
Durham E-Theses

Strong mutation testing strategies

Duncan, Ishbel M.M.

How to cite:

Duncan, Ishbel M.M. (1993) Strong mutation testing strategies, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5771/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5771/
 http://etheses.dur.ac.uk/5771/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Strong Mutation Testing Strategies

Ishbel M.M. Duncan

Ph.D. Thesis

University Of Durham

Computer Science Division

School of Engineering and Computer Science

1993

The copyright of this thesis rests with the author.

No quotation from it should be pubh'shed vs/ithout

his prior v/ritten consent and information derived

from it should be acknowledged.

Strong Mutation Testing Strategies

Ishbel M.M. Duncan

Ph.D. Thesis

University Of Durham

Computer Science Division

School of Engineering and Computer Science

December 1993

Submitted for the Degree of Doctor of Philosophy

2 8 MAR 1994

strong Mutation Testing Strategies

Ishbel M . M . Duncan

Ph.D. Thesis December 1993

Muta t ion Testing (or Muta t ion Analysis) is a source code testing technique which

analyses code by altering code components. The output f rom the altered code is

compared w i t h output f r o m the original code. I f they are identical then Mutat ion

Testing has been successful in discerning a weakness in either the test code or the

test data. A mutat ion test therefore helps the tester to develop a program devoid of

simple faults w i t h a well developed test data set. The confidence in both program

and data set is then increased.

Muta t ion Analysis is resource intensive. I t requires program copies, w i th one altered

component, to be created and executed. Consequently, i t has been used mainly by

academics analysing small programs. This thesis describes an experiment to apply

Muta t ion Analysis to larger, mult i - funct ion test programs. Mutations, alterations

to the code, are induced using a sequence derived f rom the code control flow graph.

The detection rate of live mutants, programs whose output match the original, was

plotted and compared against data generated f rom the standard technique of mutating

in statement order. This experiment was repeated for different code components

such as relational operators, conditional statement or pointer references. A test was

considered efficient i f the major i ty of live mutants was detected early in the test

sequence.

The investigations demonstrated that control flow driven mutation could improve the

efficiency of a test. However, the experiments also indicated that concentrations of

live mutants of a few functions or statements could effect the efficiency of a test. This

conclusion lead to the proposal that mutation testing should be directed towards

functions or statements containing groupings of the code component that give rise to

the live mutants. This effectively forms a test focused onto particular functions or

statements.

Acknowledgement

The author would like to acknowledge the Science and Engineering Research Council

(SERC, U K) for the award of a research studentship and Brit ish Telecommunications

Research Laboratories (Martlesham Heath) for their financial and scientific support

through a Co-operative Award in Science and Engineering (CASE studentship).

Especial thanks for guidance and patience are due to my supervisor, Dave Robson, and

to Malcolm Munro for his encouragement. Thanks must also go to fellow researchers

for their advice and stimulus; Dave Hinley, Jenny Newton, Dave Kinloch, Mohammed

Messaoudi, Richard Turver and Nick Horner. Grateful thanks must be given to the

army who supported throughout the term of the research; friends, family, childminder

and cleaner without whom the load would have been too much to bear.

Final acknowledgements must go to Ian Parry, for his scientific advice and help

throughout, to Eluned who kept all in perspective and to Muf fy and Klio for sit

t ing on the thesis and purring at the low times.

Ishbel Duncan

December 1993

To Ian and Eluned

Statement of Copyright

The copyright of this thesis rests w i t h the author. No quotation f rom i t should be

published without her prior wri t ten consent and information derived f rom i t should

be acknowledged.

Contents

1 Introduct ion 1

1.1 Purpose of the Research 1

1.2 Contribution of Research 2

1.3 Thesis Outline 3

2 A n Overv iew of Software Test ing 5

2.1 Introduction 5

2.2 The Software Life-Cycle 6

2.3 Testing and the Software Life-Cycle 8

2.3.1 Uni t Testing 9

2.3.2 Integration Testing 10

2.3.3 System and Acceptance Testing 10

2.4 Functional Testing 11

2.5 Structural Techniques 13

2.5.1 Coverage Measures 13

2.5.2 Domain and Boundary Testing 16

2.5.3 Data Flow Testing 17

2.6 Fault Based Testing 19

2.6.1 Muta t ion Analysis• 19

i

2.7 Summary 20

3 M u t a t i o n Ana lys i s 22

3.1 Introduction 22

3.2 Background 23

3.3 Muta t ion Analysis Theory 24

3.3.1 Test Suite Adequacy 25

3.3.2 The Coupling Effect 26

3.4 Muta t ion Analysis Practice 28

3.4.1 Mutagens 30

3.4.2 Cost of Muta t ion Analysis 32

3.5 Muta t ion Analysis Strengths 33

3.5.1 Weak Muta t ion Analysis 33

3.5.2 F i r m Muta t ion Analysis 35

3.6 Muta t ion Variant Comparisons 38

3.7 Technique Adequacy Comparisons 40

3.8 Current Muta t ion Tools and Developments 42

3.8.1 Current Tools 42

3.8.2 Cost Reduction Strategies 45

3.9 Summary 50

4 A N e w A p p r o a c h 52

4.1 Introduction 52

4.2 Problem Identification 53

4.3 Research Aims 56

4.4 A Survey of Common Errors 56

4.5 The Proposed Strategy 60

4.5.1 Experimental Mutagens 60

4.5.2 A n Application Strategy for Mutagens 65

4.6 Summary 70

5 T h e G r a i l Muta t ion Sys t em 73

5.1 Introduction 73

5.2 System Overview 74

5.3 The Preprocessor 75

5.4 The Mutant Maker 77

5.5 Live Mutant Analysis 81

5.6 Summary 83

6 G r a i l Ana lys i s of Single Funct ion Programs 85

6.1 Introduction So

6.2 Ramamoorthy's Tr i typ 86

6.2.1 The Relational Operator Mutagen 87

6.2.2 Reordering of Test Cases 89

6.2.3 The Logical Operator Mutagen 90

6.2.4 The Variable Reference Mutagen 91

6.2.5 Variable Boundary Mutagen 93

6.2.6 Tr i t yp Summary 95

6.3 Hoare 'sFind 96

6.3.1 Relational Operator Mutagen 96

6.3.2 Assignment Operator Mutagen 97

6.3.3 Variable Reference Mutagen 99

6.3.4 Variable Boundary Mutagen 100

6.3.5 F ind Muta t ion Summary 102

6.4 Summary 103

7 G r a i l Ana lys i s of Mul t i -Funct ion Programs 105

7.1 Introduction 105

7.2 Lines 106

7.2.1 Relational Operator Mutagen 106

7.2.2 The Ari thmet ic Mutagen 109

7.2.3 The Assignment Operator 110

7.2.4 Variable Reference Mutagen 112

7.2.5 Variable Boundary Mutagen 113

7.2.6 Constant Replacement Mutagen 114

7.2.7 Summary of Lines 115

7.3 A Backtracking Algor i thm 116

7.3.1 The BackT Results 118

7.3.2 Summary of BackT 124

7.4 The Grail Test 125

7.4.1 The Grail Test Results 126

7.4.2 Grail Code Layout 126

7.4.3 Grail Results Explanation 128

7.5 Summary of Grail Test 134

7.6 Summary 136

8 Conclus ions 139

8.1 Review 139

8.1.1 Introduction 139

8.1.2 Research Contribution 141

8.2 Assessment of Work 144

8.3 Future Directions 145

A A Sample E x e c u t i o n of the G r a i l 148

B P r o g r a m Detai l s 153

B . l Tri typ.c 154

B.2 Find.c 157

B.3 Lines.c 160

B.4 Grail.c 165

C Sample Plots of L i v e Mutant Detect ion Rates 167

List of Tables

3.1 Some Common Mutagens 31

3.2 Adequacy measures for Weak Mutat ion 34

6.1 Tr i typ Results : Relational Operator 87

6.2 Tr i typ Results : Relational Operator Live Mutants in LCSs 88

6.3 Tr i typ Results : Relational Operator w i th Optimal Ordering of Test
Cases 89

6.4 Tr i typ Results : Logical Operator 90

6.5 Tr i typ Results : Logical Operator Live Mutants in LCSs 91

6.6 Tr i typ Results : Variable Reference 92

6.7 Tr i typ Results : Variable Reference Live Mutants in LCSs 92

6.8 Tr i typ Results : Variable Reference wi th Optimal Ordering of Test Cases 93

6.9 Tr i typ Results : Variable Boundary 94

6.10 Tr i typ Results : Variable Boundary Live Mutants in LCSs 95

6.11 Tr i typ Results : Variable Boundary wi th Optimal Ordering of Test Cases 95

6.12 Find Results : Relational Operator 96

6.13 Find Results : Relational Operator Live Mutants in LCSs 97

6.14 Find Results : Assignment Operator 98

6.15 Find Results : Assignment Operator Live Mutants in LCSs 99

6.16 Find Results : Variable Reference 100

V I

6.17 Find Results : Variable Reference Live Mutants in LCSs 101

6.18 Find Results : Variable Boundary 102

6.19 Find Results : Variable Boundary Live Mutants in LCSs 103

7.1 Lines Results : Relational Operator 108

7.2 Lines Results : Relational Operator Live Mutants in LCSs 108

7.3 Lines Results : Relational Operator 109

7.4 Lines Results : Ari thmet ic Operator 109

7.5 Lines Results : Ari thmet ic Operator Live Mutants in LCSs 110

7.6 Lines Results : Ari thmetic Operator W i t h Optimal Ordering of Test
Cases 110

7.7 Lines Results : Assignment Operator I l l

7.8 Lines Results : Assignment Operator Live Mutants in LCSs I l l

7.9 Lines Results : Variable Reference Operator 112

7.10 Lines Results : Variable Reference Live Mutants in LCSs 113

7.11 Lines Results : Variable Boundary 114

7.12 Lines Results : Variable Boundary Live Mutants in LCSs 115

7.13 Lines Results : Variable Boundary W i t h Optimal Ordering of Test Casesll6

7.14 Lines Results : Constant Replacement 116

7.15 Lines Results : Constant Reference Live Mutants in LCSs 117

7.16 BackT Results 118

7.17 B a c k T l Results 121

7.18 Grai l Results 125

7.19 Grail Execution Path Only Test Results 138

List of Figures

2.1 The Software Life-Cycle 7

2.2 A n example of LCSAJs 16

3.1 Mutan t Statements 28

3.2 A n Equivalent Mutant 29

3.3 A n example of Coincidental Correctness 31

3.4 Outcome dependency of a code segment 37

3.5 A MetaProcedure 48

4.1 Linear Code Sequence Control Flow Graph for Tr i typ Program 65

4.2 Example of Data Representations 72

5.1 The Grail Mutat ion System 74

5.2 The Preprocessor 75

5.3 Connectivity of Linear Code Sequences for Ramamoorthy's T R I T Y P 76

5.4 The Mutant Maker 78

5.5 Function call wi th in Linear code sequence 79

5.6 Live Mutant Position file for T R I T Y P : Relational Operator mutagen

on 4 test cases 80

5.7 Live Mutant Analysis 81

5.8 T R I T Y P : Relational Operator mutagen on 4 test cases 82

5.9 Muta t ion Metric 83

6.1 Linear Code Sequence Call Graph for Tr i typ Program 88

7.1 Lines : Section of Control Flow Diagram 107

7.2 Dead Code formed by Ill-Constructed Predicates 120

7.3 Control Flow Detection of Dead Code 120

Chapter 1

Introduction

'What we anticipate seldom occurs'

'what we least expect generally happens.'

B. Disraeli

The following chapter describes the purpose and contribution of the research discussed

in this thesis. A n outline of the thesis is also given.

1.1 Purpose of the Research

The general objective of the research undertaken and described in this thesis was to

apply a particular testing technique to large, mult i - funct ion source code. The testing

technique, called Mutat ion Analys i s , has usually been applied to small programs.

Muta t ion Analysis (M A) is resource intensive and was generally considered to be too

expensive to apply to large test programs or systems. However, M A is also regarded

as one of the most stringent source code testing techniques currently available. Con

sequently, an application to large, industrial systems could have enormous potential

in terms of system confidence. A n experiment was devised to investigate the applica

t ion of M A to large programs and to discover i f different application strategies could

improve the efficiency of a mutation test.

1.2 Contribution of Research

A goal of the research undertaken in this thesis was to apply MA to multi-function

programs and to discover any guidelines or principles that could be applied to the

analysis of large scale code. As the work progressed, it was theorized that deriving

a mutation sequence from the control flow of a program could improve the efficiency

of a code test. Other mutation tools generate mutations on a Textual, or statement

by statement, basis. Consequently, a comparison between different code traversal

mechanisms was necessary to determine if any efficiency benefits were to be gained

from control flow driven mutation testing.

The research sponsors had requested that code written in the C language should be

tested. This provided the opportunity to develop the only tool available to perform

Strong MA on C source code. Strong, Weak and Firm MA are three variations of the

same basic technique. They are discussed in detail in Chapter 3. The prototype tool

developed was the only system which analysed code by control flow driven mutation.

It provided an opportunity to examine code for predisposition to particular faults

and to fault congregation. The effect of code coverage on the test results could also

be investigated. Induced faults could also be analysed for their efl̂ ect on subsequent

code execution. The effect of a mutation at a particular position within the code

control flow graph may be viewed on the code output, or alternately, be hidden in

the workings of the code.

The criteria for success for the research includes :

• A working prototype to analyse control flow driven mutation and compare this

with Textual mutation.

• The development of general guidelines to enable future large scale code tests to

be undertaken.

• Information regarding the effects of similar mutations in different parts of the

control flow graph.

• General knowledge or points of interest regarding the analysis of C code.

1.3 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 summarises the field of software testing within the framework of the Soft

ware Life-Cycle. Functional, Structural and Fault Based techniques are outlined and

Mutation Analysis is placed in context.

Chapter 3 details the history, theory and practice of MA . The variants named as

Strong, Firm and Weak are introduced and compared. MA is also compared with

data flow testing to show that it is a powerful technique. Currently available tools

and developments are described, including the recent developments addressing the

problems of applying MA to large programs.

Chapter 4 demonstrates the need for a new approach to MA if it is to be applicable

to large scale code. The problems of using MA to analyse code with large system

resource requirements are noted and a strategy is proposed to address some of these

issues. In contrast to the developments in the U.S.A. of sampling mutants or using

high speed processors to reduce the cost of a test, the approach described uses the

structure of the test code to drive the mutation test. This approach does not reduce

the cost of a test, but gathers information regarding weaknesses in the test code or

test data set. It is this information that can aid the reduction of future test costs.

Chapter 5 describes the Grail prototype mutation system which was built to compare

control flow driven mutation with Textual order mutation. The Grail incorporates a

preprocessor, designed and built by another researcher, which determines the connec

tivi ty between the test code statements. This information is used by the main part

of the tool to create and execute mutant programs in a sequence based on the test

code control flow. The last section of the Grail mutation system plots the rate of

detection of live mutants against mutants generated for Textual order mutation and

for the control flow mutation sequences. A Mutation Metric is defined to compare

the efficiency of each of the code traversal mechanisms.

Chapters 6 and 7 detail the results of the Grail experiments on five programs. These

test programs range in size from 37 to over 1800 Hnes of code. Two of the programs

are well known in the testing literature and the remaining three are multi-function

programs. These tests show the difference in efficiency between the standard, Textual

method of mutating code and control flow driven mutation. The experiments demon

strate that some mutations are very fragile and die easily whilst others are more likely

to die if they occur towards the start of execution. The term Zombie mutants is in

troduced to describe the mutations, normally assignment operator mutations, which

can die but be re-born depending on the test environment.

Chapter 8 reviews MA and the contribution made by this thesis. An assessment of the

value of the research is made and recommendations for future research are proposed.

Chapter 2

A n Overview of Software Testing

'For knowledge too is itself power',

Francis Bacon

This chapter briefly describes the software life-cycle and the testing phases contained

within i t . As the thesis is concerned with software testing, functional, structural

and fault based software testing strategies are outlined and compared showing the

strengths and weaknesses of each generalised technique.

2.1 Introduction

Software is employed to control large and complex industrial, commercial and life

critical processes. Pressman [76] states that some 60% of project software develop

ment budgets are spent on testing, verification and validation. Software Testing is

the process of executing a program with the intention of finding errors in the code.

It is the process of exercising or evaluating a system or system component by manual

or automatic means to verify that it satisfies specified requirements or to identify dif

ferences between expected and actual results [1]. The objective of testing is to show

incorrectness and testing is considered to succeed when an error is detected [69]. An

error is a conceptual mistake made by either the programmer or the designer [59] or

a discrepancy between a computed value and a theoretically correct value [1]. A fault

is a specific manifestation of an error. An error may be the cause of several faults

59, 69]. A failure is the inability of a system or component to perform its required

function within the specified limits [1]. A failure may be produced when a fault is

executed or exercised. Testing should not be a distinct phase in system development

but should be applicable throughout the design, development and maintenance phases

^6 .

The Software Life-Cycle is a description of the development of a software system

from conception to redundancy. It models the software development as a phased set

of activities which overlap and pass information to each other [82]. Once problems

are identified in each phase, the information should be passed back to a previous

stage for correction or adaptation, thereby describing a life-cycle which is a sequence

of iterations of the development phases.

2.2 The Software Life-Cycle

The first phase of the software life-cycle is Requirements Analysis and Specifi

cation. See Figure 2.1 [82]. At this stage the Functional and Non-Functional

requirements of a proposed system must be elicited from a customer. The functional

requirements describe the system software in terms of its processing and input/output

needs. Non-functional requirements describe the constraints of the system such as

type and capacity of machine, response time, recovery and failure modes. The input

to this phase is usually either a discussion between the customer and the specifi

cation writer or a document written in a non-specificational, natural language form

presented to the specification specialist. The phase output is a speciahsed description

of the system requirements, precise enough for a software designer to understand the

customer's needs. A common problem that arises at this early stage of system de

velopment is a lack of precision and inconsistencies in the specification. The effect of

these faults may not be evident until later in the software life-cycle. The requirements

specialist should then update the specification prior to design and coding alterations.

Figure 2.1: The Software Life-Cycle

Requirements
definition

System and
software design

Implementation
and unit testing

1

Integration and
system testing
Integration and
system testing

li

Operation and
maintainance

The next phase in the software life-cycle is Systems and Software Design. Tak

ing input from the software requirements specification documentation, the designers

produce a system architecture. This is an overall description of the hardware and

software systems. The software designers represent and describe the units, or mod

ules, of code ready for translation into a machine readable language. Here a Unit is

taken to be a single function, procedure or subroutine which fulfills a particular task

within the system. Common errors arising from the design phase come from inade

quate understanding of and poor requirements specifications. Software design errors

often evolve from problems with unit interfacing such as type and call order incom

patibilities. The design phase output is a detailed description of the program units

written in a formal language or pseudo code ready for translation by a programmer.

The next phases of the software life-cycle are concerned with the Implementation

and Integration of software units. The design is translated into a group of programs

or units. These are tested individually to ensure that each unit matches its design and

requirements specification. Common coding errors found at this stage include typing

mistakes, statement omission and errors in predicates such as the use of the wrong

logical operator. Passing this stage, the system is then formed by the integration of

units in a pre-defined strategy such as Top-Down or Bottom-Up. The top-down

approach starts with analysis of the main program. Individual functions called by

the main routine are inserted one at a time, calls to others being replaced by simple,

stub routines which may only consist of a print statement to simulate a correct call.

Bottom-up integration merges the functions by the use of a driver routine which

simulates the function calls. Design faults are commonly found faster in the top-

down development approach whereas simple coding faults are discovered at a higher

rate in the bottom-up approach [82]. By slowly merging functions into a system

by either strategy, there is less risk of a large number of errors being missed in the

integration. Errors are more likely to be localised to particular routines when the

integration proceeds slowly.

The last phase of the software life-cycle is the software Use or Operation and any

required Maintenance. Maintenance descibes any modification to the system and

may be required as a result of error discovery (corrective maintenance) or because of

alterations to the system requirements or environment (adaptive maintenance). As

such, the system may undergo another cycle of requirements specification, design,

coding and testing. The software life-cycle describes these phase iterations until the

system becomes obsolete. The software development and maintenance process is not

linear but is a sequence of iterations of activities [82 .

2.3 Testing and the Software Life-Cycle

Each phase in the software life-cycle has a distinct end-product such as the require

ments specification documentation, program unit design and program unit code. Each

end-product can be checked for conformance with a previous phase and against the

original requirements. Thus, errors can be detected at each phase of development.

The cost of detecting and fixing an error is well documented [7] and is known to be

more costly as the system develops. An error found during the operation phase is

the most costly to fix. Validation and Verification should occur throughout the

software life-cycle. Verification is the process of evaluating each phase end-product

to ensure consistency with the end-product of the previous phase. Validation is the

process of testing software, or a specification, to ensure that it matches user require

ments. Software testing is that part of vahdation and verification associated with

evaluating and analysing program code. It is one of the two most expensive stages

within the software life-cycle, the other being maintenance [23]. Software testing of

a product begins after the development of the program units and continues until the

product is obsolete.

This thesis is concerned with the testing of program code and as such, the following

section outlines the software life-cycle phases to which code testing is applicable.

2.3.1 Unit Testing

Unit Testing, see Figure 2.1, refers to the analysis of individual units which can

stand alone without requiring the processing of other units. The input generated

from other units can be simulated for the purposes of testing a unit in isolation. A

unit is a logical subtask of the system under development and can be a subroutine

or function of any size. Marick [62] states that a unit is a single routine or a small

group of closely related routines, normally less than 100 lines of code (LOC) in size.

Ince [47] states that a unit can be one or more subroutines which carry out a common

task. This thesis assumes that a single unit, function or subroutine can be of any size

and programs, comprised of one or more units, can be several hundred or thousand

LOC. Programs can be made up of modules where a module is considered to be a

logically separate part of the code [1]. This thesis assumes that modules are separately

compilable sections of a system and each module may contain one or more units. Unit

testing also refers to module testing.

The aim of unit testing is to ensure that the unit matches its specification. It is

usually a Structural Testing activity, i.e. some account is taken of the internal

layout of the code. Components, and combinations of components, in the code must

be exercised, that is, covered by the test inputs. Test data must be selected to verify

specification properties and/or relations between program components. Structural

testing is also known as White Box or Glass Box testing. These terms refer to

the tester having knowledge of the code layout and structure and designing tests to

analyse the flow of control and data within a program.

Test Data must be developed for use at some stage prior to or during unit testing.

A Test Input is an input value for a variable under test conditions. Test data is a

particular instance of inputs required for one program execution under test conditions.

A Test Case is documentation specifying test data and the predicted results as well

as a set of execution conditions for a test item. A Test Suite or Test Set is a

collection of test cases [35 .

Programming faults can be detected by Dynamic or Static testing techniques. A

structural test is a form of dynamic analysis. That is, the code is checked through

the application of a test suite. Unit testing may also be done through static analysis.

Static techniques involve the inspection of code without its execution.

2.3.2 Integration Testing

Integration Testing or Subsystem Testing is concerned with verifying the design

and requirement functions. Units are integrated into a system using a predetermined

strategy such as top-down or bottom-up. The growing system should be regularly

tested. The interfaces between the installed units should be checked for compatibihty,

that is, the calling sequences and function parameters should be analysed for legahty,

order and type. There should be 100% call coverage to ensure confidence in the

inter unit connections. As more units are integrated into the system it is possible to

test design functions and requirements such as response time and fail safe routines

66]. The integrated units should also be tested for compatibility with the hardware

environment into which the system is to be placed.

2.3.3 System and Acceptance Testing

System and Acceptance Testing are concerned with the execution of test cases

to evaluate the whole system with respect to the user's requirements. A system test

i n

checks for unexpected interactions between the units and modules and also evaluates

the system for compliance with functional requirements. An acceptance test is the

process of executing the test cases agreed with the customer as being an adequate

representation of user requirements.. These are often called Black Box or Functional

tests. These terms make reference to the tests being unconcerned with the internal

structure of the code. They are concentrated on analysing the performance of the

code with respect to the test suite.

At any stage in the software life-cycle errors may be discovered. This may lead to

changes in design and/or code update resulting in a re-appHcation of any of unit,

integration, system or acceptance tests. The process of re-testing a unit during its

development is called a Revision test in this thesis [24]. This is similar to a Re

gression test which occurs during maintenance when a system is being modified.

Regression testing is the selective re-testing of a system or unit to verify that mod

ifications have not caused unintended side-effects and that the system or unit still

complies with the current specification.

2.4 Functional Testing

Functional testing is a Black Box technique and attempts to verify that the abstract

functions written in the system specification are present and behave correctly. Re

quirements documents can be tested, or analysed, by review to discover if there are

any requirements missing, redundant or capable of simplification [41]. The formal

review is often used for analysing design documents although there exist helpful aids

such as consistency checkers and data dictionaries to analyse design logic and data

element transitions. These are essentially static techniques in which the analysis does

not require execution. A functional specification may be written in a structured nat

ural language or in a specificational language such as Z or V D M . The techniques for

generating test data from such specifications are still in the early stages of research

and development.

The external behaviour of code, and its functions, can be analysed to ensure that

11

all intended features of a software system are present. The aim is to test Input

Domains for each category of input and Output Domains for each code variable.

A domain is the range over which a variable is valid. Test data can be derived from the

specifications, usually manually, to exercise the boundaries and midranges of the input

domains. This technique can generate a large amount of data and so Equivalence

Partitioning is often used to identify a finite set of domains with constraints. Each

equivalent partition dictates a test case required for its traversal. For example, the

statement ' i f a > 6 then Si else S2' generates two partitions of the domain prior to

execution of the statement. One partition incorporates the values of 'a > 6' and the

other of values 'a < = b\ Special Values testing can be applied to select test data

on the domain boundaries and extremal values chosen to check the accuracy of the

function computed. Problems arise with the large number of test cases required for

partition and special values testing, but the techniques are good for detecting domain

and extremal value variable faults. Cause-Effect Graphs translate equivalence

partitions into decision table form via boolean operator descriptions of the output

conditions in terms of the input variables. Test data can be generated from the

decision table form, reducing the number required [69]. Hamlet [37] and Duran [26

state that partition testing is more effective than testing with randomly generated

data. However, random testing is more cost effective in terms of time and man-power.

Functional testing techniques are not as well developed as structural techniques al

though some research has indicated that a high level of code coverage, that is the

number of statements executed, can be generally high [43], but the range is variable

depending on the abilities of the tester. However, functional testing techniques tend

to generate large quantities of test data which is not necessarily precise enough to

locate code errors and analyse problems with the specific language used in the code.

Some theoretical and empirical work has been done on the viability of randomly gen

erated test data to perform adequate functional testing. Myers [69] suggests randomly

generated data gives poor statement coverage and functional checking but Duran and

Ntafos [26] and Ince and Hekmatpour [48] suggested, after empirical studies, that

random generation of test data was a cheap and effective way to perform functional

testing. Studies of comparisons between functional and structural testing strategies

generally suffer from analysis of either small programs or a small number of test sub

jects (testers). Most suggest functional testing is a useful preliminary to code testing,

19

creating a base of useful test cases with generally high code coverage [6, 68, 70]. A

major advantage of functional testing is its abihty to determine missing functionality

or code, but the disadvantages lie in the lack of determination of the quality of the

test that has been conducted.

2.5 Structural Techniques

Structural testing examines source code and analyses what is present in the code.

Structural testing techniques are often dynamic, meaning that code is executed during

analysis. This implies a high test cost due to compilation or interpretation, Hnkage,

file management and execution time. Test cases are derived from analysis of the

program Control Flow. A Control Flow graph is a representation of the flow of

control between program regions such as a group of statements bounded by a single

entry and exit point. Structural testing cannot expose errors of code omission but

can estimate the test suite adequacy in terms of code coverage, that is, execution of

components by the test suite or its fault finding ability.

2.5.1 Coverage Measures

A measure of test thoroughness is made with respect to some code coverage criterion

such as Statement, Branch or Path Coverage . The first of these measures is a

percentage formed from the number of statements executed by the test suite over the

total number of executable statements in the code. The second is a similar measure

on the number of logical branches executed. That is, the true and false paths of every

condition should be executed at least once. The path coverage metric is the most

difficult to calculate and achieve 100% coverage. Total path coverage is the execution

of all independent paths, that is, unique paths, within the code. If the code contains

indeterminate loops, the number of independent paths is unbounded. Loop modified

path testing specifies that each loop is executed 0, 1 and more than once. Coverage

can be achieved theoretically but is usually impractical for programs of more than

a moderate size. A typical unit testing metric is 100% statement coverage and 85%

branch coverage [66]. Of these basic coverage metrics, statement and branch testing

methods are simple to understand and implement. Untraversable code can be found

by failing to find test data which traverses sections of code. However, statement

coverage is not sufficient to detect faults. Basili and Selby [6] found no correlation

between maximum statement coverage and the number of faults found. Branch testing

is a poor test of code with few conditionals or loops in which only one iteration is

required to fulf i l l coverage requirements. Both methods lack error detection power

and other more rigorous, structural testing strategies have been developed.

Test Effectiveness Ratios, T E R s , have been defined, [91], to represent increasing

degrees of code coverage. These can be applied to both static and dynamic techniques.

A static technique is one in which the code is evaluated without execution [1]. TERi

represents a test in which all statements of a program have been executed by the

associated test suite. This is equivalent to 100% statement coverage. TER^ represents

a test in which all the program branches have been executed. This is equivalent to

100% branch coverage. This is sufficient for Simple Predicates, i.e. predicates with

no logical operators. An example of this is:

if (P) then

However, requiring that all branches are executed does not imply that a Compound

Predicate has been fully tested. A compound predicate contains one or more logical

operators. An example of this is :

if (P and Q) then SI else S2

where SI is a statement executed when the conditional evaluates to True and S2 is

executed when the conditional is False. The test inputs

Test 1 : P = True Q = True

Test 2 : P = False Q = True

exercise both branches but do not analyse the effects of Q being assigned to False.

Conditional Testing requires that the test suite exercises all combinations of each

component in a predicate. That is, all components must evaluate to both True and

False on different test inputs. For the compound predicate example at least one more

test case must be added in which Q evaluates to False. This does not necessarily

imply that every branch will be executed.

U

The test inputs

Test 1 : P = True Q = False

Test 2 : P = False Q = True

satisfy conditional testing but not branch testing requirements for the example state

ment.

A higher level of test is described by the ! r £ ^ / ? 3 metric. This is a measure of the

number of Linear Code Sequence and Jumps (LCSAJ) exercised by the test

suite. An LCSAJ represents a subpath through the program code. It consists of a

sequence of consecutively executed statements from a single entry point to a single

exit point. An entry point may be, for example, the start of the code, the beginning

of a true or false branch of a conditional statement or the body of a loop. An exit

statement is a control statement changing the flow of control to another entry point

or termination. An example of this would be the terminal statement of a function

or the statement to which flow would be passed if a loop was bypassed. (See Figure

2.2).

Girgis [32] and Hennell et al [40] found that 85% of all seeded faults in small Fortran

programs could be determined by LCSAJ coverage. The strongest code coverage

metric is path coverage. Howden, [46], showed that path testing is the single best

method for exposing errors. However, due to the presence of indeterminate loops

the number of program paths can be astronomical and possibly infinite for even

the most trivial of programs. Some paths may be infeasible due to the presence of

contradictions in the predicates [40] and path testing does not ensure coverage of the

requirements specifications.

A high test coverage does not necessarily imply a high rate of fault detection. Test

cases must not only traverse the code but must also exercise special boundary condi

tions. Test coverage criteria are difficult to accomplish when analysing large programs.

As the criteria become more stringent a high coverage is harder to achieve. Special

test cases must be developed to improve the level of coverage. However, as the test

progresses each individual test case will improve the coverage statistic by a small, and

possibly marginal, amount for an increasing cost factor.

Figure 2.2: An example of LCSAJs

1 begin
2 read(a,b,c);
3 if a > b and b > c then
4 i f a = b o r b = c then
5 if a = b and b = c then
6 print('equilaterar)
7 else
8 print('isosceles')
9 else
10 print('scalene')
11 else
12 print('illegar)
13 end.

L C S A J Statement Number
S T A R T E N D T A R G E T

1 1 3 12
2 1 4 10
3 1 5 8
4 1 6 13
5 8 9 13
6 10 11 13
7 12 13 13

The LCSAJ is comprised of a linearly connected start and end
statement and a target statement to which control is passed.

2.5.2 Domain and Boundary Testing

Domain Testing is a form of path coverage and as such is mentioned here under

structural testing strategies. It was mentioned earher as being a form of functional

testing wherein the functionality of the test code was used to determine test input

domains. Path domains are a subset of the program input that cause execution of

unique paths. The input data can be derived from the program control flow graph.

Test inputs are chosen to exercise each path and also the boundaries of each domain.

For example, in a program analysing the height and weight of a population, the input

domain is height x weighty where the inputs are real numbers greater than zero and

bounded by some upper limit. The statement

if (weight > 50.0 and height > 1.8) then Si else S2

would partition the path domain into two from the true and false evaluation of the

predicate. A true evaluation would result in statement Si being executed and S2 is

executed when the predicate evaluates to false. Test inputs for branch, statement

and domain testing could be

Test 1 : weight = 48.0 height = L8

Test 2 : weight = 50.0 height = 1.8

A boundary test would incorporate test inputs on and slightly off the boundaries

of the paths. To determine data slightly off the boundary an amount, e, must be

added or subtracted to the value which lies on the boundary. When the boundary is

determined by an integer, e is 1. That is, the value 1 must be added or subtracted

to the value in a predicate to form an input value which will be close to the domain

boundary. When working with real numbers the procedure is more complex. The

value e must be the smallest number distinguishable by the base system of the pro

gram under test. For example, if the reals are single precision e could be of the order

of O.OOOOOL To test the boundary of ^weight — 50.0' the following three input cases

would be valid :

Test 1 : weight = 50.0 height = 1.8

Test 1 : weight = 50.0 height = 1.6

Test 1 : weight = 50.000001 height = 1.8

Great care must be taken when working with real numbers in predicates because

of the precision problems of reals. Boundary testing aids the identification of these

problems and errors of path selection. However, domain and boundary analysis is

only suitable for programs with a small number of input variables and with simple

linear predicates.

2.5.3 Data Flow Testing

Data Flow Analysis studies the sequences of actions and variables along program

paths. It can be considered and applied as both a static and as a dynamic technique.

17

Test data must traverse all the interactions between a variable definition and each

of its uses. The program path between a variable definition and a use without an

intervening definition is known as a DU path. Variable uses may be in predicates, p

uses, in which the variable is referenced in the conditional expression. A computa

tional use, c use, refers to all other references of variables. Clarke et al [17] state that

testing all-DU-paths subsumes all other data flow testing criteria defined by Rapps

and Weyuker [78]. The all-DU-paths criteria requires every definition clear subpath to

be loop-free or to include a simple, one iteration, loop. The data flow testing criteria

includes, in an increasing level of rigour, all-defs, all-p-uses and all-uses. Data flow

testing is difficult to apply to units of more than a small size and low complexity. The

cost of application is also difficult to assess; Weyuker stated that the cost of all-defs

assessment is linear in the number of assignment statements and the cost of all-uses is

quadratic and all-du-paths is exponential in the number of conditionals present in the

code [87]. However, these were considered theoretical limits and empirical evidence

on small Pascal programs shows the costs to be linear in the number of conditionals.

Data flow testing is considered viable for incorrect uses of variables and constants

as well as misspelled identifiers. As with code coverage strategies, data flow testing

cannot detect missing statements.

Data Flow Anomaly Analysers detect problems with the definition and use of variables

in the code under test. A Data Flow Anomaly can be one of three conditions :

• a variable defined then defined again on the same program path without an

intervening use, a DD anomaly.

• a variable is defined and then undefined without an intervening use on a program

path, a, DU anomaly.

• a variable is referenced without a prior definition on a program path, a UR

anomaly.

Data flow anomaly analysers cannot differentiate between faults in the code and

those which have been deliberately introduced by a programmer. An example of

this is initialisation of a numeric variable to zero prior to it being assigned a value

later in the execution. This initialisation is recommended because some paths may

1«

exist which do not re-define the variable but use i t , i.e. a definition-use path, which,

without the initialisation would be an undefinition-use path. Having a definition-

definition path where the former is an initialisation statement is not as dangerous a

construct as an undefinition-use path.

Structural testing analyses what is present in the code and cannot expose errors of

code omission. Dynamic tests further require the execution of code. As the code

increases in length and complexity the resources required to test it increase rapidly.

However, simply increasing the code coverage does not indicate a higher confidence of

fault removal. Structural coverage techniques aid the development of test cases but

do not indicate the adequacy of those test cases in locating code faults.

2.6 Fault Based Testing

Fault based testing attempts to show the absence of certain classes of faults in code.

Anomaly Analysis analyses code for uninitialised or unreferenced variables, parameter

type checking etc.. The main technique, and its variants, which perform fault based

testing is Mutation Analysis.

2.6.1 Mutation Analysis

Mutation Analysis (MA) is a fault based technique for determining the adequacy

of a test suite in terms of its test effectiveness. A mutant is a copy of the original test

program with one component, such as an operand or operator, altered to simulate a

syntactically correct programming fault. The syntactic transformation is a mutation.

The statement

while (index > 10) do

could be mutated to

while (index > 10) do

Thus, MA simulates simple programming errors. The test suite must be enhanced

10

until all non-equivalent mutants are detected by generating incorrect output. MA

incorporates strategies from coverage, data flow anomaly and domain testing strate

gies. For example, the above statement has to be traversed by the test input

index = 10

to differentiate between the correct and the incorrect version. Al l statements, branches

and (some) paths must be executed to differentiate incorrect mutants from the origi

nal program. By altering the constant 10, in the example, to the constants 11 and 9,

boundary testing is performed. The test inputs must include cases of

index = 9, 10 and 11

to detect those mutants. By altering the definition of 'index' or replacing a use of it

by another integer variable in scope, data flow anomalies can be detected.

MA provides the tester with guidelines for the development of the test suite. However,

it is resource intensive requiring a large number of mutants to be created and executed

on the test suite. Research [2, 10, 23, 80] indicates that the number of mutants varies

with the number of code statements and variables squared. A mutation test of a large

program, such as would be found in an industrial or commercial environment, would

require the generation of a substantial number of mutants. A test on this scale would

require management of resources. A strategy must be found to make mutation testing

applicable to unit testing in a reasonable time scale and without tying up valuable

resources such as time and manpower. MA is one of the most thorough of testing

techniques. Empirical studies [10, 32, 33, 64] have shown it to be more stringent than

other techniques. This thesis addresses the management and application of MA to

large scale programs and the problems encountered.

2.7 Summary

The software life-cycle is described and the testing phases within it reviewed. Testing

is required at all phases of the software life-cycle from specification through to sys

tem modification. The generalised strategies of functional, structural and fault based

testing are discussed and compared. Functional testing is shown to be useful pre

liminary to structural and/or fault based testing. The techniques should be seen as

90

complimentary; functional testing requires specification coverage, structural ensures

analysis of code sequences and fault based techniques give a measure of component

analysis and test data adequacy in terms of fault removal confidence.

91

Chapter 3

Mutation Analysis

'You can observe a lot just by watching'

Yogi Berra

This chapter outhnes the theory, practice, problems and current developments in

Mutation Analysis. Following an introduction and background information, sections

3 and 4 detail the theory and practice and section 5 the variants of Mutation Analysis.

The next sections discuss the strengths and weaknesses of the variant techniques and

also compare Mutation Analysis with other testing techniques. Section 8 describes

the current developments and available tools.

3.1 Introduction

Coverage criteria were outlined in Chapter 2 as being measures of test thoroughness.

However, as Galvin [31] states

// no attempt is made to evaluate the effectiveness or thoroughness of a

set of test cases then the test cases can be a misleading sense of security.

Budd [10] defined Mutation Analysis (MA) to be

9.9

A method for evaluating the effectiveness of a set of test cases for a given

assertion (program).

DeMillo [22] stated a central goal of MA as

... to determine when a software system has been adequately tested.

M A is a measure of test thoroughness and also performs testing. MA has been ap

plied to specificational languages, Ada, Pascal, FORTRAN, COBOL and C. Research

elsewhere has concentrated on its application on vector processors to reduce the time

required for a ful l test. The general mutation strategy itself has spawned variants

called Weak, Firm and Strong Mutation in an effort to make the technique more effi

cient. Current developments include analysis of appHcable fault subsets to reduce the

test resource requirements, statistical sampling of mutants, schematic descriptions of

code and the application of the technique to vector and parallel processors to improve

the test efficiency.

3.2 Background

DeMillo [22] states that the earliest mention of mutation-like mechanisms dates back

to an unpublished manuscript written in 1970. Technical and published reports de

scribing similar concepts appeared in 1976 and 1977 by Hanson et al [38] and Hamlet

36]. The technique was refined and named by Budd, DeMillo, Lipton and Sayward

in 1978 and 1979, [3, 11, 13, 20, 58], and much research followed into the early 1980s.

MA did not gain widespread acceptance by the testing community because it was

considered computationally expensive and other, less stringent, forms of testing were

advocated. The late 1980s saw a renaissance of interest and activity in MA aided by

the advent of more powerful processors and cheap memory. Proponents argue that

it is the most thorough of available techniques, encompassing control flow, data flow,

domain and boundary strategies and has great value with regard to critical systems

testing and risk reduction [22 .

3.3 Mutation Analysis Theory

MA assumes that a program under test is almost correct. That is, an experienced

programmer will write code which differs from the correct version by small, syntacti

cally correct, faults. This is known as the Competent Programmer Hypothesis

2, 3, 10, 19]. Acree et al [3] postulated that

A competent programmer, after completing the iterative programming pro

cess and deeming that his job of designing, coding and testing is complete,

has written a program that is either correct or is almost correct in that it

differs from a correct program in 'simple' ways.

Therefore a test which concentrates on small, syntactically correct, alterations may

discover faults in code.

A test suite, T, must differentiate the correct original test program, P, from its close

incorrect neighbours, P'. A test suite distinguishing P from all its incorrect neigh

bours is called Adequate and provides assurance that all non-equivalent neighbours

are detectable. However, DeMillo [22] suggests that a finite adequate test suite may

never exist and the notion is computationally intractable. He introduced the concept

of Relative Adequacy to characterise the ability of a test suite to differentiate be

tween the test program and its close neighbours. These are programs which differ

from the correct code by simple, single alterations. The neighbourhood, A'', of the

test program is therefore restricted to programs containing a single, simple fault. As

the test program, P, is close to the correct version by the Competent Programmer

Hypothesis, Relative Adequacy is still a powerful measure of a test suite. Although

the test program is considered to be correct, any faults discovered imply that it is

revised and the updated version becomes the new test program.

A program being tested, P, is meant to compute a function F with input domain

D. A finite set of test cases, T is a subset of the input domain, T C D, and a

particular test case t is an element ofT,t e T. P{t) is the result of executing P with

t. Correctness and relative adequacy are therefore defined more formally [71] as

9A

• P is correct if P{t) = F{t) Wt G D.

• r is an adequate test suite for P that computes F if P[t) = F{t) V< G T and

for all programs Q such that Q{D) ^ F{D), 3t e T such that Q{t) ^ F{t).

• A is a. set of programs. A test suite T is adequate^ relative to A if

P{t) = F{t) WteT

and for all programs Q e Aii Q{D) ^ F{D) 3t e T such that Q{t) f F{t).

The programs in A can be chosen to represent particular faults that the tester must

choose. Thus, a testing technique using relative adequacy requires the tester to

distinguish between programs seeded with, or having, specific faults.

The outlined theory also clarifies that correctness cannot be shown through testing

and that adequate test sets are difficult, if not impossible to achieve. Relatively

adequate test suites are attainable and, once achieved, leave the tester knowing that

some faults are not present in the test code. The quality of the test suite can be

measured and used with confidence to exercise code.

3.3.1 Test Suite Adequacy

A Mutation Score of a test suite T, for a program P, is the ratio of the number of

mutants killed through the application of T, to the number of non-equivalent mutants

22 .

Where MS{P, T) is the mutation score for the test suite, T, on program P. M{P) is

the number of mutants generated for P, EM{P) is the number of equivalent mutants

of P and DM{P,T) represents the number of dead mutants of P after application of

T.

If the mutation score for a test suite is 1.00 then that test suite is adequate relative

to the set of mutants. Offutt [71] states that

95

... a program that has been successfully tested against a (relatively) ad-

eqxiate test suite is either correct or contains a fault that has not been

modelled by the mutants. ... A program that has been successfully distin

guished from its mutants has been thoroughly tested.

Evaluating test suite adequacy gives the tester an indication that certain faults are

unlikely or not in the test program and gives a measure of the quality of the test

suite. A test suite with a higher mutation score than another demonstrates a greater

error detection capability. Relative Adequate test suites developed for MA have been

empirically analysed and shown to be of a higher error detection quality than those

developed for other strategies. This is discussed in more detail in section 3.7.

3.3.2 The Coupling Effect

Empirical research in the U .S . [72, 73] , has shown that if a program with simple errors

can be differentiated from the correct version by a (relatively) adequate test suite,

then a larger neighbourhood of programs with complex (several) component faults

can also be differentiated. This is termed the Coupling Effect and is the subject of

some debate [6 1 , 67, 72, 73] . DeMillo and Mathur [23], state that MA is guaranteed to

reveal an error if it can be simulated by a mutation and there exist simple, single faults

in the code. Other faults can be determined if they have computational ties with the

mutation, that is, the mutation may not directly simulate a fault, but in attempting

to devise a test case to analyse a mutation, the tester is directed towards a fault.

Faults may be found which are not necessarily localised by mutations. DeMillo and

Mathur also studied the errors found during the development of the text processor

T E X , [23]. They concluded that complex errors may be found by determining, or

searching for, simple ones. However, they acknowledged that the majority of errors

cited by Knuth, [52] , in the development of TgXwere unclassifiable and of those that

were, only one-fifth could be described as simple errors. Most of the complex errors

were related to missing code which cannot be modelled by Mutation Analysis. Also,

in their experiments, DeMillo and Mathur analysed small programs and acknowledged

the need for Coupling Effect trials on larger, industrial code.

9fi

Morell [67] postulated that MA was feasible only if the Coupling Effect is vahd. He

termed two mutants as being coupled if a test suite kills the individual mutants but

does not ki l l the mutants formed of their combination. (N.B. Morell's definition of

coupling is different from other empirical researchers.) Morell argued that there are

relatively few cases for which two mutations couple which strengthens the case for

MA being an effective fault based technique.

Lipton and Sayward [58] analysed Hoare's Find program [42], and generated over

27,000 higher order mutants. A 2-order mutant is a mutant formed from the com

bination of two simple mutations, a 3-order mutant is formed from the combination

of three simple mutations and so on. Lipton and Sayward found that all the 2-order

mutants were killed by the relatively adequate test suite developed for killing simple

mutations. Applying the test suite to higher order mutants resulted in a mutation

score of near unity, indicating that the Coupling Effect does hold. However, their

experiment was on one small FORTRAN program of less than 30 lines of code and

the higher order mutants tested were less than 5% of the total possible.

Offutt [72] experimented with three small FORTRAN programs, each of less than

30 lines of code. He demonstrated that as the number of mutant programs grows

exponentially with the generation of the higher order mutations, it is important to

validate the Coupling Effect for fault based strategies such as MA. Offutt's experiment

showed a mutation score for 2-order mutants on a relatively adequate test suite of

over 0.9996 and those that remained alive were due to variations in the test suite

development. In a second experiment, he developed test suites that were not mutation

relatively adequate and applied those to the 2-order mutants. The mutation scores

for the 2-order mutant tests were higher than for the 1-order mutants implying that

the more complex a fault is, the more likely it is to be detected. Offutt concluded that

the Coupling Effect is true in a very large percentage of cases, supporting Morell's

theoretical work.

Marick [61], classified 102 faults in industrial code and concluded that only 23% were

simple faults and therefore could be simulated by MA. Only 8% were compound,

that is made up of a combination of several simple faults, for which the Coupling

Effect could be tested. He stated that mutation testing was effective on a small

97

proportion of faults and that the Coupling Effect was required to hold for faults of

omission and complex faults if MA was to be effective in general. This shows the

limitation of MA; it can detect simple faults but there is still doubt over its ability to

detect compound or complex faults. More empirical and theoretical work is necessary

to prove or disprove the Coupling Effect, especially on large programs. This thesis

assumes a close neighbourhood of programs with single component alterations.

3.4 Mutation Analysis Practice

A test suite T is comprised of one or more test cases, t. The test suite is prepared

for code analysis by manual or automatic means [71]. The code under test, P, is

executed by T and the output P{T) stored. P is then mutated and the syntactically

correct variants, the mutants, are formed. See Figure 3.1 for examples of mutant

statements.

Figure 3.1: Mutant Statements

Program P is altered to form mutants P'^. N.B. The last two mutants of the first example
assume a boolean variable R in scope and mutant Pg of the second assumes an integer
variable sum in scope.

p if (P and Q) then

P[if (P and P) then P' -'2 if (Q and Q) then
if (P and not P) then P'

-'4
if (not P and Q) then

Pi if (P or Q) then P'
• ' 6

if not (P and Q) then
p^ if (P) then P' if (Q) then

P9 if (P and R) then P' •'10 if (R and Q) then

p while (input > 0) do
PI while (input < 0) do P' while (input < 0) do

PL while (input > 0) do P' -'4 while (input — 0) do

Pi while (input ^ 0) do P' while (input > 1) do
p^ while (input > -1) do P' while (sum > 0) do

Each mutant program has one component, C", altered from the original component, C,

9.R

in the test program. The altered component is known as a Mutation, or a Mutant

Component, and is effected by a Mutation Operator or Mutagen, such as the

computational equivalent of replace a variable reference with another identifier in

scope. The mutant programs, P', are executed on T and their output compared with

P{T). If for any t, P[t) ^ P'{t), where t E T then the mutant is considered Dead and

removed from further analysis. If the mutant is not killed by any of the test cases, t,

it remains Live and is checked for equivalence to the original program. Equivalent

mutants often represent optimisations or de-optimisations of the test program. The

recognition of equivalent mutants is done by human examination or by primitive

heuristics [71]. An example of an equivalent mutant is given in Figure 3.2.

Figure 3.2: An Equivalent Mutant

if (a > 0) then
{

if (a > 0) then
if (a ^ 0) then

The line marked # is equivalent to the line above.
To execute the second conditional statement, the variable a must be 0
or more. When a is positive, a 7̂ 0 is equivalent to a > 0.

Offutt , [71], defines three conditions to distinguish mutants from the test program.

• Reachability. A test input must traverse a path that includes the mutated

component, a path Pn must be executed.

• Necessity. The mutated component must produce a state different from the

test program, a path P;v must be executed.

• Sufficiency. The final state of the mutant must differ from the test program,

a path Ps must be executed.

That is, the mutant component must be executed by at least one test case which

9Q

delivers a different outcome from the original program and that difference must be

propagated throughout the execution.

Riddell et al [80], give four reasons for a mutant remaining live after the application

of a test case. These are

• the mutant is equivalent.

• the mutant and the test program output the same results over the same paths

for the given data, but another test case may kill the mutant.

• the mutant outputs the same result as the test program for a given test case,

but a different path has been executed. This is known as Coincidental Cor

rectness.

• the test data is inadequate and the altered component has not been executed.

3.4.1 Mutagens

Mutagens or Mutation Operators alter a component, C, in the test program to

a syntactically correct component, C. Some of the examples in Figure 3.1 showed

that a variable can be mutated to another variable (or constant) of the same type,

assuming that it is in scope. Logical and relational operators are mutated to members

of the same operator group maintaining a syntactically correct, but altered, program.

Table 3.1 gives examples of the types of mutagens that can be applied to procedural

or block-structured languages. These operators simulate programmer or design errors

as well as enforcing component coverage and analysis.

A mutation of < to < simulates the common fault of 'off-by-one' in which an error has

been made in determining the path boundaries of the code. Problems of coincidental

correctness in the test suite can also come to fight with the application of mutagens.

The result of a computation on a test input is coincidentally correct if the result is

correct although the computation or path is incorrect. See Figure 3.3 for an example.

Altering a variable identifier to another of the same type allows the detection of data

Table 3.1: Some Common Mutagens

Component Type Mutagens
Relational Operators Change to another relational operator
Arithmetic Operator Change to another arithmetic operator
Logical Operator Change to another logical operator
Constants Change by e, where e

is the smallest variation in the type detectable
by the base type of the computer (1 for integers)

Variables Change to another of the same type in scope
Alter by e to check boundary conditions

Conditionals Negate and alter predicate components
Statements Remove or move position
Pointer Variables Increment or decrement the pointer value

and change the variable to another of same type

flow anomalies. In languages such as C and Pascal which have dynamic variables,

mutagens can simulate 'off-by-one' errors by moving pointer variables up or down the

object fist structures. The head and tail of the storage list may be altered to check

special case manipulations and the temporary pointer variables as well as constant

pointer identifiers replaced by one another to examine problems of identifier confusion,

generation, management and manipulation of the list structures. Predicate faults can

be discovered by altering the components of the predicate; replacing them with tokens

of the same type, negating the components, altering the precedence of the predicate

components or changing the logical operators.

Figure 3.3: An example of Coincidental Correctness

c = a T 2
c = a*2

The line marked # is a mutation of the previous line. If the only test case
which traversed these statements included a = 2 then the output from these
statements would be correct, although the second is an incorrect statement.

Another type of mutagen, as yet unimplemented but noted by researchers [24, 83], is

31

the environmental or portability fault simulator. Spafford [83] states that environmen

tal bugs are limitations of precision or capacity such as memory or numeric storage

limitations or system errors caused by a change in compiler. Mutagens should force

the development of test cases which test the limits of memory allocation routines or

numeric storage. Spafford suggests two new mutagens called lOFLOW and lUFLOW

which return the value of the numeric to which they are applied unless overflow or

underflow has occurred. When this occurs the mutagens abort the process. These

mutagens then force the tester to construct test cases which use numerics close to the

end of the numeric ranges. Any alterations to the system or compiler should then be

obvious. Mutagens analysing environmental problems have not yet been designed for

all languages and systems as they are unique to each language, compiler and system.

However, the issues raised in testing for such problems shows the power of Mutation

Analysis in its abifity to adapt to changing testing requirements.

3.4.2 Cost of Mutation Analysis

Marick [60] states that costs are determined by the test input development time and

effort, calculation of output correctness, execution time and resources and finally, the

cost of re-application of the testing technique during maintenance. The cost of MA is

considered to be the number of mutants generated and is therefore higher than most

other testing techniques. This should be offset against the higher level of automation

of mutation tools and the amount of information generated. Each mutant requires, at

worst, compilation and execution on all the test cases. If the mutant is interpreted and

the mutation applied to low level code, the altered statement must be inserted into

the low level code stream before appfication of the test suite. Budd [10], considered

the number of mutants to vary with the number of data references and the number of

data objects. Acree [2] stated that the cost of MA is quadratic in the number of lines

of code, a rule ratified by Riddell et al, [80] and DeMillo and Mathur, [23]. Offutt,

Rothermel and Zapf [75] studied 28 small FORTRAN77 programs of less than 165

lines of code (LOC) and considered the most accurate predictor of costs to be the

number of variables multipled by the number of variable references. However, they

also confirmed previous estimates based on quadratics in lines of code or variables. It

.39

should be noted that these cost estimates relate to small FORTRAN66, FORTRAN77

and Pascal code. Research has yet to confirm that the cost rules apply to larger units

and to other languages.

3.5 Mutation Analysis Strengths

MA is considered to be resource intensive. Less intensive forms were developed [45, 88

and the original technique was renamed Strong Mutation Analysis. The other forms

are now named as Weak and F i rm Mutation Analysis and are described in this

section.

3.5.1 Weak IVIutation Analysis

Howden, [45], introduced the concept of Weak Mutation Analysis in his 1982 paper.

The idea was derived from earlier work [29], and was designed to overcome the costs

of testing with Strong MA.

Assume that a component, C, in program, P, is mutated to form component C in

program P'. In weak mutation testing, it is required that a test, t, must be constructed

so that C and C are executed when t is applied to P and P'. A test case t must also

have the property that C computes a different value from C. Howden [45], states

that

On at least one such execution of C, C computes a different value from

C.

Although the outcome of executing C may differ from the outcome of executing

C, i t is still possible for the mutant P' to be live. That is, the outcome of the

mutated component may differ from the original component, but the program output

is unaffected by the change. Weak MA does not guarantee the exposure of all errors

in the class of errors defined by the mutagens.

33

Howden,[45], defined components as elementary computational structures such as

variable references and assignments, arithmetic relations and expressions and boolean

expressions. OfFutt and Lee [74] state that Howden's components are not defined pre

cisely enough for empirical research on the value of Weak mutation testing in compar

ison to Strong mutat ion testing. They use a definition of component corresponding

to Woodward and Halewood [88], which refers to a component as the location where

the states of the original and mutant program are compared. That is, a component

is the program state at some point after the mutated token has been executed.

I t is possible to simulate, or enable, several Weak mutation component alterations in

any one program execution. Weak M A is primari ly concerned wi th determining that

each component evaluates to a different value at least once in the test suite. Table 3.2

summarises the conditions for the Weak mutagens, wrong variable, off-by-one, wrong

relational operator and arithmetic expression [34 .

Table 3.2: Adequacy measures for Weak Mutat ion

Component W e a k l y Adequate Test D a t a
Variable Definit ion New Value
Variable Reference Unique Value
Relational Expression (LHS op RHS) Values where LHS-RHS = —e,0,£
Ari thmet ic Expression Non zero value

N . B . e is the smallest number distinguishable on the base system

Weak mutations are not always enabled but can be determined a priori to improve the

test suite. Weak M A is a mechanism for improving the quality of the test suite without

necessarily executing the mutant programs on the data. However, a Weak mutation

adequate test suite is not Strong mutation adequate. In OfFutt's terminology [71],

P;v has been executed, meaning that a test case has traversed the component C and

the outcome is different to the same test case traversing the original C. Execution

of Ps, a path propagating the mutation's effect to the end of the execution, is not

necessarily achieved.

Weak mutat ion is a refinement of branch testing in which branches and other com-

34

ponents must be executed at least twice on error related data. Budd [14] states that

Weak M A incorporates branch and predicate boundary testing by satisfying that

• A predicate is exercised on data which results in both true and false paths being

executed.

• For relational predicates, test data should evaluate the expression to a negative,

a zero and a positive value. (LHS - RHS = —£, 0, e)

• Test data should be chosen close to predicate boundaries (off-by-one).

Marick [61] stated the W e a k M u t a t i o n Hypothes is as, referring to Offutt 's three

conditions of detection, that reachability and necessity must imply sufficiency. That

is, i f a mutant survives weak mutat ion i t may also survive strong mutation. OfFutt

72], had declared the Weak Muta t ion Hypothesis to hold true for 61% of cases taken

f r o m a small study of F O R T R A N programs of less than 30 lines of code. Marick

analysed 5 routines of between 9 and 206 lines of code and injected faults manually.

He concluded that the Weak Muta t ion Hypothesis was likely to hold in more than

70% of cases and that Weak Muta t ion testing coupled wi th branch testing was highly

effective at locating simple faults. However, the routines he tested were non arithmetic

and the faults were manually introduced by himself as the tester.

3.5.2 Firm JVIutation Analysis

Woodward and Halewood, [88], introduced the notion of F i r m Mutat ion Analysis as

a way of performing mutation testing on program fragments. The theory behind

the strategy was first mentioned in [80]. F i r m M A covers the range of effect of a

mutat ion over a slice of the program execution at least as long as the execution of a

single statement.

Different mutation results can be generated f rom a change in a statement which may

be executed more than once in any execution. Alter ing any one of the stages in the

execution at which

• the mutat ion is applied {tchange)

• the stage at which the change is reversed (tundo) and the outcomes compared

• the actual components are compared

can affect the outcome of a mutation experiment. More than one firm mutation can

be analysed in any one execution. This can be achieved by reversing the effect of

tchange -̂t tundo- Exccution contiuues f r o m tundo w i th the program states equivalent

to the states in the original test program. Here a component is considered to be a

program state. F i r m M A corresponds to a mutat ion in a program slice which persists

for more than one execution such as would occur when the component resides in a

program loop. I t should be noted that t^ndo may never be reached because of the

mutat ion effect. This is also a problem wi th Strong M A where t^ndo corresponds to

the end of execution. A n endless loop caused by the mutation may result in tundo not

being executed.

O u t p u t Compar i son

The actual components or values output can affect the outcome of a mutation test

80]. Output can be

• actual physical output (characters or binary).

• final values of data objects.

• a trace of data definitions and/or references.

• a trace of the control flow.

A character by character comparison is expensive and perhaps too rigorous for the

test. A n extra carriage return in the output may not be considered an important

enough reason to k i l l a mutant. Riddell et al [80], declare output files to be Strongly

E q u a l i f they match. I f the non blank characters are identical then the files are con

sidered W e a k l y E q u a l . A n extreme situation is a test program which has no output

generating 100% live mutants. A program wri t ten by a novice, liberally strewn with

pr int statements of variable values, is more likely to generate fewer live mutants than

one w i t h a terminating printout of results. Depending on where the mutations occur,

the relative position of an output statement and the actual variables or states output,

a mutant can be live or dead. See Figure 3.4 for an example. More comprehensive

examples are given in [88 .

Figure 3.4: Outcome dependency of a code segment

a = X ;
b = y ;

b = -y;

surf-area = P i T 2 * (6 t 2 - a t 2) ;

print(surf-area);
print(surf-area, a, b);

The line marked # is the mutant statement of the fine above. The print
statements determine whether the mutant program is live or dead. A mutant
w i t h the first print statement is always live. I f the variable b is not reas
signed prior to print ing, a mutant wi th the second print statement wi l l be dead.

Using F i r m M A , mutation testing can become part of the development process of a

uni t . Selective mutation on logical sequences such as loops or functions can aid the

detection of problematic constructs and development of test cases. Particular com

ponents or program states can be chosen for comparison wi th the original execution

to give a clearer understanding of the effect of a mutation. F i rm M A is less expensive

than Strong M A as partial executions can be performed wi th the use of an interpreter.

I t also detects mutations that develop a different outcome on a statement level and

is therefore stricter than Weak M A in determining components that have an effect

on fol lowing code. F i rm M A also provides control over component output for result

comparison. The disadvantages of F i rm M A are that i t is difficult to assess the test

37

suite in terms of Weak or Strong Adequacy and there is, as yet, no systematic basis

on which to select code regions for F i r m mutation testing.

3.6 Mutation Variant Comparisons

Measuring the test suite adequacy is a mechanism for comparing testing techniques.

Several studies have compared the forms of mutation testing wi th each other as well

as other common testing strategies.

Horgan and Mathur, [44], compared Weak wi th Strong M A . They stated that any

test suite which is strong mutation adequate is also weak mutation adequate and the

converse can be nearly true. They considered a state of a program to be values of

variables at a specific point in the code execution. Their probabilistic analysis showed

that weakly adequate test suites have a high probability of being strongly adequate.

Horgan and Mathur are currently building a tool to investigate their hypothesis.

O f f u t t and Lee, [74], define four variants of weak mutation analysis to determine

whether weak mutation is viable and which compare point, t^ndo, is optimum.

• E X - W E A K is expression weak mutation which compares the program states

after the first execution of the innermost expression that surrounds the mutant.

For statement mutations such as statement deletion or replacement, the compar

ison was done at the state immediately following the mutation execution. For

conditional expression operators an E X - W E A K mutation would compare the

states immediately following the popping of the conditional f rom the run-time

stack.

• S T - W E A K is statement weak mutation and compares the states after the first

execution of the mutated statement. For statement mutations, E X - W E A K and

S T - W E A K are identical.

• B B - W E A K / 1 refers to basic block weak w i t h one execution. A basic block

here is a maximal sequence of instructions wi th one entry and one exit point.

38

The mutat ion state is compared after the basic block containing the mutant

statement has been executed. A mutat ion wi th in a loop is therefore analysed

at the end of the first iteration of the loop.

• B B - W E A K / N compares the program states after each execution of the basic

block.

OfFutt and Lee found that many mutations wi th in loops could not be killed after

the first i teration. That is, mutations were five on a B B - W E A K / 1 test but dead

on a B B - W E A K / N test. They report that if a mutant is killed under Strong M A

i t can be killed under B B - W E A K / N . Equivalent mutants under B B - W E A K / N are

also Strong mutation equivalent but the converse is not true. Equivalent mutants

for B B - W E A K / 1 , S T - W E A K and E X - W E A K are different f rom B B - W E A K / N and

Strong.

Comparing test data on Weak and Strong mutation systems, they found that the

Weak mutat ion score was always greater than the Strong. This means that the

requirement for Weak mutation is weaker than the requirement for Strong mutation

testing. O f f u t t and Lee generated 100% adequate test suites for each Weak mutation

variant and computed the Strong mutation score. They discovered that the Strong

mutat ion score for the B B - W E A K / N test suites were less than those generated for

S T - W E A K and B B - W E A K / 1 . They indicated that this may be an attribute of the

low complexity of the test programs which were all less than 29 lines of code.

I n their second experiment, OfFutt and Lee generated test suites which were less

than mutat ion adequate and computed the Weak mutat ion scores. They discovered

that B B - W E A K / N was not significantly more expensive than B B - W E A K / 1 and that

Weak Muta t ion was generally more powerful i f applied to small components at ST-

W E A K or B B - W E A K / 1 levels. They concluded that S T - W E A K and B B - W E A K / 1

were more powerful a measure than B B - W E A K / N and that i t was difficult , i f not

impossible, to relate Weak and Strong mutation scores because the scores differed

greatly across the suite of small programs. However, they recognised Weak mutation

as a cost effective alternative to Strong mutation testing for non critical testing but

acknowledged that i t was not proven i f Weak mutation could be as effective as Strong

mutat ion when applied to large scale code. Of fu t t and Lee stated that a cost effective

mechanism would be to generate 100% S T - W E A K coverage for components followed

by a f u l l mutat ion on those mutants which were equivalent under ST-WEAK. This

principle has been followed by Weiss and Fleyshgakker [86] who determine whether

a mutant is live under Weak mutation before proceeding to f u l l mutation. This is

discussed in more detail in section 3.8.2.

3.7 Technique Adequacy Comparisons

Criticisms of Muta t ion Analysis centre on the expense in time and computational

resources required in applying the technique. Some research has been done in com

paring M A to other structural techniques to assess its worthiness.

Mathur [64] compared the test data adequacy criteria for data flow and strong mu

tat ion testing. He stated that a test suite, T , W e a k l y Satisfies the A L L - D U paths

criteria for a data flow test, i f T causes the execution of each feasible path f rom a

variable definition to a variable use. He defined the data flow adequacy as
rpd _ NumberOfPUPathsCovered

~ NumberOjFeasibleDUPaths

To compare the data flow and mutat ion scores of a test suite, Mathur scored each

technique on an adequate test suite of the other technique. That is, he developed

a test suite which was data flow adequate and then used the test suite to analyse a

program under a mutat ion test and vice versa. Mathur used 18 small FORTRAN

and Pascal programs for the experiment, each containing between 2 and 28 decisions.

The F O R T R A N programs were tested using the Mothra mutation testing tool and

the, functionally equivalent, Pascal programs were analysed by the ASSET data flow

test tool [18, 30]. The programs were tested by 7 students in 2 separate groups. The

results indicated that mutat ion relatively adequate test suites were invariably data

flow adequate but that the converse was not true. That is, a mutation relatively

adequate test suite was a stronger test of a program. Mathur acknowledged that his

experiment was based on small programs and inexperienced testers and stated that

a test on large scale code was desirable.

Budd [10] compared path testing wi th strong mutation testing using Howden's earher

40

path analysis work [46]. Budd reported that M A would detect 20 out of 22 faults

analysed by Howden. This compared wi th the 13 detected by Howden using path

analysis. A l l path testing, ALL-PATHS, subsumes data flow testing. Budd's earlier

work therefore supports Mathur's recent empirical study to show that strong mutation

analysis is a stronger or stricter code test than data flow testing.

The F O R T E S T system developed by Girgis and Woodward [32, 33] incorporated

control flow coverage, data flow and weak mutation testing. FORTEST reported on

the statement, branch and LCSAJ coverage of FORTRAN77 programs by the ap

plied test suites. The tool can display the outcome of data flow path criteria [78

and weak mutation testing wi th respect to completeness of the test suite. Data flow

testing was shown to expose some classes of faults not discovered by the other tech

niques such as wrongly placed statement. FORTEST applied weak mutation testing

to numeric quantities only but could analyse programs containing more than one

subroutine. The data flow analysis had to be performed on single unit programs

only. Thus FORTEST was restricted to single numeric routine programs for the

comparison between data flow, control flow and weak mutation testing strategies.

Data flow testing was successful at discovering problems associated wi th the wrong

relational operator, wrong variable reference and incorrect use of constant as well as

computation faults, especially all-c-uses. (That is, all computation uses of variables

as opposed to predicate uses.) The weak mutation criteria used found wrong variable

definitions, missing computation and all domain errors. The best strategy was con

sidered to be testing for 'off-by-one'. The authors concluded that control flow was the

most efficient technique for fault discovery, especially when the ALL-LCSAJs strat

egy was used. However, they emphasised the need for complementing control flow

w i t h data flow and weak mutation testing strategies as they guide the development

of the test suite. Although Girgis and Woodward relate some interesting findings of

technique to error discovery, i t should be noted that the programs used were small

FORTRAN77 programs and that the relationships have not been proven for large

scale code. However, they did analyse the faults found wi th respect to the statements

that were traversed. That is, faults occurring in untraversed statements were removed

f r o m the statistics. Weak mutation discovery rates remained static and the control

and data flow rates decreased. Weak mutation and data flow anomaly testing, as

demonstrated by FORTEST, do not produce output regarding conditions unless the

41

particular statement under scrutiny has been traversed by a test case. Control flow

testing s t i l l remained as the best of the three techniques measured by FORTEST.

3.8 Current Mutation Tools and Developments

Muta t ion Analysis has undergone a renaissance since the late 1980s. Current devel

opments centre on cost reduction strategies for Strong M A and the apphcability of

Weak mutat ion as an alternative for non critical unit testing. The following sections

outline available tools and their abilities.

3.8.1 Current Tools

M A tools should incorporate statement, branch, predicate and domain testing within

the applicable mutagen set. They are usually highly automated and generate a great

deal of information. Some resource management is required in the generation and

execution of test cases and determination of correct output. This is sometimes manual

although some systems incorporate automatic test input generators. The creation and

management of mutant programs is a particular problem although the available tools

either create mutants serially or alter a low level code representation of the original

program to reduce the cost of compilation and storage.

One of the benefits of Muta t ion Analysis is that i t is applicable to non procedural

languages. Woodward [90] has applied a subset of mutagens to the OB.J specificational

language in a prototype tool called O B J T E S T . He identified simple operator and

variable replacement mutagens, operator at tr ibute alteration and equation removal

to force equation traversal as useful tests.

Girgis developed FORTEST [32] for experimental evaluation of data flow, control

flow and weak mutat ion on FORTRAN77 code. The tool was a prototype in which

data flow anomalies could be detected on single unit programs and weak mutation

performed on numeric components. As such, FORTEST was useful for the analysis

49.

of strategies on single unit numeric code.

Marick incorporated several coverage strategies and Weak Muta t ion testing in his

Generic Coverage Tool (G C T) [62]. Although not designed as a mutation tool, GCT

aids the development of test cases. GCT analyses code wri t ten in C and reports on

branch, switch case, loop and routine coverage. I t displays inadequacies in relational

operator boundary analysis and indicates the extent of multiple condition coverage.

Weak mutat ion is used for determining the analytical abili ty of the test suite. Marick

divides Weak mutat ion into operator and operand coverage. Operator coverage is

determined by checking that all alternative operators are removed by the choice of

appropriate test inputs. Operands are replaced by constants and local variables of

the same type. GCT does not replace identifiers w i th globals, the reason Marick gives

for this is that i t would increase the number of mutants and test inputs without any

increase in effectiveness. However, no experimentation has been done to rat i fy this

reasoning. G C T employs the principles of weak sufficiency described by Marick in [61

and referred to in Section 3.5.1. Weak suflBciency forces a stronger test to be developed

to ensure that the effect of an alteration has some impact on the code following. For

example, the statement ' i f a, < 6' is mutated to ' i f a < c'. I f '6 < > c' and 'c' was

unique then Weak mutat ion as proposed by Howden [45] has been achieved. Marick

proposed that not only should 'c' be unique but that '(a < b) <> (a < c)'.

The most widely referenced mutation tool is possibly the M o t h r a software testing

environment [18, 21]. Mothra was developed f rom expertise derived f rom the PIMS,

EXPER, EMS and CMS mutation systems [3, 9, 12]. These early, prototype tools

tested F O R T R A N and COBOL code and many of the authors collaborated on the

development of Mothra at Georgia Institute of Technology in the United States.

Mothra was designed to be interactive and useful for both the naive and experienced

tester. Mothra was developed by a large team over several years and is designed to

be extensible to most High Level Languages. A t present i t supports FORTRAN77

testing and is said to be able to analyse code of some 10 to 100 miUion fines of code.

Mothra's main features are :

• A test case generator called Godzilla [71] which creates path expressions from

symbolic analysis of the test code. The path expressions and predicate con-

4.-̂

straints are used to generate test cases to traverse the path domains. Mothra

also allows interactive entry of test cases.

• The translation of the source code into Mothra Intermediate Code (MIC) , a

postfix language, each statement forming a one-to-one correspondence with a

source statement. Mothra executes the original and each mutant by interpreting

the M I C instructions. A mutant generator program operates at M I C level.

• Subsets of mutagens can be chosen to test a particular fault type.

• Random samples of mutants can be generated and analysed to reduce the test.

• The removal of equivalent mutants once recognized (by the tester).

• The alteration of test case order for efficient k i l l ing of different mutant groups.

• A n oracle providing user intervention or the use of a symbolic solver to determine

output correctness.

• A debugger wi th access to the Mothra database to advise the user as to where

to look for suspected bugs.

• The suspension and storage of a test to allow continuation at a future session.

• Applicat ion to other languages provided a translator exists f rom the language

to the Mothra Intermediate Code.

• Mothra can run under an X-Windows environment, allowing icon driven com

mands.

• A n abil i ty to resource shift allows Mothra to take advantage of any network

connection to a vector or parallel processor. This requires translations of the

M I C to a vector fo rm but decreases the overall test time.

Mothra cannot mutate references and calls to dynamic memory, user defined types

and complicated control structures because of the mutations being applied at the

M I C level. Consequently, Mothra is ideally suited to F O R T R A N mutation and this

explains why Mothra has not been applied to C code although the research group

published a list of possible C mutagens for Mothra [4 .

44-

Mothra incorporates a large degree of automation and encompasses statement, branch,

predicate and domain testing wi th in the mutagens. I t delivers a vast quantity of

information via mutat ion scores. The developers admit problems wi th resource man

agement, hence the interest in resource shift ing. One mechanism for reducing the test

cost is in the application of Weak mutation. Of fu t t and Lee [74] modified Mothra to

compare mutated program components rather than compare output at the end of ex

ecution. Their system is called Leonardo f rom Looking at Expected Ouput Not After

Return but During Operation. Leonardo uses all the mutagens available in Mothra

(22) and is therefore the most powerful Weak mutation system available. However,

Leonardo uses different definitions of component because of the complexity of some

of the mutagens. This is a problem for all Weak mutation tools or methods. Some

research has been conducted on the possible extension of Mothra to mutate Ada

programs [5] but this has not yet resulted in an empirical study.

Muta t ion tools tend to be rather large requiring parsers, mutation generators, test

case and mutant execution management. As larger programs are tested more time

and memory management is required and some cost reduction strategies are necessary.

3.8.2 Cost Reduction Strategies

Riddell et al [80], researched l imited Muta t ion Analysis as a mechanism for reducing

the cost of a f u l l mutation test. They studied relational, variable, arithmetic and

character replacement mutagens on 35 small N A G routines writ ten in FORTRAN66.

(The Numerical Algorithms Group, N A G , supply mathematical and statistical library

routines for general scientific use.) The researchers reported that branch testing

could not always be effected by relational operator mutations and as such M A should

complement structural strategies rather than replace them. However, the authors

indicated that i f more complex predicates were present in the code. Mutat ion Analysis

was better than coverage techniques for detecting faults hidden in predicates. In

comparison to coverage analysis strategies, they considered M A to be 100% more

expensive in terms of resource usage and management. However, M A was more

stringent and therefore of more value when analysing critical or important code. A

Ah

disadvantage of M A was seen in its lack of sensitivity in applying mutagens to all parts

of the test code wi th no regard to structure. However, the use of Hmited mutation

and directing the test to selected parts of the code may overcome this problem.

The Syntax Directed and Semantics Aided Muta t ion (SDSAM) strategy of Wu et al

92] is a mechanism for l imi t ing mutation costs. SDSAM rules restrict a program

mutat ion to a particular mutat ion type or application. For example, the rules may

restrict mutations to variable references in predicates. Test Coverage Metrics (TCMs)

can be appUed to mutation subsets such as for variables, to give an indication of

code coverage. For example, the T C M for variables is defined as the number of

dead variable mutants divided by the total possible variable mutants converted to a

percentage.

TCMuar = DeadVar^ableMutants ^ J Q Q ^
^"'^ TotalVariableMutants

To k i l l all the mutants of any component a test suite must be appfied, such that

the test cases are specifically defined to k i l l the mutants. To k i l l the five designated

mutations of a relational operator on the statement 'x+y < c' say, requires a minimum

of three test cases wi th the constraints ^x + y = c\ 'x + y = c — s' and ''x-\-y > c\ where

€ is the smallest number distinguishable by a system. That is, one test case on the

predicate path boundary, one close to the inclusive border and one on the exclusive

side. Thus, the number of test cases can be minimised and as in Weak mutation, some

need not necessarily be applied i f they ensure the death of a component mutation. The

domain testing strategy provides an approach for revealing path boundary errors and

coupled w i t h coverage metrics give an indication of how well the test cases analyse the

code. However, the system has not been developed but when compared theoretically

w i t h other strategies the authors state that the technique would be a valuable aid in

determining test suite adequacy for mutant subsets such as boolean operator, variable

reference and assignment.

The Static Data flow Aided Weak Muta t ion Analysis (SDAWM) strategy of Marshall

et al [63], is a mechanism for analysing program operands. The technique involves

statically analysing code w i t h respect to data flow anomafies of program variables.

By simulating the Weak mutat ion of variables the effect on path expressions can be

determined. For example, an analysis of a particular program variable may result in

4(S

a path expression comprising an Undefined-Defined-Referenced (UDR) sequence. A,

theoretical, mutat ion may alter the path expression to Undefined-Referenced (UR)

which is anomalous and would therefore be detected by a Data flow analyser. The

authors observed that mutations of referenced variables do not induce as many anoma

lies as that of variable definitions. The S D A W M strategy is effective for statically

removing many mutants f rom a system, reducing the cost of a f u l l mutation. As

variable mutations lead to the greatest number of mutants, a system that can remove

a great percentage of mutants and could be used as a preprocessor to either a Weak

or a Strong mutat ion system would be of great value. A problem wi th this strategy

is that many programs contain intentional data flow anomalies which would require

handling by the developed system.

O l f u t t , Rothermel and Zapf [75], conducted an experiment to test the fault finding

capabilities of a test suite relatively adequate for a reduced set of mutagens. Their

experiment was performed on 10 small FORTRAN77 programs of between 10 and

48 lines of code. They noted, like other researchers [2, 10, 25, 65], that the scalar

and array variable replacement mutagens generated the greatest number of mutants.

Removing these mutations, test data was generated both automatically and manually

to create test suites which were relatively adequate for the remaining mutants. These

were named Selective Muta t ion Adequate test suites. When the two most prolific

mutagens were removed f rom the test the test suites formed were 2-selective mutation

relatively adequate. Removing the four most prolific mutagens resulted in 4-selective

mutat ion relatively adequate test suites and so on. Several were generated for each

program and the results averaged to remove bias in the statistics. The programs were

then subjected to a f u l l mutation and the mutants executed on the selective mutation

test suites. The results showed that the 2-selective mutation test suites were almost

100% non-selective mutation adequate. The percentage cost saving, defined as

NonSelectiveM utants—SelectiveMutants
N onSelectiveMutants

was at least 14.83% and on average over the 10 programs, was 23.98%. The number

of test cases had l i t t l e effect on the results as the smallest selective mutation adequate

test suite was as effective as the largest. Of fu t t et al [75] concluded that selective

mutat ion is a cost efficient alternative to non selective mutation and postulated that

the variable replacement mutants are easily killed by tests developed to k i l l other

47

Figure 3.5: A MetaProcedure

a = b + c
would be represented as

a — aorrib, c, N)

where aorr is an arithmetic mutagen and N is the location on the program, possibly
the line number, where the metaprocedure is to be appHed.

mutagen types. They continued their experiment by generating 4-selective and 6-

selective muta t ion adequate test suites, by removing constant and scalar replacement

mutagens and array and constant replacement mutagens respectively. The mutation

scores for non selective mutat ion using the 4 and 6 selective mutation test suites

both averaged over 99%. The cost savings increased f rom an average of 41% on the

4-selective mutat ion test suite to over 60% on the 6-selective mutation adequate test

suite. However, the experiments were conducted on small FORTRAN77 programs.

OfFutt et al are currently analysing larger programs to find whether their results hold

true across a range of program size and complexity.

Untch, O f f u t t and Harrold [84], developed mutant schema representing the test pro

gram and its neighbourhood, A'̂ of simple mutants. The mutant schema is comprised

of metaprocedures which represent metaoperators and metaoperands. Metaproce-

dures replace source statements and describe the possible mutations that can be

performed on code. See Figure 3.5 for an example of a metaprocedure.

The system requires a driver to invoke the altered source file and create the meta-

mutants, the mutants generated f rom the new source. The driver routine must direct

which metaprocedures are to be invoked. The researchers compared a single, small

program transformed into the Mutant Schema wi th the equivalent FORTRAN77

source tested under the interpretive mutation environment, Mothra. They found

that the Mutant Schema test was over 4 times faster as i t ran at compiled speeds.

The authors also stated that the Mutant Schema allowed testing to be undertaken

in an operational environment as the method was capable of producing compilable

programs in the same language as the original source. This is an advantage over most

tools which require the test program to be in a particular language, or subset. The

authors confirmed that work w i t h large scale programs was underway.

Sahinoglu and Spafford [81] demonstrated that statistical sampling of program mu

tants could reduce test t ime w i t h high confidence. Their method involved applying

mutants to a developing test suite and stopping the test when a predetermined ratio

of mutants were dead. Their test was based on two small FORTRAN77 programs

and they concluded that statistical sampling would be a great resource saving for

programs for which 100% confidence was not required. Therefore, critical and large

scale programs are not covered by this sampling method and Strong mutation testing

is s t i l l required for confidence.

Several papers have been published on the use of vector or parallel processors for

improving the eflficiency of M A testing [15, 16, 55, 56]. The test program must

be transformed into a canonical fo rm and the test suite must be available. DeMillo,

Krauser, Choi, Mathur and others [15, 16, 55, 56] experimented wi th various strategies

for a mutat ion test including scheduling copies of a mutant on available processors

and executing each mutant on a different test case. Another strategy was to apply

different mutants on the same test case, removing the mutants that died and replacing

them by another mutant. Those that survived were executed on the next test case.

This later method, known as Mutant Priority, was more efficient than the previous

strategy of test case priori ty. The most effective technique was to split the execution

stream of a mutant. A t the point of application of a possible mutation, the state

of the test program was copied to available processors each affecting a particular

mutagen. The processors all executed mutants of the same component on the same

test case. The researchers found that there were problems in signalling the program

state to other processors due to previous processes, other mutants, st i l l executing.

Uti l isat ion of the processors was quite variable but could sti l l result in a dramatic

speed up of resource usage. This technique required alteration of the source file and

the availability of super computers. The authors acknowledged these problems and

are currently working on building translation and scheduling routines into Mothra so

that users of that tool would not need to be aware of the underlying architecture.

I f Mothra was installed or had access to a super computer the user would benefit

f r o m an improved test t ime. Choi et al [15] have developed P'^'^othra which is a

system for allowing Mothra to run on either a hypercube, a vector or a (default) Sun

4Q

workstation. They are currently conducting experiments to study the error exposing

abilities of mutat ion testing on large programs as executed on vector and hypercube

systems.

Weiss and Fleyshgakker [86] researched serial algorithms for improving the efficiency

of M A without parallel processors. Their technique involved storing the state of a

component prior to mutat ion, as in a spht stream approach, and using this state

as the start state of a mutant. Their strategy determines whether a mutant would

be kil led under Weak Muta t ion on the application of a particular test case. Once a

mutant is ki l led by Weak Muta t ion , i t is executed to determine its outcome under

Strong Muta t ion . Thus mutants are tested on mutation traversing test cases only and

f u l l execution is exercised only when warranted. A hve Weak mutation mutant wi l l

always result in a live Strong mutat ion test and as such a f u l l execution is unnecessary.

The authors reported that the speed up of a test was at least proportional to the size

of the program. Their analysis was theoretical but is to be used as the basis of an

empirical study. They noted that i f the test suite was well designed and had a high

Weak Muta t ion k i l l rate then the speed up over conventional methods was minimal.

3.9 Summary

This chapter laid out the basic theory and practice of Mutat ion Analysis, a fault

based, source code testing strategy. The two principles on which M A is based: the

Coupling Effect and the Competent Programmer Hypothesis are outlined and dis

cussed showing that there is some debate over the effectiveness and existence of the

Coupling Effect. Some of the more common mutagens, or mutation operators, are

outlined to show that simple faults are induced into code by small alterations on com

ponents. These simulate common programmer or design faults such as typographical

errors, boundary condition or predicate faults.

The three strengths of Weak, F i r m and Strong mutation testing are stated and shown

to contribute to test case development and code understanding. Comparisons are

made between the strengths in their abili ty to detect errors and they are also compared

to other testing strategies. Muta t ion testing is shown to be highly expensive in terms

of resource management and usage but this is weighed against its greater testing

ability. M A is shown to be a powerful technique, subsuming statement, branch,

predicate and domain testing. I t is also applicable to non procedural languages and

can detect problems associated wi th machine upgrade and portability. M A is shown

to be applicable to the unit testing of critical code.

The available research tools are described and the cost reduction techniques currently

being evaluated are discussed. These techniques show that mutation analysis can be

applied to large scale code testing and make i t one of the most viable testing strategies

available.

Chapter 4

A New Approach

'To seek out new life and new civilisations,

To boldly go lohere no-one has gone before.'

at tr ib. Gene Roddenberry

This chapter identifies some problems in testing large scale code and sets out the aims

for an empirical study. A survey of common programming errors is summarised and

demonstrates the diversity of errors generated by differing groups of programmers

on a variety of software tasks. A strategy for mutation testing in the large is then

outlined.

4.1 Introduction

Li t t l e testing research has been conducted on more than small programs or units.

Most studies have concentrated on theoretical or empirical trials of small, less than

30 lines, F O R T R A N , Pascal or COBOL code. These programs are interesting but

lack complexity and length.

W i t h the advent of more powerful processors and guidance f rom previous research

a current research emphasis is to attempt analysis of larger programs such as would

F>9.

be found in a commercial, industrial, or research environment. In the previous chap

ter, section 3.8.2, some theoretical approaches to large scale testing using Mutation

Analysis (M A) were discussed. These included mutant sampling and the development

of mutant schema for increasing the efficiency of a test. A f u l l mutation test on a

program of moderate size and complexity would be expensive in time and compu

tational resources. This implies that mutation testing is either non-viable for large

coded systems or its usefulness lies solely in small unit testing or in its applicability

to cri t ical code. I t is important to discover whether this implication is true, whether

a large scale test is practicable and i f so, what problems or factors can be identified

for improving test efficiency. This thesis describes an empirical study of M A apphed

to C code over a range of size up to some 2000 lines of code (LOG).

4.2 Problem Identification

Software testing research has concentrated on small programs for obvious reasons:

• Methods have to be clarified and tested prior to increasing program size and

complexity.

• Error or fault groupings need to be understood and classified for comparisons

between different testing techniques.

• Time and resource constraints of funded research do not provide for industrial

trials.

L i t t l e research has focused on the testing of large scale code. In small code testing,

M A has been found to be one of the most stringent testing techniques in empirical

and theoretical work [32, 59, 64]. A n empirical experiment of mutation testing on

larger programs is both warranted and timely. I f a system is deemed critical, that is,

i t monitors or processes information which is life threatening or saving, then Strong

Muta t ion Analysis is perhaps the best technique for analysing the code once a func

t ional test has been performed. However, industrial systems are large and therefore

require much time and computational resources to perform adequate testing. A mu

tat ion testing t r i a l on large programs may provide some areas of interest wi th regard

to testing adequacy and allow comparison of some testing techniques. Some problems

of testing in the large can be immediately identified:

• Resource management. The number of mutants generated f rom a program is

quadratic in the number of variables or statements. As larger units are tested,

the number of mutants to be managed wi l l grow to excessive amounts. Each

mutant , under Strong M A , w i l l require the same disk memory allocation and

for compilation and execution, the same system resources of CPU time, data

file access etc. as the original, test program. A strategy is required to manage

the test resource requirement.

• Mutan t Generation. In an experiment l imited by time and resources, i t is not

possible to generate all the mutagens as described in the hterature. A few

groups of representative mutagens must be selected for the language used. A

language and a mutagen sample must be chosen.

• Error Congregation. As errors are known to congregate, [69], a strategy which

tests code in distinct basic blocks of code in a methodological fashion should

aid recognition of problematic code regions and therefore increase error under

standing and detection. Collating errors found under basic blocks or functions

indicates problems associated wi th fault impact more than simply numbering

errors by their statement. This requires a test strategy which can be aimed or

focused on particular functions or basic block sequences.

• Uni t or Integration Testing. M A has been appHed mainly to single unit pro

grams. A n application to mult i -uni t programs is warranted because, in an in

dustrial environment, a single programmer w i l l write code modules comprising

many subprograms, as part of an overall system. Testing may then be applied

not to small, single subroutines or functions, but to a stand-alone section of

a developing system containing many subprograms. A short survey of system

files on a U N I X file system revealed many units of over 200 LOC within code

modules of several hundred LOC or higher. Small groups of functions, or mod

ules comprising functions, may be brought together for integration testing. A

test method must have the adaptability to analyse not only the call sequences

and parameter passing required in an integration test, but should also be able

to focus on a particular, perhaps troublesome, unit wi th in a system.

• T ime Constraints. A recognisable problem in any engineering product develop

ment is that of t ime slippage and enforced time constraints on the testing phase.

Brooks [8] suggests that testing may originally be planned for 50% of develop

ment t ime but may result in only 10% because of phase slippage. Sommerville

[82] suggests that 50% of development time is often consumed by testing. This

implies that the technique applied, at least to the unit and integration testing

phases, should be adaptable in terms of focusing on troublesome code regions,

testing for specific faults or allowing a f u l l test i f constraints allowed.

• Large Programs. Some work has been done on the position of faults within

code and their effect on execution [54, 79, 85]. Richardson and Thompson's

R E L A Y model of error detection defines origination and transfer conditions

that must be satisfied to guarantee detection of an error They analysed six

classes of faults; constant and variable reference, variable definition, boolean,

arithmetic and relational operator fault . The conditions required to reveal the

errors were used to evaluate the test data. The PIE model of Voas attempts

to ident i fy locations in a program where faults, i f they exist, are more likely

to remain undetected during testing. The technique estimates the frequency

w i t h which an altered data state wi l l cause a change in the program output.

However, academic testing research has been mainly applied to small programs

to view the benefits of particular testing strategies. The impact of faults on

following code is of concern to output or state comparison techniques such

as Muta t ion Analysis. As F i r m M A demonstrates, the effect of an induced

or present faul t is often determined by what values are output and where.

Some faults may be masked by subsequent execution of code and detectable

only by a change in state at statement level, other faults may be proliferated

throughout the execution. I t is doubtful that any general rule may be derived

which determines whether a particular fault in a specified construct or position

wi th in an execution sequence wi l l be masked or proliferated by the subsequent

execution. However, an examination of faults and positioning wi th in the call

sequence is s t i l l worthwhile to determine whether faults presenting early in the

execution are more likely to be masked than faults presenting near to execution

termination.

4.3 Research Aims

The general aim of a new M A experiment is to apply the technique to larger, and

possibly more complex, programs and to determine whether M A is viable for more

than small unit testing. More specific aims centre on analysing which components are

more prone to enable live mutants. I t is important to determine whether mutations

on conditional expressions generate more live mutants per mutation applied than

mutations on non control flow components. This is probably code, complexity and

output variable dependent but some general rules may be derived f rom an experiment.

Previous research has indicated that errors congregate. I t is worthwhile to discover

whether this is reinforced in an experiment involving induced faults and if so, whether

the faults (live mutations) congregate in specific regions such as basic blocks, functions

or along particular program paths.

Any information regarding testing of large scale code is useful for directing future

tests. Full scale tests are unlikely to be applied to large systems because of the

resource constraints. Testers may also feel that a f u l l test is not worthwhile given

prior unit or integration testing. Consequently, i t is worth analysing single units in

the light of induced faul t impact on subsequently executed units, i.e. unit testing

embedded wi th in a f u l l working system. To this end, i t is necessary to experiment

w i t h a test strategy on large scale code. M A is useful here because i t can simulate

other testing strategies. Given time, these techniques can be compared for their error

finding abihties on large code.

4.4 A Survey of Common Errors

To determine common problems or factors associated wi th testing large scale pro

grams, a short, exploratory study was designed and undertaken [25]. The study was

based on a publication of common errors in G code [53], and was an attempt to ascer

tain which errors are more prevalent than others. Due to research time constraints,

the study was undertaken over a short period of some three to four months and took

the f o r m of a questionnaire. Over for ty university researchers, commercial testers

and programmers f rom both environments were interviewed. Questions were asked

regarding testing strategies used, errors found and those programmed defensively

against. The survey was essentially anecdotal wi th some inherent bias due to recent

sensitisation to particular errors in the interviewee's current developmental or main

tenance work. The results were therefore considered as preliminary, giving guidance

to problematic constructs. A larger experiment over a range of software, candidates

and t ime is required to ehminate bias of the interviewees to current projects and ex

perience levels and give an improved representation of code errors. As the survey was

designed to achieve immediate feedback and to give indications of error commonal

i t y this problem was acknowledged and considered acceptable. The survey data was

mainly ranked in nature and hence only the basic statistical tests such as frequency,

mul t ip le response, cross-tabulation and non-parametric correlation were applicable

27]. A more detailed, long term survey of specific faults and problem conditions

would allow more elaborate tests to be undertaken.

The questionnaire was divided into six sections. The first detailed the background

of the interviewees; C was not the first language learned and most had a Pascal

or Modula-2 background. Over half tested or used code wri t ten by others. Output

correctness was indicated as the reason for terminating testing by 75% of respondents,

but few also used coverage metrics implying that i f output was seen to be correct for

several test inputs, the code was considered tested. Code coverage metrics were most

used by those constrained by time, usually the industrialists and the more experienced

interviewees who tended to work on larger projects. This implies that the larger the

project, the more necessity for the code to be correct as i t is Ukely to be used by

others. However, larger projects tend to have deadlines and suffer f rom development

F,7

phase slippage. The more experienced interviewee tended to oversee several projects

at once and were therefore t ight ly constrained by time.

Assuming t ime restrictions, the interviewees divided into two groups wi th a ratio of -3:2

as to whether they tested the most used or the least used units in a system. Experience

of particular systems was cited for this division. Over 60% tested units containing

what was personally perceived to be troublesome constructs. There was a marked

variation in methods for test data generation; researchers tended to choose random

data generation, output class coverage (that is checking of all output partitions)

was used by staff developing packages and commercial programmers preferred code

coverage strategies. These results match expectation. The more commercially viable

or robust a system has to be implies the greater usage of a more rigorous testing

strategy. Small research groups tend not to expend much effort on testing even if the

system developed is a prototype for an important engineering product. The results

of the first section indicated that any automated testing tool should have the abihty

to focus on particular functions indicated by a variety of factors such as most or least

frequently used or type of constructs or data items processed.

The next four sections of the questionnaire focused on specific coding faults. Inter

viewees were asked to rank replies to questions on error frequency between one and

four. A rank of one implied the interviewee had never met or known about the pos

sible faul t and a rank of two declared they were aware of i t . Ranks of three and four

indicated that the candidate had seen an associated fault occasionally or persistently.

Some 70% of respondents found the confusion of the tokens (assignment) and

' = = ' (equivalence), a persistent problem in C code. This is a fault not directly

modelled by Muta t ion Analysis. However, mutat ing either token to members of the

same set, assignment operators or relational operators, would make the fault visible.

Operator precedence was considered a persistent problem by 40% of the respondents

and mostly by the commercial testers. A technique, such as M A , which employs

conditional analysis and special values testing on constants and variable references

would aid detection of this problem. Some 60% noted wrongly placed statement

delimiters, the semi-colon in C. One of the most troublesome areas lay in confusion

between array and pointer manipulations. Data flow anomaly and special values

testing may be the most useful techniques to employ for these problems as well as

variable reference mutations. Interviewees were asked i f they had encountered any of

the conditions usually simulated by mutation tools. The use of the wrong identifier

had been noticed by 65% of respondents, but 74% had not seen a problem wi th an

incorrect definit ion of a constant. The use of the wrong relational operator was viewed

by 75% of respondents but only 22% had noticed a numeric variable wi th the wrong

sign. Some 56% had encountered a parenthesis fault , that is a failure associated with

precedence, and 75% had seen braces placed in the wrong position, terminating a

sequence incorrectly.

The questionnaire illustrates that programmers and testers place different emphasis

on analysing distinct parts of a program or system. Although a generahsation, many

interviewees tested the most used unit or attempted to cover all output classes with

test cases. Few chose a metric such as code coverage to indicate test completion and

those that did were professional testers. Code coverage strategies, however, do not

imply error removal. Interviewees who analysed particular constructs such as semi

colon problems or the use of relational operators did so because they were sensitised to

these problems by previous exposure. Few encountered problems wi th integer overflow

or shift operators but few of the interviewees wrote mathematical or low-level code

operations. More experienced C users tended to have problems wi th array handling,

pointer chains and general logic. They were also more constrained by time implying

that their skills were much in demand. Academic groups voiced fewer problems

w i t h the integration of units in comparison wi th the commercial interviewees. This

can be explained by academics and researchers tending to work individually whereas

commercial systems, being much larger, require more teamwork to design, code and

bui ld a software system.

The results f r o m the survey lead to a conclusion that the experience of a programmer

and the task of the code, such as its being an editor or a statistical package, is a

factor in the type of errors made. The experience of the tester is also a factor in the

detection of code faults. Once a fault is discovered, testers tend to look for more of the

same type and also concentrate on the function in which the fault was discovered. The

survey indicates some error groupings depending on the programmer's experience and

on the program task. Large scale software testing must take these factors into account

.̂ 0

by searching for the most common errors to give some measure of test effectiveness.

4.5 The Proposed Strategy

The language C was chosen for the trials for the following reasons:

• I t was publically available on the research systems available in both the aca

demic and research laboratories used. A large number of test programs such as

system or research code could be made available.

• The research sponsors use C for system development.

• At the time of starting the research, mutation analysis had not been applied to

C.

4.5.1 Experimental IVIutagens

Once the language had been identified i t was necessary to isolate the mutagens that

would give indications of test coverage and test data adequacy as well as simulate

common code errors. Due to the time constraints on the research, i t was also im

portant to choose a small group of mutagens that could easily be applied, that is

those which required simple token alterations as opposed to mutagens which required

a change to the parse tree such as statement deletion or movement. The set chosen

included common fault mutagens discussed in the previous section such as relational

and assignment operator and precedence and conditional mutations. Several muta

gens were immediately identified as being useful to analyse in a prototype tool and

others were added later as experience grew.

The Mothra research group classified some C language mutagens, [4], although Mothra

has not yet been adapted to mutate C code. They use a four letter mnemonic for

each mutagen. The first letter denotes the type of mutagen; S statement, O operator,

V variable and C constant. The operator mutagens have the structure O X Y A or

60

O X Y N where A denotes assignment and N denotes non-assignment. Depending on

the type of the operation the X Y positions are replaced by L logical, R relational,

S shift manipulation and E plain assignment. The variable and constant mutation

mnemonics include the letters G global, S scalar, A array, T type and P pointer.

The four th letter is commonly an R denoting replacement.

The following mutagens were developed:

• Re lat ional Operator .

A member of the set { < , > , < , > , = = , ! = } is replaced, one at a time, by all the

other members of the set. Riddell et al [80] stated that if a relational operator

transformed to its opposite operator, such as < mutated to > , remained live,

then the four other mutants formed f r o m the rest of the relational operator set

would also be live. That is, i f a test suite was inadequate for differentiating a re

lational operator f rom its complete opposite then i t was not likely to differentiate

the original relational operator f rom the remaining relational operators. Wood

ward later indicated that there may be pathological cases which invahdated this

assumption [89] such as operator occurrences wi th in loops. The prototype tool

developed for this thesis, was originally designed to mutate relational operator

tokens in an ordered fashion, starting wi th the opposite operator, in order to

analyse the live mutation sequences and to halt the generation of all five re

lational operator mutants i f required. The Mothra mutagen equivalent to this

operator is O R R N , that is a non-assignment operator mutation of Relational

token to Relational token.

• A r i t h m e t i c Operator .

The operators {-|-, —, *, / , % } were each mutated to the other members of the set.

This corresponds to the Mothra mutagens O A A N , a non-assignment Arithmetic

operator to Ar i thmet ic operator mutation.

• Ass ignment Operator .

The language C has a more concise fo rm of assignment operations than Pascal

or F O R T R A N . There are several assignment operators not comparable wi th

other languages such as ' - | - = ' which, in the statement 'a += 6' dictates that

the value of '6' is added to 'a'. The assignment operators in C, {= , - (-= , -

61

= , * = , / = , — = , & ; = , % = , A = } were included as a new mutagenic group as dis

t inct f r o m the F O R T R A N and Pascal tests. These correspond to the arith

metic, bitwise and plain Mothra assignment mutation operators O A A A , OBA.A,

O A B A , O B B A , OEBA and OEBA. In Mothra an arithmetic assignment oper

ator would be replaced by another arithmetic assignment operator under the

mutagen O A A A or by a bitwise assignment operator under O A B A . In the test

system developed for this thesis all the assignment operators are replaced by

each other. This keeps the system simple for both user and development pur

poses.

• Increment -Decrement Operator .

As wi th assignment operators, C has a cryptic fo rm of increment and decrement

actions on a variable. The statement 'a-|--|-' means add 1 to a, i f a is an integer,

after referencing the variable a. The statement '-|—Fa' signifies an addition of

1 to the variable prior to its reference. As these operators are commonly used

in numeric C programs they were included in the prototype tool. The operator

set is { + + , } and any reference to one of the set is replaced by post and

prefix alternative forms. That is ' a - f - f ' would be replaced by ''-\-+a\ 'a '

and ' a\ The equivalent Mothra mutation operators are OPPO and O M M O

for postfix and prefix alterations, the final 0 depicting a unary operation.

• Logica l Operator .

To enforce conditional and branch coverage, mutations of logical operators are

required. The set in G is |, | |, A } which signify bitwise and logical

A N D and bitwise and logical OR and N O T . The equivalent Mothra operators

are O L L N , O B B N , O L B N and O B L N for logical and bitwise non-assignment

mutations. The prototype developed simply replaces one logical operator by

another in the set. This keeps the user interface and system coding simple

without loss of information.

• Var iab le Reference Operator .

Research [10, 65] has indicated that the variable reference mutations generated

the most mutants. In order to analyse how diff icult (or easy) these mutants were

to k i l l , all variable references were mutated to in-scope identifiers of the same

type. Global and local variables are used to replace identifiers. This is different

fi9

f r o m Marick's tests [61] in which only local variables were substituted for iden

tifiers. C allows user defined types which have not been analysed by previous

mutat ion research. The prototype developed alters all variable types including

user defined and pointer types. These mutations correspond to the Mothra

mutat ion operators VGSR, VLSR, V G A R , V L A R , V G T R , V L T R , VGPR and

V L P R which depict variable global and local replacement by scalars, arrays,

user-defined types and pointer types. Each type, in the prototype tool, is re

placed by another of the same type so at most two of the Mothra mutation

operators would be applicable, the global and the local of the correct variable

type. The prototype developed replaces all variables by local and globals of the

same type automatically, the user does not need to initiate different classes of

variable type mutations.

• Var iab le B o u n d a r y Operator .

Previous research has indicated that analysis of domain boundaries detects

faults i n code [10]. Numeric variables references were altered by -|- or - 1 and

the abs functions was applied and also negated to force domain checking. These

mutagens correspond to the Mothra twiddle mutation V T W D and to the do

main trap V D T R operation. The twiddle operation indicates a small change in

boundary values.

• N u m e r i c Constants .

These can be easily altered to refer to values altered by t to test boundary

values and to the constants 0, 1 and -1 to model coincidental correctness. As

constants are used to drive loops or effect conditionals these mutation operators

were included in the prototype. This mutagen is similar to the Mothra CRCR

operator, which replaces a constant by a constant. In the prototype integer

values are altered by -|- or -1 and real constants are altered by -|- or - 1.0, + or

- 1% and -h or - 10% to analyse round-off problems.

• U n a r y Operator .

These were included because of their simplicity and the effect on code domains.

A simple mistake of assigning a value to its absolute or negative value can be

simulated by this mutat ion. For example the statement 'a = 1' could be altered

to 'a = — 1 ' . This is similar to the Mothra mutation operator V D T R , which

forces data values to be positive, negative and zero by aborting execution on

the detection of those values. The prototype uses a simpler fo rm applicable to

unary operators in the code.

• Condi t iona l Al terat ions .

These are a more complex fo rm of logical operator mutation. In a statement

' i f (a&6) ' the logical operator would be mutated to ' & & ' , '] ' and ' | | ' by the

logical operator mutagen. However, M A also provides for altering conditionals

by the negation of whole and component parts to ensure conditional coverage.

The statement could be mutated to ' i f !(a&6)' , ' i f (!a&6)' and ' i f (a&!6)'. This

mutagen corresponds to the Mothra OLNG mutation operator which negates

controlling conditions.

• Pointer A r i t h m e t i c .

This was one of the last mutagens to be added. As G is a dynamic language

and much use is made of list processing, addition and removal, an operator to

simulate errors of access on a list of objects was thought viable and worthy of

development. This is a very simple mutagen which adds or subtracts 1 to the

reference value of a pointer variable. In C, the addition of unity to a pointer

value is immediately translated as one unit of object memory allocation. Thus,

i f a pointer variable 'p' accesses an object '*p', the statement 'p = *p' could

be replaced by 'p = *{p + 1)'. This simulates a move of the pointer to access

the next object in a fist, i f i t exists, creating an error of 'off-by-one'. Similarly,

'p = q\ where '5' is a pointer variable of the same type as 'p', is mutated to

'P = 9 + 1') forcing 'p' to point at the next i tem in a hst. This mutagen does

not correspond to any Mothra mutation operator named in [4] but is effectively

a twiddle operation on pointer variables.

The above mutagens ensure branch and conditional coverage, boundary error detec

t ion, special values and analysis of numeric round-ofF as well as data flow anomaly

testing. They do not include mutagens concerned wi th statement coverage such as

statement removal operators. However, statement coverage can be monitored by plac

ing probes in the code. I f the paths executed by test inputs are to be monitored to

detect error groupings or problematic code regions, i t is cost-effective to use that

information to determine statement coverage.

fi4

4.5.2 A n Application Strategy for Mutagens

Figure 4.1: Linear Code Sequence Control Flow Graph for Tri typ Program

The default direction of flow of control is downwards

Current M A tools apply mutagens to tokens as they are found in the source (or

intermediate) code. Mutants are thus formed in a linear, or textual, order from

mutat ion components found in the code f rom the first line down to the last. This

strategy takes no account of call sequence or frequency of code usage. If the test is

constrained by time, the textual application strategy may fai l to analyse important

regions of code. Code is effectively analysed by its position in a file and not its effect

on execution. I f i t is important to deliver the most efficient test for the resources

available, and this is likely to be true for large systems under development, then it

is logical to determine the code regions or components which create the most live

mutants in comparison to others. This does not necessarily imply that the regions

w i t h most live mutants are more prone to error than ones wi th only a few live mutants,

but i t does demonstrate problems w i t h the test data generation techniques used.

6.n

One strategy is to find a test route which will generate the best possible test, that is

the most live mutants, in as short a time as possible. A more thorough examination

can be done, if costs permit, by simply allowing the test to continue through the

sequences which generate fewer live mutants for the available test suite. That is, test

data must be generated to examine those code regions exhibiting fewer hve mutations.

The test must be driven at the most efficient rate possible. With MA this means

finding the highest rate of live mutants per mutations applied for the given test

suite. Although this can not be known in advance for any particular program and

its associated test suite, it is important to primarily simulate the common faults in

the most crucial routines, however they may be defined. A mechanism is required to

direct the mutation application through the source. The code control flow graph is a

useful mechanism for this.

A control flow graph is a diagram of the connections between program regions. Each

region can be defined as a L i n e a r C o d e Sequence, or basic block. The term linear

code sequence is preferred, and used in this thesis, as it indicates the simple flow of

control from statement to statement within a code sequence. A linear code sequence

(LCS) is defined as a maximal group of statements such that if the first statement is

executed then so also is the last. Embedding test case coverage probes at the LCS

level of the code gives a better indication of code and path coverage than embedding

at the routine level. It is also more efficient than placing probes after every statement.

Although monitoring LCS traversal does not directly inform the tester of the number

of statements executed, unless a table of the number of statements in each LCS is

derived, it clearly reveals missing paths in the control fiow graph.

Using the definition of a flow graph from Fenton et al [28], a control flow graph is

defined to be a finite digraph G incorporating the distinguished start (source) and

stop (sink) nodes. The in-degree of a node is the number of edges entering the node.

Al l nodes, except the source, have an in-degree of one or more. The out-degree of a

node is the number of edges leaving the node. Al l nodes, except the sink, have an

out-degree of one or more. The nodes of a control flow graph are program regions and

the edges are the flow of control between those regions. The control flow graph can be

generated from the LCS connections. The nodes in a test program's control flow graph

can be LCSs. A node with an out-degree of two is a predicate node, the out bound

edges corresponding to the True and False control paths and the connected nodes

being the LCSs at the start of the relevant code. A node with a higher out-degree is a

predicate node depicting a case or switch control statement in which control is passed

to one of several nodes. See Figure 4.1 for the LCS control flow graph generated from

Ramamoorthy's triangle program (Trityp). The code for this program is in Appendix

B.

If LCSs are mapped according to their use sequence and the control flow graph gen

erated, a mutation within a particular sequence can be viewed through its impact on

the following code. An LCS higher in the graph, i.e. nearer the root or source, may

be executed earlier than one later in the graph, nearer the code termination (sink of

the graph). Any component changes within it may have greater consequence than a

component change in an LCS close to the sink. Alternatively, a component change

close to the sink node may be the more likely to create a live mutant. A back edge,

such as is formed by a loop, will complicate this topic. LCSs within loops should be

considered positioned by their first use and the loop is not unravelled. Paths may be

formed with multiple uses of LCSs which describe the body and condition of a loop.

Traversing the control flow graph, or equivalent tree, for mutation testing, requires

nodes (LCSs) to be visited once only. To traverse the control flow graph in a pre

defined sequence, the data describing the graph had to be manipulated. Standard

techniques exist for converting a graph into a tree [51]. However, the data was not re

constructed into a tree representation but was stored in a structured list to duplicate

the format of the LCS connectivity file output from the preprocessor, see Chapter 5

for more details.

The cumulative count of live mutants can be plotted against mutations generated.

Mutations generated in a higher node of the control flow graph will generate a differ

ent live mutants per mutation application graph than mutations initially generated

in a lower node, due either to code masking or to error proliferation. Such plots will

illustrate where live mutations remain in code and will also indicate problems associ

ated with the impact of code alterations if live mutations are clustered at points, or

along paths, in the graph. By driving the mutation application via the LCS control

flow graph, the tester can gauge whether faults in the earlier called LCS (or routines

fi7

at a higher level of abstraction), critical or otherwise, are more likely to result in live

mutants than faults induced in later called LCSs. The tester can also isolate which

LCS, or function, exhibits the most live mutations and therefore requires more anal

ysis. A zero kil l rate for an LCS may indicate non traversal or inadequate test data.

Untraversed LCSs indicate either a problem with the test data or unreachable code.

These sequences can be discovered by mapping test case traversal against LCSs.

Using data, control, domain and boundary error as well as special values mutagens,

it is possible to determine which group generates the greatest number of live mutant

programs per mutations generated. From this information it is possible to determine

problematic constructs and LCSs within the code. As sequences and functions are

altered during development, the directed MA test lends itself to Revision or Regression

testing [24]. Keeping account of which test cases traverse the altered code would allow

a reduction in the re-application of test cases. Monitoring LCS coverage during a test

should therefore improve the efficiency of a revision test.

An improved test is therefore one in which live mutations are found early in the test

sequence. This raises some issues. Any improvement made by driving the test via

the call sequence may be program or complexity dependent. It would be necessary to

conduct many trials of different programs in order to achieve a valid conclusion. Any

improvement may also be test case dependent, so it would be necessary to alter the

test case order. Some test cases may be considered good for killing mutations because

they have a high statement coverage, others because they are special case selectors.

The test must utilise both types of test cases, but the former is possibly better for an

initial test in order to remove as many live mutations as early as possible to reduce

execution costs.

Another test is required to determine the persistent mutations, that is, the mutation

types most likely to remain live. Knowing that most mutants are unstable and die

quickly, [2, 10] it is important to simulate faults which require special analysis and

test cases. That is, it is necessary to simulate common faults, be they boundary,

control flow or data flow groupings. However, these 'primary' mutations may not

be applicable to all programs, but to program types determined by size, complexity,

coding techniques employed or components used.

There are therefore many factors in applying mutation analysis to large programs

given resource restrictions. It is desirable to apply the test to the most critical parts

of code and to simulate the more common errors in an initial phase. As these factors

may be unknown for any program in advance of a test, it is necessary to start testing

and gather information as the test progresses. Once it is known where analysis should

be focused, the test should be adapted towards that aim. Using the control flow graph

to guide the test is useful for understanding the impact of induced and present faults.

In order to use the control flow graph for the application of mutations, the graph must

be traversed in some ordered fashion. The common mechanisms for graph, or tree,

traversal are Preorder, Inorder and Postorder. A node A with two children B and C,

where B is the left-child would be traversed in the order ABC in Preorder traversal,

BAC in Inorder traversal and BCA in Postorder traversal. It is worth comparing

some of these traversal, and therefore mutagen application, strategies against the

standard textual application to find if control flow driven testing is viable and efficient.

In the prototype developed the flrst two traversal strategies were analysed, the third

was left for future development. Figure 4.2 shows a small example of a control flow

graph, its connectivity file representation and the fist structure used to re-create tree

traversal. The list for each function was traversed starting at the node representing

LCS 0. The traversal sequences are defined recursively as in

procedure p r e o r d e r (n : node);

b e g i n

mutate (n) ;

f o r each connected node c (l e f t t o r i g h t) do

p r e o r d e r (c)

e n d ; { p r e o r d e r)

p r o c e d u r e i n o r d e r (n : node);

b e g i n

i f n has no connected nodes c then

mutate(n)

e l s e

b e g i n

i n o r d e r C f i r s t connected node c) ; /* l e f t c h i l d */

m u t a t e (n) ;

f o r each o t h e r connected c h i l d node c of n do

i n o r d e r (c)

end

end; { i n o r d e r }

where the connected nodes depict left and right children and are encoded as an ordered

list starting from the parent (LCS) node.

4.6 Summary

Mutation testing is commonly applied to small, single units of code of less than

50 LOC. Although an expensive technique, MA has been shown to be useful as a

test strategy and as a metric for test completeness. Consequently, a study of MA

applied to larger code containing more than one function is worthwhile. However,

because of the resource intensive nature of MA, a test conducted in a reasonable

time-scale requires the development of application strategies. It is possible that,

given time constraints, particular code regions such as functions or groups of linear

code sequences or code components such as all conditionals or all data structures may

be chosen to undergo more rigorous testing than the bulk of the code.

A survey of common errors in C code was undertaken to help indicate problematic

constructs or code regions. The diversity of replies in the (anecdotal) survey implied

that a testing technique applicable to large scale testing must be able to take several

factors into account. These factors may include the experience of the programmer and

the task of the written code or in time, the type and positions of faults already found

in the code. A tester may always look for, and find, a particular type of error because

they are sensitised to i t . That is, once an error is found it appears to be worthwhile

to look for others of the same type. However, this does not mean that other faults

7n

should not be tested for, but simply that fault finding may be prioritised once some

are detected. Similarly, the region in which faults are discovered should be analysed

more thoroughly because of error congregation and the likelihood that the code was

written by a programmer showing a trend of error creation or a misunderstanding of

specifications.

A small group of mutation operators, mutagens, was then outlined. These mutagens

are a small group of the possible mutation operators but represent common faults

found in code. They simulate data flow, domain and boundary and special values

testing. Information regarding problematic code regions such as linear code sequences

or functions or error prone code constructs such as conditionals or switch statements

can be gathered. A strategy for testing large program by MA was then discussed.

The control flow graph of a program and its constituent subprograms could be used

to drive a mutation test through code. Using the code control flow graph it is possible

to determine whether a fault induced nearer the source node, or start of execution, is

more likely to generate a live mutant than a fault induced near the sink node, or code

termination. Such information would be useful in large scale testing as it is important

to know if faults are masked or proliferated by succeeding processing. Determining

untraversed statements will also be simplified by mapping linear code sequences to

test cases. This information would also be useful when revision testing is undertaken.

Only test cases which traverse altered code need be applied.

71

Figure 4.2: Example of Data Representations

Control Flow Graph

?
i

/ \
I] [I
\ /

Control Flow Connectivity Data
0 1
1 2 3
2 4
3 4
4

Control Flow List Representation

i
0_

i
1_

i
2_

J
i

T

T

T

m

•
•

79.

Chapter 5

The Grail Mutation System

'Mortis Causa'

This chapter outlines the Grail mutation tool and its constituent parts. Details

regarding coding are not included to retain clarity of design and purpose.

5.1 Introduction

The ethic behind the development of the Grail mutation system was to compare

textual mutant generation with control flow graph traversal driven mutant generation.

Consequently, the constructed system had to compile and execute a test program and

its mutants and to determine which of the latter remained live. An ordered Ust of

live mutants found per mutants generated for each code traversal mechanism could

then be compared to deduce the efficiencies of each. The Grail mutation system is

so called because the Oxford English Dictionary defines the grail 'as [an] object of a

prolonged quest'.

5.2 System Overview

The Grai l mutation system is composed of three distinct parts, each of which is

described in more detail in the following sections. The preprocessor parses the test

code and generates a token list complete with codes for mutation component elements,

that is, those tokens describing a program component such as a relational operator

or a conditional statement. Also output is a file describing the connections between

the linear code sequences (LCSs) of the test program and an annotated version of the

test code.

The main processing section creates and executes mutants of the test program. It

reads in the token fist and the connectivity files from the preprocessing stage. The to

ken list is searched for mutation components. Mutant programs are formed, compiled

and executed in either a textual order or in an order dictated by processing the data

in the connectivity file. The mutant output is compared with the test program output

for the given test cases. Live mutants are noted in a table containing a cumulative

count against the number of mutants generated.

The third section plots the data from the tables and determines a numeric value

to describe the efficiency of each of the traversal mechanisms. See Figure 5.1 for a

diagrammatic overview of the Grail mutation system.

Figure 5.1: The Grail Mutation System

program
Preprocessor

marked token
list n connectivity file

Mutan t Maker J live
m i i t a n t

Live Mutant Analyser

mutant
information T

plot
traversal

J
compare

74

5.3 The Preprocessor

The lexical analyser and parser generators Lex [57] and Yacc [49] are used to de

compose a test program allowing specific code components to be noted for mutation

purposes. These code components include

• particular operators such as relational, arithmetic, logical and pointer.

• global and local type definitions for gathering variables of the same type for

variable reference mutation.

• reserved words such as ' i f , 'while' and 'for' to enable mutation of conditional

expressions.

• function declaration and formal parameters. Neither of these are mutated and

therefore must be marked to avoid confusion with function calls and variable

references respectively. Local variables are noted for mutating in-scope identi

fiers.

Figure 5.2: The Preprocessor

test
program

Preprocessor

Instrument Code
k Determine LCS

Connectivity

T
marked

token list
connectivity

data

instrumented
test program

Several files are output from the preprocessor. (See Figure 5.2.) One file contains a hst

of the test program tokens each with LCS numbers and markers. The markers describe

attributes of the token such as whether it is a relational operator, a user defined

function call or a system function call. Another output file is the instrumented version

of the test program. A probe is placed at the start of each LCS. The instrumented

source code can be compiled separately and executed with the test inputs to determine

75

which LCS are executed by each test input. A tester can then identify which LCSs

are unexecuted by the test set and can use this information to develop further test

cases. During a regression test the same information can be used to re-apply only the

test inputs which traverse altered LCSs.

A third file output from the preprocessor stage is the connectivity data for the test

program. This data describes which LCSs flow of control may pass to from any given

one. See Figure 5.3 for an example of the format of the connectivity file.

Figure 5.3: Connectivity of Linear Code Sequences for Ramamoorthy's TRITYP

1 /* 1 i s t h e f u n c t i o n number. As the program */
1 2 0 /* c o n s i s t s of a s i n g l e (main) r o u t i n e */
2 3 20 0 /* t h e r e i s only one f u n c t i o n . */
3 4 0 /* The f o l l o w i n g l i n e s d e s c r i b e the */
4 5 10 0 /* c o n n e c t i o n s between each l i n e a r code */
5 6 0 /* sequence. LCS 1 connects only to LCS 2. */
6 7 8 0 /* LCS 6 connects t o e i t h e r LCS 7 or LCS 8. */
7 9 0 /* (LCS 6 i s a c o n d i t i o n a l statement) */
8 9 0 /* The z e r o e s a t t h e end of each l i n e a i d */
9 19 0 /* p r o c e s s i n g . */
10 11 0
11 12 17 0
12 13 0
13 14 15 0
14 16 0
15 16 0
16 18 0
17 18 0
18 19 0
19 21 0
20 21 0
21 0
0

The code to determine the connectivity between the LCSs was written by another

researcher [39]. It cannot handle the 'goto' or the 'continue' constructs and is fragile

at high nesting levels. When complex programs were tested by the Grail system, the

connectivity file had to be checked and, if necessary, altered by hand.

7fi

5.4 The Mutant Maker

This section forms the main body of the Grail system. The user is prompted for the

following inputs:

• the name of the test program.

• the number of test cases (zero is valid).

• the run-time parameters required, if any.

• choice of yes/no to store data regarding which test cases kil l each mutant. If

yes is chosen then all test inputs will be applied to each mutant rather than the

more efficient mechanism of applying test cases until one kills a mutant.

• choice of which mutagen, or groups of mutagens, to analyse. These simulate

relational, arithmetic, assignment, increment-decrement and logical operator,

variable reference and boundary, constant, unary, conditional and simple pointer

mutations.

• choice of desired code traversal mechanism from Textual, Preorder or Inorder.

The uninstrumented test program is then automatically compiled and executed on

the number of test inputs requested by the user. Each output file is stored under

a unique name for later comparison with mutant output. If compilation of the test

program fails the system exits after informing the user. However, if compilation and

execution of the test program has proceeded without failure, the token list file is

read in. The structured list formed from this input is then searched for the tokens

required for the mutagen requested by the user. For example, if arithmetic operator

mutation has been requested, a search of the token list is made for tokens marked as

arithmetic operators. These are copied into a mutation component list which holds a

description of the component, which may be more than a single token, including token

number and set element offset. The set of arithmetic operators is { + , — , / , * , % } . A

set element offset of 0 describes the addition operator.

When a component is mutated, the Grail system copies the test code up to the

component token(s) and those following. The mutation component is replaced by the

77

other members of the mutation set. In the case of an arithmetic operator there will be

four mutants formed for every instance of an arithmetic operator in a test program.

The four mutants will be identical programs to the original with the exception of the

mutation component.

Once the mutant programs are created they are compiled in turn. Compilation failures

are not included in the output statistics. The count of mutants generated includes

only compilable program mutants. Each mutant is then executed on the available

test cases. As each output file is created it is compared with the output from the

original program for the same test case. If the output files differ the mutant is

deemed killed and no further executions are required. The next mutant then begins

execution with the available test cases. A mutant which is not killed by the available

test cases is considered live and a description of the mutation component is stored.

This description includes the token number, mutagen type and mutagen set off'set

number. See Figure 5.4 for a schematic diagram of the Mutant Maker section.

user input
(mutagen

choice,-
traversal

mechanism,
number of
test cases)

test_
program'

test_
inputs"

Figure 5.4: The Mutant Maker

marked token file

compile

execute

store all
outputs

search token
file for chosen

mutation
component

store in mutation
component file

search token
file for chosen

mutation
component

—

store in mutation
component file

search token
file for chosen

mutation
component

— — generate mutants
in specified order

compile

execute

-\ compare outputs

store live mutant
descriptions

connectivity file

live mutant
data

7«

When all the mutants of a particular component have been compiled and executed,

the next component in the mutation component Hst is analysed if the Textual traversal

mechanism has been chosen. If the control fiow traversal mechanisms have been cho

sen, the Preorder or Inorder mechanisms, the next component mutated is determined

after a check on the LCS connectivity and the function call sequence. The LCSs of

a function are traversed in an order described by the connectivity data. However,

an LCS containing a mutation component may also contain a call to a function. If

the function call is executed before the required mutation component, the function

is examined for mutation prior to analysis of the component. For example, consider

the linear code sequence in Figure 5.5.

Figure 5.5: Function call within Linear code sequence

MutateTokenO
{
/* LCS 1 */
MutateAndCopyO ;
MutsDone++;

>

If the increment-decrement operator is to be mutated , to ^MutsDone ', '-|- -|-

MutsDone^ and ' MutsDone\ then this must be exercised after the function call

to MutateAndCopy has been analysed. If there exist increment-decrement operators

operators in the function MutateAndCopy, or in any of the functions it calls, then

they will be mutated prior to the operator in MutateToken. If Mutate AndC opy

has already been analysed, then this, and future, calls to Mutate AndC opy are ig

nored to ensure that each mutation component is mutated only once. The increment-

decrement operator in MutateToken is then mutated. Thus, a large amount of in

formation has to be manipulated; the connectivity of the LCSs, positions of function

calls and the marking of functions and tokens already mutated.

The whole sequence of finding mutation components, compilation, execution, storage

of live mutant descriptors and marking of LCSs and functions already mutated must

be repeated until all the required mutation components have been analysed. The

output from each execution of the mutation system is a file describing the cumulative

70

count of live mutants against mutants generated. See Figure 5.6 for a sample output

file.

Figure 5.6: Live Mutant Position file for TRITYP: Relational Operator mutagen on
4 test cases

rama #Funcs # L i n e s # S t a t s #Preds #Loo ps #TC
3 1 37 13 5 0 4

tk-no/ t k - r e f / fn--no/ I c s -no/ #1 i v e / #m_g en/ #groups gen
64 R5 1 6 1 5 1
68 R6 1 6 3 10 2
53 R3 1 4 5 15 3
57 R4 1 4 6 20 4
123 R8 1 13 11 25 5
116 R7 1 11 13 30 6
42 R l 1 2 13 35 7
46 R2 1 2 13 40 8
0

P o s s i b l e Mutajits

The file includes token, function and LCS number (tk-no, fn-no and Ics-no), to de

scribe the positions of the live mutants. Analysis of this file can indicate problem

functions and LCSs. That is, those regions with a high number of live mutants. In

the example in Figure 5.6, the relational operator described as token 123 in LCS 13

exhibits 5 live mutants. (N.B. the #live column is cumulative.) That is, all its mu

tants are live after 4 test cases have been applied. The data can be cross-referenced

with the LCS to test cases data to determine whether live mutants are caused by

non-traversal of linear code sequences or by non rigorous test data. In the example

given, the live mutants are due to non-traversal of the LCS containing the mutation

component.

Test cases were applied cumulatively to the mutants. The Grail mutation system

prompts the user for the number of available test cases. These are stored as the

program name followed by a test case number and ''.daV as a suffix. If a mutant

remained alive after the application of test case 1, it was executed by test case 2 and

so on until the mutant was killed or all the available test inputs had been executed.

Thus, when 8 test cases were available, the Grail would apply test case 1 through to

test case 8 only if the mutant remained alive. The Grail system was built to compare

control flow and Textual traversal mutation. Thus, for every test case and groups

of test cases, the mutation system analysed Textual, Inorder and Preorder traversal

mechanisms for each of the eleven mutagens available if they were applicable to the

test program. The three files output from each traversal mechanism were stored with

unique names for analysis by the next stage in the Grail system.

5.5 Live Mutant Analysis

The last stage of the Grai l system analyses the order of live mutants found by

the Textual, Inorder and Preorder code traversal mechanisms. A graph of the hve

mutants found per mutants generated was made for each traversal mechanism and

overlaid on the same plot. See Figure 5.7 for a schematic description of the Live

Mutant Analysis section. Figure 5.8 demonstrates the graphs resulting from the test

Figure 5.7: Live Mutant Analysis

Textual
Preorder

Inorder
Analyser

Plot File

Mutant Metric

of the three traversal mechanisms on Ramamoorthy's TRITYP program using the

relational operator mutagen on 4 test cases. The plot demonstrates the differences

in locating live mutants between the three techniques. A gradient of 1 implies a live

mutant is formed for every mutant generated, i.e. the code is either untraversed by the

available test cases or they do not rigorously test the code. All traversal mechanisms

should result in an equal number of live mutants, given that all LCSs and functions

SI

Figure 5.8: T R I T Y P : Relational Operator mutagen on 4 test cases

TRITYP - Relational Operator - 4 Test Cases

tn
C

>
h - 3 m

Textual

Preorder

Inorder

15 20 25
Mutants Generated

30 35 40

are callable. However, w i th t ime and resource constraints a major factor in testing,

i t is important to discover the positions of live mutants as early as possible in the

test. Thus, the traversal mechanism which generates the greatest gradient for Hve

mutants found against mutants generated in the early stages of testing is considered

more efficient than one in which the major i ty of live mutants are found towards the

end of the mutant generation. The G r a i l attempts to isolate which regions of code

are more prone to produce live mutants; the LCSs near to the source node or near

to the sink or along particular paths. In the example given in Figure 5.8 the Inorder

traversal mechanism shows a faster rate of live mutant generation than the Textual or

Preorder traversal mechanisms which exhibit the same rate of hve mutant discovery.

To compare the three mechanisms on a mathematical basis, a function was derived to

describe the efficiency of each traversal mechanism. This Mutat ion Metric, see Figure

5.9, w i l l result in a higher score for mechanisms which locate the live mutants as early

as possible in the test. The scores are normalised by division of the score for the best

R9

possible case, that is, one in which the live mutants are generated prior to all the dead

mutants. A Muta t ion Metric of 1.0 signifies the test was the most efficient possible. A

near zero score signifies that the test was inefficient. The weighting, N M A X - N + 1,

decreases as the test progresses to ensure that a test which locates live mutants earlier

than another, w i l l result in a higher Muta t ion Metric. The traversal mechanisms can

Figure 5.9: Mutat ion Metric

NMAX
Z {L[N]*iNMAX - N + 1})

yv=i
LMAX NMAX

E {N *(NMAX - N + 1))+ E {LMAX * {NMAX-N + l))
N=l N=LMAX+1

N = # mutants generated.
N M A X = total mutants generated.
L M A X = total live mutants possible.
L[N] = # l i v e mutants after N mutants generated.

then be compared on a more scientific basis. In the example given in Figure 5.8,

the Muta t ion Metric for Inorder traversal mutant generation was 0.587. Preorder

and Textual traversal mutant generation resulted in a Mutat ion Metric of 0.2-31.

Thus, the Muta t ion Metric describes the efficiency of each traversal technique with

regard to detection of live mutants. A n Inorder traversal resulting in a more efficient

mechanism for detecting live mutants in a simple program, such as Ramamoorthy's

T R I T Y P , indicates that most live mutants reside in near-sink LCSs.

5.6 Summary

This chapter discusses the three constituent parts of the G r a i l mutation system. The

preprocessor stage separates the program tokens into mutagen types. The test code

is also probed to allow analysis of test case traversal of the linear code sequences.

The main processing section, the Mutant Maker, searches a token Ust for mutation

components and then generates mutant programs in a specified traversal mechanism

order. The mutants are compiled and executed and live mutant descriptors are stored.

The output f r o m the Mutant Maker is a file containing a cumulative count of live

mutants found against mutants generated. This data is input to the third stage of

the system which plots out the data and generates a numeric, called the Mutat ion

Metr ic , to describe the efficiency of the traversal mechanism chosen.

Chapter 6

Grail Analysis of Single Function

Programs

'Mortui Non Mordent'

Several programs of less than 50 lines of code were analysed by the G r a i l mutation

system. Two are discussed in some detail in this chapter. The results demonstrate

that there are benefits in efficiency to be gained by using control flow code traversal

and mutat ion. The source code, test data and linear code sequence control flow

diagrams for each program are in Appendix B.

6.1 Introduction

Several small programs, of size less than 50 Hnes of code (LOG), were tested using the

G r a i l mutat ion system. Two of these are discussed in some detail in the following

sections. These programs are well known in the testing literature; Ramamoorthy's

Trityp and Hoare's Find [19, 71]. Test data has been published for the Trityp and

Find programs, thus removing any bias in the experiments due to test data anomalies

introduced by the author.

8.̂

Each program was tested on the available test cases wi th all the applicable mutagens.

The test cases were applied cumulatively to the mutants. I f a mutant was five after

execution w i t h test input 1, i t would then be executed wi th test input 2 and so on

un t i l i t died or remained live after all the available test inputs had been executed.

The applicable test cases were sufficient to k i l l the vast major i ty of mutants generated

f r o m these mutagens. The test case order was also altered to determine the effect of

improving the mutant k i l l rate on each of the traversal mechanisms. Ala rm calls were

embedded in each mutant program to abort continual loops i f they were formed f rom

a mutat ion. The alarms were set at 10 seconds CPU time for the smaller programs.

The tables wi th in the text summarise the results f rom the tests on the two programs.

One set of tables display the Muta t ion Metric for each of the three traversal techniques

tested; Textual, Preorder and Inorder. Two columns indicate the gain in efficiency

f r o m using a control flow technique. The Preorder Gain (PreGain) is defined as

'̂"'"re^^tlr'""'̂ " Preorder and Textual refer to the Mutat ion Metric generated

for each technique. The Inorder Gain (InGain) is defined as ^̂ ^̂ ^̂ f̂egr̂% where

Inorder refers to the Muta t ion Metric generated for Inorder traversal and mutation

of code components.

The tables include the number of live mutants, # L i v e , and the Mutat ion Metric for

each of the three traversal mechanisms; Textual (Tex), Preorder (Pre) and Inorder

(Ino) . The InGain and PreGain columns display the efficiency gain of using Inorder

or Preorder traversal and mutation over Textual traversal and mutation. The re

sults column (Res) specifies which of the three mechanisms was the most efficient at

detecting live mutants. This can be Tex, Pre or Ino to describe the three traversal

techniques, or Equ (Equal) or T / P (Tex and Preorder have the same higher Mutation

Metr ic) .

6.2 Ramamoorthy 's Trityp

Trityp reads in the three sides of a triangle. The program outputs the type of the

given triangle; Equilateral, Isosceles, Acute, Obtuse or Right Angled. The data is

considered invalid i f i t is not entered in descending numerical order. The program is

37 LOG w i t h five conditional expressions. The following tables show the results of

the in i t i a l tests on Trityp using the input data published in [19]. These include the

relational and logical operators and the variable reference and boundary mutations.

Three other mutagens were applied to Trityp; the Assignment and Ari thmetic opera

tors and the Gonditional statement mutagen. They generated very few live mutants

and were therefore discarded f r o m the analysis.

6.2.1 The Relational Operator Mutagen

Table 6.1: Tr i typ Results : Relational Operator

Relat iona l Operator Mutagen
5^ I n p u t # L i v e Tex P r e Ino I n G a i n % R e s

1 40 1.000 1.000 1.000 0.0 Equ
2 25 0.691 0.691 0.903 30.7 Ino
3 19 0.475 0.475 0.780 64.2 Ino
4 13 0.231 0.231 0.587 154.1 Ino
5 9 0.264 0.264 0.613 132.2 Ino
6 7 0.293 0.293 0.653 122.9 Ino
7 7 0.293 0.293 0.653 122.9 Ino
8 5 0.236 0.236 0.565 139.4 Ino

Trityp has 8 relational operators which generate 40 mutant programs.

Table 6.1 summarises the data generated f rom tests on the relational operator inTrityp.

The Preorder gain column was not required for this test as Preorder and Textual ex

hibi ted the same Muta t ion Metric . The results in Table 6.1 show that Inorder code

traversal and mutat ion located the live mutants at a faster rate than either Preorder

or Textual traversal, and, as code coverage is increased, higher efficiency gains were

to be made. The latter mechanisms have the same results because the linear code

sequences (LGSs) containing the relational operators are executed in the same order.

The order of LCS traversal is shown in Figure 6.1. The LGSs containing relational

operators are numbers 2, 4, 6, 11 and 13. In the Textual and Preorder traversal mech

anisms the LCSs are mutated in the sequence 2-4-6-11-13. In the Inorder traversal

mechanism they are mutated in the sequence 6-4-13-11-2.

R7

Figure 6.1: Linear Code Sequence Call Graph for Tr i typ Program

Textual T r a v e r s a l
Preorder T r a v e r s a l
Inorder T r a v e r s a l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 2 3 4 5 6 7 9 19 21 8 10 11 12 13 14 16 18 15 17 20
21 19 9 7 6 8 5 4 18 16 14 13 15 12 11 17 10 3 2 20 1

Table 6.2 shows the live mutations in relation to the LCSs containing the mutated

component. The table helps to explain why the Inorder mechanism located live

relational operator mutations earlier in its test sequence than the other mechanisms.

The first test input only exercises LCS 2 out of all the LCSs containing relational

operators. The mutat ion metric would be expected to diifer and be in favour of the

Textual and Preorder traversal because, in these mechanisms, the relational operators

in LCS 2 are tested before the relational operators in other LCSs. In the Inorder

mechanism, LCS 2 is analysed after all the other mutation LCSs. However, the data

in test case 1 generates no dead mutants and is therefore not thoroughly analysing

the relational operators in LCS 2. (The reason for this is that test case 1 (2 12 27)

includes the condition 6 < c as well as a < 6 and so the mutations on either relational

remain alive.)

LCS 6 and LCS 13 dominate the rest of the live mutant count. These sequences are

tested earlier by the Inorder mechanism and thus dictate that Inorder is the optimal

mechanism of the three tested. Test case 3 is the first to traverse LCS 6 and test

case 5 is the first to force execution of LCS 13. This indicates that i t is important to

prioritise or choose test cases which traverse the mutated LCSs.

Table 6.2: Tr i typ Results : Relational Operator Live Mutants in LCSs

L C S # Mutants Test Cases
1 2 3 4 5 6 7 8

2 10 10 4 2 0 0 0 0 0
4 10 10 4 3 3 3 3 3 2
6 10 10 10 7 3 3 3 3 2

11 5 5 2 2 2 1 0 0 0
13 5 5 5 5 5 2 1 1 1

Another issue raised by this test is the position of equivalent mutations. There are

five equivalent relational operator mutations in LCSs 4, 6 and 13. In a small program,

such as Trityp, the presence of equivalent mutations wi l l bias the determination of the

best mechanism. I f the live mutations reside in LCSs close to the source LCS then

Textual or Preorder code traversal w i l l be more likely to result in faster live mutant

detection than an Inorder traversal. In Trityp the bias is towards Inorder because the

live mutations are in LGSs primari ly executed by that mechanism.

6.2.2 Reordering of Test Cases

The G r a i l system can output a list of the test cases which k i l l each mutant. Analysis

of the list revealed that to k i l l all the non-equivalent mutations only four test cases

were necessary: 3, 4, 5 and 8. Test case 5 killed 18 mutants, test cases 3, 4 and 8

ki l led 12 each. However, test case 5 does not uniquely k i l l any mutant whereas test

cases 3, 4 and 8 uniquely k i l l 2, 2 and 1 mutant respectively. Thus, the test cases can

be reduced and ordered by their mutant ki l l ing abihty. A second ordering was created

to test i f the best traversal mechanism was affected by the ki l l ing ability of the test

cases. The second ordering applied the test cases in the order 5, 4, 3 and 8. The

results showed that Inorder was st i l l the best of the three mechanisms tested. See

Table 6.3 for the results of the optimal ordering of test cases to k i l l relational operator

mutants. Relational operator mutations appear unaffected by the optimal ordering

of test cases wi th regard to traversal mechanism. However, there were only a small

number of (live) mutants w i th over 10% of the mutants generated being equivalent.

Table 6.3: Tr i typ Results : Relational Operator w i th Optimal Ordering of Test Gases

Relat iona l Operator Mutagen
I n p u t # L i v e Tex P r e Ino I n G a i n % Res

5 22 0.682 0.682 0.868 27.3 Ino
4 12 0.301 0.301 0.663 120.2 Ino
3 10 0.242 0.242 0.568 134.7 Ino
8 5 0.188 0.188 0.477 153.7 Ino

6.2.3 The Logical Operator Mutagen

Table 6.4 displays the results of testing the logical operators. In Trityp there are only

three occurrences of logical operators. These are in LCSs 2, 4 and 6. Inorder traversal

of the code w i l l result in the LCS mutation sequence 6-4-2.

Table 6.4: Tr i typ Results : Logical Operator

Logical O aerator Mutagen
I n p u t # L i v e T e x P r e Ino I n G a i n % Res

1 12 1.000 1.000 1.000 0.0 Equ
2 11 0.934 0.934 1.000 7.1 Ino
3 6 0.802 0.802 0.441 -45.0 T / P
4 5 0.755 0.755 0.342 -54.7 T / P
5 5 0.755 0.755 0.342 -54.7 T / P
6 5 0.755 0.755 0.342 -54.7 T / P
7 3 0.452 0.452 0.452 0.0 Equ
8 3 0.452 0.452 0.452 0.0 Equ

Trityp has 3 logical operators which generate 12 mutant programs.

Table 6.5 shows the positions of live logical operator mutants in Trityp. Test case

1 does not k i l l any mutants even though i t traverses an LCS containing a mutated

operator. This is for similar reasons to the mutation of the relational operator in LCS

2 i n that one of the two conditional parts is always true wi th test case 1. Test case 2

(5 4 3) results in Inorder traversal as the best of the three mechanisms in contrast to

the other, cumulative, tests. Test case 2 traverses two of the mutated LCSs, numbers

2 and 4. Only one mutant is killed f rom LCS 2 which means that the best mechanism

for finding live mutants is biased towards the mechanism which mutates LCS 4 before

LCS 2. Hence Inorder is the best given the small sample of tokens and LCSs mutated.

Once test case 3 is executed all LCSs containing logical operators are traversed. At

this stage the Textual and Preorder mechanisms show a higher rate of live mutant

detection. Five mutations in LCS 4 and 6 are killed by test case 3 thus making LCS

2 the sequence w i t h the most live mutants. As LCS 2 is executed first by the Textual

and Preorder mechanisms they generate a higher Mutat ion Metric.

Table 6.5 shows that there are very few mutants. The determination of the best

Table 6.5: Tr i typ Results : Logical Operator Live Mutants in LCSs

L C S # M u t a n t s Test Cases
1 2 3 4 5 6 7 8

2 4 4 3 3 3 3 3 1 1
4 4 4 4 2 1 1 1 1 1
6 4 4 4 1 1 1 1 1 1

mechanism w i l l therefore be biased towards the LCSs containing equivalent mutants,

each have one, and towards untraversed LCSs. The test cases which k i l l the most live

mutants are test case 3 and 8 which k i l l the same mutants and test cases 4 and 7. In

the test case application order 3, 7 and 4 the best mechanism is in i t ia l ly the Textual

and Preorder on test case 3 before becoming equivalent on the next two test cases.

On this small sample of logical operator mutations, the best traversal mechanism

fluctuates depending on the ki l l ing abili ty of the test cases.

6.2.4 The Variable Reference Mutagen

There are 34 variable references in Trityp to four named variables. Each variable

reference is mutated to one of the other three in-scope identifiers thus generating a

tota l of 102 mutants. The results of mutating variable references is displayed in Table

6.6. The LGSs containing variable references are LGS 1, 2, 4, 6, 10, 11 and 13. The

Inorder traversal mutates the LGSs in the sequence 6-4-13-11-10-2-1. In some cases

the Inorder traversal mechanism is superior to the other mechanisms for detecting

live mutants earlier in the test, but there are two occasions where the Textual and

Preorder mechanisms are more efficient.

Table 6.7 shows the positions of the live mutants wi th in Trityp after the cumulative

application of the test cases. Although LCS 1 has 18 possible mutants, none survive

the first execution of that sequence by test case 1. Inorder mutation therefore gener

ates a higher Muta t ion Metric because LCS 1 is the last sequence mutated by that

mechanism. The best mutat ion mechanism tends to be Inorder because of the number

of live mutants in LGSs 6 and 13. These LGSs are mutated early in the Inorder mech-

91

Table 6.6: Tr i typ Results : Variable Reference

Variable Reference Mutagen
I n p u t # L i v e Tex P r e Ino I n G a i n % R e s

1 84 0.780 0.780 1.000 28.2 Ino
2 36 0.581 0.581 0.858 47.6 Ino
3 29 0.508 0.508 0.767 51.0 Ino
4 25 0.478 0.478 0.672 40.6 Ino
5 21 0.524 0.524 0.620 18.3 Ino
6 17 0.610 0.610 0.571 -6.4 T / P
7 13 0.531 0.531 0.688 29.6 Ino
8 6 0.548 0.548 0.368 -32.8 T / P

Trityp has 34 variable references which generate 102 mutant programs.

Table 6.7: Tr i typ Results : Variable Reference Live Mutants in LCSs

L C S # M u t a n t s Test Cases
1 2 3 4 5 6 7 8 9

1 18 0 0 0 0 0 0 0 0 0
2 12 12 8 8 8 8 8 4 4 0
4 12 12 8 4 4 4 4 4 0 0
6 12 12 12 12 9 5 5 5 2 2

10 36 36 0 0 0 0 0 0 0 0
11 6 6 6 2 2 2 0 0 0 0
13 6 6 6 6 6 4 0 0 0 0

anism and, because they are untraversed unt i l test case 3 and 5 are applied, generate

a high number of live mutants. I t is not unt i l test case 6 is applied that the Textual

and Preorder mechanisms are faster at five mutant detection because the live mutants

reside in LCSs 2, 4 and 6. These are mutated earlier under Textual and Preorder

traversal. Test case 7 kills four mutants in LCS 2 leaving LCS 6 wi th the highest

number of live mutants. Thus, Inorder again becomes the better mechanism for live

mutant detection. Test case 8 removes all the mutants in LCS 4 and the majori ty in

LCS 6 leaving LCS 2 wi th the most mutants. The Textual and Preorder mechanisms

again become the better mechanism. One more test case was added by the author to

reduce the live mutants to equivalent mutants. The equivalent mutants were in LCS

99

6 : ' i f a = = b hk h = = c' could be wr i t ten as ' i f a = = c kk h = = c' or ' i f a == h

kk a = = c'. These results show that the efficiency of variable reference mutation is

very susceptible to code coverage. There are, usually, many variable references in a

program and a high degree of code coverage is therefore essential to k i l l the majori ty

of these mutants.

Using the G r a i l system to determine the ki l l ing abili ty of each test input, test case

2 ki l led the most w i t h 66 dead mutants. The other test cases uniquely killed seven

or less mutants. To k i l l all the non-equivalent mutants all but test case 1 is required.

The test cases were applied in the order 2-8-3-6 to determine the best mechanism

after opt imal ordering based on test case ki l l ing ability. The results are shown in

Table 6.8.

Table 6.8: Tr i typ Results : Variable Reference wi th Optimal Ordering of Test Cases

Variable Reference Mutagen
I n p u t # L i v e Tex P r e Ino I n G a i n % R e s

2 36 0.581 0.581 0.858 47.7 Ino
8 29 0.503 0.503 0.767 52.5 Ino
3 22 0.419 0.419 0.614 46.5 Ino
6 16 0.514 0.514 0.531 3.3 Ino

Thus variable reference mutations are susceptible to the kiUing ability and the order

ing of the test cases, but tend towards an Inorder traversal and mutation mechanism

under both a random and an efficient test. The efficiency benefit of an Inorder traver

sal diminishes as LCS coverage and mutant ki l l ing abili ty increases. This is due to

most LCSs containing variable references.

6.2.5 Variable Boundary IVEutagen

The variable boundary mutagen works on variable references and alters them by -|-

or - 1 or replaces a reference by the absolute value if i t is an integer. Table 6.9 shows

the results of applying the variable boundary mutagen to Trityp. The table shows

that Inorder code traversal mutation locates live mutants at a faster rate than the

other traversal mechanisms tested.

Table 6.9: Tr i typ Results : Variable Boundary

Variable Reference Mutagen
:j^Input # L i v e Tex P r e Ino I n G a i n % Res

1 99 0.876 0.876 0.999 14.0 Ino
2 63 0.765 0.765 0.878 14.8 Ino
3 57 0.706 0.706 0.844 19.5 Ino
4 43 0.585 0.585 0.652 11.4 Ino
5 42 0.588 0.588 0.637 8.3 Ino

6 41 0.599 0.599 0.622 3.8 Ino
7 38 0.543 0.543 0.640 17.9 Ino
8 34 0.483 0.483 0.558 15.5 Ino

Trityp has 34 variable references which generate 114 legal mutant programs.

Table 6.10 shows the locations of the live mutants under variable boundary mutation.

The sequence of LCS mutat ion is the same as variable reference mutation: 6-4-13-

11-10-2-1 for Inorder traversal. Inorder is the best of the three traversal mechanisms

tested because the greatest number of live mutations occur in sequences untraversed

un t i l later test cases but mutated earlier under Inorder traversal. For example, the

mutants in LCSs 6 and 13 are live unt i l test case 4 and 5 respectively, but are mutated

first and th i rd under Inorder traversal. LCS 10 holds a large number of equivalent

mutants (8) and would be expected to bias the determination of the best mecha

nism. However, LCS 10 is mutated in the same sequence position under all traversal

mechanisms.

To test whether the benefits of Inorder traversal weaken when the test cases are

ordered into their most efficient k i l l ing ability, the tests were repeated as before.

The test case order was 2-4-3-8. Test case 2 alone killed 51 of the mutants. Table

6.11 shows the results. Inorder traversal and mutation remains the most efficient of

the three techniques tested for variable boundary mutation. The efficiency gained

diminished as code coverage increased, possibly because of the high number of LCSs

containing variables.

OA

Table 6.10: Tr i typ Results : Variable Boundary Live Mutants in LCSs

L C S # M u t a n t s Test Cases
1 2 3 4 5 6 7 8

1 18 3 3 3 3 3 3 3 3
2 16 16 14 12 10 10 10 7 7
4 16 16 12 8 8 8 8 8 4
6 16 16 16 16 4 4 4 4 4
10 32 32 8 8 8 8 8 8 8
11 8 8 2 2 2 2 2 2 2
13 8 8 8 8 8 7 6 6 6

Table 6.11: Tr i typ Results : Variable Boundary wi th Optimal Ordering of Test Cases

Variable B o u n d a r y Mutagen
I n p u t # L i v e Tex P r e Ino I n G a i n % Res

2 63 0.765 0.765 0.878 14.8 Ino
4 47 0.628 0.628 0.708 12.7 Ino
3 43 0.585 0.585 0.652 11.4 Ino
8 39 0.528 0.528 0.577 9.3 Ino

6.2.6 Trityp Summary

Although the Trityp program is small, i t is well documented and has been published

w i t h test cases. These were applied to the program and all applicable mutagens were

analysed. The tests demonstrated that the relational operator, variable reference and

variable boundary mutagens benefit f rom Inorder code traversal and mutation. That

is, under Inorder mutat ion, live mutants are normally found earfier in a test sequence

when those mutagens were enlivened. When the test cases were ordered for their

maximum ki l l ing abilities, Inorder was always the best of the three traversal mecha

nisms tested. Logical operator mutation showed a variable best traversal mechanism.

There are very few logical operators in Trityp and the results were heavily biased by

code coverage and the presence of equivalent mutations.

6.3 Hoare 's F ind

Hoare's Find program reads a list of integers into an array. The user inputs a pivot

position for the array and Find sorts the array such that all the values stored in

positions lower than the pivot are less than the value stored in the pivot location.

A l l values stored in locations higher than the pivot are larger than the pivot value.

Using the data published in [19], Find was subjected to the same tests as Trityp. The

code, test data and the LCS control flow graph are in Appendix B. The applicable

mutagens were the relational and assignment operators and the constant, variable

reference and boundary replacements.

6.3.1 Relational Operator Mutagen

The results of the tests w i t h the published data is shown in Table 6.12. In contrast to

Trityp all the relational operator mutagen tests on the published data demonstrate

that Textual or Preorder mutation is more efficient than Inorder. However, Table 6.13

shows that there were very few live mutants after the application of test case 1. Of

the seven live mutants three were equivalent, in LCSs 2, 7 and 28. The mutants that

were killable were in sequences mutated early under Inorder traversal, thus making

Textual and Preorder more efficient for locating live mutants.

Table 6.12: Find Results : Relational Operator

Relat iona l Operator Mutagen
I n p u t # L i v e Tex P r e Ino I n G a i n % Res

1 7 0.390 0.390 0.253 -35.1 T / P
2 7 0.390 0.390 0.253 -35.1 T / P
3 5 0.485 0.485 0.290 -40.2 T / P
4 5 0.485 0.485 0.290 -40.2 T / P
5 5 0.485 0.485 0.290 -40.2 T / P

6 4 0.588 0.588 0.323 -26.5 T / P

7 4 0.588 0.588 0.323 -26.5 T / P

Find has 9 relational operators which generate 45 mutant programs.

Table 6.13: Find Results : Relational Operator Live Mutants in LCSs

L C S # Mutants Test Cases
1 2 3 4 5 6 7

2 5 1 1 1 1 1 1 1
5 5 1 1 1 1 1 1 1
7 5 1 1 1 1 1 1 1
9 5 0 0 0 0 0 0 0
12 5 0 0 0 0 0 0 0
15 5 1 1 0 0 0 0 0
19 5 1 1 1 1 1 0 0
22 5 1 1 0 0 0 0 0
28 5 1 1 1 1 1 1 1

There are only three of the published test cases necessary to remove all but one non-

equivalent mutant. These are test cases 1, 2 and 5. The optimal application of test

cases for the most efficient k i l l rate is as in the original test without the other four

test cases. The results are therefore the same as in Table 6.12. This example shows

that a small number of live mutants wi th a high percentage of equivalent mutants wil l

radically affect the efl'iciency of the mechanism chosen. This is similar to the logical

operator tests for Trityp.

6.3.2 Assignment Operator IVEutagen

Find has 17 assignment operators. The assignment operator set used by the G r a i l

mutat ion system is { = ,-1- = , - = , * = , / = , — = , & = , % = , A = } . Only three test cases are

shown in Tables 6.14 and 6.15 because the number of live mutants did not reduce

fur ther wi th the published test cases.

The mutat ion o f ' m = 1' and similar statements, to ' m- f = 1', ' m | = T (bitwise or)

and 'mA = 1' (exclusive or) w i l l be equivalent when m is zero. I t cannot be assumed

that the values of uninitialised variables w i l l be zero but when they are, there wi l l

be a high number of equivalent assignment operator mutations. In the C version of

Hoare's Find [42] there are 14 equivalent assignment operator mutations if and only if

the memory locations used for the variable storage have a stored value of zero. W i t h

Q7

Table 6.14: Find Results : Assignment Operator

Assignment Operator Mutagen
#Input # L i v e Tex Pre Ino InGain % Res

1 22 0.523 0.523 0.232 -55.6 T/P
2 16 0.625 0.625 0.100 -84.0 T/P
3 14 0.661 0.661 0.076 -88.5 T/P

Find has 17 assignment operators which generate 136 valid mutant programs.

any other values the result of assignment operator mutations in C is unpredictable.

Assignment operator mutation can therefore indicate problems with memory initiali

sation. However, if memory locations are initialised via assignment statements, then

those statements may also be mutated unless the initialisation procedure is deliber

ately not mutated.

The Inorder sequence traversal for the assignment operators in Find is 10-13-16-20-

23-24-6-28-2-1. Most of the equivalent mutations reside in LCS 1 which include the

initialisation statements. As LCS 1 is mutated first by the Textual and Preorder

traversal mechanisms, they result in the more efficient mechanism. LCS 1 is mutated

last by the Inorder mechanism. A Textual test on the assignment operators has a

minimum gain of 55.6% in efficiency over an Inorder test (see InGain column in Table

6.14).

Therefore assignment operator mutation is greatly affected by the presence of equiv

alent mutations depending on memory garbage. If these exist, they will bias the

results of optimal traversal technique in favour of Textual or Preorder mechanisms.

If the equivalent assignment operator mutations were removed from the above results,

Inorder mutation would be the more efficient technique due to the presence of live

mutations in LCSs 16 and 24.

A test for the optimal ordering of the test cases was not required because the test cases

were already in the best order possible for assignment operator mutant assassination.

Table 6.15: Find Results : Assignment Operator Live Mutants in LCSs

L C S # Mutants Test Cases
1 2 3

1 16 6 6 6
2 8 3 3 3
6 24 2 2 1
10 8 0 0 0
13 8 0 0 0
16 40 6 1 0
20 8 0 0 0
23 8 1 0 0
24 8 4 4 4
28 8 0 0 0

6.3.3 Variable Reference Mutagen

The results for variable reference mutation are shown in Tables 6.16 and 6.17. Only

five test cases are shown because the number of live mutants could not be reduced

below 10. The results show that Inorder traversal and mutation is more efficient

than the other two traversal techniques tested. The Inorder mutation sequence is

3-2-10-9-13-12-16-15-7-20-19-23-22-24-6-5-29-28-27-4-1. Most mutants do not survive

the application of the first test case and could be killed by any of the test cases. Out

of the 416 mutant programs created only 75 can be killed by less than two test cases

and 140 by less than four test cases. This corresponds to Mathur's work [65] which

indicates that most variable reference mutations are very unstable and easily killed.

Referring to Table 6.17, the LCSs with the most live mutants are LCSs 20. 22 and 24.

These are executed earlier in Inorder mutation than in Textual or Preorder and hence

bias the result towards Inorder. The Mutation Metric for each test is low suggesting

that none of the techniques is particularly good at locating live mutants. A few of the

live mutants are in LCSs close to the sink or the source LCS. The majority are in LCSs

distant from either of the extremal nodes of the control flow graph. This suggests that

a level-order test may be a better mechanism for locating variable boundary problems.

However, even with the low Mutation Metric, an Inorder test has an efficiency gain

of at least 115% over Textual (See Table 6.16).

Table 6.16: Find Results : Variable Reference

Variable Reference Mutagen
#Input # L i v e Tex Pre Ino InGain % Res

1 36 0.118 0.118 0.282 138.9 Ino
2 24 0.120 0.120 0.259 115.8 Ino
3 21 0.067 0.067 0.253 277.6 Ino
4 14 0.069 0.069 0.204 195.6 Ino
5 10 0.038 0.038 0.219 476.3 Ino

Find has 61 variable references which generate 416 mutant programs.

Most of the mutants can be seen to be unstable and die after the first test input

is executed. Only eight of the 21 LCSs being mutated require any analysis after

the first test case. This demonstrates that information regarding where live mutants

reside could be used to reduce the cost of testing. By locating the LCSs containing

live mutants and therefore considered to be potential fault regions, testing can be

directed more efficiently. The Grail simply appHes test cases until a mutant dies.

In an industrial test, it may be that a test is halted and stored and restarted at a

later date. When it is known where live mutants reside, either in particular LCSs or

in functions, test cases can be developed to exercise those regions which contain live

mutants.

The optimal ordering of test cases for variable mutation was unnecessary because the

majority of mutants are killed by test case 1. Test case 2 was the next best case

killing another 12 unique mutants followed by test case 4 killing an extra 7 mutants.

This would have removed the live mutants from LCS 20 but would not have affected

the outcome of Inorder being the best of the three traversal techniques.

6.3.4 Variable Boundary Mutagen

The results for variable boundary mutation on Find are in Tables 6.18 and 6.19. As in

the variable reference mutation, the Inorder traversal mechanism is the most efficient.

inn

Table 6.17: Find Results : Variable Reference Live Mutants in LCSs

L C S # Mutants Test Cases
1 2 3 4 5

1 48 0 0 0 0 0
2 24 0 0 0 0 0
3 8 0 0 0 0 0
4 8 0 0 0 0 0
5 16 2 1 0 0 0
6 48 1 1 1 1 0
7 16 2 2 0 0 0
9 16 0 0 0 0 0
10 8 0 0 0 0 0
12 16 0 0 0 0 0
13 8 0 0 0 0 0
15 16 0 0 0 0 0
16 64 3 1 1 1 1
19 16 0 0 0 0 0
20 16 7 7 7 0 0
22 16 8 7 7 7 7
23 16 8 0 0 0 0
24 16 5 5 5 5 2
27 8 0 0 0 0 0
28 24 0 0 0 0 0
29 8 0 0 0 0 0

Inorder traversal generates mutations in the sequence 3-2-9-12-16-15-7-20-19-23-22-

24-6-5-29-28-4-1. Most of the live (and equivalent) mutants reside in LCSs 7, 16 and

22. Each of these is traversed earher or in the same position under Inorder sequence

mutation and hence the bias towards Inorder. There is not as much variation between

the traversal techniques as in variable reference mutation, the largest variation being

a 22.6% improvement in efficiency.

The test cases were reordered for their optimal killing ability for variable boundary

mutations. Test case 1 was the best mutant killer with 87 dead and test case 6 killed

73. However, only 3 of the 73 were not killed by test case 1. This means that after

two test cases have been apphed to the mutants, 42 still remain alive, the same as in

the original test.

in i

Table 6.18: Find Results : Variable Boundary

Variable Boundary Mutagen
#Input # L i v e Tex Pre Ino InGain % Res

1 45 0.499 0.499 0.508 1.8 Ino
2 42 0.464 0.464 0.514 10.8 Ino
3 40 0.467 0.467 0.509 9.0 Ino
4 39 0.475 0.475 0.510 22.6 Ino
5 38 0.464 0.464 0.486 4.7 Ino
6 36 0.466 0.466 0.476 2.1 Ino

Find has 61 variable references which generate 132 valid mutant programs.

6.3.5 Find Mutation Summary

In contrast to the control flow testing of the relational operators in Trityp, Find

relational operators demonstrate that Textual code traversal and mutation locates

live mutants more efficiently. However, the relational operator mutants in Find are

easily killed by the test cases and the results are based on very few five mutants.

This implies that as more live mutants are killed the need for traversal techniques

other than Textual may diminish. However, the presence of equivalent mutants and

live mutation groupings within functions may affect this. The assignment operators

in Find also demonstrated that Textual traversal was more efficient at locating live

mutants. It was noted that a large number of live mutants were formed from the

mutation of initialisation statements which may be mutated earlier under Textual

traversal. These mutations are live or dead depending on what memory values are in

storage. Variable reference and variable boundary mutation both exhibited Inorder

traversal and mutation as the more efficient technique. This agreed with the variable

mutation results from Trityp.

109.

Table 6.19: Find Results : Variable Boundary Live Mutants in LCSs

L C S # Mutants Test Cases
1 2 3 4 5 6

1 6 1 1 1 1 1 1
2 4 2 2 2 2 2 2
3 4 1 1 1 1 1 1
4 2 0 0 0 0 0 0
5 8 4 2 2 2 2 2
6 12 3 3 3 3 3 3
7 8 4 4 4 4 4 4
9 8 2 2 2 2 1 1
12 8 2 2 2 2 2 2
15 8 2 2 2 2 2 2
16 24 4 4 4 4 4 4
19 8 4 4 4 4 4 2
20 4 2 2 2 1 1 1
22 8 7 7 5 5 5 5
23 4 2 1 1 1 1 1
24 4 2 2 2 2 2 2
28 8 2 2 2 2 2 2
29 4 1 1 1 1 1 1

6.4 Summary

Trityp exhibited Inorder traversal and mutation as the most efficient of the three

techniques at locating hve mutants. This applied to all the mutagens tested with

the exception of the logical operator which showed different techniques as being effi

cient depending on the code coverage and the presence of equivalent mutants. Find

showed that Inorder was the best technique tested for the variable mutations but

demonstrated Textual or Preorder was more efficient for the relational and the as

signment mutations.

In both programs, when Textual, or Preorder, was the more efficient technique, this

occurred when the number of live mutants was low and there were a large number

of equivalent mutants. The positions of the equivalent mutations affected the de

termination of the best traversal technique when the number of mutants was low.

Concentrations of live mutants in particular LCSs affected the test results. The

103

traversal mechanism which analysed an LCS with a large group of test components

early in its test sequence was more likely to detect live mutants.

Code coverage was also an important issue. Inorder traversal and mutation was

commonly the most efficient technique for detecting live mutants. However, as code

coverage increased, the benefits of testing with control flow decreased.

In some cases, there was only a small gain in efficiency in using control flow directed

traversal and mutation. This may be dependent on the code size. For a small im

provement in efficiency the cost of developing the information required to do control

flow mutation analysis should be weighed against the standard technique of Textual

mutation. However, even a 5% gain in efficiency in testing a large program may well

be worth the cost of control flow testing.

104.

Chapter 7

Grail Analysis of Multi-Function

Programs

'Nascentes Morimur'

A further group of larger, multi-function programs were tested. Three are discussed

in some detail in this chapter. These tests demonstrate the differences between, and

the problems of, testing on a textual basis as opposed to a control flow mechanism.

7.1 Introduction

The first program is taken from Kernighan and Ritchie's standard textbook on C,

The C Programming Language [50]. The program is not written as such in their book

but is given as a series of examples in using pointers and functions. The constructed

program, called Lines in this thesis, contains 7 functions and over 100 lines of code

(LOC). The second program was written by a mathematician and is the code for a

new algorithm to solve backtracking problems [77]. Known, in the tests, as BackT,

the code contains 186 predicates, 28 functions and 1414 LOC. The third test is on

seven modules of the Grail code, some 1876 LOC. This code, referred to as Grail,

contains 220 predicates and 35 functions.

in.5

7.2 Lines

The program reads in lines of characters up to a specific line length, sorts them and

prints them out in ascending order of character comparison. See Appendix B for the

code, the control flow diagram and the test cases. The code is more complex than

either Trityp or Find. Lines contains 7 functions, 117 LOC and 11 conditionals. It

generates some interesting comparisons between Textual and control flow based mu

tation testing. In the control flow diagram, partially reproduced in Figure 7.1, there

are LCSs which contain embedded function calls. (The ful l diagram is in Appendix

A.) These are indicated by the dashed lines as in LCS 6.4. When such an LCS is tra

versed for control flow aided mutation, the code prior to the function call is initially

mutated. The function called is then mutated with respect to its control flow before

control is passed back to the calling LCS. The remaining code within the calling LCS

is then mutated. Functions or LCSs already mutated are marked and bypassed to

ensure that components are not mutated more than once. The control flow diagram

also shows that a function may return control to one of several LCSs, see LCS 6.3.

Five test cases were manually constructed to kill over 75% of the generated mutants.

There were 102 equivalent mutants caused by the variable boundary and the constant

replacement mutagens. Another 20 mutants were live under the assignment operator

mutation because of zeroes retrieved from memory locations. The number of live

mutants varied on different executions of the same test cases because of memory

garbage problems. This leaves less than 10% of the mutants as non equivalent five

mutants.

7.2.1 Relational Operator Mutagen

Tables 7.1 and 7.2 display the initial results of the relational operator tests on Lines.

The three columns Tex, Pre and Ino in Table 7.1 display the Mutation Metric for

each of the three traversal techniques tested. PreGain and InGain show the efficiency

gain in using Preorder or Inorder traversal and mutation over the standard Textual

method. The Res column displays the technique with the highest Mutation Metric,

infi

Figure 7.1: Lines : Section of Control Flow Diagram

6.3

5.1

/^6.4b.6.^0b^
V 6.8b J

6.1

6.2

ye.ioc.e.iod^ j r

6.6

6.7

6.8a

—i F5

6.8b

6.4a

F5

6.4b

6.5

6.10a

6.9

I—i F5

6.10b

F6

6.10c

F6

e.iod

that is, the one which located live mutants more efficiently than the other two tested

mechanisms.

Table 7.1 shows that the Textual traversal and mutation of code is more efficient

than the two control flow methods tested. Table 7.2 shows that after the first four

test cases had been applied the live mutants were in LCSs which would be mutated

earlier under Textual and Preorder than in Inorder traversal. Hence the initial bias

towards Textual mutation as the more efficient technique. By test case 5, whichever

technique traverses Function 2 LCS 2 first will become the more efficient technique.

This corroborates the evidence in the previous chapter. A test of a program with very

few live mutations will result in the choice of the technique which traverses the LCSs

containing the larger fraction of the remaining live mutations earlier in its mutation

sequence. Thus, when testing programs, if any information about the grouping of live

mutants is known, a test should be directed primarily towards the functions or LCSs

containing the live mutants.

i n ?

Table 7.1: Lines Results : Relational Operator

Relational Operator Mutagen
^i^Input # L i v e Tex Pre Ino PreGain% InGain% Res

1 17 0.554 0.531 0.435 -4.1 -21.5 Tex
2 16 0.570 0.535 0.444 -6.1 -22.1 Tex
3 15 0.566 0.521 0.416 -7.9 -26.5 Tex
4 13 0.509 0.436 0.439 . -14.3 -13.8 Tex
5 11 0.363 0.424 0.408 16.8 12.4 Pre

Lines has 13 relational operators which generate 65 mutant programs.

Table 7.2: Lines Results : Relational Operator Live Mutants in LCSs

Funct L C S # Mutants Test Cases
1 2 3 4 5

1 2 5 2 2 2 2 0
2 2 15 4 4 4 3 3
2 5 5 1 1 1 0 0
3 2 5 1 1 1 1 1
3 4 5 2 2 1 1 1
3 7 5 2 2 2 2 1
4 2 5 1 1 1 1 1
6 2 5 1 1 1 1 1
6 5 5 0 0 0 0 1
6 7 5 1 1 1 1 1
7 2 5 2 1 1 1 1

The test cases were re-ordered for their maximum killing ability. Test case 5 killed 51

of the 65 mutants and test case 3 killed 17 of which 3 were distinct. These two test

cases were sufficient to kil l the same mutants that were killed by the original five test

cases. The remaining live mutants are not necessarily all equivalent mutants. Test

case 5 had the highest coverage of the LCSs, test case 3 one of the lowest. Between

them they execute over 90% of the LCSs. Table 7.3 shows the results of testing with

these test cases. Preorder traversal and mutation is the best technique with over

17% efficiency gains. Thus, relational operator mutation appears susceptible to the

ordering of the test cases in multi-function programs.

i n s

Table 7.3: Lines Results : Relational Operator

Relational Operator Mutagen with Optimal Ordering of Test Cases
Input # L i v e Tex Pre Ino PreGain% InGain% Res

5 14 0.399 0.481 0.406 20.5 1.7 Pre
3 11 0.362 0.424 0.408 17.1 12.7 Pre

Lines has 13 relational operators which generate 65 mutant programs.

7.2.2 The Arithmetic Mutagen

Tables 7.4 and 7.5 show the initial results of testing the arithmetic operators in Lines.

Inorder traversal and mutation was radically more efficient in detecting live mutants

than Preorder or Textual mutation.

Table 7.4: Lines Results : Arithmetic Operator

Arithmetic Operator Mutagen
#Input # L i v e Tex Pre Ino PreGain% InGain% Res

1 10 0.516 0.516 0.756 0.0 46.5 Ino
4 7 0.323 0.323 0.696 0.0 115.5 Ino
5 6 0.269 0.269 0.706 0.0 162.5 Ino

Lines has 10 arithmetic operators which generate 30 valid mutant programs.

Examination of Table 7.5 reveals why Inorder is the best mechanism for arithmetic

operator mutation in Lines. The few live mutants that do exist reside in LCSs that

are executed earlier in the Inorder sequence. Seven of the live mutants, in test cases

1 through 3, are in Function 6, LCS 4. This LCS is mutated second in the Inorder

traversal sequence but fourth in the Textual traversal sequence. The efficiency of

Inorder increases as more test cases are applied because all the live mutants reside

in the first 2 LCSs mutated under that mechanism. Again, this shows that when the

number of live mutants is low, it is important to focus in on the program region, that

is, the function or LCS, which contain those live mutants. An efficient test is one in

which the code traversal mechanism used can be aimed primarily at the problematic

region, that is the code containing live mutants.

in9

Table 7.5: Lines Results : Arithmetic Operator Live Mutants in LCSs

Funct L C S # Mutants Test Cases
1 2 3 4 5

1 2 1 0 0 0 0 0
1 3 1 0 0 0 0 0
3 9 4 0 0 0 0 0
6 4 12 ,7 7 7 4 3
6 10 8 3 3 3 3 3
7 3 4 0 0 0 0 0

The test cases were again reordered to maximise their mutant killing ability. Test

cases 4 and 5 were necessary to kill the same number of mutants as all five test cases.

Table 7.6 shows the results of using the minimal number of test cases.

Table 7.6: Lines Results : Arithmetic Operator With Optimal Ordering of Test Cases

Arithmetic Operator Mutagen
7̂ Input # L i v e Tex Pre Ino PreGain% InGain% Res

4 8 0.350 0.350 0.646 0.0 84.6 Ino
5 6 0.269 0.269 0.706 0.0 162.5 Ino

Lines has 10 arithmetic operators which generate 30 valid mutant programs.

Again, Inorder code traversal and mutation is the best technique, but with an in

creased efficiency. It should be noted that the number of live mutants is low as is the

Mutation Metric for all of the traversal techniques.

7.2.3 The Assignment Operator

Tables 7.7 and 7.8 show the results of testing the assignment operator in Lines. Only

three test cases are shown because test cases 2 and 4 did not kill any extra mutants.

In Table 7.7 the number of live mutants increased when five test cases are applied.

Some three mutants which were killed by test case 3 are enlivened after the test is

re-run with the five test cases. The problem is associated with values retrieved from

i i n

Table 7.7: Lines Results : Assignment Operator

Assignment Operator Mutagen
Input # L i v e Tex Pre Ino PreGain% InGain% Res

1 23 0.524 0.468 0.247 -10.7 -52.8 Tex
3 20 0.553 0.450 0.229 -18.6 -58.6 Tex
5 23 0.523 0.467 0.208 -10.7 -60.2 Tex

Lines has 18 assignment operators which generate 90 valid mutant programs.

memory. As mentioned in Section 6.3.2, the assignment operators will be mutated

to operators adding, subtracting or effecting logical work on a stored variable. If

the variable under mutation is uninitialised then it is possible that any value can be

retrieved from memory in the test. Thus, when the test is re-run it is possible to find

the number of live mutants increasing. In assignment operator testing in C, a mutant

is not necessarily dead when it has been killed by a test case. It may come back to life

depending on the values retrieved from memory. These mutants are termed Zombie

Mutants because they can come back to life at any time.

Table 7.8: Lines Results : Assignment Operator Live Mutants in LCSs

Funct L C S # Mutants Test Cases
1 2 3 4 5

1 3 2 0 0 0 0 0
2 1 8 2 2 2 2 2
2 2 8 0 0 0 0 0
2 3 8 0 0 0 0 0
2 6 8 8 8 7 7 8
2 7 8 6 6 5 5 6
3 1 8 2 2 2 2 2
3 2 8 0 0 0 0 0
3 9 8 2 2 2 2 2
6 4 16 0 0 0 0 0
7 2 8 3 3 2 2 3

Textual traversal and mutation was at least 10% more efficient at locating live mutants

than the other techniques. This is associated with the memory allocation functions at

the start of the program. Function 2, getline., has 5 of the 18 assignment operators and

111

its mutants therefore affect the result. Getline is mutated primarily by the Textual

traversal method. Therefore, it is important to direct a test of particular operators,

or operands, to functions in which clusters of these components exist.

The tests were re-run and the number of live mutants varied between 20 and 23 across

all the test cases. The test cases were not applied in descending kill rate abihty

because test case 1 is sufficient to kill all the non-equivalent mutants, assuming the

memory locations accessed by Lines had a stored value of zero.

Table 7.9: Lines Results : Variable Reference Operator

Variable Reference Mutagen
#Input # L i v e Tex Pre Ino PreGain% InGain% Res

1 31 0.333 0.313 0.531 -0.06 59.4 Ino
4 26 0.239 0.222 0.558 -0.07 133.5 Ino

Lines has 84 variable references which generate 155 valid mutant programs.

7.2.4 Variable Reference Mutagen

Tables 7.9 and 7.10 show the results of the initial tests with variable reference muta

tions. Only two test cases are shown, 1 and 4, because the other test cases did not

kil l any other unique mutants. Inorder is the most efficient of the three techniques

at locating the live mutants. Referring to Table 7.10, this is because the majority

of five mutants reside in functions 5 and 6, swap and qsort. These two functions are

mutated at the start of the Inorder traversal mechanism but are mutated towards the

end of the mutation sequence under Preorder and Textual traversal.

The test cases were already in the best order for kilhng mutants. Only test cases

1 and 4 need be applied to kill the same mutants that all five test cases killed. In

this case, as code coverage increased the efficiency of Inorder over Textual traversal

and mutation increased. This is opposite to Trityp but corresponds with the more

complex single function program Find. Lines and Find show that in a more complex

program and with test cases ordered for maximum killing ability, the efficiency of one

traversal and mutate technique over another can increase with LCS coverage.

119.

Table 7.10: Lines Results : Variable Reference Live Mutants in LCSs

Funct L C S # Mutants Test Cases
1 4

2 1 2 0 0
2 2 8 0 0
2 3 8 0 0
2 5 8 0 0
2 6 8 3 2
2 7 8 2 0
3 1 8 0 0
3 2 8 0 0
3 4 8 1 0
3 7 8 1 1
3 9 8 0 0
3 10 8 0 0
5 1 16 4 4
6 2 16 0 0
6 4 16 5 5
6 5 16 0 0
6 7 16 3 3
6 8 16 3 2
6 10 16 9 9
7 2 8 0 0
7 3 8 0 0

7.2.5 Variable Boundary Mutagen

Tables 7.11 and 7.12 show the results of testing variable boundaries in Lines with

the five available test cases. Test case 2 was redundant and did not kill any more

than test case 1. Inorder was the least efficient of the three techniques for detecting

live mutants and Textual code traversal and mutation was at least 14% more efficient

than i t . Table 7.12 shows that the majority of live mutants occur in function 1, alloc,

function 3, readlines and function 6, qsort. The 18, reducing to 14, live mutants in

function 1 must be compared with the initial mutations under the Inorder traversal.

The first mutations generated under Inorder are in function 6 LCS 2 and function

5 LCS 1. Inorder locates 9 live mutants in comparison to the 18 found by Textual

mutation. (See Appendix C for a plot of live mutant detection rate for variable

boundary mutation in Lines.) Textual continues to lead the live mutant count until

the last five mutant groups are generated. Again this leads to the conclusion that

113

Table 7.11: Lines Results : Variable Boundary

Variable Boundary Mutagen
#Input # L i v e Tex Pre Ino PreGain% InGain% Res

1 96 0.770 0.757 0.604 -1.7 -21.5 Tex
3 93 0.753 0.735 0.598 -2.4 -20.6 Tex
4 90 0.738 0.716 0.589 -2.0 -20.1 Tex
5 85 0.688 0.676 0.590 -1.7 -14.2 Tex

Lines has 84 variable references which generate 218 valid mutant programs.

once large clusters of live mutants are detected, a test technique which can focus onto

those code regions would be more efficient than one working down through code in

some set mechanism.

The test was repeated with the two test cases that killed the majority of mutants.

See Table 7.13. Test case 5 killed 118 mutants and test case 3 killed another unique

6. The other test cases only uniquely killed 1 mutant or less.

Under ordered test case application, Textual code traversal and mutation is still the

more efficient technique but the gain is less than 1%. This is possibly due to the

high number of variable references within most programs and suggests that test cases

should be ordered to kill as many variable mutations as early in the test as possible.

This would then remove a large number of live mutants and would allow the tester

to concentrate on determining the reasons for the existence of the remaining live

mutants.

7.2.6 Constant Replacement Mutagen

The results from the constant replacement mutation are shown in Tables 7.14 and

7.15. Only three test cases are shown because the other two did not kill any unique

mutants. Textual and Preorder are more efficient than Inorder traversal and muta

tion on the constant operands of Lines. However, the differences between the three

techniques are small. The test cases were already in the best order for kiUing mutants.

114

Table 7.12: Lines Results : Variable Boundary Live Mutants in LCSs

Funct L C S # Mutants Test Cases
1 3 4 5

1 2 10 10 10 10 7
1 3 12 8 8 8 7
2 2 6 3 3 1 1
2 3 4 1 1 1 1
2 5 4 1 1 1 1
2 6 4 4 4 4 4
2 7 8 5 5 5 5
3 2 4 1 1 1 1
3 4 12 7 4 4 4
3 7 4 2 2 2 1
3 9 16 4 4 4 4
3 10 4 1 1 1 1
5 1 20 5 5 5 5
6 2 8 5 5 5 5
6 4 24 13 13 13 13
6 5 12 2 2 2 2
6 7 8 2 2 2 2
6 8 10 2 2 2 2
6 10 36 15 15 14 14
7 2 4 1 1 1 1
7 3 16 4 4 4 4

The slight efficiency advantage gained by the Preorder code traversal and mutation

for test case 1 is due to the number of live mutants in functions 3 and 7. As the

mutants are killed with the following test cases, Textual code traversal and mutation

becomes more efficient at locating live mutants. This is because of the presence of

46%, reducing to 40%, of the live mutants in the first three written functions. Two

functions, 3 and 6, accounted for more than half of the constant references. This result

again indicates that a test should isolate the component clustering before initiating

mutation.

7.2.7 Summary of Lines

The multi-function program Lines demonstrates the need for maintaining information

about the test program for a ful l mutation test. Test cases which have a higher

Table 7.13: Lines Results : Variable Boundary With Optimal Ordering of Test Cases

Variable Boundary Mutagen
Input # L i v e Tex Pre Ino PreGain% InGain% Res

5 100 0.731 0.730 0.653 -0.001 -0.10 Tex
3 94 0.684 0.673 0.648 -0.02 -0.05 Tex

Lines has 84 variable references which generate 218 valid mutant programs.

Table 7.14: Lines Results : Constant Replacement

Constant Replacement Mutagen
#Input # L i v e Tex Pre Ino PreGain% InGain% Res

1 55 0.794 0.804 0.725 1.2 -8.7 Pre
2 50 0.748 0.739 0.688 -1.2 -8.0 Tex
4 46 0.688 0.656 0.676 -4.6 -1.7 Tex

Lines has 19 constant references which generate 95 valid mutant programs.

code coverage are useful for an initial test in order to remove as many of the live

mutants as possible. A second group of test cases should be apphed if they traverse

the code sequences which contain groupings of live mutants. That is, a database

of live mutant position should be held to help direct a test onto the code regions,

functions or LCSs displaying those live mutants. Traversing test cases only need be

applied, improving the efficiency of the test. Similarly, groupings of components can

be detected to pinpoint code regions which are likely to have a high fraction of the

generated (live) mutants. In this sense a test can be focused onto code which has

particular components or which displays a higher live mutant tendency. The ordering

of test cases appears to be useful in the testing of larger, more complex, programs in

order to improve the test efficiency.

7.3 A Backtracking Algorithm

BackT.c has 1414 LOC, incorporating 186 predicates and 28 functions. It is the

code for a multi-purpose backtracking algorithm and is to be published in [77]. Run

116

Table 7.15: Lines Results : Constant Reference Live Mutants in LCSs
Funct L C S # Mutants Test Cases

1 2 4
1 4 5 5 5 5
2 1 5 1 1 1
2 2 5 5 5 1
3 1 5 1 1 1
3 2 5 3 3 3
3 5 5 5 2 2
3 8 5 5 5 5
3 9 5 1 1 1
4 2 5 1 1 1
6 4 10 3 3 3
6 7 5 3 3 3
6 10 10 5 5 5
7 2 5 5 3 3
7 3 10 7 7 7
7 4 5 5 5 5

time parameters were required when executing BackT. The Grail input section was

adapted to allow run-time parameters to be stored and apphed to each mutant. These

parameters were not mutated. The run-time parameters dictated which of the pro

grams functions were to be executed. Consequently, several functions of the code were

untraversed by the test data. Of the test cases supplied, each of which traversed at

least 41% of the code LCSs, two were of interest because they traversed distinct func

tions. The smaller test case took only 2 seconds of CPU time to execute, the larger

took some 26 CPU seconds. The alarm settings within the Grail tool were adapted

to allow the mutants up to 50 seconds CPU time to execute. Thus, the running time

for these experiments was in the order of several hours for each mutagen and for each

traversal mechanism. The maximum time for the small test file and parameter list

was 11 hours and 41 minutes for the Textual traversal and mutation of the variable

references. The larger test file and parameter Hst took 25 hours and 44 minutes on

the same mutagen and traversal mechanism.

As the tests on BackT were progressing, it was noted that 7 of the 28 functions were

not executed by any of the test files under the parameters given, These were func

tions that were called when particular estimates were required or when the search

tree was minimised. As these were not executed by the test cases, it was thought

117

that an interesting experiment would be to remove the untraversed functions and run

a mutation test on the reduced code, known as BackTl. The traversal mechanisms

could then be compared on the ful l program with untraversed functions and on the re

duced program with full function coverage. Both programs are therefore functionally

equivalent. Full LCS coverage was not achieved with the test cases applied. BackT

had 623 LCSs and BackTl had 370. Each test case traversed more than 260 LCSs.

Thus, BackTl had an LCS coverage per test case of over 70%. The following sections

refer to both the fu l l program, BackT and to the reduced program, BackTl. The test

cases for BackT BackTl were not applied cumulatively because of the parameter

list requirement and because each test case took several hours to be applied.

7.3.1 The BackT Results

Table 7.16: BackT Results
Muta # # # _# Tex Pre Ino Pre- In- Res
-gen Refs Muts T C Live Gain% Gain%
Rel 166 830 1 523 .733 .686 .878 -6.4 19.8 Ino

2 589 .727 .628 .871 -13.6 19.8 Ino
Arith 112 365 1 263 .818 .800 .858 -2.2 4.9 Ino

2 289 .852 .844 .868 -0.9 1.9 Ino
Assign 311 2044 1 1172 .768 .715 .860 -6.9 12.0 Ino

2 1327 .763 .7.34 .860 -3.8 11.3 Ino
Inc- 87 261 1 158 .728 .744 .881 2.2 21.0 Ino
Dec 2 179 .693 .653 .868 -5.7 25.2 Ino

Logic 27 108 1 77 .887 .843 .887 -4.9 0.0 T / I
2 78 .878 .845 .889 -3.7 1.2 Ino

Var- 651 2564 1 1432 .557 .468 .793 -16.0 42.4 Ino
Ref 2 1409 .502 .410 .802 -18.3 59.8 Ino
Var- 651 1592 1 1048 .767 .717 .850 -7.8 10.8 Ino
Bnd 2 1031 .740 .688 .851 -7.0 15.0 Ino

Const 259 1293 1 920 .891 .876 .930 -1.7 4.4 Ino
2 1010 .888 .864 .926 -2.7 4.3 Ino

Cond 116 126 1 80 .564 .342 .766 -39.4 35.8 Ino
2 76 .517 .329 .733 -.36.4 41.8 Ino

Point 35 34 1 29 .976 .873 .931 -10.5 -4.6 Tex
2 29 .976 .873 .931 -10.5 -4.6 Tex

Table 7.16 shows the results of applying the mutagens on BackT. The results were

placed together in one table because of the similarity of the results. The first column

of the table refers to the mutagen applied and is followed by the number of references

to the operator or operand tested. The column, #Muts , refers to the number of

valid mutant programs generated and is followed by the number of live mutants after

the application of the test cases referred to under the # T C column. The remaining

columns are as in the previous sections.

Inorder traversal and mutation is consistently the best of the three mechanisms tested.

Checking the sequence of functions and LCSs mutated by the three traversal mech

anisms, it was discovered that Inorder traversal executed LCSs in functions 11, 13,

16 and 27 at the start of mutation. These functions were all untraversed by the test

cases and led to a higher number of live mutants detected earlier by the Inorder mech

anism. In the case of the relational operator mutagen, after 100 mutants had been

formed in test case 1, Inorder traversal and mutation had resulted in the detection of

58 live mutants. Textual traversal and mutation had detected only 20 live mutants.

When 200 mutants had been formed, Inorder had detected 110 live against Textual's

94. When the untraversed functions are removed, as for BackTl, Inorder traversal

lead to the detection of 50 live mutants for 100 generated in comparison to 20 located

under Textual traversal and mutation. Therefore, there is still an efficiency gain in

using control flow traversal and mutation. See Appendix C for a sample of the plots

of the Hve mutant detection rate for BackT and BackTl.

One side effect of testing via control flow, is the detection of dead code, that is,

unreachable code. Code can be unreachable due to the logic of conditional expressions

leading to LCSs that are impossible to execute. See Figure 7.2 for an example of dead

code formed by flaws in the code predicates.

Mutation Testing can not detect these cases except in as much as it would be im

possible to generate test data to flow through the dead code in the original program.

However, the mutants formed from the predicate alterations may effect execution of

dead code. Some dead code can be detected by testing via control flow. Code may be

unreachable by the control flow of the program. That is, there may be LCSs which

are not reachable from any other LCS. See Figure 7.3 for an example of this type

of dead code. Textual traversal and mutation will always generate at least as many

119

Figure 7.2: Dead Code formed by Ill-Constructed Predicates

if (num > 10)
{

if (num = 10)
NeverExecuted();

else
CanBeExecuted();

}

The call to NeverExecuted can not be executed because the second conditional

expression can never be True.

Figure 7.3: Control Flow Detection of Dead Code

if (condition)
return(O)

else
return(l);

NeverExecuted();

The call to NeverExecuted can not be executed although analysis of the conditional

expressions gives no indication of this.

mutants, both live and dead, as Preorder or Inorder traversal generated code. Textual

traversal and mutation will generate more mutants from code which is unreachable

under control flow traversal and mutation. Therefore, to benefit fully from control

flow driven testing, the LCSs traversed must be checked against the number of LCSs

in the test code. Discrepancies, in the form of dead code, can then be detected. The

mutants within the dead code can all be assumed to be live to force the tester to deal

with the code sequence. The figures given in the tables are the number of live and

total mutants from the Textual traversal data files.

Table 7.16 shows that all the traversal mechanisms generated a high Mutation Metric

^•7(]

of over 0.800 when the arithmetic operators were analysed. In the larger program

with the more untraversed code, Inorder was the most efficient mechanism for the

detection of live mutants. When the test was repeated on BackTl with the greater

percentage of LCS coverage, the Textual mechanism was more efficient. See Table

7.17 for the tests on BackTl. Thus, the detection of arithmetic live mutants appears

Table 7.17: BackTl Results

Muta # # # Tex Pre Ino Pre- In- Res
-gen Refs Muts T C Live Gain% Gain%
Rel 110 550 1 243 .666 .593 .736 -10.9 10.5 Ino

2 224 .546 .501 .729 -8.2 33.5 Ino
Arith 71 231 1 129 .774 .760 .705 -1.8 -8.9 Tex

2 143 .803 .812 .743 1.1 -7.5 Pre
Assign 191 1252 1 467 .601 .664 .680 10.5 13.1 Ino

2 535 .550 .670 .671 21.8 22.0 Ino
Inc- 50 150 1 68 .666 .702 .747 5.4 12.1 Ino
Dec 2 80 .572 .596 .707 4.2 23.6 Ino

Logic 22 88 1 57 .901 .842 .827 -6.5 -8.2 Tex
2 58 .886 .841 .829 -5.1 -6.4 Tex

Var- 560 1600 1 469 .395 .391 .583 -1.0 47.6 Ino
Ref 2 445 .300 .266 .620 -11.3 106.6 Ino
Var- 560 1078 1 534 .767 .717 .847 -6.5 10.4 Ino
Bnd 2 517 .652 .640 .749 -1.8 14.8 Ino

Const 154 768 1 495 .846 .826 .863 -2.4 2.0 Ino
2 485 .818 .806 .855 -1.5 4.5 Ino

Cond 65 71 1 25 .599 .230 .786 -61.6 31.2 Ino
2 21 .499 .240 .735 -51.9 47.3 Ino

Pointer 11 17 1 17 .970 .878 .883 -9.5 -8.9 Tex
2 17 .970 .878 .883 -9.5 -8.9 Tex

dependent on code coverage by the test cases. Analysis of the code reveals that the

majority of arithmetic operators occur in five functions. Three of these functions

are untraversed by the test data and two of these are mutated early in the Inorder

traversal sequence. Therefore the results for the BackT tests are biased towards

whichever traversal mechanism causes input untraversed code to be mutated early in

the test sequence. This will always be the Inorder mutation sequence for BackT.

Referring to Tables 7.16 and 7.17, Inorder is the most efficient of the three traversal

191

mechanisms on all four assignment operator tests. This is different to Lines in which

the Textual mechanism was the most efficient of the mechanisms because of the con

centration of assignment statements in the first three written functions. However, the

assignment operators in BackT &nd BackTl are not concentrated in a few functions.

When the operators, not necessarily assignment operators, are not concentrated in a

small number of LCSs or functions, Inorder traversal and mutation appears to the

most efficient of the three mechanisms tested. The improvement in using Inorder

traversal and mutation increased when testing BackTl., suggesting that as coverage

increased, the benefits of control flow testing also increased.

Inorder traversal and mutation is again the most efficient of the three mechanisms

when the increment-decrement operators were analysed. Inorder had a minimum

efficiency gain over Textual mutation of 12%. There are only 87 increment-decrement

operators in BackT. However, even with this low occurrence, Inorder is the best of the

three mechanisms for detecting the five increment-decrement mutants. The operators

are not concentrated in a few functions but are used in every function to increment

loop driver variables. The efficiency benefit over Textual decreased with higher LCS

coverage in BackTl. This is again due to the Inorder traversal mechanism dictating

the testing of input untraversed LCSs early in its mutation sequence.

Textual is commonly the more efficient mechanism for locating and generating mu

tants of the logical operator. Only in one trial, on BackT, was Inorder the better

mechanism with a 1.2% improvement. There are very few logical operators in the

two programs, concentrated in one function in particular. Thus, the traversal mech

anism which forces mutation of this function, function 20, earlier in its sequence will

be the best mechanism. This agrees with the earlier work, in Chapter 6, in which the

test cases and mechanisms which traverse the mutated LCSs first, where there are

few mutants or they are concentrated in few LCSs, can reverse the trend of all other

tests.

Inorder is much more efficient than either Textual or Preorder traversal and muta

tion when the variable references and boundaries are analysed. Preorder is the least

efficient traversal mechanism. This agrees with the results of the tests on the smaller

programs in which Inorder was the more efficient mechanism. Variable reference mu-

19.9.

tation under Inorder traversal on BackTl is more efficient than in BackT, agreeing

with the earlier results from Lines and Find in which increased code coverage in

dicated a greater divergence between the techniques. It should also be noted that

the Mutation Metric for variable reference mutation is low on all four tests, with the

exception of Inorder traversal on the larger BackT. The high score for the Inorder

traversal test on BackT is again due to the traversal of input untraversed functions

at the start of the mutation sequence. The remaining lower Mutation Metric scores

suggests that another traversal mechanism or test technique may be more efficient in

locating live mutants.

The tests on the constants in the two programs resulted in Inorder as the best traversal

and mutation mechanism, but with only an improvement of 4.5% at most. Analysing

the positions of the constants, it was found that the majority of them were in eight

functions, three of which were untraversed. Two of the remaining five functions, num

bers 5 and 20, are executed early in the Inorder mechanism and therefore increase

the live mutant count for that mechanism. After 100 mutants had been formed, the

Textual mechanism had detected 61 live mutants as opposed to the Inorder mecha

nism's 100. When the untraversed functions were removed, Inorder detected 90 in

comparison to the 61 detected by the Textual mechanism. This again shows that it

is important to isolate the functions which contain particular constructs or compo

nents. A test should be directed towards those functions with a higher concentration

of mutation components.

The same argument follows for the mutation of the conditional statements in BackT

and BackTl. The benefit of testing with Inorder traversal and mutation was higher,

as much as 47.3%, because the conditional statements are concentrated in a smaller

group of functions. The six functions which contain 10 or more conditionals include

three which are untraversed by the test data. The remaining three, functions 4, 17

and 26 are executed earlier under the Inorder sequence. The Mutation Metric for

all the conditional tests was low, implying that another, as yet untested, traversal

mechanism may be more efficient. The conditional tests again demonstrate that it is

important to determine the positions of components and to focus the test in on the

encompassing function.

193

The results for the simple pointer manipulation show that Textual traversal and

mutation is more efficient than the control flow mechanisms. Analysis of the two

programs results in the same argument as in the previous paragraphs. There are

very few pointer references; only 35 in BackT and 11 in BackTl. There are only two

functions which have more than two pointer references; functions 2 and 14. Function

14 is untraversed, therefore the mechanism which mutates function 2 earlier in its

sequence will find the majority of the live mutants. This is the Textual mechanism.

7.3.2 Summary of BackT

The program BackT vfa.s analysed and it was found that seven of its 28 functions could

not be traversed by the available test cases. Two input cases were chosen as represen

tative test inputs and executed on both BackT and a reduced, functionally equivalent

program, BackTl, which had the seven input untraversed functions removed.

Testing with the Grail mutation tool revealed that Inorder traversal and mutation

was commonly the more efficient mechanism for detecting the five mutants of BackT.

It was noted that the higher efficiency was due to some of the input untraversed

functions being tested earlier in the Inorder mutation sequence than in the Textual

or Preorder mutation sequences. Consequently, a higher number of live mutants were

detected earlier in an Inorder test leading to a higher Mutation Metric.

The effect of the input untraversed functions on the determination of the best traver

sal mechanism was removed in the tests on BackTl. However, Inorder was again

the most efficient mutation sequence mechanism except for the arithmetic, logic and

pointer manipulation mutagens. On analysis of the test code, it was discovered that

each of these three components were grouped, or concentrated, in a small number of

functions. The mechanism which traversed the functions containing the greater con

centrations of these mutation components early in its test sequence, was more likely

to quickly detect larger numbers of five mutants. This implies that it is important to

locate concentrations of mutation components and to focus the test onto the functions

containing those concentrations. The Mutation Metrics for the variable reference and

the conditional expression tests were low in comparison to the remaining mutagens.

194

It was suggested that another traversal mechanism should be analysed.

Table 7.18: Grail Results

Oper # # # _# Tex Pre Ino Pre- In- Res
Refs Muts T C Live Gain% Gain%

Rel 160 800 1 578 .926 .850 .864 -8.2 -6.7 Tex
2 561 .901 .810 .836 -10.1 -7.2 Tex
3 446 .831 .726 .739 -12.6 -11.1 Tex

Arith 14 52 1 20 .689 .499 .382 -27.6 -44.6 Tex
2 20 .612 .467 .467 -23.7 -23.7 Tex

Assign 551 2556 1 1885 .962 .938 .950 -2.5 -1.2 Tex
2 2175 .969 .948 .956 -2.2 -1.3 Tex

Inc- 54 150 1 126 .898 .847 .860 -5.7 -4.2 Tex
Dec 2 124 .893 .831 .838 -6.9 -6.2 Tex

Logic 34 136 1 125 .975 .945 .945 -3.1 -3.1 Tex
2 121 .952 .927 .941 -2.6 -1.2 Tex

Var- 709 5027 1 2092 .712 .680 .702 -4.5 -1.4 Tex
Ref 2 2289 .713 .694 .711 -2.7 -0.003 Tex

3 1391 .557 .519 .501 -6.8 -10.0 Tex

Var- 709 1301 1 1057 .914 .868 .873 -5.0 -4.5 Tex
Bnd 2 1040 .904 .862 .871 -4.6 -3.6 Tex

Const 318 1440 1 1188 .928 .917 .924 -1.2 -0.004 Tex
2 1168 .916 .922 .920 0.7 0.4 Pre

Unary 33 28 1 27 .953 .967 .999 1.5 5.1 Ino
2 25 .944 .892 .926 -5.5 -1.9 Tex
3 13 .954 .998 .878 4.6 -8.0 Pre

Cond 200 249 1 165 .620 .534 .556 -46.6 -10.3 Tex
2 160 .567 .480 .516 -15.3 -9.0 Tex

Pointer 308 462 1 238 .846 .593 .582 -29.9 -31.2 Tex
2 218 .788 .484 .466 -38.6 -40.9 Tex
3 130 .630 .539 .509 -14.4 -19.2 Tex

7.4 The Grail Test

The Grai l system comprises 11 modules of C source code plus several header files.

The total code is some 4978 LOC. The preprocessor section which performs the lexical

analysis, locates the mutation tokens and determines the connectivity between the

LCSs, is another 4925 LOC.

19.^

The Grai l system could not be tested in its entirety because of time and system

constraints; a mutation of a tool which mutates test programs would require strict

management. Several of the modules comprising the main Grail system were pre

pared for testing. These modules were placed in a single file as Grail cannot, as

yet, test multiple module systems. This single file comprised the data entry, display

and search and locate mutation components routines. These routines represented all

the functions necessarily performed prior to initiating mutation and comprised over

1800 LOC in 35 functions. The code also contained 210 conditional expressions, 57

of which were boolean expressions controlling loops. The test program is referred to

as Grail.

Two test cases, each with at least 37% LCS coverage were applied to all the mutagens.

In some cases three test cases were applied. The third test case had an LCS coverage

of 57%. Each test comprising a mutagen and a traversal mechanism took between 14

minutes for the Unary operators and 18 hours 5 minutes for the variable references.

The alarm call embedded in each mutant allowed 20 seconds of CPU time to complete

processing. The original program took only 8 seconds of CPU time.

7.4.1 The Grail Test Results

Table 7.18 shows the results of the tests on the relational operators in Grail. The

results show that Textual traversal and mutation was consistently the best of the

three tested mechanisms.

7.4.2 Grail Code Layout

Understanding the layout of the code gives insight into the reasons why Textual

traversal was consistently the more efficient traversal and mutation mechanism. The

Grail code is very simple in form. See Appendix B for the list of function names and

their associated tasks. The first eleven functions are memory allocating routines for

the different dynamic structures used in the code. The next five routines initiahse

196

memory and they are followed by two functions which read in the program data. The

next function compiles and executes the test program on the available test inputs and

the following two functions deal with the user input. There next follows ten simple

routines for checking the class of a token such as whether it is a relational operator or

an integer structured variable. The next three functions form the majority of the code;

the view-mutants function displays each mutation as a token number and offset within

its describing set and the search-prog routine locates the mutation components in the

test program. The struct-create routine forms the dynamic structure describing the

function and LCS connectivity from the token and function name data files created by

the preprocessor. This dynamic structure is traversed when mutations are generated

via the control flow. The final routine is the main program which calls the user-input,

storage, search and view routines.

The view-mutants, search-prog and struct-create routines are the longest in the code

at 182, 761 and 224 LOC each. They, with the main routine, are the last four routines

in the GrazV program. The view-mutants and searc/i-pro^ routines are also very simple

in structure. They are constructed of eleven conditionals, one for each mutagen. In

view-mutants, each conditional defines a logical block of code which includes a loop

to print the list of mutation components found. In search-prog, the code reached by

executing each conditional includes a switch statement to determine the type or set

element member of the component. For example, if a relational operator is located

in a function, the function number, LCS number, token number and a description

of the operator must be stored in a mutation component hst. The description is

the offset of the component within the Grail operator set. The relational operator

set is { = — , > , < , ! = , < , > } . An operator < is described by the offset, 4, within the

relational operator set. Consequently, when that component is mutated, the mutants

formed do not include the fourth member of the relational operator set. Variable

types must also be stored to ensure that variable references are mutated to other

variable references of the same type. The list of standard types, such as integer and

float, are added to when user-defined types are detected and marked by the parser.

The view-mutants and search-prog routines are important to this discussion because,

unless all mutagens are enlivened, the code coverage within each of these routines is

very low, around 25% for view-mutants and 16 to 54% for search-prog depending on

whether simple operators or variable references are to be located. The increased code

19.7

for variable reference location is due to each reference being checked for whether it is

global or local, its type and also whether it is a parameter or a declaration. The latter

cases are not mutated and are not added to the mutation component list formed by

the search-prog routine.

After the first tests were conducted on the Grail code it was noted that Textual

traversal was the more efficient code traversal and mutation mechanism. A check was

then made on the LCS coverage and it was noted that for any individual mutation,

several functions would not be traversed and, as mentioned previously, the two largest

functions would have very low LCS coverage. This large number of untraversed LCSs

and functions affect the Mutation Metric for each of the traversal mechanisms. The

mechanism which mutates the input-untraversed LCSs early in its sequence will locate

live mutants faster and consequently achieve a higher Mutation Metric.

A further test was then constructed. Only the mutations on input traversed LCSs

were considered, effectively creating a path execution mutation test. The Grail tool

could not support this test as it is written, so the original output from it was adapted

manually to show the results of only mutating along the execution path. A copy of the

original output was taken, see Appendix A for an example, and the untraversed LCS

lines deleted. A simple program was written to construct the execution path results

by comparing the LCSs in the execution path file with the LCSs in the original file.

The correct number of live mutants and mutants generated were then determined for

the path file. The results of analysing along the execution path are shown in Table

7.19.

7.4.3 Grail Results Explanation

The relational operator mutagen shows that the Textual traversal mechanism is more

efficient than either of the other tested mechanisms. The efficiency gain is between

7.2% and 18.4% on Inorder traversal on the same test input. The lower gain was

achieved on the ful l Grail test and the higher was on the execution path test, known

as PGrail. The relational operators used in Grail are concentrated in five functions

which read in the data and display and search the data for mutation components.

198

The mutations in the display and search routines are more likely to fail as they

deal directly with output and the creation of the mutation component list. Errors

in this list would create dead mutants as the list is partially printed to show the

distribution of mutants. Thus, it is the relational operators in the data reading and

storage manipulation routines that are more likely to remain alive. These routines

are typed at the start of the code and consequently Textual traversal locates the live

mutants earlier in its mutation sequence. The efficiency benefit of Textual traversal

and mutation is increased when the execution path mutations are considered. This is

again due to a concentration of live mutants in the initial memory allocating routines.

I t should be noted, however, that the Mutation Metric for the traversal techniques is

reduced when considering the execution path only mutations. This suggests that there

may be a more efficient mechanism for locating live mutants than the mechanisms

tested.

There are very few arithmetic operators in the Grail code. All but three of the

14 references are in function number 32, two of the remaining three references are in

function 34. Function 32 is mutated later than function 34 in the Preorder and Inorder

mutation sequences and consequently the Textual traversal mechanism detects the

majority of the live mutants earlier in the test. The execution path tests slightly

increased the benefit of testing with Textual traversal and the Mutation Metric was

again reduced in all test cases.

A similar argument follows for the few logical operators in the test code. The ones

which die occur in the data structure creation routine which is function 34. This

is mutated early in the control flow testing sequences and thus gives a lower live

mutant count in the lower quartile ranges than the Textual traversal mechanism.

The greater majority of the logical operator mutants remain live showing that the

test cases are not analysing the operators thoroughly, or that the majority of them

may be redundant due to robust coding techniques.

The increment-decrement operators occur throughout the code. The mutations which

die are in the storage location routines, as they affect the number of structures formed

to hold the component list, and the initial user input routines where they are used

to perform validity checks on the data. These routines are mutated earlier under

19q

the control flow traversal mechanisms and result in lower live mutant counts in the

first and second quartile. Consequently, the live mutants of the increment-decrement

operator are found earlier in the Textual traversal test sequence.

The assignment operators occur throughout the code and the Mutat ion Metrics for the

f u l l test are very high, each mechanism resulting in a metric score of over 0.9. There is,

however, only a slight efficiency advantage to be gained by using the Textual traversal

mechanism. This is due to the grouping of assignment operators in the functions which

set up the component lists and initialise memory. Another concentration occurs

in the functions which test for the set element position of a mutation component.

In any one test, the major i ty of these latter functions are untraversed and as they

occur in the wri t ten code before the larger search and view routines, they result in

a higher score for the Textual traversal mechanism. Once the untraversed functions

are removed for the execution path test, the Muta t ion Metric scores again reduce

and the efficiency benefit increases. The remaining concentrations for live assignment

operator mutations are in the storage allocation and initialisation routines. As in

the tests on Lines the fact that the assignment operators are grouped in functions at

the start of the code sway the result in favour of Textual traversal. The difference

between the Muta t ion Metrics for each traversal mechanism is low because in the

Grail code there are 551 assignment operator references and over 140 in the execution

path only tests and the references occur throughout the code.

The variable reference mutations on the f u l l Grail code show l i t t le difference between

the three traversal techniques. This is again due to the large number of variable

references throughout the code. However, the Muta t ion Metric for Textual traversal

is the highest at 0.712 and 0.713 which indicates that a better mechanism may not

have been analysed. A large percentage of the variable references occur in functions

33 and 34, the search-prog and the struct-create functions. As the greater part of the

search-prog routine is untraversed on all the test cases, the major i ty of live mutants,

some 80%, are resident in this one funct ion. Search-prog is mutated earher in the

Textual traversal sequence than in the control flow mechanisms on the fu l l code test.

As search-prog IS executed i t calls other functions to detect the mutation component

type and then to add information to the mutation component list. Therefore, under

control flow guided traversal and mutat ion, this large function is partially mutated

l.'^n

before a called routine is mutated. The large number of variable references and

therefore live mutants, are then distributed over the whole test. Under execution

path mutat ion the effect of this distribution is seen as an increased efficiency of the

Textual traversal. This test therefore shows the necessity of focusing a test on the

functions which display concentrations of particular components. Test case 3 showed

Preorder to be the most efficient traversal mechanism for the execution path test.

This test case incorporated the search for variable references and caused execution of

a large part of the code in the search-prog function. Consequently a large number of

variable references were analysed, (See Table 7.19). A smaller percentage of mutants

remain alive in both the f u l l execution and the path only test. The part of the

search-prog routine which locates variable references is executed early in the Preorder

execution path only test and consequently Preorder is the most efficient mechanism

for detecting live mutants.

The results again demonstrate that testing a large program via Textual or control flow

mechanisms w i l l always be affected by concentrations of test components in functions.

The variable boundary mutations on the fu l l test program again show Textual to

be the more efficient traversal and mutation mechanism. This is again due to the

number of variables in the untraversed functions which test the type and offset of the

mutat ion components and in the search routine. The execution path results show a

slight efficiency benefit in using the control flow traversal and mutation techniques.

This is due to over 30% of the live mutants occurring in function 34, which is the

last funct ion tested under Textual variable mutation, but is called and therefore

mutated earlier in the control flow traversal test sequences. This result agrees with

the variable reference mutation in that i t is important to isolate concentrations of

mutat ion components.

The constant mutation tests on the Grail code display the only occurrence of a more

efficient Preorder test on the f u l l program. However, in the fu l l code test the efficiency

improvement of Preorder, or Textual in test case 1, is very small. Constants are used

throughout the Grail code and each traversal mechanism displays a high Mutation

Metr ic . Under the execution path tests, the effect of the untraversed LCSs contain

ing constants are removed and the best mechanism is the one which traverses the

1.31

largest concentration of constants. This is in the view-mutants and the search-prog

routines. The view-mutants is tested last under control flow aided mutation and the

first funct ion tested, the user input function start-up, displays fewer live mutants.

This routine also incorporates initialisation of the mutagen count variables, all set

to zero, and displays a menu of mutagen types wi th constants for the user to choose

f rom. For example, the line ^RelationalOperator — 1' is printed to inform the user

that an input of 1 enlivens the relational operator mutagen. (See Appendix A for a

sample run of the G r a i l system.) Any alteration of these displayed constants results

in a dead mutant. A n alteration of a constant used for initialisation of a summation

variable w i l l also result in a dead mutant when fewer or greater mutation components

are displayed under the view-mutants routine.

There are only 33 references to unary operators in the Grail code, and less than

50% of those are executed under any one test case. As such the results are very

dependent on one or two mutations. The live mutant count under Textual traversal

lags the Inorder live mutant count by one after a particular mutation, in function 22.

dies. Thus, whichever technique traversed function 22 first in its mutation sequence

w i l l result in that technique being the least efficient of the three techniques tested.

When the effects of the input untraversed live mutants were removed, the control

flow techniques became more efficient at detecting live mutants. In all the tests, the

Muta t ion Metric was high as the major i ty of the mutations remained five under all

the test inputs. As the major i ty of mutants were five, and there were so few mutants,

the results varied depending on the results of very few mutations.

The Muta t ion Metric for each of the tests on conditional expressions was low, the

highest score being 0.62 on a Textual test. Function 33, search-prog again holds a

large number of conditional expressions, generating over 50% of the created mutants

and over 65% of the five mutants. However, Textual is the more efficient mechanism

for locating live mutants because of a group of mutants in the token check routines,

funct ion numbers 22 to 29. These functions are called f rom the search-prog routine

which means that the control flow driven traversal techniques locate the live mutants

later in their test sequence. The first few functions mutated by the Preorder and

Inorder techniques generate very few live mutants, indicating that conditional ex

pression mutations are more likely to die i f they are executed early in the code. That

U9.

is, conditional expression mutations in near source LCSs are more likely to die than

those in near sink LCSs. The execution path test showed a larger difference between

the traversal mechanisms tested in all but one case. As before, the Mutat ion Metrics

decreased showing that another traversal or test mechanism may be more efficient

than the ones analysed.

The simple pointer arithmetic tests revealed Textual traversal and mutation as the

most efficient test mechanism on the f u l l test, but Preorder on the path execution

tests. Appendix C includes a plot of the Hve mutant detection rate for the pointer

tests. The plot for test case 2 shows that the Textual traversal mechanism lags in the

detection of live mutants over the first quartile of mutants generated. This is because

the Textual test mutates funct ion 12 first which only has two live mutants out of 18.

This is funct ion fnames-fnos-read which, reads in the names of functions and a number

describing their wr i t ten order. This data was generated f rom the parser and was used

to help identify and check for uses of function names in the token data. Any pointer

faul t here, when the structure to hold the function names is being initialised, could

result in a funct ion name being over-written. This wi l l be obvious on the output as the

Grail system prints out all the funct ion names i t locates. The Preorder and fnorder

traversal sequences mutate the functions dealing wi th the data storage allocation and

these generate more live mutants than the data read functions.

There are very few live mutants in the last function tested by the Textual traversal

mechanism, the struct-create funct ion. This funct ion creates the structured list of

tokens and their descriptions, such as mutagen operator type, f rom the token data

file created by the preprocessor. Errors in the structure formed f rom this data wi l l

again be obvious on the output. I f data elements are not added or are overwritten

by faults in the pointer manipulations, some mutation components w i l l be lost. The

Grail prints out the LCSs traversed as i t generates mutants. Consequently, most

mutations in the storage and traversal of the LCSs and functions do not survive. I f

the trace of LCSs analysed were removed, the number of live mutants would fal l .

The Textual traversal sequence mutates function 33, the view-mutants routine before

the other sequences. This funct ion has a lot of live mutants because of the high

percentage of untraversed LCSs. Hence, Textual is the more efficient mechanism

overall for the detection of live pointer arithmetic mutants. The execution path tests

on the pointer manipulations showed an increased Muta t ion Metric and, in test cases

1 and 3, Preorder is the more efficient traversal mechanism as they detect the live

mutants f r o m the memory allocation and initialisation routines. Test case 2 also

showed higher Muta t ion Metrics on the execution path tests. The diff"erence between

the Textual and the Preorder test is negligible and is caused by a higher live mutant

detection rate in the first quartile by the Textual mechanism. This is again due to

live mutants occurring in storage allocation routines.

The pointer manipulation tests show that i t is important to test memory allocation

and initiahsation routines in C Faults in the traversal of dynamic structures may be

more easily detected but this also depends on the amount of data output. Copious

output data is more Hkely to cause mutants to die than output statements generated

when, for example, a particular search token has been located. I f a large structure is

being searched for a few items of information, faults in the traversal mechanism wi l l

generate a large number of live mutants. Consequently, when a large data structure

is being created and traversed, i t would be advisable to have numerous output state

ments, effectively forming a trace, for mutation purposes. This is effectively a form

of F i r m Muta t ion Analysis when the program state is analysed at logical points in

the code.

7.5 Summary of Grail Test

The mutat ion of part of the Grail code under the G r a i l mutation system has given

more insight into the testing of large programs. The ini t ia l results showed that the

Textual traversal and mutation mechanism was more efficient at detecting live mu

tants in code. This is in contrast to the tests on Lines and BackT. However, an

examination of the code and the test cases revealed some of the reasons why the

control flow tests were not as efficient as might have been expected.

The tested section of Grail code is made up of 35 functions,, the largest three being

placed at the end of the source code file. This would ini t ia l ly appear to make control

flow testing more efficient than a Textual test. However, these functions are large

1.34

because they are constructed of code dealing wi th each different mutagen type. Unless

more than one mutagen is enlivened by the user of G r a i l in any one execution, only

a small percentage of the LCSs in those functions wi l l be executed. Thus, the control

flow mechanisms partially mutate each of those functions before control is passed to

one of the smaller routines dealing w i t h memory initialisation or mutation component

analysis. The two larger functions, search-prog and view-mutants are also executed

towards the end of execution. The Textual traversal mechanism must mutate the

functions dealing w i t h memory allocation and initialisation and data input before i t

mutates the larger functions. These earlier typed routines do generate a large number

of live mutants. The main benefit of Textual traversal is derived f rom the mutation of

the larger functions. Textual traversal and mutation is applied to each logical block

dealing w i t h the mutagen types enlivened by the user, or test input. As the test cases

used only enliven one mutagen in any execution, the Textual traversal mechanism

mutates large logical blocks of input untraversed code in sequence before either of the

control flow mechanisms.

A secondary test was then performed on the live mutant data generated f rom the

Grail test. The live mutants f r o m the input traversed LCSs were analysed to deter

mine i f Textual traversal was st i l l more efficient than the other tested mechanisms

when generating mutants along the execution path only. The tests on the execution

path of Grail resulted in Textual traversal again being the more efficient mutation

mechanism. The cases where Textual was not the most efficient mechanism included

the variable reference and boundary, unary and pointer manipulation experiments.

The variable boundaries were due to concentrations of live variable boundary muta

tions in the funct ion which created the data structure. The test case which resulted

in Preorder as the best mechanism for detecting variable reference mutations was the

only one which traversed a large section of code which included a concentration of

variable references. The unary operators were very few in number and as such the

best mechanism depended on the order of traversal of one LCS. The pointer result

was due to the high number of live pointer mutants occurring in data allocation and

init ialisation routines which were executed earlier under Preorder traversal.

The Grail tests therefore agreed wi th the tests on the other mult i-function programs

tested. Large logical blocks of input untraversed code w i l l affect which traversal

mechanism is the more efficient at detecting live mutants. As coverage is increased,

the Muta t ion Metric is commonly reduced and the divergence between the three

techniques increased. That is, control flow testing as opposed to Textual traversal

testing does result in a different rate of live mutant detection. However, in some

tests, the arithmetic and conditional tests, the Mutat ion Metric was less than 0.5.

This suggested that the most efficient traversal or location mechanism may have not

been tested in these experiments.

7.6 Summary

The results for the tests on larger, mult i -funct ion programs were discussed in this

chapter. The first program, Lines, contained 117 LOC, 7 functions and 11 condi

tionals. The test results showed that test inputs w i th a higher code coverage should

be used in the in i t ia l stages of testing to remove as many five mutants as possible.

When high coverage test inputs, or test inputs wi th a high mutant kiUing abihty, were

applied early in the test, one of the control flow traversal and mutation techniques

was commonly the more efficient at detecting five mutants. In the tests where Tex

tual traversal and mutat ion was the most efficient mechanism, the assignment and

the constant mutagen tests, i t was noted that these components tended to be concen

trated in only a few functions. Consequently, the traversal mechanism which mutated

those functions earlier in its test sequence than the other mechanisms, is more likely

to detect groups of live mutants. I t was proposed that a test mechanism which de

tects groupings of mutation components and mutated those functions or LCSs early

in a test sequence would provide a more efficient test. That is, a test mechanism is

required which focuses mutat ion testing onto particular functions.

The next two programs were each over 1400 LOC. BackT had 1414 LOC with 28

functions and 186 predicates, while the section of the G r a i l tool tested had 1876

LOC w i t h 35 functions and 210 predicate expressions.

The tests on the BackT program showed Inorder traversal and mutation as the most

efficient technique. Seven of the 28 functions were discovered to be impossible to exe-

1.36

cute w i t h the available test cases and were removed to fo rm a functionally equivalent,

but much smaller program. The results for the tests on the smaller program, called

BackTl, showed that Inorder was commonly the most efficient traversal and mutation

mechanism. However, the arithmetic, logical and pointer mutagen tests resulted in

Textual traversal having the highest Mutat ion Metric. Each of these three mutation

components were grouped in a small number of functions. The mechanism which

traversed, and hence mutated, the larger groups of these components early in its test

sequences would result in the higher Mutat ion Metric. This result agrees with the

test on the assignment and constant mutagens on Lines in which i t was concluded

that i t is important to focus a test on concentrations of components.

The Grnil test results showed Textual traversal and mutation to be the most efficient

live mutant detection mechanism. On analysis of the code, i t was again discovered

that this bias was due to large numbers of input untraversed LCSs. On any one test

case, only 37 to 56 % of the LCSs were traversed. A secondary test was performed

to analyse the live mutants along the execution path of the test inputs. Textual was

again the most efficient traversal technique overall, but the variable reference and

boundary, unary and pointer manipulations showed a higher Mutat ion Metric for one

of the control flow traversal techniques. This was due to either concentrations of the

mutat ion components in particular functions or to the small number of mutations

performed.

The tests on the control flow and Textual traversal and mutation techniques on larger

programs have shown that i t is important to isolate where the mutation components

are concentrated in the code. A more efficient test technique may be to isolate the

functions which contain large groupings of particular code components and then to

mutate those functions prior to those wi th fewer of the components. Input untra

versed functions and LCSs can radically affect the results of testing via control flow.

Mechanisms to test along the input execution path only wi l l improve the efficiency of

the overall test. However, the mutations f r o m the untraversed LCSs must be taken

into account when judging the worth of the test inputs and in determining a Mutation

Score for the test set.

137

Table 7.19: Grail Execution Path Only Test Results

O p e r # # # # Tex P r e Ino P r e - I n - Res
Ref s M u t s T C L i v e G a i n % G a i n %

Rel 74 370 1 158 .782 .666 .661 -14.8 -15.5 Tex
80 400 2 164 .727 .607 .593 -16.5 -18.4 Tex

110 550 3 196 .695 .628 .634 -9.6 -8.7 Tex

Arith 12 48 1 16 .575 .376 .340 -34.6 -40.9 Tex
12 48 2 16 .468 .333 .333 -28.8 -28.8 Tex

Assign 149 918 1 578 .904 .871 .861 -3.6 -4.8 Tex
156 1090 2 708 .914 .887 .873 -2.9 -4.4 Tex

Inc- 18 54 1 30 .735 .664 .629 -9.6 -14.4 Tex
Dec 19 57 2 31 .715 .676 .576 -5.4 -19.4 Tex

Logic 10 40 1 30 .904 .783 .783 -13.4 -13.4 Tex
11 44 2 30 .831 .767 .734 -7.7 -11.7 Tex

Var- 248 1187 1 410 .718 .630 .556 -12.2 -22.6 Tex
Ref 261 1242 2 436 .699 .612 .528 -12.4 -24.45 Tex

403 4754 3 586 .529 .589 .448 11.3 -15.3 Pre

Var- 161 535 1 293 .774 .788 .784 1.8 1.3 Pre
Bnd 168 559 2 303 .756 .765 .798 1.2 5.5 Ino

Const 153 733 1 493 .866 .847 .825 -2.2 -4.7 Tex
171 823 2 543 .849 .825 .822 -2.8 -3.2 Tex

Unary 14 13 1 12 .980 1.00 .989 2.0 0.9 Pre
16 16 2 13 .966 .985 .985 2.0 2.0 P / I
16 16 3 13 .944 1.00 .943 5.9 .001 Pre

Cond 80 98 1 17 .334 .309 .262 -7.5 -21.6 Tex
85 105 2 17 .242 .165 .091 -31.8 -62.4 Tex

Pointer 162 324 1 100 .760 .812 .781 6.8 2.7 Pre
163 324 2 79 .694 .693 .658 -.001 -5.2 Tex
206 410 3 78 .626 .706 .668 12.7 6.7 Pre

1.3,S

Chapter 8

Conclusions

'Where is the wisdom we have lost in knowledge?'

'Where is the knowledge we have lost in information?'

T.S. Ehot

This chapter summarises the topic of Mutat ion Analysis and assesses the contribution

made by the research described in the preceding chapters. Some research areas for

future development are also discussed.

8.1 Review

This section outlines the field of Mutat ion Analysis and the research contribution

made in this thesis.

8.1.1 Introduction

The dynamic source code testing technique known as Mutat ion Analysis, M A , has

been described in some detail in Chapter 3 in this thesis. M A is a simple technique

l.'̂ Q

which involves changing source code components to syntactically correct alternatives.

The altered code, the mutant program, is then executed on the same test data as

the original test program. I f the output f rom the original and the output f rom the

mutant programs are identical, then M A has been successful in showing a weakness

in either the test program or the test data.

For example, i f the statement 'a = 6 + c' is mutated to 'a = 6 — c', the test data

must include a test input in which 'c' has a non-zero value. This, in itself, might not

be sufficient to distinguish the two programs, in which case the tester must analyse

the values of 'a' and '6'. I f the output f r o m the test program differs f rom the mutant

output, the mutant is deemed dead and removed f rom the test. The test data is

considered relatively adequate in that i t can identify a simple fault in the original,

supposedly correct, test code. I f the test data cannot distinguish between the test

program and the mutant, the latter is considered live. The test data is regarded as

poor in quality and must be enhanced to k i l l the mutant. I f the mutant can not be

kil led by any derived test data i t may be equivalent, or, the code component which

has been mutated may reside in code which is unreachable by any test data. At the

end of a mutation test, the test code has been thoroughly analysed for simple code

faults and a test set has been formed which gives confidence in the code.

M A originated in the U.S.A. in the 1970 [11, 22, 36]. I t was considered resource

intensive and too expensive for industrial use. Metrics derived to calculate the costs

of a mutat ion test indicated that the number of mutants varied wi th the square of

the number of statements or variable references in code [2, 10, 80] The cost is there

fore prohibit ive for the testing of large scale industrial or commercial code. Larger

programs take more system resources than the small programs usually analysed by

academics. Each mutant must have access to all the resources of the test code in

dicating that a large scale code test must be managed efficiently. Recent work [81]

has been directed towards sampling mutants to generate a statistically adequate test

set. Another approach is to use vector processor technology to speed up the test by

executing several mutants in parallel [16, 55 .

u n

8.1.2 Research Contribution

The approach taken in this thesis was to experiment w i th control flow driven muta

t ion. I t was theorized that inducing mutations along the execution paths, or possible

execution paths, may improve the detection rate of live mutants. I f a test is con

strained by time, cost or available resources, an efficient test would be one in which

a large number of live mutants would be detected as early as possible in the test.

The live mutant detection rate was expected to vary depending on whether a test

was performed using the code control flow graph to guide the mutant production, or,

the standard practice of mutating statements in typed, or Textual, order was used.

Chapters 4 and 5 of this thesis discussed the approach taken and the design of the tool

bui l t to analyse the efficiency of control flow driven mutation over Textual mutation.

A C mutat ion system was buil t to allow eleven different mutagens to be applied to

single file programs. A mutagen is an operator which alters the code components

forming mutation components. For example, the arithmetic mutagen wi l l alter a

token to one of ' — , / , * , % ' to create syntactically correct mutant programs. The

mutat ion system buil t , called the G r a i l , was comprised of three distinct sections. A

preprocessor to the mutation system detected the linear code sequences (LCSs) within

the source code. LCSs were defined as being linearly connected statements such that

i f the first statement was executed then so also was the last. The preprocessor also

derived the connectivity between the LCSs. This information was used by the G r a i l

mutat ion system to effectively traverse the control flow graph of the test program.

Mutations were then induced in either Inorder or Preorder traversal sequence order.

For the smaller, and less complex programs, the number of five mutants and the

mutants generated by each of the three techniques was always the same. However,

the number of live mutants found per mutant generated, the live mutant detection

rate, varied between the three techniques at different stages in the test. To describe

the efficiency of any one test, a Muta t ion Metric was derived. This results in a score

of 1 i f all the five mutations resident in a test code are found at the start of the

test. That is, every mutant formed at the start of a test is a live mutant. Mutation

Metrics of near zero indicate that the live mutants were found towards the end of

the mutat ion sequence. That is, all the dead mutants are detected before the live

141

mutants. The three traversal techniques were then compared for efficiency using the

Muta t ion Metr ic . The higher the Mutat ion Metric, the more efficient the traversal

mechanism for detecting live mutants.

S u m m a r y of Resu l t s

The tests performed on five programs were detailed in Chapters 6 and 7 of this thesis.

The test programs varied in size f rom 37 to 1876 fines of code (LOC). The first two,

Ramamoorthy's Trityp and Hoare's Find are well known in the testing literature

19, 71]. The other three programs were large, mult i -funct ion programs containing

between 7 and 35 functions.

The results f rom the G r a i l experiments show that mechanisms for traversing source

code and inducing mutations in a non Textual sequence order can improve the effi

ciency of a test. However, the results also show that several factors affect the test

efficiency:

• Code Coverage. Some results showed that as code coverage increased, the differ

ence between the traversal techniques, their Mutat ion Metrics, decreased. This

was due to, in these tests, a large number of LCSs containing live mutants.

Other results showed that as code coverage increased, the efficiency benefit of

using a control fiow traversal technique increased. This occurred when the live

mutants were concentrated in a few functions or LCSs. I f code coverage was

low, as may be found per test input on large code, then the results of an indi

vidual experiment depended on the number of mutation components that had

been traversed. I f few were traversed there was a high live mutant count which

increased the Muta t ion Metric for each of the mechanisms.

• Concentrations of Mutat ion Components. I f there were only a few LCSs or

functions which contained the major i ty of the mutation components, then one

traversal sequence usually had a much greater Mutat ion Metric than the other

two tested techniques. The mechanism which traversed, and thus mutated, the

few mutat ion LCSs in advance of the other traversal mechanisms produced a

14.9.

higher Muta t ion Metric. I f the LCSs were wri t ten at the start of the test pro

gram, as w i t h the assignment operators in Lines, see Chapter 6, then Textual

traversal and mutation was more likely to have the highest Mutat ion Metric. A l

ternatively, there may be a concentration of mutation components in a function

or LCS which is traversed and mutated by one of the control flow mechanisms

in advance of the Textual mechanism. This scenario would lead to a control

flow technique obtaining a higher Mutat ion Metric.

In the smaller test programs, the position of equivalent mutations affected the

outcome of the experiments. I f there were groups of equivalent mutations in a

few LCSs, then whichever mechanism traversed, and therefore mutated, those

LCSs in advance of the other mechanisms would have the higher Mutat ion

Metric .

• Location of Dead Code. Dead code is code that can never be executed. I t is

usually considered to be code that is unreachable due to flaws in code predi

cates. However, testing via control flow demonstrated that some LCSs, or even

functions, were unreachable f rom any other LCS. Textual traversal and muta

tion can generate more mutants than either Inorder or Preorder traversal and

mutat ion. The latter mechanisms cannot reach some LCSs and therefore the

number of live mutants generated was lower when this condition occurred.

• Ma t r ix of LCS - Test Input. Although not an automated part of the G r a i l

mutat ion system, a data file was created to hold information on the traversal of

LCSs by test data. This allowed test inputs to be chosen if they traversed LCSs

containing mutat ion components. The matrix was also useful for developing

test data and for locating dead code. A cell of the matrix containing a zero

indicated that no test input had achieved traversal of a particular LCS.

• Zombie Mutants. In some tests, notably in the larger programs, some mutations

died under application of a test case, but came back to life on another test.

The mutants were termed Zombie mutants and were due to memory garbage

problems. The mutagen which mostly demonstrated the Zombie mutants was

the assignment operator. The statement 'a = 0' could be mutated to 'a-f = 0'

in C. The mutant could be either live or dead depending on the value stored

in the memory location accessed by variable 'a'. Thus, these mutants had to

be removed f r o m the test and the tester was forced to initialise all variables. I t

was noted that the initialising statements should not be mutated, or that their

outcomes had to be ignored.

8.2 Assessment of Work

The general aim of the research undertaken was to apply M A to large, multi-function

code and to investigate its v iabi l i ty as a useful testing technique.

The experiments performed, although not compared wi th other test techniques for

efficiency or faul t detection ability, show that M A is an effective technique for locating

weaknesses in the test process as well as the test code. M A enables the tester to

develop more probing test inputs and to achieve high code coverage by encouraging

the demise of live mutant programs. Dead code and concentrations of live mutations

can be located in large programs and the efficiency of the detection can be improved

by the informed choice of a code traversal strategy.

The most efficient code traversal and mutation strategy is dependent on code coverage

and groupings of live mutations. Such information can be harnessed to provide a

tester w i t h a mechanism for conducting further code tests. Knowing where mutation

components are grouped, or which LCSs are untraversed, aid the development of an

adequate test set. Analysis of mutation via code control flow traversal can indicate

which mutations are likely to live or die depending on their position in the code. For

example, in the larger test programs, mutations of conditional statements tended to

die i f they were executed near the start of execution. Some mutations, such as the

variable reference mutations tended to be fragile and die very quickly.

A n important conclusion f rom this research is the need for large scale code tests to

be managed:

• Information regarding test input to code traversal should be automated and

manipulated to aid test data generation as well as Revision and Regression

testing.

144

• Muta t ion component concentrations, as detected by the G r a i l mutation sys

tem, should be analysed to reduce the cost of a test by directing i t towards

particular functions or LCSs. That is, once concentrations of code components,

or even particular code constructs, are located, a test could be focused onto

those concentrations.

• The predisposition of code components to liveness under mutation was not

fu l ly explored in the experiments undertaken. Full code coverage would have

been necessary for this to be analysed and this was not possible in the time

scale available. However, i t was noted that variable reference and arithmetic

mutations die quickly. Assignment operators have a lot of live, and possibly

equivalent, mutations in the C language. Simple pointer manipulations are not

easy to k i l l unless a lot of fist processing information is printed. A state based

comparison may be necessary for pointer mutations.

• The survey of common errors indicated that different code tasks show different

fault groupings. A program wri t ten to reduce scientific data is more likely

to contain round-off or boundary errors than a program wri t ten to search for

a name in a database. Consequently, particular mutations, or other testing

strategies, may be applicable to different types of code. Also, programmers and

testers are biased by their own sensitivity to faults. They tend to code around

or look for particular constructs. This information may help to improve the

efficiency of a test by pr imari ly analysing these problematic constructs.

These conclusions, and the results f r o m Chapters 6 and 7, meet the criteria for success

as laid out in Chapter 1, Section 2.

8.3 Future Directions

The research described in this thesis indicates that to test, and manage the test, of

a large system, a large quantity of information regarding the code should be stored

and manipulated.

145

• Details of LCS and funct ion coverage would aid the development of test data

and aid in the re-application of test inputs for Revision or Regression tests.

This could include data regarding concentrations of test components or live

mutations.

• A test information database could also store data regarding particular code

components or constructs regarded as suspect by the programmer or designer.

This could be enhanced by data f rom a larger survey of common errors in C code.

A long term study of industrial and commercial systems could be undertaken

to determine more precisely the commonality of faults.

• A history of the test and the systems development could also be useful. Infor

mation regarding previous bug reports, faults found, or even the programming

group who coded a module could be used to choose sample mutations or to

direct the test onto specific functions.

A l l this information, even i f only readable to the human tester, could improve the

efficacy of a test by focusing i t onto problematic functions or constructs.

Further tests on a variety of code could determine general guidelines for the applica

b i l i ty of different mutagens to code. To this end, the G r a i l mutation system could

be extended for more research on the likehhood of mutations surviving. This could

affect the sampling of mutations as i t would be practical to choose mutations that

are more likely to survive test input execution. I t would be expected that these more

exacting samples would be a more stringent test of a program than randomly chosen

mutat ion samples. Test suites that were sample mutation adequate could then be

compared wi th strong mutation adequate and data flow adequate test suites.

The abil i ty to focus a test onto specific units wi th in a system, such as those designated

cr i t ical , may be a useful device for reducing the cost of a test. Focusing onto particular

LCSs, functions or code constructs could allow a fo rm of dynamic impact analysis

to be performed. Muta t ing a newly inserted function using control flow mutation

starting at the point of execution of the function, could show the effect of faults along

the execution path. This would allow mutation analysis, one of the most stringent

testing techniques, to be applied on a partial basis to a large system. In contrast to

sampling mutants, this system would sample code to undergo stricter analysis and

could fo rm part of an integration test.

Nil Desperandum

14.7

Appendix A

A Sample Execution of the Grail

The following demonstrates a sample execution of the Grail Mutant Maker on the

Trityp program. Explanatory notes have been added in parenthesis. The data file is

also given.

Ids

Ml.O Token C o l l e c t i n g {Ml i s the Mutant Maker}

E n t e r t h e Program name : T r i t y p

E n t e r t h e number of t e s t c a s e s : 4

Mutant k i l l - t e s t c a s e d a t a : n

Run-time o p t i o n s : y/n n
•/ •/ •/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ V •/ V •/ V •/ V V •/ •/ V V V V •/ V V V •/ V y v v v v •/ v •/ »i

Choose t h e components to be mutated

End i n p u t w i t h a 0

•/.r/.y.y,r/.'/.my.y.y.y.y.%y.'/.

R e l a t i o n a l O p e r a t o r s 1

A r i t h m e t i c O perators 2

Assignment Operators 3

Inc/Dec O p e r a t o r s 4

L o g i c a l O perators 5

V a r i a b l e R e f e r e n c e 6

V a r i a b l e Boundary 7

Constant Replacement 8

Unary Replacement 9

S _ P o i n t e r A r i t h m e t i c 10

Context Negation 11

5

0

E n t e r 1 f o r T e x t u a l P a t t e r n

E n t e r 2 f o r PreOrder P a t t e r n

E n t e r 3 f o r InOrder P a t t e r n

2

C o m p i l a t i o n of PO s u c c e s s f u l { C o m p i l a t i o n of T e s t Program

TC output completed has been s u c c e s s f u l . A v a i l a b l e

T e s t c a s e s have been executed.}

FUNCTIONS:

main

{Najnes of code f u n c t i o n s . }

Token P o s i t i o n s of L o g i c a l ops

44 0

55 1

66 0

t o t a l . l o g o p : 3

MUTS TO.DO 3

{Token p o s i t i o n s cind mutation

component s e t o f f s e t .

0 = && ('and') , 1 = 1 1 C o r ') }

P reOrder S e c t i o n

mutate_seg 1 0 10 12

mutate_seg 1 1 13 40

mutate.seg 1 2 41 48

Mutating token 44 1

L i v e Mutant && 44 1 1

L i v e Mutant && 44 1 2

L i v e Mutant && 44 1 3

muts done : 1 t o t a l :

mutate_seg 1 3 49 51

mutate.seg 1 4 52 59

Mutating token 55 1

L i v e Mutant I I 55 2 2

dead mutant 2 55 2

L i v e Mutant I I 55 2 3

L i v e Mutant | I 55 2 4

dead mutant 1 55 4

L i v e Mutant I I 55 2 0

dead mutamt 2 55 0

muts done : 2 t o t a l :

{Mutate_seg i s t h e f u n c t i o n which

a n a l y s e s each LCS. The f i r s t c a l l to i t

shows t h a t i t i s mutating f u n c t i o n 1

(main), LCS 0. T h i s i s the LCS bound by

tokens 10 and 12. The t h r e e l i v e mutants

a r e of token number 44, t h e && symbol.

The l i v e mutants are d e s c r i b e d by t h e i r

o f f s e t , 1 = ' I I ' , 2 = '&' and 3 = ' I ' .

That i s , the l o g i c a l 'or'

and the b i t w i s e 'and' and ' o r ' . }

{Token 55 i s l i v e a f t e r t e s t case 0 has

been a p p l i e d but some of the mutants are

k i l l e d by t e s t c a s e s 1 and 2.}

mutate_seg 1 5 60 62

mutate.seg 1 6 63 70

Mutating token 66 1

L i v e Mutant && 66 3 1

dead mutant 2 66 1

L i v e Mutant && 66 3 2

L i v e Mutant && 66 3 3

dead mutant 2 66 3

L i v e Mutant && 66 3 4

dead mutant 1 66 4

muts done : 3 t o t a l

m utate_seg 1 7 71 78

mutate_seg 1 9 86 87

mutate.seg 1 19 151 152

mutate.seg 1 21 160 159

end of tokens {These were checks on the t e s t

NO CONNECTIONS 1 21 code token l i s t . LCS 21 i s the

mutate.seg 1 8 79 85 l a s t LCS i n T r i t y p . }

mutate.seg 1 10 88 114

mutate_seg 1 11 115 118

mutate.seg 1 12 119 121

mutate.seg 1 13 122 125

mutate.seg 1 14 126 133

mutate.seg 1 16 141 142

mutate_seg 1 18 150 150

mutate.seg 1 15 134 140

mutate.seg 1 17 143 149

mutate.seg 1 20 153 159

RESULTS:

&& 44 L I 1 {The f i v e l i v e mutants a r e :

kk 44 L I 2 Token number 44, the '&&' symbol;

kk 44 L I 3 mutants ' I I ' , '&' and ' I ' .

I I 55 L2 3 Token number 55, t h e ' I I ' symbol;

kk 66 L3 2 mutant ' I ' .

no of l i v e muts : 5 Token number 66, the 'kk' symbol;

mutant '&'.}

DATA F I L E :

rama #Funcs # L i n e s # S t a t s #Preds #Loops #TC

2 1 37 13 5 0 4

tk _ n o / t k _ r e f / fn_no/ seg_no/ # l i v e / #m_gen/ #groups gen

44 L I 1 2 3 4 1

55 L2 1 4 4 8 2

66 L3 1 6 5 12 3

0

P o s s i b l e Mutants 3

Appendix B

Program Details

The following details the code, test inputs and control flow diagrams for the three

smaller programs. The funct ion name list for the Grail test is also included.

B . l Trityp.c

/* Ramamoorthy's t r i a n g l e - T r i t y p */

/* T h i s program read i n 3 s i d e s of a trieingle and outputs */

/* the type oi the t r i a n g l e . •/

/* */
/* C v e r s i o n oi A.J. O f f u t t ' s Program 2 +/

#i n c l u d e <stdio.h>

i n t a,b,c,d ;

mainO

scanf("•/.d'/.d'/.d",&a, ftb, 4 c) ;

/* printf('7.d\f/.d\t'/.d\n",a,b,c); */

i l (a >= b 4& b >= c)

i

i f (a == b I I b == c)

{
i f (a == b && b == c)

p r i n t f ("7.s\n", " E q u i l a t e r a l ") ;

e l s e

p r i n t f ("'/.s\n" , " I s o s c e l e s ") ;

>

e l s e

{ a = a * a;

b = b * b;

c = c * c;

d = b + c;

i f (a != d)

{ i f (a < d)

p r i n t f ("'/.sNn". "Acute");

e l s e

p r i n t f ("'/.s\n" . "Obtuse") ;

>

e l s e

p r i n t f ("'/.sXn", "Right Angled T r i a n g l e ") ;

e l s e

p r i n t l (" " / . s \ n " . " T r i a n g l e Sides not i n o r d e r ") ;

Test Inputs for Trityp

Test Input a b c

1 2 12 27

2 5 4 3

3 26 7 7

4 19 19 19

5 14 6 4

6 24 23 21

7 7 5 6

8 5 5 3

1.=1.=>

Trityp L C S Control Flow G r a p h

[l O j

6J fu]

[] \j\ [f

^ [15]

1.=Sfi

B.2 Find.c

i n c l u d e <stdio.h>

i n t a [l l] , n, i , j , m, ns, r , f , w, i i ;

main()

{

p r i n t f ("'/,s", "How many numbers : ") ;

scanf ("'/.d",fcn) ;

m = 1;

ns = n;

n++;

/* p r i n t f ("•/.d\t'/.d\n".n,ns); */

p r i n t f (" '/,s", "Enter the numbers : ") ;

f o r (i = 1; i < n; i++)

scanf ("•/.d",&a[i]);

p r i n t f ("'/.s", "Enter p i v o t : ") ;

scanf("*/.d",&f);

w h i l e (m < ns)

{ r = a [f] ;

i = m;

j = ns ;

while (i <= j)

{ while (a C i] < r)

i += 1;

while (r < a [j])

j -= 1 :

i f (i <= j)

{ w = a [i] ;

a [i] = a [j] ;

a [j] = H ;

i += 1;

j -= i ;

}
}
i f (f <= j)

1.̂ 7

ns = J ;

e l s e

{ i f (i <= f)

m = i ;

e l s e

m = ns ;

> ;

}
f o r (i = l ; i < n ; i + +)

p r i n t f ("'/.d", a [i]) ;

r e t u r n (O) ;

Test Inputs for F ind

Test Input

1 9 -19 34 0 -4 22 12 222 -57 17 5

2 3 7 9 7 3

3 4 2 3 1 0 3

4 4 -5 -5 -5 -5 1

5 4 1 3 2 0 3

6 4 0 2 3 1 3

7 1 0 1

F i n d L C S Control Flow G r a p h

10

(START)

8

9

13

11

12

27

28

29

14

15

30

(STOP)

18

19

20

1 — 1
16 17 16 17

21

22

23

25

26

24

l.nQ

B.3 Lines.c

/* Kernighcin ft R i t c h i e 'The Ansi C Book' */

/* 2nd E d i t i o n pgs 108-110 */

/* */
/* Reads i n l i n e s and outputs them i n s o r t e d order. */

/* Uses p o i n t e r s and a r r a y s . */

i n c l u d e <stdio.h>

i n c l u d e <string.h>

#define MAXLINES 10 /* max # l i n e s to be s o r t e d */

#define MAXLEN 30 /* length of input l i n e */

#define ALLOCSIZE 100 /* a v a i l a b l e space •/

s t a t i c char allocbuf[ALLOCSIZE] ;

s t a t i c char * a l l o c p = a l l o c b u f ;

char •lineptr[MAXLINES];

char * a l l o c (n)

i n t n;

{
i f (a l l o c b u f + ALLOCSIZE - a l l o c p >= n)

{

a l l o c p += n;

r e t u r n a l l o c p - n;
}

e l s e

r e t u r n 0;

}

i n t g e t l i n e (s , l i m)

char s [] ;

i n t l i m ;

i n t c , i ;

i = 0;

while (— l i m > 0 && (c = g e t c h a r ()) != EOF ScSc c != '\n')

s[i++] = c;

ii (c == '\n')

s[i++] = c;

s [i] = '\0';

r e t u r n i ;

}

i n t r e a d l i n e s d i n e p t r , maxlines)

char * l i n e p t r [] ;

i n t maxlines;

{

i n t l e n , n l i n e s ;

char *p, line[MAXLEN];

n l i n e s = 0;

while ((l e n = g e t l i n e (l i n e , HAXLEN)) > 0)

{

i f (n l i n e s >= maxlines)

r e t u r n -1;

i f ((p = a l l o c (l e n)) == NULL)

r e t u r n -1;

l i n e [l e n - l] = '\0';

s t r c p y (p , l i n e) ;

l i n e p t r [n l i n e s + +] = p;

>
r e t u r n n l i n e s ;

w r i t e l i n e s (l i n e p t r , n l i n e s)

char * l i n e p t r n ;

i n t n l i n e s ;

{

while (n l i n e s — > 0)

p r i n t f ("'/.sXn", * l i n e p t r + +) ;

I f i l

swap(v, i , j)

chax •v [] ;

i n t i , j ;

{

chcir *temp;

temp = v [i]

v C i] = v C j]

v [j] = temp;

}

q s o r t (v , l e f t , r i g h t)

char *v [] ;

i n t l e f t , r i g h t ;

{

i n t i , l a s t ;

i f (l e f t >= r i g h t)

r e t u r n ;

SHap(v, l e f t , (l e f t + r i g h t) / 2) ;

l a s t = l e f t ;

f o r (i = l e f t + l ; i <= r i g h t ; i++)

i f (s t r c m p (v [i] , v C l e f t]) < 0)

swap (V, ++last, i) ;

swap(v, l e f t , l a s t) ;

q s o r t (v , l e f t , l a s t - 1) ;

q s o r t (v , l a s t + 1 , r i g h t) ;

}

mainO

{

i n t n l i n e s ;

i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MAXLINES)) >= 0)

{

q s o r t d i n e p t r . O , n l i n e s - 1) ;

s r i t e l i n e s d i n e p t r , n l i n e s) ;

r e t u r n 0;

}

e l s e

{
p r i n t ! (" e r r o r : input too b i g to sortXm");

r e t u r n 1;

Test Inputs for Lines

T e s t I n p u t 1:

t h e s e a r e

t h e l i n e s

i n i s h

t o

s o r t

T e s t I n p u t 2:

t h e s e a r e

t h e l i n e s

i »ish

t o

s o r t f o r

f u t u r e t e s t s

on t h i s

program

f o r

t e s t on the f i l e

l i n e s . c

T e s t I n p u t 3:

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

l i n e s

T e s t I n p u t 4:

t h i s i s a t e s t on

t h e l i n e l e n g t h B h i c h s h o u l d o n l y be t h i r t y

c h a r a c t e r s .

T e s t I n p u t 5;

t h i s i s a t e s t on one l o n g s i n g l e l i n e t o t r y t o k i l l o f f some mutants f o r the r e s e a r c h I'm doing!

Lines L C S Control Flow Graph

2a

Q 2

o

o o

a;

o

41 3
"3 >

3

3

<y
s o 3 u

a M
6 2

- l 5
o
c 2
o a 3

CO V

C -o

CM

B.4 Grail.c

The function list for the Grail code is as follows:

m a l l o c - e x i t 1

new-op-st 2

new-sg-st 3

new - f t - s t 4

new-fc-st 5

new-tk-st 6

new-p-st 7

new-pair-st 8

n e w - s t r c t _ s t 9

new-cond-st 10

new-comp-st 11

fnames-fnos-read 12

s e t - s t o r e - s t 13

c r e a t e - f t s t - q u e u e 14

s e t - s t o r e - p r o g 15

add-queue 16

read-data 17

read-in-prog 18

phaseO 19

s t a r t - u p 20

set-up-comps 21

i s - i n - r e l o p 22

i s - i n - a r i t h 23

i s - i n - a s s i g n 24

i s - i n - i n c d e c 25

i s - i n - l o g o p 26

i s - i n - t y p e d e f 27

i s - i n - r e s e r v e 28

Hhich-nuineric 29

i s - u n a r y 30

i s - i n - u n a r y 31

{The f i r s t eleven f u n c t i o n s are

memory a l l o c a t i o n routines.}-

{Reads i n f u n c t i o n names and t h e i r

numbers, e.g. m a l l o c - e x i t and 1}

{F u n c t i o n s 13 to 18 read i n the token

f i l e and a l l o c a t e memory, by c a l l i n g

Functions 2 to 11, to cr e a t e the

necessary s t r u c t u r e s . }

{Compiles the t e s t program.}

{Reads i n user i n p u t . }

{ I n i t i a l i s e s mutation component queue.}

{ F u n c t i o n s 22 to 31 check the token

types and mutation s e t o f f s e t . }

view-mutants 32 { D i s p l a y s the l i v e mutants.}

search-prog 33 {Searches data f o r mutation components.}

s t r u c t - c r e a t e 34 { C r e a t e s the function-LCS s t r u c t u r e . }

main 35 {Main r o u t i n e ; c a l l s other f u n c t i o n s . }

Appendix C

Sample Plots of Live Mutant

Detection Rates

The following pages show a variety of the plots produced by the Live Mutant Analysis

stage of the Gra i l prototype mutation tool.

S I

or 03

I
o

OC OZ

I
a
z
C

I
I

91 01

oc oz
siUD^nw 9An

1 3

SJUOVlh »An
0 0 i 0 9 Oi

8}UDinH »An

s I

ooc ooz
BJUOVIW OAT]

OOE OOZ

>
I

0 0 0 1

BJUD^m BAH

a.
I

ooos OOSl 0001
BjuoviW BATl

OSl 001
ejuojnw BAfi

Bibliography

1] Glossary of Software Engineering Terminology. IEEE/ ANSI, 1984.

2] A. T. Acree. On Mutation. PhD thesis, Georgia Institute of Technology, Atlanta

GA, 1980.

3] A.T. Acree, T. A. Budd, R. J. Lipton, R. A. DeMiUo, and F. G. Sayward.

Mutation Analysis. Technical Report GIT-ICS-79/08, School of Information and

Computer Science, Georgia Institute of Technology, Atlanta GA, April 1979.

4] H. Agarwal, R. DeMillo, R. Hathaway, Wm. Hsu, VV Hsu, E. Krauser, R.J.

Martin, A. Mathur, and E. Spafford. Design of Mutant Operators for the C

Programming Language. Technical Report SERC-TR-41-P, Purdue University,

West Lafayette, Indiana, March 1989.

5] W.F. Appelbe, R. A. DeMillo, D.S. Guindi, K.N. King, and W.M. McCracken.

Using mutation analysis for testing ADA programs. Technical Report SERC-

TR-9-P, Purdue University, West Lafayette, Indiana 47907, 1989.

6] V.R. Basili and R.W. Selby. Comparing the Effectiveness of Software Testing

Strategies. IEEE Trans, on Software Engineering, SE-13(12), December 1987.

7] Barry Boehm. Softiuare Engineering Economics. Prentice Hall, 1981.

17."̂

8] F.P. Brooks. The Mythical Man Month. Addison Wesley, 1980.

9] T. Budd and F. Sayward. Users Guide to the Pilot Mutation System. Technical

Report 114, Department of Computer Science, Yale University, 1977.

10] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale Univer

sity, New Haven CT, 1980.

11] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. The Design of a

Prototype Mutation System for Program Testing. In Proceedings NCC, AFIPS

Conference Record, pages 623-627, 1978.

[12] T. A. Budd, R. Hess, and F. G. Sayward. EXPER Implementor's Guide. Tech

nical report. Department of Computer Science, Yale University, 1980.

[13] T. A. Budd and R.J. Lipton. Mutation Analysis of Decision Table Programs. In

Proceedings of the 1978 Conference on Information Sciences and Systems, pages

346-349, 1978.

14] T.A. Budd. A Heirarchy of Test Methods. Technical report, University of Ari

zona, 1983.

15] B. Choi, A. Mathur, and B. Pattinson. PMothra: Scheduling Mutants for Exe

cution on a Hypercube. In Procs. ACM SIGSOFT, 3rd Symposium on Testing,

Verification and Analysis, 1989.

16] B. Choi and A.P. Mathur. Use of Fifth Generation Computers for High Perfor

mance Reliable Software Testing (Final Report). Technical Report SERC-TR-

72-P, Purdue University, West Lafayette, Indiana 47907, 1990.

17] L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J. Zeil. A Formal Evaluation

of Data Flow Path Selection Criteria. IEEE Transactions on Software Engineer

ing, 15(11):1318-1332, November 1989.

18] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An

Extended Overview of the Mothra Software Testing Environment. In Proceedings

of the Second Workshop on Software Testing, Verification and Analysis, Banff

Alberta, July 1988. IEEE Computer Society Press.

174

[19] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection:

Help for the Practicing Programmer. Computer, 11(4), April 1978.

20] R. A. DeMillo, F. G. Sayward, and R. J. Lipton. Program Mutation: A New

Approach to Program Testing. In Infotech International State of the Art Re-port:

Program Testing, pages 107-126. Infotech International, 1979.

21] R. A. DeMillo and E. H. Spafford. The Mothra Software Testing Environment. In

Proceedings of the 11th Nasa Software Engineering Laboratory Workshop, God-

dard Space Center, December 1986.

'22] R.A. DeMillo. Test Adequacy and Program Mutation. In Procs. 11th Inter

national Conference on Software Engineering, pages 355-356. IEEE Computer

Society Press, 1989.

[23] R.A. DeMillo and A.P. Mathur. On the Use of Software Artifacts to Evaluate the

Effectiveness of Mutation Analysis for Detecting Errors in Production Software.

Technical Report SERC-TR-92-P, Purdue University, West Lafayette, Indiana

47907, 1991.

24] I .M.M. Duncan and D.J.Robson. Parameterized Mutation Testing. Journal of

Software Testing, Verification and Reliability, 1(4), January- March 1992.

25] I . M . M . Duncan and D.J. Robson. An Exploratory Study of Common Coding

Faults in C Programs. Computer Science Technical Report 5/91, University of

Durham, 1991.

26] J.W. Duran and S.C. Ntafos. An Evaluation of Random Testing. IEEE Trans,

on Software Engineering, SE-10(4), July 1984.

27] A.S.C. Ehrenberg. Data Reduction. WileyTnterscience, 1975.

28] N. E. Fenton, R.W. Whitty, and A.A. Kaposi. A Generalised Mathematical

Theory of Structured Programming. Theoretical Computer Science, 36:145-171,

1985.

29] K.A. Foster. Error Sensitive Test Cases Analysis (ESTCA). IEEE Trans, on

Software Engineering, SE-6(3):258-64, May 1980.

17.=;

30] P.G. FrankI, S.N. Weiss, and E.J. Weyuker. ASSET: A System to Select and

Evaluate Tests. In Int. Con/. Procs. Software Tools, pages 72-9, April 1985.

[31] J.M. Galvin. Mutation Analysis: A User's View. In Proceedings 7th Annual

Micro-Delcon, ISBN 0 8186 -5545, pages 30-40. IEEE Computer Society Press,

1984.

32] M. R. Girgis. Studies of Program Test Coverage Criteria and the Development

of an Automated Support System. PhD thesis, Liverpool University, 1986.

33] M . R. Girgis and M . R. Woodward. An Experimental Comparison of the Error

Exposing Ability of Program Testing Criteria. In IEEE Computer Society Press,

pages 64-73, July 1986.

34] M.R. Girgis and M.R. Woodward. An Integrated System for Program Testing

Using Weak Mutation and Data Flow Analysis. In Procs. 8th International

Conference on Software Engineering, 1985.

35] R.G. Hamlet. Testing Programs with Finite Sets of Data. Computer Journal,

20(3), 1977.

[36] R.G. Hamlet. Testing Programs with the Aid of a Compiler. IEEE Transactions

on Software Engineering, SE-3(4), 1977.

37] R.G. Hamlet. Unit Testing for Software Assurance. In Proc. COMP.ASS89,

42-48, 1989. IEEE.

38] D. Hanson, R. Lipton, F. Sayward, and R. A. DeMillo. Program perturbations.

Technical Report, Yale University, USA, 1976.

39] J.Z.W. Hartmann. Structural Testing Techniques for the Selection Revalidation

of Software. PhD thesis, Computer Science, University of Durham, Science Site,

Durham, U.K., 1992.

40] M.A. Hennell, D. Hedley, and I.J. Riddell. Assessing a Class of Software Tools.

In IEEE 7th Int. Con/. Procs. on Software Engineering, pages 266-77, arch 1984.

41] Bi l l Hetzel. The Complete Guide to Software Testing. QED Information Sciences,

Inc, second edition, 1988.

17fi

[42] C.A.R. Hoare. Algorithms 65 : Find. CACM, 4(1), April 1961.

43] M.A. Holthouse and M.J. Hatch. Experience with Automated Testing Analysis.

IEEE Computer, 12(8):33-6, Aug 1979.

[44] J.R Horgan and A.P Mathur. Assessing Testing Tools in Research and Educa

tion. IEEE Software, pages 61 - 69, May 1992.

[45] W. E. Howden. Weak Mutation Testing and Completeness of Test Sets. Trans

actions on Software Engineering, 8(2):371-379, July 1982.

46] W.E. Howden. ReliabiUty of the Path Analysis Testing Strategy. IEEE Trans

actions on Software Engineering, SE-2(3):208-215, September 1976.

[47] D. Ince. The VaHdation, Verification and Testing of Software. Technical Report

84/8, The Open University, Milton Keynes, England, December 1984.

48] D. Ince and S. Hekmatpour. An Empirical Evaluation of Random Testing. Com

puter Journal, 29(4), 1986.

49] S. C. Johnson. Yacc : Yet Another Compiler-Compiler. Technical Report 32,

Computer Science, Bell Laboratories, Murray Hill , New Jersey, 1975.

50] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice

Hall, second edition, 1988.

51] D. E. Knuth. The Art of Computer Programming, volume 1 : Fundamental

Algorithms, chapter 2. Addison Wesley, 1969.

52] D.E. Knuth. The Errors of Tex. Software Practice and Experience, 19(7):607-

685, July 1989.

53] A. Koenig. C Traps and Pit Falls. Addison-Wesley, 1989.

54] D. I . Korchemnyi. Application of Mutation Analysis to Evaluation of Program

Testing Quality. Programming and Computer Software, 17:177-183, 1991.

55] E. Krauser, A. Mathur, and V. Rego. Mutant Unification : A New Method for

Mutation Testing on SIMD Machines. In Software Engineering and Its Applica

tions, 3rd Int. Workshop. EC2, Nanterre, December 1990.

177

56] E. W . Krauser, A . P. Mathur, and V . Rego. High Performance Testing on

S IMD Machines. In Proceedings of the Second Workshop on Software Testing,

Verification and Analysis^ Banff Alberta, July 1988. IEEE Computer Society

Press.

57] M . E. Lesk. Lex - A Lexical Analyzer Generator. Technical Report 39, Computer

Science, Bell Laboratories, Murray H i l l , New Jersey, 1975.

58] R. J. Lipton and F. G. Sayward. The Status of Research on Program Mutation.

In Digest for the Workshop on Software Testing and Test Documentation, pages

355-373, December 1978.

59] L.J .Morel l . A Theory of Error Based Testing. PhD thesis. University of Mary

land, College Park, M D , 1984.

60] B. Marick. A Survey of Test Effectiveness and Cost Studies. UIUCDCS-R-90-

1652, University of Illinois, 1990.

[61] B . Marick. Two Experiments in Software Testing. UIUCDCS-R-90-1644, Uni

versity of Illinois, 1990.

62] B. Marick. Experience W i t h The Cost Of Different Coverage Goals For Testing.

In Ninth Annual Pacific NorthWest Software Quality Conference, 1991.

[63] A .C . Marshall, D. Hedley, I .J . Riddell , and M . A . Hennell. Static Data-Flow

Aided Weak Muta t ion Analysis. Info. Software Technology, 32(1), Jan/Feb 1990.

64] A. Mathur . On the Relative Strengths of Data Flow and Mutat ion Based Test

Adequacy Criteria. In Ninth Annual Pacific NorthWest Software Quality Con

ference, 1991.

65] A.P. Mathur . Reducing the Cost of Muta t ion Testing : A n Empirical Study.

Technical Report SERC-TR-138-P, Purdue University, West Lafayette, Indiana

47907, 1993.

66] J.A. McDermid , editor. Software Engineer's Reference Book. Butterworth Heine-

mann, 1992.

17«

67] L. J. Morel l . Theoretical Insights into Fault-Based Testing. In Proceedings of the

Second Workshop on Software Testing, Verification and Analysis, Banff Alberta,

July 1988. IEEE Computer Society Press.

68] G.J. Myers. A Controlled Experiment in Program Testing and Code Walk

throughs/Inspections. Communications of the ACM, pages 760 - 768, Sept 1978.

69] G.J. Myers. The.Art of Software Testing. Wiley and Sons, 1979.

70] S.C. Ntafos. On Required Element Testing. IEEE Transactions on Software

Engineering, SE-10(6):795-803, November 1984.

71] A . J. Of fu t t . Automatic Test Data Generation. PhD thesis, Georgia Institute of

Technology, At lanta GA, 1988.

72] A. J. Of fu t t . The Coupling Effect: Fact or Fiction? In Proceedings of the Third

Software Testing, Analysis, and Verification Symposium, Key West, Florida, De

cember 1989. IEEE Computer Society Press.

73] A . J . O f f u t t . Investigations of the Software Testing CoupHng Effect. ACM Trans,

on Software Engineering and Methodology, l (l) : 5 - 2 0 , January 1992.

74] A . J . O f f u t t and S.D. Lee. How Strong is Weak Mutat ion. In Proceedings of the

Fourth Workshop on Software Testing, Verification and Analysis. IEEE Com

puter Society Press, 1991.

75] A . J . O f f u t t , G. Rothermel, and C. Zapf. A n Experimental Evaluation of Se

lective Muta t ion . In ICSE15, pages 100-107, Baltimore, M D , May 1993. IEEE

Computer Society Press.

76] Roger S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-

H i l l , 1982.

77] H .A . Priestley and M.P. Ward. A Multipurpose Backtracking Algori thm. Journal

of Symbolic Computation, To Appear.

[78] S. Rapps and E.J. Weyuker. Selecting Software Test Data Using Data Flow

Information. IEEE Trans, on Software Engineering, SE-ll(4):367-375, Apr i l

1985.

179

79] D.J . Richardson and M . C . Thompson. The R E L A Y Model Of Error Detection

and its Appl icat ion. In Proc. 2nd Workshop on Software Testing, Verification

and Analysis, pages 223-230, 1988.

80] I . J . Riddell , M . A . Hennell, M.R. Woodward, and D. Hedley. Practical Aspects

of Program Muta t ion . Technical report. University of Liverpool, 1982.

81] M . Sahinoglu and E. H . Spafford. Sequential Statistical Procedures for Approving

Test Sets Using Mutation-Based Software Testing. Technical Report SERC-TR-

79-P, Purdue University, West Lafayette, Indiana 47907, 1990.

82] I . Sommerville. Software Engineering. Addison Wesley, th i rd edition, 1989.

83] E .H. Spafford. Extending Mutat ion Testing to f ind Environmental Bugs. Soft

ware - Practice and Experience, 12(2):181-189, Feb 1990.

84] R. Untch, A . J. Of fu t t , and M . J. Harrold. Muta t ion Analysis Using Program

Schemata. In ISSTA, pages 139-148, Cambridge M A , June 1993.

85] J . M . Voas. P I E : A Dynamic Failure-Based Technique. IEEE Transactions on

Software Engineering, SE-18(8):717-727, August 1992.

86] S.N. Weiss and V . N . Fleyshgakker. Improved Serial Algorithms for Mutation

Analysis. In Int. Symp. Software Testing and Analysis, 1993.

87] E.J. Weyuker. The Cost of Data Flow Testing. IEEE Trans, on Software Engi

neering, 16(2):121-128, February 1990.

[88] M . R. Woodward and K. Halewood. From Weak to Strong, Dead or AHve? An

Analysis of some Muta t ion Testing Issues. In Proceedings of the Second Workshop

on Software Testing, Verification and Analysis, Banff Alberta, July 1988. IEEE

Computer Society Press.

89] M . R . Woodward. Concerning Ordered Muta t ion Testing of Relational Operators.

Journal of Software Testing, Verification and Reliability, l(3):35-40, 1991.

90] M.R . Woodward. Errors in Algebraic Specifications and an Experimental Muta

t ion Testing Tool . Software Engineering Journal, 8(4):211 - 224, July 1993.

91] M.R. Woodward, D . Hedley, and M . A . Hennell. Experience w i t h Path Analysis

and Testing of Programs. IEEE Transactions on Software Engineering, SE-

6(3):278-285, May 1980.

92] D. Wu, M . A . Hennell, D.Hedley, and I.J. Riddell. A Practical Method for Soft

ware Quali ty Control via Program Mutat ion. In Proceedings of the Second Work

shop on Software Testing, Verification and Analysis, Banff Alberta, July 1988.

IEEE Computer Society Press.

181

