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ABSTRACT 

SYNTHETIC RECEPTORS 

Novel, rigid cyclophanes have been designed and synthesised 
as receptors for the biologically important neurotransmitter, acetyl 
choline. The receptor cavities were less symmetrical than those of 
similar cyclophanes which had been previously prepared, as they 
incorporated two quite different functional groups on opposite sides of 
the cavity. 

NMR experiments indicated that a cyclophane which 
incorporated a benzoate residue bound acetyl choline, with an 
exchange between the free and bound species which was slow on the 
NMR time scale. A second cyclophane, which incorporated both a 
benzoate and a pyridinium residue, also bound acetyl choline, but the 
exchange between the free and bound species was fast on the NMR 
time scale. NMR experiments also indicated that a third cyclophane, 
which incorporated only uncharged pyridyl and benzyl residues, did 
not bind acetyl choline. However, acetyl choline was efficiently 
transported across a PVC membrane by this neutral cyclophane with 
very little interference from ammonium and group I and group II 
metal cations. 

Urea and thiourea residues were incorporated into crown-type 
macrocyclic frameworks. The crystal structures of two macrocycles 
incorporating thiourea residues (I8N4O2.2CS and 24N4O4.2CS) were 
determined, as was the crystal structure of the 18N402.2CS/silver(I) 
complex. 

Preliminary experiments indicate that the bisthioureas 
I8N4O2.2CS and 24N4O4.2CS form quite stable complexes with the 
'soft' metal cations silver (I), zinc (II), cadmium (II) and mercury (11), 
and that the analogous bisureas I8N4O2.2CO and 24N4O4.2CO form 
stable complexes with sodium and potassium, for which they are 
selective. 
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CHAPTER 1. INTRODUCTION. 



l.l.INTRODUCnQN 

The concept of receptor-substrate chemistry has been known for 

some considerable time, albeit as the very crude 'lock and key' picture 

first proposed by Emil Fischer in 18941. 

However, an understanding of the interactions leading to the 

recognition of a particular substrate by a given receptor has only been 

gained in fairly recent years. 

Crucial to this understanding has been the development of 

synthetic "macrocyclic" receptors, an area which has expanded rapidly 

since Charles J. Pedersen published his papers on crown ethers in 19672. 

Many synthetic "macrocyclic" receptors have now been prepared and 

their differing abilities to bind various substrates have been well studied3-

7. This has lead to a good understanding of the interactions involved in 

synthetic receptor-substrate chemistry and, by extension, the interactions 

in biochemical receptor-substrate systems such as proteins, antibodies, 

DNA and RNA. 

The ultimate goal is the ability to tailor substrates which will 

specifically bind to a given receptor; or, conversely, to tailor receptors 

which will recognise a particular substrate. Chemists and biochemists are 

now on the brink of an understanding which will allow rational, targeted 

drug design (tailoring of a substrate) and the preparation of wholly 

synthetic enzymes and sensors (tailoring of a receptor). It is with the latter 

- synthetic receptors - that this work shall be concerned. 



1.2. THE NON-CQVALENT BQND, 

A receptor or 'hosf has been defined as having convergent 

binding sitesS. In macrocyclic receptors these are arranged around a cavity 

in which a substrate or 'guest', having divergent binding sites, is bound, 

forming a host-guest or receptor-substrate complex. 

This interaction arises from forces other than those in an ionic 

lattice or conventional covalent bond, and has been termed a "non-

covalent bond". It is understood as an additive combination of relatively 

weak interactions9 such as hydrogen bonding, 7c-stackinglO electrostatic 

attraction and other dispersive forces^. The stability of the complex 

formed depends on how these interactions combine. From the studies of 

the many receptor-substrate complexes which have been formed, some 

general guidelines have been elucidated, which can help to predict or 

explain the relative (in)stability of complexes. These are discussed below 

and followed by examples of the types of macrocycles which have been 

prepared and complexes which have been studied. 

1.2.1. Number of Binding Sites and Contact Area 

Because the non-covalent bond arises from a combination of 

weak interactions, the strength of the bond is obviously related to the 

number of the interactions between the receptor and the substrate, with 

more interactions giving rise to stronger bonds^. Van der Waals' forces 

should be maximised by having as large an area of contact between 

substrate and receptor as possible. This is done by shaping the receptor so 

that the cavity is concave (in order to complement the convex surface of 

the substrate's electron density)8,i2. The number of binding sites, such as 

hydrogen bonding or electron donor-acceptor ("EDA") should also be 



maximised. The receptor cavity and substrate should have 

complementary sizes, with a closer 'fit' between the two leading to the 

formation of more stable complexes. 

1.2.2. The Principle of Preorganisation and the Macrocyclic Effect. 

It was realised very early in the study of macrocycles that their 

cyclic nature was of great importance to their ability to form stable 

complexes. For example, 18-crown-6 binds K+ in anhydrous methanol 

with a logK value of 6.08. The open chain analogue, pentaethylene glycol 

dimethyl ether, binds K+ in the same solvent with a logK value of only 

2.3. 

Similarly, it has been shown that cryptand [2.2.2] (figure 1.1) 

binds K+ with a logK value of 9.75 in 95% methanol, whereas the open 

chain analogue binds with a logK value of 4.88,13,14. 

CH3O-
0. 

N ^ V ^ Q A ^ N CH3-N 

cryptand[2.2.2] 'open chain' analogue 

Figure 1.1 

The reasons for this so called "macrocyclic" effect seem to be 

both entropic and enthalpic. The open chain analogue, having more 

degrees of freedom than its macrocyclic counterpart, requires more 

reorganisation in order to accommodate a guest species, and more energy 

to liberate it from the solvent so that binding can occur. 



This reasoning was extended by Cram, who established the 

principle of preorganisationl5/l6 which arises from the observation that 

host molecules which are flexible and require a change in conformation 

on complexation generally have lower stability constants than those 

which are rigid and have an 'open' stucture, and are consequently 

predisposed to the binding of a guest and require less energy to desolvate 

the receptor. 

For example, the crown ethers and cryptands in their solution 

state do not possess a cavity; it is filled by inwardly turned methylene 

groupsl2. On formation of a complex the methylene groups turn 

outwards and the oxygen or nitrogen donor atoms become directed 

inwards in the correct orientation for binding. This reorganisation is 

associated with not only a detrimental entropy requirement in the 

formation of the complex, but also limits the favourable enthalpy change 

on complexation. 

In macrocycles which are rigid and which possess a preformed 

cavity, this detrimental entropy requirement is accounted for in the 

synthesis of the macrocycle. For example, Cram's spherandsi5,l6 e.g. 

spherand-6, figure 1.2 are very rigid and have a cavity surrounded by 

oxygen donor atoms which are ideally arranged for binding spherical 

metal cations, leading to stability constants which are very high^7. 

Another consequence of very rigid receptors is that they show 

enhanced size selectivity for similar potential guests. For example the 

spherand shown in figure 1.217 forms very stable complexes with Li+ and 

Na+, but does not form complexes with other cations such as K+, 

Rb"'",Cs''", Mg2+ or Ca2+. This is in contrast to the crown ethers and 

cryptands which are flexible and can undergo some distortion from their 



most stable conformations in order to accommodate guests of different 

sizes. 

Figure 1.2 

Spherand-6 

However, it should be noted that whilst receptors which 

have a high degree of preorganisation form very stable complexes they 

have dynamic properties which, for many purposes, are far from ideal -

they decomplex slowly (although acid catalysed dissociation may be fast) 

and so have poor transport properties. Also, where macrocycles are to be 

used as models for enzymes or other biologically active substances they 

may be required to catalyse a reaction on a bound substrate. This 

inevitably leads to a conformational change of the substrate which a very 

rigid host may be unable to accommodate. 

Finally, if a complex is to form, then the receptor must have a 

cavity which is accessible. In the case of rigid receptors, this means that if 

the cavity is completely encapsulated then there are large, steric barriers 

which inhibit the uptake of the substrate, and complexation or 

decomplexation cannot occur without the breaking of covalent bonds. 

Unless the substrate is included during the cyclisation step in the 



synthesis of the macrocyclelS (in which case it could possibly be a 

template^^ for the reaction), complexes will not form. 

For example. Cram et.al. have prepared macrocycles of the type 

shown in figure 1.3, which they have termed "carcerands". The 

compound shown forms complexes with DMF, THF, Cs+, CsCl and H2O. 

However, the free macrocycle is never isolated - the complexes are 

formed during the synthesis of the macrcycle as the substrates are present 

in the reaction medium^S. Once the complexes are formed, the receptor 

and substrate cannot be separated without cleaving covalent bonds. 

Figure 1.3 

1.2.3. Solvent Effects20,21 

Most complexation studies take place in solution, and the 

solvent used plays a crucial role. Its influence on the association of the 

receptor and substrate depends upon how well it solvates both receptor 

and substrate separately, the complex when formed and also upon the 

cohesive forces between the solvent molecules themselves. 

In the solution state, scheme 1.1 can be used to describe the 

formation of a complex from solvated host and guest. 



R(solvated) 

S(solvated) 

R+S -R.S 
where R=receptor, S=substrate and R.S=complex 

Scheme 1.1 

Each step is discussed briefly below: 

(i)Desolvation of Receptor. 

In the simplest case, we assume that the solvation of the 

exterior of the receptor remains unchanged i.e. we consider only the 

removal of solvent molecules from the receptor cavity (a close 

approximation for rigid receptors - for more flexible receptors an 

enthalpy/entropy requirement for the rearrangement of the receptor 

must also be considered). 

The enthalpy of the system is increased by the loss of any 

attractive interactions between solvent and the cavity and the cohesive 

attractions of the solvent molecules within the cavity. The enthalpy of 

the system is decreased by the association of the liberated solvent 

molecules with the bulk liquid. 

The entropy of the system is increased by the loss of the ordered 

solvation of the cavity. 

(ii)Desolvation of Substrate 

When the substrate is removed from its solvation sphere, the 

enthalpy of the system is increased by the loss of guest-solvent 

interactions and solvent-solvent interactions within the solvation 



sphere. It is decreased by the cohesive interactions of the solvent 

removed to the bulk liquid. 

Entropy is increased by the loss of the ordered solvation shell. 

(iii)Complex Formation. 

Receptor and substrate associate to form a complex. The 

enthalpy of the system is decreased by attractive receptor-substrate 

interactions, but the entropy change is detrimental because of the 

formation of an ordered complex. 

Obviously there are several terms which contribute to the 

overall free energy of the process and the size and sign of AGcomplexation 

depends on the net gain or loss of entropy and enthalpy at each step. 

Strong solvent-solvent and weak solvent-substrate and solvent-cavity 

interactions lead to the formation of more stable complexes. 

(Note that solvation of any counterions which may be present has not 

been considered). 

(CH2)n 

Figure 1.4 



For example, the macrocycle shown in figure 1.4 forms stable 

complexes with para-disubstituted beitzenes, but the complexes formed in 

water are more stable than those in methanol22. 

Table 1.1 shows some thermodynamic parameters for the 

complexation of this macrocycle with p-benzodinitrile and p-

dimethoxybenzene. 

Ka(lmol-l) AG(kJmol-l) AH(kJmol-l) TAS(kJmol-^) 
complex with p-benzodinitrile 

D2O 7.8X103 -21.7 -39.7 -17.9 
CD3OD 24 -7.5 -17.5 -10.0 

complex with p-dimethoxybenzene 
D2O 1.0X104 -22.6 -42.6 -20.0 

CD3OD 8 -5.0 -18.3 -13.3 

Table 1.1 

In both solvents, the entropy term is unfavourable and so the 

complexation is enthalpy driven. However, the enthalpy term for the 

association of receptor and substrate must be approximately equal in the 

two solvents and so a large part of the difference in AH must arise from 

the desolvation terms. In fact water is very cohesive i.e. strong solvent-

solvent interactions23 and the large difference in AH is probably because 

the cohesive solvent interactions in methanol are much weaker i.e. in 

the desolvation of the receptor and subatrate, there is a greater net 

enthalpy gain in water than in methanol because of the more favourable 

enthalpy term gained from the association of the liberated solvent 

molecules with the bulk Uquid. 

In fact, the above demonstrates what is often called the 

"hydrophobic effect", which is observed in aqueous solution when the 

substrate is lipophilic and the receptor has a hydrophilic exterior but a 

lipophilic cavity. In the most extreme case, there is a negative enthalpy 



term for the solvation of the substrate and the receptor cavity and both 

are rejected by the solvating water molecules. The substrate is 'driven' 

into the cavity formed by the receptor. 

The hydrophobic effect is also observed for other types of 

receptor, such as enzymes and antibodies24,25^ and cyclodextrins26-28. 

This is in contrast to, for example, the complexation of metal 

cations by crown ethers or cryptands in water, where the substrate (M+) is 

hydrophilic and the aqueous solvent effectively competes for the 

substrate. This leads to a low stability constant for the complex. However, 

when the complexation is studied in less polar solvents, the charged 

substate is not so strongly solvated and stability constants of the 

complexes are higher 

e.g. the Na+ complex (Cl^ counter ion) with 15-crown-5 has a 

logKs of 0.8 in water, and a logKg of 3.24 in methanol, with a linear 

relationship to solvent concentration in methanol/water mixtures29-31. 

1 0 



1.3. SYNTHETIC M A C R Q C Y q i C RECEPTORS 

A macrocycle can be thought of as a cyclic oligomer, the smallest 

macrocycles consisting of 4 or more monomer units. (Note that the 

monomer units are not necessarily identical). Whilst the smallest 

macrocycles are able to form complexes, the cavities are small and the 

macrocycle behaves simply as a multidentate ligand. A "sandwich" 

complex is formed. 

e.g. Benzo-15-crown-5 is based on the cyclic tetramer of -CH2CH2O-. It 

forms complexes with KI , but the K+ cation is not encapsulated. The 

crystal structure (hydrogen atoms omitted) is shown in figure 1.532. 

Benzo-1 5-crown-5 Benzo-15-Crown-5/K^ Complex 

Figure 1.5 

Larger macrocycles can form a cavity capable of encapsulating 

small organic molecules, or inorganic or organic ions. The macrocycle is 

the host or receptor, the included species is the guest or substrate. 

Naturally occurring receptors (enzymes, antibodies, etc.) and 

macrocycles (cyclodextrins, porphyrrins, etc.) have been known for some 

time, but wholly synthetic macrocycles have been studied only fairly 

recently. However, these studies have been intense and progress has been 

rapid. The subject can be divided into a few broad areas, each of which is 

1 1 



discussed below. Crown ethers/cryptands and cyclodextrins will be 

mentioned only very briefly as they have both been well studied and are 

at least familiar to most chemists. 

1.3.1. CROWNS AND CRYPTANDS 

Crown ethers were first reported by Charles Pedersen in 19672 

and, with the cryptands, were the earliest of the synthetic macrocycles to 

be properly studied. It is with these that the field of synthetic, macrocyclic 

chemistry is widely acknowledged to have begun. They form complexes 

with metal cations by E D A interactions, and with primary ammonium 

cations by hydrogen bonds between the ammonium N - H and the 

crown/cryptand ether oxygens. They have been extensively derivatised 

and used as phase transfer catalysts33,34, in cation enrichment35-40 and 

detection36, as anion receptors20,41-46^for chiral recognition of amines47-50 

and reaction catalysis5l-53 

1.3.2. CYCLODEXTRINS 

Cyclodextrins, as mentioned above, are naturally occurring. 

They have been known since 189154,55 and consequently have been the 

subject of much study7,56-58. They have been extensively synthetically 

manipulated and have a wide range of applications. 

Cyclodextrins are cyclic oligomers of saccharides, composed of 6-

12 monomer units. The 6, 7 and 8 membered macrocycles are by far the 

most readily available, and consequently the most studied, and are 

respectively referred to as a , P and y cyclodextrins. a-cyclodextrin, for 

example is shown in figure 1.6. 

1 2 



/ r -OH 

HO OH 

\ / a -CYCLODEXTRIN 
Ho-Z_ HO ^ ^ ^ Q ^ ^ 

0 0 

• ^ O H HO^ " ^ O H 

Figure 1.6 

Cyclodextrins form complexes with a wide variety of substrates, 

as the rigid, hydrophobic cavity is well suited to the binding of aliphatic 

and aromatic substrates (Van der Waals' interactions) and the primary 

and secondary hydroxyl groups give hydrogen bonding potential and are 

able to form E D A bonds. They also impart aqueous solubility, so the 

hydrophobic effect is often a major contributor to the formation of stable 

complexes. 

They can be derivatised at either or both of the primary or 

secondary hydroxyl faces, and cyclodextrin derivatives have been used as 

enzyme mimics56,57,59^ catalysts60,6l , in chromatography7,62 ^ in 

analytical techniques63, for enantiomeric and conformational 

discrimination64 and in many industrial applications^, including the 

pharmaceutical65, food66, cosmetic67 and chemical industries. 

1.3.3. C Y C L O P H A N E S 

Cyclophanes were the first wholly synthetic macrocycles to be 

prepared68,69^ but their study as receptors did not really begin until the 

1970's, when techniques such as NMR became widely available70,71. 

They are defined as macrocycles which have aromatic residues 

(usually 5 or 6 membered rings) making up part of the framework of the 

13 



macrocyclic ring. Orthocyclophanes have their 6 membered rings joined 

at the C i and C2 positions. Similarly, metacyclophanes are joined via the 

C i and C3 and paracyclophanes at the C i and C4 positions72,73. 

orthocyclophane metacyclophane paracyclophane 

Figure 1.7 

Cyclophanes lend themselves to a great deal of structural 

variation and so the area is further divided into those of porphyrins, 

calixarenes, spherands and cavitands. 

1.3.3.1. Porphvrins 

Porphyrins are naturally occurring cyclophanes based on cyclic 

tetramers of disubstituted pyrroles. They are of immense biological 

importance, being involved in oxygen transport in blood (haemaglobin) 

and storage in muscle (myoglobin), and in photosynthesis. Expanded 

porphyrins have found a variety of applications74. 

PORPHYRIN RING C O R R I N RING 

Figure 1.8 

14 



The porphyrin skeleton is shown in figure 1.8, along with the 

closely related corrin ring of vitamin B12 (involved in cobalt redox 

mechanisms). 

Porphyrins form complexes with di and tri valent metal cations 

such as iron, copper, cobalt, zinc and magnesium, by EDA interactions 

between the porphyrin ring nitrogens and the bound cation, as 

represented by figure 1.9. 

A shematic representation 
of a porphyrlnate, showing 
the ligand donor bonds to 
the metal cation. 

G 
Figure 1.9 

Porphyrins are extensively delocalised, and the positive charge 

is distributed over the whole ring. 

In chlorophyll, magnesium (II) complexes of porhyrins are 

involved in a complex series of redox reactions which are responsible for 

the oxidation of water to dioxygen followed by the reduction of carbon 

dioxide to glucose i.e. photosynthesis. 

In blood and muscle, iron (II) complexes of porphyrins are 

responsible for the reversible binding of dioxygen. 

In natural systems, the porphyrin ring is enclosed in the 

hydrophobic cleft of a protein. In the haem binding of iron (II), the 

porphyrin ring occupies four equatorial ligand sites. A histidine residue 

of the protein acts as a fifth, axial ligand and dioxygen is reversibly bound 

as a sixth ligand, also axial, at the opposite face of the porphyrin. 
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The complete mechanism by which porphyrins act in 

biochemical systems is far from understood. Most of the chemical 

research in this area has been concerned with the synthesis of analogues 

and derivatives of the biological porphyrins and the study of their ability 

to reversibly bind dioxygen, in the hope that this will promote a better 

understanding of the biological mechanisms. (For reviews see references 

75 and 76). 

In the earlier synthetic analogues produced, it was found that 

cobalt (II) complexes could be prepared which did mimic the biological 

iron (II) complexes. However, the synthetic iron (II) complexes were 

rapidly and irreversibly oxidised to iron (III) complexes77,78. it was later 

shown that oxidation to iron (III) occurrs via an intermediate, in which 

the binding of dioxygen is followed by the formation of an oxygen bridged 

dimer79. This irreversible oxidation can be prevented by sterically 

blocking the formation of the dimer, most effectively demonstrated by 

the bridged or 'capped' porphyrins. One face of the porphyrin has a 

hydrophobic bridge which is attached at opposite edges of the ring. A 

cavity is formed above the face of the porphyrin which is too small to 

allow the approach of large molecules, but large enough to allow the 

coordination of dioxygen to the bound iron (II). 

If there is no other derivatisation, a base such as N-

methylimidazole must be added to form the second axial ligand80-83. 

However, it is more efficient to attach the ligand to the porphyrin ring, as 

in the examples shown in figure 1.1084,85. Both of these show 

considerable stability to irreversible oxidation (with half lives of about 

one day in DMF and toluene respectively) and are reversible carriers of 

dioxygen. 
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Figure 1.10 

1.3.3.2. Calixarenes 

Calixarenes are examples of metacyclophanes and are defined as 

cyclic oligomers of p-substituted phenols. The calix[n]arene is the cyclic 

oligomer with n monomer units. A prefix denotes the p-substituent. The 

calix[4-8]arenes have all been prepared, but the pentamer, calix[5]arene, 

has only been isolated in low yields. 

The calixarenes do not show great structural diversity, but have 

been extensively derivatised at the hydroxyl group and at the para 

position. They form complexes with a wide variety of substrates, such as: 

metal ions86-9l^ by E D A interactions with the phenolic oxygens; 

amines87,92,93 by means of hydrogen bonds to the hydroxyl groups; and 

small organic molecules (acetone94 and chloroform95 , for example, are 

bound by Van der Waals forces; benzene96 and other arenes97 are bound 

by TC-stacking attractions). 

Calixarenes are conformationally mobile - the hydroxyl groups 

are small enough to pass through the annulus of the macrocyclic ring. In 

the simplest case, calix[4]arene (figure 1.11) exists as the cone, partial cone, 

1,2 alternate and 1,3 alternate conformations, schematically represented 

by figures 1.12(i)-(iv). 

17 



t - B u t v l C a l i x f 4 ] a r e n e 

Figure 1.11 

Replacing the hydroxyl proton by a more bulky substituent 

(usually an ester e.g. -OBz, -OAc98 or ether e.g. (CH2CH20)nH99) prevents 

this interconversion as the cavity is too small to allow the passage of the 

substituent. The calixarene is 'locked' in a particular conformation. 

Almost always, only a single isomer is isolated - usually the cone or 

partial cone. However, it is not possible to predict which isomer a 

particular substituent will give^OO, although the cone is obviously the 

most desirable in terms of receptor properties as it has the most complete 

cavity. 

(i) (ii) (iii) (iv) 

(i) Cone 

(ii) Partial Cone 

(iii) 1,2-Alternate 

(iv) l,3-Alternate 
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Calixarenes are prepared from the condensation of p-t-butyl 

phenol with formaldehyde. The t-butyl group, necessary to prevent 

polymerisation, is removed by a retro Friedel-Craft reactionl02. it is then 

possible to carry out conventional aromatic substitution reactions to give 

para substituents such as the aminoethyn03 or sulphonato^O^ derivatives. 

Gutsche et. al. have developed a versatile procedure in which the 

hydroxyl group is allylated and a para-Claisen rearrangement then gives 

the p-allyl calixarene which can undergo further derivatisationl03,105. 

I.3.3.3. Spherands 

A spherandl2,l06 has been defined as a macrocycle with a 

spherical cavity which is completely pre-organised prior to 

complexationl07. The definition has been loosely applied to any spherical 

macrocycle e.g. macrotricyclic cryptand [1.1.1.1]108 ^ but the name has come 

to be almost exclusively applied to macrocycles of the type shown in 

figure 1.2 (page 5). 

Although technically a cyclophane, the aryl groups do not 

actually form a part of the cavity; their function is to impart rigidity to the 

macrocycle. The spherical cavity is formed by the aryl oxygen atoms 

which, in the case of spherand-6 for example, are octahedrally 

arrangedl06. The cavities are generally of a size which complements the 

alkali and alkaline earth cations, with which the calixarenes form very 

stable complexes by EDA interactions between the ether oxygens and the 

bound cationlS. Very similar complexes are formed by crowns and 

cryptands; spherands in fact have more in common with these than with 

most cyclophanes. 
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1.3.3.4. Cavitands 

A cavitand has been defined as a synthetic organic compound 

that contains an enforced cavity large enough to accommodate small 

molecules or ionsl09. 

(Spherands are a type of cavitand, but the cavities are generally 

too small to accommodate anything other than the trivial M"+ cations). 

Because of the rigid nature of the aromatic residues which, by 

definition, form part of their macrocyclic ring, almost all cyclophanes 

possess at least some structural rigidity and are therefore cavitands. 

However, other types of macrocycles should not necessarily be dismissed. 

Cucurbituril, for example, (shown in figure 1.13) possesses a 

very rigid cavity but has no aromaticity. It forms very stable complexes 

with diammonium compounds, +H3N-(CH2)n-NH3+, with n=5,6 the 

optimal chain length^O. Hydrogen bonding of ammonium N-H to the 

urea oxygens at both upper and lower rim is largely responsible for 

binding. The aliphatic chain which joins the two ammonium groups is 

located inside the lipophilic cavity where Van der Waals interactions also 

contribute to the stability of the complex. 

« ^ N N 

^ 0 ' 0 N ^ - ^ ^ " ' ^ 

0 

Figure 1.13 
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Despite this relatively rare example, almost all of the cavitands 

that have been prepared are cyclophanes. Relatively few structural 

subunits have so far dominated the literature. Each unit provides the 

macrocycle with rigidity, but they have different shapes which they will 

impart to the cavity. 

Complexes are usually formed with organic guests (charged and 

neutral) as the cavity has a lipophilic interior inherited from the aryl 

"shaping groups". 

Cyclotriveratrylene is an ortho-cyclophane structural unit 

which has been used by Collet et. al. in macrocycles such as the one 

shown in figure 1.14, which forms complexes with small, neutral, organic 

molecules such as chloroform. Macrocycles of this type show good size 

selectivity and a preference for aliphatic rather than aromatic substrates. 

sp3 systems are bound most strongly, with sp2 hybridised substrates 

bound more strongly than spm-^13. 

RO OR 

RO OR 

Cyclotr iveratry lene 

Figure 1.14 

Other examples of orthocyclophane structural units include tri-

o-thymotidell4 and tetraphenylene^^S^ shown in figure 1.15. These have 

not been used as building blocks for the construction of larger 
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macrocycles. They have been of interest for their ability to form clathrate 

rather than inclusion complexes. 

MeoCH. 

Tetraphenylene 

Tr i -o-Thymot ide 

Figure 1.15 

Most paracyclophanes are symnnetrical, consisting of a pair of 

"shaping groups" joined by aliphatic or aromatic "spacers" in a 2+2 

fashion. 

For example, i n the macrocycle shown in f igure 1.16, the 

diphenylmethane residues are the shaping groups, and the aliphatic 

methylene chains are the spacing units - so called because the length of 

the chain determines the depth of the cavity. I t forms a complex wi th 

durene both in the solid state and in water at pH<2. The crystal structure 

of this complex provided the first unambiguous proof of cavity inclusion 

complexation by a cyclophane i n aqueous media. Complexes are also 

formed w i t h other aromatic substrates such as 2,7-naphthalenediol (in 

D2O, pD=l.2)116. 

DURENE 

Figure 1.16 
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Since b ind ing occurs i n water, the d r iv ing force for the 

complexation is the hydrophobic effect, but a j:-stacking interaction 

between the benzene rings of receptor and substrate must also contribute. 

The shape of the diphenylmethane uni t has been retained in 

other cyclophanes, but the hydrophobic nature of the cavity is improved 

by removing the hydrophi l ic tertiary nitrogen (responsible for the 

macrocycle's water solubility) away f rom the cavity. 

In the example shown in figure 1.17, (R=R'=R"=R'"=OCH3, X=-

(CH2)3-, -(CH2)4-) stable complexes are formed w i t h p-disubstuted 

benzenes in water; the macrocycle wi th C4 spacers forming more stable 

complexes than the analagous macrocycle w i t h C3 spacers^ 17. 

Complexation arises f r o m a combination of K-n, Van der Waals and 

hydrophobic effects22. 
^ X 

^0 

X= -(CH2)n- M e 2 N r _ ^ . . etc. 

Figure 1.17 

Troger's base (figure 1.18) was introduced by Wilcox et. al. as a 

subunit having a similar shape to diphenylmethane, but w i t h greater 

r igidi ty and a chiral nature. 
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Trogers base 

R R 

Figure 1.18 

The cyclophane shown in figure 1.18118 forms weak complexes 

w i t h p-disubstituted benzenes (R=H or CH3), more stable complexes are 

formed when R=H than CH3. The methyl groups force the rings out of 

the gable conformation, which is preferred for binding flat, aromatic 

substrates, into the propeller conformation (scheme 1.2). 

R. R 

Gable 

R .R 

Propeller 

R=H propeller 

R=Methyl propeller 

gable 

gable 

Scheme 1.2 

Dougher ty et. al . have prepared structures based on 

ethenoanthracene, such as the one shown in figure 1.19119, which forms 

complexes w i t h a variety of substrates, especially quaternary ammonium 

compounds. 

Studies of the complexation properties of this receptor (X=-C02-

Cs+) in D2O (pD=9) have shown that quaternary ammonium compounds 

(R4N+) bind more strongly than tertiary amines (R3N). 
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Figxure 1.19 

I n c h l o r o f o r m ( X = - C 0 2 C H 3 ) , quaternary ammonium 

compounds are still bound, but stable complexes wi th the corresponding 

tertiary amines are not formedl20. 

In table 1.2, some AGcomplexation values (kcal mol-i) are given 

for quinoline, isoquinoline and their N-methyl iodide derivatives (figure 

1.20). 

-AG 

D20,pD=9 

- A G 

CPCI3 

N-methy l 
quinol-
i n i u m 

7.6 

3.3 

Quinol ine 

5.4 

0.0 

Table 1.2 

N-methy l 
isoquin-
o l i n i u m 

7.2 

2.5 

Iso
quinoline 

6.3 

0.2 

N-methyl 
quinolinium 

Quinoline 

t..CH3 

N-methyl iso- Isoquinolinium 
quinolinium 

Figxure 1.20 
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I n chloroform, the only significant driving force for the 

complexation is the ammonium cation - aromatic K attractionl2l and so 

quinoline and isoquinoline are not boundl20. in water, there is a 

hydrophobic effect and both the free amines and the N-methyl 

derivatives are bound. However, the N-methyl derivatives are bound 

more strongly because of the aromatic K - ammonium ion attraction. (The 

difference is not as large as the studies in chloroform would seem to 

indicate, probably because the positive charge of the quaternary 

ammonium must be desolvated from water). 

Cation - K interactions have been shown to be of significance in 

amino acid - protein binding!22 and in the binding of the 

neurotransmitter acetyl choline to its esterasel23. 

In macrocycles which have paraquat as a structural unit, such as 

the one shown in figure 1.21 complexes are formed with benzene 

derivatives by means of a charge transfer mechanism, resulting in 

intensely coloured complexes!24,l25. 

H2C-N+ +N-CH2 

Figiure 1.21 
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Bicyclic or "triply bridged" cyclophanes, first prepared in 1965126 

have been studied by Vogtle et. al.l27. Of the two examples shown in 

figure 1.22, 1.22a is an enterobactin mimic and a very stong binder of iron 

(111)128-130 and 1.22b selectively complexes w i t h tr ihydroxy benzenes in 

dichloromethane w i t h great sensitivity for the substituion patternl3l. 

O ' NR 

N ^ RN"*0 

0 ' NH 

Ot^ NH 

a b 

Figure 1.22 

More recently, Lehn. et.al. have prepared the bicyclic 

hexacarboxylate shown in figure 1.23. 

X=C02Na 

Figure 1.23 

The sodium salt of this cyclophane is water soluble and forms 

very stable complexes w i t h tertiary ammonium compounds in aqueous 

solutionl32. Like the ethenoanthracene-based cyclophanes prepared by 

Dougherty (figure 1.19), both electrostatic ammonium cation - aromatic n 

interactions and hydrophobic effects contribute to the complex stability. If 
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the ammonium cation is aromatic, then Jt-stacking interactions may also 

be involved. 

1.3.4. HYBRIDS A N D POLYTOPIC CORECEPTORS. 

When structural units f rom two different types of macrocycle 

are combined, a receptor is formed which may have interesting 

properties. 

For instance, spherands have been combined wi th crowns and 

cryptands to give the monotopic, hybrid receptors like those shown in 

f igure 1.2415. Like their parent compounds, they bind metal cations but 

have an intermediate degree of rigidity. 

R=CH3 

A crytaspherand A hemispherand 

Figure 1.24 

I t is more interesting to combine two 'whole' macrocycles to 

produce a receptor which contains more than one binding site, and can 

b ind more than one substrate simultaneously. Such a receptor is 

described as "polytopic". If the binding sites are not identical, then two 

quite different substrates may be brought into close proximity in the 
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receptor. This leads into a relatively unexplored area of macrocyclic 

chemistry, with obvious implications in catalysisil'l33-i345 and also for 

the preparation of models which w i l l help the understanding of 

cooperative binding and allosteric effects in biological systems 136,137 i n 

the most trivial case of a ditopic receptor, the macrocycle is simply very 

large (relative to substrate) so that two guests may be accomodated. This is 

the case in the 2:1 complex of KSCN with dibenzo-24-crown-8. Two K+ 

cations are bound in the cavity, bridged by -SCN anionsl38,139. 

In a slightly more complicated case, two crown ethers are joined 

in a spiro fashion; each crown behaves independently of the other and 

can each bind one cationl40-142. 

It has already been mentioned (section 1.3.3.1) that porphyrins 

have been derivatised such that an extra cavity is formed above the plane 

of the ring. There is a binding site for iron (II) and a second site for 

binding dioxygen. Note that the dioxygen is not bound unless iron (II) is 

already located in the porphyrin ring - a crude example of cooperative 

binding. 

In the more elaborate system shown in figure 1.25, a chiral, 

cyclophane-type cavity is created above each face of the porphyrin. In its 

optically pure form (S,S), this was used as a catalyst in the hydroxylation 

of ethylbenzene to 1-phenylethanol, preferentially producing the R 

isomer (40%e.e.)143. 

I + PhIO + Phi 

Figure 1.25 
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Although the enantiomeric excess is low, this shows chiral 

control of a free radical reaction. 

In the example shown in figure 1.26, a cyclophane and a crown 

ether are combined. The receptor is ditopic but has not been used for 

b i n d i n g two separate substrates; i t has been used to b ind 

phenylalkylammonium salts, Ph-(CH2)n-NH3+, where n=3-9 (shown with 

n=6) 144,145 . The main dr iving force for complex formation is the binding 

of -NH3+ to the crown ether r ing. I f n>4, the aliphatic chain is long 

enough to allow the phenyl group to bind in the cyclophane cavity in-

stacking interaction), so different binding sites in the receptor are able to 

bind to well separated parts of the substrate. 

Figiure 1.26 

0 H O, 
NH 

I f n>6, the aliphatic chain is too long and must coil to allow the 

phenyl r ing to bind in the cyclophane cavity, introducing unfavourable 

torsional angles in the methylene chain. 

Consequently, the binding constants when n=5,6 are about a 

factor of 3 higher than for n=3,4,7,8,9. 
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1.4. S U M M A R Y 

I t has been pointed out that that the recognition of substrates by 

receptors occurs via a combination of weak interactions. A discussion of 

these interactions and the ways in which they combine has been 

undertaken and illustrated by examples taken f r o m the major areas of 

macrocyclic chemistry. It has been shown that, i f the forces leading to 

complex format ion are wel l enough understood, receptors may be 

designed for specific tasks and specific substrates. 
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CHAPTER 2. SYNTHETIC RECEPTORS FOR A C E T Y L 

C H O L I N E . 



ZX INTRODUCTION; ACETYL CHQLINE A N D ITS RECEFTQfiS. 

Nerve cells interact w i t h one-another at nerve junctions or 

"synapses", across w h i c h nervous impulses are t ransmit ted. 

Transmission of this impulse across the synapse is performed by the 

d i f fus ion of small molecules called "neurotransmitters". 

A c e t y l choline (AcCh, f i gu re 2.1a) is an impor tan t 

neurotransmitter at the muscarinic and cholinergic synapses^ and is 

stored at nerve endings i n synaptic vesicles (figure 2.1b). When a 

nervous impulse arrives at the nerve ending, the synaptic vesicles fuse 

w i t h the pre-synaptic membrane resulting in the release of AcCh into 

the synaptic cleft. AcCh diffuses across the synaptic cleft to the post

synaptic membrane, where i t is recognised and bound by specific 

receptors. On binding, the receptors are thought to undergo a change in 

conformat ion i.e. they become "excited". Ion channels i n the 

"postsynaptic membrane open, which causes a change in potential 

across the membrane and triggers the propagation of the nervous 

impulse i n the post-synaptic cell. AcCh is released and the receptors 

re turn to their resting states. The energy required for this synaptic 

transmission is provided by the mitochondria. 

The AcCh released f r o m the receptors in the post-synaptic 

membrane must be quickly removed so that i t w i l l not be again taken 

up by the receptors, preventing the transmission of further impulses by 

"fixing" the receptors in their excited states. This is done by hydrolysing 

the AcCh to choline and acetate, a reaction catalysed by the enzyme 

acetyl choline esterase (AcChE). Choline is taken back into the pre

synaptic membrane, where i t is recycled to produce more AcCh. 
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F i g u r e 2.1a 

D r e E C T I O N O F I M P U L S E 
P R O P O G A T I O N 

Figiure 2.1b 

M I T O C H O N D R I A 

b Y N A P T I C 

A c C h R E C E P T O R S 

P R E S Y N A I T I C 
M E M B R A N E 

I ' O S T S Y N A P T I C 
M E M B R A N E 

S Y N A P T I C 
V E S I C L E S 

AcChE necessarily has a very high turnover number, 

measured as about 25,000s'̂  i.e. approaching diffusion control^-'i. The 

mechanism of the hydrolysis (scheme 2.1) has been known for some 

time to involve a catalytic triad consisting of serine, histidine and one 

other amino acid residue known to possess a carboxylate group which 

was involved in the hydrolysis. This third residue was recently 

identified as glutamate^ (see figure 2.2) 
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HOCH2-CH-NH3+ \ / NH3+ 

COo- / HO2CCH2CH2CH-CO2" 
2 CH2pH-C02' 

NH3+ 

serine histidine glutamate 

Figure 2.2 

AcCh must be recognised and bound at the active site of the 

enzyme before hydrolysis can occur. A t the outset of this work, 

although the mechanism of the hydrolysis was understood, very little 

was known about the binding site either in the AcCh receptors in the 

post-synaptic membrane or i n the esterase. Two theories had been 

proposed: 

either 

(i) AcCh was bound near the active site of the enzyme by an ionic 

attraction between the positively charged ammonium head of AcCh 

and a specific anionic locus, probably C02', in the enzyme. 

or 

(ii) AcCh was located in a hydrophobic cleft in which the primary 

interaction contributing to binding would be an ammonium cation -

aromatic % attraction. Anionic residues, remote f r o m the cavity and 

the active site, were at best responsible for a minor attraction of the 

ammonium head of AcCh. 
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Original ly , the former case was the one which had been 

commonly assumed, and i t was not un t i l 1980 that the latter was 

proposed^. 

In order to distinguish between the two theories, a variety of 

experiments were designed, involving measurements of the strength 

of binding of various analogues of AcCh and their ability to inhibit 

the esterase act ivi ty^"^^. These experiments provided valuable 

information but neither of the arguments could be eliminated. 

I t was not unti l 1991, two years after this work was begun, that 

crystals of AcChE were obtained which were of sufficient quality to 

a l low the structure of the esterase to be determined by X-ray 

d i f f rac t ion techniques'^. It was shown that the active site was at the 

end of a narrow gorge, about 20A i n length, which was lined wi th 

some 14 aromatic moieties, but w i t h very few acidic residues which 

w o u l d be capable of binding to the tr imethyl ammonium head of 

AcCh. I t was concluded that the interaction responsible for AcCh 

binding must be of the cation - n type. 

The structures of the AcCh receptors i n the post-synaptic 

membrane have still not been solved, but current feeling is that the 

interactions responsible for binding are likely to be very similar i n 

nature to those in the esterase. 
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2.2 SYNTHETIC RECEPTORS FOR ACETYL CHOLINE. 

A t the start of this work, the argument mentioned above had 

not been resolved. I t was thought that studies of synthetic receptors 

for AcCh might usefully contribute to the debate by providing models 

for the biological receptors. 

Only one synthetic receptor had, at that time, been preparedl'^ 

(shown in figure 2.3) 

Figure 2.3 

The cyclophane shown in figure 2.3 binds to acetyl choline in 

D2O w i t h a logKs of 2.7. The structure of the complex was not solved, 

but N M R experiments indicated that AcCh was located in the cavity 

of the macrocycle and bound by an electrostatic attraction to the 

carboxylate groups at one end of the cavity. The aliphatic chain would 

then lie in the cavity where there wou ld be a hydrophobic interaction 

w i t h the aromatic residues. The binding of AcCh is therefore of the 

type proposed in the first theory, as discussed on p41. 

Since then Dougherty et. al., as mentioned in chapter 1 (p24-

25), have prepared macrocycles based on the ethenoanthracene 
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structural un i t^^ . The cyclophane shown in f igure 2.4 has been 

shown to b ind quaternary ammonium compounds; in particular, it 

binds AcCh in D2O w i th a logKs of 4.315. 

Despite this quite strong binding, i t was shown that the 

negatively charged carboxylate groups are not significantly involved 

in the binding of AcCh ; the primary interaction is ammonium cation 

- aromatic K attraction (see chapter 1), demonstrating the plausibility 

of second theory discussed on p41. 

-o ,c 

Figure 2.4 

Very recently, Lehn et. al. have prepared a second receptor for 

AcCh, also mentioned in chapter 1 (figure 1.23, p27). The bicyclic 

cyclophane is shown w i t h a hydrophobic cavity and the hydrophilic 

carboxylate groups facing outwards into the solvent (water), although 

i t is conceivable that some of the carboxylate groups turn into the 
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cavity when i n solution. Lehn proposed that AcCh, and other 

quaternary ammonium compounds, are bound i n the cavity by a 

combination of cation - K and cation - anion interactions 
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2.3. DESIGN OF NOVEL SYNTHETIC RECEPTORS FOR ACETYL 

CHOLINE. 

That the AcChE structure wou ld be solved could not have 

been known at the outset of this work, and so we sought to design 

and synthesise novel receptors which would bind AcCh. 

, . > J v . / ^ 

a 

Figure 2.5 
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Bearing in mind the only other receptor which had then been 

made (figure 2.3), the macrocycles 1 and 2, shown in figure 2.5a and 

2.5b, were targetted. The construction of CPK models had indicated 

that the cavities were of dimensions which complemented the size of 

AcCh, and indeed were quite similar to the cavity formed by Lehn's 

macrocycle (figure 2.3), in which AcCh had been presumed to occupy 

the cavity. 

As binding sites for the trimethylammonium head of AcCh, 

the cavitand 1 has an aromatic "pocket" at the lef t hand side as 

shown, whereas 2 has an anionic carboxylate group. The two are 

otherwise very similar, which would perhaps allow a comparison of 

the cation - anion and cation - K interactions. 

In addition to this, both 1 and 2 have a pyridine (pyridinium) 

residue which i t was hoped might, under the right conditions of p H , 

promote hydrolysis of the AcCh ester group (by acyl transfer to the 

pyridine nitrogen) and so function as a synthetic esterase. 

In contrast to Lehn's cyclophane, 2,2-diphenylpropane ("DPP") 

was chosen as the shaping un i t i n place of diphenylmethane 

("DPM"). The extra methyl groups of DPP impart greater r igidi ty to 

the unit, and more r ig id receptors generally imply the formation of 

more stable complexes (see chapter 1, section 1.2.2, especially p4). 

Also, DPM has a slight preference for the gable conformation, which 

is desirable for complexation w i t h flat substrates (such as aromatic 

rings). DPP has a strong preference for the propeller conformation, 

w h i c h has a more "concave" surface and so should better 

complement the convex surface of a straight, aliphatic chain (see 

chapter 1, section 1.3.3.4, p24). 
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2.4. SYNTHETIC STRATEGY. 

The cyclophanes 1 a n d 2 were subjected to simple 

retrosynthetic analyses, as shown in scheme 2.2 to give 2,6-

bis(hydroxymethyl)pyr idine , the d io l 4,4-isopropylidenediphenol 

("bis-phenol-A, BPA") and a,a ' -dibromo-p-xylene for 1 or 2,6-

bis(bromomethyl) benzoate for 2, as readily available starting 

materials. 

I n most of the cyclophanes mentioned in chapter 1, the 

cyclisation is accomplished in a single step to give the "2+2" addition 

product . H i g h d i l u t i o n cond i t ions ' ^ or templates'8 are often 

employed to minimise the amount of higher oligomers formed. 

Caesium salts, when present i n the reaction medium, have often 

been found to lead to unusually high proportions of the cyclic 

product '^. 

In the present case, however, a 2+2 cyclisation is obviously not 

practical: the macrocycle must be prepared in a stepwise fashion. 

Saigo et. al. prepared the macrocycle shown in figure 2.6b not 

only in a 2+2 fashion, but also in a stepwise manner by first reacting 

3,5-bis(bromomethyl)nitrobenzene wi th an excess (4 equivalents) of 

BPA to give the "U-shaped" pre-cursor shown in figure 2.6a in an 

80% yield^O. This was in turn reacted wi th a further equivalent of 3,5-

bis(bromomethyl)nitrobenzene under conditions of high dilut ion to 

give the cyclic product, shown in figure 2.6b, in a yield of 35%20. 
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Figure 2.6 

However, i t was decided that for 1 and 2 a better method 

w o u l d be to mask one end of the BPA molecule w i t h a protecting 

group before reaction wi th a dibromide, giving the general synthetic 

strategy shown in scheme 2.3. 
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-f- — Ar^-(CH2Br2)2 

Ar, 

Deprotect 

+ Ar2-(CH2Br2)2 

MACROCYCLE 

Scheme 2.3 

A n efficient synthesis of the macrocycle depended on a good 

choice of protecting group "R". Initially, the methyl ether was chosen 

as the protecting group, for the fol lowing reasons: 

(i) I t was anticipated that the monomethyl ether 3 (R=Me) could be 

easily prepared by reaction of BPA w i t h an equivalent of methyl 

iodide. Al though a" mixture of unreacted BPA and the mono- and d i 

methyl ethers would be obtained, they should be easily separable. 
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(ii) The methyl ether should survive the only required, subsequent 

step in the reaction scheme (alcohol + bromide in the presence of a 

base) to give 4 (R=Me). 

(iii) Alcohol protection as methyl ethers is common, and 

consequently a variety of reagents exist for the cleavage of methyl 

ethers under a range of conditions. 
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2.5. SYNTHESIS OF CYCLOPHANES 

2.5.1. Synthesis of Starting Materials. 

The mono-methyl ether, "0-methyl-BPA", was prepared from 

BPA and methyl iodide by stirring as a solution in acetone in the 

presence of K2CO3 as a base. The monomethylated product 3 (R=Me) 

could be separated from dimethylated BPA by partitioning between 

aqueous sodium hydroxide and diethyl ether. However, separating it 

from unreacted BPA (by lowering the pH) was possible only with 

difficulty. Flash column chromatography gave good separation of the 

desired product from both starting material and the dimethylated 

compound. 

The electrophile a,a-dibromo-p-xylene is commercially 

available, and 2,6-bis(bromomethyl)pyridine was prepared from 2,6-

bis(hydroxymethyl)pyridine using the method of Baker et al.21. 

The synthon used for the benzoic acid residue was methyl 2,6-

bis(bromomethyl)benzoate, prepared from 2,6-dimethyl benzoic acid 

according to the method of Cram22. 

2.5.2. Svnthesis of "U-Shaped" Precursor. 

O-methyl-BPA was stirred overnight with 0.5 equivalents of 

a,a'-dibromo-p-xylene in refluxing ethanol with K2CO3 as a base. The 

reaction was filtered hot and the product, 4 (R=Me) (see Figure 2.9) 

collected as the precipitate from the cooled solution in a 65% yield. 
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Several reagents were investigated for the demethylation step. 

It was found that if vigorous reagents were used e.g. BBrŝ S then not 

only was the methyl ether bond cleaved, but also the benzyl ether 

bond. If mild reagents e.g. Sodium ethane thiolate24 or Hthium 

iodide in refluxing 2,6-lutidine25 were used, then both bonds were 

left intact and starting material was recovered. 

It therefore became necessary to consider other protecting 

groups, which could be removed easily under less forcing conditions. 

Tetrahydrofuranyl ethers (THFE) have been used as protecting 

groups for alcohols^^. They are very stable to basic conditions and 

would so survive the subsequent step in the reaction scheme 

(ethanol/K2C03). However, they are very sensitive to even quite 

mildly acidic conditions, and it was likely that it would be necessary 

to use silica column chromatography in the work up of the ether. 

Since silica columns are mildly acidic, there was a risk that the THFE 

"would decompose during isolation. 

Tetrahydropyranyl ethers (THPE) have been more commonly 

used as protecting groups for alcohols^^. They are also stable to basic 

conditions and are cleaved under conditions of low pH. However, 

they are more robust than THFE and are also easier to prepare. 

Consequently, THP was chosen as a potential protecting group. 

The mono-THPE, 3 (R=THP), was prepared from BPA and 3,4-

2H-dihydropyran at O Ĉ in the presence of a catalytic amount of 

hydrochloric acid with diethyl ether as solvent. The mono-THPE of 

BPA was separated from unreacted BPA and the di-THPE by flash 

silica chromatography. 
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Using HETCOR and COSY NMR experiments, the I H and 

NMR spectra of this compound were assigned. The I H and COSY 

spectra (CDCI3,400MHz) are shown in figure 2.7a and 2.7b. 
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56 



The non-equivalence of axial and equatorial protons H E and 

H e (figure 2.8a) should be noted. This non-equivalence is not 

observed for H B or H D , implying the conformation shown in figure 

2.8b, with the -OAr substituent of the THP ring in an axial position 

where it can interact through space with axial Hg and He protons. 

HA 

HB 

HE 

HE 

HB 

HD 
HD 

He He 

HE HD 

Figure 2.8 

The ether O-tetrahydropyranyl BPA was then reacted with 

a,a'-dibromo-p-xylene in refluxing ethanol with K2CO3 as base. The 

product precipitated from the hot reaction mixture and was separated 

from inorganic salts to give 4 (R=THP) in about a 75% yield. 

The alkyl halide 2,6-bis(bromomethyl)pyridine could be 

reacted with O-tetrahydropyranyl BPA under similar conditions. The 

product, 5 (R=THP) (figure 2.9), precipitated from the cooled, filtered 

reaction mixture and was also isolated in about a 75% yield. 
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For both 4 (R=THP) and 5 (R=THP) the non-equivalence of the 

He and H E protons of the THP ring was again observed in the ^H 

NMR spectra. 

The diether was then refluxed with concentrated hydrochloric 

acid in a homogeneous methanol/chloroform solution to give the 

diols 4 (R=OH) or 5 (R=OH) in quantitative yield. 

Figure 2.9 
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2.5.3. Macrocyclisation. 

The macrocycle 1 was prepared from diol 4 (R=OH) and 2,6-

bis(bromomethyl)pyridine in a 47% yield by refluxing in ethanol with 

K2CO3 as base at moderate dilution (about 10-2 M). 

En route to the macrocycle 2, the ester 6, shown in figure 2.10, 

was prepared from diol 5 (R=OH) and methyl 2,6-bis(bromomethyl) 

benzoate by refluxing in ethanol with K2CO3 as base in a 31% yield. 

It was noted that on some occasions, transesterification 

occurred during the cyclisation step to give the ethyl ester 6 (R=Et), 

whereas on other occassions the methyl ester 6 (R=Me) was obtained. 

The reaction was not repeated frequently enough to establish a 

correlation between reaction conditions and product. Mixtures of the 

ethyl and methyl esters were never obtained. 

,9 // 

Figure 2.10 

An attempt was made to perform the reaction with methanol 

in place of ethanol as the solvent, but a TLC analysis of the reaction 
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indicated that more side products had been formed, and that they ran 

very close to one-another and to the desired product on both silica 

and alumina supports with a variety of solvent systems. The next 

step of the synthesis requires the hydrolysis of the ester group and so 

the methyl and ethyl esters are of equal value. Because the reaction in 

ethanol gave less side products and allowed easier purification of the 

product, ethanol was therefore used as the solvent of choice. 

As mentioned above, it has been demonstrated that for a large 

number of macrocyclisations the use of caesium salts in place of other 

bases has lead to significant improvements in yield^^. In this case, 

however, replacing K 2 C O 3 with C S 2 C O 3 as base resulted in a 

substantial drop in yield of the macrocyclic product from about 30% to 

less than 2%. 

Many attempts were made to grow crystals of 6 which would 

be suitable for analysis by X-ray diffraction. Chloroform/hexane, 

dichloromethane/hexane and dichloromethane/methanol all gave 

poor quality crystals and were rejected as solvent systems for crystal 

growing. Crystals of a low but promising quality were precipitated 

from ethyl acetate by methanol and so many attempts were made 

using this solvent system and a variety of crystal growing techniques. 

Good quality crystals of 6 were eventually obtained from an 

ethyl acetate solution by vapour diffusion of dry methanol through a 

pinhole. It had previously been observed that the crystals appear to 

"dry out" on standing in air and so X-ray diffraction measurements 

were taken at 120K under a nitrogen atmosphere. Despite these 

precautions, the crystals disintegrated in the X-ray beam. 
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Hydrolysis of the ester group of 6 was not straightforward. The 

macrocycle 6 was not water soluble, and molecular models had 

indicated that, depending on the conformation adopted, it was 

possible that the ester group could be "buried" in the cavity of the 

macrocycle leading to a significant steric barrier to the hydrolysis. 

An attempted hydrolysis by refluxing the ester with 

hydrochloric acid in 90% aqueous methanol for 14 hours was not 

successful. Refluxing 6 with a 0.4M solution of LiOH in 85% aqueous 

THE for 3 days showed only traces of the hydrolysed product when 

analysed by thin layer chromatography. However, a O.IM solution of 

NaOH in 90% aqueous ethanol successfully hydrolysed the ester to 

the sodium salt, 7a (see scheme 2.7), after refluxing for several days. 

The syntheses of macrocycles 1 and 7a are summarised in 

schemes 2.4 and 2.5 respectively. 

Sodium salt 7a was readily soluble in chloroform and was 

initially identified by I H NMR in deutero-chloroform (figure 2.11a). 

However, on standing for about 24 hours in a sealed NMR tube as a 

solution in CDCI3, a white opaque layer began to form on the surface 

of the solution. 
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After standing for several days, C D C I 3 was evaporated at 

reduced pressure to leave a white solid which was reluctantly soluble 

only in an excess of chloroform. However, the solid was soluble in 

THF, although i t was necessary to remove a small amount of 

insoluble material by filtration. A ^H NMR spectrum as a solution in 

deutero-THF was then acquired and is shown in figure 2.11b at 

250MHz and 2.11c at 400MHz. The spectrum of the freshly prepared 

sodium salt in C D C I 3 , acquired within 20 minutes of making up the 

solution, is shown in figure 2.11a. 
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Figure 2.11a 
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Apart from the spectra shown in figure 2.11b and 2.11c, no 

fiu-ther characterisation of the decomposed sodium salt was obtained. 

However, it was obviously impossible to continue using chloroform 

as a solvent for the sodiimi salt 7a. Freshly prepared sodium salt 7 a 

was found to be soluble in THF and was stable over long periods of 

time. Deutero-THF was consequently used for all NMR experiments 

involving the hydrolysed macrocycle i.e. for 7a, 7b and 2. 

Conversion of the sodium salt to the protonated chloride salt 

was trivial; 7a was stirred with hydrochloric acid as a suspension in 

water/THF to give 7b. 

Conversion to the neutral macrocycle 2 was less 

straightforward. Adjusting the pH is not a good method as the pKa's 

of the pyridine ring and carboxylate group were not known and a 

slight error in pH would lead to the formation of either the anionic 

(pH too high) or cationic (pH too low) species. Also, 2, 7a and 7b have 

very low aqueous solubility, so pH-metric titrations are non-trivial. 

A much better method was to form the hydrochloride salt and 

react this wi th propylene oxide, a method often used in the 

preparation of biological zwitterions, which can be very pH 

sensitive^S. The mechanism of the reaction of pyridinium with 

propylene oxide is shown in scheme 2.6 and the reaction "sodium salt 

7a - hydrochloride salt 7b - neutral species 2" is summarised in 

scheme 2.7. 

l-Chloropropan-2-ol, the major side product of this reaction, 

is reasonably volatile (b.pt. 126-127°C) and can be removed under 

vacuum. 
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It was difficult to predict beforehand whether the neutral 

macrocycle 2, would, under the solvent conditions employed, exist as 

the uncharged carboxylic acid - pyridine ring or whether it would 

spontaneously form the charged carboxylate - pyridinium zwitterion 

shown in figure 2.5b. 

Comparison of the infra-red spectra of 7a, 7b and the product 

of the propylene oxide reaction, shown in figures 2.12a-c, indicated 

that the zwitterionic species had been formed. 

The IR spectrum of 7b was observed to contain a peak at 

1719cm-l, consistent with an aromatic, carboxylic acid C=0 stretching 

vibration. No carbonyl peak could be assigned in the spectrum of 7a, 

but in the IR spectrum of 2 a peak at 1650cm-l was attributed to a 

delocalised CO2- stretching vibration. A large, broad peak at 3435cm-̂  

was attributed to a pyridinium N-H stretch. 
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Figure 2.12a 

Figure 2.12b 

Figure 2.12c 
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The I H N M R spectra of the three compounds could also be 

compared. The aromatic region of 7a is quite different f rom that of 

both 7b and 2, but for 7b and 2 the aromatic regions are quite similar. 

This is consistent w i t h zwitterion formation, as we would expect that 

changing f r o m an aromatic carboxylic acid to carboxylate (and vice 

versa) wou ld have a much smaller effect on the shift and coupling 

constants of the attached protons than a change f r o m pyridine to 

p y r i d i n i u m . 

i.e. changing <^ y — C C ^ H <^ / ~ ^ ^ 

is much less significant than changing ^ ^ ^ ^1 
\ . / = \ + 

NH 
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2.6. BINDING STUDIES. 

The use of N M R experiments i n the study of receptor -

sustrate b inding is wel l established29. The technique depends on 

differences in the spectra of the free receptor and substrate and the 

complexed species. Differences in the chemical shift, A5, of either the 

host or the guest at different host: guest ratios can be mathematically 

related to the equil ibrium constant Ks. The A H value of the binding 

can be estimated f r o m the temperature dependence of Ks using 

equation 2.1, the Van t 'Hoff equation. 

dlnKs _ AH . dlnKs _ - A H 
dT d ( l / T ) RT 

The Van t 'Hoff equation. 

Equation 2.1. 

A plot of InKs vs. 1/T therefore has a slope of -AH/R. 

To measure Ks and A H for 1 and 2 w i th AcCh i t was necessary 

to f i n d a suitable solvent. Both the macrocycie and AcCh 

(commercially available as the chloride) should be soluble and the 

deuterated solvent should be available to enable I H N M R 

experiments to be conducted. 

AcCh chloride is very hydrophilic and is insoluble i n most 

organic solvents (except chloroform). Macrocycles 1 and 2 , however, 

were insoluble i n water. 

7 1 



2.6.1. Acetyl Choline Chloride W i t h 1. 

As AcCh chloride is reasonably soluble in chloroform, in the 

case of 1 chloroform was a good choice of solvent in which to study 

complexation phenomena. As a preliminary experiment, a solution 

of 1 i n CDCI3 was vigorously stirred w i t h a solution of 5 equivalents 

of AcCh in an equal volume of D2O for 4 days in a sealed container. 

Af t e r phase separation, the organic layer was dried by f i l ter ing 

through a plug of Na2S04 and a I H N M R spectrum was acquired. 

The signals which were assigned to the macrocycle were 

unshif ted and no signals indicating the presence of AcCh in the 

chloroform solution were observed. It was concluded that AcCh 

chloride was too hydrophilic to be extracted into chloroform by 1. 

A n experiment was conducted i n the absence of water: 

macrocycle 1 was dissolved in chloroform and a tenfold excess of 

AcCh chloride added. The mixture was shaken unt i l a homogeneous 

solution was formed. Solvent was evaporated at reduced pressure 

and the residue dried under vacuum. The mixture was then taken up 

in CDCI3 and a I H N M R acquired. 

Signals for both 1 and AcCh were unshifted wi th respect to the 

spectra of the separated solutions of 1 and AcCh. I t was concluded that 

binding between macrocycle 1 and AcCh was too weak to be observed 

under these conditions. 

Macrocycle 1 was incorporated into a PVC membrane which 

was then tested i n an ion sensitive electrode (see Appendix 1). As a 
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control , an identical membrane was constructed but wi thou t 

incorporating 1. This was also used in an ISE. 

Using this technique, the response of 1 to a variety of 

substrates (electrolytes) could be quickly and easily tested using only a 

small quantity of the macrocycie (ca.lSmg). A response of about 59mV 

wou ld indicate that the test electrolyte might fo rm stable complexes 

w i t h the macrocycie in solution. 

Ini t ial ly, the response of the ISE's to a test solution of AcCh 

was measured. 

For the control ISE (no macrocycie) a response of 42.5mV to a 

test solution of AcCh indicated that transport of AcCh was poor. 

When the membrane containing 1 was used i n the ISE, the 

electrode response improved to 59mV indicating efficient transport of 

AcCh by the membrane and i m p l y i n g that 1 can f o r m weak 

complexes wi th AcCh. 

When the test solution of O.IM AcCh was contaminated wi th 

other electrolytes (NaCl, NH4CI, CaCl2), also at a concentration of 

O.IM, no interference was observed i.e. the electrode response was 

still 59mV. When the AcCh test solution was contaminated wi th KCl , 

the response decreased slightly to 55mV indicating that there may be 

a small amount of potassium interference. 

However, when the p H of the test solution was lowered to 2.2 

by adding O.IM HCI , the response of the ISE dropped to almost OmV. 

This indicates substantial p H interference, which was expected 

(protonation of macrocyclic pyridine ring to give a positively charged 

pyr id in ium residue, leading to repulsion of the AcCh cation). 
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The responses of the test ISE to O.IM solutions of ammonium 

chloride, tetramethylammonium chloride and tetraethylammonium 

ch lo r ide were then measured. I t was hoped that f o r 

tetramethylammonium chloride a response would indicate efficient 

transport of the electrolyte, showing that 1 might interact w i t h N -

methyl ammonium cations via an aromatic k - ammonium cation 

interaction (see Chapter 1). 

However, very modest responses were observed for the 

a m m o n i u m , te t ramethyl and tetraethyl ammonium chlorides 

(27.5mV, 38mV and 37.5mV respectively). 

The response to tyramine hydrochloride (C1-NH3+CH2CH2-

C6H5OH) was also measured, as i t was thought that a 7t-stacking 

interaction w i t h 1 might al low transport across the membrane. 

However, a disappointing response of only 21.5mV was observed. 

2.6.2. Acetvl Choline Wi th 7a (Sodium Salt). 

The macrocycle 2 was known to be unstable i n chloroform 

(see pages 61-66) and so i t became necessary to f i nd a second solvent 

system in which to study any possible complexation phenomena. 

Although AcCh chloride was insoluble in THF, it was found that on 

addition of a small amount of water, AcCh chloride was sufficiently 

soluble to enable N M R experiments to be conducted. 

If the concentration of water was kept low then both 2 and 7a 

(the zwitterion and the sodium salt) were also soluble. In practice, it 
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was found that a mixture of about 1% or 2% water in THE was the 

best compromise. 

30mg of 7a (Na+ salt) were dissolved in 1ml of deutero-THF 

and 20|il of D2O added. A ^ H N M R spectrum was acquired. Small, 

known amounts of AcCh chloride were added and further ^ H N M R 

spectra acquired after each addition so that the ratio of macrocycie : 

AcCh varied f rom 10:1 to about 1:10. 

When this ratio became greater than about 1:1 i.e. in an excess 

of AcCh, phase separation began to occur. Small droplets of water 

could be seen in the N M R tube and a precipitate formed. The signals 

in the ^ H N M R spectrum broadened slightly. 

Because the spectra of the solution d i d not decrease in 

intensity (signal : noise ratio d id not decrease for a given number of 

acquisitions) i t was assumed that the precipitate was not the 

macrocycie, and was taken to be sodium chloride. However, when the 

"amount of AcCh present was calculated f rom the peak integrations of 

the spectra i t was found that the weighed amount of AcCh was much 

greater than the amount of AcCh in solution. It was concluded that at 

least some of the precipitate was AcCh chloride. 

When the ratio of macrocycie : AcCh (weighed amounts) 

reached about 1:5, most of the precipitate redissolved and the signals 

in the spectrum sharpened again. 

The ^ H N M R spectra of 7a and of 7a w i th an excess of AcCh in 

deutero-THF/2% D2O are shown in figure 2.13a and 2.13b. Although 

slightly greater than 10 equivalents of AcCh chloride were weighed 

out, the peak integrals of the spectrum indicated that the ratio 7 a : 

AcCh was only about 1:2. 
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The signals assigned to AcCh were very broad and so could 

not be accurately measured - even so, such a large disagreement does 

indicate that there was considerably less AcCh in solution than was 

known to be present. 

As AcCh was added to 7a, positive (upfield) shifts in the 

positions of all the signals associated w i t h the macrocycle were 

observed, w i t h the exception of the CCH3 singlet. These changes are 

summarised in table 2.1. 

The CCH3 protons were expected to be remote f rom the cavity 

and w o u l d not therefore be influenced i f AcCh were bound. 

Consequently, this signal was not expected to move. 

Of the shifted signals, the one assigned to the pyridine triplet 

is the most convenient in terms of measuring the change in chemical 

shift, A5, as i t is unambiguously assigned and is well separated f rom 

other signals i n the spectrum. Values of A5 for the pyridine triplet at 

given macrocycle/AcCh ratios are given in table 2.2 and a plot of AS 

versus this ratio is shown in figure 2.14a. Figure 2.14b shows a plot of 

A5 versus the log of the macrocycle/AcCh ratio. Note that the ratio 

was calculated using the weighed amounts of macrocycle and AcCh. 
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FREE MACROCYCLE 
MACROCYCLE + AcCh 

Assigned Protons Shift , Integral Shift , Integral 
P2m 

CCH3 1.460 12 1.460 12 

A r C H i O 5.004 4 4.992 4 

ArCH'20 5.192 3 5.165 2 
5.243 1 5.413 2 

Biphenyl AA'BB" 
systems 6.663- 17 6.655- 17 

and 6.950 6.908 
Benzoate triplet 

Benzoate doublet}" ' 7.140 2 7.074 2 
Pyridine doublet}* 7.225 2 7.159 2 

Pyridine triplet 7.560 1 7.487 1 

*The doublets for the pyridine and benzoate rings cannot be unambiguously assigned. 

Table 2.1 

5 pvridine A5 pvridine Ratio Log 

triplet (ppm) triplet (Hz) r7al/rAcChl ([7al/rAcChl) 
7.560 0 1/0 1 /0 
7.561 -0.4 9.09 0.959 
7.559 0.4 4.55 0.658 
7.558 0.8 1.82 0.260 
7.556 1.6 1.01 (3.47) 0.004 (0.540) 
7.546 5.6 0.76 (1.72) -0.119 (0.236) 
7.533 10.8 0.46 (1.41) -0.337 (0.149) 
7.516 17.6 0.19 (0.86) -0.721 (-0.066) 
7.487 29.2 0.09 (0.53) -1.046 (-0.276) 

*The ratio is calculated from the weighed amounts of macrocycie and AcCh. Figures 
in parentheses give the ratio calculated from the peak integrations in the NMR 
spectrum. 

Table 2.2. 
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The signals assigned to the ArCH20 protons were expected to 

show two singlets corresponding to the two uncoupled, chemically 

distinct sets of protons. 
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However, one of these signals is split into one sharp singlet 

(5.243ppm) and one quite broad singlet (5.192ppm) which are 

approximately in the ratio 1:3 (2H and 6H). This indicates that the 

macrocycle is in a conformational equil ibrium, w i t h slow exchange 

between the conformers on the N M R time scale. 

Since this equi l ibr ium was not observed for the methyl or 

ethyl esters 6, i t was assumed that the methylene protons which 

could be seen in two different conformations are those attached to the 

benzoate ring. 

The larger, broad signal was assigned to the methylene 

protons which were turned into the cavity and influenced by the 

carboxylate group (figure 2.15a). The less intense, sharper signal was 

assigned to the methylene protons which were turned outwards, 

away f rom the carboxylate group (figure 2.15b). 

Figure 2.15 

As AcCh was added, the intensity of the broad signal decreased 

and that of the sharp signal increased unti l they were approximately 
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in a 1:1 ratio. As the position of the conformational equilibrium was 

affected by AcCh, i t could be inferred that the macrocycle and AcCh at 

least interact. Of the two conformations, the one w i t h the methylene 

protons turned outwards i.e. the least favoured conformation of the 

free macrocycle (figure 2.15b) seems to be the one that is preferred for 

complexation w i t h AcCh. I f 7a has the conformation shown in figure 

2.15a and 7a' is the macrocycle w i t h the conformation preferred for 

b ind ing , represented by f igure 2.15b, then the conformational 

equilibrium is described by equation 2.2a and the binding equilibrium 

is described by equation 2.2b. 

7 - 7a' Equation2.2a 

K2 
7 a ' + AcCh.. " Complex Equation 2.2b 

Since we know f rom the N M R integrations that the ratio of 7 a 

: 7a' is 3:1, we know that K i = [7a']/[7a] = 0.33. Note, however, that this 

value varied considerably depending on the concentration of sodium 

salt 7a, and on the amount of water (D2O) present. 

As the relative concentration of AcCh increased, new signals 

appeared in the N M R spectrum. 

Two distinct sets of signals were seen and these were 

attributed to free and bound AcCh. The chemical shift values of AcCh 

chloride in 5% D20/d8-THF (300MHz) and the signals attributed to 

the free and bound AcCh in the presence of 7a are given in table 2.3. 

The number of protons assigned to each signal is inaccurate because 

of the very broad nature of the signals, although the signal which has 
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been assigned (questionably) to the free acetyl CH3 group was quite 

sharp and this assignment is tentative. 

Assigned AcCh Free AcCh in Bound AcCh 
Protons chloride Presence of 

Za 
CH2N 4.38 (2H) 4.34 (2H) 4.54 (2H) 
CH2O 3.63 (2H) 3.73 ( IH) 3.88 (2H) 
NCH3 3.17 (9H) 3.15 (3H) 3.35 (10.5H) 

CH3 1.98 (3H) 1.85 ( I H ) ? 2.15 (2.5H) 

Table 2.3. 

As mentioned above, i t was thought that the two sets of 

signals which arose on addition of AcCh to 7a were due to the slow 

exchange between free and bound AcCh. 

However, phase separation occurred when an excess of AcCh 

had been added and i t was possible that the exchange was between 

AcCh(aq.) and AcCh (THE). This suggestion was rejected for several 

reasons: 

(i) A l t h o u g h the signals due to AcCh are weak at lower 

AcCh/macrocycie ratios, two distinct sets of signals can still be seen. 

A t these lower ratios, phase separation had not occurred. 

(ii) The volume of D2O used was only 20|il and even when phase 

separation occurred, the depth of D2O at the bottom of the N M R tube 

was very small. The N M R was acquired at a sample depth of about 

2cm and so the aqueous phase would not have been seen. 
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(iii) That two sets of signals were seen implied that the exchange was 

slow on the N M R time scale. Exchange between one solvent phase 

and another is usually quite rapid and time averaged signals would 

have been seen. 

I t had also been suggested that while one set of signals was 

due to AcCh, the second set was due to choline which had been 

produced by the hydrolysis of AcCh via acyl transfer to the 

macrocyclic pyridine nitrogen. 

The proposed mechanism, shown in scheme 2.8, w o u l d be 

analogous to that of AcChE (scheme 2.1). Note, however, that in the 

esterase hydrolysis of AcCh the conversion of the tetrahedral 

intermediate to the acyl-enzyme is assisted by the nearby histidine 

residue. In the proposed mechanism of hydrolysis by the macrocycie 

there is no assisting group for the analogous step. 

I t was proposed that the hydrolysis was only part ial ly 

complete because the product, choline, was bound in the macrocyclic 

cavity more strongly than AcCh and so any catalytic activity was 

inhibited by the hydrolysis product. 

To test this theory, two experiments were proposed: 

(i) A ^ H N M R spectrum of 7a w i t h an excess of AcCh (the solution 

result ing f r o m the N M R titration) could be acquired at a lower 

operating frequency (200MHz instead of 400MHz). I f the two sets of 

signals arise f r o m free and bound AcCh, which are in slow exchange 

on the N M R time scale, lowering the operating frequency of the 

N M R spectrometer should lead to an apparent increase i n the 

exchange rate. Where two sets of signals were seen at 400MHz, each 
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pair should approach coalescence at 200MHz as the signals should 

begin to show time averaging. 

The broad nature of the signals at 400MHz was perhaps an 

indication that the signals, i f they were due to free and bound AcCh, 

were already approaching coalescence. 

If the two sets of signals were still seen at 200MHz, then either 

the exchange rate of free and bound AcCh was still too slow on the 

N M R time scale to show coalescence or the presence of both AcCh 

and choline would still be a possibility. 

As i t had also been suggested (see above) that the macrocycle 

itself was involved i n a conformational equil ibr ium, lowering the 

N M R operating frequency may also provide further information 

about this exchange process. 

(ii) To the same solution used for (i), above, choline could be added. I f 

one set of signals was seen to undergo an increase in intensity and no 

new signals appeared then the presence of choline in the solution 

wou ld be proved. 

Conversely, i f a new set of signals arose, then the absence of 

choline f r o m the original solution would be proved, and the two sets 

of signals could be unambiguously assigned to free and bound AcCh. 
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Scheme 2.8. 

EXPERIMENT 1. Change of NMR Operating Frequency. 

The NMR titration experiment of 7a against AcCh was 

conducted at 400MHz. Solvent was evaporated from the resulting 

solution (7a + excess AcCh) and the residue dried thoroughly imder 

vacuum and stored as a solid in a sealed flask for about 2 months. 
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The residue was then taken up in 2ml of d^-THF and 4 drops 

of D2O added. The resulting clear solution was placed in an NMR 

tube and a NMR acquired at an operating frequency of 200MHz. 

(As in the titration experiment, phase separation occurred in the 

NMR tube). 

The I R NMR spectra at 400MHz and 200MHz are shown in 

figures 2.16a and 2.16b respectively. 

At an Operating frequency of 400MHz (in the presence of 

macrocycle 7a), two sets of signals could be seen for each of the AcCh 

N-methyl, N-methylene, O-methylene and acetyl CH3 protons. At an 

operating frequency of 200MHz, coalescence of the N-methyl and N -

methylene signals occured. Coalesence of the signals assigned to the 

AcCh O-methylene and acetyl CH3 protons did not occur, but the 

separation of the signals decreased. These changes, summarised in 

table 2.4, suggest (but do not prove) that the two sets of signals arise 

from free and bound AcCh. 

In order to assign one set of signals to free AcCh and the other 

to bound AcCh (or choline) a NMR spectrum of acetyl chohne in 

5%D20/d8-THF was acquired at 300MHz. Obviously the chemical 

shift values of AcCh alone wil l be slightly different to the values of 

free AcCh in the presence of the macrocycle. However, those signals 

which had been assigned to AcCh in the AcCh/macrocycle mixture 

and had the closest chemical shift values to AcCh alone were 

assigned to free AcCh. 
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Assigned 
Protons 

Acetyl 
CH3 
N -

methyl 
O-CH2 
N-CH2 

^eSl+-Za.i400MHz 
^ Bound 

1.85? 

3.15 

3.73 
4.34 

2.15 

3.35 

3.88 
4.54 

AcChj^Tai 
200MI^ 

Bound 
1.98 

3.19 

3.65 
4.45 

2.09 

3.19 

3.71 
4.45 

Table 2.4. 

A c Q u 
300MHz 

1.89 

3.08 

3.54 
4.29 

It is interesting to note that the two pairs of signals which 

coalesced at 200MHz were those which were a to the nitrogen atom of 

AcCh. This may imply that the ammonium head was in a faster 

exchange than the ester end of the molecule. 

For the proposed equilibrium between the macrocyclic 

conformations responsible for the broad ArCH20 peak at 5.17ppm 

and the less intense, sharp ArCH'20 peak at 5.41 ppm, only the broad 

signal could be seen at 200MHz. However, the relative intensity of 

this peak (ca.2.5H) was still too low to account for the four protons 

which made one pair of chemically identical ArCH20 residues. 

While i t can be inferred from these observations that the two 

sets of signals seen at 400MHz are due to free and bound AcCh, the 

absence of choline from the solution had not been proven. 
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EXPERIMENT 2. Addition of Choline. 

Choline is commercially available as the chloride, 

Me3N+CH2CH20H.Cr. However, choline chloride was insoluble in 

the chosen solvent system and was converted to the trifluroacetate 

("TEA") by anion exchange to the hydroxide followed by reaction 

with trifluroacetic acid. Choline TFA was soluble in THE and water. 

A I H NMR spectrum of choline TFA in 5%D20/d8-THF at 

200MHz was acquired. A known volume of this solution, containing 

about 10 equivalents of choline (with respect to 7a), was then added to 

the AcCh/macrocycle solution in the NMR tube. This was shaken 

vigorously, allowed to stand for 2 hours and then shaken again before 

another i R NMR spectrum was acquired, also at 200MHz. These 

spectra are shown in figures 2.17a and 2.17b respectively. 
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Figure 2.17a 
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Figure 2.17b 

The signal which had been assigned to the N-methyl protons 

of AcCh increased in intensity on addition of choline TFA. This was 

not surprising as the AcCh N-methyl and choline N-methyl protons 

should be very similar and consequently have similar chemical shift 

values. 

For the two pairs of signals assigned to AcCh CH2O and acetyl 

CH3 protons, one signal from each pair became vanishingly small on 

addition of choline, while the other increased proportionally in 

intensity. 

The peak which had been assigned to the AcCh CH2N protons 

increased more than two-fold in relative intensity. 
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New signals arose in the spectrum, which by comparison with 

the choline TFA spectrum in d8-THF/5%D20 were assigned to 

choline CH2OH (3.47ppm) and choline CH2N (3.92ppm) protons. The 

chemical shifts of these peaks were not significantly different from 

the shifts of choline alone in d8-THF/5%D20. 

(A third new signal also appeared in the spectrum at 4.04ppm, 

which could only be assigned to some unknown impurity). 

These changes show that no choline was present in the 

original AcCh/macrocycle solution and therefore the two sets of 

signals which had been observed at 400MHz were probably due to 

slow exchange between free and bound AcCh. 

Furthermore, on addition of an excess of choline, those 

signals which had been assigned to bound AcCh vanished and those 

which had been assigned to free AcCh increased in intensity. This can 

be explained if both AcCh and choline are bound by macrocycle 7a, 

and that AcCh is displaced from the [7a.AcCh] complex by choline 

when an excess of choline is added. Changes in the chemical shifts of 

the choline protons relative to choline alone were not observed, 

probably because the observed signals are time averaged and there 

was approximately a tenfold excess of choline. 

Choline trifluroacetate was added to a fresh, uncontaminated 

sample of sodium salt 7a. Changes in the shifts of the macrocyclic 

protons indicated that choline was bound, and that exchange between 

free and bound species was fast on the NMR time scale (200MHz). 

Furthermore, comparison with the spectra of 7a with an excess of 

AcCh conclusively showed that no choline was present in the 

7a/AcCh mixture. 
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No conclusions can be drawn concerning the relative 

stabilities of the [7a.AcCh] and [7a.choline] complexes, but the rate of 

exchange between free and bound species is fast in the 7a/choline 

mixture and slow in the 7a/AcCh mixture. 

In order to gain further understanding of the conformations 

available to the macrocycle and the influence of AcCh upon the 

conformational equilibria, a variable temperature ^ H NMR 

experiment of the sodium salt 7a (in the absence of AcCh) was 

undertaken. The temperature range -50 °C to +40 °C was examined at 

an operating frequency of 400MHz. 

Although the separation of two signals arising from the 

ArCH2'0 protons decreased at higher temperatures (A5 = 0.39ppm at -

50 °C and 0.20ppm at +40 °C), no other significant changes were 

observed over the given temperature range. 

2.6.3. Acetvl Choline with 2 (Zwitterion). 

A titration similar to the one above (section 2.6.2) was 

conducted, using 2 in place of 7a. ^H NMR spectra were acquired after 

each addition of AcCh. A 2% solution of D2O in d^-THF was again 

used as solvent and the ratio of 2 : AcCh varied from about 10:1 to 

about 1:10. 

Note that initially the macrocycle was not completely 

dissolved and a small amount of precipitate was present in the NMR 

tube. When sufficient AcCh was added for the macrocycle/AcCh ratio 

to reach about 1:1, the precipitate dissolved to give a clear, 

homogeneous solution. 
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Although the solution remained homogeneous when about 5 

equivalents of AcCh had been added, when a further 5 equivalents 

were added it was found that some AcCh chloride remained 

undissolved. 

The spectra of 2 and 2 with an excess of AcCh in 2%D20/d8-

THF are shown in figures 2.18a and 2.18b respectively. 
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Signals which could be assigned to the added AcCh were 

difficult to see (except for a broad signal at about 3.2ppm which was 

assigned to the NCH3 protons) due to extreme broadening, indicating 

that AcCh was involved in an exchange process which was rapid on 

the NMR time scale. It was proposed that this exchange was between 

the bound and unbound states. 

This proposal was in agreement with the changes in the 

chemical shifts of the signals which were assigned to the macrocycle, 

which are summarised in table 2.5. 

Only the CCH3 protons were, as expected, unaffected. They are 

remote from the macrocyclic cavity and should not be influenced by 

the inclusion of AcCh. 

The protons attached to the DPP shaping groups were only 

slightly affected, undergoing only small changes in chemical shifts 

and coupling constants. 

The position of the doublets arising from the pyridinium and 

benzoate residues changed significantly, but the two signals could not 

be unambiguously assigned. For the free zwitterion, the benzoate 

triplet coincided with one of these doublets and its presence could 

only be inferred from the peak integrations. 

In the presence of AcCh, this triplet was split into two separate 

signals, one of intensity 0.3H at 7.33ppm and one of intensity 0.7H 

which was still obscured by the doublet at 7.17ppm. 

This indicates that in the presence of AcCh the macrocycle was 

itself involved in an exchange process which was slow on the NMR 

time scale. In the absence of AcCh this exchange process was not 

observed. 
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time averaged signal is seen the observed exchange phenomena 

cannot be simply explained as an exchange between different 

conformations. It is plausible that the exchange process observed on 

addition of AcCh was between the free zwitterion and the [2.AcCh] 

inclusion complex. 

The relative intensities of the two signals (1.7H : 0.3H) 

indicated that the ratio free 2 : complex was about 5:1. 

Both the ArCH20 signals showed only small changes in 

chemical shift. One of them also decreased in intensity as AcCh was 

added from just less than 4H to 3.2H in the presence of excess AcCh. 

A signal at 5.420ppm, which could only just be seen in the spectrum 

of free macrocycle, was seen to undergo a proportional increase in 

intensity from about O.OH to 0.8H as AcCh was added, and also moved 

to 5.415 in the presence of an excess of AcCh. 

This also indicates that the macrocycle was involved in an 

exchange process, which was slow on the NMR time scale in both the 

presence and absence of AcCh. However, the position of the 

equilibrium was obviously affected by AcCh. It was proposed that the 

less stable conformation was the one which was most likely to form a 

complex with AcCh and that this interaction was responsible for the 

shift in the conformational equilibrium. 

There was also a change in the chemical shift of the 

pyridinium triplet, from 7.576ppm in the free zwitterion to 7.521 in 

the presence of excess AcCh. This signal is the most convenient in 

terms of measuring changes in chemical shift as it can be 

unambiguously assigned, is of constant intensity and is well separated 

from other signals in the spectrum. 
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Values of AS for the pyridine triplet at given ratios of 2:AcCh 

are shown in table 2.6 and a plot of A5 versus this ratio and A6 versus 

the log of the ratio are shown in figures 2.19a and 2.19b respectively. 

§ Pvridine A5 Pvridine Ratio log 
Triplet Triplet (Hz) r2i/rAcChi*i (r2i/rAcChi) 
(ppm) 

r2i/rAcChi*i 

7.576 0 1/0 1/0 
7.576 0.0 10.00 1.000 
7.574 0.8 5.0 0.699 
7.571 2.0 1.33 0.125 
7.565 4.4 0.93 -0.032 
7.561 6.0 0.63 -0.201 
7.557 7.6 0.48 -0.319 
7.542 13.6 0.20 -0.699 
7.521 22.0 0.10 (0.15 )*2 -1.000 

*^ Ratio is calculated from the weighed amounts of 2 and AcCh, as AcCh signals 
were too broad to be seen in the NMR spectrum and the ratio could not be 
calculated from peak integrations. 
*2 Not all AcCh dissolved, so calculation of the ratio using the weighed amounts of 2 
and AcCh gives a false value. An estimate of the amount of AcCh in solution is given 
in parentheses. 

Table 2.6 
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Figure 2.19b 

As the AcCh signals were very broad, a variable temperature 

1 H NMR experiment was performed on the solution of 2 with 10 

equivalents of AcCh (but see note table 2.6) in 2% D2O /THF. 

Temperatures ranged from -50 °C to +40 °C at 10° intervals. 

As a control, a similar experiment was conducted on 

zwitterion 2 in the absence of AcCh, in the same solvent system. 

For the macrocycle/AcCh mixture it was hoped that the AcCh 

signals would sharpen; it was also thought likely that coalescence of 

the ArCH20 /ArCH '20 signals at 5.091/5.415ppm and also of the 

benzoate triplet signals at 7.33/7.17ppm might be seen. The spectra 

acquired at -40 °C, 0°C and +40 °C are shown in figures 2.20a-c 

respectively. 

98 



FIGURE 2.20a 

1 
II 10 

FIGURE 2.20b 

11 10 

r 

-A 

FIGURE 2.20c 

_JU1JU 
11 10 

99 



At temperatures both above and below room temperature 

(ca.25°C), the AcCh signals sharpened sufficiently for them to be seen 

but they remained very broad. 

At 20 °C or above, two broad peaks could be seen at about 4.4 

and 4.2ppm. Below 20 °C, these appeared to coalesce to form a single, 

broad peak centred at about 4.3ppm at 10°C and about 4.7ppm at 

-50 °C. These signals were assigned to the NCH2 and OCH2 protons. 

A peak at about 3.2ppm could be seen at all temperatures 

between 0°C and +40 °C. This signal was assigned to the NCH3 

protons. Below 0°C this peak and the nearby water signal (ca.2.6ppm) 

began to broaden even more and move towards one-another. At 

-50 °C only a single peak could be seen, centred at, about 3ppm. 

At all temperatures above -50 °C, a broad signal could be seen 

at about 2ppm. This was assigned to the acetyl CH3 protons. 

Although the broad nature of the AcCh signals made accurate 

measurement of peak integrals impossible, the integral ratios of the 

signals mentioned above approximate to the ratio 4H : 9H : 3H, 

consistent with their assignments. 

For the macrocycle, coalesence of the signals which had been 

hoped for (see above) did not occur. However, several other 

interesting changes were observed. 

In the aromatic region of the spectrum, the DPP AA'BB' 

protons retained their symmetry, but small changes in coupling 

occurred which lead to shght changes in the pattern of the splitting. 

As the temperature was decreased to 10°C, the pyridinium 

triplet began to change and at 0°C it spUt into two distinct signals at 
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7.56ppm and 7.54ppm, indicating that the pyridinium ring existed in 

two different environments. Exchange between the two signals was 

slow on the NMR time scale below 10 °C and fast at 20 °C or above i.e. 

a coalescence temperature of about 10 °C. 

At lower temperatures (0°C or below), the pyridinium doublet 

and the benzoate signals (doublet and triplet) were each split into 

"several" signals, showing that the pyridinium and benzoate residues 

were invoved in exchange processes. The signals coalesced at a 

tempersture of about 10°C. At -30 °C, the signals began to broaden 

and below this temperature were too broad for any useful 

measurements to be made or for any conclusions to be drawn. 

At lower temperatures, a sharp singlet could be seen at about 

11 ppm (11.3ppm at -50 °C). As the temperature increased to -30 °C this 

broadened considerably. This was assigned to the pyridinium N H 

proton, which is in fast exchange on the on the NMR time scale at all 

'temperatures above 0°C, but was still just visible in the spectra 

acquired at +20 °C and +30 °C. 

As mentioned above, coalescence of the ArCH20/ArCH'20 

signals did not occur. Both singlets remained sharp and well 

separated at all temperatures, although the separation decreased as 

the temperature was increased. 

However, the intensity of the major peak decreased as the 

temperature decreased until a minimum value was reached at about 

0°C. As the temperature decreased further, the major peak intensity 

began to rise again. These changes were associated with proportional 

increases or decreases in the intensity of the minor peak. 
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Values of the major and minor peak intensities at the given 

temperatures are given i n table 2.7. Although the significance of this 

change is not certain, plots of the major peak intensity versus 

Temperature, 1/Temperature and log (Temperature) are shown in 

figures 2.21a-c. 

Minor Major Peak Temp. (K) I/Temp. Log (Temp) 
Peak (K-^xl03 ) 
0.42 3.58 313 3.19 2.1955 
0.74 3.26 303 3.30 2.4814 
0.91 3.09 293 3.41 2.4669 
1.25 2.75 283 3.53 2.4519 
1.38 2.62 273 3.66 2.4362 
1.27 2.73 263 3.80 2.4200 
1.30 2.70 253 3.95 2.4031 
0.98 3.02 243 4.12 2.3856 
1.10 2.90 233 4.29 2.3674 
0.77 3.23 213 

Table 2.7 
4.48 2.3483 
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As already mentioned, the signals due to AcCh were broad 

and so integral measurement was prone to inaccuracy. Nevertheless, 

the integrals were used to calculate that the ratio of 2:AcCh was only 

about 1:2. This value should be compared wi th the weighed amounts 

of macrocycle 2 and AcCh chloride which indicated that at least 5 

equivalents of AcCh were present in solution. 

The VT N M R spectra of the macrocycle 2 in the presence of an 

excess of AcCh should be compared w i t h the VT N M R of the 

macrocycle alone, which broadened somewhat at about 10°C or 

below, but otherwise showed very little change over the temperature 

range -50 °C to +40 °C. Most notably, no changes were observed which 

w o u l d have indicated that there were exchanges between different 

macrocyclic conformations. 

This suggests that AcCh is responsible for the observation of 

the macrocyclic conformational exchange processes. 
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2.7. C O N C L U S I O N S AND FURTHER WORK. 

2.7.1. CONCLUSIONS A N D SUMMARY. 

Three structurally similar cyclophanes (1,2 and 7a, shown on 

pages 47 and 70) wi th enforced cavities have been prepared, and their 

interaction wi th AcCh has been investigated. 

The cyclophane 1 carries no formal charge and has an 

aromatic "pocket" as a binding site for the trimethylammonium head 

group of AcCh. Binding between AcCh and 1 was too weak to be 

observed using N M R techniques. However, i t can be inferred that 

some complex formation does occur as AcCh is transported across a 

l ipophil ic membrane by cyclophane 1. It is important to note that 

transport occurred w i t h very l i t t le interference f r o m ammonium or 

group I and group I I metal cations. Transport of tetramethyl and 

tetraethyl ammonium cations was poor, indicating that interference 

f r o m these species might also be low. Transport of the protonated 

tyramine cation was also poor, indicating that cyclophane 1 may show 

some selectivity for AcCh. 

The cyclophane 7a carries a negative charge i n the form of the 

sodium salt of a beiizoic acid residue. Using N M R experiments, i t was 

shown that 7a is able to bind to AcCh, presumably via an electrostatic 

attraction between the trimethylammonium head group of AcCh and 

the carboxylate binding site of cyclophane 7a. 

A t all AcCh : 7a ratios studied, two distinct sets of signals 

could be assigned to AcCh, and these were attributed to the free and 

bound species. The absence of choline f r o m the AcCh /7a mixture 
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(and hence the lack of catalytic, "hydrolytic" activity of 7a) was 

demonstrated by : (i) coalescence of the AcCh signals when the N M R 

operating frequency was lowered; (ii) addition of choline to the 

AcCh /7a mixture; (iii) addition of choline to fresh 7a. 

The macrocycle 7a was itself observed in two distinct 

conformations which were in slow exchange on the N M R time scale. 

On addition of AcCh, the proportion of the less stable (higher energy) 

conformation was seen to increase. This indicates that the higher 

energy conformation is more predisposed to the binding of AcCh. 

The cyclophane 2 also carried a negative charge in the form of 

a benzoate residue. However, the macrocyclic r ing also carried a 

positive charge i n the f o r m of a py r id in ium residue. N M R 

experiments again indicated that AcCh was bound by the cyclophane, 

but that exchange between the free and bound species was rapid on 

the N M R time scale. 

Like sodium salt 7a, zwitterion 2 was observed in two distinct 

conformations which were in slow exchange on the N M R time scale. 

The proport ion of the less stable conformation again increased on 

addition of AcCh. 

A VT N M R experiment studying the binding of 2 w i th AcCh 

showed that the benzoate and p y r i d i n i u m residues were also 

involved i n an exchange process which was rapid on the the N M R 

time scale at >10°C, but slow at <0''C i.e. a coalescence temperature of 

=10 °C. N o slowing of this exchange process was seen in a similar 

experiment w i t h 2 alone, and the relevant signals were not time 

averaged (did not appear at an intermediate value). It is therefore 
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proposed that the exchange observed in the zwit terion/AcCh mixture 

was between the free macrocycle and the complexed species. 

To summarise, sodium salt 7a binds AcCh w i t h exchange 

between free and bound species slow on the N M R time scale. 

Zwi t t e r ion 2 also binds AcCh, but the exchange between free and 

bound species is rapid on the N M R time scale. Complexation of 

cyclophane 1 w i t h AcCh is too weak to be seen using N M R 

techniques. However, cyclophane 1 was able to selectively transport 

AcCh across a PVC membrane. 

In terms of mimicking the biological receptors (see section 

2.1), neither 1, 2 nor 7a showed any catalytic activity under the 

conditions studied. 

The biological receptors for AcCh have both rapid rates of 

complexation and decomplexation, and binding constants for AcCh 

which are reasonably high. 

Sodium salt 7a has a binding constant which is high enough 

to observe complexation i n N M R experiments, but has slow rates of 

complexation and decomplexation. 

Conversely, cyclophane 1 has reasonably high exchange rates 

(required for efficient membrane transport), but binding is so weak 

that i t cannot be seen using N M R methods. 

However, zwitterion 2 seems to approach the criteria of both 

fast exchange and strong binding, as shown by N M R experiments. 

Furthermore, both sodium salt 7a and zwitterion 2 undergo 

conformational changes on binding to AcCh. The AcCh receptors in 

the postsynaptic membrane are also believed to undergo changes in 

conformation on binding to AcCh, resulting in the opening of ion 
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channels and the propagation of the nervous impulse (see section 2.1, 

p39). 

The aims set out in Section 2.1 were therefore achieved wi th 

some degree of success. 

2.7.2. FURTHER WORK. 

As was mentioned earlier, measurement of the pKa's of the 

benzoate and pyr id in ium residues of 2 was not straightforward. If a 

reliable method of estimating them could be established, then this 

information may prove valuable. 

In addit ion, although spectral evidence (IR, NMR) suggests 

that cyclophane 2 existed in the zwitterionic form, this case is far f rom 

proven. I t seems that the exact concentration of water, and of the 

macrocycle itself, i n the THF solution may be crucial to the 

equil ibrium between the different states of protonation. 

The elimination of water (i.e. using anhydrous THF) would 

s impl i fy the study of this equilibrium. The lipophilicity of AcCh (and 

hence its solubil i ty i n THF) w o u l d be enhanced i f the chloride 

counterion were replaced by trifluroacetate or hexaflurophosphate, 

for example. 

Conversely, derivatisation of the macrocyclic skeleton w i t h 

appropriate functional groups^^ in order to increase the hydrophilic 

nature of the macrocycle might make i t possible to conduct N M R 

experiments i n aqueous media. This w o u l d enable accurate 

measurement of p H and consequently pKa values. 
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Sodium salt 7a seemed to form stable complexes wi th choline. 

Appropriate competition experiments (macrocycle + AcCh + choline) 

should reveal which substrate forms the most stable complex wi th 

macrocycles 1,2 and 7a. 

Invaluable structural information would be gained i f crystals 

of the macrocycle could be grown which were suitable for analysis by 

X-ray diffraction. As was mentioned, crystals of ester 6 (page 59) were 

successfully grown, but disintegrated in the X-ray beam. 

The cyclophane prepared by Saigo et. al. (figure 2.6b) formed 

very stable, crystalline complexes w i t h aromatic guests such as 

benzene and toluene^O. These were successfully analysed by X-ray 

d i f f rac t ion , and i t may be that cyclophane 1 or ester 6 wou ld be 

induced to f o r m more robust crystals in the presence of similar 

substrates. 

Cyclophanes 1 and 2 both incorporate pyridine residues and 

can be easily protonated and isolated as, fo r example, the 

hydrochloride salt. Cyclophanes bearing such a positively charged 

residue may be of interest as possible receptors for anions which have 

a lipophilic tail group. 

Biologically important anions often meet this description. 

However, the design and synthesis of receptors for such anions has so 

far been a rather neglected area. 
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CHAPTER 3. M A C R O C Y C L E S INCORPORATING UREA 

AND THIOUREA RESIDUES. 



3.1 I N T R O D U C T I O N 

Although AcCh was the first neurotransmitter to be identified, 

i t is now only one of many which has been discovered^. Where AcCh 

has a t r i m e t h y l a m m o n i u m "head", many other impor tan t 

neurotransmitters have a simple -NH3+ group, e.g. the catecholamine 

based neurotransmitters such as norepinephrine (noradrenaline) and 

dopamine, and y-aminobutyricacid (GABA) (see figure 3.1). 

D O P A M I N E 

CH^CH^Hjt- H O — ^ y—CHCHj^Hgf - 0 ^ ^ ^ " NHjf 

N O R E P I N E P H R I N E GABA 

Figure 3.1 

Like the -NMe3+ head group, -NH3+ has also been found to 

interact favourably w i t h 7c-eIectrons of aromatic residues-^/^. In 

macrocyclic chemistry, however, crown ethers have been widely used 

as binding sites for R-NH3+4. 

Recently, the "rediscovery" of cucurbituril^, figure 3.2, and its 

abi l i ty to f o r m very stable complexes w i t h a lkylammonium and 

a l k y l d i a m m o n i u m compounds^, as wel l as w i t h alkali and alkaline 

earth metal cations'^, lead us to consider urea carbonyl groups as 

binding sites of considerable potential. 

I l l 
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Figure 3.2 

Carbonyl groups are used in the formation of metal ion binding 

sites i n natural ionophores such as valinomycin and nonactin, figures 

3.3a and 3.3b respectively. 

O r > O 

^ / I \ 
.0. 

'4 

V A L I N O M Y C I N N O N A C T I N 

Figure 3.3 

However, there are very few examples of the conscious use of 

carbonyl groups as binding sites in synthetic macrocyclic compounds^' 

Consequently, we set out to synthesise macrocycles which exploited 

urea residues as binding sites, ini t ial ly for the biologically important 

molecules R-NH3+, but also for group I and group n metal cations. 
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3.2. CUCURBITURTL A N A L O G U E S . 

3.2.1. INTRODUCTION. 

Only one analogue of cucurbituril has been reported to date -

the cyclic pentamer decamethylcucurbit[5]urill2, shown in figure 3.4. 

However, neither this analogue nor cucurbituril itself bear sites which 

w o u l d be suitable for simple derivitisation, allowing the attachment of 

f u n c t i o n a l g roups . F u r t h e r m o r e , b o t h c u c u r b i t u r i l and 

decamethylcucurbit[5]uril are very rigid. Although the carbonyl groups 

are suitably arranged for binding R-NH3+, they are divergent. Such an 

arrangement is less than ideal for binding other cations, such as the 

group I and group I I metal cations. 

UV' 

I o \ 
Me Me 

Figure 3.4 

Judicious choice of the funct ional groups attached to a 

macrocycle can lead to improved selectivity or catalytic activity. If 

chiral funct ional groups are used, then the macrocycle inherits the 

chirali ty and may discriminate between optical isomers of a chiral 

substrate. 
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Consequently, the macrocycles 8 and 9, shown in figure 3.5, 

based on "half-molecules" of the cucurbituril-type structures, were 

designed. Positions which were thought to be convenient for the 

attachment of functional groups are indicated. 

Figure 3.5 

It was anticipated that, i n the case of biologically important 

molecules of the type R-NH3+, binding of the ammonium head would 

occur at the "upper r im" via hydrogen bonds to the urea carbonyls, as 

in the cucurbituril/R-NH3+ complexes. The alkyl tail group, R, would 

then have the oppor tuni ty to interact w i t h any functional groups 

attached at the "lower" r im. 

Also, macrocycles of this type are more flexible than the 

cucurbituril-type macrocycles. It was hoped that the urea oxygen atoms 

could arrange themselves around a substrate i n an octahedral 

conformation. 
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In particular, it was thought that compound 10, shown in figure 

3.6, w o u l d show chiral recognition of optically active ammonium 

compounds such as the catecholamine-based nuerotransmitters 

mentioned above. 

H 

Figure 3.6 

Cucurbituril is prepared by condensing glycoluril wi th an excess 

of formaldehyde in the presence of hydrochloric acid^'^^ to give a 

polymeric compound, called "Behrends Polymer". The polymer is then 

degraded w i t h hot, concentrated sulphuric acid to give the cyclic 

hexamer i n moderate yield (40-70%)^. 

Decamethylcucurbit[5]uril was prepared in a single step f rom 

dimethylglycoluri l and formaldehyde i n the presence of hydrochloric 

acid i n a yield of 16%^2, although i t had not been prepared when this 

work was undertaken. 

The yields of both of these compounds are quite high 

considering the relatively straightforward syntheses and the absence of 

a template. 
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3.2.2. ATTEMPTED SYNTHESES. 

As both 8 and 9 were analogous to cucurbi tur i l , similar 
preparations were attempted, but using 2-hydroxybenzimidazole for 8 
or 2-imidazolidone for 9 in place of glycoluri l for cucurbituril . The 
strategy is illustrated i n scheme 3.1. 

o 

A 
HN NH 

\ I H^CO, H C l 

I \ water, reflux 

O 

Behrend's 
Polymer 

Cone. H2SO4 

100°C 
CUCURBITURIL 

H^CO, H C l ^ Polymer ? Cone. H2SO4 ^ MACROCYCLE 8 ?? 
water, reflux 100°C 

m ^ l ^ H , C O , H C l 
^ I water, reflux 

Polymer ? Cone. H2SO4 

100°C 
MACROCYCLE 9 ?? 

Scheme 3.1 
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Attempted Synthesis of Macrocycle 8. 

2-Hydroxybenzimida2ole was refluxed in an aqueous solution 
of formaldehyde and hydrochloric acid to give a pale green precipitate, 
which was collected by filtration and dried thoroughly under vacuum 
to give a fine, light green powder. (On standing in sunlight or heating, 
the powder turned from light green to pale brown). 

Because of its lack of solubility in all common solvents (water, 

methanol, ethanoi, THF, diethyl ether, DMF, DMSO, dioxane, 

chloroform, dichloromethane, hexane, 60-80 petroleum ether, toluene) 

and its high melting point (>300°C) this was taken to be the polymeric 

material. 

However, this product was consistently prepared in apparent 

yields within 0.5% of 137% and failed to give a satisfactory elemental 

analysis. 

For the polymer, the molecular formula of the repeat unit is 

C8H6N2O, which would give an analysis of C 65.75%, H 4.11%, N 

19.18%. The experimental analysis obtained was C 55.98%, H 5.41%, N 

13.52%. 

Even when possible contamination by other substances which 

had been present in the reaction medium (water, formaldehyde, 

hydrochloric acid) was considered, a molecular formula which fitted 

the experimental data could not be found. 

From the consistent apparent yields of about 137%, it could be 

calculated that the product had a molecular weight of around 200, 

assuming 100% reaction and a pure product. 
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N,N'-bis(hydroxymethyl)-2-benzimidazolidone has a molecular 

weight of 194 and a theoretical elemental analysis for C9H10O3N of C 

55.67%, H 5.15%, N 14.43%. However, characterisation of a sample of 

N,N'-bis(hydroxymethyl)-2-benzimidazolidone, prepared as in the 

literature^^ showed that this was not the product obtained in the above 

reaction (see "Chapter 4 - Experimental" for details of the synthesis and 

characterisation of N,N'-bis(hydroxymethyl)-2-benzimidazolidone). 

Furthermore, an IR spectrum of the light green powder showed 

a peak at 1690cm" 1, corresponding to a C=0 absorption, but no peak 

which would have indicated the presence of an O-H group. 

When the light green powder was added to concentrated 

sulphuric acid, or vice versa, at room temperature, a thick, black, tarry 

substance was immediately formed. Heating, or diluting with water or 

more concentrated sulphuric acid, did not lower the viscosity. Excess 

liquid could be decanted off, but the tar was insoluble in all common 

"solvents, could not be dried under vacuum and remained completely 

intractable. 

Refluxing the green powder with 36% aqueous hydrochloric 

acid or with saturated aqueous potassium hydroxide gave only 

recovered starting material (identified from IR spectra), although in the 

case of potassium hydroxide, the powder changed from light green to 

the light brown colour acquired on standing in sunlight. 

Attempts to prepare macrocycle 8 by this route were 

consequently abandoned. Although no satisfactory molecular formula 

could be offered for the green powder, it was suggested that it was 

rapidly dehydrated or sulphonated (or both) by concentrated sulphuric 

acid. 
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Attempted Synthesis of Macrocycle 9. 

If the polymeric condensation product of formaldehyde and 2-
imidazolidone could be prepared, then degradation of the polymer by 
concentrated sulphuric acid should not be complicated by possible 
sulphonation as no aromatic ring is present. 

However, refluxing a solution of 2-imidazolidone in aqueous 

formaldehyde/hydrochloric acid for 16hrs resulted in the formation of 

N,N'-dimethyl-2-imidazolidone and considerable amounts of 

paraformaldehyde. When the reaction time was reduced to 4hrs., much 

less paraformaldehyde was obtained but N,N'-dimethyl-2-

imidazolidone was still the only condensation product which was 

identified. No evidence was found which would have indicated the 

formation of oligomeric or polymeric condensation products, or the 

intermediate N,N'-bis(hydroxymethyl)-2-imidazolidone. It was 

proposed that the dimethylated product was obtained by hydride 

transfer from formic acid (present in the formaldehyde solution as an 

impurity). 

As the analogous polymer could not be obtained, attempts to 

synthesise 9 by this route were also abandoned. 
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3.3.2.2. Strategy 1 - Synthesis of Crown Ether Frameworks Around Pre-

Formed Ureas. 

The syntheses of 11 and 12 had been described only in general 

terms^. 2-Hydroxybenzimidazole was reacted with l,5-dichloro-3-

oxapentane or l,8-dichloro-3,6-dioxaoctane respectively, in anhydrous 

DMF solution in the presence of NaH or LiH. Yields of 15% and 12% 

and melting points of 197-99 °C and 114°C were reported for 11 and 12 

respectively^. 

In this strategy, retrosynthetic analysis of 11 or 12 (see scheme 

3.2) gave 2-hydroxybenzimidazole and a diol as simple starting 

materials. In the published syntheses, the diols had been converted to 

the dichlorides 15 and 16 before reaction with the diamine, 2-

hydroxyberizimidazole. 

In our attempt to repeat the preparation of 12, l,8-dichloro-3,6-

dioxaoctane, 16, was replaced by l,8-bis(toluenesulphonato)-3,6-

dioxaoctane, 18, as -OTs is widely accepted as a better leaving group 

than -CI. Caesium carbonate was chosen as a base in place of 

sodium/lithium hydride because of the unusually high yields of 

macrocyclic products which have often been attributed to the presence 

of caesium salts in the reaction medium^^. 

However, using the reagents mentioned above (2-

hydroxybenzimidazole, 18, C S 2 C O 3 , DMF), 1+1 addition occurred to 

give the 12 membered ring, 19, shown in figure 3.8, in a 66% yield. 

Even under conditions of high dilution with dropwise addition of the 

reagents, no evidence was found that would have suggested the 

formation of the desired 2+2 addition product, 12. 
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11 n=l 
12 n=2 

0 

15 n=l, X=C1 
16 n=2, X=C1 
17 n=l, X=OTs 
18 n=2,X=OTs 

HO 0 OH 

Scheme 3.2. 

Using potassium carbonate in place of caesium carbonate gave a 

complex mixture of products (as shown by TLC analysis) which could 

not easily be separated. Using potassium carbonate, but with 

acetonitrile in place of DMF, also gave a complex mixture of products 

which showed the same pattern on analytical TLC. 

Sodium carbonate in DMF also gave a complex mixture of 

products. After several separations by column chromatography with an 

alumina support, small amounts of the 1+1 addition product, 19, and 

of the O-methylated isomer, 20, (figure 3.8) were isolated. 

Although compounds 19 and 20 appeared to be identical when 

characterised by elemental analysis or mass spectroscopy, they could be 

differentiated by analytical TLC or NMR spectroscopy. However, both 

gave rise to complex ^H NMR spectra and an unambiguous structural 

assigi\ment of the two isomers could not be made. The two compounds 
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could be identified from their IR spectra, with compound 19 giving rise 

to a C=0 stretching vibration at 1710cm"l, which was absent from the 

IR spectrum of 20. Other components of the mixture were not obtained 

in a pure state. 

19 20 

Figure 3.8 

Replacing caesium carbonate with sodium hydride also gave a 

complex mixture of products, but no attempt to separate them was 

made. 

These results are summarised in table 3.1. 

BASE 
C S 2 C O 3 

K 2 C O 3 

K 2 C O 3 

Na2C03 

NaH 

SOLVENT 
DMF 
DMF 

C H 3 C N 

DMF 

DMF 

FRODUCT(S) 
19 (1+1 addition) 

{Mixture 
{Mixture 
Mixture, 

including 19 and 
20 

Mixture 

Table 3.1 
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Lack of success using this approach lead us to consider an 

alternative synthesis of the targetted macrocycles. 

3.3.2.3. Strategy 2 - Insertion of (Thio)urea Residues Into Pre-Formed 

Aza-Crown Ether Frameworks. 

3.3.2.3.1. Introduction. 

Because of the difficulties encountered in obtaining good yields 

of the desired 2+2 macrocyclic products, an alternative approach was 

adopted. Where the synthetic strategy had been to build a crown ether 

framework around pre-formed urea residues (strategy 1, above), an 

approach was developed whereby a carbonyl group could be inserted 

between two nitrogen atoms of a pre-formed aza-crown ether, as in 

scheme 3.3. It was proposed that the urea-crowns 13 and 14 could be 

prepared from the crown ethers 21 and 22 respectively. 

M K HN NH 

r j — > r 1 
Î N NR 

13 n = l 21 n = l 

14 n=2 22 n=2 

Scheme 3.3 
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As mentioned above, the synthesis of I 8 N 4 O 2 had been 

previously published. Some 24 membered aza-crown ethers (24N602 

and 24N2O6, for example) had been previously prepared, although no 

preparation of 24N4O4 had been described. 

There are several well established methods for the insertion of 

carbonyl groups. Phosgene, CI2CO, and equivalents such as dialkyl 

carbonates and methyl chloroformate are well known examples. 

"Triphosgene" (bis(trichloromethyl)chloroformate) is a very reactive 

phosgene equivalent which has recently been reported to give good 

yields in a variety of carbonyl insertion reactions^^. 

However, it was recently reported that 1,2-diamines such as 1,2-

diaminohexane and l,2-diphenyl-l,2-diaminoethane react with 

phosgene and a variety of its equivalents to give the oligomeric 

products of intermolecular reactions rather than the 2-imidazolidones 

which would be formed by an intramolecular cyclisation '̂̂ . 

In both 2 1 and 22 we sought to introduce urea residues by 

insertion of a carbonyl group between the two nitrogen atoms of a 1,2-

diamine. On consideration of the results discussed above, the proposed 

use of phosgene equivalents was rejected. 

Another method of carbonyl insertion to form ureas requires 

the initial formation of thioureas by reaction of 1,2-diamines with 

carbon disulphide^^. Thioureas can be hydrolysed with mercury (II) 

acetate to form ureas^"^'^^. 

While it was hoped that this method would allow the 

preparation of the urea-crowns 13 and 14, it was also thought likely that 

the thiourea intermediates 23 and 24 (shown in figure 3.9) would prove 
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to be of interest as possible ligands for "soft" cations such as Ag+, Au+, 

Hg2+, Zn2+ and Cd2+. 

Mercury (11) and gold (I) both have quite strong preferrences for 

coordination numbers of 2 and a linear geometry; silver (I) also has 

some tendency towards this arrangement. 

Zinc (II) and cadmium (II), however, are more accomodating, 

and the geometry of their complexes is largely dictated by the 

requirements of the solvating ligands. 

23 24 

Figure 3.9 

The construction of a CPK model had indicated that the cavity 

of 23 would be very small and incapable of including potential 

substrates. However, the possibility of the formation of complexes with 

a stoichiometry greater than 1:1 could not be dismissed. 

CPK models were also used to predict that the annulus of the 

ring of the bisthiourea, 23, would be too small to allow the passage of 

the bulky sulphur atoms or the two five membered rings. 

Consequently, the molecule would be very rigid, and would be 
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"locked" into the conformation represented by the diagram in figure 

3.10. 

S 7 

Figure 3.10 

A CPK model of macrocycle 24 was also constructed, from 

which it was predicted that 24 would be much more conformationally 

mobile than 23, as the larger ring annulus allowed the free passage of 

both the sulphur atoms and the five membered rings. 

Furthermore, the CPK model indicated that both sulphur atoms 

could co-occupy the same face of the macrocycle, where they might be 

well placed to complex the soft metal cations mentioned above, such 

that the sulphur donor atoms are in a trans-orientation with respect to 

the cation. A representation of this conformation is shown in figure 

3.11. 

Figure 3.11 
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The feasibihty of the proposal that 23 or especially 24 might 

form complexes with the soft metal cations is demonstrated by the 

structure of bis(ethylenethiourea) gold (I) chloride hydrate^O^ shown 

schematically in figure 3.12. 

2.28A 

,167.1° 

/ \ 
H H 

Figure 3.12 

The sulphur - sulphur bond distance is about 5 A. The S-Au-S 

bond angle of 167.1° is slightly strained; a bond angle closer to 180° is 

usually preferred by gold (I) ligands. The strain is introduced by a 

bridging water molecule, which also explains the cis conformations of 

the ethylene thiourea rings (both in the plane of the page). 

For bisthiourea 24, the conformational mobility of the molecule 

allows the ethylene thiourea rings to "breathe" so that the sulphur -

sulphur bond distance and the S-M^+-S bond angle can approach the 

required order of magnitude for strong binding. 
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3.3.2.3.2. Synthesis of 18N409.2CS and I8N4O2.2CO. 

I 8 N 4 O 2 , 2 1 , was prepared from 3-oxa-l,5-bis(tolyl-p-

sulphonyloxy)pentane, 17, and N,N'-bis(tolyl-p-sulphonyl)ethane-l,2-

diamine ("ethylene diamine ditosylate") as in the literature^l. 

This was then reacted with an excess of carbon disulphide in 

50/50-ethanol/water using conditions similar to those reported for the 

reaction of 1,2-ethylene diamine with carbon disulphidel^^ but on a 

much smaller scale. A longer reaction time was also used (62hrs. total 

in place of 13hrs. total for 1,2-ethylene diamine). Even so, about 25% of 

unreacted 21 was recovered, and the yield of the desired bisthiourea, 23, 

was only about 30%. This was quite low compared to a variety of other 

1,2-diamines which have been converted to the corresponding 

thioureas in yields of between 80% and 95%^'^'^^. 

Elemental analysis of the product indicated a molecular 

formula corresponding to 23.HC1. A NMR spectrum of the product 

was consistent with the molecular structure assigned to the compound, 

although a relaxation delay of about 10 seconds or more was required to 

see the thiocarbonyl peak at 182.2ppm (CDCI3, 200MHz or 400MHz). 

The 1 H NMR spectrum of 23 was very complex, but showed a 

high degree of symmetry. As the peak at 67.8ppm in the NMR 

spectrum could be unambiguously assigned to the aliphatic CH2O 

carbon, HETCOR and COSY NMR experiments could be used to fully 

assign both the ^H and NMR spectra. 

The 1H, 13C and COSY spectra are shown in figures 3.13a-c. 
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Figure 3.13b 
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F l ( P P H 

F 2 ( P P H 

Figure 3.13c 

From the structure of 23 shown in figure 3.9, we might expect 

that the ^H NMR would show simply one singlet and two triplets. 

However, as mentioned above, a CPK model of the molecule 

had indicated an extremely rigid structure. The molecule is effectively 

"locked" into a single conformation by the large sulphur atoms and the 

five membered rings - the molecule cannot alter its conformation 

without breaking covalent bonds. The methylene protons on each 

carbon (HA , H B , He in figure 3.14) are diastereotopic, leading to the 

apparent complexity of the spectrum. 

The 1 H NMR spectrum of compound 23 was acquired at 

various temperatures, ranging from -50 °C to +40 °C. However, no 

significant changes occurred, indicating that no conformational 

exchange process was occurring at any temperature in the defined 

range. 
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HA HB' He 

O. ^ 

Figure 3.14 

The thiourea, 23, was then dissolved in a small volume of 

dichloromethane and an excess of mercury (II) acetate added. This 

suspension was stirred under an atmosphere of nitrogen for 24hrs. and 

then filtered through celite. Evaporation of the solvent left a pale 

yellow solid. 

It had been reported that a variety of thioureas were cleanly 

converted to the corresponding ureas by mercury (II) acetate, and that 

no separate hydrolysis step was required; filtering through celite was 

sufficient to remove excess mercury salts. 

However, the mass of the product obtained from the reaction of 

23 with mercury (II) acetate indicated that considerable amounts of 

mercury salts might still be present. 

When the solid was stirred with aqueous potassium carbonate 

at room temperature, a yellow colouration was immediately acquired. 

A brown precipitate formed after 12 hours. When the reaction was 

heated at reflux for l-2hrs., considerable amounts of a dark precipitate 

formed. 

This was removed by filtration and water evaporated from the 

filtrate to give the hydrolysed product and potassium carbonate.. These 
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were separated by dissolving in anhydrous methanol and filtering 

through a bed of silica. 

However, a mass spectrum of this product (DCI) showed only a 

single peak at a m/e value of 328, corresponding to the partially 

hydrolysed, mixed urea/thiourea compound, 25, shown in figure 3.15. 

f O 
,N N 

0 = ^ j Figure 3.15 
•N N 

, 0 

25 

This structure was consistent with the both the ^H NMR 

spectrum, which was complex (indicating that the molecule was still 

quite rigid) and showed less symmetry than the ^H NMR spectrum of 

"23, and with the NMR spectrum, which showed an extra set of four 

peaks compared with the NMR spectrum of 23. 

Even when the bisthiourea 23 was reacted with mercury (II) 

acetate under more forcing conditions (1,2-dichloroethane, reflux, 2 

days in place of dichloromethane, room temperature, 12hrs.), the 

partially hydrolysed urea/thiourea 25 was still almost exclusively 

formed (traces of the bisurea compound, 13, could be seen on analytical 

TLC). 

Preparation of the bisurea 13 required a repeat of the above 

procedure (mercury (II) acetate/DCM or DCE followed by K2CO3/water). 

This can be explained if the proposed mechanism of the reaction^^, 

shown in scheme 3.4, is more closely examined. 
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In the case of the bisthiourea 23, the attack of the acetate 

nucleophile on the thiourea carbon may be hindered because of the 

rigidity of the molecule, as indicated by the CPK model and NMR 

spectrum. Alternatively, the thiourea - mercury intermediate may be 

stabilised by coordination of mercury (II) to the second thiourea 

residue. 

Either of these theories (hindered attack of the acetate or 

prevention of (SHgOAc)" from leaving) or a combination of both, may 

explain the need for a separate hydrolysis step and the fact that reaction 

occurs at only one thiourea group. 

Hg(0Ac)2 HgOAc 

SHgOAc 

^ + AcSHgOAc 

R 

Scheme 3.4 
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Note, however, that in the second stage of the preparation 

(reaction of the second thiourea) a separate hydrolysis step is still 

required. As there is no second thiourea group present to stabilise the 

leaving group, it would seem that it is the steric hindrance of attack by 

the nucleophile that is largely responsible. 

While the spectra recorded for the bisurea 13 ( I f i and NMR, 

IR, DCI mass spectra) were consistent with the proposed structure, a 

satisfactory elemental analysis for carbon, hydrogen and nitrogen could 

not be obtained. 

A mass spectrum acquired in the FAB mode showed peaks at 

313 (M+1), 335 and 351. The latter two correspond to M+Na and M+K 

respectively, and elemental analyses for sodium and potassium 

showed that they were present in quantities of 3.15% and 5.54% 

respectively. 

It was assumed that the potassium had been retained from the 

"hydrolysis of the mercury salt. That 23 bound potassium strongly 

enough for the complex to pass through a short silica column with 

methanol eluant indicated that the 23.K+ complex was quite stable. 

The presence of sodium seemed remarkable, as no sodium salts 

had been used in either the synthesis or work-up of the compound. As 

the water had been pre-distilled, it was proposed that sodium ions had 

been extracted from either the celite or silica, used in the work-up 

procedure. This indicates that 23 has a high affinity for sodium, and 

that the 23.Na+ complex must be quite stable. 

The elemental analysis of the impure material (C 38.30%, H 

5.75%, N 9.83%, Na 3.15%, K 5.54%) impUed the molecular formula 
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Ci8H33N4Nao.8Ko.8/ where a sample of pure 23 would have the 

molecular formula C14H24N4O4. 

The Na+ and K+ cations required counterions. It is likely that 

acetate would be the most significant but the possible presence of 

inorganic anions such as carbonate and halide must also be considered. 

Nevertheless, if it is assumed that each four nitrogen atoms 

indicates the presence of one equivalent of 23, the ratio of 23:M+ is 

about 1:1.6, or 2:3. 

3.3.2.3.3. Synthesis of 24N4O4.2CS and 24N404.2CO. 

Synthesis of the Crown Ether Framework. 

Although some 24 membered aza-crown ethers had been 

previously prepared e.g. lANzOs^'^, 24N(,02^^ , pyridine[24]-N60224, no 

synthesis of 24N4O4, 22, had been published. 

For those which had been previously synthesised, simple 2+2 

additions, analogous to the method used for the preparation of I8N4O2, 

had not been employed. 

For example, l^^f^-p-'^ was prepared in a stepwise fashion. 

TsN(CH2CH2NHTs)2 was reacted with 2-2-(chloroethoxy)ethanol to 

give a diol. The dioxatosylate derivative of this was then reacted with 

the disodium salt of TsN(CH2CH2NHTs)2 to give the hexatosylamide 

of 24N6O2 with about a 60% yield for the cyclisation step. The N-tosyl 

protecting groups were removed by refluxing a solution of the 

haxatosyl amide in 45% HBr/acetic acid. 
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However, an attempt was made to prepare the tetratosylamide 

of 22 in a single step by the 2+2 addition of ethylene diamine ditosylate, 

T S H N C H 2 C H 2 N H T S , and trigolditosylate, TsO(CH2CH20)3Ts in 

anhydrous DMF in the presence of caesium carbonate. 

Even under conditions of high dilution, the 12 membered, 1+1 

addition compound was the major product. No evidence was found 

which would have indicated the formation of higher oligomers, cyclic 

or otherwise. 

Consequently, a stepwise synthesis similar to the one used for 

the preparation of 24N602 was attempted (Method 1, below). However, 

as wi l l be seen below, some of the intermediate compounds formed 

required very laborious purification procedures, and a second method 

(Method 2, below) was attempted. 

Synthesis of 24N404.Tetratosylamide - Method 1. 

Ethylene diamine ditosylate was dissolved in an excess of 2-{2-

(2-chloroethoxy)ethoxy}ethanol in the presence of potassium carbonate. 

This suspension was stirred at 100°C for 20hrs., cooled to room 

temperature and diluted with dichloromethane before filtering. 

Solvent was evaporated from the filtrate at reduced pressure. Excess 2-

{2-(2-chloroethoxy)ethoxy}ethanol was removed by distillation under 

high vacuum using a Kugelrohr (80-100°C, <0.1mmHg); considerable 

amounts of triethylene glycol were also removed as distillate. 

However, a ^ H NMR spectrum of the product diol, 26 (see scheme 3.5), 

showed that significant amounts of starting material were still present. 

Because of the very similar physical properties of 2-{2-(2-
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chloroethoxy)ethoxy}ethanol and diol 26, (solubility, column 

chromatography Rf values) further purification of 26 was not possible 

and the impure diol was used in the subsequent step. 

The oxatosyl derivative of diol 26 was prepared using tosyl 

chloride in THE at 0°C under a nitrogen atmosphere in the presence ot 

triethylamine. As the starting material was impure, the crude product 

was contaminated with the tosyl derivative of 2-{2-(2-chloroethoxy) 

ethoxylethanol. 

Is, 

NHTs 

NHTs 

/—\/—\/—\ — 
^ ' O O OH 100-C 

TsCl. THF. 

E^N, O'C 

NHTs 

\ 

Ts 

Is, \ r-\/^/—\ 
N O O OTs 

O O OH 

O O 

26 

OH 

Is 
N 

NaOCH^ 

27 

NTsNa 

NTsNa 

DMF 

OTs 
2 4 N 4 O 4 4 T S 

28 

Scheme 3.5 

Compound 27 was purified by column chromatography to give 

a clear, colourless oil in an overall yield of 49% from ethylene diamine 

ditosylate. However, separation of the product, 27, from the 

contaminating tosyl derivative of 2-{2-(2-chloroethoxy)ethoxy}ethanol, 

was very difficult as the two compounds had similar solubilities and Rf 
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values. Several columns were necessary to isolate completely pure 

product, 27. 

A solution of the tetratosyl derivative 27 in anhydrous DMF 

was added to a suspension of the disodium salt of ethylene diamine 

ditosylate in DMF at 80 °C to give the cyclic tetratosylamide 

24N4O4.4TS, 28, in a 66% yield. 

Note that the heterogeneous nature of the reaction obviated the 

need for large solvent volumes; moderate dilution was sufficient to 

give reasonably high yields of the desired cyclic product. 

Method 1 is summarised in scheme 3.5. 

Synthesis of 24N4O4.Tetratosylamide - Method 2. 

As mentioned above, the diol 26 could not be purified, and 

purification of the tetratosyl derivative 27 was extremely laborious. 

Consequently, a second synthetic route, similar to the one described 

above, was devised. This is summarised in scheme 3.6. 

The tosylated derivative of 2-{2-(2-chloroethoxy)ethoxy}ethanol, 

30, was prepared using tosyl chloride in THF at 0°C under an 

atmosphere of nitrogen in the presence of triethylamine. Purification 

by column chromatography gave tosylate 30 as a clear colourless oil in a 

64% yield. 

Add i t i on of tosylate 3 0 to a solution of ethylene 

diamineditosylamide in DMF in the presence of caesium carbonate at 

40°C led to the formation of the dichloride 29 as a white powder in a 

47% yield (after recrystallisation from methanol). 
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The cyclic tetratosylamide 24N4O4.4TS, 28, was prepared from 

the disodium salt of ethylene diamine ditosylate (prepared as in 

method 1) and dichloride 29 in anhydrous DMF at 100°C under a 

nitrogen atmosphere, in the presence of caesium carbonate. The crude 

product was recrystallised from ethanol to give 28 in a yield of 52%. 

Although the overall yield for method 2 (24%) is slightly lower 

than for method 1 (32%), the work-up procedures for the intermediate 

products were far more straightforward for method 2. Consequently, 

method 2 was the synthetic route of choice for the preparation of the 

macrocyclic tetratosylamide 28. 
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Detosylation of Tetratosylamide 28. 

Removal of N-tosyl protecting groups has been attempted using 

a variety of methods; lithium in Uquid ammonia (Birch reduction), 

refluxing HBr/acetic acid/phenol or hot, concentrated sulphuric acid 

are some of the more common methods^S. 

As refluxing HBr/acetic acid/phenol had been successfully used 

for the detosylations of 18N402.4Ts21 and 24N602.6Ts23 to give the 

free amines in good yield, this was the method which was originally 

tried for the detosylation of 28. 

However, when a solution of tetratosylamide 2 8 in 

45%HBr/acetic acid (10ml per g tetratosylamide) in the presence of 

phenol (1.5g per g of tetratosylamide) was stirred at 100°C for 16hrs., the 

precipitate obtained from the cooled solution by the addition of an 

excess of diethyl ether was not the expected tetrahydrobromide salt of 

the tetraamine 22. 

A ^ H NMR of the tetrahydrobromide salt of the tetraamine 22 

in D2O would be expected to show two singlets and two triplets with 

the signals in the ratio 1:1:1:1. A ^ H NMR spectrum of the reaction 

product in D2O was very complex with very little symmetry. A lack of 

signals in the aromatic region of the spectrum (6.5-7.5ppm) indicated 

that the N-tosyl protecting groups had been removed, but the 

complexity of signals in the aliphatic region (3-4ppm) indicated that the 

compound had lost all symmetry elements. 

Similarly, a 13c NMR spectrum of the tetrahydrobromide salt 

of the tetraamine 22 would be expected to show only 4 peaks. The ^•^C 
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NMR spectrum of the product contained 17 peaks, ranging from 74ppm 

to 23ppm. 

It seemed that the macrocycle was unstable to these reaction 

conditions and so it became necessary to consider other methods of 

removing the N-tosyl protecting groups. 

Reduction of the tetratosylamide with li thium in liquid 

ammonia, followed by the careful addition of hydrochloric acid, 

successfully produced the tetrahydrochloride salt of the tetraamine 22. 

This was dissolved in a small volume of water, basified with lithium 

hydroxide and then extracted into dichloromethane. Evaporation of 

solvent from the dried organic phase gave the free tetraamine 22 as a 

clear colourless oil, which crystallised on standing. The and 

NMR spectra were consistent with the assigned structure and showed 

the expected symmetry, as discussed above. 

Incorporation of Thiourea and Urea Residues. 

The bis (thiourea) 24N4O4.2CS, 24, was prepared in a yield of 

25% by refluxing a solution of the tetraaza-crown ether, 22, in 50/50-

ethanol/water with an excess of carbon disulphide followed by the 

addition of a small amount of hydrochloric acid. 

Unlike the bis(thiourea) 23, a NMR of 24 in CDCI3 showed 

the expected, simple symmetry of 2 triplets and 2 singlets in a 1:1:1:1 

ratio, indicating that 24N4O4.2CS has a much more conformationally 

mobile structure than I8N4O4.2CS. This was in agreement with the 

predictions made based on CPK molecular models. 
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Bisthiourea 24 was successfully hydrolysed to the bisurea 14 

with mercury (II) acetate in refluxing 1,2-dichloroethane followed by 

refluxing aqueous potassium carbonate (pH=10.5). The product was 

separated from excess potassium carbonate by filtering an anhydrous 

methanoHc solution through a bed of silica. 

In contrast to the hydrolysis of bisthiourea 23 to bisurea 13, both 

thiourea residues of 24 reacted in a single step, and no evidence was 

found which would have indicated the presence of of the partially 

hydrolysed urea/thiourea. This provides further evidence in support 

of the proposal that steric factors are largely responsible for the 

necessity of two reaction steps (one for each thiourea residue) in the 

hydrolysis of I8N4O2.2CS to I8N4O2.2CO. 

Although spectral analyses of the product (DCI mass, IR and ^H 

and NMR) were consistent with the assigned structure, a 

satisfactory elemental analysis for carbon, hydrogen and nitrogen could 

not be obtained. 

A mass spectrum acquired in the FAB mode showed peaks at 

401 (M+1) and 423 (M+Na), and a small peak at 439 (M+K). Elemental 

analysis for sodium and potassium showed that they were present in 

amounts of 12.42% and 0.42% respectively. 

Although the amount of potassium present was quite small, 

the amount of sodium was very significant, especially as no sodium 

salts had been used in the preparation of the bisurea. From the 

elemental analyses, it was calculated that the ratio of bisurea 14:Na+ 

was about 1:1, which may imply the formation of a 1:1 complex. (This 

assumes that every 4 equivalents of nitrogen imply the presence of 1 

equivalent of 14). 
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It was proposed that sodium salts had been extracted from 

either celite or siHca, which were used in the work-up of the bisurea. 

As K+ ions were known to be present before celite or silica were used, 

K+ ions were presumably exchanged for Na+ ions, accounting for the 

relatively low amount of potassium in the final product. This indicates 

that the Na+ complex is considerably more stable than the analogous 

K+ complex. 

3.3.3. THIOUREA CRYSTAL STRUCTURES. 

Crystals of the bisthioureas I8N4O2.2CS, 23, and 24N4O4.2CS, 24, 

which were suitable for analysis by X-ray diffraction experiments were 

grown in single attempts by the vapour diffusion of methanol, through 

a pinhole, into dichloromethane solutions of the relevant bisthioureas. 

3.3.3.1.18N402-2CS, 23. 

I8N4O2.2CS crystallised in the triclinic system with space group 

P_l. Representations of the crystal structure of I8N4O2.2CS are shown 

in figures 3.16a and 3.16b. Values of bond angles are given in table 3.2, 

and values of bond lengths and selected distances are given in table 3.3. 
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Figure 3.16a 

Figure 3.16b 
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Bond Lengths (A). 

S - C ( l ) 1 . 6 8 1 ( 2 ) 

N ( l ) - C ( l ) 1 . 3 4 9 ( 2 ) 
N ( 2 ) - C ( l ) 1 . 3 4 5 ( 2 ) 
C ( 2 ) - C ( 3 ) 1 . 5 0 7 ( 3 ) 

0 - C ( 5 ) 1 . 4 1 7 ( 2 ) 
N ( l ) - C ( 2 ) 1 . 4 6 0 ( 2 ) 
N ( 2 ) - C ( 3 ) 1 . 4 5 4 ( 2 ) 
C ( 4 ) - C ( 5 ) 1 . 4 9 5 ( 3 ) 
C ( 7 ) - N ( l ) ^ l . 4 5 0 ( 2 ) 

0 - C ( 6 ) 1 . 4 2 1 ( 3 ) 

N ( l ) - C ( 7 ) ^ 1 . 4 5 0 ( 2 ) 
N ( 2 ) - C ( 4 ) 1 . 4 5 0 ( 2 ) 
C ( 6 ) - C ( 7 ) 1 . 5 0 0 ( 3 ) 

a' represents the syitimetry re lated equivalent: l - x , l - y , l - z 

Table 3.2 

Bond Angles (°). 

C ( 5 ) - 0 - C ( 6 ) 
C ( l ) - N ( l ) - C ( 7 ) a 
C { l ) - N ( 2 ) - C ( 3 ) 
C ( 3 ) - N ( 2 ) - C ( 4 ) 
S - C ( l ) - N ( 2 ) 
N ( l ) - C ( 2 ) - C ( 3 ) 
. N ( 2 ) - C ( 4 ) - C ( 5 ) 
0 - C ( 6 ) - C ( 7 ) 

1 1 4 . 6 8 ( 1 5 ) 
1 2 4 . 0 9 ( 1 6 ) 
1 1 1 . 3 3 ( 1 5 ) 
1 2 2 . 2 8 ( 1 5 ) 
1 2 5 . 1 5 (14) 
1 0 2 . 8 7 (15) 
1 1 3 . 6 3 (16) 
109 . 80 (15) 

C ( l ) - N ( l ) - C ( 2 ) 1 1 0 . 6 0 ( 1 5 ) 

C ( 2 ) - N ( l ) - C ( 7 ) a 1 2 1 . 3 1 ( 1 6 ) 
C ( l ) - N ( 2 ) - C ( 4 ) 1 2 5 . 6 1 ( 1 5 ) 
S - C ( l ) - N ( l ) 1 2 5 . 8 3 ( 1 4 ) 
N ( l ) - C ( l ) - N ( 2 ) 1 0 9 . 0 3 ( 1 5 ) 
N ( 2 ) - C ( 3 ) - C ( 2 ) 1 0 2 . 4 5 ( 1 5 ) 
0 - C ( 5 ) - C ( 4 ) 1 0 8 . 8 9 ( 1 6 ) 
N ( l ) ^ - C ( 7 ) - C ( 6 ) 1 1 3 . 0 4 ( 1 6 ) 

~a' represents the syitimetry re lated equivalent: l - x , l - y , l - z 

Table 3.3 

As was predicted by a CPK model, the two C=S bonds are trans 

to one-another (one up, one down). However, the planes of the five 

membered rings are almost at 90° to the plane of the macrocyclic ring. 

In the CPK model, the angle was much less - about 30° (see figure 3.10), 

and the five membered rings could only be placed at 90° to the 

macrocyclic ring if considerable strain was introduced to the structure. 

The macrocyclic cavity consequently has a more 'open' 

structure than was predicted. Although the cavity was still small, it was 

not as inaccessible to potential substrates (metal cations) as had been 

expected. 

148 



It was proposed that repulsion between the two thiourea 

dipoles was responsible for the apparently quite strained, relatively 

open conformation. 

3.3.3.2. 24N4O4.2CS, 24. 

24N4O4.2CS crystallised in the orthorhombic system with space 

group Pbca. Representations of the crystal structure of 24N4O4.2CS are 

shown in figures 3.17a and 3.17b. Values of bond angles are given in 

table 3.4, and values of bond lengths and selected distances are given in 

table 3.5. 

S(2I 

Figure 3.17a 
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C(15l 

Figure 3.17b 

Bond Angles (°) 

C2-O1-C3 113 .1 (3 ) 

C11-O3-C12 112 .1 (3 ) 

C15-N1-C16 121 .7 (3 ) 

C16-N1-C18 111 .5 (3 ) 

C1-N2-C18 125.4(3) 
C6-N3-C7 120 .0 (3 ) 

C7-N3-C9 111 .3 (3 ) 

C8-N4-C10 121 .7 (3 ) 

N2-C1-C2 113 .5 (3 ) 

01- C3-C4 108.5(4) 
02- C5-C6 113 .7 (3 ) 

N3-C7-C8 102 .8 (3 ) 

S2-C9-N3 125 .6 (3 ) 

N3-C9-N4 108.4(3) 
03 - C11-C10 108.4(3) 
04- C13-C12 108 .6 (3 ) 

N1-C15-C14 113 .8 (3 ) 

N2-C17-C16 103 .1 (3 ) 

S1-C18-N2 126 .0 (2 ) 

C4-O2-C5 
C13-O4-C14 
C15-N1-C8 
C1-N2-C17 
C17-N2-C18 

C6-N3-C9 
C8-N4-C9 
C9-N4-C10 

01- C2-C1 
02- C4-C3 
N3-C6-C5 
N4-C8-C7 
S2-C9-N4 

N4-C10-C11 
03- C12-C13 
04- C14-C15 
N1-C16-C17 
S1-C18-N1 
N1-C18-N2 

113 .2(3) 

112 .5(3) 

124 .5(3) 

121 .7(3) 

112 .1(3) 

125 .3(3) 

112 .5(3) 

125 .4(3) 

114 .1(3) 

108.8(4) 

111 .8(3) 

102 .0(3) 

126 .0(2) 

114 .3(3) 

108 .9(3) 

109 .4(3) 

103 .6(3) 

125 .4(3) 

108 .6(3) 

Table 3.4 
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Bond Lengths (A) 

S1-C18 1.679(3) S2-C9 1.690(3) 

01-C2 1.439(4) 0 1 - C 3 1.403(6) 

02-C4 1,440(6) O2-C5 1.421(5) 

03-C11 1.421(4) C3-C12 1.429(4) 

04-C13 1.428(5) O4-C14 1.426(4) 

N1-C15 1.451(5) N1-C16 1.446(5) 

N1-C18 1.354(4) N2-C1 1.450(4) 

N 2 - C I 7 1 .458(5) N2-C18 1.337(4) 

N3-C6 1.455(5) N3-C7 1.457(5) 

N3-C9 1.360(4) N4-C8 1.467(5) 

N4-C9 1.337(4) N4-C10 1.461(4) 

C 1 - C 2 1 .499(6) C3-C4 1.521(6) 

C5-C6 1.520(6) C7-C8 1.523(5) 

ClO-Cil 1.505(5) C12-C13 1.496(5) 

C14-C15 1.510(6) C16-C17 1.507(6) 

Table 3.5 

The two C=S bonds are turned away from one-another and 

from the centre of the macrocyclic ring i.e. they are divergent. 

However, molecular models have indicated that there is a relatively 

low energy barrier to the rotation of the macrocycle which would bring 

the sulphur atoms into the convergent conformation required for the 

binding of a substrate in the macrocycHc cavity. 

It again seemed likely that repulsion between the two thiourea 

dipoles was responsible for the divergence of the C=S bonds. In contrast 

to I8N4O2.2CS, very little strain is introduced by the separation of the 

dipoles. 
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3.3.4. BINDING STUDIES. 

3.3.4.1. Thioureas. 

3.3.4.1.1. Complexes w i t h Silver (I). 

As a preHminary investigation into the abiUty of bisthioureas 23 

and 24 to f o r m to complexes w i t h soft metal cations, attempts were 

made to f o r m complexes w i t h silver (I). The bisthiourea was dissolved 

i n a small volume of dichloromethane. A n excess of a saturated 

methanolic solution of silver nitrate was layered on top of this and the 

two solutions allowed to diffuse together. 

I t had been hoped that crystals of the thiourea/silver (I) 

complex w o u l d fo rm at the interface. Although a solid began to form 

almost immediately, i t was not crystalline. Consequently, the two 

solutions were mixed together by shaking, resulting in the immediate 

formation of a considerable amount of precipitate. 

This was collected by fi l t rat ion and washed on the filter wi th 

d ichloromethane and then methanol. The inso lub i l i ty of the 

precipitate i n these solvents indicated that i t was neither the 

bisthiourea (soluble i n dichloromethane) nor silver nitrate (soluble in 

methanol) . 

The precipitate was washed through the fi l ter w i th water. The 

solution was evaporated under reduced pressure and the residue dried 

under vacuum to give the bisthiourea/Ag+ complex. and ^^C N M R 

spectra of the complexes were acquired in D 2 O . 
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Note that both the 23.Ag+ complex and the 24.Ag+ complex 

were photo sensitive, a black precipitate fo rming after standing in 

daylight for a few minutes. Consequently, the silver complexes were 

kept, as far as possible, in the dark. 

18N402-2CS/Ag+ Complex 

The N M R spectrum of the 18N402 .2CS /Ag+ complex was 

greatly simplif ied compared to the spectrum of free I8N4O2 .2CS. As 

discussed above, free I8N4O2 . 2CS is very r igid w i t h each proton non-

equivalent (see f igure 3.14). The N M R spectrum of the silver (I) 

complex showed only a singlet and two triplets, indicating considerably 

more m o b i l i t y ( lower energy barr iers to conformat iona l 

inter conversions). 

The N M R spectrum showed four signals, as expected. The 

thiourea C=S carbon moved f rom 182.2ppm for the free macrocycle to 

-175.5ppm in the silver (I) complex, although a change in solvent f rom 

C D C I 3 to D 2 O must be taken into account. 

Most impor tan t ly , shortly after the N M R spectra of the 

I 8 N 4 O 2 . 2 C S / A g + complex had been acquired, crystals of the complex, 

which were suitable for analysis by X-ray diffraction, precipitated f rom 

the solution. The crystals were in the monoclinic system wi th space 

group P2i/n. 

As mentioned above, the complex was l ight sensitive, and 

considerable crystal decomposit ion occurred du r ing the X-ray 

diffract ion experiment. Although the data acquired was consequently 

of a fair ly poor ijuality, the structure of the complex was unequivocally 

153 



solved. This is represented in figures 3.18a and 3.18b. Bond lengths and 

bond angles are given in tables 3.5 and 3.6 respectively. 

Figure 3.18a 

Figure 3.18b 
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Selected Bond Lengths and Distances (A). 

A g ( l ) Ag(2) 2 903(5) A g ( l ) S ( l ) 2 53 (1) A g ( l ) S(2) 2 69(1) 
A g ( l ) 0 ( 1 ) 2 61(3) A g ( l ) 0(1W) 2 29(3) A g ( l ) 0(11) 2 72 (9) 
Ag(2) S ( l ) 2 67 (1) Ag(2) S(2) 2 66(1) Ag(2) 0(2) 2 53(2) 
Ag(2) 0(13) 2 40(3) Ag(2) 0 ( 2 1 ) 2 43(3) Ag(2) 0(23) 2 63 (3) 
Ag(2) N(21) 2 96(4) Ag(3) S ( l ) 2 57 (1) Ag(3) S(2) 2 54 (1) 
Ag(3) 0(31) 2 00(7) Ag(3) 0(32) 2 32 (5) Ag(3) 0(41) 2 19(6) 
Ag(3) 0(42) 2 45(8) S ( l ) C ( l ) 1 77(5) S(2) C(2) 1 88 (5) 
0 ( 1 ) C(3) 1 50 (6) 0 ( 1 ) C(14) 1 39(5) 0(2) C(8) 1 46(4) 
0 ( 2 ) C(9) 1 57(4) 0 ( 1 2 ) N ( l l ) 1 69(6) 0(13) N ( l l ) 1 23(5) 
0 ( 2 1 ) N(21) 1 29(4) 0 ( 2 2 ) N(21) 1 18(4) 0(23) N(21) 1 18(4) 
0 ( 3 1 ) N(31) 1 24(7) 0 ( 3 2 ) N(31) 1 99(7) 0(32) N(31) ̂  1 36(6) 
0 ( 4 1 ) N (41) 1 31(5) 0 ( 4 1 ) N(41) b i 81 (7) 0(42) N(41)'^ 1 13(9) 

'a' r e p r e s e n t s the symmetry e q u i v a l e n t : 1-x, -y, -z 

'b' r e p r e s e n t s the symmetry e q u i v a l e n t : 2-x, -y, 

Table 3.5 

Selected Bond Angles (°). 

Ag2 Agl S I 58.3 (2) Ag2 Agl 32 56.7(2) 
Ag2 Agl 01 118(1) Ag2 Agl OIW 152(1) 
S I Agl S2 112.4 (3) S I Agl 01 100 (1) 
S I Agl OIW 132(1) S I Agl O i l 99 (2) 
S2 Agl 01 95 (1) S2 Agl OIW 114(1) 
S2 Agl O i l 82 (2) 01 Agl OIW 87 (1) 
01 Agl o i l 160 (2) OIW Agl O i l 76(2) 
Agl Ag2 S I 53 . 9(2) Agl Ag2 32 57.6(2) 
Agl Ag2 02 111.9(4) Agl Ag2 013 81 (1) 
Agl Ag2 021 160 (1) Agl Ag2 023 147(1) 
Agl Ag2 N21 166 (1) 31 Ag2 S2 109.1 (3) 
S I Ag2 02 92.0(5) 31 Ag2 013 93 (1) 
S I Ag2 021 145(1) 31 Ag2 023 97 (1) 
S I Ag2 N21 120 (1) 32 Ag2 02 97 (1) 
S2 Ag2 013 93(1) S2 Ag2 021 105 (1) 
32 Ag2 023 154(1) 32 Ag2 N21 130(1) 
02 Ag2 013 166 (1) 02 kg 2 021 79(1) 
02 Ag2 023 80 (1) 02 Ag2 N21 79(1) 
013 Ag2 021 90 (1) 013 Ag2 023 87 (1) 
013 Ag2 N21 87 (1) 31 Ag3 32 133.0(3) 
S I Ag3 031 95 (2) 31 Ag3 032 125 (1) 
S I Ag3 041 91 (1) 31 Ag3 042 89 (2) 
S2 Ag3 031 92 (2) 32 Ag3 032 96(1) 
S2 Ag3 041 96(1) 32 Ag3 042 131(2) 
031 Ag3 041 163 (2) 031 Ag3 042 111(3) 
032 Ag3 041 109 (2) 032 Ag3 042 67 (2) 
041 Ag3 042 53(2) Agl 31 Ag2 67.8(2) 
Ag2 S2 Ag3 128 .9(4) Agl 31 Ag3 120.1(4) 
Ag2 S I Ag3 157 .1 (5) Agl 32 Ag2 65.7 (2) 
A g l S2 Ag3 153.4(5) 

Table 3.6 
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As was predicted f rom the CPK molecular model, the cavity of 

the macrocycle is too small to include the Ag"*" cation. However, in 

contrast to the free macrocyclic ligand, the two C=S bonds of the 

complexed macrocyclic ligand are in a cis conformation in the complex, 

w i t h a sulphur-sulphur distance of 4.34A. 

The stoichiometry of the complex is 3:1 (Ag+ : I8N4O2.2CS), 

w i t h each sulphur bridging three Ag+, and each Ag+ bridging two 

sulphur atoms. A l l Ag+...S bond distances are in the region 2.53A -

2.69k. The S...Ag(l)...S and S...Ag(2)...S bond angles are both about 110°, 

whereas the S...Ag(3)...S bond angle is 133°. 

A g ( l ) and Ag(2) are also coordinated to the ether oxygens of 

I8N4O2.2CS and are bridged by two oxygens of a nitrate group. A second 

nitrate group is coordinated to Ag(2), while A g ( l ) is coordinated to a 

water molecule. 

Ag(3) lies between two sulphur atoms of adjacent molecules of 

I8N4O2.2CS. Ag(3) is also coordinated to two nitrate groups, which are 

disordered about inversion centres. These nitrates bridge symmetry 

related Ag(3) cations such that the two Ag(3)...Ag(3) distances are 6.22A 

and 6.34A. 

A g ( l ) is 5-coordinate (2 sulphurs, 1 macrocyclic ether oxygen, 1 

b r idg ing nitrate oxygen, 1 water oxygen). Ag(2) is 6-coordinate (2 

sulphurs, 1 macrocyclic ether oxygen, 1 bridging nitrate oxygen, 2 

oxygens of a second nitrate), as is Ag(3) (2 sulphurs of adjacent 

macrocycles, 2 oxygens of each of 2 nitrate groups). 
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24N40£.2CS/Ag+ Complex 

For the 24N4O4.2CS/Ag+ complex, the N M R in D 2 O was 

very broad compared to the free 24N4O4.2CS i n CDCI3, and the 

spectrum was not suff iciently resolved at 200MHz to enable peak 

assignment. The ^^C N M R spectrum of the complex in D 2 O showed 

the expected symmetry - 4 peaks, each one corresponding to an 

aliphatic C H 2 carbon, and a C=S carbon at 176.4ppm (181.6ppm for the 

free ligand in CDCI3). 

Unfortunately, crystals of the 24N404.2CS/Ag+ complex did not 

f o r m as readily as those of the I 8 N 4 O 2 . 2 C S / A g + complex, and so a 

structural analysis by X-ray diffraction was not possible. However, a 

FAB mass spectrum of the 24N4O4.2CS/Ag+ showed peaks at 433 

(M+1), 539 (M+^°^Ag) and 541 (M+^°^Ag) only, indicating that stable 1:1 

complexes were formed. 

"3.3.4.1.2. Membrane Transport Experiments. 

In an effort to examine the cations wi th which the bisthioureas 

w o u l d f o r m complexes, and to study their selectivity for different 

cations, the bisthioureas 23 and 24 were incorporated into PVC 

membranes. The cation transport properties of the membranes were 

then studied using an ion sensitive electrode (see Appendix 1). 

O.IM aqueous solutions of Zn (II) and Cd (II) chlorides and Ag 

(I) nitrate were the test electrolytes. The results discussed below apply to 

the membranes incorporating both I 8 N 4 O 2 . 2 C S and 24N4O4.2CS. 
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In the case of Ag(I), transport properties were very poor. A solid 

fo rmed at the membrane/solut ion interface, and this was soon 

fol lowed by the formation of a black precipitate. 

For Zn (II) and Cd (H), a negative response of the electrode ( of 

about -50mV per decade) was observed in the concentration range 10'2 -

l O ' ^ M , indicat ing that anion transport across the membrane was 

occurring (due to the formation of [bisthiourea.MCls]" complexes). 

These phenomena indicate that very stable complexes were 

formed between the bisthiourea and the relevant cation. For A g (I), a 

complex formed at the membrane/solution interface. For Zn (E) and 

Cd ( I I ) , i t was proposed that the cation was complexed by the 

bisthiourea i n the PVC membrane, but decomplexation was very slow. 

The b i s th iourea /M2+ complex in the membrane was responsible for 

the transport of the chloride counterions across the membrane, 

resulting i n the observed, negative response of the electrode (see 

Appendix 1). 

A l though no quantitative measurements were gained f r o m 

these experiments, the results suggest that both 23 and 24 fo rm very 

stable complexes w i t h A g (I), Zn (II) and Cd (H). 

3.3.4.1.3. Calorimetric Measurements. 

A variety of direct and indirect methods have been developed 

to measure the thermodynamic and kinetic parameters of macrocyclic 

ligand - cation complex formation26. However, the majority of these 

rely on the common solubility of the macrocycle and the cation (or 

other substrate), usually i n aqueous or methanolic solution. 
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I n the present case, i t was not possible to conduct such an 

experiment as no common solvent for the lipophilic bisthioureas and 

the hydrophilic cations M^^+ could be found. 

However, a technique which has recently been developed relies 

on the enhanced aqueous solubili ty of a complex compared to the 

insoluble, lipophilic ligand^. 

The concentration of a saturated aqueous solution of the 

macrocyclic l igand in solution is measured, by UV spectroscopy, for 

example. K n o w n amounts of the test cation are added. The total 

concentration of the macrocycle in solution (free + complexed) is 

measured after each addition, and f r o m the known concentration of 

the cation and the measured concentration of the macrocycle at 

different macocycle:cation ratios, stabihty constants of the complex and 

A H values for the equilibrium can be calculated. 

Bisthioureas 23 and 24 have very low aqueous solubility, and as 

only relatively small amounts of material were required the technique 

seemed to be ideal. However, the method is slow as long periods of 

time are sometimes required for the macrocycle and cation to reach 

equilibrium. Although samples of both 23 and 24 have been submitted 

for calorimetric analyses of their complexation properties, results were 

not available at the time of wri t ing. 

3.3.4.2. Ureas 

As has already been mentioned, the bisureas 13 and 14 could 

not be properly pur i f ied, probably because of the high stability of the 

complexes w i t h Na+ and K+. Consequently, accurate measurement of 
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thermodynamic or kinetic parameters e.g. by N M R spectroscopy or 

calorimetry, was not possible. 

However, i t was thought possible that the selectivity of the 

bisureas for different cations could be measured using FAB mass 

spectroscopy or membrane transport techniques. 

3.3.4.2.1. FAB Mass Spectroscopy Competition Experiments. 

The use of FAB mass spectroscopy (FAB.MS) to determine 

ligand selectivities for cations has been established fairly recently27,28. 

The method relies on a mixture of cations competing for a 

deficiency of a ligand - a bisurea in the present case. The intensity of the 

signals* corresponding to m / e values of (L+Mri+), where L=ligand, is 

then related to the equilibrium concentrations of the L.M"+ complexes, 

and hence to the selectivity of the ligand for the mixture of cations 

present. 

The selectivity for one cation over another is then given by S, 

where S=log(l7I") and I ' is the intensity of the largest (L+M^+) peak 

and I " is the intensity of a smaller (L+M^+) peak. Consequently, lower 

S values indicate more stable L.Mri+ complexes. 

The val idi ty of this technique has been challenged^^; i t was 

suggested that the technique is useful only as a guide to selectivity, and 

could not be used to give quantitative or even semi-quantitative 

measurements. 

* At least 20 successive spectra for each analytical solution were obtained, and scans 3-18 used to 
average signal intensities to give the final spectra. 
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However, the experiment requires very li t t le material and is 

relatively quick to perform, as i t requires only a single run for a given 

mixture of cations. Also, as i t is a competition experiment which 

depends on an excess of cations, and gives at best only semi

quantitative selectivity values, small amounts of contamination of the 

ligand are not critical. 

Consequently, i t seemed an ideal preliminary experiment to 

examine the selectivity of the bisureas 13 and 14. 

A known amount of the bisurea was dissolved in a small 

volume of water, and one equivalent of each of either the mono- or 

divalent cations (NH4+, L i+ , Na+, K+ , Rb+ and Cs+ or Mg2+, Ca2+, 

Zn2+, Cd2+ and Ba2+) added as O.IM aqueous solutions. The mixture 

was heated to about 70 °C and allowed to cool to room temperature. 

This was repeated three times before the solution was concentrated to 

about I M w i t h respect to the bisurea and each of the cations present. 

The mixture was allowed to stand in a sealed sample bottle at ambient 

temperature for several weeks before a FAB mass spectrum was 

acquired, using glycerol as the solvent matrix. 

The results obtained for the bisureas 13 and 14 are presented in 

tables 3.7-10. Note that i f no entry is found for an [L.Mi^+] complex in 

the relevant table, then no peak was found at a m/e value indicating 

the presence of that complex. 

I8N4O2.2CO w i t h Monovalent Cations. 

I8N4O2.2CO was contaminated wi th small amounts of sodium 

and potassium, and so these cations were in a slight excess compared to 
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the other cations present. Although this w i l l almost certainly affect the 

apparent selectivity of the ligand, the amount of contamination was 

small and so the error introduced is probably not of great significance. 

Values of the selectivity of I8N4O2.2CO for the monovalent cations 

listed above are given in table 3.7. 

m / e Intensitv Si 
L+1 100 -
L + L i 4.15 0.32 

L+Na 8.60 0 
L+K 5.86 0.17 

L+Rb 4.62 0.27 
L+Cs 3.11 0.44 

Table 3.7 

I8N4O2.2CO w i th Divalent Cations. 

The spectrum in this case was quite noisy, which made i t 

d i f f icu l t to see peaks of low intensity. This was especially important for 

metal cations which have several major isotopes e.g. zinc and 

especially cadmium. 

Peaks corresponding to L+Na and L+K were also seen in the 

spectrum, w i t h relative intensities of 6.21 and 3.27 respectively. 

However , the presence of Na+ and K+ should not affect the 

competition of the M 2 + cations for the remaining ligand. 

A peak at an m / e value corresponding to 2L+Ba could be seen, 

which seems to imply that a stable 2:1 complex (ligand : cation) was 

formed. Values of the selectivity of I8N4O2.2CO for the divalent 

cations listed above are given in Table 3.8. 
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m / e Intensity S^I 
L+1 100 

L+Mg 1.88 0 
L+Ba 1.10 0.23 

2L+Ba 1.09 

Table 3.8 

These experiments indicate that I8N4O2.2CO, 13, is sodium and 

magnesium selective. That the peaks wi th m / e values corresponding 

to the sodium and potassium complexes are the most intense i n the 

mixture of divalent cations, even though they are present only as 

ligand impurities, indicates that I8N4O2.2CO is also selective for group 

I cations. 

The proposed selectivity of the bisurea 13 is therefore 

Na+>K+>Rb+> Li+>Cs+=Mg2+>Ba2+»NH4+, Ca2+, Zn2+ Cd2+. 

" 24N4O4.2CO w i t h Monovalent Cations 

Note that the l igand 24N4O4.2CO was contaminated w i t h 

sodium (ca. 12% by weight) before addition of the chlorides Usted. 

There is consequently an excess of sodium compared to the other 

cations, and this almost certainly influences the apparent selectivity. 

The l igand was also contaminated w i t h potassium (<1%), but as the 

amount present was so small the relative peak intensity should not be 

noticeably affected. Values of the selectivity of 24N4O4.2CO for the 

monovalent cations listed above are given in Table 3.9. 
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m / e Intensitv Si 
L+1 100 -
L + L i 4.42 0.37 

L+Na 10.47 0 
L+K 2.47 0.63 

L+Rb 2.36 0.65 
L+Cs 2.81 0.57 

Table 3.9 

24N4O4.2CO w i th Divalent Cations 

Peaks at m / e values corresponding to L + N a and L + K were 

again seen, w i t h relative intensities of 9.75 and 1.26 respectively, but 

this should not affect the competition of the M 2 + cations for the 

remaining ligand. Of the M 2 + cations, only magnesium seems to form 

stable L . M 2 + complexes, but peaks at m/e value corresponding to the 

L . ( M C 1 ) + species could also be seen for magnesium, calcium and 

barium. The significance of these species is uncertain. 

Note that only the peaks indicated i n the table could be seen. It 

seems unusual that there was no peak which wou ld have indicated 

that complexes w i t h strontium were formed, even though species 

containing calcium and barium - the elements immediately above and 

below it i n the periodic table - could be clearly seen. Values of the 

selectivity of 24N4O4.2CO for the monovalent cations listed above are 

given i n table 3.10. 

m / e Intensitv sii 
L+1 100 -
L + M g 2.73} 0 
L+MgCl 1.62} 
L+CaCl 1.25 0.54 
L+BaCl 1.38 0.50 

Table 3.10 
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Although these experiments seem to indicate that 24N4O4.2CO, 

14, is also sodium and magnesium selective, the presence of sodium as 

an impur i ty i n the ligand may lead to a false reading. 

The quite large peaks at m / e values corresponding to the 

sodium and potassium complexes in the mixture of divalent cations, 

even though sodium and potassium are present only as l igand 

impuri t ies , indicates that 24N4O4.2CO is also selective for group I 

cations. As i t has already been deduced that 24N4O4.2CO binds to Na+ 

considerably more strongly than K+ , the selectivity of 24N4O4.2CO can 

be wri t ten as Na+>Li+>Cs+>K+ =Rb+ and Na+ » K + >Mg2+ >Ca2 + 

=Ba2+ » S r 2 + , Zn2+ , Cd2+ . 

3.3.4.2.2. Membrane Transport Experiments. 

When a macrocycle is incorporated in a membrane which w i l l 

be used in an ion sensitive electrode (see Appendix 1), the membrane is 

conditioned for 24hrs. i n a O.IM aqueous solution of the test electrolyte 

before the response of the membrane to the test electrolyte is measured. 

This allows the the cations of the test electrolyte to "saturate" the 

membrane so that conductivity measurements can be made. 

Consequently, i f the macrocycle was contaminated w i t h 

relatively small amounts of cations, they would not affect the response 

of the membrane if i t has been properly conditioned. 

FAB mass spectroscopy experiments (section 3.3.4.2.1) had 

already indicated that both 13 and 14 would selectively bind sodium. 
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and so sod ium w o u l d be the in i t i a l test electrolyte. Sodium 

contamination of 13 and 14 would not, therefore, be a problem. 

I f sodium was efficiently transported by the membrane (a 

response of about 60mV f rom the ISE), then the possible interference of 

other cations (Li+ , K+ , Ca2+ , Mg2+ , NH4+ ) would be investigated. 

However , the bisureas were not suf f ic ien t ly soluble i n 

l ipophi l ic solvents to allow the preparation of membranes. This is 

quite possibly because the bisureas could only be isolated as the sodium 

or potassium complex. 
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3.4. C O N C L U S I O N S AND FURTHER WORK. 

3.4.1. CONCLUSIONS. 

Urea residues have been successfully incorporated into 

macrocyclic frameworks, such that there are two urea residues per 

macrocycle. The carbonyl groups are arranged such that they can face 

one-another i.e. converge on a potential ionic substrate in an unusual, 

trans-spanning manner. Preliminary investigations into the complexes 

formed by the macrocycles indicated that they formed stable complexes 

w i t h group I cations such as sodium and potassium. 

The analogous thioureas were prepared as intermediates in the 

synthesis of the ureas. I t was found that they f o r m very stable 

complexes w i t h soft metal cations such as silver (I) , zinc (II) or 

cadmium (II), although the silver (I) complexes were photosensitive. 

It seems likely that this method of C=X (X = S, O) insertion w i l l 

prove to be quite general. 

3.4.2. FURTHER WORK. 

Purification and characterisation of the pure bisureas must be 

achieved i f quantitative rather than qualitative complexation studies, 

using techniques such as N M R titrations, are to be made. 

However, a method does exist whereby a membrane is made 

incorporating the charged complex rather than the free, neutral ligand. 

Cation transport can then be measured voltametrically^O. Although 

the apparatus required for such an experiment was not available, this 
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method should prove to be more successful than the membrane 

transport experiments adopted in this work (see Appendix 1). 

For the bisthioureas, qualitative data (via calorimetric methods) 

for the complexation reaction with a variety of early transition metal 

cations should be available fairly soon. For the membrane transport 

experiments, the voltametric method mentioned above may allow 

selectivity measurements of the bisthioureas. 

The apparent generality of the method developed for the 

insertion of a C=X residue (X = O, S) suggests that it may be possible to 

prepare "famiHes" of macrocycles incorporating (thio)urea residues 

from the relevant aza-crown ethers. The syntheses of the dibenzo 

compounds 11 and 12, and the thiourea intermediates, should now be 

possible, given that the preparation of the aza-crown ether precursors 

(dibenzo-18N402 and dibenzo-24N404) should be analogous to the 

preparations of I8N4O2 and 24N4O4 as established in this work. 

The method should extend to any aza-crown ether where there 

are two nitrogen atoms separated by two (or even three) carbon atoms. 

Some examples of the types of ligand which it might be possible to 

prepare are shown in 3.19. 

Note, however, that the preparation of crown-type compounds 

incorporating more than about three or four (thio)urea residues is 

precluded by the difficulties associated with the synthesis of the larger 

ring sizes. 
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CHAPTER 4. EXPERIMENTAL. 



4.1 INTRODUCTION. 

The synthetic procedures used for the preparation of the 

compounds mentioned in this work are described in sections 4.2 and 

4.3, which refer to chapters 2 and 3 respectively. Section 4.4 details the 

procedures used to determine relative stability constants via FAB 

mass spectroscopy, while section 4.5 describes the NMR titration 

experiments. Section 4.6 details the experimental procedure used in 

the membrane transport experiments. 

Rf values are given for thin layer chromatography using silica 

(Merck. Art. 5554, Kieselgel 60 F254) or alumina (Merck. Art. 5551, 

aluminium oxide 150 F254) supports and the solvent system specified. 

Column chromatography refers to either "flash" silica (Merck. Art. 

9385, Kieselgel 60 0.04-0.063mm) or neutral alumina (Merck. Art. 1097, 

activity I I - I I I , 0.063-0.200mm) stationary phases and the eluant system 

specified. Either freshly distilled or HPLC grade solvents were used as 

eluants. 

IR spectra were recorded on a Perkin-Elmer 1720x FTIR 

spectrometer as thin films unless otherwise stated. 

1 H and NMR spectra, unless otherwise stated, were 

recorded on a Varian Gemini-200 at operating frequencies of 200MHz 

and 50MHz respectively. 

60MHz 1 H NMR spectra were recorded on a Hitachi-Perkin-

Elmer R-24B CW spectrometer; 250MHz ^ H and 62.9MHz 13C NMR 

spectra were recorded on a Bruker AC250. A Varian VXR400S was 

used to record 400MHz ^H and lOOMHz 13C NMR spectra. 
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Chemical shift values are given in ppm and referenced to TMS 

at Oppm. Coupling constants are given in Hz. For samples in D2O, 

TMS was used as an external reference. For all other solvents, TMS 

was used as an internal reference. 

4,2, SYNTHESES FQR CHAPTER 2, 

0-Methvl-4,4'-Isopropvlidenediphenol, (3, R=CH-^). 

Bis-phenol-A (5.72g, 0.025moles) was weighed into a round 

bottom flask and dissolved in acetone (40ml). Potassium carbonate 

(3.53g, 0.026moles) was added, followed by methyl iodide (1.56ml, 

0.025moles). The flask was stoppered and the suspension stirred at 

room temperature for 24hrs., then filtered and acetone removed from 

the filtrate to give a clear, colourless oil which was a mixture of 

unreacted starting material and the mono and dimethyl ethers. These 

were separated by column chromatography (flash silica, 4:1-

hexane:ethyl acetate) and the monomethyl ether isolated in a yield of 

2.55g (42%). 

M.pt.=58-6rC. Anal. Calcd. for C16H18O2: C 79.34%, H 7.44%. Found: C 

79.44%, H 7.48%. m/el35, 227, 242(M+1), 260(M+18). i H NMR (CCI4, 

60MHz) 5: 7.2-6.5 (8H, m, ArH), 4.4 ( IH, s, OH), 3.8 (3H, s, OCH3), 1.7 

(6H, s, CCH3) ppm. IR: 3390 (O-H), 2960 (C-H), 1505, 1250, 1180, 830 

cm-1. 

2,6-Bis(bromomethyl)pyridine^. 

2,6-bis(hydroxymethyl)pyridine (3.02g, 0.02moles) was 

dissolved in 45% w / v . HBr in acetic acid (30ml) and heated at reflux 
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for lOhrs. The deep, clear, red solution was allowed to cool to room 

temperature. On agitation of the cooled solution, considerable 

precipitation occured forming a pink slurry. This was carefully basified 

with 6M KOH causing the colour to discharge. The white precipitate 

was collected by filtration and washed on the filter with O.IM KOH (3 x 

lOnnl) and then water (4 x 20ml). The solid was dried under vacuum to 

leave 4.64g (81%) of a fine, white powder. 

M.pt.=88°C (lit. 84-89°C). m/e 265, 266, 267. i H NMR (CDCI3) 5: 7.71 

( I H , t, aromatic C-H, B of A2B system), 7.38 (2H, d, aromatic C-H, A of 

A2B system), 4.54 (4H, s, ArCHzBr) ppm. 13c NMR (CDCI3) 6: 157.2 

(aromatic C-CH2Br), 138.6 (aromatic C, para to N), 123.3 (aromatic C, 

meta to N), 34.0 (ArCHzBr) ppm. IR (KBr disc): 1570, 1450, 1205, 815, 

742, 585 cm-1. 

Methyl 2,6-dimethyl benzoate^. 

2,6-Dimethyl benzoic acid (20.32g, 0.14moles) was dissolved in 

dichloromethane (150ml) under nitrogen. Oxalyl chloride was added 

(12.5ml, 0.15moles), causing slight effervescence. A few drops of DMF 

were added to the stirred solution and effervescence became vigorous, 

but ceased after about 30 minutes. The solution was stirred for another 

2hrs. at room temperature and solvent was then removed at reduced 

pressure to give a yellow oi l . This was redissolved in 

dichloromethane (50ml) and solvent removed at reduced pressure. 

This procedure was repeated three times. An excess of methanol was 

carefully added and solvent removed to leave a yellow oil in 

quantitative yield (22.17g). The product was a severe lachrymator and 
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possessed a very unpleasant odour. This was used without further 

purification. 

1 H NMR (CDCI3) 5: 7.20-6.97 (3H, m, ArH), 3.87 (3H, s, OCH3), 2.29 

(6H, s, ArCH3) ppm. 13C NMR (CDCI3) 5: 170.92 (C=0), 135.41 

(aromatic C-C02Me), 134.35 (aromatic C-CH3), 129.82 and 128.04 

(aromatic C-H), 52.28 (OCH3), 20.17 (ArCHs) ppm. 

Methyl 2,6-bis(bromomethyl) benzoate^. 

Methyl 2,6-dimethylbenzoate (22.17g, 0.14moles) was dissolved 

in carbon tetrachloride. NBS (48.07g, 0.27moles), freshly recrystalUsed 

from water and thoroughly dried, and a small amount of AIBN 

(c.50mg) was added and the mixture heated at reflux under a drying 

tube until all the NBS was consumed. (Occasionally, the reaction was 

very slow to start, in which case a tungsten bulb was used as a light 

source to promote radical initiation). The solution was cooled, filtered 

and the solvent removed under reduced pressure to give a yellow oil, 

crude yield 43.93g. This was purif ied either by column 

chromatography (flash silica, 2:1 - hexane:dichloromethane as eluant), 

or by several recrystallisations from cyclohexane to give a white, 

crystalUne material in an average yield of 29% or 25% respectively 

(from 2,6-dimethyl benzoic acid). 

M.pt.=68-74°C (lit.=77-79°C). TLC (silica, 2:1 - hexane: 

dichloromethane): Rf=0.11. Anal: calcd. for CioHioBr202: C 37.30%, H 

3.13%. Found: C 37.27%, H 3.21%. ^ H NMR (CDCI3) 6: 7.37 (s, 3H, 

ArH) , 4.62 (4H, s, ArCH2Br), 4.02 (3H, s, OCH3) ppm. NMR 

(CDCI3) 5: 137.36 (aromatic C-C02Me), 134.87 (aromatic C-CH2Br), 
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131.22 and 131.12 (aromatic C-H), 53.31 (OCH3), 31.00 (CH2Br) ppm. IR 

2358 (C-H), 1750,1718 (C=0), 1278 cm-1. 

0,0'-Bis(cx,a-Dimethyl-g-p-Methoxybenzene-ToIyl)-l,4-

Dioxymethylene Benzene, (4, R=CH':t). 

Monomethylated bis-phenol-A, (3, R=CH3) (0.97g, 4 x 10-

3moles) and a,a'-dibromo-p-xylene (0.51g, 1.93 x lO'^moles) were 

dissolved in ethanol (50ml). Potassium carbonate was added and the 

mixture heated at reflux for l lhrs . The reaction was filtered hot and 

the white solid residue dried at reduced pressure and then taken up in 

chloroform (100ml). The solution was filtered to remove inorganic 

salts. Solvent was removed from the filtrate and the residue dried 

under vaccuum to leave a white solid (0.72g, 657o). 

M.pt.=126-128°C. Anal. Calcd. for C40H42O4: C 81.91%, H 7.17%. Found: 

C 81.86%, H 7.29%. i H NMR (CDCI3, 60MHz) 5: 7.5-6.9 (20H, m, ArH), 

5.1 (4H, s, ArCH20), 3.9 (6H, s, OCH3), 1.7 (12H, s, CCH3). m/e 135,149, 

227, 604(M+18). 

Demethylation with Boron Tribromide. 

Compound 4 (R=CH3) (0.12g, 2.1 x lO'^moles), was dissolved in 

dichloromethane (20ml) and cooled to -78 °C under nitrogen. A 

solution of BBr3 in dichloromethane ( IM, 0.2ml, 2.0 x 10-4moles) was 

added and the solution stirred at -78°C for 3hrs., during which a 

purple colouration developed. The reaction was allowed to warm to 

room temperature and 5% KOH(aq) (20ml) was carefully added 

(causing the colour to discharge) followed by 50ml of water. The 
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resulting mixture was allowed to stir for 30 minutes and was then 

extracted into ether (2 x 100ml). 

The organic phase was dried (Na2S04), filtered and solvent 

evaporated. The pale brown, solid residue was taken up in chloroform 

and filtered. Chloroform was evaporated to leave a white, solid 

residue. This was found to be a mixture of compounds resulting from 

the cleavage of both the methyl and benzyl ether bonds. 

i H NMR (CDCI3,60MHz) 5: 7.5-6.7 (20H, m, ArH), 5.2 (2H, s, ArCH20), 

4.6 (2H, s, ArCH2Br), 3.9 (6H, s, OCH3), 1.8 (12H, s, CCH3) ppm. 

m/el35,149,227,242, 260,289. 

Demethylation with Sodium Ethane Thiolate. 

Dimethyl ether 4, R=CH3, (0.09g, 1.6 x 10-4moles) was dissolved 

in DMF (15ml). Sodium ethanethiolate (0.07g, 7.8 x 10-4moles) was 

added and the solution heated at lOO'C for 3hrs. After cooling to room 

temperature, 10% HCl(aq) (25ml) was added, causing a white 

precipitate to form. This was collected by filtration, washed with 

HCl(aq) (3 x 5ml) and water (3 x 10ml) and dried under vacuum to 

give unreacted starting material (0.08g, 88%). 

^H NMR (CDCI3, 60MFIz) 5: 7.5-6.7 (20H, m, ArH), 5.2 (4H, s, ArCH20), 

3.9 (6H, s, OCH3), 1.8 (12H, s, CCH3) ppm. m/e 135, 149, 227, 279, 

604(M+18). 

Demethylation with Sodium or Lithium Iodide. 

Dimethyl ether 4, R=CH3 (0.08g, 1.4 x 10-4moles) was dissolved 

in 2,6-lutidine and the solution stirred under nitrogen. L i l (0.08g, 6.0 x 

10"4moles) or Nal (0.04g, 4 x lO'^moles) was added and the mixture 
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heated at reflux under nitrogen for 43hrs., during which a red/brown 

colour developed. The solution was cooled to room temperature and 

excess dilute HCl was added, causing precipitation. The precipitate was 

collected by filtration, washed with dilute HCl (3 x 10ml) and then 

water (4 x 10ml). The pale pink soUd was dried at reduced pressure to 

give predominantly.unreacted starting material (0.08g, 100%). 

I H NMR (CDCI3, 60MHz) 5: 7.5-6.7 (20H, m, ArH), 5.2 (4H, s, ArCH20), 

3.9 (6H, s, OCH3), 1.8 (12H, s, CCH3) ppm. m/el35, 149, 227, 279, 

604(M+18). 

0-tetrahydropyranyl-4,4'-Isopropylidenediphenol, (3, R=THP). 

4,4'-Isopropylidenediphenol (bis-phenol-A, 45.24g, 0.20moles) 

was dissolved in ether (300ml) and the solution cooled to 0°C in an ice 

bath. Concentrated HCl was added (10 drops) followed by 3,4-dihydro-

2H-pyran (18ml, 0.20moles). The solution was stirred at 0°C for 40 

minutes and then allowed to warm to room temperature and stirred 

for a further 2hrs. The flask was stoppered and left to stand at room 

temperature overnight. The solution was washed with O.IM KHCO3 

(3 X 50ml), dried over magnesium sulphate, filtered, and the ether 

removed from the filtrate at reduced pressure to give a very viscous, 

clear, colourless oil. This was purified by column chromatography 

(flash silica, 1:4 - ethyl acetate:hexane) to give the monoether in 42% 

yield (26.20g) as a clear colourless oil. 

TLC (silica, 1:4 - ethyl acetate:hexane) Rf=0.21. Anal: Calcd. for 

C20H24O3: C 76.92%, H 7.69%. Found : C 76.80%, H 7.81%. m/e 85, 102, 

135, 213, 228 (M+). ^H NMR (CDCI3, fully assigned using COSY NMR 

experiment) 5: 7.14-7.07 (4H, m, part of aromatic AA'BB'), 6.94 (2H, d. 
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J=4.2Hz, part of aromatic AA'BB'), 6.70 (2H, d, J=4.2Hz, part of 

aromatic AA'BB'), 5.39 ( IH , t, J=3.2Piz, OCHO), 5.09 ( IH, br.s., OH), 3.94 

( IH, t of d, Jt=10.3Hz, Jd=1.4Hz, 0CHH'CH2), 3.61 ( IH, m, OCHH'CH2), 

2.00 ( IH , m, aliphatic CH2), 1.85 (2H, m, aliphatic CH2), 1.70-1.57 (3H, 

m, aliphatic CH2), 1.62 (6H, s, CCH3) ppm. 13C NMR (CDCI3, lOOMHz) 

5: 154.8 and 153.3 (aromatic C-OR), 144.1 and 143.1 (aromatic C-

C(CH3)2), 127.9 and 127.6 (aromatic C-H), 115.8 and 114.7 (aromatic C-

H), 96.5 (OCHO), 62.2 (OCH2C), 41.7 (Ar2C(CH3)2), 31.0 (CCH3), 30.4 

(O2CHCH2), 25.2 (OCH2CH2), 18.9 (aliphatic CH2). IR: 3369 (O-H), 2963 

(C-H), 2871 (C-H), 1610 (aromatic C-C), 1510, 1236 cm-1. 

0.0'-Bis(a.a-Dimethyl-a-(0-Tetrahydropvran-p-phenol)-Tolyl)-l,4-

Dioxamethylene Benzene, (4, R=THP). 

a,a'-Dibromo-p-xylene (0.81g, 3.1 x lO'^moles) and compound 3 

(R=THP) (1.90g, 6.1mmoles) were dissolved in hot ethanol (50ml) and 

potassium carbonate (1.87g, 14mmoles) was added. The stirred 

suspension was heated at reflux for 18hrs. and then filtered while hot. 

The white solid residue was partitioned between CHCI3 and water 

(40ml each). The chloroform layer was washed with O.OIM HCl (15ml) 

and then water (2 x 40ml), dried (Na2S04) and filtered. Solvent was 

removed at reduced pressure and the residue dried under vacuum to 

give a white solid, 1.76g (78%). 

M.pt.=118-122°C. m/e 85, 135, 213, 331, 558 (M-2THP). i H NMR 

(CDCI3, 250MHz) 5: 7.43 (4H, s, phenyl ring), 7.16-7.09 (8H, m, part of 

biphenyl AA'BB' system), 6.97-6.84 (8H, m, part of biphenyl AA'BB' 

system), 5.37 (2H, t, J=7.5Hz, OCHO), 5.02 (4H, s, ArCH20), 3.92 (2H, t of 

d, Jt=10Hz, Jd=3.2Hz, OCHH'), 3.59 (2H, m, OCHH'), 1.98 (2H, m. 
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aliphatic CH2), 1.83 (4H, m, aliphatic CH2), 1.63 (18H, s,m overlapping, 

CCH3 and aliphatic CH2's). 

0,0'-Bis(a.a-Dimethyl-a-(0-Tetrahydropyranyl-p-phenol)-Tolyl)-2.6-

Dioxymethylene Pyridine (5. R=THP). 

Monoprotected bis-phenol-A, 3 (R=THP) (21.16g, 0.07moles) 

and 2,6-bis (bromomethyl)pyridine (9.01g, 0.034moles) were dissolved 

in ethanol (120ml). Potassium carbonate was added and the 

suspension stirred at reflux for 20hrs. On completion of the reaction 

(absence of starting materials on analytical TLC), the suspension was 

filtered while hot. Standing overnight at room temperature resulted 

in the formation of a white precipitate in the filtrate which was 

collected by filtration, washed on the filter with cold ethanol (3 x 20ml) 

and dried under vacuum to give a fine white powder (18.37g, 74%). 

M.pt.=122°C. TLC (silica, 1% methanol in dicloromethane) Rf=0.68; 

(silica, 4;l-hexane:ethyl acetate) Rf=0.30. Anal: calcd. for C47H53O6N: C 

77.58%, H 7.29%, N 1.93%. Found: C 77.46%, H 7.37%, N 1.91%. IR: 

2944, 2864,1518,1254,1190 cm-1. 1 H NMR (CDCI3,400MHz) 5: 7.73 ( IH, 

t, J=16.0Hz, B of A2B in pyridine ring), 7.46 (2H, d, J=7.7Hz, A of A2B in 

pyridine ring), 7.17-7.10 (8H, m, aromatic CH), 6.97-6.86 (8H, m, 

aromatic CH), 5.38 (2H, t, J=6.3Hz, OCHO), 5.17 (4H, s, ArCH20), 3.92 

(2H, t of d, Jt=20.6Hz, Jd=3.2Hz, OCHH'CH2), 3.63-3.56 (2H, m, 

OCHH'CH2), 2.04-1.94 (2H, m, aliphatic CH2), 1.84 (4H, m, aliphatic 

CH2 ), 1.70-1.55 (18H, s,m overlapping, aliphatic CH2's and CH3) ppm. 

13c NMR (CDCI3, lOOMHz) 5: 156.9 (aromatic, pyridine ring, ortho to 

N), 156.2 and 154.9 (aromatic C-0), 143.9 and 143.7 (aromatic C-
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C(CH3)2), 137.6 (aromatic, pyridine ring, para to N), 127.8 and 127.6 

(aromatic C-H, biphenyl), 120.0 (aromatic, pyridine ring,meta to N), 

115.7 and 114.0 (aromatic C-H, biphenyl), 96.4 (OCHO), 70.5 (ArCH20), 

62.1 (OCH2), 41.7 (Ar2C(CH3)2), 31.0 (CH3), 30.4 (O2CHCH2), 25.2 

(OCH2CH2), 18.9 ahphatic CH2) ppm. IR 2944(C-H), 2864(C-H), 1518, 

1254,1190, 981cm-l. 

0,0'-Bis(a,a-Dimethyl-a-p-phenol-Tolyl)-2,6-Dioxymethylene 

Pyridine, (5, R=OH). 

Compound 5 (R=THP) (18.25g, 0.025moles) was weighed into a 

round bottomed flask and 20ml of methanol was added. Chloroform 

(15ml) was added to the the stirred suspension in small portions until 

5 dissolved. Concentrated HCl was added (30ml), causing phase 

separation to occur. Small amounts of methanol and CHCI3 were 

added until the reaction was homogeneous (total volumes: methahol-

60ml; CHCl3-100ml; HCl-30ml), and the clear solution was heated 

overnight at reflux. After cooling to room temperature methanol and 

CHCI3 were removed on a rotary evaporator, resulting in the 

formation of a white precipitate. This was basified with saturated 

KOH(aq.), causing further precipitation. The precipitate was extracted 

into ether (500ml), and the organic phase washed with O.IM KOH (2 x 

50ml) followed by water (5 x 50ml), dried (Na2S04), filtered and 

solvent evaporated at reduced pressure. The residue was dried under 

vacuum to leave a white solid, mass 13.47g (96%). 

M.pt. 64-70 °C. TLC: (silica, 4:1 - hexane:ethyl acetate) Rf=0.05. m/e: 334, 

560(M+1). Anal: Calcd. for C37H37O4N: C 79.43%, H 6.62%, N 2.50%. 

Found: C 79.61%, H 6.74%, N 2.41%. ̂ H NMR ((CD3)2CO) 5: 7.85 (IH, t. 
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J=16Hz, B of A2B in pyridine ring), 7.49 (2H, d, J=7.7Hz, A of A2B in 

pyridine ring), 7.17 (4H, d, J=9.0Hz, aromatic C-H, part of AA'BB' 

system), 7.06 (4H, d, J=8.6Hz, aromatic C-H, part of AA'BB' system), 

6.93 (4H, d, J=9.0Hz, aromatic C-H, part of AA'BB' system), 6.73 (4H, d, 

J=8.8Hz, aromatic C-H, part of AA'BB' system), 5.17 (4H, s, ArCH20), 

3.05 (2H, br.s., OH), 1.60 (12H, s, CH3). 13c NMR ((CD3)2CO) 5: 158.4 

(aromatic, pyridine ring, ortho to N), 157.7 and 156.3 (aromatic C-OR), 

145.0 (aromatic, biphenyl, para to OH), 143.0 (aromatic, biphenyl, para 

to OR), 138.9 (aromatic, pyridine ring, para to N), 128.9 and 128.8 

(aromatic C-H, biphenyl), 121.5 (aromatic, pyridine ring, meta to N), 

115.8 and 115.3 (aromatic C-H, biphenyl), 71.7 (ArCH20), 42.5 

(ArC(CH3)2), 31.8 (CH3) ppm. IR: 3341(0-H), 2983(C-H), 1518, 1244, 

1190, 842 cm-1. 

0,0'-Bis(a,a-Dimethvl-a-(0-Tetrahvdropvranvl-p-Phenol)-Tolvl)-l,4-

Dioxamethylene Benzene (4, R=OH). 

This was prepared in 98% yield from the bis(tetrahydropyran) 

ether by acid hydrolysis using a method identical to that used for the 

synthesis of 5, R=OH, substituting 4 (R=THP) for 5 (R=THP) in the 

method. 

IR: 3340 (O-H), 2983, 2862,1515,1240,1190 cm'l . ̂ H NMR (d6-acetone, 

60MHz), 5: 7.9 (2H, s, OH), 7.3-6.4 (20H, m, ArH), 5.2 (4H, s, ArCH20), 

1.5 (12H, s, CCH3) ppm. 
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4-Aza-17,17,40,40-(Tetramethvl)-l,10,24,33-Tetraoxar2.2,l,2,2,11 

MetaParaParaParaParaParaCyclophane, (1). 

D i o l 4 ( R = O H ) (0.34g, 0 .60mmoles) and 2,6-

bis(bromomethyl)pyridine (0.16g, 0.60mmoles) were dissolved i n hot 

ethanol (70ml). Potassium carbonate (0.34g, 2.5mmoles) was added and 

the stirred solution was heated at reflux for 48hrs. The hot solution 

was filtered and the solid residue washed wi th hot ethanol (3 x 15ml), 

dried and taken up i n H2O (35ml). This was extracted into ether (4 x 

50ml) and then CHCI3 (4 x 50ml). The organic phases were combined, 

dried (Na2S04) and filtered. Solvent was removed at reduced pressure 

and the residue dried under vacuum to leave a white, crystalline 

solid, mass 0.19g (47%). 

M.pt . 100-103 °C. Anal. Calcd. for C45H44O4N: C 81.69%, H 6.51%, N 

2.12%. Found: C 81.59%, H 6.53%, N 2.01%. m / e 122, 135, 152, 

663(M+2), 664. m / e (CI) 652, 662 (M+1), 663, 664, 665, 696. N M R 

(CDCI3, 3OOMH2) 5: 7.65 ( I H , t, B of A2B, pyridine ring), 7.38 and 7.35 

(6H, d, s, overlapping, A of A2B in pyridine r ing and A r H , phenyl 

ring), 7.18-7.05 (8H, m, A r H , part of AA'BB' system), 6.82-6.77 (8H, m, 

A r H , part of A A ' B B ' system), 5.09 (4H, s, A r C H 2 0 ) , 4.95 (4H, s, 

ArCH'20 ) , 1.56 (12H, s, CCH3) ppm. 

4-Aza-27-Ethoxy/Methoxvcarbonvl-17,17,40,40-Tetramethyl-l,10,24,33-

Tetraoxa[2,2,l,2,2,nMetaParaParaMetaParaParaCyclophane, (6). 

Potassium carbonate (0.39g, 2.83mmoles), methyl-2,6-

bis(bromomethyl)ben2oate (0.1 I g , 0.34mmoles) and compound 4 

(R=OH) (0.19g, 0.34 mmoles) were dissolved i n ethanol (150ml) and 

stirred at ref lux for 48 hours. The hot solution was f i l tered and 
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ethanol removed f r o m the fi l trate at reduced pressure to leave a 

yel low solid. This was dried urider vacuum and pur i f ied by column 

chromatography (flash silica; 4:1 - hexane: ethyl acetate as eluant) to 

give a white solid, mass 78mg (31%). 

M.pt.=204-211°C (for methyl ester). TLC (silica, 4:1 - hexane:ethyl 

acetate): Rf=0.24. m / e (glycerol as internal reference) 108, 135, 334, 

734(M+1). Anal : calcd. for C48H47O6N: C 78.58%, H 6.41%, N 1.91%. 

Found: C 78.36%, H 6.37%, N 1.81%. N M R (CDCI3, 4OOMH2) 5: 7.66 

( I H , t, J=15.2Hz, B of A2B in pyridine ring), 7.41-7.38 (3H, m, (t, d 

overlapping), A2B aromatic protons of benzoate), 7.33 (2H, d, J=7.6Hz, 

A of A2B in pyr idine r ing), 7.08 (4H, m, part of AA 'BB ' system, 

d ipheny lme thane ) , 7.01 ( 4 H , m , par t of A A ' B B ' system, 

diphenylmethane), 6.81-6.77 (8H, m, overlapping AA'BB ' systems of 

diphenylmethane), 5.18 and 5.19 (8H, s,s overlapping, A r C H 2 0 and 

ArCH'20) , 3.78 (2H, q, J=21.6Hz, OCH2CH3), 1.62 (12H, s, CCH3), 0.92 

(3H, t, J=14.0Hz, CH2CH3) . N M R (CDCI3, lOOMHz) 5: 168.1 

(ArCOz) , 157.3 (aromatic C-CH2O, pyridine ring), 156.4 and 156.3 

(aromatic C-O), 143.8 and 143.2 (aromatic C-C(CH3)2), 137.6 (aromatic 

C-H, pyridine r ing, para to N) , 136.1 (aromatic C-CO2), 131.8 (aromatic 

C-CH2O, benzoate ring), 129.9 (aromatic C-H, benzoate r ing, para to 

ester group), 128.1 (aromatic C-H, benzoate ring, meta to ester group), 

127.7 and 127.6 (aromatic C-H, diphenylmethane rings, ortho to O), 

119.8 (aromatic C-H, pyr id ine r ing, meta to N ) , 114.3 and 113.9 

(aromatic C-H, diphenylmethane rings, meta to O), 70^9 and 68.1 

( A r C H 2 0 and A r C H ' 2 0 ) , 61.3 (OCH2CH3), 41.6 (ArC(CH3)2), 30.8 

(CCH3), 13.7 (CH2CH3). 
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IR: 2970 (C-H), 2868 (C-H), 1719 (C=0), 1601 (aromatic C-C), 1588 

(aromatic C-C), 1505 cm"!. 

4-Aza-27-Sodiumcarboxvlate-17.17,40,40-Tetramethvl-l,10,24,33-

Tetraoxar2,2,l ,2,2,1 iMetaParaParaMetaParaParaCvclophane. (7a). 

The ester 6 (170mg, 0.23mmoles) was refluxed in O.IM NaOH 

in 90% ethanol (50ml) for 2 weeks. The solution was cooled to room 

temperature and evaporated to dryness at reduced pressure to leave a 

white solid. This was taken up in 15ml dichloromethane and quickly 

washed w i t h water (3 x 10ml), dried (Na2S04) and filtered. Solvent 

was immediately removed at reduced pressure to leave a white solid, 

wh ich was dr ied under vacuum to give the sodium salt of the 

hydrolysed ester, 7a, in quantitative yield. 

m/e : 135, 166, 193, 334, 560, 561, 706(M+1), 707. ^ H N M R (d8-THF/5% 

D2O) 5: 7.60 ( I H , t, J=15.6Hz, B of A2B in pyridine ring), 7.26 (2H, d, 

J=10.OHz, aromatic C-H, A of A2B system), 7.12 (2H, d, J=8Hz, aromatic 

C-H, A of A2B system), 6.93-6.66 (17H, m, overlapping AA'BB's of 

diphenyls and B of benzoate A2B system), 5.20 (3H, br.s., ArCH20) , 5.09 

and 5.02 (5H, overlapping s,s, A r C H 2 0 and ArCH'20) , 1.46 (12H, s, 

CCH3) ppm. IR: 2962 (C-H), 1608(aromatic C-C), 1581 aromatic C-C), 

1509 cm-1. 

4-Amonium-27-Carboxvlate-l 7,17,40,40-Tetrameth y l - l ,10,24,33-

Tetraoxaf2,2,1,2,2,1 iMetaParaParaMetaParaParaCyclophane, (2). 

Sodium salt 7a (44mg, 6.1 x lO'^moles) was stirred in 50:50-

H20 :THF (6ml) to give a turbid solution. 6M H C l (1.5ml) was added, 

causing precipitation. This suspension was stirred overnight, the 
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precipitate collected by fil tration and washed on the filter w i th water (4 

X 5ml). The white solid residue was allowed to dry on the filter, then 

washed through w i t h a min imum of THF. Solvent was removed at 

reduced pressure and the residue dried under vacuum to give the 

hydrochloride salt, 7b. 

1 H N M R (d8-THF/5%D20) 5: 7.61 ( I H , t, B of A2B in pyridine ring), 

7.32- 7.21 (4H, m , overlapping A's of A2B in pyr idine r ing and 

benzoate), 7.00- 6.61 (17H, m, overlapping AA'BB's of diphenyls and t 

of benzoate), 5.41 (1.5H, s, ArCH20) , 5.10 (2.5H, s, ArCH20) , 5.01 (4H, s, 

A r C H ' 2 0 ) , 1.26 (12H, s, CCH3). IR: 2952 (C-H), 2857 (C-H), 1719 (C=0), 

1605 (aromatic C-C), 1579 (aromatic C-C), 1507 c m ' l . 

The hydrochloride salt was dissolved i n propylene oxide 

(15ml) and stirred under nitrogen w i t h precipitation occurring after 

about 15 minutes. The suspension was allowed to stir under nitrogen 

for a fur ther 24hrs., after which solvent was removed at reduced 

pressure and the white solid residue dried under vacuum to give the 

title compound in a yield of 22.4mg (52% f rom Na+ salt 7a). 

1 H N M R (d8-THF) 5: 7.58 ( I H , t, J=16Hz, B of A2B in pyridine ring), 

7.34- 7.20 (5H, m, A of A2B in pyridine ring and A2B of benzoate), 6.99-

6.95 (8H, m, part of aromatic AA'BB' systems), 6.73-6.70 (8H, m, part of 

aromatic A A ' B B ' systems), 5.12 and 5.05 (8H, s,s overlapping, 

ArCH20's) , 1.52 (12H, s, CCH3). IR: 3435 (N-H), 2976 (C-H), 1719 (smaU, 

contamination by starting material), 1650 (C=02') , 1503 cm-1. m/e 87, 

135, 334, 560, 706 (M+1) , 734 (small amount of ethyl ester 

contaminant). 

186 



4.3. SYNTHESEg FQR CHAPTER 3, 

Condensation Polymer of 2-HBI Wi th Formaldehyde. 

2-HBI (4.70g, 3.50 x lO'^moles), 37% aqueous formaldehyde 

(8.7ml, O.llmoles of H2CO), 37% aqueous hydrochloric acid (17ml) and 

water (24ml) were placed in a round bottomed flask and heated at 

reflux. Af ter a few minutes, a green precipitate began to form. After 

Ihr . , at reflux, the suspension was poured into 120ml of cold water 

and the mixture allowed to cool to room temperature. The solid was 

collected by fi l tration and washed wi th ethanol (4 x 20ml) and ether (3 

X 20ml) and dried under vacuum to give a fine, l ight green powder 

(5.60g, 98%), which was observed to turn a pale brown colour on 

standing in bright sunlight, or on heating. 

M.pt.>300°C. 

N,N'-Bis(Hydroxymethyl)-2-Benzimidazolidone3. 

2-Hydroxybenzimidazole ("2-HBI") (l.OOg, 7.46 x 10-3moles) was 

stirred in 25ml hot water. 38% aqueous formaldehyde (2.1ml, 2.66 x 10' 

2moles of H2CO) was added, on which 2-HBI immediately dissolved. 

The solution was heated at reflux for Ihr . and the solution poured 

into 50ml of cold water. This was cooled in an ice bath and, on 

scratching w i t h a glass rod, a white precipitate formed. This was 

collected by f i l t ra t ion , recrystallised f r o m water and dried under 

vacuum (0.53g, 37%). 

M.pt=159-16rC (lit.=164-165°C3). m / e (EI) 52, 79, 106, 134(M+); (DCI) 

135(M+1), 152(M+18). Anal: Calcd. for C9H10N2O3: C 55.67%, H 5.15%, 

N 14.43%. Found: C 55.82%, H 5.16%, N 14.29%. ^ H N M R (60MHz, 
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D20) 5: 7.5 (4H, s, ArH) , 5.6 (4H, s, ArCH20) ppm. IR: c.3800-2500 (v.br.. 

Hydrogen bonded N - H and O-H; C-H), 1735 (C=0), 1620, 1540, 1420, 

1090 cm-1. 

Condensation of 2-Imidazolidone W i t h Formaldehyde - N , N ' -

Dimethy-2-Imidazolidone. 

I n an attempt to synthesise the condensation polymer, 2-

imidazolidone (6.05g, 0.07moles) was dissolved in a mixture of 37% 

aqueous formaldehyde (100ml) and 37% aqueous hydrochloric acid 

(50ml). The solution was heated at reflux for 4 or 16hrs., during which 

time i t acquired a pale brown colouration. Af ter cooling to room 

temperature, solvent was removed at reduced pressure to leave a 

brown residue which was dried under vacuum and then taken up in 

chloroform (100ml). This was filtered to remove any solid impuri ty 

(paraformaldehyde - produced especially at longer reaction times) and 

solvent removed f r o m the fi l trate. The residue was dried under 

vacuum to leave a brown oi l (6.22g, 78%). 

I H N M R ( C D C I 3 ) 5: 3.29 (4H, s, N C H 2 ) , 2.78 (6H, s, N C H 3 ) . 13c N M R 

(CDCI3) 5: 162.5, 45.6, 31.9. m/e: 115(M+1). IR: 2950 and 2860 (aromatic 

and aliphatic C-H),1680 (C=0). Anal. Calcd. for C 5 H 1 0 N 2 O : C 52.63%, H 

8.77%, N 24.56%. Found: C 52.38%, H 8.90%, N 24.14%. 

2,11 - Diaza - 5,8 - DioxaBicyclor8,4lHexadec -12,14,16 - Triene (Benzo -

I2N9O9), (19). 

In an attempt to prepare the "2+2" adduct, dibenzo-24N404,12, 

l,8-bis(p-toluenesulphonato)-3,6-dioxaoctane (7.50g, 1.6 x lO'^moles) 

was dissolved in dry DMF (130ml) under nitrogen. Caesium carbonate 
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was added and the suspension stirred at 60 °C. To this, a solution of 2-

H B I (2.19g, 1.6 X 10-2moles) in dry DMF (150ml) was added dropwise 

over a period of 12hrs. The reaction was stirred at 60°Cfor a further 

4hrs. and then allowed to cool to room temperature. DMF was 

evaporated at reduced pressure and the residue dried under high 

vacuum. I t was then taken up in hot methanol (100ml) and filtered. 

The solid residue was washed on the filter w i t h hot methanol (3 x 

20ml), dried vmder vacuum and then taken up in chloroform (150ml). 

The chloroform was f i l tered to remove inorganic salts and solvent 

evaporated f rom the filtrate at reduced pressure to leave a white solid, 

wh ich was dried under vacuum to give 2.61g (66%) of the title 

compound. No evidence was found which would have suggested that 

the desired 2+2 adduct had been formed. 

M.pt.=128-131°C. m/e : 135, 161, 205, 249(M+1). ^ H N M R (CDCI3, 

250MHz) 5: 7.05 (4H, ArH) , 3.99 (4H, t, J=10.0Hz, NCH2CH2O), 3.78 (4H, 

t, J=12.5Hz, NCH2CH2O), 3.51 (4H, s, OCH2CH2O) ppm. N M R 

(63MHz, CDCI3) 5: 154.0 (C=0), 129.5 (aromatic C), 120.8 (aromatic C-

H) , 108.2 (aromatic C-H), 72.4 and 69.0 (CH2O), 41.0 (CH2N) ppm. 

1,10-Dioxa-4,7J3,16-Tetraazacyclooctadecane, (21)4. 

The t i t l e compound was prepared f r o m N,N ' -b i s (p -

t o l u e n e s u l p h o n y l ) - l , 2 - d i a m i n o e t h a n e and l ,8 -b i s (p - to luene 

sulphonato)-3,6-dioxaoctane as in the literature^. 
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19,20-Dithio-4,13-Dioxa-l,7,10.16-Tetraazatricvclori8,2,l,l,7/10lEicosane. 

I8N4O2, 21 , (1.45g, 5.67 X 10-3moles) was dissolved in 50:50-
ethanohwater (4ml). CS2 (0.67ml, 1.12 x lO'^moles) was added and the 
solution heated to 45 °C; a white precipitate began to fo rm wi th in a 
few minutes. After 2hrs., the reaction had become quite viscous and a 
further 6ml of solvent was added. The mixture was held at 45 °C for 
45hrs., w i t h a further 1.2ml of CS2 added in 4 aUquots during the 
reaction. 

The temperature was then increased to 100°C for 3hrs., after 

which 2ml of cone. H C l was added and the reaction held at reflux for a 

further 14hrs. 

On cooling to room temperature, the volume was reduced to 

about 3ml and cooled i n an ice bath. The white precipitate was 

collected by f i l t ra t ion and washed w i t h cold water (3 x 3ml), then 

ethanol (3 x 3ml) and dried under vacuum (0.57g, 29%). 

M.pt.=246-247°C(dec.). TLC (silica, 5% methanol in DCM): Rf=0.21. 

m/e : 345(M+1). Anal. Calcd. for C14H25N4O2S2CI: C 44.27%, H 6.32%, 

N 14.76%. Found: C 44.52%, H 6.57%, N 14.75%. IR: 2920 (C-H), 2892 (C-

H) , 1493,1332,1120 cm-i. ^ H NMR, assigned using HETCOR and COSY 

experiments, (CDCI3, 400MHz) 5: 4.67-4.61 (4H, m, NCH2CH2O), 3.97-

3.90 (4H, m , NCH2CH2N), 3.82-3.78 (4H, m, NCH2CH2O), 3.68-3.61 (4H, 

m, NCH '2CH'20), 3.38-3.34 (4H, m, NCH '2CH20), 2.98-2.93 (4H, m, 

NCH'2CH'2N) ppm. 13C N M R , assigned using HETCOR experiment, 

( C D C I 3 , lOOMHz, relaxation delay=20sec.) 8: 182.2 (C=S), 67.8 

(NCH2CH2O), 47.4 (NCH2CH2O), 47.0 (NCH2CH2N) ppm. 
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A n excess of ethanol was added to the f i l t ra te , causing 

considerable precipitation. This precipitate was also collected and 

ident i f ied as 18N402-4HC1 (0.75g, accounting for 25% of starting 

material), which was basified and extracted into dichloromethane and 

could be used for the preparation of more of the bisthiourea. 

19.20-Dioxo-4,13-Dioxa-l,7,10,16-Tetraazatricyclofl8,2,l>l7/lQlEicosane, 

(13). 

Bisthiourea 23 (0.313g, 9.1 x lO'^moles) was dissolved in 1,2-

dichloroethane (15ml) and Hg(0Ac)2 (0.68g, 2.1 x lO'^moles) added. 

The reaction was st irred at ref lux for 23hrs., cooled to room 

temperature and fi l tered through celite. Solvent was removed f rom 

the filtrate to give a yellow solid wi th a dry mass of 0.81g. 

Water (10ml) was added, and the p H adjusted to 10.5 w i t h 

potassium carbonate. This mixture was heated at reflux for 2V2hrs., 

w i t h a dark precipitate beginning to fo rm after 45mins. The cooled 

reaction was fil tered through celite and solvent evaporated f rom the 

filtrate at reduced pressure to give a white solid. This was either: 

(i) taken up in methanol and fil tered through a p lug of silica w i t h 

methanol as eluant to give the par t ia l ly hydrolysed, mixed 

urea/thiourea, 25. 

M.pt . >145°C(dec.), 162-165°C(melts). m / e 172, 190, 329 (M+1). TLC 

(silica, 5% methanol in dichloromethane): Rf=0.25. IR: 2930 (C-H), 

2860 (C-H), 1683 (C=0), 1495,1456,1265,1125 c m ' l . ^ H N M R (CDCI3) 6: 

4.50 (2H, d of q, Jd=14.0Hz, Jq=6Hz), 4.04 (2H, m), 3.92-3.77 (4H, m), 3.69-

3.38 (lOH, m), 3.16 (2H, m), 3.10-2.88 (6H, m) ppm. 13C N M R (CDCI3, 

Relaxation delay=10sec.) 5: 180.9 (C=S), 165.4 (C=0), 69.3 (OCH2), 66.8 
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(OCH2'), 48.1 (NCH2CH20), 47.1 (NCH2'CH2'0), 44.1 (NCH2CH2N), 

42.6 (NCH2'CH2'N) ppm. 

or 

(ii) redissolved i n 1,2-dichloroethane (20ml). Hg(0Ac)2 (0.59g, 1.82 x 

10-3 moles) was added and the reaction repeated as above. The solid 

product was taken up in methanol and filtered through a plug of silica 

wi th methanol as eluant to give the bisurea hydrolysis product (0.12g, 

42%). 

M.pt.=227-230°C(dec.). m / e 313(M+1). Anal. Calcd. for C14H24N4O4: C 

55.85%, H 7.69%, N 17.95%. Found: C 38.30%, H 5.75%, N 9.83%, Na 

3.15%, K 5.54%. IR: 3436, 2873 (C-H), 1683 (C=0), 1506, 1273cm-l. TLC 

(silica, 5% methanol in dichloromethane, develop i n iodine) Rf 0.07; 

(siHca, 100% methanol, develop in iodine) Rf 0.40. ^ H N M R (D2O, 

400MHz) 5: 3.48 (12H, br.t, J=9.2Hz), 3.29 (12H, br.s). ^^C N M R (D2O, 

lOOMHz) 5:162.6,66.4 (OCH2), 42.8 (NCH2), 42.4 (NCH2) ppm. 

1,4-Bis(toluenesulphonyl)-l ,4-Diaza-7,10-DioxacycIododecane. 

I n an attempt to make the 24 membered tetratosylamide 

24N4O4.4TS, 25, l,8-bis(p-toluenesulphonato)-3,6-dioxaoctane (5.00g, 

1.09 X lO-^moles) was dissolved in dry DMF (100ml) under nitrogen 

and caesium carbonate (7.11g, 2.18 x lO'^moles) added. To the stirred 

suspension a so lu t ion of N ,N ' -b i s (p - to luenesu lphony l ) - l , 2 -

diaminoethane (4.37g, 1.13 x lO'^moles) in dry DMF (100ml) was added 

dropwise over a period of 6hrs. The suspension was stirred for a 

fur ther 2hrs. at room temperature and then 9hrs. at 55°C. Af ter 

cooling to room temperature, the reaction was f i l tered and DMF 

evaporated f r o m the filtrate at reduced pressure. The solid residue was 
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dried at h igh vacuum and then taken up i n hot ethanol (150ml). 

Insoluble material was collected by fil tration and dried under vacuum 

to give the 12 membered macrocyclic title product, mass 4.63g (88%). 

N o evidence was obtained which would have indicated the formation 

of the desired 24 membered macrocyclic product. 

M.pt. =212-215°C. m/e: 193, 327, 483(M+1). ^H N M R (CDCI3) 5: 7.75 (4H, 

d, J=8.0Hz, part of aromatic AA'BB' ) , 7.33 (4H, d, J=8.0Hz, part of 

aromatic A A ' B B ' ) , 3.66 (4H, t, J=8.0Hz, NCH2CH2O), 3.59 (4H, s, 

J=8.0Hz, OCH2CH2O), 3.36 (4H, s, NCH2CH2N), 3.29 (4H, t, J=8.0Hz, 

NCH2CH2O), 2.44 (6H, s, ArCH3) ppm. 

10,11-Bis(tosylaza)-3,6,15,18-Tetraoxa-Ditosyleicosane-1,20-Diol, (26). 

N ,N ' -B i s (p - to luenesu lphony l ) - l , 2 -d i aminoe thane (29.Og, 

0.08moles) was dissolved in 2-[chloro(ethoxy{ethoxyethanol})] (50g). 

Potassium carbonate was added and the solution stirred at 100 °C for 

2 0 h T S . The reaction was cooled to room temperature and 

dichloromethane (100ml) added to lower the viscosity. The 

suspension was fi l tered and solvent evaporated f r o m the filtrate at 

reduced pressure to give a very viscous, dark o i l . Excess 2-

[chloro(ethoxy{ethoxyethanol})] was removed at 80-100°C under high 

vacuum. Considerable amounts of triethylene glycol were also 

obtained as distillate. 

A i H N M R of the product indicated that i t was s t i l l 

c o n t a m i n a t e d w i t h r e s i d u a l amoun t s of 2 - [ c h l o r o -

(ethoxy{ethoxyethanol})] which could not be distilled off. The product 

was used without further purification. 
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m / e 133, 151, 162, 283, 633(M+1). ^ H N M R (CDCI3) 5: 7.72 (4H, d, 

J=8.0Hz, part of aromatic AA'BB' system), 7.32 (4H, d, J=8.1Hz, part of 

aromatic A A ' B B ' system), 3.80-3.45 (29H, m, CH2O of product and 

residual 2-[chloro-(ethoxy{ethoxyethanol})] ) , 3.39 and 3.32 (8H, s,t 

overlapping, Jt=10.0Hz, N C H 2 C H 2 N and OCH2CH2N), 2.43 (6H, s, 

A r C H 3 ) ppm. l ^ C N M R (CDCI3) 5: 143.9 (aromatic), 136.4 (aromatic), 

130.2 (ArH) , 127.7 (ArH), 73.0 (CH2O), 71.7 (CH2O), 71.0 (CH2O), 70.9 

(CH2O), 70.8 (CH2O), 70.4 (CH2O), 62.0, 61.9, 49.8 (CH2N),49.5 (CH2N), 

21.9 (ArCH3) ppm. 

10,ll-Bis(tosvlaza)-3,6,15,18-Tetraoxa-l,20-Bis(tosyloxy)eicosane, (27). 

The diol (50.56g, O.OSmoles for 100% yield f r o m previous step) 

was dissolved in dry THF (150ml) and triethylamine (30ml) added. 

The solution was cooled to 0°C under nitrogen. To this, a solution of 

tosyl chloride (45.9g, 0.24moles) in THF (100ml) was added dropwise 

over a period of 4hrs. The reaction was allowed to stir at 0°C for a 

further 4hrs. before the reaction vessel was sealed and stored at 5°C for 

7 days. The mixture was then part i t ioned between water and 

dichloromethane. The orgaruc phase was dried over Na2S04, filtered 

and solvent evaporated at reduced pressure. The residue was dried 

under vacuum to leave a dark brown, very viscous o i l which was 

pur i f i ed , w i t h d i f f i cu l t y , by column chromatography (flash silica, 

solvent gradient of eluant f r o m dichloromethane - 5% methanol in 

dichloromethane) to give the product as a clear, colourless oi l (36.55g, 

49% f r o m N,N'-bis(p-toluenesulphonyl)-l,2-diaminoethane). 

TLC (silica, 2% methanol in dichloromethane) Rf=0.26. ^ H N M R 

(CDCI3) 6: 7.80-7.67 (8H, m, A r H , overlapping parts of AA'BB' systems 
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of OTs and NTs), 7.35-7.27 (8H, m, A r H , overlapping parts of AA'BB' 

systems of OTs and NTs), 4.12 (4H, t, J=8.0Hz, CH2OTS), 3.67-3.55 (8H, 

m , N C H 2 C H 2 O and OCH2CH2OTS, overlapping), 3.52 (8H, s, 

O C H 2 C H 2 O ) , 3.35 (4H, s, N C H 2 C H 2 N ) , 3.30 (4H, t, J=8.0Hz, 

N C H 2 C H 2 O ) , 2.43 (12H, s, ArCH3) ppm. 13C N M R (CDCI3) 5: 144.9 

(aromatic), 136.1 (aromatic), 133.9 (aromatic), 129.9 (ArH) , 129.8 (ArH), 

127.9 (ArH) , 127.2 (ArH) , 70.5 (OCH2), 70.3 (OCH2), 69.9 (OCH2), 69.3 

(OCH2), 68.6 (OCH2), 49.4 (NCH2), 49.1 (NCH2), 21.7 (ArCH3), 21.5 

(ArCH3) ppm. 

1.4,13.16-Tetra(p-Toluenesulphonvl)-7,10,19,22-Tetraoxa-l,4.13,16-

Tetraazacyclotetraeicosane, (28). 

Sodium (1.29g, 0.056 moles) was dissolved in dry methanol 

under nitrogen and the solution heated at reflux for 2hrs. N,N'-Bis(p-

toluenesulphonyl)-l,2-Diaminoethane (10.31g, 0.028moles) was added 

and the solution heated at reflux for a further 2hrs. Methanol was 

evaporated at reduced pressure and the solid residue dried under 

vacuum. Dry D M F (200ml) was added and the suspension stirred 

under nitrogen at 80 °C. To this, a solution of 10,ll-bis(tosylaza)-

3,6,15,18-tetraoxa-l,20-bis(tosyloxy)eicosane (26.56g, 0.02moles), in DMF 

(500ml) was added dropwise over a period of SVzhrs. The mixture was 

stirred at 80°C for a further 24hrs. and then at allowed to cool to room 

temperature. Water (20ml) was carefully added and solvent removed 

at reduced pressure. The residue was partitioned between water and 

dichloromethane. The organic phase was dried (Na2S04) and filtered. 

Solvent was evaporated f r o m the filtrate at reduced pressure and the 

residue dried under vacuum to give an off-white solid. This was taken 
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up in hot ethanol (400ml) and the insoluble material collected by 

f i l t ra t ion and washed on the fi l ter w i th hot ethanol. Af ter grinding 

w i t h a pestle and mortar, the residue was dried under vacuum to 

leave a white solid (17.85g, 66%). 

M.pt.=178-180°C. Anal. Cald. for C44H60N40O12S4: C 54.77%, H 6.22%, 

N 5.54%. Found: C 54.15%, H 6.28%, N 5.54%. TLC (silca, 2% methanol, 

in dichloromethane) Rf=0.22. 1 H N M R (CDCI3) 5: 7.70 (8H, d, J=8.0Hz, 

A r H , part of AA'BB' system), 7.30 (8H, d, J=8.0Hz, A r H , part of AA'BB' 

system), 3.58-3.53 (16H, t,s overlapping, OCH2CH2N and OCH2CH2O), 

3.35-3.26 (16H, s,t, overlapping, NCH2CH2N and NCH2CH2O), 2.41 

(12H, s, ArCH3) ppm. l ^C N M R (CDCI3) 5: 143.9 (aromatic C-S), 136.5 

(aromatic C-Me), 130.2 (ArH) , 127.7 (ArH) , 70.9 (OCH2), 70.6 (OCH2), 

50.1 (NCH2), 49.6 (NCH2) 22.0 (ArCH3) ppm. 

l-Chloro-3,6-Dioxa-8-Tosyloxyoctane, (30). 

Tosyl chloride (33.40g, O.lSmoles) and triethylamine (25ml) 

were dissolved i n dry THF (200ml) under nitrogen. The solution was 

cooled to 0°C and a solution of 2-[chloro(ethoxy-{ethoxyethanol})] 

(20ml, 0.14moles) i n dry THF (100ml) was added dropwise over a 

period of 2hrs. The reaction vessel was sealed and stored at 5°C for 6 

days. The mixture was then filtered and solvent removed f rom the 

f i l t rate at reduced pressure. The residue was pur i f i ed by column 

chromatography (flash silica, 2% methanol i n dichloromethane as 

eluant) to give the product as a clear, colourless oil (29.03g, 64%). 

TLC (silica, 1% methanol i n dichloromethane) Rf=0.51. ^ H N M R 

(CDCI3) 5: 7.80 (2H, d, J=8.0Hz, A r H , part of AA'BB' system), 7.35 (2H, 

d, J=8.0Hz, A r H , part of AA'BB' system), 4.17 (2H, t, J=12Hz, CH2OTS), 
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3.78-3.69 (4H, m, CH2O), 3.63-3.58 (4H, m, CH2O and CH2CI), 2.45 (3H, 

s, A r C H 3 ) ppm. 13c N M R (CDCI3) 5: 145.3 (aromatic C-S), 133.4 

(aromatic C-Me), 130.3 (ArH) , 128.4 (ArH), 71.8 (CH2O), 71.2 (CH2O), 

71.0 (CH2O), 69.7 (CH2O), 69.2 (CH2O), 43.3 (CH2CI), 22.1 (ArCH) ppm. 

10,ll-Bis(tosvlaza)-3,6.15,18-Tetraoxa-l,20-Dichloroeicosane, (29). 

l-Chloro-3,6-Dioxa-8-Tosyloxyoctane (6.38g, 0.02moles) and 

N,N'-bis(p-toluenesulphonyl)-l ,2-diaminoethane (3.64g, O.Olmoles) 

were dissolved i n dry D M F (80ml). Caesium carbonate (6.67g, 

0.02moles) was added and the mixture stirred at room temperature 

under nitrogen for 20hrs. and then at 40 °C for 2hrs. The mixture was 

f i l tered and solvent evaporated f rom the filtrate at reduced pressure. 

The s o l i d res idue was p a r t i t i o n e d between water and 

dichloromethane and the organic layer dried (Na2S04) and filtered. 

Solvent was evaporated f r o m the filtrate at reduced pressure 

and the solid residue recrystallised f r o m methanol to give a white 

powder which was dried under vacuum. (6.02g, 47%). 

M.pt=76-78°C. TLC (silica, 2% methanol) Rf=0.14. m / e 669(M+1, 

Cl=35/35) , 671(M+1, Cl=35/37), 673(M+1, Cl=37/37), 686(M+18, 

Cl=35/35), 687(M+18, Cl=35/37), 688(M+18, C1=37/37).1H NMR.(CDCl3) 

5: 7.71 (4H, d, J=8.1Hz, A r H , part of AA 'BB ' system), 7.32 (4H, d, 

J=8.1Hz, A r H , part of A A ' B B ' system), 3.73-3.50 (20H, (OCH2) and 

CH2CI), 3.39 (4H, s, NCH2CH2N), 3.33 (4H, t, J=11.0Hz, NCH2CH2O), 

2.43 (6H, s, ArCH3) ppm. 13c N M R (CDCI3) 5: 143.9 (aromatic C-S), 

136.6 (aromatic C-Me), 130.2 (ArH) , 127.7 (ArH) , 71.6 (OCH2), 70.8 

(OCH2) , 70.7 (OCH2), 70.4 (OCH2), 49.9 (NCH2), 49.5 (NCH2), 43.3 

(CH2CI), 22.0 (ArCH3) ppm. 
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l,4,13,16-Tetra(p-Toluenesulphonvl)-7,10,19,22-Tetraoxa-l,4,13,16-

Tetraazacyclotetraeicosane. (28) - Method 2. 

Sodium (0.40g, O.OlSmoles) was dissolved i n dry methanol 

(50ml) and stirred at reflux under nitrogen for lV2hrs . After cooling to 

room temperature, N,N'-bis(p-toluenesulphonyl)-l,2-diaminoethane 

(2.72g, 7.40 x 10"3moles) was added and the solution heated at reflux 

for a further 2V2hrs . Methanol was then evaporated at reduced 

pressure and the solid residue dried under vacuum. Dry DMF (200ml) 

was added and the suspension stirred under nitrogen at 100°C. To 

this, a solution of 10,ll-diaza-3,6,15,18-tetraoxa-l,20-dichloroeicosane 

(4.95g, 7.40 X lO^^moles) in dry DMF (150ml) was added dropwise over 

a period of 7hrs. and the mixture then stirred at 100°C for a further 

23hrs. 

D M F was evaporated f r o m the cooled solution at reduced 

pressure, and the solid residue parti t ioned between water and 

dichloromethane. The organic phase was dried over potassium 

carbonate, f i l tered and solvent removed f r o m the f i l t rate under 

vacuum to give a yellow oi l . This was recrystallised f rom hot ethanol 

to give a white solid (dry mass 3.67g, 52%). 

Analysis as above. 

l,4,13,16-Tetraoxa-7,10,19,22-Tetraaza-Tetraazacyclotetraeicosane. (22). 

The tetratosylamide (0.49g, 5.1 x lO'^moles) was stirred in dry 

THF (20ml) and ethanol (2ml). The suspension was cooled to -78°C in 

an acetone/dry ice bath and ammonia (about 50ml) was condensed 
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into the reaction vessel. Lithium (about Ig, O.lSmoles) was added in 

small portions over a period of 25 minutes, causing an intense blue 

colour to develop. After 2hrs., the reaction was allowed to start 

warming to room temperature and excess ammonia allowed to bubble 

off. Ethanol (2ml) was carefully added, followed by cold water (70ml), 

causing most of the white solid to dissolve. 

Solvent was evaporated at reduced pressure and 6M 

hydrochloric acid (50ml) added to the residue. The turbid solution 

formed was washed with diethyl ether (3 x 60ml) to give a clear 

aqueous phase, from which sovlent was again evaporated at reduced 

pressure. The white, solid residue was dried under vacuum and then 

redissolved in a minimum volume of water (about 2.5ml). This was 

basified with LiOH and extracted exhaustively into dichloromethane 

(several washings of about 50ml). The dichloromethane washings 

were combined, dried over lithium carbonate, filtered and solvent 

evaporated at reduced pressure. The residue was dried under vacuum 

to leave a clear, colourless oil, which crystallised on standing (0.13g, 

74%). 

M.pt.=60-63°C. Anal. Calcd. for: C 1 6 H 3 6 N 4 O 4 : C 55.17%, H 10.34%, N 

16.09%. Found C 55.65%, H 10.45%, N 16.58%. m/e 349(M+1), 350. 

NMR (CDCI3) 5: 3.63 (16H, s,t overlapping, O C H 2 C H 2 O and 

O C H 2 C H 2 N ) , 2.79 (16H, s,t overlapping, N C H 2 C H 2 N and 

NCH2CH2O) ppm. 13c NMR (CDCI3) 5: 70.7 (CH2O), 70.6 (CH2O), 49.5 

(CH2N), 49.4 (CH2N) ppm. 
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4.5. 1 H N M R N M R T I T R A T I O N E X P E R I M E N T S . 

A known amount of the relevant macrocycle was dissolved in 

a deuterated solvent (usually 2% D 2 O in D S - T H F ) and a I R NMR 

acquired (spectrum 0). 

A standard solution of the test substrate (acetyl choline 

chloride) in water was prepared. Measured volumes of this solution 

were placed in sample bottles, such that the sample bottles contained 

the number of equivalents of AcCh (with respect to the macrocycle) 

indicated in the Table below. The aqueous solvent was evaporated at 

reduced pressure from each sample bottle and the residues dried 

thoroughly under vacuum. 

Sample Bottle/ Equivalents of Total Amount 
Spectrum AcCh Added AcCh Present 
Number 

(0) 0 0 
(1) 0.1 0.1 
(2) 0.1 0.2 
(3) 0.3 0.5 
(4) 0.5 1.0 
(5) 0.3 1.3 
(6) 0.7 2.0 
(7) 3.0 5.0 

(8) 5.0 10.0 

The contents of the NMR tube (containing the macrocycle) 

were transferred to sample bottle (1) and the mixture shaken until a 

homogeneous solution was formed (where possible). The solution 

was transferred back to the NMR tube and̂  a second spectrum acquired 

(spectrum 1). 
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This procedure was repeated for sample bottles (2)-(8). The total 

amount of AcCh present in the NMR tube, also indicated in the Table, 

therefore varied from 0.1 equivalents to 10 equivalents. 
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4.6. M E M B R A N E T R A N S P O R T E X P E R I M E N T S . 

4.6.1. Membrane Preparation. 

The membrane composition was (by weight) ; 1.2% macrocycle, 

65.6% oNPOE, 32.8%PVC, 0.4% potassium tetrakis(p-chlorophenyl) 

borate. Typically, between 10 and 20mg of the macrocycle were used. 

This mixture was dissolved in about 10ml of THF and a membrane 

cast by allowing solvent to evaporate in dust-free conditions, 

according to procedures which have been previously published^. 

4.6.2. Calibration and Selectivity Measurements. 

A Philips IS (561) electrode body was used to mount the 

electroactive membranes. The reference electrode was a Philips double 

junction RE3/DJ electrode. The ion sensitive electrode was 

incorporated into an electrochemical cell described as: 

Ag, AgCl I O.OOIM Analyte (internal filling solution) I PVC membrane 

I O.IM Analyte II O.IM Lithium Acetate (salt bridge) I KCl (satd.) I 

Hg2Cl2(s);Hg. 

A constant dilution technique was used for calibration and 

selectivity measurements. Selectivity measurements were performed 

in distilled water, or in O.IM aqueous solutions of the interferent 

specified. 

All emf measurements were made at 25°C (±0.1 °C). 
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APPENDICES. 



A P P E N D I X 1 . M E M B R A N E T R A N S P O R T E X P E R I M E N T S U S I N G 

I O N S E L E C T I V E E L E C T R O D E S . 

The use of ion selective electrodes, or ISE's, to measure cation 

binding constants and selectivity of macrocycles is well established^. 

The technique is useful as it provides a reliable method of screening a 

fairly large number of substrates using a relatively small amount of 

material (>10mg). 

The macrocycle is dissolved, with a polymer (usually PVC) and 

a plasticiser in a suitable solvent, such as THF or cyclohexanone. A 

large anion, such as tetraphenylborane (potassium salt) is added to 

lower the resistance and reduce anion interference. The solution is 

then allowed to evaporate slowly to leave a thin flexible membrane, 

from which small discs are cut and incorporated into a silver/silver 

chloride electrode, with an internal filling of a lO'^M aqueous solution 

of the test electrolyte. 

The electrode is conditioned in an aqueous solution of the test 

electrolyte for 24hrs. The equilibrium potential of the cell (referenced 

to a Calomel electrode) is measured by the constant dilution of a O.IM 

solution of the electrolyte. 

The change in potential difference detected by the measuring 

system, E, is given by : 

E = E - + EINT + EEXT [1] 

E° = potential at infinite dilution (constant) 

HINT = internal phase boundary potential of membrane 

EEXT = external phase boundary potential of membrane 

EEXT has a Nernstian relationship to the ionic activity of the test 

electrolyte. 
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EEXT = constant + 2.303(RT/zF)log a .... [2] R=8.314JK-lmol-l 

F=9.65 x 104 Cmol-1 

T=temperature 

z=No. of charges transferred i.e. charge on cation 

EiNT has a similar Nernstian relationship to the activity of the 

relevant ion in the electrode internal filling solution; this solution 

remains unchanged and so E I N T is a constant. Equation [1] therefore 

becomes: 

E = E' + 2.303(RT/zF)log a [3] 

If we assume ideality (activity=concentration) and thermostat 

the test electrolyte solution and the electrode to 25 °C (298K), then for a 

O.IM test solution of a monovalent cation such as Na+ (z=l), equation 

-[3] gives 

E = E' + 59.13mV [4] 

Consequently, a plot of the meausured potential against the 

concentration of the elctrolyte has a slope of about 59mV if the 

response is Nernstian. A slope of about 59mV therefore implies that 

the relevant cation is efficiently transported across the membrane by 

the incorporated macrocyclic ligand. 

In the case of anion transport, where z=-l, the change in the 

measured response of the electrode (assuming efficient anion 

transport) becomes about -59mV. 

Note that while efficient transport indicates the formation of a 

macrocyclic/cation complex, nothing can be concluded about the 

209 



strength of the interaction. Efficient transport does not imply strong 

binding, or vice versa. The qualities associated with macrocycles which 

have good transport properties^ are not necessarily those associated 

with macrocycles which form stable complexes (see chapter 1). 
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APPENDIX 2. CRYSTAL STRUCTURES. 



APPENDIX 2.1. CRYSTAL STUCTURE OF LIGAND 23. 

TABLES 

1. Summary of Data Collection, Structure Solution and 
Refinement Details 

2. Bond Lengths 
3. Bond Angles 
4. Anisotropic Thermal Parameters 
5. Deposition Data 
6. Torsion Angles 
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Table 1. Summary of Data Collection, Structure Solution and 
Refinement Details 

(a) Crystal Data 
empirical formula C14H24N4O2S2 

fw 344.5 
colour, habit colourless, block 
crystal size, mm 0.15 x 0.25 X 0.30 
cryst syst Triclinic 

a, A 6.9554(6) 
b, A 7.8297(11) 
c, A 8.1242(13) 

79.27(1) 
75.50(1) 
84.37(1 

y ,A3 420.2(1) 
space group P_l 
Z 1 
molecular I 
symmetry 
F(OOO) 184 
^calc g 1.36 
p., cm'l 1.9 

(b) Data acquisition^ 
temp, °C 
unit-cell reflcns (29-range°) 
max. 20 (°) for reflcns 
hkl range of reflcns 
variation in 3 standard reflcns 
reflcns measured 
unique reflcns 

reflcns with 1> n o(/), n 
absorption correction type 

21 
25 (15 - 27) 
54 
-8 8, 0 9, -9 10 
< 1% 
1826 
1826 

1268,3.0 
none 
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(c) Structure Solution and Refinement 
solution method Direct methods^ 
H-atom treatment riding, C-H 0.95 
no. of variables in LS 113 
it in w = 1 /(o^Fo + fcFo2) 0.0005 
R'Rw'8of 0.031,0.041,1.29 
density range in 
final A-map, e A'^ -0.15, 0.17 
final shift/error ratio < 0.001 

^ Data collection on an Enraf Nonius CAD4 diffractometer with graphite 
monochromatised Mo-Ka radiation (k 0.7093 A). 
All calculations were done on a Silicon Graphics 4D-35TG computer system with 
the N R C V A X system of programs (E.J. Gabe, Y. Le Page, J-P. Charland, F.L. Lee and 
P.S. White, /. Appl. Cryst. (1989), 22, 384-389)^' or with the T E X S A N system of 
programs,^ Version 5.0, (1989). Molecular Structure Corporation, The Woodlands, 
TX, 77381, U.S.A. 

213 



Table 2. Bond lengths (A). 

S<:(1) 1.681(2) 0-C(5) 1.417(2) 0-C(6) 1.421(3) 

N(l)-C(l) 1.349(2) 

N(2)-C(l) 1.345(2) 

C(2)-C(3) 1.507(3) 

C(7)-N(l)a 1.450(2) 

N(l)-C(2) 1.460(2) 

N(2)-C(3) 1.454(2) 

C(4)-C(5) 1.495(3) 

N(l)-C(7)a 1.450(2) 

N(2)-C(4) 1.450(2) 

C(6)-C(7) 1.500(3) 

"a' represents the symmetry related equivalent: 1-x, 1-y, 1-z 

Table 3. Bond Angles (°). 

C(5)-0-C(6) 114.68(15) C( l ) -N( l ) -C(2) 110.60(15) 

C( l ) -N( l ) -C(7)a 124.09(16) C(2)-N(l)-C(7)a 121.31(16) 

C(l)-N(2)-C(3) 111.33(15) C(l)-N(2)-C(4) 125.61(15) 

C(3)-N(2)-C(4) 122.28(15) S-C( l ) -N( l ) 125.83(14) 

S-C(l)-N(2) 125.15(14) N( l ) -C( l ) -N(2) 109.03(15) 

N(l)-C(2)-C(3) 102.87(15) N(2)-C(3)-C(2) 102.45(15) 

N(2)-C(4)-C(5) 113.63(16) 0-C(5)-C(4) 108.89(16) 

0-C(6)-C(7) 109.80(15) N(l)a-C(7)-C(6) 113.04(16) 

/ a ' represents the symmetry related equivalent: 1-x, 1-y, 1-z 

Table 4. Positional and Thermal Parameters and Their e.s.d.'s. 

Atom X y z Biso 

S 0.71812(8) 0.76954(7) 0.14466(7) 4.35(2) 

O 0.84950(21) 0.22761(17) 0.42342(17) 4.18(6) 

N ( l ) 0.58907(23) 0.44309(20) 0.23198(21) 3.59(7) 

N(2) 0.35121(22) 0.64877(19) 0.26287(20) 3.42(6) 

C(l) 0.54914(26) 0.61674(24) 0.21495(22) 3.05(7) 

C(2) 0.40531(31) 0.35138(27) 0.27609(29) 4.15(9) 

C(3) 0.24876(29) 0.48868(27) 0.33491(28) 4.17(9) 

C(4) 0.25052(29) 0.81926(26) 0.27137(26) 3.99(8) 

C(5) 0.25069(29) 0.88765(24) 0.43126(27) 3.89(8) 

C(6) 0.16928(32) 0.80528(25) 0.73788(26) 4.18(9) 

C(7) 0.22184(30) 0.63829(25) 0.84557(25) 3.88(9) 

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid. 
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Table 5. Deposition Data 

Anisotropic thermal parameters (x 10^ A^). 

^11 U22 ^̂ 33 "12 "13 "23 S 

4.52(3) 4.91(3) 6.64(4) -1.65(2) -0.24(2) -0.57(2) 0 

6.12(9) 4.92(8) 4.68(8) -1.36(7) -0.95(7) -0.25(6) N ( l ) 

3.91(8) 4.16(8) 5.32(10) -0.74(6) -0.55(7) -0.65(7) N(2) 

3.74(8) 4.52(9) 4.48(9) -0.56(6) -0.69(7) -0.29(7) C ( l ) 

3.85(9) 4.46(9) 3.28(9) -0.70(7) -0.77(7) -0.50(7) C(2) 

4.88(11) 5.06(11) 5.97(13) -1.69(9) -1.12(9) -0.81(10) C(3) 

3.90(10) 5.92(12) 5.82(14) -1.47(9) -0.90(9) -0.13(10) C(4) 

4.31(11) 5.30(11) 4.87(12) 0.35(9) -0.99(9) 0.37(9) C(5) 

4.39(11) 4.07(10) 5.63(12) -0.15(8) -0.50(9) -0.07(9) C(6) 

5.84(13) 4.64(11) 5.20(13) 0.22(9) -0.63(10) -1.50(9) C(7) 

5.04(12) 5.42(12) 3.99(11) -0.09(9) -0.28(8) -1.19(9) 

Anisotropic temperature factors are of the form: 

exp[-2_2(/z2L;i^fl*2 + k^U22b*^ + l^U^^c*^ + 2hkUi2a*b* + 

2hlUi3a*c* + 2klU23b*c*)]. 

Hydrogen positional and thermal parameters. 

Atom X y z Biso 

H2A 03838 0.3129 0.1782 5.8(6) 

H2B 0.4072 0.2547 0.3659 6.3(6) 

H3A 0.2097 0.4738 0.4572 5.0(5) 

H3B 0.1353 0.4865 0.2903 5.9(6) 

H4A 0.3150 0.8986 0.1744 3.9(4) 

H4B 0.1165 0.8119 0.2668 4.8(5) 

H5A 0.1845 0.9998 0.4286 45(5) 

H5B 0.3838 0.8953 0.4382 3.7(4) 

H6A 0.0469 0.8548 0.7964 4.8(5) 

H6B 0.2710 0.8842 0.7190 3.8(4) 

H7A 0.2281 0.6619 0.9546 4.4(5) 

H7B 0.1207 0.5596 0.8611 45(5) 

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid. 

215 



Table 6. Selected Torsion Angles (°). 

C2 N l C l S -173.1(2) a N l C I N2 6.7(1) 

C7 N l C I S -15.4(1) C7 N l C l N2 164.4(3) 

C l N l a C3 -163(1) C7 N l C2 C3 -174.7(3) 

C l N l C7 C6 146.8(3) C2 N l C7 C6 -57.8(2) 

C3 N2 C l S -173.7(2) C3 N2 C l N l 65(1) 

C4 N2 C l S -3.6(1) C4 N2 C l N l 176.6(3) 

C l N2 C3 C2 -16.2(1) C4 N2 C3 a 173.4(3) 

C l N2 C4 C5 -80.3(2) C3 N2 C4 C5 88.7(2) 

N l a C3 N2 18.5(1) O C6 C7 N l -61.9(2) 
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APPENDIX 2.2. CRYSTAL STUCTURE OF LIGAND r23.Ag+1. 

TABLES 

1. Summary of Data Collection, Structure Solution and 

Refinement Details 

2. Bond Lengths 

3. Bond Angles 
4. Anisotropic thermal parameters 
5. Depostion Data 
6. Torsion angles 
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Table 1. Summary of Data Collection, Structure Solution and 
Refinement Details 

(a) Crystal Data 
empirical formula 

f w 
colour, habit 
crystal size, m m 
cryst syst 

a, A 
b, A 
c, A 

7,° 
V, A3 

space group 
Z 
molecular symmetry 
F(OOO) 
'^calc g cm-3 
\i, cm-1 

Ci4H24N70nS2Ag3 
854.1 
colourless, block 
0.30 X 0.35 X 0.40 
Monocl inic 
10.703(4) 
15.577(6) 
16.294(3) 

91.62(2) 

2715(2) 
P 2 i / n 
4 
none 
1672 
2.09 
23.3 

(b) Data acquisition^ 
temp, °C 
unit-cell reflcns (29-range°) 
max. 20 (°) for reflcns 
hkl range of reflcns 
variation in 3 standard reflcns 
reflcns measured 
unique reflcns 
Rifit reflcns w i t h I>n o(/), n 
absorption correction type 
min. max. abs. corr. 

21 
25 (18 - 25) 
40 
-10 10, 0 15,0 15 
75% decay (in 18hrs) 
2690 
2523 
1934 
DIFABS 
1.33 
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(c) Structure Solution and Refinement 
solution method Heavy-atom method*^ 
H-atom treatment riding, C-H 0.95 A 
no. of variables in LS 315 
i ( : i n i y = l / ( a2Fo + itFo2) 0.01 
^' gof 0.126,0.140,14.5 
density range in 
f inal A-map, e A-3 -2.13,1.92 
f inal shif t /error ratio < 0.1 

^ Data collection on an Enraf Nonius CAD4 diffractometer with graphite 
monochromatised Mo-Ka radiation (k 0.7093 A). 
All calculations were done on a Silicon Graphics 4D-35TG computer system with 
the N R C V A X system of programs (E.J. Gabe, Y. Le Page, J-P. Charland, F.L. Lee and 
P.S. White, /. Appl. Cryst. (1989), 22, 384-389)^ or with the T E X S A N system of 
programs,'^ Version 5.0, (1989). Molecular Structure Corporation, The Woodlands, 
TX, 77381, U.S.A. 
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Table 2. Selected Bond Lengths and Distances (A). 

A g ( l ) A g ( 2 ) 2 . 9 0 3 ( 5 ) A g ( l ) S ( l ) 2 , . 5 3 ( 1 ) A g ( l ) S ( 2 ) 2 , . 6 9 ( 1 ) 

A g ( l ) 0 ( 1 ) 2 , . 6 1 ( 3 ) A g ( l ) 0 ( 1 W ) 2 , . 2 9 ( 3 ) A g ( l ) 0 ( 1 1 ) 2 . 7 2 ( 9 ) 

A g ( 2 ) S ( l ) 2 , . 6 7 ( 1 ) A g ( 2 ) S ( 2 ) 2 , . 6 6 ( 1 ) A g ( 2 ) 0 ( 2 ) 2 , 5 3 ( 2 ) 

A g ( 2 ) 0 ( 1 3 ) 2 , . 4 0 ( 3 ) A g ( 2 ) 0 ( 2 1 ) 2 , . 4 3 ( 3 ) A g ( 2 ) 0 ( 2 3 ) 2 . . 6 3 ( 3 ) 

A g ( 2 ) N ( 2 1 ) 2 , . 9 6 ( 4 ) A g ( 3 ) S ( l ) 2 , . 5 7 ( 1 ) A g ( 3 ) S ( 2 ) 2 . , 5 4 ( 1 ) 

A g ( 3 ) 0 ( 3 1 ) 2 , . 0 0 ( 7 ) A g ( 3 ) 0 ( 3 2 ) 2 , . 3 2 ( 5 ) A g ( 3 ) 0 ( 4 1 ) 2 , 1 9 ( 6 ) 

A g ( 3 ) 0 ( 4 2 ) 2 , . 4 5 ( 8 ) S ( l ) C ( l ) 1 , . 7 7 ( 5 ) S ( 2 ) C ( 2 ) 1 , , 8 8 ( 5 ) 

0 ( 1 ) C ( 3 ) 1 , . 5 0 ( 6 ) 0 ( 1 ) C ( 1 4 ) 1 : . 3 9 ( 5 ) 0 ( 2 ) C ( 8 ) 1 , , 4 6 ( 4 ) 

0 ( 2 ) C ( 9 ) 1 , . 5 7 ( 4 ) 0 ( 1 2 ) N ( l l ) 1 , . 6 9 ( 6 ) 0 ( 1 3 ) N ( l l ) 1 , , 2 3 ( 5 ) 

0 ( 2 1 ) N ( 2 1 ) 1 , , 2 9 ( 4 ) 0 ( 2 2 ) N ( 2 1 ) 1 . . 1 8 ( 4 ) 0 ( 2 3 ) N ( 2 1 ) 1 . , 1 8 ( 4 ) 

0 ( 3 1 ) N ( 3 1 ) 1 , . 2 4 ( 7 ) 0 ( 3 2 ) N ( 3 1 ) 1 , . 9 9 ( 7 ) 0 ( 3 2 ) N ( 3 1 ) ' ^ 1 , , 3 6 ( 6 ) 

0 ( 4 1 ) N ( 4 1 ) 1 . , 3 1 ( 5 ) 0 ( 4 1 ) N ( 4 1 ) ^ 1 , . 8 1 ( 7 ) 0 ( 4 2 ) N ( 4 1 ) ' = 1 , , 1 3 ( 9 ) 

~a' represents the symmetry equivalent: 1-x, -y, -z 

"b' represents the symmetry equivalent: 2-x, -y, -z 
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Table 3. Selected Bond Angles (°). 

A g 2 A g l S I 5 8 . 3 ( 2 ) A g 2 A g l S2 5 6 . 7 ( 2 ) 

A g 2 A g l 0 1 1 1 8 ( 1 ) A g 2 A g l OIW 1 5 2 ( 1 ) 

S I A g l S2 1 1 2 . 4 ( 3 ) S I A g l 0 1 1 0 0 ( 1 ) 

S I A g l oiw 1 3 2 ( 1 ) S I A g l O i l 9 9 ( 2 ) 

S2 A g l 0 1 9 5 ( 1 ) S2 A g l OIW 1 1 4 ( 1 ) 

S2 A g l o i l 82 ( 2 ) 0 1 A g l OIW 8 7 ( 1 ) 

0 1 A g l o i l 1 6 0 ( 2 ) OIW A g l o i l 7 6 ( 2 ) 

A g l A g 2 S I 5 3 . 9 ( 2 ) A g l A g 2 S2 5 7 . 6 ( 2 ) 

Agl A g 2 0 2 1 1 1 . 9 ( 4 ) A g l A g 2 0 1 3 8 1 ( 1 ) 

A g l A g 2 0 2 1 1 6 0 ( 1 ) A g l A g 2 0 2 3 1 4 7 ( 1 ) 

A g l A g 2 N 2 1 1 6 6 ( 1 ) S I A g 2 S2 1 0 9 . 1 ( 3 ) 

S I A g 2 0 2 9 2 . 0 ( 5 ) S I A g 2 0 1 3 93 ( 1 ) 

3 1 A g 2 0 2 1 1 4 5 ( 1 ) S I A g 2 0 2 3 97 ( 1 ) 

S I A g 2 N 2 1 1 2 0 ( 1 ) S2 A g 2 0 2 97 ( 1 ) 

S2 A g 2 0 1 3 93 ( 1 ) S2 A g 2 0 2 1 1 0 5 ( 1 ) 

S2 A g 2 0 2 3 1 5 4 ( 1 ) S2 A g 2 N 2 1 1 3 0 ( 1 ) 

0 2 A g 2 0 1 3 1 6 6 ( 1 ) 0 2 A g 2 0 2 1 7 9 ( 1 ) 

0 2 A g 2 0 2 3 8 0 ( 1 ) 0 2 A g 2 N 2 1 7 9 ( 1 ) 

0 1 3 A g 2 0 2 1 9 0 ( 1 ) 0 1 3 A g 2 0 2 3 8 7 ( 1 ) 

0 1 3 A g 2 N 2 1 8 7 ( 1 ) S I A g 3 S2 1 3 3 . 0 ( 3 ) 

S I A g 3 0 3 1 9 5 ( 2 ) S I A g 3 0 3 2 1 2 5 ( 1 ) 

S I A g 3 0 4 1 9 1 ( 1 ) S I A g 3 0 4 2 8 9 ( 2 ) 

S2 A g 3 0 3 1 92 ( 2 ) S2 A g 3 • 0 3 2 9 6 ( 1 ) 

S2 A g 3 0 4 1 9 6 ( 1 ) S2 A g 3 0 4 2 1 3 1 ( 2 ) 

0 3 1 A g 3 0 4 1 1 6 3 ( 2 ) 0 3 1 A g 3 0 4 2 1 1 1 ( 3 ) 

0 3 2 A g 3 0 4 1 1 0 9 ( 2 ) 0 3 2 A g 3 0 4 2 67 ( 2 ) 

0 4 1 A g 3 0 4 2 5 3 ( 2 ) A g l • S I A g 2 6 7 . 8 ( 2 ) 

A g 2 S2 A g 3 1 2 8 . 9 ( 4 ) A g l S I A g 3 1 2 0 . 1 ( 4 ) 

A g 2 S I A g 3 1 5 7 . 1 ( 5 ) A g l S2 A g 2 6 5 . 7 ( 2 ) 

A g l S2 A g 3 1 5 3 . 4 ( 5 ) 
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Table 4. Positional and Thermal Parameters and Their e.s.d.'s. 

A t o m X y z B i s o 

A g ( l ) 0 7 3 9 8 1 . ( 3 9 ) 0 1 8 8 7 6 ( 2 3 ) 0 2 9 8 3 6 ( 2 0 ) 6 . 5 ( 2 ) 

A g ( 2 ) 0 7 9 4 0 0 ( 3 8 ) 0 3 1 5 1 0 ( 2 1 ) 0 1 7 4 3 3 ( 1 8 ) 5 . 4 ( 2 ) 

A g ( 3 ) 0 7 5 1 5 7 ( 3 6 ) - 0 0 0 3 0 3 ( 2 1 ) 0 1 0 0 4 2 ( 2 0 ) 5 . 5 ( 2 ) 

S ( l ) 0 8 0 8 3 ( 1 1 ) 0 1 4 5 5 5 ( 6 0 ) 0 1 5 7 5 6 ( 6 0 ) 3 . 5 ( 5 ) 

S ( 2 ) 0 7 9 1 5 ( 1 0 ) 0 3 5 3 7 8 ( 5 7 ) 0 3 3 2 5 1 ( 5 1 ) 3 . 3 ( 5 ) 

0 ( 1 ) 0 9 2 5 2 ( 2 7 ) 0 1 2 6 9 ( 1 4 ) 0 3 8 6 9 ( 1 4 ) 4 ( 1 ) 

0 ( I W ) 0 6 0 8 7 ( 3 2 ) 0 1 2 6 1 ( 2 1 ) 0 3 8 8 5 ( 1 7 ) 8 ( 2 ) 

0 ( 2 ) 1 0 2 7 1 ( 2 1 ) 0 3 3 2 6 ( 1 2 ) 0 1 5 6 3 ( 1 2 ) 2 ( 1 ) 

0 ( 2 W ) 0 3 7 8 7 ( 4 5 ) 0 1 3 7 0 ( 2 9 ) 0 3 5 1 9 ( 2 5 ) 2 5 ( 4 ) 

0 ( 1 2 ) . 0 3 4 6 6 ( 4 1 ) 0 3 1 0 7 ( 2 3 ) 0 1 8 7 9 ( 2 1 ) 1 1 ( 1 ) 

0 ( 1 3 ) 0 5 7 0 3 ( 2 8 ) 0 3 1 5 0 ( 1 6 ) 0 1 6 0 4 ( 1 5 ) 5 ( 1 ) 

0 ( 2 1 ) 0 8 0 1 8 ( 3 1 ) 0 4 5 2 2 ( 2 1 ) 0 1 0 4 2 ( 2 0 ) 7 ( 2 ) 

0 ( 2 2 ) 0 7 9 4 5 ( 4 2 ) 0 4 8 2 6 ( 2 2 ) - 0 0 2 0 3 ( 2 1 ) 1 1 ( 3 ) 

0 ( 2 3 ) 0 7 9 6 9 ( 3 9 ) 0 3 5 2 6 ( 2 2 ) 0 0 1 7 9 ( 1 9 ) 9 ( 2 ) 

0 ( 3 1 ) 0 5 6 9 3 ( 6 8 ) 0 0 2 2 9 ( 3 9 ) 0 0 8 5 1 ( 3 7 ) 7 ( 2 ) 

0 ( 3 2 ) 0 6 3 4 2 ( 5 3 ) - 0 0 2 8 2 ( 2 8 ) - 0 0 1 8 3 ( 2 5 ) 4 ( 1 ) 

0 ( 4 1 ) 0 9 4 8 3 ( 5 4 ) - 0 0 2 9 4 ( 3 0 ) 0 0 7 7 4 ( 3 1 ) 1 5 ( 2 ) 

0 ( 4 2 ) 0 8 6 3 9 ( 8 2 ) 0 0 3 2 4 ( 5 0 ) - 0 0 2 3 3 ( 5 1 ) 2 9 ( 4 ) 

N ( l ) 1 0 1 9 2 ( 4 7 ) 0 0 7 5 7 ( 2 0 ) 0 2 2 3 6 ( 2 1 ) 5 ( 2 ) 

N ( 2 ) 1 0 5 7 3 ( 5 2 ) 0 1 5 8 5 ( 2 2 ) 0 1 3 3 2 ( 2 3 ) 5 ( 2 ) 

N ( 3 ) 1 0 4 7 2 ( 3 3 ) 0 3 7 9 4 ( 2 1 ) 0 3 2 3 6 ( 2 0 ) 3 ( 2 ) 

N ( 4 ) 0 9 9 0 3 ( 3 7 ) 0 2 9 8 1 ( 2 0 ) 0 4 2 2 0 ( 2 1 ) 4 ( 2 ) 

N ( l l ) 0 4 9 8 2 ( 5 7 ) 0 2 8 8 3 ( 3 2 ) 0 2 1 1 7 ( 3 3 ) 1 0 ( 1 ) 

N ( 2 1 ) 0 7 9 5 2 ( 4 4 ) 0 4 2 7 5 ( 2 7 ) 0 0 2 9 1 ( 2 5 ) 6 ( 2 ) 

N ( 3 1 ) 0 4 9 2 4 ( 5 3 ) 0 0 3 6 2 ( 2 6 ) 0 0 2 7 9 ( 2 5 ) 8 ( 1 ) 

N ( 4 1 ) 1 0 3 1 5 ( 4 9 ) - 0 0 1 9 9 ( 2 3 ) 0 0 2 1 1 ( 2 2 ) 6 ( 1 ) 

C ( l ) 0 9 6 9 9 ( 5 6 ) 0 1 2 5 0 ( 2 0 ) 0 1 7 4 5 ( 2 5 ) 5 ( 3 ) 

C ( 2 ) 0 9 6 2 9 ( 4 7 ) 0 3 4 5 7 ( 2 6 ) 0 3 6 0 3 ( 2 4 ) 4 ( 2 ) 

C ( 3 ) 0 9 9 4 2 ( 5 7 ) 0 0 4 4 5 ( 2 9 ) 0 3 7 3 1 ( 2 8 ) 9 ( 3 ) 

C ( 4 ) 0 9 7 3 5 ( 6 1 ) 0 0 2 3 7 ( 2 7 ) ' 0 2 8 0 5 ( 3 0 ) 9 ( 4 ) 

C ( 5 ) 1 1 6 3 8 ( 7 3 ) 0 0 7 0 7 ( 5 0 ) 0 2 2 3 0 ( 3 6 ) 1 1 ( 5 ) 

C ( 6 ) 1 1 7 1 0 ( 7 3 ) 0 1 3 3 7 ( 3 2 ) 0 1 5 6 1 ( 4 6 ) 7 ( 4 ) 

C ( 7 ) 1 0 3 9 0 ( 4 9 ) 0 2 1 4 9 ( 3 8 ) 0 0 6 6 7 ( 3 0 ) 9 ( 4 ) 

C ( 8 ) 1 0 9 8 4 ( 3 5 ) 0 3 0 8 2 ( 2 0 ) 0 0 8 5 8 ( 2 1 ) 3 ( 2 ) 

C ( 9 ) 1 1 0 2 3 ( 3 6 ) 0 4 1 4 5 ( 2 2 ) 0 1 8 2 9 ( 1 8 ) 3 ( 2 ) 

C ( 1 0 ) 1 0 3 7 5 ( 4 3 ) 0 4 4 5 4 ( 2 6 ) 0 2 5 9 3 ( 2 4 ) 5 ( 2 ) 

C ( l l ) 1 1 5 7 1 ( 6 0 ) 0 3 6 5 4 ( 3 1 ) 0 3 6 8 4 ( 2 8 ) 1 0 ( 4 ) 

C ( 1 2 ) 1 1 1 8 1 ( 6 2 ) 0 3 0 1 5 ( 2 6 ) 0 4 3 3 9 ( 2 3 ) 6 ( 3 ) 

C ( 1 3 ) 0 9 1 2 3 ( 5 0 ) 0 2 4 5 2 ( 2 9 ) 0 4 7 8 5 ( 2 0 ) 6 ( 3 ) 

C ( 1 4 ) 0 9 3 8 8 ( 5 6 ) 0 1 5 3 3 ( 2 8 ) 0 4 6 7 6 ( 2 6 ) . 8 ( 3 ) 

S i t e 

O c c u p a n c y 

0 . 5 

0 . 5 

0 . 5 

0 . 5 

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid. 
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Table 5. Deposition Data 

a) Anisotropic thermal parameters ( x 102 A2). 

" l l "22 "33 "12 "13 "23 

Ag(l) 0 .0797 (36) 0 .0905 (27) 0 .0769 (22) -0 .0021(29) 0 .0156(23) 0 .0176(21) 

Ag(2) 0 .0863(35) 0 .0611 (21) 0 .0584 (19) 0 .0026(26) -0 .0017 (21) 0 .0128(17) 

Ag(3) 0 .0635(31) 0 .0661 (21) 0 .0785(22) -0 .0291(27) 0 .0007 (21) 0 .0026(19) 

S ( l ) 0 .0295(84) 0 .0370(58) 0, .0669(63) 0. .0054(69) -0, .0171(65) -0 . ,0084(53) 

S(2) 0 .0381(85) 0 .0418 (56) 0 .0470(51) 0 .0131(66) -0 .0018 (58) 0 .0010(48) 

0(1) 0 .072(25) 0 .026(15) 0, .061 (17) 0, .002(17) -0 .018(17) 0, .011 (13) 

0(1W) 0 .089(29) 0 .120(25) 0 .094 (21) -0 .029 (25) 0 .023(21) 0 .006(20) 

0(2) 0 .025(18) 0 .017 (12) 0. .046(13) 0. .014 (14) -0, .005(14) -0 . .004 (11) 

0(21) • 0 .066(28) 0, .107 (26) 0. .089 (22) -0 . .005(22) -0, .024(22) 0. .014 (20) 

0(22) 0 .193 (47) 0 .111(28) 0 .123 (28) 0 .032(32) 0 .051 (29) 0 .083 (25) 

0(23) 0, .160(42) 0, .060(21) 0. ,113(25) -0 . ,020(28) -0, .024(27) 0. ,013(20) 

N( l ) 0, .130(50) -0 , .006(15) 0. ,062(23) -0 . ,031(23) 0. .019(28) 0. ,010(18) 

N(2) 0. .088(41) 0, .036(23) 0, .061 (23) 0 .049 (29) 0 .001 (29) 0 .040 (20) 

N(3) 0. .010(26) 0, .060(23) 0, .056(23) -0 .026 (22) 0 .027 (22) 0 .002 (19) 

N(4) 0. ,038(29) 0. ,046 (22) 0. 051 (22) 0. ,047(24) -0 . ,014(23) 0. 021(18) 

N(21) 0. ,103(42) 0. ,053 (26) 0. 082 (29) - 0 . 008(30) -0 . ,036(31) 0. 041(28) 

C ( l ) 0. 190 (73) - 0 . 034(17) 0. 024 (21) - 0 . 035(30) - 0 . 026(34) 0. 004 (16) 

C(2) 0. ,062 (43) 0. ,036(25) 0. 033 (24) 0. 044 (30) -0 . ,035 (28) - 0 . 041(22) 

C(3) 0. ,177 (65) 0. ,060 (30) 0. 097 (35) - 0 . 025 (40) -0 . ,116(40) 0. 019(28) 

C(4) 0. ,195(71) 0. 044 (30) 0. 097 (37) - 0 . 030 (38) -0 . ,014(42) - 0 . 049 (29) 

C(5) 0. 084(58) 0. 216(77) 0. 115(43) 0. 146(57) -0 . 052(44) 0. 018 (48) 

C(6) 0. 084(56) 0. ,050(32) 0. ,155 (56) 0, .004 (38) 0, .089 (49) -0, .035 (36) 

C(7) 0. 071 (45) 0. 189 (60) 0. 096 (36) - 0 . 082(46) 0. 074(37) - 0 . 121 (42) 

C(8) 0. 023(29) 0. 027(20) 0. 071(25) - 0 . 019(24) 0. 009(24) - 0 . 009(20) 

C(9) 0. 020 (29) 0. 060(27) 0. 031 (19) 0. 007 (24) -0 . 010(21) 0. 004(19) 

C(10) 0. 056(40) 0. 069 (28) 0. 073(28) 0. 055 (30) -0 . 027(29) 0. 007 (27) 

C ( l l ) 0. 207(75) 0. 071 (36) 0. 084 (33) 0. 055 (46) - 0 . 142 (46) - 0 . 057(31) 

C(12) 0. 142 (60) 0. 047 (27) 0. 035 (24) 0. 085 (38) - 0 . 063(32 - 0 . 022(22) 

C(13) 0. 133(52) 0. 086 (34) 0. 023 (21) 0. ,096(36) 0, .016(28) 0, .017(23) 

C(14) 0. 170(62) 0. 067 (31) 0. 067 (31) -0 . ,012 (39) 0, .056(37) 0, .041(27) 

Anisotropic temperature factors are of the form: 

exp[-2j{h^Uiia*^ + k^Uji^*"^ + ^'^^2,3^*'^ + lhkU-^2'^*b* + lhlUi2,ac* + 

lklU22,h*c)\. 

The bridging nitrate group {N(l l ) , 0(11), 0(12), 0(13)), the disordered nitrate 
groups and the water molecule 02W were refined isotropically. 
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b) Hydrogen Positional and Thermal Parameters. 

Atom X y z 6i90 

H(l) 1.07 0.05 0.39 8.0 
H(2) 0.94 0.00 0.41 8.0 
H(3) 0.88 0.02 0.27 7.3 
H(4) 1.01 -0.03 0.28 7.3 
H(5) 1.20 0.08 0.27 8.7 
H(6) 1.18 0.01 0.20 8.7 
H(7) 1.22 0.11 0.12 6.7 
H(8) 122 0.18 0.18 6.7 
H(9) 1.07 0.20 0.01 5.5 
H(10) 0.95 0.23 0.06 5.5 
H d l ) 1.09 0.35 0.04 6.2 
H(12) 1.19 0.30 0.10 6.2 
H(13) 1.19 0.41 0.19 4.9 
H(14) 1.09 0.46 0.14 4.9 
H(15) 0.95 0.45 0.25 6.0 
H(16) 1.07 0.49 0.28 6.0 
H(17) 1.21 0.34 0.33 77 
H(18) 1.19 0.42 0.39 7.7 
H(19) 1.15 0.32 0.48 5.5 
H(20) 1.16 0.25 0.42 5.5 
H(21) 0.93 0.26 0.53 6.0 
H(22) 0.83 0.25 0.46 6.0 
H(23) 0.89 0.12 0.51 5.8 
H(24) 1.03 0.14 0.49 5.8 

Biso is the Mean of the Principal Axes of the Thermal Ellipsoid. 
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Table 6. Selected Torsion Angles (°). 

A g l A g 2 S I A g 3 1 1 5 ( 1 ) A g l A g 2 3 1 N l - 7 9 . 8 ( 8 ) 
A g l A g 2 S I N2 - 1 1 7 . 5 ( 9 ) A g l A g 2 3 1 C I - 9 8 ( 2 ) 

A g l A g 2 S2 A g 3 - 1 5 3 . 7 ( 7 ) A g l A g 2 S2 N3 1 1 2 . 5 ( 8 ) 

A g l A g 2 S2 N4 7 4 . 7 ( 9 ) A g l A g 2 3 2 C2 9 7 ( 2 ) 
A g l A g 2 0 2 N2 5 3 . 1 ( 9 ) A g l A g 2 0 2 N3 - 5 9 . 2 ( 8 ) 

A g l A g 2 0 2 C7 84 ( 2 ) A g l A g 2 0 2 C8 1 1 2 ( 2 ) 

A g l A g 2 0 2 C 9 - 1 1 0 ( 2 ) A g l A g 2 0 2 C I O - 9 0 ( 1 ) 

A g l A g 2 0 1 3 O i l 14 ( 3 ) A g l A g 2 0 1 3 0 1 2 3 8 ( 5 ) 

A g l A g 2 0 1 3 N i l 1 9 ( 4 ) A g l A g 2 0 2 1 OIW 62 ( 4 ) 

A g l A g 2 0 2 1 0 2 2 - 1 4 6 ( 2 ) A g l A g 2 0 2 1 0 2 3 - 1 5 0 ( 2 ) 

A g l A g 2 0 2 1 N 2 1 - 1 4 7 ( 2 ) A g l A g 2 0 2 3 02W - 8 2 ( 6 ) 

A g l A g 2 0 2 3 0 2 1 1 6 1 ( 1 ) A g l A g 2 0 2 3 0 2 2 1 5 8 ( 2 ) 

A g l A g 2 0 2 3 N 2 1 1 5 9 ( 3 ) A g l A g 2 N 2 1 0 2 1 1 2 7 ( 4 ) 

A g l A g 2 N 2 1 0 2 2 1 2 0 ( 2 1 ) A g l A g 2 N 2 1 0 2 3 - 5 8 ( 6 ) 

A g l S I A g 2 S2 1 7 . 3 ( 4 ) A g l S I A g 2 0 2 1 1 5 . 9 ( 5 ) 

A g l S I A g 2 0 1 3 - 7 6 . 8 ( 7 ) A g l S I A g 2 0 2 1 - 1 7 1 ( 1 ) 

A g l S I A g 2 0 2 3 - 1 6 4 . 3 ( 9 ) A g l S I A g 2 N 2 1 - 1 6 5 ( 1 ) 

A g l S I A g 3 S2 - 2 7 . 3 ( 8 ) A g l S I A g 3 0 3 1 7 0 ( 2 ) 

A g l 3 1 A g 3 0 3 2 1 2 0 ( 2 ) A g l 3 1 A g 3 0 4 1 - 1 2 6 ( 1 ) 

A g l S I A g 3 0 4 2 - 1 7 9 ( 2 ) A g l 3 2 A g 2 3 1 - 1 6 . 6 ( 4 ) 

A g l S2 A g 2 0 2 - 1 1 1 . 3 ( 5 ) A g l 3 2 A g 2 0 1 3 11.5(1) 

A g l S2 A g 2 0 2 1 1 6 8 . 6 ( 8 ) A g l S2 A g 2 0 2 3 1 6 7 ( 2 ) 

A g l S2 A g 2 N 2 1 1 6 7 ( 1 ) A g 2 A g l 3 1 A g 3 - 1 5 6 . 0 ( 6 ) 

A g 2 A g l S I N l 1 1 6 . 1 ( 7 ) A g 2 A g l 3 1 N2 7 9 . 0 ( 8 ) 

A g 2 A g l - S I C I 9 9 ( 1 ) A g 2 A g l 3 2 A g 3 1 3 0 ( 1 ) 

A g 2 A g l S2 N3 - 7 7 . 1 ( 8 ) A g 2 A g l 3 2 N4 - 1 1 9 . 1 ( 8 ) 

A g 2 A g l S2 C2 - 9 7 ( 2 ) A g 2 A g l 0 1 N l - 5 7 . 9 ( 8 ) 

A g 2 A g l 0 1 N4 5 3 ( 1 ) A g 2 A g l 0 1 C3 - 9 6 ( 3 ) 

A g 2 A g l 0 1 C4 - 8 3 ( 2 ) A g 2 A g l 0 1 C 1 3 8 5 ( 1 ) 

A g 2 A g i 0 1 C 1 4 1 0 7 ( 3 ) A g 2 A g l OIW 02W 2 7 ( 3 ) 

A g 2 A g l O I W 0 2 1 1 5 1 ( 1 ) A g 2 A g l O i l 02W 1 7 3 ( 2 ) 

A g 2 A g l o i l 0 1 2 3 8 ( 1 3 ) A g 2 A g l O i l 0 1 3 1 2 ( 2 ) 

A g 2 A g l o i l N i l 14 ( 9 ) A g 2 S I A g l S2 - 1 7 . 5 ( 4 ) 

A g 2 S I A g l 0 1 - 1 1 7 . 5 ( 6 ) A g 2 3 1 A g l OIW 1 4 7 ( 1 ) 

A g 2 S I A g l O i l 68 ( 2 ) A g 2 S I A g 3 3 2 - 1 3 2 ( 1 ) 

A g 2 S I A g 3 0 3 1 - 3 4 ( 2 ) A g 2 3 1 A g 3 0 3 2 1 6 ( 2 ) 

A g 2 S I A g 3 0 4 1 1 3 0 ( 2 ) A g 2 3 1 A g 3 0 4 2 7 7 12) 

A g 2 S2 A g l S I 1 7 . 9 ( 4 ) A g 2 3 2 A g l 0 1 1 2 0 . 8 ( 6 ) 

A g 2 S2 A g l O I W - 1 5 0 ( 1 ) A g 2 3 2 A g l O i l - 7 9 ( 2 ) 

A g 3 S I A g l S2 - 1 7 3 . 5 ( 5 ) A g 3 3 1 A g l 0 1 8 6 . 6 ( 7 ) 

A g 3 S I A g l O I W - 9 ( 1 ) A g 3 3 1 A g l O i l - 8 8 ( 2 ) 

A g 3 S I A g 2 S2 1 3 2 ( 1 ) A g 3 3 1 A g 2 0 2 - 1 2 9 ( 1 ) 

A g 3 S I A g 2 0 1 3 3 8 ( 1 ) A g 3 3 1 A g 2 0 2 1 - 5 6 ( 2 ) 

A g 3 S I A g 2 0 2 3 - 4 9 ( 1 ) A g 3 3 1 A g 2 N 2 1 - 5 0 ( 2 ) 

S I A g l A g 2 S2 - 1 6 0 . 5 ( 4 ) S I A g l A g 2 0 2 - 7 5 . 7 ( 6 ) 

S I A g l A g 2 0 1 3 1 0 0 . 2 ( 7 ) S I A g l A g 2 0 2 1 1 6 6 ( 2 ) 

S I A g l A g 2 0 2 3 3 0 ( 2 ) S I A g l A g 2 N 2 1 6 9 ( 4 ) 

S I A g 2 A g l S2 1 6 0 . 5 ( 4 ) S I A g 2 A g l 0 1 8 3 . 9 ( 7 ) 

S I A g 2 A g l O I W - 1 2 2 ( 2 ) S I A g 2 A g l O i l - 1 1 0 ( 2 ) 
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APPENDIX 2.3. CRYSTAL STRUCTURE OF LIGAND 24. 

TABLES 

1. Summary of Data Collection, Structure Solution and 

Refinement Details 

2. Bond Lengths 

3. Bond Angles 
4. Anisotropic Thermal Parameters 
5. Calculated Hydrogen Atom Coordinates 
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Table 1. Summary of Data Collection. Structure Solution and 
Refinement Details 

(a) Crystal Data 
empirical formula C18H32N4O4S2 

f w 432.6 
colour, habit colourless, block 
crystal size, m m 0.2 X 0.3 X 0.4 
cryst syst orthorhombic 

a, A 22.531(4) 
h,k 21.502(3) 
c, A 8.961(2) 
y , A3 4341(1) 

space group Pbca 
Z 8 
molecular symmetry None 
f(OOO) 1856 

rfcalc g cm-3 1.324 

| i , m m " l 0.276 

(b) Data acquisition^ 
temp, °C 
unit-cell reflcns (29-range°) 
max. 20 (°) for reflcns 
hkl range of reflcns 
variation i n 3 standard reflcns 
reflcns measured 
unique reflcns 
reflcns w i t h / > n a(i) , n 
absorption correction type 
min . max. abs. corr. 

-123 
23-25 
4-60 
0<h<29, 0<k<30, 0<1<12 
<0.5% 
5093 
5043 
2622 
None 
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(c) structure Solution and Refinement 
solution method 
H-atom treatment 
no. of variables i n LS 
kmw = l / ( a2Fo + fcFo2) 

gof 
density range in 
f inal A-map, e A"^ 
f inal shif t /error ratio 

Direct methods^ 
Refined Isotropically 
381 
0 
0.044,0.039,1.58 

-0.25, 0.31 
<0.08 

3 Data collection on a Rigaku AFC6S diffractometer with graphite monochromatised Mo-
K a radiation (1 0.71073 A), ^ S H E X T L P L U S 
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Table 2. Bond Lengths (A) 

S ( l ) -- C ( 1 8 ) 1 . 6 7 9 ( 3 ) S ( 2 ) -• C ( 9 ) 1 . 6 9 0 ( 3 ) 

0 ( 1 ) -• C ( 2 ) 1 . 4 3 9 ( 4 ) 0 ( 1 ) - - C ( 3 ) 1 . 4 0 3 ( 6 ) 

0 ( 2 ) -• C ( 4 ) 1 . 4 4 0 ( 6 ) 0 ( 2 ) - • C ( 5 ) 1 . 4 2 1 ( 5 ) 

0 ( 3 ) - • C ( l l ) 1 . 4 2 1 ( 4 ) 0 ( 3 ) - • C ( 1 2 ) 1 . 4 2 9 ( 4 ) 

0 ( 4 ) - • C ( 1 3 ) 1 . 4 2 8 ( 5 ) 0 ( 4 ) - • C ( 1 4 ) 1 . 4 2 6 ( 4 ) 

N ( l ) -• C ( 1 5 ) 1 , . 4 5 1 ( 5 ) N ( l ) -• C ( 1 6 ) 1 , . 4 4 6 ( 5 ) 

N { 1 ) -• C ( 1 8 ) 1 , . 3 5 4 ( 4 ) N ( 2 ) -• C ( l ) 1 , . 4 5 0 ' ( 4 ) 

N ( 2 ) - • C ( 1 7 ) 1 , . 4 5 8 ( 5 ) N ( 2 ) - • C ( 1 8 ) 1 , . 3 3 7 ( 4 ) 

N ( 3 ) - • C ( 6 ) 1 . . 4 5 5 ( 5 ) N ( 3 ) - • C ( 7 ) 1 , . 4 5 7 ( 5 ) 

N ( 3 ) - • C { 9 ) 1 . . 3 6 0 ( 4 ) N ( 4 ) - • C ( 8 ) 1 . . 4 6 7 ( 5 ) 

M ( 4 ) -• C ( 9 ) 1 . . 3 3 7 ( 4 ) N ( 4 ) - • C ( I O ) 1 . , 4 6 1 ( 4 ) 

C ( l ) -• C ( 2 ) 1 . , 4 9 9 ( 6 ) C ( 3 ) -• C ( 4 ) 1 . , 5 2 1 ( 6 ) 

C ( 5 ) - C ( 6 ) 1 . , 5 2 0 ( 5 ) C ( 7 ) -• C ( 8 ) 1 . 5 2 3 ( 5 ) 

C ( I O ) - C ( l l ) 1 . 5 0 5 ( 5 ) C ( 1 2 ) - C ( 1 3 ) 1 . 4 9 6 ( 5 ) 

C ( 1 4 ) - C ( 1 5 ) 1 . 5 1 0 ( 6 ) C ( 1 6 ) - C ( 1 7 ) 1 . 5 0 7 ( 6 ) 

Table 3. Bond Angles O 

• 0 ( 1 ) -• C ( 3 ) 1 1 3 , . 1 ( 3 ) C ( 4 ) - • 0 ( 2 ) - C ( 5 ) 1 1 3 , . 2 ( 3 ) 

- 0 ( 3 ) - C ( 1 2 ) 1 1 2 , . 1 ( 3 ) C ( 1 3 ) - 0 ( 4 ) - C ( 1 4 ) 1 1 2 , . 5 ( 3 ) 

- N ( l ) - C ( 1 6 ) 1 2 1 , . 7 ( 3 ) C ( 1 5 ) - N ( l ) - C ( 1 8 ) 1 2 4 , . 5 ( 3 ) 

- N ( l ) - C ( 1 8 ) 1 1 1 , . 5 ( 3 ) C ( l ) -• N ( 2 ) - C ( 1 7 ) 1 2 1 , . 7 ( 3 ) 

• N ( 2 ) - C ( 1 8 ) 1 2 5 , . 4 ( 3 ) C ( 1 7 ) - N ( 2 ) - C ( 1 8 ) 1 1 2 , . 1 ( 3 ) 

N ( 3 ) - C ( 7 ) 1 2 0 , . 0 ( 3 ) C ( 6 ) - • N ( 3 ) - C ( 9 ) 1 2 5 , . 3 ( 3 ) 

• N ( 3 ) - C ( 9 ) 1 1 1 , . 3 ( 3 ) 0 ( 8 ) -• N ( 4 ) -C ( 9 ) 1 1 2 , . 5 ( 3 ) 

N ( 4 ) - C ( 1 0 ) 1 2 1 , . 7 ( 3 ) C ( 9 ) - • N ( 4 ) -C ( I O ) 1 2 5 , . 4 ( 3 ) 

C ( l ) - C ( 2 ) 1 1 3 , . 5 ( 3 ) 0 ( 1 ) -• C ( 2 ) -C ( l ) 1 1 4 , . 1 ( 3 ) 

• C ( 3 ) - C ( 4 ) 1 0 8 , . 5 ( 4 ) 0 ( 2 ) - • C ( 4 ) - C ( 3 ) 1 0 8 , . 8 ( 4 ) 

C ( 5 ) - C ( 6 ) 1 1 3 , . 7 ( 3 ) N ( 3 ) - • C ( 6 ) - C ( 5 ) 1 1 1 , . 8 ( 3 ) 

• C ( 7 ) - C ( 8 ) 1 0 2 , . 8 ( 3 ) N ( 4 ) -• C ( 8 ) - C ( 7 ) 1 0 2 , . 0 ( 3 ) 

• C ( 9 ) - N ( 3 ) 1 2 5 , . 6 ( 3 ) S ( 2 ) -• C ( 9 ) - N ( 4 ) 1 2 6 , . 0 ( 2 ) 

• C ( 9 ) - N ( 4 ) 1 0 8 , . 4 ( 3 ) t f ( 4 ) -• C ( I O ) - C ( l l ) 1 1 4 , . 3 ( 3 ) 

• C ( l l ) - C ( I O ) 1 0 8 , . 4 ( 3 ) 0 ( 3 ) -• C ( 1 2 ) - C ( 1 3 ) 1 0 8 , . 9 ( 3 ) 

C ( 1 3 ) - C ( 1 2 ) 1 0 8 , . 6 ( 3 ) 0 ( 4 ) -• C ( 1 4 ) - 0 ( 1 5 ) 1 0 9 , . 4 ( 3 ) 

C ( 1 5 ) - C ( 1 4 ) 1 1 3 , . 8 ( 3 ) N ( l ) -• C ( 1 6 ) - C ( 1 7 ) 1 0 3 , . 6 ( 3 ) 

• C ( 1 7 ) - C ( 1 6 ) 1 0 3 , . 1 ( 3 ) S ( l ) -• C ( 1 8 ) - N ( l ) 1 2 5 , . 4 ( 3 ) 

C ( 1 8 ) - N ( 2 ) 1 2 6 , . 0 ( 2 ) N ( l ) -• C ( 1 8 ) - N ( 2 ) 1 0 8 , . 6 ( 3 ) 
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Table 4. Positional and Thermal Parameters (x 10"̂ ) and 
Their e.s.d.'s (A^ x 103) 

X y z U ( e q ) 

S ( l ) 2 9 4 8 ( 1 ) 6 8 3 9 ( 1 ) 9 5 9 ( 1 ) 3 4 ( 1 ) 

S ( 2 ) - 6 8 4 ( 1 ) 9 5 4 3 ( 1 ) 2 7 2 1 ( 1 ) 3 1 ( 1 ) 

0 ( 1 ) 2 3 5 5 ( 1 ) 9 1 5 6 ( 1 ) 5 9 2 ( 3 ) 3 5 ( 1 ) 

0 ( 2 ) 1 5 7 5 ( 1 ) 9 7 5 3 ( 1 ) 2 7 3 7 ( 3 ) 3 4 ( 1 ) 

0 ( 3 ) - 2 3 1 ( 1 ) 7 3 2 9 ( 1 ) 6 5 9 ( 3 ) 3 0 ( 1 ) 

0 ( 4 ) 7 2 2 ( 1 ) 6 5 0 2 ( 1 ) 1 5 0 8 ( 3 ) 2 7 ( 1 ) 

N ( l ) 1 8 7 4 ( 1 ) 7 0 4 2 ( 1 ) 2 2 0 2 ( 3 ) 2 9 ( 1 ) 

N ( 2 ) 2 4 1 0 ( 1 ) 7 8 8 2 ( 1 ) 1 9 2 2 ( 3 ) 2 7 ( 1 ) 

N ( 3 ) 4 1 4 ( 1 ) 9 4 7 4 ( 1 ) 1 4 7 3 ( 3 ) 2 7 ( 1 ) 

N ( 4 ) - 1 6 4 ( 1 ) 8 6 8 7 ( 1 ) 9 4 1 ( 3 ) 2 4 ( 1 ) 

C ( l ) 2 9 1 8 ( 2 ) 8 2 8 2 ( 2 ) 1 6 7 4 ( 5 ) 2 7 ( 1 ) 

C ( 2 ) 2 8 3 7 ( 2 ) 8 7 2 5 ( 2 ) 3 9 8 ( 5 ) 3 2 ( 1 ) 

C ( 3 ) 2 5 1 1 ( 2 ) 9 6 7 7 ( 2 ) 1 4 4 9 ( 7 ) 5 2 ( 2 ) 

C ( 4 ) 1 9 5 9 ( 2 ) 1 0 0 7 0 ( 2 ) 1 6 9 7 ( 7 ) 4 9 ( 2 ) 

C ( 5 ) 1 0 6 0 ( 2 ) 1 0 1 0 0 ( 2 ) 3 1 0 8 ( 5 ) 3 3 ( 1 ) 

C ( 6 ) 5 9 1 ( 2 ) 1 0 1 0 2 ( 2 ) 1 8 8 7 ( 5 ) 3 0 ( 1 ) 

C ( 7 ) 7 4 0 ( 2 ) 9 1 3 9 ( 2 ) 3 2 3 ( 4 ) 2 4 ( 1 ) 

C ( 8 ) 3 9 6 ( 2 ) 8 5 3 1 ( 2 ) 1 9 5 ( 5 ) 2 8 ( 1 ) 

C ( 9 ) - 1 3 5 ( 1 ) 9 2 2 6 ( 2 ) 1 6 8 2 ( 4 ) 2 3 ( 1 ) 

C ( I O ) - 7 0 0 ( 2 ) 8 3 1 7 ( 2 ) • 7 2 1 ( 5 ) 2 8 ( 1 ) 

C ( l l ) - 6 7 5 ( 2 ) 7 6 7 8 ( 2 ) 1 4 0 9 ( 4 ) 2 8 ( 1 ) 

C { 1 2 ) - 2 9 3 ( 2 ) 6 6 7 6 ( 2 ) 9 1 4 ( 5 ) 2 8 ( 1 ) 

C ( 1 3 ) 2 6 8 ( 2 ) 6 3 5 7 ( 2 ) 4 5 0 ( 5 ) 3 0 ( 1 ) 

C ( 1 4 ) 1 2 6 0 ( 2 ) 6 1 7 5 ( 2 ) 1 2 2 8 ( 5 ) 2 8 ( 1 ) 

C ( 1 5 ) 1 7 2 9 ( 2 ) 6 3 8 6 ( 2 ) 2 3 2 1 ( 5 ) 3 5 ( 1 ) 

C ( 1 6 ) 1 5 3 9 ( 2 ) 7 5 1 3 ( 2 ) 2 9 9 1 ( 5 ) 33 ( 1 ) 

C ( 1 7 ) 1 8 7 8 ( 2 ) 8 1 0 3 ( 2 ) 2 6 8 1 ( 6 ) 3 7 ( 1 ) 

C ( 1 8 ) 2 4 0 1 ( 1 ) 7 2 6 6 ( 2 ) 1 7 1 4 ( 4 ) 2 3 ( 1 ) 

' E q u i v a l e n t i s o t r o p i c U d e f i n e d a s o n e t h i r d o f t h e 

t r a c e o f t h e o r t h o g o n a l i z e d U ^ ^ t e n s o r 
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Table 5. Deposition Data 

a) Anisotropic Thermal Parameters (A^ x 10^) 

" l l " 2 2 " 3 3 • " l 2 " l 3 " 2 3 

8 ( 1 ) 2 5 ( 1 ) 3 0 ( 1 ) 4 7 ( 1 ) 5 ( 1 ) 1 2 ( 1 ) - 1 ( 1 ) 

3 ( 2 ) 2 8 ( 1 ) 3 0 ( 1 ) 3 5 ( 1 ) 8 ( 1 ) 9 ( 1 ) - 2 ( 1 ) 

0 ( 1 ) 19 ( 1 ) 3 0 ( 1 ) 54 ( 2 ) - 2 ( 1 ) - 6 ( 1 ) 3 ( 1 ) 

0 ( 2 ) 2 4 ( 1 ) 2 9 ( 1 ) 5 0 ( 2 ) - 3 ( 1 ) - 8 ( 1 ) - 1 ( 1 ) 

0 ( 3 ) 2 4 ( 1 ) 2 0 ( 1 ) 4 5 ( 2 ) - 1 ( 1 ) 9 ( 1 ) 0 ( 1 ) 

0 ( 4 ) 2 2 ( 1 ) 2 9 ( 1 ) 3 2 ( 1 ) 2 ( 1 ) - 1 ( 1 ) - 5 ( 1 ) 

N ( l ) 1 5 ( 1 ) 2 8 ( 2 ) 4 5 ( 2 ) 2 ( 1 ) 7 ( 1 ) 3 ( 2 ) 

N ( 2 ) 1 7 ( 1 ) 2 6 ( 2 ) 3 9 ( 2 ) - 1 ( 1 ) 9 ( 1 ) - 4 ( 1 ) 

N ( 3 ) 1 9 ( 1 ) 2 6 ( 2 ) 3 6 ( 2 ) - 2 ( 1 ) 6 ( 1 ) - 9 ( 1 ) 

N ( 4 ) 1 6 ( 1 ) 2 2 ( 1 ) 3 5 ( 2 ) 0 ( 1 ) 3 ( 1 ) - 5 ( 1 ) 

C ( l ) 2 1 ( 2 ) 2 4 ( 2 ) 3 6 ( 2 ) - 5 ( 2 ) 1 ( 2 ) - 3 ( 2 ) 

C ( 2 ) 2 1 ( 2 ) 4 0 ( 2 ) 3 5 ( 2 ) - 3 ( 2 ) 5 ( 2 ) - 4 ( 2 ) 

C ( 3 ) 2 7 ( 2 ) 3 2 ( 2 ) 9 6 ( 5 ) - 5 ( 2 ) - 3 ( 3 ) - 1 2 ( 3 ) 

C ( 4 ) 3 2 ( 2 ) 2 2 ( 2 ) 9 2 ( 4 ) - 8 ( 2 ) 8 ( 3 ) - 1 ( 2 ) 

C ( 5 ) 3 2 ( 2 ) 2 5 ( 2 ) 4 1 ( 3 ) - 5 ( 2 ) 2 ( 2 ) - 9 ( 2 ) 

C ( 6 ) 2 5 ( 2 ) 2 2 ( 2 ) 4 2 ( 2 ) 1 ( 2 ) - 4 ( 2 ) - 7 ( 2 ) 

C ( 7 ) 1 8 ( 2 ) 2 8 ( 2 ) 2 5 ( 2 ) 2 ( 1 ) 2 ( 2 ) - 2 ( 2 ) 

0 ( 8 ) 1 9 ( 2 ) 3 4 ( 2 ) 3 0 ( 2 ) - 1 ( 2 ) 5 ( 2 ) - 1 0 ( 2 ) 

0 ( 9 ) 2 2 ( 2 ) 2 7 ( 2 ) 1 9 ( 2 ) 5 ( 1 ) - 1 ( 1 ) 1 ( 2 ) 

C ( 1 0 ) 13 ( 2 ) 3 1 ( 2 ) 4 1 ( 2 ) 1 ( 1 ) 0 ( 2 ) - 2 ( 2 ) 

0 ( 1 1 ) 23 ( 2 ) 2 8 ( 2 ) 33 ( 2 ) - 6 ( 2 ) 4 ( 2 ) - 1 ( 2 ) 

0 ( 1 2 ) 23 ( 2 ) 2 5 ( 2 ) 3 6 ( 2 ) - 7 ( 1 ) - 6 ( 2 ) - 3 ( 2 ) 

0 ( 1 3 ) 3 5 ( 2 ) 23 ( 2 ) 3 0 ( 2 ) - 3 ( 2 ) - 5 ( 2 ) - 5 ( 2 ) 

0 ( 1 4 ) 23 ( 2 ) 23 ( 2 ) 3 9 ( 2 ) 3 ( 2 ) 1 0 ( 2 ) 1 ( 2 ) 

0 ( 1 5 ) 23 ( 2 ) 2 7 ( 2 ) 5 5 ( 3 ) 1 ( 2 ) 3 ( 2 ) 1 1 ( 2 ) 

0 ( 1 5 ) 2 8 ( 2 ) 4 0 ( 2 ) 3 2 ( 2 ) - 1 ( 2 ) 6 ( 2 ) - 4 ( 2 ) 

0 ( 1 7 ) 2 3 ( 2 ) 3 5 ( 2 ) 53 ( 3 ) 3 ( 2 ) 1 1 ( 2 ) - 5 ( 2 ) 

0 ( 1 8 ) 1 8 ( 2 ) 3 0 ( 2 ) 2 0 ( 2 ) - 1 ( 1 ) 0 ( 1 ) 3 ( 2 ) 

T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : 

- 2 i i ^ ( h ^ a * ^ U 
1 1 + 2 h ] c a * b ' U ^ 2 ' 
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b) Hydrogen A t o m Positions and Thermal Parameters (A^ x 10^) 

X y z U 

H ( l l ) 3 2 4 0 ( 1 5 ) 8 0 4 0 ( 1 6 ) 1 4 8 3 ( 4 3 ) 4 6 ( 1 2 ) 

H ( 1 2 ) 2 9 5 7 ( 1 3 ) 8 5 1 1 ( 1 4 ) 2 5 1 2 ( 3 5 ) 1 4 ( 8 ) 

H ( 2 1 ) 3 1 8 8 ( 1 4 ) 8 9 4 5 ( 1 5 ) 2 6 0 ( 3 7 ) 2 8 ( 1 0 ) 

H ( 2 2 ) 2 7 4 7 ( 1 5 ) 8 4 7 4 ( 1 7 ) - 5 8 4 ( 4 2 ) 5 2 ( 1 2 ) 

H ( 3 1 ) 2 7 7 3 ( 1 7 ) 9 9 8 5 ( 1 9 ) 8 3 4 ( 4 9 ) 6 4 ( 1 4 ) 

H ( 3 2 ) 2 6 5 7 ( 1 5 ) 9 5 7 0 ( 1 6 ) 2 4 0 7 ( 4 0 ) 2 9 ( 1 1 ) 

H ( 4 1 ) 2 0 7 0 ( 1 6 ) 1 0 4 7 8 ( 1 8 ) 2 0 2 9 ( 4 4 ) 5 6 ( 1 3 ) 

H ( 4 2 ) 1 7 3 4 ( 1 9 ) 1 0 1 5 0 ( 2 1 ) 5 6 5 ( 5 6 ) 9 2 ( 1 8 ) 

H ( 5 1 ) 1 1 5 6 ( 1 3 ) 1 0 5 1 6 ( 1 5 ) 3 3 5 2 ( 3 4 ) 2 3 ( 9 ) 

H ( 5 2 ) 9 0 7 ( 1 3 ) 9 9 4 0 ( 1 4 ) 4 0 7 0 ( 3 8 ) 2 1 ( 9 ) 

H ( 6 1 ) 7 3 6 ( 1 3 ) 1 0 3 5 2 ( 1 3 ) 8 6 5 ( 3 5 ) 2 0 ( 9 ) 

H ( 6 2 ) 2 6 8 ( 1 3 ) 1 0 3 0 6 ( 1 4 ) 2 2 0 1 ( 3 6 ) 2 2 ( 9 ) 

H { 7 1 ) 7 2 0 ( 1 4 ) 9 3 4 9 ( 1 5 ) - 6 1 9 ( 3 7 ) 2 9 ( 1 0 ) 

H ( 7 2 ) 1 1 7 1 ( 1 4 ) 9 0 3 3 ( 1 5 ) 6 4 7 ( 3 6 ) 3 4 ( 1 0 ) 

H ( 8 1 ) 6 0 3 ( 1 3 ) 8 2 2 3 ( 1 4 ) 8 4 0 ( 3 4 ) 2 1 ( 9 ) 

H ( 8 2 ) 3 3 3 ( 1 4 ) 8 3 8 4 ( 1 5 ) - 7 7 0 ( 3 8 ) 2 7 ( 1 0 ) 

H ( l O l ) - 1 0 2 7 ( 1 3 ) 8 5 5 8 ( 1 4 ) 1 1 1 0 ( 3 6 ) 2 3 ( 9 ) 

H ( 1 0 2 ) - 7 8 9 ( 1 5 ) 8 2 5 7 ( 1 6 ) - 4 5 9 ( 4 2 ) 4 9 ( 1 2 ) 

H ( l l l ) - 1 0 5 2 ( 1 3 ) 7 4 6 0 ( 1 5 ) 1 3 2 1 ( 3 7 ) 2 4 ( 9 ) 

H ( 1 1 2 ) - 5 5 9 ( 1 3 ) 7 6 7 8 ( 1 5 ) 2 4 7 4 ( 3 8 ) 2 8 ( 1 0 ) 

H ( 1 2 1 ) - 3 6 4 ( 1 2 ) 6 5 7 5 ( 1 3 ) 1 9 8 0 ( 3 5 ) 1 4 ( 9 ) 

H ( 1 2 2 ) - 6 0 5 ( 1 5 ) 6 5 2 2 ( 1 7 ) 2 8 3 ( 4 0 ) 4 3 ( 1 1 ) 

H ( 1 3 1 ) 2 1 3 ( 1 3 ) 5 8 8 7 ( 1 5 ) 4 8 3 ( 3 4 ) 2 5 ( 9 ) 

H ( 1 3 2 ) 3 8 8 ( 1 4 ) 6 4 9 7 ( 1 5 ) - 5 2 4 ( 3 7 ) 2 9 ( 1 0 ) 

H ( 1 4 1 ) 1 3 6 0 ( 1 2 ) 6 2 4 1 ( 1 3 ) 1 6 4 ( 3 2 ) 8 ( 8 ) 

H ( 1 4 2 ) 1 1 9 2 ( 1 4 ) 5 7 0 7 ( 1 6 ) 1 2 5 0 ( 4 1 ) 4 6 ( 1 1 ) 

H ( 1 5 1 ) 1 6 1 0 ( 1 4 ) 6 2 8 6 ( 1 5 ) 3 4 1 7 ( 4 1 ) 3 5 ( 1 1 ) 

H ( 1 5 2 ) 2 0 6 0 ( 1 5 ) 6 1 5 1 ( 1 6 ) 2 1 1 3 ( 4 1 ) 4 4 ( 1 2 ) 

H ( 1 6 1 ) 1 5 1 6 ( 1 5 ) 7 4 1 5 ( 1 6 ) 4 0 1 6 ( 4 4 ) 3 9 ( 1 1 ) 

H ( 1 6 2 ) 1 1 6 3 ( 1 5 ) 7 5 0 7 ( 1 8 ) 2 5 8 6 ( 4 6 ) 5 4 ( 1 3 ) 

H ( 1 7 1 ) 1 9 8 8 ( 1 7 ) 8 2 9 8 ( 1 9 ) 3 5 4 3 ( 4 8 ) 6 6 ( 1 5 ) 

H ( 1 7 2 ) 1 6 4 4 ( 1 7 ) 8 4 1 5 ( 1 8 ) 1 9 6 1 ( 4 5 ) 6 3 ( 1 4 ) 
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