
1

rπ

d

dr

∫ r

rb

JL(J)√
J2 − r2

dJ

)2

. (4.2.3)

Now we can see that given a function’s worth of information of the proper length of

boundary-to-boundary spacelike geodesics, namely L(∆φ), one can recover a func-

tion’s worth of information about the metric, namely h(r).

We can check whether equation (4.2.3) is indeed valid by considering some known

cases where we have an explicit expression for SA.2

Consider a subsystem A defined by an arc of length l on a circle of circumference

L. The entanglement entropy of A for a general 2D CFT with conformal charge c

2The first and simplest case to consider is Euclidean space in 2 dimensions. A boundary-to-
boundary spacelike geodesic in this case is just a chord in a circle of radius rb, at an angle ∆φ.
From Pythagoras’ theorem we can deduce that

L(∆φ) = 2rb sin
∆φ
2
, (4.2.4)

Using (4.1.14) this becomes

L(J) = 2
√
r2
b − J2, (4.2.5)
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Figure 4.2: This plot illustrates the extraction, using (4.2.3) of a complicated metric
function given by 1

h(r)
= 1 + r2 − 1

r2 + 10√
2π

(e−50(r−1)2 − e−50(r−2)2
). Notice one can

only recover the metric down to the event horizon of the spacetime, defined by
h(r+)−1 = 0 as zero energy spacelike geodesics cannot probe past this point (see
figure 4.1). In this particular case, r+ ∼ 0.753. The dashed line of pure AdS is given
for comparison.

on this circle is given by,

SA(l) =
c

3
ln

(
L

πa
sin

(
πl

L

))
. (4.2.7)

We can translate this expression into bulk parameters using AdS/CFT. The central

charge is given by [87] c = 3R/2G
(3)
N . Using the UV/IR connection we have from

(4.1.8) that L/a = 2πrb/R, and the fraction l/L is given in terms of the bulk angular

Now solving for h(r) using (4.2.3),

h(r) =

(
2
rπ

d

dr

∫ r

rb

J
√
r2
b − J2√

J2 − r2
b

dJ

)2

=

(
2
rπ

d

dr

∫ √r2b−r2
0

√
r2
b − r2 − x2 dx

)2

=
(

2
rπ

d

dr
(r2 − r2

b )
π

4

)2

h(r) = 1 (4.2.6)

This is the Euclidean metric in 2 dimensions, thus we have recovered the metric given the proper
length.
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separation ∆φ/2π. Thus,

SA(∆φ) =
R

2G
(3)
N

ln

(
2rb
R

sin

(
∆φ

2

))
. (4.2.8)

Using (4.1.1), the proper length is given by

L(∆φ) = 2R ln

(
2rb
R

sin

(
∆φ

2

))
, (4.2.9)

Rewriting L as a function of J using (4.1.14), we have

L(J) = 2R ln

(
2rb√

R2 + J2

)
. (4.2.10)

Substituting this into (4.2.3),and integrating by parts, we have

√
h(r) =

2R

rπ

d

dr

{
−
√
r2
b − r2 +

√
R2 + r2 arctan

√
r2
b − r2

R2 + r2

−
√
r2
b − r2 ln

(
2rb√
R2 + r2

b

)}
(4.2.11)

Taking the limit rb →∞ and differentiating, we find

√
h(r) =

R√
R2 + r2

(4.2.12)

This is the metric function for pure AdS space consistent with the AdS/CFT corre-

spondence.

In a similar way to §3.1, one can also check (4.2.3) using various cooked up metric

functions. This is verified in figure 4.2 for a bumpy metric function which is singular

at r = 0 and models a perturbed AdSBH with horizon located at r+. Here we see a

restriction on the range of r due to the existence of an event horizon, such that we

can recover values for h(r) over the range r+ < r <∞.
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4.3 Extracting the Metric using Null Probes

In §4.2 we have shown how one can recover the metric function h(r) of (4.0.1) in

2 + 1 dimensions, given the entanglement entropy of the (1 + 1)−dimensional CFT

on the boundary of the spacetime. Given h(r), one can now proceed to recover

the other metric function f(r), with knowledge of the location of the endpoints of

null geodesics through the bulk, in analogy with the method used in the previous

chapter.

The location of the endpoints of null geodesics are given by the functions ∆t(α),

which gives the time separation, and ∆φ(α), which expresses the angular separation,

defined in (4.0.4) and (4.0.5) respectively. The location of singular correlators in the

CFT is again given by the boundary function ∆φ(∆t), so we must find a relationship

between ∆φ(∆t) and α in order that we may use ∆φ(α) as a boundary quantity. By

inspection of the previous definitions of ∆φ(α) and ∆t(α) given in equations (3.1.8)

and (3.1.7), and the modified versions given in (4.0.5) and (4.0.4), we see that

d∆φ(∆t)

d∆t
= α (4.3.1)

must still hold in this case since factors of h(r) and f(r) just come along for the

ride. So we can consider ∆φ(α) (or alternatively ∆t(α)) for the remainder of the

extraction procedure.

4.3.1 The Method

Since the definitions of ∆φ(α) from the metric given in (3.1.1) and (4.0.1) are of

similar form, we can proceed with the inversion in a similar way to §3.2.

Thus, via the substitutions rmin(α) = x, V (r) = V, V (x) = Vmax and applying

the condition the spacetime be asymptotically AdS, we have

∆φ
(√

Vmax

)
=

∫ Vmax

1/R2

q(V ) dV√
Vmax − V

,

with q(V ) = −2
dr

dV

√
V h[r(V )]

r(V )
. (4.3.2)
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Now we see this is exactly the same integral equation, i.e. Abel’s equation (see

Appendix A), and so one can invert to find

q(V ) =
1

π

d

dV

∫ V

1/R2

∆φ
(√

Vmax

)
dVmax√

V − Vmax
. (4.3.3)

Substituting for the original variables, we have

∫ V (r)

1/R2

I1(V )√
V

dV =

∫ ∞
r

√
h(r′)

r′
dr′,

where I1(V ) =
1

π

d

dV

∫ √V
1/R

α∆φ(α) dα√
V − α2

. (4.3.4)

Thus we have an expression for V (r) and therefore f(r) given ∆φ(α).

We can check that (4.3.4) is consistent with pure AdS space. By substituting

∆φ(α) = π and h(r) = (1 + r2/R2)−1 into (4.3.4), we have

I1[V ] =
d

dV

∫ √V
1/R

α dα√
V − α2

=
1

2
√
V − 1/R2

, (4.3.5)

and so,

ln
[
R(
√
V (r) +

√
V (r)− 1/R2)

]
= ln

[
R(1 +

√
1 + r2/R2)

r

]
, (4.3.6)

⇒ V (r) =
1 + r2/R2

r2
⇒ f(r) = 1 +

r2

R2
as expected. (4.3.7)
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Figure 4.3: The figure compares the extracted data using (4.3.4) with the metric

functions f(r) = r2 +e
− 1

1+r2 and h(r)−1 = 1+r2. The pure AdS case is given by the
dashed line. As the spacetime does not admit null circular orbits, one can recover
the entire metric.
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Figure 4.4: This figure illustrates the extraction of the metric function given in
(3.3.2) with h(r) given in figure 4.2. To the left is a plot of ∆φ(α) using (4.0.5).
The plot to the right shows the data recovered by using (4.3.4) on ∆φ(α). The
pure AdS results are shown with dashed lines for comparison. We see the same
limitations on the extraction as shown in figure 3.4.
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Applying the same analysis as the previous chapter, one can also test (4.3.4)

using various perturbed AdS cases. These are illustrated in figures 4.3 and 4.4.

Again, we find the same limitation on the extracted domain of f(r). For spacetimes

admitting null circular orbits of radius rm, the domain of f(r) for which f(r) can

be recovered is given by rm < r <∞.

4.4 Summary

In this chapter we generalise metric (3.1.1) by including an additional function

h(r). As a result, in the specific case of 2 + 1 dimensions3 considered here, we

require additional boundary information in the form of entanglement entropy of

a CFT on a circle SA(∆φ). This, combined with information of bulk-cone sin-

gularities in the form of ∆t(∆φ), allows the extraction procedure to form a map

(∆t(∆φ), SA(∆φ)) → (f(r), h(r)), with limits on the domains of f(r) and h(r)

given by (rm,∞) and (r+,∞) respectively.

In the next chapter we will not restrict ourselves to 2 + 1 dimensions. This will

be achieved by calculating the area of various minimal surfaces, thus making full

use of (2.7.7). We will find that AdS Poincaré coordinates is a simple set to analyse

such an extraction.

3The method in this chapter is restricted to 2+1 dimensions via (4.1.1). However, it is conceiv-
able that there is a boundary quantity which corresponds to the proper length L in any dimension
via AdS/CFT. If that is found to be the case, then this method presented in this chapter can be
extended to any number of dimensions.



Chapter 5

Recovering the Bulk III

This chapter is the author’s original work taken from [2].

In this chapter, we extend the work of the preceding chapter by attempting

to extract metric functions in any dimension using the holographic entanglement

entropy proposal (2.7.7), for certain static subsystems A of the boundary theory. In

particular, we will consider two specific forms of A, the straight belt of width l

AS = {xi|x1 = x ∈ [−l/2, l/2], x2,3, . . .,m ∈ R}, (5.0.1)

and the circular disk of radius l

AD = {xi|r ≤ l}, where r =

√√√√ m∑
i=1

x2
i . (5.0.2)

Both subsystems are defined in terms of boundary planar spatial coordinates {xi} ∈

Rm, thus we should look for a class of metrics which respects this planar symmetry

on the boundary. A simple class of asymptotically AdS metrics which preserves

planar symmetry in the bulk and the boundary is given by

ds2 = R2

(
−h(z)2 dt2 + f(z)2 dz2 +

∑d
i=1 dx

2
i

z2

)
. (5.0.3)

The metric is written in AdS Poincaré coordinates (see (2.4.10)), where f(z) and

89
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Figure 5.1: These plots depict the shape of static minimal surfaces γA anchored to
the straight belt AS of width l and the circular disk AD of radius l. The subsystems
AS and AD sit on the boundary, where we have regulated the boundary directions
to be of length L.

h(z) are arbitrary real functions which have the asymptotic behaviour

h(z)2,
1

f(z)2
→ 1 +O(zd+1), as z → 0. (5.0.4)

The most well known example of such a spacetime given by (5.0.3) is the AdS planar

black hole with horizon at z = z+. The metric functions are given by

h(z)2 =
1

f(z)2
= 1−

(
z

z+

)d+1

. (5.0.5)

It can be recovered from the AdSBH in global coordinates (see (2.5.27)) by taking the

large horizon radius limit r+/R� 1 and performing the coordinate transformation

z = R2/r.
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5.1 Static Minimal Surfaces in AdS

The holographic interpretation of entanglement entropy relates the entanglement

entropy SA in a d+ 1 dimensional boundary CFT to the area of an d−dimensional

static minimal surface γA (see figure 5.1) whose boundary is the boundary of the

subsystem A, i.e. ∂γA = ∂A. Since the purpose of this chapter is to extract the

metric function1 f(z) given SA, one must first find an expression for the minimal

surface γA and thus Area(γA) in terms of f(z). In this section we consider the case

of the straight belt AS defined by (5.0.1).

To calculate Area(γAS), we need to find the area of a generic surface N such that

∂N = ∂AS. In general, the area of an m dimensional submanifold N ⊂ M is given

by

Area(N) =

∫
N

dmx
√
|gN |, (5.1.1)

where gN = det(gab) and gab is the pull-back of the metric g̃µν on manifold M to N

such that gab = ∂ax
µ∂bx

ν g̃µν .

Since g̃µν is given by (5.0.3), one can define an embedding function z = z(x)

which respects the Rm−1 planar symmetry so that gab is given by

ds2
N = R2

(
[z′f(z)]2dx2 + dx2 +

∑m
i=2 dx

2
i

z2

)
, where z′ =

dz

dx
. (5.1.2)

Then using (5.1.1),

Area(NAS) = AN(l) = RmLm−1

∫ l
2

− l
2

dx

√
[z′f(z)]2 + 1

zm
= RmLm−1

∫ l
2

− l
2

L(z′, z, x) dx,

(5.1.3)

where we have regularized the directions {x2, · · · , xm} to be length L (following the

same procedure as [61]).

To find the minimal surface γAS , we solve δAN(l) = 0. Noting the the Hamilto-

1Since we will calculate the area of static minimal surfaces, area expressions will not include
h(z). Thus one cannot recover h(z) using the method outlined. Although one maybe able to
extend such a method by requiring the entanglement entropy be time-dependent [63]
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nian

H(z, z′) = z′
dL
dz′
− L =

[z′f(z)]2

zm
√

[z′f(z)]2 + 1
−
√

[z′f(z)]2 + 1

zm
, (5.1.4)

is independent of the variable x, we can write H as a constant such that

H = −z−m∗ , where z′|z=z∗ = 0

⇒ dz

dx
=

√
z2m
∗ − z2m

zmf(z)
. (5.1.5)

Along with the boundary conditions z(±l/2) = 0, (5.1.5) defines the profile function

z(x) for the minimal surface γAS .

We illustrate the shapes of z(x) for a (4 + 1)−dimensional planar black hole (see

(5.0.5)), with different horizon depths z+, in figure 5.2. It is noted that minimal

surfaces in pure AdS probe furthest into the bulk. This is because γAS has no

timelike component, so the presence of the null surface z = z+ flattens the shape of

γAS such that z∗ < z+. It is also observed that as one increases the dimension of

AS, z∗ increases. One can show this2 for pure AdS by integrating (5.1.5) over the

boundary values

l = 2

∫ z∗

0

dz
zm f(z)√
z2m
∗ − z2m

, (5.1.6)

and then setting f(z) = 1,

z∗(m) =
l

2

Γ( 1
2m

)
√
π Γ(1+m

2m
)

≈ l

π

(
m− 2γE − 2ψ(0)(1/2)

)
. (5.1.7)

where γE is the EulerMascheroni constant and ψ(0) is the Polygamma function of

order zero, and so for pure AdS z∗(m + 1) > z∗(m). The same result is also ob-

served for the planar black hole (see figure 5.3), where the lines (5.1.7) and z∗ = z+

asymptote the curves z∗(m) for small and large m respectively. Thus increasing the

2Using
∫ 1

0
dxxµ−1(1− xλ)ν−1 = 1

λ

Γ(µλ )Γ(ν)

Γ(µλ+ν)
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number of dimensions probes more of the bulk geometry3, and so compared with

the previous chapter where we look at a 2 + 1 dimensional bulk, we will be able to

recover more of the bulk geometry.

3Intuitively, this makes sense, since probing extra dimensions costs energy, the minimal surface
compensates by moving more into the bulk where distances are smaller.
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Figure 5.2: In this figure we plot the profile of static minimal surfaces bounded to
a straight belt AS of width l = 2 for planar black holes of dimension 4 + 1. The left
and right figures show minimal surfaces of spacial dimension 2 and 3 respectively
for different values of horizon depth z+ = {0.5(green), 1(blue), 2(red)}. The dashed
lines correspond to the static minimal surfaces in pure AdS space (i.e. z+ →∞).
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Figure 5.3: This is a plot of z∗ against the dimension of the minimal surface m
in a planar black hole spacetime of dimension 11 + 1 for different depths of the
horizon plane z+ (shown here by the coloured dashed lines). The pure AdS plot (i.e.
z+ →∞) given in (5.1.7) is shown here by the black dashed line.
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5.2 The Method

We can immediately recover an expression for Area(γAS) by substituting (5.1.5) into

(5.1.3)

Area(γAS) = Aγ(z∗) = 2RmLm−1

∫ z∗

a

dz
zm∗ f(z)

zm
√
z2m
∗ − z2m

, (5.2.1)

where we have introduced a cut-off surface at z = a close to the boundary to regulate

the area functional in a similar way to the regularisation of the proper length in the

chapter four.

Again we faced with the same problem as the previous two chapters where Aγ
is a function of the bulk quantity z∗, but must be expressed in term of boundary

variables only. The entanglement entropy SA is given as a function of the belt width

l, and so one must find a map SA(l) 7→ Aγ(z∗) which is independent of the metric

function f(z). This can be achieved via the chain rule

dSA(l)

dl
=

1

4G
(d+2)
N

dz∗
dl

dAγ(z∗)
dz∗

∣∣∣
m=d

. (5.2.2)

Using (5.2.1) and the Leibniz rule we have,

dAγ
dz∗

= 2RmLm−1 lim
z→z∗

(
f(z∗)√
z2m
∗ − z2m

−m
∫ z

0

dz̃
zm−1z̃m f(z̃)

(z2m − z̃2m)
3
2

)
, (5.2.3)

and from (5.1.6) we have,

dl

dz∗
= zm∗ lim

z→z∗

(
f(z∗)√
z2m
∗ − z2m

−m
∫ z

0

dz̃
zm−1z̃m f(z̃)

(z2m − z̃2m)
3
2

)
. (5.2.4)

Combining these equations we find that

dSA
dl

=
RdLd−1

2zd∗G
(d+2)
N

. (5.2.5)

Thus, one can map l 7→ z∗ and so SA(l) 7→ Aγ(z∗) independently of the metric and

we are justified in using (5.2.1) for the extraction of f(z).

By rewriting (5.2.1) in the more digestible form, where Ãγ(z∗) =
Aγ(z∗)

2RdLd−1zd∗
,
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p(z) =
f(z)

zd
and g(z) = z2d, we have

Ãγ(z∗) =

∫ z∗

a

dz
p(z)√

g(z∗)− g(z)
. (5.2.6)

The solution to the integral equation of the form f(x) =
∫ x
a

y(t)dt√
g(x)−g(t)

, where dg
dx

=

g′(x) > 0, is given by [86] (see Appendix A),

y(x) =
1

π

d

dx

∫ x

a

dt
f(t)g′(t)√
g(x)− g(t)

. (5.2.7)

One can apply this solution to our particular case, and substituting back in for our

original variables, we find,

f(z) =
d zd

πRdLd−1

d

dz

∫ z

a

dz∗
Aγ(z∗) zd−1

∗√
z2d − z2d

∗
. (5.2.8)

Thus, using (5.2.5) and (5.2.8), we have found a map SA(l) 7→ f(z) which is indepen-

dent of f(z) and so determines the metric function uniquely in the limit a/z → 0.

5.3 Checking the Inversion

We can check the validity of (5.2.8) by looking at a simple case where both the

entanglement entropy and metric are known, i.e. pure AdS.

Using the result from [61], the entanglement entropy of an d dimensional straight

belt of width l defined by (5.0.1) is given by4

SA(l) =
2Rd

4G
(d+2)
N (d− 1)

(
L

a

)d−1

− 2d+1πd/2Rd

4G
(d+2)
N (d− 1)

(
Γ(d+1

2d
)

Γ( 1
2d

)

)d(
L

l

)d−1

. (5.3.1)

4The d+ 2 dimensional bulk Newton constant G(d+2)
N can be related to boundary CFT param-

eters via AdSd+2/CFTd+1 for a particular choice of boundary theory. For example, when d = 2,
AdS4 × S7 space in eleven dimensional supergravity is considered to be dual to 2 + 1 dimensional

N = 8 SU(N) SCFT. In this case G
(4)
N

R2 = 3
2
√

2
N−3/2.
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Using (5.2.5), we find that
l

2
= z∗
√
π

Γ(d+1
2d

)

Γ( 1
2d

)
. (5.3.2)

Note that this is exactly the result given in (5.1.7), only in this case we have not

used the fact that f(z) = 1. By combining (5.3.1) and (5.3.2) with (2.7.7), we see

that

AS(z∗) =
2Rd

d− 1

(
L

a

)d−1

− 2
√
πRd

d− 1

Γ(d+1
2d

)

Γ( 1
2d

)

(
L

z∗

)d−1

. (5.3.3)

Substituting (5.3.3) into (5.2.8), we have

f(z) =
2d

π(d− 1)

(z
a

)d−1

I1(z)− 2d
√
π

π(d− 1)

Γ(d+1
2d

)

Γ( 1
2d

)
I2(z), (5.3.4)

where

I1(z) = z
d

dz

∫ z

a

dz
zd−1
∗√

z2d − z2d
∗

= z
d

dz

∫ 1

a/z

dx
xd−1

√
1− x2d

=
(a
z

)d(
1 +

1

2

(a
z

)2d

+O
(a
z

)4d
)
, (5.3.5)

and

I2(z) = zd
d

dz

∫ z

a

dz∗√
z2d − z2d

∗

= zd
d

dz

1

zd−1

∫ 1

a/z

dx√
1− x2d

= zd
d

dz

1

zd−1

∫ 1

0

dx√
1− x2d

− zm d

dz

1

zd−1

∫ a/z

0

dx√
1− x2d

= −(d− 1)
√
π

Γ(2d+1
2d

)

Γ(d+1
2d

)
+
(a
z

) 1√
1− (a/z)2d

+(d− 1)

∫ a/z

0

dx√
1− x2d

= −(d− 1)
√
π

Γ(2d+1
2d

)

Γ(d+1
2d

)
+ d

(a
z

)(
1 +

3

4d+ 2

(a
z

)2d

+O
(a
z

)4d
)
.(5.3.6)
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Combining the results, we have

f(z) = 1 +
2d

π(d− 1)

(a
z

)(
1− d

√
π

Γ(d+1
2d

)

Γ( 1
2d

)
+O

(a
z

)2d
)
. (5.3.7)

Taking the limit a/z → 0, we get the required result for pure AdS.

5.4 The Series Solution

One can consider examples of area functions for which one can recover analytic

expressions for the metric function f(z) using (5.2.8). Take the infinite series de-

scribing a d−dimensional surface about the known AdS result (5.3.3),

AS(z∗) = 2Rd

(
L

z∗

)d−1 ∞∑
n=0

bn(d)zn∗ , (5.4.1)

where b0(d) = −
√
π

d−1

Γ( d+1
2d

)

Γ( 1
2d

)
and bd−1(d) = 1

d−1
1

ad−1 .

By applying (5.2.8), we have

f(z) =
2dzd

π

d

dz

∫ z

a

dz∗

∑∞
n=0 bn(d)zn∗√
z2d − z2d

∗

=
2dzd

π

∞∑
n=0

bn(d)
d

dz
zn+1−d

∫ 1

0

dx
xn√

1− x2d
+O(a/z)

= 1 +
1√
π

∞∑
n=1

bn(d)(n+ 1− d)
Γ(n+1

2d
)

Γ(n+d+1
2d

)
zn

= 1 +
∞∑
n=1

b̃nz
n, (5.4.2)

where b̃n = (n+ 1− d)
Γ(n+1

2d
)

Γ(n+d+1
2d

)
bn(d).

Using this result, one can recover the planar black hole in d+ 2 dimensions with

horizon radius z+. The metric function in this case is given by

f(z) =
1√

1− (z/z+)d+1

= 1 +
∞∑
n=1

Γ(n+ 1/2)

2n!
√
π

(
z

z+

)n(d+1)

. (5.4.3)



5.4. The Series Solution 99

This series is necessarily convergent as 0 < z ≤ z∗ < z+ (see figure 5.3), and can be

recovered using ansatz (5.4.1) with

bn>0(d) =


1

2
√
π(n+ 1− d)

Γ(2n+1
2

)

Γ(n+ 1)

Γ(n+d+1
2d

)

Γ(n+1
2d

)

1

zn+
if n

d+1
∈ Z+

0 otherwise

(5.4.4)
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5.5 Extracting the Bulk Metric for a Circular Disk

Now we have a method for determining the metric function f(z) in (5.0.3) in the case

of a straight belt AS, we can look at other types of shapes where the calculation of

the entanglement entropy in the CFT is relatively simple. In particular we consider

the circular disk AD defined by (5.0.2).

We can rewrite (5.0.3) in polar coordinates, to respect the symmetry of AD, as

ds2 = R2

(
−h(z)2 dt2 + f(z)2 dz2 + dr2 + r2dΩ2

d−1

z2

)
, (5.5.1)

where r is the radial coordinate on the boundary.

Following the same procedure as the straight belt, but using the embedding

z = z(r), the area of a general m dimensional static surface N , such that ∂N = ∂AD,

is given by

Area(N) = AN(l) = Rm Vol(Sm−1)

∫ l

0

dr rm−1

√
1 + (z′f(z))2

zm

= Rm Vol(Sm−1)

∫ l

0

L(z′, z, r) dr (5.5.2)

Compared to the straight belt, we have r dependence in the Lagrangian and so the

Hamiltonian is not constant. Thus using the Euler-Lagrange equation

d

dr

dL
dz′

=
dL
dz

(5.5.3)

we have

rf(z)2zz′′ + (m− 1)f(z)4z(z′)3 +mrf(z)2(z′)2

+ rf(z)f ′(z)z(z′)2 + (m− 1)f(z)2zz′ +mr = 0, (5.5.4)

Solving for z(r) with the boundary conditions z(l) = 0 and z′(0) = 0 give us the

minimal surface γAD . For pure AdS where f(z) = 1, the solution to (5.5.4) is given

by, z2 + r2 = l2. Thus the static minimal surface γAD anchored to the boundary of

AD, in pure AdS space, is a semi-circle of radius l for m = 1 and a hemisphere of
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radius l for m > 2.

5.5.1 A Perturbative Approach

A general solution to (5.5.4) is intractable, but we can attempt to find z(r) pertur-

batively, solving order by order in a parameter ε about the known AdS solution.

To proceed, we will find the perturbation equations simplify if we rewrite (5.5.4)

in the coordinate v = r2, giving

2f(z)2[mz′(z + 2vz′) + 2vzz′′] + 8(m− 1)vf(z)4z(z′)3

+ 4vf(z)zf ′(z)(z′)2 +m = 0 (5.5.5)

where z′ = dz
dv

etc.

Now we can ansatz a solution for z(v) in orders of ε, which will eventually be

set to 1 in a similar way to the method outlined in §3.4.1,

f(z) = 1 +
∞∑
i=1

εiaiz
i(d+1) and z(v) =

√
b− v +

∞∑
i=1

εiz(i)(v), (5.5.6)

where v = r2 and b = l2.

Substituting ansatz (5.5.6) into (5.5.5), the O(εn) equation is given by

A(v) z′′(n)(v) +B(v) z′(n)(v) + C(v) z(n)(v) = D(n−1)(v), (5.5.7)

where

A(v) = 4v
√
b− v, B(v) =

2(bm− 3v)√
b− v

, C(v) = − bm

(b− v)3/2
, (5.5.8)

and D(n−1)(v) is determined from the (n− 1)th solution.

The homogeneous equation has a non-trivial particular solution,

z(1)(v) = (b− v)−1/2. (5.5.9)
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From this one can construct the second solution [88]

z(2)(v) = z(1)(v)

∫
W (v)

(z(1)(v))2
dv, where W (v) = e−

R B(v)
A(v)

dv

=
1√
b− v

∫
dv

(b− v)
5−m

2

vm/2
. (5.5.10)

The general solution of (5.5.7) is then given by,

z(n)(v) = C1z
(1)(v) + C2z

(2)(v) + z(2)(v)

∫
dv
D(n−1)(v) z(1)(v)

A(v)W (v)

− z(1)(v)

∫
dv
D(n−1)(v) z(2)(v)

A(v)W (v)
, (5.5.11)

where C1, C2 are determined by the boundary conditions z(n)(b) = 0 and limv→0(
√
vz′(n)(v)) =

0. We see immediately that as v → 0,
√
vz′(2)(v) ∼ O(v−

m−1
2 ), and so we must set

C2 = 0. Expression (5.5.11) then becomes

z(n)(v) =
C1√
b− v

+
√
b− v

(∫
dv

(b− v)
m−1

2

vm/2

)∫
dv D(n−1)(v)

v
m−2

2

4(b− v)
m+1

2

−
√
b− v

∫
dv

(
D(n−1)(v)

v
m−2

2

4(b− v)
m+1

2

∫
dv

(b− v)
m−1

2

vm/2

)
. (5.5.12)

The constant C1 is determined by the condition that z(n)(v) is non-singular at the

boundary v = b.

The integrals is (5.5.12) can be solved analytically at first order given the di-

mension of the surface m and D(0) = 2bm−3v√
b−v a1. In figure 5.4 we compare the shape

of a 2-dimensional minimal surface γAD using the perturbative method to first order

with the numerical solution for a particular planar black hole. We also compare the

numerical and first order solutions for increasing m. We note the same result as

for the straight belt that z∗(m + 1) > z∗(m), where z∗ = z(1)(0) is the maximum

distance the minimal surface probes the bulk. We also find the expected pattern

that the perturbative solution approaches the numerical solution as it nears the pure

AdS hemisphere.

In theory, we have an expression for the minimal surface to any order in the per-

turbation, we can simply plug (5.5.11) and (5.5.6) into (5.5.2) and equate orders of
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Figure 5.4: The left diagram plots profile functions z(r) anchored to the the circular
disk AD of radius l = 1 and dimension m, for the metric function f(z) = (1−z10)−1/2.
This spacetime describes a planar black hole in 10 + 1 dimensions of horizon depth
z+ = 1. The dashed, red and blue curves show pure AdS, the numerical solution
and the first order perturbed solution to (5.5.4) respectively for m = 2. The r axis is
the boundary of the spacetime. The right diagram shows how the maximum height
z∗ changes for these curves at z+ = 1, 10/9 as one increases the dimension of the
circular disk up to the maximum allowed by the dimension of the spacetime.

ε to determine the perturbed minimal surface area Area(γAD) = Aγ(l). Computing

Aγ(l) at first order in ε by substituting (5.5.6) into (5.5.2) with r = l
√

1− y2, we

have

Aγ(l) = Rm Vol(Sm−1)

∫ 1

a/l

dy
(1− y2)

m−2
2

ym

+Rm Vol(Sm−1)
εa1

l

d

2

∫ 1

a/l

dy
(1− y2)

m−2
2

ym+2
z(1)(y)

−Rm Vol(Sm−1)
εa1

l

∫ 1

a/l

dy
(1− y2)m/2

ym
z′(1)(y) (5.5.13)

One can now relate the expressions for Aγ(l) and f(z) through the parameter a1

once ε is set to 1.

5.6 Summary

In this section we extend the ideas and methods of metric extraction explored in

previous chapters to higher dimensions using the holographic entanglement entropy

proposal (2.7.7). We attempt this in two distinct types of subsystem of the boundary

CFT where expressions for the entanglement entropy are known (see [61]). These
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are the straight belt AS and the circular disk AD defined by (5.0.1) and (5.0.2)

respectively. In particular we find expressions for the area of static minimal surfaces

γAS and γAD , such that ∂γA = ∂A, in terms of the metric function f(z) given in AdS

Poincaré coordinates (5.0.3). This is achieved explicitly in the case of the straight

belt, where we exploited the boundary planar symmetry of the area Hamiltonian. A

perturbative method is outlined in the case of the circular disk where such symmetry

was not manifest. In both cases, motivation was provided for the statement that as

one increases the dimension of the minimal surfaces, more of the bulk is recovered.

Combined with the fact that we don’t live in 2 + 1 dimensions, we can justify

extending the analysis of chapter 4 to spacetime dimensions greater than 2+1.



Chapter 6

Discussion

This chapter is an overview of the material written in this thesis in the author’s own

words.

In this final chapter, we review what has been achieved in this thesis and provide

an overall picture of the results we have presented and their limitations. We can then

consider how one can generalise such results to less symmetric cases and potential

future areas of interest.

In chapter one, we provided qualitative explanations of why one should study

string theory and the AdS/CFT correspondence. Through the holographic nature

of AdS/CFT, one can ask questions about how quantities in the bulk AdS space

relate to quantities in the boundary CFT and visa versa. More specifically, in the

large λ limit of AdS/CFT, as defined in §2.5.2, we investigated CFT correlators and

entanglement entropy on the boundary as probes of the bulk geometry. The hope

is that one might uncover physics from behind the horizon of black holes from the

physics of the boundary. These ideas were made more quantitative in chapter two.

It was motivated in §2.6 that a boundary correlation function G(~x, ~x′) is singular if

there exists null geodesics connecting x and x′. If the null geodesics travel through

the bulk, then G(~x, ~x′) has a “bulk-cone singularity” [58]. This suggests that if one

has knowledge of the locus of its singular boundary correlator operator insertion

points, one can begin to determine the geometry of the dual bulk spacetime using

boundary-to-boundary null probes.

105
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In §2.7, we illustrated the holographic interpretation of the entanglement entropy

SA for arbitrary submanifolds A in the boundary CFT. As claimed in [61,62], SA in

the d+1 dimensional CFT can be determined from the d dimensional static minimal

surface γA anchored to the boundary such that ∂γA = ∂A. SA is then determined

by the area of γA through (2.7.7). This suggests another way one can recover the

geometry of the dual bulk description from boundary data. In this case, knowledge

of the entanglement entropy for certain subsystems of the boundary CFT can help

determine the geometry of the dual bulk spacetime using minimal surface probes.

In the specific case of a 2 + 1 dimensional bulk, these probes turn out to be zero

energy boundary-to-boundary spacelike geodesics.

It was the two holographic relationships illustrated above that allowed us to ask

this question which would concern us most in the chapters to follow:

Given a d-dimensional boundary CFT, where one has knowledge of the locus

of its singular boundary correlator operator insertion points, and knowledge of the

entanglement entropy for certain subsystems of the boundary CFT, how much of

the bulk geometry can be determined for the d + 1-dimensional asymptotically AdS

spacetime dual to this CFT?

In chapter 3, we set out to answer this question for static, (d+ 2)−dimensional,

spherically symmetric, asymptotically AdS spacetimes of the form

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

d. (6.0.1)

Determining the geometry of this spacetime boiled down to finding the metric func-

tion f(r). Since we only require the extraction of one function’s worth of infor-

mation, it was observed that one only requires a function’s worth of information

on the boundary. Utilising the spherical symmetry of the problem, this boundary

information took the form of the locus of endpoints of boundary-to-boundary null

geodesics. This is encapsulated in the function ∆t(∆φ), where ∆t and ∆φ are the

time and angular separation of the endpoints on the boundary respectively. This can

then be related to the bulk-cone singularities of the boundary correlators. We found

that one can determine the quantities ∆t and ∆φ in terms of the bulk null geodesic
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parameter α = E
J

from the function ∆t(∆φ) without requiring an expression for the

metric function f(r) through equation (3.2.10). This allowed us to use the expres-

sion (3.1.7) relating ∆φ(α) to f(r) for determining f(r). Via the observation that

equation (3.1.7) was an integral equation with known solution1, we were able to

extract the metric function f(r) in terms of the boundary data ∆φ(α). Unlike the

numerical methods presented in [59], where an analysis of the stability of numerical

errors is required, the analytical extraction presented in chapter three provides no

errors.

The range of values of r, for which one could determine f(r), depended on

the region of the bulk the full set of boundary-to-boundary geodesics could cover.

Thus for the class of spacetimes not admitting null circular orbits, one can recover

the entire metric. However, given a radius of null circular orbits r = rm, such

as spacetimes containing spacelike singularities, one can only recover f(r) over the

range r ∈ (rm,∞). This is consistent with the work presented in [59]. A unique

feature of the analytical extraction is the ability to find analytical expressions for the

metric function f(r). This is the purpose of §3.4, where we were able to find a series

solution for f(r) by expanding about the pure AdS solution f(r) = 1+ r2

R2 . Again, we

found a limitation on the domain of f for which f(r) can be extracted. In this case,

it is the radius of convergence rc for the series f(r) that provides the lower bound.

This is calculated for a toy model of a “star” geometry and the AdS-Schwarzschild

black hole.

In chapter four, we generalise the analysis to static, (d+ 2)−dimensional, spher-

ically symmetric, asymptotically AdS spacetimes of the form

ds2 = −g(r) dt2 + h(r) dr2 + r2 dΩ2
d. (6.0.2)

Since one now requires the extraction of two function’s worth of information g and h,

1It is interesting to observe that all the extractions performed in this Thesis boil down to solving
linear Volterra integral equations of the first kind of the form f(x) =

∫ x
a

y(t)dt√
g(x)−g(t)

where g(t) and

f(x) are known. It would be interesting to investigate if there were some deeper relationship
involved in these extractions due to this observation. As mentioned in [89], there is a duality
between boundary data of null and zero-energy spacelike geodesics. It is interesting to consider if
this duality explains the similar extraction methods used here.
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the boundary function ∆t(∆φ) did not provide us with enough information to extract

the metric. Thus one must look for a different set of bulk probes. This was provided

by the set of boundary-to-boundary zero energy spacelike geodesics. The boundary

data was encapsulated by the proper length of these spacelike boundary geodesics as

a function of the angular separation of their endpoints L(∆φ). In the specific case

of a (2 + 1)−dimensional bulk, this quantity is related to the entanglement entropy

SA(l) where A is an interval of length l in the dual boundary (1 + 1)−dimensional

CFT (see equation (4.1.1)). It was shown that one can find an expression (see

(4.2.3)) for the metric function h(r) in (2 + 1) dimensions2, via knowledge of the

function SA(l).

As in chapter 3, there were limitations on the extractable domain of the metric

function h, in this case corresponding to the existence of a horizon in the bulk at

r = r+. Past this point, zero-energy spacelike geodesics become purely timelike, and

so are unable to probe the spatial region inside the horizon (see figure 4.1). Thus

for static spacetimes admitting a horizon, h can only be extracted in the domain

r ∈ (r+,∞).

One can ask the natural question, how can one probe beyond the horizon in these

spacetimes? The answer is negative if the spacetime is static with a single asymptotic

region, even if we were to consider finite-energy spacelike probes. However, if one

were to promote the metric to be time-dependent, the radius of the event horizon

can become time-dependent, and so it is possible to probe the geometry before the

horizon radius becomes large. We can still find the boundary observables dual to this

probe as the holographic entanglement entropy proposal admits a natural covariant

extension [63].

One can see this in Vaidya-AdS geometries of the form

ds2 = −
(

1 + r2 − m(v)

rd−2

)
dv2 + 2 dv dr + r2dΩ2

d−1. (6.0.3)

2However, as pointed out in [60], geometrical objects such as geodesics or extremal surfaces
which are anchored on the boundary, typically correspond to some probe or observable in the dual
CFT. Thus it is conceivable that the quantity L(∆φ) may given in terms of just such an observable,
allowing the extraction method outlined in §4.2 to be generalised to any dimension.
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where m(v) interpolates between 0 (pure AdS) and 1 (Schwarzschild-AdS). In these

spacetimes, the horizon radius grows with time, thus the set of zero energy spacelike

probes cover the region r ∈ (r+(v),∞), and so it may be possible to extract the

function m(v) in (2 + 1)−dimensions given the entanglement entropy of a time-

dependent interval of length l.

Returning to the analysis in chapter four, once we showed how one can extract

h(r), we then considered the extraction of the metric function g(r). Using the

locus of bulk-cone singularities given by ∆t(∆φ), the extraction proceeded in the

same manner to chapter three. It was shown that, given ∆t(∆φ) and h(r), an

analytical expression for g(r) could be recovered. In a similar way to chapter three,

this extraction did not depend on the dimension of the spacetime, but provided the

same restriction on the domain of the extracted g, namely r ∈ (rm,∞) where rm is

the radius of null circular orbits, or r ∈ [0,∞) otherwise.

Could one extend such methods to less symmetric cases? The answer is yes, in

principle. Consider promoting the functions g and h to time-dependent functions

such that g(r) = h(r)→ k(r, t). We still have two functions worth of information in

the metric, and so knowledge of the boundary functions ∆t(∆φ) and SA(l) should

still provide enough information to extract the metric function k(r, t). Using the

same logic, one could also consider spacetimes with reduced spherical symmetry.

In this case, the metric functions would depend on the angular coordinate g(r) =

h(r) → k(r, φ). However, the geodesic equations of motion are not as simple, and

so finding analytic expressions for ∆t, ∆φ and L in terms of k prove troublesome.

In chapter five, we considered another set of bulk probes anchored to the bound-

ary, namely multi-dimensional minimal surfaces. As discussed in [60, 90], higher-

dimensional surfaces probe deeper for spacetimes satisfying energy conditions, so it

makes sense to study such probes. We considered static, (d+2)−dimensional planar

symmetric, asymptotically AdS spacetimes of the form3

ds2 = R2

(
−h̃(z)2 dt2 + f̃(z)2 dz2 + dΣ2

d

z2

)
. (6.0.4)

3We use the tilde notation to distinguish from the metric functions described earlier in this
chapter.
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We pick this particular form of the metric since this is the natural generalisation of

the pure AdS metric (h̃(z) = f̃(z) = 1) used in [61,62], where analytical expressions

for the entanglement entropy were found. Since the minimal surfaces must be an-

chored to some shape on the boundary, we picked two cases. The straight belt given

defined in (5.0.1) where dΣ2
d =

∑d
i=1 dx

2
i , and the circular disk defined in (5.0.2)

where dΣ2
d = dr2 + r2dΩ2

d−1.

We first considered the straight belt AS. Comparing minimal surfaces of differ-

ent dimension at fixed width on the boundary, we found for pure AdS, and planar

black hole geometries, that higher dimensional surfaces probe further into the bulk,

thus agreeing with [60]. We then found an expression for the area of these minimal

surfaces Aγ(z∗) in terms of the metric function f̃(z). We showed that the function

Aγ(z∗) can be determined from the entanglement entropy SAS(l) of the straight belt

AS of width l in the boundary dual CFT without prior knowledge of the bulk geom-

etry. Via the observation that equation (5.2.1) was an integral equation with known

solution (5.2.8), we were able to extract the metric function f̃(z), with knowledge

of the entanglement entropy SAS(l) of the straight belt AS of width l. This was

confirmed for the known pure AdS result. We were also able to find a series solution

for f̃(z), where one was able to recover the planar black hole.

One may ask the question whether one can extract h̃(z)? The answer is negative

if one considers only static surfaces, since the area functional does not depend on

the timelike component of the metric. However, if we make the straight belt time-

dependent, then using the covariant holographic entanglement entropy proposal [63],

one might be able to determine h̃(z) using extremal surfaces.

But what about bulk-cone singularities? As we saw in chapter 4, using boundary

data of the locus of bulk-cone singularities helped us determine the timelike com-

ponent of the metric. Could this be applied to metrics with planar symmetry as

given in (6.0.4)? Unfortunately, the answer is again negative. As pointed out by

the authors of [58], field theories formulated on Rd,1, and states respecting the full

Poincaré symmetry have no bulk-cone singularities. This is because null geodesics

emanating from the boundary have no turning point in bulk coordinate z, due to

the energy condition on the stress tensor, thus cannot return to the boundary.



Chapter 6. Discussion 111

We then turned our attention to the circular disk shape AD. One finds in this

case that the minimal surface equations are not as simple, since the area density (see

(5.5.2)) depends on the boundary coordinate r. As such, one is forced to consider a

perturbative approach4. This was achieved by perturbing about the known pure AdS

solution where the minimal surface is a d−dimensional hemisphere of radius l, given

in terms of the profile function z(r) as z2 +r2 = l2. Fortunately, the minimal surface

equations reduce to non-linear second order, inhomogeneous differential equations

with a known particular solution (5.5.7). This allowed us to construct a general

solution at each order in the perturbation, and at first order, find an analytical

expression for the minimal surface profile function z(r) in any dimension. One

could then compare such a solution to the solution obtained by numerically solving

the equations of motion. This was illustrated in Figure 5.4, where it was observed

that as the numerical solution approaches the pure AdS solution, the first order

perturbative solution becomes more accurate. Obtaining higher order terms to the

profile function proved intractable since the integrals of (5.5.11) cannot be solved

analytically, and a series solution to the integrals ran into convergence issues.

How could one extend the methods presented in chapter 5 to other cases? The

most natural extension is to consider other shapes on the boundary where expres-

sions for the entanglement entropy dual to pure AdS are known. A known example5

is the cusp AW in a (2 + 1)−dimensional CFT. In polar boundary coordinates (r, θ),

a cusp of angle Ω is defined in terms of its boundary

∂AW = {(r, θ)|0 ≤ r <∞, θ = 0} ∪ {(r, θ)|0 ≤ r <∞, θ = Ω}. (6.0.6)

One could then attempt to solve for the area of the minimal surface anchored to ∂AW

in terms of the metric function f̃(z). However, one would have to find a suitable

4A Hamilton-Jacobi method was also attempted. In this case, the Hamilton-Jacobi equation
becomes (

∂S

∂r

)2

+
1

f̃(z)2

(
∂S

∂z

)2

=
r2m−2

z2m
, (6.0.5)

where S = S(z, r, C) is Hamilton’s principle function. If this can be solved for S, one can determine
z′(r) via the equation ∂L

∂z′ = ∂S
∂z , where L = L(z, z′, r) is given in (5.1.3).

5See [91] for a holographic calculation of the entanglement entropy in pure AdS
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regulator for the area of the cusp in the bulk.

Overall, we have attempted to answer the question posed at the start of this

chapter, using analytical methods, for 3 classes of highly symmetric spacetimes.

However, the ultimate goal of the techniques used in this thesis would be to answer

the more encompassing question: From CFT boundary data, can one determine

the holographic dual bulk spacetime in a fully covariant manner?. Here we have

presented the first steps in answering such a question.



Appendix A

Integral Equations

In this section we check the consistency of the integral equations used in this thesis.

We do this by considering the most general form of integral equation

f(x) =

∫ x

a

y(t)dt√
g(x)− g(t)

, (A.1)

with solution,

y(x) =
1

π

d

dx

∫ x

a

dt
f(t)g′(t)√
g(x)− g(t)

, (A.2)

where g(x) is a strictly monotonic function of x.

We can check the solution by substituting in the expression (A.1) for f(t) into

(A.2), giving us

y(x) =
1

π

d

dx

∫ x

a

(∫ t

a

y(u)√
g(t)− g(u)

du

)
g′(t)√

g(x)− g(t)
dt. (A.3)

Changing the order of integration gives us,

y(x) = − 1

π

d

dx

∫ x

a

y(u)

(∫ u

x

g′(t)√
(g(t)− g(u))(g(x)− g(t))

dt

)
du

≡ 1

π

d

dx

∫ x

a

y(u)I(u, x) du. (A.4)
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By letting v = g(t), and integrating over v, we have

I(u, x) = −
∫ g(u)

g(x)

dv√
−v2 + (g(u) + g(x))v − g(x)g(u)

=

[
arcsin

(
g(u) + g(x)− 2v

g(u)− g(x)

)]g(u)

g(x)

= arcsin(−1)− arcsin(1)

= 3π/2− π/2

= π. (A.5)

Substituting this result into the RHS of (A.4), we recover the LHS, and so (A.2) is

indeed a solution to (A.1).

To recover Abel’s integral equation (3.2.5) used in chapters 3 and 4, we take

g(x) = x. To recover the modified integral equation (4.2.2) used in chapter 4, we

take g(x) = x2. Finally, to recover the integral equation (5.2.6) used in chapter 5,

we take g(x) = x2d.



Bibliography

[1] S. Bilson, “Extracting spacetimes using the AdS/CFT conjecture,” JHEP 08

(2008) 073, arXiv:0807.3695 [hep-th].

[2] S. Bilson, “Extracting Spacetimes using the AdS/CFT Conjecture: Part II,”

arXiv:1012.1812 [hep-th].

[3] R. M. Wald, General Relativity. The University of Chicago Press, 1984.

[4] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory.

Westview Press, 1995. Reading, USA: Addison-Wesley (1995) 842 p.

[5] A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik 17

(1905) 891.

[6] I. Newton, The Principia: Mathematical Principles of Natural Philosophy.

University of California Press, 1999.

[7] A. Einstein, “Grundlage der allgemeinen Relativitätstheorie,” Annalen der

Physik. 49 (1916) 769–822.

[8] M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior of Einstein Gravity,”

Nucl. Phys. B 266 (1986) 709.

[9] L. D. Landau, Niels Bohr and the development of physics. McGraw-Hill, New

York, 1955.

[10] S. Carlip, “Quantum Gravity: a Progress Report,” Rept. Prog. Phys. 64

(2001) 885, arXiv:gr-qc/0108040.

115



Bibliography 116

[11] G. T. Horowitz, “Quantum gravity at the turn of the millennium,”

arXiv:gr-qc/0011089.

[12] A. Ashtekar, J. C. Baez, and K. Krasnov, “Quantum geometry of isolated

horizons and black hole entropy,” Adv. Theor. Math. Phys. 4 (2000) 1–94,

arXiv:gr-qc/0005126.

[13] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking

Entropy,” Phys. Lett. B379 (1996) 99–104, arXiv:hep-th/9601029.

[14] J. D. Bekenstein, “Black holes and the second law,” Nuovo Cim. Lett. 4

(1972) 737–740.

[15] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7 (1973) 2333–2346.

[16] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole

physics,” Phys. Rev. D9 (1974) 3292–3300.

[17] L. Smolin, “A candidate for a background independent formulation of M

theory,” Phys. Rev. D62 (2000) 086001, arXiv:hep-th/9903166.

[18] L. Bombelli, J. Lee, D. Meyer, and R. Sorkin, “Space-Time as a Causal Set,”

Phys. Rev. Lett. 59 (1987) 521–524.

[19] R. Penrose, “Twistor algebra,” J. Math. Phys. 8 (1967) 345.

[20] C. N. Kozameh, Gravitation and relativity: at the turn of the millenium.

IUCAA, Pune, 1998.

[21] A. Connes, Noncommutative geometry. Academic Press, New York, 1994.

[22] G. Veneziano, “Construction of a crossing - symmetric, Regge behaved

amplitude for linearly rising trajectories,” Nuovo. Cim. A57 (1968) 190–197.

[23] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19 (1967) 1264–1266.

[24] J. Scherk and J. H. Schwarz, “Dual Models for Nonhadrons,” Nucl. Phys.

B81 (1974) 118–144.



Bibliography 117

[25] T. Yoneya, “Connection of Dual Models to Electrodynamics and

Gravidynamics,” Prog. Theor. Phys. 51 (1974) 1907–1920.

[26] M. B. Green and J. H. Schwarz, “Anomaly Cancellation in Supersymmetric

D=10 Gauge Theory and Superstring Theory,” Phys. Lett. B149 (1984)

117–122.

[27] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum

Configurations for Superstrings,” Nucl. Phys. B258 (1985) 46–74.

[28] M. J. Duff, “M theory (the theory formerly known as strings),” Int. J. Mod.

Phys. A11 (1996) 5623–5642, arXiv:hep-th/9608117.

[29] W. Nahm, “Supersymmetries and their representations,” Nucl. Phys. B135

(1978) 149.

[30] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev.

Lett. 75 (1995) 4724–4727, arXiv:hep-th/9510017.

[31] M. R. Douglas, D. N. Kabat, P. Pouliot, and S. H. Shenker, “D-branes and

short distances in string theory,” Nucl. Phys. B485 (1997) 85–127,

arXiv:hep-th/9608024.

[32] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra

dimension,” Phys. Rev. Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221.

[33] J. M. Maldacena, “The large N limit of superconformal field theories and

supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252,

arXiv:hep-th/9711200.

[34] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N

field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,

arXiv:hep-th/9905111.

[35] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2

(1998) 253–291, arXiv:hep-th/9802150.



Bibliography 118

[36] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the

AdS/CFT correspondence,” arXiv:hep-th/0201253.

[37] L. Susskind and E. Witten, “The holographic bound in anti-de Sitter space,”

arXiv:hep-th/9805114.

[38] G. T. Horowitz and J. Polchinski, “Gauge / gravity duality,”

arXiv:gr-qc/0602037.

[39] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys.

B72 (1974) 461.

[40] K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant.

Grav. 19 (2002) 5849–5876, arXiv:hep-th/0209067.

[41] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity,”

Commun. Math. Phys. 208 (1999) 413–428, arXiv:hep-th/9902121.

[42] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement

in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532,

arXiv:hep-th/9803131.

[43] J. M. Maldacena, “Eternal black holes in Anti-de-Sitter,” JHEP 04 (2003)

021, arXiv:hep-th/0106112.

[44] K. Peeters and M. Zamaklar, “The string/gauge theory correspondence in

QCD,” Eur. Phys. J. ST 152 (2007) 113–138, arXiv:0708.1502 [hep-ph].

[45] D. Mateos, “String Theory and Quantum Chromodynamics,” Class. Quant.

Grav. 24 (2007) S713–S740, arXiv:0709.1523 [hep-th].

[46] S. S. Gubser and A. Karch, “From gauge-string duality to strong interactions:

a Pedestrian’s Guide,” Ann. Rev. Nucl. Part. Sci. 59 (2009) 145–168,

arXiv:0901.0935 [hep-th].

[47] S. S. Gubser, “Heavy ion collisions and black hole dynamics,” Gen. Rel. Grav.

39 (2007) 1533–1538.



Bibliography 119

[48] J. McGreevy, “Holographic duality with a view toward many-body physics,”

Adv. High Energy Phys. 2010 (2010) 723105, arXiv:0909.0518 [hep-th].

[49] S. A. Hartnoll, “Lectures on holographic methods for condensed matter

physics,” Class. Quant. Grav. 26 (2009) 224002, arXiv:0903.3246 [hep-th].

[50] C. P. Herzog, “Lectures on Holographic Superfluidity and Superconductivity,”

J. Phys. A42 (2009) 343001, arXiv:0904.1975 [hep-th].

[51] G. T. Horowitz, “Introduction to Holographic Superconductors,”

arXiv:1002.1722 [hep-th].

[52] L. Fidkowski, V. Hubeny, M. Kleban, and S. Shenker, “The black hole

singularity in AdS/CFT,” JHEP 02 (2004) 014, arXiv:hep-th/0306170.

[53] V. Balasubramanian and S. F. Ross, “Holographic particle detection,” Phys.

Rev. D61 (2000) 044007, arXiv:hep-th/9906226.

[54] J. Louko, D. Marolf, and S. F. Ross, “On geodesic propagators and black hole

holography,” Phys. Rev. D62 (2000) 044041, arXiv:hep-th/0002111.

[55] P. Kraus, H. Ooguri, and S. Shenker, “Inside the horizon with AdS/CFT,”

Phys. Rev. D67 (2003) 124022, arXiv:hep-th/0212277.

[56] G. Festuccia and H. Liu, “Excursions beyond the horizon: Black hole

singularities in Yang-Mills theories. I,” JHEP 04 (2006) 044,

arXiv:hep-th/0506202.

[57] B. Freivogel et al., “Inflation in AdS/CFT,” JHEP 03 (2006) 007,

arXiv:hep-th/0510046.

[58] V. E. Hubeny, H. Liu, and M. Rangamani, “Bulk-cone singularities and

signatures of horizon formation in AdS/CFT,” JHEP 01 (2007) 009,

arXiv:hep-th/0610041.

[59] J. Hammersley, “Extracting the bulk metric from boundary information in

asymptotically AdS spacetimes,” JHEP 12 (2006) 047,

arXiv:hep-th/0609202.



Bibliography 120

[60] V. E. Hubeny and M. Rangamani, “A holographic view on physics out of

equilibrium,” arXiv:1006.3675 [hep-th].

[61] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy,”

JHEP 08 (2006) 045, arXiv:hep-th/0605073.

[62] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy

from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.

[63] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic

entanglement entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016

[hep-th].

[64] L. Susskind and J. Uglum, “Black hole entropy in canonical quantum gravity

and superstring theory,” Phys. Rev. D50 (1994) 2700–2711,

arXiv:hep-th/9401070.

[65] V. Balasubramanian, P. Kraus, A. E. Lawrence, and S. P. Trivedi,

“Holographic probes of anti-de Sitter space-times,” Phys. Rev. D59 (1999)

104021, arXiv:hep-th/9808017.

[66] T. Nishioka, S. Ryu, and T. Takayanagi, “Holographic Entanglement Entropy:

An Overview,” J. Phys. A42 (2009) 504008, arXiv:0905.0932 [hep-th].

[67] J. Hammersley, “Numerical metric extraction in AdS/CFT,” Gen. Rel. Grav.

40 (2008) 1619–1652, arXiv:0705.0159 [hep-th].

[68] J. Polchinski, String Theory Vols. I & II. Cambridge University Press, 1998.

[69] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory. Cambridge

University Press, 1987.

[70] R. J. Szabo, “BUSSTEPP lectures on string theory: An introduction to string

theory and D-brane dynamics,” arXiv:hep-th/0207142.

[71] C. V. Johnson, D-Branes. Cambridge University Press, 2003.



Bibliography 121

[72] F. Gliozzi, J. Scherk, and D. I. Olive, “Supersymmetry, Supergravity Theories

and the Dual Spinor Model,” Nucl. Phys. B122 (1977) 253–290.

[73] M. B. Green and J. H. Schwarz, “Supersymmetrical Dual String Theory. 3.

Loops and Renormalization,” Nucl. Phys. B198 (1982) 441–460.

[74] E. Witten, “Bound states of strings and p-branes,” Nucl. Phys. B460 (1996)

335–350, arXiv:hep-th/9510135.

[75] J. M. Maldacena and A. Strominger, “AdS(3) black holes and a stringy

exclusion principle,” JHEP 12 (1998) 005, arXiv:hep-th/9804085.

[76] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6

superconformal Chern-Simons-matter theories, M2-branes and their gravity

duals,” JHEP 10 (2008) 091, arXiv:0806.1218 [hep-th].

[77] E. D’Hoker, J. Estes, M. Gutperle, and D. Krym, “Exact Half-BPS Flux

Solutions in M-theory I, Local Solutions,” JHEP 08 (2008) 028,

arXiv:0806.0605 [hep-th].

[78] D. Bigatti and L. Susskind, “TASI lectures on the holographic principle,”

arXiv:hep-th/0002044.

[79] L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995)

6377–6396, arXiv:hep-th/9409089.

[80] G. ’t Hooft, “Dimensional reduction in quantum gravity,”

arXiv:gr-qc/9310026.

[81] R. Bousso, “The holographic principle,” Rev. Mod. Phys. 74 (2002) 825–874,

arXiv:hep-th/0203101.

[82] S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys.

Rev. Lett. 26 (1971) 1344–1346.

[83] S. W. Hawking, “Black holes in general relativity,” Commun. Math. Phys. 25

(1972) 152–166.



Bibliography 122

[84] R. Bousso, “The holographic principle for general backgrounds,” Class.

Quant. Grav. 17 (2000) 997–1005, arXiv:hep-th/9911002.

[85] T. S. Levi and S. F. Ross, “Holography beyond the horizon and cosmic

censorship,” Phys. Rev. D68 (2003) 044005, arXiv:hep-th/0304150.

[86] A. Polyanin and A. Manzhirov, Handbook of Integral Equations. CRC Press

LLC, 2000.

[87] J. D. Brown and M. Henneaux, “Central Charges in the Canonical

Realization of Asymptotic Symmetries: An Example from Three-Dimensional

Gravity,” Commun. Math. Phys. 104 (1986) 207–226.

[88] A. Polyanin and V. Zaitsev, Handbook of Exact Solutions for Ordinary

Differential Equations. CRC Press LLC, 1995.

[89] J. Hammersley, The Bulk from the Boundary: Holography and AdS/CFT.

PhD in Elementaty Particle Theory, Depatment of Mathematical Sciences –

Durham University, 2008.

[90] V. E. Hubeny, “in preperation.”.

[91] T. Hirata and T. Takayanagi, “AdS/CFT and strong subadditivity of

entanglement entropy,” JHEP 02 (2007) 042, arXiv:hep-th/0608213.


