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The Development and Application of Inductively Coupled Plasma 

Mass Spectrometry for Geochemical Analysis 

Abstract 

The applicability of the technique of inductively coupled plasma mass 
spectrometry to the analysis of geological samples was investigated using a variety 
of sample introduction techniques including: solution nebulisation; slurry 
nebulisation; flow injection; electrothermal vaporisation; and laser ablation, 

Solution sample introduction is limited by the amount of time required to 
prepare the sample, and the relative intolerance of the technique to high 
concentrations of sample matrix. The maximum level of dissolved solids for a 
refractory matrix such as a digested igneous rock was found to be 0.2% w/v. 
Good accuracy and precision are achievable. 

Acceptable results can be obtained using slurry nebulisation. However, 
standardisation is a problem due to the difference in response for aqueous and 
slurried analytes. Calibration again{aqueous standards and the use of an internal 
standard is therefore precluded. In addition, the preparation of stable slurries is a 
highly skilled and time consuming task. 

Flow injection analysis offers the most benefit to the geochemical analyst. 
Flow injection was found to increase sample throughput and, more important, to 
improve matrix tolerance by a factor of 1 Ox, thus allowing the direct 
determination of the platinum group elements and gold in geological samples 
without pretreatment. Small samples, such as fluid inclusion leachates can also be 
analysed without dilution and the matrix effects experienced when analysing 
samples containing high salt concentrations can be reduced by careful control of 
dispersion. 

The potential for increased detection limits by electrothermal vaporisation 
was not proved for geological materials due to the same matrix tolerance problems 
which limit detection limits in solution work. 

Laser ablation sampling allows direct analysis of the solid but quantitation 
requires matrix matched standards or independ~nt ·variable internal 
standardisation, limiting the applicability of the technique for bulk screening. 
The use of laser ablation to analyse trace element concentrations in individual 
mineral grains has been investigated and partition coefficients for trace elements, 
including the rare earths in a large wned pyroxene crystal, were determined. 
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Chapter 1 
Introduction, Analytical needs, problems in Geochemistry and Aims 

Chapter -1-

Introduction, 

Analytical Needs, 

Problems in Geochemistry 

and Aims 

1-1 Introduction 

The purpose of this work has been to examine the recently developed 

analytical technique of inductively coupled plasma mass spectrometry (ICP-MS) 

in the particular context of its applicability as a tool for use in geochemistry. To 

this end, the needs of the geochemist have been reviewed and attention 

concentrated on those areas in which current methods have been found wanting 

and in which ICP-MS may yield significant improvements, or new capabilities to 

the geochemist. 

1-1.1 Philosophy 

As the roots of the word suggest, geochemistry is a multi- disciplinary subject 

taking as it does a great deal of theory and application from both geology and 

both pure and applied chemistry. It is perhaps surprising therefore that research 

in this field is most often carried out by graduates of geology or geochemistry, 

rather than chemistry. Although not unheard of, the incidence of geochemical 

research theses by chemistry graduates, such as this work, is small. It is perhaps 
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even rarer that a professional analytical chemist such as this author, rather than a 

pure or theoretical chemist, should undertake such work. 

The contribution made by analytical chemistry to the development of 

geochemistry has often been overlooked. Geochemists are not alone in 

underrating the discipline: analytical chemistry plays only a very minor part in ,, 
most chemistry degree courses, despite being the fiel~~hich most chemists are 

I 

employed. This lack of recognition is remarkable since without the raw analytical 

data on chemical composition, phase structure etc., there could be no proof nor 

evolution of geochemical theory. It is only by obtaining as detailed an 
. 

understanding as possible of the composition of the relevant materials, by us'ng a 

"' combination of representative sampling, accurate and precise analysis by an 

appropriate analytical method, and an understanding of the extent and limitations 

of the final results, that the chemist or geochemist can begin to examine the 

processes which governed the situation, to theorise and eventually understand the 

event. 

There is a school of thought, again not restricted to geochemistry, which 

believes that with the current state of development of computer driven and 

controlled instrumentation and sample preparation, analytical chemistry is 

something which can either be learned by flicking through an operators manual, 

or better still, by getting the technician to do it (since he or she already knows 

t which buttons to press.) This is, however, a very dangerous misconception and 

one which has led countless otherwise excellent scientists down theoretical blind 

alleys due to their misinterpretation of analytical data. W oodget and Cooper1 

highlight two contexts in which analytical chemistry can be viewed: the context of 

the acquisition of the results, and the context of the further use of the results. In 

the latter case, which is asserted by Wood get and Cooper ( op. cit p2) to be the 
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correct one, Analytical Chemistry is "concerned with decisions about the 

information needed, how it is to be obtained, and about implementing its 

acquisition in a context determined by the use to which the results are to be put." 

This means that the analysis is affected as much by the use to which the results are 

to be put, as the resulting theories are by the analytical results themselves. The 

analytical part of the work is therefore an integral part of the work, (Fig. 1-1.), and 

must be given due consideration if maximum benefit is to be achieved. This is not 

to say that the analysis is an end in itself, far from it, but the analysis must be 

clearly thought out and appropriate for the work for which the results are 

required. 

Theory 
/ Use 

Theory 
Analysis 

/Use 

Theory 
Analysis 

/Use 

Theory 
Analysis 

/ Use 
Analysis 

Fif(Ure 1-1: lnterconnectiveness of analysis and Theory I Usaf{e 

It is likely therefore that by viewing problems from what is in essence an 

analyst's viewpoint, rather than that of a geochemist, a fresh perspective may be 

achieved. A new way of looking at a problem from a different discipline can often 

be the "angle" which is used to find the solution. Interfaces between disciplines 

are often the areas where insight and original work occur because of the new 

perspective brought by a student of a different discipline. 
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1-1.2 Analytical needs in Geochemistry 

If the technique of ICP-MS is to be used in the field of geochemistry, it will 

do so not simply because it is a new and interesting subject, but by satisfying a 

need which is not met by other techniques or methods of analysis. It is therefore 

necessary to examine the fields of geochemistry, in order to determine what are 

the specific requirements in an analytical technique for elemental analysis and 

analytical instrumentation in order to highlight areas of capability and limitation 

in these fields. 

For this purpose, geochemistry related elemental analysis can be divided into 

applied geochemistry and academic or theoretical geochemistry. 

3-1.2.1 Applied Geochemistry 

The most important and most widely carried out application of 

geochemistry lies in mineral exploitation3
• This involves samples of material from 

a very large area being analysed in order to identify small areas, termed 

'anomalies', where certain elements have significantly higher concentrations than 

the means of the sample, these often being associated with mineral deposits which 

have no manifestation which is visible at the surface. 

The aim in this type of screening work is to survey as large an area as 

possible in order to eliminate areas unlikely to yield significant concentrations of 

useful minerals4
• It can be seen therefore that there is a need to analyse as many 

samples as possible for as many elements as possible, in the minimum time, with 

the minimum of effort. 

As time passes, the need to find new mineral sources leads to a lowering in 

the concentration of a mineral at which it is considered economically viable to 
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extract. This in turn leads to the need for ever increasing resolution of survey 

sampling, thus an increase in the number of samples to be analysed, and greater 

sensitivity of the analytical techniques used in the analysis of these samples. All of 

this requires a continuing trend towards faster, more sensitive analytical 

techniques with which to analyse the samples. 

Raw analytical power and speed are not, however, the only considerations. 

Rose et a/ 5 define a maximum of four steps which, depending upon the analytical 

technique used, are necessary in order to analyse geochemical samples: 

• Treatment prior to transport and storage. 

• Partial or complete decomposition 

• Separation of analyte elements from interferences 

• Analysis 

When considering the applicability of an analytical technique for this type of 

work, consideration of the three preparative stages can have a significant effect 

upon the method of choice. If the amount of time and effort involved in these 

stages is lessened, or indeed eliminated, by using a particular technique, such as 

the capacity to analyse solid samples directly without dissolution, then that 

technique can be seen to have significant advantages to the analyst or geochemist. 

All analytical techniques are subject to interferences of one form or another . 

These impose further limitations on the analysis which can be performed, since 

they restrict the ease and detection limits with which an element can be measured. 

Any consideration of the choice of analytical technique must take into account 

the nature and importance of interferences relevant to both the type of analysis 

and the elements to be determined. Techniques which show few interferences 

1-5 



• 

Chapter 1 
Introduction, Analytical needs, problems in Geochemistry and Aims 

can often be selected above others, purely on these grounds, since the accuracy of 

the results is paramount to the usefulness of the work. 

3-1.2.2 Academic or Theoretical Geochemistry 

The academic or theoretical geochemist does not usually have at his disposal 

the enormous resources of the mining companies with which to undertake large 

• scale surveys, and thus is never likely to have the same requirement in terms of 

sample throughput. 

The nature of geochemistry, however, demands that, in order to gain an 

understanding of the geology of a particular area, a relatively large number of 
t'o 

samples must be analysed. One would be very foolish"base a theory upon a single 

piece, or limited amount of evidence, and therefore it is necessary for the 

geochemist to obtain as much information as possible about a study, and this 

means analysing a statistically valid number of samples. 

It can be seen therefore that the choice of analytical technique depends upon 

the same principles of high sample throughput and minimal sample preparation as 

are required by mineral exploration surveys. 

The requirement for highly sensitive techniques will of course depend upon 

the nature of the problem under investigation, although it has been argued6 that 

new research is often made possible by advances in other fields and thus, by 

inference, new geochemical research can arise from developments in the field of 

analytical instrumentation. 

It is also felt by this author that academic or theoretical knowledge through 

research is not an end in itself, but a template which can be applied to real world 

activities such as, in this instance, mineral prospecting. The techniques and 
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knowledge used in the research lab of today will become the day to day equipment 

of the applied laboratory of tomorrow. Even seemingly non relevant academic 

work has often been applied to the practical world, often in very unexpected ways. 

An illustration of this is the development of high temperature superconductors 

from the study of the properties of ceramics technology and the chemistry of rare 

earth element oxides. 

One area related more to academic work than applied geochemistry lies in 

the analysis of localised areas of a sample, often termed feature analysis7
• 

In nature, most geological materials are largely heterogeneous. Whilst the 

applied geochemist may only be interested in the averaged bulk composition of 

the material, the academic geochemist can learn a tremendous amount from the 

composition of localised areas, such as individual mineral grains or layers of 

sediments. This ability has for many years been possible using techniques such as 

electron and X-ray microprobes,, however, these techniques are limited in terms 

of their detection capability, and thus restrict this type of analysis to the major 

abundance elements. Of tremendous benefit to the subject would be the ability to 

determine the minor and trace elements. 

The primary needs in geochemical elemental analysis can therefore be 

summarised as: 

High sample throughput: To allow the geochemist to analyse as many 

samples as possible. 

Reduced sample preparation: To further speed sample throughput, and to 

minimise possibilities for contamination to occur. 
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High sensitivity (low minimum determinable concentration): To allow the 

determination of all trace elements, including those with a low natural crustal 

abundance. For the purposes of this work, trace levels will be defined as parts per 

billion (10-9
) and below. 

Feature Analysis: The ability to determine concentrations of individual 

areas of a sample 

With the general future needs of the geochemist now defined, it is possible 

to examine the strengths and weakness' of existing elemental analysis techniques, 

and to compare these to ICP-MS, in order to identify those applications where 

significant advantage may be obtained from the use of ICP-MS. 

1-2 Review of capabilities of Elemental analysis techniques 

The geochemist has an enormous, often confusing, range of instruments and 

techniques at his or her disposal for the chemical analysis of geological materials. 

The very fact that there are so many indicates that no one technique is ideal for all 

applications, and that there are significant differences between them in terms of 

performance and applicability for a given type of analysis. 

It is not the purpose of this work to provide a detailed analysis of these 

techniques, (readers seeking this information should refer to the references 

section), but merely to highlight the areas where the techniques are strong or 

weak in comparison to ICP-MS. 

The techniques examined are by no means exhaustive, but in the main cover 

those commonly used by geochemists or geochemical analysts. A brief overview 

of each technique is given, followed by a more detailed comparison of the relative 
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performance of each technique for those performance characteristics which are 

felt to be relevant to the geochemist. 

1-2.1 X-Ray Fluorescence (XRF) 

Essentially a method for solids analysis, XRF has for many years been the 

standard technique in geochemistry for the determination of major and minor 

element concentrations with detection limits of the order of 10 parts per million 

(ppm: 10-6). XRF is capable of determining over 70 elements in matrices such as 

silicate rocks. 

Instrumentation is now highly automated and very stable, allowing fairly 

infrequent calibration and unattended automation. Sample throughput is 

approximately 30 samples/hour, and this can be achieved 24 hours a day. The 

technique is very precise at high concentrations. The surface finish of the sample 

is important in XRF and thus sample preparation time is lengthy and involves the 

production of flat briquettes from powders or glass fusion disks. 

1-2.2 Electron and X-Ray Microprobe 

This technique is a development of the electron microscope whereby, in 

addition to imaging very small areas of sample, the analyst can also determine 

elemental concentrations in the same area, to levels of a few hundred ppm. 

Sample throughput is relatively slow typically 1-2 determinations I hour for 5 

elements, (although for this type of feature analysis, throughput is not of primary 

significance), and samples must be coated with a conducting layer of graphite. 

Elemental range is theoretically similar to XRF, but in practice is limited by 

the analyte concentrations to the major elements. 
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1-2.3 Spark Source Mass Spectrometry (SSMS) 

SSMS is not new, the spark source for mass spectrometry being introduced 
ff'_:J:'f"J 'leek_ 

in 19348
, although the first commercial instrument was not available until1958. 

Spectra are produced on a photographic plate thus, although sophisticated 

photometers are now available, data processing still takes an unacceptably long 

time. 

SSMS produces multiply charged species and thus spectra can be very 

complicated, further increasing data processing time. Although sensitivity is 

good, typically 1-100 ppm, the range of elements which can be determined is 

dependent upon the nature of the sample; 70 elements being determinable in 

simple, monoelemental matrices, but only 40 elements in complex matrices such 

as silicate rocks9
• 

1-2.4 Neutron Activation Analysis (NAA) 

NAA is the most commonly used technique for establishing elemental 

concentrations of both geological, and biological, reference materials10
• It is a 

somewhat specialised technique in which the sample is exposed to a strong beam 

of high energy neutrons for a period of time and the emission of characteristic 

radiation measured using scintillation counting. 

Sub ppb detection limits can be achieved for solids or liquids, even in very 

small samples, although some separation is often required with very 

heterogeneous materials11
• Where the emissions from the analyte elements are 

very similar, such as the lanthanide and actinide series12
, 60 elements can be 

determined by NAA. 
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The need for a source of high energy neutrons, effectively requires access to 

either a nuclear reactor, or cyclotron, or Van de Graff or linear accelerator13
• 

This has restricted the availability of this technique. Similarly sample throughput 

is low due to the amount of time for which the samples must be irradiated, and the 

length of counting time required for some elements at low concentrations. 

1-2.5 Atomic Absorption Spectrometry (AAS) 

This is the commonest technique for trace element analysis14 and can be 

found in even very small laboratories. It is primarily a solution analysis technique, 

thus digestion of the geochemical material is required. It is also a single element 

analysis technique, which severely restricts sample throughput to 20 elementsj 

hour. Typically 40 elements may be determined by AAS. 

There is a variation on this basic instrument, developed over 30 years ago by 

L 'vov15
, which involves replacing the burner and flame with a graphite tube which 

is resistively heated in a controlled manner. This has the effect of considerably 

lowering the achievable detection limits by a significant amount making the 

technique of graphite furnace atomic absorption spectrometry (GFAAS) one of 

the few techniques able to reach sub parts per billion levels. An analytical cycle 

with GFAAS, however, takes approximately 8 minutes, and this for the 

determination of a single element. 

Both flame and furnace AAS suffer from a variety of interferences caused by 

the relatively low atomisation temperature. For GFAAS, this means that the time 

consuming procedure of standard additions \11>- almost always required. 
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1-2.6 Inductively Coupled Plasma Atomic Emission Spectrometry 
(ICP-AES) 

Another primarily solution analysis technique, ICP-AES, can have either a 

scanning monochromator, or a series of detectors at fixed wavelengths to allow 

simultaneous determination of up to (typically) 20 of the 60 elements which can 

be determined simultanously by the technique. Such simultaneous instruments 

have the advantage of being fast, throughput typically being 60 samples per hour 

for the determination of 20 elements, but are restricting because there is no 

possibility to use a different line for different samples. Scanning systems have this 

flexibility but throughput is severely reduced. Detection limits of the order of 

ppm - 1 Oppb are achievable in solutions. 

1-2.7 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

ICP-MS, although relatively new, (-10 years old), has been adopted by a 

large number of geochemical laboratories. It is primarily a solution technique 

capable of determining over 7 5 elements with manufacturer claimed 16detection 

limits in solution, for most of these elements, of <1 part per trillion, (ppt: 10-12
). 

Sample throughput is slower than that of simultaneous ICP-AES, typically 

20 samples per hour for all determinable elements. In addition, because of the 

nature of the extraction of ions from the plasma into the mass spectrometer, the 

level of total dissolved solids has to be restricted to typically 0.2% w/v in order to 

prevent blocking of the sampling interface. 
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1-3 Performance comparison of instrumental techniques for 
geochemical applications. 

There are a number of critical performance factors which need to be 

considered: 

1-3.1 Detection limits 

Whereas instrument manufacturers like to speak generally of detection limits 

as though they were constant for a particular instrument, they do in fact vary 

considerably with the nature of the analyte elements and the nature of the sample 

being analysed. As a starting point, Fig. 2 shows a comparison of detection limit 

7 ranges (shown as fractions) for the various techniques17
• 

This graph shows clearly that XRF, FAAS and ICP-AES are inappropriate 

for trace and ultra trace level analyses. Of the remaining techniques which could 

theoretically be used for trace level analysis, ICP-MS is claimed to have the best 

ultimate detection limits for some elements. 
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1-3.2 Sample Throughput 

Because of the differences between the techniques in the number of 

determinable elements per analysis, sample throughput must be thought of not 

just in terms of samples in a given time period, but also in terms of the number of 

elements determinable in that period. However, since not all geochemical 

analyses require determination of all elements, Fig. 3 shows sample 

throughput for analyses of 1, 10, 50 and 75 elements per sample. 

The data used to produce Fig. 3 is of necessity very generalised. Sample 

throughput calculations are further complicated by differences in analysis time 

due to differing concentrations. For example, XRF instruments can be 

programmed to measure an element in a sample until a pre-set number of counts 
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have been detected, so that analysis time will vary considerably with concentration 

of analyte elements, and will of course vary from sample to sample. 

It can be seen that ICP-MS is relatively slow compared to the other 

techniques, only GFMS and NM have a lower rate of sample throughput, even 

when all elements need to be determined in a sample. It should be noted , 

however, that none of the faster techniques are capable of determining trace 

elements and thus, for work in this concentration range, ICP-MS offers a 

significant advantage. GF MS and NM are rejected for geochemical work 

because of their low sample throughput. 

Throughput (samples.hou(
1
) 

Figure 1-3: Compa·rison of sample throughput at various numbers of elements 
determined per sample 
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1-3.3 Range of Elements 

In samples as heterogeneous as geological materials, it is often important to 

be able to determine as many elements as possible. This is especially true of 

prospecting surveys where the appearance of an unexpected element can indicate 

an ore body which, although not the main aim of the survey, can still prove to be 

commercially profitable. Table 1 shows a comparison of the range of elements for 

It the different techniques. Just as there is variation in the detection limits 

achievable by each technique, there are considerable differences in the number of 

elements which can be determined by a technique. 

Technique Range of 
Elements 

XRF 60 

SSMS 70 (Simple 
matrix) 

40 (Complex 
Matrix) 

NAA 60 

FAAS 30 limited by the ability to manufacture suitable hollow 
cathode lamps, e.g. lanthanides, and to the 
wavelengths accessible to air path monochromators . 
Primarily suited to the analysis of alkali, alkaline earth 
and main group transition elements. Very poor 
sensitivity is achieved for refractory elements. 

GFAAS 28 Subject to the same limitations as FAAS, but also 
restricted to elements which vaporise completely from 
graphite surfaces at temperatures below 3000!!C. 

ICP-AES 20-40 (Sim) 
40-50 (Seq) 

ICP-MS 75 

Table 1-1: Comparison of elemental ranges for a variety of techniques 
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1-4 Aims of this work 

From the examination of the needs of geochemists, and the capabilities of the 

techniques available, the following were identified as being important needs in 

geochemical analysis: 

1. To determine the optimum methods, sample preparation and sample 

introduction systems for a variety of geochemical analytical problems to 

give 

• High sample throughput 

• Reduced sample preparation 

• High sensitivity (low minimum determinable concentration) 

2. To develop the technique ofiCP-MS to meet the requirement for future 

needs in geochemistry, in particular the ability to determine minor and 

trace concentrations of individual areas of a sample. 
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Chapter 2 

The History 

and 

Technique ofiCP-MS 

2-1 Introduction 

Despite claims to the contrary by instrument manufacturers, in order to 

understand the capabilities and limitations of an analytical technique, it is essential 

. to understand how it works. Indeed, only from the possession of such knowledge 

can sample preparation, instrument conditions and sample introduction be 

optimised and the results interpreted both intelligently and correctly. 

In describing the technique ofiCP-MS in the following section, the purpose 

is not to demonstrate a working knowledge of the instrumentation, but to 

highlight the important considerations, from the analytical chemist's perspective, 

which arise from aspects of the instrument design. 

Although all of the discussion and work performed relates to the VG 

PlasmaQuad ICP-MS instrument, which is manufactured by Fisons 

InstrumentsNG Elemental, there are broad similarities between instrumentation 

from all manufacturers. 

2-2 Historical development ofiCP-MS 

The development of the technique which was to become ICP-MS can be 

traced, very accurately. Excellent reviews of this history have been published, by 
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Gray, 1
' 

2 Houk and Thompson3
, Hall\ Gray and Date5,Jarvis, Gray and Houk6

• 

The man generally credited with being the inventor of the technique of ICP-MS 

is Alan L. Gray who in 1970 was working for Applied Research Laboratories, the 

instrument manufacturer who was responsible for the introduction of the first 
])tl;~ 

commercial ICP-AES instrument. According to£..Gray7
, the need was expressed 

for new developments in the field of multielement analysis, even though at the 

time, ICP-AES had not yet reached the marketplace. It was apparent that 

ICP-AES was going to be prone to severe matrix problems, particularly in the 

field of geochemistry. The close packed and overlapping emission lines in the 

spectra from matrix elements such as calcium, aluminium and iron left very few 

options for the determination of trace elements. In addition, the area of greatest 

need by mineral prospectors, that of determining the rare heavy elements, showed 

particularly complex spectra and the poorest detection limits in emission 

spectrometry. 

The then established and emerging techniques, largely the techniques 

discussed in Chapter 1, were surveyed, but it was concluded that only atomic mass 

spectrometry had the necessary requirements in terms of elemental coverage, 

element specificity and relative uniform sensitivity across the Periodic Table to 

form the basis of the successor to ICP-AES. 

Spark source mass spectrometry, at the time the main tool for multielement 

mass spectrometry, could not however provide. either the required sample 

throughput, the simplicity, br the fast answers which were envisaged 
I 

requirements. New developments, both in terms of sample introduction and 

ionisation, and ion collection and output were therefore required. 

Largely due to their almost unique capabilities in the field of organic 

analysis, the development of mass spectrometers, their detection and data systems 
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were the subject of enormous research and development. Gray concentrated on 

the ion source, the area in which the needs of organic and inorganic analysis 

differed fundamentally, and which although most challenging, showed most 

potential for development and was most likely to achieve the desired analytical 

performance. 

Mass spectrometry requires that a sample be admitted into the ion source as 

a vapour. Whereas this~not a significant problem with organic compounds, the 
I... 

inorganic compounds, particularly geochemical samples, are often refractory and 

difficult to volatilize. This causes one of the problems experienced with SSMS; 

the production of incompletely dissociated intermediate molecular fragments, 

resulting in very complex spectra. The complete initial volatilisation and 

dissociation of the sample is therefore crucial, after which ionisation would be 

relatively straightforward. 

According to Gray, at a seminar in Manchester in 1970, ion extraction from 

flames and plasmas at up to atmospheric pressure was discussed. He realised, 

however, that a chemical flame of up to 3000'K was not hot enough because the 

atmospheric pressure arcs and therefore plasmas which were currently being used 

in emission were likely to be much more suitable. Furthermore, as temperatures 
!"':\ 

of 5000~were achieved, energy transfer from the plasma was efficient and 

uniforffi, and sample introduction from solution became simple and fast. The 

same connection was also made, although at a much later date, by Alkemade8
, but 

the identification of a potential new ion source was just the beginning. 

Mass spectrometers require a low pressure, both to ensure a long mean free 

path for the ions and, in quadrupole mass analysers, to prevent arcing between the 

analyser rods. To transfer ions from an atmospheric plasma to the vacuum 

environment of the mass analyser (typically lO~mbar), was a formidable problem. 
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Previous work on the mass spectrometric analysis of flames had been published by 

Sugden9
, and suggested a possible approach for a feasibility study performed by 

5 
_ Gray and Moruzz~ u~ing a small DC plasma. Using an extension o_f_~ayh~rst'~ t 

technique, ions were extracted from the DC plasma using a sampling cone with a 

70pm aperture. Behind the cone a 1700Us diffusion pump gave a pressure of 

<10-3mbar which resulted in a mean free path of >10cm, allowing ions to be 

focused, through a differential aperture of 2mm diameter, into a further stage 

which contained a quadrupole mass analyser10
• This, the first plasma source mass 

spectrometer system immediately showed the potential for high sensitivity, giving 

essentially zero background signal between the mass peaks, and signals of between 

104 and 105 counts per second for fully ionised mon~i.sotopic elements such as 

cobalt at a solution concentration of 1 pg.ml·1 (ppm), using a simple batch type 

ultrasonic nebulizer11
• Although acceptable spectra of simple solutions were 

,. 
/identified as well as isotope ratio precisions of <0.5% 12

, the response was found to 

be dependent on the total elemental concentrations of the sample solution. 

Furthermore, matrix effects were too severe to allow real samples to be analysed, 

and the degree of ionisation for those elements with first order ionisation energies 

around 9e V, such as As, Se, Cd and Hg, was low, resulting in poor sensitivity for 

these elements. 

Two limitations of the system were identified as the cause of these problems: 

First, the effective plasma temperature was still too low to ionise some elements 

adequately; and, secondly, only a small proportion of the introduced solution 

actually reached the central high temperature core of the plasma 13
• The answer to 

both of these problems, to replace the DC plasma with the hotter (and concentric) 

ICP, was seen, not by Gray, but Houk who had by this time set up a parallel 

programme at Iowa State University, USA. The two groups pooled their work 
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and in 1980 a joint paper14 was published detailing the extraction of the first 

analyte ions from an ICP. 

At this stage, work was being carried out using small cone apertures which 

were too small to extract gas from the bulk plasma at the higher temperatures of 

the ICP, and were thus covered by a boundary layer of cooler gas about 0.5mm 

thick15
•
16

• Attempts to use larger apertures were hampered by melting of the lip of 

the cone, caused by the high thermal flux, and by the inability of the vacuum 

system to pump the increased gas load. The melting problem was resolved by 

increasing the cooling to the sampling cone, and by adopting molecular beam 

techniques17
'
18 which had been successfully used by Douglas and French19 for the 

extraction of ions from a microwave induced plasma (MIP). An additional 

pumping stage was also introduced, driven by a simple rotary pump, behind which 

a second cone was located in front of the diffusion pumped chamber, and 

behind the differential aperture; the analyser chamber which was also diffusion 

pumped. 

~rY'*re. 
In 1982, the first bulk sampling of ions from an ICP, using cones of 0.4mm, 

I. 

was performed by Date and Graf0 and represents the last piece of fundamental 

research into the basic technique. Development has continued in many areas, and 

the technique is now used in over 1000 laboratories world-wide, with enormous 

improvements in sensitivity, performance_, sample handling and tolerance 

having been made; but the quadrupole based instruments are fundamentally little 

different from 1982. 
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2-3 The Technique ofiCP-MS 

Fig. 2-1 shows a generalised scheme of the ICP-MS system which can be 

subdivided logically into a number of sections. 

RF/DC Ouad RF 
Controller Supply 

,--~-r--,. ~~::::~~~~~~ lt ~ 
I ... 

Turbomolecular Pumps 
( Backed by 2nd 
Rotary Pump) Ro tary 

p ump 

A. A. 
I I 

~ 
~ 

Drain ,r 

Sample 1J 

Figure 2-1: Generalised scheme of an ICP-MS instrument 

2-3.1 Sample Introduction 

Plasma 
RFPower 
Supply 

1---

Gas 
Control 

L Argon 
Suppl\ 

To introduce a sample into the ion source, it must be presented in the form 

of an aerosol, either dry or wet; that is a suspension of small sample particles in a 

stream of argon gas. (For some applications it is possible to introduce a gaseous 

sample, but this is outside the scope or requirements of this work.) 

In the standard configuration of an ICP-MS, sample introduction takes the 

form of nebulisation of liquid samples. The details of this and other forms of 

sample introduction will be discussed in subsequent chapters. 

2-6 



I 

• 

Chapter 2 
The history and technique of ICP-MS 

The only components common to all methods of sample introduction relate 

to the control of a stream of argon gas called the "nebuliser gas", which is used to 

transport the sample to the plasma ion source. It is important to control precisely 

the rate of flow of the nebuliser gas, because this is proportional to the amount of 

sample reaching the source. On the instrument used in this work, and on the 

many commercial instruments which have become available subsequently, the 

nebuliser gas is controlled by means of a mass flow controller. Nebuliser gas flow 

rate was found to vary between, 0.2-l.SI.min-1 depending upon the sample 

introduction device used. 

2-3 .2 Ion source 

The inductively coupled plasma is an electrodeless discharge in a gas at 

atmospheric pressure. A radio frequency (RF) generator provides the energy 

which couples by means of a water cooled coil consisting of 2-3 turns of copper. 

This coil operates as the primary of an RF transformer, the secondary being the 

discharge itself. Argon is used as the primary plasma gas, despite much work 

having been done on the use of alternative gases as additions to argon (Choot and 

Horlick21
, Evans and Ebdon22

'
23

.) The forward RF power used in most ICP-MS 

work is approximately 1.3kW, operating with <lOW reflected power. 

The plasma is generated inside the open end of a quartz construction known 

as a "torch". The plasma RF generator and torch assemblies are the same as those 

used in ICP emission systems, and are based on a design known as the "Scott 

Fassel" torch24
• A schematic diagram of a plasma torch is shown in Fig. 2-2. The 

design consists of an outer tube (18mm internal diameter x 1 OOmm long), within 

which are two concentric tubes of 13mm and l.Smm i.d. which end lOmm from 

the torch 'mouth', the latter being termed the "injector" tube. Argon gas is 
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supplied to the two annular regions produced by the tubes from short tangential 

connecting tubes thus creating vorticular flow. The sample is introduced through 

the injector central tube. 

Plasma 

Injector 

Figure 2-2: Schematic of a Scott Passel plasnuJ torch 

There are three gas flows introduced into the plasma. The outer flow is termed 

the "plasma gas", or sometimes the "coolant gas", and is the highest flow rate 

being typically between 1 0-15l.min -1• This gas flow forms the bulk of the plasma. 

The next, termed the "auxiliary gas" typically uses O.SI.min-1 and is designed to 

move the position of the base of the plasma, largely to prevent melting of the 

injector tube by the plasma. As already discussed, this flow rate depends upon the 

nature of the sample introduction. 

Under these conditions a plasma of SOOOK is generated25
• The effect of the 

nebuliser gas is to punch a 'hole' in the plasma producing a torroidal plasma in 

which the sample passes through the central channel. During it's passage through 

this central channel, the sample is first dehydrated (if in a solution), then atomised 

and finally ionised in exactly the same manner as in emission spectrometry. No 

definitive mechanism is acknowledged, although several have been postulated 

including the Penning ionisation mechanism26
•
27

, the charge transfer 
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mechanism28
'
29 and the recombining plasma modeP0

• Using the Saha equation~' 

Gray calculategl that ionisation was more than 90% complete for most elements 

and was still at a significant level for the remaining analytically important 

elements32
• For this reason he predicted that the ICP would provide an excellent 

ton source. 

2-3.3 Sampling interface 

Sampling 
Cone 

Figure 2-3: Schematic diagram of the ICP-MS sampling inteiface 

The schematic diagram of the ion sampling interface is shown in Fig. 2-3. 

Extraction of ions from an ICP at atmospheric pressure involves sampling the 

plasma with a water cooled metal cone; (usually nickel with a lmm orifice), 

termed the sampling cone. This sampling cone is positioned so that the bulk of 
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material which passes through the orifice originates from the central channel 

which in turn contains the ionised sample. 

Behind the sampler is a second cone, the skimmer cone, also made of nickel, 

and with an orifice of between 0. 7 and l.Omm. The area between the two cones, 

termed the interface region, is evacuated to a pressure of -1mb by a single rotary 

pump. A supersonic jet forms as the ions expand into the vacuum33
, the central 

section of which passes through the skimmer orifice and into an intermediate 

pressure region of approximately 104 mb which contains the ion lenses. 

An understanding of the behaviour of the interface region is particularly 

important to the user because it is responsible for some of the sampling 

limitations of the technique. Many:workers in the early development of the 

technique, including·,-~ and~~~\34•35 and Hutton and Eaton3
6,

37
, have shown 

that, when aspirating samples with a high level of dissolved solids, material from 

the sample tends to deposit on the sample cone. This deposit has the effect of 

blocking the sample orifice thus severely reducing sensitivity. Gray and 

Williams38 have demonstrated that the effects of this deposit were related to the 

strength of the oxide bonds of the elements, the more refractory elements 

showing the most pronounced effects. This observation has important 

implications for geological applications where the sample matrix may contain high 

levels of refractory elements such as silicon, aluminium, iron, barium, calcium and 

cerium. These influences will be discussed in chapter 3. 

2-3.4 Ion Optics 

The ion optics are a series of concentric rings to which user adjustable 

potentials are applied in order to focus the ion beam into the quadrupole mass 

analyser. Between the lenses there is a differential aperture which separates the 
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interface pressure region from the analyser region which is maintained at a 

pressure of approximately 10-6mb. 

2-3.5 Mass Analyser 

The mass analyser used in this work, and in the majority of instruments 

world-wide, is a quadrupole which gives unit mass resolution. Unfortunately this 

t low resolution instrumentation is not sufficient to resolve interfering polyatomic 

species which forms an important limitation to the analyst. 

In the last few years ICP-MS instruments based on magnetic sector analysers 

have been developed39
• As might be expected, these are large, very expensive and 

require specialist operators, but have the benefit that they are able to resolve some 

analyte from previously overlapping polyatomic species. Such instruments have 

found applicability in a number of specialist areas, due largely to their detection 

limits being typically 3 orders of magnitude better than the quadrupole. 

2-3.6 Detector 

The detector on an ICP-MS is usually an electron multiplier, although 

newer instruments using the Faraday detectors have recently appeared on the 

market. On the instrument used in this research, a channeltron type detector40 

was used. This could be operated in two modes: pulse counting and analogue. 

This was found necessary b[ause users were finding that the lowering of 

detection limits meant that the detector was saturating at concentrations above 

50-lOOppb, the need for which arising from the manufacturers striving towards 

lower detection limits. 
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The standard counting mode, which was preferred in the early development 

of the technique, is excellent for the detection of low levels, but the linear 

dynamic range of such detectors typically has a ceiling of 1 06cps. At the start of 

this work, a signal of 1 06cps per ppm for an easily ionised, monoisotopic element 

was considered acceptable, i.e. the multiplier would begin to saturate at signals for 

concentrations above 1 ppm. By the end of this work, due to improvements in the 

design of the instrument, countrates of 106 cps per 10 ppb had been achieved so 

that the pulse counting ceiling had been reduced to 1ppb. Whilst the detection 

limit reduction was necessary, with the exception of high purity acids, there are 

almost no samples in which elemental concentrations are almost all below a ppb. 

Another consideration was that at high ion flux rates, the electron multiplier 

suffers from a short term loss of gain, and an overall shortening of life span. Since 

these detectors are expensive (-£500), this needs to be avoided. 

To counter this, the voltage applied to the detector was reduced typically by 

2kV and instead of counting the individual pulses coming from the detector, these 

are measured in terms of changes in the voltage produced. 

By combining the two types of detection, a linear dynamic range of at least 

108 (nearly 1 0~ orders of magnitude is achieved. With software control, and 

pre-calibration of the two detection systems, the instrument appears to have an 

uninterrupted dynamic range of 108 orders of magnitude. 

2-3.7 Data Handling 

The way in which the data output of the detector is handled is of crucial 

importance for certain of the advanced sample introduction techniques, such as 

electrothermal vaporisation. The VG PlasmaQuad, as used in this work, uses a 

multi channel analyser (MCA), as a fast data store. The mass range for which data 
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is being acquired is split into a number of steps, such that there are at least 10 

data points per atomic mass unit (amu). To average out signal variation, a number 

of sweeps of the mass range are acquired. These are summed in the MCA and are 

only downloaded to the data system when acquisition is complete. Since data 

downloading is the rate determining step, this means that very fast scans of the 

mass range are possible, allowing short transient signals, such as those produced 

by electrothermal vaporisation or single shot laser ablation, to be measured. 
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Chapter 3 

Solution Introduction into ICP-MS 

3-1 Introduction 

Despite the fact that most geological samples are solids, by far the most 

common and most important method of sample introduction into ICP-MS is via 

solution nebulisation; this despite the need to perform often difficult, time 

consuming and potentially contaminating digestion and dissolution procedures. 

As outlined in chapter 2, ICP-MS was originally developed as a technique 

dedicated to the analysis of solutions, even though subsequent solid sampling 

introduction methods have been devised. This exactly parallels the development 

of ICP-AES approximately 10 years earlier and offers the possibility of applying 

sampling techniques originally developed for ICP-AES to ICP-MS. However, 

even now, the majority of ICP-MS instruments are still used primarily for 
lb 

solution work1
• Part of the reason for this is no doubt due botht...established 

tradition and to the greater amount of literature for solution nebulisation that has 

resulted from this. But it is also significant that also as a matter of tradition and 

convenience, instrument manufacturers provide solution nebulisation as standard 

and perform all initial optimisation and troubleshooting in solution mode. 

Solution introduction offers a number of advantages over solid sampling. 

Firstly, most laboratories have always had to perform digestions and therefore 

have established routines and methods for achieving this. Secondly, unlike solid 
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sampling, it is relatively easy to prepare standard solutions against which to 

calibrate the samples. 

When working with analyte concentrations above trace level, there is a lot of 

expertise and literature concerning sample and standard preparation. Whilst this 

can be drawn upon, it must not be assumed to be direcdy applicable to trace and 

ultratrace analytes. Even simple factors such as acid purity have been found to 

have a profound effect on the quality of results2
• Similarly, there would appear to 

be, and indeed are, strong similarities between sample and standard preparation 

for ICP-MS and ICP-AES, but again, experience gained with one does not 

necessarily relate direcdy to the other. 

The purpose of this chapter is therefore to examine the basics of solution 

nebulisation from the geochemists point of view, with a view to achieving the 

objectives oudined in chapter 1. 

3-2 Technology of solution nebulisation 

Solution nebulisation operates by converting the liquid sample into an 

aerosol with argon gas, the flow of which carries the sample into the central 

channel of the plasma. The nebuliser is the most critical part of the system. 

Although there are nebulisers which vaporise the sample by means of an 

ultrasonic transducer\ the pneumatic nebuliser is by far the most common4 and 

operates on the principle of the disruption of a stream of liquid by a flow of argon 

gas (the "Nebuliser" gas flow), the latter being precisely controlled by means of a 

mass flow controller. The flow of liquid is produced either by the causing a 

Bernouili effecf, as with the "Meinhard" concentric nebuliser6
, or by means of a 

peristaltic pump. Pumping of the sample solution is used where the nebuliser 
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does not uptake naturally, as with the "Babbington" type 'V-groove' nebuliser7
, 

or where more control of sample uptake is required. For optimum transport 

efficiency, the size of droplets reaching the plasma should be <10prn8
• Pneumatic 

nebulisers produce a wide variety of droplet sizes thus the larger droplets need to 

be removed, and this is commonly achieved by means of a "Scott" type spray 

chamber9
• 

Often referred to as a double pass spray chamber, the design forces the 

aerosol flow to make a 180° tum. The smaller drops pass into the plasma whilst 

the larger drops impact on the end wall of the chamber and are pumped away to 

waste. A variety of different spray chamber designs have been developed for 

ICP-AES, but none have shown any significant advantages over the Scott design. 

The spray chamber is usually constructed from glass, although quartz, PTFE 

and Ryton have also been reported in the literature for specific applications, an 

example being Allenby's use of a PTFE spray chamber for the analysis of solutions 

containing a high level of fluoride 10 which would attack glass or quartz, and 

Paulson's use of a quartz spray chamber for the analysis of concentrated acids11
• 

Another important consideration in spray chamber design lies in the use of a water 

cooled chamber. Hutton and Eaton 12 predicted that a temperature controlled spray 

chamber would reduce the time required for thermal equilibration of the system to reach 

steady state and thus give a more stable signaL In additionJ refrigerating the spray 

chamber, typically to lOoc for aqueous solutions, gave a two fold benefit. First, the 

amount of water vapour reaching the plasma was reduced, giving a reduction in 

the level of interfering oxide polyatomics (such as the overlap of 40Ar160• on 56Fe); 

and secondly, by stabilising the water loading there was an overall improvement in 

the stability of the system. 
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3-3 Optimisation . 

Early work was directed towards the optimisation ofiCP-MS systems for solution 
~6t"D'1 

nebulisation, initially by Gray13
'
14

, and Dat~5, followed by Horlick et a/16
• Much has 

been published subsequently on the optimisation ofiCP-MS systems for solution 

analysis. For practical information, the instrument manufacturers operating manuals are 

informative and Jarvis, Gray and Houk17 provide an excellent discussion on the 

background and theory ofiCP-MS optimisation . 

Preliminary work by this author found no deviation from published instrument 

conditions and optimisation methods recommended , except for certain specialist 

applications such as the work by Jarvis et a/18 on the determination of europium in barite 

where the presence of a large BaO+ species completely swamped the much smaller 

europium isotopes. 

3-4 Solution Considerations 

The author's previous experience with sample preparation for optical 

techniques such as ICP-AES, AAS and GFAAS were used as a starting point to 

this part of the work. In addition to a detailed examination of geological sample 

preparation and digestion, it was found necessary to examine some basic 

considerations and limitations to the solution technique in ICP-MS. 

3-4.1 Reagent Purity 

In addition to the reagents needed to digest the samples, it is also necessary 

to acidify standard solutions in order to stabilise the metals in solution. 

When dealing with detection limits in the sub ppb range, it was found that 

normal "analytical grade" reagents, such as the BDH "Aristar" range used in most 

analytical laboratories, were simply not clean enough. Trace element 
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contamination which would be below the detection level of most techniques was 

found to cause significant problems in low level ICP-MS work. All of the 

common mineral acids which are used to stabilise the metals in samples and 

standards as well as normal laboratory grade deionised water were found to be 

contaminated in this way. Although blank subtraction was tried, the precision of 

such results were unacceptably compromised . 

It was therefore found necessary to use freshly deionised water with a purity 

of 18Mn. If left even for a few hours, trace impurities such as sodium and zinc 

became detectable, presumably leached from the container. Even PTFE and 

perfluoro acetate (PFA) containers were found to leach out metals unless they had 

been previously soaked in at least a 10% solution of nitric acid. 

The trace element contamination differed according to the type of acid. 

Since the acids are commercially purified by distillation, those elements which 

formed volatile species with the acid anion, e.g. CeF2, GaC12, tended to be 

present in the final product. For example hydrofluoric acid, necessary for the acid 

digestion of silicates, was found to be severely contaminated with lanthanides and 

silicon, presumably present as SiF4• 

The choice of mineral acids for use with ICP-MS is discussed below, but in 

general, it was found that, for all acids, only by redistilling the analytical grade 

reagents in a sub-boiling still as described by Paulsen19 could the acids be used 

with any degree of confidence. Later on in the work an alternative was found in 

the "semiconductor grade" reagents. The nature of semiconductor manufacture is 

such that even trace impurities can affect the doping of semiconductor wafers20
• 

As a result the demand arose for a range of acids and bases certified to have trace 

element impurities below the detection limits of even ICP-MS. Of the range of 

3-5 



• 

Chapter3. 
Solution Sample Introduction into ICP-MS 

those analysed by the author, the best by far were produced by Tama Chemicals, 

Osaka, Japan and were therefore used for the bulk of this work. 

3-4.2 Choice of Mineral Acids 

An acid medium is necessary to keep most metals in solution, both prior to 

and during analysis. Of the common mineral acids available, selection of the most 

appropriate was based on considerations of the chemistry of the analyte elements, 

the J;IUmber of interfering polyatomic species created, and the amount of signal 

sulpression produced. / 
I 

Nitric Hydrochloric Sulphuric Phosphoric 
Indium signal (cps/ppm) 4,853,003 4,457,429 2943855 878362 

% Suppression WRT In 0 8 39 82 

Table 3-1: Suppression produced by various acids 

10% v/v solutions of nitric, hydrochloric, sulphuric and phosphoric acid were 

prepared and spiked with 50ppb of indium and analysed using a 60 second full 

mass scan. A sample of deionised water was also run. A new sampler and 

skimmer cone were used for each acid in order to examine deposition on, or 

erosion of, the interface. The integrated counts per second obtained for the 

indium was converted to the equivalent countrate for a 1 part per million solution. 

Nitric acid gave the strongest signal and therefore suppression levels were 

calculated relative to this baseline (fable 3-1). Hydrochloric acid gave some 

suppression, equivalent to less than 10%. Examination of the cone revealed no 

detrimental effects. Sulphuric acid produced a significant signal suppression, 

almost 40%. Examination of the sampler cone revealed no deposit, but significant 

erosion of the cone material. 
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Phosphoric acid caused serious problems. A signal suppression of over 80% 

was observed. Furthermore, after running the phosphoric solution the signal did 

not return to its original value. Even after aspirating a wash solution, when the 

nitric acid solution was re-run, the signal remained at around 18% of the original 

value. Upon removing the sampling and skimmer cones, it was found that both 

cones were coated with a sticky substance, presumably a phosphate or 

polyphosphate, necessitating the cleaning of the cone. Once this deposit had been 

removed, significant erosion of the sampling cone was observed. It is concluded 

that phosphoric acid is wholly unsuited to liquid analysis by I~P-MS. 

Interfering species observed in the spectra of the acids have been reported by 
et-•r 

many authors, among the first being Horlick(1 who reported the presence of a large 
' . 

number of interferences in ICP-MS, largely oxide and other recombinant species. 

The number of such species reported was considerably higher than were reported by 

Gray's group22
, Lt is believed by this author that this was due to differences in the 

design of the instruments used by the two groups. The Elan, the instrument used 

by Horlick and manufactured by the Sci ex Corporation, used a patented centre 

tapped load coil. In order to prevent discharging between the coil and the 

sampling cone, as had been reported by Graf3
, the plasma was sited further away 

from the sampling cone than in Gray's design, thus ions were sampled from a 

cooler part of the plasma, allowing greater time for recombination and oxide 

formation. Although, no doubt for commercial reasons, no direct comparison has 

ever been published, when the design of the Elan instrument was changed to 

allow sampling from a distance similar to that used in Gray's original design, the 

spectra from such instruments showed much less of the oxide species described by 

Horlick. 
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Jarvis et al 24 provide a very good review of the interferences produced by the 

common mineral acids. In general, all acids produce molecular interferences, 

such as for example the presence of 0 35Cl+, 0 37Cl+, Ar35Cl+ and Ar37Cl+ in 

hydrochloric acid spectra which interfere on 51V, 53Cr, 75 As and 77Se respectively. 

Nitric acid produces fewer interferences than the other acids, only the 

"classic" ICP-MS interferences of ArN+ on 54Fe, ArO+ on 56Fe, ArOH+ on 57Fe and 

Ar/ on 80Se. These are the same species that are present in a deionised water only 

spectrum, in which case the nitrogen species presumably arise from entrainment 

of atmospheric nitrogen into the plasma, or contamination of nitrogen in the gas 

supply. 

Solution chemistry permitting, nitric acid is therefore the preferred acid for 

stabilising ICP-MS solutions by virtue of it's minimal signal suppression and 

limited number of interferences which it produces. 

3-4.3 Detection Limits 

Peak jump dwell per isotope 50,000~ 

No. of points per peak 3 

DAC step 3 

No. of peak jump sweeps 20 

No. of isotopes 15 

Table 3-2: Detection limit experiment acquisition conditions 

The achievable detection limits in solution were determined for a range of 

elements which generally have a low natural abundance in most rocks25
• A nitric 

acid blank was analysed 10 times in peak jumping acquisition mode using the 

conditions listed in table 3-2. A lOppb solution of the elements Ru, Rh, Pd, Ag, 

Cd, In, Sn, Ta, W, Re, Os, lr, Pt, Au, Hg, and Tl was also analysed under the 

same conditions and the detection limits for each element calculated using the 
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where: L.O.D. = limit of detection 

0"8LK= standard deviation (n-1) of the 10 blank determinations 

C 5m= concentration (ppb) of the standard 

Xsw= signal produced by the standard 

This equation is used throughout this work to determine detection limits. 

The results are shown in table 3-3. 

Element Isotope Abundance (JBIX Xsro LOD (ppb) 

Ru 100 12.7 3.88 15,076 0.08 

Rh 105 100 4.89 60,702 0.02 

Pd 105 22.6 10.93 21,589 0.15 

Ag 107 5.35 1,272 65,390 5.84 

Cd 111 12.86 8.54 12,504 0.21 

In 115 95.84 12.3 138,745 0.03 

Sn 118 24.01 13.55 33,531 0.12 

Ta 181 99.99 7.71 254,754 0.01 

w 182 26.31 2.87 54,464 0.02 

Re 185 37.07 4.98 85,258 0.02 

Os 189 16.1 4.63 45,481 0.03 

lr 193 61.5 3.17 123,609 0.01 

Pt 195 33.7 4.24 39,470 0.03 

Au 197 100 68.77 70,167 0.29 

Hg 202 29.8 36.33 21,313 0.51 

Tl 205 70.5 4.67 162,946 0.01 

Table 3-3: Detection limits obtained for solution nebulisation 

For the elements selected, detection limits were typically <0.2ppb. The 

exception to this is silver, caused by an unnaturally high standard deviation of the 
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blank levels. This is likely to have been caused by the use of a chloride matrix, 

necessary in order to stabilise elements such as rhenium and gold. Some 

precipitation of silver onto the glassware, as the chloride, is likely to have 

occurred. This would then be slowly eluted by the 1% nitric acid blank solution 

used. 

3-4.4 Instrument Cleaning 

The detection limit experiment highlighted another area in which great care 

was necessary. Although the manufacturers claim an uninterrupted dynamic 

range of 108 orders of magnitude, in practice it is not possible to determine low 

levels of an element after a high concentration of that element has been aspirated 

due to carry over. By cleaning different parts of the sampling system and interface 

after aspirating a 500ppb solution in 1% v/v HN03 of a range of elements, it was 

found that different elements were retained in different parts of the system, and 

that the chemistry of the elements and their matrices affected the extent of this 

retention. 

The main area in which elements were found to linger was, not surprisingly, 

the spray chamber. Washout times, the time taken for an element to return to the 

background level, for most elements was found to be under 3 minutes. However, 

one exception to this was mercury which, due to its volatility, never returned to its 

original 'clean' background level until after the spray chamber had been removed 

and cleaned. Other elements such as copper, molybdenum, tungsten, silver and 

gold could be removed, without cleaning the spray chamber, by aspirating a 

solution of 5% v/v ammonia. 

Boron and, to a certain extent, the alkali metals showed a tendency to deposit 

on the tip of the injector of the plasma torch. This has important implications for 
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the popular use of lithium metaborate fusions, although the low level 

determination of these elements lay outside the scope of this work. 

Osmium was found to be retained on the Teflon sample uptake tubing and 

the PFA surfaces of the De Galan26 'V-groove' type nebuliser. 

Although the level (500ppb) was too low to cause deposition on the sampling 

orifice, the alkali metals, and most particularly sodium, were found to deposit on 

the back of both the sampler and skimmer cones. 

All of the glassware was cleaned by steeping it for several hours in a 

commercial alkaline detergent such as Decon 90, after which the items were 

rinsed with deionised water and stored in a solution of 10% v/v nitric acid until 

required. It was found necessary to keep two sets of glassware so that one could 

be soaking whilst the other was in use. 

Initially sampler and skimmer cones were cleaned by dropping 50pl of 

concentrated nitric acid into the back of the cone then quickly rinsing it away with 

deionised water. This procedure, however, was found to reduce the working life 

of the cones by prematurely enlarging the sampling orifice until vacuum could no 

longer be maintained. A more suitable alternative involved cleaning the cones 

with a cloth and an alumina paste such as "Polaris". Excess paste was removed by 

agitating the cones in an ultrasonic bath; first with deionised water and then with 

Aristar grade acetone. This procedure left a high aluminium signal but, since this 

element is present at high levels in geological samples, this was not significant. 

3-4.5 Matrix Tolerance 

The nature of the ion extraction process from the ICP means that there is a 

limit to the level of dissolved solids which can be nebulised without blocking the 
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sampling orifice. This is a primary factor in limiting the detection limits which 

can be achieved with the technique, especially for geological samples, since 

theoretically, by aspirating a lOx more concentrated solution of sample, a lOx 

improvement in the detection limit could be achieved. In order to attain the best 

possible limits of detection it is necessary to determine the optimum matrix level 

at which as high a matrix concentration as possible is aspirated without causing 

significant blockage of the cone. 

As noted earlier, Gray and Williams27proved that such deposition on the 

sampling cone is directly related to the strength of the matrix element - oxide 

bond, the more refractory elements tending to form and deposit faster. Since the 

matrix elements in most geological samples are highly refractory, this was an 

important consideration for this work. 

The manufacturers of the instrument recommend a blanket concentration of 

0.5% w/v for refractory matrices. An experiment was devised to determine the 

matrix tolerance of the instrument for geological materials. This involved the 

measurement of the percentage recoveries of a number of elements in a standard 

reference material when introduced at a range of matrix concentrations. 

3-4.5.1 Sample Dissolution 

-1 g amounts of the USGS granite standard G 1 were weighed into PFA 

digestion bombs and lOml hydrofluoric acid, 2ml nitric acid and 0.5ml perchloric 

acid added. The bombs were sealed and placed in a 750W microwave oven at full 

power for 1 Y2 minutes. The samples were then cooled and the heating cycle 

repeated a further two times. After cooling, the bombs were opened and the 

solutions evaporated to fumes of perchloric on a hotplate. This was to vaporise 

the hydrofluoric acid which would otherwise attack both the spray chamber and 
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the plasma torch. A further 5ml of nitric acid and 1ml of perchloric acid were 

added and evaporated to dryness. 5ml of deionised water and 2ml of nitric acid 

were added and warmed until all of the solid had dissolved. After cooling the 

solutions were diluted to give a final concentration of 0.2%, 0.5%, 1% and 1.5% 

w/v of the original rock. An acid blank was also prepared using the same 

procedure, but without the sample. These solutions were spiked with indium such 

that the final concentration was 50ppb. The reported value28 for indium in G1 is 

2 5 .2ng.g-1 thus the amount of indium in the solution is insignificant relative to the 

concentration introduced as the internal standard: the solutions actually contained 

50 (blank), 50.05, 50.13, 50.26 and 50.38 ppb of indium respectively. 

3-4.5.2 Methodology 

Acquisition was performed in peak jumping mode for the elements Co, In, 

La - Lu and Pb, with a dwell time per point of 512JJS, 5 points per peak and 60 

sweeps. Calibration was performed relative to the blank and an aqueous 50ppb 

standard solution of the elements stabilised with 1% nitric acid. 

3-4.5.3 Results 

The reported values, values obtained and percentage recoveries are shown in 

Table 3-4. 

It can be seen that good agreement with reference values is obtained at 0.2% 

and 0.5%. At 1% and above, however, there is a tendency for the obtained results 

to be higher than the reference values. Fig. 3-1 shows the obtained values plotted 

against the reference values. It can be seen that at the 0.2% and 0.5% matrix 

levels, the slop~ ~"=I~e to 1 and excellent coefficienf of correlation are obtained, 
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Table 3-4 ). At the 1.0% and 1.5% levels of matrix, the slope has fallen to 

approximately 0.8 and the correlation coefficients are slightly worsened. 

Reported 0.2% w/v G1 0.5% W/V G1 1% w/v G1 1.5% w/v G1 
Element Value Obtained % Obtained % Obtained % Obtained % 

(I.Jg.g•l ) (I.Jg.g·l ) Recovery (I.Jg.g•l ) Recovery (I.Jg.g•l) Recovery (I.Jg.g•l ) Recovery 

Co 2.4 2.3 96 2.4 99 2.1 88 2 82 

La 101 97 96 96 95 76 69 72 71 

Ce 170 173 102 163 96 140 82 141 83 

Pr 19 17 89 16 86 17 90 18 95 

Nd 56 54 97 52 93 56 101 60 108 

Sm 8.3 8.3 100 8.2 99 8.7 105 9.4 113 

Eu 1.3 1.4 109 1.4 107 1.5 118 1.7 128 

Gd 5 5 107 6 115 6 118 6 126 

Tb 0.54 0.63 117 0.61 113 0.65 120 0.71 131 

Dy 2.4 2.9 119 2.8 115 2.9 122 3.3 136 

Ho 0.35 0.48 137 0.48 137 0.5 143 0.57 163 

Er 1.15 1.25 109 1.26 110 1.33 115 1.5 130 

Tm 0.15 0.17 113 0.17 113 0.18 120 0.2 133 

Yb 1.06 1.05 99 1 94 1.05 99 1.19 112 

Lu 0.19 0.16 84 0.15 79 0.16 84 0.18 95 

Pb 48 49 102 47 97 45 93 51 106 

Slope 1.0026 0.9997 0.8200 0.8170 

r2 0.9990 0.9549 0.9925 0.9816 

Table 3-4: Results obtained for GI at various matrix levels 

These findings are consistent with either matrix suppression, space charge 

effects or cone deposition. The fact that there was no significant mass 

discrimination in the results suggests that the effect is not being produced by 

space charge effects, since these would affect the lower mass results more than the 

elements of a higher mass. 

Although from these results alone there is no way to distinguish between 

matrix suppression and cone blockage, this was determined simply by examining 

the sample cone after each level of matrix had been run. This revealed that a 

slight deposition was formed at the 1.0% level, and to a much greater extent at the 
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1.5% level, despite their showing similar slopes. N o deposition was observed for 

either the 0.2% or 0.5% levels. This suggests that cone deposition becomes 

significant at and above the 1% matrix level and therefore, under normal solution 

aspiration conditions, matrix levels should be kept below this value. 

Obtained value (IJQ/g) 

200 

150 

100 

50 

0 
0 50 100 150 

Reference value {1Jg/g) 

0.2% 0.5% 1.0% 1.5% 

• • • 0 

Figure 3-1 :Compat-ison of results obtained with ,·efe'rence values for vm-ious mat1-ix 
levels of the standard granite G 1 

3-5 Dissolution Procedures 

20( 

The need to convert solid samples into solutions predates the development 

of instrumental techniques. There is consequently a great deal of published 
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material relating to the digestion of geological samples. Maxwel129
, Jeffery and 

Hutchison30 and Bock31 have all published reviews of the subject. 

There are two approaches reported for the digestion of samples for 

quantitative analysis; (a) methods based on the fusion of a sample; and (b) 

methods based on the acid digestion of the sample. 

3-5.1 Fusion Techniques 

These are based on the addition of a flux with which, at high temperature, 

the sample fuses to form glass beads which may either be analysed directly by 

techniques such as XRF or can be dissolved in relatively mild acid conditions to 

produce a solution. The major "advantage" of the fusion technique is the 

retention of silica in the final solution allowing its quantitative determination. 

The range of fluxes and reagents used for the fusion of geological samples is 

extensive. Bock provides a very comprehensive review32
• Classical fluxes such as 

sodium carbonate, which were used in the 1920's and 1930's by Washington33
, 

and sodium hydroxide, used in the 1950's by Riley4 have largely been superceded 

in more recent times by borate fluxes, in particular lithium metaborate35
•
36

• 

Although the fusion technique has been widely used for ICP-AES analysis, for 

example Walsh37
, Walsh and Howie38

, Brenner et a/ 39 and Burman et a/ 40
, it has 

found little general applicability in ICP-MS. 

Although, according to Cremer and Schlocker41
, a lithium meta borate flux 

attacks all of the major rock forming silicates and most of the accessory minerals, 

fusion techniques are not used in ICP-MS primarily because they add to the 

matrix of the solution. Since the major reason for using ICP-MS rather than 

ICP-AES for an analysis is to achieve lower detection limits, there is little point in 
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using a digestion method which actually reduces the amount of sample in the 

aspirated solution. Consequently minimal attention was given to fusion analysis 

in this work. 

One fusion method which has found specialist applicability for the analysis of 

platinum group metals is the nickel sulphide fire assay technique described by 

Robert et al 42 and Haines and Robert43 In this procedure the sample is fused at 

1150°C with sodium carbonate, basic nickel carbonate and flowers of sulphur. 

Under these conditions, a 'button of nickel sulphide is formed at the bottom of 

the crucible. Siderophilic elements are preferentially partitioned into the button, 

effectively preconcentrating them. The button is then dissolved to produce a 

solution for analysis. 

Date et al 44
, in 1987, were the first group to report the use of the fire assay 

technique for the determination of platinum group metals, used a variation of 

Robert's method to remove the nickel prior to ICP-MS analysis. The button was 

ground up and immersed in concentrated hydrochloric acid. The nickel sulphide 

dissolved leaving a precipitate of the platinum group sulphides which was filtered 

off. The filtrand was dissolved by means of concentrated hydrochloric acid and 

hydrogen peroxide, which was then evaporated to constant boiling and diluted to 

give a relatively matrix free solution. Reasonable agreement with reference values 

were reported for the standard SARM -7, albeit with some loss of palladium, 

platinum and gold, the latter being expected since Robert et af5 had reported that 

gold was collected with less efficiency than other platinum group elements. 

Results for the standard PTC-1 showed serious losses of all platinum group 

elements and gold, and the authors recommended that further development of the 

method was essential. Detection limits in the original rock of 0.1 ng.g·• were 

reported as being achievable by the method. 
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}-{,"" 
Jackson et al 46 reported losses of gold and, to a lesser extent, the platinum 

1--. 

group elements were due to dissolution of the some of the sulphides during the ~i~ictl 

hydrochloric acid digestion. Jackson's group co-precipitated the redissolved 

platinum groupcmetals with tellurium in order to achieve better recoveries, 

although consistently low recoveries were still reported. 

Silver and osmium were not reported by either group since the former was 

precipitated by the chloride matrix, and the latter lost as volatile Os04 during the 

evaporation stages. 

It can be seen therefore that the method has severe limitations due to the 

incomplete recovery of analyte elements. 

3-5.2 Acid Digestion 

Hydrofluoric acid is the only acid which will readily dissolve silicates, 

forming SiF6- ions in acid solution. The use of hydrofluoric acid in combination 

with perchloric, nitric and sulphuric acids is a well established procedure for the 

dissolution of silicate samples, although Thompson and Walsh47 suggest that, 

despite its hazardous nature48
, perchloric acid is preferable to sulphuric as 

perchlorates are more readily soluble than sulphates. 

There are two types of acid digestion. The first, open digestion, involves 

heating the samples on a hotplate, in platinum or Teflon crucibles, for several 

hours49
• The second, microwave digestion, involves heating the sample by 

microwave radiation in a pressurised bomb50
, the latter taking only a few minutes 

to complete digestion. 

While microwave digestion has the advantage of speed, all of the silicon in 

the sample, and more important, all of the hydrofluoric acid is retained in the 
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solution. Hydrofluoric acid can be complexed with boric acid to form the 

fluoroborate ion, FB6-, but this adds considerably to the amount of dissolved 

solids in the solution and therefore is undesirable. Microwave digestion is 

therefore usually followed by evaporation of the hydrofluoric acid and silicon 

tetrafluoride. 

3-5.3 Comparison of Fusion and Acid Digestion Methods for the 
Analysis of a Range of International Geochemical Standards 

Although fusion techniques appear to be fundamentally unsuited to ICP-MS 

analysis, the availability of lithium metaborate disks for three of the South African 

"NIM" series of international standards gave the opportunity to perform a direct 

comparison of the two digestion methods. 

3-5.4 Fusion Method 

The fusions were performed at the British Geological Survey by Dr Alan 

Date, using the following method. 

50mg of powdered rock was mixed with 125mg of anhydrous lithium 

meta borate and was placed in a 1 Oml graphite crucible. The crucibles were 

heated in a muffle furnace at 1000°C for 20 minutes. On removing the crucible, 

the melt was immediately poured down through a pair of rollers rotating in the 

opposite directions to press the fusion mixture into a thin slice. This method was 

developed for the preparation of disks for XRF analysis. 
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T abk 3-5: Comparison of Fusion and acid digestion methods (NV =no reference value). PPPIIt. 

The disks were washed in 5% nitric acid, to remove surface contamination, 

then dried and weighed. The disk was then placed in a Teflon beaker with 15ml 

of 5% nitric acid and dissolved using a magnetic stirrer. Some particulate 

graphite was observed and so the sample was filtered through a Whatman 541 

filter into a 25ml volumetric flask and diluted to volume. This "stock" solution 

contained 0.7%w/v dissolved solids, too high to be aspirated into the ICP-MS, 

and was therefore diluted 3 fold and a 50ppb indium internal standard added. 

3-5 .5 Acid Digestion Method 

0.2g amounts of the powdered rock were weighed into PFA digestion bombs 

and lOml hydrofluoric acid, 2ml nitric acid and 0.5ml perchloric acid added. The 

bombs were sealed and placed in a 750W microwave oven at full power for l lf2 
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minutes. The samples were then cooled and the heating cycle repeated a further 

two times. After cooling, the bombs were opened and the solutions evaporated to 

fumes of perchloric on a hotplate. A further 5ml nitric acid and 1ml perchloric 

acid were added and evaporated to dryness. 5ml of deionised water and 2ml of 

nitric acid were added and warmed until all of the solid had dissolved. The 

solutions were transferred to volumetric flasks and diluted to 1 OOml, with the 

addition of a 50ppb indium internal standard. 

3-5.6 Instrument Conditions 

Acquisitions were performed in peak jumping mode, since this gives greatest 

sensitivity when a limited number of elements are to be determined, for the 

elements Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 

Hf, Ta, Ph ,Th and U. 20 sweeps and 5 points per peak were used with a dwell 

• time per point of 512;vtS, giving a total acquisition time per sample of 117 

seconds. 

Reagent blanks and acid digestion blanks were prepared and calibration 

performed relative to 20ppb and 50ppb aqueous standards containing, all of the 

analyte elements. All of the blanks and calibration standards contained 50ppb of 

the internal standard indium. 

3-5.7 Results 

The results, table 3-5 show no systematic bias in favour of either technique, 

with the exception of lead which was consistently low for the fusion 

determination. This may be due to the formation of a volatile lead hydride during 

the fusion stage. Problems were encountered during the running of the fused 

samples due to blockage of the sampling cone, as indicated by a gradual lowering 

3-21 



• 

Chapter 3. 
Solution Sample Introduction into ICP-MS 

of the signal for the internal standard with time. Despite this, acceptable results 

were obtained, suggesting that the internal standardisation process was 

compensating for this effect. The fact that a single internal standard was able to 

correct elements of as diverse mass as yttrium and uranium suggests that there is 

no mass bias effect in the signal reduction, effectively ruling out suppression 

induced by a space charge effect. 

3-6 Analysis of a Range of International Geochemical Standards by an 
Acid Digestion Sample Preparation. 

A range of international geochemical standards, which were well 

characterised for a wide range of elements, were analysed after being digested by 

acid decomposition. Sample preparation and acid digestion conditions used were 

the same as for the previous experiment. In addition to the elements originally 

determined, the platinum group and gold were added to the element menu. 

These elements are of very low abundance in the analyte samples and their 

determination is difficult by other techniques. 

The results are shown in table 3-6. Whilst good agreement was achieved 

between obtained and reference values for elements of high concentrations, the 

platinum group and gold were below the detection limit. 
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G1 G2 AGV-1 GSP-1 PCC-1 

Granite Granite Andesite Granodiorite Peridotite 
Ref Acid Ref Acid Ref Acid Ref Ref Acid 

y 89 13 14.4 11 12.3 20 22.1 26 25.5 0.1 0.3 
Zr 90 201 187 309 276 227 233 530 501 10 10.8 

Nb 93 22.6 25.9 12 13 15 15.2 27.9 28.2 1 1.2 
Ru 101 NV <0.040 NV <0.040 NV <0.040 NV <0.040 0.01 <0.040 
Rh 103 NV <0.010 NV <0.010 NV <0.010 NV <0.010 0.0014 <0.010 
Pd 105 0.0019 <0.075 0.00025 <0.075 0.0022 <0.075 0.0012 <0.075 0.0054 <0.08 
Ag 107 0.044 <0.08 0.04 <0.08 0.078 <0.08 0.086 <0.08 0.008 <0.08 
Cd 110 0.059 0.07 0.016 <0.03 0.069 0.07 0.058 0.06 0.019 <0.03 
Sn 118 3.2 2.9 1.8 1.7 4.2 4.15 6.6 6.7 1.6 1.3 
La 139 105 105 89 88.6 38 40.5 184 201 0.052 0.05 
Ce 140 173 169 160 158 67 69.5 399 408 0.1 0.13 
Pr 141 17 17.5 18 17.5 7.6 6.7 52 55.5 0.013 <0.040 

Nd 145 57 56.1 55 55.0 33 27 196 197 0.042 0.05 
Sm 147 8.3 7.7 7.2 7.3 5.9 6.5 26.3 26.7 0.0066 <0.040 
Eu 151 1.22 1.3 1.4 1.4 1.64 1.69 2.33 2.36 0.0018 <0.040 
Gd 157 4.8 4.6 4.3 4.1 5 4.9 12.1 12.2 0.014 <0.040 
Tb 159 0.58 0.53 0.48 0.5 0.7 0.62 1.34 1.36 0.0015 <0.040 
Dy 163 2.4 2.3 2.4 2.4 3.6 4.07 5.5 5.72 0.01 <0.040 
Ho 165 0.39 0.42 0.4 0.41 0.67 0.82 1.01 0.99 0.0025 <0.010 
Er 167 1.3 1.1 0.92 1.03 1.7 1.7 2.7 2.64 0.012 <0.040 

Tm 169 0.15 0.16 0.18 0.18 0.34 0.33 0.38 0.42 0.0027 <0.040 
Yb 173 1 0.78 0.8 0.9 1.72 1.83 1.7 1.65 0.024 <0.040 
Lu 175 0.156 0.16 0.11 0.19 0.27 0.2 0.214 0.24 0.0057 <0.010 
Hf 178 5.4 4.1 7.9 6.9 5.1 5.8 15.5 16.1 0.04 <0.040 
Ta 181 1.5 1.8 0.88 1.1 0.9 0.87 0.97 0.96 0.02 <0.040 
w 182 0.43 0.51 0.0002 <0.040 0.55 0.39 0.3 0.36 0.00002 <0.040 
Re 185 0.0006 <0.01 NV <0.01 0.0004 <0.01 NV <0.01 0.000058 <0.01 
lr 193 0.002 <0.005 0.00004 <0.005 0.0002 <0.005 0.0003 <0.005 0.0048 <0.005 
Pt 195 0.008 <0.015 0.0059 <0.015 0.0011 <0.015 NV <0.015 0.008 <0.015 

Au 197 0.0032 <0.15 0.00103 <0.15 0.0006 <0.15 0.0001 <0.15 0.00079 <0.15 
Hg 202 0.085 <0.255 0.051 <0.255 0.02 <0.255 0.022 <0.255 0.006 <0.255 
Tl 205 1.23 1.18 0.91 0.78 0.34 0.3 1.43 1.32 0.002 <0.040 
Pb 208 46 47 30 33 36 56.6 55 53.2 10 9.8 
Th 232 51 51 24.7 26 6.5 105 106 106 0.013 <0.040 
u 238 3.4 3.8 2.07 2.0 1.92 2.3 2.54 2.53 0.0045 <0.040 

Table 3-6. Results obained for acid digested SRM's. NV=no reference value, (pp~), 

3-7 Conclusions 

The solution nebulisation technique has been proved to be effective for a 

range of geochemical analysis. Of the two types of digestion method available, 
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fusing the sample produces too high a level of dissolved solids when trying to 

determine elements at low concentration and is therefore restricted to specialist 

applications such as, for example, fire assay enrichment of the platinum group 

elements, although even this is subject to unacceptably large losses and 

uncertainties. 

Acid digestion is more applicable to ICP-MS, since it does not add 

significantly to the level of dissolved solids in the sample. In fact, due to loss of 

silicon as volatile SiF4, it actually reduces the amount of dissolved material in the 

final solution. The level of dissolved solids which can be aspirated is ultimately 

the limiting factor in solution nebulisation. If by some means the tolerance to 

dissolved solids could be improved by a factor of at least 10, then the direct 

determination of such elements as the platinum group metals and gold could be. 

brought within the range of present instruments. 
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Slurry Nebulisation in ICP-MS 

4-1 Problems with solution nebulisation 

As discussed in the previous chapter, the traditional means of sample 

introduction for trace metal analysis is by the nebulisation of solutions. For most 

applications, and within the limitations already discussed, this has proved to be 

perfectly adequate, since it allows rapid direct analysis with fast washout times and 

the use of automatic samplers to relieve the analyst of the time consuming burden 

of actually performing the analysis. For samples which exist naturally as solutions, 

it is obvious that direct nebulisation is the simplest method, and is almost 

exclusively the preferred technique. One instance of this is where solvent 

evaporation is necessary to concentrate the analyte(s), for example in neutron 

activation analysis1
• 

Most geological samples, however, occur naturally in the solid state and 

dissolution must be performed in order to obtain the solution required by the 

nebulisation technique. Depending upon the properties of the samples this can be 

a very difficult and laborious task and is subject to many limitations and 

inaccuracies, varying from a relatively small systematic error to a total inability to 

dissolve the sample without contamination or loss of analyte elements. A full 

description of the various techniques available by which to achieve dissolution 

would constitute a thesis in itself, but a brief description was given in chapter 3. 

Even so it is worthwhile to review some of the reasons why dissolution may be 

undesirable, and the reasons why alternatives are on occasions sought. 
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The problems which are most likely to be encountered in the digestion 

process are: 

4-1.1 Incomplete Digestion 

When digesting homogeneous material this is not a major problem because 

the amount dissolved can be calculated from the weight of the residue. It is, 

however, of particular importance when attempting to digest heterogeneous 

samples, such as geological materials, where the undissolved material may 

represent an entire phase or mineral in the sample, e.g. chromite. in silicate 

melts. This situation leads to a systematic bias which can be difficult, if not 

impossible, to compensate for, and an alternative sample preparation method 

must be sought. 

4-1.2 Contamination 

Even the most careful chemist is likely to introduce some contamination 

during a digestion. The significance of contamination will depend upon both the 

nature and concentration of the analyte. An element such as sodium is so 

prevalent that contamination is almost certain, whereas indium has an extremely 

low natural abundance and is therefore a most unlikely contaminant. 

Furthermore, when determining sodium the significance of the contamination 

will be different depending upon whether the sample was sea water, where the 

contamination would constitute a very small part of the sodium signal, or a 

deionised water sample, where the sodium signal may be more or less entirely 

produced by the contamination. 
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4-1.3 Masking 

In the course of a digestion, it is often necessary to introduce elements into a 

sample which it would have been desirable to measure. An example of this is the 

loss of information on Li and B concentrations when using a lithium meta borate 

fusion process. In addition to those elements in the flux matrix, it is likely that, 

even when using the purest of fluxes, significant levels of elements having similar 

chemical properties to those of the flux, such as sodium and potassium in lithium 

fluxes, will be present. The significance of such secondary contamination will 

again depend upon the concentration of the analytes. If the analyte 

concentration is high, a correction for such contamination may be made, for 

example by a blank subtraction. However, if low concentrations are being 

determined both the accuracy and the precision of the analysis will be severely 

compromised. 

4-1.4 Loss of Analyte 

This can occur by a variety of processes. Almost all digestions involve some 

form of heating and the loss of volatile elements, such as arsenic and osmium is 

most often encountered during the heating stage. The likelihood of losing 

volatiles will of course depend upon the form in which the species exist. Osmium 

dioxide (Os02) has a melting point of >300°C whilst in the oxidised state, (OsO.J 

it vaporises at 13 ooc 2
• Another way in which analytes may be lost is due to 

insolubility in either the final, or an intermediate, solvent. Most metals are stable 

in dilute nitric acid although both tungsten and molybdenum are oxidised to the 

tungstate and molybdate anions, which are insoluble in acid and thus in time 

precipitate from the solution. At high concentrations the precipitate is instantly 

noticeable but when measuring trace and ultratrace amounts, such precipitation 

will not be evident. 
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It can be seen therefore that there may be many reasons why the analyst may 

not wish, or may be unable to convert a solid sample into a solution suitable for 

nebulisation. Whilst solid sample introduction techniques are the obvious answer, 

they almost always involve additional expensive equipment. One possible 

alternative is to introduce the sample into the ICP-MS using conventional 

nebulisation techniques, but in the form of a suspension or slurry of fine particles 

rather than as a solution. 

Although the term "Slurry Nebulisation" is perhaps misleading- for most 

people it conjures up images of toothpaste - in practice such suspensions are often 

very dilute or colloidal. Slurry nebulisation, however, has become the accepted 

term for all such suspensions, no matter how dilute, and for this reason the term 

will be used in this work to refer to introduction of any particulate matter 

suspended in a liquid or gel. 

4-2 The History of Slurry Nehulisation 

When this research began, no previous work had been published on the use 

of slurry nebulisation with ICP-MS although there were a number of publications 

describing slurry nebulisation for optical spectrometry. 

Gilbere in 1962 proposed the idea of introducing suspensions for flame 

emission studies. Using a soil suspension in 1:1 glycerol:isopropanol, he reported 

qualitative analysis from flame emission spectra in oxygen hydrogen and oxygen 

acetylene flames, and although not providing any analytical justification he 

concluded that quantitative work could be carried out. 

Levedev4 was the first worker to observe the relationship between particle 

size and sensitivity in slurry nebulisation. In his 1969 paper he described the 
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analysis of alkali metals in minerals by flame emission using prepared suspensions 

in water, and contrasted the results with those obtained for solutions of 

comparable concentration. He reported that the signal intensity, and therefore 

sensitivity, of the solutions was consistently higher than that obtained for the 

suspensions, and that this difference seemed to be related to the type of mineral 

used. He also observed that when the particle size of the suspension was reduced 

below a certain value, the same sensitivity could be obtained as for the solutions. 

Slurry nebulisation was applied to atomic absorption spectrometry by r/ 
Harrison andJuliano5 in 1971. They aspirated oxides and sulphides of tin and" ore 

/-
samples and found that the form of the suspended material was significant 

(stannous oxide giving only about 10% of the sensitivity of stannic oxide) although 

they concluded that this was due to the higher dissociation energy of the stannous 

oxide. 

In an excellent paper by Willis6 the results of a detailed examination of 

particle size requirements were presented. Willis defined the "Relative 

Atomisation Efficiency" (RAE) of a slurry system as being the ratio of free analyte 

atoms in the flame to the concentration in the same part of the flame when the 

same amount of analyte is sprayed in a solution. This observation finds a strong 

parallel with the concept of dispersion, or more correctly liD, used in flow 

injection. The RAE therefore forms a useful comparison of the efficiency of 

various slurry- nebulisation systems, with a maximum RAE of 1 being equivalence 

between the solution and slurry systems. 

Using a schist and sulphide ore, Willis demonstrated that the RAE was <0.1 

for particle sizes >38Jl1Il, .~at.~which the RAE increased almost 5 fold, suggesting 

a threshold particle size above which nebulisation became inefficient. Willis also 

determined the RAE obtained for various types of grinding mill and concluded 
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that only by micronizing samples could the mean particle size be reduced below 

the >40pm threshold. The concentration of the suspension was found to have no 

appreciable effect on the RAE, although this does not mean that it should be 

ignored when applied to ICP-MS. 

Whilst all of the early work was carried out with relatively homogeneous 

materials, which readily formed suspensions in water, in order for such a 

technique to be applied to 'real world' applications it was necessary to prepare 

suspensions of real samples, such as geological materials. Daniels and Alberty7 

noted that coating particles with a high molecular weight lyophillic species, such 

as gelatin, stabilised suspensions in water. Ramirez-Munoz et al8 studied the 

effect of gelatin, starch and Triton-X-100 (an alkyl phenoxy polyethoxy ethanol 

compound) on the stabilisation of particles. Fuller9 reported the use of 5ml in 100 

solution of 0.1% w/v sodium hexametaphosphate for stabilisation of a 1% w/v 

Ti02 suspension. 

A year later, Fuller10 described the use of "Viscalex HV30", an acrylic 

copolymer containing carboxyl groups which acts as a thixotropic thickening 

agent. Supplied as an acidic low viscosity emulsion, when diluted and neutralised 

to a pH in the range 6-10, it forms a highly viscous gel which is stabilised to a 

suspension for several days. The atomic absorption analysis of chromium in a 

0.1g/100ml rock solution was reported for various concentrations ofViscalex. 

Below 2% Viscalex, the suspension decays over 3 days; at 2% and above, however, 

the absorbance recorded is constant, although the precision of these 

measurements was not noted. 

In 1981, Fuller, Hutton and Preston11 discussed the application of slurry 

nebulisation and the effect of particle size for sample introduction into flame and 

electrothermal ~~rn.isation (ETA") AAS and ICP-AES. Samples were ground in a 
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McCrone mill, as described by Willis, and used Fullers' Viscalex stabilisation 

method. For flame AAS systems results similar to Willis' were obtained. For 

ETV, although there was some variation in RAE with particle size, RAE values of 

0.5 and above were obtained, even at particle sizes in the range 90-106pm. In 

ETV AAS, the sample was simply pipetted and not nebulised, therefore 

confirming the idea that the limiting factor in slurry introduction is the 

nebulisation stage. · 

When introducing slurries into ICP-AES, it was found that a particle size of 

<.6pm was necessary in order to achieve significant ( ... 0.5) values of REA. This is 

surprising because the hotter thermal environment of the ICP was expected to 

give rise to improved signal responses. The authors believed that the limitation 

lay in the unavailability of ICP concentric and cross flow nebulisers at the time to 

cope with the slurry, even when pulsed nebulisation (a modified version of flow 

injection) was used. Sparkes and Ebdon 12
, Halicz and Brenner13 and Ebdon and 

Wilkinson14 have also studied slurry nebulisation into ICP-AES, drawing similar 

conclusions concerning particle size. 

This requirement for small particle size gave rise to a series of experiments 

by Ebdon and Collier15
'
16 who used kaolin to monitor fractionation of the sample 

in the slurry nebulisation system. They concluded that the spray chamber design, 

a Scott type double pass system , was significant in causing fractionation of the 

sample, due to the inability of large particles to remain in the aerosol after the 

direction change in the spray chamber. Another factor which reduced the 

acceptable mean particle size for ICP compared with Flame AAS was found to be 

the narrow injector tube used in the classic Fassel plasma torch. By using a torch 

with a 2mm and 5mm injector (c.f. lmm on the standard), transport efficiency 

could be improved for ICP-AES. 
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4-3 Application to ICP-MS 

The similarity between the two techniques meant that in almost all respects, 

the methods developed for ICP-AES could be directly applied to ICP-MS. 

Given the choice between adopting one of the various phosphate based 

stabilising agents and the Viscalex method, it was decided to adopt the latter. 

This was because previous work by this and other authors (chapter 3) had 

indicated that phosphates and phosphoric acid cause severe depression of the 

analyte signal, as well as a rapid blockage of the sampling interface. Subsequently 

it was shown by Jarvis and Williams17 that this was not necessarily 

the concentrations of organic phosphates used. 

true for 

At the time, the majority of slurry nebulisation work had been carried out on 

relatively homogeneous materials. Although the possibility of sampling errors was 

felt to be low, due to the high degree of mixing achieved in the milling stage, it 

was necessary to consider the possibility of fractionation of minerals in the 

suspenswn. 

4-4 Experimental 

4-4.1 Reagent Purity 

All reagents except the Viscalex solution were of semiconductor grade purity. 

An acidified 2% v/v solution ofViscalex was spiked with 50ppb indium and 

analysed to assess it's purity. Semiquantitative analysis, calibrated relative to the 

internal standard showed significant levels (> 1 Oppb) of alkali metals but no other 

significant contaminant elements were detected. This simple experiment also 

demonstrated that no matrix effects were produced by the Viscalex. This 
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confirms the author's experience when analysing acetic acid which was found to 

enhance the signal in some instances. 

CERT. Run 1 Run 2 Run3 Run 4 Run 5 Mean 
Be 2.4 3 2.4 2.3 2 1.5 2.2 
Co 5 6.9 10.9 7.3 4.4 5.5 7.0 
Rb 170 56 53 59 56 85 62 
Sn 1.4 2.1 4.9 3.9 2.3 1.6 3.0 
Ba 1900 729 804 656 225 93 501 
La 92 132 289 213 186 167 197 
Pb 30 25.7 23.4 9.3 3.8 4.2 13 
u 2.1 2.2 1.5 1.2 0.8 1.3 1.4 

Table 4-1: Semi quantitative results for selected elements in G2, 

calibrated against the aqueous indium internal standard, ( ~·g-0. 

CERT. Run 1 Run 2 Run 3 Run 4 Run 5 Mean 
La* 92 92 92 92 92 92 92.0 
Be 2.4 2.82 1.95 3.11 2.4 2.51 2.6 
Co 5 4.9 4.9 6.7 5.4 5.8 5.5 
Rb 170 138 135 179 217 181 170 
Sn 1.4 0.9 1.4 0.67 1.72 1.6 1.3 
Ba 1900 1873 2132 2095 2048 1977 2025 
Pb 30 42.3 33.2 50.3 28 29 37 
u 2.1 2.4 1.82 1.54 1.72 1.56 1.8 

4--
Table~ 2: Semi quantitative results for selected elements in G2, 

calibrated against the La standard value, (~ ·1') . 

4-4.2 Grinding 

so ~h~=-
0.6 0.9 
2.5 4 
13 22 
1.4 2 
320 538 
59 99 
11 18 
0.5 0.9 

so l~!"f.(otof, enlal. 

0.0 0.0 
0.4 0.7 
0.8 1.3 
34 57 
0.5 0.8 
103 173 
10 16 
0.4 0.6 

Samples of international geochemical standards were wet-milled for 30 

minutes in a McCrone micronising mill with semiconductor grade acetone. 

Although no particle size measurements were used, this method was found by 

Fuller et alto result in a mean particle size below 6pm18
• 
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4-4.3 Preparation of Slurries 

A major concern in adapting the method to ICP-MS was the likelihood of 

deposition of sample matrix onto the sample interface. Fuller's method used 1g of 

the milled sample, but for this work, the amount was reduced to 0.2g. 

0.2g of milled sample was weighed into a beaker and 1.5ml ofViscalex HV30 

added. The emulsion was diluted to approximately 5 ml with deionised water and 

stirred vigorously. Whilst still stirring, the solution was neutralised by the 

dropwise addition of 0.880 ammonia, until the solution thickened to a gel. The 
I 

suspension was transferred to a 10ml volume1!ic flask, spiked with 50 ppb of 

indium and diluted to volume. Blanks containing just the reagents and the 

internal standard were also prepared. 

4-4.4 Instrument Conditions 

A mass range of 5-255amu was used skipping mass regions 12-31.5, 38-44.5, 

45.5-49.5, 53.75-58.25 and 79.5-80.5 amu. Instrument conditions were: dwell 

time of 512ps; 2048 channels; and 50 sweeps This corresponds to an approximate 

scanning time per acquisition of 60 seconds. 

A standard plasma torch and de Galan "V -groove" type nebuliser was used, 

I with the solution being pumped at 0.8mllmin. 

~ 
[ 4-5 Results 

Initial experiments were simple semi quantitative analyses of the standards 

and blanks, calibrated relative to the aqueous internal standard. The initial results 

bore no resemblance to certified values, being consistently low. Furthermore, 

precision over five determinations, as measured by the percentage relative 

standard deviation, was also poor. The problem was traced to the method of 
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preparing the suspensions. The stirring of the suspension during preparation had 

been carried out by means of a Teflon coated magnetic stirrer. Upon close 

examination of this, mineral particles, presumably magnetite and other 

ferromagnetic minerals, were sticking to it and therefore absent from the 

suspension being aspirated. All of the solutions were prepared again using a 

mechanical stirrer, constructed from PTFE rather than metal to avoid 

contamination. 

Obtained value (ug/g) 
10,000 r------ -------------------, 

1,000 

100 

10 

1 

0.1 

0.01 
0.01 

G2 
• 

+ I 

•• 
0.1 

GSD-1 
• 

•• 

1 10 100 

Reference value (ug/g) 

• -· • 

•• 

1,000 

Figure 4-1: Comparison of results obtained by slU7ry nebulisation with refere1ue 
va[ues Jot· vm"ious matrix levels of the refe·rence staridanls G 1 and GSP-f 

10,00( 

The new semiquantitative results (table 4-1) again showed poor agreement 

with certified values as well as poor precision. One possible reason for this was 

that because indium, the element added to the suspension to form an internal 

standard, was present in solution rather than as a suspension, its nebulisation 

efficiency may have been significantly higher than that of the G2 sample. This is 
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consistent with the observation that the mean results for most elements were 

lower than certified values. 

The data was therefore reprocessed using lanthanum as the internal standard, 

taking the certified value as reference. The results, given in table 4-2, show 

greatly improved agreement with certified values and better, although still not 

good, precision. The experiment was repeated several times, always with similar 

results. Regrinding the samples for a longer period was also found to have little 

effect, suggesting that the problem was not directly related to particle size. 

This disparity between aqueous standards and the suspension had serious 

implications for the viability of the technique for geochemical work. An internal 

standard is essential for ICP-MS work in order to achieve both good accuracy and 

good precision. However, if it was not possible to add an internal standard, then 

the chances of obtaining good quantitative data were limited. Furthermore, 

quantitative calibration against aqueous standards would also not be possible. 

It was decided to carry out a quantitative analysis, calibrating against 

reference standards and again using the reference standard's lanthanum content as 

the variable internal standard. This meant that no blank subtraction could be 

performed, since there was now no way to spike the slurry with an internal 

standard. It was necessary to apply a correction for the differing amounts of 

lanthanum in each sample because in quantitative analysis, the Plasma Quad 

software assumes that the internal standard has the same concentration in each 

sample. 

In contradiction with Fuller's findings19
, the stability of the suspensions was 

found to be limited. Acceptable results could not be obtained with suspensions 

prepared more than an hour earlier. 
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Indeed great care was necessary in the preparation of the suspensions. For 

example the over addition of ammonia resulted in too viscous a sample which 

although very stable, proved to be difficult for the peristaltic pump to handle and 

caused the tubing connectors to burst. After a large number of failed attempts, 

reproducible quantitative results were obtained. The preparation of the slurries 

was not a task which could be readily automated and in practice was found to be as 

time consuming as sample digestion, and required as great if not greater skill 

levels from the worker. 

Precision was found to vary with concentration, but in general relative 

standard deviations were below 10% for elements present at 1ppm or higher. The 

results of the quantitative analysis for a wide range of elements in the USGS 

standards G2 and GSD-1 are shown in table 4-3. Figure 4-1 shows the obtained 

values plotted against reference values. the slopes obtained for G2 and GSD-1 

were 0.964 and 1.098 respectively, indicating that good agreement with certified 

values were obtained. The correlation coefficients for G2 and GSD-1 were 

0.9888 and 0.9785 repectively. 

4-6 Conclusions 

Although it was found to be possible to obtain good results for geochemical 

standards using slurry nebulisation, there are a number of practical difficulties. 

4-6.1 Standardisation 

The inability to use aqueous standards poses a limitation to the technique, 

although this can be overcome by using suspensions of reference materials. 
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4-6.2 Internal Standardisation 

More importantly, the inability to add an internal standard poses significant 

limitations to the applicability of the technique. Without the ability to use 

internal standardisation, the analyst is limited to running reference materials with 

at least one, and preferably more than one, known elemental concentration. 

There will be instances where the concentrations of some elements in a sample, 

usually major and minor elements, will be known from XRF and other techniques 

which can be "plugged in" to obtain an internal standard. 

One other possibility is to prepare a synthetic silicate powder standard of the 

required particle size which has been spiked with a known concentration of an 

element such as indium with a low natural abundance. The use of such a standard 

would preclude the determination of silica in the samples, but would allow the use 

of a sample inq~pendent internal standard. Great care would be necessary in the 

mixing of sample and spiked standard to ensure homogeneity. 

4-6.3 Sample Preparation 

This is a highly skilled task and in this author's opinion is not for the 

faint-hearted. It is not easy to see how this procedure could be automated and 

therefore is likely to remain time consuming and labour intensive - a factor which 

will make it's routine adoption unlikely. 

Since this work was carried out and subsequently published20
, although other 

workers have entered the field, there remains little (at the time of writing) which 

has been published on slurry nebulisation for ICP-MS. Jarvis21 provides a review 

of slurry nebulisation for geological materials using ICP-AES and ICP-MS. Jarvis 

and Williams22 have published results for the analysis of geological materials by 
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slurry nebulisation ICP-MS using an alternative grinding method and tetrasodium 

pyrophosphate stabilisation using calibration against aqueous standards. 

Given the potential advantages in terms of sample throughput which it was 

originally thought could have been achieved by slurry nebulisation, the fact that 

there have been so few papers on the subject tends to support the conclusions 

drawn from this work, that the practical difficulties outweigh the potential 

benefits. 

G2 GSD-1 G2 GSD-1 

Certified Slurry Certified Slurry Certified Slurry Certified Slurry 
Li 35 40 30 83 Cs 1.4 1.4 1 1 

Be 2.4 2.5 1 0.88 Ba 1,900 1,880 1,300 1,350 
B 2 1.9 ... 2.16 La 92 80 195 297 

s 100 115 300 350 Ce 160 154 360 390 

Cl 50 55 340 370 Pr 19 18 50 48 

Sc 3.3 3 6.6 5.9 Nd 58 58 190 213 

v 36 36 54 69 Sm 7.2 7 25 26 
Cr 8 6.3 12 18 Eu 1.4 1.1 2.4 3 
Co 5 4.2 7.9 7.2 Gd 5 4.4 14 15.4 
Ni 3.5 3.8 9 3.6 Tb 0.5 0.44 1.4 1.5 

Cu 10 10 33 25 Dy 2.3 2.3 5.7 6.6 

Zn 84 81 105 104 Ho 0.4 0.46 ... . .. 
Ga 23 26 23 24 Er 1.3 1.3 3 3.3 

Ge 1 1.6 0.9 1.4 Tm ... 0.33 . .. ... 
As 0.25 0.19 Yb 0.9 1.1 1.9 0.85 

Se <0.7 6 ... ... Lu 0.1 0.11 0.2 0.22 
Br 0.3 0.2 ... 0.3 . Hf 8 8.1 14 12.2 

Rb 170 185 250 260 Ta 0.8 1 1 1.1 

Sr 480 336 240 320 w 0.1 0.13 0.1 0.12 
y 11 18 29 30 Au 0 0.02 0 0 

Zr 300 150 500 740 Hg 44 2.7 16 3.1 

Nb 15 18 23 22 Tl 1.2 1.2 1.3 1.4 

Mo 0.8 0.4 ... 1.16 Pb 30 37 54 55 

Cd 0.04 0.04 0.06 0.17 Bi 0.04 0.05 0.04 0.06 

Sn 1.4 2.2 5 6.2 Th 25 26 105 105 

Sb 0.06 0.08 7.1 3.3 u 2.1 1.9 2.1 1.9 

Table 4-3: Quantitative results obtained for G2 and GSD-1 by slurry nebulisation (ppm)J 

~ H~. f-e.->pwi.te ~ VAiw-:.. A~ c:ll1 i"itirf'1£'1 sr~~ . 
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Flow Injection Analysis ICP-MS 

5-1. Introduction 

Flow injection (FI) was described by its originators, Ruzicka and Hansen 1 as 

being (op. cit. p.l) 

"based on the injection of a liquid sampk into a moving non-segmented continuous 

stream of a suitabk liquid. The injected sampk forms a zone, which is then transported 

towards a detector which continuously records the absorbance, ekctrode potential, or other 

physical parameter as it continuously changes as a result of the passage of the sampk 

material through the flow cell". 

The rapid sample throughput and small sample size used in flow injection 

has led to a rapid growth in application of the technique. As a sample 

introduction technique, it has been successfully coupled with many spectrometric 

techniques. Ruzicka and Hansen2 provide a detailed review. J acintho et al 3 were 

among the first workers to describe the application of flow injection for sample 

introduction into inductively coupled plasma atomic emission spectrometry 

(ICP-AES). 

5-2. Principles 

A schematic diagram of the flow injection system used in this work is shown 

in Fig. 5-l. Initially, the valve is in the 'load' position (Fig. 5-la). In this state, 
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the carrier solution is being continuously pumped through to the nebulizer. At 

the same time, the sampling probe is placed in the sample, which is pumped 

through to fill the loop with excess sample being passed to waste. Once the loop 

is filled the valve is switched to the 'inject' position (Fig. 5-l b) which causes the 

loop to be inserted into the carrier flow. Thus a fixed volume of sample, the 

volume of the loop, is reproducibly introduced into the carrier stream and 

pumped through to the nebulizer. 

a) Flow injction loop in 
the load position 

Autosampler 

b) Flow injction loop in 
the inject position 

Autosampler 

Carrier 
solution 

Carrier 
solution 

Switching 
valve 

Switching 
valve 

Figure 5-1: Schematic of the flow injeaion system 
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5-3. Requirements 

The utility of flow injection ICP-AES is limited by the relatively slow data 

acquisition of scanning instruments and most work has been restricted to fixed 

channel, simultaneous instruments (Greenfield 4•
5

, McLeod 6•
7

, Lawrence et af', 

LaFreniere et af and Hartenstein et a/10
, Sjodin and Sundqvist11

, Israel and 

Barnes12
, Hirata et a/13

, Liversage and Van Loon14
). The use ofFI with scanning 

detection systems is described by Valcarcel and Luque de Castro15
, and Janata and 

Ruzicka 16 who recognise · · the scanning speed of the detection system to be 

much higher than the flow of sample through the system. 

The rapid data acquisition rates of inductively coupled plasma mass 

spectrometers (the entire mass range may be scanned in under 100ms17
) make 

ICP-MS highly suitable to coupling with FI sample introduction. For 

multi-element analysis (Christian and Ruzicka 18
, McLeod 19 and Hiefje et a/ 2~, 

however, a great deal of work on the optimisation of the combination system is 

necessary in order to obtain valid and meaningful results. 

5-4. Aims 

On the basis of earlier work and the literature, the combination of flow 

injection sampling with ICP-MS was considered to have the potential to 

overcome some of the problems which have been identified in chapter 1 as the 

scope of this work, namely the optimisation and operation of the flow injection 

ICP-MS system to achieve the lowering of detection limits, increased sample 

throughput, the minimisation of suppression and matrix effects and the ability to 

analyse traces in small volume samples such as fluid inclusions (Date21
) increases 

the potential application range of ICP-MS. 
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5-5.ICP-MS 

Plasma Forward Power 1.35 kW 

Reflected Power <10W 

Nebuliser gas flow 0.75 l.min-1 

Auxiliary gas flow 11.min·1 

Plasma gas flow 131.min·' 

Sample uptake rate Various 

Sampling depth above the load coil 10mm 

Mass spectrometer Vacuum stage 1 2.3 mbar 

Vacuum stage 2 <10-4 mbar 

Vacuum stage 3 5.0x10-$ mbar 

Detector mode pulse counting 

Acquisition Number of multi channel analyser channels used 

parameters Dwell time per channel Various 

number of mass range sweeps 

Table 5-1: Instrument operating conditions used 

Analysis was performed using the standard VG PlasmaQuad ICP-MS 

instrument described in chapter 1. Instrument operating conditions are given in 

table 5-1. Using conventional nebulization, instrument sensitivity was ca. 2000 

counts per second per ppb at mass 115 with a background level of 10 counts per 

second at mass 220. 

5-5.1 Peristaltic Pump 

The sample was pumped using an Ismatek peristaltic pump with a variety of 

diameters of Vi ton® pump tubing. The pumping rate for various tubing diameters 

was calibrated by weighing the volume of de-ionised water delivered in a given 

time for a variety of pump speeds and diameters. 
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5-5.2 Flow Injection Valve 

The flow injection was performed using a FIAtron FIAvalve 2000, 

microprocessor controlled 8 port switching valve, controlled from the 

PlasmaQuad computer via an RS 232 interface. Switching was carried out in both 

serial mode whereby the valve received instructions from the PlasmaQuad 

computer, and in manual mode whereby switching was performed manually, using 

the control panel on the valve. The valve was fitted with various sized sampling 

loops in the range 50-1000J..Ll. 

5-5.3 Operating Variables and Performance Indicators 

In conducting this series of experiments it was necessary to identify the 

performance indicator parameters to be monitored and the operating variables 

which affected them. On the basis of the aims outlined the performance monitors 

used were: signal duration, which ultimately affects sample throughput, sensitivity 

or the signal I noise ratio; and mass response which will affect sensitivity for 

different elements. Operating parameters were found to be the dispersion of the 

flow injection system and the mode and speed of data acquisition of the ICP-MS. 

These variables and indicators are examined in detail in the next section. 

However, a simple initial experiment was found by the author to put the various 

considerations into perspective. A solution containing a 200J..Ll of 50ppb indium 

was injected into the 'un-optimised' system as shown in Fig. 5-1, and the signal 

obtained with time, at mass 115, was collected, Fig. 5-2. The result is typical of 

the time profiles obtained by other workers using different detection 

systems22
•
23

•
24

•
25 and is characteristic of transient analyte signals in general and of 

flow injection in particular. 
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Area counts/second @ Mass 115 
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Figttt:e 5-2. Time profile ofsignal at mass 115, produced by injection of 
200Jt1 ~fa 50ppb Indium standard solution 

140 

Since the outset of this work, with the exception of the work by Valcarcel 

and Luque de Castro26
, all work has been towards the coupling of FI to single 

property detectors or simultaneous systems such as simultaneous ICP-AES. 

Therefore most work has been carried out using peak height measurements (ImJ. 

ICP-MS, however, is a sequential technique, albeit a rapid one, and it still requires 

a finite time to acquire multi-element data. Thus, in order to make use of this 

benefit, it is necessary to use peak area, rather than peak height measurements. 

This involves detailed examination of the two primary data acquisition methods, 

scanning and peak-jumping, and redefinition of some of the terms cited in the 

literature. 

The residence time, Tr, is defined by Ruzicka and Hansen27 as the time 

between injection of the sample and the peak maximum (ImJ. In flow injection 

ICP-MS it was also found to be important to observe T c, the time between Imax 
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and the point at which the signal returns to background level. It can be seen that 

in this non-optimised system the signal lasts approximately lOOs from injection 

until returning to baseline (fr+ T J 

It can also be seen that if only one isotope were being measured, with the 

ICP-MS set to monitor that isotope continuously, the peak height (I~ 

measurement would be adequate in theory. However, with the stated aim of 

performing multi-element analysis, it is necessary to scan rapidly and continuously 

throughout the whole duration of the signal, from a few seconds after injection 

until after the time at which the signal has returned to background (fr + T J 

The VG PlasmaQuad is capable of scanning the whole mass range (1-250 

amu) in as little as 1 00ms28 so that, in theory, repeated scans may be performed 

throughout the duration of the signal and integrated to give an elemental mass 

spectrum of the sample. 

5-6. Optimisation 

5-6.1 Reproducibility of 'Peak-Height' and 'Peak Area' Measurements 

Although it has been stated that the intention is to use peak area, rather than 

peak height measurements, it would not be sensible to do so without first 

examining the reprodudbility of both the peak area and the peak height 

measurements. To do this, an experiment was set up to inject a standard solution 

repeatedly and measure the relative standard deviation of the peak height and 

peak areas. 

A series of 18 injections of a 100ng.ml-1 yttrium standard solution was made. 

Yttrium was chosen because it is monoisotopic, its degree of ionisation in an 

5-7 



Chapter 5 
Flow Injection Analysis ICP-MS 

argon plasma is greater than 99% 29
, thus giving the maximum possible signal, and 

is at the approximate middle of the mass range allowing for extrapolation to either 

higher or lower masses. The ICP-MS was set to monitor mass 89 (the mass of 

yttrium) continuously, the resultant data file being a time profile similar to a chart 

recorder printout. The profile obtained is shown in Fig. 5-3. Peak heights and 

peak areas were calculated and are given in table 5-2. Peak areas, expressed as 

area counts per second, have been plotted above the profiles and are also shown in 

Fig. 5-3 . 

Peak area measurements were found to be considerably more reproducible 

than the corresponding peak heights. This experiment was repeated a further 5 

times and similar results were obtained each time. It is concluded that, in terms of 

reproducibility, peak area measurements are not only an acceptable alternative to 

peak height, but are actually significantly more reproducible. 

220-

200 _ Peak Area (cps) 
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Fip;ure S-3. Reproducibility of peak heif{ht and peak area measurements 
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5-6.2 Sample Volume 

The amount of sample introduced, during flow injection, is fixed by the 

volume of the sample loop. Where the injection volume is not fixed by 

constraints, such as the nature and size of the sample available, it would seem 

desirable to use a large sample volume in order to maximise sensitivity. However, 

the nature of the flow injection condition was found to invalidate such 

assumptions . 

Peak Peak Height Peak Area 
number 

(cps) (Area cps) 

1 114,094 9,432 

2 130,722 9,275 

3 111,980 9,349 

4 122,544 9,565 

5 108,793 9,532 

6 117,771 9,423 

7 115,935 9,506 

8 118,574 9,361 

9 119,337 9,271 

10 117,470 9,338 

11 111,020 9,448 

12 113,694 9,588 

13 115,251 9,546 

14 114,718 9,539 

15 120,111 9,566 

16 115,987 9,570 

17 117,097 9,540 

18 114,229 9,229 

Mean 116,770 9,462 

St. Dev." 4,818 105 

%RSD" 4.1 1.1 

Table 5-2: Reproducibilities of peak height and peak area measurements for repeat injections. 
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For an established method, the volume of sample can be set by preparing a 

loop of known volume, probably best determined by cutting a length of tubing of 

known bore, and calibrated by measuring the difference in weight between the 

empty tube, and the weight of the tube filled with de-ionised water. For this 

experiment, where several loops of accurately known volume were required, it was 

decided to re-configure the computer controlled loop to act as a switching valve 

(Fig. 5-4) so that when pumping the solution at a known rate a timed injection 

would be equivalent to the injection of a fixed volume. This was only possible 

because the loop used had a very fast switching time, typically 60ms30
, and the 

timings could be precisely controlled by the computer. 

1 OOng.ml-1 yttrium was again used, for the reasons detailed above, and the 

ICP-MS again set to monitor mass 89 continuously. Using a previously calibrated 

solution pumping rate of 0.87 6 mllmin, injections of the yttrium solution of 

7,14,21,28 and 35 seconds duration were made, these times being equivalent, at 

this pumping rate and with a total valve dead volume of 3J,J1, to injections of 106J.Ll, 

208J.Ll, 311 J.Ll, 414J.Ll and 516J,J1 respectively. The resulting profiles are shown in 

Fig. 5-5 as they were measured on the instrument, and with the peaks overlaid. It 

can be seen from the overlaid profiles that the rising edge of these profiles are the 

same, differences in volume producing differences in height up to a certain point 

then subsequently by a broadening of the peak. Peak heights and peak areas 

determined from these were calculated (table 5-3) and were used to plot graphs of 

injected volume vs. response obtained for both peak height and peak area (Fig. 

5-6). 
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a) Wash position for time based injections 

b) Inject position for time based injections 

Fiffltre 5-4: Schematic of the time based flaw injection system 

Injected Volume Peak Height Peak area (cps) 
(~I) (cps) 

106 323,232 2,950,195 

208 436,364 5,912,609 

311 529,293 9,285,411 

414 537,374 11,189,368 

516 549,495 14,360,837 

Gradient 5,535 288,070 

Y axis intercept 309,090 288,070 

r-2 0.83004 0.99642 

Table 5-3: Correlation between volume of sample and peak height and peak area. 
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Figure 5-5: Profiles produced from different injection volumes and overlaid 
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Figure 5-6: Graph of sample volume vs response for 89Y from peak height 
anJ peak a1·ea measut·ement 
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An examination of the overlaid profiles (Fig. 5-5) and the plot of volume vs. 

peak height and peak area shows that, at 3 OOpl and above, the height of the peak is 

not linearly related to the volume but reaches a plateau with the peak broadening. 

This peak height therefore represents the maximum intensity which would be 

reached if continuous injection were being used, termed "steady state" by Ruzicka 

and Hansen31
, at which point the criteria for the flow injection system are no 

longer satisfied. In their work based on peak height measurements, Ruzicka and 

Hansen were careful to avoid this departure from true flow injection32 and, 

although the peak area measurement was found to be linear over the volume 

range, such a departure from the flow injection condition results in a lack of 

control over the dispersion of the system. For work where dispersion is not 

significant, or limited sample size work, an injection volume of 200t-d was adopted 

as offering the best compromise between maximising sensitivity and losing control 

of the dispersion of the system. 

5-6.3 Mode of Data Acquisition 

As outlined in chapter 1, there are three types of data acquisition available in 

commercial ICP-MS instruments: single ion monitoring; scanning; and 

peak-jumping. 

Single ion monitoring is useful when investigating the processes involved in 

flow injection systems, but the information provided is limited and does not meet 

the stated objective of developing a multi-element analysis system. The choice of 

scanning versus peak-jumping has been examined in the discussion of the 

instrumentation in chapter 2, and for solution analysis in chapter 3, but the nature 

of flow injection, in particular the transient nature of the signals produced by flow 

injection, poses different requirements for what are very similar problems. 
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Whereas in continuous solution analysis the options essentially centre on the 

choice between either the amount of additional information (peak shape, isotopic 

patterns and extra elements) obtainable by scanning, or the improved detection 

limits (but limited information) obtainable by peak-jumping. 

There are four primary considerations which are specific to transient signals: 

• The mass range to be investigated must be repeatedly scanned or 

peak-jumped, in order to compensate for the continually changing 

signal33
• 

• This repeated passage through the mass range must be done as quickly 

as possible so that the signal does not change significantly during a 

particular pass34
• 

• Since the signal is only present in the system for a fixed length of time, 

all acquisition must be completed during this time. 

The mechanics of the two types of acquisition, while largely outside the 

scope of this work, must be considered in terms of the way in which the 

acquisition is handled. 

5-6.3.1 Data Recording Overhead 

Quadrupole mass spectrometers are intrinsically fast instruments35
, but they 

do require a finite amount of time, termed the quadrupole settle time and 

typically 90ps on the PlasmaQuad system36
, when making a significant change in 

mass. In scanning mode, because the masses are sequentially scanned at a 

constant rate and no incontiguous mass jumps are made, the acquisition proceeds 

smoothly without pauses for the quadrupole to settle, except at the start of each 
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sweep of the mass range, and every region of skipped masses. Thus settling time 

is minimised. 

This contrasts strongly with the peak jumping acquisition where, as the name 

suggests, the difference in mass from one point to the next may be a single amu or 

a hundred masses. In this situation a period of quadrupole settling is necessary 

before each move to the next mass. If repeated sweeps of the mass range are 

required, as has been found for flow injection, it would seem likely that the 

proportion of time during an acquisition, when actual data acquisition was 

occurring, would be less than for scanning. 

Whilst this is not important in most analyses involving continuous 

nebulization (because the acquisition duration may simply be increased to 

compensate) in an analysis of fixed duration this cannot be achieved and data 

recording overheads must be minimised. One way would be to increase the dwell 

time per sampling point and reduce the number of sweeps. However, this may 

allow the change in signal intensity with time to distort the mass response 

obtained (see section 5-5.3.4 on multiple sweep rate). 

In order to determine which of the two acquisition systems was the more 

appropriate, acquisition parameters were defined for both scanning and 

peak-jumping, where the parameters had been adjusted in order to give actual 

acquisitions of 102 seconds duration (table 5-4). In order to minimise the 

expected data recording overheads in peak-jumping, only one sampling point per 

mass, corresponding to the centre of the peak, was used. The actual data 

acquisition time was calculated. For scanning this is simply the product of the 

number of sweeps, the number of MCA channels used and the dwell time per 

channel. For peak-jumping the theoretical duration is the product of the number 
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of masses selected, the number of sampling points per mass, and the dwell time 

per sampling point. 

The difference between the duration of the acquisition and the amount of 

actual acquisition time is the data recording overhead. 

Scanning Peak-jumping 

Mass Range (amu) 5-240 N/A 

Number of Masses Sampled 181 181 

Number of Sweeps 320 38 

Dwell time (JW) 160 5,120 

Number of Channels 2,048 N/A 

Number of sampling points per 8.7 1 
mass 

Skipped Mass Regions (amu) 11.5-22.5 N/A 
27.5-43.5 

209.5-233.5 
235.5-237.5 

Integration Time per Mass (S) 0.446 0.194 

Theoretical Duration (S) 82 35 

Actual Duration (S) 102 102 

Data Recording Overhead (S) 20 67 
Actual-Theoretical 

Data Recording Overhead per 20 66 
acquisition (%) 

Table 5-4: Acquisition parameters used in comparing scanning and peak-jumping acquisition 
for FI-ICP-MS 

The conditions used are shown in table 5-4. It can be seen that a scanning 

acquisition was found to have a 20% data recording overhead, compared to 67% 

obtained with peak jumping. This confirms the idea that for fixed duration 

acquisitions scanning acquisition is likely to give greater sensitivity than peak 

jumping, simply by spending a longer time acquiring data. This result cannot, 

however, be taken in isolation: consideration must also be given to peak shape and 

sampling efficiency. 
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5-6.3.2 Peak Shape and Sampling Efficiency 

In scanning mode the ICP-MS, like all quadrupole instruments set to 

nominal mass resolution, produces a peak which is approximately Gaussian in 

shape. In peak jumping mode one or more points at the centre of the peak, where 

intensity is at a maximum, are sampled. This gives rise to the question as to 

whether, given that time is limited, it is inefficient to sample the whole peak. 

139 

Figure 5-7. Effect of peak shape on sensitivity for Scanning (top) and 
Peak Jumpinf{ (bottom) 

In order to examine this question a lanthanum peak, as shown in Fig. 5-7, 

was examined. Thirteen points across the peak had been sampled and their 

intensities combined to give an integral for the Gaussian peak. This was ratioed 

to 13 x the intensity of the central sampling point, which approximates to the 

integral which would have been obtained by spending that amount of time on the 

central point. It was found that the scanning integral was only 61% of the peak 
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jumping signal. This was repeated for a selection of other masses taken at random 

from previously acquired scans, Scanning was found to give between 59 and 62% 

of the equivalent peak-jumping signal. 

By combining the relative factors obtained for the two acquisition modes for 

data recording overheads and peak shape intensities, it was calculated that 

scanning resulted in approximately 1.4 times that of peak-jumping. Thus 

scanning was used as the preferred mode of acquisition for flow injection. 

5-6.3.3 Multiple Sweep Rate 

Valcarcel and Luque de Castro37 have explained the requirement for repeated 

"ultrafast" scanning. Fast scanning is necessary to prevent the signal from 

changing significantly during the course of a scan: if a single scan of the mass 

range took the same time as it takes the sample to pass through the instrument the 

result would be relatively high sensitivity for mid-mass elements and virtually no 

sensitivity for either low or high-mass elements. Fig. 5-8 shows the profile from 
1i' 

Fig~2 with a representation of a 12 sweep acquisition overlaid onto it. It can be 

seen that, with the larger number of narrower bands (i.e. shorter scans), the 

acquisition more accurately maps the profile of the sample and therefore both 

gains greater sensitivity and also minimises changes in response during each 

sweep. 

The typical scanning rate for a 2 minute full mass range scan - 1 minute 

being the typical duration of a flow injection signal - is 100 sweeps of the mass 

range which for 2048 MCA channels and a 640J..LS dwell time per channel equates 

to a scanning speed of 177 amuls. 
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As this proved to be a sensible minimum scanning rate, the effect of 

increasing the scanning rate, whilst keeping the acquisition duration constant, was 

investigated. A series of acquisitions were performed wherein the number of 

sweeps was increased and the dwell time per channel decreased. The number of 

channels used was not varied because this would have an effect upon the quality of 

the peak shapes. 

A solution containing 50 ng.ml-1 of beryllium, magnesium, cobalt, indium 

lead and uranium was used so that, once corrections had been applied for isotopic 

abundances, the variation of response with mass could be plotted. 

Acquisitions were performed on this solution, for both continuous 

nebulization and flow injection, using the acquisition parameters shown in table 

5-5. 

Number of Dwell time Scanning Rate 
sweeps (J.l.cr) (amu/s) 

100 640 176.8 

200 320 353.7 

400 160 707.3 

800 80 1,414.7 

1,600 40 2,829.3 

3,200 20 5,658.7 

Table 5-5: Acquisition parameters used to investigate the effect of scanning rate on mass 
response. 

The mass response plots obtained are shown in Fig. 5- 9. The continuous 

nebulization (Fig. 5-9a) show much greater sensitivity, as was expected, than the 

corresponding ones for flow injection, and also proved to be a different shape, but 

no significant differences were found for either sampling technique by changing 

the rate of scanning. It was assumed therefore that even the lowest acquisition 

rate used in the experiment was fast enough to eliminate the undesirable effects 
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caused by the signal's transience. 
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Figure 5-J 0: The effect of dispersian an signal proftle shape 
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Ruzicka and Hansen38 consider the dispersion of a system to be of paramount 

importance in the design of a flow injection system. Dispersion can be loosely 

described as the degree of mixing observed between the sample and the carrier 

stream. By changing the dispersion of the system the shape of the signal profile 

changes39
, the peak becoming much broader and lower at high dispersions (Fig. 

5-1 0). The effect of this is to change both the duration and the maximum 

intensity (peak height) of the sample profile. This is of more importance when 

using flow injection with detectors based on chemical reactions, such as the 

determination of phosphate as a phosphomolybdate complex40
• In such systems 

the dispersion has to be high enough to allow the reagents to mix with the sample 

and to have a sufficient length of tubing between the loop and the 

• spectrophotometer to allow development of the blue colour, the intensity of 

which is measured at 660nm. It is of less importance in simple applications of 

flow injection ICP-MS where peak area rather than peak height measurements are 

used. In these instances the dispersion produced by the conditions described in 

previous sections of this work are adequate. 
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However the ability to control dispersion, inherent in flow injection41
, forms 

a powerful tool for the analyst. It enables much greater control over the 

introduction of samples to assist in particular applications, such as the analysis of 

very saline materials like sea and pore waters, which produce ionisation 

suppression in the plasma42
• 

Alternative dispersions are very application specific and because of this it is 

proposed to delay detailed investigation of the possible effects of varying 

dispersion to section 5-5.3. The remainder of this section will therefore be 

concerned simply with the definition of terms for dispersion work when using 

peak area measurements. 

For the single property or simultaneous measurements used by Ruzicka and 

Hansen dispersion43 is defined as: 

where: 

D = CO = lP Const' 
CMax H · Const'' 

D = the dispersion of the system 

C0 = the concentration of analyte in the injected solution 

CMax = the concentration in the dispersed system 

H 0 = the intensity which would be produced in an 
undispersed system 

H = the intensity actually produced (corresponding to I~ 

Const' = Constant 

Const'' = Constant 

Thus dispersion can be seen to be the ratio of the actual intensity to that 

which would be produced in an undispersed system, and therefore has a value 
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greater than or equal to 1. The same equation can be used for area 

measurements, substituting A 0 and A for t·(> and f-1 . 

Where: 

CO A ° Const1' D a = -- = - -':=~-::-
C Max A · Const11 

D. = the dispersion of the system 

A 0 = the intensity which would be produced in an 
undispersed system 

A = the intensity actually produced (corresponding to I~ 

320 
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Elution time 
Te 

Maximurr 
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I 

...,) p,""'f. 
Fip;ure 5-11. Time profile of signal at mass 115, produced by injeaion of200,d of a 
5 uppb Indium standard solution 

This formula was used to calculate the dispersion of the 200)Jlloop system used 

previously. Fig. 5-11 shows the profile obtained for the injection of a 200)Jl 
_, 

sample of 50 ng.ml indium, monitoring mass 115. The peak height I Max of a 
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200pl injection corresponds to the maximum height which would be obtained in 

an undispersed system, therefore the undispersed peak area for this acquisition, 

A 0 , would be: 

Where Tr is the residence time and Te is the elution time as shown in Fig. 

5-2. The dispersion, Da, of the system is therefore given by: 

D = [!Max X (Tr + Te)] = 15952902 = 2 69 
a A 5926065 · 

This value for the area determined dispersion, D a' of 2 .69 will therefore be 

used as a baseline in other dispersion work. 

5-7. Applications of Flow Injection in Geochemistry 

There are primarily four areas in which flow injection ICP-MS could 

potentially benefit the geochemist. The reduced sample volumes should allow 

shorter washout times and reduce matrix deposition on the sampling cone to give 

higher throughput and greater matrix tolerance, as well as facilitating the analysis 

of samples such as fluid inclusiorf where the amount of sample is limited. In 
I\ 

addition, the ability to control dispersion may be used to reduce matrix 

suppression effects, thus allowing greater sensitivity for highly saline samples. 

5-7.1 High Sample Throughput 

The factors which control the rate of sample throughput in ICP-MS are the 

time required for the pumped sample to reach the plasma; the time for the signal 

5-25 



Chapter 5 
Flow Injection Analysis ICP-MS 

to stabilise and the time required for the analyte signal to return to background 
; 

once data acquisition is completed. With the sub ppb detection limits and wide 

linear working range of which ICP-MS is capable, washout times can be 

considerable, often over 4 minutes44
• It is thought that because of the reduced 

amount of material aspirated during flow injection, it should be possible to reduce 

the washout period significantly and thus increase sample throughput, one of the 

stated objectives of this work. 

Fig. 5-12 shows the variation in instrument response, which indicates the 

amount of material aspirated with time obtained for the signal at mass 115 for the 
I 

introduction of a solution containing 50 ppb of indium by both conventional 

nebulization (Fig. 5-12a) and flow injection (Fig. 5-12b). Both traces represent 

the change in signal over the course of a typical one minute acquisition using the 
~I 

conditions shown in table~ which could be used routinely to analyse a sample for 

the whole elemental range. 

In conventional, continuous aspiration the total time required to perform a 

single acquisition is four minutes. Assuming a solution pumping speed of 1 

ml.min-1 this corresponds to 2 ml of sample being sprayed through the 

introduction system. Using flow injection, this time is typically 2 minutes for a 

200 plloop. Since, in flow injection, the sample volume is fixed by the volume of 

the loop there is a tenfold reduction in the amount of material introduced into the 

system, thus giving a considerable reduction in memory and therefore washout 

time. 

Further gains in throughput were achieved by eliminating the sample uptake 

period through accurate timing. Once the 'loop empty' time (Fig. 5-12b) has 

been reached and the signal starts to decay the valve may be switched back to the 

load position, because all sample material has been eluted from the loop. In fact, 
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the loop must have been emptied before this time (calculated by the product of 

the volume of the tubing between the loop and nebuliser, and the pumping rate) 

but it would be time consuming to calculate this each time a flow injection system 

was set up. Using the start of the decay is an unambiguous and fast indication that 

the loop has in fact been emptied. 

100 

50 
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placed in 
sample 

j 

0 · -
0 

Sample 
injected 

Sample reaches plasma 
acquisition starts 
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probe placed in wash 

Wash reaches 
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Figure 5-12. Instrument resp(mse ~·s time for continuous nebulisation and 
f/qW injection 
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While the acquisition continues, the loop may be filled with the next sample. 

This allows the loop to be filled and ready when analysis of the first sample is 

complete. Because the acquisition is set up to continue until the signal has 

returned to background injection of the next sample may take place immediately, 

rather than waiting for washout to occur. Whilst this may sound complicated, and 

is in fact difficult to achieve manually, by programming the instrument computer 

to control both the valve and an autosampler it was possible to automate the 

system, and thus maximise the sample throughput. 

A multi element analysis for the rare earth elements was performed. The 

run consisted of a blank, 50ppb standard and 100 ppb standard and 20 samples of 

the 50 ppb standard, all of which were spiked with 50ppb of indium, and was 

performed under the conditions shown in table 6, using 115ln as the internal 

standard. The analysis was made using both continuous nebulisation and flow 

injection. 

Continuous Flow Injection 
Nebulisation 

Number of Sweeps 100 206 

Dwell time per Channel (J.LS) 320 320 

Number of Channels 2,048 2,048 

Total Acquisition time (s) 65.5 135 

Uptake time (s) I Valve-> Plasma Time (s) 60 15 

Washout Time (s) 120 0 

Time per sample (s) 245 150 

Time for blk, 2x Std's + 20 samples (min) 94 minutes 58 

Relative improvement in throughput 1 1.6 

Table 5-6: Acquisition parameters used in the comparison of throughput for conventional 
nebulization and ft(JlJ) injection ICP-MS 

It can be seen that flow injection gives a 1.6x improvement in sample 

throughput, even in this simple experiment. This factor will vary depending upon 

the analysis in question. For example, where elements such as cadmium, mercury 
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and bromine are to be determined, the washout time for continuous nebulisation 

would have to be increased to allow for the longer residence time in the system of 

these elements, and thus would increase the throughput factor for flow injection. 

Similarly, if multiple determinations were required, there would be less sample 

uptake time used for continuous nebulization, which would reduce the flow 

injection improvement factor, although the increased amount of material being 

aspirated may necessitate a further increase in washout time. 

In conclusion, one of the stated aims of this work, the improvement of 

sample throughput for geological analysis, has been shown to be possible by using 

flow injection. 

5-7.2 Small Sample Volume Handling: the Analysis of Fluid Inclusions 

In flow injection, loop volumes are typically in the range 50- 500 J.Ll, which 

permit replicate analyses of total sample volumes as low as 500pl to be performed. 

Whilst in most geological analyses, there are plentiful amounts of sample, one 

area in which sample volume is the limiting factor is in the analysis 

of fluid inclusions. 

In his classic 1858 paper, Sorby45 argued that fluid inclusions represented 

trapped portions of the liquids, gases and melts from which the crystal had grown 

and could be used to establish the environment in which a rock or mineral might 

have formed. That this idea has been borne out, is proven by the vast amount of 

literature on the subject in the last twenty five years. (Roedder46
•
47

•
48

•
49 Spooner50

, 

Crawford51
, Touref2

, Weisbrod53 
). 

Shepherd et a/ 5
\ describe the contribution made by fluid inclusion studies to 

the understanding of the character, origin and evolution of hydrothermal 
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ore-forming fluids and ultimately ore genesis. From this arose an increased 

awareness of the role of fluid phases in sedimentary, diagenetic, metamorphic and 

magmatic processes. 

Fluid inclusion studies have been used as geothermometers and continue to 

provide an important guide to the pressure and temperature conditions during 

mineral formation, and primary and secondary inclusions in ore and gangue 

minerals can be used to "fingerprint" certain types of ore forming fluids, to 

characterise particular ore mineral assemblages, and to define areas where these 

fluids are most likely to concentrate. 

5-7.2.1 Chemical analysis of fluid Inclusions 

In considering the chemical analysis of fluid inclusions, Shepherd eta/ 55 

identify a number of considerations: 

5-7.2.1.1 Sample Size 

Inclusions are usually between 2 and 20 pm in size and the total volume of 

inclusions is typically less than 0.1% of the volume of a given crystal 56. The need 

to reduce the amount of sample required for analysis is clear. 

5-1.2 .1.2 Concentration of Analytes 

The small volumes of sample available has been the limiting factor in the 

analysis of fluid inclusions. The determination of cations in inclusions has been 

performed using a variety of techniques, including the atomic absorption 

spectrometric determination of Ca, Fe, Mg, Mn, Sr, Ba, cu, Ph and Zn at the ppb 
.fro'" ~of IW!i..n.J 

level, in. inclusions, Rye and Hafft:}?7 and Poty eta/ 58
• ICP-AES 

t.. 
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I l 
determination of a wide range of elements at the ppb level, using 1~f 

~. 
( 

inclusions, has been reported by Thompson and Walsh59
, and neutron activation 

analysis of N a, K, Cu, Mn, As, Cs and Zn in the ppb range, again using 1 ml of 

inclusions, by Czamanske et a/ 60
, Tourat1

, Grappin et a/ 62 and Puchner and 

Holland63
• 

5-7.2.1.3 Sample: Host Mineral Ratio 

In addition to the analytical difficulties there also remains the problem of 

extracting the samples. With a host mineral to sample ratio of typically 1000:1 

direct analysis of individual inclusions becomes almost impossible and bulk 

extraction methods are preferred. Of these bulk extractions, there are primarily 

two methods described in the literature: thermal decrepitation; and the 

crush/leach method. 

Thermal decrepitation involves heating the sample so that the pressure 

builds up in the inclusions until they rupture, the contents being ejected or 

vaporised. Thompson et a/ 64
, in their 1980 exploratory work, described the 

decrepitation of inclusions from 0.5 g samples of topaz and carbonatite apatite 

which were placed in a silica tube through which the nebuliser argon stream from 

an ICP-AES was ·passed. The tube was heated and, upon decrepitation, the 
f:J.,.,J.-., ... ~ veopo .. f' 

released inclusion~ were carried to the plasma by the flow of argon. 
, . 

'• 

The crush I leach method, as the name suggests involves crushing a sample 

to release the inclusions then leaching the inclusions with water and analysing the 
- . 

leachate65
• 

Due to previous work at Durham University on the analysis of fluid 

inclusions in fluorite samples66
•
67

, a number of reasonably temperature 
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and pressure characterised samples were available. These were analysed using the 

crush leach technique in accordance with the following method as described by 

Shepherd, Rankin and Alderton68
• 

The workers described previously using AAS and ICP-AES were forced to 

use large leachate volumes (5ml), and thus large amounts of sample, because of the 

sample consumption required by conventional nebulization into an ICP.It was 

believed by Date69 that using flow injection ICP-MS it would be possible to 

analyse <500ulleachate solutions for both major and trace elements. 

5-7.2.2 Initial Study 

A series of fluorite samples from different locations (table 5-7) were 

prepared in the following manner: 

Sample Identification Colour Weight (g) 

679 Clitheroe Purple 0.752 

5 Rookhope Green 0.808 

109 Rookhope Green I Purple 0.568 

Chiltern Quarry Yellow 0.240 

23 Rookhope Green 0.294 

328 Lake District Yellow 0.726 

386 Cornwall Green 0.523 

Table 5-7. Sample Identifiers and weights used in the initial fluid inclusion study. 

The samples were cleaned by an overnight soak in 4%v/v HN03:HC1, 1:1, 

followed by overnight soaking in 18MO deionised water, and drying at 70°C for 

five hours. The samples were then crushed in a pestle and mortar which had been 

previously cleaned with aqua regia ~HCh;HN03, 4:1). 1ml of a solution of 

50ppb indium in 1 %v/v HN03 was added, stirred with the crushed sample, and 

allowed to stand for 10 minutes. The slurry was centrifuged for 1 minute and the 
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supernatant liquor pi petted off. It was observed that, despite the centrifuging, a 

degree of turbidity was still visible, indicating a suspension of the host mineral in 

the sample. Samples were flow injected into the ICP-MS using a 250plloop. 

That is, approximately one quarter of the total volume of sample available was 

used per analysis, giving the possibility of triplicate analyses of each sample. 

Acquisition parameters consistent with the optimum for flow injection were used 

(mass range 2-255amu, 160 sweeps, 250ps dwell time, 2048 channels, skipped 

mass regions 12-22amu and 32-42amu). Acquisition duration was 82s and the 

integration time per isotope was 0.32 seconds. The 50ppb of indium in each 

solution was used as an internal standard, from which semi-quantitative analyses 

could be calculated. By estimating the volume of inclusions in the mineral to be 

approximately 0.1% 70 concentrations may be expressed as parts per million in the 

original inclusions. These concentrations are shown in table 5-8. 

Identification 679 5 109 Chiltem 23 328 386 
Clitheroe Rookhope Rookh ope Quany Rookhope Lake District Cornwall 

Colour Purple Green Green I Purple Yellow Green Yellow Green 

u 22 394 184 40 300 18 333 

Be 4 27 106 32 91 91 12 

B 83 72 112 197 340 57 183 

Na 5,750 11,667 17,006 26,827 44,235 10.414 9,801 

Mg 514 608 594 1,227 924 513 281 

AI 750 753 6,554 2,345 1,626 1,250 461 

p 849 838 3,527 7,335 8,693 1,961 1,324 

Sc 10 29 59 24 112 18 9 

Ti 3,072 4,163 4,005 5,880 4,749 5,150 5,662 

v 2 2 4 8 10 <1 <1 

Cr 10 9 17 59 47 9 13 

Mn 15 241 202 76 260 135 197 

Fe 18,513 23,536 24,409 45,800 32.475 33,188 39,316 

Co 189 256 223 359 292 365 457 

Ni 47 55 63 147 93 82 91 

Cu 50 43 85 240 220 74 1,343 

Zn 468 1,547 388 703 338 118 117 

Ga 3 9 25 lnt(Ba2
') 831 53 35 

Ge 3 5 15 7 29 5 9 

As 21 38 52 58 63 26 92 

Table 5-8. Results expressed as concentrations in ppm of the original inclusions 
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Identification 679 5 109 Chiltam 23 328 386 
Clitberoe Rookhope Rookhope Quany Rookhope Lake District Cornwall 

Colour Purple Green Green I Purple Yellow Green Yellow Green 

Se 26 48 89 97 176 57 42 

Br 134 729 434 382 885 295 Ill 

Rb 4 50 32 13 63 6 29 

Sr 937 1,158 1,527 8,706 2.056 1,003 m 
y 44 989 3,558 1,214 4,444 2.605 2.725 

Zr 48 12 6 8 9 5 3 

Nb 2 I 2 4 5 I 3 

Mo 1 <1 2 3 9 2 1 

Ru <I <I <I I I I <1 

Rh <1 <I <I I <I <I <I 

Pd 2 I 2 4 7 2 2 

Ag 3 4 7 II 7 I 5 

Cd 8 10 21 47 61 II 13 

Sn 2 2 8 8 13 4 24 

Sb I 1 18 4 7 3 7 

I 5 3 5 6 14 4 6 

Te 1 1 3 6 16 2 2 

Cs 1 10 4 ...--2---....,. /6 1 38 

Ba 15 130 138 52,085 
~ 

' 9,559 1,002 712 

I La 2 218 787 
' / 

570 107 124 '--46 

Ce ?_ 361 1,198 94 1,073 209 246 

Pr 1 54 192 16 163 34 40 

Nd 3 295 908 108 711 211 217 

Sm 1 120 455 130 368 160 96 

Eu <I 93 888 114 334 144 18 

Gd 2 189 805 83 622 378 218 

Tb <1 22 110 10 84 48 31 

Dy 3 142 671 66 525 298 268 

Ho <1 25 101 14 93 43 55 

Er 5 74 213 38 180 85 167 

Tm <1 8 22 4 20 8 21 

Yb 1 39 116 17 139 38 143 

Lu <I 5 14 3 13 4 18 

Hf 804 220 77 82 50 14 12 

Ta I 1 I 2 3 I 2 

w 1 10 16 5 18 2 13 

Re <1 <1 <1 <1 <1 <I <1 

Os <1 <1 <I <1 <1 <1 <1 

lr <1 <1 <1 <1 <1 <1 <1 

Pt 4 2 2 3 6 1 2 

Au 3 1 2 4 7 1 3 

Hg 2 3 10 65 26 27 5 

Tl <1 1 1 1 2 <1 1 

Pb 28 31 2,967 398 134 2,194 81 

Bi <1 <1 <1 1 1 <1 <1 
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Th 3 2 4 10 5 

u 3 2 2 4 4 <1 95 

5-
Tab/~8 cont'd. Results expressed as concentrations in ppm of the uriginal inclusions 

The results for the higher concentration elements show reasonable 

agreement with Moore's results for these elements71 in Northern Pennine and 

Derbyshire fluorites. The data shown here demonstrates notable differences 

between samples from different areas. An example of this is the significantly 

higher uranium content in the inclusions from the Cornwall fluorite, presumably 

due to the high solubility of the uranium fluoride which resulted in the element 

being concentrated in the inclusions. There is, however, evidence in the data to 

show that the samples were significantly contaminated by a small amount of the 

host mineral, the presumed cause of the turbidity observed during the sample 

preparation. In addition, the high concentration of barium in the Chiltern 

Quarry sample indicates that the samples contained significant amounts of 

barium, presumably as barite contamination. High lead values also suggest the 

presence of small traces of galena. 

The concentrations of palladium, silver, platinum and gold were 

considerably higher than expected for all of the samples and would be indicative of 

ore deposits. Whilst it may be possible that one of the samples exhibited 

unusually high levels of these elements, it is extremely unlikely that the same 

should be true of all members of such a diverse set of samples. The raw data were 

examined and the isotope ratios for palladium, silver and platinum checked. 

These were found to be in reasonable agreement with natural values, indicating 

that the signals were produced by these elements and not by any interfering 

species. One possibility may be that traces of fluoride from the contaminating 

mineral had dissolved in the solution and was leaching these elements from the 

surface of the spray chamber, having been deposited there during a prior analysis. 
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It was decided to modify the sample preparation technique and to analyse 

both the inclusions and the host mineral from which the inclusions were 

extracted. This would hopefully show, on comparison of the two analyses, 

significant differences. 

5-7.2.3 Follow-Up Study 

Because of the problems experienced in the initial study, it was decided that 

rather than use valuable, well characterised samples, it would be more appropriate 

to use samples of uncharacterised fluorite of which there was a relatively large 

supply, to allow replicate determinations to be carried out and which, on visual 

inspection, appeared to be less contaminated by ore or other minerals than the 

relatively small samples which had been examined by Moore. 

Hand specimens were scrubbed and washed before being broken down into 

chips of 2-6mm diameter. These chips were then sorted to remove any obvious 

non-fluorite, or ore containing chips, as indicated by opacity when illuminated 

from behind with a strong light. Further cleaning involved boiling the chips in 

50% v/v HN03 for 1 hour, followed by 2 rinses in boiling deionised water. Most 

surface impurities, including ions, were thus removed. Final cleanup was achieved 

in electrolytic cells using the method described by Shepherd et a/ 72
, the purpose of 

which was to remove ion impurities from the fracture and cleavage planes in 

contact with the surface and also salts from the inclusions ruptured or broken 

during the preliminary crushing73
• The cells were Pyrex 'U' tubes containing 

de-ionised water into which were immersed platinum electrodes. A DC potential 

of 60V was placed across the electrodes to bring about the electrolytic cleaning 

process. The water was changed daily for the first week then twice weekly for the 

next 2-3 weeks. The process was continued until the conductivity of the solution 
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had reached a steady value. After cleaning, the chips were dried at 70°C and one 

gram of sample was crushed in a mortar and leached with 1 Oml of deionised water 

in an ultrasonic bath. 

Yellow Fluorite Purple Fluorite Yellow Fluorite Purple Fluorite 

Inclusions Matrix Inclusions Matrix Inclusions Matrix Inclusions Matrix 
(ng (ng/g (ng (ng/g (ng (ng/g (ng (ng/g 

inclus'n/g Fluorite) inclus'n/g Fluorite) inclus'n/g Fluorite) inclus'n/g Fluorite) 
Fluorite) Fluorite) Fluorite) Fluorite) 

Be 0.5 24.6 0.4 12.7 Sb 0.2 <0.1 <0.1 <0.1 

B 22.1 <0.1 27.8 <0.1 I 0.2 <0.1 <0.1 <0.1 

Na 678 <0.1 1,760 421 Te <0.1 0.1 <0.1 <0.1 

Mg 25.2 <0.1 55.3 NO Cs 0.1 <0.1 <0.1 <0.1 

AI <0.1 <0.1 <0.1 <0.1 Ba 10.1 2.6 <0.1 1.4 

p <0.1 <0.1 <0.1 745 La <0.1 3.5 <0.1 26.2 

Ca 20,301 C<o.1) 20,285 NO Ce 0.1 9.7 0.5 38.8 

Sc <0.1 6.9 <0.1 9.7 Pr <0.1 2.0 0.1 39.8 

Ti <0.1 25.7 <0.1 22.2 Nd 0.2 11.4 0.5 25.8 

v <0.1 0.9 <0.1 0.8 Sm 0.1 8.7 0.2 34.5 

Cr 1.5 0.7 2.1 1 Eu 0.2 12.1 0.5 16.4 

Mn 21.3 4.4 23.4 7.9 Gd 0.3 19.9 0.5 35.5 

Fe <0.1 2,001 <0.1 2,285 Tb <0.1 2.9 0.1 38.8 

Co 0.2 0.8 <0.1 1.0 Oy 0.3 18.8 0.7 21.6 

Ni 27.1 1.0 <0.1 1.5 Ho <0.1 2.9 0.1 5.6 

Cu 5 1.0 <0.1 1.6 Er 0.1 6.1 0.2 11.3 

Zn 6.8 <0.1 <0.1 <0.1 Tm <0.1 1.3 <0.1 1.1 

Ga <0.1 1.2 <0.1 0.9 Yb <0.1 2.4 <0.1 2.8 

Ge <0.1 0.3 <0.1 0.5 Lu <0.1 <0.1 <0.1 1 

As <0.1 0.4 <0.1 0.5 Hf <0.1 <0.1 <0.1 0.5 

Br <0.1 5.5 <0.1 0.5 Ta <0.1 <0.1 <0.1 <0.1 

Se <0.1 3.1 <0.1 1.7 w 0.1 <0.1 0.4 0.1 

Rb 0.5 2.6 <0.1 <0.1 Re <0.1 <0.1 <0.1 0.1 

Sr 12.9 76.5 <0.1 30.6 Os <0.1 <0.1 <0.1 <0.1 

y 3.4 3,154 6 3,793 lr <0.1 <0.1 <0.1 <0.1 

Zr <0.1 0.3 0.2 0.2 Pt <0.1 <0.1 <0.1 <0.1 

Nb <0.1 0.2 <0.1 <0.1 Au <0.1 <0.1 <0.1 <0.1 

Mo <0.1 0.1 <0.1 <0.1 Hg <0.1 <0.1 <0.1 <0.1 

Ru <0.1 <0.1 <0.1 <0.1 Tl <0.1 <0.1 <0.1 0.1 

Rh <0.1 <0.1 <0.1 <0.1 Pb 0.3 <0.1 0.2 <0.1 

Pd <0.1 <0.1 <0.1 <0.1 Bi <0.1 <0.1 <0.1 <0.1 

Ag <0.1 <0.1 <0.1 <0.1 Th <0.1 <0.1 <0.1 <0.1 

Cd <0.1 <0.1 0.2 <0.1 u <0.1 <0.1 <0.1 <0.1 

Sn <0.1 <0.1 1.3 <0.1 

t»~ TableJ!. Elemental concentrattons of the mclustons and fluonte matrtx mvesttgated m the 
follf1W up study, LPPrvt). 
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The solutions were filtered through 0.22 pm Millipore membrane filters to 

remove any suspended particles of fluorite. Analysis was performed using a 200 pi 

loop, with the same instrument conditions as described in section 5-6.2.2. 

The residual fluorite was digested by heating 0.1g of sample with 0.5g of 

Aristar grade H 3B03 and 5ml"semiconductor grade" concentrated HN03• This 

method was derived from a method used by Bernas74 for the analysis of insoluble 

fluorides. The method was adapted because Bernas used hydrochloric acid which, 

as outlined in chapter 2, produces significant signal suppression and also produces 

molecular interferences on isotopes of vanadium, arsenic and selenium. As 

described in chapter 2, nitric acid causes the least suppression and results in the 

least amount of interfering species and was therefore used in place of hydrochloric 

acid. The digested fluorite was spiked with a 50ppb indium internal standard and 

analysed using the same instrument conditions as those for the analysis of the 

inclusions. 

Of particular interest are the rare earth elements, because these are not 

exclusively partitioned into either phase. The concentrations in the inclusions are 

very close to the detection limit of the method, which constrains both the 

precision and the accuracy of the work. In order to improve the accuracy, the 

analysis for both inclusions and matrix of the yellow fluorite was repeated, using 

the same acquisition parameters, but limiting the scanned mass range to 

138-180amu, so that only the lanthanides were scanned. Fig. 5-13 shows the mass 

spectra of the lanthanide elements in both the inclusion (Fig. 5-13a) and the host 

mineral (Fig. 5-13b). It can be seen that, while the overall pattern of the 

lanthanides is similar in both spectra, as was found with the previous, whole mass 

range investigation, the CelLa ratio is significantly higher in the mineral than in 

the inclusions (Ce/Lamineral = 1.97, Ce/Laindusions = 0.97) suggesting partial 
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substitution of cerium for calcium in the fluorite lattice. Conversely, the Eu/La 

ratio is significantly higher in the inclusions than in the mineral (Eu/Lamineral = 

0.27, Eu/Lainclusions = 0.72), suggesting an incompatibility with the mineral phase. 
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a) Spectrun of lanthanides in 
digested fluorite 
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b) Spectrun of lanthanides in 
leached inclusions 

155 163 172 180 
Mass 

Fift!tre 5-13: ICP-A-fS spectntn for lanthanides in digested jltrorite and 
leached inclusirmr 

Although the results from these studies are of limited usefulness on their 

own, they do show that by using flow injection a great deal of information can be 

obtained. Had time permitted, a further investigation of temperature I pressure 
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calibrated fluorite samples would have been undertaken to investigate the effect of 

formation temperature and pressure on the partitioning of elements such as the 

rare earths. 

5-7.3 Reduction of Matrix Suppression Effects 

The analysis of solutions containing high concentrations of matrix elements, 

for example (NaCl) brine solutions, is problematical for both ICP-AES and 

ICP-MS. Such solutions cause a suppression of the analyte signal, which is 

directly related to the concentration of the matrix elements and is believed to arise 

from a combination of ionisation suppression75 and space charge effects76
• As 

discussed in chapter 3, it has been found that this effect is negligible at salt (matrix 

element) concentrations <0.1% w/v, but becomes progressively more significant 

as the salt concentration is increased, so that at 5% NaCl (the maximum salt 

content which may be aspirated before matrix depositions at the sampling 

interface becomes significant) the analyte signal is suppressed such that only 30% 

of the corresponding aqueous signal remains. This is obviously detrimental to the 

detection limits which can be achieved in such solutions. Whilst dilution of the 

sample reduces the salt content and thus also the suppression, the detection limits 

are then compromised by the dilution factor. Ion exchange techniques which 

could be used to remove the sodium would be likely to remove analyte elements as 

well. Fig 5-14 shows the time profile of an aqueous signal for In at 115 amu with 

the corresponding signal in a 27% NaCl solution overlaid. 

It can be seen that when, injecting the brine solution, the signal initially 

follows the aqueous profile, but when the salt concentration in the plasma exceeds 

a certain level, the signal is suppressed and the signal diminishes. When the salt 

level falls below the level at which suppression occurs, the signal then starts to rise 
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and again and follow the aqueous profile until all of the sample has passed out of 

the system. 

Signal (cps) 

50ppb In in 1% HN03 

• 50ppb In in 27% NaCI 

lime 

Figure 5-14: Time profiles obtained for 50ppb In in dilute HN03 and 27% NaC/ 

In order to maximise the signal it is possible to change the shape of the signal 

profile so that, while maintaining the same area, the peak height is reduced, hence 

more of the signal is kept below the suppression threshold, Fig. 5-15. This may 

be achieved by altering the dispersion of the system, a technique used since the 

very early days of flow injection77
• Because the sample is continuous with the 

carrier flow, there is inevitably a certain amount of mixing, termed dispersion, 

between the two. One of the important advantages of flow injection is the fact 

that this dispersion is both reproducible and adjustable. Dispersion is affected by 

such parameters as pumping rate and sample I carrier viscosity ratios, but is 

primarily controlled by the diameter of the tubing used, or by the inclusion of a 

mixing chamber78
• By increasing the diameter of a portion of the tubing between 

the injection loop and the ICP-MS the dispersion of the system may be increased. 

The effect of changing the level of dispersion on the signal I time profile is shown 

graphically in Fig. 5-15. Although the area of the signal peak for each dispersion 
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is constant, the maximum height of the peak is inversely proportional to the 

dispersion. It can be seen that, by scanning longer on a higher dispersion system, 

most of the signal is kept below the suppression threshold and therefore a greater 

signal to noise, or reduction in the level of signal suppression, could be achieved. 

Signal 

Suppression Threshold 

20 60 100 140 
lime (Seconds) 

FiJ!:Ure 15: The effect of dispersion on maximum siJ!lllll intensity 

The effect of dispersion on the suppression produced for various 

concentrations of brine solution was investigated. Solutions were prepared 

containing 5, 10 and 27% w/v NaCl, acidified with 1% HNOr These, and a 

blank acid solution, were spiked with 1 OOppb of cobalt, indium and uranium. 

Dispersion was varied by the inclusion of a section of tubing of wider 

diameter than the 1116"o.d. tubing used in the rest of the system. Although it 

would have been possible to use varying coiled lengths of the standard tubing this 

approach was rejected on account of the delay which would have been introduced 

in the analysis. Three mixing chambers were prepared, using various diameter 

tubing, and these were inserted into the line between the injection loop and the 

peristaltic pump. The time profile for mass 115 (indium) was obtained for 
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injection of the aqueous solution with each of the mixing chambers. In addition, 

the time profile for continuously aspirated indium was measured. 

In order to determine the dispersion for each system the area of the signal 

under each time profile was measured. Because the width of the signal varied, that 

is became greater with greater dispersion, this value was ratioed to the average 

height of the continuous signal multiplied by the width of the time profile signal 

(in number of channels). It was found that the mixing chambers resulted in 

dispersions, D A of approximately 6, 12 and 20. 

The experiment was repeated, but with the instrument in scanning mode, 

(58-238amu), using a 2 minute acquisition, (100 sweeps, 1024 channels and a 

dwell per channel of 1024pS). This was slightly longer than the duration of the 

profile forD A=20, and considerably longer than the duration of the low dispersion 

signal, but because the background in ICP-MS is relatively stable this would not 

appreciably reduce signal to noise and was therefore felt to be an acceptable 

compromise. The aqueous solution and the three brine solutions were injected 

into each of the systems, and the percentage supression, relative to the 

unsuppressed aqueous solution, was calculated. 

Fig. 5-16 shows a plot of degree of suppression, expressed as a percentage of 

the unsuppressed aqueous equivalent, versus dispersion for the three elements, 

(Co, In & U), at each of the three brine concentrations. Since the background 

level is relatively unchanged detection limits are improved because : the degree 

of suppression is reduced. 

The ability to control dispersion using flow injection may therefore be used 

to reduce matrix induced signal suppression, such as that created by high salt 

concentration in samples such as fluid inclusions and hydrology studies. 
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200% 

Figure 5-16: Percentage suppression at 
various dispersions for 0, 5%, 10% and 
27% brine solutions, for the elements Co, 
In and U 

5-7.4 Increased Matrix Tolerance 

20 0% 

Perhaps the most significant advantage to coupling flow injection to ICP-MS 

is in the reduction of the amount of sample transported through the sample 

introduction system. The constraints on sample matrix in ICP-MS have been 

described by Hutton and Eaton79
• As concluded in chapter 3, if a way could be 

found to alleviate these restrictions, it would be possible to determine directly 

elements such as the platinum group which are present at very low concentrations. 

As was demonstrated in section 5-5.1, and shown graphically in Fig. 5-12, 

considerably less sample is introduced when using flow injection compared to 

conventional aspiration. This results in less material reaching, and thus able to 
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deposit, on the sampling interface. A conservative estimate is that less than one 

fifth to one tenth of the material is deposited. In theory therefore a five times 

greater concentration could be aspirated without significant cone blockage There 

would, however, be some reduction in the sensitivity of the instrument for flow 

injection relative to continuous nebulization due to the shape of the response 

profile produced by flow injection (Gaussian) having a smaller area than the 

corresponding 'flat topped' integration area produced by continuous nebulization 

typically by a factor of 2-3. Average crustal abundances for the PGM's have been 

estimated byTaylor80 at typically <10 ng.g-1 in the solid sample and should thus be 

detectable by ICP-MS in unseparated whole rock solutions containing around 

10% dissolved solids. 

The samples were prepared by a modified version of the digestion described 

in chapter 3, section 3-5.5. The sample weight was increased from the O.lg used 

in chapter 3, to 1g, reagent volumes being increased proportionally. In order to 

avoid losses due to the instability of platinum group metals and gold in nitric acid 

solution, once the solution had been evaporated until evolution of fumes of 

perchloric acid the residue was taken up in 4ml of Aqua Regia (3:1 HCl:HN03) 

and diluted to 10ml, giving a final solids content of 10%w/v. Solutions were 

spiked with a 50ppb indium internal standard. Silver and osmium were not 

determined because of the likelihood of their being lost during sample preparation 

(silver by precipitation as AgCl and osmium volatilised as OsOJ. Calibration was 

performed relative to external aqueous standards of concentrations 0, 10, 20 and 

50 ng.ml-1. Injections were made on a low dispersion system, using a 200plloop. 

Acquisition was performed in scanning mode from 95-200 amu, skipping 

masses 116-184 amu. 2048 channels were used with a dwell time of 500ps. The 

instrument software calculated the number of sweeps, based on the duration of the 
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injection of a 50ppb indium time profile for mass 115, and hence the duration of 

the acquisition. The required number of sweeps was calculated at 149, giving a 

total acquisition time of 152 seconds. Five determinations were performed for 

each sample and a digestion blank. 

Table 5-9 shows the mean concentrations, precisions and detection limits for 

PGM's for the geochemical standards Gland PCC-1. These standard were 

chosen because they are well characterised for the plantinum group and gold, and 

the likelihood of having few polyatomic overlaps on the PGM's or gold. 

Element 3cr G1 PCC-1 
Detection 

Limits Reference Mean Standard Reference Mean Standard 
(ng/g) Value Value Error Value Value Error 

(ng/g) (ng/g) (n=5) (ng/g) (ng/g) (n=5) 

Ru 0.2 - 1.12 0.09 10 8.6 0.77 

Rh 0.07 - 0.76 0.07 1.4 0.8 0.03 

Pd 0.03 1.9 9.5 0.57 5.4 8.7 0.57 

Ag 0.2 44 37 2.98 (8) 13.3 0.94 

Re 0.04 0.63 0.53 0.04 (0.058) 0.88 0.04 

lr 0.04 2 1.26 0.04 4.8 1.76 0.06 

Pt 0.09 8 5.9 0.27 8 6.77 0.34 

Au 0.03 3.2 3.9 0.25 0.79 1.21 0.08 

Table 5-9: Results obtained by flow injection analysis of 10%wlv solutions ofGJ and PCC-1 

When using flow injection, precisions are typically better than 5% RSD. 

Acceptable accuracy's are obtained, compared to working values with the 

exception of Pd which gave a considerably higher value than the reference. This 

may have been due to the presence of an 40 Ar65Cu+ polyatomic, since the digestion 

blank showed no significant contamination with Pd. This species was thought to 

arise due to the presence of around 10 ppm of copper in the original rock in both 

standards (Govindaraju81
) which corresponded to a Cu concentration in the 

solution of 1 ppm. 
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Figure 5-17: Stability over 3 hours for a spiked 10% wlv granite solutior. 

The excellent standard errors and accuracy tended to suggest that no 

significant cone blockage was evident throughout the duration of the experiment, 

although this was still a major concern. Therefore the stability of the signal signal 

over an extended period was investigated. Fig. 5-1 7 shows the stability over four 

hours when analysing a 10% w/v granite solution spiked with beryllium, cobalt 

and gold to 100ppb. A 200 pi sample was injected every 10 minutes for 4 hours. 

It can be seen that absence of any discernable downward trend in the signals 

confirms the view that no significant cone blockage occurred. The percentage 

relative standard deviations for the measurements were in the range 4-6%. Under 

the same conditions, continuous nebulization of this sample, with the introduction 

of a 1% nitric acid wash solution between samples, was found to block the 

sampling orifice after only 3 acquisitions (20 minutes). 
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5-8. Conclusion 

In the field of geochemical analysis, FI-ICP-MS has the potential to: 

• Increase sample throughput 

• Facilitate small sample handling 

• Reduce matrix suppression effects 

• Increase matrix tolerance and thus allow lower detection limits to be 
achieved where, as in the case of geological analysis, the levels are limited 
by the matrix tolerance of the system 

Purely on its merits of alleviating matrix effects, flow injection will almost 

certainly become an important addition to ICP-MS instruments in the future. 

Other techniques have used flow injection to perform such activities as on-line 

pre-concentrations, automatic calibrations by standard addition, and automatic 

sampling for industrial processes. As more users of ICP-MS become familiar with 

the capabilities and potential of flow injection, this rapidly growing technique will 

become commonplace in geochemistry laboratories world-wide. 
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Chapter 6 

Electrothermal Vaporisation ICP-MS 

6-1 Introduction 

Electrothermal vaporisation, in the form of a graphite furnace, was first used 

by L'Vov1 to introduce microlitre amounts of sample into an atomic absorption 

spectrophotometer. Although slow, subject to many matrix effects and requiring a 

lot of skill on the part of the operator, the technique of graphite furnace atomic 

absorption spectrometry (GFAAS) soon found favour, due simply to the fact that 

it improved detection limits by up to 4 orders of magnitude. 

In graphite furnace atomic absorption spectrometry, the sample is injected 

into a graphite tube which is then heated resistively. The heating is controlled 

through drying, ashing and finally atomisation to produce a vapour of sample 

atoms which absorb light of a characteristic wavelength which is specific to the 

element of interest. The improvement in detection limit arises largely from the 

fact that the furnace gives almost 100% transport efficiency, compared to the 

typically 1% efficiency of nebuliser systems. 

When ICP-AES was developed, the furnace was again seen as a way to 

improve detection limits. Nixon et al 2 were the first group, in 1974, to describe 

the use of the furnace technique with ICP-AES, although Kleinman and Svoboda3 

had also reported the use of electrothermal vaporisation in atomic emission with a 

low power and frequency electrodeless discharge in 1969. The design of the 

furnace used for ICP-AES differed from that used with graphite furnace atomic 
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absorption spectrometry. In the latter, the furnace was being used to vaporise and 

atomise the sample, hence the primary consideration was to retain the vaporised 

sample in the optical path of the instrument for as long as possible. For ICP-AES, 

however, the furnace acts simply to vaporise the sample, so that it could be carried 

into the plasma along the nebuliser argon flow. 

Materials other than graphite have been used. A tantalum strip furnace used 

by Nixon et a/ 4 gave detection limits 1-2 orders of magnitude better than 

continuous nebulisation. Kitazume used platinum and tungsten filaments5
• A 

graphite cup coated with pyrolytic graphite or tantalum carbide was used by Ng 

and Caruso6
•
7
•
8
•
9 who obtained detection limits in the ppb range with a dynamic 

range of 4 orders of magnitude. 

i.-t IGP- JVI ':1 

The first studies into the use of electrothermal vaporisation were by Gray 
~ 

and Date10
, and Gray11 who reported absolute detection limits of about lOpg and, 

more importantly, a reduction in the observed levels of oxide species in the 

spectrum. This was predictable since the water, the source of the oxygen, was 

removed prior to analysis during the drying stage. Such a reduction in oxide 

levels was found to extend the range of possible applications of ICP-MS. 

Whittaker et a/ 12 used ETV ICP-MS to measure iron isotope ratios in blood for a 

stable isotope study of iron uptake in pregnant women. 

6-2 Hardware 

Early research which coupled furnaces with ICP-AES and ICP-MS (Gray 

and Date13
, Gunn et a/ 14

, Darke et a/ 15
, Date and Cheung16

, Whittaker et ar) used 

a design of furnace based around a modified GF AAS furnace in which the furnace 

was enclosed in a glass chamber approximately llitre in volume. However, this 

caused problems because of the very large dead volume present in the jar. The 
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first furnace designed specifically for ICP-MS, by Park et a/ 18
, also used a glass 

chamber, but reduced in volume to 5ml. 

Water cooled 
electrodes & 

mount 

Graphite 
bush I Graphite 

/ plug 

Argon 
Purge 

- -- 41111-- Nebuliset 
Argon 

Figure 6-la 

To plasma 
torch 

Figure 6-lb 

Quartz 
sheath Pyrolytic carbon 

coated graphite tube 

High current 
power supply 

Figure 6-1: Schematic of the electrothermal vaporisation ICP-lv!S system 
(a) loading sample (b) vaporising 

A schematic of the electrothermal vaporisation ICP-MS system used in this 

work is shown in Figs. 6-1 & 6.2. The furnace is a tube of high purity graphite 

coated with a layer of pyrolytic graphite to prevent adsorption of sample elements 

onto the tube and thus minimise crossover contamination. The tube is 

surrounded by a quartz tube through which passes a flow of argon to exclude air 

and thus prevent oxidation of the graphite when heated. The nebuliser argon 

passes through the graphite tube and on to the plasma torch. A major difference 

between the designs for AAS and ICP work is that the hole at the top of the tube, 

through which the sample is introduced, must be sealed to prevent loss of analyte 
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and nebuliser gas. This is achieved with a graphite plug, of the same purity as the 

furnace tube. Electrical connection at either end of the tube is achieved by means 

of water cooled, spring loaded electrodes, the water cooling being required to cool 

down the furnace in a reasonable timescale. This assembly also forms the 

mounting for the furnace and is therefore covered both to prevent contact with 

the live terminal, and also to protect the user from the ultraviolet radiation 

produced when the furnace is operated at high temperatures . 

•• 

••• t 
I 
I 
I 

L_ --+------ -- -------

ETV Furnace 

Purge 
Argon 

FigU1·e 6-2: Schenuztic of the ETV ICP-MS system 

Gas 
Control 

L­

Argon 
Suppl\ 

The power supply is capable of handling up to 30Amps, the output being set 

by computer control. Temperature feedback is provided by resistance 

measurement at low temperature and an optical pyrometer fed via a fibre optic 

bundle at high temperatures. In this way the heating rate and absolute 

temperature of the furnace is controlled precisely and can be changed rapidly to 

allow fast heating cycles if required by the analytical methodology. 
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6-3 Optimisation 

Park et af9
, optimised the system by first tuning on a solution introduced by 

conventional nebulisation and by then switching to electrothermal vaporisation. 
/ 

This is however not valid because the optimum conditions differ strongly for a 

'wet' and a 'dry' plasma20
'
21

• A more appropriate method (Date and Cheuni2
, 

Whittaker et af\ Gregoire2
\ Hall et af-5

) is to slowly vaporise a volatile element, 

such as cadmium or mercury, and optimise on the resulting signal. 

In this work advantage was taken of a gaseous inlet system originally 

designed to allow small amounts of oxygen to be introduced reproducibly into the 

nebuliser flow when aspirating organic solvents. The system comprised a second 

mass flow controller which was ratioed to the primary (nebuliser) mass flow 

controller so that an exact ratio between 0 and 1% of the two gases could be 

achieved. This was used to introduce 0.05% gaseous methyl iodide into the 

system. The advantage of this approach was that the resulting signal was 

continuous and did not require the furnace to be operated, thus allowing time for 

a more accurate optimisation to be achieved. 

6-3.1 Heating Profile 

The type of heating profile used in electrothermal vaporisation work is 

dependent upon the type of samples being analysed as well as the nature of the 

analyte elements. This work concentrated on the platinum group metals and gold 

because of the additional detection limit requirement. Solutions of digested 

geological material, unlike biological samples, do not require complex ashing 

procedures to remove the organic content of the sample. The heating profile 

used therefore consisted simply of three stages: drying at l25°C for 40 seconds; a 

slow heating to 400oC and maintenance at this temperature for 30 seconds; 
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followed by rapid heating in 2 seconds to a temperature of 2300°C and 

maintenance at this temperature for 7 seconds. The heating profile is shown 

graphically in Fig. 6-3. This vaporisation temperature was also used by Hallet af-6 

for GF AAS determination of gold, palladium and platinum in ashed vegetation. 

Temperature I 2C 
2,~ ,--------------------------------------------------. 

2,000 

1,500 

1,000 

500 

0 20 40 60 80 100 120 14{] 

lime I seconds 

Figure 6-3: EIV-ICP-MS heating profile for the PGM's and gold 

6-4 Element Profiles 

In order to ensure that the proposed heating profile was appropriate for the 

analyte elements a series of time profiles were obtained, one for each element. 

A solution of lOppb of Ru, Rh, Pd, Ag, Re, Os, Ir, Pt and Au in 5% v/v HCl 

was prepared and 20pl injected onto the furnace. Instead of acquiring multiple 

scans during the vaporisation phase, a time profile for a single element was 

measured throughout the entire duration of the heating cycle. The profiles 
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obtained are shown in Fig 6-4., with the temperature profile overlaid. Profiles for 

rhodium and ruthenium have been omitted from Fig 6-4 for the sake of clarity, 

but are very similar to those obtained for silver and platinum respectively. 

106 

Heating profile overlaid 

105 Ag Au Pd Pt Re Os 

104 

103 

102 

~ 
101 ~vv \ 

0 20 40 60 80 100 120 14( 

lime I seconds 

Figun 6-4: Single element p-rofiles fur the PGJW's nnd gold 

It can be seen that, with the exception of osmium, the analytes vaporised 

during the high temperature stage. Osmium was found to vaporise when the 

furnace reached 400°C, with only a small residue vaporising at the high 

temperature stage. Had this experiment not been performed, it would have been 

assumed that the low osmium figures were due to loss of the element at some 

stage during the sample preparation. 
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Figure 6-5: Modified ETV-ICP-MS heating profile for the PGlW's a11d gold 

As a result of this experiment, the heating profile was changed (Fig. 6-5). 

The instrument software allows for multiple acquisitions to be performed during a 

vaporisation cycle, thus another acquisition was set at the start of the 400°C stage 

in order to determine osmium. 

Mass range 97.9-200.95 amu 

Skipped mass regions 117-183 amu 

Number of sweeps 110 

Dwell time per channel 801J ~ 

Number of sweeps 1,024 

Table 6-1 Instrument operating conditions for the ETV ICP-MS detection limit experiment 

6-5 Instrument Detection Limits and Calibration Graphs 

Detection limits for the platinum group metals and gold were determined 

using the heating profile shown in Fig. 6-5, and the instrument operating 
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conditions are given in table 6-1. A series of blank solutions and standards of 

concentrations: 1, 10, 3 0 and 50 ppb of the analyte elements were run. 12 

determinations of the blank and thre~determinations of each standard were made. 

The calculated detection limits are shown in table 6-2 and the calibration graphs 

We;~ 1,Vtec.c"" 

Blank (n=10) 1ppb Std LOD (ppt) 
Mean Std Dev. Mean %RSD 3a 

Ru 4 1.83 465 8.2 11.8 
Rh 51 23.24 5160 3.8 13.5 
Pd 12 1.52 1605 2.2 2.8 
Ag 36 36.39 9237 10 11.8 
Re 15 10.09 768 17.4 39.4 
Os -6 4.31 612 14 21.1 
lr 9 6.22 2322 9.7 8.0 
Pt 4 1.83 1902 5 2.9 
Au 16 12.08 3561 22.4 10.2 

Table 6-2. Solution detection limits by ETV ICP-MS 

The detection limits are typically 1 Oppt in solution which, assuming no 

matrix effects and a dilution factor of 1000 (O.lg in 100ml), corresponds to 10ppb 

in the original rock. This is still too high for the routine determination of the 

pgm's in most rocks, being approximately equal to the average crustal abundances 

of these elements27
• 

1 
Precision for the high concentration solutions (50ppb) were found to be 

~ 

between 2 and 22% relative standard deviation. Although poor by the standards 

of other techniques, this is typical for manually injected electrothermal 

vaporisation work, Park and Hall having reported precisions of 20% 28
, although 

the use of an isotope dilution calibration strategy ultimately resulted in analytical 

precisions of 1-2%. 
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6-6 Application to the Determination of the PGM's 

The international standards G1, G2, AVG-1, GSP-1 and PCC-1 were 

prepared using the acid digestion method described in section 3-5.5, but the 

amount of sample was increased to 2g and the reagent quantities similarly 

increased to give a final solution containing 2% dissolved solids. This was 

because such a small amount of solution (20pl) was aspirated, there would be 

much less chance of causing cone blockage. Acquisition was performed using 

furnace and acquisition parameters identical to those described in section 6-5. 

Calibration was performed relative to aqueous standards of concentrations 0, 20 

and 50 ppb. Both samples and standards were spiked with an indium internal 

standard to a concntration of 20ppb. 

When running the 2% solution samples it was found that a rapid decrease in 

internal standard countrate was observed after the first two injections. Acquisition 

was halted and the cone examined. Significant deposition of sample material on 

the cone was observed. Although the injected amount of sample was significantly 

less than for conventional solution nebulisation, in electrothermal vaporisation all 

of the sample is vaporised whereas nebuliser systems are inefficient and perhaps 

only 1% of the sample actually reaches the plasma. Additional sensitivity could 

not be gained from running a more concentrated solution. Therefore, the 

samples were diluted to the more normal 0.2% dissolved solids and the acquisition 

was repeated. The results are shown in table 6-3. 

Results above the detection limit were only obtained for silver which was 

present at relatively high concentrations, although the palladium concentration in 

PCC-1 was determined, but with significant error. 
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G1 G2 AGV-1 GSP-1 PCC-1 
Granite Granite Andesite Granodiorite Peridotite 
Ref ETV Ref ETV Ref ETV Ref ETV Ref ETV 

Ru NV <10 NV <10 NV <10 NV <10 10 <10 
Rh NV <10 NV <10 NV <10 NV <10 1.4 <10 
Pd 1.9 <5 0.25 <5 2.2 <5 1.2 <5 5.4 11 
Ag 43 46 31 57 104 99 86 103 3.5 <10 
Re 0.63 <10 NV <10 0.4 <10 NV <10 0.058 <10 
Os 0.11 <10 <10 <10 <10 7 <10 
lr 2 <10 0.4 <10 0.4 <10 0.3 <10 4.8 <10 
Pt 8 <10 5.9 <10 1.1 <10 NV <10 8 <10 

Au 3.2 <10 1.03 <10 0.6 <10 0.1 <10 0.79 <10 

Table 6-3. Results (ppb) obained by ETV. NV =no reference value 

Though disappointing, these results are consistent with other workers in this 

field who have published data on low concentration elements in geological 

samples using electrothermal vaporisation ICP-MS. Amongst these the most 

notable is Gregoire29
'
30 at the Canadian Geological Survey who used the nickel 

sulphide fire assay to preconcentrate the platinum group metals and gold prior to 

analysis followed by isotope dilution to obtain accurate results with the use of a 

500ppm nickel matrix modifier to increase sensitivity. 

Park and Hall31
, also of the Canadian Geological Survey, reported the use of 

electrothermal vaporisation ICP-MS for the determination of thallium in 

geological materials, and recorded a detection limit of 9 ppb. 

6-7 Conclusions 

Whilst the technique of electrothermal vaporisation in ICP-MS has the 

potential for useful application to the determination of low concentration 

elements in geological materials, as demonstrated in this research and by other 

workers a great deal more work is required to refine the method. 
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The primary concern lies in the detection limits that can be achieved. 

Whilst other workers have reported incredible detection limits for elements such 

as plutonium in biological matrices32
, the matrix tolerance difficulties experienced 

in determining such levels of elements in refractory matrices such as rocks are 

likely to prevent any significant improvement in the technique, necessitating a 

recourse to sample preconcentration methods such as fire assay and ion exchange 

versus solvent extraction processes. 

Another particular concern is the precision which can be attained by the 

technique. Although an automated sample injection system would no doubt 

remove some of the operator induced irreproducibility, precisions are still likely to 

be poor, especially when detection limits are being pushed to the extreme. 
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Chapter 7 

Laser Ablation ICP-MS 

7-1 Introduction 

The primary method of introducing a sample into an ICP-MS is in the form 

of a solution. This represents a limitation in terms of geochemical analysis since 

very few of the samples to be analysed are naturally liquids, nor are they readily 

dissolved to form a liquid. Thus the geochemist must invest considerable time 

and resources in the dissolution or other forms of sample preparation prior to 

analysis. In the commercial world this is acceptable only whilst there is no more 

cost effective method. In accordance with the objectives of this work, as described 

in Chapter 1, to minimise the time required to prepare samples for ICP-MS, the 

potential in applied geochemistry of a solids analysis technique which can achieve 

the detection limits of ICP-MS is very high. 

Other techniques such as slurry nebulisation (Chapter 4) represent an 

attempt to eliminate the time consuming digestion and dissolution procedure but 

achieves only limited success because of the extended period of time spent 

reducing the mean particle size. Although this process can in some respects be 

automated, it still means long sample preparation times and thus limits the 

throughput of the laboratory. 

Spark source mass spectrometry is a direct solids analysis technique but, as 

described in Chapter 1, considerable time is taken up in processing and reading 

the photographic plates. Electrothermal vaporisation can also be used to 
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introduce small amounts of solid sample, but again the mean particle size needs to 

be small to ensure uniform heating, and in addition, because of the small sample 

size used, the inhomogeneity of most geological samples means that several 

replicates must be run for each sample to ensure that a true representation of the 

sample is obtained, thus causing poor precision in the final results. 

True solids analysis must be applicable to samples with limited preparation. 

Bulk sampling of pressed disks or briquettes formed by fusion with a flux such as 

lithium metaborate used for XRF analysis can be prepared very quickly and since 

XRF would in all probability continue to be used for the analysis of major 

components due to its high precision, the ability to use the same disks for 

ICP-MS analysis would be clearly advantageous. 

In addition to the bulk sampling of solids, there exists the possibility to 

analyse the composition of individual features in an inhomogeneous sample as 

described in the aims of this work. For example, in the field of geochemical and 

petrological research, there is a need to determine the concentrations of trace 

elements in individual mineral grains to examine the partitioning of elements 

during the formation of a rock. 

In this chapter, the requirements and potential of both bulk and feature 

analysis are investigated 

7-2 History of Laser Ablation ICP-MS 

Laser ablation has for many years been used as a method for introducing 

samples into an ICP-AES, one of the earliest references being 

Abercrombie et al 1 in 1978. Other authors who have made significant reports of 

work in this field include Thompson et al 2
, and Horlick3

• The first major 
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investigation into laser ablation ICP-MS was by Gray4 in 1985, using a 1] ruby 

laser to analyse pressed pellets of rock powder. Whilst good detection limits were 

reported, typically 1 Oppb, poor precision was obtained. This was attributed to the 

low repetition rate of the ruby laser and further work using a fast repetition rate 

such as the neodymium-yttrium aluminium garnet laser (Nd:YAG) which was 

subsequently used by Arrowsmith5 who analysed pressed rocks and lithium 

metaborate disks, reporting detection limits in the 0.2-2ppm range, and Tye et at' 

who also used a Nd:YAG for the analysis of uranium oxide. Mochizuki et al 7used 

a ruby laser and reported detection limits in pressed rocks of 0.1-1 ppm but again 

poor precision was reported with relative standard deviations in the range 

10-30%. 

I 
Resonance Cavity 

Pockels Cell Nd:YAG Crystal 

Mirror Xenon Flash Tubes 

Figure 7-1: schematic of a Nd:YAG laser 

7-3 Technique of Laser Ablation 

I 
Beam Folding 

Mirror 

Half Silvered Mirror 

For laser ablation work, a pulsed laser, such as the ruby or Nd:YAG is used 
~ 

and in this research a 500] Nd:YAG laser with a wavelength of 1064 nm was 

" preferred. The schematic of a typical laser ablation system is shown in figure 7-1. 
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The optical medium, a rod of neodymium doped YAG, is contained in a 

resonance cavity, composed of two mirrors at either end of the rod, one of which 

is half silvered to allow emission of the laser light. Xenon flash tubes parallel to 

the rod act as an optical pump. The mirrors are placed such that the distance 

between them is an integral multiple of a half wavelength. This results in a system 

of standing waves being set up between them. Any light of a different wavelength 

is lost from the system within a few reflections therefore the resonator is 

essentially monochromatic. 

7-3.1 Firing Modes 

In its simplest mode of operation, the laser is pumped by the flash tubes and 

the light is emitted through the half silvered mirror when the threshold conditions 

for laser operation are reached which results in a relatively long pulse, typically 

1 OOp.s, of low energy (Fig. 7 -2). Such operation is termed "fixed Q" where Q is 

the quality of the resonance cavity. 

The second mode of operating such lasers is termed "Q switching". Here 

the quality of the resonant cavity is changed by means of an electro-optical switch, 

such as a Pockells cell. This is a deuterium doped potassium dihydrogen 

phosphate or ammonium dihydrogen phosphate crystal which, when a voltage of 

typically 5kV is applied across it, becomes opaque. By placing the Pockells cell 

inside the resonant cavity, when opaque, resonance cannot occur thus the 

population of excited atoms builds up until the voltage is removed from the 

Pockells cell, at which point resonance occurs rapidly, resulting in the emission of 

a very short, typically 20ns, high intensity pulse of light. This has important 

implications and is discussed further in the section dealing with firing modes. 
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Fixed a 

50 

Pulse duration (~s) 

Figure 7-2: Diagram to show the duration of laser light emitted in fixed Q 
arid Q switchinf{ modes. 

7-3.2 Hardware 

100 

In laser ablation, the purpose of the laser is to vaporise a portion of the 

sample to form a microparticulate dust which is then carried to the plasma on the 

nebuliser gas flow. A schematic of the laser ablation ICP-MS system is shown in 

Fig. 7-3. 

The sample is mounted on a small stage covered with a quartz cell. The top 

of the cell is inclined at an angle of 45°, to prevent the laser from reflecting back 

and damaging the expensive focusing optics. The nebuliser argon flow passes 

through the cell and on to the plasma torch, the cell effectively replacing the spray 

chamber used in solution nebulisation. In order to mount the sample in the cell 

the nebuliser gas had to be stopped as air entrained in the cell destabilises the 

plasma to the extent of extinguishing it. In the commercial version of the laser 

ablation system this was achieved by diverting the nebuliser flow away from the 
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torch until the cell had been purged with argon using a motorised valve. This, 

however, caused problems because the ablated sample material had to pass 

through the valve causing deposition which resulted in contamination 

necessitating frequent cleaning of the valve . 

I 
..L 

•• 

••• 

Resonance Cavity 

Quartz Sample 
Cell 

Video 
Positioning Optics 

Gas 
Control 

X,Y2 Positioning 
Stepper Motors 

Fip;ure 7-3: Scematic of the laser ablatim ICP-MS system 

Argon 
Supply 

The stage on which the sample was mounted could be moved in all three 

dimensions - either manually or by computer control. The Z axis was used 

primarily for focusing the beam onto the surface of the sample, while relative 

motion in the X and Y directions were used to position a particular portion of the 

sample under the beam. Accurate positioning of the sample and focusing required 

a magnified view of the sample. This is achieved by means of a low magnification 

optical system linked to either a binocular head, or a video camera and monitor. 

For the earlier bulk sampling work the sample was illuminated by reflected light 

from above using a fibre optic illumination system. For the later thin section 

work, a transmitted lighting system was constructed by placing the sample on a 

glass mount under which a mirror was located to reflect light from a side mounted 
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fibre optic through the sample. The video monitor was fitted with an electronic 

cross hatch generator which was aligned with the firing position of the laser. 

7-3.3 Firing Pattern 

It is possible either to fire repeated shots at a single point, or to use the 

computer controlled stage to fire at a different point on the sample with each shot 

or series of shots, thus taking a more representative sampling, a feature which is 

particularly advantageous with inhomogeneous samples such as geological 

materials. 

7-3.4 Effect of Firing Mode on Analysis and Cratering 

The ablation of material from the sample results in the formation of a small 

pit or crater, the size of which depends upon the type and number of laser shots 

used. 

The two firing modes, fixed Q and Q switching, were found to produce very 

different craters. A range of pressed geological materials were ablated, using the 

laser at 75% power, and the resulting craters examined microscopically. The 

quadrupole was set at mass 139 during this preliminary investigation and the 

signal produced by the ablated material was observed on the instrument 

ratemeter. Representations of the characteristics of the craters produced by each 

of the two firing mode are shown in figure 7-4. 

7-3.4.1 Fixed Q 

Fixed Q shots were found to produce a narrow crater of diameter <50pm. It 

was not possible to measure the depth of such craters although this was estimated 
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to be in the range 50-200prn. The depth of fixed Q craters was found to vary 

depending upon the nature of the sample and, if a pressed powder, upon the 

binding agent and compression conditions used. This was an important 

observation since variation in crater depth indicated that a varying amount of 

sample material was being ablated each time, thus affecting the precision of an 

analysis. 

Fixed Q 

.... 501Jm 

.... 2001Jm H -501Jm 
r-===== 

Figz_tre 7-4: Representation of laser ablation craters produced 
by ]ixed Q antf Q switching 

QSwitching 

.... 1501Jm 

The mouth of the fixed Q crater was jagged, suggesting that some of the 

material had been shaken loose, rather than be&V'I ablated. A fine dust of pieces of 

sample material, individual grains being observable with the naked eye, w~~ 

found on the base of the sample cell, and in the tubing which connected the cell to 

the plasma torch. This further supports the theory of its removal by mechanical 

shock, and provides evidence for the existence of some particle size dependent 
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fractionation occurring in the transport process. In addition, some evidence of 

molten material around the edge was observed. 

Repeated fixed Q shots fired at the same point on a sample did not produce 

any discernible change in crater dimensions, and, furthermore, the maximum 

signal shown on the ratemeter was four orders of magnitude lower than that 

. produced by the first ablation at that spot. It is likely that, due to the relative 

depth of the crater, the beam was not focused by the time it hit the sample and 

therefore did not have enough energy to produce a further ablation. 

7-3.4.2 Q Switched 

Q switched shots were found to produce a much wider and shallower crater 

of typically 150pm diameter and 50pm depth. "Burn" Marks were observed round 

the outside of the crater, but no molten material. Due to the high intensity, short 

duration pulse produced by Q switching, ablation is achieved, in part, by 

ionisation of the argon gas above the surface of the sample8
• This is why the 

resulting crater is so much larger than the diameter of the focused beam, which is 

typically 30-50pm. 

Repeated shots at the same point gave consistent maxima on the instrument 

ratemeter suggesting that comparable amounts of material were being ablated 

each time, permitting the use of repeated sampling from the same point. 

The precision of sampling five shots at the same point and five shots at 

different points on the sample was investigated. The ICP-MS was set up to 

continuously monitor the signal for mass 139 Qanthanum) and to record the 

variation in signal with time (as was used in the flow injection work described in 
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chapter 5). The results are shown in figure 7-5 . 

cps/1000 
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300 
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240 
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180 
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30 

1 Shot/Site, 
5 sites 
RSD=7.4% 

F_ip;ure 7-5. Reproducibility of Q switched shots at the same and at 
diJJerent sampling points 

5 Shots/Site, 
1 site 
RSD=3.4% 

The relative standard deviation was found to be better for repeated shots at 

the same site, than for single shots at different sites. This may have been in part 

due to inhomogeneity in the sample, but more likely is the result of surface 

contamination introduced during handling or pressing. It can be seen that, for 

the repeated sampling of a single point, the first shot gave a high result whilst 

subsequent shots gave very similar responses, suggesting that the first shot 

removed any surface contamination which was present. Therefore, when 

analysing in Q switching mode, pre-ablation of the sample was felt to be 

advantageous to remove surface contamination. Due to the single shot per 

sampling point nature, this is not possible i" fixed Q mode. 
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7-4 Sample Preparation 

Samples of powdered rock were placed in a 25mm die and a pressure of 10 

tonslcm2 applied for 1 minute. In the initial work, in an attempt to minimise the 

possibility of contamination, no binder was used. However, the resulting disks 

were very fragile and collapsed after only a single laser shot. 

50pl of a 5% solution of Moviol (a polyvinyl alcohol) in water was mixed 

with the powder before pressing. This resulted in a robust disk, although such 

disks had to be dried in a vacuum oven to remove water prior to analysis. This 

method was used for all of the pressed sample work in this research. 

7-5 Bulk Analysis 

Bulk analysis of whole rock is the mainstay of geochemical analysis. The 

major constituents of a sample are usually determined by XRF9 from powdered 

rock samples, either pressed into disk or fused with lithium meta borate. If minor 

or trace elements which would be below the detection limits of XRF need to be 

determined, a solution technique is usually employed. This necessitates expensive 

and time consuming digestion and dissolution. If, instead, a solid sampling 

technique such as laser ablation could be used, considerable improvements in 

sample throughput and major cost reduction could be made. 

7-5.1 Detection Limits 

A prime consideration for any analytical technique is the detection limits 

which can be achieved. For laser ablation ICP-MS to be worthwhile it must at 

least be capable of detecting the levels of elements which can be determined by 

solution ICP-MS. 
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Firing mode 0 Switched 

Firing frequency 50Hz 

Laser power 375J (75%) 

Ablation duration 60s 

Mass Range 2-255amu 

Number of Sweeps 50 

Dwell time 5001JS 

Number of channels 2,048 

Total acquisition time 60s 

Table 7-1. Laser ablation and acquisition parameters for the detection limit experiment 

An experiment was devised to compare detection limits by the laser ablation 

technique. One difficulty in comparing laser ablation with solution nebulisation is 

that there is no equivalent to a reagent blank in laser ablation. Simply acquiring 

data without firing the laser yielded unrealistically low data - the only signal noise 

presumably being electronic. A synthetic blank was prepared by pressing a sample 

of high purity silica powder. Calibration was performed relative to a pressed 

sample of the international standard G 1. 

Surface contamination of the sampling sites was removed by a pre-ablation 

period of 15 seconds, during which the laser was fired at a rate of 50Hz in the Q 

switching mode. Five acquisitions were performed at the pre-ablated site using 

the conditions shown in table 7-1. 

The results are shown in table 7-2. The detection limits obtained for 

solution nebulisation in chapter 3 (table 3-3) have been used to calculate detection 

limits in the original rock using the 1000 times dilution factor and are included for 

comparison. It can be seen that laser ablation results are 2-15 times worse than 

those obtained for solution. Jarvis et al obtained similar results10
• They 

calculated, on the assumption that 12pg of sample is removed from the sample, 

that the absolute detection limit in pg is higher for laser ablation but, due to the 

small amount of sample actually removed, the laser ablation system gave poorer 
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practical detection limits. The possibility exists therefore either to ablate for 

longer periods, or to analyse a reduced mass range. By spendin~ore time on 

each of the selected elements better detection limits would be achieved. 

Abundance Laser 
LOD's 
(ppm) 

y 89 100 0.05 
Zr 90 51.46 0.10 
Nb 93 100 0.05 
Ru 101 16.98 0.29 
Rh 103 100 0.05 
Pd 105 22.6 0.22 
Ag 107 51.35 0.10 
Cd 110 12.43 0.40 
Sn 118 24.01 0.21 
La 139 99.911 0.05 
Ce 140 88.48 0.60 
Pr 141 100 0.05 
Nd 146 27 0.31 
Sm 147 15.07 0.33 
Eu 151 47.77 0.10 
Gd 157 15.68 0.32 
Hf 178 27.23 0.18 
Ta 181 99.98 0.05 
w 182 26.31 0.19 
Re 185 37.07 0.13 
lr 193 61.5 0.08 
Pt 195 33.7 0.15 
Au 197 100 0.29 
Hg 202 29.8 0.56 
Tl 205 70.5 0.07 
Pb 208 52.38 0.10 
Th 232 100 0.05 
u 238 99.28 0.05 

Tabk 7-2. Detection limits by laser ablation 

7-5.2 Analysis of Geochemical Standards 

The international geochemical standards G 1, AGV -1 and PCC-1 were 

analysed by laser ablation. The samples were pressed into disks and analysed 
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using the laser and instrument conditions described in section 7-5.1. 

G1 AGV-1 BCR-1 PCC-1 
Ref '.A ICP-MS Ref LA ICP-MS Ref ~ICP-MS Ref ~ICP-MS 

Si 337933 458• >60 274255 340840 252190 3 3 194391 :957 
AI 75266 67152 90722 86499 72197 65027 3546 3164 

Mn 217 253 713 767 1371 1529 922 999 
Ma 2160 2056 9178 8998 20877 20028 260537 243547 
Ca 9785 10268 35281 39635 49637 52760 3714 4181 
Na 24705 24502 31605 35027 24260 24061 200 222 

K 45634 f\ 01 24144 ·0·· 14022 3 58 -
Ti 1619 1495 6298 6012 13436 11875 78 71 
p 362 1 2139 356 1571 2 9 9 

Fe 13576 12567 47306 42425 93843 84160 57734 53444 
Ag 0.044 <0.2 0.078 <0.2 0.027 <.2 0.008 <0.2 
As 0.7 0.5 880 724.0 650 601 56 49 
Au 0.00320 <0.2 0.00062 <0.2 0.00066 <0.2 0.00079 <0.2 

B 1.6 7.8 5.9 3.0 2.5 1.7 1.3 
Ba 1080 1084 1226 1201 681 680 1.2 
Be 3 1.9 2 1.9 2 2 0.05 <0.2 
Bi 50 52 57 60 47 51 8.0 8 
Br 0.14 <0.2 0.3 <0.2 0.07 <0.2 0.4 <0.2 

Cd 0.06 <0.2 0.07 <0.2 0.1 <0.2 0.02 <0.2 
Ce 173 156 67 59 54 41 0.1 <0.2 
Co 2 2 15 14 37 40 112 121 
Cr 20 22 10 11 16 18 2730 3028 
Cs 2 1.7 1.3 1.5 1 1 0.006 <0.2 
Cu 12 11 60 57 19 18 10 8 
Oy 2 2 4 4 6.3 5 0.01 0 
Er 1 1 2 2 3.6 3.8 0.01 <0.2 

Eu 1.2 1.2 1.6 1.7 2.0 1.7 0.002 <0.2 
Ga 20 20 20 19 22 23 0.7 1.2 

Gd 5 5 5 4 7 6 0.01 <0.2 

Ge 1.1 1.3 1.3 1.4 1.5 1.75 0.94 1.17 
Hf 5.4 4.9 5.1 4.8 5.0 3.9 0.04 <0.2 

Hg 0.0850 <0.2 0.0200 <0.2 0.0079 <0.2 0.0060 <0.2 
Ho 0.3900 <0.2 0.6700 <0.2 1.26 1.4600 0.0025 <0.2 

I 0.0350 <0.2 0.2700 <0.2 0.18 <0.2 0.1850 0.4000 
In 0.0252 <0.2 0.0410 <0.2 0.092 <0.2 0.0037 <0.2 
lr 0.0020 <0.2 0.0002 <0.2 0.000004 <0.2 0.0048 <0.2 

La 105 *105 38 *38 25 *25 0.0520 <0.2 
Li 21 19 12 11 13 12 2 2 

Lu 0.16 <0.2 0.27 0.3 0.51 0.44 0.006 <0.2 

Mo 6.8 6.7 2.7 2.7 1.6 1.6 2.0 1.8 

Nb 23 20 15 12 14 9 1 0.7 

Table 7-3. Results obtained by laser ablation o[pressed powder, (PPM). 
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G1 AGV-1 BCR-1 PCC-1 
I 

Ref LA ICP-MS Ref LA ICP-MS Ref LA ICP-MS Ref LA ICP-MS 
Nd 57 55 33 32 29 26 0.04 <0.2 
Ni 3 3 16 14 13 15 2380 2973 
Os 0.0001 <0.2 <0.2 0.000009 <0.2 0.0007 <0.2 
Pb 46 46 36 36 14 12 10 10 
Pd 0.0019 <0.2 0.0022 <0.2 <0.2 0.0054 <0.2 
Pr 17.0 17.7 8 8.4 7 7.8 0.013 <0.2 
Pt 0.008 <0.2 0.0011 <0.2 0.002 <0.2 0.008 <0.2 

Rb 214 220 67 68 47 47 0.066 <0.2 
Re 0.0006 <0.2 0.00038 <0.2 0.0008 <0.2 0.000058 <0.2 
Rh <0.2 <0.2 0.0002 <0.2 0.0014 <0.2 
Ru <0.2 <0.2 0.001 <0.2 0.01 <0.2 

Sb 0.3 <0.2 4 3.2 0.6 0.4 1.3 1.0 
Sc 3 2.7 12 15 33 34 8.4 7 
Se 0.007 <0.2 0.0005 <0.2 0.0001 <0.2 0.027 <0.2 

Sm 8.3 8.1 5.9 4.7 6.6 5.2 0.007 <0.2 
Sn 3 3 4 4 3 3 1.6 2 
Sr 248 256 662 676 330 328 0.4 <0.2 
Ta 1.5 1.5 0.9 1.1 0.8 0.9 1.2 1.7 

Tb 0.6 0.7 0.7 0.8 1.1 0.9 0.0015 <0.2 

Te <0.2 0.0019 <0.2 0.005 <0.2 0.003 <0.2 
Th 51 50 7 6.4 6 6 0.013 <0.2 
Tl 1.2 1.1 0.3 <0.2 0.3 <0.2 0.002 <0.2 

Tm 0.2 <0.2 0.3 <0.2 0.6 0.4 0.003 <0.2 

u 3.4 3.4 1.9 2 1.8 1.6 0.005 <0.2 

v 18 15 121 117 407 358 31 28 

w 0.4 <0.2 0.6 0.3 0.4 <0.2 0.02 <0.2 
y 13 13 20 17 38 35 0.1 0 

Yb 1.0 1.0 1.7 1.8 3.4 3.6 0.02 <0.2 

Zn 45 48 88 92 129 140 42 56 
Zr 201 190 227 210 190 177 10 *10 

Table 7-3 cont'd. Results obtained by laser ablation of pressed powder .. (ppM). 

Semiquantitative calibration was performed relative to lanthanum for G 1, 

AGV-1 and BCR-1. The lanthanum concentration in PCC-1 was below the 

detection limit, making it unusable as an internal standard so zirconium, present 

in PCC-1 at 1 Oppm, was used instead. 

It can be seen from the results (Table 7 -3) that in general, good agreement 

with reference values is achieved. Results for the major elements silicon and 
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potassium are consistently high. This is due to a high background at the analyte 

masses. The inability to use background subtraction means that these cannot be 

corrected as in solution work. The high silicon figures are due to a polyatomic 

interference, 14N 2
1H+, on 29Si. Potassium results are high because the only 

analytically valid isotope of potassium, 39K, is overlapped by an argon hydride 

species, 38Ar1H•. Although the abundance of 38Ar is only 0.06%, the high argon 

concentration of the ion beam makes this polyatomic species significant enough to 

register a substantial background. 

The platinum group metals and gold were below the detection limits of the 

method. A separate experiment was devised to determine these elements. 

7-5.3 Analysis ofSARM-7 

Firing mode Q Switched 

Firing frequency 50Hz 

Laser power 375J (75%) 

Ablation duration 120s 

Mass Range 89-120, 138-140, 180-200amu 

Number of Sweeps 120 

Dwell time s 12-h¥> 
Number of channels 204-% 

Total acquisition time 123s 

Table 7-4. Laser ablation and acquisition parameters for the determination of platinum group 
metals and gold in SARM-7 

SARM-7 is a South African platinum ore standard which has elevated levels 

of all of the platinum group and gold. The laser ablation experiment was 

repeated, but a restricted mass range and longer ablation and acquisition times 

(table 7-4) were used in order to improve the detection limits achievable and thus 

be able to determine the PGM's and gold. Mass 139 was included in the 

acquisition to allow the use of lanthanum as an internal standard. Two samples of 
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SARM-7 were prepared. Sampling was performed at two sites on each sample. 

SARM7 Sample 1 Sample2 Av•aae 
Ref Spot 1 Spot2 Spot 1 Spot2 Mean t:.90 %RSD 

Ru 0.43 0.368 0.358 0.358 0.354 0.36 0.010 1.7 

Rh 0.24 0.268 0.302 0.269 0.302 0.29 0.032 6.8 

Pd 1.53 1.132 1.235 1.104 1.23 1.18 0.110 5.7 

Ag 0.42 0.41 0.394 0.434 0.402 0.41 0.028 4.2 

La 5 *5 *5 *5 *5 

Re 0.03 0.02 0.04 0.03 0.03 0.013 27.2 

Os 0.063 0.103 0.099 0.111 0.124 0.11 O.Q18 10.1 

lr 0.074 0.078 0.053 0.088 0.078 0.07 0.024 20.1 

Pt 3.74 3.37 3.94 3.52 3.76 3.65 0.414 6.9 

Au 0.31 0.215 0.189 0.204 0.250 0.21 0.043 12.1 

Tabk 7-5. Results obtained by laser ablation of SARM-7 as a pressed powder., (pp..,.). 

The results (table 7 -5) show reasonable agreement with certified values 

except for palladium and gold. Gold has a high first ionisation potential and 

requires a Saha correction in order to obtain good semiquantitative results 11
• 

Unlike solution nebulisation, where Saha corrections can be determined simply by 

running a solution of all analyte elements, it is difficult to find an appropriate solid 

sample with a sufficiently high level of gold and platinum group metals, with 

which to calibrate the Saha factors. The instrument response for a 'dry' plasma, as 

in laser ablation, and a 'wet' plasma, as in solution work, is markedly different12
• 

For this reason, it is not valid to use a solution instrument response, and it's 

associated Saha factors, to calibrate results obtained by laser ablation. It is 

therefore likely that the low result is due to insufficient Saha correction. 

Palladium has a first ionisation potential of 8.3V13
, which is sufficiently lower 

than argon (15 .8V) to suggest that the low value is unlikely to arise due to an 

imperfect Saha correction. Interferences in ICP-MS which affect individual 

elements are always additive, rather than subtractive, and therefore the low 

palladium result cannot have been caused this way. The fact that similar values 

are obtained from different sampling sites suggests that the results are not due to 
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homogeneity problems. In the absence of any other explanation to the contrary, 

it is concluded therefore that the results for palladium are correct. 

Precision for the results is poor, particularly for those elements which are 

close to the limit of detection of the method (Re, Os, Ir). SARM-7 is an ore 

sample and thus has higher levels of the platinum group metals and gold than the 

normal crustal abundance. In order for the method to become applicable for 

routine analysis of these elements, the limits of detection would need to be 

improved. 

7-6 Feature Analysis 

One area in which low detection limits can be of considerable benefit is in 

the analysis of individual features in a sample, such as the analysis of minor and 

trace elements in individual minerals in a rock. 

The principle technique for analysing individual minerals is by electron 

microprobe. As discussed in chapter 1, this technique offers very good spatial 

resolution, 20pm spot sizes being typical, but only for elements at concentrations 

of 1 OOppm or more. The lack of a technique capable of determining elements at 

the ppm level means that in order to determine lower concentrations the sample 

had to be crushed and the individual minerals picked out manually or separated 

mechanically and the bulk compositions determined for each collection of 

minerals. 

In its present form the craters produced by laser ablation are too large to 

allow such analysis to be performed on any but the largest phenocrysts. 

For microprobe work, thin sections, approximately 200pm in thickness, are 

mounted onto glass slides and coated with a conductive layer of graphite. Such 
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samples required only that the slide be cut down in order to fit into the ablation 

cell. 

If laser ablation ICP-MS could be applied to the analysis of these minor and 

trace elements in individual minerals it would be possible to investigate their 

partitioning in, for example, the crystallisation of minerals from a magma and thus 

contribute to our understanding of both the mechanisms of petrogenesis and the 

origins of specific geological features. In determining partition coefficients, it is 

necessary to ablate areas of both the mineral (e.g. olivine, Mg2SiO/Fe2SiOJ, and 

the surrounding glass melt from which the minerals crystallised. Although fixed 

Q ablation gives the smallest spot sizes, it does not satisfactorily couple to glass 

and therefore cannot be used for this application. Q switching couples equally 

well to both mineral and glass, but produces a much larger spot size, typically 

120p.m, limiting the analysis to large phenocrysts. 

The choice of material foF this type of work is further restricted by the 

geochemistry of the minerals themselves. The purpose of the analysis is to 

determine partition coefficients <Ko) for a range of minor and trace elements. 

These indicate the extent to which an element is partitioned between a mineral 

and the liquid melt from which it formed. However, the range of partition 

coefficients which can be measured will be restricted by the sensitivity of the laser 

ablation technique. 

For example, olivine would not be a suitable choice because partition 

coefficients in the order of l0-5 are common. To determine such a partition 

coefficient, analytical determinations spanning this range (105 orders of 

magnitude) must be made, necessitating either the use of a major element, or an 

exceptionally high analytical sensitivity; certainly greater than that which could be 

achieved by laser ablation ICP-MS. 
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For this work a pyroxene was chosen. This mineral has given partition 

coefficients in the range 10-0.1 for major elements, suggesting scope for the 

determination of the minor and trace element partition coefficients. Other 

possible minerals include epidote and mica which also exhibit a similar range. 

Fif(Ure 7-6. PhotomicroJ!:Yaph of zoned pyroxene crystal and surroundinf!. melt 

A thin section taken from a porphyritic olivine-pyroxene alkali basalt 

(University of Durham sample number DU24814) from Tenerife in the Canary 

Islands was chosen because of the coarse grained aspect of the fresh 

clinopyroxene grains. A single large pyroxene, approximately 4mm, was identified 

in the sample (Fig. 7 -6). This phenocryst was chosen firstly because it was 

sufficiently large to allow a number of Q switched craters of typically 120pm to be 

made, and secondly because it exhibited clear zoning, with a definite boundary 

between the middle and rim of the crystal. 
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The most likely cause of such wning is that there was a change in the 

composition of the liquid magma, resulting in the rim having a different 

composition from the middle. 

Sampling was made from three areas; corresponding to the middle of the 

crystal, the rim and the surrounding glass melt. These are shown in Fig. 7-7. 

Firing of the laser was carried out manually. Five 75% power Q switched shots 

were fired in rapid sequence. Acquisition was performed using 60 sweeps, 2048 

channels and a dwell time of 50<l}Is. The mass range was 5-250amu. Calibration 

was performed using semiquantitative analysis. 

Since it was not possible to use an internal standard, a fixed response of 13 5 

counts/ppm was used, this having been determined by ablating a sample of NBS 

614 (frace elements in glass)14
, which was assumed to have a similar ablation 

response to the three sampling sit~. The absolute values thus calculated may 

therefore be subject to some error, especially for low concentration elements 

where instrument background may represent a large proportion of the counts 

obtained for that element. However, this should not affect the relative 

concentrations, or the partition coefficients. 

The results for the analysis of the three sites are shown in table 7-6. The 

glass was designated "Liquid 2", because this represented the second liquid 

composition which resulted in the formation of the wned rim of the crystal, the 

middle of the crystal forming from a presumed "Liquid 1". 

As a consistency check the zirconium/hafnium ratios for each sample were 

calculated. Hafnium has a very similar geochemistry to zirconium and thus the 

ratio of these two elements should be almost constant in all phases of the sample. 

The ratios were found to be 22.2 for the middle of the crystal, 2 3.1 for the rim or 
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edge and 27.9 for the liquid melt. These are sufficiently close to indicate that 

ablation efficiencies were similar for all three samples and justify the assumption 

made in the calibration that the three sites were ablated with similar efficiency. 

-4mm 

Figure 7-7. Photomicrograph of zoned pyroxene crystal with laser ablation 
sites indicated 

The partition coefficients CKo) for the analyte elements between the rim of 

the crystal and liquid 2 were determined and are also given in table 7-6. As 

predicted for a pyroxene, these were generally in the range 10-0.1, the exception 

being chromium at 18.8. 
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Middle Rim Liquid 2 Kd Liquid 1 Liquid 2 
ppm ppm ppm ppm ppm 

Li 7 0.664 1.087 1.752 0.620 1.070 1.752 
Be 9 1.402 0.785 0.785 1.000 1.402 0.785 
B 11 9.93 10.76 10.62 1.013 9.799 10.62 
Mg 25 39801 28219 22417 1.259 31618 22417 
AI 27 7590 17326 46496 0.373 20368 46496 
Sc 45 57.68 45.21 29.37 1.540 37.46 29.37 
Ti 49 3715 7937 37638 0.211 17618 37638 
v 51 133.8 219.6 690.7 0.318 421.0 690.7 
Cr 52 6699.2 839.3 44.70 18.775 356.8 44.70 
Mn 55 612.9 883.9 2918 0.303 2024 2918 
Fe 57 14632 19847 84402 0.235 62227 84402 
Co 59 30.63 95.86 86.12 1.113 27.51 86.12 
Ni 60 173.7 108.3 92.40 1.172 148.2 92.40 
Zn 68 29.25 33.92 93.58 0.362 80.68 93.58 
Ga 69 5.636 11.50 28.86 0.398 14.15 28.86 
Ge 72 3.060 1.127 3.704 0.304 10.06 3.704 
As 75 14.44 11.21 9.266 1.209 11.94 9.266 
Se 77 87.59 45.21 67.81 0.667 131.4 67.81 
Br 81 1003 26.51 1084 0.024 40986 1084 
Rb 85 0.767 4.930 31.28 0.158 4.866 31.28 
Sr 88 48.43 196.0 757.1 0.259 187.1 757.1 
y 89 4.002 7.013 20.54 0.341 11.72 20.54 
Zr 90 16.00 62.46 241.3 0.259 61.82 241.3 
Nb 93 0.367 6.831 67.69 0.101 3.637 67.69 
Mo 98 0.567 0.850 3.118 0.273 2.080 3.118 
Ru 102 1.291 0.861 0.215 4.005 0.322 0.215 
Rh 103 0.234 0.234 0.167 1.401 0.167 0.167 
Pd 108 1.192 1.073 0.477 2.249 0.530 0.477 
Ag 109 12.96 2.591 12.31 0.211 61.54 12.31 
Cd 111 3.328 1.479 1.849 0.800 4.161 1.849 
In 115 0.372 0.372 0.589 0.632 0.589 0.589 
Sn 120 11.16 31.19 18.31 1.703 6.552 18.31 
Sb 121 42.10 35.62 26.19 1.360 30.96 26.19 
I 127 2.379 1.586 0.925 1.715 1.388 0.925 
Te 128 2.058 0.412 1.441 0.286 7.198 1.441 
Cs 133 0.174 0.125 0.100 1.250 0.139 0.100 
Ba 138 1.155 120.4 256.1 0.470 2.457 256.1 

Table 7-6. Individual mineral ami melt results obtained for pyroxene 
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Middle Edge Uquid 2 Kd Uquid 1 Uquid 2 
ppm ppm ppm ppm ppm 

La 139 1.718 8.592 44.33 0.194 8.864 44.33 
Ce 140 6.977 25.88 109.9 0.235 29.63 109.9 
Pr 141 1.269 3.760 14.51 0.259 4.897 14.51 
Nd 146 6.497 15.03 55.29 0.272 23.90 55.29 
Sm 152 0.936 4.134 10.14 0.408 2.296 10.14 
Eu 153 0.827 1.339 2.954 0.453 1.824 2.954 
Gd 158 1.737 2.842 9.157 0.310 5.597 9.157 
Tb 159 0.389 0.467 1.031 0.453 0.859 1.031 
Dy 163 2.252 1.726 7.055 0.245 9.205 7.055 
Ho 165 0.423 0.552 1.141 0.484 0.874 1.141 
Er 166 0.655 0.928 2.947 0.315 2.080 2.947 
Tm 169 0.071 0.177 0.319 0.555 0.128 0.319 
Vb 172 1.029 1.345 2.136 0.630 1.634 2.136 
Lu 175 0.173 0.173 0.155 1.116 0.155 0.155 
Hf 178 0.721 2.704 8.651 0.313 2.307 8.651 
Ta 181 0.064 0.749 5.162 0.145 0.441 5.162 
w 182 0.420 0.480 0.720 0.667 0.630 0.720 
Re 187 0.024 0.168 0.096 1.750 0.014 0.096 
Os 192 0.226 0.272 0.181 1.503 0.150 0.181 
lr 193 0.163 0.163 0.117 1.393 0.117 0.117 
Pt 195 0.135 0.540 0.338 1.598 0.085 0.338 
Au 197 0.315 0.757 0.315 2.403 0.131 0.315 
Hg 202 3.525 2.233 2.585 0.864 4.081 2.585 
Tl 205 0.243 0.101 0.121 0.835 0.291 0.121 
Pb 208 3.191 4.981 4.570 1.090 2.928 4.570 
Bi 209 0.452 0.126 0.226 0.558 0.811 0.226 
Th 232 0.073 0.346 2.273 0.152 0.480 2.273 
u 238 0.040 0.222 0.655 0.339 0.118 0.655 

Table 7-6 Cont 'd. Individual mineral and melt results obtained for pyroxene 

By assuming that the partition coefficients would not change significantly 

from the rim and its associated magma to the middle and its magma, the 

composition of the presumed original magma (Liquid 1) was calculated by 

multiplying the composition of an element in the middle by the partition 

coefficient for that element. The calculated composition of Liquid 1 is also shown 

in table 7-6. From these results it can be seen that there are significant differences 
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in composition between the two liquids. 

100 

• Edge 

1000 ~~~== 

• liquid 2 

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

FifS!lre 7-8. Chondrite normalised plots of the rare earth elements 
in the mineral (a) and the liquid melts (b) 

It is clear that the early magmatic liquid had a more primative chemistry than 

the liquid that was at equilibrium with the outer edge of the pyroxene: it is 

enriched in magnesium, chromium and nickel; but strongly impoverished in the 

'alkali' elements rubidium, strontium, zirconium, niobium and barium, and is also 

impoverished in iron and the transition metals as well as the rare earth elements. 

These rare earth element concentrations were chondrite normalised, using values 

obtained by Nakamura15
, and are plotted in Fig.7-8. The plots show that, 

compared to the chondrite norm, both magmas were enriched in the rare earth 
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elements but that the later magma (Liquid 2) was more strongly enriched, 

especially in the light rare earth elements. The marked absence of a europium 

anomaly suggests that plagioclase was not involved in the primary magma 

generation process which was probably dominated by an upper mantle 

garnet-pyroxene lherzolite source. The different rare earth element profiles 

between the two magmas suggests either greater partial melting of this matrix 

during the formation of the earlier magma, or a more refined and mature melting 

process for the later magma. This second option is given support by the strong 

increase in the 'alkali' elements such as rubidium, barium, niobium and zirconium, 

and by the marked increase in the iron I magnesium ratio from 1. 97 in the earlier 

liquid to 3. 77 in the final liquid. 

Despite the limitations of the technique, these results show considerable 

potential for the analysis of specific features for geochemical and petrogenetic 

studies. 

7-7 Reduction of Ablation 'Spot' Size 

As discussed in section 7-1, the applicability of the laser ablation technique is 

limited to large crystals by the size of the resulting crater. Q switching produces a 

crater which is larger than many crystals which it would be desirable to analyse. A 

Nd:YAG laser fired in fixed Q mode produces a much smaller crater but does not 

couple sufficiently to glass. By using a laser of higher energy, for example an 

ultraviolet laser, it should be possible to ablate the glass in fixed Q mode, 

therefore producing a small enough crater. 

A 1J Nd:YAG laser was used with two frequency doubling crystals in the 

optical path. As the name suggests, when correctly aligned, these crystals double 

the frequency of the beam so that by using two, a wavelength of 266nm could be 
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achieved. To test this approach a set of samples from Iceland containing small 

crystals of pyroxene, 30pm across, set in a basaltic glass matrix were targeted. 

However, in practice, this procedure was complicated by the fact that the 

alignment of the frequency doubling crystals is temperature dependent. As the 

ambient temperature inside the laser casing changed, due in part to the firing of 

the laser, the alignment changed so that it was impossible to be certain what 

frequency the laser would have from one shot to the next. The resulting data was 

therefore judged to be meaningless. 

The principle of using a laser of higher frequency than a YAG is however 

still valid and an alternative type of laser such as a hydrogen fluoride excimer laser, 

which has a frequency in the ultraviolet region, may be a possibility. 

7-8 Conclusions 

At the outset of this work it was hoped that laser ablation would show 

advantages over the solution sampling techniques in terms of reduced sample 

preparation and increased sample throughput. 

It has been demonstrated in this work that laser ablation ICP-MS is capable 

of achieving good semi-quantitative results for bulk analysis, provided that laser 

firing is carried out in the Q switching mode. It is likely that such fast bulk 

analysis will be applied as a screening technique in many applications in the 

future. 

Fully quantitative analysis has not been investigated in this work although 

Jarvis et a/16 report that despite achieving linear calibrations, the samples and 

standards must be matrix matched, thus limiting the applicability of the technique. 

This, coupled with the lack of additional sensitivity over the solution techniques, . 
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is likely to ensure that, for bulk analysis, laser ablation ICP-MS will probably 

remain a screening technique for the foreseeable future. 

The really exciting results arose from the feature analysis and this promises 

to be a very important tool in the study of geochemistry and petrogenesis in 

particular. Pearce et aJl' have already used a modified Nd:YAG laser with reduced 

beam divergence, beam energy attenuation and a compound focusing optic, to 

achieve Q Switched craters of 20-30pm diameter and have applied it to the 

analysis of carbonates, zircon, olivine and feldspars. This is an area of significant 

potential and further research should be rewarding. 
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Chapter 8 

Conclusions & Future Directions 

8-1 Review of aims 

At the start of this research, the following aims were identified from a review 

of the needs of geochemists and the status of current analytical techniques 

To determine the optimum methods, sample preparation and sample 

introduction systems for a variety of geochemical analytical problems to 

give 

• High sample throughput 

• Reduced sample preparation 

• High sensitivity (low minimum determinable concentration) 

To develop the technique ofiCP-MS to meet the requirement for 

future needs in geochemistry, in particular the ability to determine minor 

and trace concentrations of individual areas of a sample. 

8-2 Comparison of sample introduction techniques 

8-2.1 Solution nebulisation 

Although more suited to the analysis of simple materials such as water1 or 

single element matrices such as uranium oxide2 or low alloy metals3
·\ the solution 

nebulisation technique has been proved to be effective for a range of geochemical 

analysis. 

8-1 



Chapter 8 
Conclusions & Future Directions 

The requirement to perform long and often difficult sample preparation 

tends to limit sample throughput more than the actual analysis and the level of 

dissolved solids which can be aspirated is ultimately the limiting factor in solution 

nebulisation. 

Of the two commonly used types of digestion method available, fusion of the 

sample was found to produce too high a level of dissolved solids to permit the 

determination of elements at low concentration and is therefore restricted to 

specialist applications such as, for example, fire assay enrichment of the platinum 

group elements, although even this is subject to unacceptably large losses and 

uncertainties, rendering it unsuitable for accurate quantitative work. 

Acid digestion is more applicable to ICP-MS, since it does not add 

significantly to the level of dissolved solids in the sample. In fact, due to loss of 

silicon as volatile SiF4, it actually reduces the amount of dissolved material in the 

final solution. Both conventional 'open' digestions and the more recent 

microwave 'closed' digestion methods are applicable for geological work and both 

yied results of acceptable precision, even at low levels, provided care is taken at all 

stages of the preparation. 

This research and others5 have shown that the maximum dissolved content 

for a refractory matrix such as a digested igneous rock is typically 0.1-0.2% w/v. 

If by some means this could be increased by a factor of 10, then the direct 

determination of such low concentration elements as the platinum group metals 

and gold could bebrought within the range of the technique. As it stands, most of 
,, ::> 

the periodic table can be determined in geological materials by ICP-MS, although 

for the major constituents, ICP-MS is far from being as precise as techniques such 

asXRF. 
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A final problem which must be considered for all low level solution ICP-MS 

work is in fact caused by the high sensitivity of the technique. Deionised water 

and all acids and other reagents must be of the highest achievable purity in order 

to keep background contamination to an acceptably low level. The instrument 

tubing, glassware (plasma torch, spray chamber and nebulisers) and sampling cone 

must be regularly cleaned to prevent cross contamination from previous samples 

and standards. 

8-2.2 Slurry nebulisation 

Slurry nebulisation was initially viewed as a way to eliminate the skilled and 

time consuming sample digestion and preparation required by solution 

nebulisation ICP-MS. Although it was found to be possible to obtain good results 

for geochemical standards using slurry nebulisation, a number of practical 

difficulties were encountered. 

Standardisation is a problem for slurry nebulisation. The difference in 

response for aqueous and slurried analyte elements poses a limitation to the 

technique. Matrix matching is the only practical answer, but this presupposes that 

suitably characterised standards are available and that the matching with an 

unknown sample is accurate. 

_ Of greater significance is the inability to add an internal standard. Without 
~ 

thi~-.~bility, the analyst is restricted to running reference materials with at least 

one, and preferably more than one, known elemental concentration. There will 

be instances where the concentrations of some elements in a sample, usually major 

and minor elements, will be known from XRF and other techniques which can be 

used as a variable internal standard. 
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Sample preparation for slurry nebulisation is a highly skilled task and is felt 

to be too complex to be reliable on a routine basis. It is not easy to see how this 

procedure could be automated and therefore is likely to remain time consuming 

and labour intensive, making its routine adoption even more unlikely. 

Given the potential advantages in terms of sample throughput which it was 

originally thought could have been achieved by slurry nebulisation, the fact that 

there have been so few papers on the subject tends to support the conclusions 

drawn from this work, that the practical difficulties outweigh the potential 

benefits. 

8-2.3 Flow injection 

Of all the sample introduction systems investigated in this research, flow 

injection appears to offer the most benefit to the geochemical analyst. 

By reducing the amount of material aspirated, flow injection was found to 

increase sample throughput by reducing washout and uptake times. More 

importantly, by improving matrix tolerance by a factor of lOx, it allows direct 

determination of the platinum group elements and gold in geological materials 

without pretreatment, and uses the same sample preparation procedure as 

conventional solution nebulisation. 

Small samples, such as fluid inclusion leachates, can be analysed without 

requirement for dilution which would reduce many elements below their 

detection limit. In addition, the matrix effects experienced when analysing 

samples which contain a high salt concentration can be reduced by careful control 

of dispersion. 

8-4 



Chapter 8 
Conclu.sions & Future Directions 

These advantages are of sufficient importance to ensure that flow injection 

ICP-MS is certain to become widely used in geochemical laboratories. 

8-2.4 Electrothermal vaporisation 

Whilst the technique of electrothermal vaporisation into ICP-MS has the 

potential for useful application to the determination of low level elements in 

geological materials, a great deal more work needs to be done in refining the 

method. 

The main advantage of electrothermal vaporisation lies in the increased 

detection capability which has been demonstrated for other applications, such as 

the determination of femtogram levels (ppq) of plutonium in biological matrices6
• 

Such an improvement in the detection of ultratrace elements in geological 

materials was not obtained in this research. The same matrix tolerance problems 

which limit solution nebulisation were found to be limiting the performance of 

electrothermal vaporisation, and although more work in this area is both 

necessary and desirable, at present it would seem unlikely to result in any 

significant improvement in the technique, and sample preconcentration methods, 

such as fire assay and ion exchange I solvent extraction processes, will continue to 

be necessary with this technique. 

8-2.5 Laser ablation. 

At the outset of this work it was hoped that, by direct analysis of the solid 

sample, the requirement for extensive sample preparation could be eliminated, 

resulting in greater sample throughput. In this research it has been shown that 

laser ablation ICP-MS is capable of achieving good semiquantitative results for 

bulk analysis, provided that laser firing is carried out in the Q switching mode. It 
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is likely that such fast bulk analysis will be applied as a screening technique in 

many applications in the future. 

Although no fully quantitative analysis was performed, other workers7 report 

that despite achieving linear calibrations, the samples and standards must be 

matrix matched, thus limiting the applicability of the technique. This, coupled 

with the lack of additional sensitivity over the solution techniques, means that, for 

bulk analysis, laser ablation ICP-MS is likely to remain as a screening technique 

for the foreseeable future. 

The use of laser ablation to analyse trace element concentrations in 

individual mineral grains opens up a particularly important and exciting avenue 

for the geochemist. Although microprobe techniques have been available for 

many years, they are limited to the determination of major elements. Now by 

using laser ablation ICP-MS, the minor and trace elements may be dirctly 

determined as well. 

8-2.6 Summary of sample introduction techniques and their 
application in geochemistry 

Table 8-1 shows a summary of the applicability and potential applications of 

the various sample introduction techniques investigated in this research. 

8-3 Future development of the technique ofiCP-MS 

Although the majority of work has been dirrected at sample introduction, in 

the twelve years since this technique was developed, ICP-MS has been continually 

evolved resulting in a number of small and gradual enhancements to performance 

such as dynamic range and detection limits. With the exception of the 
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introduction of high resolution ICP-MS (section 8-3.1.1) there have been no 

major "revolutionary" developments in the technique. 

In this final section, developments in other fields of mass spectrometry are 

reviewed and their likely applicability to ICP-MS is considered. 

Technique Application 

Solution Nebulisation General geochemical analysis of minor and trace elements 
where good accuracy and precision are a primary requirment. 
eg. mineral exploration and academic investigations of large 
areas. 

Slurry Nebulisation Limited academic research. Not suited to routine work where 
a large number of samples need to be determined 

Flow Injection General geochemical analysis of minor and trace elements 
where good accuracy and precision are a primary requirment. 
eg. mineral exploration and academic investigations of large 
areas. 

Analysis of minerals such as halite or saline solutions such as 
sea or pore waters where the final solution would have a 
high salt content 

Analysis of fluid inclusion leachates 

Electrothermal Vaporisation Limited academic research. Not suited to routine work where 
a large number of samples need to be determined. Not 
recommended until further development of both the method 
and the technology is carried out. 

Laser Ablation Fast screening (i.e. semiquantitative) of bulk compositions, 
eg. mineral exploration 

Feature analysis of individual grains for petrogenetic and 
other such investigations 

Feature analysis of sedimentary materials todetermine trends 
in elemental composition 

Table 8-1. Summary of the applicability and potential applications of the various sample 
introduction techniques for ICP-MS 

8-4.1 Plasma 

Several workers have investigated the posibility of using gases other than 

argon to form the plasma. Choot and Horlick8 used an argon plasma mixed with 

other gases and found that the presence of a molecular gas changes the 

fundamental properties of the plasma and that the addition of a few percent of 
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hydrogen or nitrogen was found to enhance ionisation. This is attributed by 

Jarvis et a/ 9 to the higher thermal conductivity of these gases, leading to a more 

efficient transfer of energy within the plasma. If this is the case, it might explain 

the different mass versus response profiles obtained for wet and dry plasmas, the 

water from the solvent providing significant levels of hydrogen and oxygen in the 

central channel in the plasma, and may account for the relative lack of sensitivity 

of 'dry' introduction techniques such as laser ablation and electrothermal 

vaporisation, compared to solution techniques. One area for further research 

would be to investigate the effect on sensitivity of introducing a gas such as 

hydrogen into the nebuliser line for laser ablation or electrothermal vaporisation. 

Most of the work performed on mixed gases has been with the intention of 

removing interferences. Evans and Ebdon10
'
11 examined the effect of oxygen and 

nitrogen additions to a plasma and reported a reduction in the levels of the 

chlorine polyatomic species ArCl+ and the argon dimer Ar/. Beauchemin and 

Craig12 also demonstrated a reduction in the argon dimer by the introduction of 

hydrogen and nitrogen. Both these groups reported reduced sensitivity for the 

mixed gas system. 

The ultimate way to remove argon induced interferences is to use a gas other 

than argon to form the plasma, the most likely replacement being helium. 

However, a number of lower mass alternative interferences have been reported by 

Koppenaal and Quinton13
• The helium ICP was found to be difficult to ignite 

and showed poorer matrix tolerance and greater matrix suppression than the 

argon ICP, although sensitivity for elements in simple matrices were of the order 

of 100 times greater. 

Other workers have investigated the possibility of using a microwave induced 

plasma instread of an ICP. Brown et a/ 14 used a helium microwave induced 
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plasma (MIP) while Wilson et a/ 15 used a nitrogen only plasma. The helium and 

nitrogen MIP's were found to be as unstable and intolerant of real samples as the 

heliumMIP. 

The lack of recent published work suggests that the practical difficulties were 

such that this area is unlikely to produce any significant advances. 

8-4.2 Mass analysers 

With any mass spectrometry technique, the principle component of the 

system is the mass analyser. Since Gray 16 used a quadrupole mass analyser in the 

initial development of the technique, the quadrupole has become the standard 

analyser for the technique. Although it has advatages in terms of being relatively 

inexpensive and simple, the quadrupole suffers from only being capable of unit 

mass resolution, which is not sufficient to resolve overlaps of analyte elements and 

polyatomic species. In addition, because it is effectively a bandpass mass filter, its 

transmission efficiency is low. The quadrupole, however, is only one of a number 

of possible analysers which could potentially be used in ICP-MS. 

8-4.2.1 High resolution & multicollector ICP-MS 

Magnetic and electrostatic sector analysers are what most people visualise as 

being mass spectromeg~, largely due to historical precedent. They are capable of 

resolutions up to 10,00017
• Bradshaw et a/18 and Morita et aJl9 both reported the 

development of an ICP-MS system based on double focussing magnetic sector 

- analysers. In both cases the ICP used is a standard system but has been 

. electrically isolated from the vacuum system and is given a high positive potential 

to provide the required ion accelerating voltage for the ion beam. Having passed 

through the interface, electrostatic lenses are used to change the beam shape from 

essentially circular to a slit like profile, in order to gain maximum transmission. 
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These systems are now commercially available and in addition to the high 

resolution, are capable of detection limits of the order of ppq (pg.I-1
) for 

conventional nebulisation. Although such performance is ideally suited to the 

determination of ultra trace levels of elements, such as the determination of the 

platinum group metals and gold in geological materials, both the high cost and 

amount of operator skill required are likely to limit such instrumentation to 

extremely well funded research establishments. 

Although outside the scope of this work, the traditional use of mass 

spectrometry in geochemistry has been the determination of isotope ratios for 

geochronology studies20
• This work has traditionally been carried out using 

thermal ionisation mass spectrometry, the precision necessary for such work is 

beyond the scope of quadrupole ICP-MS instruments. The high resolution 

magnetic sector instruments have been adapted by Walder et a/ 21 ,22 to use a 

multicollector detection system to allow the simultaneous determination of a 

number of isotops. Using this system, Walder's group have reported a precision 

for the ratio 206Pb:204Pb in NIST SRM Pb-981 of0.02-0.04% RSD. Such 

precision is comparable to those obtained by thermal ionisation mass 

spctrometrf1 but analysis times for the ICP-MS multicollector were typically 100 

seconds compared to 2 5 minutes by thermal ionisation mass spectrometry. This, 

combined with the relative ease of sample preparation compared to thermal 

ionisation, suggests that multicollector ICP-MS is likely to lead to significant 

advances in this field of research. 

8-4.2.2 Time of flight ICP-MS 

Through advances in fast electronics, the technique of time of flight mass 

spectrometry has recently generated considerable interest in the field of organic 

mass spectrometry, especially when coupled to laser desorption ionisation 
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techniques. The time of flight mass spectrometer is very simple to manufacture 

and capable of both high resolution and high sensitivity. Falk et al 23 and Myers 

and Hieftje24 have both presented work on the design of an ICP-MS based around 

a time of flight mass spectrometer. Although no data have as yet been presented, 

it seems likely that this is an area of great potential for gaining improvements in 

sensitivity. At present the cost of the fast electronics is quite high, but once its 

usefulness has been proved and demand grows, the ICP-TOFMS will probably be 

the first low cost benchtop ICP-MS. More important, the time of flight offers the 

potential for increased sensitivity and resolution over current quadrupole based 

systems. Whilst unlikely to achieve the performance of the magnetic sector 

instruments, time of flight based ICP-MS has the greatest potential for improving 

the sensitivity and resolution of the technique. 
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