

Durham E-Theses

The generation and chemistry of some novel perfluorinated dienes

Mullins, Steven John

How to cite:

Mullins, Steven John (1992) The generation and chemistry of some novel perfluorinated dienes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5791/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

UNIVERSITYOF OURHARA

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

A TMESIS
entioled

THE CEAERATUON AND CHEMHSTRY OF SORE NOVEL PERFLUOR䁌ATED DREMES

submitied by STEVEN JOHN MMLLLINS ROS. (UNIVERSITY COLLEGE)

A candidate for the degree of Doctor of Philosophy

Department of Chemistry

1992

'Go back?' he inoughi. 'No good at all! Go sideways! impossible! Go formard? Only thing to do! On we gol' So up he got and froted along with his little sword held in front of him and one hand feeling the wall, and his heart all of a patter and a piter.
J. R. R. Tolkein, The Hobbir.

> To my Arum, Dad,

Family and Friends.

Alarch 1992.

I would like to ihank Proiessor R. ©. Chambers for his coninnuous help and encouragement throughout the course of this work.

I would also like to thank Dr. F. G. Drakesmith for helping me with the C.V. and for his advice during our project meatings.

1 am panicularly indebied to the members of the deparmental iechnical stât for their invaluabla help. In paricular Mirs. Ah. Bumerworih (cleaning and park-ime ballroom dancing instruction), Atrs. Ah. Cocks (elamental analysis), Mors. J. Dostal (elemental analysis), Rolr. 8. Hall (mercury), Rolr. R. Hant (glassblowing), AAr. G. Haswell (glassblowing), AAr. T. F. Holmes (dangerous chemicals and iechniques), hAr. D. Hunier (high-pressure iechniques and firsi aid), Dr. M. Jones (mass spectromeiry), Mip. L. W. Lauchlan (G.C. and chemicals), RAr. J. Lincoln (storekeeper), Dr. R. S. Rdathews (NARR), AAr. Y. J. AfcNeilly (NAAR, mass spectrometry, goalkeeping advice and first aid), Dr. A. Roysion (computing), Mors. J. Rel. Say (NARR), MAiss L. Rol. Turner (mass spectrometry) and Afrs. E. M. Wood (armork) deserve individual mention.

1 owe my gratitude to Proiessor MA. B. Hursihouse and Dr. WY. Clegg ior carying out my X-ray crystallography analyses and for Jeremy Rawson and Ant Luke for helping me with the initial Wheissenberg oscillation photographs. I am also indebied to Afargarei Allen for performing molecular magnetic susceptibility measurements.

Thanks are also due to all the friends I have made in Durham, in my college and in the department past and present and in particular to the lads of CG 115 but especially io Andy Joel, Graham Sandiord and Howard Whilby for making this time so enjoyable.

Finally, I would like to thank the S.E.R.C. and the Electricity Research Council (now E.A. Technology) for providing the C.A.S.E. Award.

Anemarandum

The work described in this thesis was carried out in the Universily of Dumam between October 1988 and Sepiember 1991. This thesis is ine work of the author, orcept where acknowledged by raierence, and has not been submitied for any other degree.

The copyright of this thesis resis solely with the author.

Part of this work has been the subject of the following:
M. WY. Briscoe, R. D. Chambers, S. J. Mullins, T. Nakamura, and F. G. Drakesmith, J. Chem. Soc., Chem. Commun., 1990, 1127.
R. D. Chambers, S. L. Jones, S. J. Afullins, A. Swales, P. Teliord, and Af. WY. H. Whest, in Selective Fluonination in Organic and Bioorganic Chemisiny, ed. J. T. Welch, A.C.S. Symposium Series 456, 1991, ch.5.
and has been presented by the author at:

I.C.I. Poster Session,

Durnam University,
December 1990.

Royal Society of Chemistry Perkin Division,
Heterocyclic Group Posigraduate Symposium,
Leeds University,
July 1991.

13ih International Symposium on Fluorine Chemistry,
Ruhr Universitäá, Bochum, Germany,
September 1991.

Alate: Throughout this work, an ' F ' in the centre of a ring is used to denote that all unmarked bonds are io fluorine.

by Steven J. Afullins

Blaspracs

The work contained in this thesis is divided into three sections detailing the formation of fluorinated dienes and some aspecis of their chemistry:
a) Through cyclic voltammary, an alectrochemical investigation was carried out to derermine the reduction potentials of several easily accessible perfluorinaied alkenos. Following this, sodium amalgam was successíuly used as a single electron transier agent in order to reduce a number of these fluoroalkenes by means of selective defluorination. This has enabled a series of perfluorinaied alkadienes to be prepared cleanly in good yield. A siudy of a variety of other means of defluorination was also investigated.
b) These dienes have been subjected to attack by mono- and bi- functional nucleophiles in high yielding reactions. This has enabled an unusual perfluorinated diepoxide to be synthesised which displays remarkable thermal stability. A number of novel pyrrole and pyrrolo-quinoline derivatives have also been made from a series of substituted anilines and these are discussed within a mechanistic framework in order to justify the product distributions. Finally, the reaction between potentially bi- functional carbon nucleophiles and ihese perfiluorinated dienes has been used as a means of synthesising a series of poly(perfluoroalkyl)- substifuted cyclopentadienyl anions including the pentakis(rrifluoromethyl)-cyclopentadienyl anion, the formation of which could proceed by an unusual cyclisation and elimination mechanism.
c) Charge iransíer salis have been prepared by complexation of decameihylferrocene wiith various fluorinaied dienes. These salts have been the subject of X-ray crystallographic and molecular magnetic susceptibility studies. No signs of organic ferromagnetism were observed.
Chapter Ona
iniroduction
1.1 General Introduction 1
4.2 The Synthesis of Fluorinated Dienes 2
1.2.1 Coupling Beactions 2
1.2.1.1 Coupling of Alkenes 2
1.2.1.2 Siep-Yfise Couplings Q
1.2.1.3 Disluoromethylene Chain-Exaension 5
1.2.2 Dehydration 7
1.2.3 Dehydrohalogenation 7
1.2.4 Decamoxylation 8
1.2.5 isomerisation 9
1.2.6 Dehalogenation 10
1.2.7 Phosphorous Induced Defluorinaxion-Coupling 11
1.3 The Structure of Fluorinated Dienes 13
1.4 Reactions of Fluorinated Dienes 14
1.4.1 Reactions with Oxygen Aucleophiles 12
1.4.2 Reactions with Fluoride Ion 15
1.4.3 Reactions with Antimony Pentailuoride 16
1.5 Defluorination 19
Chapler Two
Elactrochamical Genaration of Some Paŕlundinated Dienes
2.1 Background 25
2.2 Cyclic Voltammeity of some Perfluorinated Alkenes and Dienes 27
2.2.1 introduction 27
2.2.2 Discussion 32
2.3 Sodium Amalgam Reductions 36
2.3.1 Introduction 36
2.3.2 F- and R-Pentuaro-3,4-dimethylhex-3-9ne (49) 36
2.3.3 Penfuorocyclopeniylidene (42) Q8
2.3.8 A ARizrure of Parfluorobicyclobuyylidene (aA) and Penfluoro-1-gyclobusylcyclobuiene (45) 42
2.3.5 4,\&-Dibromo-2,3-dichlorohexafluorobuiane (61) 43
2.3.6 Other Sodium Amalgam Reductions QA
2.4 Poiassium Amalgam 45
2.4.1 iniroduction 0.5
2.4.2 Peduction of Alkene (A9) 45
2.5 Alkali Aletals in Solution 46
2.5.1 Introduction 46
2.5.2 Reduction of Alkene (\$9) with Sodium Biphenyl 46
2.5.3 Reduction of Alkene (A9) by Potassium in HAPPA 26
Chapier Three
Nucleopailic Beacions of Fluorinaied Dienes
3.1 Introduction 47
3.2 Fluorinated Candanions 48
3.2.1 Fluorine Altached io the Carbanionic Sire 48
3.2.2 Fluorine Adjacent to the Cananionic Site 49
3.3 Reactions with Oxygen Nucleophiles 50
3.3.1 Background 50
3.3.2 Diene (50) with Water 53
3.3.3 Diene (50) with Phenol 55
3.3.4 Diene (43) with Phenol 56
3.3.5 Fluorinated Eposides 56
3.3.5.1 Epoxidation of Diene (50) 60
3.3.5.2 Atempied Epoxidexion of Diene (33) 61
3.3.5.3 Aitempied Epoxidation of Diene (a6) 61
3.3.5.4 Isomerisation of Diepoxide (86) 62
3.4 Reactions with Sulphur Nucleophiles 64
3. 8.1 Diene (50) with Poiassium Sulphide 64
3.4.2 Diene (50) with Thiourea 65
3.4 .3 Diene (50) vith Sodium Thiophenate 65
3.5 Reactions with Nitrogen Nucleophiles 66
3.5.1 Background 66
3.5.2 Diene (50) with Ammonia 68
3.5.3 Diene (50) with Aniline 71
3.5.4 Diene (50) with A-Substinuted Anilines 73
3.5.5 Diene (50) with 2-Miethozyaniline 75
3.5.6 Diene (50) with 3-Alethoxyaniline 76
3.6 Reactions with Canoon Nucleophiles 77
3.6.1 Background 77
3.6.2 Fluorinated Cyclopentadienes and Cyclopentadienide Systems 77
3.6.2.1 Hexafluorocyclopentadiene (123) 77
3.6.2.2 4,2,3,4,5-Pentafluorocyclopentadiene (124) 78
3.6.2.3 Trifluoromethylcyclopentadiene (126) 79
3.6.2.4 Tetrakis(trifluoromethyl)cyclopentadienone (128) 80
3.6.2.5 Pentakis(trifluoromethyl)cyclopentadiene (131) 81
3.6.2.6 Cyclopentadienes from Hexafluorobut-2-yne (28) 82
3.6.3 Reactions with Dieihyl Malonate 83
3.6.3.1 Diene (50) 83
3.6.3.2 Diens (43) 85
3.6.3.3 Diene (46) 86
3.6.4 Dieno (50) with Ethyl 3-Oropentanozte 86
3.6.5 Diene (50) witin 2,2,2-Trifluoroethylphenylsulphone (143) 87
3.6.6 Diene (50) with 1,1,4-Trifluoropontan-3-0ne (196) 88
3.6.7 Diene (50) with Vinylidene Fluoride (150) 90
3.6.8 Reackions with E-2-HHeptafluorobut-2-eno (151) 92
3.6.8. 1 Diene (50) 92
3.6.8. 2 Dlene (43) 93
3.6.8.3 Ociafluorocyclopeniene (435) 9\&
Chanter Fours
Earmation ar Some Charcae Transier Complaxas
Q. 1 Iniroduction 95
Q. 2 Discussion 96
Q.2.1 Reaction of Decamethylierrocene and Diene (83) 96
4.2.1.1 K-Ray Crystal Siructure of (155) 96
4.2.1.2 The [Fe(C5Me5)2]. \rightarrow Radical Cation 100
Q.2.1.3 The [$\mathrm{C}_{10} \mathrm{~F}_{1}$ Q]- Radical Anion (156) 100
Q.2.2 Reaction of Decameinylierrocens and Diene (46) 102
4.2.2.1 K-Ray Crystal Siructure of (161) 105
Q.2.2.2 The [Fe(C5Me5)2].\& Radical Cation 105
Q.2.2.3 The [C8F10]- Radical Anion (162) 105
Q.2.3 Reaction of Decamethyliferrocene and Diene (50) 106
Q.2.4 Reaction of Decamethylíerrocene with Fluoroalkenes (4A) and (45) 107
Q.2.5 Aholecular Aliagnatic Susceptibility 108
Q.2.5.1 Background 108
Q.2.5.2 The Theory of Adagnetic Susceptibility 110
Q.2.5.3 Alagnetic Susceptibility Neasurements of the Charge Transier Saks (155) and (161) 141
4.2.5. Conclusions 147
Exardimenial
Insitrumeniavion 118
Chadier Five
Exparimenialia Chaniar Thoo
5.1 Cyclic Vokammeiry of some Perfluorinated Alkenes and Dienes 120
5.1.1 Instrumentation 120
5.1.2 General Procedure 121
5.2 Sodium Amalgam Reductions 121
5.2.1 General Procedure 121
5.2.2 Reduction of Fluoroalkens (49) 122
5.2.2.1 Thermal Isomerisation of Diene (50) 123
5.2.2.2 Reduction of Fluoroalkene (Q9) using Aceionitrile as a Heai Sink 123
5.2.2.3 Reaction of Diene Isomers (50) and (51) with Fluoride Ion 123
5.2.3 Reduction of Fluoroalkens (a2) 124
5.2.4 Reduction of a Alixiure of Fluoroalkene (QQ) and (Q5) 124
5.2.5 Reduction of Haloalkane (61) 124
5.2.6 Reduction of Perfluoro-1,2-cyclobu'ylcyclobuiene (16) 125
5.2.7 Reduction of Perfluoro-2-methylbicyclo[4.Q.0]decane (65) 125
5.2.8 Reduction of Diene (50) 126
5.3 Poiassium Amalgam 126
5.3.1 Aeduction of Fluoroakene (Q9) 126
5.4 Alkali Anaxals in Solution 126
5.Q. 1 Reduction of Fluoroalkene (Q9) with Sodium Biphenyl 126
5.4.2 Reduction of Fluoroalkene (Q9) by Potessium in HARA 127
Chanter Sirs
Expedimenkalis Chaniec Threa
6.1 Preparation of Staring Alaterials 128
6.1.1 2,2,2-Trifluoroethylphenylsulpone (143) 128
6.1.1. 1 2,2,2-Trifluoroethyl-p-ioluenesulphonate 128
6.1.1.2 2,2,2-Trifluoroethylphenylsulphide 128
6.1.1.3 2,2,2-Trifluoroeinylphenylsulphone (143) 129
6.1.2 1,1,1-Trîluoropentan-3-one (146) 129
6.1.2.1 1-Chloro-1,1-difluoropentan-3-one 129
6.1.2.2 1,1,1-Trifiluoropentan-3-one (146) 130
6.1.3 E-2-HHepiafluorobui-2-8ns (151) 130
6.2 Reactions with Oxygen Nucleophiles 131
6.2.1 Diene (50) with Water 131
6.2.2 Diene (50) with Phenol 131
6.2.3 Diene (43) with Phenol 132
6.2.4 Fluorinated Epoxides 133
6.2.4.1 Epoxidation of Diene (50) 133
6.2.4.2 Attempied Epoxidation of Diene (43) 133
6.2.4.3 Atrempied Epoxidation of Diene (a6) 133
6.2.4.4 Isomerisation of Diepoxide (86) 134
6.3 Reactions with Sulphur Nucleophiles 138
6.3.1 Diene (50) with Poiassium Sulphide 138
6.3.2 Diene (50) with Thiourea 134
6.3.3 Diene (50) with Sodium Thiophenate 135
6.6 Reaction with Nitrogen Nucleophiles 135
6.4. 1 Diene (50) with Ammonia 135
6.4 .2 Diene (50) with Aniline using Cassium Fluonde as a Base 136
6.4.3 Diane (50) with Aniline using Potassium Fluoride as ${ }^{2}$ Base 137
6.4.4 Diene (50) with Q-Substituied Anilines 137
6.4.4.1 GSith N,MDimethyl-a-aminoaniline 137
6.4.4.2 With Q-Alethoxyaniline 138
6.4.4.3 With \&ofluoroaniline 138
6.4.4.2 Waith a-Chloroaniline 139
6.4.4.5 With \&-Avitroaniline 140
6.4.5 Diene (50) writh 2-ANethoryaniline 120
6.4.6 Diene (50) with 3-Miethoxyaniline 144
6.5 Reactions with Carbon Nucleophiles 142
6.5.1 With Diethyl Malonate 142
6.5.1.1 Diene (50) 142
6.5.1.2 Diene (43) 142
6.5.1.3 Diene (46) 143
6.5.2 Diene (50) with Ethyl 3-Oxopentanoate 143
6.5.3 Diene (50) with 2,2,2-Trifluoroethylphenylsulphone (143) 144
6.5.4 Diene (50) with 1,1,4-Trifluoropentan-3-one (146) 144
6.5.5 Diene (50) with Vinylidene Fluoride (150) 145
6.5.6 With E-2-HHeptafluorobut-2-ene (151) 145
6.5.6.1 Diene (50) 145
6.5.6.2 Diene (43) 146
6.5.6.3 Octafluorocyclopentene (135) 146

Chapier Seyen

Exaerimenial ia Chanier Fous

7.1 Reagenis 147
7.2 Reaction of Decamethylierrocene with Diene (e3) 147
7.3 Aeaction of Decamethylfarrocene with Diene (e6) 147
7.4 Reaction of Decamethylierrocene with Diene (50) 148
7.5 Reaction of Decamethylierrocene with Fluoroalkenes (QQ) and (QS) 148
Bopaendicas
Apaendias
NAMR Spectra 149
Appandiz ll
Iníra Red Specira 179
Bapandix lll
Alass Spectra 188
Appendixly
X-Ray Daia 240
Appendix
Colloquia, Coníerences and Induction Course 256
Befarences 269

IATROOUCTION
 AND
 DISCUSSION

Chandar Ona

Introduction

1.1 General Introduction

The most electronegative element, fluorine is uniquely capable of replacing hydrogen at any site in any organic sysiem², creating an aliernative, complementary field of organic chemisiry $3,4,5,6$. However, despire the carbonfluorine bond being the sirongest of any single covalent bond to carbon7 and considering the remarkable geological abundance of fluorine, fluorocarbons are found only very rarely in nature; the best known example being potassium monofluoroacetate found in the South African plant "Gifblaar" (Dichapetalum cymosum) ${ }^{8}$; therefore the field of organofluorine chemistry is essentially entirely synthetic.

The foundations of organic fluorine chemistry have recently been reviewed9,10,14 and more recent work has been reported in treatises elsewhere; for examples see reís: 3,4,5,6.

The aim of this review is not to discuss these topics but instead to concentrate specifically upon the subject of fluorinated dienes, their syntheses and chemistry.

1.2 The Sunthesis of Fluarinaied Dieness

1.2.1 Complina Beactions

1.2.1.1 Couplina ai Fluaraalkenes

One of the methods for the preparation of fluorinated dienes is by simply joining together iwo fluoroakene units. This idea was first used by Camaggi and co-morkers ${ }^{12}$ with ithe reductive coupling over hot copperbronze of various polyfluorovinyl halides. In this way, some interesting straighi-chain13 polyfluoro-1,3-dienes and perfluorinateod bicyclic dienes kyere made (Scheme 1).

mixture

10%

$\xrightarrow[230^{\circ} \mathrm{C}]{\mathrm{Cu}}$
 $\xrightarrow[230^{\circ} \mathrm{C}]{\mathrm{Cu}}$

32\%

Q4\%
(Scheme 1)
In 1971, Camaggi further reported 14 the reaction of hexafluoro-1,2-diiodocyclopentene (1) over copper-bronze, a process which afrorded several coupled products including the novel cyclo-ociatetraene (2) (Scheme 2).

An analogous cyclo-ociararraene to (2), (3), was made in a similar manner15 by the reductive coupling of $1,2-0$ i-iodotatrafluorocyclobuene (a) over hot copper (Scheme 3).

(4)

(3) $3 \AA \%$

50\%
(Scheme 3)
It is worthy of note that although the cyclo-ociatetraene (2) has been shown 16 to adopt the expecied tub shape, ietraene (3) was demonstrated by X-ray crystallography to possess a planar ring sysiemi7. This compound is also one of the mosi powerful neutral oxidanis known 18 , showing iwo reversible one-electron reductions to give the 10π aromatic system (5) (Scheme \&).

(3)

vs. SCE

vs. SCE

(5)
(Scheme 4)

Using the copper-induced reductive coupling methodology, various other substituted bicyclic dienes have also been formed and repored 15,19 but this technique is not restricted only to the formation of 1,3 -dienes; a recent patent20 of the synthesis of decafluoroheza-1,5-diene (6) by the coupling of 3iodoperfluoropropene (7) appeared in the literaiure lately and in the case of this non-vinyl iodide, the reaction became quantiative under UV irradiation when in the presence of mercury (Scheme 5).

In those copper promoted couplingsi2,14,15,19, it wes inierred't that the reaction itself is a no-step process stanting with an anack by copper at the carbon bearing the bromine or iodine to form an activated complex at the meial surface. This complex would inen react with a second molecule of the bromide op iodide at the surace to give the final di- of poly-ane.

Indeed, Burion and co-vyortersth observed only the simple coupled symmetrical dienes when irying to generaie fluorovinyl copper reagenis by this route (Scheme 6).

Apparently any vinyl copper intermediates which are formed react rapidly with additional vinyl halide giving the coupled product. Attempts, however, to make fluoroalkenyl cadmium reagents mere successíul21 via the direct reaction of fluorovinyl iodides or bromides in DAAF under mild conditions (Scheme 7).
8.g.

(Scheme 7)
These reactions proceeded with a total rotention on configuration making the cadmium reagents invaluable in the funther reaction with copper to give the corresponding fluorovinylcopper reagents22 (Scheme 8).

(Scheme 8)
Again, this metathesis occurred stereospecifically and, as the route avoided the presence of any vinyl iodides or bromides at the siage when vinyl copper species were present, the resulting organo-copper reagents were prepared unequivocally. These vinyl copper compounds are very versatile and have
been further shown by Dolbier and co-workers 33 to be a good source of f́luorinaied dienes (Scheme 9).

Using a similar methodology, this paper also reported the synthesis oif fluorinated dienes via the coupling of perfluoropropenylzinc reagents ${ }^{24}$ with trifluorovinyl iodide in the presence of terakis(iriphenylphosphine)palladium.

1.2.1.3 Diflupromeithulene Chain-Extension

An intriguing variation on the coupling theme is that of chain-extension or homologation. The initial work in this area, like many of the other methods of diene formation, started with the formation of fluorinated alkenes. It was first reported25 that for the case of difluoromethyleneiriphenylphosphorane (8), prepared in siru by the reaction of friphenylphosphine with alkali meial salts of chlorodifluoroacetic acid, in reaction with aldehydes and perfluoroalkyl substituted ketones gave ferminal fluoro-alkenes26. However this method is often complicated by HF addition and fluoride ion induced isomerisations to give internal fluoroalkenes whenever this is possible27 (Scheme 10).

(Scheme 10)
The generation of the ylide (8) by reaction of friphenylphosphine with dibromodifluoromethane (9) obviated these difficulties and allowed the synthesis of the terminal fluoroalkene in high yield (Scheme 11).

e.g. $R=P h$

82\% yield

(<1\% internal fluoroalkene, 0\% HF addition product.)

The use of a metal, such as cadmium, zinc or mercury as a dehalogenator, minimised the use of the phosphine28 and also eliminated ine formation of the halogenated phosphorane by-product.

This meihod, however, initially proved to be unsuiable for the preparation of fluorinated dienes as it was found29 inat the polyiluorinated diketones which were formed, cyclised via an intramolecular aldol-iype condensation route giving α, β-unsaiupated cyclic kerones. This process was found to be promoted by the basic dimethylamine produced by decomposition of the solvent DAAF. However, in 1980, Burton and co-workers published a similar route 30 to fluorinated terminal alkadienes by the chain-exiension of fluorinaied alkenes (Scheme 12).

54\% (Scheme 12)
Subsequent work by Burion and co-workers 31 revealed that fluorinated dienes could be synthesised utilising this methodology by reacting various polyfluorinated diketones with an excess of triphenylphosphine and dibromodifluoromethane (9) in triglyme (Scheme 13).

$\mathrm{RC}(\mathrm{O})\left(\mathrm{CF}_{2}\right)_{n} \mathrm{C}(\mathrm{O}) \mathrm{R}$| xs $\mathrm{Ph}_{3} \mathrm{P}$
 xs (9) | $\mathrm{F}_{2} \mathrm{C}=\mathrm{C}(\mathrm{R})\left(\mathrm{CF}_{2}\right)_{n} \mathrm{C}(\mathrm{R})=\mathrm{CF}_{2}$
 $70^{\circ} \mathrm{C}$
 iriglyme |
| :--- | :--- |
| $+\mathrm{F}_{2} \mathrm{C}=\mathrm{C}(\mathrm{R})\left(\mathrm{CF}_{2}\right)_{n} \mathrm{C}(\mathrm{O}) \mathrm{R}$ | |
| (Scheme 13) | |

Where $R=P h, E\{; n=2,3$. Yields: diene:enone 50-60\%:10-20\%.

The absence of DAP coupled with the milder reaction conditions circumvented the aldol cyclisation problem giving various fluorinaied dienes in modesi yields in a mirxure with the corresponding enone.

1.2.2 Depurdraxion

Dehydration was one of the aarly methods be considered as a reasonable route to fluorinated dienes. The first paper with this theme was published in 195332 and used sulphuric acid to dehydraie seriary alcohols (Scheme 14).

(Scheme 14)
However, interest in such a meihod is diminished by its very limized scope.

1.2.3 Debudrahalogenation

A more widely used meihod for the production of fluorinated alkadienes has been that of dehydrohalogenation. Tarrant and Lovelace utilised this fechnique33 in the preparation of 1,1-difluorobuia-1,3-diene (10) (Scheme 15).

An analogous synthesis for diene (10) and 1,1-difluoroisoprene also appeared in the patent liferature ${ }^{34}$.

Alore interestingly, a synthesis of perfluoro-2,3-dimethylbutadiene (11) was reported by some Soviet workers in 197335 via the aqueous electrolysis
of co-hydro-perfluoroisobuianoic acid (12) containing a little of its poiassium sali (Scheme 16).

(Scheme 16)
This was then denydrofluorinated to give the diene (11) (Scheme 17).

1.2.4 Dacarbaxylation

A further method which has been reported in the literature for the formation of fluorinated dienes is the thermolytic decarboxylation of the alkali meial salis of fluorinated dicarboxylic acids. This was first reporied in 195\&36 as a viable route to hexafluorobuiadiene (13) from the pyrolysis of anhydrous disodium octaf́luorohexane-1,6-dioate (14) (Scheme 18).

(13) 30%
(Scheme 18)
A more recent development of this process37 is the decarbozylation of the salis of polyfluorinated carboxylic acids which already contain a terminal double bond38 (Scheme 19).

(Scheme 19)
However, at the elevated temperatures needed to achieve thermolysis, a small amount of the cyclic isomers 37 was formed as an impurity.

1.2.5 Isamerisation

In 1955, Haszeloine and Osbourne suggesiod39 inat herafluorobutadiene (13) could be made, in an oquilibrium, by simply heating herafluorocyclobuiene (15) (Scheme 20).

The theory 40 , kinetics and ihermodynamics of this and related sysiems $\$ 1,42$ have been siudied more recently bui, as ine equilibrium lies predominanily on the side of the cyclic compounds, this method has not been proven to be a satisfactory synthesis of perfluorinaied dienes with a few notable exceptions which were published by Chambers and co-workers ${ }^{43}$. Starting from the pyridine-formed 44,45 frimer (16) of cyclobutene (15), pyrolysis yielded two isomeric dienes ${ }^{\$ 6}$ (Scheme 21).

(16)

(17) 15%

(18) 40% (Scheme 21)

Diene (18) has been formed by fluoride ion isomerisation from (17).

1.2.6 Dehaloasnadion

The major route to fluorinated dienes, in the literature, is that of dehalogenation. Haszeldine, in 1952, was the first io repori47 a dechlorination route to a diene. Starting from chlororifluoroethene (19), hexafluopobutadiene (13) mas made in good yield overall (Scheme 22).

Alore recently, zinc dechlorination has been used in the formation of perfluoro-2-methyl-penia-2,4-diene48 (20) (Scheme 23).

(Scheme 23)
Other zinc dehalogenations have also appeared in the patent literature ${ }^{49,50}$ and elsewhere $51,52,53$ (Table 1).
$\mathrm{H}\left(\mathrm{CFCl}_{4} \mathrm{CO}_{2} \mathrm{AMO} \xrightarrow[-\mathrm{Cl}_{2}]{2 n} \quad \mathrm{HCF}=\mathrm{CF} \cdot \mathrm{CF}=\mathrm{CFCO}_{2} \mathrm{HA} \quad 49\right.$
$\left(\mathrm{BrCF}_{2}-\mathrm{CFCl}\right)_{2} \xrightarrow[-\mathrm{BrCl}]{\mathrm{Zn}} \quad \underset{(13)}{\mathrm{F}} \mathrm{C}=\mathrm{CF}-\mathrm{CF}=\mathrm{CF}_{2} \quad 50$
$\mathrm{ClF}_{2} \mathrm{CCCIFCF}_{2} \mathrm{CF}=\mathrm{CF}_{2} \xrightarrow[-\mathrm{Cl}]{\mathrm{Zn}} \quad \mathrm{CF}_{2}=\mathrm{CFCF}_{2} \mathrm{CF}=\mathrm{CF}_{2} \quad 51$

	2 n	
C	Cb^{2}	54%

$$
\mathrm{CF}_{2}=\mathrm{CF}\left(\mathrm{CF}_{2}\right)_{4} \mathrm{Cl} \xrightarrow[-\mathrm{FCl}]{\mathrm{Zn}} \quad \begin{gathered}
\mathrm{CF} \\
2
\end{gathered}=\mathrm{CF}(\mathrm{CF})_{2} h_{2} \mathrm{CFF}=\mathrm{CF}_{2} \quad 52
$$

$$
\mathrm{CF}_{2}=\mathrm{CF}\left(\mathrm{CF}_{2} \mathrm{CFCl}_{2} \mathrm{CF}_{2} \mathrm{Cl} \xrightarrow[-\mathrm{Cl}]{-\mathrm{C}_{2}} \rightarrow\left(\mathrm{CF}_{2}=\mathrm{CFCF}_{2}\right)_{2} \mathrm{CFCl}\right.
$$

$$
\left(\mathrm{CF}_{2}=\mathrm{CFCF}_{2}\right)_{2} \mathrm{CFCl} \xrightarrow[-\mathrm{FCl}]{\mathrm{Zn}} \rightarrow \mathrm{CF}_{2}=\mathrm{CF}-\mathrm{CF}=\mathrm{CF}-\mathrm{CF}_{2}-\mathrm{CF}=\mathrm{CF}_{2}
$$

1.2.7 Phosahorus inducaed Daśluarination-Coupling

In a category of its own lies some paricularly interesting Soviet work. Knunyanis and co-workers reporied54 the reaction of perfluoroisobutene (21) wiith friphenylphosphine io give the cross-conjugated perfluororriene (22) through a defluorination-coupling (Scheme 2d).

(21)
1)

(22)
(Scheme 24)
(it should be noted here that athough this method can provide a good route to some relatively inaccessible dienes, the starting material perfluoroisobuiene (21) is known to be highly toxic and the by-products which contain phosphorous-fluorine bonds are even more so.)

The assumption that the ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ is formed as an intermediate in this reaction was confirmed in a later paper55 as well as the
result inat if fluoroalkene (21) was reacied with iribuiylphosphine in aceronifrile, triene (22) was made along with a subsiantial amount of perfluoro-2,5-dimeihyl-hexa-2, \&-diene (23) (Scheme 25).

(Scheme 25)
These findings were expanded furthers6 for various cyclic and acyclic fluoroalkenes (Scheme 26).

Butadiene itself has been shown to oxist in the gas phase primarily in the trans-planar $\left(C_{2 h}\right)$ conformation57 but a small amount of the gauche form $\left(C_{2}\right)$ has also recenily been predicted 58 to be preseni. It has likewise been established by Raman, infrared59 and microwave60 spectra that 1,1,4,4tetrafluorobutadiene also adopts the Cen conformation.

The vibrational spectra of hexafluorobutadiene (13), however, were demonstrated61 to be inconsisient with the Can $_{2}$ conormation. These spectral data were consisient with ine $C_{2 y}$ symmetry, but the gauche coniomation or a mixture of several configurations could not be ruled out (Figure 1).

C_{2} (Figure 1)
Phoioelectron and opical spectroscopy siudies62 have since determined that hexafluorobutadiene (13) exisis in a non-planar skew cisoid conformation with a dihedral angle from the cis siruciure of $42^{\circ} \pm 15^{\circ}$ which is in good agreement wiith an angle of $47.4^{\circ} \pm 2.4^{\circ}$ obiained from gas-phase electron diffraction63. From NAMR siudies 100 , the apparent angular dependence of five bond fluorine-fluorine coupling of diene (13) also suppor's this non-planariyy6s and more recently, the vibrational spectrum was assigned65 and was shown to be consistent with the skew C_{2} structure.

An interesting theoretical paper has recently been published66 outlining the determination of the electronic structure of hexafluorobutadiene (13) from ab initio molecular orbital calculations. This gave the minimum energy structure to be a skew-cis conformation with an optimised dihedral torsion angle, $\psi_{o p i}$, of 58.4°. Analysis of the theoretical molecular orbitals proved to be consistent with the majority of the previous spectroscopic results implying that, if the theoretical modelling was correct, some of the minor spectral data for diene (13) had been misinterpreted and that this was the reason for the differences in the value of ψ.

1.4 Blacrions ai Eluorinared Dienes

Comparatively sew papers datailing examples of reactions of fluorinated dienes can be found in the literature. For the most part, those that do appear outline reactions in which the dienes are considered as simple fluorinated alkenes and treated accordingly.

1.8.1 Beactions with Oxyan Atucleaphiles

Knunyants and co-workers67 were among the first to report their findings beimeen hexafluorobuiadiene (13) and various alcohols (Scheme 27).

In the presence of a base, the intermediate ferminal fluoroalkene rearranged to give the final, more siable, internal fluoroalkene.

Perfluoro-2,3-dimethylbutadiene (14) has received some attention in the literature. The hydration of diene(11) proceeds in acetone68 to give mainly the carboxylic acid (28) plus a few minor producis (Scheme 28).

(11)

(2@)
(Scheme 28)

Diene (11) reacts slowly with neutral methanol69 at room iemperature to give a mixture of the 1,2-addition product (25) and a substitution product (26) (Scheme 29).

(Scheme 29)

Stronger nucleophilic condikions using sodium methoxide were needed to bring about a second substiution of diane (11) or substitution product (26)69.

Interestingly, perfluoro-2-methylpenta-2,8-diene (20)48 reacis with neurral methanol to give the 1, A-addition product (27) (Scheme 30).

(Schems 30)
whereas hexafluorobutadiene (13) adds alcohols only under nucleophilic catalysis 70.

1.4.2 Beactions mitioh Fluarida lon

Very fews reactions of fluorinated dienes with fluoride ion have been published. The simplest case, hexafluorobutadiene (13) was showen71 io rearrange to give the alkyne hexafluorobui-2-yne (28) by the passage, in the vapour phase, over caesium fluoride (Scheme 31).

Analogously, octafluoropentadiene (29)51 was isomerised71 to give its more stable intemal isomers and utimately the alkyne (30) (Scheme 32).

(Scheme 32)

In a similar vein, terminal diene decailuorohera- 1,5 -diene (6)20 was reporied73 to react with fluoride ion to give the more stabla iniernal diene, decấluorohexa-2,4-diene.

However, in the case of diene (11), preierential isomerisation does not occur, instead fluoride ion induces an oligomerisazion to give iwo dimers (31) and (32)73 (Scheme 33).

(Scheme 33)
The ratio of the dimers was found to be iemperature dependent; attack through the more sterically hindered contributor anion (33) rather than (34) was increased with an increase in remperature leading to an increase in the proportion of diene (32).

1.4.3 Reactions with Antimony Peniafluoride

Antimony pentafluoride, like fluoride ion, can isomerise fluorinated dienes. It has been shown74 that contacting various terminal dienes with a
catalytic amount of antimony pentafluoride resulied in the oxothermic isomerisation to their corresponding internal dienes (Scheme 36).

$$
\begin{aligned}
& \mathrm{CF}_{2}=\mathrm{CF}\left(\mathrm{CF}_{2}\right)_{\mathrm{CF}} \mathrm{CFFF}_{2} \xrightarrow{\mathrm{SbF}_{5}} \mathrm{CF}_{3} \mathrm{CF}=\mathrm{CF}\left(\mathrm{CF}_{2}\right)_{n-2} \mathrm{CF}_{2}=\mathrm{CFCF}_{3} \\
& \text { (} n=2,4,6,12 \text {) } \\
& \text { (Scheme 3A) }
\end{aligned}
$$

Heating some of these internal dienes with antimony pentafluoride gave a mixture of cyclic products (Schemes 35 and 36).

(Scheme 35)

However, in the case of perfluoropente-1,3-diene (35), heating with excess antimony peniafluoride75 forced a cyclodimerisation to give the cyclic diene (36) presumed to proceed via the allene (37) (Scheme 37).

(36) $80-90 \%$
(Scheme 37)
Very recently76, it has been shown that some perfluorinated dienes can be electrophilically co-oligomerised with tetrafluoroethene (38) under the action of antimony pentafiluoride. (Scheme 38).

(Scheme 38)
The resulting diene can further add another tetrafluoroethene (38) unit under these conditions (Scheme 39).

1.5 Déluorinakion

The great strengit of the caroon-fluorine bond (505 kJmol-i for C-F in CF_{4} versus $436 \mathrm{kJmol}^{-4}$ for $\mathrm{C}-\mathrm{H}$ in CH_{4} and $293 \mathrm{kamol}^{-1}$ for $\mathrm{C} \cdot \mathrm{Cl}$ in $\mathrm{CCl}_{4}{ }^{1}$) accounts for the remarkable thermal stability of fluorocarbon compounds. Indeed, high temperature thermolyses have proven to be one of the more widely used syntheric procedures for ine convenient formation of some ofherwise difficuli to obiain compounds5,6,77. Various inermal decompositions and fragmentations involving ine olimination of difiluoromethylene or ietrafluoroethens moieties have been repored78,79,80,81 but it is the metal-induced pypolytic dafluorination of cyclic and polycyclic perfluoroalkanes to perfluoroaromatics 82,83 which has been the most videly used process to daie (Scheme 80).

As well as iron, analogous defluorinations have also been reporied over nickel turnings84 and activated carbon85. Alore recently, a similar defluorination has been reporied86 using exhausied caesium teirafluorocobaliate(III) - assumed to be caesium irifluorocobaliate(II) (Scheme 41).

30%

The initial step in these defluorinations is presumably the removal of one of the teriary fluorines but as the reaction proceeds, the extra stability arising from aromaticity has enabled these products to be isolated from the
reaction mixiure rather than mineralisation occurning. However, when there is no aromatic product along the reaction pathway, milder conditions are required in order to avoid the complete decomposition of the fluorocarbons.

The reaction directly between fluorinated organics and alkali metals is known to be very vigorous to the extent of being poientially explosive3, indeed this reaction remains a valualo sool for the analysis of fluorinated compounds87. ARilder variations on this theme are the analytical iechniques of using sodium in an ammonia solutions8 or as a biphenyl-sodiumdimethoxyethane complex 89,90 both again for use in the semimicro determination of fluorine (and chlorine) in organic compounds.

Recently, under relatively mild condisions, the sodium radical anion of naphthalene has been used to completely defluorinate $1,2,4,5$-ietrafluorobenzene and perfluorotoluene91. This followed earlier work in which the same naphthalene radical anion was used to partially defluorinate the surface of poly(terrafluoroethene) (PTFE) in order to bring about affective bonded using commercial resins92,93.

In fact, surface modification of PTFE has long been a target of intersst in research. Dousek and Jansta94,95 reporied the electrochemical surface corrosion by various alkali metal amalgams to give black-coloured carbonaceous products thich are typical of the chemical reduction of PTFE and in the recent literature9s, even non-polymers including hexafluorobenzene and tefradecafluorohexane, reduced in the gas phase by the action of a lithium amalgam.

Afore recenty, however, the surface of PTFE has been modified reductively by the action of the potassium benzoin dianion 97,98 giving a reflective meiallic lustre (silver or gold). Chakrabani and Jacobus were also able to repori99 the chemical reduction of bulk PTFE into high density polyethene by the action of lithium in liquid ammonia.

An intriguing paper from AlacNicol and Robertson appeared in the literature recently 100 . The authors reporied that perfluorodecalin (39) was
completely defluorinated and aromatised by ine action of sodium iniophenate under fairly mild conditions (Scheme Q2).

DAAEU = 1,3-dimethylimidazolidin-2-one

It is worthy of noie here, that only model sysiems in which a ieriany f̂luorine site or a site of unsaturation was present, undenment this type of reaction 98 suggesting that it is at these positions that the initial reduction takes place. In a similar vein, a very recent paperi01 reporied the reduction of perfluorobicyclo[A.4.0]dec-1(6)-ene (40) by activated zinc to give various defluorinated products depending upon the polarity of the solvent present (Scheme 83).

Under these circumstances, however, perfluorodecalin (39) could noi be defluorinated ${ }^{101 .}$

A fews papers have been published which outline inermolytic defluorination of perfluorinated alkenes over activated meial suriaces as a viable route to non-aromatic unsaturated fluorocarbons. Among the first was a communication released by Haszelding and co-workers 102 wherein hexakis(pentafluoroethyl)benzene (aî) was dofluorinated over activated zinc to give a stable xylylena, the structure of which was not unequivocally assignad (Schame 4id).

(81)

(unassigned) (Scheme ad)

Thermolytic defluorination has been used to good effect in these laboratories; Alarper found5, 103 that perfluorobicyclopeniylidene (\&2) could be reductively defluorinated over hot iron to give the diene periluorobicyclopent-1,1'-enyl (43) (Scheme 45).

whilst Taylor46 performed similar thermolyses on perfiluorobicyclobuyylidene (44) and perfiluoro-1-cyclobutylcyclobutene (45) to give the similar diene (46) and perfluoro-1-(methylethyl)-cyclopentene (47) io give the diene (48) in modest yields (Scheme 46).

(A8) 35%
(Scheme 46)

Perfluoro-3, Q-dimethylhex-3-ene (boin E-and Z-) (49), ine readily available $04,105,106$ ietramer of tespafluoroethene (38), has also been thermolytically defluorinated 81,107 over iron to give the isomeric dienes (50) and (51) in good yield along with seme of the thermally cyclised produci (52) (Scheme 47).

It is significant to note that pypolysis of the ietramer (Q9) over caesium fluoride resulied in appreciable defluorination81 [ca. 30\% yield for (50), (51) and (52) combined] possibly through the formation of caesium polyiluorides. A similar defluorination over activaied carbon has recently appeared in the patent literature 108 whereby tetramer (49) was reduced to the diene (50) at $400^{\circ} \mathrm{C}$. The absence of any reierence to the thermally cyclised isomer, cyclobutene derivative (52), among the products is noteworthy considering the high temperature of the reaction.

A certain amount of interest has been generated in the chemical literature recently over the activation of carbon-fluorine bonds by the oxidative addition to a metal centre in the cases of fluorinated aromatic systems 109 and perfluoroalkenes ${ }^{110}$. In a paper by Jones and AmcDonaldi14, ihis idea of metal insertion was exiended and the alkane hexafluopoethane was successfully (if slowly) defluorinated in the gas phase by [$\mathrm{AMn}(\mathrm{CO})_{3}$], a fragment generated by dissociative electron attachment to $\mathrm{AR} \mathrm{n}_{2}(\mathrm{CO})_{10}$.

When zero-valent bis(arene)chromium complezes were used as initiators for hexafluoropropene oligomerisation, iwo of the trimerisation producis were found to have been defluorinated'12 alihough no yields are
given for the process. The authors attributed the apparent defluorination to hydrogenation followed by dehydrofluorination (Scheme a8).

(Scheme 48)
This idea was reinforced inrough deuterium labelling in that the source of hydrogen was found to be from the aryl ligand upon chromiumit3 and prosumed to react afer $\eta^{6-\eta} \eta^{\dagger}$ rearrangement (Scheme 49).

In a more recent example of defluorination of perfluoroalkenes by organometallic reagenis, Waison and co-workers reporiedry fluorine abstraction by various divalent lanthanoid complexes to give trivalent lanthanoid fluorides $M\left(C_{5} \mathrm{Am}_{5}\right)_{2} F . L$ (AA $=\mathrm{Yb}, E u, \mathrm{Sm} ; \mathrm{L}=$ diethyl ether, tetrahydrofuran). The driving force for these reactions was the negative reduction potentials of the metal ions $[\mathrm{AA}(\mathrm{III}) \rightarrow \mathrm{M}(\mathrm{II})]$ and ihe utimate formation of very strong lanthanoid fluoride bonds.

Chapter Tu 0
 Electrachemical Generaxion ai Same PerfuarinaredDienas

2.1 Backoround

Previous airempis in our laboratories to electrochemically reduce fluorinated alkenes to their copresponding dienes have not mot with general success ${ }^{115,116,147 \text {. The major problems with electrochemical reductions of }}$ fluorinaied substrates have involved complicating side reactions; namely reaction of the subsirate with the bulk solvent or the supporing electrolyte, op with fluoride ion formed by elimination which may induce isomerisation or dimerisation with f̂ư̛her fluorinated material.

However, some successíul electrochemical reduckions of periluorinaied alkenes have been published in the literature. For example, fluorinated aromatics have been generated by the reduction of some fluorinated сусloheradienes $118,149,120$. Thus, ociafluorocyclohexa-1,3- and -1,8-diene (53) and (5A)131 mere electrochemically defluorinated to give hexafluoro-benzene (55) via a siep-wise mechanism (Scheme 50).

Soviet workers 122 reported the electrochemical reduction of perfluoro-4-methylpent-3-ene (56), the thermodynamic dimer of hexafluoro-propene103,123. The result of this reduction was the formation of two unusual cyclic dimerisation products (57) and (58) (Scheme 51).

However, the range of clean electrochemical defluorinations is still quite small.
Due to the relative strength of the carbon-fluorine bond, a further limiting factor is the size of the applied potential which is needed to reduce fluorinated organics. In order to determine the reductions of some fluorocarbon derivatives, cyclic voliammetry was used.

2.2 Crelic Yohammero ai same Peŕluariairó Alkenes and Dienes

2.2.1 Intraduction

Cyclic voliammetry (C.V.) is a useful analytical iechnique in the investigation of the mechanistic aspects of some electrochemical processes. In C.V. an electrode potential is swept beiteen the limiss E_{1} and E_{2} at a constant sweep rate v which can be either positive or negative. Upon reaching E_{2} the sweep is reversed (usually, but not necessarily, ait the same sweep raie) until the potential reaches the initial value of Er. Aiter this, the process may be siopped, repeated or continued further io a value E_{3}.

Figure 2. A C.V. potential-ime profile.

The current is recorded as a function of the potential applied across the cell. In the simplest case for a reduction, oxidised species O is converied to the reduced species R(Scheme 52).

$$
0 \& \theta^{\circ} \Rightarrow R \quad \text { (Scheme 52) }
$$

Initially, only O is present in solution and, if a very slow linear potential ramp is applied, the resultant voliammogram would be a steady state I versus E curve. By increasing the sweep rate v, a peak of increasing size develops. This is shown overleaf in Figure 3.

Figure 3. A series of linear sweep vohammograms at various sweep raies.

To understand this, we must consider the steady state conditions for the system when the concentrations of the electroactive substrate O are uniform throughout the bulk solution and are maintained that way by natural convection. However, in the region immediately neri to the electrode - known as the Nernst diffusion layer - the concentration gradients are approximately linear, with the ratio of $[\mathrm{O} \sigma] /[\mathrm{R} \sigma]$ given by the Nernst equation.

$$
E=E 0-\frac{80}{n F} \ln \frac{[B \sigma]}{[0 \sigma]}
$$

Where $E 0$ is the standard poiential of the system, $[R \sigma]$ is the concentration of R at a small distance σ from the electrode and $\left[\mathrm{O}^{\sigma}\right]$ is the concentration of O at the same distance.

This means that, for this system, as the potential E is made more negative, the surface concentration [O] will be decreased, thereby increasing the concentration gradient and thus the resuking current. The current will reach a plateau value when the surface concentration reaches zero.

If the sweep rate v is increased, the diffusion layer cannot relax to its equilibrium state so it leads to a non-linear concentration gradient. Once the potential is able to reduce O, its concentration decreases in order to satisty the Nernst equation. This causes a current proportional to the concentration gradient created to flow in the circuit. Difrusion will decrease this gradient but the changing electrode potential in turn decreases the amount of O at the
electrode. it can ineretore be seen that, for any given potential, the concentration gradient at the suriace is greater than for the steady state case and therefore the current is larger. Once the concentration of O at the surface reaches zero, the gradient will decrease through diffusion thereby relaxing the sysiem hence the cuprent will also decroase leaving a peak in ine cyclic vohammogram.

For a very slow sweep (i.e. pseudo sieady siaie) the current for the reverse sweep should irack ine formard one but for íasier sweops, a significant amount of h has been formed in the diffusion layer and continues to be generated until the potential reaches EO. As the potential approaches this value it stants to be oxidised back io O causing a reverse current io flow. Eventually all the R in the region will be consumed and, in an analogous way to the reductive process, a peaked response will be given in the voliammogram (in the opposite direction). The charge associated with the oxidative peak will be smaller than the reductive case as the concentration differences will have driven most of the R produced into the bulk solution.

Figure 4. A cyclic voltammogram for a reversible process.

The peak potentials, $\varepsilon_{p^{c}}$ and $\varepsilon_{p^{a}}$, obtained from such a cyclic voltammogram will be independent of the sweep pate ${ }^{128}$, as it is the applied potential and not the rate of change which dictates the actual electrochemical processes occurring.

For the simple case of reduction / oxidation, it is found ${ }^{124}$ that the ratio of peak current flowing, $l_{p}{ }_{p} l_{p} c$, is equal io unity. In some cases, however, the intermediate produced at the electrode is unstable on the steep timescale with respect to further reaction giving a more favourable product $P \quad$ (Scheme 53).

$$
0+\theta^{\circ} \Rightarrow R \rightarrow P \quad \text { (Scheme 53) }
$$

This means that, for the reverse swees, the concentration of R is lower than for the simple reversible process and the current arising from the oxidation of R in the electric double layer is decreased. This gives the result that the ratio $l_{p} a / l_{p} c<1$ and that the separation between the forsard and reverse peaks increases. In the extreme case the reverse peak may not be present.

Figure 5. A cyclic voltammogram for a simple irreversible reduction.
By increasing the sweap rate v, for such irreversible systems, the reaction which happens after the first electron transfer occurs io a lesser extent and so the ratio $I_{p} a I_{p} c$ increases to such a degree that for very fast scanning the system appears io be fotally reversible. Conversely, slowing the speed of the cycles down causes the system io assume a more steady staie type of
behaviour except thai further anomalous peaks may appear from the reduction of the products.

Various studies have been made into the investigation of how some reaction parameters change with a change in sweep rate124,125 and using C.V. on a qualitative basis, information on reaction mechanisms and sequences has been obtained.

2.2.2 Discussion

Table 2 shows the resulting reduction potentials (vs. S.C.E.) from the cyclic voltammetric study of some relatively easily available perfluorinated alkenes and dienes. The fluorocarbons are either oligomers of simple alkenes or dienes obtained by the reduction of these oligomars (see Section 2.3).

Table?

 (42)	 ($A, A)$
$\begin{gathered} -1.06 \pm 0.03 \mathrm{~V} \\ \text { (quasi-reversible) } \end{gathered}$	$\begin{gathered} -1.10 \pm 0.03 \mathrm{y} \\ \text { (quasi-reversible) } \end{gathered}$
 (85)	 (49)
-1.23 $\pm 0.03 \mathrm{~V}$	$\begin{gathered} -1.62 \pm 0.05 \mathrm{~V} \\ \text { (quasi-reversible) } \end{gathered}$
 (56)	 (43)
$-1.76 \pm 0.08 \mathrm{~V}$	$-2.03 \pm 0.01 \mathrm{~V}$
 (46)	 (16)
$-2.25 \pm 0.01 \mathrm{~V}$	$-2.30 \pm 0.10 \mathrm{~V}$
 (59)	 (50)
$-2.30 \pm 0.05 \mathrm{~V}$	$-2.35 \pm 0.10 \mathrm{~V}$

We now possess ine reduction poientials for a series of pernluoroalkene derivatives which may be represented by the general formulae:
 where $R_{F}=$ pernluoroalkyl

The replacement of a vinylic fluorine atom in such compounds by a perfluoroalkyl group, Rf, is known to lower ine L.U.M.O. anergies of the alkene derivative5; this is a specific example of the commonly obseryed phenomenon of electron withdrawing substituents lowering alkene orbital energies 126 and this effect is born out directly in the table. The initial process in the electrochemical reduction of such fluorinated alkenes is the transier of an electron to the L.U.M.O. of the molecule and so, the lower the energy of this transier, the less the potential that needs to be applied across the cell to accomplish this reduction.

On the whole, the substrates with the lowest reduction potentials are those which are ietra-substituted and, conversely, those which are harder to reduce tend to possess only three Rf groups on the double bonds. If this trend was continued, those perfluoroalkenes with fewer R groups would display still higher reduction potentials than those shown in the table. It must be pointed out here that none of the C.V. experiments that were carried out were reversible; indeed mosi of the compounds tesied in Table 2 did not show any sign of reversibility. Therefore these compounds cannot be considered as behaving in an ideal manner and that electron transfer is very quickly followed by a further reaction such as the elimination of fluoride ion (see Section 2.2.1).

Perfluoroalkenes (\$2) and (AQ), both of which could be considered to be ietra-perfluoroalkyl substituted alkenes, display the lowest reduction potentials in the table. One of the reasons for this could be the resulf of a favourable relief in angle strain in the rings of the two systems which would occur upon the addition of an electron. The resulting radical anions would then be able to
rearrange from their initial high energy probable planar coniormations thus decreasing the amount of ring strain present.

Perfluoroalkene (A5), an isomer of (AA), has a surprisingly low reduction potential for such a irialkyl substiuted fluoroalkene. The presence of a vinylic fluorine aiom would normally be expecied to result in a significantly higher poiential than that which is shown. However, unlike for the isomeric perfluorinaied alkene (QQ), the cyclic voliammogram for (Q5) showed no sign of reversibility and so it is possible that, in this case, the addition of an electron to this system could be coupled with the loss of the teriary allylic fluorine in a conceried process. if is known that a carbon-fluorine bond in such a siee is relatively weak and so the elimination of this fluoride ion linked with the favourable relief of angle strain in the cyclobutenyl ring could result in an overall lowering of the reduction potential for the molecule.

The fluoroalkene (A9) possesses four Rf groups around the double bond and therefore its reduction potential is relatively low. However, the fluorinated alkene (56), which has a similar structure to (49) but only bears three RF groups and a vinylic fluorine, displays a reduction potential which is not very much higher than ihat for (49) and so since fluoroalkene (56) has no obvious means of lowering its reduction potential, it remains as an anomaly.

Perfluorinated dienes (43) and (46) can be considered as consisting of two tri-alkyl substituted double bonds if the double bonds are not conjugated. This idea helps to explain why the reduction potentials are much higher than those of their precursors (42) and the two isomers (44) and (45) respectively. The difference of approximately a volt in the reduction potentials between these precursors and the dienes is significant and could help to justify how the dienes can be isolated as a result of reduction.

The fluorinaied frimer (16)48,45 possesses four Rf groups on the double bond and also has two tertiary fluorines in adjacent allylic siies and so it should have a low reduction potential. However, its potential is fairly high and is difficult to account for. It is possible that the substantial steric bulk of the two
pendant perfluorocyclobutyl groups could hinder the initial electron transier in inis case and so, alithough considerable ring strain reliê and fluoride ion elimination could occur, it is still quite difricult to accomplish electron transíer to ihis fluoroalkene.

Perfluoroalkene (59) is a more simple example; it possesses three RF groups and a vinylic fluorine and so has a high value for is reduction potential. The large perfluoro-1'-ethyl-1'-methyl-propyl group is quite sterically demanding and so the large potential given in Table 2 could quite easily reflect this influence to the reduction of this fluorinated alkene.

Finally, diene (50), if there is no conjugation between the double bonds, can be considered as comprising two tri- alkyl substiiuted fluoroalkenes in a similar manner to the dienes (43) and (46) and so the high value for its reduction potential can be explained in this may. it is also likely that, again, the large difference in reduction potentials between diene (50) and its precursor (49) is the dominating factor which explains how the diene can be isolated by the reduction of (49).

2.3 Sodium Amalaam Broductions (Fitith AO. WY. Briscoo)

2.3.1 lniraduction

Following successiul work on the olectrochemical polymerisation of octafluorocyclopentene127, analogous studies were made at the Electriciity Council Research Centre Laboratories at Capenhurst (now known as E. A. Technology) using potassium amalgam as a single electron transier (S.E.T.) ageni. These studies resufed in the tormation of a similar blue-black polymer. We have used the term 'electromimetic' to describe the effect of such amalgams and the action of sodium amalgam as an S.E.T. ageni to be used interchangeably with electrochemical reduction was first used in these laboratories by Mark Briscoe 117.

The following sections describes various atrempis io reduce some fluorocaroon derivatives ihrough the action of sodium amalgam.

2.3.2 E-and_Z-Pariluora-3.4-dimathythex-3-ane (49)

The reduction of perfluorinated alkene (49), the retramer of ietrafluoroethene104,105,106, by sodium amalgam produced a mixture of isomeric dienes, Z, Z - and E, Z - perfluoro-3,4-dimethylhexa-2,4-diene (50) and (51) in 74% and 20% yields respectively. The siereochemistry around the double bonds was confirmed by the 19F NARR coupling constant data of the dienes since it is known that 5 J (cis-CF3, CF_{3}) values are greater than 10 Hz and ${ }_{5} \mathrm{~J}$ (trans- $\mathrm{CF}_{3}, \mathrm{CF}_{3}$) values are typically less than 2 Hz and also that ${ }^{4} \mathrm{~J}\left(\right.$ trans $\left.-\mathrm{CF}_{3}, \mathrm{~F}\right)$ coupling constants are less than for ${ }^{4} \mathrm{~J}\left(\text { cis-CF3, }^{2}\right)^{128,129}$. Interestingly, $Z, Z-$ diene (50) displays a pseudo-sepiet generated by the $\left(A_{3}\right)_{2}\left(X_{3}\right)_{2}$ system with a coupling constant of 1.9 Hz indicative of a frans, trans-diene.(Figure 6).

ca. 1.9 Hz
(50)

(51)
(Figure 6)

The mechanism for this reduction is presumed to proceed via two S.E.T. sieps (Scheme 5A).

A similar mechanism may be inyoked to explain the formation of diene (51), with a different siruciupal geometry arising afier the elimination of fluoride ion arer either siep (i) or (ii).

This reduction is probably analogous to the thermolytic defluorination of (49) over hot iron81,107. However, with the amalgam, the temperature never rose high enough to form cyclobutene derivative (52). Indeed, when diene (50) was heaied in a furnace af $100^{\circ} \mathrm{C}$, (52) was formed with ca. 50% conversion demonstrating that it is, in fact, formed through a thermal cyclisation ${ }^{40}$ of diene (50) (Scheme 55).

Howover, when tetramer (49) and sodium amalgam were reacied in the presence of acetonitrile, which was added to act as a heat sink, 19F NMMR spectroscopy and G.C. mass spectrometry determined that the two dienes (50) and (51) were formed in ca. 86% and 38% yields respectively along with ca. 2\% of the E, E - isomer (60) and some 14% of various unidentified fluorinated
components. There was no evidence for the presence of the cyclobutene derivarive (52) (Scheme 58).

This demonstrates that the predominant formation of the Z,Z-isomer (50) is through thermodynamic effects and that milder conditions, created with a heat sink like a solvent, allows the production of greater amounts of the less thermodynamically favourable isomers.

Indeed, when a mixiure of the isomers (50) and (51) was heated under reflux with caesium fluoride, it was shown by 19F NARA spectroscopy that the less energetically favourable isomer, (51) was converied inio the \mathbb{Z}, \mathbb{Z} - isomer, (50) confirming diene (50) as the most stable isomer. There was no evidence for the formation of a stable anion of the diene in the spectra although it may be assumed that the stereochemistry around the double bonds is aliered yia such a transient carbanion. Alore importantly, this shows that the stereochemistry at the double bonds in the dienes can be interconverted in the presence of fluoride ion and that the mixiure of dienes (50) and (51) is a good source of the more stable isomer, (50).

In the dienes (50), (51) and (60), the trifluoromethyl groups impose considerable sieric demands around the 1,3-diene skeletons and so the structures of the dienes are very probably iwisted out of the trans- planar conformations which such dienes would preier to exist in if allowed to do so in the gas phase. As an exercise, the structures of these dienes were studied by molecular modelling using the COSAAIC package on a AlicroVAK 2 minicomputer. By an iterative process of minimising the strain energies and
steric hindrance effects between non-bonded atoms, an estimate of the most stable conformer was made for each example stañing in each case from the trans- planar conoformation.

The resulting structures and angles can only be faken as estimates as the package does not deal with the distribution of electon density within the molecules nor all possible bonding arrangements; it makes slight changes in local geometry in order to reduce the energy and so it is possible that the program gives a local minimum and not the thermodynamically most favourable conformer. Indeed, in order to demonstrate this point, the diene hexafluorobut1,3 -diene (13) was modelled using this program and the resulting torsion angle, ψ, was given as 30.1° - which is significantly different to the results found for example through electron diffraction63 and ab initio molecular orbital calculations 66 of $\psi=47.4^{\circ} \pm 2.4^{\circ}$ and $\psi=58.4^{\circ}$ respectively (see Section 1.3), implying that a significant error could be involved in the possible outcome. Nonetheless, the resulting conformer is an estimate which would be difricult to obtain by other means and it is important to note that the general structure will be fairly close to that which is actually adopted by the molecule.

In the case of the Z, Z - isomer (50), the resulting model was showen by COSRAIC io possess a skew structure with a iorsion angle, ψ, of 103.0° from the cis- planar form (Figure 7).

Figure 7. 2,Z-Perfiluoro-3,4-dimethylhexa-2,4-diene (50).

For the E, Z - isomer (51), the modelling gave a larger resulting forsion angle of 117.1° (Figure 8).

Figure 8. E,Z-Perfiluoro-3,4-dimeithylhexa-2,4-diene (51).
Indeed, this trend in the value of ψ was continued for the E, E - isomer (60) in which the calculated lowest energy conformation was shown to be even more aligned to the trans-planar structure, displaying a torsion angle of 129.0° (Figure 9).

Figure 9. E,E-Perfiluoro-3,4-dimethylhexa-2,4-diene (60).

It must be pointed out that the COSRIC package, like the more powerful programs of its ilk, also takes no account of any intermolecular considerations. More sophisticated ab initio calculations could be carried out but the structures already given in Figures 6,7 and 8 show the general trend that the bulky trifluoromethyl groups, present in the molecules, deviate the geometry of the systems quite considerably away from the possible planar conformations into
the skew structures in which little conjugation would be assumed to exist between the double bonds.

2.3.3 Parfluarabiauclapanotlidena (42)

The reduction of the fifle fluoroalkene (A2), ine dimer of octafluorocyclopentene 130, by ine action of a sodium amaigam gave períluorobicyclopeni-1, 1 '-enyi (43) in a yield of 70% (Scheme 57).

Isolation of the diene from remaining (42) was carried out by a simple fractional crystallisation in a refrigerator131 and its structure was determined by 19F NAMR spectroscopy, mass spectrometry and IR spectroscopy. The mechanism for the formation of diene (43) is probably analogous to that in Scheme 54.

The isolated yield of 70% for diene (43) is favourable when compared to 60% which was obtained by the thermolytic defluorination of (Q2) over hot iron 103 but, more importantly, it is easier to reproduce.

When this diene (43) was modelled on the COSAIC package, the resulting structure was given as a cis-conformer with a torsion angle of 25.2° from the cis- planar form (Figure 10).

Figure 10. Perfluorobicyclopent-1, 1 '-enyl (\$3).

This emphasises the differences berveen this diene (A3) and the isomeric dienes (50), (51) and (60) where bulthy frifluoromethyl groups and less geometric restraint force the molecules to adopt structures which are far from planar.

 quclobundaralobuienar (65)The reduction of a mixiure (ca. 4:4) of the isomeric fluoroallenes (a4) and (\$5), the dimers of hexafluorocyclobuteness,45, by a sodium amalgam gave perfluorobicyclobut-1, 1 '-enyl (46) in a yield of 61%. Isolation of the diene was also carried out by crystallisation in a refrigerator and, again, the mechanism probably proceeds via a route which is analogous to that in Scheme 5Q117 (Scheme 58).

The structure of diene (46) was identified by 19F NARR spectroscopy, mass spectrometry and IR spectroscopy. In inis case, the isolated yield of 61\% for the amalgam reduction compares very favourably with 20% which was obtained for the analogous pyrolysis over iron ${ }^{46}$.

Diene (46) was also modelled with the graphics package and the resulting low-energy conformer also gave a cis-siructure. In this case, ψ, the torsion angle, was given as only 18.2° demonstrating that the small rings impose such geometric constraint upon the molecule that the allylic fluorine atoms at the 4 and 4 ' sites only interact to a fairly minor degree thus forcing the diene out of planarity by a small amount (Figure 11).

Figure 11. Perfluorobicyclobuti-1, $1^{\circ} \cdot$-nyl ((86).
Again, this is in contrast to the dienes (50), (51) and (60) in which the trifluoromethyl groups force the dienes into more skew conformations.

2.3.5 1.4-Dibromo-23-dicalorahexaluarabutana (64)

The fille halocarbon (61) ${ }^{132}$ is known as a precursor in the formation of hexafluorobutadiene (13) via zinc dehalogenation50 (see Table 1; Section 1.2.6). When reacied with only a slight stoichiometric excess of sodium amalgam (2.6:1 molar ratio), the recovered volatile fraction was found by 19F NRAR spectroscopy and G.C. mass spectromeiry to contain a mixture of products (Scheme 59).

(Scheme 59)
As the starting material (61) can be recovered from the products, recycling becomes possible and this method of selective reduction of the halocarbon (61) appears as a favourable process for the generation of highly functionalised fluoroalkene derivatives such as (62). The formation of the unexpected products (63) and (64) is probably due to the nucleophilic attack of
chloride (from resulting sodium chloride poweer) on the highly reactive terminal difluoromethylene site in alkene (62) (Scheme 60).

(Scheme 60)

2.3.6 Oiher Sodium Amalonm 8educioas

Various other experiments were carried out in which sodium amalgam was used to reduce fluorocarbon derivatives. The resulis are summarised in Table 3.

As in all the examples of amalgam reductions, the reactions were very exothermic and the residual mercuric wasie was found to be mixed with a very dark gray to black powder reminiscent of the resulis of reduction of PTFE with alkali metal amalgams $94,95,96$. Also, in each of the above experiments, no volatile material, other than the starting material, could be obiained from these residues after the reaction. This was especially supprising in the case of perfluoro-1,2-cyclo-butylcyclobutene (16), which appeared to be ideal for
reduction to the relaied diene (66) as it possesses two allylic tentiany fluorine siies (Scheme 61).

[The formation of diene (66) is a process which has been claimed to occur in the patent literature 108.]

Diene (66), if formed, is probably reduced furher by the action of the amalgam until complete decomposition of these products occurs rather than the amalgam reducing more of the alkene (16) to the diene (66). This is a consequence of the relative energies of the L.U.AM.O.'s of (16) and (66); fluoroalkene (16) having been shown to possess a relatively high reduction potential in Section 2.2.2.

2.4 Póassium Amaloam

2.4.1 Iniraductian

As the initial studies into the reduction of octafluorocyclopentene were carried out using poiassium amalgam and as potassium is a viable aliernative to sodium in amalgam, it was decided to carry out a reduction using a potassium amalgam in order to determine any possible differences. Potassium is a stronger reducing agent than sodium - a fact born out in a comparison of the aqueous oxidation poientials with +2.92 AV fop poiassium compared to +2.711V for sodium1.

2.4.2 Beduction مíslkene(39) (With J. F. S. Vaughan)

The reduction of teirafluoroethene tetramer (49) by potassium amalgam gave an almost identical mixture of dienes (50) and (51) to that produced by sodium amalgam (see Section 2.3.2) in overall yields of 40\% and 12\% respectively. Despite this success, it must be noted that poiassium is harder to
dissolve in amalgams than sodium and, since the yields are lower using poiassium amalgam than for sodium amalgam, no furher reductions were performed with potassium amalgams.

2.5 Blkali Aderals in Salution

2.5.1 latraductian

There are sevaral raporiad cases in which alkali metals in complex solutions have been used to defluorinaie organic compounds, either for analysis $88,89,90$ or in order to facilitate bonding to PTFE and other highly fluorinaied polymers92,93. In this section, a similar idea is tried in which only a sioichiometric amount of alkali metal is present in an attempt to bring about selective reduction.

2.5.2 Baducion Oi_Alkear (A9) siish Sadimm Biphapy

A biphenyl - sodium - dimethoxyethane complex89 was prepared according to the literature90 and was slowly added to the ietrafluorosthene ietramer (49) under nitrogen. The compler reacted with alkene (49) and the purple colouration slowly disappeared. Analysis, however, showed only the presence of siarting material (49), decomposition of any producis having presumably occurred rather than selective reduction.

2.5.3 Beduction or Alkene (49) Dov Potassium in HexamethyInhosphoramide

 Potassium dissolves in HAMPA to give a solution with a deep blue hue. Tetrafluoroethene tetramer (49) was reduced by îhis solution but analysis of the solution after reaction shows that a vasi mixture of fluorinated compounds was created and that there was no evidence for any selectivity in the process.
Chapiar Threat

Alucleophilia Beactions af Eluarinaied Dienas

3.1 Introduction

The replacement of hydrogen in an alkene by electron withdrawing substiuents as fluorine or perfluoroaltyl groups resulis in the removal of electron density from the double bond. A consequence of this is that such slectron dericient π-sysiems become more suscepible howards nucleophilic atack5,133 ihan electrophilic atack ${ }^{138}$.

A general scheme for the nucleophilic attack upon a perfluorinaied alkene can be shown as follows (Scheme 62):

(base catalysed addition)

(nucleophilic (subsiitution with displacemeni) rearrangemen $-\mathrm{S}_{\mathcal{N}} 2^{\prime}$)
(Scheme 62)

There are many influencing factors which must be taken inio account in order to determine the reaction pathway which is followed'133.

Pathway (a) is prefered by the simpler fluoroalkenes and the more basic intermediate carbanions and involves an overall addition of a nucleophile Nucfollowed by combination with an electrophile E+(e.g. H+).

Paitway (b) is more often followed by cyclic perfluorinated alkenes and those fluoroalkenes which give intermediaie carbanions possessing more stabilising perfluoroalkyl substituents and so allow a more long-lived
intermediate. This route involves an ovarall suostitution of a vinylic fluorine by a nucleophile.

Pathway (c) is not usually preierred as a major rouie but rather as a compering reaction occurring alongside (a) or (b). Overall, route (c) involves addition, allylic rearrangement and displacemeni of an allylic fluorine.

3.2 EluarimatadCaróanions

If has been previously siaied5,133 inat carbanions are iniermediates in nucleophilic reactions of fluoroalkenes. fo order to undersiand the ukimate ouicome of such nucleophilic reactions, it is important to appreciate the effecis of fluorine in the intermediate carbanions.

3.2.1 Eluorine Amached to the Carbanionic Sila

In the case where fluorine is bonded directly to a carbanionic site, there are two opposing influences affecting stability5,135. A stabilising σ-inductive effect ($-I_{\sigma}$) competes with a potentially destabilising π-field polarisation effect $(+1 \pi)$ (Figure 12).

$\quad+1 / \pi$
(destabilising)
(Figure 12)

The magnitude of the electron-pair repulsion $(+/ \pi)$ depends upon the geometry of the system2 with the greatest repulsion arising from a planar system in which the desiabilising overlap is maximised (Figure 13).

$s p^{3} C$

$s p^{2} C$

This resulis in a preference for a developing carbanionic site which bears a fluorine atom to preier a more pyramidal geomerny2.

3.2.2 Eluorine Adiaceni io the Camanionic Sila

If a fluorine arom is locaied adjacent to the carbanionic site, however, the caroanion is almays more stabilised fhan the situation in which hydrogen is the substituentr. The dominant factor is ine inductive effect (-la) which increases with the number of fluorine substizuents present (Figure 1a).

(potenłially desiabilising)

(almays siabilising)
(Figure 1\&)

Part of the siabilising influence of a perfluoroalkyl group has been attributed to a resonance offect known as 'negative hyperconjugation' which was first proposed in 4950136 to help explain the anomalies in measured dipole momenis and relative reactivitios of various trifluoromethyl substifuied benzene derivalives (Scheme 68).

This "no-bond resonance" was also invoked to explain the dependence of protium-deuterium exchange rates in monohydro-fluorocarbons upon the number of β-fluorines 137 (Scheme 69).

(Scheme 69)
There has been considerable debate as to whether hyperconjugation is required in order to explain the extra carbanion stability which is
displayed138,139, but, ihrough both experimental and theoretical work 140,141 , it now rests upon a solid foundation as a generalised form of ine anomeric enfect.

Especially dramatic evidence for negative hyperconjugation was given by the X-ray crystal struciure of tris(dimethylamino)sulphonium trifluoro-methoxide (TAS $+\mathrm{CF}_{3} \mathrm{O}^{-}$) (67) ${ }^{142}$. In the anion, the carbon-fluorine bond lengins were unusually long and the caroon-ozygen bond was especially shori.

Aolecular orbital calculations on this anion showed inat each fluarine atom also carried more charge (an extra 0.2) inan would have been predicied by comparison with the isoelectronic molecule CF_{4} and also that the negative hyperconjugation resonance structures (67b-d) were thereby predicied to contribute approximately 20% of the bonding in the anion (Scheme 70).

(Scheme 70)

3.3 Beactionas suish Oxreaen Aucleophailas

3.3.1 Backoround

Earlier work in these laboratories ${ }^{117}$ on investigating the chemistry of our novel fluorinated diene sysiems (43), (46), and (50) revealed a remarkable difference in the reactivities of these dienes with oxygen nucleophiles such as methanol.

Diene (50) failed to react with neutral methanol but, under basic conditions, a mixture of the monomethoxy- (68) and dimethoxy- (69) derivatives could be isolated (Scheme 71).

Diene (43) reacted sieadily with neutral methanol to ultimately yield the dimethoxy derivative (70) via the monomethoxy intermediate (74)147 (Scheme 72).

(Scheme 72)
Diene (46) reacied rapidly with neutral methanol in an exoihermic process yielding the disubstituted product (72) within two hours ${ }^{147}$ 73).

The conclusions which may be drawn from this information is the obvious reactivity order of:

$$
\begin{equation*}
(Q 6)>(43) \gg \tag{50}
\end{equation*}
$$

The differences in reactivity of inese perfluorinaied dienes can be assigned to a number of factors 117 :
a) Ping sirain - in an analogous way to the incraase in reacrivity 183,144 in perfluorobicyclobutylidene (QQ) over perfluorobicyclopeniylidens (A2) inrough the release of ring strain, a similar argument can be applied for dienes (46) and (43) in which nucleophilic attack alleviates some of the angle strain present in the rings. Diene (50) has no such strain and so there is no aid to promoting nucleophilic attack.
b) Intermediate carbanion stability - the carbanions which result from the initial nucleophilic attack of the dienes differ in nature for the tho cyclic dienes (43) and (46) to diene (50). In the case of the cyclic dienes, the orbitals which constitute the carbon skeleton, alihough formally sp^{3} hybridised, will have mainly p character due to the strain imposed by the rings 145 ; hence the lone pair on the carbanionic centre which bears the charge will have more sorbital character and will therefore be of a lower energy. This argument cannot be applied to the cases of diene (50) in which no such lowering of orbiial energy occurs.
c) Sieric hindrance - the acyclic sysiem (50) possesses sierically demanding trifluoromethyl groups around the double bonds. These provide much more sieric hindrance than the cyclic arrangements in (43) and (46) which are essentially held in place thus unhindering the reactive double bonds in these sysiems.

The fact that for all inree dienes (Q3), (46) and (50), a second equivalent of the nucleophile can react without having to impose very forcing conditions upon the reaction mixiure implies that the double bonds are not conjugated and that the dienes are behaving more like simple fluopinated alkenes than other known perfluorodienes like hexafluorobutadiene (13)68 and perfluoro-2,3dimethylbutadiene (14)69 (see Section 1.4.1; Schemes 28 and 29).

It is also worth pointing out here that the dienes (Q3) and (46) are unusual in their reactivity towards aliphatic alcohols in neutral condizions. The fews other fluorocarbons which are known to react with neutral alcohols are the highly reactive perfluoro-2,3-dimethylbuia-1,3-diene (11)69, perfluoro-2-methylpenta-2,4-diene (20)48, perfluorobicyclobuiylidene (A4)146 and perfluoroisobutene (21)147. However, it was only in the case of (ed) that the perfluoroalkene was subjected to attack by two equivalents of the nucleophile (Scheme 78).

(Scheme 7Q)
(see also Section 1.4.1; Schemes 29 and 30)

3.3.2 Diene (50l with Whater

Diene (50) reacied with moisture present in basic acetonitrile to give ietrakis(irifluoromethyl)furan (73) as the only product (Scheme 75).

The formation of (73) via a 5 - Endo-Trig cyclisation is formally Soroidden148 (Scheme 76).

(50)

(Scheme 76)
Î̂, insiead, a 1,5-electrocyclisation mechanism149 is invoked, the cyclisation not only becomes 'allowed', but rather if aciually becomes a favourable process (Scheme 77).

(73)
(Schems 77)
This compound had previously been made by other methods 150,151 involving somewhat convoluted routes. Our method of synthesis is compleie in terms of conversion and, as will be seen later, is quiîe difriculit to avoid unless solvents and reagents are kept extremely dry.

3.3.3 Diene (50) suish Phenal

Diene (50) reacied with phenol in the presence of potassium fluoride to give a mixture of the mono- (78), (75), (76) and (77) and di- (78), (79) and (80) substizuted producis (Scheme 78).

(75) 8%

(76) 5%

(Scheme 78)

The reaction was carried out with fluoride ion present and therefore the breakdown ratios of the producis are dependent upon the thermodynamic stabilities of the individual substituted dienes. Distillation separated the monosubstifuted isomers (78), (75), (76) and (77) from the di-substituted isomers (78), (79) and (80) and each individual isomer was subsequently identified by G.C. mass spectrometry and $1 H$ and $19 F$ NAR spectroscopy. The stereochemistry around the double bonds was determined in each case by comparing the fluorine coupling consiant daia with fluorinated alkenes with known configurations ${ }^{129 .}$

The reactivity of diene (50) is in marked contrast to that of the similar diene perfluoro-2,3-dimethylbut-1,3-diene (11) which reacts readily with methanol to give a mono-substituted product (26) (see Section 1.4.1) but requires much more forcing conditions to react with a second equivalent of the nucleophile69. This infers that, unlike diene (11), diene (50) acts as two connected fluoroalkenes rather than a conjugated diene towards nucleophilic
attack and that ine reactivity of each double bond is not dictaied by the presence of subsiiusents on the second doulte bond.

3.3.4 Disne (33) ajish Phonal

The reaction of diene (43) with phenol in ine presence of a base gave only the disubstiuted product (81) in the reaction mizture (Scheme 79).

The assumption is that the mono-substituted intermediaie (82) is at least as reactive as the starting material (43) and so too little of the mono-substiiuted material (82) was letr at the end of the reaction to be isolated.

3.3.5 Eluorinaied Enoxidas

A considerable amount of work has been carried out with perfluorinated epoxides 152,153 . The key material and origin of most of the interest has been hexafluoropropene oxide HFPO (83)158,155 formed from the readily available hexafluoropropene (8A) (Scheme 80).

Betrer yields are possible by a variety of routes 155 .

Higher fluorinated eporides can generally be formed from perfluoroalkene oligomers by the action of aqueous sodium hypochlorite in acetonitrile 156,157 or of anhydrous calcium hypochlorite also in acetonitrile ${ }^{148,153 \text { (Scheme 81). }}$

Fluorinated epoxides such as these and HFPO (83) demonstrate remarkable thermal stability 152,103 possibly because of the effect of the bulky electronegative perfluoroalkyl groups which are present145,157. However, they are susceptible jowards nucleophilic attack. HFPO (83) can be isomerised exothermically 158 by caesium f̂luoride so give penfluoropropanoyl fluoride (85) (Scheme 82).

It remains as a slight enigma that the $\mathrm{CF}_{2} \mathrm{O}^{-}$oxyanion is formed much more readily than the aliemative anion $\mathrm{CF}_{3} \mathrm{CF}-\mathrm{O}$ possibly due to the reinforcing effect of geminal fluorine atoms 157 and, alihough nucleophilic attack occurs at the most sterically hindered site155, the stability of this iniermediate anion diciates that it is this route which is still followed preierentially. However, perfluoroalkyl acid fluorides are strong electrophiles and so these may reaci further with more HFPO (83) in oligomerisation and polymerisation processes (Scheme 83).

Inieresting cleavage reactions have occupred with some of the higher perfluorinated epoxides. In some cases, fing opening of the epoxides by fluoride ion followed by asymmetric scission of the carbon skeleton has been observed 148,157 (Scheme 8a).

Unsymmerrical perfluorinated epoxides have been found to generally give mixtures of products 157 determined by the possibility of two different reaction pathways (Scheme 85).

The product breakdown also helps to reassen the point of the stabilisation imparied by the intermediaie oxyanion and demonstrates that, once again, nucleophilic attack by fluoride ion has occurred at the mosit sterically hindered site. Howeyer, when the only difference in environment of the two carbons in the oxirane ring is the presence of theo slightly diferent perfluoroalkyl groups, steric effects vill start to be introduced and minor differences in electronic effecis will cease to be of imporiance ${ }^{160}$ (Scheme 86).

- Nucleophilic attack at the least sterically crowded site (Scheme 86)

Only troo periluorinated diepoxides have been reporied in the literaiure. Soviet workers succeeded in oxidising two long chain ierminal dienes with oxygen in the presence of a catalytic amount of chlorine under UY irradiation 161 (Scheme 87).

$$
\begin{aligned}
& n=4,30 \% ; n=8,10 \% \text { yisld }
\end{aligned}
$$

(Scheme 87)

Separation of the dieporides from the dienes and intermediate epozyalkenes wes achieved by bromination of the double bonds followed by fractional distillation161.

Atiempis have been made in these laboratories to generate a perfluorinated diepozide from diene (18) with limited success 153. The action of calcium hypochlorite upon the diene created complez minture of products which may be derived from various reaction pathways (Scheme 88).

(18)

(Scheme 88)

3.3.5.1 Enoxidation of Diena (50)

Diene (50) reacted with a large excess of calcium hypochlorite in suspension in aceionitrile to produce the diepoxide perfluoro-2,2',3,3'-tetrameihyl-bi-2,2'-oxiranyl (86) as the sole product (Scheme 89).

(50)

(86) 55% yield
(Scheme 89)

19F NAAR spectroscopy and G.C. indicated that diepoxide (86) was formed selectively as a single pair of enantiomers(Figure 15).

(Figure 15)
The aciual configuration could not be determined by comparison of fluorine coupling constant data because there are no real 'ground rules' for such an
exercise. However, the trans, frans- siructure can be contatively suggesied on the grounds of minimising the repulsive interections of the trifluoromethyl groups in any intermediate anion and the lack of contradiction beween these coupling constant data and those already establisined for perfluorinaied epoxides 162,163.

3.3.5.2 Amamarad Enpridaxipn ar Diena (43)

Diene (43) also reacied with an arcess of calcium hypochlorize in aceronitrile but, ater the reaction, analysis of the volatile material showed a complex mixuure of producis had been made which was presumably a combination of epoxides, chlorinated material153 and intermediate products. This mixture could not be separated and the reaction vas not investigated any further.

3.3.5.3 Amemareó Eparidation af Diena (46)

Similarly, diene (a6) also reacied with an excess of calcium hypochlorite in acetonitrile. After fourteen days at room temperature, 19F NARA spectroscopy showed that a mixture of products had been made. Subsequently, the mixture was heated under reflux and 19F NAAR spectroscopy showed that the mixiure had been mostly converted to give the known diene 2,2'-dichloro-penfluorobicyclobut-1, 1 '-enyl (88)15 in 57\% conversion.

This remarkable result implies that if the reagent is not free chloride ion, then the hypochlorite anion, OCl -, has reacted with the softer chloro end of the molecule rather than with the oxygen (Scheme 30).

3.3.5.4 Lsomarisation oinieaorida (85)

If is known that fluoride ion can induce the isomerisation of perfluoro-alkyl- substituted epoxides 152,153 to give mainly the ketone and acid fluoride derivatives. With this in mind, diopozide (88) and a catalytic amount of caesium fluoride were sealed in a Cantus subs and heated in a furnace. Diepoxide (86) proved remarkably stable ait $100^{\circ} \mathrm{C}$ but when tine icmperaiure was raised to $200^{\circ} \mathrm{C}$, complete isomerisation of the dippozid occurred. 19F NARR and G.C. mass spectrometry shored that the volatile material contained only one product in 80% yield. The structure of the product was not immediately obvious as isomerisation could have occurred via several different routes (Scheme 91).

(a)

(89)

(a) \qquad

The formation of oxyanion (b) is less likely than that of (a) because of the innate stability of (a) (see earlier: Section 3.3.5). The 19F RARAR spectroscopy data also show that a symmerrical product wes formed by the isomerisation. No symmerrical product can be made by the rearrangement of the oxyanion (b) and so this anion is rejected as a possible iniermediate. The product of isomerisation gave 19F nadr chemical shiriss of -66.76 and 77.33ppm suggesting two possible difierent environments for frifluoromethyl groups and the chemical shifr of -151.26ppm also indicates that there is only one environmem in the molacule with a ieriary fluorine adjacemt to oxygen.

The only species in Scheme 93 which could give such a patiern are the diketone (89), the fused di-oxetane (90) and the saturated furan derivative (91). IR spectroscopy did not show the presence of a camonyl streich so (89) can be eliminated as a possibility but it is more dificulit io positivaly determine whether the product is either (90) or (91). The 19F NARA chamical shitts of the the product are within the limits for both perfluorinated epoxides $157,163,164$ and perfiluoro-oxetanes 165 and the coupling constant data do not set a precedent for determining which possible isomer has been formed. Thersfore, there is not enough evidence to confirm or dismiss either structures (90) or (91) as the product resulting from the isomerisation of diepoxide (86).

3.4 Beactions midh Sulabur Aucleqabiles

In general, sulphur nucloophiles, is-, are much more reactive than the equivalent oxygen nucleophile, RO- An explanation for this phenemenon is that the sulphur aiom has a greaier polarisability inan oxygen and also possesses orbitals which may assist in the reaction. Displacements are usually fast and, because sulphur nucleophiles have low basicities, the reactions proceed cleanly with litto or no other side reactions such as elimination.

3.4.1 Diene (50) stioh PalassimmSulahide (With AO. WV. Briscoe)

Diene (50) reacied with poiassium sulphide in DMFF at room iemperature to give a mixture of tetrakis(itifluoromethyl)thiophene (92) and teirakis(irifluoromethyl)furan (73), the resutt of hydrolysis (Scheme 92).

These compounds were identified by comparison of 19F ANAR, mass spectral and IR data with previously made samples. The thiophene derivative (92) has been made previously166 from the expensive hexafluorobut-2-yne (28) and so our route seems quite favourable as this alkyne is not easily accessible.

It should be noted here that, whereas the furan derivative (73) musi be formed as a result of a 1,5-electrocyclisation, the formation of (92) can proceed via a 5-Endo-Trig cyclisation 167 because, being a second-row element, sulphup is considerably larger than oxygen and so the geometric constraints imposed by the size of the ring are reduced167. This process is also aided by back-donation of electron density from the occupied π-orbitals of the double bond to the unoccupied 3d orbitals of sulphur167.

3.4.2 Diana (50) mith Thioures

The reaction of dien (50) with ithiourea also gave imirakis(iriiluoromethyl)?hiophene (92) (Scheme 93).

(Scheme 93)
The reaction was slower but a higher overall yield could be obiained by this route. The possible side product (93) was not looked for nor was it observed by 19F NAAR spectroscopy.

3.4.3 Diene (5Q) with Sodium Thipphenaie

The reaction of diene (50) with a solution of sodium thiophenate quickly gave a mirture of di-substiiuted producis (9A), (95) and (96) (Scheme 94).

The stereochemisity of the diene sysiems within isomers (98), (95) and (96) was determined by comparing the fluorine coupling consiant data with fluorinated alkenes with known configurations 129 . There was no evidence in the 19F NAAR spectroscopy or G.C. mass spectrometry data to indicate the presence of the mono-substikuted products. This suggests that the monosubstituted products are at least as reactive towards thiophenate as is the diene (50).

3.5 Beactions reida odieragen Aluclenohilas

3.5.1 㗊acharaund

Only one paper concerning reactions of fluorinated dienes with nirrogen nucleophiles has appeared in the literature. Early Soviet workers reporied ${ }^{168}$ the reaction of herafluorobutadiene (13) with diethylamine which gave a monosubstiiuted diene (Scheme 95).

Howeyer, there have been several reactions of nitrogen nucleophiles with perfluorinaied alkenes published in the literature133.

Krespan reporied169 the reaction of ammonia with ociafluorobut-2-ene (97) which gave the imine (98) below $0^{\circ} \mathrm{C}$ and the cyanoenamine (99) at slighily higher iemperatures (Scheme 96).

(99) 28%
(Scheme 96)

This idea of sequential allylic displacement in perfluorinaied alkenes has also been used in the paient literaiure170,171. For example, tetrafluoroethene pentamer (59) reacied with excess ammonia in an analogous process to give the equivalent cyanoenamine171 (Scheme 97).

Primary aliphatic amines have ofen been found io give complex producis 172 with fluoroalkenes depending upon ine siructure of the fluorocarbon. The reaction of hezafluoropropene dimer (56) with iertbutylamine gave a keienimine as ine product in good yialdi73 (Scheme 98).

Secondary amines, upon reaction with fluoroalkenes, gave the saiurated adducts under mild conditions but vinyl amines with excess amine and at higher temperature133,172.

Primary aromatic nitrogen nucleophiles mere found to react with fluoroalkene in a similar manner to primary aliphatic amines if there is no hydrogen in the ortho-position173. If, however, there is an ortho hydrogen present, the reaction proceeded furtheri73,174,175 (Scheme 99).

Therefore, this is a good route to fluorinated quinoline systems.

3.5.2 Diene (50) stira_smanania

Diene (50) reacied sieadily wish ammonia in THF io give a mixiure of ithree compounds (101), (102) and (403), each of which was isolaied and purified. The siructures mere subsequently determined by $1 \mathrm{H}, 13 \mathrm{C}$ and 19 F NANR spectroscopy, mass spectromeiry and liR spectroscopy (Scheme 100).

The formation of dienamine (101) can be explained by means of two consecutive nucleophilic displacements of vinylic fluorine by ammonia. Only one isomer of dienamine (101) was detected by 19F NAAR and none of the diimino tautomer (10\&) was found (Figure 16).

The dienamine structure of compound (101) is notemothy considering that none of its tautomer (104) was present. Analogous hydrocanoon derivatives are observed almost exclusively in their di-imino configurations ${ }^{176 \text {. The }}$ dienamine structure can be explained by means of the extra stabilisation imparied by the electron withdrawing trifluoromethyl groups. These are known 126 to lower the orbital energies of the double bonds in alkenes.

The Z,Z-configuration of dienamine (101) was assigned on the basis of the 19F NAMR data which showed the presence of two pseudo sepiets,
generated by the $\left(\mathrm{A}_{3}\right)_{2}\left(\mathrm{~K}_{3}\right)_{3}$ sysiem, possessing coupling constants of 2.3 Hz indicative of frans- coupling (Figure 17).

Likewise, a dienamine (103) could probably be generated from (101) in excess ammonia via the allylic displacement of fluoride (Scheme 101).

(103)
(Scheme 101)
.However, we were unable to conclusively establish the E - or Z configuration about the double bonds in (103). Alithough the similar dienamine (101) possesses a Z,Z-configuration, an E,E-structure might allow a more extended conjugation to exist169 (Scheme 102).

The formation of pyrrole derivative (102) may proceed via a single displacement of vinylic fluorine and subsequent allylic displacement before the cyclisation, i.e. pathway (a), rather than the cyclisation occurring
the cyclisation, i.e. pathway (a), rather than the cyclisation occupring berore the allylic displacement - paitusay (b) (Scheme 103).

The absence of the pyprole derivative (105) and also derivative (106) from the reaction mixture indicates that in order for the reaction to proceed via pathway (b), an allylic displacement from (105) is relatively easy but a second analogous displacement from (102) is very difficult. This is difricult to justify and so it reinforces the idea that pyrrole derivative (102) is formed by route (a) (Figure 18).

(Figure 18)

The presence of an intermediate such as (107) would also aid the electrocyclisation process because of the increase in electronegativity of carbonirrile over a trifluoromethyl group.

3.5.3 Diane (501 Hidith Anilioes

The aim of this peaction was to synthesise the N -phenyl pyrrole derivative (108) via a simple cyclisaxion and, indaed, the pyrrole was formed in the presence of caesium fluoride in good yiald (Scheme 10\&).

Pyprole (108) has been previously made177 by a route which involves a yalence isomer of thiophene derivative (92).

However, when diene (50) and aniline wers allowed to react in the presence of potassium fluoride, pyprole (108) was formed alongside the unexpecied pyrrolo-quinoline (109) (Scheme 105).

The formation of pyrrolo-quinoline (109) can be justified by means of an allylic displacement and subsequent cyclisation (Scheme 106).

(Scheme 106)

The idea of this mechanism is strengthened by the fact that only the pyrrole (108) was formed when the reaction was carried out in the presence of caesium fluoride. Such an effective source of fluoride ion could add to intermediate (110) forcing the equilibrium back and so ukimately encouraging the formation of pyrrole derivative (108).

Therefore, a series of substituted anilines were used to investigate inis reaction.

3.5.4 Diene (50) with So Subsiduted Sniliaes

The anilines chosen for ihis study have either an electron donating or electron withdrawing substituent in the a- position of the phenyl ring.

Upon reaction with a mo-fold excess of the a-substimied anilines in the presence of potassium fluoride, diene (50) gave mizupes of the respective pyprole and pyprolo-quinoline derivatives (Scheme 107).

(Scheme 107)
The distributions of the products are collated in Table A.

Tabla_s
Substituent X Proportion pyrrole Proportion pyprolo-quinoline
derivativeł derivative \ddagger

NAle_{2}	$81 \%(111)$	0%
ORAe	$73 \%(112)$	$21 \%(113)$
H	$67 \%(108)$	$27 \%(109)$
F	$45 \%(114)$	$52 \%(115)$
Cl	$18 \%(116)$	\S
NO_{2}	$79 \%(117)$	0%

* - proportions were obtained from NAAR integrations.
§ - the reaction with \&-chloroaniline gave a complex mixiure of products and the presence of the pyrrolo-quinoline derivative could not be unequivocally proven.

The shortall in yields from 100% was made up by the presence of the hydrolysis product tetrakis(irifluoromethyl)furan (73).

It is interesting to note that the pyrrolo-quinoline ring sysiem formed with both electron withdrawing (115) and electron donaing (113) subsituents whereas none was formed for the iwo extreme cases of N, N-dimethylamino- Q_{-} aminoaniline and A-nitroaniline. The reaction occurs with the liberation of hydrogen fluoride and it is assumed inat potassium fluoride removes this by complexation. However, the dimethylamino group is also an effective base176 and could easily be protonated during the raaction. A dimethyl ammonium group is electron withdrawing and ine presence of such a substiuent could very well produce the anomalous resuft given in Table a.

The electron withdrawing groups reduce the basicities of the aniline derivatives 176 and, in fupn, the initial rates of reaction. However, once the aniline has reacied with diene (50), the choice of reaction pathway is deiermined by a combination of the ease of allylic displacement and the Kinetics of the electrocyclisation io generaie the pyrrole derivatives (Scheme 108).

In order io form the pyrrolo-quinoline derivatives, the equilibrium for rouie (a), although not necessarily lying towards the right, must at least allow allow the formation of some of the azadiene. Conversely, the formation of the pyrrole derivatives demands an interconversion, (b), of the stereochemistry of the double bond bearing the nitrogen.

Therefore, the product breakdown is probably dependent upon the relative positions of the itwo equilibria (a) and (b). The extremely election withdrawing para- nitro group suppresses allylic displacement but allows the fluoride ion-induced interconyarsion of siereochemisiny, whereas the mildy electron withdrawing para- fluorine may suppress the siereochemical interconyersion leading ulimately to the formation of an excess of the pyproloquinoline (115).

3.5.5 Diene (50) wisth 2eddethoxranilina

Diene (50) reacted slowly with 2-methoxyaniline to give a pyrrole (118) and a pyrrolo-quinoline derivative (119) in an analogous tray to the reaction with aniline (Scheme 109).

(119) 37\%
(Scheme 109)
The formation of a large amount of (119) was not expected and may result from the complications involved in the presence of an ortho-methoxy group which is not known as an effective electron donori76.

3.5.6 Diene (501 miilo 3ondibthaxumilias

Similarly, diene (50) also reacted slowly with 3-mathozyaniline giving a mixture of a pyprole (120) and iwo inseparable isomeric pyprolo-quinolines (121) and (122) Scheme 110).

(Scheme 110)
In this case, the meia- methoxy group acts as an electron withdrawing groupi76 and the distribution of products is in line with previous experiments.

3.6 Beactions rith Carbon Nuclenobiles

3.6.1 Backoramad

We may nows propose a generalised scheme for the cyclisation of the perfluorinated diene (50) with potentially bifunctional nucleophiles (Scheme 111).

If this strategy is extended to include carbon nucleophiles, we obtain a direci route to tetrakis(rrifluoromethyl)- substifuted cyclopentadienes and other relaied sysiems (Scheme 112).

Where X and Y are electron withdrawing groups.
If would therefore be useful to consider the background of this type of cyclic compound.

3.6.2 Eluorinated Cuclopentadienes and Cuclopentadianide Susiems

3.6.2.1 Hexafluorocuclopentadiene (123)

The synthesis of diene (123) was first reported in 1963178 via a route starting from hexachlorocyclopentadiene (Scheme 113).

(Scheme 113)
Other, higher yielding routes have also been published179,180 over the years.

Herafluorocyclopeniadiene (123) dimerised sponianeously 178 even at $-22^{\circ} \mathrm{C}$ io give the Diels-Alder adduct in a similar way io cyclopentadiene itseli. Indeed, cyclic diene (123) has been proven to aci as both a diene and a dienophile with different reagents in some interesting Diels-Alder chemisiry 181.

3.6.2.2 L2.3.85-Peniailuaracyalapaiadiena (i2S)

A similar compound, diene (12Q), was synihesised by German workers 182,183,184 as a means of obiaining the pentafluorocyclopentadienyl anion (125) (Scheme 114).

 $+\left(\mathrm{HNSiR}_{3}\right)_{2}$ (22\% yield)
(Scheme 114)
THF solutions of the metal salts of anion (125) are unstable 183. The lithium salt decomposed within minutes even at $-110^{\circ} \mathrm{C}$, the sodium salt within hours at $-78^{\circ} \mathrm{C}$ and both the thallium and caesium salis at $-30^{\circ} \mathrm{C}$. The mosi stable salt reporied was $\mathrm{Na}+(18-c r o w n-6) \mathrm{C}_{5} \mathrm{~F}_{5}$ - in THF which could be observed at $22^{\circ} \mathrm{C}$ for several hours 183 . Decomposition occurred through the loss of metal fluoride coupled with polymerisation. Binding the anion (125) to transition metal centres in 'sandwich' type complexes proved to be unsuccessíul184.

3.6.2.3 Tríluaromethatcualopantadiena (126)

The cyclopeniadiene derivalive (126) was firsi prepared by Ollson and Wennerström 185 as a mixture of its 1 - and 2- isomers (Schems 115).

Reaction of diene (126) with alkoxide ultimately gave 6 -substituted fulvenes (Scheme 116).

Trifluoromethylcyclopentadiene (128) has been successfully bound to a number of transition meial centres $186,187,188$. For example, bis(trifluoromethyl)ferrocene (127) was preparedi86 by the reaction of ferrous chloride with the thallium salt of diene (126) (Scheme 117).

E.S.C.A. measurements ${ }^{186}$ on the ferrocene (127) illustrated that the strong electron withdrawing effect of the trifluoromethyl groups increases the binding energy of the inner-shell electrons of iron.

3.6.2.4 Teirakis(ifóluarameitul)creloparaiadieaanal(i28)

The unequivocal synthesis of diznone (128) was first repored in 1963189 as a result of the coupling of hexafluorobut-2-yne (28) and carbon monoxide in the presence of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{3}$ under high pressure. Lemal and co-tworkers haye demonstrated ${ }^{190}$ that dienone (128) is a highly versatile inverse electron demand Disls-Alder diene.

Interestingly, the reaction between dienone (128) and triphenylphosphine has recently been found to give the ylide (129) ${ }^{191}$ yia the Kingtic isomer (130)192 (Scheme 118).

(Scheme 118)
Dienone (128) can be reduced by the addition of trialkylsilanes to give cyclopentadienes ${ }^{192,193}$ which have been successifully used as a source of ligands for iransition meials ${ }^{193}$ (Scheme 119).

3.6.2.5 Peniakis(crisluaramajay) ayclaparadiana (13u)

In 1980, Laganis and Lemal published ${ }^{194}$ a low yielding route to the interesting diene system $5-H$-pentakis(inifluoromethyl)cyclopentadiene (131) stanting from the Dewar valence isomer of thiophene derivative (92) (Scheme 120).

Diene (131) was shown to be a remarkably powerful carbon acid194 ($p K_{\mathrm{a}} \leq-2$) which is stronger than nitric acid despite its lack of conjugating substiiuents. This is in contrast io cyclopentadiene derivative (12A)182 (12.8< $p K_{a}<45.5$) and demonstrates the differences in effecis fluorine has depending upon whether it is locaied upon, or adjacent to, the carbanionic centre (see Section 3.2).

A similar route to this has been used by Janulis and Arduengor95 io prepare derivatives of diene (131) as a source of electrophilic carbenes and ukimaiely a stabilised carbonyl ylide196.

3.6.2.6 Cuclapeniadienes fram Hexailuarobur-Revoe (29)

Work in inese laboratories has resulied in the formation of perfluoroalkyl- substisured cyclopentadienes (132), (133) and (134)197 via fluoride ion induced co-oligomerisations of hexafluorobut-2-yne (28) with hezaf́luoropropene (8Q)198, ociafluorobui-2-2ne (97)172 and ociafluorocyclopentene (135)198 respectively (Scheme 121).

The syntheses are quite complex involving the formation of several other co-oligomers 197 and there is a very poor mass recovery in each case198.

3.6.3 Bractions buith Diaitby Bdalanaie

3.6.3.1 Diene (50)

The reaction of diethyl malonate with diene (50) in the presence of caesium fluoride gave the cyclopentadienyl salt (136) direcily in good yield (Scheme 122).

The salk was identified by 19F NMAR spectroscopy, F.A.B. mass spectrometry and IR spectroscopy. By following the progress by 19F NAMR, the reaction was observed to proceed via the precursor diene (137) which, although identified by 19F NMAR and G.C. mass spectrometry, could not be isolated (Figure 19).

It is also worthy of note here that 19F NMR spectroscopy of the reaction mixture showed a resonance at -17.64 ppm which is very close to -17.5ppm which has been reported199 for the fluorine atom resonance in ethylfluoroformaie (138). Therefore it could be posiulated that the reaction mechanism may be written as overleaf (Scheme 123).

In similar examples using different nucleophiles, some of the other analogous intermediates have been observed and identified by 19F NAMR and mass spectrometry200,201.

Crystals of salt (136) were suitable for X-ray analysis and a single crystal X-ray structure study was subsequently carried out by Prof. MA. B. Hursthouse at Queen Afary and Westield College, London (X-ray Plot 1).

X-ray Plot 1.
Caesium Tetrakis((rrifluoromethyl)ethoxycarbonylcyclopentadienide (136)

The final R value of 0.092 demonsiraies that there may be considerable arrors involved in the values of bond lengits and bond angles but the X-ray crystal structure clearly shows a planar cyclopeniadianyl ring sysiem and the presence of the substituents upon it.

3.6.3.2 Diena (93)

In an analogous manner, diethyl malonate reacied with dione (43) in the presence of caesium fluoride to form the tricyclic cyclopentadienyl salt (138) (Scheme 12\&).

The reaction was carried out at reflux temperature to disfavour the formation of anion (139)131 (Scheme 125).

The formation of the fricyclic cyclopentadienyl salt (138) proceeds via a mechanism which is analogous io the formation of salt (136).

3.6.3.3 Diene (96)

The reaction of diene (86) with diethyl malonate in the presence of caesium fluoride did not form the highly strained tricyclic cyclopentadienyl salt (180) (Figure 20).

Instead, it resulted in the production of an infractable polymeric iar. This suggests that intermolecular reactions via $\mathrm{SN}_{\mathrm{N} 2}$ ' processes within the cyclobutene rings have occurred rather than intramolecular coupling. Therefore this experiment was not carrisd any further.

3.6.4 Diene (50) mith Exhyl 3-Oxapantanoaia

In a comparable way, diene (50) was treated with the unsymmetrical nucleophile ethyl 3 -oxopentanoate in the presence of caesium fluoride and was observed by 19F NAAR spectroscopy. The subsequent reaction proceeded to give cyclopentadiens derivative (142) and thence an inseparable mixture of the two cyclopentadienyl salis (136) and (141) (Scheme 126).

Diene (142) and the two salis (136) and (141) could not be isolated and their assignment is from ANAR and mass spactral daia.

3.6.5 Diena (50) wish 2.2.2-Tifluarapibulapardsulohane (133)

The aim of this experiment was to attempt to synthesise the pentakis(ipifluoromethyl)cyclopentadienyl sakt (1AA) - a very interesting target compound (Figure 21).

(18A)
(Figure 21)
However, the treatment of diene (50) with the sulphone (143), a potential source of ' $\mathrm{K}-\mathrm{CH}_{2} \mathrm{CF}_{3}$ ', in the presence of caesium fluoride gave a slow reaction which produced a mixiure of compounds identified by 19F NAMR spectroscopy (Scheme 127).

Hydrolysis of diene (50) to give the furan derivative (73) was very difficult to avoid despite attempts to keep all reagents and the solvent scrupulously dry.

Alihough cyclopentadienyl sali (1QA) could not be isolated from the mixiure, the benzene derivative (145) could be and was subsequently
characierised by 19F NAAR spectroscopy, mass spectrometry and IR spectroscopy.

The formation of hexakis(irifluoromethyl)benzene (145) was not expected bui it may be explained by the nucleophilic atrack of tero equivalents of the sulphone (1\&3) and the sequential loss of phenyl sulphinic acid (Scheme 128).

(145) (Scheme 128)

This provides an alternative route to benzene derivative (145) which has been previously made202,203 siarting from the expensive alkyne hexafluorobui-2-yne (28).

As an alternative more acidic source of the nucleophile ' $2-\mathrm{CH}_{2} \mathrm{CF}_{3}$ ', the partially fluorinated ketone (146) was synthesised (see Section 6.1.2) and reacted vith diene (50) in the presence of an excess of caesium fluoride.

By following the progress of the reaction by 19F NAAR spectroscopy, the formation of a mixture of products could be observed (Scheme 129).

The formation of furan (73) and benzene derivarives (145) can be explained by means of hydrolysis of diene (50) and by the nucleophilic attack of two equivalents of keione (146) respectively, but accounting for the formation and distribution of the two cyclopentadienyl salis (181) and (148) is more complex.

If may be assumed that the two salis, (141) and (1\&Q), are derived from the common diene precursor (447) which could not be identified in the 19F NAAR spectra (Figure 22).

(147)
(Figure 22)
According to the ratios of satis (181) and (1\&A), the frifluoromethyl group is easier to displace by fluoride ion than the propanoyl group.

In order for sali (148) to be generaied, fluoride ion must attack the carbon of the carbonyl group in diene (147) and salt (18\&) would then act as a 'leaving group'. However, if the analogous argument was to be used to explain the generation of the alternative sali (141), we need to invoke an S_{N} ?
type of nucleophilic attack by fluoride ion upon a frifluoromethyl group firsi (Scheme 130).

This is made all the more remarkable considering that salt (141) is formed preierentially over salt (148). Neither (148) nor (149) were observed.

3.6.7 Diana (50) with Vinylidena Fluarida (150)

In order to try to avoid the problems involved with mixtures arising from using unsymmerrical nucleophiles, vinylidene fluoride (150) was used as a source of the nucleophile $\mathrm{CF}_{3} \mathrm{CH}_{2}$ - which can be generated in siru.

Heating diene (50), vinylidene fluoride (150) and an excess of caesium fluoride in acesonisrile rogether in an autoclave resulied in the formation of a mixture of compounds which could be identified by 19F NAAR (Scheme 131).

Unforunately, the cyclopentadienyl sali (1 AQ) could not be isolated from the mixuure.

We now have an empirical order for the ease of displacement from the derived cyclopentadienes of the various electron-withdrawing groups ' x ' in $X-\mathrm{CH}_{2}-Y$ of:

$$
\mathrm{SO}_{2} \mathrm{Ph}>\mathrm{CO}_{2} \mathrm{Et}>\mathrm{CF}_{3}>\mathrm{COEt}>\mathrm{C}_{6} \mathrm{~F}_{5}^{204} \sim \mathrm{CAv} 201^{2} \mathrm{C}_{5} \mathrm{C}_{4} \text { N201 }
$$

The more ideal symmetrical nucleophile 1,1,1,3,3,3-hexafluoropropane is too prone to lose hydrofluoric acid and the derivative 2 - H-peniailuoropropene was obseryed204 to co-oligomerise with diene (50) in the presence of caesium fluoride to give a very complex mixture. The next homologue to 2-H-pentafluoropropene is $2-\mathrm{H}$-heptafluorobut-2-ene (151) which is a means of generating the possible nucleophilic anion $\mathrm{CF}_{3} \mathrm{CF}_{2}\left(\mathrm{CF}_{3}\right) \mathrm{CH}$ - in sifu 205 (Scheme 132).

3.6.8.1 Diena (50)

Heating a mixiure of diene (50), polyfluorinaied alkene (151) and an excess of caesium fluoride in acetonitrile together in a rocking autoclaye at $100^{\circ} \mathrm{C}$ yielded a miziure of products which ware analysed by 19F NRAR spectroscopy (Scheme 133).

The concentration of salk (1\&Q) was much higher than for the reaction with vinylidene fluoride (see Section 3.6.7) or the other nucleophiles tested and it could be isolated from the mixture as an ofr-white powder. Characterisation of sali (14A) was by 19F and 13C NAMR spectroscopy, FAB mass spectrometry and 18 spectroscopy.

The formation of salt (14A) probably procesds via the cyclopentadiene derivative (133)197 (Figure 23).

(Figure 23)
In order for cyclopentadiene derivative (133) to give the sali (10d), the elimination of the 5-pentafluoroethyl group over the 5 -irifluoromethyl group
occurred selectively but the msans io periorm such an elimination appear as a quandary (Scheme 13ß).

Although pathway (b) is feasible - cassium fluoride induced defluorinations are known81, the stabilisation of salt (14A) will probably mean that it will act as an efficient leaving group for an $\mathrm{S}_{\mathrm{N}} 2$ type process, i.e. route (a), despite how unusual a nucleophilic attack by fluoride ion upon a saturated perfluoroalkyl group aif first appears (see Section 3.6.6). Neither hexafluoroethane (152) nor ietralluoroethene (38) could be observed by G.C. mass spectrometry atthough either or both could be assigned to anomalous resonances in the 19F NAAR spectra of the volatiles from this experiment.

3.6.8.2 Diena (43)

In an analogous way, an autoclave containing a mixture of diene (43), polyfluorinated alkene (151) and caesium fluoride in acetonitrile was heated at $100^{\circ} \mathrm{C}$ in a rocking fumace. 19 F NARR spectroscopy of the mixture indicated
the presence of the tricyclic cyclopentedienyl salt (153) which was probably formed loy an similar route to salk (128) (see Section 3.6.8.1) (Scheme 135).

This satt did not prove to very stable and soon deteriorated atier isolation and so could not be properly identified.

In order to prove a general point in these reactions, E-2-H-heptafluorobui-2-ene (151) was ireated witith octafluorocyclopentene (135) in a similar way. 19F NAAR speciroscopy of the mixiure indicated the formation of the cyclopentadienyl salt (154) presumably formed from the cyclopentadiene derivative (13\&)197 (Scheme 136).

Again, salt (154) is unstable and so could only be identified by 19F NAMR spectroscopy. However, such a species was not looked for in previous experiments in these laboratories $172,197,198$ and its presence could explain the low mass recoveries observed in these experiments.

Chapiar Eaus
 Earmatian ar Same Charal Transíer Camolaxas

A. 1 Introducion

There has been considerable interest in the area of charge transier (CT) salis over the past ore decades. Recent appeal simmed initially from the discovery ithat various 7,7,8,8-ietracyano-p-quinodimeinane (TCNO) salis demonstrated some interesting electrical206,207 and magnetic 208 properies. The present surge in research today lies in the remarkable result that the CT sali, decameihylfierrocenium tetracyanoeihanide, [Fe(C5A885)2].+ [TCNE]•-, displayed ferromagnetism below 5K209 - the firsi so-called "organic magnet"210.

Decamethylíerrocene has a siandard poiential, E0, of -0.1V241 demonstrating how easily it is to be oxidised. When we compared the standard potentials for TCNQ and TCNE, 0.19 V and 0.24 V respectively212, with those of the various fluorocaroon derivatives that we have investigated (see Section 2.2.2), it seemed probable that decamethylierrocene could be capable of reducing the fluorinated alkenes and dienes and that stable CT salis of the dienes with decamethylferrocene might be formed. There was no previous report of any such CT complexes between meiallocene donors and fluorocarbon acceptors in the literaiure.

4.2 Discussion

4.2.1 Beaction of Dacamethulierracene and Diene (43) (Whith AA. WU. Briscoe)
 The addition of diene (43) to decamethylierrocene in acetonitrile

 caused an immediate colour change from orange to dark green indicating the possibility of formation of a CT complex. A very dark green io black crystalline solid could be isolated in 33% yield, which was shown by olemental analysis had previously been prepared117 by the reaction of dacamethylierrocene and the fluoroalkene perfluorobicyclopeniylidene (82). The X-pay crystallographic data of this sali are summarised here ($火$-ray Plois $2,3,4$).

Q.2.1.1 X-Bay Coustal Situcture of (155)

The structural data for (155) (see X-Ray Plots 2 and 3) indicate a ithreedimensional array of alternating radical cations and radical anions in a manner similar io Miller and co-workers' [Fe(C5Ale5)2]-[TCNE]- complex209. However, while this TCNE salt has the donors and acceptors in discrete chains approximately parallel to the major axes of symmetry of the components, when sall (155) is also viewed along the major axis of symmery of the decamethylierrocenium units, each pair of radical ions is out of register with its neighbouring pairs by approximately half a unit of the radical anion (see X-ray Plot 3) resulting in a secondary structure which does not have any major axis of symmetry along the chains of radical ion pairs. Indeed, if the salt is viewed along a line perpendicular to this major axis, the radical ions also appear in aliernating pairs in which each pair is only slightly ous of line with the next by a small amount.

X-ray Plot 2

The solid-state stacking of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{MMe}_{5}\right)_{2}\right]^{+}\left[\mathrm{C}_{10} \mathrm{~F}_{14}\right]^{-}$

X-ray Ploi 3

The relative positioning of the $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{RH}_{5}\right)_{2}\right]^{++}$radical cation with respect to the $\left[\mathrm{C}_{10} \mathrm{~F}_{14}\right]^{-}$radical anion

X-ray Plot 4
The $\left[\mathrm{C}_{10} \mathrm{~F}_{14}\right]^{-}$radical anion

The decamethylieprocenium radical cation has is two pentamethylcyclopentadienyl rings apranged in a staggered coniormation and possesses a molecular symmetry of $D_{5 d}$. This is the same conformation which has been observed in the K-ray crystal structure analyses for boin decamethylierrocene ifselfit3 and for the decamethylierrocenium radical cation in hailler and coworkers' $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{MA}_{5}\right)_{2}\right] \cdot+[7 \mathrm{CNE}] \cdot-\mathrm{CT}$ complez209.

The perfluorobicyclopentenyl radical anion (156) exisis, in this crystal laktice, with a planar structure. The double bonds are arranged in a frans conformation with respect to each other and the radical anion possesses $C_{2 h}$ symmetry overall.

The lengths of the carbon-carbon double bonds [C(11)C(15)] are shown to be about $1.37 \AA$ which is longer than the values usually taken for such bonds i.e. $1.31 \AA$ in tetrafluoroethene (38)214 and the carbon-carbon single bond joining the rings $\left[\mathrm{C}(14) \mathrm{C}\left(11^{\prime}\right)\right]$ is, at $1.83 \AA$, shorier than for the carbon-carbon single bond found in hexafluoroethane 215 at 1.51 A . This evidence could mean that a cerrain degree of conjugation occurs between the double bonds.

The length of the vinylic carbon-fluorine bond $[C(15) F(154)]$, at $4.25 \AA$, is notably shorter than the equivalent bond in (38) at 1.31 A 214 but no clear trend appears in the variation of bond lengths for the remaining allylic and aliphatic carbon-fluorine bonds. The geometrical constraints imposed upon the skeleion of the anion by the simultaneous demands of five-membered rings and iniernal double bonds resuli in bond angles which deviaie significantly from the 108° and 120° ideals. The angle $\angle \mathrm{C}(12) \mathrm{C}(11) \mathrm{C}(15)$ is especially noteworthy in being particularly small at 109.0° for an sp^{2} atom.

However, it must be noted that the final R value for this X-ray crysial structure analysis is 0.023 (see Appendix 4.2) which is quite high and
represents the effects of thermal vibrations within the molecule. This means that the alomic coordinaies are prone to errors which are large enough to make the values of bond lengths and angles subject to a lixtle doubt.

Salt (155) is hygroscopic although the products of hydrolysis are as yei unclear. 19F NARR spectroscopy suggesis that the radical anion may be hydrolysed to the diketone anion (157) (Scheme 137).

(157) (Scheme 137)

This is analogous to the similar hydrolysis of diene (43) to diketone (158)131 (Scheme 138).

A comparison of the 19F NMR daia of the resulting salt (159) with those of the sodium salt of (158), (160), also reinforces this idea (Figure 25).

Figure 25. The 19F chemical shifts of salis (159) and (160).
The change in counter cation from sodium to decamethylierrocenium has a notable effect upon the values of the 19F chemical shitts of the anion but the general impression is that the troo anions are probably the same.

4.2.2 Reaccion of Dacamathulierrocane and Diena (46)

The addition of diene (46) to decamethylferrocene in acetonitrile again caused an immediate colour change from orange to dark green indicating the possible formation of a CT salt. Dark green crystals could be isolated from this mixture in 38% yield, which were later identified as the $1: 1 \mathrm{CT}$ complex of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{Hl} \mathrm{e}_{5}\right)_{2}\right]+\left[\mathrm{C}_{8} \mathrm{~F}_{10}\right] \cdot-(161)$. This sall was the subject of a single crystal x ray study by Dr. W. Clegg at the University of Newcastle-upon-Tyne and the resulting daia are presented here (X-ray Plois 5 and 6).

X-ray Plot 5
The solid-siate stacking of $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{Ale}_{5}\right)_{2}\right]^{+4}\left[\mathrm{C}_{8} \mathrm{~F}_{10}\right]^{-}$

X-ray Ploi 6
The $\left[\mathrm{C}_{8} \mathrm{~F}_{10}\right]^{\circ}$ radical anion

The structural date for (161) (see K-pay Ploi 5) are vory diferent to those of both salit (155) and [Fe(C5RAe5)2].t [TCNE].-209. The radical ions lay in iwo interlocking latrices with the anions skewt to the cations. The sali (161) may be viewed along an axis perpendicular to the major axis of symmetry of the decamethylferrocenium radical cations (see X-ray Plot 5; top left to bottom right) and the ions appear in an aliernating sequence. No other chains which lie parallel with, or perpendicular to, any major molecular axis of symmeiry can be easily envisaged although it can be claarly seen that chains of aliernating radical ions can be easily made in which the components are both skewt to the axis of these rows such as the one lying in the plane of the page (see X-ray Plot 5 ; bottom left to top right).

The difference in the solid state structures of this complex with saft (155) is remarkable considering the subtle differences between the dienes (83) and (46). The main conclusion that can be drawn from these results is that it takes only a very small difference in molecular structure to alier the minimum energy stacking arrangements and so change the overall bulk structure.

4.2.2.2 The IFel(C5Ale5) 2l.+ Badical Cation

The decamethylferrocenium radical cation in this CT sali also possesses $D_{5 d}$ symmeiny, showing staggered peniamethylcyclopeniadienyl rings arranged in that way in order to minimise any possible sieric interactions betreen the meihyl groups on opposing rings.

Q.2.2.3 The [CosFiol- Badical Anion (162) (x-rav Plai a)

The perfluorobicyclobutenyl radical anion (162) also exhibiss a trans arrangement with respect to the double bonds and again it possesses $C_{2 h}$ symmetry.

The lengths of the carbon-carbon double bonds [$\mathrm{C}(11) \mathrm{C}(14)$] are shown to be $1.38 \AA$ and the length of the carbon-carbon single bond which
joins the rings $\left[\mathrm{C}(11) \mathrm{C}\left(11^{\prime}\right)\right]$ is $1.82 \AA$. These values are almost identical io those in the radical anion $\left[\mathrm{C}_{10} \mathrm{~F}_{14]}\right]$ - (158) demonstrating that, once more, only a small degree of conjugation must exist between the double bonds.

The length of the vinylic carbon-fluorine bond $[C(1 Q) F(Q \& 1)]$ is given as $1.32 \AA$ which is a more typical value for such a bond length being very close to the similar bond in (38) at 1.31 A14. The remaining carbon-fluorine bonds vary in length depending upon their position on the rings. The most notable difiference, from $1.46 \AA$ for $[C(12) F(121)]$ to $1.25 \AA$ for [C(12)F(122)] is possibly due primarily to interactions with the decamethylierrocenium radical cation.

The perfluorobicyclobuienyl radical anion (162) imposes even more demanding constraints upon the geometry of the carbon skeleton than the perfluorobicyclopentenyl radical anion (156), due to the presence of a highly strained foup-membered ring as well as an internal double bond. The resulting bond angles show that it is the angles around the double bond which are forced further from their ideal of 120° than the remaining bonds deviating from their 90° optimum.

It is also worthy of note, here, to point out that the final R value for this x ray erystal structure analysis is 0.047 , which is again fairly high and that the values given for the bond lengths and angles are subject to some error.

Salt (161) also proved to be hygroscopic but the structures of the complex hydrolysis products have not been olucidated.

4.2.3 Beaction of Decamethylierrocene and Diene (50)

The addition of diene (50) to decamethylferrocene in acetonitrile once again caused an immediate colour change from orange to dark green but no single product could be isolated from the resulting dark green crystals.

The addition of a $1: 4$ misture of perfluorinated alkenes (AA) and (45) to decamethylierrocene in acetonitrile again resulied in an immediate colour change from orange to dark green indicative of the formation of a CT complex with decamethylierrocene. Dark green crysials were isolated from this solution which were subsequently idenified as the CT complex
 have undergone a $3 e$ - reduction to give the perfluorobicyclobutenyl radical anion (162) (Scheme 139).

This is analogous to the reduction of perfluorobicyclopenylidene (\$2) by decamethylierrocene to give the CT sali (155)117. This further demonstrates the abilities of decamethylferrocene as a mild reducing agent and the ease of reduction of such fluorinated alkenes (see Chapier 2).

4.2.5 Aholecular Adaconetic Susceatibiliós

Q.2.5.1 Backarourad

Several theoretical models have been proposed for the stabilisation of ferromagnetic coupling of spins. Acconnell first published316 a model based on Heifler-London spin exchange beiween posizive spin densizy on one radical and negative spin density on another. He later expanded this model217 to describe configurational mixing (Hubbard mixing) of a virual triplet excited state with the ground state for a one-dimensional ..D.+A.-D.+A.-... chain. Breslows and co-workers $218,219,220,221$ elaborated upon this idea with the proposal of various highly symmetric hexa-aminobenzene derivatives as approaches to organic ferromagneis. Very high spin multiplicity radicals have also been suggesied222,223 as has ferromagnetic supererchange through a degenerais orbial of a closed-shell molecule or ion22\&. Alore recently, following the magnetic suscepribility measurements on the [Fe(C5Me5)a].+ [TCNE].- CT salť209, Miller and co-morkers have doveloped an exiension225,226,227 which necessitaies spin alignment throughout the bulk solid for the siabilisation of bulk ferromagnetism.

Using these theoretical models as a background, current experimental programmes are concentrated on the search for new donors and accepiors 228,229 for the formation of novel molecular ferromagneis.

It may be assumed that, in a compound which is to exhibit ferromagnetic coupling, the virual charge transier excitation involves only the highest energy partially occupied molecular orbital (P.O.M.O.). Ai least one of the stable radicals must possess a non half-filled degenerate P.O.风.O. and the lowest excited siate, formed by the virtual charge transier process, has to have ine same spin multiplicity and musi mix with the ground siaie in order to stabilise the ferromagnetically coupled ground siate.

$\left(D^{+}+A^{-} \leftarrow D^{+}+A^{\cdot}\right)$ viriual forward charge transier
Figure 26. A schematic illustration of the stabilisation of ferromagnetic coupling.

The necessity of a degenerate P.O.M.O. determines225 that $D_{2 d}, C_{3}$ or higher symmetry in the radicals is required and that structural or electronic distortions such as the Jahn-Teller effect do not occur. However, accidental or intrinsic degeneracies will suffice.

The X-ray crystal structure analyses performed on the CT salts (155) and (161) have revealed that although the decamethylferrocenium radical cations possess $D_{5 d}$ symmetry, both the radical anions (156) and (162) possess a molecular symmetry of $C_{2 h}$ (X-ray Plots 4 and 6). These salts can still give a bulk ferromagnet as only one degenerate P.O.M.O. is needed. The magnetic susceptibilities of these two salts were thereíore investigated at the University of Cambridge230.

4.2.5.2 Ine Theane ar Adannatic Suscapribility

All substances exhibit a magnotic moment AA upon the application of a magnetic field H which are linked by χ, the magnetic susceptibility per mole thus:

$$
x=\frac{A A}{H}=\frac{\text { Alaqnetic dioale momeni ase mole }}{\text { Afagnetic fiald strength }}
$$

This iotal susceptibility can be simply suodivided as:

$$
\chi_{10 t}=\chi_{\text {core }} \Rightarrow \chi_{\text {spin }}
$$

where $\chi_{\text {core }}$ is the core diamagnetism, and $\chi_{\text {spin }}$ is the spin paramagnetism.
Xcore is a molecular properity, reflecting the response of inner (filled) electronic orbitals and can be ostimated from tables of Pascal's constants231 by adding the contributions from each arom and bonding aprangement within the molecule.

In an insulator which has non-interacting independent spins, χ spin will be due only to localised spins which have a random orientation in zero field but which line up in an applied magnetic field thus inducing a magnetic mornent and a positive susceptibility upon the sample. In this case, the effect is that of a Curie paramagnet, which can be described by the Curie expression:

$$
\chi_{\text {spin }}=C I T
$$

where C is the Curie constant that depends upon the number and size of the free spins in the sample and T is the temperature in Kelvin. If the spins have magnetic interactions with each other, such that in zero field, the spins iend to align parallel (ferromagnetically) or antiparallel (antiferromagnetically), then the susceptibility obeys a Curie-Weiss law:

$$
\chi_{\text {spin }}=C /(T-\theta)
$$

where θ is a constant which is positive for ferromagnetic and negative for antiferromagnetic coupling. θ is approximately the iemperature at which the
material has a spontaneous magneric moment and siarts io behave like a bulk ferromagnet

The easiest way of observing deviations from Curia law behaviour, is to plot $\{x$ spin T y v. T on a graph. This plot gives the value of C and thus the efrective spin at each temperature, since the Brillouin expression gives:

$$
C=\frac{A O^{2} \mu B^{2} S(S+1)}{3 k g T}=\frac{N \mu_{8} H^{2}}{3 k B T}
$$

where A is Avogadro's number, g is the Lande factor, μ_{B} is the Bohr magneton, s is the spin quantum number and k is the Bolizmann constant.

A paramagnet will give a consiant \{xspin $T\}$ with temperaiure. A ferromagnet will be flat at high temperatures, where fhermal fluctuations are most imponant, but at low \{emperatures, \{xspin 7$\}$ will get progressively larger as the susceptibility increases above that of a paramagnet. Similarly at low iemperatures \{zspin 7 \} oí an antiferromagnê will get progressively smaller.

Q.2.5.3 Magnetic Suscopotbilioy Mharsuramens of the Charoa Transfar Salts (155) and (161)

The following work mas carriad out by Margaret Allen under ine supervision of Dr. R. Friend at the Cavendish Laboratories of the University of Cambridge and is largely taken from her account which is contained in full in her thesis 230 .

The magnetic susceptibilities of randomly oriented crysials of the CT complexes (155) and (161) were measured over a femperalure range of 5 to 300 K in fields up to 0.97 using a Faraday Balance. Analysis of the fisld dependence of the susceptibilities at room temperature showed that only very small amounts (<5 ppm by weight) of ferromagnetic impurity were present in the samples. The magnetic susceptibilities of the core electrons were estimated using Pascal's constanis io gave XTIP $=-248 \times 10-6$ and $-211 \times 10-6$ emu/mol for (155) and (161) respectively. The data shown in Graphs 1, 2 and

3 were corrected for both ferromagnetic impurities and for the core electron contribution.

The susceptibility it of the salis (155) and (161) proved similar to the response of a Curie-Wyeiss material, but could be fitied by a single CurieWeiss law over the whole iemperaiure range. Graph 1 shows $\left\{\right.$ aspin $\left.^{7}\right\}$ for both (155) and (161); the two compounds show a smaller effective spin (Haff) at low iemperaiures. Unionunaiely, the low iemperaiure daia of (155) ara unraliable and much of the decrease in $\mu_{8 i f}$ at low temperatures is spurious.

Sali (161) was well characterised and is shown in more detail on Graphs 2 and 3. Below ~30K the daia are comparatively flat, indicating that magnetic coupling between spins is relaively unimporiant ai low temperatures. (A Curie-Weiss fil in this region gives $\theta \sim-0.2 K$.) The increase in $\left\{\chi_{\text {spin }} 7\right\}$ with iemperature between 30K and 150K is therefore most likely to be due to an increase in the local magnetic moment, and not to antiferromagnetic coupling between the spins. Above 150K, $\{$ xspin 7$\}$ has a larger value on warming than on cooling, which will probably be due to the crystals having an anisotropic susceptibility. In an applied field, a material with an anisotropic susceptibility will experience a surning force inat vill iry to align the axis with the largest susceptibility parallel to the field direction. The largest force on the crystal is at low temperatures, so the initial cooling data may give the larger susceptibility value and the value at the end of the experiment till approximate to the larger susceptibility direction.

The susceptibility of sali (155) was measured a number of times with different masses of material, and in larger fields inan for (161). The susceptibility of each run was markedly different, but had no distinct trend with time, so the change cannot be explained by decomposition of the complex. Again the susceptibility was larger on warming than cooling, which can be explained again by an anisotropic magnetic susceptibility of the crysial. A large jump occurs in one set of data. This measurement was made on a much smaller amount of material, so the jump could be due io one large crysial
suddenly orientating itself in the applied field and causing a large percentage increase in the susceptibility. The decrease in effective moment at low iemperatures can be fitted by a Curie-Weiss law with 8~ -2K, indicating some degree of antiferromagnexic coupling between the spins.

A large anisotropy is predicied in the susceptibility of both compounds from electron spin resonance (ESR) measurements on the [Fe(CsA月es)a].+ radical cation ${ }^{106: 50386 n}$, that give $g_{\perp}=A . Q_{\mu}$ and $g_{I I}=1.3 \mu_{B}(s=1 / 2)$. The calculated effective moment, μ, for a random collection of [Fe(C5ARe5)2].+ radical cations would give $\mu=\left\{\left\langle g^{2}\right\rangle s(s+1)\right\}^{1 / 2}=2.95 \mu \mathrm{~B}$. The moment of the whole complex can be calculaied by assuming that the radical anions (156) and (162) have $s=1 / 2$ and $g=2$. Randomly orientated crystals of CT salis (155) and (161) should have an average erfective spin of $2.95 \mu_{\mathrm{B}}$, alihough this value could range from the extremes of $\& .19 \mu_{\mathrm{B}}$ to $2.02 \mu_{\mathrm{B}}$ depending upon how the crystals happened to be aligned.

The experimental effective spin (μ eif $=2.83\{x \operatorname{spin} 7\}^{1 / 2}$) at high temperatures range from $\sim 2.4 \mu_{\mathrm{B}}$ to $\sim 3.3 \mu_{\mathrm{B}}$ for the sal̂ (155) and is $\sim 2.8 \mu_{\mathrm{B}}$ for sak (161). These values musi be compared with the expected $\mu_{\text {efi }}$ for these complezes of $2.95 \mu \mathrm{~B}$. For sali (161), $\mu_{\text {eff }}$ is close to the value of pure [Fe ($\left.\left.\mathrm{C}_{5} \mathrm{M} \mathrm{He}_{5}\right)_{2}\right]+$ radical cations $\left(2.38 \mu_{\mathrm{B}}\right)$, so it is possible that the radical anion (162) has somehow losi its spin by hydrolysis but iesied samples were not returned and the integrity of the complex (161) could not be confirmed. However, the experimental values for both compounds remain well within the potential range of calculated effective spin values given by the anisotropy of g, so it is possible that the crystals were parially aligned in the measured sample.

Graph 2
$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{Mie}_{5}\right)_{2}\right]^{+}\left[\mathrm{C}_{8} \mathrm{~F}_{10}\right]^{-}$
Average susceptibility Sample 4

Graph 3
$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]^{+}\left[\mathrm{C}_{8} \mathrm{~F}_{10}\right]^{-}$
Average susceptibility Sample \&
Temperature (K)

Q.2.5.8 Conclusions

Both CT salts (155) and (161) behave approximately according to the Curie-Weiss law. The measured errective spin was altuays larger at the end of an experiment and this is taken as evidence for anisotropy in the susceptibility of the crystals. Further evidence for anisotropy comes from difierent measurements of complar (155) where there is a large variation in the effective spin $\left(\sim 2.4 \mu_{\mathrm{B}}\right.$ to $\left.\sim 3.3 \mu_{\mathrm{B}}\right)$. These values are well within the calculated range of possible values for parially aligned anisotropic crysials $\left(2.02 \mu_{\mathrm{B}}\right.$ to Q. $19 \mu_{\mathrm{B}}$) as is the ofrective spin of (161) ai ~2.\&uB. Complex (155) shows signs of antiferromagnetic coupling with a Weiss constani θ ~ -2K, whereas (161) behaves as a paramagnet with a temperature dependent effective spin that varies from $\sim 2.48 \mu_{\mathrm{B}}$ at room temperature to $\sim 2.37 \mu_{\mathrm{B}}$ at low iemperatures. The possible antiferromagnetic coupling between the spins in (161) is very small, with a Weiss consiani less than -0.2 K at low iemperaiures. No evidence for ferromagnetic coupling was seen in either compound.

INSTRUAAENTATION

AND

EXPERIMAENTAL

Auclear Adaonatic Basanance Spactrascopre (NBAB)
1H NAAR spectra were recorded on a Hitachi Perkin-Elmer R-2\&B (60AAHz), a Bruker AC250 (250.13 AHHz) and a Varian VXR\&00S (399.95 AMHz) NAAR spectrometer.

19F NARAR spectra were recorded on a Varian EAM3601 (56.45 AHHz), the Bruker AC250 (235.3 AAHZ) and the Varian VKR400S (376.29 AlHz) NRAR spectrometer.
${ }^{13 C}$ NAAR were recorded on the Bruker AC250 (62.9 AHHz) and the Varian VXR 400 S (100.58 AHHz) NAAR spectrometer.

Infra Red (lB)

Infra red specira were recorded on a Perkin-Elmer 577 Grating Spectrophotometer. Solid samples were run as a KBr disc, liquid samples were run as a thin film between two polished KBr plates and gases and very volatile liquids were run in a sealed gas cell fitted with KBr plates.

Alass Spaciromatry

Alass spectra of solid samples were recorded on a VG 7070E spectrometer. G.C. mass spectra were recorded on the VG 7070E specirometer linked to a Hewlett Packard 5790A gas chromatograph fitted with a 25 m cross-linked methyl silicone capillary column.

Elemental Analysis

Carbon, hydrogen and nitrogen elemental analyses mere obtained using a Perkin-Elmer 240 Elemental Analyser or a Carlo Erba Strumentazione 1106 Elemental Analyser. Analysis for halogens were performed as described in the literaiure 87.

Gas Chromaiagraphr (G.Cu)

Gas chromatography analysis was carried out on a Hewleet Packard 5890A gas chromatograph fitted with a 25 m cross-linked methyl silicone capillary column.

Preparative scale G.C. was performed on a Varian Aerograph Alodel 920 (catharometer detector) gas chromatograph fitied with a 3 m 10\% SE30 packed column.

Disitillaxina

Fractional distillation of product mixtures mas carried out using a Fischer Spahlirohr AAAAS 255 small concentric tube apparaius. Boiling points were pecorded during the distillation.

Adelina_Painss

Ahelting points were carried out at atmospheric pressure and are uncorrected.

Beadents and Soluenis

Unless otherreise stated, reagents were used as supplied by the manufacturers. Solvents were predried by standard methods and stored over molecular seive (iype 4A) under dry nitrogen. A current of dry nitrogen was maintained for removal of the solvent with a syringe.

Chaderer Eive

Exarimeatalis Chanter Trio

5.1 Cxchic Yolkammetro pi same Períluarinaied Alkenas and Dienas

All the work on cyclic voltammetry was carried out ait the Electricity Research and Developmeni Centre at Capenhursi in Cheshire.

5.1.1 Instrumantation

The cyclic voliammetric siudies wers carried ous in an "H" sype preparative electrochemical cell of the type shown in Figure 27.

Figure 27. A preparative elecirochemical cell.

The ramps were generated by a HI-TEK Instruments Waveiorm Generator type PPR1, the potential was applied through a Wenking Standard Potentiostat type ST72 and the voliammograms were recorded on a calibrated Advance HR2000 KN Recorder.

5.1.2 General Pracedure

A solution of teirabutylammonium ietrafluoroborate ($0.5 \mathrm{~g}, 4.52 \mathrm{mmol}$, 30 mAA) in anhydrous acetonitrile (50 ml) was degassed with dry nitrogen in the cell and the cyclic voliammogram of this electroly'e was recorded as a base line. A few drops of the fluoroalkene under study was added to the working half of the cell and the solution was agitated by the bubbling of dry nitrogen until it became saturated with the fluorocarbon.

In each case, ithe cyclic voliammogram of the substraie was obtained without agitation between +0.5 V and -2.5 V at $0.1 \mathrm{Vs}-1$ for the first sweep and also for the firth and thirieth sweeps to observe the stable cycle. Cyclic voliammograms were also obtained at $1 \mathrm{Vs}^{-1}$ and $0.01 \mathrm{Vs}^{-1}$ affer prior agitation to notice if any differences were apparent.

5.2 Sodium Amalaam_Baduckions

5.2.1 GeneraL_pracedure

As a necessary safoty precaution, all the following operations were performed in an efficient fume cupboard due to the toxicity of the substances used and to the potentially explosive nature of the reaction.

Sodium was worked with a knife, under dry diethyl either, into small lumps of milligram proportions. These lumps were then added, under an atmosphere of dry nitrogen, to some mercury which had been pre-weighed in a Schlenk rube. The open Schlenk tube (still under a flow of dry nitrogen) was then shaken lightly until the sodium dissolved in the mercury. This was repeated usually until the concentration of the amalgams reached about 0.5\% W/tw. The formation of these amalgams is exothermic and the addition of too much sodium at a time can be dangerous due to the formation of localised hotspots which can cause the mercury to vaporise. Therefore the Schlenk fube had to be carefully cooled in a flow of cold waier at periodic intervals during the amalgam formation in order io prevent this overheating from occurring.

The reaciant was carefully added to the amalgam (again under a flow of ory nitrogen) and lek to lis on the suriace. A rubber blow-off 'Suba-seal' type bung was used to seal the top of the Schlenk fube as a saioty measure for these potentially highly exothermic reactions (in order io act as a weak point in the event of an explosion). The tap on the Schlenk tube was then closed to seal it from the nitrogen supply.

The reaction mixture was then vigorously shaken whilst the tube was kept under a flow of cold water to remove any heat generated by the reaction. During the reaction, the consistency of the mercury became very viscous and shaking became difficulf. The reaction was judged to have finished when a dark grey dusi (sodium fluoride and mercury dusi) formed and elemenial mercury reformed in the botrom of the Schlenk. The organic product was normally recovered by transferring in yacuo into a cold trap.

5.2.2 Beduction oí Fluoraalkene (49)

A sodium amalgam (0.58% w/w) ($\mathrm{Na} 2.9 \mathrm{~g}, 126 \mathrm{mmol} ; \mathrm{Hg} 500 \mathrm{~g}$) was prepared in a Schlenk \{ube. The fluoroalkene (49) (20.0g, 50.0mmol) was slowly added to this and the vessel was sealed and shaken vigorously in a stream of cold water until the reaction was complete. The volatile componenis (15.8g) were transferred in vacuo to a cold trap and were found to be an inseparable mixture of two isomeric dienes (50) and (51).

Z,Z-Perfluoro-3,4-dimethylhera-2,4-diene (50)81, 74\% yield NAAR number 1, mass spectrum number 1.

E,Z-Perfluoro-3,4-dimethylhexa-2,4-diene (51)81, 20\% yisld NAMR number 2, mass spectrum number 2.

For the mixiure: b.p. $73-74^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 26.3 ; \mathrm{F}, 72.8$. $\mathrm{C}_{8} \mathrm{~F}_{14}$ requires C , $26.5 ; F, 73.5 \%)$ IR number 1.

5.2.2.1 TharmalUsamerisationar Diena (50)

A Carius lube was charged with digne (50) ($1.0 \mathrm{~g}, 2.8 \mathrm{mmol}$) and then evacuated and sealed. The tube was heated, bithout agitation, in a furnace at $100^{\circ} \mathrm{C}$ for three hours. The volatile components ($1.0 \mathrm{~g}, 100 \%$) were transierred in vacuo to a cold trap and were subsequently shown by 19F NRAR spectroscopy and G.C. mass spectrometry to be a mimure (1:1) of diene (50) and:

Perfluoro-1,2,3,4-ietrameihylcyclobuiene (52)81. Nafl number 3, mass spectrum number 3.

5.2.2.2 Beducion ar Fluaraalkene (49) usino Acaionixaile as a Heai Sink

A sodium amalgam ($0.50 \% \mathrm{w} / \mathrm{ws}$) ($\mathrm{Na} 1 . \mathrm{Ag}, 60.9 \mathrm{mmol} ; \mathrm{Hg} 280 \mathrm{~g}$) was prepared in a Schlenk fube. The fluoroalkene (49) (10.0g, 25.0 mmol) and anhydrous acetonitrile (50 ml) ware added to this and the vessel was sealed and shaken vigorously in a stream of cold waier until the reaction was complete. The volatile components were transierred in vacuo to a cold trap and allowed to warm to room temperature whereupon waier (100 ml) was added. The lower fluorocarbon layer (5.8 g) was removed and subsequently shown by 19F NARR spectroscopy to be a mixiure (23:19:1) of:

2,2-Perfluoro-3,4-dimethylhexa-2,4-diene (50) (ca 46\%) (see Section 5.2.2), E,Z-Perfluoro-3,4-dimethylhexa-2,4-diene (51) (ca 38\%) (see Section 5.2.2), EuF-Penfluaro-3.4-dimathuthexa-24-diene (60) (ca 2\%) NAR number A; mass spectrum number and some 14% of various unknown fluorinated componenis.

5.2.2.3 Beacion of Diena lsomers (50) and (51) mish Flupride lan

A mixture of the diene isomers (50) and (51) (for the mirsure 1.0 g , 2.8 mmol) and dry caesium fluoride ($0.5 \mathrm{~g}, 3.3 \mathrm{mmol}$) in anhydrous acetonitrile (30 ml) was heated under reflux with continuous stirring for four hours. 19 F

NAAR spectroscopy showed the presence of only one isomer (50) after this time.

5.2.3 Beduciion of Eluaraalkena (\&)

A sodium amalgam ($0.55 \% \mathrm{w} / \mathrm{vs}$) ($\mathrm{Na} 1.0 \mathrm{~g}, 43.5 \mathrm{mmol} ; \mathrm{Hg} \mathrm{180g}$) was prepared in a Schlenk tube. The fluoroalkene (82) ($6.0 \mathrm{~g}, 1$ 14.1mmol) was slowly added to this and the vessel was sealed and shaken vigorously in a stream of cold water until the reaction was complate. The volatile components (3.8 g) were transferred in vacuo to a cold trap after which they were analysed. Diene (43) was purified by crystallising if out at $0^{\circ} \mathrm{C}$ in a refrigerator. Perfluorobicyclopent-1, 1^{\prime}-enyl (43)103, 3.6g, 66%. b.p. $130^{\circ} \mathrm{C}$. (Found: C, 31.0; F, 68.5. $\mathrm{C}_{10} \mathrm{~F}_{14}$ requires $\mathrm{C}, 31.1 ; \mathrm{F}, 68.9 \%$). NAAR number 5 , IR number 2 , mass spectrum number 5.

5.2.4 Reduction of a AAixdure of Fluoroalkenes, (84) and (85)

A sodium amalgam ($0.46 \% \mathrm{w} / \mathrm{w}$) ($\mathrm{Na} 1.1 \mathrm{~g}, 47.8 \mathrm{mmol} ; \mathrm{Hg} 240 \mathrm{~g}$) was prepared in a Schlenk tube. The isomeric fluoroalkenes (44) and (85) (6.0g, 18.5 mmol of the mixure) were slowly added to this and the vessel was sealed and shaken vigorously in a stream of cold water until the reaction was complete. The volatile components (6.5 g) were transferred in vacuo io a cold frap where they were analysed. Diene (46) was purified by crystallising it out at $0^{\circ} \mathrm{C}$ in a refrigerator.

Perfiluorobicyclobut-1, r^{\prime}-enyl (46)46, 4.2g, 79\%. b.p. $90-95^{\circ} \mathrm{C}$. (Found: C, 33.9; $\mathrm{F}, 66.2$. $\mathrm{C}_{8} \mathrm{~F}_{10}$ requires $\mathrm{C}, 33.6 ; \mathrm{F}, 66.4 \%$). NAR number 6 , IR number 3 , mass spectrum number 6.

5.2.5 Reduction of Haloalkane (64)

A sodium amalgam ($0.54 \% \mathrm{H} / \mathrm{Fs}$) ($\mathrm{Na} 0.6 \mathrm{~g}, 26.1 \mathrm{mmol} ; \mathrm{Hg} 110 \mathrm{~g}$) was prepared in a Schlenk fube. Halocarbon (61) ($4.0 \mathrm{~g}, 10.2 \mathrm{mmol}$) was slowly added to this and the vessel was sealed and shaken vigorously in a stream of
cold water until the reaction was compleie. The volatile components (3.7g) were transferred in vacuo (with addifional heating) to a cold trap and were later analysed. The individual components were separated by preparative scals G.C. (10% S.E. 30 column, $80^{\circ} \mathrm{C}$).

AcBrama-3-ablarahexafluarabut-1-anh (62) $0.6 \mathrm{~g}, 21 \%$. (Found: C, 17.1 . $\mathrm{C}_{8} 8 \mathrm{BrClF} \mathrm{F}_{6}$ requires $\mathrm{C}, 17.3 ; \mathrm{Br}, 28.8 ; \mathrm{Cl}, 12.8 ; \mathrm{F}, 81.1 \%$). NanR number 7, IR number \&, mass spectrum number 7.
 (Found: $\mathrm{C}, 16.2$. $\mathrm{C}_{4} 8 \mathrm{BrCl}_{2} \mathrm{~F}_{5}$ requires $\mathrm{C}, 16.8 ; \mathrm{Br}, 27.2 ; \mathrm{Cl}, 28.1 ; \mathrm{F}, 32.3 \%$). NAR numbers 8 and 9 , IR number 5 , mass spectrum number 8 .

The remaining material was found to compose mainly of starting material.

5.2.6 Beduction of Periluara-1 2-craclobutodaralabuiana (18)

A sodium amalgam ($0.50 \% \mathrm{~m} / \mathrm{mg}$) ($\mathrm{Na} 0.4 \mathrm{~g}, 17.4 \mathrm{mmol} ; \mathrm{Hg} 80 \mathrm{~g}$) was prepared in a Schlenk tube. The fluoroalkene (16) ($3.0 \mathrm{~g}, 6.2 \mathrm{mmol}$) was slowly added to this and the vessel was sealed and shaken vigorously in a stream of cold water until the reaction was complete. The volatile components (2.2 g 73% recovery) were transierred in vacuo to a cold irap but were later shown by ${ }^{19}$ F NARR spectroscopy and G.C. mass spectromeiny io be starting material.

5.2.7 Beducion of Periluoro-2-methylbiquclor(4.4.Oldecane (65)

A sodium amalgam ($0.58 \% \mathrm{H} / \mathrm{ms}$) ($\mathrm{Na} 1.7 \mathrm{~g}, 73.9 \mathrm{mmol} ; \mathrm{Hg} 290 \mathrm{~g}$) was prepared in a Schlenk iube. The tifle bicyclic alkane (65) $(3.0 \mathrm{~g}, 5.8 \mathrm{mmol})$ was slowly added to this and the vessel was sealed and shaken vigorously in a stream of cold water until the reaction was complete. The volatile components ($1.0 \mathrm{~g} 3 \% \%$ recovery) were transierred in yacuo to a cold irap but were later shown by 19F NAAR spectroscopy and G.C. mass spectromeiry io be starting material.

5.2.8 Beduction ar Disar (50)

A sodium amalgam ($0.52 \% \mathrm{w} / \mathrm{w}$) (Na 1.0 g , $43.5 \mathrm{mmol} ; \mathrm{Hg} 490 \mathrm{~g}$) was prepared in a Schlenk sube. The diene (50) ($5.0 \mathrm{~g}, 43.8 \mathrm{mmol}$) was slowly added to this and the vessel mas sealed and shaken vigorously in a siream of cold water until the reaction vas complete. The volatile components (3.2g, 64% recovery) were ipansierred in yacuo io a cold trap but wore later shown by 19F NAAR spectroscopy and G.C. mass spectrometry to be sianing material.

5.3 Poiassium_Bmalqam

5.3.1 Beduction aí Eluaraalkana (99)

A potassium amalgam ($0.40 \% \mathrm{vy} / \mathrm{vt}$) ($\mathrm{K} 0.8 \mathrm{~g}, 20.5 \mathrm{mmol} ; \mathrm{Hg} 200 \mathrm{~g}$) was prepared in a Schlenk tube. The fluoroalkene (49) (3.2g, 8.0mmol) was slowly added to this and the vessel was sealed and shaken vigorously in a siream of cold water until the reaction was compleie. The volatile components (1.6g, 55% yield) were transferred in vacuo io a cold trap and were subsequenîly analysed and found to be an inseparable mixture (3:1) of the two isomeric dienes (50) and (51) (Yields 40% and 12% respectively) (see Section 5.2.2).

5.4 Alkali Metals in Solution

5.4.1 Beduction of Fluaroalkene (49) wiith Sodium_Biphenys

Sodium ($1.2 \mathrm{~g}, 52.2 \mathrm{mmol}$) was heated in toluene (5 ml) to reflux temperature when it was stipred vigorously using a high-speed stirrer to make a sand. This was allowed to cool io $5^{\circ} \mathrm{C}$ and monoglyme (82.5ml) was added. Biphenyl ($8.0 \mathrm{~g}, 51.9 \mathrm{mmol}$) in monoglyme (12.5 ml) was finally added and the solution was stirred under an atmosphere of dry nitrogen. Fluoroalkene (49) ($10.0 \mathrm{~g}, 25.0 \mathrm{mmol}$) was slowly added and the mixture was stipred for thiriy minutes. Analysis of the final products by 19F NAAR spectroscopy showed only the presence of unreacied fluoroalkene (49).

5.4.2 Beduction of Eluaroalkene (A9) Jay Pajassium in Bides

Under an atmosphere of diy nirrogen, poiassium ($0.5 \mathrm{~g}, 12.8 \mathrm{mmol}$) was dissolyed in HAMPA (50g) contained in a Schienk fube to give a dark blue solution. Fluoroalkene (89) ($2.0 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added to this minture and the jube was sealed and shaken. The colour of the solution changed to yellow and a white powder precipitaied out as a lower layer. 19F NMR spectroscopy showed that a complicated mixture of compounds had formed.

Chabiar Six
 Experimenal ia Chapiar Thres

6.1 Preparation or Siacina Adaierials

A mixiure of trifluorosthanol ($50.0 \mathrm{~g}, 500 \mathrm{mmol}$) and p-ioluenesulphonyl chloride ($100.0 \mathrm{~g}, 525 \mathrm{mmol}$) ware stirred together in water (225 ml) at $40^{\circ} \mathrm{C}$. Sodium hydroxide ($20.0 \mathrm{~g}, 500 \mathrm{mmol}$) in waier (80 ml) was added over forty-five minutes whilst heeping the temperature below $50^{\circ} \mathrm{C}$. This mixture was lef for two hours stirring consiantly before $1, Q_{\text {-dioxane (}}$ (100 ml) was added. This was further stirred for three hours and left to stand at room iemperature overnight. Ammonia solution (ca. $30 \% \mathrm{wtsy}$) (200 ml) was added to the mixiure and the resuling crystals were filiered to give crude:
2,2,2-Trifluoroethyl-p-ioluenesulphonate (88.3g, 70\%).
$\delta_{H}\left(250 \mathrm{AMHz} ; \mathrm{CDCl}_{3}\right) 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), ~ \& .35\left(2 \mathrm{H}, \mathrm{q} \mathrm{J} 8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.39(2 \mathrm{H}, \mathrm{AB}$ $J 7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.82(2 \mathrm{H}, \mathrm{AB} J 7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ; \delta_{F}\left(235 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-78.32(1 \mathrm{~F}, \mathrm{t} J$ $8.0 \mathrm{~Hz}, \mathrm{CF}_{3}$).
NAAR data in agreement with literature 332 :
$\delta_{H}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.47(3 \mathrm{H}, \mathrm{s}), 8.36(2 \mathrm{H}, \mathrm{q} J 8.0 \mathrm{~Hz}), 7.39(2 \mathrm{H}, ~ \& J 8.6 \mathrm{~Hz})$, $7.83(2 \mathrm{H}, ~$ d J 8.6 Hz$)$.

6.1.1.2 22.2-Triiluorarthudahenylsulahides

By using a variation to a literature preparation233, thiophenol (8.0g, 72.7 mmol) was added dropwise to a suspension of sodium hydride $(1.8 \mathrm{~g}$, 75.0 mmol) in DRAF (30 ml) and stirred for thirty minutes. Over the next thirty minutes, a solution of 2,2,2-trifluoroethyl-p-toluene-sulphonate (15.4 g , 60.6 mmol) in DAAF (10 ml) was added and this mixture was left stirring for two hours at room temperature. This mixiure was poured into waier (100 ml) in a
separating funnel. The organic producis ware extracted into diathyl ether (50 ml), dried with $\mathrm{AggSO}_{\text {s }}$, filiered and purified by distillation to give:

2,2,2-Trisluoroethylphenylsulphide (8.0g, 69\%).
$\delta_{H}\left(250 \mathrm{AHHz} ; \mathrm{CDCl}_{3}\right) 3.37\left(2 \mathrm{H}, \mathrm{q}\right.$ 」 $10.0 \mathrm{~Hz}, \mathrm{CH}_{3}$), 7.1-7.5 (5H, m, Ar-H);
 ($\mathrm{AmO}+-69,70 \%$)

NAOR data in agreement with liereraiure233:
$\delta_{H}\left(\mathrm{CCl}_{\&}\right) 3.35(2 \mathrm{H}, \mathrm{q} J 9 \mathrm{~Hz}), 7.1-7.6(5 \mathrm{H}, \mathrm{m}) ; \delta_{F}\left(\mathrm{CCl}_{8}\right)-65.1(1 \mathrm{~F}, \uparrow \mathrm{~J} 9 \mathrm{~Hz})$.

6.1.1.3 2.22R-Trifuaradiladobenulsulabona_(183)

A mirfure of $2,2,2$-irifluoroethylphenylsulphide ($6.0 \mathrm{~g}, 31.2 \mathrm{mmol}$) and potassium dichromate (12.2g, 40.8mmol) in dilute sulphuric acid (200ml, 10\% w/w) was stirred at room temperature for three days. The organic components were extracied into dichloromethane (50 ml), dried with MigSO_{4}, filiered and the solvent mas removed under reduced pressure. The remaining solid was recrysiallised firom diethyl ether \{o give:

2,2,2-Trifluoroethylphenylsulphone (143) ($8.2 \mathrm{~g}, 60 \%$).
$\delta_{H}\left(250 \mathrm{AHz} ; \mathrm{CDCl}_{3}\right) 3.92\left(2 \mathrm{H}, \mathrm{q} / 8.9 \mathrm{~Hz}_{2} \mathrm{CH}_{2}\right), 7.6-8.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{F}\left(235 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-81.79\left(1 \mathrm{~F}, \mathrm{f} 9.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right) ; \mathrm{m} / \mathrm{z} 224$ ($\mathrm{AA}+, 7 \%$) and 141 ($\mathrm{MA}+$ $-83,52 \%)$.

NRAR data in agreement with literature234:
$\delta_{H}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.93(2 \mathrm{H}, \mathrm{q}), 7.4-8.2(5 \mathrm{H}, \mathrm{m})$.

6.1.2 1.14-Trifluorppenian-3-one (146)

6.1.2.1 1-Chlora-11-Difluoropentan-3-one

Using a variation of literature preparations235,236,237, propanoyl chloride ($23.0 \mathrm{~g}, 248.7 \mathrm{mmol}$) was added to a stirred suspension of aluminium chloride ($34.0 \mathrm{~g}, 255.0 \mathrm{mmol}$) in dichloromethane (250 ml) at $0^{\circ} \mathrm{C}$. Vinylidene fluoride (150) was added over three hours to this via a flexible gas reseryoir until no further reaction occurred. The mixture was washed twice with diluie
hydrochloric acid ($2 \times 250 \mathrm{ml} 10 \% \mathrm{w} / \mathrm{w}$) and once with diluie sodium carbonate solution (250 ml) betore being exiracied from waier (250 ml). The solution was dried with $\mathrm{AlgSO}_{\&}$ and the solvent distilled oft to give:

1-Chloro-2,2-difluoropenian-3-one (17.5g, 45\%) b.p. $15 \mathrm{~mm} 36-38^{\circ} \mathrm{C}$.
$\delta_{H}\left(250 \mathrm{AHz} ; \mathrm{CDCl}_{3}\right) 4.10\left(3 \mathrm{H}, \uparrow \mathrm{J} 7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.58\left(2 \mathrm{H}, \mathrm{Q} \mathrm{J} 7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
 $\mathrm{CF}_{2} \mathrm{Cl}$) ; m/z 156 ($\mathrm{NA}+2 \%$) and ($\mathrm{AN}+\mathrm{t}+2,0.6 \%$).

NAAR daia in agreement with literaiurez36:
$\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right)$ 3.40; $\delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$-46.6.

6.1.2.2 1.14-Trijluaropenian-3-ana (146)

1-Chloro-1,1-difluoro-pentan-3-one(10.6g, 67.7 mmol) was added to a mixiure of ofy potassium fluoride ($10.0 \mathrm{~g}, 172.4 \mathrm{mmol}$) and benzyl triethylammonium chloride ($0.5 \mathrm{~g}, 2.2 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) and left stirring at room temperature for three days. This was then poured into water (150 ml) in a separasing funnel and the organic producis were extracied treice with diethyl ether ($2 \times 50 \mathrm{ml}$). The exiracts were combined, dried with AigSO_{4} and the ether distilled off. The residue was purified by distillation (b.p. $116^{\circ} \mathrm{C}$) to yield:
1.1.1-Trifluoro-penian-3-one (146) $\left(5.7 \mathrm{~g}, 60 \%\right.$) b.p. $114-116^{\circ} \mathrm{C}$.

NMR spectrum number 10; mass spectrum number 9.

6.1.3 E-2-H-Heptafluorobui-2-ene (151)

By following published syntheses205,238,239, hexachloro-1,3-butadiene ($133 \mathrm{~g}, 0.51 \mathrm{~mol}$) was added over a period of three hours to a mixture of anhydrous N-meîhyl-2-pyrrolidinone (750 ml) and dry potassium fluoride ($270 \mathrm{~g}, 4.7 \mathrm{~mol}$) contained in a flask at $200^{\circ} \mathrm{C}$ which was fitted with an overhead stirrer and a reflux condenser connected to a trap held in liquid air (ca. $-183^{\circ} \mathrm{C}$). The femperaiure was maintained for a further four hours while the
product was collected in the trap. Fractional distillation of the product (b.p. $8-10^{\circ} \mathrm{C}$) gave:

E-2-H-Hepiafluorobui-2-ene (151) (55.0g, 59\%).
$\delta_{F}\left(235 \mathrm{MHz} ; \mathrm{CH}_{3} \mathrm{CN}\right)-57.07$ [3F, dd $\left.J 17.9,7.4 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{C}(\mathrm{H})\right],-73.28[3 F, \mathrm{~d} J$
$9.5 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{C}(\mathrm{F})$], -120.17 (1 F , ddq d 30.7, $18.2,9.1 \mathrm{~Hz}, \mathrm{CF}$); $\mathrm{m} / \mathrm{z} 182$ ($\mathrm{A} 1+$, 100%) and ($\mathrm{NA}+-19,100 \%$).

NAMR data in agreement with literaturez05:
$\delta_{F}(n e a t)-60.4(3 F),-7 \& .6(3 F),-117.2(1 F)$.

6.2 Beacripos mith Oxpara duclepphiles

6.2.1 Diene (50) with Whater

A mixiure of diene (50) $(3.0 \mathrm{~g}, 8.3 \mathrm{mmol})$, water $(0.2 \mathrm{~g}, 11.1 \mathrm{mmol})$ and potassium carbonate ($2.3 \mathrm{~g}, 16.7 \mathrm{mmol}$), in acetonirrile (20 ml) was siipred at room temperature for fourieen days. Volatile material was transiered in vacuo to a cold trap and more water (20 ml) was added. The lower layer was removed and purified by distillation to yield:

Teirakis(irifluoromethyl)furan (73) ${ }^{150,151}$ (2.3g, 54\%).
b.p. $101-103^{\circ} \mathrm{C}$ (lit.: $104-105^{\circ} \mathrm{C} 150$); NAAR number 11; IR number 6; mass spectrum number 10.

6.2.2 Diene (50) with Phenal

A mixture of diene (50) (5.0g, 13.8mmol), íreshly sublimed phenol (1.9g, 20.2 mmol), and dry potassium fluoride ($4.8 \mathrm{~g}, 82.8 \mathrm{mmol}$) in anhydrous acetonitrile (75 ml) was stirred at room iemperature for seven days. This was then poured into 200 ml of water in a separating funnel. The organic products were extracted using diethyl ether (100 mI), dried with MgSSO_{4}, filiered and the solvent was removed using rotary evaporation. The more volatile componenis were separated from the resulting oil by distillation (b.p. $\left.10 \mathrm{~mm} 52-5 \mathrm{~A}^{\circ} \mathrm{C}\right)(2.8 \mathrm{~g}$, 46\%) and shown to be a 38:6:5:1 mixture of:
Z. 7 -2-Phenary-a

AMAR number 12; mass specinm number 14.
ZF-R-Phenaxy-qaróluara-3, S-dimeilay-hexa-2 A-diena (75).
NAAR number 13; mass spectrum number 12,

NAAR number 12 ; mass spectrum number 13 and

NARR number 15; mass specirum number 19.
For the mixiure: (Found: $\mathrm{C}, 38.7 ; \mathrm{H}, 1.1 ; \mathrm{F}, 56.9$. $\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{~F}_{13} \mathrm{O}$ requires $\mathrm{C}, 38.6$; H, 1.2; F, 56.6\%); IR number 7.

The residual waxy solid was purified by sublimation onto a cold finger and recrystallisation from diethyl ether and n-herane ($3.3 \mathrm{~g}, 47 \%$) and shown to be a 5:8:1 mixture of:

Z7R2.5-Diphanaxy-qarfluaro-3.4-dimaithyl-haza-RA-diena (78).
NAMR number 16; mass spectrum number 15 ,
ER-25-Diphenoxy-qeálupro-3 A-dimathul-haxa-29-diene (79).
NAAR number 17; mass spectrum number 16 and

NAAR number 18; mass spectrum number 17.
For the mixiure: (Found: $\mathrm{C}, 47.0 ; \mathrm{H}, 2.0 ; \mathrm{F}, 4$.2. $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{O}_{2}$ requires C , \&7.9; H, 2.0; F, \&\&.7\%); IR number 8.

6.2.3 Diene (43)_quith_Phenal

A mixture of diene (43) ($1.0 \mathrm{~g}, 2.6 \mathrm{mmol}$), some freshly sublimed phenol ($0.4 \mathrm{~g}, 4.3 \mathrm{mmol}$) and dry potassium fluoride ($1.0 \mathrm{~g}, 17.2 \mathrm{mmol}$) in anhydrous acetonitrile (20 ml) was stirred at room iemperature for seven days. This was then poured into water (100 ml) in a separating funnel and the organic components were extracted using diathyl ether (50 ml), dried with MigSO_{4}, filiered and the solvent was removed using rotary evaporation. The residue was purified by sublimation onto a cold finger io give:

m.p. $79-82^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 89.8 ; \mathrm{H}, 2.1, \mathrm{~F}, 43.1$. $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{O}_{2}$ requires C , 49.5;

H, 1.9; F, 42.7\%); AAAR number 19; IR number 9; mass spectrum number 18.

6.2.4 Eluarinarad_Enarides

6.2.4. 1 Enaxidation of Diene (50)

A mixture of the diene (50) $(5.0 \mathrm{~g}, 13.8 \mathrm{mmol})$, diy calcium hypochlorite ($6.8 \mathrm{~g}, 47.6 \mathrm{mmol}$) and anhydrous acsionitrile (20 ml) was stirred at room iemperature ior seven days. Volatile material was transierred in vacuo to a cold trap, washed with water (20 ml) and the subsequent lower layer removed and subsequently identified as:

(Found: $\mathrm{C}, 2 \mathrm{2d.2}$; $\mathrm{F}, 68.1 . \mathrm{C}_{8} \mathrm{~F}_{14} \mathrm{O}_{2}$ requires C , 24.4; $\mathrm{F}, 67.5 \%$.) NAAR number 20; IR number 10; mass specirum number 19.

6.2.4.2 Amempled Enoxidation of Diene (43)

A mixture of the diene (43) ($1.0 \mathrm{~g}, 2.6 \mathrm{mmol}$), dry calcium hypochlorite ($1.3 \mathrm{~g}, 9.1 \mathrm{mmol}$) and anhydrous acsionitrile (5 ml) was stirred at room iemperature for seven days. Volatile maierial mas transierred in vacuo to a cold trap and shown by 19F NAAR spectroscopy to be a complicaited mixture. The mixiure could not be purified and was not pursued further.

6.2.4.3 Amempiad Enaxidation of Diena (4a)

A mixiure of the diene (86) ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol}$), dry calcium hypochlorite ($1.7 \mathrm{~g}, 11.9 \mathrm{mmol}$) and anhydrous aceionitrile (10 ml) was stirred at room temperature for fourieen days. 19F RAMR spectroscopy showed the presence of several compounds at this time but after heating the mixture under peflux for theo hours most of the resonances had disappeared only to be conyeried to: Perfiluoro-2,2'-dichloro-bicyclobut-1,1'-enyl (88) ${ }^{15}$ (57% by NARR integration only).

NAR number 21. This material was not isolated from solution.

6.2.4.4 【sqmapisarian ar Dieparsida (86)

A Carius lube was charged with diepoxide (86) (1.0g, 2.54mmol) and dry cassium fluoride and subsequently heared in a furnace ai $200^{\circ} \mathrm{C}$ for iwenty-iour hours. Volatile material was transiared in yacuo to a cold trap and wes found to be gither:

 (Found: $\mathrm{C}, 24.2$; F, 68.3. $\mathrm{C}_{8} \mathrm{~F}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 24.4$; $\mathrm{F}, 67.5 \%$); NAAR number 22; IR number 11; mass spectrum number 20.

6.3 Beacions riith Sulohur Auclaqahilas

6.3.1 Diena (5Q) riish Paiassium Sulahida

A mixture of diene (50) ($10.0 \mathrm{~g}, 27.6 \mathrm{mmol}$) and dry potassium sulphide ($4.5 \mathrm{~g}, 40.9 \mathrm{mmol}$) in anhydrous DAFF (25 ml) was stirred at room iemperature for fourteen days. Volatile material was transiered in yacuo to a cold trap and waier (25 ml) was added. The lower layer was removed and subsequent analysis (19F NAAR speciroscopy and G.C. mass spectrometry) demonstrated ine presence of a mixture (18:7) of thiophene derivative (92) and furan derrivative (73). Distillation of this mixture afforded:

Tetrakis(trifluoromethyl)thiophene (92)166 (3.7g, 38\%).
b.p. $134-135^{\circ} \mathrm{C}$ (lii.: $134-135^{\circ} \mathrm{C} 166$); AMMR number 23 ; IR number 12; mass spectrum number 21.

6.3.2 Diena (50) with Thiourea

A mixture of diene (50) $(2.0 \mathrm{~g}, 5.5 \mathrm{mmol})$ and thiourea $(0.5 \mathrm{~g}, 6.6 \mathrm{mmol})$ in anhydrous acetonitrile (20 ml) was heated under reflux overnight with continuous stirring. Volatile material was then transfered in vacuo to a cold
trap and waier (30mi) was added. The lower layer was removed and purified by distillation to give:

Tetrakis(irifluoromethyl)thiophens (92) (1.0g, 51\%) (see Section 6.3.1).

6.3.3 Diena_(50) ouith_Sadimm Thinaherapice

To a stirred suspension of sodium hydride ($0.2 \mathrm{~g}, 8.3 \mathrm{mmol}$) in DMF (20ml), thiophenol ($0.9 \mathrm{~g}, 8.2 \mathrm{mmol}$) was slowly added and the solution was left at room temperature for thiry minutes. The diene (50) (2.0g, 5.5mmol) was then added and was allowed to stir for iwo hours. This mizure was poured into slighty alkaline waier (100 ml) in a separating funnel and ine organic components were extracied into diethyl ether (50 ml), dried with AlgSO_{4}, filiered and the ether was distilled off. The resulting solid was purified by sublimation onio a cold finger and recrysiallisation from aceione (1.3g, 59\%) to give a 45:40:15 mixture of:

NARR number 2A; mass spectrum number 22,

NAMR number 25 ; mass spectrum number 23 and

NAAR number 26; mass spectrum number 2A.
For the mixiure: (Found: C, 44.0; $\mathrm{H}, 2.2$; F, 41.5; S, 13.7. $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{~S}_{2}$ requires C, 44.3; H, 1.9; F, 42.0; S, 11.8\%); IR number 13.

6.4 Beactions suith Alirnora Duclapphiles

6.4.1 Diens (50) rish Amomonia

A mixture of the diene (50) (10.0g, 27.6mmol) and dry potassium fluoride ($9.8 \mathrm{~g}, 169.0 \mathrm{mmol}$) in anhydrous THF (50 ml) was sîirred for seven days at room temperature while ammonia ($2.0 \mathrm{~g}, 117.6 \mathrm{~mol}$) was introduced to the flask via a flexible gas reservoir. The mixiure was filiered and the filirate washed with more THF (50 ml). The solutions were combined and the solvent
was removed under reduced pressure. Chromatography on alumina with dichloromethane as the eluent yislded:

m.p. $21-23^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 26.7 ; \mathrm{H}, 1.1 ; \mathrm{F}, 66.1 ; \mathrm{N}, 8.0 . \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{12} \mathrm{~N}_{2}$ requires C , 27.0; H, 1.1; F, 64.0; N, 7.9\%); NAAR numbar 27; IR numbar 14; mass specium number 25.

The remaining solid was separated by Kugelrohr distillation io give:

m.p. 169-171 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 32.4 ; \mathrm{H}, 0.4 ; F, 58.7 ; \mathrm{N}, 8.0$. $\mathrm{C}_{8} \mathrm{HFg}_{2} \mathrm{~N}_{2}$ requires C , 32.5; H, 0.3; F, 57.7; N, 9.5\%); NAAR number 28; IR number 15; mass specirum number 26 and
2.5-Diamina-3.4-dicyano-1.1.1.6.s.6-hexafluarahax-2.4-diana (103) (0.7g, $10 \%)$.
m.p. 207-209${ }^{\circ} \mathrm{C}$ (dec.) (Found: C, 35.1; H, 1.8; F, 81.2; N, 20.8. $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{FF}_{6} \mathrm{~N}_{4}$ requires $C, 35.6 ; H, 1.5 ; F, 42.2 ; \mathrm{N}, 20.7 \%$); NARR number 29; IR number 16; mass spectrum number 27.

6.4.2 Diena (50) mith Aniline usina Carsium Elunrida as a Basa

A mixiure of diene (50) ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), freshly distilled aniline (1.5 g , 16.1 mmol) and dry caesium fluoride ($3.9 \mathrm{~g}, 25.7 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was stirred at room temperature for seven days. This was then poured into water (150 ml) in a separating funnel. The organic products were extracted twice with diethyl ether ($2 \times 50 \mathrm{ml}$). The ethereal solutions were combined, dried with MigSO_{4}, filtered and the solvent removed under reduced pressure. Sublimation of the solid residue onio a cold finger yielded:
1-Phenyl-ititrakis(rififluoromethyl)pyrrole (108) ${ }^{177}$ (2.5g, 72\%).
m.p. $99-100^{\circ} \mathrm{C}$ (lii.: $98-99^{\circ} \mathrm{C} 177$); (Found: C, 40.4; H, 1.0; F, 54.7; N, 3.2. $\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{~F}_{12} \mathrm{~N}$ requires $\mathrm{C}, 40.5 ; \mathrm{H}, 1.2 ; \mathrm{F}, 54.9 ; \mathrm{N}, 3.4 \%$); NAAR number 30; IR number 17; mass spectrum number 28.

6.4.3 Diena (50) rish Bailine usina Paiassium Fluaride as 2ase

A mixiure of diene (50) (3.0g, 8.3 mmol), freshly disilled aniline (1.5 g , 16.1 mmol) and dry poiassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous acatonitrile (50 ml) was stipred ai room iemperaiure for fouñen days. This was then poured into water (450 ml) in a separating funnel. The orgenic products were axiracted twice with diathyl giher (2 г 50ml). The athereal solutions were combined, dried with AngSOA, filiered and ine solvent removed under reduced pressure. Sublimation of the solid residue onio a cold finger yielded: 1-Phenyl-ieirakis(irifluoromethyl)pyrrole (108) (2.2g, 63\%) (see Section 6.4.2). The remaining solid was purified by recrystallisation from diethyl eiher io give:
 $8 \%)$.
m.p. 229-230 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 53.7 ; \mathrm{H}, 2.0 ; \mathrm{F}, 39.7$; N ; 6.0. $\mathrm{C}_{20} \mathrm{Hg}_{9} \mathrm{FiN}_{2}$ requires C, 53.6; H, 2.0; F, 38.1; N, 6.2\%); NARR number 31; IP number 18; mass spectrum number 29.

6.4.4 Diena (50) raith S.Substisuted sailines

6.4.4.1 Pelist N.A-Dimashyl-G-aminganiling

A mixiure of diene (50) ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), N, N-dimeihyl-\&-aminoaniline ($2.2 \mathrm{~g}, 16.5 \mathrm{mmol}$) and dry potassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was stipred at room temperature for two days. This was then poured into water (150 ml) in a separating funnel. The organic products were then extracted twice with diethyl ether ($2 \times 50 \mathrm{ml}$). The othereal solutions were combined, dried with AligSO_{4}, filiered and the solveni removed under reduced pressure. Sublimation onto a cold finger yielded:

1-(Á'-Dimaihulaminophenyl)-ietrakis(ixilluaromeibyllopyrpole (111) (1.7g, 45\%).
m.p. 101-103 ${ }^{\circ}$ C. (Found: C, 42.0; H, 2.3; F, 50.1; N, 5.9. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{~N}_{2}$ requires C 41.3; $\mathrm{H}, 2.2 ; \mathrm{F}, 49.8$; N, 6.1%; NAR number 32; IR number 19; mass spectrum number 30.

A mizure of diens (50), ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), freshly sulalimed somethoxyaniline ($2.0 \mathrm{~g}, 16.3 \mathrm{mmol}$), and dry potassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous acetonitrile (50ml) was stirred at room temperaiure for seven days. This wes then poured into waier (150 ml) in a separating funnel. The organic products were then extracted with diethyl esther (50ml) which was dried with WigSO , filiered and ine solvent removed under reduced pressure. Sublimation of the solid residue onto a cold finger yielded:

1-(G'-Adaibaxyoharoy)-iarcakis(iniiluarameithullayrrala (112) (2.6g, 74%).
m.p. 59-61² ${ }^{\circ}$. (Found: C, q0.2; $\mathrm{H}, 1.6 ; \mathrm{F}, 50.8 ; \mathrm{N}, 2.7 . \mathrm{C}_{15} \mathrm{H}_{7} \mathrm{~F}_{12} \mathrm{NO}$ requires $\mathrm{C}, 40.5 ; \mathrm{H}, 1.6 ; \mathrm{F}, 51.2$; N, 3.1%); NAAR number 33; 组 number 20 ; mass spectrum number 31.

The remaining solid was purified by recrystallisation from aceione/water.to give:
 quinoling (113) (0.5g, 12\%).
m.p. $200-201^{\circ} \mathrm{C}$. (Found: C, 51.9; H, 2.5; F, 33.7; N, 5.3. $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{FgN}_{2} \mathrm{O}_{2}$ requires $C, 52.0 ; H, 2.6 ; F, 33.6 ; \mathbb{N}, 5.5 \%)$; AMP number $3 \& ; 1 R$ number 21 ; mass spectrum number 32.

6.4.4.3 Mrith 4-Flupraanilins:

A mixlure of diene (50), ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), some -fluoroaniline $(1.8 \mathrm{~g}$, 16.2 mmol), and dry poiassium fluoride ($2.0 \mathrm{~g}, 38.5 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was heated under reflux for four hours with continuous stirring. This was poured into water (150 ml) in a separating funnal and acidified with hydrochloric acid. The organic producis were then extracted with diethyl ether (50 ml), dried with MgSO_{4}, filiered and the solvent removed under reduced pressure. Sublimation onto a cold finger yielded:

m.p. $178.878^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 38.6 ; \mathrm{H}, 0.9 ; F, 57.5 ; \mathrm{N}, 3.2 . \mathrm{C}_{18} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{~N}$ requires $\mathrm{C}, 38.8 ; \mathrm{H}, 0.9 ; F, 57.0 ; \mathrm{N}, 3.2 \%)$. N. MA. R. number 35; IR number 22; mass spectrum number 33.

The remaining solid was purified by recnysiallisation from aceione/water.to give:
 ouinolina (115) (0.5g, 12\%).
 C. 49.6; $H, 4.5$; F, 93.2; N, 5.8\%). N.RN.R. number 36; IR number 23; mass specrum number 34.

6.4.4.4 Fhith A-Cbloraanilias:

A mixiupe of diene (50) ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), freshly sublimed a-chloroaniline ($2.1 \mathrm{~g}, 16.5 \mathrm{mmol}$) and dry potassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was heaied under reflux for three hours with continual stirring. This was then poured into waier (150 ml) in a separating funnel. The organic products were than extracied iwice with diethyl ether (2x 50 ml). The ethereal solutions were combined, dried with AlgSO 4 , filiered and the solvent removed under reduced pressure. Chromatography on silica gel with light petroleum (b.p. 40-60 ${ }^{\circ} \mathrm{C}$), diethyl ather and methanol (90:9:1) as the eluent followed by recrystallisation from n-hexane/diethyl ather yielded: L-(4'-Chlorophenyl)-iairakis(inifluaramaihyupyrrole (116) (0.3g, 7\%). m.p. $136-137^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 36.9 ; \mathrm{H}, 0.8 ; \mathrm{Cl}, 7.2 ; \mathrm{F}, 50.0 ; \mathrm{N} ; 2.9 . \mathrm{C}_{1 \&} \mathrm{H}_{4} \mathrm{ClF}_{12} \mathrm{~N}$ requires $\mathrm{C}, 37.4 ; \mathrm{H}, 0.9 ; \mathrm{Cl}, 7.9 ; \mathrm{F}, 50.7 \%$) $\mathrm{Na} A \mathrm{R}$ number 37; IR number 24 ; mass specirum number 35.

A mizure of diene (50) ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), freshly suelimed Q-nitroaniline ($2.3 \mathrm{~g}, 16.7 \mathrm{mmol}$) and dry potassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was heated under reflux for four hours with continual stifring. This was then poured into water (150 ml) in a separating funnel. The organic products ware then oxtracted twice with diathyl Biner ($2 x 50 \mathrm{ml}$). The eithereal solutions were combined, dried witin MigSO $_{4}$, filiered and the solvent removed under reduced pressure. Chromaiography on silica gel wiith light peiroleum (b.p. $40.60^{\circ} \mathrm{C}$), diethyl ather and meinanol (90:9:1) followed by recrystallisation from diethyl ather yielded:

m.p. 171-172 ${ }^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 35.9 ; \mathrm{H}, 0.7$; F , 48.8; N, 5.9. $\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 36.5 ; \mathrm{H}, 0.9 ; \mathrm{F}, 49.5 ; \mathrm{N}, 6.1 \%$.$) ; AMAR number 38 ; \operatorname{lR}$ number 25 ; mass spectrum number 36.

6.4.5 Diene (50) rith 2-Adathosuaniline

A mixture of̂ diene (50), ($3.0 \mathrm{~g}, 8.3 \mathrm{mmol}$), some 2 -methozyaniline $(2.0 \mathrm{~g}$, 16.3 mmol), and dry poiassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous aceionirrile (50 ml) was heaied under reflux overnight with continuous stirring. This mas poured inio water (150 ml) in a separating funnel and acidified with hydrochloric acid. The organic products were then extracied with diethyl ether (50 ml), dried with AMgSO_{4}, filiered and the solvent removed under reduced pressure. Sublimation onto a cold finger yielded:
 m.p. 94-96² ${ }^{\circ}$. (Found: C, 41.0; H, 1.6; F, 50.3; N, 3.1. $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{~F}_{12} \mathrm{NO}$ requires C, 40.5; H, 1.6; F, 51.2; N, 3.1\%). N.M.R. number 39; IR number 26; mass specirum number 37.

The remaining solid was purified by recrystallisation from acetone/water to give:
 auinalina (119) (0.6g, 14%).
m.p. 201-202 ${ }^{\circ} \mathrm{C}$. (Found: C, 51.7; H, 2.4; F, 33.2; N, 5.2. $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{FgN}_{2} \mathrm{O}_{2}$ requires $C, 52.0 ; H, 2.6 ; F, 33.6 ; N, 5.5 \%$). N.RA.R. number $40 ; 1 R$ number 27; mass spectrum numoer 38.

6.6.6 Diene (50) ruith 3-Adathoryanilinas

A mixiure of diens (50), (3.0g, 8.3mmol), some 3-methoxyaniline (2.0 g , 16.3 mmol), and dry potassium fluoride ($2.0 \mathrm{~g}, 34.5 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was heated under reflux overnight with continuous stirring. This was poured into water (150 ml) in a separating funnel and acidified with hydrochloric acid. The organic products were then extracied with diethyl ether (50 ml), driad with AngSO_{4}, filiered and the solvent removed under reduced pressure. Sublimation onio a cold finger yielded:

1-(3'-Adeithaxuhanyl)-iatrakis(idiflupramaithyl)-qurrale (120) (1.0g, 27\%). m.p. $65-66^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, \mathrm{A0.5} ; \mathrm{H}, 1.5 ; \mathrm{F}, 50.9 ; \mathrm{N}, 2.9 . \mathrm{C}_{15} \mathrm{H}_{7} \mathrm{~F}_{12} \mathrm{NO}$ requires C, A0.5; H, 1.6; F, 51.2; N, 3.1\%). N.M.R. number A1; IR number 28; mass spectrum number 39.

The remaining solid was purified by recrystallisation from aceione/water to give a mixture ($16: 9$) ($1.0 \mathrm{~g}, 24 \%$) of:
 quinoling (121) (ca.15\%).

NMR number 42 and
 quinoline (122) (ca.9\%).

NAR number 43.
For the mixiure (Found: $\mathrm{C}, 51.7 ; \mathrm{H}, 2.6 ; \mathrm{F}, 34.1 ; \mathrm{N}, 5.4$. $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{FgN}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 52.0 ; \mathrm{H}, 2.6 ; \mathrm{F}, 33.6 ; \mathrm{N}, 5.5 \%$) IR number 29 ; mass spectrum number 40.

6.5 Beactions suith Caraon Aluclepahiles

6.5.1 Mrith Diathy Adalonair

6.5.1.1 Diana (50)

A mixture of diene (50) (5.0g, 13.8mmol), diothyl malonaie (2.2g, 15.7 mmol), and ory ceosium fluoride (6.3 g , A1. 4 mmol) in anhydrous acatonitrile (50 ml) was stirred ai room temperasure for iwenty-four hours. Ait this siage, a small aliquor was taken and transfered in vacuo to a cold trap. Analysis by NAMR and G.C. mass spectromerny revealed the prosence of:
 NAMR number AA; mass spectrum number A4.

After a further twenty-foup hours, the remaining mixfure was then filiered and the solvent removed by roiary evaporation and an applied vacuum. The resulting tar was washed with a likle cold dichloromethane (20ml) and the remaining crystals were purified by recrystallisation from dichloromethane and were subsequently shown to be:

Caasium iatrakis(trifluoromathyllothozycactonylcyclopentadienide (136) (5.0g, 67\%).
(Found: $\mathrm{C}, 26.6 ; \mathrm{H}, 0.9 ; \mathrm{F}, 42.1 ; \mathrm{Cs}, 25.9 . \mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{12} \mathrm{O}_{2} \mathrm{Cs}$ requires $\mathrm{C}, 26.6 ; \mathrm{H}$, 0.9 ; $\mathrm{F}, 42.1$; Cs, 24.5%); NMR number 45 ; IR number 30 ; mass spectrum number 42.

6.5.1.2 Diene (43)

A mixiure of diene (43) ($1.0 \mathrm{~g}, 2.6 \mathrm{mmol}$), diethyl malonaie (0.4 g , 2.5 mmol) and $\mathrm{dry}_{\mathrm{y}}$ caesium f́luoride ($1.6 \mathrm{~g}, 10.5 \mathrm{mmol}$) in anhydrous aceionitrile (50 ml) was heated under reflux for ihree hours whilst being stirred continuously. After filtration, the solvent was removed under reduced pressure. The product was then washed with a liftle cold dichloromethane (20 ml) to give a light yellow powder which was identified as:

Caesium 1-aihoxycarbonyloerflupro-2.3. 5 . 6-hexabydrodicyalonanialbodgyclapentadienide (138) (1.0g, 68\%).
(Found: C, 29.9; $\mathrm{H}, 1.0 ; \mathrm{F}, 39.8 ; \mathrm{Cs}, 23.2$. $\mathrm{C}_{33} \mathrm{H}_{5} \mathrm{~F}_{12} \mathrm{O}_{3} \mathrm{Cs}$ requires $\mathrm{C}, 29.7 ; \mathrm{H}$, 0.9; F, 40.3; Cs 23.4\%.); NARAR number 46; IR number 31; mass spocirum number $\$ 3$.

6.5.1.3 Diene (46)

A mixiure of diene (86) $(1.0 \mathrm{~g}, 3.5 \mathrm{mmol})$, diathyl malonate $(0.6 \mathrm{~g}$, 3.8 mmol) and dry caesium fluoride ($2.1 \mathrm{~g}, 13.1 \mathrm{mmol}$) in anhydrous aceionirrile (50 ml) was heated under raflux for three hours whilsi being stirred continuously. The 19F N.AA.R. spectrum of the reaction mixiure was obtained at this time and showed the presence of a vast mixiure of fluorinated compounds present. A similar work up to that mentioned beiore was adopied but the only product was an intractable tar.

6.5.2 Diena (50) sish Fibhul 3-Qxpaenianatia

A mixture of diene (50) ($1.0 \mathrm{~g}, 2.8 \mathrm{mmol}$), some ethyl 3 -oxopentanoate ($0.8 \mathrm{~g}, 2.8 \mathrm{mmol}$) and dry caesium fluoride ($2.1 \mathrm{~g}, 13.8 \mathrm{mmol}$) in anhydrous acetonitrile (50 ml) was heated under reflux for one hour whilst being stirred continuously. At this stage, a small aliquot was taken and transfared in vacuo to a cold frap. Analysis by NAAR and G.C. mass spectrometry reyealed the presence of:

5-Elhorqcarimony-5-propanoyl-tetrakis(crifluoromethuldcyclopentadiens (142) NAAR number 47; mass spectrum number 4d.

Anter a further theo hours' reflux, the remaining mixture was shown by 19F NAMR to be a mixture of three products:

Caasium iarrakis(arifluaromathy) ashaxycarbanylayclapaniadienidas (136) (ca. 9\%) (see Section 6.5.1.1) and

Caasium tatrakis(Sidilurarameibulloropanoulqucalopantadianide (141) (ca. 57\%) (see Section 6.5.4)
along with some of the furan derivative (73) (ca. 34\%).

6.5.3 Diena (50) riith222.Tuibluaradibylaheardsulahonal (143)
 A mixiupe of diene (50) ($8.0 \mathrm{~g}, 11.0 \mathrm{mmol}$), soms 2,2,2einifluorocihyl-

 phenylsulphone (143) (2.5g, 11.2 mmol) and dry cassium filuoride (8.5 g , 55.9 mmol) in anhydrous acetonitrile (50 ml) was heaied under reilux overnight with continuous stirring. Analysis (19F NADP spectroscopy) demonstrated the presence of a complex mixiure (ca. 13:17:70) of sall (1QQ), benzene derivative (195) and furan derivative (73) along vith some remaining staning material. The mixiure was inen filiered and ine solvent was removed under reduced pressure. The residue was washed with a litile diathyl other (20ml), filiered again and the ether was removed by rotary evaporation. Recrystallisation from dichloromethane afrorded:Hexakis(itrifluoromethyl)benzene (145) (0.2g, 7\%).
NAAR number 48; IR number 32; mass spectrum number 45.

6.5.4 Diene (50) siish 141-Tcifluarapenian-3-ane (186)

A mixiure of diene (50) ($1.0 \mathrm{~g}, 2.8 \mathrm{mmol}$), some 1,1,1-ifrifluoropentan-3one (146) ($0.4 \mathrm{~g}, 2.9 \mathrm{mmol}$) and dry caesium fluoride in anhydrous aceionirrile (50 ml) was heaied under reflux for four hours with continuous stirring. The 19F N.M.R. spectrum was obtained at this time and showed that a mixture of products had been made which were subsequenily identified as:
 Section 6.5.6.1) and
 52\%).

NARR number 49; mass spectum number a6.
and also the presence of the benzens derivative (185) (ca. 7\%) and furan derivative (73) (ca. 30\%).

6.5.5 BractianafDiana (50) suith Vinulidena Eluarida (15D)

A siainless sieal ausoclave was charged with a mixiure of diene (50) ($8.0 \mathrm{~g}, .22 .1 \mathrm{mmol}$), vinylidens filuoride (150) ($1.6 \mathrm{~g}, 21.9 \mathrm{mmol}$) and dry caesium fluoride ($10.1 \mathrm{~g}, 66.4 \mathrm{mmol}$) in anhydrous aceionitrile (35 ml). The autoclave was then subsequently heaied in a rocking fupnace at $100^{\circ} \mathrm{C}$ for manty hours. Analysis (19F NAAR spectroscopy) demonstraied the presence of a complex mizture (ca. 5:7:29) of sali (12d), cyclobuiene derivativa (52) and furan derivative (73) along with some staring maxerial. The resulting mizure was fillered and the solvent removed under reduosd pressure but nothing could be extracied from the remaining tar athough 19F NAAR spectroscopy still showed the presence of:
 mixture (see Section 6.5.6.1).

6.5.6 Mrith E-R-H-Hapiailuarobui-R-ana (151)

6.5.6.1 Diene (50)

A stainless steel autoclave was charged with a mixture of diene (50) ($3.0 \mathrm{~g}, .8 .3 \mathrm{mmol}$), 2-H-hepiafluorobut-2-8ne (154) ($1.5 \mathrm{~g}, 8.2 \mathrm{mmol}$) and dry caesium fluoride ($5.1 \mathrm{~g}, 33.6 \mathrm{mmol}$) in anhydrous aceionitrile (25 ml). The autoclave was inen subsequently heaied in a rocking furnace ai $100^{\circ} \mathrm{C}$ for forty-eight hours. Analysis (19F NAAR spectroscopy) demonstraied the presence of a complex mixiure (ca. 50:13:26) of sali (14d.), cyclobutene derivative (52) and furan derivative (73) along with some staring material. The resulting mixiure was then filiered and any volatile componenis were removed under reduced pressure. The remaining brown oil was allowed to crystallise over fourieen days. Washing the parially crysialline oil with a little chloroiorm (20 ml) gave an off-white powder which was suitable for FAB mass spectromeiry analysis. The powder was identified as:

Cassium pentakis(îrifluaromethylloyclopentadienide (184) (1.8g, 84\%).
NAM number 50; IR number 33; mass specirum number 47.

6.5.6.2 Diene (43)

A stainless sieal autoclave was charged with a mixiure of diene (\&3) (1.4g,. 3.6 mmol), 2-H-heptafluorobut-2-ene (151) ($1.8 \mathrm{~g}, 9.9 \mathrm{mmol}$) and dry caesium fluoride ($4.7 \mathrm{~g}, 30.9 \mathrm{mmol}$) in anhydrous aceionitrilo (25 ml). The autoclave was inen subsequanily heaied in a rocking furnace ait $100^{\circ} \mathrm{C}$ for fory-eight hours. The resulting mixure was then filtered and any volatile components were removed under reduced pressure. The remaining brown oil was allowed io crysiallise over seven days. Washing ithe parially crystalline oil with a likle dichloromeinane (20ml) gave a light brown powder which was suitable for FA8 mass spectromery analysis. The powder was identified as:
 paráadianide (153) (0.5g, 25\%).

NAAR number 54 ; mass spectrum number 48.

6.5.6.3 Oftailuoracyalopentene (135)

A siainless sieel autoclave was charged with a mixiure of fluoroalkene (135) (2.2g, 10.4 mmol), $2-H$-heptafluorobut-2-ene (151) (3.7g, 20.3mmol) and dry caesium fluoride ($7.9 \mathrm{~g}, 52.0 \mathrm{mmol}$) in anhydrous acetonitrile (25 ml). The autoclave was ithen subsequently heated in a rocking furnace at $100^{\circ} \mathrm{C}$ for forty-eight hours. The resulting mixture was then filtered and any volatile components were removed under reduced pressure. The remaining dark brown oil was allowed to crystallise over fourteen days. Washing the parially crysialline oil with a little dichloromethane (20 ml) gave a light brown powder which was suitable for FAB mass spectrometry analysis. The powder was identified as:

Garsium pariluaro-123-xihudro-A 5.6-irimaihyl-araialanids (15a) (1.2g, 21\%).

NAAR number 52; mass spectrum number 49.

Chaoiar Seren

Exnerimaral io Chaokar Eour

7.1 Reacents

Decamethylieprocene was kindly provided by Dr. Y. C. Gibson and was sublimed onto a cold finger prior to use.

7.2 Bracion ai Dramaibulierracene with Diena (83)

Diene (63) ($0.30 \mathrm{~g}, 0.777 \mathrm{mmol}$) was added to a stirred suspension of decamethylferrocene ($0.25 \mathrm{~g}, 0.767 \mathrm{mmol}$) in anhydrous acetonitrile (30 ml). The mixiure was stipred at room temperaiure for seven days. Any solid material mas removed by filtration and the solvent subsequently removed by roiary evaporation. The residual material was recrysiallised from aceione and light petroleum (b.p. 80-60 ${ }^{\circ} \mathrm{C}$) to give:
 $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~F}_{14} \mathrm{Fe}$ requires $\mathrm{C}, 50.6 ; \mathrm{H}, 4.3 ; \mathrm{Fe}, 7.8 \%$.); IR number 3\&. Hydrolysis of this gave the salt $\mathrm{FE}\left(\mathrm{C}_{5} \mathrm{Al}_{5}\right)_{2} \mathrm{l}^{2} \mathrm{SC}_{10} \mathrm{E}_{14} \mathrm{O}_{2}-$ (159) N.AA.R. number 53.

7.3 Beackion of Dacamaihulíarracene wish Dieno (46)

Diene (a6) ($0.22 \mathrm{~g}, 0.769 \mathrm{mmol}$) was added to a stirred suspension of decamethylferrocene $(0.25 \mathrm{~g}, 0.767 \mathrm{mmol})$ in anhydrous acetonitrile (30 ml). The mixiure was stirred at room iemperature for seven days. Any solid material mas removed by filtration and the solvent subsequenily removed by rotary evaporation. The residual material was recrystallised from aceione and light perroleum (b.p. $80-60^{\circ} \mathrm{C}$) to give:
[Ee(n-C5Ade5)2]+(C8E10). (161) (0.18g, 38\%) (Found: C, 54.5; H, 4.7; F, 22.6; $\mathrm{Fe}, 9.2$. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{10} \mathrm{Fe}$ requires $\mathrm{C}, 54.9 ; \mathrm{H}, 4.9 ; \mathrm{F}, 31.0 ; \mathrm{Fe}, 9.1 \%$.); IR number 35.

7.4 Beaction of Dacamerthurferracene sidh Diene (50)
 Diene (50) ($0.25 \mathrm{~g}, 0.773 \mathrm{mmol}$) wess added to a stirred suspension of decamethyliferrocens ($0.25 \mathrm{~g}, 0.767 \mathrm{mmol}$) in anhydrous aceionitrile (30 ml). The mixiure was stipred at room temperature for seven days. Any solid material was removed by filipation and the solvent subsequently removed by rotary evaporation. The residual material wess recrystallised from acetone and light petroleum (b.p. $80-60^{\circ} \mathrm{C}$) to give 0.05 g of a mixture of unidentifiad dark green enystals.

7.5 Beaction or Decamethulierracene sish Fluoroalkenas (48) and (4.5)
 A mixiure of periluorinated alkenes (8, d) and (85) ($0.25 \mathrm{~g}, 0.590 \mathrm{mmol}$)

 was added to a stirred suspension of decamethylferrocene $(0.25 \mathrm{~g}$, 0.767 mmol) in anhydrous acetonitrile (30 ml). The mixure was stirred at room iemperature for seven days. Any solid material was removed by filtration and the solyent subsequently removed by rotary evaporation. The residual material was recrystallised from acetons and light petroleum (b.p. $40-80^{\circ} \mathrm{C}$) io give:[ER(n-C5Ade5) 2l. + (C8EE105. (161) ($0.10 \mathrm{~g}, 64 \%$ based on decamethylferrocene).

APPENDICES
 AND
 REFERENCES

Appandix

AMBR SOQctias

1. Z,Z-Periluoro-3,\&-dimeihyl-hera-2,4-diene (50)
2. E,Z-Perfluoro-3,A-dimeinyl-hexa-2,A-diene (51)
3. Perfluoro-1,2,3, A-ietramethylcyclobuiene (52)
Q. E,E-Perfluoro-3,4-dimethyl-hera-2,4-diene (60)
4. Penfluorobicyclopent-1, $4^{\circ}-$ enyl (43)
5. Periluorobicyclobut-1, 1'-enyl (Q6)
6. Q-Bromo-3-chlorohexafluorobui-1-ene (62)
7. E-\&-Bromo-1,3-dichloropentailuorobut-1-ene (63)
8. Z-A-Bromo-1,3-dichloropentafluorobui-4-өne (6\&)
9. 1,1,1-Trifluoropentan-3-one (146)
10. Teirakis(îrifluoromeihyl)furan (73)
11. Z,Z-2-Phenoxy-perfluoro-3,4-dimeihyl-hexa-2, A-diene (7a)
12. Z,E-2-Phenoxy-perfluoro-3,4-dimethyl-hexa-2,Q-diene (75)
13. E,E-2-Phenozy-penfluoro-3,4-dimethyl-hexa-2,4-diene (76)
14. E,Z-2-Phenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (77)
15. Z,Z-2,5-Diphenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (78)
16. E,Z-2,5-Diphenoxy-penfluoro-3,4-dimethyl-hexa-2,4-diene (79)
17. E,E-2,5-Diphenoxy-perfluoro-3,\&-dimethyl-hexa-2,4-diene (80)
18. 2,2'-Diphenoxy-perfluorobicyclopeni-1,1'-enyl (81)
19. Perfluoro-2,2',3,3'-tetramethyl-bi-2,2'-oxiranyl (86)
20. Perfluoro-2,2'-dichloro-bicyclobuit-1, 1^{\prime}-enyl (88)
21. Perfluoro-1,3,4,6-tetramethyl-2,5-dioxabicyclo[2.2.0]hexane (90) or Perfluoro-1,2,4,5-ietramethyl-3,6-dioxabicyclo[3.1.0]hexane (91)
22. Tetrakis(irifluoromethyl)ihiophene (92)
23. E,Z-2,5-Dithiophenoxy-perfluoro-3,4-dimethyl-hera-2,4-diene (94)
24. Z,Z-2,5-Dithiophenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (95)
25. E,E-2,5-Dithiophenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (96)

27. Z,Z-2,5-Diamino-perfluoro-3,4-dimethyl-hexa-2, e-बiene (101)

28. 2,4,5-Tris(irifluoromathyl)-3-cyano-pyrrola (102)
29. 2,5-Diamino-3,8-dicyano-1,1,4,6,6,6-hexafluorohexa-2,8-diene (103)
30. 1-Phenyl-terrakis(\%rifluoromethyl)pyrrole (108)
31. 1-H-1-Phenyl-2,3, \&-tris(rrifluoromeihy)pyrrolo[3,2-c]quinoline (109)
32. 1-((α^{\prime}-Dimethylaminophenyl)-ietrakis(rifiluoromethyl)pyprole (111)
33. 1-(ब8'-Alethoxyphenyl)-tetrakis(rifiluoromethyl)pyprole (112)
34. 1-H-1-(43-Aethoxyphenyl)-2,3, A-ris (rrifluoromethyl)-8-methoxy-pyprolo-[3,2-c]quinoline (113)
35. 1-(4'-Fluorophenyl)-tetrakis(rifiluoromethyl)pyrrole (118)
36. \quad - $-H-1$-(4'-Fluorophenyl)-2,3,4-fris(仿iluoromethyl)-8-fluoro-pyrrolo[3,2c]quinoline (115)
37. 1-(4'-Chlorophenyl)-tetrakis(trifluoromethyl)pyrrole (116)
38. 1-(4'-Nitrophenyl)-ietrakis(trifluoromethyl)pyrrole (117)
39. 1-(2'-Methoxyphenyl)-tetrakis(irifluoromethyl)pyrrole (118)
40. 1-H-1-(2'-Alethoxyphenyl)-2,3,4-ris((trifluoromethyl)-6-methoxy-pyprolo-[3,2-c]quinoline (119)
41. 1-(3'ARethoxyphenyl)-tetrakis(trifluoromethyl)pyrrole (120)
42. 1-H-1-(3'-Alethoxyphenyl)-2,3,4-rris(rrifluoromethyl)-9-methoxy-pyrrolo-[3,2-c]quinoline (121)
43. 1-H-1-(3'-Methoxyphenyl)-2,3,4-ris((rrifluoromethyl)-7-methoxy-pyprolo-[3,2-c]quinoline (122)
44. 5,5-Bis(ethoxycarbonyl)tetrakis(irifluoromethyl)cyclopentadiene (137)
45. Caesium tetrakis(trifluoromethyl)ethoxycarbonylcyclopeniadienide (136)
46. Caesium 1-ethoxycarbonylperfiluoro-2,3,4,5,6-hexahydrodicyclopenta[b,dccyclopentadienide (138)
47. 5-Ethoxycarbonyl-5-propanoyl-tetrakis(rifiluoromethyl)cyclopentadiene (142)
48. Hexakis(inifluoromethyl)benzene (145)
49. Caesium terrakis(îriluoromethyl)propanoylcyclopentadienide (141)
50. Caesium pentakis(ipisluoromethyl)cyclopentadienide (1\&\&)
51. Caesium perfluoro-1-methyl-2,3,4,5,6,7-hezahydro-dicyclopenta[b,d]cyclopentadienide (153)
52. Caesium perfluoro-1,2,3-irihydro-4,5,6-ifimethyl-pentalanide (154)
53. Decameihylíerrocenium perfluoro-1-cyclopenenylcyclopenia-2,5dionide (159)

NAR spectra were recorded in o-chloroform whenever possible. Spectra 27, 28, 29 and 48 were recorded in od-acetone, spectra 45, 46, 50, 51 and 52 were recorded in ob-aceionitrile and spectra AA, A7 and 53 were recorded in acetonîrrile. All spectra were internally referenced using CFCl_{3} and AAeasis.

Chemical Shift Multiplicity Coupling constants Integral Assignment
(ppm)
(Hz)

19F data

	-60.46	d pseudo sept [A3] 2 [$\left.X_{3}\right]_{2}$		3	e
	-68.24	d pseudo sept	$J_{c, a 7.9, ~}^{\text {c, }}$, $\theta+\theta^{\prime} 1.9$	3	C
	-100.94	99	$J_{a, e} 19.4 . J_{a, c} 7.7$	1	a
$\stackrel{\rightharpoonup}{n}$	13C data				
	109.5	qd	JCF(e) $37, \mathrm{dd}, \mathrm{a} 18$	-	d
	118.9	qd	JCF250, Je,a38	-	e
	121.9	q	CF276	-	C
	154.7	dq	A,a291, JCF (c)40	-	b

AMAR Number 2.

Chemical Shitt (ppm)	Multiplicity	Coupling constants $(H z)$	Integral	Assignment
19F data				
-56.56	dqq	$J_{d, e}$ 10.5, Jd,f10.5, Jd, $J^{2.3}$	3	d
-60.27	dq9	$J_{c, a} 19.2, J_{C, b} 2.6, J_{c, d 1} 3$	3	c
-67.94	qd	J, di0.3, N, e7.0	3	1
-68.80	dqq	$\mathfrak{J}, \mathrm{a} 7.1, J_{\text {b, }}$ 2.4. b,d1.2	3	b
-97.45	q9	$J_{\Theta, d} 10.6, J_{\theta, 7} 7.0$	1	θ
-102.22	99	$J_{\mathrm{a}, \mathrm{c}} 19.2, J_{\mathrm{a}, \mathrm{b}} 6.8$	1	a

Chemical Shift Multiplicity Coupling constants Integral Assignment (Hz)

19F data

NARR Number 3.

Chemical Shitt Multiplicity Coupling constants Integral Assignment (ppm)

19F data

-63.00	m	-	3	c
-71.84	d	$\mathcal{B}, \mathrm{a} 6.4$	3	b
-165.84	m	-	1	a

NARR Number 4.

Chemical Shift Multiplicity Coupling constants Integral Assignment (ppm)
(Hz)

19F data

-58.24	dqq	$J_{C, b} 10.3, J_{C, a} 10.3, J_{C, c^{\prime}} 1.5$	3	c
-67.60	qd	$J_{a, c} 10.7, J_{a, b} 6.3$	3	a
-101.38	m	-	1	b

NAR Number 5.

| Chemical shitt Multiplicity | Coupling constants integral Assignment |
| :---: | :---: | :---: |
| (ppm) | (Hz) |

19F data

-107.52	m	-	2	d
-107.81	m	-	1	a
-119.63	m	-	2	b
-130.34	m	-	2	c

~

NARR Number 7

Chemical Shift Multiplicity Coupling constants Integral Assignment
(ppm)

19F data

	-60.97	ABdd	JAB64.1, Ja,b11.3, Ja, ${ }^{11.3}$	1	a
	-62.46	ABdd	JAB64.1, Ja,b14.7. Ja, ${ }^{5.9}$	1	a
	-89.35	dd		1	d
	-103.58	ddd	$J_{\theta, c} 115.8, J_{\theta, b} 94.6, J_{\theta, d 47.2}$	1	θ
$\bar{\square}$	-128.51	m	-	1	b
0	-177.60	dm	$J_{c, e} 110.4$	1	c

N.M.R. Number 8

Chemical Shift Multiplicity Coupling constants Integral Assignment

19F data

-60.09	$A B d d$	$J_{A B 89.0}, J_{a, b} 13.4, J_{a, c} 13.4$	1	a
-61.58	AB	$J_{A B} 89.0$	1	a
-105.94	dd	$J_{d, c} 132.0, J_{d, b} 48.0$	1	d
-126.74	m	-	1	b
-149.33	dm	$J_{\mathrm{c}, \mathrm{d} 129.0}$	1	c

NMR Number 9.

Chemical Shift Multiplicity	Coupling constants Integral Assignment
(ppm)	(Hz)

19F data

NMR Number 10.

1.10	i	$J_{a, b} 7.2$	3	a
2.57	q	$J_{0, \mathrm{a}} 7.2$	2	b
3.27	q	$J_{c, d 10.3}$	2	c
$19 F$ data				
-62.38	t	$J_{d, c} 10.4$	1	d

Chemical Shift Multiplicity Coupling constants Integral Assignment

9F data

	$\underset{F}{a}$			
Chemical Shitt (ppm)	Multiplicity	Coupling constants $(H z)$	Integral	Assignmen
1H data				
6.89	d	4.98 .0	2	1
7.09	1	hn,g1.4	1	h
7.25	d	$J_{9,16.8}$	2	g
19F data				
-61.10	S	-	3	θ
-61.12	d	$J_{\text {c,a }} 20.3$	3	c
-62.31	q	$J_{\text {d,e }, ~} 1.9$	3	d
-69.59	dq	$S_{0,1} 4.9, J_{0, c} 1.9$	3	b
-105.19	99	$J_{a, c} 15.5 . J_{a, b} 8.1$	1	a

(ppm)

$\mu_{1, g} 8.0$	2	1
$\mathcal{J}_{3, g} 1.4$	1	h
$J_{g, 1} 6.8$	2	g

19F data

-57.62	m	-	1	a or b
-62.40	m	-	1	a orb

$\begin{array}{cc}\text { Chemical Shift } & \text { Multiplicity } \\ (\mathrm{\rho pm}) & \text { Coupling constants } \\ & (\mathrm{Hz})\end{array}$

1 H data

	6.82	d	H,g8.0	2	1
	7.11	t	h.gi.2	1	h
	7.27	d	Jg, 88.8	2	9

-60.48	d	$J_{c, a} 15.4$	3	c
-60.99	s	-	3	e
-62.70	q	$J_{0, e} 11.9$	3	d
-70.49	d	$J_{0, a} 8.6$	3	b
-107.08	$q q$	$J_{a, c} 14.7, J_{a, b} 8.7$	1	a

1H data

6.89	d	$\mathcal{H}, \mathrm{~g} 7.8$	2	t
7.07	t	$h_{, ~ g} 1.0$	1	h
7.26	d	$J_{g, 4} .4$	2	g

19F data

-57.21	dqq	$J_{c, b 10.4}, J_{c, a} 10.4, J_{c, d} 2.6$	3	c
-58.29	$q q$	$J_{\theta, d 11.7}, J_{\theta, c} 1.9$	3	θ
-63.39	s	-	3	d
-69.23	qd	$J_{a, c} 10.7, J_{a, b} 7.7$	3	a
-101.33	m	-	1	b

NMA Number 16

-56.94	dq9	$J_{c, b} 10.7 . J_{c, a} 10.7, J_{c, d} 2.9$	3	c	-60.25	q	$J_{\theta, \mathrm{d}} \mathbf{2 . 3}$	1	θ
-58.29	S	-	3	θ	-61.80	q	$J_{\text {d,e }} 1.9$	1	d
-58.33	q	$J_{d, \theta} 2.5$	3	d					
-69.11	qd	$J_{a, c} 10.5, J_{a, b} 7.5$	3	a					
-102.49	m	-	1	b					

1 H data

19F data

-57.15	99	4.g10.9, 4, di. 2.3	1	1
-59.56	s	-	1	θ
-62.04	9	$\mu_{\text {g. }} 112.0$	1	9
-63.34	9	${ }_{d, 1} 3.0$	1	d

1H data

6.87	d	$J_{c, b} 8.0$	2	c
7.02	t	$J_{a, b} 1.2$	1	a
7.24	d	$J_{0, c} 8.8$	2	b

19F data

-56.43	q	$J_{\theta, d} 11.3$	1	e
-62.31	q	$J_{e, d} 12.0$	1	d

NMR Number 19

Chemical shift Multiplicity	Coupling constants integral Assignment
(ppm)	(Hz)

1H data

$\stackrel{\square}{2}$	7.25	m	-	1	a, b and c
-	19F data				
	-106.90	s	-	1	d, e, or f
	-116.93	5	-	1	d, e, or ${ }^{\text {f }}$
	-131.13	s	-	1	d, e, orf

NARR Number 20.

Chemical Shift (ppm)	Multiplicity	Coupling constants $(H z)$	Integral	Assignment
19F data				
-66.10	dq	$J_{\text {c. b }} 16.6, J_{\text {c.a }}{ }^{2.6}$	3	c
-76.36	s	-	3	a
-154.66	9	So, $\mathrm{c}^{16.6}$	1	b

Chemical Shift (ppm)

19F data

-113.21	s	-	1	a
-116.26	s	-	1	b

Chemical Shitt
Multiplicity
Coupling constants
Integral
Assignment
(ppm)
(Hz)

-66.76	dq	$\jmath_{\mathrm{b}, \mathrm{c} 7.7}, \jmath_{\mathrm{b}, \mathrm{a} 3.8}$	3	b
-77.33	qd	$J_{\mathrm{a}, \mathrm{b} 4.8, J_{\mathrm{a}, \mathrm{c} 2.4}}$	3	a
-151.26	qq	$J_{\mathrm{c}, \mathrm{b} 7.8}, J_{\mathrm{c}, \mathrm{a} 4.8}$	1	c

Chemical Shift Multiplicity	Coupling constants	Integral Assignment
(ppm)	$(H z)$	

19F data
-54.12 m
-
a or b
-56.00 m

Chemical Shift Multiplicity Coupling constants Integral Assignment
(ppm)
(Hz)
th data

7.22	t	Ja or i.b or 2.1	1	a or j
7.23	t	Ja or j.b or i2.1	1	a or ${ }^{\text {j }}$
7.30	d	do ori,c or h7.4	2	bori
7.37	d	J b ori.c or n 6.0	2	bori
7.49	d	J_{c} or n, b or i 8.4	2	c or h
7.50	d	J_{c} orn,b or 9.6	2	corh

19F data

-56.43	q	Jg.13.4	1	9
-56.57	S	-	1	e
-57.31	999	R.g 13.6, 4., d.2, A.e 1.6	1	1
-57.75	q	$J_{d, 14.1}$	1	d

NAR Number 25

Chemical Shitt Multiplicity Coupling constants Integral Assignment	
(ppm)	(Hz)

1 H data

Chemical shift (ppm)	Multiplicity	Coupling constants (Hz)	Integral	Assignment	Chemical shift (ppm)	Multiplicity	Coupling constants (Hz)	Integral	Assignment
1H data									
4.66	s (broad)	-	1	a	7.86	s (broad)	-	1	a
19F data \quad 19F data									
-61.59	pseudo sept	$J_{C, \Theta+e^{\prime}} 2.3$	1	core					
-67.07	pseudo sept	$J_{c, e+e^{\prime}} 2.3$	1	core	-55.80	q	Jg, 7.3	1	gori
					-58.75	q	$J_{\mathrm{g}, \mathrm{i}} 7.3$	1	g ori
13C data					-59.79	S	-	1	c
90.6	9	$\mathrm{JCF}(\mathrm{c})^{34}$	-	b	13C data				
119.2	q	JCF278	-	c					
122.9	q	JcF274	-	θ	110.5	s	-	-	\bigcirc
140.1	q	KFF(0)32	-	d	117.56	q	JCF(c,g or i) 39	-	b, f or h
					117.58	9		-	b, forn
					119.9	q	JCF270	-	C, gori
					121.7	q	JCF269	-	c, gori
					124.3	9	UCF268	-	c, gori
					129.8	9	JCF(c,g or i) ${ }^{41}$	-	b. for h

Chemical shift Aultiplicity Coupling constants Integral Assignment

1 H data

7.09 - (broad) 1 a

19F data

-65.91	s	-	1	c
13C data				
116.4	5	-	-	0
121.	9	JCF278	-	c
ca.147.3	9		-	b ord
147.4	9	$J_{\text {CFi }}(\mathrm{cor}$) ca 32	-	b ord

NARR Number 30.

Chemical shift Multiplicity Coupling constants Integral Assignment (ppm)
(Hz)

1H data

19F data

-54.34	s	-	1	d or θ
-54.72	s	-	1	d or θ

Chemical shift Multiplicity Coupling constants Integral Assignment (ppm)

${ }^{1} \mathrm{H}$ data				
6.83	d	$J_{\text {d, }} 8.7$	1	d
7.47	d	$J_{\text {a,b }} 7.7$	1	a
7.82	m	-	6	e, f.g and c
8.27	d	${ }_{\text {b, }} 8.1$	1	b

Chemical shift Multiplicity Coupling constants Integral Assignment
(ppm)

1 H data

3.04	s	-	3	a
6.69	$A B$	$J_{A B 9} 9$	1	b
7.12	$A B$	$J_{A B 9} .1$	1	c

19F data

-54.56	s	-	1	d or θ
-54.85	s	-	1	d or θ

$\begin{array}{ccc}\text { Chemical shitt Multiplicity } & \text { Coupling constants } \\ \text { (ppm) } & (\mathrm{Hz})\end{array}$

${ }^{1} \mathrm{H}$ data

3.89	s	-	3	a
7.00	$A B$	$J_{A B} 8 . B$	2	b
7.25	$A B$	$J_{A B} 8 . B$	2	c

19F data		
-53.49	s	1
-53.74	s	1

Chemical shift (ppm)	Multiplicity	Coupling constants (Hz)	Integral	Assignment
1H data				
3.43	s	-	3	c
3.95	s	-	3	g
6.23	s	-	1	d
7.18	AB	$J_{\text {AB }} 7.4$	2	1
7.26	s	-	1	a
7.44	AB	$J_{\text {AB }} 7.4$	2	e
8.15	σ	$\mathcal{S b , a}^{8} 8.8$	1	b

19F data

-52.96	$q q$	$\Lambda_{1,1} 17.7, f_{i, h} 11.2$	1	i
-54.07	q	$f_{h, 1} 11.2$	1	h
-64.70	q	$\jmath_{1,1} 17.7$	1	j

Chemical shitt	Multiplicity	Coupling constants
(ppm)	$(H z)$	

1H data

7.43	$A B X$	$J_{A B} 9.3, J_{\mathrm{a}, 8} 8.2$	1	a
7.57	$A B X$	$J_{A B} 9.3, J_{\mathrm{b}, \mathrm{e}} 4.7$	1	b

-54.36	s	-	6	cord
-54.78	s	-	6	cord
-108.41	Ht	$J_{e, a} 7.8, J_{e, b} 4.6$	1	θ

NMRR Number 36.

Chemical shift Multiplicity Coupling constants Integral Assignment (Hz)
${ }^{1} \mathrm{H}$ data

6.55	$d d$	$J_{d, c} 11.0, J_{d, b} 2.9$	1	d
7.64	$A B X$	$J_{A B} 9.2, J_{1.9} 4.8$	2	1
7.71	$d d$	$J_{a, b} 8.8, J_{a, c} 8.8$	1	a
7.74	$A B X$	$J_{A B} 9.2, J_{0 . g} 8.5$	2	θ
8.58	$d d$	$J_{0, a} 9.5, J_{0, c} 5.9$	1	b

19F data

-53.03	99	4,17.6, 4, in 10.8	3	i
-53.97	q	$\Lambda_{\text {A, }, 11.0}$	3	h
-65.06	9	9,117.5	3	j
-106.75	m		1	c
-107.05	t	$J_{\text {g. } 14.9}$	1	g

Chemical shitt	Nultiplicity	Coupling constants
(ppm)	(Hz)	

1H data

7.30	$A B$	$J_{A B} 8.6$	1	a
7.52	$A B$	$J_{A B} 8.6$	1	b

$\stackrel{\rightharpoonup}{0} \quad 19 \mathrm{~F}$ data

-54.22	s	-	1	cord
-54.79	s	-	1	cord

Chemical shift Multiplicity	Coupling constants Integral Assignment	
(ppm)	(Hz)	

1H data

7.60	$A B$	$J_{A B} 8.6$	1	b
8.44	$A B$	$J_{A B} 8.6$	1	a

19F data

-53.86	s	-	1	cord
-54.96	s	-	1	cord

$\begin{array}{ccc}\text { Chemical shitt } & \text { Aultiplicity } & \text { Coupling constants } \\ (\mathrm{ppm}) & (\mathrm{Hz}) & \end{array}$

1 H data

	3.82	s	-	3	a
	7.04	d	$¢_{6, c} 8.2$	1	b
	7.06	dd	$J_{\text {d, }, ~} 7.8, J_{\text {d, }} 7.8$	1	d
\pm	7.26	\checkmark	$J_{e, d} 7.8$	1	θ
	7.53	ddd	$J_{c, b} 7.9, J_{c, d} 7.9, J_{c, e} 1.6$	1	c

19 F data				
-54.78	s	-	1	forg
-56.33	s	-	1	forg

$\begin{array}{cc}\text { Chemical shitt Multiplicity } & \text { Coupling constants integral Assignment } \\ (\mathrm{ppm}) & (\mathrm{Hz})\end{array}$

1 H data

3.67	s	-	3	a
4.09	s	-	3	i
6.49	d	$J_{\text {d, }, ~} 8.3$	1	d
7.07	d	$\nu_{\text {h, }} 7.7$	1	n
7.19	dd	di.g $^{8.1}$, A, A.e 8.1	1	1
7.24	d	$J_{\text {c, }{ }^{\text {d }} 3.6}$	1	c
7.28	d	$J_{6,19.4}$	1	-
7.44	d	$\sim_{0, c} 6.7$	1	b
7.70	dd	$J_{\mathrm{g} .1} 8.0 . \mathrm{Jg}_{\mathrm{g}}^{8} 8.0$	1	g

19F data

-52.89	$q q$	$J_{k, 1} 17.9, \mathcal{k}_{k, j} 11.3$	1	k
-55.69	q	$J_{j, k} 11.4$	1	i
-64.58	q	$J_{i, k} 17.9$	1	1

Chemical shift Multiplicity	Coupling constants
(ppm)	(Hz)

$(\mathrm{Hz}) \quad$ Chemical shift
(ppm)
Mulliplicity
Coupling constants
Integral
Assignment
(Hz)

1 H data

3.19	s	-	3	d
3.80	s	-	3	n
6.80	s	-	1	a ori
6.84	s	-	1	a ori
6.98	s	-	1	corg
7.02	d	$J_{e, 18.3}$	1	-
7.07	s	-	1	corg
7.39	dd		1	1
7.91	d	$J_{\text {a,b }} 8.5$	1	0

19F data

-52.05	q9	$\mathcal{A}_{4,17.7} \mathcal{N}_{\text {k, }} 11.3$	1	k
-53.83	q	$J_{1, k 11.3}$	1	j
-65.12	q	${ }_{4}, \mathrm{k} 17.7$	1	1

NMAR Number 44.

Chemical Shift Multiplicity Coupling constants Integral Assignment (ppm) (Hz)

19F data

1H data

3.86	s	-	3	b
3.93	s	-	3	h
6.72	d	$J_{d, c} 9.3$	1	d
6.88	s	-	2	a and i
7.03	m	-	1	corg
7.09	s	-	1	corg
7.58	dd		1	¢
7.67	d	$J_{0,14.3}$	1	θ

19F data

-52.94	$q 9$	$d_{k, 1} 17.6,4, j 11.2$	1	k
-53.97	q	$j, k 11.2$	1	j
-65.02	q	$j, k 17.7$	1	1

NAMR Number 46

1 H data

1.25	t	$J a, b 7.1$	3	a
4.17	q	$J_{b, a 7.1}$	2	b

$\underset{\infty}{\square} \quad 19 \mathrm{~F}$ data

-50.64	s	-	1	for h
-50.96	s	-	1	or h

13C data

14.2	S	-	-	a
61.1	8	-	-	b
108.0	5	-	-	e or 9
109.0	5	-	-	6 or 9
118.5	S	-	-	c
124.9	q	JCF269	-	for h
125.4	q	JCF267	-	for h

NMR Number 47

Chemical Shift Multiplicity Coupling constants Integral Assignment (ppm) (Hz)

19F data

-54.80	s	-	1	a or b
-60.09	s	-	1	a or b

NMAR Number 48

$\begin{array}{ccc}\text { Chemical Shitt Multipticity } & \text { Coupling constants integral Assignment } \\ \text { (ppm) } & (\mathrm{Hz}) & \end{array}$

19F data
-51.54 s
1
a

NMR Number 49.

NMR Number 50.

110.6
$9 \quad J C F(a)^{19}$
b
124.

JCF271
-49.73

13C data

19F data

-48.83	s	-	1	a orb
-49.20	s	-	1	a orb

Chemical Shift Multiplicity Coupling constants Integral Assignment (ppm)
(Hz)
a orb

19F data
Chemical Shift
(ppm)
(Hz)

路

```
a
```


NAAR Number 51

Chemical Shitt Muitiplicity Coupling constants Integral Assignment

(ppm)
(Hz)

NAMR Number 52.

19F data

-53.03	s	-	6	b
-53.95	s	-	3	a
-117.60	s	-	4	c
-149.17	m	-	2	d

NMR Number 53.

Chemical Shift
 Multiplicity
 Coupling constants
 Integral
 Assignment

(ppm)
(Hz)

19F data

	-106.80	s	-	2	f
	-117.19	s	-	2	f
\sim	-122.06	s	-	1	c
∞	-126.37	s	-	4	a and b
-130.18	s	-	2	e	

Blonandixll

Lifer Bad Sarake

1. Z,Z- and E, Z-Perfluoro-3, Q-dimethyl-hera-2, Q-diene (50) and (51)
2. Perfluarobicyclopeni-1, 1°-enyl (a3)
3. Perfluorobicyclobui-1, 1-2nyl (A6)
Q. Q-Dromo-3-chloroheraluorobui-1-ene (62)
4. E-and Z-4-Bromo-1,3-dichloropentafluorobut-1-ene (63) and (6Q)
5. Teirakis(irifiluoromeihyl)furan (73)
6. Z,Z-, Z,E-, E,E- and E,Z-2-Phenoxy-perfluoro-3,A-dimethyl-hexa-2,4diene (74), (75), (76) and (77)
7. Z,Z-, E,Z- and E,E-2,5-Diphenoxy-penfluoro-3,4-dimethyl-hexa-2,4diene (78), (79) and (80)
8. 2,2'-Diphenozy-perfluorobicyclopent-1, 1°-enyl (81)
9. Perfluoro-2,2',3,3'-ietrameihyl-bi-2,2'-oxiranyl (86)
10. Perfluoro-1,3,4,6-ietramethyl-2,5-dioxabicyclo[2.2.0]herane (90) or Perfluoro-1,2,4,5-ietrameihyl-3,6-diozabicyclo[3.1.0]hexane (91)
11. Teirakis(irifluoromethyl)thiophene (92)
12. E,Z $, Z, Z$ - and $E, E-2,5$-Dithiophenory-perfluoro-3,4-dimethyl-hera-2,4diene (94), (95) and (96)
13. Z,2-2,5-Diamino-penfluoro-3,4-dimeihyl-hexa-2,4-diene (101)
14. 2,4,5-Tris(inifluoromethyl)-3-cyano-pyrrole (102)
15. 2,5-Diamino-3,4-dicyano-1,1,1,6,6,6-hexafluorohexa-2,4-diene (103)
16. 1-Phenyl-ieirakis(irifluoromethyl)pyrrole (108)
17. 1-H-1-Phenyl-2,3,4-itris(ifrifluoromethyl)pyprolo[3,2-c]quinoline (109)
18. 1-(α^{\prime}-Dimeihylaminophenyl)-ietrakis(irisluoromethyl)pyrrole (141)
19. 1-(\&'-Methoxyphenyl)-tetrakis(trifluoromethyl)pyrrole (112)
20. 1-H-1-(Q'-Methoxyphenyl)-2,3,4-iris(irifluoromethyl)-8-methoxy-pyppolo-[3,2-c]quinoline (113)
21. 1-(A'-Fluorophenyl)-tefrakis(trifluoromethyl)pyrrole (11\&)
22. 1-H-4-(4'-Fluorophenyl)-2,3,4-iris(irifluoromeihyl)-8-fluoro-ayprolo[3,2clquinoline (115)
23. 1-(\&'-Chlorophenyl)-ietrakis(irifluoromathyl)pyprole (116)
24. T-(a'-Nitrophenyl)-ietrakis(irifluoromethyl)pyprole (117)
25. 1-(2'-Åeinoxyphenyl)-ieirakis(irifluoromeihyl)pyprole (148)
26. 1-4-1-(2'-Alethozyphenyl)-2,3,d-tris(trifluoromethyl)-6-methozy-pyprolo-[3,2-C]quinoline (189)
27. 1-(3'-AAethozyphenyl)-tetrakis(inifluoromeihyl)pyprole (120)
28. 1-4-1-(3'-Aethoxyphenyl)-2,3, \&-iris(irifluoromeinyl)-9-methozy-pyprolo-[3,2-c]quinoline (121) and

1-H-1-(3'-Alethoxyphenyl)-2,3, Q-iris(trifluoromethyl)-7-methoxy-pyprolo-[3,2-c]quinoline (122)
30. Caesium teirakis(înifluoromethyl)athozycarbonylcyclopentadienide (136)
31. Caesium 1-ethoxycarbonylperfluoro-2,3,4,5,6-hexahydrodicyclopenta[b,ofcyclopentadienide (138)
32. Hexakis(irifluoromathyl)benzene (145)
33. Caesium pentakis(itrifluoromethyl)cyclopentadienide (1Q4)
34. Decamethylferrocenium períluorobicyclopent-1,1'-enylide (155)
35. Decamethylferrocenium perfluorobicyclobuî-1, 1'-enylide (161)
2,5 MICRONS $3,0 \quad 6,0 \quad 50 \quad 6,0 \quad 7,0 \quad 8,0$

28

29

$$
7 \mathrm{Nm} / \mathrm{l} \mid \mathrm{y}
$$

 Wovenumber $\left(\mathrm{cm}^{-1}\right)$

Appenodix lll

dass Solcira

1. ZZ,Z-Perfluoro-3,4-dimethyl-hexa-2,4-diens (50)
2. E,Z-Perfiluoro-3,4-dimethyl-hexa-2,4-diene (51)
3. Periluoro-1,2,3,\&-ietramethylcyclobutene (52)
4. $\quad E, E$-Perfluoro-3,4-dimethyl-hexa-2,4-diene (60)
5. Perfluorobicyclopeni- 1,1 '-बnyl (83)
6. Perfluorobicyclobui-1,1'-8nyl (86)
7. \&-Bromo-3-chlorohexafluorobui-1-ene (62)
8. E- and Z-4-Bromo-1,3-dichloropentafluorobut-1-ene (63) and (64)
9. 1,1,1-Trifluoropentan-3-one (146)
10. Tetrakis(łrifluoromethyl)furan (73)
11. Z,Z-2-Phenoxy-perfluoro-3,\&-dimethyl-hexa-2,4-diene (7Q)
12. Z,E-2-Phenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (75)
13. E,E-2-Phenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (76)
14. E,Z-2-Phenoxy-perfluoro-3,\&-dimethyl-hexa-2,\&-diene (77)
15. Z,Z-2,5-Diphenoxy-perfluoro-3,\&-dimethyl-hexa-2,\&-diene (78)
16. E,Z-2,5-Diphenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (79)
17. E,E-2,5-Diphenoxy-perfiluoro-3,4-dimethyl-hexa-2,4-diene (80)
18. 2,2'-Diphenoxy-perfluorobicyclopeni-1,1'-enyl (81)
19. Perfluoro-2,2',3,3'-tetramethyl-bi-2,2'-oxiranyl (86)
20. Perfluoro-1,3,4,6-ietramethyl-2,5-dioxabicyclo[2.2.0]hexane (90) or Perfiluoro-1,2,4,5-tetramethyl-3,6-dioxabicyclo[3.1.0]hexane (91)
21. Teirakis(trifluoromethyl)thiophene (92)
22. E,Z-2,5-Dithiophenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (94)
23. Z,Z-2,5-Dithiophenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (95)
24. E,E-2,5-Dithiophenoxy-perfluoro-3,4-dimethyl-hexa-2,4-diene (96)
25. 2,2-2,5-Diamino-perfluoro-3,4-dimethyl-hexa-2,4-diene (101)
26. 2,4,5-Tris(trifluoromethyl)-3-cyano-pyrrole (102)
27. 2,5-Diamino-3, Q-dicyano-1,1,1,6,6,6-hezafluoroheax-2,8-diene (103)
28. 1-Phenyl-ieirakis(irifluoromethyl)pyprolo (108)
29. 1-H-1-Phenyl-2,3,4-tris(trifluoromethyl)pyrrolo[3,2-Giquinoline (109)
30. 1-(\&'-Dimeihylaminophenyl)-ietrakis(ini̊luoromethyl)pyrrole (141)
31. 1-(4'-Atethozyphenyl)-ietrakis(iniluoromethyl)pyrrole (112)
32. 1-H-1-(Q'-Alothoryphenyl)-2,3, Q-iris(irifluoromethyl)-8-methory-pyrrolo-[3,2-c]quinoline (113)
33. 4-(Q'-Fluorophenyl)-ietrakis(irifluoromethyl)pyrrole (144)
34. 1-H-1-(4'-Fluorophenyl)-2,3,4-itris(irifiluoromethyl)-8-filuoro-pyprolo[3,2c]quinoline (115)
35. 1-(\&'-Chlorophenyl)-tetrakis(ififluoromesthyl)pyprole (116)
36. 1-(@'-Nitrophenyl)-tetrakis(irifluoromethyl)pyrrole (117)
37. 1-(2'-Alethoxyphenyl)-ietrakis(irîluoromethyl)pyrrole (118)
38. 1-H-1-(2'-Methoxyphenyl)-2,3,4-iris(irifluoromethyl)-6-meihoxy-pyrrolo-[3,2-c]quinoline (119)
39. 1-(3'-Methoxyphenyl)-ieirakis(irifluoromethyl)pyprole (120)

Q0. 1-H-1-(3'-Methozyphenyl)-2,3, \&-íris(inifluoromethyl)-9-methozy-pyprolo-[3,2-c]quinoline (121) and

1-H-1-(3'-Alethoxyphenyl)-2,3,4-iris(trifluoromethyl)-7-methoxy-pyrpolo-[3,2-c]quinoline (122)

Q1. 5,5-Bis(ethozycarbonyl)tetrakis(trifluoromethyl)cyclopentadiene (137)
42. Caesium tetrakis(irisfluoromethyl)ethoxycarbonylcyclopentadienide (136)
43. Caesium 1-ethoxycarbonylperfluoro-2,3,4,5,6-hezahydrodicyclopenta[b,ofcyclopentadienide (138)
44. 5-Ethoxycarbonyl-5-propanoyl-ieirakis(łrifluoromethyl)cyclopeniadiene (142)

Q5. Hexakis(itifluoromethyl)benzene (145)
46. Caesium tetrakis(rrifluoromethyl)propanoylcyclopentadienide (141)
47. Caesium pentakis(irifluoromethyl)cyclopentadienide (14A)
48. Caesium periluoro-1-methyl-2,3,4,5,6,7-hezahydro-dicyclopenta[b,0]cyclopentadienide (153)
49. Caesium perfluoro-1,2,3-rihydro-d,5,6-rrimethyl-pentalenide (154)

Mass spectrum number 1.

Arass spectrum number 2.

Mass spectrum number 3.

Mass spectrum number 4.

Mass spectrum number 5.

Mas 5	\% 8ase				
49.79	1.33	158. 44	0.42	285.89	6.67
54.84	0.49	159.94	1. 33	286.92	1.01
68.92	38. 30	166.93	10.74	297.88	6.67
69.93	0. 48	167.95	0.43	298.89	0.41
73. 94	2. 67	173.95	0.51	315.48	0.71
78. 96	2. 67	178.93	11.67	316.87	60.09
80. 97	0.33	179.94	1. 33	317.88	5. 92
85.96	1. 33	180.94	0.35	335.86	10.67
92. 96	10.67	185.93	6. 67	336.86	1. 33
97.96	4.00	186.95	0.43	347.84	0. 36
98. 96	0.49	190.93	0.44	366.82	36.19
99. 96	4. 45	192.93	0.48	367.82	4. 00
104.96	2. 67	197.93	6. 76	385.83	22.93
108.46	2.67	198.94	1. 33	386.82	2. 67
109.95	1.33	204. 92	2. 67		
111.96	0.43	209.92	2. 67		
116.95	18.67	216.91	41.33		
117.96	1. 44	217.91	2. 83		
121.97	0.37	228.89	8. 00		
123.95	6.67	229.92	1. 33		
124.96	0.30	235. 90	6.94		
128.95	4.00	236.91	0.40		
129.96	0.31	240.91	1. 33		
130.95	10.67	247.90	9.33		
133.45	0.47	248. 90	1. 33		
135.94	3. 22	254.89	0.49		
140.94	4. 00	259. 95	0.31		
142.94	2. 67	266. 89	100.00		
147.94	8. 02	267.90	8.40		
148.95	0.62	278.88	4. 00		
154.94	5. 33	279.89	0.45		

Mass spectrum number 6.

El+data

Mas 5	\% Base			
49.79	3. 22	140.94	1.07	
54. 82	2. 73	142.93	2. 34	
59.86	0.39	147.92	9.03	
61.87	0.39	148.94	0.78	
66.91	0.78	154.93	9. 38	
68.92	13.14	155.94	0.78	
73. 94	5. 52	166.94	30. 40	
74. 95	0.39	167.94	1. 96	
78. 96	7.03	173.94	0. 78	
79.97	0.39	178.92	2. 46	
80.97	0. 39	179.92	0. 39	
85. 96	7. 03	185.92	23. 44	
86. 97	0.39	186. 93	1. 56	
92. 96	20.31	197.92	2. 34	
93.96	0.78	198.92	0.39	
97.96	10.56	204. 91	0.65	
98. 97	0.78	216.91	100.00	$F 0$
99.95	4.69	217.89	8. 98	F
104.95	4. 48	218.90	0.39	
105.96	0.39	235.90	13. 28	
108.46	0.78	236.90	1. 23	
109.95	1.56	247. 89	0.47	
111.95	0.78	266. 88	32. 42	F
116.96	56.25	267.88	2.78	F
117.96	3. 13	285. 87	17.13	
121.95	0.39	286.88	1. 57	
123.95	5. 86			
124.96	0.39			
128.88	3. 52			
129.95	0.39			
130.95	3. 98			
135.94	11.99			
136.95	0.62			

Mass spectrum number 7.

El+ data

Mas5	\ddots Base		
41.07	5.39	147.06	100.00
43.07	0.58	148.07	2.73
44.02	1.22	149.07	33.95
47.02	5.17	150.08	0.99
50.04	1.15	153.02	0.40
55.05	1.39	155.02	0.53
57.12	0.32	162.10	6.56
62.05	1.00	178.09	4.35
69.05	12.59	180.08	1.34
74.05	3.87	191.05	7.12
78.03	0.36	193.05	6.91
78.99	0.97	197.10	6.15
79.99	0.57	199.10	1.83
81.03	1.33	207.03	3.15
81.98	0.55	209.03	4.09
85.03	0.81	211.04	1.03
67.04	0.31	241.07	6.65
93.06	33.95	243.07	5.92
94.07	0.59	244.09	0.36
97.04	0.66	276.06	2.57
109.05	2.38	278.05	3.66
111.05	1.01	280.04	0.97
112.07	5.67		
116.05	0.72		
118.05	0.33		
124.08	1.23		
128.06	0.45		
129.01	4.04		
131.05	5.92		
143.09	1.89		

Mass spectrum number 8.

Mass spectrum number 9.

Mass spectrum number 10.

Mass spectrum number 11.

$\mathrm{El}+$ data

Mas 5	\because 9ase		
27.03	4. 05	208. 55	0. 52
28.01	2.58	221.02	1. 06
37.02	1. 06	231.07	0.38
39.02	4. 11	232.07	0.45
39.03	17.23	243.02	2. 46
40.04	1. 86	250. 06	1. 28
50.02	13.80	255.02	0.77
51.03	55. 13	271.02	2. 42
52.03	2. 51	290.02	0. 37
55.03	1. 51	293.04	0.95
62.03	1. 43	300.06	0. 50
63.04	d. 23	319.07	1. 79
64.04	2. 37	320.07	0. 32
65. 05	35.91	321.03	0.93
66. 06	5. 44	322.04	0.37
69.01	18. 71	331.06	0.39
74. 03	3. 73	335. 05	0.43
75.03	3. 56	336.06	0. 12
76.04	5. 21	339.09	0. 37
76.98	2. 67	34706	2. 15
7705	100.000	36708	2. 97
78. 05	23.55	368.09	0.63
93. 05	53. 22	397.08	12. 48
94. 06	20.08	398. 08	2. 08
95.05	3. 28	417.08	5.91
96.05	11.09	418.08	0.76
117.01	1. 55	435.25	0. 60
124.01	1. 06	436.09	70.07
143.01	2. 65	437.09	9.94
155.02	1. 69	438.10	0.78
183.53	4. 06		
193.00	2. 34		
200.06	0. 57		
201. 07	0.60		
205.03	2.77		

Mass spectrum number 12.

Alass spectrum number 13.

$B p H=0 \quad I=18 v \quad H a=438 \quad I I C=384235080$
Acnt: Sys: RULLL

El + data

Mas 5	\% 8ase		
26.02	2. 28	75.03	2.04
27.03	6.48	76.04	2. 11
28.01	3. 75	77.05	8. 97
29.01	2. 64	79.03	1. 72
31.01	2. 76	93. 03	4.99
31.52	1.01	93.97	1.93
31.99	1.07	94. 05	100.00
32.02	1. 13	95.06	15.86
32.52	1. 42	96.06	1. 28
37.01	6. 33	206.01	0.06
38.02	13.34	220.08	0.04
39.03	42. 52	233.08	0.05
40.04	25.10	243.03	0.06
41.04	1.02	271.03	0.08
42.02	1. 74	281.07	0.09
43.03	1.61	319.03	0.07
46.02	1.54	319.11	0.04
47.03	12. 16	367.05	0. 11
49.02	1. 52	397.09	0. 21
50.02	9. 79	415.12	0.04
51.03	11.70	417.05	0.06
52.04	1.75	418.08	0.04
53.01	5. 84	436.09	1.18
55.03	18.40	437.08	0.17
61.02	3.13	438. 14	0.07
62.03	5.09		
63.04	10.37		
64.05	3.81		
65.05	45. 19		
66.06	48.83		
67.05	2.50		
68.04	188		
73.02	1.03		
7403	3. 55		

Mass spectrum number 14.

Mass spectrum number 15.

Aiass specirum number 16.

Mass spectrum number 17.

SR11809380 xi Bgd=927 24-H0Y-88 14:2+0:16:31 28:
fent: $\mathrm{Bp} \mathrm{F}=\mathrm{B}$ $I=2.44 \quad H_{n}=512 \quad \|!=41978888$ hen $G C=194^{\circ} \quad \begin{aligned} & \text { Sys: } \mathrm{AULL} \\ & \text { CaL }: P F K I I I\end{aligned}$
77 77

El+ data

Mass	$\%$ 日ase		
27.01	1.13	235.06	0.40
28.00	3.63	236.06	0.24
31.98	1.59	237.09	0.19
36.01	1.17	239.05	0.26
39.01	6.92	243.04	0.40
50.00	4.94	247.05	0.14
51.01	23.72	247.09	0.19
52.02	1.23	250.10	0.22
63.01	1.21	251.07	0.46
65.03	13.15	254.04	0.54
66.04	1.54	255.07	0.24
68.98	2.50	255.15	0.14
76.02	2.52	259.03	0.30
77.03	100.00	259.13	0.24
78.03	12.13	266.12	0.14
93.02	7.54	267.09	0.64
94.03	8.21	271.06	0.44
96.03	1.21	276.18	0.24
127.04	1.11	281.08	0.88
141.07	1.83	285.11	0.42
142.08	2.42	287.06	0.24
142.99	2.64	297.08	0.27
152.06	1.02	300.09	0.34
153.07	1.26	309.09	0.31
169.07	1.23	317.13	0.29
200.03	0.29	319.13	0.21
201.04	0.40	321.07	2.24
205.03	0.31	322.10	0.31
218.07	0.21	325.12	1.00
219.05	0.34	327.08	0.31
223.99	0.19	328.09	0.61
225.05	0.29	329.12	0.17
231.07	0.44	331.73	0.11
234.07	0.19	335.12	1.57
234.11	0.19	336.12	0.59

337.12
345.23
346.72
348.10
359.14
375.12
395.15
397.17
414.17
417.21
421.24
451.26
452.30
471.30
472.25
510.34
511.36
512.34
0.19
0.24
0.24
0.19
0.44
0.44
0.16
0.16
0.34
0.34
0.20

1. 13
1.13
0.14
0.62
0.59
0.86
0.19
2. 63
3. 44
4. 61
5. 57
0.39

Mass spectrum number 18.
SA53110250 al 日gd=6 22-AUG-91 89:36•8:82:31 76E
 S. RULLIMS
 $P T=g^{0}$
Sys: :CE
HRR:
13978908

$B p h=8 \quad l=1.1 v \quad H \quad=578 \quad$ IIC=49898888 ent: Sys:ACE
 S. AULLIHS
188
88
68
48
20
8

5. HULLLIHS

El+ data

Mas	$\%$ 8ase						
49.99	3.71	230.91	1.39		498.87	0.46	
50. 99	28. 52	254. 90	1.37		512.86	0.60	
52.00	1. 41	274.88	2. 88		513.85	0.92	F
62. 99	2. 78	280.91	2. 31		514.85	10.30	F
64.00	1.13	292. 88	3.23		515.87	2. 50	F
65.00	13.86	294. 88	1.85		516.87	0.92	
66.01	5.57	308.87	2.38		528. 82	0.46	
74.98	2.08	309.87	1.01		532.64	0.68	F
75.99	3. 23	320.87	1.62		533.85	53.60	F
77.00	100.00	327. 86	2. 37		534. 85	13.01	F
78. 00	10.76	336.86	1.39		535.88	1.85	F
92.98	3. 23	340.86	1.39		536.89	0.46	
93.99	41.63	342. 85	1.45	F	544.90	0.46	
94.99	5. 30	344.63	4. 62	F	546.88	0.41	
95.99	2. 10	354.89	1. 85		550.90	0.48	
104.97	1. 50	35B. 86	1. 41		552.89	1. 56	
114.99	1. 39	370.86	1. 39		553.88	0.49	
116.00	1.06	392. 85	1.86		554.88	1.85	
126.97	3. 70	400.84	1. 39	F	555.88	0.46	
127.99	1. 95	420.81	39.74	F	564.90	0.93	
140.99	1.51	421.84	7.05	F	570.89	1.85	F
142.00	1.08	436.83	2.07		571.85	12.54	F
143.97	1. 31	440.84	2.06		572.89	3.34	F
150.96	2. 20	458.83	3. 23		573.89	0.47	
151.98	4. 71	459.84	1.37 1.39		584.91	3. 25	
152.99.	6. 26	474.85	1. 39 4.62		585.92	0.96	
154. 60	6. 69	476.84	4. 62 1.16	F	585.92 586.92	0.92	
154.96	1. 05	477. 83	1.16 15.33	F	586.92 590.93	1. 46	
168.96	1. 37	478. 83	15.33	F	590.93 591.93	0. 46	
169.98	4. 22	479.83	2.77 8.32		591.93 598.93	0.92	
170.99	1. 39	494.84	8. 32	F	598.93		
181.94	1. 59	495. 83	4. 13	F	610.93	0.92	
212.92	1. 43	496. 86	9. 25	F	626.93	0.47	
223.91	1.07	497.87	2. 40				

Mass spectrum number 19.

$\mathrm{El}+$ data

Mass	\% Base						
43. 04	0.45 38.75		122.11 124.12	0.40 10.26		259.24 275.24	1. 6.73
47. 04	38.75 0.48		124.12	10.26 0.33		275.24 276.24	6.73 0.46
48.04	0.48		125. 12	0.33		276.24	0.46
50.04	9.13		128. 12	1.73		278. 24	2. 84
52.05	0.31		131.12	6. 52		297.28	1. 13
55.05	2. 48		137. 12	4. 15		325.28	4. 40
62.06	2. 19		140. 13	0.32		326.29	0. 36
69.08	100.00	0	143.13	74. 35		375.67	1. 26
70.07	3.86		144. 13	3.16			
71.06	12.31		147.13	1.80			
72.07	0.40		155.15	1.37			
74.07	12. 15		15916	40.40			
75.07	0.62		160.15	1.74	F		
78.07	1.00		162.16	75. 10	F		
81.07	5.91		163. 15	3.18			
86.08	0.73		169.16	1. 15			
90.08	1.95		174. 17	0.52			
93.10	100.00	0	181. 17	2.71			
94.09	B. 18		187. 17	9.50			
97.08	76.87		188. 18	0.51			
98.09	1.79		193.18	15.88			
100.09	10.69		194.18	0.88			
102.09	0.53		197.18	2. 35			
105.10	2. 45		200. 18	1.27			
109. 10	11.22		209.21	100.00	FO		
110.10	0.40		210.20	6.17	F		
112.11	62.11		211.20	0. 36			
113.11	2.15		212.20	0.54			
116.10	3.49		225. 22	2. 37			
117.11	0.93		231.24	0.92			
119.12	100.00	0	237.23	1. 65			
120. 12	2.39		243.25	0.34			
121.11	8.88		247.24	5. 17			

 Hent: \quad Sys: fillilins Sys : FULLLINS HRR: HASS:

$\mathrm{El}+$ data

Mas 5	\% Base			
47.69	0.89	162.74	1. 76	
48.70	0.19	168. 70	4. 56	
49.70	24.61	169.73	0.20	
50.71	0.99	170.72	0.11	
51. 71	0.78	173.72	0.60	
52.73	0.14	174.72	0.12	
54.73	6.26	180.70	5.08	
55.74	0.39	181.71	0.39	
58.75	0.14	184171	0.23	
61.77	4.46	186.69	9.01	
62.78	0.14	187.70	0.39	
65. 79	0.39	189.70	0.34	
67.81	0.78 F	192.69	6.06	
68.84	100.00 F0	193.70	0.39	
69.82	8. 40	196.68	0.78	
70.81	23.76	199.68	3.91	
71.82	0.85	200. 68	0.19	
73. 82	25.01	208. 69	100.00	Fo
74.83	1.75	209.65	14.10	F
77.83	2.16	210.66	0.78	
78.84	0. 13	211.66	0.8	
80.84	11.66	218.68	0.40	
81.84	0.39	220. 66	0.2	
85.83	1. 17	224. 65	4.25	
86. 84	0.12	225. 66	0.15	
99.82	4.03	230.65	2.07	
92. 85	100.000	236.64	0.59	
93.83	12.89	242. 64	0.39	
94.83	0.27	246.62	0.35	
96.82	100.000	255.62	0.12	
97.82	2. 73	258.60	7.19	
98.82	0.39	259.61	0.48	
99.81	17.97	261.63	0.12	
100.81	0.52	274.60	12.15	
101.81	0.92	275. 61	0.89	
104.80	4. 17	277.62	0.26	
105.81	0.21	280.60	0.15	
108.79	22.23	286.59	0.39	
109.80	0.78	29659	0.8	
111.80	97.02	305.58	0.2	
112.80	3.91	324. 55	9.6	
115.79	1. 76	325.56	0.7	
116.79	1.20	346.54	0.40	
118.79	81.88	374.51	0. 78	
119.79	1. 70	375.51	0.1	
120.78	15.27 F			
121.79	0.52 F			
123.78	15.28			
124.78	0. 78			
127.77	2. 13			
129.77	0.12			
130.77	14.66			
131.77	0.55			
135.77	0.22			
136.75	6.07			
137.76	0.39			
139.75	0.39			
142.75	100.000			
143.75	4.41			
146.74	2. 73			
149.74	0.79			
154.74	1. 72			
155.75	0.16			
158.73	84.84			
159.73	3.71			
161.73	35.98			

Mass specirum number 21.

5月701750 Bph=0
 Rent: ${ }^{[1-}$ Sys: FUULL

El+ data
Mas 5 \% Base

335.97
336.40
337.11
337.41
338.40
339.39
354.98
355.39
355.90
356.11
356.39
357.38
358.38
0.8 30.9 31.8 62. 8 74.78 86.76
92.78
93.75
98.73 98.7 104. 7 110.72

89
01
38
41
38

1. 01
4.77
4.49

49
79
.79
.78
.55
55
78
27
01
67
112.70
116.73
0.51
0.16

Miass spectrum number 22.

Mass spectrum number 23.

Mass spectrum number 24.

SA791020 xil Bgd=1 10-JUL-91 16:46+8:88:32 7日E EI*

HRR:	1868988
7月55:	281

El+ daia

Mass	\% Base								
40.00	1. 10	107.94	1. 50	178.92	7.07		267.88	23. 91	
41.01	3. 39	108.96	4. 24	179.91	0.77		268. 86	4. 53	
42.02	6. 34	109.96	0.60	180.89	1.23		269. 86	2. 88	
43.01	2. 51	111.93	0.63	181.90	7.60		270.86	0.91	
43.99	0.51	112.94	2. 42	182.91	0.96		276.84	14.07	
45.98	4.24	113.95	3. 40	183.86	0.55		278.14	2.05	
46.99	1.85	114.95	0.60	188.89	1. 26		280.84	0.55	
48.00	1.70	115.95	1. 66	189.90	11.80		284.85	0.80	
49.97	3.03	116.93	1. 52	190.90	0.91		285.85	3. 11	F
50.97	5. 17	118.93	0.75	191.93	1.00		286.86	100.00	F
31.99	6.78	119.94	14.90	192. 89	1.91		287.87	B. 54	
52.99	1.83	120.94	4.29	195.91	0.66		288. 85	1.04	
54.99	0.66	121.95	6. 70	196.90	9.18		289.85	1.16	
55.99	0.88	123.94	5. 17	197.91	18.06		294.86	0.63	
56.99	1. 50	124.94	5. 83	198.91	5.04		295.88	1.07	
58.99	0.87	126.95	0.83	199.88	9.02		296.85	54.54	
62.97	0.52	127.95	1. 29	200. 89	3.71		297.86	6. 00	
63.98	1. 24	128.95	2. 55	201.88	5.89		298.87	0.51	
64. 48	1.98	130.92	0.68	204. 88	1.05		299.84	10.42	
64.99	1.00	131.93	5. 62	206. 88	11.04		300. 84	1.14	
65.98	6.29	132. 94	1. 99	207. 88	3.55	F	314.84	0. 66	
66. 99	1. 47	133. 44	0.92	208.72	1.83	F	315.87	1.74	
68.96	49.06	133.95	3. 06	211.88	0.55		316.84	19.92	
69.97	8. 00	135.94	1. 54	212.87	0.56		317.83	2. 64	
71.00	2. 44	136.93	1.06	214.89	0.84		318.81	5. 69	
72.00	2.29	137.92	1. 19	215.90	0.64		319.82	9.68	
73.01	0.65	138.93	0.81	216.90	3.89		320.84	1.01	
73. 96	2. 19	139.93	2. 27	297.91	36.53		334.84	1. 24	
74. 48	0.63	140.92	0. 44	218.90	5.15		335.83	0.61	
74. 96	7. 23	142.91	8.81	219.88	8. 08		336.85	3. 44	
75. 97	1. 22	143.92	1.27	220.89	4.35		338.83	4.55	
76.97	7.75	144. 93	0.97	221.89	0.66		339.84	0.68	
77.97	4.28	146.93	4.03	223.87	1.70		346.80	0.55	
78.98	2. 97	147.93	3.07	224.89	0.54		359.82	49.62	
79.99	2. 60	148.94	3. 73	225.88	0.84		336.83	11.39	
80.95	0.55	149.92	2. 35	226. 88	34.30		357.85	0.83	
81.96	1. 78	150.92	3. 48	227. 92	8. 46	F			
82.97	1.59	151.93	10.27	228.83	2.25	F			
83.97	0.77	152.93	1.02	232. 18	2.33	F			
88.96	6. 17	154.91	2.83	237. 88	0.54				
89.46	0.80	155.91	0.71	238.88	4.08				
89.96	7.07	157.91	0.97	239.88	8.60				
90.97	1. 15	158.92	4.21	240.89	1.02				
92. 94	5. 17	159.93	0.59	242.87	0.70				
93. 95	1. 39	161.90	3.07	244. 89	0.63				
94. 96	2.00	162.91	1. 33	249.88	2. 77				
95. 95	27.07	165.92	0.31	246.87	82.05	F			
96.96	2. 10	166.90	1.01	247.90	15. 16	F			
97.97	1. 13	168.42	0.54	248.87	1.60				
98.96	5.58	168.90	0.84	249.86	14.14				
99. 46	0.92	169.91	7. 49	250.87	1.93				
99.94	3.71	170.92	9.52	251.87	1. 46				
100.95	5.27	171.93	4.82	256.86	2. 18				
101.95	12.62	173.90	1.00	258.27	1.05				
102. 96	2. 46	174.91	2. 14	259.87	2. 80				
104.94	1.41	175.90	1. 32	284.86	0.64				
105.94	1.19	176.91	22.90	265.86	7.23	F			
106.95	0.54	177.91	5.03	266.87	46.83	F			

Mass spectrum number 26.

SF7911110280 x1 Bgd=4 22-RUG-91 11:32-8:82:86 785 E1-

El+ data

Has 5	\% 日ase			5. 58			227.87	0.50	
41.00	3. 22		80.94	5. 48	128.41 130.91	10.33	227.87 230.85	$\text { 2. } 17$	
42.00	1.34		81.95	1.48	130.91	10.98	230.85		
42.97	1. 34	F	83.02	1.22	131.92	1. 34	238. 19	1. 97	
43.01	5.29	F	84.03	0.36	135.90	1. 34	245. 85	2.96	
43.97	0.63		85.04	2.16	137.91	6. 58	249.84	0.71	
44.99	0.83		85.94	0.84	138.40	0. 58	250.85	0.36	
45.97	1. 34		87.94	4. 70	138.92	4. 19	256.85	53. 06	F
49.96	4.08		88.94	4. 90	139.92	0.37	257.85	5.37 1.38	F
50.97	1.66		92.93	8. 30	142.90	1. 76	269.87	1.38	
51.98	0.36		93.94	2. 01	144.91	1. 88	270.87	0.57	
52.98	0.35		94.94	0.36	148.92	4.64	275.81	40.83	F
54.96	1.24	F	95.94	1. 93	149.90	1. 53	276.83	54. 42	F
55.01	2. 18	F	97. 03	0.69	154.92	1. 43	277.84	4. 72	
56.01	1. 35		97.93	0.67	156.90	1. 35	295.82	82.54	
57.03	6.27		99.04	0. 75	157.91	2. 01	296.83	13.31	
57.97	0.76		99.93	8.95	161.89	6.72	297.84	1. 23	
58.03	0.35		100.93	1. 34	162.90	0.67	364. 81	1. 34	
59.00	0.67		103.95	0.81	166.90	0. 32			
61.96	5.37		104.93	1.93	168.89	1. 34			
62.97	1. 62		106.93	2. 15	173.90	0. 40			
63.97	0.30		107.93	0.67	175.89	17.48			
64.97	1.37		111.04	0.39	176.89	1. 48			
66.99	0.34		111.92	15.38	180.89	7. 98			
68.94	100.00	F	112.93	2. 25	181.89	1. 34			
69.02	1. 34	F	113.05	0.67	187.88	2. 01			
69.95	4. 03	F	113.92	0.67	188.88	0. 38			
70.03	0.72	F	116.92	2.01	194.87	0. 39			
71.03	3.37		118.92	2. 03	199.86	1. 38			
73.95	2. 01		119.93	0.33	200.91	2. 70			
74.95	1. 34		123.91	2.97	206. 86	36.90			
75.95	3. 44		124.92	0. 32	207. 87	3. 34			
76.96	2. 80		125.05	0.31	222.95	0.35			
77.96	0.52		126.93	0.37	225.85	62. 45			
78.95	0.67		127.06	0.41	226.86	7.34			

El + data

mas 5	\% Base								
40.02	1.68		79.01	5. 70		132.01	5. 75	230.96	1. 57
41.03	10.18		80.98	2. 17	F	134.04	1. 50	232.94	1.65
42.03	2. 55		81.05	1.57	F	135.03	1.43	233. 95	4.90
43.01	3. 73	F	81.98	1.31	F	137.97	2. 24	234.94	1.32
43.04	8. 94	F	82. 05	1. 11	F	138.99	1. 75	252.94	1. 75
44. 00	2. 45		83.05	2. 13		146.98	7. 74	253. 95	1. 54
45.01	1.56		84.06	1.01		147.99	3. 61	256. 92	11.65
46.00	1. 77		85. 06	3. 74		148.98	20.19	257. 93	1.28
47.01	2. 46		87.02	1. 05		149.99	2. 65	269.96	59.65
49.99	3. 90		87.99	2.11		152.98	2. 58	270.96	12.39
51.00	6.18		88. 99	2. 75		153.98	9. 64		
52.01	8. 95		90.00	1.56		154.99	5.73		
53.01	2. 56		92. 99	2. 44		161.98	2. 24		
54.02	1.08		95. 04	1.03		172.98	1. 16		
55.04	5. 48		95.98	7.05	F	173.99	7.50		
56.05	3. 94		96.99	4. 09	F	175.00	1.55		
57.06	16. 32		97.07	1. 68	F	175.96	4. 53		
58.04	1. 32		99.07	1.41		179.98	8. 29		
59.03	4. 33		99.98	4. 57		180.98	49.85		
61.99	2. 36		100.99	1.37		181.99	12.09		
63.00	1. 66		101.99	1.04		182.97	2. 60		
66.01	5.07		103.00	1.58		198.97	1. 37		
67.02	2. 75		104.00	11.38		199.98	2. 39		
68.98	47.70	F	105.00	4. 26		200.98	100.00		
69.05	3.07	F	111.97	4. 29		201.98	8.95		
69.99	2.59	F	112.98	1.37	F	206.94	8.43		
70.06	1.79	F	113.10	1.02 1.75	F	207.95	1. 24		
71.06	5. 79		119.99	1. 75		210.96	3. 64		
72.04	1.20		121.03	1. 90		213.95	5. 59		
73.02	1.23		122.04	1. 22		224.97	0. 51		
74.01	1.61		124.00	2. 93		225.94	5. 12		
75.00	1.07		126.98	7.96		226.95	1.80		
75.99	5. 29		127.99	2. 26		227.96	0. 40		
77.00	34.15		129.00	1. 06		228. 96	1.59		
78.00	10.28		130.98			229.96	0.84		

Mass spectrum number 28.

mas 5	\% Base					
40.84	0.63	165. 05	0.47	306.06	8.56	F
42. 86	0. 51	167.01	0.41	307.09	9. 78	F
48.86	0.63	169.02	0.72	308.12	3.53	F
49.87	7.47	174.00	0.50	319.05	1.95	
50.89	27.52	181.01	1. 15	320.06	6.59	
51.90	1. 82	182.04	4.28	321.07	0.72	
$54 \cdot 93$	0.53	183.04	1. 60	325.07	1.13	
56. 95	0.55	18405	0.55	326.08	14.44	
60.94	0.40	18805	0.67	327.09	9.32	
61.95	0.90	189.06	1. 65	328.10	4.90	
62.97	1.79	19007	0.39	329.11	0.70	
6397	0.68	19304	057	339.06	2.37	
68.99	18.42	20004	355	344.09	0.43	
70.05	0.69	20106	198	345.08	1. 50	F
7117	2.95	20503	066	346.09	43.47	F
7521	3 E1	20605	$\bigcirc 43$	347.10	30.29	F
7626	424	20706	207 1 1	348.10	3.90	
77.30	51.93	20807	161 0	357.09	0.51	
78. 35	6.96	20908	0.56	376.11	16.34	
79.38	0.46	21105	054	377.12	2.81	
81.41	0.65	212.05	0. 82	394. 09	0.85	
86. 33	0. 49	213.07	0.62	395.09	2. 21	
8733	0.58	21407	051	396.10	27.55	
88. 31	0.48	21806	0.73	397.11	4.28	
93. 22	2.49 0.47	219.05 220.07	1.24 0.38	397.11 398.11	4.28 0.36	
95. 23	0.88	22402	1. 61	415.09	100.00 15.28	F
96.21	6.50	22504	0.35	416.11	15.28	F
97.22	0. 42	226. 05	0.43	417.11		
99. 15	0.78	227.05	0.40	446.19		
100. 13	0.63	231.03	1. 95			
103. 14	1. 27	232.03	2. 81			
105.09	0. 96	233.04	4. 07			
111.06	0.41	234.05	0.61			
112.03	0.85	238.05	6. 98			
113.03	0.54	239.06	1. 63			
116.99	2. 13	243.03	0.62			
123.00	0.47	250.02	6. 88			
123.99	1. 51	251.05	12. 42			
125.00	0. 34	252.05	1.91			
126.02	032	253.06	14.79			
127.03	0.85	254.08	1.68			
131.00	c. 83	256.06	4. 84			
132.02	0.49	257.07	4. 62			
136.00	145	258.08	3. 95			
137.02	0. 55	259.08	0.91			
138.03	0.45	269.05	1. 95			
143.03	1. 29	270.06	052			
144. 05	0.41	275.07	0. 44			
145.05	0.56	276.08	2. 06			
151.06	0.68	27708	7. 07			
153.54	0. 49	278.08	1.38			
155. 02	5. 02	288.09	2. 66	F		
156.03	0.50	289.09	091	F		
158.06	1. 24	297. 09	0.95			
162.02	1. 79	300.06				
163.04	0.68	301.07				
164.05	0. 46	305.07	0.47			

Alass spectrum number 29.

Mags	\% Base		
49.99	1. 35	320.92	0.70
51.00	8.77	325.90	0.61
62.99	0.56	326.93	0.71
68.95	2. 02	327.94	0.67
74. 98	0.80	328. 95	1.03
75.99	0.95	332.91	0.57
77.00	14. 47	337. 86	1. 36
78.00	1. 03	338.86	5. 14
126.99	0.50	339.86	1. 59
163.99	0.52	340.86	0.71
168.97	1. 67	345. 82	1. 38
169.47	0. 70	351.87	0.79
178.97	0.56	356.91	1.74
180.96	0.52	357.91	1.88
182.98	0.67	358. 92	9. 90
187.98	0.73	359.93	2. 97
193.96	1.66	375.87	0.79
203.95	0.90	376.90	2. 29
206. 95	1. 22	377.91	7.03
212.96	0.51	378. 91	18.36
213.97	2. 40	379.92	4. 06
214.98	0.59	387.88	0.55
225.95	0.52	395. 86	0.77
231.96	0.68	406. 87	4. 22
232.96	1.23	407. 89	1.52
233.98	0.70	408.88	3. 36
237.96	0.61	409.88	0.73
238.97	0.68	414.84	0.99
239.99	0.71	426.85	11.25
240.99	0.63	427.86	4. 25
250.54	0.65	428.87	13.08
251.94	0.96	429.87	2. 95
252.94	0.54	432.85	1. 24
255. 93	0.87	445.91	5.21
256. 95	0.54	446.85	17.11
258. 97	0.57	447.86	100.00
259.98	0.62	448.87	28.53
262.95	1. 76	449.88	3. 88
263. 96	0.92	498.84	1. 22
269.96	0.58	524.84	1. 28
270.96	1. 29		
275.93	0.66		
281.94	0.54		
282.93	2. 84		
283.96	2. 74		
284.96	0.62		
287.94	0.69		
288.95	2. 77		
289.95	2. 51		
290.96	1. 67		
301.92	1. 02		
306. 92	0.91		
307.93	1. 26		
308.94	4. 30		
309.94	5.58		
310.94	1. 12		
318.92	0.66		
319.93	0.89		

Mlass spectrum number 30.

$\mathrm{El}+$ data

95	日ase				
40.96	1.97	118.16	8.36	285. 27	0.59
41.97	27.85	119.16	12. 59	294. 29	1. 46
42.98	2. 96	120.17	4. 30	300.22	1.18
43.99	11.32	121.18	1.58	306. 25	3. 16
49.98	12. 03	124. 09	1. 10	307.24	0.95
51.00	12.58	129. 15	1.26	319.26	4.81
52.00	1.66	130.16	1.22	320.29	7.02
55.04	0.67	135.20	6.86	321.31	0.91
57. 06	1.07	136.21	1.46	325.26	3.71
62.03	2. 05	139. 18	6.07	326.26	5.21
63.04	11.40	139. 19	9.55	345.29	9. 19
64.04	2. 13	143. 11	1.70	346.30	1.22
65. 06	5. 64	145. 19	7.42	349.33	d. 14
66.06	2. 17	146. 20	1.74	350.33	0.95
68.08	1. 54	150.15	2.52	353.31	0.63
69.04	43. 12	155. 12	9.23	354.30	0.87
74.07	2. 92	16916	0.79	369.35	18.26
75.08	8. 72	193.13	1.10	370.36	4. 06
76.08	11.83	194.18	5.52	373. 33	3.04
77. 10	21.85	200. 15	3.04	374. 33	2.45
78. 10	6. 98	207. 19	0.83	376.31	2.05
79.11	3.39	211.18	0.79	388. 35	13. 96
89. 11	1. 50	219.19	8. 56	389.36	100.00
90.11	5.21	219.70	2. 41	390.37	17.63
91. 13	14. 60	22416	1.07	391.38	1.03
92. 13	2.68	232. 25	4. 97	419.39	2. 41
93.07	2. 60	250. 19	8.36	437.38	1.38
93. 13	1. 34	251.27	1. 70	439.41	27. 81
95. 10	2. 68	254. 22	1.46	440.41	3.83
102. 11	3. 83	256.22	4. 93	457.41	22. 96
103. 12	0.63	257.21	1.18	458.42	80.75
10413	10.30	269. 19	1.74	459.43	12.74
105. 14	8. 36	276.23	1.58		
117.09	1. 34	277.24	0.75		
117.14	1.50	278.29	0.79		

Mass spectrum number 31.

El+ data

mas 5	\% Base				
50.00	1.00	236. 95	0.47	340.93	2.64
51.01	1.51	237.96	2. 50	341.94	2.87
52.02	0. 33	238.97	0. 50	342.94	0.59
52.99	0.60	239.96	0.43	343.94	1.57
53.02	0.41	242.93	0.67	344. 95	3. 54
57.00	0.94	243.95	1.74	345.96	0.82
61.99	0.96	244. 96	2. 42	348.96	0.50
63.00	10. 76	249.92	3. 55	355.96	13.39
64.00	6. 35	250.94	0. 37	396.96	3. 42
65.01	3. 06	253. 95	1. 12	397. 97	1.37
68.96	3. 32	254. 95	7.01	359.94	0.68
73.99	0.33	255. 95	2. 50	360.95	0.99
74.99	2. 17	256.95	0.91	361.94	1.06
76.00	1.66	261.94	0.36	362.94	3. 77
77.01	3.19	262. 95	0. 89	363. 95	1.22
78.02	0.56	263.95	2. 15	374.95	0.85
79.02	0.82	264.96	0.40	375.96	96.61
80.99	0.42	267.95	0.34	376.97	25. 50
83.00	5. 76	268.94	0.55	377. 98	2. 96
89.01	1.08	272.95	0.43	381.95	0.70
90.01	0.68	273.94	1.06	382.96	0.31
91.02	7.29	274.95	0.77	390.96	0.45
92.00	10.83	275.96	1. 19	391.96	0. 32
92.99	0. 79	276.97	0.33	393.94	1. 67
95.00	0.46	280.98	3. 37	394.97	0.45
107. 02	1.01	281.98	0. 75	405. 96	10.83
108. 02	3.59	282. 98	0.61	406.97	1.99
109.02	0.46	285. 96	0.65	409.95	0.52
110.99	3.54	286.97	1.08	410.96	0.35
111.99	0.31	287. 97	1. 51	413.97	0.77
116.96	0.67	288.97	0.40	424. 97	1.74
123.01	0.60	291.94	2. 96	425.97	38. 35
126.01	3.02	292. 93	2. 27	426.98	6.21
133.01	0.32	293.94	3. 06	427.99	0.51
138.98	0.77	294. 95	1. 15	443.96	0.70
14498	0. 44	299.91	1. 12	444.98	100.00
154.96	5. 35	305.94	1. 61	445.98	17.57
155.97	0.44	306.96	9. 63	446.99	1.66
156.98	0.50	307.97	1.84	483.01	0.45
161.95	0. 38	311.93	0.79	484.02	0. 40
166.94	0.41	312.93	4. 11	496. 04	0.46
168.97	0.90	313.94	3. 10	508.03	0.46
175.98	0.59	314.95	0. 37	522.06	0. 31
186.96	0.39	318. 92	086	536.07	0.64
187.98	0.46	319.92	1. 12		
193.96	0.81	320.93	1. 16		
194.97	0.61	321.94	0.99		
199.94	1. 14	322. 95	0.62		
204. 94	0.45	323. 94	0.80		
211.97	0.45	324. 94	1. 41		
213.97	0.88	325.94	1. 95		
217.95	0.48	326.96	0. 32		
218.97	1. 42	331.94	0.71		
223. 93	0.40	332.94	1.73		
224. 95	0.73	333. 96	0.46		
225. 96	0.52	335. 95	7. 24		
230. 97	0.52	336.95	1.68		
231.96	0.31	337.96	0. 54		

Alass spectrum number 32.

Mass spectrum number 33.

$\mathrm{El}+$ data

Mass	\% Base								
49.98	7. 05	F	116.99	13.71 4.89	199.00 19999	2.75 21.35	296.01 299.97	$\begin{aligned} & 3.91 \\ & 8.95 \end{aligned}$	
50.01	10.51	F	121.02	4.89	199.99	21.35 4.55	299.97 305.98	6.951	F
51.01	12.20		122.02	1. 83	201.00	4.55 2.39	305.98 314.00	3.91	
56.00	2. 25		123.00	2.25	202.01	2. 39	314.00	2. 40	
57.01	12.59		123.99	7.51 300	204.98 206.00	2.73	318.97 319.97	10.61	
61.00	2.34		125.01	3. 212	207.01	6. 57	323.96	22. 43	F
62.01	5. 04		126.02	2.12 2.73	218.00	3.81	324.98	22.48	F
63. 02	13.99		130.99	2. 73	219.00	9.43	326.02	8.67	F
64.02	1. 56		132.01	1.84 7.88	219.00 223.97	6.61	337.99	3.85	
68. 00	4. 55		135.98	1.88 1.73	225.00	8.05	338.98	2. 41	
68.99	100.00	0	136.99	5. 43	226.01	7.32	342.97	2. 76	F
70.01	3. 20		142.98 144.00	1. 4.96 1.96	230.00	2. 55	343.97	50.56	F
73. 00	1. 17		144.00 145.01	8. 49	231.00	2. 70	345.00	24. 45	F
74.00	12. 92		145.01 149.01	2.63	232.00	2. 34	346.01	10.51	
75. 01	100.00	0	159.00	2.37	235.99	2. 34	362.95	5.11	F
76.01	10.17		152.02	2.01	242.97	3. 32	363.97	100.00	F0
81.00	6. 16		152.02 154.98	26. 35	244.00	2. 37	365.00	56.46	F
82.00	2.34		154.98 156.00	2.77	245.01	2.25	366.01	6.33	
88. 00	2.70		156.00 157.01		249.00	6.75	383.00	2. 30	
92.00 92.99	2.01		157.01 161.99	2. 33	249.98	23. 49	393.99	32.72	
92.99 94.01	14.06		161.99 163.00	7.34 3.24	250.99	7. 86	395.00		
94.01 95.02	16.71		163.00	3. 21	256.00	21. 14	412.97	3.22	F
95.02	75.37		166.98	2.01 4.09	257.00	4.43	413.98	75. 84	F
96.02	16. 30		169.01	a 09		3.22	415.01	12. 14	F
9900	3. 52		173.99	1. 89	268.00 269.00	25.75	432.98	81.67	F
99.99	3. 10		175.00	1.91	269.00 270.00	4. 17	434. 00	12. 27	F
104.99	4. 64		176.01	10.64	271.01	10.62			
106.00	1. 95		180.00	2.8!	273.99	19.93			
107.02	3. 03		181.00	319	275.00	15.10			
108.01	1. 89		182.00	2. 73	276.01	13.35			
112.00	2. 84		183.01	2. 17		2. 45			
113.00	3. 17		187.00	2.90		10.31			
114.02	29.92		192.98	2. 61	294.00 295.00	22.05			
115.02	2. 21		194.00	2. 34	295.00				

Alass spectrum number $3 A$.

El+data

Mas 5	\% Base				
41.05	11.97	93.03	1. 54	206.07	1. 42
42.05	1.84	94.04	3. 40	212.06	2. 12
43.03	5. 65	95.05	19.79	222.06	3.11
43.06	8. 98	96.05	1. 49	223. 13	1. 83
44.02	2. 90	97.12	1. 12	225.07	3. 79
45.03	2. 55	99.03	0.85	226.08	1. 49
50.02	5. 14	104.04	2.88	232.07	5. 65
51.03	3. 25	105.05	1.51	250.09	1. 84
53.05	0.78	106.04	0.74	251.08	2. 83
54.06	0.70	107.06	0.63	270.10	2. 85
55.06	5.78	111.04	0.87	281.09	1. 36
56.07	3. 46	111.14	0.54	296.11	1. 02
57.07	12.97	117.02	0.89	299.10	1. 04
59.05	3. 68	120.05	1. 36	301.09	2. 83
60.04	0.82	121.06	1.93	307.11	1.98
63.03	1. 17	123.04	0.73	320.11	7.58
65.05	1. 35	124.03	1.02	325.10	2. 44
67.07	1. 41	135.11	0.87	326.11	4. 36
68.02	1. 02	145.06	2. 16	327.12	5.57
69.01	20. 29	149.05	30.55	345.11	6.64
69.08	2. 79	150.05	3.57	346. 12	7. 98
70.03	0.86	155.04	0.73	375.11	8.14
70.09	1. 69	156.06	1. 45	376. 12	1.78
71.10	2. 87	163.06	1. 28	395.13	11.33
72. 06	0.94	167.06	1.04	396.14	3. 67
73.05	1. 03	173.06	0.83	414. 13	3. 81
74.04	3. 19	175.06	1.37	415.14	39.49
75.04	19.44	187.06	2.83	416.15	9.41
76.04	4. 93	187.56	1.65	465.07	12.90
77.05	1. 48	188.07	1. 16	483. 14	1. 50
81.08	1. 15	197.06	2. 02	484. 16	100.00
83. 10	1. 72	199.06	0.99	485.17	20. 87
85.11	1. 95	201.07	2. 35		
87.06	1.16	205.08	0.72		

Alass spectrum number 35.

Rass spectrum number 36.

Mass spectrum number 38.

$\mathrm{El}+$ data

She61018o kl Bgd＝6 22－AUG－91 89：5708：81：14 70E C1．
 $I=18 u \quad H_{n}=721 \quad I I C=352838816$
Hent：Sys：RCE
HRP：65534888 S．MULLIMS
PT＝ $8^{0} \quad$ Cal ：Pfrearlia HASS：

H月贝： 655348 80 8ph＝8 $\quad I=18 \cup \quad H a=587 \quad$ IIC $C=74448088$ PT $=8^{0} \quad$ Cal ：PFKZ解UG HASS：
337

El＋data

49．98	3．26	168.92
50.98	3.38	193.89
51.99	1.09	199.87
52.96	1.09 F	204.86
53.00	1.63 F	218.90
56.98	2.15	219.90
61.97	2.17	224.87
62.98	20.17	237.88
63.99	17.29	242.85
64.99	3.29	243.86
68.95	7.63	244.87
73.96	1.27	249.84
74.97	3.98	250.87
75.98	6.57	252.87
76.98	15.67	255.86
77.99	2.17	262.86
78.99	3.26	263.86
79.99	1.77	267.85
80.96	1.15	268.85
82.97	10.76	273.84
91.96	36.73	275.85
92.96	3.00	276.85
94.97	1.32	280.86
106.97	3.80	281.86
107.98	2.22	282.86
110.95	1.79	286.84
116.92	1.13	287.85
122.98	5.47	291.84
123.96	1.09	292.83
125.96	1.66	293.83
132.96	1.09	294.84
154.89	2.74	299.81
164.97	5.63	305.93
165.97	1.70	306.85

394.79	1.09
401.79	2.17
405.80	8.75
406.81	1.63
409.77	1.23
413.79	1.09
424.77	1.09
425.80	40.53
426.80	7.05
430.77	1.76
443.76	1.31
444.78	100.00
445.80	17.35
486.81	1.75
450.79	8.72
451.80	1.86
463.80	1.09
488.78	1.65
507.83	8.14
508.84	4.32
509.85	1.09
521.82	1.09
565.83	1.59

Alass specirum number 40.

El + data

Hass	\% Base						
40.99	3.00		332.71	2. 78	429. 60	1.85	
42.96	2.05	F	338.69	1.85	432.62	4. 53	
43.00	2.78	F	344.70	1.85	433. 62	3.67	
49.96	1.89		345.71	1.73	436.47	2. 86	F
50.97	1.88		350.69	1.85	437.56	2.16	F
54.99	1.86		351.69	1. 72	438. 63	6.49	F
57.01	3. 70		352.69	1.85	439.63	1. 85	F
62.96	5.39		360.69	1. 85	441.60	3. 70	
63.97	10.09		363.68	1. 85	442.61	1.07	
64.97	1. 86		364.69	4. 20	444.63	2.05	
68.93	3.80	F	365. 69	1.58	445.62	2. 78	
74. 95	1.85		369.72	2. 16	447.33	1.14	F
75.95	3.54		370.71	1. 05	448.68	1.85	F
76.96	10.20		372.67	1.85	449.60	1.85	F
77.96	1.85		375.69	1. 05	452.61	1.85	
90.95	1.03		376.69	1. 55	436.61	20.49	
91.93	12.10		380.67	2. 85	457.62	6.28	
92.93	1. 62		381.67	1.85	458.61	1.05	
120.94	3. 70		382.66	1.85	461.60	1.85	
148.87	4. 71		392.66	1.55	464. 61	4.67	
214.81	1. 55		394.67	1.85	465.62	1.03	
236.29	4. 63		395.67	1.85	472.59	1.62	
236.79	1.85		400.64	1.85	475.58	6.62	F
243.79	2. 78		401.65	1.91	476.58	51.85	F
244. 29	1. 45		406.66	1.85	477.61	13.42	F
253.78	1.85		407.66	6.86	478.61	2.78	
282. 76	2.60		408.66	2. 96	488.61	12.89	
283. 77	1.85		409.65	1.85	489.61	2.95 2.68	
288. 74			413.64	2. 50	492.59	2. 58	
294. 75	1.85 1.81		414.65	1.46	506. 41	5.56 10000	F
295.76 311.74	1.81		418.66	1. 85	507.57	100.00	F
311.74	1.52		420.63	1. 16	508.60	25. 98	
312.72	1. 85		421.63	3. 30	509.61	3.70	
313.74	1.89		422. 62	2. 48			
326.73	1. 85		423.65	2. 68			

Mass spectrum number $\$ 1$.

 Bph=8 $\quad 1=464 a v \quad$ Ha $=483 \quad$ TIC=28557888 \quad Acnt: Sys:AULL
$\sigma C=146^{\circ}$ Cal PFK1111
HRSS

$\mathrm{El}+$ daia

Mass	$\%$ gase						
26.01	2. 10	205.06	3. 87	313. 15	2.10	409. 26	25. 41
2702	26. 46	30703	1. 12	314.11	2. 30	410.27	2. 82
29.00	39.07	2:409	112	314.20	1. 12	413.31	1.25
28.03	5.19	215.04	151	314.24	1. 25	426.31	5. 45
29.00	2. 30	217.09	2.63	317.17	5. 45	$42 \mathrm{B}$.	1. 97
29.04	$: 00.00$	2:9 09	2.56	318.16	2. 30	435.34	3.02
30.01	1.64	233.09	2.10	319.17	1. 25	437. 33	7.55
30.04	2. 10	236.09	420	321.15	1. 12	454.34	3. 22
31.02	1. 51	23708	125	323. 17	1. 77	482.45	5. 45
3199	9.00	242.07	1. 25	324. 20	1.58	483.46	1. 25
+3. 02	414	243.09	1. 58	329. 20	1. 18		
14.00	1. 51	243.20	1. 12	333.17	3. 74		
15. 00	2. 82	245.10	1. 38	336.17	1.77		
s5. 04	13.33	246.09	11.36	337.20	4. 66		
65.01	125	24810	1. 12	338.23	1. 12		
68. 00	11. 23	249.14	1. 38	339.18	2. 10		
69.00	23. $\frac{14}{}$	251.10	1. 25	340.19	12.48		
590.4	1. 12	255.10	4.27	342.19	3. 74		
70.07	2.17	261.09	1. 25	345.20	3. 35		
71.01	1. 44	26411	1. 77	357.24	6.01		
86.02	3.91	267 :1	427	359.24	1. 58		
97.00	14.90	273.12	722	361.22	3. 38		
115.08	1. 25	27717	1. 25	362. 21	1. 77		
117.01	1. 51	283.12	9. 86	364. 26	3. 35		
121.02	3. 81	289.11	2. 10	365. 31	1.77		
143.02	3. 68	290.13	1. 25	367.24	2.56		
14401	1. 12	292.13	16.48	372.53	0.59		
145.03	3. 15	293.16	2. 20	380. 23	10.57		
149.05	1. 12	29418	1. 25	381. 21	2. 50		
16705	4.27	295. 15	1. 38	385.29	2. 17		
175.06	177	302.14	1.77	387.22	2.17		
177.08	1. 25	305. 16	1.77	389.25	3. 74		
183.09	1.29	309.16	1. 77	406.25	3.87		
186.02	164	311.15	64.84	407.26	9. 13		
193.04	1. 12	312.16	6. 76	408. 25	15. 43		

Mass spectrum number 42.

Mass specirum number 43.
65534898 HRSS: 188
88
68
48
28

 285

Mass spectrum number QA.

Mass specrum number 45.

Mass spectrum number 46.

Mass spectrum number 47.

Mass spectrum number 48.

mass	\% Ease				Mass	\% gase		
4637	1. 13	22474	11.51		90.93	1.20	484.60	1. 97
54.90	2. 30	284. 44	5.17	F	92. 98	1.29	522.60	2.09
55.91	131	28469	4. 25	F	240. 76	1.83	560.56	1. 36
56.91	1439				268.73	1. 56	.777. 72	2.03
5792	2. 24	F			271.70	1. 17		
57.98	: 51	F			290.72	1. 99		
58.92	- 61				330.69	1. 09		
59.91	1.71				337.68	4. 00		
-0.91	485				338.68	1. 42		
68. 94	1.38				341.68	1. 95		
69.96	1.07				342.69	1.07		
70.96	1. 68				346.67	3. 28		
71.98	1. 61				356.66	1.72		
72.95	1. 88				357.66	1. 41		
73.98	2.52				359.67	0.94		
7496	11.37				360.65	9. 48		
37.94	2. 59	F			361.68	1. 41		
88.00	2.54	F			362.66	2. 28		
88.06	1. 61	F			355.65	9. 47		
92.96	24.77				366.65	3. 79		
93.97	1. 51				384.62	100.00		
98.95	128				385.63	19.36		
99.95	1. 61	F			386.64	3. 16		
100.05	!. 23	F			387. 62	1. 38		
102.03	738				388.66	6.05		
102.96	2.33				389.65	1. 75		
109.98	186				396. 66	1. 12		
114.90	2. 14	F			400.67	1.62		
115.01	1.45 1.61	F			406.63	4. 37		
116.94 117.96	1.61 1.03				415.61	2. 21		
117.96 130.91	-. 38				434.61	21.17		
132.79	100.00				435.61	4. 33		
148.90	3. 46				436.57	1.03		
184.91	5. 76				441.60	1. 13		
					460.61	2. 10		

Mass specirum number 49.

z-8ay Daia

Cnistal Daia

$\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~F}_{12} \mathrm{Cs}$

Crystal sysiem:
Space group:
Cell dimensions:
radiation:

Data collection
total data measured:
room temperature
iotal data unique:
2927
total daia observed:

Final R value
$0.07\left(R_{w H}=0.09\right)$

Table 5 Fractional atomic co-ordinaies ($\times 10^{4}$)

Arom	x	y	2
Cs(1)	1573(1)	9061(1)	1310(1)
C(1)	1381(9)	1426(12)	167(12)
C(2)	2058(9)	1250(11)	670(12)
C(3)	2291(9)	1478(11)	1827(12)
C(Q)	1687(9)	180\&(12)	2021(13)
C(5)	1412(8)	1768(12)	978(13)
C(6)	900(9)	1184(16)	-1086(18)
C(7)	2550(12)	986(12)	125(15)
C(8)	2981 (8)	1367(15)	267\&(15)
C(9)	3872(14)	165(20)	3702(24)
C(10)	Q367(19)	210(24)	3123(28)
C(11)	1701(10)	2108(15)	3146(19)
C(12)	357(16)	2080(16)	775(21)
O(1)	3170(6)	435(10)	2789(10)
O(2)	3351 (7)	1999(10)	3200(12)
$F(1)$	249(6)	916(8)	-1162(9)
$F(2)$	1160(6)	Q43(9)	-1436(10)
$F(3)$	775(8)	1958(14)	-1726(12)
$F(4)$	2594(6)	10(8)	-8(9)
$F(5)$	3217(6)	1237(8)	691 (9)
$F(6)$	2398(6)	13A7(8)	-928(9)
$F(7)$	2258(6)	1767(8)	3996(10)
$F(8)$	1732(6)	3073(8)	3288(9)
$F(9)$	1104(9)	1868(13)	3308(14)
$F(10)$	-34(7)	1354(10)	849(10)
$F(11)$	346(8)	2789(12)	1424(14)
$F(12)$	59(7)	2499(10)	-210(12)

Table 6 Anisotropic inermal parameiers (A : 103)

	U11	U22	U33	U23	U13	$U 12$
$C=(1)$	$99(1)$	$63(1)$	$70(1)$	$13(1)$	$28(1)$	$-10(1)$
$C(1)$	$58(11)$	$49(10)$	$45(9)$	$13(8)$	$10(8)$	$-5(9)$
$C(2)$	$76(12)$	$47(9)$	$46(8)$	$5(7)$	$30(9)$	$-4(8)$
$C(3)$	$61(11)$	$40(9)$	$42(9)$	$-3(7)$	$18(8)$	$-7(8)$
$C(4)$	$66(12)$	$45(10)$	$48(10)$	$4(8)$	$17(10)$	$4(9)$
$C(5)$	$35(9)$	$65(11)$	$57(10)$	$1(8)$	$16(9)$	$-7(8)$
$C(6)$	$60(12)$	$102(16)$	$109(16)$	$64(14)$	$32(11)$	$38(11)$
$C(7)$	$122(18)$	$44(9)$	$66(10)$	$11(9)$	$28(12)$	$-2(12)$
$C(8)$	$42(10)$	$58(12)$	$65(11)$	$-8(10)$	$-4(9)$	$1(10)$
$C(9)$	$80(20)$	$131(22)$	$139(21)$	$17(17)$	$21(18)$	$9(17)$
$C(10)$	$137(29)$	$149(26)$	$173(29)$	$38(21)$	$43(24)$	$36(23)$
$C(14)$	$60(13)$	$79(14)$	$128(17)$	$-36(13)$	$41(13)$	$-25(11)$
$C(12)$	$218(29)$	$70(14)$	$110(18)$	$-21(13)$	$99(19)$	$-17(17)$
$O(1)$	$65(8)$	$69(9)$	$75(8)$	$9(7)$	$2(7)$	$13(7)$
$O(2)$	$73(9)$	$64(9)$	$95(9)$	$-21(7)$	$-7(8)$	$-8(8)$

Table 7 Bond lengths (

$C(2)-C(1)$	$1.390(11)$	$C(5)-C(1)$	$1.362(11)$
$C(6)-C(1)$	$1.561(14)$	$C(3)-C(2)$	$1.801(10)$
$C(7)-C(1)$	$1.462(13)$	$C(4)-C(3)$	$1.813(12)$
$C(8)-C(3)$	$1.435(11)$	$C(5)-C(Q)$	$1.531(17)$
$C(11)-C(4)$	$1.487(13)$	$C(12)-C(5)$	$1.531(17)$
$F(1)-C(6)$	$1.339(11)$	$F(2)-C(6)$	$1.264(12)$
$F(3)-C(6)$	$1.356(11)$	$F(8)-C(7)$	$1.369(10)$
$F(5)-C(7)$	$1.338(11)$	$F(6)-C(7)$	$1.350(10)$
$O(1)-C(8)$	$1.340(12)$	$O(2)-C(8)$	$1.188(10)$
$C(10)-C(9)$	$1.454(19)$	$O(1)-C(9)$	$1.525(14)$
$F(7)-C(11)$	$1.33 A(12)$	$F(8)-C(11)$	$1.350(11)$
$F(9)-C(11)$	$1.352(13)$	$F(10)-C(12)$	$1.309(12)$
$F(11)-C(12)$	$1.287(25)$	$F(12)-C(12)$	$1.307(13)$

Table 8 Selected non-bonded distances (\AA)
Intermolecular:

$\mathrm{C}(1)-\mathrm{Cs}(1 \mathrm{a})$	3.543	$\mathrm{C}(2)-\mathrm{Cs}(1 \mathrm{a})$	3.380
$\mathrm{C}(3)-\mathrm{Cs}(1 \mathrm{a})$	3.618	$\mathrm{C}(4)-\mathrm{Cs}(1 \mathrm{a})$	3.890
$\mathrm{C}(5)-\mathrm{Cs}(1 \mathrm{a})$	3.853		

$C(5)-C(1)-C(2)$	108.3(7)	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(2)$	122.7(8)
$C(6)-C(1)-C(5)$	128.6(8)	$C(3)-C(2)-C(1)$	109.7(8)
$C(7)-C(2)-C(1)$	128.5(8)	$C(7)-C(2)-C(3)$	121.5(8)
$C(A)-C(3)-C(2)$	105.3(8)	$C(8)-C(3)-C(2)$	128.5(8)
$C(8)-C(3)-C(A)$	126.2(8)	$C(5)-C(4)-C(3)$	108.6(7)
$C(11)-C(Q)-C(3)$	122.9(8)	$C(11)-C(4)-C(5)$	128.5(8)
$C(4)-C(5)-C(1)$	108.2(8)	$\mathrm{C}(12)-\mathrm{C}(5)-\mathrm{C}(1)$	125.2(8)
C(12)-C(5)-C(4)	126.6(9)	$F(1)-C(6)-C(1)$	108.7(9)
$F(2)-C(6)-C(1)$	112.9(7)	$F(2)-C(6) \cdot F(1)$	109.3(10)
$F(3)-C(6)-C(1)$	108.2(10)	$F(3)-C(6)-F(1)$	100.8(7)
$F(3)-C(6)-F(2)$	116.2(10)	$F(4)-C(7)-C(2)$	143.1(8)
$F(5)-C(7)-C(2)$	115.3(8)	$F(5)-C(7)-F(4)$	102.9(8)
$F(6)-C(7)-C(2)$	115.2(9)	$F(6)-C(7)-F(4)$	104.3(7)
$F(6)-C(7)-F(5)$	104.7(8)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(3)$	140.4(8)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(3)$	126.2(10)	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{O}(1)$	123.4(8)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	104.1(12)	$F(7)-C(11)-C(8)$	112.8(8)
$F(8)-C(11)-C(4)$	113.0(10)	$F(8)-C(14)-F(7)$	104.9(8)
$F(9)-C(11)-C(4)$	112.4(9)	$F(9)-C(11)-F(7)$	110.1(10)
$F(9)-C(14)-F(8)$	102.9(9)	$F(10)-C(12)-C(5)$	112.1(10)
$F(11)-C(12)-C(5)$	111.2(11)	$F(11)-C(12)-F(10)$	112.7(11)
$F(12)-C(12)-C(5)$	112.0(10)	$F(12)-C(12)-F(10)$	109.0(11)
$F(12)-C(12)-F(11)$	99.2(10)	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{C}(8)$	118.2(8)

Cousial Daia

$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{10} \mathrm{Fe}$
Crysial sysiem:
Space group:
Cell dimensions:
radiation:

Daia callection

temperaiure:
iotal data measured:
3692
fotal data unique:
total data observed:
Final R value

AN.w. 612.38
triclinic
P
$a=8.222(1) A$
$b=9.150(2) \AA$
$c=9.650$ (2)
$\alpha=96.67(1)^{\circ}$
$\beta=97.3 \&(1)^{\circ}$
$\gamma=108.38(1)^{\circ}$
$U=673.80 \AA 3$
$Z=1$
$D_{c}=4.509 \mathrm{gcm}^{-3}$
$F(000)=314$
Mo-Ka
$\mu=0.068 \mathrm{~cm}^{-1}$ $\left(1.5^{\circ} \leq \theta \leq 25^{\circ}\right)$
$0.017\left(R_{W H}=0.017\right)$

Table 10 Fractional atomic co-ordinates (KiO^{A})

Alom	x	y	2
Fe	5000	5000	5000
C(1)	7A\&5(3)	6216(3)	Q52@(2)
C(2)	7577(3)	5009(9)	5301(2)
C(3)	6454(3)	3566(3)	Q489(3)
$C(4)$	5620(3)	3866(3)	3225(2)
C(5)	6235(3)	5513(3)	3286(2)
C(6)	8467(4)	7922(3)	2946(A)
C(7)	8761(4)	5217(5)	6672(3)
C(8)	6208(5)	1967(A)	4847(5)
C(9)	4349(4)	2679(a)	2056(3)
C(10)	57A6(5)	6335(5)	2095(3)
C(11)	947A(3)	487(3)	-26(2)
C(12)	9136(4)	1455(4)	-1029(3)
C(13)	7877(3)	1877(3)	-162(3)
C(14)	8371 (3)	862(3)	807(2)
$F(121)$	8824(7)	1130(6)	-2352(3)
$F(122)$	10587(6)	2873(5)	-1028(6)
$F(131)$	6182(2)	1380(3)	-821(2)
$F(132)$	8230(3)	3399(2)	364 (3)
$F(181)$	7846(3)	511 (3)	1997(2)

Table 11 Anisotropic thermal parameters ($\AA \times 103$)

	U11	U22	U33	U23	U13	U12
Fe	39(1)	38(1)	39(1)	10(1)	8(1)	11(1)
C(1)	43(1)	57(1)	58(1)	11(1)	19(1)	8(1)
C(2)	47(1)	68(1)	57(1)	11(1)	12(1)	28(1)
C(3)	60(1)	58(1)	69(1)	15(1)	23(1)	28(1)
C(A)	57(1)	61(1)	50(1)	1(1)	18(1)	17(1)
C(5)	57(1)	65(1)	47(1)	18(1)	20(1)	17(1)
C(6)	68(2)	62(1)	95(1)	10(1)	26(1)	-3(1)
C(7)	63(1)	128(3)	71(1)	17(2)	1 (1)	Q1(2)
C(8)	108(2)	67(2)	117(2)	28(2)	33(2)	88(2)
C(9)	82(2)	89(2)	72(2)	-21(1)	14(1)	12(2)
C(10)	101 (2)	109(2)	66(1)	87(2)	28(1)	33(2)
C(11)	88(1)	57(1)	5\&(1)	12(1)	0 (1)	16(1)
C(12)	68(1)	89(2)	$61(2)$	29(1)	9(1)	35(1)
C(13)	61(1)	68(1)	76(1)	$7(1)$	-4(1)	28(1)
C(18)	56(1)	67(1)	56(1)	8(1)	9(1)	19(1)
$F(121)$	255(4)	197(3)	80(2)	56(2)	40(2)	163(4)
$F(122)$	137(2)	128(2)	217(8)	73(3)	59(3)	47(2)
F(131)	67(1)	108(1)	109(1)	8(1)	-9(1)	47(2)
$F(132)$	112(1)	72(1)	12\&(2)	7(1)	2(1)	43(1)
$F(181)$	105(1)	116(1)	82(1)	28(1)	28(1)	46(1)

Table 12 Bond lengths (A)

$F \theta-C(1)$	2.106(2)	$F \cdot-C(2)$	2.099(3)
Fe-C(3)	2.093(3)	$\mathrm{Fe}-\mathrm{C}(\mathrm{A})$	$2.101(3)$
Fe-C(5)	$2.107(3)$	$C(1)-C(2)$	1.829(A)
$C(1)-C(5)$	1.823(3)	$C(1)-C(6)$	1.499(A)
$C(2)-C(3)$	1.20(3)	$C(2)-C(7)$	1.893(A)
$C(3)-C(Q)$	1.420(A)	$C(3)-C(8)$	1.500(5)
$C(4)-C(5)$	1.427(4)	$\mathrm{C}(\mathrm{Q})-\mathrm{C}(\mathrm{P})$	1.898(4)
C(5)-C(10)	1.49\&(5)	C(11)-C(12)	1.843(5)
$C(14)-C(14)$	1.381(4)	C(11)-C(14')	4.825(6)
C(12)-C(13)	1.523(5)	$C(12)-F(121)$	4.251 (A)
$C(12)-F(122)$	1.859(5)	C(13)-C(14)	1.298(8)
C(13)-F(131)	1.364(3)	$C(13)-F(132)$	1.350(3)
$C(1 A)-F(181)$	1.316(3)		

Table 13 Bond angles (${ }^{\circ}$)

$C(1)-F e-C(2)$	39.7(1)	$C(1)-F e-C(3)$	66.3(1)
$C(2) \cdot \mathrm{Fe}-\mathrm{C}(3)$	39.6(1)	$C(1)-F \theta-C(4)$	66.8(1)
$C(2)-F e-C(Q)$	66.7(1)	$C(3) \cdot F \theta \cdot C(4)$	39.6(1)
$C(1)-F e-C(5)$	39.5(1)	$C(2)-F \cdot C(5)$	66.6(1)
$C(3)-F e-C(5)$	66.2(1)	$C(A)-F \theta \cdot C(5)$	39.6(1)
$F 8-C(1)-C(2)$	69.9(1)	Fe-C(1)-C(5)	70.3(1)
C (2)-C(1)-C(5)	108.3(2)	$F \theta-C(1)-C(6)$	127.7(2)
$C(2)-C(1)-C(6)$	126.0(2)	$C(5)-C(1)-C(6)$	125.7(2)
$\mathrm{Fe}-\mathrm{C}(2)-\mathrm{C}(1)$	70.8(1)	FO-C(2)-C(3)	70.0(1)
$C(1)-C(2)-C(3)$	107.8(2)	$F \otimes-C(2)-C(7)$	127.7(2)
$C(1)-C(2)-C(7)$	128.3(2)	$C(3)-C(2)-C(7)$	426.2(3)
$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{C}(2)$	70.4(2)	ForC(3)-C(4)	70.5(2)
$C(2)-C(3)-C(4)$	108.7(2)	$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{C}(8)$	126.8(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	126.9(3)	$C(8)-C(3)-C(8)$	12\&.8(2)
$\mathrm{Fe}-\mathrm{C}(8)-\mathrm{C}(3)$	69.9(1)	$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(5)$	70.4.1
$C(3)-C(4)-C(5)$	107.8(2)	$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(9)$	126.1
$C(3)-C(4)-C(9)$	126.7(3)	$C(5)-C(4)-C(9)$	125.6(3)
$\mathrm{Fe}-\mathrm{C}(5)-\mathrm{C}(1)$	70.2(1)	$F e-C(5)-C(4)$	69.9(1)
$C(1)-C(5)-C(4)$	107.8(2)	$\mathrm{Fe}-\mathrm{C}(5)-\mathrm{C}(10)$	127.3(2)
$C(1)-C(5)-C(10)$	126.4(2)	$C(1)-C(5)-C(10)$	125.7(2)
C(12)-C(14)-C(14)	91.9(2)	$C(12)-C(11)-C(11)$	132.7(3)
C(1A)-C(11)-C(11)	135.3(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	90.0(2)
$C(11)-C(12)-F(121)$	127.9(4)	$C(13)-C(12)-F(121)$	123.1 (4)
$C(11)-C(12)-F(122)$	145.0(3)	$C(13)-C(12)-F(122)$	108.6(3)
$F(121)-C(12)-F(122)$	92.8(4)	$C(12)-C(13)-C(14)$	84.5(2)
$C(12)-C(13)-F(131)$	115.5(2)	$C(18)-C(13)-F(131)$	146.8(2)
$C(12)-C(13)-F(132)$	117.7(2)	$C(18)-C(13)-F(132)$	118.1(2)
$F(131)-C(13)-F(132)$	104.5(3)	$C(11)-C(14)-C(13)$	93.5(2)
$C(11)-C(14)-F(141)$	136.6(4)	$C(13)-C(14)-F(141)$	129.8(3)

3) Cowsial Siruciure af Ee(C5Ale5) $2 \operatorname{Cin} 14$ (155)

Crosial Daia

$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~F}_{14 \mathrm{~F}}$
Crysial sysiem:
Space group:
Cell dimensions:
radiation:

Dava collection
iemperaiture:
295K
ioial daia measured:
2685
iotal daia unique:
ioial daia observed:
Final 8 value

Al.w. 712.4
triclinic
$\overline{9} 1$
$a=9.122(1)$ 承
$b=9.640(1)$ A
$c=9.706(2)$ A
$\alpha=97.81(1)^{\circ}$
$\beta=95.04(1)^{\circ}$
$y=145.83(1)^{\circ}$
$U=750.7$ Å
$Z=1$
$D_{C}=1.576 \mathrm{gcm}^{-3}$
$F(000)=362$
Afo-Ka
$\mu=0.061 \mathrm{~cm}^{-1}$
$\left(1.5^{\circ} \leq \theta \leq 25^{\circ}\right)$
$0.065\left(R_{W G}=0.07 \Delta\right)$

Table 14 Fractional atomic co-ordinates ($x^{10} 0^{4}$)

Atom	x	y	2
Fe	5000	5000	5000
C(1)	7480(6)	7052(5)	5886(5)
C(2)	6602(7)	6472(5)	$6918(5)$
C(3)	4998(7)	6019(6)	7057(4)
$C(\mathrm{Q})$	459\&(7)	6810(5)	6058(5)
C(5)	5931(7)	7QAQ(5)	5315(5)
C(6)	8849(8)	7561 (9)	5413(9)
C(7)	7527(10)	558\&(9)	$7811(7)$
C(8)	3971(11)	5255(9)	8107(6)
C(9)	3039(10)	6997(9)	5890(8)
C(10)	6050(10)	8424(7)	Q206(7)
C(11)	9552(5)	377(5)	-287(5)
C(12)	8053(7)	337(8)	173(6)
C(13)	7492(10)	1236(12)	-742(9)
C(14)	8734(9)	1867(8)	-16\&7(8)
C(15)	9913(8)	1209(8)	-1352(7)
$F(121)$	8167(6)	889(6)	1526(A)
$F(122)$	6808(6)	-1203(6)	12(8)
$F(131)$	6066(8)	179(14)	-1618(12)
$F(132)$	7107(17)	2186(14)	-100(10)
$F(181)$	9473(9)	1530(13)	-1349(13)
$F(142)$	8066(12)	1530(13)	-2960(6)
$F(151)$	11081(10)	1505(11)	-2027(10)

Table 15 Anisotropic thermal parameters ($\AA \times 103$)

	U11	U22	U33	U23	U13	412
Fe	50(1)	$42(1)$	38(1)	8 (1)	7(1)	25(1)
C(1)	64(3)	53(2)	65(3)	8(2)	1 (2)	19(2)
C(2)	80(3)	56(2)	49(2)	Q(2)	-9(2)	29(2)
C(3)	93(3)	61 (2)	83(2)	6 (2)	$1{ }^{(2)}$	$81(2)$
C(8)	92(3)	58(2)	58(2)	7(2)	16(2)	47(2)
C(5)	89(3)	86(2)	59(2)	10(2)	$8(2)$	34(2)
c(6)	6\&(3)	98(4)	118(5)	31 (4)	8(3)	19(3)
C(7)	112(5)	99(d)	75(3)	15(3)	-22(3)	53(4)
C(8)	130(6)	100(4)	62(3)	28(3)	40(3)	55(4)
C(9)	118(5)	108(5)	99(4)	$22(8)$	30(8)	$83(8)$
C(10)	121(5)	61(3)	8\&(3)	29(3)	18(3)	86(3)
C(14)	51(2)	54(2)	60(2)	13(2)	13(2)	25(2)
C(12)	71 (3)	103(8)	78(3)	26(3)	25(3)	51 (3)
C(13)	108(5)	176(8)	118(5)	86(5)	28(8)	112(6)
C(18)	98(4)	9\&(4)	101(8)	39(3)	15(3)	62(4)
C(15)	82(4)	88(8)	108(8)	50(3)	39(3)	52(3)
F(121)	120(3)	165(4)	77(2)	13(2)	30(2)	93(3)
$F(122)$	73(3)	116(8)	212(6)	20(4)	Q8(3)	25(2)
$F(131)$	90(4)	320(12)	279(10)	147(9)	-28(5)	62(5)
$F(132)$	483(15)	358(11)	227(8)	153(8)	203(9)	385(12)
$F(181)$	189(5)	92(3)	462(15)	9\&(8)	15(7)	67(8)
F(142)	261 (8)	348(11)	97(4)	80(5)	28(8)	225(9)
F(151)	228(7)	290(9)	293(9)	240(8)	200(7)	203(7)

Table 16 Bond lengths (\mathcal{A})

$F \theta-C(1)$	2.09 4 (Q $^{\text {) }}$	$\mathrm{Fe}-\mathrm{C}(2)$	2.092(A)
Fe-C(3)	$2.102(5)$	Fo-C(A)	2.093(6)
$F e-C(5)$	2.093(5)	$C(1)-G(2)$	4.420(7)
$C(1)-C(5)$	1.825(9)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.898(9)
$C(2)-C(3)$	$1.427(9)$	$C(2)-C(7)$	1.501(11)
$C(3)-C(Q)$	4.429(8)	$C(3)-C(8)$	1.493(9)
$C(A) \cdot C(5)$	1.416(8)	$C(2)-C(9)$	1.50\&(12)
C(5)-C(10)	1.506(9)	C(14)-C(12)	1.426(9)
$C(11)-C(15)$	1.369(9)	C(11)-C(14)	1.838(11)
$C(12)-C(13)$	1.522(15)	$C(12)-F(121)$	$1.326(7)$
$C(12)-F(122)$	1.398(8)	$C(13)-C(1 Q)$	1.965(12)
$C(13)-F(131)$	1.365(10)	$C(13)-F(132)$	$1.231(20)$
$C(18)-C(15)$	1.893(13)	$C(14)-F(184)$	1.320(9)
$C(14) \cdot F(142)$	1.295(10)	$C(15)-F(151)$	1.2\&7(12)

$C(1)-F e-C(2)$	39.6(2)	$C(1) \cdot F \otimes C(3)$	66.8(2)
$\mathrm{C}(2)$ - $\mathrm{Fe}-\mathrm{C}(3)$	39.8(2)	$C(1) \cdot F \otimes-C(b)$	66.6(2)
$C(2)-F e-C(A)$	66.8(2)	$C(3)-F e-C(Q)$	39.8(2)
$C(1)-F e-C(5)$	39.8(2)	$C(2) \cdot F e-C(5)$	66.7(2)
$\mathrm{C}(3) \cdot \mathrm{Fe}-\mathrm{C}(5)$	66.8(2)	$C(4)-F e-C(5)$	39.6(2)
FO-C(1)-C(2)	70.1(2)	$F 8 \cdot C(1)-C(5)$	70.0(2)
$C(2)-C(1)-C(5)$	107.9(5)	$F 8-C(4)-C(6)$	128.1
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	126.1 (6)	$C(5)-C(1)-C(6)$	125.9(6)
Fe-C(2)-C(1)	70.3(2)	$F e-C(2)-C(3)$	70.5(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.5(5)	$F \theta-C(2)-C(7)$	127.5(b)
$C(1)-C(2)-C(7)$	126.9(6)	$C(3)-C(2)-C(7)$	124.6(5)
$F 8-C(3)-C(2)$	69.7(3)	$F \otimes-C(3)-C(8)$	69.7(3)
$C(2)-C(3)-C(4)$	107.1(5)	$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{C}(8)$	128.2(4)
$C(2)-C(3)-C(8)$	126.6(6)	$C(4)-C(3)-C(8)$	126.2(7)
$F \theta-C(A)-C(3)$	70.4(3)	$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(5)$	70.2(3)
$C(3)-C(4)-C(5)$	108.6(6)	$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(9)$	127.5(A)
$C(3)-C(4)-C(9)$	125.0(5)	$C(5)-C(4)-C(9)$	126.3(6)
$F e-C(5)-C(1)$	70.1 (3)	$\mathrm{Fe}-\mathrm{C}(5)-\mathrm{C}(4)$	70.2(3)
$C(1)-C(5)-C(4)$	107.9(5)	Fe-C(5)-C(10)	127.3(3)
C(1)-C(5)-C(10)	125.8(6)	C(8)-C(5)-C(10)	126.2(7)
$C(12)-C(11)-C(15)$	109.0(6)	C(12)-C(11)-C(11)	124.2(6)
C(15)-C(11)-C(11')	126.8(6)	C(14)-C(12)-C(13)	106.5(6)
$C(11)-C(12)-F(121)$	116.7(5)	$C(13)-C(12)-F(121)$	110.4(7)
$C(11)-C(12)-F(122)$	141.6(6)	$C(13)-C(12)-F(122)$	109.9(6)
$F(121)-C(12)-F(122)$	101.6(6)	$C(12)-C(13)-C(14)$	107.2(8)
$C(12)-C(13)-F(131)$	107.8(9)	$C(14)-C(13)-F(131)$	106.6(8)
$C(12)-C(13)-F(132)$	115.1 (9)	$C(14)-C(13)-F(132)$	115.8(10)
$F(131)-C(13)-F(132)$	103.9(9)	$C(13)-C(14)-C(15)$	104.9(8)

$C(13)-C(1 Q)-F(1 \& 1)$	$110.6(9)$	$C(15)-C(1 Q)-F(141)$	$111.8(6)$
$C(13)-C(1 Q)-F(142)$	$111.7(7)$	$C(15)-C(1 Q)-F(142)$	$114.1(9)$
$F(141)-C(14)-F(142)$	$103.9(9)$	$C(11)-C(15)-C(14)$	$112.0(6)$
$C(11)-C(15)-F(151)$	$128.8(9)$	$C(14)-C(15)-F(151)$	$119.1(8)$

Aparadix 1
 Colloquia Conírrances and Induction Course

The goard of Studies in Chemisiny requires that each posigraduate thesis contains an appendix listing:

1) all research colloquia, seminars and leciures arranged by the Depariment of Chemistry during the period of the authors residence as a posigraduate siudent.
2) all research conierences atrended and papers presented by the author during the period in which the research for the thesis was carried out.
3) details of the posigraduate induction course.
4) Besearch Colloquia Seminars and Leciures
(Those attended are marked ")
6.10.88 Prof. R. Schmuizler (Technische Univerität, Braunschweig), - 'Fluorophosphines Revisited. New Coniributions io an Old Theme'.
18.10.88 Dr. J. Dingwall (Ciba Geigy),

-

'Phosphorus-containing Amino Acids: Biologically Active Natural and Unnasural Producis'.
18.10.88 Dr. C. J. Ludman (Durham University), 'The Energetics of Explosives'.

21.10.88 Proí. P. von Rague Schleyer (Universiiäß Erlangen Nürnberg), The Fruisful Inierplay Borvean Calculational and Exporimenial Chemisiny.

27.10.88 Pror. WY. C. Rees (Imperial Colloge),
'Some veny Heterocyclic Compounds'.
9.14.88 Or. G. Singh (Teessids Polyrechnic),

- 'Towands Third Generation Anti-Loukaemics '.
10.11.88 Prof. J. I. G. Cadogan (British Petroleum),
- \quad From Pure Science O Profil'.
16.11.88 Dr. K. A. Arclauchlan (Oxford University), 'The Effect of Rlagnetic Fields on Chemical Reactions'.
24.11.88 Dr. R. R. Baldyin and Dr. R. W. Walker (Hull Universiy), 'Combustion - Some Burning Problem'.
1.12.88 Dr. R. Snaith (Cambridge University), 'Egyptian Alummies: What, Where, Why and How.
2.12.88 Dr. G. Hardgrove (St. Olaí College, U.S.A.), 'Polymers in the Physical Chemisiry Laboratory'.
9.12.88 Or. C. Jäger (Friedrich-Schiller Univarsity G.D.R.), 'A.M.R. Investigations of Fast Ion Conductors of the ANSICON Type'.
25.1.89
26.1 .89
2.2.89
-

9.2.89
-
13.2 .89

Prof̂. R. R. Schrock (凡lassachusetts Instiiuie of̂ Technology), 'Recent Advances in Living Metathesis'.
15.2.89 Dr. A. R. Butler (Si. Andrews University),
16.2.89 Proí. J. B. Ayleti (Queen Alary College), 'Silicon-Based Chips:- The Chemistis Contribution'.
22.2.89 Dr. G. MacDougall (Edinburgh University), 'Vibrational Spectroscopy of Model Catalyxic Systems'.
23.2.89

Dr. B. F. G. Johnson (Cambridge University), 'The Binary Carbonyls'.

Dr. R. J. Erringion (Newcasile University), 'Polymatallaie Assembly in Organic Solvenis'.
9.3.89 Dr. I. Marko (Shefrield Universiy), 'Caialyic Asymmerric Osmylation of Olenins'.
15.3.89 Or. R. Aveyard (Hull University), 'Suriacianis ầ your Suriace'.
20.4.89 Dr. Ah. Casey (Saliord University),
'Sulphorides in Siereoselective Synihesis'.
27.4.89 Or. D. Crich (University Colloge, London), - 'Some Alovel Uses of Free Radicals in Organic Synihesis'.
3.5.89

Dr. P. C. 8. Page (Livemool University),
*
'Stereocontrol of Organic Reacrions Using 1,3-dithiane-1-oxides'.
10.5.89 Prof. P. B. Wells (Hull University), 'Catalyst Characierisation and Acivity'.
11.5.89 Dr. J. Frey (Southampion University), 'Spectroscopy of the Reaction Path: Photodissociation Raman Spectra of NOCI'.
16.5.89

Dr. R. Stibr (Czechoslovak Academy of Sciences), 'Recent Developments in the Chemistry of Intermediate-Sited Cańoranes'.
17.5.89
a
23.5.89

Proi. P. Paeczold (Aachen), 'Iminoboranes KB=AR: Inorganic Aceiylanes?'.
15.6.89 Prof. ل. Pola (Cachoslovak Academy of Sciences), 'Carbon Dioride Laser Induced Chemical Reactions - New Pathways in Gas-Phase Chemisiny.
17.10 .89

Dr. F. Palmer (Notingham University).
'Thunder and Lightning'.
25.10.89 Prof̂. C. Floriani (University of Lausanne, Switzerland), 'Aolecular Aggregates - A Bridge betmeen Homogeneous and Heierogeneous Sysiems'.
1.11.89 Dr. J. P. S. Badyal (Dumam University), 'Breakihroughs in Heterogeneous Catalysis'.
9.11.89 Prof. N. N. Greenwood (Leeds University), -Novel Clusier Geometries in Aleialloborane Chemisiny.
10.11.89 Prof. J. E. Bercaw (California Instifute of Technology), 'Synîheric and Alechaniskic Approaches to Ziegler-Naita Polymerisation Of Olefins '.
13.11.89 Dr. J. Becher (Odense University),

- Synthesis of New Aiacrocyclic Sysiems using Heterocyclic Building Blocks'.

16.14 .89
 Dr. D. Parker (Durham University), 'Aacrocycles, Drugs and Rock 'n' Roll'.

29.11.89 Prof. D. J. Cole-Hamifon (Si. Andrews University), 'Aevy Polymers from Homogeneous Caralysis'.

30.14.89 Dr. Ad. N. Hughes (King's College London), 'A Bug's Eyo Vievs of the Periodic Tabla'.
4.12.89 Dr. D. Graham (British Petroleum), 'How Proteins Absoń yo Intenfaces'.
6.12.89 Dr. R. L. Powell (I.C.I),

- 'The Development of C.F.C. Replacements'.
7.12.89 Dr. A. Bufler (St. Andrews University), 'The Discovery of Penicillin: Facts and Fancies'.
13.12.89 Dr. J. Klinowski (Cambridge University), 'Solid Siaie N.AM.R. Siudies of Zeolite Catalysis'.
15.12.89 Proí. R. Huisgen (Universiiäß München), - 'Recent Rlechanistic Studies of [2+2] Adoditions'.
24.1.90 Dr. R. N. Perutz (York University),
* 'Ploting the Course of C-H Activations with Organometallics'.
31.1.90 Dr. U. Dyer (Glaxo),
'Synthesis and Conformation of C-Glycosides'.
1.2.90 Proí. J. H. Holloway (Leicester University),
'Noole Gas Chemisiny.
7.2.90 Dr. D. P. Thompson (Newcastle University),
'The Role of Nitrogen in Esiending Silicaie Crysial Chemisiry'.
8.2.90 Rev. A. Lancesier (Kimbotion Fireworks), - 'Fireworks - Principles and Pracrice'.
12.2.90 Proí. L. Lunazzi (University of Bologna), 'Application of Dynamic N.AA.R. So the Siudy of Conformational Enanถiomenism'.
14.2.90 Proî. D. Sumon (Simon Fraser University, Vancouver B.C.), 'Synthesis and Applications of Dinitrogen and Diazo Compounds of Rhenium and Inidium'.
15.2.90 Prof. L. Crombis (Notringham University), 'The Chemistry of Cannabis and Khat'.
21.2.90 Dr. C. Bleasdale (Newcasile Univarsity), 'The Alode of Action of some Anti-iumour Agents '.
22.2.90 Prof D. T. Clark (I.C.I. Wition),
'Spatially Resolved Chemistry (using Nature's Paradigm in the Advanced Ahaierials Area)'.
28.2.90 Dr. R. K. Thomas (Oxford University),
'Neutron Reflectometry from Surfaces'.
8.3.90 Dr. A. K. Cheatham (Oxiord University), 'Chemisiny of Zeolite Cages'.
21.3.90 Dr. l. Powsis (Aoxingham University), 'Spinning off in a hufr: Phorodissociaxion of Mushyl lodiode'.
23.3.90 Prof. ل. Mo. Bowman (Emony University), 'Fitsing Experiment with Theory In Ar-OH'.
9.7.90 Proif. L. S. Gemman (U.S.S.R. Academy of Sciences, Aloscows),
'New Syntheses in Fluoroaliphatic Chemistry: Recent Advances in the Chemistry of Fluoninated Oxiranes'.
9.7.90 Prof. V. E. Platonoy (U.S.S.R. Academy of Sciences, Novosibirsk),
'Polyfluoroindanes: Synthesis and Transformation '.
9.7.90 Proí. I. N. Rozhkov (U.S.S.R. Academy of Sciences, Aloscows), 'Reactivity of Perfluoroalkyl Bromides'.

14.10.90 Dr. W. A. Alacdonald (I.C.I. Wilion), 'Alaterials for the Space Age'.

24.10.90 Dr. Ah. Bochmann (University ô̂ East Anglia),。
'Syntihesis, Reactions and Catalytic Activity of Cationic Titanium Alky/s'.
26.10.90 Proi. R. Soulen (South Westem University, Toxas),
31.10.90 Dr. R. Jackson (Newcasill University),
'Now Synthetic Miethods: α-aminoacids and Small Rings'.
1.11.90 Dr. N. Logan (Notringham University), 'Rocker Propellanis'.
6.11 .90

Dr. P. Kocovsky (Uppsala),
'Stereo-controlled Reactions Alediated by Transition and NonTransition Aletals'.
7.11.90 Dr. D. Gerrard (British Peiroleum), 'Raman Spectroscopy for Industrial Analysis'.
8.11.90 Dr. S. K. Scott (Leeds University), 'Clocks, Oscillations and Chaos'.
14.11.90 Prof. T. Bell (SUAYY, Sioney Brook, U.S.Â.),

- 'Functional Riolecular Archisecture and Molecular Recognition'.
21.11.90 Prof. J. Pritchard (Queen Alary \& Westiield College, London), 'Copper Surfaces and Catalysis'.
$\begin{array}{ll}\text { 28.11.90 } & \text { Dr. B. J. Whitaker (Leeds University), } \\ & \text { 'Two-Dimentional Velocity Imaging of State-Selected Reaction } \\ & \text { Products'. }\end{array}$
29.11.90 Prof. D. Crout (Waraick University),

。 'Enzymes in Organic Synthesis'.
5.12.90 Dr. P. G. Pringle (Bristol Universizy),
13.12.90 Proí. A. H. Cowley (University of Texas), 'Nevy Organomeiallic Roures io Electronic Materias'.
15.1.91 Dr. B. J. Alder (Lawrence Livermore Laborarories, California), 'Hydrogen in all iss Glony.
17.1.91 Dr. P. Sarre (Notringham University), 'Comer Chemistry'.
24.1.91 Dr. P. J. Sadler (Birkbeck College, London), 'Design of Inorganic Drugs: Precious Aheials, Hyperiension 4 H.I.V.'.
30.1.91 Proî. E. Sinn (Hull University),
'New Results in High T_{c} Superconductivity'.
31.1.91 Dr. D. Lacey (Hull University), 'Liquid Crystals'.
6.2.91 Dr. R. Bushby (Leeds University), 'Biradicals and Organic Magnets'.
14.2.91 Dr. M. C. Petty (Durham University), 'Molecular Electronics'.
20.2.91 Prof B. L. Shaw (Leeds University),
28.2.91 Dr. J. Brown (Oxford Universiy), 'Can Chemisiny Provide Caialysis Superior io Enzymes?.
6.3.91 Dr. C. Al. Dobson (Oxford Univarsity), 'A.AN.R. Siudies of Dynamics in Arolocular Cnysials'.
7.2.91 Dr. d. Markham (I.C.I. Pharmaceuticals), 'O.N.A. Fingenprinuing'.
24.4.91 Proir. R. R. Schrock (Rassachusets Instituie of Technology), 'Alietal-Ligand Multiple Bonds and Adeiathesis Initiators'.
25.4.91 Proî. T. Hudlicky (Virginia Polẏechnic Insiituie), -Biocaralysis and Symmairy Based Approaches to the Ericient Synthesis of Comples Natural Products'.
20.6.91 Prof. M. S. Brookhart (Universiny of North Carolina), 'Olefin Polymerisations, Oligomerisations and Dimenisations using Electrophilic Lait Transition Metal Catalysis'.
29.7.91 Dr. M. A. Brimble (Miassey University, New Zealand), 'Syntheitic Studies Towands the Antibiotic Griseusin-A'.
2) Besearch Conferences Amended

December 4988.
Royal Society of Chemistry Perkin Division,
One Day Aleeting.
York University.

April 1989.
North East Graduate Symposium.
Durham University.

May 1989.
Royal Society of Chemistry Heterocyclic Group,
9th Lakeland Heterocyclic Symposium.
Grasmere.

July 1989.
Royal Society of Chemistry Heterocyclic Group,
Posigraduate Heterocyclic Symposium.
Sheffield University.

December 1989.
Royal Society of Chemistry Perkin Division,
One Day Meeting.
Durham University.

April 1990.
North East Graduaie Symposium.
Newcasile University.

July 1994.
Royal Society of Chemisiny Heierocyclic Group, Posigraduaie Heierocyclic Symposium.

Leeds University.

Sepiember 1991.
13th International Symposium on Fluorine Chemisiny,
Ruhr Universizää,
Bochum, Federal Republic of Germany.

3) Posioraduaia Induction Course

This course consists of a series of one hour lectures on the services available in the department.

Department organisation	Dr. E. J. F. Ross.
Saiety matters	Dr. M. R. Crampton.
Electrical appliances	AAr. B. T. Barker
Chromatography and microanalysis	Aaf. T. F. Holmes.
Aiomic absorptiomeiry and inorganic analysis	Aftr. A. Couts.
Library facilitios	MArs. M. Hird.
Mass spectromeiry	Or. M. Jones.
Nuclear magnetic resonance spectroscopy	Dr. R. S. Mawhews.
Glassblowing iechniques AMr. R. Han	and AMr. G. Haswell.

1. R. C. Weast, Mandbook of Chemisiny and Physics, CRC Press, Boca Raion, 63rd Ed. 1982.
2. R. E. Banks and J. C. Tatlow, J. Fluorine Chem., 1986, 33, 227.
3. W. A. Sheppard and C. Ah. Sharis, Organic Fluorine Chemisiry, Benjamin, New York, 1969.
Q. R. E. Banks, Fluorocarbons and iteir Derivaives, Macdonald, 2nd Ed. 1970.
4. R. D. Chambers, Fluorine in Organic Chemisiry, Wiley, New York, 1973.
5. AA. Hudlicky, Chemisiry of Organic Fluorine Compounds, Ellis Honmood, Chichester, 2nd Ed. 1976.
6. J. C. Tatlow, J. Fluorine Chem., 198\&, 25, 99.
7. J. S. C. Alarais, Ondersstepoon J. Ver. Sci. Animal Ind., 19\&\&, 20, 67; Chem. Abs., 39:\&1165.
8. ㄱ. E. Banks, J. Fluorine Chem., 1986, 33, 3.
9. R. E. Banks and J. C. Tatlow, J. Fluorine Chem., 1986, 33, 71.
10. H. Goldwhite, J. Fluorine Chem., 1986, 33, 109.
11. G. Camaggi, S. F. Campbell, D. A. A. Perry, R. Siephens, and J. C. Tatlow, Teirahedron, 1966, 22, 1755.
12. G. Camaggi, lial P 758 250/1967; Chem. Abs., 68:77946z.
13. G. Camaggi, J. Chem. Soc., C, 1971, 2382.
14. R. L. Soulen, S. K. Choi, and J. D. Park, J. Fluorine Chem., 1973, 3, 141.
15. R. E. Cobbledick and F. W. B. Einstein, Acta Crystallogr., Sect. B, 1977,圆33, 2339.
16. F. W. B. Einstein, A. C. Willis, W. R. Cullen, and R. L. Soulen, J. Chem. Soc., Chem. Commun., 1981, 526.
17. W. E. Brition, J. P. Ferraris, and R. L. Soulen, J. Am. Chem. Soc., 1982, 1(2) 5322.
18. J. D. Park, S. K. Choi, and H. E. Aomine, J. Org. Chem., 1969, 3@, 2521.
19. Daikin Kogyo Co., Lid., Jap P 85 328/4982; Chem. Abs., 97:127022s.
20. D. J. Burton and S. W. Hansen, J. Fluorine Chem., 1986, 31, 461.
21. D. J. Burton and S. W. Mansen, J. Am. Chem. Soc., 1986, 108, 4229.
22. W. R. Dolbier, Jr., H. Koroniak, D. J. Buñon, P. L. Heinze, A. R. Bailey, G. S. Shaw, and S. W. Hansen, d. Am. Chem. Soc., 1987, 100, 219.

2A. P. L. Heinze and D. J. Bunton, J. Fluorine Chem., 1986, 3f, 115.
25. S. A. Fuqua, W. G. Duncan, and R. RA. Silversiein, J. Org. Chem., 1965, 30, 1027.
26. F. E. Herkes and D. J. Burion, J. Org. Chem., 1967, 32, 1341.
27. D. G. Naae and D. J. Burion, J. Fluorine Chem., 1971, 5, 123.
28. ©. J. Burion, H. S. Kesling, and D. G. Naae, J. Fluorine Chem., 1981, ๆ8, 293.
29. D. J. Burion and E. A. Zawistowski, J. Fluorine Chem., 1974, 1, 3 \&7.
30. D. J. Burion, Y. Inouye, and J. A. Headley, J. Am. Chem. Soc., 1980, 102, 3980.
31. D. J. Burion and H. W. Tsao, J. Fluorine Chem., 1988, \&0, 183.
32. E. T. 凡fcBee, O. R. Pierce, and Af. C. Chen, J. Am. Chem. Soc., 1953, 75, 2324.
33. P. Tarrant and A. MA. Lovelace, J. Am. Chem. Soc., 1954, 76, 3466.
34. G. Crane and W. S. Barnhant, USP 2686 207/195\&; Chem. Abs., 49:10998\%.
G. S. Krasnikova, L. S. German, and I. L. Knunyants, IZY. Akad. Nauk SSSR, Ser. Khim., 1973, 459.
36. R. N. Haszeldine, J, Chem. Soc., 1954, 4026.
37. R. A. Bekker and V. Ya. Popkova, Izv. Akad. Nauk SSSR, Ser. Khim., 1980, 2546.
38. R. A. Bekker, V. Ya. Popkova, and I. L. Knunyanis, Dokl. Akad. Nauk SSSR, 1978, 239, 330 [Chem.]; Chem. Abs., 89:42348n.
39. R. N. Haszeldine and J. E. Osboupne, J. Chem. Soc., 1955, 3880.
40. A. B. Woodward and R. Hofmann, J. Am. Chem. Soc., 1965, 87, 395.

Q1. J. P. Chesick, J. Am. Chem. Soc., 1966, 88 , 4800.
42. W. R. Dolbier, Jr., H. Koroniak, D. J. Burion, A. R. Bailey, G. S. Shaw, and S. W. Hansen, J. Am. Chem. Soc., 1984, 106, 1874.
43. R. D. Chambers, C. G. P. Jones, G. Taylor, and R. L. Powell, J. Chem. Soc., Chem. Commun., 1979, 96\&.

Q4. R. L. Pruek, C. T. Bahner, and H. A. Smisth, J. Am. Chem. Soc., 1952, 7@, 1638.
45. R. D. Chambers, G. Taylor, and R. L. Powell, J. Chem. Soc., Perkin Trans. 1, 1980, 426.
46. G. Taylor, Ph.D. Thesis, Durham University, 1979.
47. R. N. Haszeldine, J. Chem. Soc., 1952, 4423.

Q8. V. A. Patrov, G. G. Belen'kii, and L. S. German, Izy. Akad. Nauk SSSR, Ser. Khim., 1981, 1920.
49. K. Kondo and T. Yanagihara, Jap P 00 305/1980; Chem. Abs., 92:163591g.
50. V. Dedek and Z. Chvatal, Czech P 200 953/1983; Chem. Abs., 98:126788e.
51. J. E. Fearn, D. W. Brown, and L. A. Wall, J. Polymer Sci., Pit A-1, 1966, Q, 831.
52. J. E. Fearn, J. Res. Nat. Bur. Siand., Sect. A, 1971, 75, 41; Chem. Abs., 7\&:126097h.
53. E. W. Cook, Synthesis, 1971, 369.
54. I. L. Knunyants, E. G. Ter-Gabrielyan, Yu. V. Zeifman, Z. V. Safronova, N. P. Gambaryan, E. I. Alysoy, A. I. Luisenko, and P. V. Patrouskii, Dokl. Akad. Nauk SSSR, 1976, 228, 134A; Chem. Abs., 85:142515a.
55. E. G. Ter-Gabrielyan, N. P. Gambaryan, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 383.
56. A. A. Stepanov, G. Ya. Bekker, A. P. Kurbakova, L. A. Leites, and I. N. Rozhkov, Izy. Akad. Nauk SSSR, Ser. Khim., 1981, 2746.
57. A. Almenningen, O. Basiansen, and M. Traetenoerg, Acia Chem. Scand., 1958, 12, 1221.
58. I. L. Alber's, H. F. Schasiar III, Chem. Phys. Lerf, 1989, 160, 375.
53. R. M. Conrad and D. A. Dows, Spectrochim. Acta, 1965, 24, 1039.
60. R. A. Beaudet, J. Am. Chem. Soc., 1965, $87,1390$.
61. J. C. Albright and J. A. Nielsen, d. Chem. Phys., 1957, $26,370$.
62. C. R. Brunde and Ah. B. Robin, J. Am. Chem. Soc., 1970, 22, 5550.
63. C.-H. Chang, A. L. Andreassen, and S. H. Bauer, J. Org. Chem., 1971, 36, 920.
64. K. Hirao, H. Nakatsuji, and H. Kato, J. Am. Chem. Soc., 1973, 95, 31.
65. C. J. Wurrey, W. E. Bucy, and d. R. Durig, J. Chem. Phys., 1977, 27, 2765.
66. D. A. Dixon, J. Chem. Phys., 4986, 90, 2038.
67. 1. L. Knunyanis, B. L. Dyaikin, and E. P. Mochalina, Izy. Akad. Nauk SSSR, Ser. Khim., 1962, 1483.
68. N. B. Kaz'mina, G. S. Krasnikova, ह. P. Lur'e, E. I. Alysov, and I. L. Knunyants, Izy. Akad. Nauk SSSR, Ser. Khim., 1975, 2525.
69. AA. R. Bryce, R. D. Chambers, A. A. Lindley, and H. C. Fielding, J. Chem. Soc., Perkin Trans. 1, 1983, 2451.
70. V. Dedek and Al. Kovac, Collect. Czech. Chem. Commun., 1979, QQ, 2660; Chem. Abs., 92:75760f.
71. WY. T. Ailler, Jr., W. Frass, and P. R. Resnick, J. Am. Chem. Soc., 1961, 83, 1767.
72. Daikin Kogyo Co., Lid. Jap P 85 329/1982; Chem. Abs., 97:1d\&327n.
73. R. D. Chambers, A. A. Linley, and H. C. Fielding, J. Chem. Soc., Perkin Trans. 1, 1981, 939.
74. V. A. Petrov, G. G. Belen'kii, and L. S. German, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 385.
75. V. A. Petroy, L. S. German, and G. G. Belen'kii, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 391.
76. V. A. Pairov, G. G. Belen'kii, and L. S, German, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 920.
77. V. E. Plaionov and G. G. Yakobson, Synthesis, 1976, ©, 374.
78. W. H. Pearlson and L. J. Hals, USP 2617 836/4952; Chem. Abs., 47:8770e.
79. J. N. Builer, J. Am. Chem. Soc., 1962, 8®, 1393.
80. L. P. Anderson, W. J. Feasi, and WU. K. R. Ausgrave, J. Chem. Soc., C, 1969, 2559.
81. R. D. Chambers, A. A. Lindley, H. C. Fielding, J. S. Aloilliet, and G. Whitraker, J. Chom. Soc., Perkin Trans. 1, 1981, 1064.
82. 8. Gething, C. R. Pairick, A. Stacey, and J. C. Tatlow, Nature, 1959, 1835, 588.
83. J. C. Tailow, Endeavour, 1963, 22, 89.

8A. C. R. Patrick, A. E. Pedler, A. Seabra, R. Siephens, and J. C. Tatlow, Chem. Ind. (London), 1963, 1557.
85. F. G. Weigert, USP \& 820 884/1989; Chem. Abs., 112:8026q.
86. J. Bailey, R. G. Plevey, and J. C. Tatlow, J. Fluorine Chem., 1987, 37, 1.
87. R. E. Banks, F. Cuthbertson, and W. K. R. Ahusgrave, Anal. Chem. Acia, 1955, 13, 242.
88. J. F. Miller, H. Hunt, and E. T. AfcBee, Anal. Chem., 1947, 19, 148.
89. P. Johncock, W. K. R. Rlusgrave, and A. Wiper, Analysí, 1959, 88, 245.
90. R. D. Chambers, T. F. Holmes, and W. K. R. Aiusgrave, Analysi, 1964, 89, 369.
91. A. Oku, J. Nishimura, S. Nakagawa, and K. Yamada, Nippon Kagaku Kaishi, 1985, 1963; Chem. Abs., 105:9707az.
92. E. R. Neison, T. J. Kilduff, and A. A. Benderly, Ind. Eng. Chem., 1958, 50, 329.
93. A. A. Benderly, J. Appl. Polymer Sci., 1962, ©, 221.
94. J. Jansta, F. P. Dousek, and J. Riha, J. Appl. Polym. Sci., 1975, 12, 3201.
95. F. P. Dousek and J. Jansta, Electrochim. Acta, 1975, 马®0, 1.
96. L. Kavan and F. P. Dousek, J. Fluorine Chem., 1988, 60, 383.
97. C. A. Costello and T. J. AcCarihy, AMacromolecules, 198\&, 17, 2940.
98. C. A. Costello and T. J. AlCCarihy, AAacromolecules, 1987, $20,2819$.
99. N. Chakrabanii and J. Jacobus, Alacromolecules, 1988, 21, 3011.
100. D. D. Mlacilicol and C. D. Roberison, Naisure (L.ondon), 1988, $332,59$.
101. C.-AA. Hu, F. Lang, and Z.-Q. Ku, J. Fluorine Chom., 1990, © \& \& , 29.
102. W. T. Flowers, R. N. Haszeldine, and d. E. G. Kemp, Chem. Commun., 1969, 203.
103. E. Alarper, Ph.D. Thesis, Durham University, 1971.
104. D. P. Graham, J. Org. Chem., 1966, $34,955$.
105. H. C. Fielding, BP 1148 486/1969; Chem. Abs., $71: 60675$ z.
106. R. D. Chambers, J. A. Jackson, S. Pantington, P. D. Philpoi, and A. C. Young, J. Fluorine Chem., 1975, ©, 5.
107. P. D. Philpot, Ph.D. Thesis, Durham University, 1975.
108. F. G. WVeigen, USP \& 820 883/1989; Chem. Abs., 112:702\&a.
109. T. G. Richmond, C. E. Osierberg, and A. A. Arif, J. Am. Chem. Soc., 1987, 109, 8091.
110. C. J. Burns and R. A. Anderson, J. Chem. Soc., Chem. Commun., 1989, 136.
111. AA. T. Jones, R. N. AlcDonald, Organometallics, 1988, 7, 1221.
112. Y.-Z. Huang, J. Li, J.-O. Zhou, Q. Wang, and M. Gui, J. Organomet. Chem., 1981, 218, 169.
113. Y.-Z. Huang and J.-Q. Zhou, J. Organomer. Chem., 1988, 348, 235.
118. P. L. Watson, T. H. Tulip, and I. Williams, Organometallics, 1990, ©, 1999.
115. C. R. Sargent, Ph.D. Thesis, Durham University, 1978.
116. M. J. Silvester, Ph.D. Thesis, Durham University, 1980.
117. AA. W. Briscoe, Ph.D. Thesis, Durham University, 1989.
118. A. M. Doyle, A. E. Pedler, and J. C. Tatlow, J. Chem. Soc., C, 1968, 2740.
119. A. E. Psoler and A. M. Doyle, J. Chem. Soc.,C, 1971, 282.
120. A. A. Doyle, C. R. Parrick, and A. E. Podler, J. Elactroanal. Chem. Interiacial Electrochem., 1971, 33, 23; Chem. Abs., 76:98787d.
121. D. E. M. Evans and J. C. Tailow, J. Chem. Soc., 195\&, 3779.
122. I. L. Knunyants, I. N. Rozhkoy, A. A.Siepanov, A\&. Yu. Anzipin, Å. A. Kravers, and Yu. T. Siruchkov, Dokl. Akad. Nauk SSSA, 1979, 8®® 1128 [Chem]; Chem. Abs., 92:667889.
123. N. Ishikawa and A. Sekiya, Aippon Kagaku Kaishi, 1972, 2214; Chem. Abs., 78:57656h.
124. R. S. Nicholson and l. Shain, Anal. Chem., 196\&, 3 है, 706.
125. R. S. Nicholson and I. Shain, Anal. Chem., 1965, 37, 178.
126. I. Fleming, Frontier Orbisals and Organic Chemical Reactions, Wilay, Chichester, 1978.
127. AM. WG. Briscoe, R. D. Chambers, MA. J. Silyester, and F. G. Drakesmith, Terrahedron Lem., 1988, 飞Q, 1295.
128. R. D. Chambers, S. Pariingion, and D. B. Speight, J. Chem. Soc., Perkin Trans. 1, 197\&, 2673.
129. J. W. Emsley, L. Phillips, and V. Wray, Fluorine Coupling Consianis, Pergamon, Oxiord, 1977.
130. R. D. Chambers, M. Y. Gribble, and E. Maarper, J. Chem. Soc., Perkin Trans. 1, 1973, 1710.
131. T. Nakamura, unpublished work.
132. V. Dedek and Z. Chvatal, Czech P 204 708/1982; Chem. Abs., 98:215169w.
133. R. D. Chambers and R. H. Riobbs, Advan. Fluorine Chem., 1965, \&, 50.
134. B. L. Dyatkin, E. P. Miochalina, and I. L. Knunyanis, Fluorine Chem. Rev., 1969, 3, 45.
135. R. D. Chambers and Ad. R. Bryce, in Comprenensive Carbanion Chemisiny, Pant C, ods. E. Buncel and T. Dupsi, Eisevier, Amsierdam, 1987, p271.
136. J. D. Robers, R. L. Webb, and E. A. AkcElhill, J. Am. Chem. Soc., 1950, 72, 408.
437. S. Andreades, J. Am. Chem. Soc., 196\&, 80, 2003.
138. D. Holis, Progr. Phys. Org. Chem., 1971, 8, 1.
139. A. Sireituieser, Jr., C. Al. Borka, G. WW. Schriver, D. Grier, and J. B. Collins, Toirahedron, Suppl., 1981, 345.
140. P. ч.R. Schleyer and A. J. Kos, Totrahedron, 1983, 39, 1164.
141. P. y. R. Schleyer, E. D. Jemmis, and G. WY. Guenther, J. Am. Chem. Soc., 1985, ท07, 6393.
142. WV. 8. Famham, 8. E. Sman, W. J. Afiddleton, J. C. Calabrese, and D. A. [Dixon, J. Am. Chem. Soc., 1985, 107, 4565.
123. R. D. Chambers, J. R. Kirk, G. Taylor, and R. L. Powell, J. Fluorine Chem., 1983, 22, 393.

14Q. A. E. Bayliff, AM. R. Bryce, R. D. Chambers, J. P. Kirk, and G. Taylor, J. Chem. Soc., Penkin Trans. 1, 1985, 1191.
145. J. F. Liebman and A. Greenberg, Chem. Rev., 1976, 76, 314.
146. R. D. Chambers, G. Taylor, and R. L. Powell, J. Fluorine Chem., 4980, 16, 161.
147. R. J. Koshar, T. C. Simmons, and F. W. Hoffmann, J. Am. Chem. Soc., 1957, 79, 1744.
148. J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 738.
149. A. Huisgen, Angew. Chem., 1980, 92, 979.
150. C. J. Boriack, E. D. Laganis, and D. AA. Lemal, Teirahedron Lett., 1978, 1015.
151. Y. Kobayashi, Y. Hanzawa, Y. Nakanishi, and T. Kashiwagi, Tetrahedron Lefl., 1978, 1019.
152. P. Tarrant, C. G. Allison, and K. P. Barihold, Fluorine Chem. Rev., 1971, 5, 77.
153. A. E. Bayliff, Ph.D. Thesis, Durham University, 1986.
154. H. S. Eleuterio and R. W. Meschke, USP 3358 003/1967; Chem. Abs., 86:29573d.
155. H. AAillauer, W. Schwerteger, and G. Siagemund, Angew. Chem., 1985, 97, 168.
156. I. P. Kolenko, T. I. Filyakova, A. Ya. Zapevaloy, and É. P. Lur'e, Izy. Akad. Nauk SSSR, Ser. Khim., 1979, 2509.
157. RA. R. Bryce, R. D. Chambers, and J. R. Kirk, J. Chem. Soc., Perkin Trans. 1, 198\&, 1391.
158. E. P. Moore and A. S. Milan, BP 1019 788/1966; Chem. Abs., 64:15745f.
159. E. P. Mloore, USP 3322 826/1967; Chem. Abs., 67:44292j.
160. A. Ya. Zapevalov, T. A. Filyakova, and I. P. Kolenko, Izv. Akad. Nauk SSSR, Ser. Khim., 1979, 2812.
161. I. L. Knunyants, V. V. Shokina, and I. V. Galakhov, Zh. Obshch. Khim., 1966, 36, 1981.
162. J. K. Ruff and R. F. Merrit, J. Org. Chem., 1965, $30,3968$.
163. P. L. Coe, A. Sellars, and J. C. Tatlow, J. Fluorine Chem., 1983, 23, 103.
164. J. R. Kirk, Ph.D. Thesis, Durham University, 1981.
165. J. F. Harris, Jr. and D. D. Coffman, J. Am. Chem. Soc., 1962, 84, 1553.
166. C. G. Krespan, J. Am. Chem. Soc., 1961, 83, 3434.
167. J. E. Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman, and R. C. Thomas, J. Chem. Soc., Chem. Commun., 1976, 736.
168. I. L. Knunyants, B. L. Dyatkin, and L. S. German, Dokl. Akad. Nauk SSSR, 1959, 124, 1065; Chem. Abs., 53:14920c.
169. C. G. Krespan, J. Org. Chem., 1969, 34, 42.
170. C. G. Krespan, USP 3502 721/1966; Chem. Abs., 72:132062
171. H. C. Fialding, BP 1151 601/1969: Cham. Abs., 71:49230\%
172. A. A. Lindlay, Ph.D. Thesis, Durham University, 1978.
173. W. T. Flowers, R. N. Haszeldine, C. R. Owen, and A. Thomas, J. Chem. Soc., Chem. Commun., 1974, 13A.
178. N. Ishikawa, A. Nagashima, and A. Sekiya, Chem. Lem., 197a, 1225.
175. N. Ishikawa and A. Nagashima, Bull. Chem. Soc. Jpn., 1976, ©9, 1085.
176. J. W. Smith, in The Chemistry of the Amino Group ed. S. Parai, Whiley Inierscience, London, 1968, p182.
177. Y. Kobayashi, A. Ando, K. Kawada, A. Onsawa, and I. Kumadaki, J. Org. Chem., 1980, 85, 2962.
178. R. E. Banks, R. N. Haszeldine, and J. B. Wakion, J. Chem. Soc., 1963, 5581.
179. J. Burdon, T. A. Hodgins, D. R. A. Parry, R. Siephens, and J. C. Tatlow, J. Chem. Soc., 1965, 808.
180. R. R. Soelch, G. WG. Afauer, and D. At. Lemal, J. Org. Chem., 1985, 50, 5845.
181. D. R. A. Perry, Fluorine Chem. Rev., 1967, 1, 253.
182. G. Paproft, D. Lentz, and K. Seppelf, Chem. Ber., 1984, 197, 1153.
183. G. Paprott and K. Seppelt, J. Am. Chem. Soc., 1984, 106, 4060.
184. G. Paprom, S. Lehmann, and K. Seppelt, Chem. Ber., 1988, 1214, 727.
185. T. Olsson and O. Wennerstöm, Acta Chem. Scand., Ser. B, 1978, 图32, 293.
186. P. G. Gassman and C. H. Winter, J. Am. Chem. Soc., 1986, 108, 4228.
187. AA. Cheong and F. Basolo, Organometallics, 1988, 7, 2081.
188. H. Werner, J. Mahr, and G. Hoerlin, Z. Anorg. Allg. Chem., 1989, 577, 283.
189. R. S. Dickson and G. Wilkinson, Chem. Ind. (London), 1963, 1432.
190. S. Szilagyi, J. A. Ross, and D. A. Lemal, J. Am. Chem. Soc., 1975, 97, 5586.
191. D. M. Roundhill and G. Wilkinson, J. Org. Chem., 1970, 35, 3561.
192. AA. J. Burk, J. C. Calabrese, F. Davidson, R. L. Harlow, and D. C. Roe, J. Am. Chem. Soc., 1991, 013, 2209.
193. AA. J. Burk, A. J. Arduengo, III, J. C. Calabrese, and R. L. Harlow, J. Am. Chem. Soc., 1989, 101, 8938.
194. E. D. Laganis and D. AA. Lemal, J. Am. Chem. Soc., 1980, 102, 6633.
195. E. P. Janulis, Jr.and A. J. Arduango, ill, J. Am. Chem. Soc., 1983, 105, 3563.
196. E. P. Janulis, J.and A. J. Arduango, III, J. Am. Chem. Soc., 1983, 105, 5929.
197. R. D. Chambers and C. G. P. Jones, J. Fluorine Chem., 1981, 17, 581.
198. C. G. P. Jones, Ph.D. Thesis, Durham University, 1980.
199. E. Bock, D. Itacha, H. Hution, and A. Queen, Can. J. Chom., 1968, [46, 1645.
200. R. D. Chambers and AA. P. Greenhall, J. Chem. Soc., Chem. Commun., 1990, 1128.
201. RA. P. Greenhall, Ph.D. Thesis, Durham University, 1989.
202. J. F. Harris, Jr., USP 2 923 746/1960; Chem. Abs., 5A:9799a.
203. H. C. Brown, H. L. Gewanter, D. Md. White, and WY. G. Woods, J. Org. Chem., 1960, 25, 634.
204. RA. P. Greenhall, unpublished work.
205. R. D. Chambers and A. J. Palmer, Tetrahedron Left., 1968, 2799.
206. D. S. Acker, R. J. Harder, WH. R. Heriler, WV. Mahler, L. R. Agelby, R. E. Benson, and W. E. Alochel, J. Am. Chem. Soc., 1960, 82, 6408.
207. R. G. Kepler, P. E. Bierstedt, and R. E. Alerifield, Phys. Rev. Left, 1960, 5, 503.
208. G. A. Candela, L. J. Schwartzendruber, J. S. Ailler, and M. J. Rice, J. Am. Chem. Soc., 1979, 101, 2755.
209. J. S. Railler, J. C. Calabrese, H. Rommelmann, S. R. Chimipeddi, J. H. Zhang, W. A. Reiff, and A. J. Epsiein, J. Am. Chem. Soc., 1987, 100, 769.
210. N. Mall, New Scientist, 1987, 113, 41.
211. ㅅ. J. P. Anédebielle, Personal communication.
212. A. E. Peover, Trans. Faraday Soc., 1962, 58, 2370.
213. D. P. Freyberg, J. L. Robbins, K. N. Raymond, and J. C. Smañ, J. Am. Chem. Soc., 1979, 101, 892.
214. I. L. Karle and ل. Karle, J. Chem. Phys., 1950, 18, 963.
215. J. L. Branot and R. L. Livingsion, J. Am. Chem. Soc, 195A, 76 , 2096.
216. K. M. MicConnell, d. Chem. Phys., 1963, 39, 1910.
217. H. AA. AlcConnell, Proc. R. A. Welch Found. Chem. Res., 1967, 11, 148; Chem. Alos., 59:13adac.
218. R. Breslow, Pure Appl. Chem., 1982, 5A, 327.
219. R. Breslow, B. Juan, R. Q. Klutz, and C.-2. Xia, Terrahedron, 1982, 38, 863.
220. P. Breslow, P. Mlasiak, and J. S. Thomaides, d. Am. Chem. Soc., 198\&, 10®, 6453.
221. R. Breslow, AMol. Cryst. Liq. Cryst., 1985, 125, 261.
222. N. Maiaga, Theor. Chim. Acta, 1968, 10, 372.
223. A. A. Oychinnikoy, Theor. Chim. Acta, 1978, 67, 297.

22\&. T. P. Radhakrishman, Z. G. Soos, H. Endres, and L. J. Azevedo, J. Chem. Phys., 1986, ©95, 1126.
225. J. S. Ailler and A. J. Epstein, J. Am. Chem. Soc., 1987, 109, 3850.
226. J. S. Ailler, A. J. Epstein, and WW. A. Reiff, Chem. Rev., 1988, $888,201$.
227. J. S. Aliller, A. J. Epsiein, and W. RA. Reifi, Science, 1988, 240, 40.
228. R. Laversanne, A. Chakrabonty, D. T. Glatzhofer, A. J. Epstein, and J. S. ARiller, Synth. Alet., 1988, 27, 8353.
229. 2. Yoshida and T. Sugimoto, Angew. Chem., 1988, 10@, 1633.
230. Af. Allen, Ph.D. Thesis, Cambridge University, 1991.
231. K.-H. Hellewege and O. Madelung, Landolf-Börnstein, New Series, Springer-Verlag, 1984, Vol. 12.
232. C. O. Meese, Synthesis, 1984, 1041.
233. T. Nakai, K. Tanaka, and N. Ishikawa, J. Fluorine Chem., 1977, 9, 89.
234. A. E. Feiring, J. Org. Chem., 1980, 0.5, 1958.
235. I. L. Knunyanis, R. N. Sierlin, L. N. Pinkina, and B. L. Dyaikin, Izy. Akad. Nauk SSSR, Oftel. Khim. Nauk, 1958, 296.
236. N. Ishikawa, H. Iwakiri, K. Edamura, and S. Kuboia, Bull. Chem. Soc. Jрп., 1981, 5® 833.
237. C. Wakselman and M. Tordeux, J. Fluorine Chem., 1982, 21, 99.
238. J. T. Alaynard, J. Org. Chem., 1963, 28, 142.
239. R. D. Chambers and A. J. Palmer, Toirahedron, 1969, \&217.

