

Durham E-Theses

Advances in crosshole seismic reflection processing

Rowbotham, Peter S

How to cite:

Rowbotham, Peter S (1993) Advances in crosshole seismic reflection processing, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5760/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details.

Advances in Crosshole Seismic Reflection Processing

by

Peter S Rowbotham

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Geological Sciences
The University of Durham
1993

Abstract

In recent years there have been significant advances in the acquisition and processing of crosshole seismic reflection data, and the method has been shown to be a high resolution imaging technique. However, the fidelity of the final images produced by this technique needs to be considered carefully to avoid incorrect interpretation. This thesis concerns the imaging capability of crosshole surveys, as well as advances made in processing techniques for application to crosshole seismic reflection surveys.

In a migrated seismic section, a meaningful image is only obtained if a range of dips around the local structural dip is sampled at each image point. For crosshole seismic reflection surveys, the distribution of dips sampled at an image point is controlled principally by the survey geometry, including source and receiver array lengths and their element spacings. By considering the dips sampled, the imaging capability of crosshole reflection surveying is discussed, with suggestions as to how to ensure optimal imaging of the target zone.

To overcome problems encountered in applying standard processing procedures, two new processing techniques are presented which enhance the imaging potential of crosshole reflection seismics. Generalised Berryhill migration has been developed as a full generalised Kirchhoff migration to include the near-field term, with the aim of improving image accuracy close to the source and receiver arrays. 3-D $f-k-k$ filtering is an improved method of wavefield separation for crosshole seismic data.

Finally, the results of processing three types of dataset are presented. One is from a site in the Groningen gas field, another was acquired through a model interrogated at ultrasonic frequencies in a water tank, and the third type was acquired using coal exploration boreholes in Yorkshire. The results demonstrate the imaging capability of the crosshole reflection method, and the success of the two new processing schemes.

Acknowledgements

I would like to thank my supervisor, Dr. Neil Goulty for his enthusiasm, encouragement and support, and many fruitful discussions during the last three years. I trust he finds this a useful addition to his shelf.

Thanks also to all those in the department who have helped make this work possible, in particular Ed Kragh, Miles Leggett and Salim Al-Rawahy for all their help with computing and ideas, and Mike Findlay whose programs made life much simpler. Thanks go also to Seres a / s of Trondheim for the Groningen dataset, and to the British Coal Opencast Executive for providing boreholes.

I thank Shell UK for funding this postgraduate study, and especially Dr. Mike Bacon for his interest. I thank Dr. Phil Christie and Dr. Roger Long for their constructive comments during the examination of this thesis.

I would like to thank all my parents for their support, and especially my father, Rex Rowbotham who first told me I would do a PhD over 10 years ago.

Thanks to all who have made my stay in Durham fun; Trish, Miles, Danny, Salim, Ed, Dave, Chris, Neville, Richard, Paul, Jane, and the rest in the department, all in Gradsoc Boat Club and all up at Trevs. I am indebted to Joyce and George for their wonderful hospitality and kindness in providing such a warm home to escape to after a late night on the computers.

Final thanks go to Helen for invaluable support, and for keeping me sane over the phone. Without her patience, understanding and companionship, this work would have been much less enjoyable, and much more of a task.

A little inaccuracy sometimes saves tons of explanation.
Saki, The Square Egg

Contents

Abstract i
Acknowledgements ii
Contents iii
Table of Figures vii
Chapter I 1
Introduction 1
1.1 Synopsis 1
1.2 Borehole seismic methods 1
1.2.1 Check-shot and VSP 1
1.2.2 Crosshole tomography and continuity logging 2
1.2.3 Crosshole reflection imaging 3
1.2.4 Crosshole reflection processing 4
1.3 Developments in crosshole acquisition 5
1.3.1 Borehole sources 5
1.3.2 Borehole receivers 6
Chapter II 7
Acquisition 7
2.1 Groningen 7
2.1.1 The Stanford crosshole seismic acquisition system 7
2.1.2 The Scheemderzwaag experiment 9
2.2 Physical Model 11
2.2.1 The model 12
2.2.2 The source and receiver 12
2.2.3 The data 13
2.3 Coal Measures 14
Chapter III 16
Basic Processing 16
3.1 Introduction 16
3.2 Waveshaping Deconvolution 17
3.2.1 Wavelet estimate by assumption of minimum phase wavelet 17
3.2.2 Wavelet estimate by aligning direct arrivals 18
3.2.3 Amplitude spectrum of zero-phase output wavelet = input wavelet 18
3.2.4 Common ray angle gather 18
3.3 Direct Arrival Suppression. 19
3.3.1 Muting 19
3.3.2 First break estimation 20
3.3.3 Median filtering 20
3.3.4 Common ray angle gather 20
3.4 Wavefield Separation in the $f-k$ domain 22
3.4.1 Differences between VSP and crosshole 22
3.4.2 Data preparation for $f-k$ filtering 24
3.4.3 Filter design 25
3.5 Migration 26
3.5.1 Why Kirchhoff? 27
3.5.2 Development of Kirchhoff migration 27
3.5.3 Generalised Kirchhoff migration 31
3.5.4 Implementation of migration 32
3.5.5 Estimation of the velocity model 33
3.6 Factors influencing the order of the processing scheme 33
3.6.1 Source or receiver directivity 33
3.6.2 Source and receiver depths 33
3.6.3 Area to be imaged 33
3.6.4 Direct arrival suppression before or after deconvolution 34
Chapter IV 35
Imaging Capability of Crosshole Seismic Reflection Surveying 35
4.1 Introduction 35
4.2 Dip sampling at image points 38
4.3 Effect of source and receiver spacing 42
Chapter V 45
Advanced Processing 45
5.1 Generalised Berryhill Migration 45
5.23-D $f-k-k$ wavefield separation 48
5.2.1 Why is it necessary? 48
5.2.2 The method 49
5.2.3 Viewing the wavefields in 3-D 49
5.2.4 Filter design 51
Chapter VI 54
Groningen 54
6.1 Introduction 54
6.2 Data examples 55
6.2.1 Arrivals in the smaller gathers 56
6.2.2 Arrivals in the gather used for imaging 58
6.3 Processing and Results 64
Chapter VII 66
Physical Model Data 66
7.1 Previous Work using these Datasets 66
7.2 Arrivals in the Wavefield 67
7.2.1 P-wave Direct 67
7.2.2 S-wave Direct 68
7.2.3 P-wave Reflected 68
7.2.4 P-S converted wave 68
7.2.5 P Head wave 69
7.3 Processing - Removal of the direct wavefield 69
7.3.1 Shaping and muting 70
7.3.2 Shaping to maximum phase, muting and inverse maximum phasing 75
7.3.3 Common Ray Angle Gather 78
7.3.4 Deconvolution only (Direct removed by Wavefield Separation) 82
7.4 Processing - Wavefield separation 83
7.4.1 2-D $f-k$ filtering 83
7.4.2 2-D $f-k$ filtering in CSGs and CRGs for imaging different sides 86
7.4.3 3-D $f-k$ - k filtering 86
7.4.4 3-D $f-k$-k filtering with muting for the post-flood wavefield 89
7.5 Processing - Migration 89
7.5.1 Static corrections 90
7.5.2 Positioning errors of the source and receiver arrays 90
7.5.3 Raytracing - Horizontal layers 90
7.5.4 Raytracing - Boxel method 91
7.5.5 Estimation of the velocity field 92
7.5.6 GK or GB algorithm? 95
7.5.7 Aperture 95
7.6 The Migrated Results 96
7.6.1 Pre-flood 96
7.6.2 Post-flood 98
Chapter VIII 100
Coal Measures 100
8.1 Survey 3438-3437 - Imaging capability of crosshole surveys 100
8.1.1 Background 100
8.1.2 Initial processing 102
8.1.3 Reprocessing 103
8.1.4 Dip sampling at image points - shot and receiver spacing 105
8.2 Survey 3500-3496-f-k versus $f-k-k$ 106
Chapter IX 109
Conclusions and suggestions for future work 109
9.1 Conclusions 109
9.1.1 Imaging capability 109
9.1.2 Results 110
9.2 Future work 110
9.2.1 Further comparison of standard and novel processing techniques 110
9.2.2 Quantification of the quality of images 111
9.2.3 Detailed amplitude interpretation of crosshole reflection images 111
9.2.4 Resolution of raytracing problem 111
9.2.5 Integration of amplitude tomography into raytracing 111
9.2.6 Further comparison of GRT and GB migration 111
9.2.7 Novel acquisition geometries 112
9.2.8 One-pass total processing 112
9.2.9 Imaging of all modes 113
9.2.10 Integration of high-resolution seismic data into inversion schemes for deriving reservoir properties 113
References 115
Appendix A Groningen deviations A1
Appendix B Program xhrl A3
Appendix C File xhrp.dfault 1 A35
Appendix D Program xhr3 A38
Appendix E Program berrymig A53

Table of Figures

Figure 2.1 Stanford University piezo-electric borehole seismic acquisition system. 8
Figure 2.2 Acquisition geometry and velocities of the epoxy resin layers for post-flood model 11
Figure 2.3 Geometry of the source and receiver transducers 12
Figure 2.4 Geometry of surveys 3438-3437 and 3500-3496. 14
Figure 3.1 The basic crosshole reflection processing sequence. 17
Figure 3.2 The common ray angle gather processing scheme 19
Figure 3.3 Scheme for direct wavefield removal using common ray angle gathers 21
Figure 3.4 Improved scheme for direct wavefield removal using common ray angle gathers. 21
Figure 3.5 F-k plot showing separation of up and downgoing events 23
Figure 3.6 VSP and crosshole data in the $z-t$ and $f-k$ domains 24
Figure 3.7 Elliptical isochron for the traveltime from a source to a scattering point and on to a receiver 30
Figure 4.1 The reflection point locus for a single shot and receiver in an isotropic medium for surface seismics and crosshole 35
Figure 4.2 Upgoing reflection point loci for a crosshole survey in an isotropic medium. 36
Figure 4.3 Zones of coverage of crosshole and hole-to-surface surveys. 37
Figure 4.4 Elliptical isochron for the traveltime from a source to a scattering point and on to a receiver. 38
Figure 4.5 Rose diagram showing the distribution of dips sampled for the upgoing reflected wavefield 39
Figure 4.6 Rose diagram showing the distribution of dips sampled with the additional restriction that raypaths must be within 60° of the vertical at each image point 41
Figure 4.7 Rose diagram showing the effect of discrete spatial sampling on the distribution of dips sampled 42
Figure 4.8 Similar rose diagram for closer spaced image points 43
Figure 5.1 Direct and upgoing reflected raypaths from a horizontal interface between two boreholes. 50
Figure 5.2 The direct and upgoing reflected wavefields represented as surfaces in $s-r-t$ space. 50
Figure 5.3 The wavefields transformed into $f-k-k$ space 51
Figure 5.4 Full-pass region of the filter for the upgoing primary reflected events 52
Figure 5.5 The data volume transformed into the $f-k-k$ domain before and after filtering 53
Figure 6.1 Source and receiver positions with the interpretation of the Groningen inter-well geology 54
Figure 6.2 CRGs at depths $2453 \mathrm{~m}, 2456 \mathrm{~m}, 2503 \mathrm{~m}$ and 2506 m 55
Figure 6.3 CSG from 2350 m depth. 56
Figure 6.4 CRG and $f-k$ spectrum showing tube wave energy. 57
Figure 6.5 CSG from 2350 m depth. 58
Figure 6.6 Amplitude spectrum of traces from CSG at 2350 m depth 59
Figure 6.7 CSG from 2350 m depth - receivers at depths $2233-2419 \mathrm{~m}$. 60
Figure 6.8 CSG from 2350 m depth - receivers at depths $2423-2606 \mathrm{~m}$. 60
Figure 6.9 CSG from 2350 m depth - receivers at depths $2395-2456 \mathrm{~m}$. 62
Figure 6.10Migrated depth section of CSG from 2350 m depth 64
Figure 6.11 Partial migrated depth section of CSG from 2350 m depth 64
Figure 6.12Ray diagram to show how termination of reflector provides a lower limit for proximity of fault to receiver borehole 65
Figure 6.13Ray diagram to show how termination of reflector could be due to the transition from post-critical to sub-critical reflections 65
Figure 7.1 Post-flood CRG 19 deconvolved to zero-phase with arrivals marked 67
Figure 7.2 Expanded view of Figure 7.1 68
Figure 7.3 Sketch of interpreted direct and head wave raypaths 69
Figure 7.4 Filtering with water wavelet as input, Butterworth output. 70
Figure 7.5 Filtering with water wavelet as input, output with same amplitude spectrum as input spectrum. 71
Figure 7.6 Amplitude spectra of direct arrival through water and through model. 71
Figure 7.7 Water wavelet, model wavelet, and result of applying filter, designed with water wavelet, to the model wavelet. 72
Figure 7.8 CRG 9 deconvolved using the filter in Figure 7.4 73
Figure 7.9 Filtering with model wavelet as input, Butterworth output 74
Figure 7.10 Filtering with model wavelet as input, output with same amplitude spectrum as input spectrum. 74
Figure 7.11 Flow chart of the maximum phasing philosophy. 75
Figure 7.12 Maximum phasing - demonstration 76
Figure 7.13 Inverse maximum phasing - demonstration. 76
Figure 7.14 Scheme for direct wave removal by maximum phasing. 77
Figure 7.15 Raw data - example CRG from receiver 9 at depth 20 m 77
Figure 7.16 CRG 9 after max-phasing, muting, inverse max-phasing. 78
Figure 7.17 Traces contributing to the common ray angle gather 79
Figure 7.18 CRG 9 - direct wavefield estimate from CRAG 79
Figure 7.19 CRG 9 - trace-by-trace zero-phase deconvolved using direct wavefield as input 80
Figure 7.20 CRG 9 - zero-phase reflected wavefield - zero-phase CRAG wavefield subtracted from zero-phase total wavefield. 81
Figure 7.21 CRG 9 for the post-flood - trace-by-trace zero-phase deconvolved using pre-flood direct wavefield (Figure 7.18) as input. 81
Figure 7.22 Zero-phase deconvolved CRG 9. 82
Figure 7.23 CRG 9 following wavefield separation by $2-\mathrm{D} f$ - k filtering of zero-phase reflected wavefield in CRGs. 83
Figure 7.24 CSG 9 following wavefield separation of zero-phase reflected wavefield in CRGs 84
Figure 7.25 Migrated depth section of the top 10 CRGs (depths 0- 22.5 m) following 2-D f - k filtering in CRGs 85
Figure 7.26 Migrated depth section following 2-D $f-k$ filtering in CSGs and in CRGs 86
Figure 7.27 CRG 9 following wavefield separation by 3-D $f-k-k$ filtering of zero-phase wavefield. 87
Figure 7.28 CSG 9 following wavefield separation by $3-\mathrm{D} f-k-k$ filtering of zero-phase wavefield. 88
Figure 7.29 CRG 9 following wavefield separation by $3-D f-k-k$ filtering of post-flood zero-phase wavefield. 88
Figure 7.30 Up and downgoing migrated depth section following 3-D $f-k-k$ filtering of post-flood data 89
Figure 7.31 Upgoing depth sections migrated through a boxel and a layered velocity model. 91
Figure 7.32 Velocity tomograms obtained with improved traveltime picks using initial velocity models (ii), (iii), (iv). 94
Figure 7.33 Upgoing migrated depth sections using GB and GK. 95
Figure 7.34 Pre-flood up and downgoing migrated depth sections. Aperture 22.5° 96
Figure 7.35 Pre-flood up and downgoing migrated depth sections. Aperture 4° 97
Figure 7.36 Pre-flood upgoing migrated depth section for 21 source and 21 receiver positions 97
Figure 7.37 Post-flood up and downgoing migrated depth sections. Velocity model (ii) 99
Figure 7.38 Post-flood up and downgoing migrated depth sections. Velocity model (iv) 99
Figure 8.1 Coal seam stratigraphy, hole-to-surface migrated depth section and crosshole migrated depth section 101
Figure 8.2 Raw data - the common source gather from 10 m depth. 103
Figure 8.3 GK and GB migrated depth sections obtained from region around the small fault near bottom of receiver array in borehole B 104
Figure 8.4 Rose diagram showing the effect of discrete spatial sampling on the distribution of dips 105
Figure 8.5 The crosshole reflection processing sequence used to produce Figure 8.7b. 106
Figure 8.6 The data volume transformed into the $f-k-k$ domain before and after 3-D $f-k-k$ filtering 107
Figure 8.7 Migrated depth sections following 2-D $f-k$ and 3-D $f-k-k$ wavefield separation 108
Figure 9.1 Speculative one-pass crosshole reflection processing sequence 112

Chapter I

Introduction

1.1 Synopsis

This thesis concerns advances made in processing techniques for application to crosshole seismic reflection surveys. The work presented in this thesis is part of the ongoing research into borehole seismic methods at the University of Durham. My own work reported here is partly refinement of methods previously established by other members of the research group, and partly development of new processing techniques to enhance the quality of the final image.

Chapter I gives a review of the research performed at the University of Durham, and elsewhere, into the use of borehole seismics as an imaging tool, and discusses some developments in crosshole acquisition. The acquisition of the datasets used in this study is described in Chapter II; the basic processing scheme, as previously developed by Findlay (1991) and Findlay et al. (1991), and processing tools devised by other researchers are discussed in Chapter III.

In Chapter IV, I present a critique of the imaging capability of crosshole reflection surveying, with suggestions as to how to ensure optimal imaging of the target zone. Chapter V contains two new processing techniques devised to overcome problems encountered in applying basic processing procedures and to enhance the imaging potential of crosshole reflection seismics.

The results of processing three different datasets are presented in Chapters VI, VII and VIII, and a critical discussion is given in each case. Conclusions are drawn, and suggestions for future work are made, in Chapter IX.

1.2 Borehole seismic methods

1.2.1 Check-shot and VSP

The first borehole seismic method to be developed in the oil industry was the check-shot survey for the purpose of calibrating velocity measurements obtained
from borehole sonic logs. A receiver is clamped down the hole at several locations, and a shot set off adjacent to the top of the hole. The traveltimes of the direct arrivals provide corrections for the drift of the sonic curves. An extension of this is Vertical Seismic Profiling (VSP) (e.g. Cassell 1984). Again a downhole receiver is clamped and a surface air-gun positioned away from the rig so that no transmission occurs down the casing. In the land case, a vibrator or a source (water-gun or air-gun) in a mud-pit is used. Zero-offset VSP is principally used for identifying the primary and multiple reflections on surface seismic sections passing through the borehole and for designing deconvolution operators for surface seismics. Although zero-offset VSP does provide some imaging of structure around the borehole, the development of Offset VSP (e.g. Dillon and Thomson 1984) greatly increased the imaging potential of the method with coverage extending out from the borehole up to half the lateral separation of the source and borehole. The imaging potential has been further increased with walkaway, or multi-offset VSP surveys. Jackson et al. (1989), Kragh (1990) and Kragh et al. (1991) have developed the Reverse Multi-Offset VSP method (source in the borehole - line of geophones at multiple offsets at the surface) for shallow exploration, and the technique has been extended to 3-D by using an areal spread of geophones (Jackson et al. 1989). Present developments include novel acquisition geometry such as would be required for horizontal wells and the use of the drill bit energy as a seismic source for imaging (Rector and Marion 1991).

VSP surveys provide greater resolution of the subsurface than conventional surface seismic surveys, since the arrivals have to pass only once through the highly attenuating near-surface layers which absorb relatively more of the higher frequencies.

1.2.2 Crosshole tomography and continuity logging

Many of the recent advances in crosshole techniques have been due to the development of non-destructive sources (§1.3.1) and have been driven by the need for enhanced definition of oil producing reservoirs. Crosshole tomography, the best known crosshole technique, has found uses in monitoring enhanced oil recovery processes such as steam and CO_{2} flooding (Macrides et al. 1988, Justice et al. 1989, Justice et al. 1993), fissure detection in granite (Wong et al. 1983) and has been used also in an attempt to delineate coal strata (Goulty et al. 1990). Both traveltime and amplitude information (Leggett 1992, Leggett et al. 1993) have been used to tomographically reconstruct the interborehole velocity
function and the differential attenuation, respectively. Goulty (1993) gives an excellent review of applications of tomography in mining and engineering.

A further use of crosshole surveys is continuity logging of the interborehole stratigraphy (Zhong and Worthington 1992). In this, tube wave interaction at geological interfaces (Albright and Johnson 1990) causes conversion to horizontally travelling P-waves which, upon arrival at the receiver borehole, convert back to tube waves. Should the geological strata be broken by a fault, the path of communication between the two boreholes will be cut and therefore the analysis of tube waves can be used to provide a simple crosshole continuity log.

1.2.3 Crosshole reflection imaging

In addition to using the information carried by the direct arrivals, the reflected wavefield has been used for imaging (e.g. Findlay et al. 1991, Lazaratos et al. 1992). The obvious advantage of crosshole seismic reflection processing over tomography is that the coverage is not restricted to zones above the base of the source and receiver arrays through which the direct arrivals pass. Also, tomography fails to resolve discontinuities in the velocity field, and provides an estimate of only the low frequency components of the velocity distribution. Crosshole reflections must be used for imaging discontinuities in the velocity field, and for imaging at or below the base of the holes. Crosshole tomography and reflection imaging therefore provide complementary images.

Crosshole reflection surveys provide yet higher resolution than VSP surveys, as the transmitted energy does not have to pass through the attenuating nearsurface layers at all. Compared with conventional surface seismics, the higher resolution of the subsurface structure achievable is of the order of 1 metre as opposed to $\sim 10-20$ metres (Harris et al. 1992). Resolution on this scale is critical for the mapping of thin beds, for site investigations involving the location and definition of faults or old mine workings, and for assessing the homogeneity of rock type. A second advantage over surface seismics is that crosshole seismic data contain a wealth of multiple angle and multiple direction (from above and below) views on target reflectors compared to the surface seismics normalincidence interrogation of beds from above only.

1.2.4 Crosshole reflection processing

The processing of crosshole data for reflection imaging can be very similar to the standard VSP processing sequence, consisting of wavefield separation, deconvolution and mapping (Hardage 1985), though some serious differences exist ($\S 3.4 .1$). Also of note is the difference in spatial imaging coverage for both types of survey (§4.1).

Several workers have discussed the peculiarities of the crosshole processing scheme. In the pre-imaging stage, Pratt and Goulty (1991), Stewart and Marchisio (1991) and Rector et al. (1992a) have advocated the use of resorting of the data into alternative domains to facilitate the separation of the reflected wavefield by multichannel filtering.

For imaging, several schemes have been suggested. One of the first methods to be used was the VSP-CDP mapping algorithm (Wyatt and Wyatt 1984), so called because it transforms the data from VSP coordinates (depth of source or receiver, traveltime) to surface seismic coordinates (lateral position and depth or vertical traveltime). The method involves raytracing to find the reflection point locus of each source and receiver pair (§4.1), and assigning to each point the amplitude on the recorded trace at the corresponding traveltime. The process is therefore not a migration method and will not collapse Fresnel zones.

Limited aperture Kirchhoff depth migration schemes, such as the one used in this work ($\S 3.5, \S 5.1$), have been developed for crosshole reflection imaging (Findlay et al. 1991), allowing a range of dips to be considered at each image point ($\S 4.2$) centred around the local expected dip of strata. Finite difference methods are also common (e.g. Balch et al. 1991). A joint migration/inversion scheme has been advocated by Beydoun et al. (1989) to produce the first published crosshole migrated images. The first operation in this scheme is similar to a Kirchhoff depth migration, with inversion consisting of applying a damped correction to the intermediate images to optimally deconvolve sourcereceiver effects and decouple parameters.

Frequency domain wave-equation imaging methods, whereby the time-reversed wavefields are propagated through the section, combined with traveltime tomography has been implemented for crosshole processing (Pratt and Goulty 1991). By only using a limited number of frequency components, the computing expense of these methods is reduced. This is appropriate since there is
theoretical data redundancy in wide-aperture crosshole surveys that allows useful images to be formed from a single frequency component (Pratt and Worthington 1990).

1.3 Developments in crosshole acquisition

1.3.1 Borehole sources

A comparison of various candidate borehole sources for crosshole seismology and reversed vertical seismic profiling (RVSP) has been performed by Chen, Eriksen and Miller (1990). The sources were explosive charges, a perforating gun, an air gun, and a water gun. Although no visible damage was produced by the sources, some deterioration of the cement bond between the formation and the casing was indicated. Winbow (1991) has performed theoretical modelling to compare the performance of downhole seismic sources.

For the Coal Measures surveys performed by the Research Group at the University of Durham, single detonators were used, sometimes boosted by 25 g of gelignite (Findlay et al. 1991). These were found to give good shot repeatability and an adequate bandwidth $(100-700 \mathrm{~Hz})$ for the purposes of the surveys (borehole separation $\sim 30-60 \mathrm{~m}$). Detonators have also been used by other workers from Imperial College (Zhong and Worthington 1992, Williamson et al. 1993, Sams et al. 1993), giving a major frequency content above 1 kHz for borehole separation of 25 m . Other larger scale surveys have been performed with explosive sources (e.g. Macrides et al. 1988, Chen, Zimmerman and Tugnait 1990). Crosshole seismology research has proliferated in recent years, but Geyer (1993) has described a survey performed in 1961 using a Schlumberger 48 -gun casing-perforator tool as seismic source. Acquisition time is slow using explosive sources since the source assembly has to be raised to the surface between each shot for priming, and there is the possibility of damage to the borehole walls, even though none has been reported in the literature.

Another source type developed is the sparker source (e.g. Baria et al. 1989). Its main advantages are described as reliability, repeatability, and the production of an impulse wavelet of short duration which is free of bubble oscillation. Successive shots can be fired without having to bring the sparker to the surface, a distinct advantage over explosive sources in terms of acquisition time.

A weight-drop source has been used to produce a significant level of shear waves (Beydoun et al. 1989). The source is reported to generate fewer tube waves than those from a sparker source, it has a shot repeatability of two shots per minute, and probably does not harm the borehole.

The source that has found widest acceptance within the geophysical community in recent years is the piezo-electric cylindrical bender system (Wong et al. 1983, Balogh et al. 1988). In a similar vein, a magnetostrictive transducer has also been used (Albright and Johnson 1990). The piezo-electric transducer can be used as either a seismic source or a seismic detector, and is described in more detail in §2.1.1. The source produces signals of bandwidth $100-2000 \mathrm{kHz}$ over borehole separation of 330 feet at 1000 feet depth. The system has been developed to record 'on-the-fly', i.e. with source moving continuously at approximately 500 feet per hour, and receiving trigger signals from the control systems at regular depth intervals. The advantage of this mode of operation is the speed with which extremely large datasets can be acquired (e.g. 37000 traces acquired in 40 hours as described by Harris et al. (1992)). The source has proved to be reliable in the most exacting of field conditions (depths >10000 feet), and of high enough frequency to allow high-resolution reflection imaging.

1.3.2 Borehole receivers

Hydrophones have been the standard receivers for shallow boreholes. They are ideally suited for detecting the pressure variations caused in the fluid-filled boreholes by the arriving energy packets. Their reliability has been enhanced by many years of use in the marine seismic environment, and hence their characteristics are well documented.

Three component borehole geophones have also been tested (Beydoun et al. 1989, Beattie 1990, Emeleus 1993). Their potential for separating out P and Swave arrivals makes them an attractive receiver, although the necessity of aligning them and clamping them against the borehole wall greatly increases the acquisition time. The cylindrical piezo-electric bender transducer used as a source ($\S 1.3 .1$) is also used as a detector.

Chapter III

Acquisition

Three types of crosshole seismic datasets have been used in this study. The acquisition of each will be discussed separately.

2.1 Gromingen

Data were acquired by Seres a / s of Trondheim using two wells at the Scheemderzwaag site in the Groningen gas field in the north of the Netherlands over the period 19-24 November 1990 (Vaage and Ziolkowski 1992). This site normally produces gas, but gas production had been temporarily stopped in order to carry out routine maintenance work on the wells. Measurements made were:

- Logging of the wells by Schlumberger, using the array sonic tool.
- Crosshole measurements using the Stanford University piezo-electric bender source and hydrophone receiver array.
- Crosshole measurements using the READ Well Services mud-gun source and three-component geophone array.

The crosshole data acquired using the piezoelectric cylindrical bender system of Stanford University, deployed by Jerry Harris of Stanford, were made available for this project.

2.1.1 The Stanford crosshole seismic acquisition system

The Stanford piezoelectric system has been fully documented in the literature (Balogh et al. 1988, Harris et al. 1992). A schematic outline of the system is shown in Figure 2.1. The system comprises a three-element piezoelectric downhole source, a nine-level hydrophone and two logging trucks with associated surface equipment and instruments to control the downhole tools.

The source consists of three active elements, symmetrically placed into the downhole tool to form a mass balanced downhole source. Two banks of power

Figure 2.1 Schematic outline of the Stanford University piezo-electric borehole seismic acquisition system (from Harris et al. 1992).
transformers are mounted above and below the active transducers for symmetry. The balance is intended to reduce spurious modes of structural vibration, thus creating more radiation from the desired monopole mode. The elements may be driven as three independent sources or as a single unit for increased coherent output. This design is a slight modification on the original version built for Standard Oil in 1985-86. The far-field wavelet radiated by this source is proportional to the current drawn. Source signatures are generated by three 12-
bit D-to-A phase-coherent waveform generators. Arbitrarily defined waveforms including sweeps, pulses and pulse sequences can be used. For this experiment data were recorded in both sweep and pulse mode. All data gathered with sweeps were recorded uncorrelated, correlation being performed after the completion of the experiment. The source is powered by a three-channel 24 kVA linear power amplifier. The power is delivered via 12000 feet of 7 -conductor armoured wireline.

The receiver system consists of a nine-level array of OAS deep ocean hydrophones, arranged at 3 m intervals for this experiment. Each level is independently digitised downhole to sixteen bits of resolution. Unfortunately, only four of the nine channels were functional at the site surface. After lowering into the well, two further channels ceased to function. The two remaining channels, spaced 3 m apart, were operational for the duration of the experiment. A surface computer, located in the source truck, provides control of recording parameters - sampling rate, downhole analogue and digital gain, vertical stacking depth, and high and low pass filter settings. The hydrophones are interfaced to the surface via a telemetry sonde that controls communications and data transfer. Data are stacked downhole in order to reduce transmission throughput. Though only four conductors are required, the entire system is run on 17000 feet of standard seven-conductor wireline. Recording parameters, including both downhole source and receiver wireline depths which are electronically monitored, are recorded to the SEG-Y header along with the trace data.

2.1.2 The Scheemderzwaag experiment

The wells selected for the experiment deviated away from each other, giving a separation of 140 m at the surface to 298 m at 2350 m depth, the deepest accessible point in the source well. The lateral position of each receiver relative to the source position at 2350 m depth was calculated from x, y, z data provided for both wells at 25 m depth intervals over the zone of interest (Appendix A). 2D geometry was assumed since the deviations in x and y of the receiver well were approximately linear over the depth range of the gather.

In all, over 600 records were obtained. These included pulse tests, an experiment to determine the transmission characteristics as a function of the formation parameters by positioning the source and one of the hydrophones at the same depth, an experiment to study the variation of amplitude with distance,
and six common source and common receiver gathers. These gathers had the following parameters:

Source depth	Receiver depth	Spatial interval	No. of Records
$2330-2350 \mathrm{~m}$	2453 m	1 m	21
$2330-2350 \mathrm{~m}$	2456 m	1 m	21
$2331-2350 \mathrm{~m}$	2503 m	1 m	20
$2331-2350 \mathrm{~m}$	2506 m	1 m	20
2350 m	$2507-2538 \mathrm{~m}$	1 m	32
2350 m	$2233-2606 \mathrm{~m}$	3 m	125^{*}

Of these, the surveys with 1 m spacing were found to have limited coverage, and to be affected by tube waves. In consequence, the common source gather with 125 records from 2350 m depth was used for crosshole seismic reflection imaging (§6.3). For a sketch of the positions of the source and receivers relative to the geological cross section see Figure 6.1.

Following completion of the processing, I was informed that cable stretch had occurred during the course of the experiment. The shot gather used for imaging (§6.3) was the penultimate experiment carried out before the equipment was retrieved, and the adjustments needed were therefore the total stretching in the cables, 3 m and 6 m for the source and receiver positions, respectively. However, these corrections were considered to be of little value within the context of the aim of demonstrating the crosshole reflection imaging technique on a high frequency dataset from a producing field and have not been applied.

[^0]
2.2 Physical Model

Physical model datasets designed to represent 'pre-flood' and 'post-flood' stages in an EOR process were acquired in 1989 by N.R. Goulty using Durham University's physical modelling system (Sharp et al. 1985). The models were made of seven layers of epoxy resin, representing strata of different densities and seismic velocities. A channel feature and a fault have been modelled by shaping the interfaces between the layers (Figure 2.2).

Figure 2.2 Acquisition geometry and velocities of the epoxy resin layers for post-flood. Pre-flood is identical except for absence of low velocity flood zone.

Piezo-electric transducers were used as source and receiver, and were positioned at intervals of 2.5 mm over a distance of 125 mm down the sides of the model, which was 46.5 mm wide. The received signal had a bandwidth of $150-700 \mathrm{kHz}$. Upon scaling all dimensions by a factor of 1000 to represent the case for real data (i.e. mm to m , ms to s), this corresponds to a $150-700 \mathrm{~Hz}$ bandwidth with a borehole separation of approximately 50 m . The reader is referred to Leggett et al. (1993) for a complementary description of the acquisition of these data.

2.2.1 The model

The models were comprised of seven layers made of five different epoxy resin mixtures. In keeping with geological realism, there is an overall increase in velocity with depth (although low velocity zones are present), the deepest interface is faulted, and one layer contains a channel feature. To ensure that the pre-flood and post-flood models were identical apart from the flood zone, they were made together in one solid block in the same mould. After the pouring of each layer, the upper surface was machined off before pouring the next layer. The models can therefore be regarded as identical to within 0.025 mm , the tolerance of the milling machine. After the reservoir layer had been poured and set, it was machined to cut out the 'flood zone' over the half of the block which was to form the post-flood model, but left intact for the other half. A different epoxy mixture was then poured in to represent the flood, and two further layers added on top across both halves of the block. The complete block was then cut in two, separating the pre-flood and post-flood models.

2.2.2 The source and receiver

The source and receiver used were piezo-electric transducers. Sketches of their dimensions and nominal positions relative to the model edges are shown in Figure 2.3.

Figure 2.3 Geometry of the (a) source and (b) receiver transducers.

From this figure, it can be seen that the source signal is generated on a cylindrical surface of radius 3.5 mm . Assuming that the radiation pattern from the source has cylindrical symmetry, it can be regarded as a 2-D point source in the centre of the transducer. For this assumption it is necessary to make a static shift to the data equivalent to the time taken to travel 3.5 mm in water, since at time zero the wavefront is on the surface of the transducer. This shift amounted
to 9.54 samples in the pre-flood case where the velocity of water was found to be $1467 \mathrm{~m} / \mathrm{s}$ and 9.52 samples for the post-flood with a water velocity of $1477 \mathrm{~m} / \mathrm{s}$ (Leggett 1992). The transducer was enclosed within a sheath of thickness 1.25 mm , and the clearance between the sheath and the model was 1.25 mm , the centre of the transducer being 6 mm from the model.

The tip of the receiver probe was about 1 mm from the model and the active area of the receiver transducer was guessed to be 1 mm below the surface of the transducer, making a static correction for the receiver of 2 mm . Assuming a point source, the total offset from the model of source and receiver was therefore 8 mm . To shift the source and receiver perpendicularly so as to be touching the model would require a reduction in traveltime by 21.81/21.66 samples (pre/post-flood), giving a total static shift (including the point source shift) of $12.27 / 12.14$ samples. Static shifts are discussed further in §7.5.1.

The positions of the transducers relative to the model could be in error by up to 1 mm , as could their positions relative to each other. The receiver transducer was moved manually between runs (accuracy within 0.5 mm) and for each receiver position the source was moved automatically with a nominal accuracy of 0.01 mm .

2.2.3 The data

The data were recorded in February 1989 onto two SEG-Y format, 1600 bpi half-inch tapes. There were 2048 samples per trace with a sample interval of $0.25 \mu \mathrm{~s}$, and all the data were acquired with 16 -fold vertical stack.

Tape TNK903 contains data from the pre-flood model. There are 55 sets (ids) of 51 traces.

- Ids 1 and 2 are in water only with the receiver in the middle of the array (depth 62.5 mm) and the source moving from depths $-62.5 \rightarrow 62.5 \mathrm{~mm}$ and $62.5 \rightarrow$ 187.5 mm , respectively.
- Ids 3-53 are 51 common receiver gathers with the model in place. Position 1 of both sources and receivers was at depth 125.0 mm , with position 51 at 0.0 mm .
- Ids 54 and 55 are in water only with the receiver at either end, and the identical source positions as for ids 3-53.

Tape TNK904 contains data from the post-flood model. There are 56 ids of 51 traces.

- Ids 1 and 2 are identical to ids 54 and 55 on the pre-flood model tape (though note that the tapes were recorded on different days and thus the water velocity will have altered).
- Ids 3-53 are 51 common receiver gathers with the model in place.
- Id 54 is with water only and the receiver 25.5 mm from the centre (recorded inadvertently).
- Ids 55 and 56 are identical to ids 1 and 2 on the pre-flood model tape (though again note the change in water velocity).

2.3 Coal Measures

Both Coal Measures datasets used in this study were acquired and originally processed by M.J. Findlay; hence full details of the acquisition of these data can be found in Findlay (1991). Both datasets are from the Lowther South opencast exploration site in Yorkshire, between boreholes 3438-3437 and 3500-3496 (sources in first named borehole). Findlay refers to these as surveys C (between boreholes III and II) and E (between boreholes IV and V). The separation of boreholes $3438-3437$ was 37.1 m , and that of $3500-3496$ was 32.0 m .

Figure 2.4 Geometry of surveys 3438-3437 and 3500-3496.
Dimensions in brackets are for survey 3500-3496.

The depth range occupied by both sources and receivers was restricted by the water table at 8 m , and by blockages in the uncased boreholes close to the worked coal seam at 50 m depth. Single electrical (no. 8 type) detonators were used as sources, spaced 2 m apart at 22 locations in boreholes 3438/3500. Findlay (1991) noted that there was no noticeable change in the frequency content of data recorded using a dynamite source compared with that of data recorded using a detonator alone, suggesting that the conditions required for the charge scaling law proposed by Ziolkowski et al. (1980) do not hold for smallsized charges fired in boreholes. A wire was taped around the end of the detonator and attached to the trigger line; the breaking of this wire on detonation triggered the recording system. The charge was positioned at the end of a 4 cm diameter hollow steel tube (a section of scaffolding pole) which was 40 cm long. The main purpose of this tubing was protection of the firing and triggering leads, and to provide sufficient weight to allow the charge to be raised and lowered easily.

Hydrophone receivers, also 2 m apart, were deployed at 23 locations in boreholes $3437 / 3496$. The data were recorded using an EG\&G Geometrics ES2401 seismograph. The seismic signals had a bandwidth of $100-700 \mathrm{~Hz}$ with a peak at about 200 Hz .

Boreholes 3438 and 3437 were two of three collinear boreholes. In addition to crosshole surveying, reverse vertical seismic profiles (RVSPs - hole-to-surface) were shot in each borehole to give continuous coverage (Kragh 1990, Kragh et al. 1991). These RVSPs were shot using explosive charges downhole and a line of 24 geophones at the surface in the plane of the section. Hole-to-surface surveys were not performed in boreholes 3500 and 3496 due to borehole collapse following acquisition of the crosshole data.

Chapter III

Basic Processing

The processing tools described in this chapter are established methods for processing crosshole data, devised by Findlay et al. (1991) and other researchers (Kragh et al. 1991, Pratt and Goulty 1991). Their effectiveness is discussed in relation to the datasets used in this study in Chapters VI, VII and VIII.

3.1 Introduction

In processing crosshole data, we can extract several branches of information about the physical properties of the earth's subsurface, such as velocity, attenuation and reflectivity. By considering what information is required, we can design an optimum processing scheme to enhance the result.

For crosshole seismic reflection processing, there are advantages in changing the shape of the effective wavelet in the data. The recorded reflected seismograms can be thought of as the convolution of the source signature with the impulse response of the subsurface and recording system. The first onset of each reflected arrival therefore corresponds to the traveltime along the reflected raypath. For reflection imaging, it would therefore be desirable to shape the resident wavelet to zero phase, with peak amplitude at the onset time of each arrival.

Crosshole reflection imaging will also require the removal of all non-primary reflected arrival modes, whether P or S direct wave, mode conversions, head waves, tube waves or multiples. The high energy P direct arrivals can be muted, whereas methods such as median filtering or velocity $(f-k)$ filtering are necessary for other arrivals. Separation between up and downgoing reflections is also necessary.

Since a depth section (i.e. a physical cross section of horizontal distance versus depth) is easier to interpret than the recorded section of receiver position against
time, a scheme to migrate the reflected wavefield is then utilised. These will be the main requirements of a crosshole reflection processing scheme waveshaping deconvolution, direct arrival suppression, wavefield separation and migration (Figure 3.1). These were discussed by Findlay et al. (1991), and as this study follows on from his work, the basic processing steps are similar. These steps are also interchangeable in some respects - some of the criteria governing the order are discussed in §3.6.

Figure 3.1 The basic crosshole reflection processing sequence.

3.2 Waveshaping Deconvolution

Most of the following methods use the same philosophy of designing a Wienershaping deconvolution filter (Robinson and Treitel 1985) with an estimate of the resident wavelet as the input wavelet and a zero-phase Butterworth wavelet (e.g. Sheriff and Geldart 1983) as a desired output. The output wavelet is specified in the frequency domain to correspond to the useful signal bandwidth with tapering at the limits. It can be thought of as a band-limited Dirac delta function. Alternatively, the zero-phase output wavelet can be specified with the same amplitude spectrum as the input wavelet.

3.2.1 Wavelet estimate by assumption of minimum phase wavelet

This method was used by Kragh et al. (1991) and Findlay et al. (1991) for borehole reflection processing. An estimate of the source wavelet is obtained by taking the autocorrelation function of the wavelet to be the sum of the autocorrelation functions of all the traces (or a selection of traces). This assumes that the reflectivity is white and stationary. The minimum phase
assumption is then used to obtain a minimum phase input wavelet (Robinson and Treitel 1985).

3.2.2 Wavelet estimate by aligning direct arrivals

The direct arrivals at the receivers can be used to design a deconvolution filter for the reflected arrivals (Kragh et al. 1991). A single direct arrival is estimated by aligning the direct arrival energy of all traces (or several traces, depending on data quality) and stacking the traces. Alternatively a single-trace direct arrival can be used.

3.2.3 Amplitude spectrum of zero-phase output wavelet = input wavelet

Should the previous two methods not produce the desired shaping of the data because of peculiarities in the input wavelet amplitude spectrum, the amplitude spectrum of the desired output wavelet can be equated to that of the input wavelet. However, the output waveform will not be as tidy as for the Butterworth wavelet, as its amplitude spectrum will be further from the ideal of the Dirac delta function. This method was used by Leggett et al. (1993) for deconvolving the direct arrivals through the physical model, prior to picking traveltimes for tomography. One situation where this method might be necessary is where there is a notch in the amplitude spectrum of the input wavelet (see §7.3.1). The standard method to deal with this problem would be to add white noise (Hatton et al. 1988).

3.2.4 Common ray angle gather

An alternative scheme for deconvolution has been proposed by Pratt and Goulty (1991), working on the physical model dataset. This method as applied to the data in this study is discussed fully in §7.3.3. The data are regathered into common ray angle gathers, this reorganisation of the data allowing scattered (i.e. reflected) and direct arrivals to be discriminated on the basis of time moveout. For each trace that was to be operated on, 11 common ray-angle gathers were selected. These were the gathers from the given ray angle and from the five adjacent ray angles on either side. From each of these gathers, five traces were selected: the traces from the given receiver location and two traces on either side. Thus a total of 55 input traces were used for each output trace (except at the edges of the survey). The direct arrival first breaks were aligned and averaged by means of a running mean filter. This then gave an estimate of the direct wavefield for all 2601 traces. This process could also be performed using S wave arrival times to estimate the S-wave direct wavefield.

This direct wavefield estimate provides a robust method of deconvolution (Figure 3.2). A Wiener shaping filter was computed from the estimated direct arrival wavelet on each trace, and applied to the corresponding recorded trace. The desired output was a minimum phase wavelet with the same amplitude spectrum as the input wavelet.

Figure 3.2 The common ray angle gather processing scheme.
Findlay (1991) observed, and it is my experience, that this method is unsuitable for the Coal Measures datasets, which have fewer sources and receivers than the physical model dataset, because of the end effects on the averaging process for the shallowest and deepest source and receiver positions. Also, trace-to-trace variations in the direct arrival waveforms are greater, possibly due to peg-leg multiples.

3.3 Direct Arrival Suppression

3.3.1 Muting

For reflection imaging, it would be desirable to remove direct arrivals, which are of higher amplitude than the reflected arrivals. Hu and McMechan (1987) and Findlay et al. (1991) advocate the use of first break (transmitted) energy muting. Note that this will not remove slower S-wave direct arrivals, nor direct P-waves where the first arrivals are head waves. Also note that it is preferable to perform direct arrival suppression after waveshaping deconvolution. The direct arrival has then been compressed into a narrower wavelet, so the muting may be constrained to a narrower window, therefore corrupting less of the reflected arrivals.

The inherent problem with muting of the direct arrival is that, because the traveltime of the up/downgoing reflected arrival just above/below a reflecting interface is only slightly greater than the traveltime of the direct arrival, reflected
energy will also be removed. This means that reflector coverage will be lost near the source and receiver boreholes.

3.3.2 First break estimation

To be able to mute, it is first necessary to estimate the direct arrival times at each receiver position. Findlay's automatic first break picking program within the $\mathbf{x h r}$ package (Appendix B) is an efficient way of doing this. First breaks are picked on a statistical basis, by locating the time sample where the recorded signal amplitude rises sufficiently above the rms amplitude of the background noise. Leggett et al. (1993) used a method of deconvolving the direct arrival to a zero-phase peak, and then picking the maximum amplitude in a window around the first arrival.

3.3.3 Median filltering

Any coherent arrival can be eliminated from seismic data by use of multichannel filters (Özdemir and Saatçilar 1990). Median filters work by aligning the arrival to be enhanced or removed, and performing a median filter across the traces whereby the median value of a time sample over an odd number of traces is placed at the time sample of the middle trace. Aligned events will be enhanced at the expense of dipping events. The estimate of the aligned arrival can then be subtracted from the original data. To prevent too much destruction of useful signal, the filter should be applied only within a time window specified about the arrival to be suppressed. High cut filtering follows median filtering to reduce the high frequency noise ('jitter') introduced by the filtering.

Although median filtering has been used in crosshole reflection processing (Rector et al. 1992a, Cai and Schuster 1993), the smaller number of source and receiver positions used (i.e. less data redundancy), and trace-to-trace variations ($\S 3.2 .4$) in the datasets used in this study mean that the level of noise introduced by median filtering is unacceptable.

3.3.4 Common ray angle gather

An alternative scheme for direct arrival removal uses the CRAG method (§3.2.4) of Pratt and Goulty (1991). The CRAG gives an estimate of the direct wavefield for all 2601 traces. Following trace-by-trace deconvolution of the wavefield, the deconvolved total wavefield was used in exactly the same process

Figure 3.3 Scheme for direct wavefield removal using common ray angle gathers.
of estimating the direct wavefield described earlier. Once this new direct deconvolved wavefield was computed, it was subtracted from the deconvolved total wavefield to produce an estimate of the scattered wavefield (Figure 3.3).

It was realised that this scheme involving a second CRAG would tend to smooth out traces by involving more than 55 traces in producing a single trace, since each trace input to the second CRAG would already be influenced by 55 traces input to the initial CRAG. It was also unnecessarily cumbersome, in that an estimate of the deconvolved direct wavefield could be obtained by applying the same filters to the direct wavefield estimate as had been applied to the total raw wavefield (Figure 3.4). This dramatically reduced the computation time for this method since deconvolution is less CPU intensive than the CRAG method.

Figure 3.4 Improved scheme for direct wavefield removal using common ray angle gathers.

The reason for performing deconvolution before subtraction was so that any high frequency noise introduced due to slight mis-match would be within a compressed window. The method was significantly more successful at removing the direct wave arrival than the methods described above, and in doing so avoided all use of muting which had proven a problem in removing the desired reflected arrivals in previous methods. However, the caveats mentioned in §3.2.4 of end effects and trace-to-trace variations are pertinent again. A further advantage of this method is that it can be used to mute direct S-waves also, by
repeating the CRAG with the traveltime picks of the S-waves instead. The success of this second CRAG will be dependent on the ease of S-wave arrival traveltime picking, since the arrival will be masked by P-wave reflections, and will vary in amplitude with angle of trajectory.

3.4 Wavefield Separation in the $f-k$ domain

Both f - k velocity filtering and median filtering have been used in crosshole seismic wavefield separation. The first method is the one used by Kragh et al. (1991) and Findlay et al. (1991). The median filter and its associated problems have already been discussed with regard to direct arrival suppression (§3.2.4).

The two-dimensional Fourier transform (2-D FT) and its applications to seismic reflection data processing are well known (Embree et al. 1963, March and Bailey 1983). The computational use of $f-k$ techniques has been greatly facilitated by the Fast Fourier Transform (FFT) (Cooley and Tukey 1965), which reduces dramatically the number of calculations necessary for transforming. For our purposes, the most interesting application of the 2-D FT is that of velocity filtering (Christie et al. 1983). Often referred to as pie-slice or f - k filtering, the technique has found wide application in VSP processing (Hardage 1985).

3.4.1 Differences between VSP and crosshole

Both crosshole gathers and VSP gathers contain several arrival modes which often intersect in the z - t domain, and are therefore difficult to separate using time domain filters. In the $f-k$ domain, these arriving energy packets transform to events radiating from the origin. The slope of an event is equal to the apparent velocity with which the arrival passes the receiving array, and it can be deduced that intersecting arrivals in $z-t$ have different apparent velocities and will plot along different lines in $f-k$. Attributing positive velocities to upgoing events it can be seen that upgoing and downgoing events will be separated into the right hand and left hand sides of the $f-k$ plot in Figure 3.5, respectively. Filtering in the $f-k$ domain, by putting to zero a wedge or pie slice of the spectrum, can therefore be used to discriminate between intersecting arrivals, and between up- and downgoing events.

Figure 3.5 $F-k$ plot showing the separation of upgoing and downgoing events, and a filter for passing only upgoing events.

For a particular interface, a wave arriving at it from above would 'see' it as the opposite polarity to that 'seen' by one from below, i.e. the impedance contrast would be positive for a downgoing wave and negative for an upgoing wave or vice versa. Therefore the reflected signals from above an interface (upgoing reflections) would be of opposite polarity to those below (downgoing). Separation of wavefields is a necessary pre-migration processing step since unless the up and downgoing events are migrated separately, there would be a net cancellation effect from combining their respective reflectivity amplitudes.

One important difference between VSP and crosshole wavefields is that, in the crosswell situation, many reflection events overlay the direct arrivals in f - k space (Figure 3.6), and wavefield separation by f - k filtering is difficult (Hardage 1992).

For a VSP wavefield, the direct and reflected events fall into opposite half spaces of the f - k domain, and effective f - k filters can be designed to suppress either the direct or the reflected wavefields. Note how it is not possible to perform a simple pass filter to separate direct and reflected arrivals for crosshole data in the f - k domain. As discussed previously (§3.3.1), this could be avoided by muting the direct arrival either pre- or post- wavefield separation.

Figure 3.6 (a) VSP data in the $z-t$ domain and (b) in the $f-k$ domain. (c) Crosshole data in the $z-t$ domain and (d) in the $f-k$ domain.

3.4.2 Data preparation for f - k filtering

Data processing prior to transformation to the $f-k$ domain and the design of the f - k filter are crucial for minimising the artefacts of the transform and filtering processes. March and Bailey (1983) have covered most of these factors; here attention will be brought to those which are of particular interest in crosshole processing.

One problem with digitally sampled data is that of undersampling and thus nonunique definition, especially in discrete Fourier space. If the temporal and spatial (i.e. source or receiver spacing) sampling intervals for the data are Δt and Δz, the temporal and spatial Nyquist frequencies are defined as

$$
\begin{equation*}
f_{N Y Q}=\frac{1}{2 \Delta \mathrm{t}} \quad(3.1 \mathrm{a}) ; \quad k_{N Y Q}=\frac{1}{2 \Delta z} \tag{3.1a}
\end{equation*}
$$

Before transforming the data to the $f-k$ domain, the gather must be normalised so that each trace has equal energy. Large differences between adjacent trace
amplitudes would cause ringing in the $f-k$ spectra, hence degrading the wavefield separation process. The importance of this step is of course highly data dependent. Coal Measures data are affected by the different source coupling factors (Kragh et al. 1991, Findlay et al. 1991), and may also be affected by variable receiver coupling. The physical model data (§2.2.2) on the other hand have near constant source/receiver coupling, though some slight variation should still be corrected by normalisation.

The FFT algorithm requires that the data consist of 2^{n} samples, where n is an integer, in both space and time dimensions. Padding out the number of samples with zeroes up to the next integer power of 2 is a simple matter in the time direction. Where the number of traces are not an integer power of 2 , padding out with zero traces up to the next power of 2 is performed. In fact these padding traces are highly advantageous for preventing wrap-around and so it is often desirable to pad out with zeroes by a further power of 2 .

Prior to the f - k transformation, the data must be spatially and temporally tapered. The 2-D FT assumes that the dataset repeats to infinity along both z and t axes. This assumed periodicity is not a great problem in time, since both the start and tail of the traces can be tapered without loss of desired data. However, a greater problem exists in the spatial direction, where a large discontinuity exists between a data trace and a zero (padding) trace. As mentioned above, this will cause ringing in $f-k$ unless a spatial taper is applied to reduce the amplitudes of the edge traces down to zero over three or four traces. It should also be noted that the same tapering requirement exists when transforming back from $f-k$ space to $z-t$. With the data used in this project, the amplitude tapers off to zero before the temporal Nyquist frequency. However, sharp cut-offs exist at the positive and negative Nyquist wavenumber, and it is necessary to apply a taper to zero over the edge wavenumber values.

3.4.3 Filter design

The arrivals to be passed and those to be rejected must be identified in the data in both the $z-t$ and $f-k$ domains. The apparent velocities of the arrivals can then be calculated. Should these arrivals be low amplitude, some intuition in apparent velocity estimation is required on the part of the processor, based on knowledge of the formation velocities. A pie-slice filter is then designed with pass slope velocities around that of the useful arrival (Figure 3.5). For example, P-wave arrivals will have apparent velocities of between $1800 \mathrm{~m} / \mathrm{s}$ (a wave
travelling vertically through a formation of velocity $1800 \mathrm{~m} / \mathrm{s}$) and infinity (a wave travelling horizontally and therefore hitting all sources/receivers simultaneously). Depending on the geometry of the borehole seismic acquisition, the range of useful angles of reflected arrivals can be calculated.

The pie slice filter must not have sharp edges, since this would introduce an event at the velocity of the cut-off upon transforming back into $z-t$. A cosine taper is used by the xhr package (Appendix B) to smooth the edges of the pieslice from the value of unity at the slope velocity down to zero at a velocity input by the user (Figure 3.5). For the same reason, it is prudent to select the edges of the velocity filter to lie along low amplitude channels in the data.

3.5 Migration

The migration process relocates reflection events to their true subsurface positions, and collapses diffractions to a point. Surface seismic surveys may be migrated post-stack on the assumption that the stack may be treated as a zerooffset section. However, this assumption is not valid for strong lateral velocity variations or for strong multiples and conflicting dips, for which the hyperbolic moveout assumption for stacking no longer holds (Yilmaz 1987). Full pre-stack migration, although preferable for overcoming the above problems, is less frequently employed because of the huge volumes of data and hence computing cost and time involved. Instead, pre-stack partial migration (synonymous with dip moveout, DMO) has been developed (Deregowski and Rocca 1981). In contrast, crosshole migration must be performed pre-stack as the source/receiver acquisition geometry precludes the equivalent of forming CMP gathers. Prestack migration is feasible for the small crosshole datasets used in this work, and stacking is performed post-migration when required.

Three mainstream migration methods have been developed, based on solutions to the scalar wave equation:- Kirchhoff diffraction stack, finite difference and $f-k$ migration (Hood 1981, Yilmaz 1987). The first pre-computer technique used was semicircle superposition. Diffraction summation (diffraction stack) (Hagedoorn 1954) was the first migration scheme commercially available on a computer. A progression from this was Kirchhoff summation, whereby Kirchhoff integral theory, rather than the ray approximation used previously, was employed to make the summation consistent with the wave equation. This
then included the effects of spherical spreading, obliquity and amplitude and phase corrections inherent in the depiction of the reflector as a series of closely spaced Huygens' secondary sources. Finite difference solutions to the scalar wave equation based on wavefield extrapolation and an imaging condition have been pioneered by Claerbout (e.g. Claerbout 1970, Claerbout 1971, Claerbout and Johnson 1971). A further set of methods are the frequency-wavenumber (f k) methods such as those of Stolt (1978) and the phase shift method of Gazdag (1978). These methods were based originally on a constant velocity medium, and their use in heterogeneous media is not free from problems.

3.5.1 Why Kirchhoff?

Findlay (1991) has made a comparison between several migration algorithms for application to crosshole processing. One conclusion from this was that Kirchhoff methods were preferable to finite difference methods because they were faster and because of the extra control of image quality available during the migration process through the use of an imaging aperture. He also concluded that the diffraction stack technique did not give theoretically correct amplitudes or phases in the migrated section, the finite difference technique (as coded up from Sun and McMechan 1986) produced reverberations due to grid dispersion effects and the Kirchhoff algorithm was unsuitable as it implied that the reflectivity response depended on the image point position between the source and receiver boreholes (§3.5.3). He therefore recommended and employed the Generalised Kirchhoff migration (Dillon 1990), although he noted the similarity to the Generalised Radon Transform (Miller et al. 1987).

3.5.2 Development of Kirchhoff migration

Claerbout's (1971) imaging principle states that reflectors exist at points in the subsurface where the first arrival of the downgoing wave is time-coincident with the upgoing wave. This principle forms the basis of all migration schemes. In wave-equation migration, the scattered wavefield at the geophone array is extrapolated (in reverse time) back along its path of propagation. An image is formed where the extrapolated wavefield meets the direct arrival.

As previously mentioned, diffraction stack migration was originally based on ray tracing concepts and on the scalar diffraction theory of Huygens and Fresnel. French (1975) and Schneider (1978) introduced to the diffraction stack process the Kirchhoff integral solution to the wave equation. When used in conjunction with an imaging condition this becomes Kirchhoff wave-equation migration.

Schneider's form of the 3D Kirchhoff integral formula (Schneider's equation 5) was derived in terms of the free surface Green's function for the wave equation:

$$
\begin{equation*}
P(\mathbf{r}, t)=\frac{1}{2 \pi} \iint d A \frac{\cos \alpha}{|\mathbf{R}| c}\left[\frac{\partial}{\partial t} P\left(\mathbf{r}_{0}, t_{0}\right)+\frac{c}{|\mathbf{R}|} P\left(\mathbf{r}_{0}, t_{0}\right)\right] \tag{3.2}
\end{equation*}
$$

In surface seismic applications, this relates the wavefield $P(\mathbf{r}, t)$ observed on the plane $z=0$ to its value at a point $P\left(\mathbf{r}_{0}, t_{0}\right)$ in the earth's subsurface at an earlier time. $|\mathbf{R}|$ is the distance from \mathbf{r}_{0} to \mathbf{r}, c is the velocity of the medium through which the wave has travelled and $\cos \alpha$ is the obliquity term. When thinking of crosshole applications, however, these definitions are inappropriate and instead we consider the observed wavefield at a position vector \mathbf{r} related to its value at a position vector \mathbf{r}_{0} at an earlier time.

As they stand, the first and second terms in the square brackets can be considered as the far-field and near-field terms, respectively. The near-field term is frequently dropped in seismic applications, giving the Rayleigh-Sommerfield diffraction formula of optics (Goodman 1968). The far-field term is also known as the high frequency approximation, since a higher frequency will mean a greater number of wavelengths in a set distance. Dropping the near-field term gives:

$$
\begin{equation*}
P(\mathbf{r}, t)=\frac{1}{2 \pi} \iint d A \frac{\cos \alpha}{|\mathbf{R}| c} \frac{\partial}{\partial t} P\left(\mathbf{r}_{0}, t_{0}\right) \tag{3.3}
\end{equation*}
$$

The operations implied by equation (3.3) are simply weighting, scaling and phase shifting of data on a hyperboloid. Note that for surface seismics this hyperboloid will be symmetrical about a vertical line whereas for crosshole configurations the symmetry will be about the normal to the plane through the source and receiver positions. The term $\cos \alpha$ represents a directivity term which falls off from unit value at the apex of the hyperboloid down its flanks. By considering a reflecting surface as a series of closely spaced Huygens' secondary sources, and by analogy with the geometrical optical case of point apertures, the necessity of this term to deal with angular dependent amplitudes becomes apparent (Sheriff and Geldart 1983). The factor $\frac{1}{\mid \text { R1c }}$ represents a true amplitude scaling factor and can be thought of as compensating for spherical spreading. Differentiation of the pressure function with respect to time, when examined in the frequency domain,
represents a $\frac{\pi}{2}$ phase shift together with a linear high-frequency boost. This is commonly known as the Newman (1990) filter.

For 2-D this equation can be adapted by reducing the area integration to a line integral (Devey 1978), and thus cylindrical symmetry. This results in:

$$
\begin{equation*}
P(\mathbf{r}, t)=\int d x \frac{\cos \alpha}{\sqrt{|\mathbf{R}| c}} \frac{\partial^{1 / 2}}{\partial t^{1 / 2}} P\left(\mathbf{r}_{0}, t_{0}\right) \tag{3.4}
\end{equation*}
$$

The square root differentiation is not defined, except in the frequency domain where it represents a $\frac{\pi}{4}$ phase shift and a non-linear high frequency boost ($f^{1 / 2}$). It can be rewritten as:

$$
\begin{equation*}
\frac{\partial^{1 / 2}}{\partial t^{1 / 2}} P\left(\mathbf{r}_{0}, t_{0}\right)=\int_{0}^{\infty} d T F(T) P\left(\mathbf{r}_{0}, t_{0}\right) \tag{3.5a}
\end{equation*}
$$

where $F(t)$ is the half differential operator such that

$$
\begin{equation*}
F(t)=\frac{d}{d t} \frac{1}{\sqrt{t}} \text { for } \mathrm{t}>0 \tag{3.5b}
\end{equation*}
$$

Dillon (1988) has applied this integral to the VSP configuration with noncollinear source and receiver positions.

Using the quantities defined in Figure 3.7, the integral becomes:

$$
\begin{equation*}
P(\mathbf{r}, t)=\int_{L_{r}} d L_{r} \frac{\cos \theta_{r}}{\sqrt{c R_{r}}} \int_{0}^{\infty} d T F(T) P\left(\mathbf{r}_{0}, T+\frac{\left(R_{s}+R_{r}\right)}{c}\right) \tag{3.6}
\end{equation*}
$$

To convert the integral from 2-D (line-source and receiver, structure invariant perpendicular to the plane containing the boreholes) to $2.5-\mathrm{D}$ (point-source and receiver, structure invariant perpendicular to the plane containing the boreholes), the integral is multiplied by the amplitude correction factor $\left(\sqrt{R_{r}+R_{s}}\right)$. A further correction factor of $\left(\sqrt{R_{s}}\right)$ is needed since we are using an imaging condition, and so must allow for the fact that the image points in crosshole are
scatterers and their illumination (i.e. intensity of incident wavefield from source) depends on their distance from the source. The integral becomes:

$$
\begin{equation*}
P(\mathbf{r}, t)=\int_{L_{r}} d L_{r} \cos \theta_{r} \sqrt{\frac{R_{s}\left(R_{s}+R_{r}\right)}{c R_{r}}} M\left(\mathbf{r}_{0}, \frac{\left(R_{s}+R_{r}\right)}{c}\right) \tag{3.7a}
\end{equation*}
$$

where $M\left(\mathbf{r}_{0}, \frac{\left(R_{s}+R_{r}\right)}{c}\right)=\int_{0}^{\infty} d T F(T) P\left(\mathbf{r}_{0}, T+\frac{\left(R_{s}+R_{r}\right)}{c}\right)$

Apart from scalar terms, this is equivalent to Dillon's (1990) equation (4), which forms the basis of his further comparison between Kirchhoff migration and acoustic generalized Radon transform (GRT) migration (Miller et al. 1987).

Figure 3.7 Elliptical isochron for the traveltime from a source at \mathbf{s} to a scattering point \mathbf{x} and on to a receiver at \mathbf{r}.

Equation (3.7) may be approximated by a summation over the receiver array L_{r}. Resetting the equation in terms of reflectivity and dropping scalar terms (Dillon 1990 equation 5):

$$
\begin{equation*}
\hat{C}(\mathbf{x})=\sum_{L_{r}} \Delta L_{r} \sqrt{\frac{R_{s}}{R_{r}}} \cos \theta_{r} \sqrt{R_{s}+R_{r}} M\left(\mathbf{r}, \frac{\left(R_{s}+R_{r}\right)}{c}\right) \tag{3.8}
\end{equation*}
$$

In replacing the integration by a discrete summation, we have introduced the possibility of error if ΔL_{r} is not small compared with R_{r}. However, since the farfield approximation has already been made, this should not be a limitation. Note again that the summation in equation (3.8) is similar to a diffraction stack with an obliquity factor, a wavefront spreading term and the amplitude and phase corrections of the Newman filter being incorporated.

3.5.3 Generalised Kirchhoff migration

Findlay (1991) argued that equation (3.8) was clearly inadequate for the crosshole geometry, since the reflectivity would be larger where $R_{s}>R_{r}$ i.e. nearer the receiver borehole. An expression which was symmetrical with respect to an exchange of source and receiver arrays (i.e. the reciprocity principle) would be preferable.

Dillon's inspiration for his 1990 paper came from a desire to correctly image deviated well VSPs, where the source is maintained vertically above the downhole geophone at each well station. However, correct wavefield extrapolation requires that the boundary conditions at the array of geophones satisfy the wave equation. Although a sufficient condition is to perform the survey with a single stationary source, a moving source deviated-well VSP fails to provide the boundary conditions for wave-equation migration. Dillon thus derives a generalized Kirchhoff (GK) migration algorithm from the exploding reflector model and compares this to the GRT migration scheme which was developed to handle any configuration of sources and geophones.

The 2D form of Dillon's (1990) GK migration summation operator is:

$$
\begin{equation*}
\hat{C}(\mathbf{x})=\sum\left(\Delta L_{r} \sqrt{\frac{R_{s}}{R_{r}}} \cos \theta_{r}+\Delta L_{s} \sqrt{\frac{R_{r}}{R_{s}}} \cos \theta_{s}\right) \sqrt{R_{s}+R_{r}} M\left(\mathbf{s}, \mathbf{r}, t_{s}+t_{r}\right) \tag{3.9}
\end{equation*}
$$

The theory behind this operator does not satisfy the wave equation, and it is necessary to remember this when considering the images produced by the operator. There is also an error term which is proportional to $\cos \phi_{S}-\cos \phi_{\mathrm{r}}$ (the angles made by the incident and reflected rays to the normal to the surface at \mathbf{x}), though this is very small if the zone of illumination extends beyond a few wavelengths from \mathbf{x}, and the geophone array and source array are extensive enough to capture most of the scattered energy. The 2-D form of GRT migation is given as equation (3.10), and the only difference with GK migration is the half-angle weighting term. This would tend to discriminate against high angles of incidence.

$$
\begin{equation*}
\hat{C}(\mathbf{x})=\sum\left(\Delta L_{r} \sqrt{\frac{R_{s}}{R_{r}}} \cos \theta_{r}+\Delta L_{s} \sqrt{\frac{R_{r}}{R_{s}}} \cos \theta_{s}\right) \cos ^{2} \theta / 2 \sqrt{R_{s}+R_{r}} M\left(\mathbf{s}, \mathbf{r}, t_{s}+t_{r}\right) \tag{3.10}
\end{equation*}
$$

3.5.4 Implementation of migration

The program kirchmig was written by Findlay (1991) to carry out diffraction stack, Kirchhoff summation (equation (3.8)), GK summation (equation (3.9)) and GRT migration (equation (3.10)). This program has formed the basis of subsequent developments ($\S 5.1$). The program's raytracing is performed through a horizontal layered velocity model; different horizontal and vertical velocities can be defined to model anisotropic media. The migration plane is covered by a user-defined grid of image points. Each image point is considered in turn, and raytracing from each source position to the point and from each receiver position provides a total travel time and distance travelled for each source-receiver combination, together with the angles of take-off from source and receiver and incidence at the image point.

For the processing of the tank data, a second raytracing method was adapted from the method used by Leggett et al. (1993) for tomography. The program to perform this was modified from Cassel's (1982) curved-raytacing algorithm. A grid of cells ('boxels') is defined, each with an associated velocity. Refraction calculations using Snell's law therefore are performed at each cell boundary. As above, a grid of image points is considered in turn, and raytracing provides traveltime, distance travelled and angles. This method is discussed further in §7.5.4.

3.5.5 Estimation of the velocity model

To estimate the velocity field for the raytracing, one can use tomographic methods, velocities estimated from horizontal raypaths, and sonic logs and uphole shots. The method used for each of the three datasets is different ($\$ 6.3$, §7.5.5, §8.1.2).

3.6 Factors influencing the order of the processing scheme

3.6.1 Source or receiver directivity

Should either the source or receiver display directivity, it would be preferable to wavefield separate the data into up or downgoing wavefields prior to the extraction of a minimum phase wavelet from the data (§3.2.1). In this way a separate filter can be designed for the up and for the downgoing wavefields.

3.6.2 Source and receiver depths

Where the source and receiver are at very different depths, the direct wavefield will be downgoing in the CSG or CRG whereas the reflected arrival will be upgoing or vice versa. In this case it would be better to suppress the direct arrival after wavefield separation, so as to preserve as much of the reflected wavefield as possible. In fact, $f-k$ filtering will be an effective tool for direct arrival suppression, and further suppression may be unnecessary. When the source and receiver are at similar depths, however, the inclusion of the direct arrival can lead to ringing problems on application of $f-k$ filters. A further salient point is that direct arrivals will contain higher frequencies than reflected arrivals which have travelled through more of the subsurface which preferentially attenuates higher frequencies.

3.6.3 Area to be imaged

Following on from the point above (§3.6.2) about f - k filtering being an effective tool for direct arrival suppression, this is especially true where reflections from the area of interest are upgoing on the receivers when the direct arrival is downgoing and vice versa. It is interesting to consider which parts of the section this is true for. For the area of section close to the upper half of the receiver array, the primary reflections from deeper sources are downgoing at the receivers whereas the direct waves are upgoing. Thus these wavefields could be separated in $f-k$ space for each CSG. For the area close to the lower half of the receiver array, the reflections are upgoing whereas the direct waves
are downgoing, and $f-k$ filtering in CSGs is effective here too (see §7.4.2). By reciprocity, for imaging the section close to the source array, f - k filtering needs to be carried out in common receiver gathers (CRGs). Thus f - k filtering is good for removing the direct wave on seismograms where source and receiver are at very different depths.

3.6.4 Direct arrival suppression before or after deconvolution

It has been mentioned already that it is better to perform direct arrival suppression after waveshaping deconvolution (§3.3.1) since the direct energy has been compressed into a narrower window and therefore less reflected energy will be removed. This is indeed true for any method of direct wavefield suppression. However, should the direct waveform be substantially different from the reflected arrival, possibly due to the attenuation of higher frequencies along the longer reflected raypaths, it may be prudent to remove the direct wavefield prior to the design of the deconvolution filter, or to ensure that the design of the filter is not influenced by the direct wavefield.

Chapter IV

Imaging Capability of Crosshole Seismic Reflection Surveying

In a crosshole survey between vertical boreholes, we would hope to image at least that part of the section between source and receiver arrays, as well as tapering zones above and below this area. However, we will see that the range of dips sampled over some of the section is inadequate for satisfactory imaging.

4.1 Introduction

4.1.1 Coverage of crosshole surveys

The coverage of crosshole surveys can be explained by first considering the reflection point locus for horizontal layers with one shot and receiver combination. Here we are only considering upgoing reflections. This is analogous to the CMP in traditional surface seismics (Figure 4.1).

Figure 4.1 The reflection point locus for a single shot and receiver in an isotropic medium. (a) Surface Seismic i.e. CMP and (b) Crosshole.

By considering the reflection point loci for all source and receiver positions (Figure 4.2), and by considering loci for the downgoing wave as well, which would be Figure 4.2 inverted, the expected crosshole coverage is as shown in Figure 4.3. Also shown is the coverage for hole-to-surface surveys which extends out laterally from the borehole to half the distance to the furthest offset geophone. It is possible therefore to build up continuous coverage of the subsurface along lines of boreholes with either crosshole or hole-to-surface surveying.

Figure 4.2 Upgoing reflection point loci for a crosshole survey in an isotropic medium (from Findlay et al. 1991).

Figure 4.3 Zones of coverage of crosshole and hole-to-surface surveys.

4.1.2 Image quality and dips sampled

When migrating seismic reflection data, image quality depends on the distribution of dips sampled at each image point. To obtain an optimally focused migrated image, our experience is that the migration aperture should include dips of $\pm 15^{\circ}$ relative to the local structural dip. If the local structural dip does not lie within the sampled range, then the image is smeared into the familiar, characteristic migration 'smiles' (Carrion et al. 1991). For crosshole seismic reflection surveys, the distribution of dips sampled at each image point is controlled principally by the survey geometry, including source and receiver array lengths and their element spacings. Here it is shown how the survey geometry can limit imaging capability close to the boreholes and even in the middle of the section between the boreholes. It is important to be aware of these limitations in planning surveys and in interpreting crosshole seismic reflection sections. An example of how the image quality of a crosshole reflection survey from coal exploration boreholes relates to the survey geometry is included in $\S 8.1$.

We consider here the geometric factors which govern image quality, and hence the spatial extent of useful coverage in crosshole seismic reflection surveys.

We shall principally discuss the range of dips sampled at image points and the effect of the discrete element spacing in source and receiver arrays on the distribution of dips within the sampled range. Related issues such as the elimination of direct waves ($\S 3.3$) and the choice of migration scheme ($\$ 3.5$, $\S 5.1)$ are discussed elsewhere. These factors are all critical for imaging near to the boreholes. If the lengths of the source and receiver arrays are comparable with (or less than) the borehole separation, then the range of dips sampled will also be too narrow for satisfactory imaging in the middle of the section between the boreholes.

4.2 Dip sampling at image points

For a single source and receiver in a constant velocity medium, an isolated primary arrival might have been scattered from any point on an ellipsoid with source and receiver positions at the foci. The cross-section in the vertical plane through source and receiver is an ellipse (Figure 4.4), which may be called an isochron because the sum of the traveltimes along raypaths from s to \mathbf{x} and from \mathbf{x} to \mathbf{r} is a constant for any position \mathbf{x} on the ellipse. The tangent to the ellipse at \mathbf{x} defines the dip angle of a planar reflector through \mathbf{x} which would give rise to a specular reflection.

Figure 4.4 Elliptical isochron for the traveltime from a source at \mathbf{s} to a scattering point \mathbf{x} and on to a receiver at \mathbf{r}. (This Fig. is identical to Fig. 3.7)

To perform Kirchhoff migration, rays are traced through a layered velocity model from each image point to each source and receiver location to calculate the traveltimes (see §3.5.4). From the angles with the vertical made by the raypaths at each image point \mathbf{x}, the dip angle sampled by that source-receiver combination can readily be found.

Figure 4.5 shows the distribution of dips sampled by the upgoing wavefield for part of the section in the example survey from the Lowther South site (boreholes 3438-3437; see §8.1).

Figure 4.5 Rose diagram showing the distribution of dips sampled at particular image points for the upgoing reflected wavefield. The diagram is plotted for half of the interborehole space over the depth range 40-60 m. Shot depths 10 52 m , receiver depths $12-56 \mathrm{~m}$, shot and receiver spacing 2 m .

For this figure, both source and receiver arrays are assumed to be continuous; the effect of discrete element spacing in each array is considered in the next section. The GB migration scheme ($\S 5.1$) of equation (5.3) is equivalent to a stack of migrated CSGs and CRGs, as are the GRT and GK migration schemes, and in every migrated gather the same uniform weighting applies across the range of dips sampled. In forming the rose diagram, therefore, the lengths of
the diametrical lines through the centre of each rose are directly proportional to the number of gathers which sample the corresponding dip angle. It can be seen that the weighting tapers off naturally towards each end of the total range of sampled dips.

Another consideration which affects the range of dips sampled at image points is whether any restriction should be placed on the maximum allowed value of the angle θ between the incident and scattered raypaths (see Figure 4.4). As θ increases, the location of the isochron surface on the depth section becomes extremely sensitive to errors in the velocity field. Given that sedimentary rocks are anisotropic, it is virtually impossible to find the velocity field exactly. To prevent the quality of the image being degraded by velocity errors, one could specify a maximum allowed value of θ; we have found it convenient instead to specify a maximum angle which the raypaths can make with the vertical at the image point. This limits the amount of raytracing which has to be done and is consistent with the use of $f-k$ filters for direct wave removal. A value of 60° has been found to be suitable to avoid degradation of the image.

The resulting reduction in the ranges of dips sampled by the upgoing wavefield is shown in Figure 4.6. The dip sampling, and therefore the imaging capability, is optimum in the middle of the section around the level of the deepest source and receiver elements. This bodes well for imaging a hydrocarbon reservoir by means of a crosshole reflection survey between two wells which terminate at the base of the reservoir. In such circumstances, traveltime tomography would not be able to image the reservoir because the angular coverage of the raypaths would be much too limited.

At the fault location (see $\S 8.1$), near the bottom of the receiver array, the range of dips sampled is from $+28^{\circ}$ to -7°. Generally, for image points close to the receiver array, the range is limited by the spatial extent of the source array, and vice versa. Towards the centroid of source and receiver arrays (top right-hand corner of Figure 4.6), the range of dips sampled becomes extremely narrow, and the image will become similar to that which would be obtained by reflection point mapping. This is due to the limited vertical extent of source and receiver arrays, which are only slightly longer than the borehole separation. We can thus see it is desirable that the ratio of source/receiver array length to borehole separation should be $2: 1$ or greater for adequate imaging in this part of the section.

Figure 4.6 Rose diagram showing the distribution of dips sampled at the same image points as Figure 4.5 with the additional restriction that raypaths must be within 60° of the vertical at each image point.

For image points beyond the boreholes, no specular reflections can be received from horizontal interfaces. Even so, there is some imaging capability there if the local structural dip lies within the sampled range, although that would not commonly be the case.

In Figures 4.5 and 4.6 we have only considered dips sampled at image points by the upgoing reflected wavefield. However, it is obvious that similar rose diagrams may be produced for that part of the section which is sampled by the downgoing reflected wavefield. Because of the limited vertical extent of source and receiver arrays, there is little overlap between the areas which can be imaged by the upgoing and downgoing reflected wavefields in this example survey.

4.3 Effect of source and receiver spacing

In the preceding section, we examined the distribution of dips at each image point assuming continuous source and receiver arrays, and we ignored the effect of the spatial sampling interval. In our example survey, the source and receiver positions were spaced at intervals of 2 m within their respective arrays. The rose diagram of Figure 4.6 is modified to take account of this in Figures 4.7 and 4.8. As before, the maximum allowed angle between the raypaths and the vertical at each image point is 60°.

Figure 4.7 Rose diagram showing the effect of discrete spatial sampling on the distribution of dips sampled at the same image points as in Figure 4.6 for the upgoing reflected wavefield.

Towards the middle of the section there are no gaps in the distribution of dips. However, close to the boreholes there are gaps within the range of dips sampled. This is shown in Figure 4.8, plotted on a larger scale, around the suspected fault location adjacent to the receiver borehole. Roses are spaced 0.2 m apart vertically at distances of 1,2 and 3 m from the receiver borehole. The gaps in the range of dips sampled at an image point are dependent on its position relative to the nearest receivers above it. They could be infilled by
reducing the receiver spacing in the nearby borehole. Note that reducing the source spacing would only increase the sampling density where dips are already adequately sampled; the gaps in the dip distribution would remain. However, a smaller source spacing would be required in order to improve the image close to the source borehole.

Figure 4.8 Similar rose diagram for image points spaced 0.2 m apart vertically over a 2 m interval at distances of $1-3 \mathrm{~m}$ from the receiver borehole.

For image points close to either the source or receiver array, it is the combination of spatial sampling in the near borehole and the extent of the array in the far borehole which govern the ability to form an accurate image. Rose diagrams such as those in Figures 4.7 and 4.8 clearly show where spatial sampling and array lengths are adequate over the section. Where they are inadequate, the image will inevitably be smeared, whatever is done in processing.

Chapter V

Advanced Processing

Two processing techniques are described here which have been developed to enhance the image quality of migrated sections. Generalised Berryhill migration has been developed as a full generalised Kirchhoff migration to include the nearfield term, with the aim of improving image accuracy close to the source and receiver arrays. 3-D $f-k-k$ filtering is an improved method of wavefield separation for crosshole seismic data.

5.1 Generalised Berryhill Migration

Both GK and GRT migration (equations 3.9 and 3.10) methods are far-field approximations, resulting from dropping the near-field term in the Kirchhoff integral, which might be important for imaging close to the boreholes. Accordingly, Rowbotham and Goulty (1993a) have adapted Berryhill's (1979) method for wave-equation datuming to the crosshole survey geometry to yield a generalised Berryhill (GB) migration scheme, which takes into account both the near-field and far-field terms. This should improve the ability to image close to source and receiver arrays, provided that the element spacing in the nearby array is small enough.

5.1.1 A generalised Berryhill migration scheme

Starting from Kirchhoff's integral theorem, Berryhill (1979) derived the following expression for forward extrapolation of a wavefield in two dimensions from one datum to another through a medium of constant velocity:

$$
\begin{equation*}
U_{o u t}(t)=\frac{1}{\pi} \sum_{i} \Delta L_{i} \cos \theta_{i} \frac{t_{i}}{R_{i}} Q\left(t-t_{i}\right) \tag{5.1}
\end{equation*}
$$

where the summation is over traces on the input datum,
ΔL_{i} is the trace spacing on the input datum,
θ_{i} is the angle between the normal to the input datum and the raypath from the input datum to the output datum,
t_{i} and R_{i} are the traveltime and distance, respectively, along the raypath, and $Q\left(t-t_{i}\right)$ is obtained by convolving the trace on the input datum with the function $\frac{d^{2}}{d t^{2}}\left[\frac{\left(t^{2}-t_{i}^{2}\right)^{1 / i}}{t_{i}}\right]$ for $t>t_{i}$.

The expression (5.1) retains the contributions from both the near-field term and the far-field term in the Kirchhoff integral. For migrating crosshole data in a CSG, we extrapolate backwards in time and use the imaging principle that the forward extrapolated wavefield from the source must be time-coincident with the backward extrapolated wavefield from the receivers at each image point \mathbf{x}. To convert from 2-D to 2.5-D (§3.5.2), the summation is multiplied by the amplitude correction factor $\left(\sqrt{R_{r}+R_{s}}\right)$. A further correction factor of $\left(\sqrt{R_{s}}\right)$ is needed to allow for the fact that illumination of image points depends on their distance from the source ($\S 3.5 .2$). Thus we rewrite (5.1) for a CSG in the real survey to give the following expression for the reflectivity estimate:

$$
\begin{equation*}
\hat{C}_{s}(\mathbf{x})=U_{o u t}\left(t_{s}\right)=\frac{1}{\pi} \sum_{r} \Delta L_{r} \cos \theta_{r} \frac{t_{r}}{R_{r}} \sqrt{R_{s}\left(R_{s}+R_{r}\right)} Q\left(\mathbf{s}, \mathbf{r}, t_{s}+t_{r}\right) \tag{5.2}
\end{equation*}
$$

where the subscript r refers to the receiver array, t_{s} is the traveltime from the source at \mathbf{s} to image point \mathbf{x}, and t_{r} is the traveltime from \mathbf{x} to a receiver at \mathbf{r}. $Q\left(\mathbf{s}, \mathbf{r}, t_{s}+t_{r}\right)$ is obtained by convolving the trace recorded at receiver \mathbf{r} from source \mathbf{s} with the function $\frac{d^{2}}{d t^{2}}\left[\frac{\left(t^{2}-t_{r}^{2}\right)^{1 / 2}}{t_{r}}\right]$ for $t>t_{r}$, and taking the value of the output trace at $t=t_{s}+t_{r}$.

As discussed by Dillon (1990), reciprocity demands that both source and receiver arrays are taken into account symmetrically in forming the reflectivity estimate ($\$ 3.5 .3$). This is achieved by summing the reflectivity estimates for all CSGs and CRGs together. Ignoring the scalar multiplier, this gives for generalised Berryhill migration (where the summation is over all traces):

$$
\begin{align*}
& \hat{C}(\mathbf{x})=\sum\left(\Delta L_{r} \cos \theta_{r} \frac{t_{r}}{R_{r}} \sqrt{R_{s}\left(R_{s}+R_{r}\right)} Q\left(\mathbf{s}, \mathbf{r}, t_{s}+t_{r}\right)\right. \\
&\left.+\Delta L_{s} \cos \theta_{s} \frac{t_{s}}{R_{s}} \sqrt{R_{r}\left(R_{r}+R_{s}\right)} Q\left(\mathbf{r}, \mathbf{s}, t_{r}+t_{s}\right)\right) \tag{5.3}
\end{align*}
$$

Note that for each input trace there are two different functions Q which have to be evaluated independently. In the case of $Q\left(\mathbf{r}, \mathbf{s}, t_{r}+t_{s}\right)$, the recorded trace has
to be convolved with the function $\frac{d^{2}}{d t^{2}}\left[\frac{\left(t^{2}-t_{s}^{2}\right)^{1 / 2}}{t_{s}}\right]$ for $t>t_{s}$. The calculation of these functions represents the additional computational load over GK migration, but this is not heavy because the operator to be convolved with the input trace in each case may be truncated after relatively few terms without introducing significant error (Berryhill 1979).

As for GK migration, GB migration is derived for constant velocity, with reflectivity due to density contrasts in an acoustic medium. The reflection coefficients in these circumstances are independent of incident angle. If desired, a factor $\cos ^{2}(\theta / 2)$ could be introduced into the summation as for GRT migration, where reflectivity is due to velocity contrasts in an acoustic medium of constant density. Dropping the terms $\frac{t_{r}}{R_{r}}$ and $\frac{t_{s}}{R_{s}}$, corresponding to the reciprocal of velocity along the raypath, introduces neglible error as these only fractionally change the weighting across the range of dips sampled. As for GRT and GK migration, GB migration is symmetrical with respect to source and receiver arrays, and actually amounts to a combined stack of individual migrated CSGs plus individual migrated CRGs.

Comparisons between the results obtained using GK and GB migration are made in $\S 7.5 .6$ (tank dataset - Figure 7.33) and $\S 8.1 .3$ (coal exploration dataset - Figure 8.3). The migration program berrymig, which evolved from Findlay's kirchmig program (§3.5.4), is included as Appendix E.

5.2 3-D $f-k$ - k wavefield separation

In processing crosshole seismic reflection data, it is necessary to separate the upgoing and downgoing primary reflected wavefields from each other and from the direct wavefield. The problems of achieving this satisfactorily are addressed earlier (§3.4.1). Here the use of 3-D $f-k-k$ filters is proposed for separating the wavefields (Rowbotham and Goulty 1993b). The complete dataset is treated as a data volume, with each sample defined by the three coordinates of source depth, receiver depth and time.

5.2.1 Why is it necessary?

I address the following two problems. The first is that direct arrival energy remains in the wavefield separated gather and is imaged as coherent noise in the migrated section (§3.4.1). One remedy for this would be to mute the direct arrival (§3.3.1), either before or after wavefield separation; however, this step will also remove some of the reflected energy required for imaging. Pratt and Goulty (1991), Stewart and Marchisio (1991) and Rector et al. (1992b) have used what they described as "common ray angle" (§3.3.4), "common interval" and "common offset" gathers, respectively (all equating to a constant difference between source and receiver depths), to accentuate the differential time moveout between the direct and reflected waves. The direct arrival is then removed by some type of multichannel filter designed to attenuate arrivals with zero moveout. However, these methods are not ideal for the smaller datasets used in this study (§3.2.4).

The second problem is that, although wavefield separated CSGs appear to contain coherent reflected events, the coherency is much lower if the same traces are viewed in CRGs. Similarly, if wavefield separation is carried out in CRGs, then the CSGs are much less coherent. This may be due to the presence of multiples, direct shear arrivals and mode-converted events. Rector et al. (1992a, 1992b) overcame this second problem by filtering in multiple domains. Following the removal of the direct wavefield in common offset space, two copies of the data were made; one was retained in CSGs and the other was sorted into CRGs. The two sets of gathers were processed to attenuate reflections from horizontal locations near the common variable well, prior to 2D f - k filtering for wavefield separation. The final stacked section (Lazaratos et al. 1992) was then a combination of the two datasets, with CSGs imaging the
half of the interborehole space near the receiver borehole and CRGs imaging the half near the source borehole.

5.2.2 The method

I take the next logical step by applying a one-pass $f-k-k$ wavefield separation filter to the whole dataset from a crosshole seismic survey. In effect, the method is almost equivalent to two-pass 2-D $f-k$ filtering, in both CSGs and CRGs. However, visualization of the dataset as a 3-D volume provides a valuable insight and, as a practical matter, transformation into $f-k-k$ space allows the filter tapers to be selected optimally.

Previously, $f-k-k$ methods have only been used for conventional geometries, i.e. two orthogonal spatial axes and a time axis (e.g. Peardon and Bacon 1992). However, there is no reason why the $f-k-k$ technique cannot be extended to the crosshole geometry with source depth and receiver depth as the independent spatial variables (indeed, stacking diagrams utilize this concept in plotting source and receiver positions along different axes, even though they are collinear). In the crosshole case, where the arrays are parallel, we may envisage the data as a volume with the source depth (s) and receiver depth (r) axes as being orthogonal to each other and to the time (t) axis. Upon 3-D Fourier transformation, the data are transformed from $s-r-t$ space to $f-k_{s}-k_{r}$ space, where f is temporal frequency, k_{s} is wavenumber corresponding to the s-axis, and k_{r} wavenumber corresponding to the r-axis. We can then select any volume of the data in $f-k-k$ space in a one-pass filtering operation.

5.2.3 Viewing the wavefields in 3-D

Let us first consider the direct wavefield and the upgoing reflected wavefield from a single horizontal interface between two vertical boreholes, within a medium of constant velocity V (Figure 5.1). In $s-r-t$ space (Figure 5.2), a slice at constant source depth will give a CSG, and one at constant receiver depth will give a CRG. The direct and reflected waves can be graphically represented as the surfaces in Figure 5.2. The surfaces meet where the source or receiver is positioned at the reflector, i.e., where source or receiver depth is 30 m , since direct and reflected traveltime will be equal.

Figure 5.1 Direct and upgoing reflected raypaths from a horizontal interface between two vertical boreholes, within a medium of constant velocity V.

Figure 5.2 The direct and upgoing reflected wavefields from the simple case of
Figure 5.1 can be graphically represented as surfaces in $s-r-t$ space.

A plane wave in $s-r-t$ space will be represented in $f-k-k$ space by a vector through the origin with slope equal to the apparent velocity of the arrival. For the simple circumstances under consideration, the direct wavefield transforms into the plane $k_{s}=-k_{r}$ in $f-k-k$ space (Figure 5.3). The upgoing reflected wavefield lies in the plane $k_{s}=k_{r}$, in one quadrant of the $f-k-k$ domain. Likewise a downgoing reflection will lie in the same plane but in the opposite quadrant. For a dipping reflector, the reflected wavefield would lie to one side of the $k_{s}=k_{r}$ plane, but still in the same quadrant. Head waves will also lie in these quadrants, having similar moveout characteristics to reflected arrivals.

Figure 5.3 The direct wavefield transforms into the plane $k_{s}=-k_{r}$ in $f-k-k$ space. The upgoing reflected wavefield lies in the plane $k_{s}=k_{r}$, in one quadrant of the $f-k-k$ domain. Likewise a downgoing reflection will lie in the same plane but in the opposite quadrant.

Raypaths for the strongest multiples in crosshole data undergo two reflections. They will be either up or downgoing at both source and receiver, and so will lie in the same quadrants as the direct waves, around the $k_{s}=-k_{r}$ plane. Clearly, direct shear waves will also lie in the same two quadrants.

5.2.4 Filter design

The traveltime minimum of the reflected wavefield surface occurs when both the source and receiver are at the interface depth. Here both the direct and reflected raypaths are horizontal, corresponding to $k_{s}=k_{r}=0$ (infinite apparent velocity). However, for depth migration we have found it convenient to specify a maximum angle which raypaths can make to the vertical at the image point. This
is because the calculated location of the reflecting point is extremely sensitive to velocity errors for large values of incident angle; hence, if such raypaths are included, the quality of the migrated image is liable to be degraded (Rowbotham and Goulty 1993a, Qin and Schuster 1993). A maximum angle to the vertical of 60 degrees has been found to be suitable for this purpose. The minimum possible value of k_{s} and k_{r} for any frequency f is then $f / 2 V$, with the maximum value being f / V, corresponding to vertical raypaths across the source and receiver arrays, respectively.
(a)

(b)

Figure 5.4 (a) Full-pass region of the filter for the upgoing primary reflected events (tapers not shown for clarity). (b) Frequency slice of the filter pass region at 250 Hz plotted with a linear amplitude scale (i.e. constant contour interval).

Thus in 3-D $f-k-k$ space, the part of the upgeing wavefield which we wish to use for imaging is defined by $k_{s}=k_{r}$ values lying between f / V and $f / 2 V$. Following the advice of Stewart (1989) and Peardon and Bacon (1992), one-pass filtering in $f-k-k$ space is preferred over two-pass filtering with successive fan-shaped filters in $f-k_{s}$ and $f-k_{r}$ space. Although in practical terms the difference is minimal, a smoother pass volume is defined, especially in the tapered zones at the corner of the volume. As in 2-D filtering, tapers are necessary to prevent ringing upon transformation back into $s-r-t$ space. The full-pass region of the filter for the upgoing primary of the reflected wavefield is shown in Figure 5.4a (tapers not shown for clarity) and a frequency slice at 250 Hz is shown in Figure 5.4b (tapers shown). The reject region contains the primary downgoing
wavefield, both compressional and shear direct waves, and the strongest multiples.

The program xhr3 (Appendix D) was written to perform $f-k-k$ filtering. Figure 5.5 shows an example data volume pre- and post-filtering. Notice that it is dominated by the direct energy along the $k_{s}=-k_{r}$ axis. This has been muted in the filtering. The $f-k-k$ technique has been used for filtering the physical model and one of the Coal Measures datasets used in this study, and the results are presented in $\S 7.4 .3$ and $\S 8.2$. They show that the use of $3 \mathrm{D} f-k-k$ filtering has made the muting of direct arrivals in the time domain superfluous, since the separation of direct and reflected wavefields and of up and downgoing reflections is achieved in one operation.

Figure 5.5 The data volume transformed into the $f-k-k$ domain, and depicted as f-slice plots with a linear amplitude scale: (a) before filtering, and (b) after 3-D $f-k-k$ filtering.

Chapter VI

Groningen

This chapter covers the imaging of a common source gather from a crosswell survey in the Groningen gas field.

6.1 Introduction

A crosswell survey in the Groningen gas field was acquired by Seres a/s of Trondheim (Vaage and Ziolkowski 1992). A schematic cross section between the deviated wells used in the experiment is included as Figure 6.1.

Figure 6.1 Source and receiver positions with the interpretation of the interwell geology based on Schlumberger logs and knowledge of the general geological setting of the area.

The source was at 2350 m depth with receivers in Triassic and Zechstein strata from 2233-2606m depth. The wells deviated away from each other over this gather from approximately 300 m well separation at the top receiver, to 330 m at the bottom receiver position.

6.2 Data examples

As explained in §2.1.2, six common source and receiver gathers were acquired during this experiment, of which only one common source gather of 125 records provided decent coverage. For completeness, the four CRGs are included as Figures 6.2(a)-(d).

Figure 6.2 CRGs at depths (a) 2453 m . (b) 2456 m . (c) 2503 m . (d) 2506 m .

6.2.1 Arrivals in the smaller gathers

The common source gather from 2350 m depth with 1 m receiver spacing (Figure 6.3) provides detail of the wavefield as the receiver passes through the anhydrite at 2519 m depth (Figure 6.1), although this is of limited use for imaging. However, it does make apparent the receiver cable stretch of 6 m (§2.1.2), such that the interface appears instead at 2513 m receiver depth. Head waves can be seen as the first arrivals above this top anhydrite interface, and there is some indication of reflected energy from the interface.

Figure 6.3 CSG from 2350 m depth.

Tube wave energy is of high amplitude in these gathers, although it arrives at a later time to that displayed in Figures 6.2 and 6.3, suggesting that a temporal mute can be applied without risk of attenuating the earlier reflected energy. The tube wave can be seen by plotting the traces from the CRG at 2453 m depth (Figure 6.2a) on a longer time-scale (Figure 6.4a). On the f - k spectrum of the gather (Figure 6.4b), the tube wave energy is seen to be aliased with an apparent velocity of about $1600 \mathrm{~m} / \mathrm{s}$.

Figure 6.4 (a) CRG from 2453 m depth.

Figure 6.4 (b) $F-k$ spectrum of this CRG, showing tube wave energy, with an apparent velocity of $1600 \mathrm{~m} / \mathrm{s}$, aliased above 800 Hz .

6.2.2 Arrivals in the gather used for imaging

The 125 -trace CSG is displayed in Figure 6.5. The received signal had a broad bandwidth of $300-1500 \mathrm{~Hz}$, with a pronounced peak around 960 Hz (Figure 6.6).

Figure 6.5 CSG from 2350 m depth.

Figure 6.6 Amplitude spectrum of traces 1 (upper trace) and 63 (lower trace) from the CSG at 2350 m depth.

To show more detail of the earlier arrivals, this has also been plotted on shorter time-scales as two separate CSGs of 63 and 62 records (2233-2419m, 24232606 m depth) (Figures 6.7 and 6.8), the separation being where irregular spacing occurred within the gather.

Several arrivals are observed in these data, leading to some interesting observations about the physical properties of the media being travelled through. Firstly, two reflections are prominent with a frequency content around 1 kHz , coming from the anhydrite layer at 2519 m depth and from a thin layer near the Top Zechstein (2429 m), which corresponds to an increase on the density log. There are also weaker reflections from another interface within the Zechstein at around 2471 m depth, and possibly from Top Zechstein at 2390 m depth. The reason why a prominent reflection is not expected from the Top Zechstein interface (Triassic Bunter Sandstone passing to Permian Halite) is that the density of the halite is less than that of the sandstone even though the velocity may be higher. The anhydrite layers within the Zechstein have a strong impedance contrast with the surrounding halite as both their density and acoustic velocity are greater.

Figure 6.7 CSG from 2350 m depth with receivers at depths 2233-2419m.

Figure 6.8 CSG from 2350 m depth with receivers at depths 2423-2606m.

No strong reflected trough is seen from the base of the larger anhydrite layer to match the large amplitude peak from the top, even though the impedance contrasts should be similar but of opposite sign. However, this is consistent with the large refractive effects expected at the top of a high velocity layer and with the post-criticality at the upper surface of the anhydrite (Figure 6.13).

Raytracing modelling of this CSG has been performed by Vaage (personal communication) and from these a reflection from the top of the Rotliegend reservoir (depth $\sim 2700 \mathrm{~m}$) is interpreted as arriving on traces from depths 2554 2606 m between sample 700 on the lowest trace to sample 740 at the base of the anhydrite (Figure 6.5). Processing to migrate this energy has been attempted, though this proved unsuccessful because of the lack of constraints available, such as knowledge of the velocities lower down in the section and lack of effective coverage provided by just one CSG.

The direct and reflected arrivals are low amplitude in a zone in the depth range 2341-2395m (Figures 6.5 and 6.7), and normalisation of the traces does not amplify them because of the later tube waves. For processing this data it is a simple matter to mute the tube waves before reapplying normalisation, as the tube waves do not interfere with the reflected arrivals in $z-t$ space. As the pre-first-break noise levels of these traces are comparable to others in the gather, it is not thought that the amplitudes have been altered significantly prior to the data arriving in Durham.

It is suggested that the shadow zone occurs at depths within the Bunter Sandstone, whereas the amplitudes recover lower down once the receivers pass into the salt. This agrees with the interpreted reflection from 2390 m at the Top Zechstein boundary. It is not known what causes this shadow zone, though it could be due to poor coupling between the borehole casing and the formation. However, the cement bond \log on the Schlumberger Array Sonic tool showed the receiver well to be well cemented, and it is interesting to note that the tube wave amplitudes have not been affected at this depth.

Figure 6.9 CSG from 2350 m depth with receivers at depths 2395-2456m.
Anhydrite layer interpreted to be at 2429 m depth.

The anhydrite layer at 2429 m depth has been interpreted as being 5 m thick from gamma ray and density logs run in the receiver borehole. Since refraction in the lower anhydrite layer generates head waves ($\$ 6.2 .1$; Figures 6.3 and 6.8), the possibility of channelling by this shallower thin layer exists. Traces around the layer have been plotted in Figure 6.9. Although not at first apparent, the highfrequency low-amplitude arrival ahead of the direct arrival at traveltime 78 ms (391 samples) on traces at depths 2426 m and 2429 m is thought to be channelled energy. This energy is not spiked successfully by the waveshaping method used in §6.3. However, thin layers will preferentially channel energy of higher frequency than the direct arrival, since lower frequencies will 'see' the thin layer as thinner than the high frequencies. The layer will 'leak' head waves, hence the low amplitude.

It is interesting to note that the moveout of the direct arrivals is slightly less steep below this thin anhydrite layer than above it (Figure 6.5), implying a velocity inversion, with the halite above the layer having a higher velocity than that below. This behaviour implies that the anhydrite layer is continuous and locally extensive enough to form a barrier to communication between the two halite layers.

6.3 Processing and Results

A standard crosshole reflection processing scheme was applied to these data waveshaping deconvolution, wavefield separation and migration (see Chapter 2). A single direct arrival was extracted from those traces where the direct arrival was discernible by aligning the direct arrival energy and stacking the traces. Using this wavelet as input ($\$ 3.2 .2$), an optimum Wiener shaping filter was designed, with a zero-phase Butterworth wavelet as the desired output, with a signal bandwidth of $300-1500 \mathrm{~Hz}$, and applied to the data.

As transformation into the $f-k$ domain requires regular trace spacing, the data were transformed in the two separate gathers before being migrated together. The later arriving tube waves were removed by tapering the traces. To prevent ringing in the $f-k$ spectra upon transformation, a spatial taper was applied to the deepest and shallowest traces of both halves of the gather to smooth the steps in amplitude at the edge traces. Of primary interest was the upgoing wavefield, since the target interfaces were located below the shot depth. The downgoing migrated image (not shown) displayed little coherent reflectance.

Several processing sequences were performed on the data prior to migration to compare their merits in the final depth migrated sections. It was found that applying an AGC to the data after wavefield separation and before migration improved the migrated section, especially above the Top Zechstein reflector where the first arrivals were weak. The deconvolved upgoing wavefield was then migrated using the GK migration algorithm (§3.5.3) to produce Figure 6.10. It should be noted that GK migration reduces to Kirchhoff wave-equation migration for a single CSG - an experiment that obeys the wave equation. A simple two-layer velocity model was constructed by integrating information provided on the interpreted geological cross section (Figure 6.1), the direct arrival traveltimes and receiver positions, and by knowledge of the expected depth of the reflectors from the CSG.

The migrated depth section (Figures 6.10 and 6.11) shows good imaging of the strong reflections from the sloping thin anhydrite layer and from the anhydrite layer at 2519 m depth ${ }^{1}$, and of the weaker Top Zechstein (2390 m) and sloping reflection (trough) at 2471 m . The two anhydrite reflected arrivals in the CSG both had sharp cut-offs, producing good coherent reflectors over about half the theoretical ray-traced coverage.

[^1]

Figure 6.10 Migrated depth section of the CSG from 2350m depth. Migration velocity field also displayed. Trace spacing -5 m . SEG reverse polarity i.e. peak $=$ compression.

Figure 6.11 Partial migrated depth section of the CSG from 2350 m depth. Migration velocity field also displayed. Trace spacing - 2 m .

The anhydrite layer is known to have a normal fault with a throw of around 20 m located between the two wells. The termination of the top anhydrite reflector at

2519 m provides a lower limit for how close the fault could be to the receiver well (Figure 6.12).

Figure 6.12 A simple ray diagram to show how the termination of the top anhydrite reflector provides a lower limit to how close the fault can be to the receiver borehole.

By raytracing, it has also been found that this termination may mark the transition from high amplitude post-critical reflections to lower amplitude precritical reflections (Tooley et al. 1965) (Figure 6.13).

Figure 6.13 A simple ray diagram to show how the termination of the top anhydrite reflector could be due to the transition from post-critical to sub-critical reflections.

To confirm which of these is the cause of the termination, and of the termination of the reflector above, it would be necessary to acquire several common-shot gathers from widely spaced source locations in the left hand well.

Chapter VII

Physical Model Data

A crosshole survey with 51 source and 51 receiver positions was performed through a model using Durham University's physical modelling system. Here the datasets are described, and the successes and failures of various processing schemes discussed.

The acquisition of this dataset is described in §2.2. To recap, the model is made of seven layers of epoxy resin, it is 46.5 mm wide, and the pre- and post-flood models were identical except for the inclusion of a low velocity flood zone in the 'reservoir' layer. Source and receiver spacing was 2.5 mm , and the sampling interval was $250 \mu \mathrm{~s}$. All dimensions were scaled by a factor of 1000 to represent the case for real data (i.e. mm to m , ms to s).

7.1 Previous Work using these Datasets

These datasets have been subjected to full waveform inversion schemes, such as diffraction stack migration and frequency-domain acoustic and elastic wave equation imaging (Pratt and Goulty 1991, Pratt et al. 1991). The data have also been subjected to GRT imaging (Li and Worthington 1990). Traveltime tomography was used to provide the initial velocity field to be used for both imaging methods. However, to prevent errors in the tomographic stage feeding through to the later stages of processing, the known geometry and velocities were used to raytrace through.

Both traveltime and amplitude tomography have been performed on these data (Leggett 1992, Leggett et al. 1993); in that work, an initial estimate of the preflood velocity model was derived as if calibrated sonic logs had been run in both wells, this being a more realistic simulation of a real crosshole experiment. It was found that the velocity tomograms imaged the flood zone quite accurately, whereas amplitude tomography imaged the flood zone less precisely as an area of higher absorption.

7.2 Arrivals in the Wavefield

Figure 7.1 shows CRG 19 (depth 45 m) from the post-flood model as a deconvolved gather with an agc of window length 50 samples applied to enhance the later arrivals. Figure 7.2 is an expanded view of the traces around the flood zone. Arrivals are labelled with letters. The characteristics of the arrivals are largely in accordance with those observed in datasets acquired at a West Texas carbonate reservoir (Van Schaack et al. 1992) and at the Devine test site in Texas (Smith et al. 1993).

7.2.1 P-wave Direct (Pd)

This is a high amplitude arrival, and its characteristics can be noted from the source signature approximation derived for deconvolution purposes (e.g. Figure 7.7). As noted by Leggett (1992), multi-pathing of the direct arrival around sharp corners of the flood zone occurs, and is not compensated for by the raytracing program. This effect is not clearly observed in CRG 19.

Figure 7.1 Post-flood CRG 19 deconvolved to zero-phase with arrivals marked (agc applied with window length of 50 samples). Position of R19 marked.

Figure 7.2 Expanded view of Figure 7.1. Position of R19 marked.

7.2.2 S-wave Direct (Sd)

This arrival is visible at low amplitude in the raw gather, but is greatly amplified by the AGC post-deconvolution as it lies outside the 50 sample window around the direct arrival. It interferes with the P-wave reflected arrivals on certain gathers, and will therefore be seen as noise in migrated images if not removed (see $\S 7.4 .1$). The S -wave reflected arrivals could also be used for reflection imaging, though it was not considered worthwhile for such low amplitude arrivals.

7.2.3 P-wave Reflected

These arrivals are only noticeable in the raw data by paying attention to the variations in waveform of the direct arrival from trace to trace caused by interference with reflected arrivals. In the deconvolved data, the reflected events can be discerned by comparing moveouts with the direct arrival moveouts. They are seen much more clearly after wavefield separation when the direct wave has been removed (\$7.4).

7.2.4 P-S converted wave (PS)

An arrival with S-wave velocity originates from the intersection of the P direct arrival with the top of the flood zone at 37.5 m depth (Figure 7.2). It is
interesting to note that this arrival would be passed in 2-D $f-k$ filtering performed in CRGs (§7.4.1) since the arrival would have the moveout of a Pwave, whereas in CSGs it would lie outside the pass fan with the S -wave velocity. In 3-D $f-k-k$ filtering (§7.4.3), the arrival would be muted.

7.2.5 P Head wave (Ph)

These can be seen arriving ahead of the high amplitude direct arrival which has travelled through the low-velocity flood zone. A sketch of the interpreted arrivals and raypaths is given in Figure 7.3. This interpretation can be checked by calculating the traveltime differentials of the raypaths. As first arrivals, these will cause problems if picked as direct arrivals for tomography, and in fact it is thought that the images obtained by Leggett et al. (1993) suffered from this. Head waves will tend to produce exaggerated tomographic estimates of velocity and attenuation locally since they have earlier traveltimes and lower amplitudes than the following direct arrivals.

Figure 7.3 Sketch of interpreted direct and head wave raypaths in the region of the flood zone (FZ).

7.3 Processing - Removal of the direct wavefield

In many respects, the tank data proved more difficult to process than the field data, despite the advantages of having a known geometry and no anisotropy. The first and foremost reason for this was the relatively high amplitude and length of the direct arrival, which prevented any reflected arrivals being identified in the raw data. The reason for the predominance of the direct
wavefield over the reflected wavefield was the weaker impedance contrasts of the interfaces in the epoxy resin models than in the real geological strata. The first task of processing was then the removal of the direct wavefield, to leave the reflected (scattered) wavefield. Several schemes have been tried.

7.3.1 Shaping and muting

The first method used was the basic one of shaping the source signature to zero phase and then muting it. For shaping, the simplest method involved using an averaged direct arrival through water, i.e. no model present, as input for designing an optimum Wiener shaping filter. The desired output was a zerophase Butterworth wavelet with a signal bandwidth of $150-600 \mathrm{~Hz}$ (Figure 7.4).

Figure 7.4 From top: source signature obtained by aligning and stacking wave through water, desired Butterworth output, deconvolution filter, actual output.

Choosing the desired output to be a zero-phase wavelet with the same amplitude spectrum as the source signature was also tried (Figure 7.5) to counter the ringing effects of a notch at 250 Hz in the amplitude spectrum of the data. This was the method used by Leggett et al. (1993) for shaping the direct arrivals to a peak prior to first break picking for traveltime tomography.

Figure 7.5 From top: source signature obtained by aligning and stacking wave through water, desired output with same amplitude spectrum as input spectrum, deconvolution filter, actual output.

Figure 7.6 Amplitude spectra of the averaged direct arrival through water (top spectrum) and through the model (bottom spectrum).

These methods were found to be unsuitable for deconvolving the data because the arrivals passing through the model were of different shape to those passing through water alone, due to preferential attenuation of higher frequencies during passage through the model (Figure 7.6). By comparing the averaged direct arrival through water with the averaged direct arrival through the model (Figure 7.7), it is apparent that the relative amplitudes of the distinctive triplet of peaks has been changed by passage through the model. As a test, the filter designed with the water wavelet as input (Figure 7.4) has been applied to the wavelet through the model to produce the bottom trace in Figure 7.7. The filter has failed to bring all the energy of trailing peaks into the initial peak, and the peak is delayed behind the first break (sample 60). This is as expected since attenuation of the higher frequencies would cause a pulse to broaden and attenuation is causal. Applying the filter to the raw data can be seen to produce the same effects (Figure 7.8), with the initial peak behind the first break (marked with a dot), and later energy mimicking the moveout of the first arrival.

Figure 7.7 Input wavelet from aligning and stacking direct arrival through water (top), through model (middle), result of applying filter (bottom), designed with water wavelet (Figure 7.4), to model wavelet.

Figure 7.8 CRG 9 deconvolved using the filter in Figure 7.4.

Instead, an input wavelet was obtained by aligning and stacking the direct arrivals over a range of take-off angles through the model. Since stacking tends to attenuate high frequencies, the number of traces stacked was kept to the minimum necessary to give a good representative wavelet. This wavelet had a larger notch at 250 Hz than the water wavelet and so both methods of defining an output wavelet used above (Butterworth wavelet and input amplitude spectrum = output amplitude spectrum) were tried (Figures 7.9 and 7.10).

It is evident that the 250 Hz ringing due to the amplitude spectrum notch is more of a problem for this second input wavelet (compare Figures 7.4 and 7.9). The designed filter has had to inject more response at this frequency to achieve the desired output, resulting in ringing in the output wavelet at this frequency and hence difficulty in applying a mute to the direct arrival. The remedy suggested by Hatton et al. (1988) of adding in more white noise (the previous spectra having 2% white noise added) did not remove the ringing completely.

After each of the above shaping schemes, the direct arrival energy was muted out by applying a tapered mute after the picked first breaks. However, this muting scheme was limited in its usefulness because of the zero-phase wavelets:-

Figure 7.9 From top: input wavelet from aligning and stacking direct arrival through model, desired Butterworth output, deconvolution filter, actual output.

Figure 7.10 From top: input wavelet from aligning and stacking direct arrival through model, desired output with same amplitude spectrum as input spectrum, deconvolution filter, actual output.

- the filters designed using the arrivals through the water (Figures 7.4 and 7.5) left secondary peaks in the data.
- where the output amplitude spectrum was equated to the input spectrum (Figures 7.5 and 7.10), the output wavelet comprises a central peak with two prominent side lobes on each side.
- using a Butterworth as output (Figure 7.4 and 7.9) produced ringing at 250 Hz , this being worse for the input trace derived through the model.

As a consequence, merely muting past the first break will prove inadequate for removing the direct arrival, unless a large mute past the first arrival is used to capture the two side lobes or the ringing also. This will also mute the reflected arrivals to an unacceptable degree. An alternative method of direct arrival removal was necessary.

7.3.2 Shaping to maximum phase, muting and inverse maximum phasing.

A novel method of maximum phasing before mute was tried, but proved unsatisfactory. Using the aligned direct arrival as a known wavelet in the seismogram, and making the minimum phase assumption, the spiking deconvolution filter for this wavelet was calculated. As this is the exact inverse of the minimum delay wavelet, it was inverted to give the minimum delay wavelet. By subtracting the phase spectra of the known wavelet and the minimum delay wavelet from that of the seismogram (Figure 7.11), the known wavelet was turned into a maximum phase wavelet in the seismogram (Figure 7.12). Note that if the phase spectrum of the minimum phase wavelet had been added instead of subtracted, the result would have been a minimum phase wavelet in the seismogram (Figure 7.11).

Figure 7.11 Flow chart of the maximum phasing philosophy.

Figure 7.12 Maximum phasing. From bottom: minimum phase source wavelet, source wavelet from aligning and stacking direct wave, example raw trace -
source 25 receiver 9 , example trace following maximum phasing.

sample number
Figure 7.13 Inverse maximum phasing. From bottom: minimum phase source wavelet, source wavelet from aligning and stacking direct wave, example maxphased trace following muting, muted trace following inverse max-phasing.

The advantages of the maximum phase wavelet are clear. With the energy being greatest towards the end of the arrival with a low energy tail preceding it, it should be possible to mute just past the peak of the direct arrival, so removing the direct arrival energy and catching only the low energy tail of the reflected arrival. The inverse of the maximum phasing process was then performed (Figures 7.13 and 7.14), i.e. the phase spectra of the known wavelet and of the minimum-delay wavelet were added to the phase spectrum of the muted maximum-phased seismogram. It is also possible to zero phase the data by removing the influence of the phase spectrum of the minimum phase wavelet.

Figure 7.14 Scheme for direct wave removal by maximum phasing.

Figure 7.15 Raw data - example CRG from receiver 9 at depth 20 m .

The results of max-phasing, muting and inverse max-phasing are illustrated with an example CRG from receiver 9 (depth 20 m) in Figures 7.15 and 7.16. At first
sight, the process has done a good job of removing the direct wave. However, several problems have arisen:-

- Upon closer inspection of the top two traces in Figure 7.12, it can be seen that residual direct energy has been left to the right of the first break upon maxphasing. It has therefore been necessary to mute past the first break to remove all the direct energy, and, as before, this will result in some reflected energy being removed. This is evidently the case in Figure 7.16, where the effect of the mute in removing energy past the first break is clearly seen.
- Several events can still be seen with the same moveout as the first breaks, e.g. a peak arriving 11.25 ms (45 samples) after the first break, and high amplitudes on traces $1-10$ arriving 3.75 ms (15 samples) later.
- The process has introduced high frequency noise.
- A further problem is that the max-phasing technique cannot be employed for removing the shear wave arrivals, which have become prominent following the removal of the direct P -waves (Figure 7.16).

Figure 7.16 CRG 9 following max-phasing, muting and inverse max-phasing.

7.3.3 Common Ray Angle Gather

The method used by Pratt and Goulty (1991), processing the same dataset, was then tested. This method has been discussed in detail in $\S 3.2 .4$ and §3.3.4. In order to estimate the direct wavefield, they regathered the data into common ray angle gathers (CRAGs), this reorganisation of the data allowing scattered (i.e.
reflected) and direct arrivals to be discriminated on the basis of time moveout. For each trace that was to be operated on, 11 common ray-angle gathers were selected (Figure 7.17).

Figure 7.17 Traces contributing to the common ray angle gather - (a) Given ray trace and ten adjacent traces with same ray angle. (b) Given ray trace and four adjacent traces from same gather. These five traces are included from each gather in (a).

Figure 7.18 CRG 9 - direct wavefield estimate from CRAG (compare with
Figure 7.15).

These were the gathers containing the given trace and the five adjacent ones on either side. From each of these gathers, five traces were selected: the traces with the same ray angle as the given trace, and the two traces on either side. Thus a total of 55 input traces were used for each output trace (except at the edges of the survey). The direct arrival first breaks were aligned and averaged by means of a running mean filter. This then gave an estimate of the direct wavefield for all 2601 traces (Figure 7.18).

This direct wave estimate provided a robust way of deconvolving the data. A Wiener shaping filter was computed and applied for each trace in the raw wavefield by using the equivalent estimate of the direct arrival as input (see §3.2.4). The desired output was a zero phase wavelet with the same amplitude spectrum as the input wave. The deconvolved data are shown in Figure 7.19.

Figure 7.19 CRG 9-trace-by-trace zero-phase deconvolved using direct wavefield estimate in Figure 7.18 as input.

Having deconvolved the data, two schemes for removing the direct wavefield were tried. These have been discussed in §3.3.4 and are illustrated in Figures 3.3 and 3.4. The second of these schemes produced the gather in Figure 7.20. The CRAG method was a great improvement on the methods for direct wavefield removal discussed previously, especially as it avoided all use of muting which had removed the desired reflected arrivals in previous methods. However,

Figure 7.20 CRG 9 - zero-phase reflected wavefield obtained by subtracting zero-phase CRAG wavefield from zero-phase total wavefield (see Figure 3.4).

Figure 7.21 CRG 9 for the post-flood - trace-by-trace zero-phase deconvolved using pre-flood direct wavefield estimate in Figure 7.18 as input.
high-cut filtering and a short mute may be considered necessary for removing the high frequency noise and the noise around the first break where the direct wavefield has not been perfectly removed in Figure 7.20.

The CRAG method is less successful for the post-flood data because of the inconsistency of adjacent traces around the flood zone. This is partly due to high attenuation and partly due to multipathing of the direct arrival. This propagates through the processing sequence to produce ringing when the shot or receiver is located in the proximity of the flood zone. The situation is greatly improved by using the pre-flood CRAG data for deconvolving the post-flood data (Figure 7.21). The effect of multipathing in the flood zone could be removed by applying a severe mute before migration for sources positioned adjacent to the flood zone. This will mean that the reflector segments adjacent to the source array and bounding the flood zone will not be imaged from within the zone. However, these segments will be imaged from above/below the zone.

7.3.4 Deconvolution only (Direct removed by Wavefield Separation)

This was the preferred method of deconvolution. It is noted that the CRAG trace-by-trace deconvolution scheme above, is ray angle specific to rays travelling in a straight line between source and receiver, and hence inappropriate for scattered arrivals which could arrive at the receiver at any angle. Instead, a

Figure 7.22 Zero-phase deconvolved CRG 9. Compare with the raw gather in Figure 7.15.
deconvolution filter was designed for the measured source signature through the model averaged over a range of take-off angles (as done in §7.3.1), as the transducers did not display much directivity. However, directivity effects could also be accounted for by applying a directional deconvolution filter in the $f-k$ domain (Hubbard et al. 1984), or in the $f-k_{s}-k_{r}$ domain. The desired output was a $150-500 \mathrm{~Hz}$ Butterworth wavelet. The direct arrival was removed by wavefield separation (§7.4.3). A deconvolved pre-flood gather is shown as Figure 7.22.

7.4 Processing - Wavefield separation

7.4.1 2-D f - k filtering

The basic method for wavefield separation described in $\S 3.4$ was the first to be tested. The data were transformed in CRGs to the f - k domain, following spatial tapering of the edge traces. Pie slice filters were applied to extract the upgoing and downgoing wavefields. Before transformation back to the $x-t$ domain, edge wavenumbers were tapered. Time and frequency tapers were unnecessary (see §3.4.2).

Figure 7.23 CRG 9 following wavefield separation by 2-D f - k filtering of zerophase reflected wavefield in CRGs (Figure 7.22).

Several problems were encountered with this method. 2-D $f-k$ filtering is a nonreciprocal process. Simply put, $f-k$ filtering in CSGs is not equivalent to $f-k$ filtering in CRGs. The effect of this is to produce non-symmetry of image quality in the final migrated sections. The upgoing wavefield (Figure 7.23), separated in CRGs, is re-sorted into CSGs, where the non-reciprocity becomes apparent (Figure 7.24), and reflected arrivals are much less clear. The migrated image will therefore be better resolved on the shot array side of the image which is imaged by the CRGs, whereas the receiver array side of the image, imaged by the CSGs, shows poor imaging.

Figure 7.24 CSG 9 following wavefield separation of zero-phase reflected wavefield in CRGs (compare with Figure 7.23).

Performing $f-k$ filtering in CRGs followed by resorting and $f-k$ filtering in CSGs may be thought to be the solution to this problem. Alternatively, processing in CRGs to image the shot side of the image, and in CSGs to image the receiver side could be considered ($\$ 7.4 .2$). However, 3-D $f-k$ - k filtering is presented as a more satisfactory solution (§7.4.3).

A further problem with 2-D $f-k$ filtering has been highlighted when the separated CRGs are displayed in CSGs. In Figure 7.24, the S-wave arrival has become more apparent, and by comparing back to Figure 7.23 , it is clear that S-wave direct arrivals have been caught up in the $f-k$ filter and are interfering with the
reflections from about $60-70 \mathrm{~m}$ depth (see $\S 5.2 .1$ for discussion of why downgoing waves are seen in the CSGs). It would not be possible to remove the S-waves by raising the low-cut velocity of the pass region as the S arrivals have a range of apparent velocities up to infinity in the crosshole case. The S-waves will appear as curving noise on the migrated depth sections at depths $50-60 \mathrm{~m}$ below the receiver location, and on the receiver side of the section. The noise is curving since the S-wave has a lower apparent velocity than the reflection at the same position in x - t space. This is shown in Figure 7.25 where only the top ten CRGs (depths $0-22.5 \mathrm{~m}$) have been migrated.

Figure 7.25 Migrated depth section of the top 10 CRGs (depths $0-22.5 \mathrm{~m}$) following 2-D f-k filtering in CRGs. Note the curved noise to the left of the section below 60 m depth. Linear ramp with depth applied.

To remove the shear arrivals, Pratt and Goulty (1991) have suggested using the CRAG method with shear wave first arrival times. However, the accurate picking of S-wave first arrivals is not an easy task, especially for sub-horizontal raypaths (see for example, Figure 7.16). Pratt et al. (1991) and Li and Worthington (1990) suggest the use of recursive dip filtering (Hale and Claerbout 1983) to remove the direct, scattered or mode-converted S-wave energy. Also considered was the muting to zero of all energy past the S -wave arrival for all traces, but this was deemed to be somewhat brutal as it removed
reflected arrivals also. Instead, the use of 3-D $f-k-k$ filtering (see §7.4.3) is advocated for S-wave removal.

7.4.2 2-D f - k filtering in CSGs and CRGs for imaging different sides

To address the problem of poorer image quality on the receiver side of the migrated section following wavefield separation in CRGs, the data were $f-k$ filtered separately in both CSGs and CRGs to produce two datasets each for the upgoing and downgoing wavefields. The migration program was therefore adapted to read in data from the CSG separated dataset for image points in the receiver borehole half of the migrated section, and from the CRG separated dataset for image points in the source borehole half. This method is similar to that used by Lazaratos et al (1992). The migrated images (Figure 7.26) are still affected by the S-wave noise problem, and 3-D $f-k-k$ filtering (§7.4.3) is preferred.

Figure 7.26 Migrated depth section following 2-D $f-k$ filtering in CSGs (left half of section) and in CRGs (right half). Traces normalised - linear depth ramp.

7.4.3 3-D $f-k-k$ filtering

This method has been described fully in §5.2. Here comparisons with the above methods and the specific advantages of the technique as applied to the tank dataset are discussed.

One main advantage of this method is that not only does it separate the upgoing and downgoing reflections, but also discriminates between reflected and direct arrivals (both P and S) as they lie in different $k_{s}-k_{r}$ quadrants of $f-k_{s}-k_{r}$ space (see §5.2.3). A mute of the high amplitude direct arrival, which would also remove reflected energy lying close behind the direct arrival, is therefore unnecessary. Examples of the data quality following zero-phase deconvolution (§7.3.4) and selection of the upgoing reflected wavefield by 3-D $f-k-k$ filtering are given as CRG 9 (Figure 7.27) and CSG 9 (Figure 7.28) for comparison with Figures 7.23 and 7.24 , respectively. Notice how the two gathers are now of similar data quality, how the S direct arrival has been removed from the data, and how the reflected arrivals reach the first break, not having been caught in a direct arrival mute.

An advantage of 3-D $f-k-k$ filtering over two-pass 2-D $f-k$ filtering ($f-k$ filter in CRGs, then in CSGs) is that the wavefield separation is performed in one pass, requiring transformation into and out of the $f-k$ domain, and hence edge tapering, only once.

Figure 7.27 CRG 9 following wavefield separation by 3-D $f-k$ - k filtering of zero-phase wavefield in Figure 7.22 (compare with Figure 7.23).

Figure 7.28 CSG 9 following wavefield separation by 3-D $f-k-k$ filtering of zero-phase wavefield in Figure 7.22 (compare with Figure 7.24).

Figure 7.29 CRG 9 following wavefield separation by 3-D $f-k-k$ filtering of post-flood zero-phase wavefield.

7.4.4 3-D f - k - k filtering with muting for the post-flood wavefield

Head waves existed in the post-flood dataset (see §7.2.5). These have the same moveout characteristics as reflected arrivals: i.e. downgoing on receiver array, upgoing on source array and vice versa. They will therefore still be present in the wavefield separated datasets (energy on traces 20-25 at sample numbers 105-115 in Figure 7.29), and appear as noise on the migrated sections (Figure 7.30). In order to reduce this problem, muting of the source and receiver traces level with the flood zone was performed, with muting past the first arrivals performed for traces above and below.

Figure 7.30 Up and downgoing migrated depth section following 3-D $f-k-k$ filtering of post-flood data (Figure 7.29). Notice the large amplitude noise below 50 m depth on the upgoing and above 40 m depth on the downgoing section. Linear ramp with depth applied.

7.5 Processing - Migration

Both GK and GB migration (§5.1), which are Kirchhoff integral migration methods, have been performed on the wavefield separated datasets. In addition, two raytracing methods have been used for obtaining traveltimes and distances from image points to sources and receivers.

7.5.1 Static corrections

As discussed in §2.2.2, the source signal was generated on a cylindrical source, and to regard this as a point source would require a static shift increasing traveltimes by $9.54 / 9.52$ samples (pre/post-flood). A further static shift is required for the first raytracing method (§7.5.3), since the source and receiver positions are assumed to be at the edge of the model. This static shift reduces the traveltime of the rays by the time taken for the rays to travel from the active elements of the piezoelectric elements to the side of the model through the water. Again from §2.2.2, this would amount to $21.81 / 21.66$ samples (pre/postflood), giving a combined reduction of traveltime $12.27 / 12.14$ samples.

7.5.2 Positioning errors of the source and receiver arrays

By considering the traveltimes of the arrivals through the water with the model removed, it was determined that the source and receiver arrays were not exactly parallel (Leggett 1992). The deviation calculated was from 54.1 m horizontal separation of source and receiver at the top of the model to 55.1 m separation at the bottom, with the source array being 1 m lower than that of the receiver array. By inspection of the data shot through the model, it was also calculated that the model was placed 1.5 m higher than intended with respect to the arrays. The deviation was applied to the source array for ease of raytracing, making the end coordinates of the receiver and source arrays $(0.0,1.5) \rightarrow(0.0,126.5)$ and $(54.1,2.5) \rightarrow(55.1,127.5)$, respectively, where the top of the model was at 0.0 m depth. These positioning errors are not surprising when it is noted that the deviation amounts to a 1 mm error over a distance of 125 mm in the tank.

7.5.3 Raytracing - Horizontal layers

The first method of raytracing was that used for the Coal Measures and Groningen datasets in this study. A horizontal layered velocity model is defined; different horizontal and vertical velocities can be defined to model anisotropic media, though since the epoxy resin layers were uniform, isotropic layers were assumed. The migration plane is covered by a user-defined grid of image points. Each image point is considered in turn, and raytracing from each receiver position to the point and from each source position provides a total travel time and distance travelled for each source-receiver combination, together with the angles of take-off from source and receiver and incidence at the image point.

7.5.4 Raytracing - Boxel method

This second method was adapted from the raytracing method used by Leggett et al. (1993) for tomography. A grid of 'boxels' is defined, each with an associated velocity. Refraction calculations using Snell's law therefore are performed at each cell boundary. As above, a grid of image points is considered in turn, and raytracing provides traveltime, distance travelled and angles. It was found necessary to use this second more complex method of raytracing because of the geometry of the experiment (Figure 2.3). A simple static correction to reposition the source and receiver at the edge of the model will fail because:-
(a) the static correction will vary between rays, since rays leave the source and receiver at different angles for different image points and hence travel different distances through the water.
(b) the entry points into the model (i.e. the positions to which ideally the static shift will move the source to) will depend on the ray angle. The boxel raytracing method overcomes these problems as it is possible to define a thin water layer velocity down the sides of the model to raytrace through.

Figure 7.31 Upgoing depth sections migrated through (left) a boxel velocity model and (right) a layered velocity model. Linear ramp with depth applied.

A comparison between migrated images produced by identical processing schemes except for the method of raytracing (Figure 7.31), emphasises the advantages of the second method of raytracing. The boxel raytracing image
shows a much better resolution implying that the rays have more precise travel path parameters.

On a practical note, the adaptations to the raytracing program used by Leggett et al. (1993) were as follows:-
(a) Tomography requires shooting from source to receiver, hence the program was written to shoot only from left to right i.e. increasing in the horizontal coordinate. For reflection imaging, it was therefore necessary to call the program once for the source positions, reverse the receiver and image point horizontal coordinate about the vertical bisector of the model, and call the program again for the receiver-image point ray. Angles would obviously need to be flipped by $\pi / 2$ for this receiver ray.
(b) The ray capture criterion specified in the tomography program is for the ray to pass within a certain vertical distance of the receiver position. By default, this criterion would therefore be relative to the image point. However, if we consider a typical raypath, it is realised that the rays are more horizontal in the water layer in the vicinity of the source and receiver than after being refracted into the model. To assist capture of the rays therefore, shooting was performed from image points to source and receivers, and angles adapted accordingly.

7.5.5 Estimation of the velocity field

Several methods were used in conjunction to estimate the velocity field to raytrace through. For the pre-flood data, Leggett's work (Leggett et al. 1993) was followed closely. It was a simple matter to assume a 1-D velocity field within the model, except for the sloping boundary which was assumed linear, with layers of constant velocities derived from the tomogram and from horizontally travelling raypaths. Of course this method would not account for either the fault on the dipping interface, or the layer containing the channel feature, which is seen as a thin low-velocity layer at the boreholes. The raw tomogram data was not used directly to raytrace through because of the possibility of the existence of artefacts within the tomogram and because it was sensible to constrain the velocity field with all the known information, namely the hypothetical 'sonic $\log ^{\prime}$ run in each 'borehole'. In a field environment, the obvious information to use would have been the sonic log data together with uphole shots, though this would have proved too difficult to collect for the tank model, bearing in mind the static problems of the source and receiver.

The post-flood model proved more of a problem to create a velocity model for. If a sonic \log had been run down the sides of the model, the same velocity field as for the pre-flood would have been created except for the anomalous velocity detected adjacent to the flood zone. The reservoir layer could then be modelled in several ways:-
(i) A homogeneous layer of the average velocity of the flooded and nonflooded reservoir.
(ii) As two rectangular blocks of the extreme velocities with a vertical interface in the middle of the model.
(iii) As two blocks of the extreme velocities with the correct sloping interface in the middle of the model.
(iv) A gradational velocity change from the two extreme velocities measured at the sides of the model.
(v) As obtained from direct arrival traveltime tomography.

However, it should be borne in mind that sonic logs were not run, and so it was necessary to estimate the velocities of the media from the tomography results and from the horizontal raypaths. The tomography of Leggett was found to be in error as the earlier arrival times of head wave arrivals ($\$ 7.2 .5$) had been picked and inverted instead of the direct arrivals. This would cause the tomogram to overestimate the velocity of the flood zone. The actual flood zone velocity was estimated by correctly picking the direct arrival through the flood zone, and taking account of refraction at all interfaces when considering the subhorizontal raypaths. The tomography was rerun with improved picks (§7.2.5), using the starting models (ii), (iii) and (iv) mentioned above. Note that these velocity models have also been compared in the migration scheme (§7.6.2). The resultant tomograms (Figure 7.32) are displayed after 20 iterations, and no smoothing (Krajewski et al. 1989) has been applied between iterations. For details of the tomography programs used, refer to Leggett (1992).

Several points are raised by the tomography results. Firstly, the difference between the tomograms obtained with the corrected picks and that of Leggett's (1992) is very clear, with the flood zone velocity for the corrected picks being lower. The second point is that the choice of initial velocity model can be crucial to the results. This is evident in Figure 7.32, where the expression of the initial velocity model has been kept in the final tomogram.

Figure 7.32 Velocity tomograms obtained with improved traveltime picks using initial velocity models (ii), (iii), (iv).

By using the pre-flood model as the initial velocity field, the velocity of the flood zone is greatly overestimated. This has major implications if tomography alone is used for estimating the velocity field without the use of sonic logs. For both the block models as initial velocity estimates, the shape and velocity of the flood zone has been largely unaffected by the tomographic process. One reason for this is that the sloping interface of the flood zone has been inadequately modelled by the cell raytracing approach in both cases so that non-physical rays have been traced, such as a horizontally travelling ray which should be refracted by the sloping boundary but passes undeviated through a vertical interface. Using the gradational velocity model as the initial estimate, the shape and velocity of the flood zone has developed most clearly, though the remnant gradational nature is still present in the tomogram.

The preceding paragraph emphasises the need to be wary of tomography results, and to use common sense in creating the initial velocity field. The geometry of the flood zone can be obtained from the tomograms, and the velocity estimated from near horizontal raypaths with refraction effects at the sloping interface taken into account. Of course the reflection imaging should also be used as a feedback process for updating the velocity models, since the stacking of
reflected arrivals can be checked, and their depth are known from their intersection with the direct arrivals.

7.5.6 GK or GB algorithm?

This question has been fully covered in §5.1. One of the salient points relating to the tank dataset is how large the near-field is considered to be. With a signal bandwidth of $50-500 \mathrm{kHz}$, a model velocity of $1750-3000 \mathrm{~m} / \mathrm{s}$, the borehole separation of approximately 50 mm is equivalent to $1-15$ wavelengths. Assuming the near-field to be within one wavelength, it is noted that the sides of the model are in the near-field for some frequencies. The GB algorithm which includes the near-field term is therefore favoured. A comparison of the effect of the two algorithms is shown in Figure 7.33, where migrated images have been produced by identical processing routes apart from the algorithm used. As can be seen, the two images display only slight differences, although side traces should be truer with the GB image.

Figure 7.33 Upgoing migrated depth sections using (left) GB and (right) GK. Linear ramp with depth applied.

7.5.7 Aperture

The dipping faulted reflector has a dip of about 11°, the fault dips at 90° and the channel feature will have dips from $0-90^{\circ}$. Following the recommendations of

Findlay (1991), an aperture of $45^{\circ}\left(\pm 22.5^{\circ}\right.$ about the horizontal) was utilised. For comparison, an aperture of $4^{\circ}\left(\pm 2^{\circ}\right)$ was also tested (§7.6.1).

7.6 The Migrated Results

7.6.1 Pre-flood

Reflected events in the pre-flood images of Figure 7.34 correlate well with the interfaces in the model (SEG reverse polarity, i.e. peak $=$ compression. Linear ramp with depth applied); inadequate dip aperture appears to cause discrepancies over certain zones of the image. The bottom of the channel has been imaged by both up and downgoing wavefields, though its flanks are dipping too steeply to be sampled by the crosshole geometry. These images have been obtained by using a migration aperture which includes dips of $\pm 22.5^{\circ}$, which experience shows will produce an optimally focused migrated image. When a narrow aperture of $\pm 4^{\circ}$ is used (almost in the limit of reflection point mapping), the image quality deteriorates (Figure 7.35). As expected, this affects the dipping interface and channel feature most, with the channel displaying some 'bow tie' characteristics on the upgoing image.

Figure 7.34 Pre-flood up and downgoing migrated depth sections.
Aperture $\pm 22.5^{\circ}$.

Figure 7.35 Pre-flood up and downgoing migrated depth sections. Aperture $\pm 4^{\circ}$

Figure 7.36 Pre-flood upgoing migrated depth section for 21 source and 21 receiver positions. Aperture $\pm 22.5^{\circ}$. Linear ramp with depth applied.

In a production environment, it is likely that wells will bottom out in the reservoir layer. To model the corresponding crosshole experiment, only those 21 source and 21 receiver positions above the bottom of the reservoir layer have been used to produce the image shown in Figure 7.36. Of course it is necessary to repeat the 3-D $f-k-k$ wavefield separation process for the 21 source and 21 receiver positions to prevent information from the lower traces contaminating the data. Again the migration aperture used is $\pm 22.5^{\circ}$. The migrated image is still clear, although without the corresponding downgoing reflected image, it is difficult to interpret the channel feature. In comparison to the image using all 51 source and receiver positions (Figure 7.34), the lower reflectors are seen to be less well focused and to display smiling towards the side of the image. However, tomography in this case would only provide an image down to the level of the bottom source and receiver position.

7.6.2 Post-flood

To demonstrate the effects that the velocity model can have, the post-flood results are displayed in Figures 7.37 and 7.38 following raytracing through velocity models (ii) (two rectangular blocks) and (iv) (gradational) from §7.5.5, respectively. Velocity model (iii) (2 blocks with correct sloping boundary) is not shown as results are similar to model (ii). The images in Figure 7.37 show disruption around the sharp vertical boundary, where rays have been lost. One would expect the rays passing through the reservoir layer in model (iv) to be travelling too slowly on the left hand side of the model and too fast on the right hand side. The upper surface of a horizontal reflector illuminated solely by rays passing through the reservoir then would be imaged lower on the left and higher on the right than its physical position, and vice versa for the downgoing image. This effect is seen quite clearly on both the up and downgoing images in Figure 7.38. For this reason, velocity model (ii) is preferred, because, although major disruption has occurred, the depth section is nearer to reality.

The post-flood images (Figure 7.37 and 7.38) demonstrate the expected changes in reflectivity due to the flood zone. Of most note is the amplitude of the top and bottom of the flood zone on the up and downgoing images respectively. These plots, together with traveltime and amplitude tomography (Leggett et al. 1993) could be used to trace the progress of the flood front, using time-lapse repeated surveys.

Figure 7.37 Post-flood up and downgoing migrated depth sections. Velocity model (ii). Aperture $\pm 22.5^{\circ}$. Linear ramp with depth applied.

Figure 7.38 Post-flood up and downgoing migrated depth sections. Velocity model (iv). Aperture $\pm 22.5^{\circ}$. Linear ramp with depth applied.

Chapter VIII

Coal Measures

The two surveys presented here, surveys 3438-3437 and 3500-3496 from the Lowther South site, have both been processed by Findlay (Findlay et al. 1991) and their acquisition is described in $\S 2.3$. They have been reprocessed in this study for different reasons.

- Survey 3438-3437 should have revealed a small fault close to borehole 3437, detected by an RVSP survey in the hole (Kragh et al. 1991), but Findlay's processing failed to image it. An investigation into why this was so, including some reprocessing, has been performed, and it is shown how survey geometry can limit imaging capability close to the boreholes and even in the middle of the section between the boreholes.
- Drillers' reports and wireline log information indicated that a normal fault zone passed between the two boreholes 3500 and 3496 . Findlay's processing, including f - k filtering in CSGs, imaged the fault. The dataset has been reprocessed with 3D $f-k-k$ filtering to compare the results of this advanced processing technique.

8.1 Survey 3438-3437-Imaging capability of crosshole surveys

8.1.1 Background

The starting point for this study was a comparison between two different types of seismic reflection depth section generated along the same line of three boreholes (Figure 8.1a) at the Lowther South opencast coal exploration site in Yorkshire. These boreholes were 3436 (A), 3437 (B) and 3438 (C). The first section was produced by processing reverse vertical seismic profiles (RVSPs) shot in each borehole to give continuous coverage (Kragh et al. 1991). These RVSPs were shot using explosive charges downhole and a line of 24 geophones at the surface in the plane of the section. They showed two small faults cutting the coal seam at 50 m depth, just to the right of boreholes B and C (Figure

Figure 8.1 (a) Coal seam stratigraphy proved in boreholes A, B and C. (b) Hole-to-surface migrated depth section (from Kragh et al. 1991). (c) Crosshole migrated depth section with velocity field (m / s) used for migration (from Findlay et al. 1991). Sections plotted SEG normal polarity (peak=rarefaction).
8.1b). The second section was produced by processing crosshole seismic reflection surveys shot from the boreholes A and C into the central borehole B (Findlay et al. 1991). Single detonators were used as sources and hydrophones as receivers. The crosshole survey between boreholes C and B should have revealed the small fault just to the right of borehole B at 50 m depth, but it failed to do so (Figure 8.1c).

Before investigating why the crosshole processing had failed to image the fault, it was necessary to consider whether the fault imaged on the RVSP section from borehole B really exists, and whether it is accurately located. As described by Kragh et al. (1991), great care was taken in calculating static corrections for the surface geophones. No particularly anomalous values were found. After wavefield separation and deconvolution, each common source gather (CSG) was migrated separately, so that the resulting images could be examined before stacking. The fault appeared at the same location on each prestack image, which would not have been the case if the discontinuity in the reflector had been caused by inaccurate static corrections. Confidence in the integrity of the processing scheme has been enhanced by successful results of RVSP profiles from other lines of boreholes (Kragh et al. 1992). The possibility of significant error in lateral positioning of the RVSP image was also ruled out, since a verticality survey in borehole B showed a deviation of less than 0.5 m at 50 m depth in the plane of the survey.

Having concluded that the fault is real, why had the crosshole survey failed to image it? The spatial variation of image quality in crosshole reflection surveys has been explained in Chapter IV. Here the discussion of image quality concentrates on this particular crosshole reflection survey, and some general conclusions for all such surveys are drawn.

8.1.2 Initial processing

A typical CSG from the dataset is shown in Figure 8.2. The seismic signals had a bandwidth of $100-700 \mathrm{~Hz}$ with a peak at about 200 Hz . In the initial processing of these data to generate the section of Figure 8.1c, both uphole and crosshole direct-arrival traveltimes were used to make a first estimate of the velocity field. This was adjusted by a process of trial and error. The velocity field found by a tomographic inversion of the crosshole direct-wave traveltimes was unsatisfactory because of anisotropy.

Figure 8.2 Raw data - the common source gather from 10 m depth.

The direct arrivals were muted out and up- and downgoing wavefields were separated by filtering CSGs in the $f-k$ domain. A wavelet was estimated from the data by averaging the autocorrelation functions of all 23 traces and making the minimum-phase assumption. Then a Wiener shaping filter was designed to shape the estimated wavelet into a zero-phase Butterworth wavelet of bandwidth $150-700 \mathrm{~Hz}$, and applied to the data. The GK migration scheme was used to migrate both up and downgoing wavefields, the polarity of the migrated downgoing wavefield was reversed, and the two migrated wavefields were merged together.

8.1.3 Reprocessing

A limited amount of reprocessing was undertaken to try to image the small fault, but did not result in significant improvement.

Muting was avoided in the reprocessing scheme because it will remove reflected events arriving shortly after the direct waves in real, band-limited datasets. The known location of the fault is close to the receiver borehole B (3437) and towards the bottom of the receiver array. The seismograms which contribute most to the image in this vicinity are those recorded by receivers just above the fault from the shallowest sources. The direct waves are downgoing
at the receivers on these seismograms, whereas the primary reflections required for imaging are upgoing. Thus these wavefields could be separated in f - k space for each CSG (§3.6.3).

The GK migration method used in the initial processing is a far-field approximation, resulting from dropping the near-field term in the Kirchhoff integral, which might be important for imaging close to the boreholes. Accordingly, the GB migration scheme ($\$ 5.1$) has been used in the reprocessing scheme. The difference between the results of using GK and GB migration is illustrated in Figure 8.3, where only the region around the small fault (expected location 50 m depth, 34 m offset), close to the receiver borehole, has been imaged.

Figure 8.3 GK (top) and GB (bottom) migrated depth sections obtained from region around the small fault near the bottom of receiver array in borehole B.

There is better continuity of reflection character in the GB image, which is preferred as being in better accord with the stratigraphy, but it is still quite impossible to identify a fault.

8.1.4 Dip sampling at image points - shot and receiver spacing

At this point it was concluded that there was nothing further that could be done in processing to resolve the small fault. Instead the effects of the restricted lengths of source and receiver arrays and the element spacing in each array were considered ($\S 4.2$ and $\S 4.3$). By comparing the rose diagram in Figure 4.8 (reproduced here as Figure 8.4) with the depth migrated sections in Figure 8.3, it is plain to see that gaps exist within the range of dips sampled around the fault zone due to the coarse receiver spacing.

Figure 8.4 Rose diagram showing the effect of discrete spatial sampling on the distribution of dips sampled at image points spaced 0.2 m apart vertically over a 2 m interval at distances of $1-3 \mathrm{~m}$ from the receiver borehole. (This Fig. is identical to Fig. 4.8)

For image points close to either the source or receiver array, it is the combination of spatial sampling in the near borehole ($\S 4.3$) and the extent of the array in the far borehole ($\$ 4.2$) which govern the ability to form an accurate image. Rose diagrams such as in Figure 8.4 clearly show where spatial
sampling and array lengths are adequate over the section. Where they are inadequate, the image will inevitably be smeared, whatever is done in processing. It is believed that this is the cause of the failure to image the small fault close to borehole B in the crosshole survey between boreholes C and B. In order to image this small fault, which should appear as a step in reflecting horizons, dips should have been sampled smoothly around the horizontal on both sides of the fault.

8.2 Survey 3500-3496-f-k versus $f-k-k$

As a demonstration of the $f-k-k$ technique ($\$ 5.2$), survey $3500-3496$ has been reprocessed using two processing routes, identical except for performing wavefield separation by $f-k-k$ rather than $f-k$ filtering.

These data were previously presented by Findlay et al. (1991) with wavefield separation carried out by $f-k$ filtering of common shot gathers. The boreholes used in this survey were 32 m apart. Drillers' reports and wireline log information indicated that a normal fault zone passed between the two boreholes with a vertical throw of some 22 m . Shots were fired at 2 m intervals from 10 m to 52 m depth in one borehole, and receivers were deployed at 2 m spacing from 9.79 m to 53.79 m depth in the other (Figure 2.4).

Figure 8.5 The crosshole reflection processing sequence used to produce
Figure 8.7b. Compare this with Figure 3.1.

In reprocessing these data, wavefield separation was performed by 3-D $f-k-k$ filtering ($\$ 5.2$). Figure 8.6 shows the data volume depicted before and after 3-D f - k - k filtering as f-slice contour plots in the $f-k-k$ domain. Following wavefield separation, deconvolution and Kirchhoff migration using the Generalised Berryhill algorithm (§5.1) were performed (Figure 8.5). Up and downgoing wavefields were migrated separately, the polarity of the downgoing reflections reversed, and the images merged (Figure 8.7b). Results obtained by a processing scheme involving 2-D f-k filtering in common shot gathers, which differed only in the wavefield separation step, are shown as Figure 8.7a for comparison. An AGC over 30 m has been applied to both images.

Figure 8.6 The data volume transformed into the $f-k-k$ domain, and depicted as f-slice plots with a linear amplitude scale: (a) before filtering, and (b) after 3-D $f-k-k$ filtering.

Figure 8.7 Migrated depth sections following (a) 2-D $f-k$ wavefield separation, and (b) 3-D $f-k-k$ wavefield separation.

Both processing schemes have clearly imaged the fault. The reflection from coal seam Z is continuous across the section from the borehole on the right, so there must be a fault with 7 m throw at this horizon very close to the left borehole. A larger fault, of some 15 m vertical throw, cuts the left borehole between seams Z and Y. The truncations of reflections, from seam Y to the right and from seam X to the left, locate the fault zone in the body of the data. The most striking difference between Figures 8.7 a and 8.7 b is the nature of the migrated image on the left side of the section. The continuity of reflectors is poorer in the section with 2-D wavefield separation, especially near the source borehole, and the level of coherent noise is higher. With the improved image produced by the 3-D $f-k-k$ processing a more confident interpretation of the location of the fault can be made.

Chapter IX

Conclusions and suggestions for future work

9.1 Conclusions

Crosshole seismic reflection imaging has been shown to be a high resolution imaging technique. Major limitations of the method have been discussed, and advice given on how the produced depth sections should be interpreted. New processing techniques have been developed and implemented to overcome specific problems with previous processing schemes, and their success has been clearly demonstrated using example datasets. Finally, three types of dataset have been processed and the results discussed in terms of the limitations of the method, of the processing techniques developed, of the acquisition geometry used, and of the quality of image.

9.1.1 Imaging capability

Effective imaging in any seismic survey is restricted to that part of the subsurface section where the image is not smeared. Image quality depends on the range of dips sampled around the local structural dip and on the distribution of dip angles within that range. For image points close to either array, the distribution of dips sampled within the range can contain gaps if the element spacing in that array is too coarse. The overall range of dips sampled depends on the lengths of source and receiver arrays, which should be comparable with the borehole separation in order to image a horizon at the base of the arrays. It follows that in order to image a horizon level with the centres of the source and receiver arrays, the array lengths need to be twice the borehole separation.

As regards improving the imaging capability of crosshole reflection surveys, the Generalised Berryhill algorithm and the use of 3-D $f-k-k$ filtering are recommended. Close to the boreholes, provided that the spatial sampling interval is small enough to give a smooth distribution of dips, it is believed that GB migration will have better imaging capability than GRT or GK migration because it includes the near-field term in the Kirchhoff integral. Coherency problems in CRGs (or CSGs) have been shown to be produced by performing
wavefield separation on CSGs (or CRGs) by conventional 2-D $f-k$ filtering. This migrates to coherent noise on the source (or receiver) array side of the depth section. Addressing this problem, $f-k-k$ filtering has been shown to be the most satisfactory solution, such that both sides of the migrated section have equal image quality and fidelity.

9.1.2 Results

It has been shown that a restricted survey involving a single common shot gather from the Groningen experiment can generate an image between wells 300 m apart with a signal bandwidth of over 1 kHz . The potential for high resolution imaging of a more extensive survey from a producing field is evident.

We have shown an innovative processing scheme for crosshole seismic reflection imaging. The use of 3-D $f-k-k$ filtering has made the muting of direct arrivals in the time domain superfluous, since the separation of direct and reflected wavefields and of up and downgoing reflections is achieved in one operation. The migrated images produced are of high resolution and can be used to monitor the progress of the flood front during EOR.

Conventional 2-D $f-k$ filtering for wavefield separation of common shot gathers in crosshole reflection data has been problematical, primarily because of the direct and reflected wavefields overlying each other in the f - k domain, and because of poor coherency of the separated wavefields when viewed in common receiver gathers. Coherent noise has resulted, and we have demonstrated with real data that this may be reduced through use of a one-pass 3-D $f-k-k$ filter for wavefield separation. Such filters can reject both compressional and shear direct waves and also the strongest multiple arrivals in crosshole data, but not head waves.

9.2 Future work

9.2.1 Further comparison of standard and novel processing techniques

Further research is required into the applicability of the processing techniques presented in this thesis, and this is only possible with the acquisition of more good datasets, either from the Coal Measures or from producing fields. It would thereafter be possible to provide more comprehensive guidelines on the conditions governing the suitability of each scheme.

9.2.2 Quantification of the quality of images

Thus far it has not been possible to provide a measure of the quality of an image, and therefore the success of a processing scheme, beyond a simple statement of how well the migrated image qualitatively matches the assumed geological cross section, or the known model geometry in the case of the tank data. Work is needed then in providing a technique for quantification of images, possibly by some sort of correlation philosophy, in order to state categorically whether one image is a better representation of the section than another.

9.2.3 Detailed amplitude interpretation of crosshole reflection images

Following on from the point above ($\S 9.2 .2$), special attention should be given to the preservation of amplitude values during recording and processing of crosshole data in order to maintain amplitude information in the migrated sections. Non-linear practices such as normalising the data and performing AGC should be avoided wherever possible. Future work could then involve the study of reflector strength for lithology analysis (§9.2.10).

9.2.4 Resolution of raytracing problem

One problem still requiring attention is the limitation of the boxel raytracing, especially when sloping boundaries are required. The proposed solution is a raytracing program based on triangular velocity cells, as these would be able to cope with any velocity polygon.

9.2.5 Integration of amplitude tomography into raytracing

Leggett et al. (1993) demonstrated the possibilities of amplitude tomography. It would be possible to integrate the results of an amplitude tomogram into the raytracing for crosshole reflection imaging, by calculating the total attenuation along each reflected raypath. This would then give an amplitude correction factor for each source-receiver-image point combination to compensate for the attenuation through the media.

9.2.6 Further comparison of GRT and GB migration

Recent publications have described the extension of the scalar inversion problem of reconstructing a velocity perturbation in a constant density acoustic medium to a solution of the vector inversion problem of material parameters. Beylkin and Burridge (1990) have developed an algorithm for multi-parameter inversion of surface seismic reflection data based on the inverse Generalized Radon Transform. Miller and Burridge (1992) have recast this algorithm in terms of a

GRT-based dip-moveout operator. The removal of the constant density restriction of GRT imaging is of interest to this work, and some thought should be given to the implications of the above two publications to the work presented in this thesis, possibly by comparing the results of the physical model dataset using GB, GRT and multi-parameter GRT imaging.

9.2.7 Novel acquisition geometries

Proposed future experiments include acquiring data with shots and receivers in the same borehole, either vertical or with a 45° trajectory. Major consideration will have to be given to acquisition problems such as the damping of tube waves. However, it is hoped that this technique will be attractive for hydrocarbon reservoir definition with inclined or horizontal boreholes.

9.2.8 One-pass total processing

Possibly mere speculation, though on purely aesthetic grounds, a one pass total processing philosophy for crosshole seismic reflection processing could be a final goal. Since conceiving the idea of 3-D wavefield separation in the $f-k_{s}-k_{r}$ domain, other processing steps have presented themselves as being suitable for application in $f-k_{s}-k_{r}$, such as directional deconvolution with respect to source and receiver and trace interpolation. What could be considered then is:-

Figure 9.1 Speculative one-pass crosshole reflection processing sequence.

9.2.9 Imaging of all modes

Previous workers have only mapped P-P (e.g. this study) and/or S-S modes (Lazaratos et al. 1992, Becquey et al. 1992), though four modes are always available. The first arrival P-P reflections are the obvious first choice for imaging, since they are uncontaminated by other reflection arrivals. What has not been tried on real data so far (although Balch et al. (1991) have migrated different wave modes in laboratory model data) is the development of an imaging scheme for integrating the information from up and downgoing images for both P-P and S-S reflected wavefields, as well as mode-converted arrivals such as P-S and S-P. For this, a dataset of the highest quality would be required. Once cross-sectional images had been produced, the initial approach could be that of inverting each image (P-P, S-S, P-S, S-P) separately. Note that once $\mathrm{P}-\mathrm{P}$ and $\mathrm{S}-\mathrm{S}$ images had been produced, it would be a simple matter to construct the images for mode-converted P-S or S-P waves, as the raypaths to the image points would have already been computed. The images produced would be compared and updated accordingly in an iterative process. The four reflectivity images could then be inverted together to obtain P and S velocity images, provided some assumption is made about density.

By this scheme, quantitative information (lithology derived from reflection amplitude) would be extracted to complement the previous qualitative crosshole images of bed geometry. Once a target reflector (thin bed, faulted interface, reservoir rock) had been identified, the nature and continuity of reflectivity along it could be traced to assess small-scale changes in rock character. The success of these schemes could be rigorously tested by comparing the results with known properties derived from well logs in the field.

Since the image amplitudes are critical to the success of the inversion process, considerable attention will be given to the validity of the image amplitudes in each imaging technique used, to the dependence of amplitude on angular coverage of the reflecting interface and to any possible source directivity.

9.2.10 Integration of high-resolution seismic data into inversion schemes for deriving reservoir properties.

Seismic data have been of insufficient resolution to delineate porosity and permeability heterogeneities on the scale required by reservoir engineers for modelling fluid flow. However, the recent improvements in 3D seismic data quality and the development of crosshole seismic and VSP methods suggest an
investigation of the detail that can be obtained by integrating this higher resolution seismic data in an inversion scheme with wireline log and core data from wells. The crosshole and VSP data act as a node of reference between the two extremes of the areal extent of the 3-D seismic and the vertical resolution of the core and wireline data. The inversion would start with known properties at one well, and proceed through the seismic data volume to an adjacent well. The success of an inversion scheme would be rigorously tested by comparing the seismic inversion results with the known reservoir properties in the second well.

References

Albright, J.N. and Johnson, P.A. 1990. The use of vertical seismic profiles in seismic investigations of the earth. Geophysical Prospecting 38, 607-620.

Balch, A.H., Chang, H., Hofland, G.S., Ranzinger, K.A., and Erdemir, C. 1991. The use of vertical seismic profiles in seismic investigations of the earth. Geophysical Prospecting 39, 887-913.

Balogh, W.T., Owen, T.E., and Harris, J.M. 1988. New piezoelectric transducer for hole-to-hole seismic applications. 58th Meeting, SEG, Expanded Abstracts, 155-157.

Baria, R., Jackson, P.D., and McCann, D.M. 1989. Further development of a high-frequency seismic source for use in boreholes. Geophysical Prospecting 37, 31-52.

Beattie, K.E. 1990. A comparison of receiver types in crosshole seismics. Unpublished MSc dissertation, University of Durham.

Becquey, M., Bernet-Rollande, J.O., Laurent, J., and Noual, G. 1992. Imaging reservoirs - a crosswell seismic experiment. First Break 10(9), 337-344.

Berryhill, J.R. 1979. Wave-equation datuming. Geophysics 44, 1329-1344.
Beydoun, W.B., Delvaux, J., Mendes, M., Noual, G., and Tarantola, A. 1989. Practical aspects of an elastic migration/inversion of crosshole data for reservoir characterization: A Paris basin example. Geophysics 54, 1587-1595.

Beylkin, G. and Burridge, R. 1990. Linearized inverse scattering problem of acoustics and elasticity. Wave motion 12, 15-52.

Cai, W. and Schuster, G.T. 1993. Processing crosswell seismic data for reflection imaging. 55th Meeting, EAEG, Stavanger, Expanded Abstracts, C006.

Carrion, P.M., Sato, H.K. and Buono, A.V.D. 1991. Wavefront sets analysis of limited aperture migration sections. Geophysics 56, 778-784.

Cassel, B.R. 1982. Seismograms in laterally varying media. Geophysical J. R. astr. Soc. 69, 339-354.

Cassel, B.R. 1984. Vertical seismic profiles - an introduction. First Break 2(11), 9-19.

Chen, S.T., Zimmerman, L.J., and Tugnait, J.K. 1990. Subsurface imaging using vertical seismic profiling abd crosshole tomographic methods. Geophysics 55, 14781487.

Chen, S.T., Eriksen, E.A., and Miller, M.A. 1990. Experimental studies on downhole seismic sources. Geophysics 55, 1645-1651.

Christie, P.A.F, Hughes, V.J., and Kennett, B.L.N. 1983. Velocity filtering of seismic reflection data. First Break 1(3), 9-24.

Claerbout, J.F. 1970. Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure. Geophysics 35, 407-418.

Claerbout, J.F. 1971. Toward a unified theory of reflector mapping. Geophysics 36, 467-481.

Claerbout, J.F. and Johnson, A.G. 1971. Extrapolation of time dependent waveforms along their path of propagation. Geophysical Journal of the Royal Astronomical Society 26, 285-293.

Cooley, J.W. and Tukey, J.W. 1965. An algorithm for the machine calculation of complex Fourier series. Maths computations 19, 297-301.

Deregowski, S. and Rocca, F. 1981. Geometrical optics and wave theory for constant-offset sections in layered media. Geophysical Prospecting 29, 374-387.

Devey, M.G. 1978. Derivation of the migration integral. Technical Note TN451, BP Company Ltd, Exploration and Production Department.

Dillon, P.B. and Thomson, R.C. 1984. Offset source VSP surveys and their image reconstruction. Geophysical Prospecting 32, 790-811.

Dillon, P.B. 1988. Vertical seismic profile migration using the Kirchhoff integral. Geophysics 53, 786-789.

Dillon, P.B. 1990. A comparison between Kirchhoff and GRT migration on VSP data. Geophysical Prospecting 38, 757-777.

Embree, P., Burg, J.P., and Backus, M.M. 1963. Wide-band velocity filtering - the pie-slice process. Geophysics 28, 948-974.

Emeleus, K. 1993. A comparison of receiver types in crosshole seismic investigations. Unpublished MSc dissertation, University of Durham.

Findlay, M.J. 1991. Cross-hole seismic reflection surveying in Coal Measures. Unpublished Ph.D. dissertation, University of Durham.

Findlay, M.J., Goulty, N.R., and Kragh, J.E. 1991. The crosshole seismic reflection method in opencast coal exploration. First Break 9(11), 509-514.

French, W.S. 1975. Computer migration of oblique seismic reflection profiles. Geophysics 40, 961-980.

Gazdag, J. 1978. Wave equation migration with the phase-shift method. Geophysics 43, 1342-1351.

Geyer, R.L. 1993. Spindletop cross-borehole survey. The Leading Edge 12(1), 26-31.

Goodman, J.W. 1968. An introduction to Fourier optics. McGraw-Hill, San Francisco.

Goulty, N.R. 1993. Controlled-source tomography for mining and engineering applications. in Seismic Tomography. H.M. Iyer and K. Hirahira (eds), Vol. 1, 797-813. Chapman \& Hall, London.

Goulty, N.R., Thatcher, J.S., Findlay, M.J., Kragh, J.E., and Jackson, P.D. 1990. Experimental investigation of crosshole seismic techniques for shallow coal exploration. Quarterly Journal of Engineering Geology 23, 217-228.

Hagedoorn, J.G. 1954. A process of seismic reflection interpretation. Geophysical Prospecting 2, 85-127.

Hale, D. and Claerbout, J.F. 1983. Butterworth dip filters. Geophysics 48, 1033-1038.

Hardage B.A. 1985. Vertical seismic profiling. Part A: Principles. 2nd edition, Pergammon Press.

Hardage, B.A. 1992. Crosswell seismology and reverse VSP. (Seismic Applications Series, Vol. 1). Geophysical Press, London.

Harris, J.M., Nolen-Hoeksema, R., Rector, J.W., Lazaratos, S.K., and Van Shaack, M. 1992. High resolution cross-well imaging of a West Texas carbonate reservoir: Part 1. Data acquisition and project overview. 62nd Meeting SEG, Expanded Abstracts, 35-39.

Hatton, L., Worthington, M.H., and Makin, J. 1988. Seismic Data Processing. Blackwell Scientific Publications Ltd, Oxford.

Hood, P. 1981. Migration. in Developments in geophysical exploration methods. A.A. Fitch (ed), Vol. 2, 151-230. Applied Science Publishers Ltd., London.

Hu, L.-Z. and McMechan, G.A. 1987. Wave-field transformations of vertical seismic profiles. Geophysics 52, 307-321.

Hubbard, T.P., Sugrue, M.J., Sandham, W.A., and Booth, E.A. 1984. Marine source and receiver deghosting and array inversion in F-K space. 46th EAEG Meeting, Abstracts volume, p26.

Jackson, P.J., Onions, K.R., and Westerman, A.J. 1989. Use of inverted VSP to enhance the exploration value of boreholes. First Break 7(6), 223-246.

Justice, J.H., Vassilou, A.A., Singh, S., Logel, J.D., Hansen, P.A., Hall, B.R., Hutt, P.R., and Solanki, J.J. 1989. Acoustic tomography for monitoring enhanced oil recovery. The Leading Edge 8, 12-19.

Justice, J.H., Mathisen, M.E., Vassilou, A.A., Shiao, B.R., Alameddine, B.R., and Guinzy, N.J. 1993. Crosswell seismic tomography in improved oil recovery. First Break 11(6), 229-239.

Kragh, J.E. 1990. Borehole seismic methods for opencast coal exploration. Unpublished PhD dissertation, University of Durham.

Kragh, J.E., Goulty, N.R., and Findlay, M.J. 1991. Hole-to-surface seismic reflection surveys for shallow coal exploration. First Break 9(7), 335-344.

Kragh, J.E., Goulty, N.R., and Brabham, P.J. 1992. Surface and hole-to-surface seismic reflection profiles in shallow Coal Measures. Quarterly Journal of Engineering Geology 25, 217-266.

Krajewski, C., Dresen, L., and Gelbke, C. 1989. Iterative tomographic methods. Geophysical Prospecting 37, 717-751.

Lazaratos, S.K., Rector, J.W., Harris, J.M., and Van Shaack, M. 1992. High resolution cross-well imaging of a West Texas carbonate reservoir: Part 4. Reflection imaging. 62nd Meeting SEG, Expanded Abstracts, 49-53.

Leggett, M. 1992. Crosshole seismic processing of physical model and Coal Measures data. Unpublished PhD dissertation, University of Durham.

Leggett, M., Goulty, N.R., and Kragh, J.E. 1993. Study of traveltime and amplitude time-lapse tomography using physical model data. Geophysical Prospecting 41, 599-619.

Li, Q. and Worthington, M.H. 1990. Crosshole GRT imaging: an experiment with ultrasonic model data. 60th Meeting, SEG, Expanded Abstracts, 156-159.

Macrides, G.G., Kanasewich, E.R., and Bharatha, S. 1988. Multiborehole seismic imaging in steam injection heavy oil recovery projects. Geophysics 53, 65-75.

March, D.W. and Bailey, A.D. 1983. A review of the two dimensional transform and its use in signal processing. First Break $\mathbb{1}(1), 9-21$.

Miller, D., Oristaglio, M., and Beylkin, G. 1987. A new slant on seismic imaging: migration and integral geometry. Geophysics 52, 943-964.

Miller, D. and Burridge, R. 1992. Multiparameter inversion, dip-moveout, and the generalized radon transform. in Geophysical Inversion. J.B. Bednar, L.R. Lines, R.H. Stolt, and A.B. Weglein (eds), 46-58. Society for Industrial and Applied Mathematics, Philadelphia.

Newman, P. 1990. Amplitude and phase properties of a digital migration process. First Break 8(11), 397-403.

Özdemir, H. and Saatçilar, R. 1990. Efficient multichannel filtering of seismic data.
Geophysical Prospecting 38, 1-22.
Peardon, L.G. and Bacon, C.W.M. 1992. An introduction to FKK techniques. First Break 10(4), 113-123.

Pratt, R.G. and Worthington, M.H. 1990. Acoustic wave equation inverse theory applied to multi-source crosshole tomography, Part I: Acoustic waveequation method. Geophysical Prospecting 38, 287-310.

Pratt, R.G. and Goulty, N.R. 1991. Combining wave-equation imaging with traveltime tomography to form high-resolution images from cross-hole data. Geophysics 56, 208-224.

Pratt, R.G., Li, Q., Dyer, B.C., Goulty, N.R., and Worthington, M.H. 1991. Algorithms for EOR imaging: an experiment with scale model data. Geoexploration 28, 193-220.

Qin, F. and Schuster, G.T. 1993. Crosswell reflection migration by a constrained Kirchhoff integral method. 55th Meeting, EAEG, Stavanger, Expanded Abstracts, C008.

Rector, J.W. and Marion, B.P. 1991. Use of drill bit energy as a downhole seismic source. Geophysics 56, 628-634.

Rector, J.W., Lazaratos, S.K., Harris, J.M., and Van Shaack, M. 1992a. High resolution cross-well imaging of a West Texas carbonate reservoir: Part 3. Wavefield separation: 62nd Meeting SEG, Expanded Abstracts, 45-48.

Rector, J.W., Lazaratos, S.K., Harris, J.M., and Van Shaack, M. 1992b. Extraction of reflections from cross-well wavefields: 62nd Meeting SEG, Expanded Abstracts, 54-57.

Robinson, E.A. and Treitel, S. 1985. Geophysical Signal Analysis. PrenticeHall, New Jersey.

Rowbotham, P.S. and Goulty, N.R. 1993a. (In press). Imaging capability of crosshole seismic reflection surveys. Geophysical Prospecting.

Rowbotham, P.S. and Goulty, N.R. 1993b. (submitted). Wavefield separation by 3D filtering in crosshole seismic reflection processing. Geophysics.

Sams, M.S., Worthington, M.H., King, M.S., and Shams Khanshir, M. 1993. A comparison of laboratory and field measurements of P-wave anisotropy. Geophysical Prospecting 41, 189-206.

Schneider, W.A. 1978. Integral formulation for migration in two and three dimensions. Geophysics 43, 49-76.

Sharp, R.J., Peacock, J.H., and Goulty, N.R. 1985. Ultrasonic seismic modelling system. 47th EAEG Meeting, Abstracts volume, p37.

Sheriff, R.E and Geldart, L.P. 1983. Exploration Seismology, Vol. 1. Cambridge University Press.

Smith, B.A., Gallagher, J.G., Hoover, G.M., and Hufford, J.M. 1993. Characteristics of crosswell wave propagation at varying well offsets. 55th Meeting, EAEG, Stavanger, Expanded Abstracts, C007.

Stewart, R.R. 1989. 3-D F-K filtering. 59th Meeting SEG, Expanded Abstracts, 1123-1124.

Stewart, R.R. and Marchisio, G. 1991. Cross-well seismic imaging using reflections. 61 st Meeting SEG, Expanded Abstracts, 375-378.

Stolt, R.H. 1978. Migration by Fourier transform. Geophysics 43, 23-48.
Sun, R. and McMechan, G.A. 1986. Pre-stack reverse-time migration for eastic waves with application to synthetic offset vertical seismic profiles. Proc., Inst. Electr. Electron. Eng. 78, 457-465.

Tooley, R.D., Spencer, T.W., and Sagoci, H.F. 1965. Reflection and transmission of plane compressional waves. Geophysics 30, 552-570.

Vaage, S. and Ziolkowski, A. 1992. Cross-Hole Seismic Survey in the Groningen Gas Field. 54th EAEG Meeting, Paris, Expanded Abstracts, 578-579.

Van Shaack, M., Harris, J.M., Rector, J.W., and Lazaratos, S.K. 1992. High resolution cross-well imaging of a West Texas carbonate reservoir: Part 2. Wavefield modeling and imaging: 62nd Mtg SEG, Expanded Abstracts, 40-44.

Williamson, P.R., Sams, M.S., and Worthington, M.H.. 1993. Crosshole imaging in anisotropic media. The Leading Edge 12(1), 19-23.

Winbow, G.A. 1991. Seismic sources in open and cased boreholes. Geophysics 56, 1040-1050.

Wong, J., Hurley, P., and West, G.F. 1983. Cross-hole seismology and seismic imaging in crystalline rock. Geophysics Research Letters 10, 686-689.

Wyatt, K.D. and Wyatt, S.B., 1984. Determining subsurface structure using the vertical seismic profiling. In Vertical Seismic Profiling: Advanced Concepts. M.N. Toksoz and R.R. Stewart (eds), Geophysical Press.

Yilmaz, O. 1987 Seismic Data Processing. Series: Investigations in Geophysics, Volume 2. Society of Exploration Geophysicists, Tulsa.

Zhong, L. and Worthington, M.H. 1992. Crosswell continuity logging using Stoneley waves. Journal of Seismic Exploration 1, 293-308.

Ziolkowski, A.M., Lerwill, W.E., March, D.W., and Peardon, L.G. 1980. Wavelet deconvolution using a source scaling law. Geophysical Prospecting 28, 872-901.

Appendix A

Deviations of the Groningen boreholes

The deviation reports of the Scheemderzwaag boreholes are in the form of x, y, z deviations from the wellhead positions for the depths of interest. A 2-D deviation was assumed for the crosshole survey used in this study as x and y of the receiver well varied approximately linearly over the depth range 2225 m 2600m.

RECEIVER WELL Wellhead position (m):			SOURCE WELL		
			Wellhead position (m):		
x	y	z	x	y	z
1553.60	133.12	0.0	551.55	273.09	0.0
Deviations (m):			Deviations (m):		
x	y	z	x	y	z
1.39	-13.52	1550.0	22.69	-19.40	1550.0
0.90	-15.62	1575.0	21.15	-16.40	1575.0
0.06	-19.93	1625.0	17.40	-10.93	1625.0
-0.35	-22,12	1650.0	15.10	-6.91	1650.0
-0.76	-24,33	1675.0	12.49	-3.63	1675.0
-1.15	-26.57	1700.0	9.60	-0.35	1700.0
-1.56	-28.89	1725.0	6.55	2.94	1725.0
-2.02	-31.36	1750.0	3.47	6.13	1750.0
-2.53	-33.96	1775.0	0.47	9.08	1775.0
-3.07	-36.64	1800.0	-2.39	11.79	1800.0
-3.65	-39.37	1825.0	-5.13	14.37	1825.0
-4.47	-42.23	1850.0	-7.76	16.86	1850.0
-5.70	-45.35	1875.0	-10.38	19.15	1875.0
-7.29	-48.80	1900.0	-13.10	21.17	1900.0
-9.26	-52.59	1925.0	-15.91	22.92	1925.0
-11.40	-56.59	1950.0	-18.75	24.30	1950.0
-13.55	-60.65	1975.0	-21.61	25.66	1975.0
-15.80	-64.76	2000.0	-24.36	26.81	2000.0
-18.04	-68.94	2025.0	-26.89	27.85	2025.0
-20.14	-73.20	2050.0	-29.39	28.87	2050.0
-22.21	-77.56	2075.0	-31.95	29.85	2075.0
-24.38	-81.92	2100.0	-34.51	30.75	2100.0
-26.63	-86.22	2125.0	-37.10	31.57	2125.0
-28.91	-90.51	2150.0	-39.79	32.24	2150.0
-31.35	-94.80	2200.0	-42.58	32.77	2175.0
-33.72	-99.01	2200.0	-45.45	33.22	2200.0
-36.06	-103.14	2225.0	-48.37	33.59	2225.0
-38.59	-107.26	2250.0	-51.33	33.84	2250.0
-41.40	-111.46	2275.0	-54.27	33.96	2275.0
-44.49	-115.80	2300.0	-57.18	34.00	2300.0
-47.82	-120.29	2325.0	-60.07	34.01	2325.0
-51.29	-124.87	2350.0	-62.98	33.96	2350.0
-54.78	-129.45	2375.0			
-58.27	-133.93	2400.0			
-61.79	-138.31	2425.0			
-65.29	-142.61	2450.0			
-68.76	-146.72	2475.0			
-72.20	-150.58	2500.0			
-77.68	-154.23	2525.0			
-79.17	-157.61	2550.0			
-82.71	-160.70	2575.0			
-86.42	-163.60	2600.0			
-90.31	-166.31	2625.0			

Appendix \mathbb{B}

xhrill

This program was originally written by M.J. Findlay. However, it has evolved significantly during the course of this study, and it is therefore appropriate to include the main program and subroutines in this thesis. Subroutines not included here are either in libxhr.a or libtsa.a in the dgl3psr user area on the University of Durham Geological Sciences Department's SUN system. See also the appendix in Findlay (1991).

Plotting routines have not been included as similar programs can be found in UNIRAS manuals, e.g. SEISPLOT, CONTOUR.
PROGRAM XHRI
REAL RDUMA(NSAMR),RDUMB(NSAMR),RDUMC(NSAMR)
REAL RDUMD(NSAMR), RDUME(NSAMR), RDUMF(NSAMR) REAL RDUMD(NSAMR), RDMM EQUIVALENCE (LOCATE,A(1)), (DATE,A(2)), (DEVICE,A(3)). (SORTYP,A(4)), (SORLOC,A(5)), (RECTYP,A(6)), ${ }^{2}$ Set up initial default values - READ IN FROM DEFAULT FILE C Set up initial default values - READ IN FROM DEFAULT FILE
OPEN(UNIT-1,FILE ${ }^{\prime}$ 'xhrp.dfault ${ }^{\prime}$)
C
\quad READ (1,10) LOCATE, DATE, DEVICE, SORTYP, SORLOC,

70 IF (IBAT.NE.1) THEN

WRITE (6,*)			
WRITE (6,*)'		MASTER MENU (PRE	(PRESS 0 TO EXIT)'
WRITE (6,*)'			
WRITE ($6,{ }^{*}$)			
WRITE ($\left.6,{ }^{*}\right)^{\prime}$		Read data from file(s)	
WRITE (6,*)'	2	Write contents of R4DAT to file	to file
WRITE ($\left.6,{ }^{*}\right)^{\prime}$	3	Plot contents of R4DAT	
WRITE (6,*)			
WRITE (6,*)'		FFT traces and plot spectra	
WRITE (6,*)'		Apply filters to traces	
WRITE ($6, *{ }^{\text { }}$	6	F-K transform traces	,
WRITE (6.*)			
WRITE (6,*)'		First breaks, ramps. AGC, tapers	tapers etc '
WRITE (6,*)'		Interactively interpolate saturati	saturations'
WRITE (6.*)'		Apply wavelct shaping filter	
WRITE (6.*)			
WRITE ($6 . *)^{\prime}$		Adjust I/O parameters	
WRITE (6,*)'	10	Adjust display parameters	
WRITE (6.*)'	11	Adjust processing record	
WRITE (6,*)			
WRITE (6,*)'	12	Output first break times	
WRITE (6,*)'	13	Save/move traces to temp array	array
WRITE (6,*)'	14	Secondary save/move traces	
WRITE (6,*)'	15	Save traces from temp array	
WRITE (6,*)'		move traces back after wosh using	h using 14) ${ }^{\prime}$
WRITE (6,71) IBAT			
71 FORMAT('	16	Batch mode (text off $=1$) :	:',11)

WRITE ($6,{ }^{*}$) WRITE $\left(6,{ }^{*}\right)$ 'NSHOT=', NSHOT

ENDIF
READ (5,*) IANSWR
IF (NPROCS .GT. 20 .OR. NPROCS .LT. 0) NPROCS - 0
IF (IANSWR EQ $)$
IF (IANSWR.EQ.I) THEN
IF (NFILES.EQ.1.AND.IFILE2.NE.1) THEN
CALL RDFILE(NSAM, NCHR, NSAMR, NCHRR, R4DAT, NREAD, NFIRST, NRECS, RECDEP. DBGAIN. GCMSCL, 3 IPDISCI. IPDISC2,RDUMA. IHFORM,INPOPT,IPFORM,

IF (IFILE2.EQ.I) THEN

AMSPEC $=$ ' NO^{\prime}
C DT in microsecs. SAMFRQ in kHz READ (1,10) LOCATE, DATE, DEVICE, SORTYP, SORLOC,
IRECTYP. RECLOC.COMSHT, FILREC. INPOPT, IPDISCI, 1 IPDISC2. OPDISC, IPFORM, OPFORM, IHFORM
10 FORMAT (A20, 8(/A20)/A3/A25/A25/A $25 / \mathrm{A} 6 / \mathrm{A} 6 / \mathrm{A}$
READ (1,30) NSAM, NCHR, NFILES, NFILE(1), NFILE(2),
INCR(1), NCR(2), SORPOS, TOPREC, RECSEP, DT, DZ, SCAL 0 FORMAT (I4/13/L1/13/I3/I2/12/F6.1/F6.1/F6.2/F6.1/F6.2/F6.2) I NPLLST, IOPT,
I NCHDEF,TITLE
INCHDEF,TITLE, XLB, YLB
40 FORMAT (A3/A26/A7/A3/I4/I4/I2/I2/A30/A30/A30)
IF (NSAM.LT.1024) THEN
LEN - 4104
ELSE
$\mathrm{LEN}=(\mathrm{NSAM}+2) * 4$
ENDIF
$\operatorname{RECDEP}(1)=$ TOPREC
$\operatorname{DO~} 50 \mathrm{l}=2$. NCHR
$\operatorname{RECDEP}(\mathrm{I})=\operatorname{RECDEP}(\mathrm{I}-1)$
$\operatorname{RECDEP}(\mathrm{I})=\operatorname{RECDEP}(\mathrm{I}-1)+\operatorname{RECSEP}$
$\operatorname{END} \operatorname{IF}$ 50 CONDIF
NSHOT $=$ NFILE (1)
DO 60 I -1, NCHR
IDPROC $(1.1)-0$
NFIRST(I) $=0$
DBGAIN $(1)=0.0$
GCMSCL(I) $=1.0$
60 CONTINUE
NPROCS -1
IDPROC(1.NPROCS $)=1$
NCHSV -0
IHEAD $=0$
IFPROC -0
IFNOHD $=0$
IBAT $=0$
Written by M J Findlay 1987-1990
Adapted for the SUNs by P S Rowbotham 1990-1993
Uses subroutine libraries
libtsa.a (Time series analysis -- Robinson. Claerbout etal.)
uniras graphics library
untal
NFK1,NFK2 need to be one greater than NSAMR/2.NCHRR

 PARAMETER (NSAMR $=1024$, NCHRR $=32, N F K 1=513, N F K 2=33$) c PARAMETER (NSAMR $=128$. NCHRR $=4$. NFK $1=65$, NFK $2=5$) PARAMETER (NSAMR $=1024, \mathrm{NCHRR}=16, \mathrm{NFK} \mid=513$, $\mathrm{NFK} 2=17$) PARAMETER (NSAMR $=1024$, NCHRR $=16$, NFK $1=257$,NFK2 $2=17$) c PARAMETER (NSAMR $=256$, NCHRR $=16$, NFK $1=129$. NFK $2=17$) PARAMETER(NSAMR $=2048$, NCHRR $=128, N F K 1=1025$, $\mathrm{NF} 2=129$) PARAMETER (NSAMR=2048.NCHRR $=16$,NFK $1=1025$,NFK2 $=17$) PARAMETER (NSAMR $=12$, NR
NFK2=65) CHARACTER IHFORM*4, INPOPT*3. TITOFF*3, CHNSPL*26 CHARACTER*20 LOCATE, DATE, DEVICE, SORTYP. SORLOC CHARACTER*20 FILREC, A(9), COMSHT, RECTYP, RECLOC
CHARACTER*25 PROC(20). IPDISC2, AMSPEC*3,VARARE*3 CHARACTER*25 PROC(20). IPDISC2, AMSPEC*3,VARARE*3 COMPLEX CPDUM(NSAMR.NCHRR), CWDUM(NCHRR)
COMPLEX CDUM(NSAMR),CDUMI(NSAMR)
INTEGER NFILE(2), NCR(2), NFIRST(NCHRR)

INTEGER IDUM(NCHRR). NFIEMP
INTEGER NFTEMP2(NCHRR), NDUM(NCHRR)
REAL R4DAT(NSAMR,NCHRR), R2DAT(NSAM
REAL R4DAT(NSAMR,NCHRR), R2DAT(NSAMR,NCHRR)
REAL RTEMP1(NSAMR,NCHRR),RTEMP2(NSAMR,NCHRR)
REAL RTEMP1(NSAMR.NCHRR),RTEMP2(NSAMR,NCHRR)
REAL FILDUM(NFK1,NFK2),AMPDUM(NFK2.NFK1)
REAL SORPOS, RECDEP(NCHRR), DT, DBGAIN(NCHRR)
REAL GCMSCL(NCHRR).RDUM2(NSAMR,2)

ELSE
ELSE
IBAT
ENDIF
F (IAN
$\mathrm{IF}(\mathrm{IANSWR}$. EQ. 0$) \operatorname{CALL} \operatorname{EXIT}(0)$
$\mathrm{DZ}=\operatorname{ABS}(\operatorname{RECDEP}(2)-\operatorname{RECDEP}(1))$
NN=NSAMR*2
$\mathrm{NFK}=\mathrm{NFK} 1^{*} \mathrm{NFK} 2$
CALL ZERO(NSAMR, RDUM)
CALL ZERO(NSAMR. RDUMA)
 CALL ZERO(NSAMR, RDUMC) CALL ZERO(NSAMR, RDUMD) CALL ZERO(NSAMR, RDUME) CALL ZERO(NCHRR, IDUM) CALL ZERO(NCHRR, NDUM) CALL ZERO(NFK, AMPDUM) CALL ZERO(NFK, FILDUM) CALL ZERO(NN, CDUM) GO TO 70

END

C Adapted by Peter Rowbotham 1992 from alignd.f (Ed Kragh 1991)
 Adapted by Peter Rowbotham 1992 from alignd.f (Ed Kragh SUBROUTINE ALIGNP(NSAM.NCHR.NSAMR.NCHRR.R4DAT,

 1 NFIRST,TEMP,NFB)Shifts data by first break pick ... Aligns data al given NFB IS $=+1$ then + ve shift
IS $=-1$ then -ve shift.

REAL R4DAT(NSAMR,NCHRR),TEMP(NSAMR) INTEGER NFIRST(NCHRR)

$$
\text { DO } 100 \mathrm{I}=1 . \mathrm{NCHR}
$$

$$
\begin{aligned}
& \text { PRINT*'I }- \text {-I } \\
& \text { DO } 110 \text { I }-1 . \text { NSAM } \\
& \text { TEMP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DO } 110 \mathrm{~J}-\mathrm{I} \text { INSAM } \\
& \text { TEMP(J)-R4DAT(J,I) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { R4DAT(J.I) }=0.0 \\
& \text { CONTINUE }
\end{aligned}
$$

CONTINUE
NFBDIF-NFIRST(I) - NFB NFBDIF - NSSAM - NFBDIF

IF (NFBDIF .EQ. ABS(NFBDIF)) THEN ELSE
$11-1$
ENDIF
DO $130 \mathrm{~J}-\mathrm{I}$. NSAM

NCHRR, R4DAT, NFIRST, DT. NPROCS, IDPROC. CDUM,
RD (IANSWR .EQ. 6) CALL MENUF(NSAM, NCHR, NSAMR,
CWDUM,FILDUM,AMPDUM,IBAT) F (IANSW RADAT R2DAT NFIDST, DBGAIN NSHOT, NCHRR, R4DAT, R2DAT, NFIRST, DBGAIN, NSHOT,
GCMSCL, RECDEP, NCR, IDPROC, NPROCS. SORPOS. DT, RDUMA. RDUMB, RDUMC, RIWAVE, IDUM.

4 NDUM, IDUMI, ICSCRG, IBAT)
IF (NFILES.EQ.1) THEN
IF (IANSWR .EQ. 8) CALL WVSHAP(NSAM. NCHR, NSAMR,
INCHRR. R4DAT, R2DAT, NFILES, DT, NFIRST, NSHOT, IBAT) ELSE

IF (IANSWR .EQ. 8) CALL WVSHAP(NSAM, NCHR, NSAMR.
I NCHRR, RTEMPI, R2DAT, NFILES, DT, NFIRST, NSHOT. 2 IBAT)

IF (IANSWR .EQ. 9) CALL MENUIO(NSAM, NCHR, NRECS, 1 NSHOT, LEN. NFILES, NFILE, IPDISCI, IPDISC2, IHFORM, 2 INPOPT, OPDISC, IPFORM,OPFORM,IHEAD,IFPROC. 3 IFNOHD,IFILE2,ICSCRG,ISNRN,IBAT)
IF (IANSWR .EQ. 9) THEN

IF (NSAM.LT. 1O24) THEN LEN-4104

ELSE $=($ NSAM +2$) * 4$ ENDIF

IF (IANSWR .EQ. 10) CALL MENUDS(NCHR,NCHRR,SORPOS; I RECDEP. NCR,DT, LOCATE, DATE, DEVICE, SORTYP,
2 SORLOC, RECTYP, RECLOC. COMSHT, FILREC, TITLE,

IF (IANSWR . EQ. 11) CALL PROCES(NPROCS, PROC)
IF (IANSWR .EQ. 12) CALL OPFIRS(NCHR, NCHRR, NFIRST. 1 RECDEP. LEN, IPDISCI)

IF (IANSWR .EQ. 13) CALL SA VETR(NSAM,NCHR,NSAMR, 1 NCHRR,R4DAT,NFIRST.RTEMPI.NFTEMPI, NCHSVI,
2 NCHDEF,IBAT)

IF (IANSWR .EQ. 14) CALL SAVETR(NSAM,NCHR,NSAMR. 1 NCHRR,R4DAT,NFIRST,RTEMP2,NFTEMP2. NCHSV2.

IF (IANSWR .EQ. 15) CALL SAVETR(NSAM,NCHR,NSAMR 1 NCHRR.RTEMPI. NFIRST.RTEMP2.NFIEMP2.NCHSV2,
2 NCHDEF.IBAT) IF (IANSWR .EQ. 16) THEN IBAT-1

NREAD -2
CALL RDFILE(NSAM, NCHR. NSAMR, NCHRR. R2DAT. NREAD. NFIRS. NRECS. RECDEP, NCR.NSHOT. DT. LEN. SORPOS, NPROCS, IDPROC.
 4 (FPROC.IFNOHD.A.PROC.ICSCRG.ISNRN.IBAT) ELSE

CALL RDFILE(NSAM, NCHR, NSAMR, NCHRR, R2DAT, 1 NREAD, NFIRST, NRECS. RECDEP, DBGAIN. GCM, NFILE. NCR,NSHOT, DT, LEN. SORPOS. NPROCS, 4 IFPROC.IFNOHD.A.PROC.ICSCRG.ISNRN.IBAT)

CALL RDFILE(NSAM, NCHR, NSAMR, NCHRR, R4DAT, 1 NREAD, NFIRST, NRECS. RECDEP, DBGAIN, GCMSCL. 3 IPDISCI. IPDISC2,RDUMA. IHFORM,INPOPT.IPFORM 4 IFPROC. IFNOHD.A.PROC.ICSCRG.ISNRN.IBAT)

$$
\text { DO } 80 \mathrm{I}-1 \text {, NSAMR }
$$

OO $90 \mathrm{~J}=1 . \mathrm{NCHRR}$
RTEMPI $(\mathrm{I} . \mathrm{J})=$ R4DAT $(\mathrm{I} . \mathrm{J})$
CONTINUE
IF (IANSWR .EQ.) AMSPEC - NO (NSAM, NCHR. NSAMR. IF (IANSWR EQ, 2) CALL WR RRECS, RECDEP DBGAIN,
3 IDPROC. OPDISC, IHFORM. OPFORM, LOCATE. DATE,
5 FILREC PROC. IDUM. DBGAIN, IHEAD. ICSCRG, IBAT)
IF (IANSWR .EQ. 3)
IF (IANSWR EQ. 3) CALL MENPL2(NSAM, NCHR, NSAMR, NCHRR, R4DAT, NFIRST. TITOFF. CHNSPL. POLART,
DT. LOCATE, DATE, DEVICE, SORTYP, SORLOC. RECTYP. 5 TITLE. XLB. YLB. SCAL. AMSPEC, PROC) IF (IANSWR EQ. 4) CALL MENUD(NSAM. NCHR, NSAMR. 1 NCHRR, R4DAT. DT. NSHOT, AMSPEC. CDUM. CDUM
IF (IANSWR .EQ. 5) CALL MENUE(NSAM, NCHR. NSAMR.

SUBROUTINE FT3D(N1, N2, N3, CP, SIGNA, SIGNB.	REAL RSCAL(2).XSO(51).ZSO(51).XRE(51).ZRE(51)	
1 SIGNC. CW1, CW2)	c COMPLEX CX	(4096)
INTEGER N1, N2, N3	IF (IBAT.NE.1) WRITE (6.*)'NSAM,NCHR,NSHOT = ',	
COMPLEX CP(N1,N2.N3), CW1(N2,N3), CW2(N3)	1 NSAM,NCHR.NSHOT	
REAL SIGNA. SIGNB, SIGNC	10 IF (IBAT.NE.I) THEN	
DO $10 \mathrm{I}=1, \mathrm{~N} 3$	PRINT*,'	
CALL FFT(NI, CP(1, 1, I), SIGNA)	PRINT*, ${ }^{\text {, }}$	GAIN COMPENSATION MENU
10 CONTINUE	PRINT *. '	~~~~~~~~~~~~~~~~~~~
DO $20 \mathrm{~J}=1 . \mathrm{N}$ I	WRITE (6,20)	
DO $30 \mathrm{~K}-1, \mathrm{~N} 2$	20 FORMAT ($/ 1$	Normalise each trace wrt rms energy ')
DO $40 \mathrm{~L}=1 . \mathrm{N} 3$	WRITE (6,30)	
- $\mathrm{CW} 1(\mathrm{~K}, \mathrm{~L})=\mathrm{CP}(\mathrm{J}, \mathrm{K}, \mathrm{L})$	30 FORMAT (' 2 N	Normalise each trace wrt peak amplitude ')
40 CONTINUE	WRITE (6.40)	
30 CONTINUE	40 FORMAT ($/ 3$	Kill / Mute (taper) traces ')
CALL FFT(N2, CW1, SIGNB)	WRITE (6,50)	
DO $50 \mathrm{~K}=1$, N 2	50 FORMAT (' 4	Apply AGC or T-squared ramp to traces ')
DO $60 \mathrm{~L}=1, \mathrm{~N} 3$	WRITE (6,60)	
CW2(L) = CW 1(K.L)	60 FORMAT (' 5	Apply tapers to data spatially ')
60 CONTINUE	WRITE (6.70)	
CALL FFT(N3, CW2, SIGNC)	70 FORMAT ($/ 6$	Remove common trace ')
DO $70 \mathrm{~L}=1 . \mathrm{N} 3$	WRITE $(6,80)$	
CW1(K,L) = CW2 $\mathrm{L}^{\text {(}) ~}$	80 FORMAT (${ }^{\prime} 7$	Remove spike / D.C. from data ')
70 CONTINUE	WRITE (6,90)	
50 CONTINUE	90 FORMAT (8	Correct trace misalignment ')
DO $80 \mathrm{~K}=1 . \mathrm{N} 2$	WRITE (6,100)	
$\mathrm{CP}(\mathrm{J}, \mathrm{K}, \mathrm{L})=\mathrm{CW} 1$ (K.L)	100 FORMAT ('9	Apply / Enter channel gains ')
80 CONTINUE	WRITE (6,110)	
20 CONTINUE	110 FORMAT (/ 10	0 Enter or alter first break samples ')
RETURN	WRITE (6,120)	
END	120 FORMAT (' 11 WRITE $(6,121)$	Apply mute to channels (Cos taper) ')
c--	121 FORMAT ($/ 12$	2 Shift traces using Eds ALIGND subroutine ')
C. Subroutine to apply gain compensation across array of traces	WRITE (6,122)	
C	122 FORMAT (${ }^{\text {1 }} 13$	Sum traces to first trace ')
SUBROUTINE GNCOMP(NSAM, NCHR. NSAMR, NCHRR,	WRITE (6,123)	
1 R4DAT, R2DAT, NFIRST, DBGAIN, NSHOT,GCMSCL.	123 FORMAT (' 14	Shift first trace back to true position ')
2 RECDEP,NCR,IDPROC, NPROCS, SORPOS, DT, TEMP,	WRITE (6,124)	
3 XTEMP2. XTEMP3, A, KILLID, NTEM, IDUM 1, ICSCRG,	124 FORMAT (/' 15	5 Create traces (entered or sine) ')
4 IBAT)	WRITE (6,125)	
DIMENSION R4DAT(NSAMR.NCHRR). NFIRST(NCHRR)	125 FORMAT (' 16	6 Output first breaks in runfile format ')
DIMENSION DBGAIN(NCHRR),R2DAT(NSAMR.NCHRR)	WRITE (6,126)	
DIMENSION GCMSCL(NCHRR). KILLID(NCHRR).	126 FORMAT (/' 17	7 Energy in a given window ')
DIMENSION RECDEP(NCHRR). IDPROC(5,NCHRR). NCR(2)	WRITE (6.127)	
DIMENSION TEMP(NSAMR).XTEMP3(NSAMR)	127 FORMAT (' 18	Norm same traces in 2 files wrt rms nrg ')
DIMENSION A(NSAMR),NTEM(NCHRR).XTEMP2(NSAMR)	WRITE (6,128)	
DIMENSION IDUMI(NCHRR)	128 FORMAT (' 19	Norm same traces in 2 files wrt peak amp ')
CHARACTER ANS*1. FNAME*20. ANSIN*1	WRITE (6,129)	
INTEGER NREPLY. NSHOT, NEW	129 FORMAT (' 20	Stack 2 filcs ')

IF (II EQ. 1) THEN IF (J.GE. NLIMI $\operatorname{R4DAT}(\mathrm{J} . \mathrm{I})=0.0$ ELSE
R4DAT(J,I)
ENDIF ELSE
ELSE
IF (J.LE. ABS(NFBDIF)) THEN ELSE ENDIF ENDIF 130 CONTINUE RETURN END
ENDIF
FUNCTION DIST(X. Y. M. INTERC. MULT)
REAL DIST, M, INTERC
DIST $-\left(\left(Y-M^{*} X-\right.\right.$ INTERC $)$ SQRT $\left(1+M^{* * 2}\right)$
DIST $-\left(\left(\mathrm{Y}-\mathrm{M}^{*} \mathrm{X}-\operatorname{INTERC}\right) / \operatorname{SQRT}\left(1+\mathrm{M}^{* *} 2\right)\right) *$ MULT
END
C.Subroutine to carry out simple 2D Fourier transform (Clacrbout)
SUBROUTINE FT2D(N1, N2. CP. SIGNA. SIGNB. CW)
INTEGER N1,N2
COMPLEX CP(N1,N2). CW(N2)
REAL SIGNA, SIGNB
DO 10I-1,N2
CALL FFT(NI. CP(I.I), SIGNA)
10 CONTINUE
10 CONTINUE
DO $40 \mathrm{~J}-1 . \mathrm{Ni}$
DO $20 \mathrm{~K}=1, \mathrm{~N} 2$
CW $(K)=$ CP $(J . K)$
CONTINUE
20 CONTINUE
CALL FFT(N2.
DO $30 \mathrm{~L}-1 . \mathrm{N} 2$
CP(J.L) -CW(L)
30 CONTINUE
RETURN
END
C.Subroutine to carry out simple 3D Fourier transform
A6
WRITE (6,131)
31 FORMAT (' 21 Input wavelet for Ed's prol6 ACF progran' ') WRITE (6,132)
32 FORMAT (' 22 WRITE (6.13.3) 133. FORMAT (' 23 WRITE (6,1 ${ }^{\prime}$) 34 FORMAT ('24
WRITE (6.135) 3. FORMAT ('25 PRINT*
ENDIF
dOI (*'s) GVEy
IF (IOPT EQ. 1) THEN
NPROCS $=$ NPROCS +1
IDPROC(I.NPROCS) -2
IDPROC(2.NPROCS
CALL RMSERR(NSAM. R4DAT(1.J), TEMP(J))
30 CONTINUE
CALL MAXSN(NCHR, TEMP, RMSMAX. MAXTRC)
DO $150 \mathrm{~J}=1$, NCHR IF (TEMP(J).EQ. O.0) GO TO 150
SCALE - RMSMAX/TEMP(J)
SCALE - RMSMAX / TEMP(J)
IF (IBAT.NE.I) PRINT *, 'SCAL
GCMSCL(J$)=$ GCMSCL(J) $*$ SCALE
DO $1401-1, \operatorname{NSAM}$
R4DAT $(\mathrm{I}, \mathrm{J})=$ R4DAT(I, J$) * \operatorname{SCALE}$ 40 CONTINUE
ENGCM $=($ NCHRR +2$) * 4$
IF (IBAT.NE.1) PRINT *. GCMSCL
ELSE IF (IOPT .EQ. 2) THEN
NPROCS - NPROCS +1
IDPROC(1.NPROCS $)=2$
IDPROC(2 NPROCS $)=1$
DO $160 \mathrm{~J}=1$, NCHR
CALL MAXAMP(NSAM, R4DAT(1.J), TEMP(J), INDAMP)
160 CONTINUE
CALL MAXSN(NCHR, TEMP, BIGAMP, II)
DO $180 \mathrm{~J}-1$. NCHR
IF (TEMP(J).EQ. 0) GO TO 180
GCMSCL(J)-GCMSCL(J)*SCALE
R4DAT(I.J) - R4DAT(I.J) * SCALE
CONTINUE
180 CONTINUE ELSE IF (IOPT .EQ. 3) THEN
IF (IBAT.NE.
PRINT * * 1 KILLS channels; 0 TAPERS ends:2 TAPERS past Sfbs' 203
PRINT * ' ' 3 :TAPERS past Pfbs'
ENDIF
READ (5.*) IKM
IF (IKM. EQ. 1) THEN
READ ($5,{ }^{*}$) NKILLS
DO 190 = 1 NKILL
READ (5,*) KILLID(1)
DO $2001=1$, NKILLS
COLLI ZEROONSAM
CALL ZERO(NSAM. R4DAT(1,KILLID(I)))
CALL ZERO(NSAM, R2DAT(I,KILLID(I)))
200 CONTINUE
IF (IBAT.NE.1) THEN
IF (IBAT.NE,I)THEN WRITE (6.*)'START AND END OF TAPER IN SAMPLES :' WRITE ($\left.6,{ }^{*}\right)^{\prime}$ 'Relative to Swv FBs if 2 chosen above) ${ }^{\prime}$
ENDIF
$\stackrel{\circ}{2}$ CONTINUE
DO 220 I - NTP
R4DAT $(I, \mathrm{~J})=0.0$
R2DAT $(\mathrm{I})=0.0$
ELSE 260 J - NTRO, NTRI
FAC-REAL(LENTAP-1)/REAL(LENTAP)
R4DAT(NTPST - 1.J) - R4DAT(NTPST - I.J) * FAC
CONTINUE
R4DAT(I.J) $=0.0$
R2DAT(I.J)
250 CONTINUE
END IF
END IF

DO 440 J - NCHNLO, NCHR - 1
$\operatorname{NFIRST}(\mathrm{J})=\operatorname{NFIRST}(\mathrm{J}$
$\operatorname{RECDEP}(\mathrm{J})=\operatorname{RECDEP}(\mathrm{J}+1)$
DO $430 \mathrm{I}-\mathrm{I}$. NSAM $(\mathrm{N}+\mathrm{I})$ 430 CONTINUE

NFIRST(NCHR $)=0 \quad$ RECDEP(2)-RECDEP(I) + RECDEP(NCHR-1) $\operatorname{NFIRST}(\mathrm{NCHR})=0$
RECDEP(NCHR)=RECDEP(2)
ELSE IF (IOPT EQ. 7) THEN IF (IBAT.NE.1) WRI READ (5.490) ANS 1 THEN

IF (IBAT.NE.1) WRITE (6,*)'ENTER TRACE NUMBER :'
IF (IBAT.NE.I) WRITE ($6,{ }^{*}$)'ENTER SAMPLE RANGE : READ ($5, *$, NSMSPK. LSMSPK
DO 450 I $=$ NSMSPK, LSMSPK

DO
IF (ANS .EQ. ' M^{\prime}) THEN
ALPHA $=0.0$
ELSE \quad ALPHA $=5^{*}($ R4DAT(I-1,NTRSPK) $)+$ R4DAT($\left.\mathrm{I}+1, \mathrm{NTRSPK}\right)$) END IF
anNILNOS
ELSE
DO $480 \mathrm{~J}-1, \mathrm{NCHR}$
DC $=0.0$
DO $460 \mathrm{I}=1$. NSAM
$460 \quad \begin{aligned} & \mathrm{DC}=\mathrm{DC}+\mathrm{R} 4 \mathrm{DAT}(1 . \mathrm{J}) \\ & \text { CONTINUE }\end{aligned}$
DC = DC/REAL(NSAM) DO 4701 - 1, NSAM 470 CONTINUE

END IF
ELSE IF (IOPT .EQ. 8) THEN
IF (IBAT
ELSE IF (IOPT EQ. 8) THEN
IF (IBAT.NE. 1) WRITE (6.*)'CALC COM TRACE
I MISALIGNMENT (I-Y)?'
READ (S,*) ICORR
READ (S.*
IF (ICORR EQR . I) THEN
IF (IBAT.NE. 1) WRITE (6.
READ ($5,{ }^{*}$) 11112
IF (IBAT.NE.1) WRITE (6.*)'ENTER MAX LAG:'

CALL ZERO(NCHRR,NTEM)
ELSE IF (IOPT. EQ. 4) THEN NPROCS - NPROCS + 1
IDPROC(I.NPROCS $)=6$

IF (IBAT.NE.I) WRITE (6, *)'Ramp or AGC or reDefine data :' IF (IBAT.NE. $)$ WR
READ (S.490) ANS
IF(ANS EQ ${ }^{\prime} \mathrm{R}^{\prime}$ OR.

DO $280 \mathrm{~J}=1$. NCHR
DO $2801=1$ I. NSAM
R4DAT $(1, \mathrm{~J})=$ R4DAT $(1 . \mathrm{J}) *(\mathrm{I}-1)^{* *} 2 / 10000$
CONTINUE
270 CONTINUE
IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') THEN
IF (IBAT.NE. 1) WRITE ($\left.6 .{ }^{*}\right)^{\prime}$ 'Enter lenght of taper in sams:
READ (5,490) ANS ANS EQ 'y') THEN
IF (IBAT.NE.1) WRITE ($\left.6 .{ }^{*}\right)^{\prime}$ Taper (Y/N $)^{\prime}$
READ $(5,490)$ ANS
READ (5.*) LENTAP
NTAPO - NSAM - LENTAP
DO $300 \mathrm{I}=1$, NCHR
TAP $=10-$ REAL(1 - NTAP0) $/$ REAL(LENTAP)
IF $(I . G T$. NTAP0 + LENTAP) TAP -0.0
R4DAT $(\mathrm{I} . \mathrm{J})=$ R4DAT $(\mathrm{IJ}) *$ TAP
R4DAT(IJ) - R4DAT(I.J) *TAP
CONTINUE
CONTINUE
CONTINUE
ELSE IF (ANS .EQ. 'D' .OR. ANS .EQ. 'd') THEN
WRITE ($6,{ }^{*}$)'ENTER SPIKE (1),FLAT(2),T-RAMP(3).
T1/2-RAMP(4)' \quad (${ }^{\text {WRITE }}(6 *)^{\prime}$ ' 5 RAMP(5)'
$\stackrel{8}{4} 8$
ENDIF
READ (5.*) IOP
IF (IOP .EQ 1) THEN
IF (IOP .EQ.) THEN
DO $310 \mathrm{~J}-1$. NCHR
CALL ZERO(NSAM. R4DAT(1.J))
CONTINUE
ELSE IF (IOP .EQ. 2) THEN
DO $330 \mathrm{~J}=1$, NCHR
DO $330 \mathrm{~J}-1$, NCHR
DO $320 \mathrm{I}-1$. NSAM

> CONTINUE CONTINUE ELSE IF (IOP .EQ. 3) THEN DO $350 \mathrm{~J}-1$. NCHR DO $3401-1$ NSAM

R4DAT(I.J) - REAL(I - 1)

$\underset{<}{\infty}$

$$
\begin{aligned}
& \text { ELSE } \\
& \text { R4DAT(1,J) - AVERAG } \\
& \text { END IF } \\
& 560 \text { CONINUE } \\
& 570 \text { CONTINUE } \\
& \text { END IF } \\
& \text { ELSE IF IOPT. EQ. 9) THEN }
\end{aligned}
$$

IF (IBAT.NE. I) WRITE ($6,{ }^{*}$)'Apply current/New gains (A/N)?' READ (5.490) ANS
$\stackrel{N}{\sim}$
$\mathrm{NCR}(2)=14$
$\mathrm{IF}(\mathrm{NCR}(1) . \mathrm{E}$
IF (NCR (1).EQ. 12 .AND. NCR(2).GE. 13) THEN
CALL ZERO(NCHR. DBGAIN) END IF
DO $590 \mathrm{~J}=1, \mathrm{NCHR}$
RMULT $-10^{* *}(-$ DBGAIN(J)/20.0)
RMULT $-10^{* *}($-DBGAIN($\left.) / 20.0\right)$
DBGAIN($)-0.0$
DO $5801=1$ NSAM
DBGAIN(J) -0.0
DO $5801=1$. NSAM
R4DAT(IIJ) - R4DAT(I.J) * RMULT
CONTINUE
$\begin{array}{ll}580 & \text { CONTINUE } \\ 590 & \text { CONTINUE }\end{array}$
IDPROC(2,NPRR WRITE (6,*)'Equate rmis amps of com rec chans?'
READ (5,490) ANS
IF (ANS .EQ. 'Y' OR. ANS .EQ ' ' ' ') THEN
CALL RMSERR(NSAM. R4DAT(1,NCR (1))
CALL RMSERR(NSAM,R4DAT(1,NCR(1)),SCALEI,INDAMP) SCALE - SCALE1 / SCALE2
SCALE - SCALEI / SCALE
C N.B. CHANGED NEXT LINE
C N.B. CHANGED NEXT LINE
IF (NCR(1).EQ. 12 .AND. NCR(2). GE. I 3) THEN
C COMMON SHOT TRACES ARE TOP 12 AND BOTTOM 12.
DO $610 \mathrm{~J}-13.24$
DON SHOT TRAC
DO $600 \mathrm{I}-1.24$
DO
R4DAT $(I, J)=$ R4DAT(I.J) * SCALE
CONTINUE

DO $630 \mathrm{~J}-$ IDTRAC. NCHR. 2
DO $620 \mathrm{I}-1$. NSAM
R4DAT(I.J) - R4DAT(I.J) * SCALE \sum_{2}^{2}
Z_{0}^{2}
0
0

	CONTINUE
NFIRST(NTRA) $=$ NFIRST(NTRA) - NCHANG IF (IBAT.NE. I) WRITE (6.*)'Taper the trace (Y/N) ?'	
READ (5.490) ANS	
IF (ANS .EQ. 'Y' .OR. ANS EQ. 'y') THEN	
IF (IBAT.NE. I) WRITE (6,*)'Enter start of tap in sams:'	
	READ (5.*) NTAP0
IF (IBAT.NE. I) WRITE (6,*)'Enter length of tap in sams :'	
READ (5.*) LENTAP	
DO 5301- NTAPO. NSAM	
TAP - 1.0-REAL(1 - NTAP0) / REAL (LENTAP)	
IF (I.GT. NTAP0 + LENTAP) TAP - 0.0	
	R4DAT(1.NTRA) - R4DAT(I.NTRA) * TAP
530 CONTINUE	
END IF	
ELSE	
IF (IBAT.NE.I) WRITE (6.*)'IST/LAST TRACES TO SHIF	
IF (IBAT.NE.1) THEN	
WRITE (6,*)'+ shift reduces travel time of traces!'	
WRITE (6.*)'ENTER SHIFT TO APPLY IN SAMPLES :'	
ENDIF	
READ (5,*) NSHIFT	
DO $570 \mathrm{~J}-$ NTOGO0, NTOGO	
NFIRST(J) - NFIRST(J) - NSHIFT	
AVER0 $=0.0$	
DO $540 \mathrm{I}=1.50$	
AVER0 - AVER0 + R4DAT(I,J)	
540	CONTINUE
	AVER0 $=$ AVER0 / 50.0
	AVERAG $=0.0$
	DO 5501-NSAM $/ 2+1$, NSAM
	AVERAG-AVERAG + R4DAT(I.J)
550	CONTINUE
	AVERAG - 2.0*AVERAG / REAL (NSAM)
	ISHIFT - NSHIFT
	ISIG - ISIGN(1 , ISHIFT)
	10-1
	IL-NSAM
	IF (ISIG LLT. 0) THEN
	10 - NSAM
	IL-1
	END IF
	DO 560 - - IO. IL. ISIG
	IF ($1+$ ISHIFT .LE. 0) THEN
	R4DAT(1.J) - AVER0
	ELSE IF (+ ISHIFT LE NSAM) THEN
	R4DAT(I,J) - R4DAT(+ ISHIFT,J)

$\operatorname{READ}(5, *)$ LG
CALL CROSS(NSAM, R4DAT(1,II), NSAM, R4DAT(1.12).
LG. TEMP)
CALL MAXSN(LG. TEMP. GMAX. II) LG. TEMP)
CALL MAXSN
CALL CROSS(NSAM. R4DAT(1.12), NSAM. R4DAT(1.11). LG, TEMP)
CALL MAXSN(LG, TEMP, GMAXI. III)
WRITE ($6,{ }^{*}$) GMAX. II. GMAXI. III
WRITE (6.*)'TRACE 2 LEADS TRACEI BY :'. II - I
ELSE WRITE ($6, *$ 'TRACE 2 LAGS TRACEI BY:', II - 1
END IF WRITE,*)'LAG implies INCREASE times in trace2.'
WRITE ($6,{ }^{*}$)'ENTER 0 TO EXIT 1 TO CONTINUE:'
ENDIF
IF (IGO.NE. I) GO TO 570
ENDIF NE.1)
WRITE $\left(6 . .^{*}\right.$ 'Shift single or range of traces(S/R)?'
$\operatorname{READ}(5,490)$ ANS
490 FORMAT (AI)
IF (ANS. EQ. 'S' OR. ANS .EQ. 's') THEN
READ (5.*) NTRA
IF (IBAT.NE.1) WRITE ($\left.6 .{ }^{*}\right)^{\prime}+$ shift reduces travel time!'
IF (IBAT.NE.1) WRITE $(6, *)^{\prime}$ 'Enter shift (rotall) (t) apply :'
READ (5.*)NCHANG
IF (IBAT.NE. 1) WRITE ($6, *$)'ENTER FIRST SAMPLE TO
SHIFT:'
READ ($5 . *$) ITOSHF
READ (5.*) ITOSHF
DO 500 I - ITOSHF, NSAM - NCHANG
IF (I.GT. NSAM) GO TO 500
TEMP(I) $=0.0$
GLS TO 500
END IF
TEMP(I) - R4DAT(I + NCHANG.NTRA)
500 CONTINUE NCHANG + I NSAM
IF (I.GT. NSAM)
TEMP(I) - R4DAT(I - NSAM + NCHANG.NTRA) $)$
510 CONTINUE
R4DAT(I.NTRA) - TEMP(I)
IF (IBAT.NE.I) WRITE (6,*)'File name' READ(5.689) FNAME 689 FORMAT(A20)
FORMAT(A20)
CALL ZERO(NCHRR,NFIRST)
NEW $=0$
OPEN(UNIT=8.FILE=FNAME) DO 6911 $=1.5$
691 READ (8.*)
CONTINUE
PRINT*', SHIFT BY $9.521(1-\mathrm{Y})^{\prime}$
READ(S.*) ISHYN
IF(ISHYN NE. 1 ISHYN $=0$
(IDUP.NE.1) THEN
IF (IDUP.EQ.1) THEN
NEW - NCHR $^{*}($ NISHOT-1)
ELSE
NEW - NCHR * (NCHR-NISHOT)
ENDIF
WRITE ($6 *$ *) NEW NISHOT NCHR
WRITE (6.*) NEW, NISHOT,NCHR
DO 693 I- 1 I, NEW
READ(8,*)

IF (IDUP.EQ. 1) THEN
DO 694 I 1, NCHR.
RO 694 (8.695) NFIRST(I) 694 CONTINUE
NFIRST(I)=NFIRST($)$-ISHYN $*$ INT(9.521) DO 68
DO $688 \mathrm{I}=$ NCHR.1.-
READ (8.695) NFIRST(I)
READ (8,695) NFIRST(I)
NFIRST(I)=NFIRST(I)-ISHYN*9
CONTINUE
688 CONTINUE
695 FORMAT(59X,13)
CLOSE(UNIT=8)
ELSE IF (IREPLY .EQ. 3) THEN
IF (IBAT.NE.I)
WRITE (6.*)'No)
READ(S,*) IMOVE
1 WRITE (6 .*)'No of samples to shift all channels ($+/-$)?'
DO 696 - 1 , NCHR
NFIRST(1) - NFIRS
ELSE IF (IREPLY .EQ. 4) THEN
ELSE IF (IREPLY EQ. 4) THEN
IF (IBAT.NE.I) WRITE (6.*)'Pre/Post--ीxxd (Uf)?'
READ(5.*) ANS READ (5.*) ANS
NEW
IF (ANS.EQ.'I'OR.ANS.EQ'T' $)$ OPEN(UNIT-8.FILE-'forti.3')
IF (ANS.EQ.'.OR.ANS.EQ.'F) OPEN(UNIT-8.FILE-'forf.3')
IF (IBAT.NE.I) WRITE (6,*)'ENTER signif no. of S.D.s.'
READ (5,*) SSDS
DO $680 \mathrm{~J}=1$. NCHR
DO $670 \mathrm{I}=$ NO. NSAM
RMEAN - 0.0
RMEAN -0.0
DO 650 III $-1,1-1$
RMEAN - RMEAN + R4DAT(III.J)
CONTINE
RMEAN - RMEAN $/ \operatorname{REAL}(I-1)$
RMERR -0.0
DO 660 III $=1,1-1$
DIF - R4DAT(III.J) - RMEAN
RMERR $=$ RMERR $+\operatorname{DIF} * * 2$
:
CONTINUE END IF
ELSE IF (IBAT.NE.1)
IF (IYNGA.EQ.1) THEN
IF (IBAT.NE.1) WRITE (6.*)'Enter SCALING FACTOR - not
長

$$
\begin{aligned}
& \text { READ }(5, *) \text { DBGALL } \\
& \text { DO } 641 \mathrm{j}=1 \text {. NCHR }
\end{aligned}
$$

DO $642 \mathrm{I}=1$, NSAM
660 CONTNUE
RMERR - SQRT(RMERR)
C Criterion that It difference is greater than NSSDS Standard
C Deviations from mean value to that sample.
C Deviations from mean value to that sample.
F (DIF0 GT. SSDS*RMERR) THEN
NFIRST(J) $=1$
NFIRST(J) $=1$
GO TO 680

CONTINUE

 CONTINUE ENDIF IMAXFB -0

ELSE IF (IREPLY EQ. 0) THEN
NREPLY-0
DO 690 I- 1 , NCHR
IF (NREPLY.NE.99) THEN
IF (IBAT.NE.I) THEN
WRITE $(6, *$)'Ist break S
WRITE ($6, *)^{*}$ ' Ist break SAMPLE for channel \#', I,
I'is', NFIRST ,
WRITE $\left(6,{ }^{*}\right)^{\prime}$ Change it? $\mathrm{Y}=1, \mathrm{~N}=0$, change all -99^{\prime}
ENDIF
ENDIF
READ (5,*) NREPLY
ENDIF
IF (IBAT.NE.1)
1 WRITE (6,*)'Enter Ist break SAMPLE for channel \#', I
READ (5.*) NFIRST(I)
ENDIF
690 ELSE IF (IREPLY .EQ. 2) THEN

NISHOT - NSHOT
 IF (IBAT.NE.I) WRITE (6,*)'down(1) or up(-1$)^{\prime}$ $\operatorname{READ}\left(5, .^{*}\right)$ IDUP

 ELSE
648
IF (R4DAT(I.J).GT.RMA
RMAXFB $=$ R
A10

IF (ICSCRG.EQ.1) THEN		$\mathrm{FAC}=\mathrm{FAC} * 3.1415926535$	
NEW - NSHOT - I		FAC-0.5* (1.0-COS(FAC)	
ELSE		R4DAT(1,J) - R4DAT(1.J) * FAC	
NEW $=$ NCHR*(NSHOT-1)	710	CONTINUE	
ENDIF		DO 7201 - 1, NTAP0	
WRITE ($6, *$) NEW.NSHOT.NCHR		R4DAT $(1 . \mathrm{J})=0.0$	
DO 697 I=1.NEW	720	CONTINUE	
READ (8.*)		CONTINUE	
697 CONTINUE	ELSE		
C-- READ IN FIRST BREAK DATA	I WRITE ($6, *$ 'Enter length of cosine taper ($0=$ NO mute):'		
DO 6981 - 1.NCHR			
READ ($8 .{ }^{*}$) NTEM 1.NTEM2.NTEM3	READ (5,*) NTAP10		
IF (NTEM2.NE.NFIRST(I)) THEN	IF (NTAPIO.EQ. 0) GO TO 781		
PRINT**.'uh oh. non matching tbs'	IF (IBAT.NE. 1)/ WRITE ($6, *$ 'Enter start of cosine taper ($0=1$ ist break):'		
ENDIF			
NFIRST(I) - NTEM3			
IF (ICSCRG.EQ.1) THEN	IF (IBAT.NE.1)		
DO 699 J=1,NCHR-1	I WRITE (6.**)'IST AND LAST TRACES TO APPLY MUTE' READ (5.*) NGOO, NGOI		
READ ${ }^{(8, *)}$			
699 CONTINUE	DO 780 J - NGOO. $\mathrm{NGO1}$		
ENDIF	NTAP0 - NFIRST(J) + NTAP00		
698 CONTINUE	NTAPI $=$ NTAPI $0+$ NTAP 0 IF (NTAPI - I GT. NSAM OR. NTAPO .LT. I) THEN		
CLOSE(UNIT=8)			
END IF	IF(IBAT.NE.1)WRITE(6,*)'ERROR NTAP0,NTAPI-.		
ELSE IF (IOPT . EQ. 11) THEN	NTAPO,NTAPI		
700 IF (IBAT.NE.1) THEN		GO TO 780	
WRITE (6,*) (NFIRST(1).I-1.NCHR)	750	ENDIF	
WRITE (6,*)'APPLY SAME MUTE TO ALL TRACES ($1=Y$) :'	DO $7601=$ NTAP + I , NTAPI - 1		
ENDIF ${ }^{\text {d }}$ (${ }^{\text {d }}$	FAC - REAL (- NTAPO) / REAL(NTAP 1 - NTAPO)		
READ ($5, *$) IOANS	FAC $=$ FAC $* 3.14159265$		
IF (IOANS .EQ.1) THEN	$\mathrm{FAC}=0.5 *(1.0-\mathrm{COS}(\mathrm{FAC}))$		
IF (IBAT.NE.1) WRITE ($6,{ }^{*}$)'Enter length of cos tap in sams :'	760	R4DAT(I.J) $=$ R4DAT $(1, \mathrm{~J}) *$ FAC	
READ (5.*) NTAPIO		CONTINUE	
IF (NTAPIO EQ. 0) GO TO 730	DO 7701-1. NTAPO		
IF (IBAT.NE. 1) WRITE ($6 .{ }^{*}$)'Enter start of $\cos \operatorname{tap}(0-\mathrm{FB})$:'	R4DAT(I.J) - 0.0		
READ (5,*) NTAP00		CONTINUE	
DO $730 \mathrm{~J}=1$, NCHR		780 CONTINUE	
NTAP0 $=$ NFIRST(${ }^{\text {(})+ \text { NTAPOO }}$	781 ENDIF		
NTAPI $=$ NTAP $10+$ NTAPO	ELSE IF (IOPT EQ. 12) THEN		
IF (NTAPI - I .GT. NSAM . OR. NTAPO LTT. I) THEN		CALL ZERO(NSAMR,TEMP) Shifts data by first break pick ... Aligns data at sample 50	
IF (IBAT.NE.1) THEN			
WRITE (6.*)'CHANNEL'.J		IF (IBAT.NE.I) PRINT*. 'What shift? (+/-1 +ve/-ve shift)' READ(5.*) IS	
WRITE ($6, *$)'ERROR NTAPO.NTAPI - 'NTAPO.NTAP	CALL ALIGND(NSAM,NCHR,NSAMR,NCHRR,R4DAT,		
ENDIF ${ }^{\text {GO TO }} 700$	1 NFIRST.TEMP.IS) CALL ZERO(NSAMR.TEMP)		
END IF			
DO $7101-$ NTAPO + 1. NTAPI - 1	ELSE IF (IOPT.EQ. 13) THEN ${ }^{\text {IF }}$ (IBAT.NE.1) PRINT*.'WHICH CHANNELS(FIRST.LAST)'		
FAC - REAL(1-NTAPO) / REAL(NTAPI - NTAPO)			

816 FORMAT(F8.4.2X.F8.4.2X.F8.4.2X,F8.4,2X,F13.9.2X.I7)

C Enter data sample values...
154 IF (IBAT.NE. 1) PRINT*'.Enter trace to create'

ELSE IF (IOPT .EQ. I6) THEN
IF (IBAT.NE.1) WRITE (6.*)'For tomog-tows(1).-tank(2)
A12

Al3

[^2]100 PRINT *' 'APPLYING MEDIAN FILTER'
DO $1401=\mathrm{LN}+1$, NSAMR
DO $110 \mathrm{~J}=1-$ LENFIL / 2 . NCHR + LENFIL / 2
C Pad with zeros
IF (J .LT. I OR. J.GT. NCHR) THEN IF (J .LT. I .OR. J.GT. NCHR $)$ THEN
X(J + LENFIL/2) $=0.0$
ELSE
X $(\mathrm{J}+$ LENFIL/2 $)=\operatorname{DGDAT}(\mathrm{I}, \mathrm{J})$ IF $(\mathrm{J}$. LT. 1 .OR. J.GT. NCHR $)$ THEN
X $(\mathrm{J}+\mathrm{LENFIL} / 2)=0.0$
ELSE
$\mathrm{X}(\mathrm{J}+$ LENFIL/ 2$)=\operatorname{DGDAT}(\mathrm{I}, \mathrm{J})$ IF (J.LT. 1. OR. J.GT. NCHR $)$ THEN
X $(\mathrm{J}+$ LENFIL/2) $=0.0$
ELSE
X $(\mathrm{J}+$ LENFIL $/ 2)=\operatorname{DGDAT}(\mathrm{I}, \mathrm{J})$ 110 CONTINUE

DO $130 \mathrm{~J}=1, \mathrm{NCHR}$
C this is needed cos the mdian C this is needed cos the mdian 1 subrout sorts the array
DO $120 \mathrm{JJ}=1$. NCHR + LENFIL.
$\mathrm{Y}(\mathrm{JJ})=\mathrm{X}(\mathrm{JJ})$
CONTINUE
CALL MDIANI(Y(J). LENFIL. DGDAT(I.J)) C this is needed cos the mdian 1 subrout sorts the array
DO $120 \mathrm{JJ}=1$. NCHR + LENFIL.
$\mathrm{Y}(\mathrm{JJ})=\mathrm{X}(\mathrm{JJ})$
CONTINUE
CALL MDIANI(Y(J). LENFIL. DGDAT(I.J)) C this is needed cos the mdian 1 subrout sorts the array
DO $120 \mathrm{JJ}=1$, NCHR + LENFIL.
$\mathrm{Y}(\mathrm{JJ})=\mathrm{X}(\mathrm{JJ})$
120 CONTINUE
CALLMDIANI(Y(J). LENFIL. DGDAT(I.J)) 130 CONTINUE
140 CONTINUE

PRINT * ' TRACES STILL ALIGNED'
PRINT * 'RE-APPLY MEDIAN FILTER (Y/N)?'
$\operatorname{READ}(5.10)$ ANS
IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') GO TO 100
C Shift back the traces
PRINT * . 'SHIFING BACK TRACES ...'
DO $170 \mathrm{~J}=\mathrm{I}$ NCHR
NDT $-\operatorname{NFIRST}(J) \cdot$ NALIGN END IF C Shift back the traces DO $170 \mathrm{~J}-1$. NCHR
DO $51 \mathrm{~J}=1$. NCHR
READ $\left(5 .^{*}\right)$ NFIRST(J)
DGDAT(I.J)
CONTINUE
DO 7OI = NSA \qquad
C MUTE before first 90 CONTINUE C Apply median filter across traces
100 PRINT ${ }^{*}$ 'APPLYING MEDIAN FILTER'
DO $1401=$ LN +1 . NSAMR
if(string(i:i).ne.' ') then

end

C. Subroutine toobtain median value of array $\mathrm{X}(\mathrm{N})$ (XMED) C The array X is left sorted on exiting

 C The array X is left sonted on exitingC SOURCE: Numerical recipes

SUBROUTINE MDIANI(X, N, XMED)
DIMENSION X(N)
CALL PIKSRT(N, X)
$\mathrm{N} 2=\mathrm{N} / 2$ THEN
IF (2*N2 .EQ. N) THEN
XMED $=0.5^{*}(\mathrm{X}(\mathrm{N} 2)+\mathrm{X}(\mathrm{N} 2+1))$
ELSE
XLSE
XMED $=X(\mathrm{~N} 2+1)$
XMED $=\mathrm{X}(\mathrm{N} 2+1)$
END IF
RND IFRN
END
C Subroutine to median filter seismic data
R4DAT. NFIRST. LENFIL. DGDAT)
c X array size $>$ NCHR + twice the med fil overlap
C Shifi the traces: FIRST BREAKS AT NALIGN SAMPLES
DIMENSION R4DAT(NSAMR,NCHRR), NFIRST(NCHRR) REAL X(60). Y(60). DGDAT(NSAMR.NCHRR)

CHARACTER*I ANS
10 FORMAT (AI)
PRINT*.NSAM. NCHR, NSAMR, NCHRR, LENFIL
LENDU - NSAMR * NCHRR
CALL ZERO(LENDU, UGDAT(1.1))
DO $50 \mathrm{~J}=1$. NCHR
DGDAT(I.J) - R4DAT(I.J)
40 CONTINUE
IF (NFIRST(1) .EQ. 0) THEN
PRINT *. INPUT FIRST BREAK
PRINT *. INPUT FIRST BREAK SAMPLES :'

 983 FORMAT(${ }^{2}$ TR AMA WRITE(6.984) TRAMP
984 FORMAT (17 Plot true amplitudes $\quad: ', A 3)$ WRITE(6,985)
985 FORMAT(' 18 Write out FBs and data around ')
WRITE(6.99) 99 FORMAT $\left(f^{\prime} 0\right.$ Return ω MAIN MENU') READ(5,*) IANSWR
IF (IANSWR .EQ. I) TH READ (IANSWR .EQ. 1) THEN
IF (TITOFF. EQ. 'OFF) THEN
ELSE
IF (IANSWR EQ. 2) THEN
WRITE(6.*)'Ist and last samples to be ploted :'
READD(5.*) NPLFST,NPLLST
ENDIF
IF (IANSWR .EQ. 3) THEN
 $\begin{array}{ll}\text { WRITE(6.**)' I } & \text { All channels } \\ \text { WRITE(6.*)' } 2 & \text { Odd channels }\end{array}$
 WRITE $\left(6,{ }^{*}\right)^{\prime} 5$ Sequential channcls IF (IOPT.EQ. 1) THEN
NCHPL - NCHR
DO 300 III - I, NCHR 300 CONTINUE CHNSPL - 'ODD'
NCHPL 0
NCHPL $=0$
DO 301 III - I. NCHR. 2 NCHPL - NCHPL +11
NCHPLT(NCHPL) -111
 CONTINUE
301
ELSE IF (IOPT EQ. 3) THEN
CHNSPL - 'EVEN'
NCHPL $=0$

INTEGER NCHPLT(NS2).NF1(NS2) AGCYN $=$ 'NO'
RMSYN $=$ 'NO' FLAGBR - 'OFF COLOUR = 'ON' SPYES - 'NO' 991 FORMAT(A1)
C SET UP DUMMY PLOT ARRAY RDAT(NSAMR.NCHRR)

NCHPL $=$ NCHR 371 II $=1$ NCHR
NCHPLT(III) $=$ III
70 CONTINUE
ELSE IF (CHNSPL EQ. 'ODD') THEN
NCHPL $=0 \quad$ N 37111 = NCHR. 2
NCHPL $=$ NCHPL +1
NCHPLT(NCHPL)
NFI(NCHPL $)-$ NFIRST(III)
RECDI(NCHPL) - RECDEP(III)
71 CONTINUE
ELSE IF (CHNSPL .EQ. 'EVEN') THEN
NCHPL $=0 \quad$ NCHP 2
NCHPL $=$ NCHPL
NFI(NCHPL) $=$ NFIRST(III)
372 CONTINUE \quad ELSE IF (CHNSPL .EQ 'SOME') THEN
DO 373 III $=$ I. NCHPL
WRITE $6,{ }^{*}$) 'Enter i.d. of channel \#'.1II
READ(S.*) NCHET(NCHPLT(II))

373 CONTINUE RSL EQ. 'SEQUENTIAL') THEN
ELSE IF (CHNSPL
DO $374 \mathrm{III}=$ NCHF. NCHL
RECDI(III-NCHF+1) - RECDEP(III)

 04 CONTINUE
ENDIF
ENDIF
IF (IANSWR .EQ. 4) THEN

IF (IANSWR (POLART.EQ. 'REVERSE') THEN ELSE ${ }^{\text {POLART - 'NORMAL' }}$ ELSE POLART - 'REVERSE'
ENDIF

ENDIF
ENDIF
IF (IANSWR EQ. 5) THEN
IF (VARARE EQ. 'OFF) THEN
ELSE VARARE = 'ON'
VLARARE = 'OFF'
ENDIF
ENDIF
IF (IANS
IF (IANSWR .EQ. I5) THEN
IF (COLOUR .EQ. 'OFF) THEN
COLOUR - 'ON'
COLOUR - 'OFF

OPEN (4.FILE=FNAME.STATUS='UNKNOWN')

WRITE $(6, *)$ 'T-Squared or Exponential (S or E) ?'
$\operatorname{READ}(5,991)$ ANS
READ(5.99) ANS
IF(ANS .EQ. 'S' OR
IF(ANS .EQ. 'S' .OR. ANS EQ. 's') THEN
DO $880 \mathrm{~J}=1$, NCHR
DO $880 \mathrm{~J}=1$, NCHR
DO $8791=1$. NSAM
RDAT(I.J) $=$ RDAT
CONTINUE
WRITE(6,*) 'Enter Alpha (Exponential constant):
$\mathrm{READ}(5 . *)$ ALPHA
$\mathrm{DO} 890 \mathrm{~J}=1 . \mathrm{NCHR}$
DO $8891-1$. NSAM
T1 $-\operatorname{EXP}(A L P H A * T 1)$
RDAT(I.J) - RDAT(1.J)
CONTINUE CONTINUE
$\underset{\infty}{\infty} \underset{\infty}{\infty}$
$\underset{\infty}{\infty} \underset{\infty}{\circ}$
A17

CALL POLAR(NSAMR.CSXI.G.Y)	DO 1401-I.NSAMR
CALL DRUM(NSAMR,Y)	$\mathrm{Y}(\mathrm{I})=\mathrm{REAL}(1-1) *$ DF
CALL NORMAN(NSAMR, G)	140 CONTINUE
ENDIF	END IF
IF (IOPT .EQ. 2) THEN	IF (IOPT .EQ. 5) THEN
DO 600 I=1,NSAMR	DO $180 \mathrm{JJ}=1$, NCHR
TEMP2(1.1)-P1(1)	DO $150 \mathrm{II}=1$ I. NSAM
TEMP2(1.2)- P2(1)	CSX (II) - CMPLX(R4DAT(II.JJ),0.0)
IF (NTRACE.EQ.99) THEN	150 CONTINUE
TEMP2(I.3)- G (1)	DO 160 II - NSAM + 1, NSAMR
TEMP2(1.4)- $\mathrm{Y}(1)$	$\operatorname{CSX}(\mathrm{II})=0.0$
ENDIF	160 CONTINUE
600 CONTINUE	CALLFFT(NSAMR, CSX, -1.0)
IF (NTRACE.EQ.99) THEN	DO $17011=1$, NSAM
CALL WVSHPL(NSAMR/2+1,4,NSAMR.TEMP2,0.0,100.0,R1,	R4DAT(II.JJ) $=$ CABS(CSX(II))
1 ' spectra '.'frequency (Hz)')	170 CONTINUE
ELSE	180 CONTINUE
CALL WVSHPL(NSAMR/2+1.2,NSAMR.TEMP2,0.0,100.0,R1,	AMSPEC = 'YES'
1 ' spectra '.'frequency (Hz)')	END IF
ENDIF	IF (IOPT .EQ. 6) THEN
ELSE	WRITE (6,*)'Enter no. of lags to be calculated :'
IF (NTRACE.EQ.99) THEN	READ (5.*) NLAGS
DO $6011=1$. NSAMR	NORM $=1$
TEMP2(1.1)-P1(1)	DO $200 \mathrm{JJ}-1$, NCHR
TEMP2(1,2)=G(1)	CALL ACF(R4DAT(1,JJ), S, NSAM, NLAGS, NORM, 12ZC)
601 CONTINUE	CALL ZERO(NSAM, R4DAT(1.J))
CALL WVSHPL(NSAMR/2+1,2.NSAMR.TEMP2,0.0.100.0,R1.	DO 190 II - 1, NLAGS
1 'Amplitude spectrum'.'frequency (Hz)')	R4DAT(II,JJ) - S(II)
ELSE	190 CONTINUE
CALL WVSHPL(NSAMR/2+1.1.NSAMR.P1,0.0,100.0,R1,	200 CONTINUE
1 'Amplitude spectrum'.'.frequency (Hz)')	END IF
ENDIF	IF (IOPT .EQ. 7) THEN
ENDIF	WRITE (6.*)'ENTER NO. OF LAGS TO BE CALCULATED :'
END IF	READ ($5, *$) LG
IF (IOPT .EQ. 4) THEN	WRITE (6,*)'ENTER TRACE NUMBERS TO COMPARE:
DO 1201-1. NSAM	READ (5.*) ID1, ID2
$\mathrm{G}(\mathrm{I})=$ R4DAT(1.NTRACE)	CALL CROSS(NSAM, R4DAT(1.IDI), NSAM, R4DAT(1.ID2),
120 CONTINUE	1 LG. G)
DO 1301-NSAM + I. NSAMR	CALL MAXSN(LG, G. GMAX. II)
$\mathrm{G}(\mathrm{I})=0.0$	CALL CROSS(NSAM, R4DAT(1,ID2), NSAM, R4DAT(1,IDI).
130 Continue	1 LG. G)
CALL POWERS(G, P, NSAMR, Y. S)	CALL MAXSN(LG, G. GMAXI, III)
FMIN $=0.0$	WRITE (6,*'OPTIMUM LAG-'. GMAX. ' AT' 111
FMAX -0.5E6 / DT	WRITE (6.*)'OPTIMUM LEAD - 'GMAXI. 'AT'.III-I
CALL MINSN(NSAMR/2 + 1. P. PMIN, II)	WRITE (6,*)'LAG implics should increase time on 2nd trace.'
CALL MAXSN(NSAMR/2 + 1. P. PMAX, II)	WRITE (7.*)'SHOT NO. \because ', NSHOT
PRINT *. 'FMIN/MAX.PMIN/MAX', FMIN, FMAX, PMIN, PMAX	WRITE (7.*)'OPTIMUM LAG-',GMAX. ' AT ', II-1
DF - 2.0*FMAX / REAL(NSAMR)	WRITE (7.*)'OPTIMUM LEAD - . GMAXI, 'AT'. 11 -1

IF (NFILES.EQ.2.OR.IFILE2.EQ.1) WRITE (6.92) IPDISC2
 WRITE (6,62) IFPROC
62 FORMAT (' 16 Read in PROC format? ($1=y$) :', 12) WRITE (6,63) IFNOHD
6. FORMAT (' 17 Header in
63 FORMAT (' 17 Header in file? ($1=\mathrm{n}$) $\quad \therefore$, I2) 64 FORMAT (' 18 Just 2ary file? $(1=y) \quad \therefore, 12)$ WRITE (6.65) ICSCRG
65 FORMAT (' 19 CRG <-> CSG? (1-y) $\therefore, 12$) WRITE (6,66) ISNRN
66 FORMAT (' 20 shot no $=$ rec no? $(1=y) \quad \therefore$ ', 12 $)$ I20 FORMAT ($f^{\prime} 0$ Return to MAIN MENU

READ (5, ${ }^{*}$) IANSWR
130 FORMAT (A2S)
IF (NSAM.LT.1024) THEN
LEN -4104
ELSE
LEN $-($ NSAM +2$) * 4$
ENDI
F (IANSWR .EQ. 1) THEN
IHFORM - 'OUT
ELSE
IHFORM
$=1 N^{\prime}$
$\xrightarrow{\text { IHFO }}$

A21
. subroutine to calculate pie slice fitter for application to FK

MAIN ROUTINE (this advice seems to be for when You leave the
C
$\mathrm{C} / 2+\mathrm{l}=0 \quad \mathrm{nk}=+\mathrm{KNYQ}$
Note: must wrap around sample \#1 to sample \#nk before calling routine

REAL PIEFLT(NF,NK), DIST, RHISLO, RHICTS, RLOSLO,
1 RLOCTS, RM3, RM6, KKNYQ
DOUBLE PRECISION HISLOP, HICTSL, LOSLOP, LOCTSL, M3
DOUBLE PRECISION M6
INTEGER KNYQ, K0, KL, F0, FL
CHARACTER*I ANS
PI $=3.1415926535$
$\mathrm{PI}=3.1415926535$
$\mathrm{KNYQ}=\mathrm{NK} / 2+$
$K K N Y Q=N K / 2 * D K$
IF (IBAT.NE.1) WRITE (6,*)'ZERO QUAD (L/R/No)?(L--Kspace)'
10 FORMAT (AI)
$\mathrm{F} 0=1$
$\mathrm{FL}=\mathrm{NF}$
$K 0=1$
$K L=N K$
$\mathrm{KL}=\mathrm{NK}$
$\mathrm{DO} 20 \mathrm{~K}=1, \mathrm{NK}$
CALL ZERO(NF, PIEFLT $(1, K)$)
20 CONTINUE
IF (ANS .EQ. 'L' .OR. ANS .EQ. 'I') THEN
DO $30 \mathrm{~K}=1$, KNYQ - 1
CALL ZERO(NF, PIEFLT $(1, K)$)
30 CONTINUE
K0 = KNYQ
ELSE IF (ANS .EQ. 'R' .OR. ANS .EQ. 'r') THEN
CALL $40 \mathrm{~K}=\mathrm{KNYQ}+1, \mathrm{NK}$
CNF, $\operatorname{PIEFLT}(1, K))$
40 CONTINUE
IF (IBAT.NE.1)
I WRITE (6.*)'TAPER IN OR OUTWARDS FROM SLOPE (I/O) ?'
READ (5.10) ANS
IF (IBAT.NE..1)
1 WRITE $\left(6 .^{*}\right)^{\prime} 1 / \mathrm{p}$ HIGH CUTOFF SLOPE $(\mathrm{m} / \mathrm{s})$ (-VE for L quad):'
READ $\left(5,,^{*}\right)$ HISLOP

RESP = 0.0
END IF

PIEFLT(IJ) PIEFLT(I.J) *RESP $\underset{\text { PIEFL }}{\text { ELSE }}$ END CITINUE

60 CONTINUE
70
CONTINUE
CONTINUE
IF (NWRRAP . NE. 0) THEN
NWRAPS = NWRAPS - 1
88
WRITE (6.*)'INPUT LENGTH OF TAPER FOR F-SPACE (samis)' 1 WRITE (6.*) ${ }^{*}$ NPAP

RHISLO-REAL(HISLOP) RHICTS - REAL(HICTSL)
RLOSLO-REAL(LOSLOP)
RLOCTS $=$ REAL(LOCTSL)
RM3 - REAL(M3)
RM6-REAL(M6)
IF (ANS. EQ. O' OR. ANS EQ. 'O' ${ }^{\prime \prime}$ THEN
IF (IBAT.NE.I) THEN
WRITE (6.) Enter frequ
${ }^{\text {WRITE }}$ 'Lucult. LIIzerro:'
READ (5,*) RHSLIN, RHCTIN, RLSLIN. RLCTIN
WRITE(6.*)'RHICTS.RHCTIN.MULTI',RHICTS.RHCTIN,MULTI
WRITE (6,, ')RHISLO.RHSLIN,MULT2'RHISLO,RHSLIN.MULT2
ELLSE
RELS
RNDIF (5,*) RHSLIN, RHCTIN, RLSLIN, RLCTIN
$50 \mathrm{DO} 70 \mathrm{~J}=\mathrm{KO} \mathrm{KL}$
IND $=0$

$\mathrm{X}=\mathrm{DK} *(\mathrm{~J}-\mathrm{KNYQ})$
$\mathrm{DO} 60 \mathrm{I}=1 . \mathrm{NF}$
IF (DIST(X.Y.RHICTS.RHCTIN,MULTI) GT . O.O) THEN
RESP - 0.0
ELSE IF (IST(X,Y,RHISLO.RHSLIN.MULT2).GT. 0.0)
THEN
1 THEN

THETA $=$ DIST(X,Y.RHISLO.RHSLIN.MULT) * PI/DO
RESP $-0.5 *(1-\operatorname{COS}(T H E T A))$
IF (DIST(X.Y.RLOSLO.RLSLIN,I).LE. DI) THEN
THETA - DIST(X.Y.RLOSLO.RLSLIN.I)*PI / DI
THETA - DIST(X,Y,RLOSLO.RLSLIN,I) * PI /DI RESP $=$ RESP * $0.5 *(1-\operatorname{COS}$ (THETA))
HISLOP $=$ HISLOP / (DF/DK)
LOSLOP - LOSLOP / (DF/DK)
MULT - 1
D0 $=$-REAL(NSAMTP)
PRINT *, 'HISLOP.LOSLOP.D0,DI', HISLOP, LOSLOP, D0, DI RESP $-0.5 *(1-\operatorname{COS}(T H E T A))$

ELSE IF (DIST(X.Y.RLOSLO.RLSLIN,I) GT. DI) THEN
ELSE IF (DIST(X,Y.RLOSLO,RLSLIN.I) .GT. 0.0) THEN RESP $-0.5 *(1-\operatorname{COS}(T H E T A))$
ELSE

DO101-J-1, 1, -	ENDIF
IF (ARR(I) LE. A) GO TO 20	DO $200 \mathrm{~J}=\mathrm{N} 1 . \mathrm{N} 2$
$\operatorname{ARR}(\mathrm{I}+\mathrm{I})=\operatorname{ARR}(\mathrm{I})$	TEMP(K) $=$ R4DAT(J.1)
10 CONTINUE	$\mathrm{K}=\mathrm{K}+1$
$\mathrm{l}=0$	200 CONTINUE
$20 \quad \operatorname{ARR}(\mathrm{I}+1)=\mathrm{A}$	CALL CROSS(NAUTO,TEMP,NA,A,NAUTO,TEMP2)
30 CONTINUE	CALL MAXSN(NAUTO, TEMP2, XI, NF(I))
RETURN	$\mathrm{NF}(\mathrm{I})=\mathrm{NF}(\mathrm{I})+\mathrm{N} 1-\mathrm{I}$
END	WRITE(2,*) 'I'
	WRITE(2.*) NF(I)
	WRITE(3 ,) $\mathrm{I}, \mathrm{NFIRST}(1), \mathrm{NF}(\mathbf{1})$
SUBROUTINE PROI6A(NSAM,NCHR,NSAMR.NCHRR,NA.	100 CONTINUE
1 R4DAT.A.NFIRST.IBAT)	CLOSE (2)
	IF (IBAT.NE.1)
C Crosscorrelation of data calls CROSS	1 PRINT**'Correlation of ',NCHR.' 'races complete'
c. Writes out to unit 2 the 'fb' where best ce with the	RETURN
c known wavelet A sccured.	END
c From Kragh (1990)	
REAL TEMP(1024).TEMP2(1024)	
INTEGER NF(64)	SUBROUTINE RDFILE(NSAM,NCHR.NSAMR,NCHRR,R4DAT.
DIMENSION NFIRST(NCHRR)	1 NREAD,NFIRST.NRECS,RECDEP.DBGAIN,GCMSCL,
DIMENSION R4DAT(NSAMR, NCHRR),A(NSAMR)	2 NFILE.NCR.NSHOT,DT.LEN.SORPOS.NPROCS.IDPROC.
IF (IBAT.NE.I) PRINT**'Enter Crosscorrelation window start'	3 IPDISCI,IPDISC2,TEMP, IHFORM,INPOPT,IPFORM,
IF (IBAT.NE.I) PRINT*'.(0=RETURN.99-FB+?)'	4 IFPROC,IFNOHD.A.PROC,ICSCRG, ISNRN,IBAT)
READ*. NWINI	C reads in arrays to R4DAT
IF(NWINI.EQ.0)RETURN	DIMENSION R4DAT(NSAMR,NCHRR), NFIRST(NCHRR),
IF(NWINI.EQ.99) THEN	1 RECDEP(NCHRR), DBGAIN(NCHRR), TEMP(NSAMR),NCR(2)
IFB-1	DIMENSION GCMSCL(NCHRR). NFILE(2), IDPROC(5,NCHRR)
IF (IBAT.NE. 1) PRINT*, 'Window start (0-FB)'	INTEGER NF(64)
READ*, NWINI	
IF (IBAT.NE.I) PRINT*,'Window finish (0-FB)'	CHARACTER*25 PROC(20), IPDISCI, IPDISC2, IPDISC
READ*, NWIN2	CHARACTER ANS ${ }^{*} 1$, CRAP*10, IP ${ }^{*} 50, \mathrm{IP2} * 50, \mathrm{~A}^{*} 180$
ELSE	C
IFB $=0$	C NSHOT - NO. OF SHOT (i.d.)
IF (IBAT.NE.I) PRINT*'Enter Crosscorrelation window finish'	C
READ*. NWIN2	IF (NREAD.EQ.1) THEN
ENDIF	IPDISC - IPDISCI
NAUTO $=$ NWIN2-NWIN +1	NSHOT - NFILE(1)
CALL ZERO(NSAMR.TEMP)	ELSE
DO 1001 - 1,NCHR	IPDISC - IPDISC2
K-1	NSHOT - NFILE(2)
CALL ZERO(1024,TEMP2)	ENDIF
IF (IFB.EQ.1) THEN	IF (IFNOHD.EQ.1) THEN
NI-NWINI + NFIRST(1)	IDCODE-(NSHOT-1)* NCHR
N2-NWIN2 + NFIRST(1)	ELSE
ELSE	IDCODE - $\left.{ }^{\text {NSHOT }}-1\right)^{*}(\mathrm{NCHR}+1)+1$
N1-NWINI	${ }_{1 / 2}^{\text {ENDIF }}$ (IBATNE.1) WRITE (6,*)'Slack or New (0 -1-- REV POL) :'
N2-NWIN2	IF (IBAT.NE.) WRITE (6.*'Slack or New (10-1 -- REV POL) :

END IF
IF (PIEFLT(I.J) .GT. O.0) THEN
PIEFLT(I.J) $=$ PIEFLT(I.J) $) *$ RESP PLSE

IF (PIEFLT(I.J) .GT. 0.0) THEN $\operatorname{PIEFLT}(\mathrm{I} . \mathrm{J})=\operatorname{PIEFLT}(1 . \mathrm{J}) *$ RESP	
ElSE	
$\operatorname{PIEFLT}(\mathrm{I} . \mathrm{J})=$ RESP	
END IF	
	continue
9) CONTINUE	
END IF	
IF (LNTAPK .GT. 0) THEN	
DO $110 \mathrm{~J}=\mathrm{KL}$ - LNTAPK, KL	
THETA $=$ REAL(J - (KL - LNTAPK) $) /$ LNTAPK * PI THETA - PI - THETA	
LOWLT $=$ KL - J + K0	
FAC $=0.5$ * (1.0-COS(THETA)	
DO $100 \mathrm{I}-\mathrm{l}$. NF	
$\operatorname{PIEFLT}(\mathrm{I}, \mathrm{J})=\operatorname{PIEFLT}(\mathrm{IJ})$ * (FAC)	

(1) PIEFLT(I.LOWLT) $=$ PIEFLT(I.LOWLT) $*(F A C)$
100 CONTINUE
IF (LNTAPF .GT. 0) THEN
IF (LNTAPF.GT. 0) THEN
DO $130 \mathrm{~J}=1$. NK
DO 130J-I.NK
DO $120 \mathrm{I}=\mathrm{I}$, LN
THETA - REAL $(1-1) /$ LNTAPF * PI
FAC $-0.5 *(1.0 \cdot \operatorname{COS}$ (THETA) $)$
PIEFLT(I.J) $\operatorname{PIEFLT}(1 . J) *$ FAC
20 CONTINUE
30 CONTINUE
END IF
C NOW SET LOW NYQ (-KNYQ) TO HIGH NYQ (+KNYQ)
C
DO 1401-1.NF
PIEFLT(I.1) $=$ PIEFLT(I.NK)
140 CONTIN
RETURN
SUBROUTINE PIKSRT(N. ARR)
C SOURCE: Numerical recipes
DIMENSION ARR(N)
$A-\operatorname{ARR}(\mathrm{J})$
A24

	I channel',NCHSV	PRINT*, 'XMAX = '. XMAX
	ELSEIF(IANSWR.EQ.2) THEN	WRITE ($6,{ }^{*}$)'Enter cut-off contour level as \% of max '
	CALL ZERO2(NSAMR,NCHRR.R4DAT)	READ (5,*) SLIC
	CALL ZEROI(NCHRR,NFIRST)	CUT $=$ XMAX * SLIC/100.
	DO2 $2=1$, NCHSV	DO 3 Im 1,NK
	NFIRST(1) $\operatorname{NFTEMP}(\mathrm{I})$	DO2 $\mathrm{J}=1, \mathrm{NF}$
	DO $3 \mathrm{~J}=1$, NSAM	IF (AMPSPC(I.J).LT.CUT) THEN
	R4DAT (J, l) $=$ RTEMP($\mathrm{J}, \mathrm{I})$	$\operatorname{FILSLI}(\mathbf{1}, \mathrm{J})=0.0$
	3 CONTINUE	ELSE
	2 CONTINUE	$\operatorname{FILSLI}(1, \mathrm{~J})=1.0$
	NCHR $=$ NCHSV	ENDIF
	IF (IBAT.NE.1) THEN	2 CONTINUE
	PRINT*, 'OK!', NCHSV,' traces moved to active array R4DAT	3 CONTINUE
	ENDIF	C NOW SET LOW NYQ (-KNYQ) TO HIGH NYQ (+KNYQ)
	ELSEIF(IANSWR.EQ.3) THEN	DO $1401=1$, NF
	CALL ZERO2(NSAMR.NCHRR.RTEMP)	FILSLI(I, $)=$ FILSLI(I.NK)
	NCHSV $=0$	140 CONTINUE
	ELSEIF(IANSWR.EQ.4) THEN	RETURN
	IF (IBAT.NE.1)	END
	1 PRINT*,' Enter first,last trace no. to save'	
	READ (5.*) NSAVE1,NSAVE2	
	NCHNS $=$ NSAVE2-NSAVE1+1	C Subroutine to write out data to disc file
	DO $5 \mathrm{~K}=$ NSAVE1, NSAVE2	C
	$\mathrm{NCHSV}=\mathrm{NCHSV}+1$	c This version (Jan 92) allows interpolation in depth
	NFTEMP(NCHSV) $=$ NFIRST (K)	c Parameter NS, NC are set to the final nsams, nchans after interp
	DO $4 \mathrm{~J}=1, \mathrm{NSAM}$	c IF loop flagged 1111 must be altered as well
	RTEMP(J,NCHSV) - R4DAT (J,K)	c
	4 CONTINUE	c Jan 93-ICSCRG option will only work for header out of file/direct
	5 CONTINUE	c
	IF (IBAT.NE.1) PRINT*,' OK! Traces',NSAVE1,'t',NSAVE2,' s	
	1 o channels', $\mathrm{NCHSV}-\mathrm{NCHNS}+1,10$ ', NCHSV	SUBROUTINE WRFILA(NSAM, NCHR, NSAMR, NCHRR,
	ENDIF	1 R4DAT, NFIRST, NRECS,RECDEP. DBGAIN, GCMSCL, NCR,
	RETURN	2 NSHOT, DT, LEN, SORPOS.NPROCS, IDPROC. OPDISC,
	END	3 IHFORM, OPFORM, A1, A2, A3, A4, A5, A6, A7, A8, A9, PROC, 4 NTEMP, RITEMP, IHEAD, ICSCRG, IBAT)
		PARAMETER (NS=1024,NC=32)
	. subroutine to calculate and perform contour slice filter for	DIMENSION R4DAT(NSAMR,NCHRR), NFIRST(NCHRR). A(9)
	application to FK spectrum	DIMENSION DBGAIN(NCHRR). GCMSCL(NCHRR), NCR(2)
	SUBROUTINE SLICE(NK, NF, AMPSPC, FILSLI, DK, DF)	DIMENSION IDPROC($5 . \mathrm{NCHRR})$.RECDEP(NCHRR)
		DIMENSION NTEMP(NCHRR), RDAT(NS,NC), R2TEMP(NC)
	REAL AMPSPC(NK,NF), FILSLI(NF, NK)	DIMENSION RITEMP(NCHRR)
	DO $20 \mathrm{~K}=1$, NK	CHARACTER OPFORM* 6 , [HFORM ${ }^{*} 4$
	CALL ZERO(NF, FILSLI (1,K))	CHARACTER*20 A1, A2, A3, A4, A5, A6, A7, A8, A9, A
	20 CONTINUE	CHARACTER*25 PROC(20). OPDISC, F1*50, F2*50. OPI
	DO II-1,NK	IF (IBAT.NE.1) WRITE (6.125)
	CALL MAXSN(NF, AMPSPC(I,1). XI, II)	125 FORMAT ($/$ ' Interpolate by power of 2? (1-y)')
	IF (XI GT. XMAX) XMAX - XI	READ ($5,{ }^{*}$) IINT
	1 CONTINUE	IF (IINT.EQ.1) THEN

$\operatorname{OPEN}\left(\mathrm{UNIT}=1, \mathrm{FILE}=\right.$ 'xhrp.dfault $\left.1^{\prime}\right)$
READ (1.130) B. INPOPT. IPDISCI. IPDISC2, OPDISC,
1 IPFORM, OPFORM. IHFORM
1.30 FORMAT (A20, 8(/A20)/A3/A25/A25/A25/A6/A6/A4)
130 FORMAT (A20, 8(/A20)/A3//A25/A25/A25/A6/A6/A4)
$\mathrm{A}=\mathrm{B}(1) / / \mathrm{B}(2) / / \mathrm{B}(3) / / \mathrm{B}(4) / / \mathrm{B}(5) / / \mathrm{B}(6) / / \mathrm{B}(7) / / \mathrm{B}($
$1 \quad 8) / / \mathrm{B}(9)$
READ (1.140) NA, NCHR, NA, NA, NA, NCR(1), NCR(2).

ELSE
$\operatorname{RECDEP}(\mathrm{I})=\operatorname{RECDEP}(1-1)+\operatorname{RECSEP}$
$\mathrm{END} \operatorname{IF}$
$150 \operatorname{CONTINUE}$
$\operatorname{CLOSE}(1)$
170 RETURN
170 RETURN
END
C. Subroutine to save traces into a temporary array, and once done. 10 move this array to the active R4DAT array
SUBROUTINE SAVETR(NSAM,NCHR.NSAMR.NCHRR.R4DAT NFIRST.RTEMP.NFTEMP.NCHSV.NCHDEF,IBAT) DIMENSION R4DAT(NSAMR.NCHRR).NFIRST(NCHRR)
DIMENSIONRTEMP(NSAMR.NCHRR), NFTEMP(NCHRR) IF (IBAT.NE. i) THEN
PRINT*.' $1 . . .-$ Save $^{\text {SR }}$ Save spedied trace to temp array' PRINT*,' 2....- Move saved traces from temp array
PRINT**. $4 .-\cdots$ Save successive traces to temp array' RNDIF
IF(IANSWR.EQ.1) THEN
IF (IBAT.NE.1)
PRINT*' Enter
PRINT*'. Enter trace no. to save - 0 =trace'. NCHDEF
READ(5,*) NSAVE
IF (NSAVE.EQ.0) NSAVE - NCHDEF
NFTEMP $(\mathrm{NCHSV})=\mathrm{NFIRST}(\mathrm{NSAVE})$
RTEMP(J.NCHSV) = R4DAT(J.NSAVE)
CONTINUE
IF (IBAT.NE. I) PRINT*.' OK! Trace'.NSAVE.' saved to

IF (IBAT.NE. I) PRINT*'Using filter lengih :'.NWTDIF CALL ZERO(NS2. ACF)
$\mathrm{ACF}(1+\mathrm{NS} 2 / 2)-\mathrm{A}(1)$
CONTINUE
CONTINUE
CALL NORMAN(NS2.ACF)
CALL ZERO(NSI. A)
LB $=$ NS $2 / 2+$ NWTDIF
ELSE IF (IOPT.EQ. 3) THEN
CALL WVSHPL(NS2,1.NS2.
CALL WVSHPL(NS2,1.NS2.ACF.S.R.R.
1' input wavelet '? sample number')
IF (IOPT .NE. 0) THEN
GO TO 80
END IF
SE IF (IANS .
ELSEIF (IANS .EQ. 2) THEN
80 IF (IBAT.NE.I) THEN
WRITE $\left(6,{ }^{*}\right)^{\prime}$
WRITE $\left(6,{ }^{*}\right)^{\prime}$
WRITE 6,190
2.
6
2
8
8
8

200 WRITE (6,210)
210 FORMAT $(1$,
220 FRITE (6.220)
KEEP
220 FORMAT $(, 1,4$ MINIMUM PHASE extracted wavelet ')

 222 WRITE (6,222) 223 WRITE (6.22.3) R
 WRITE (6.225)
225 FORMAT $(1.1$ 226 WRITE (6.226) 227 WRITE (6,227)
FORMAT $(1,1$
WRITE $(6,230)$ ENDIF
READ (5.*) IOPT

NAV-1
IF (IBAT.NE. 1) WRITE (6.*)'Enter trace number :'
READ (5.*) NCHANN
F (IBAT.NE.1) THEN
WRITE ($\left.6 .{ }^{*}\right)^{\prime}$ ENTER window on traces :'
WRITE $(6, *)^{\prime} 0,0=$ FB->NSAMR $0 .-1=\mathrm{FB}->\mathrm{FB}+\mathrm{NS} 2 / 2^{\prime}$ WRITE ($6, *)^{\prime}$ '0.no $=$ FB. FB + no:'
ENDIF
READ (5.*) IW1. IW2
IF (IWI.EQ.0) THEN
IF (IWI.EQ.0) THEN
IWI = NFIRST(NCHANN)
ELS $2=$ NSAMR (IW2.EQ.-1) THEN
|W| - NFIRST(NCHANN)
$\mathrm{IW} 2=\mathrm{IW} 1+\mathrm{NS} 2 / 2$
IW $=$ NFIRST(NCHANN)
IW $2=I W 1+I W 2$
$\mathrm{IW} 2=\mathrm{IW} 1+\mathrm{IW} 2$
ENDIF ENDIF
ENDIF
IF (IBAT.NE.I) THEN
IF (IBAT.NE.1) THEN
WRITE (6.*)'Enter I-same $0=$ different window :'
RENDIF
(6*'ENTER window on traces:'
IF (IBAT.NE.1) WRITE (6.*)'ENTER window on traces:
IF (IBAT.NE.1) WRITE (6.*)'window >'...SS $2 / 2$

$\operatorname{READ}\left(5 .{ }^{*}\right)$ NAV
$\operatorname{IF}($ IBAT.NE.1) WRITE (6.*)'ENTER FIRST CHANNEL :'
$\operatorname{READ}\left(5 .{ }^{*}\right)$ NCHANN
READ (5.*) NCHANN
ELSE
IF (IBAT.NE.1)
WRITE $\left(6,{ }^{*}\right)^{\prime}$ 'Average over N traces ENTER N :'
WRITE $\left(6,{ }^{*}\right)^{\prime}$ 'Average over N traces ENTER $N: '$
READ $\left(5 .{ }^{*}\right)$ NAV
END IF
ENDIF
CALL ZERO(NS2. ACF)
CALL ZERO(NS2. WKNOW)
CALL ZERO(NS2. TEMP2)
DO 160J=1.NAV
CALL ZERO(NS2, TEMP
IF (IREP .NE. I) THEN
IF (IBAT.NE.1) WRITE (6.*)'Enter chan no('.J.'):'

${ }_{\mathrm{C}}^{1471} \mathrm{sl}$	CONTINUE
	ift done
	CALL CROSS(NS2,BUTT2,NS2,BUTT2,NS2,TEMP3)
	CALL MINPH(TEMP3,NS2)
	CALL ZERO(NS2,BUTT2)
	IF (IBAT.NE. 1) PRINT*.' Enter taper in samples '
	READ*.NN1.NN2
	CALL LINTAP(NS2, TEMP3,0,0,NN1,NN2)
C Shift so origin is at sample NS $2 / 2$$\text { DO 5498 I-I. NS2 } / 2$	
BUTT2 $(1+$ NS2/2) $=$ TEMP3 3 (1)	
	BUTT2(I) - TEMP3(NS2/2 + 1)
5498	CONTINUE
	ElSE
	IF (IBAT.NE.I) THEN
	WRITE (6,*)'Enter I-sante window 0-selection for chans'
	ENDIF
	$\operatorname{READ}\left(5,{ }^{*}\right)$ IREP
	IF (IREP .EQ. 1) THEN
	IF (IBAT.NE.1) WRITE (6.*)'ENTER window on traces :'
	IF (IBAT.NE. 1) WRITE ($6,{ }^{*}$) ${ }^{\prime} 0,0-\mathrm{FB}->$ NSAMR :'
	READ (5.*) IWI. IW2
	IF (IW1.EQ.0.AND.IW2.EQ.0) THEN
	IWI - NFIRST(NTRACE)
	IW2-NSAMR
	ENDIF
	IF (IBAT.NE.1) WRITE (6,*)'ENTER NO OF CHANNE
	READ (5.*) NAV
	IF (IBAT.NE.1) WRITE (6.*)'ENTER FIRST CHANNEL
	READ (5,*) NCHANN
	END IF
	CALL ZERO(NS2, TEMP2)
	IF (IREP .NE. 1) THEN
	IF (IBAT.NE.1) THEN
	WRITE (6,*)' Average over N traces ENTER $\mathrm{N}:$:
	ENDIF
	$\operatorname{READ}(5, *) N A V$
	END IF
	DO $360 \mathrm{~J}=1 . \mathrm{NAV}$
	CALL ZERO(NS2. TEMP)
	IF (IREP.NE. 1) THEN
	IF (IBAT.NE.I) WRITE (6.*)'Enter chann no ('.J.')':'
	READ (5 ,*) NCHANN
	IF (IBAT.NE.1) WRITE (6,*)'Enter windiow on trace :'
	READ (5,*) IWI. IW2
	END IF
	IF(IIOR2 EQ. I) THEN
	DO 3401-IWI. IW2

	F (IOPT.EQ.2.OR.IOPT.EQ.4.AND.IKEEP.NE. 1) THEN		IF (IOPT.EQ.6.AND. NOPT6 . EQ. 0) THEN
	IF (NFILES EQ. 2) THEN		CALL ZERO(NS2.TEMP3)
	IF (IBAT.NE.1) WRITE (6,*)' Enter filc number 1 or 2:'		DO $261 \mathrm{~J}=1$. NS $2 / 2+1$
	$\operatorname{READ}(5 . *)$ IIOR2		TEMP3 $(\mathrm{J})=$ BUTT (J)
	ELSE	261	CONTINUE
	[1OR2-1		NOPT6 = 1
	ENDIF		GOTO 231
	ENDIF		ELSE IF (IOPT.EQ. 6 .AND. NOPT6.EQ.1) THEN
2311	IF (IOPT.EQ. IOR.IOPT.EQ.4.OR.IOPT.EQ.6) THEN		DO $262 \mathrm{~J}=1$. NS $2 / 2+1$
	IF(IKEEP.EQ.1) THEN		BUTT($)=$ TEMP3 $(\mathrm{J})+\operatorname{BUTT}(\mathrm{J})$
C Same	eeamp spectrum as wavelet	262	CONTINUE
	DO 3826J-1.NS2		NOPT6 $=0$
	$\operatorname{CTEMP}(\mathrm{J})=\operatorname{CMPLX}(\operatorname{ACF}(\mathrm{J}), 0.0)$		ENDIF
3826	CONTINUE	C TRA	ANSFORM TO TIME DOMAIN
	CALL FFT(NS2.CTEMP.-1.)		ENDIF
	DO 6548J-1.NS2		ISAM-2
	$\operatorname{BUTT}(\mathrm{J})=\operatorname{CABS}(\operatorname{CTEMP}(\mathrm{J})$		DO 2701-NS2.NS2/2 +2.-1
6548	CONTINUE		BUTT(I) - BUTT(ISAM)
	GOTO 271		ISAM - ISAM + I
	ELSEIF (IKEEP.NE.I.AND.IOPT.EQ.I.OR.IOPT.EQ.6) THEN	270	CONTINUE
	IF (IBAT.NE.1)	271	DO2801-1, NS2
1	WRITE (6, ${ }^{*}$)'Enter lio-cut.slope.hi-cut.shope'		CBUTT(I) - CMPLX(BUTT(I),0.0)
	READ (5,*) BUT1, BUT2, BUT3, BUT4	280	CONTINUE
C HiGH	H CUT		CALL FFT(NS2, CBUTT, 1.)
	RNL $=\operatorname{ALOGIO}(2 . *(10 . * *($ BUT $4 / 10$.$)) - 1.0)$	C Shif	t origin to NS2/2
	IF (IBAT.NE.I) WRITE ($6 . *$) ${ }^{\text {'R }}$) ${ }^{\text {- ', RNL }}$		DO 2901-1. NS2/2
	RNL $=$ RNL $/$ ($2 .{ }^{*}$ ALOGIO(2.) $)$		BUTT2(+ NS2/2) $=$ REAL (CBUTT(I))
	IF (IBAT.NE.1) WRITE (6,*)'RNL - '. RNL		BUTT2(1) $=\operatorname{REAL}(\mathrm{CBUTT}(1+\mathrm{NS} 2 / 2)$)
	DO 240J-1. $\mathrm{NS} 2 / 2+1$	290	CONTINUE
	RFR $=$ DF* $\operatorname{REAL}(\mathrm{J}-1)$		LD $=$ NS2
	TEM $=1 . /\left(1 .+(\text { RFR/BUT3 })^{* *}(2 . *\right.$ RNL $)$)		IF (IOPT.EQ.2) THEN
	BUTT(J) - SQRT(TEM)	C Norm	malise cutput wavelet
240	CONTINUE		CALL NORMAN(NS2, BUTT2)
C LOW	w CuT		LD - NS2
	IF (IBAT.NE. I) WRITE (6,*)'NOW LOW CUT.. '		ENDIF
	RNL $=$ ALOG $10((2 . *(10 . * *$ (BUT2/10.)) - 1.0$)$	331	IF (IOPT EQ. 4) THEN
	IF (IBAT.NE.1) WRITE (6.*)'RNL - ', RNL		IF (IKEEP EQ. 1) THEN
	RNL - RNL / (2.*ALOGIO(2.))	C Con	avert desired sutput to min phase if required Shift desired
	IF (IBAT.NE.I) WRITE (6.*)'RNL - ' R RL	C outp	put in order to compute the correct autecorrelation
	BUTT2(1) $=0.0$		CALL ZERO (NS2,TEMP3)
	DO 250J-2. NS2 $2 / 2+1^{\text {a }}$		DO $1469 \mathrm{~J}-1, \mathrm{NS} 2 / 2$
	RFR - DF * REAL(f -1)		TEMP3(J) - BUTT2(NS2-NS2/2+J)
	TEM - 1. $)(1 .+(($ BUTI/RFR)**(2.*RNL) $)$	1469	CONTINUE
	BUTT2(J) - SQRT(TEM)		DO 1470 - NS $2 / 2+1$, NS2
250	continue		TEMP3(J) - BUTT2(J-NS2/2)
	DO 260J-1, NS $2 / 2+1$	1470	CONTINUE
	BUTT(J) - BUTT(J) * BUTT2(J)		DO 1471J-1.NS2
260	CONTINUE		BUTT2(J) - TEMP3(J)
A30			

$310 \begin{aligned} & \text { BUTT2(I }- \text { NTAP0 }+ \text { NS } 2 / 2+1)=\text { BUTT2 (I) } \\ & \text { CONTINUE }\end{aligned}$ 310 CONTINUE
 DO $330 \mathrm{I}-\mathrm{NTAP3} 3$
BUTT2(I) $=0.0$ BUTT2(I) $=0.0$

CALL NORMAN(NS2. BUTT2)
IF (IBAT.NE.1) WRITE (6.*)'NORMALISED OK' LD $=$ NS2

$$
\begin{aligned}
& \text { ELSE IF (IOPT.EQ. 3) THEN } \\
& \text { CALL WVSHPL(NS2.I.NS2.BUTT2,S.R,R, } \\
& \text { I' Desired output !'s 'sample number') } \\
& \text { ELSE IF (IOPT.EQ. 1) THEN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DO } 333 \mathrm{II} 1, \mathrm{NS} 2 \\
& \text { TACBU(I, })=\mathrm{A} \\
& \text { TACRU(1) }
\end{aligned}
$$

$\operatorname{TACBU}(\mathrm{I}, \mathrm{I})=\operatorname{ACF}(\mathrm{I})$
$\operatorname{TACBU}(1,2)-\operatorname{BUTT2(1)}$
$333 \begin{aligned} & \text { CONTINUE } \\ & \text { CALL WVSHPL(NS2.2.NS2.TACBU,S.R,R, }\end{aligned}$ input / ouput '', sample nuniber ')
ELSE IF (IOPT.EQ. S) THEN
IF (IKEEP.EQ.0) THEN

IF (IKEEP.EQ.0) THEN

ELSE
ELSE IF (IOPT.EQ. 7) THEN
READ(5.*) RFC
ELSE IIOPT.EQ. 8) THEN
IF (AINV.NE.'y') THEN
READ(5.*) RFC
ELSE IIOPT.EQ. 8) THEN
IF (AINV.NE.'y') THEN
IF (IBAT.NE.I) WRITE (6.*) 'New white noise:'
IF (AINV.NE' 'y') THEN
AINV - 'y'
ELSE
AINV -
ENDIF (IOPT EQ. 9) THEN
CALL ZERO(NSS2.BUTT2)
BUTT2(NS $2 / 2+1$) -1.0
ELSE IF (IOPT.EQ. 10) THEN
PRINT* BUTT2(I)
END IF
IF (IOPT NE. O) GO TO 180
IF (IBAT.NE.1) THEN
WRITE (6.*)

ELSE
IF (IBAT.NE.1) WRITE (6.*)' Enter number of channels to)
lapply filter:'
lapply filler: :'
READ (5.
DO
DO 6.301-1. NAPPLY
IF (IBAT.NE.1) WRITE (6.*)'Enter channel \#', I
\quad IF (IBAT.NE.1) WRITE (6.*)'Enter channel \#'. I

READ (S.*)NDO(I)
CONTINUE
END IF
ELSE IF (IOPT
ELSE IF (IOPT. EQ. 2) THEN
IF (AINV.EQ.'Y') NLAGOP $=$ - NLAGOP
DO $700 \mathrm{I}=1$. NAPPLY
$\mathrm{II}=\mathrm{NDO(I)}$
CALL RMSERR(NSAM. R4DAT(1.II). RMS0)
DO $640 \mathrm{~J}=$ 1. NSAM
$\mathrm{CXB}(\mathrm{J})=\mathrm{CMPLX}(\mathrm{R} 4$
CXB(J) - CMPLX(R4DAT(J.II) $)$
CONTINUE
DO $650 \mathrm{~J}=$ NSAM +1. NSAMR
$\mathrm{DO} 650 \mathrm{~J}=\mathrm{NS}$
$\mathrm{CXB}(\mathrm{J})=0.0$
CONTINUE
CALL FFT(NSA
CALL FFT(NSAMR. CXB. -1.0$)$
DO $660 \mathrm{~J}=1$. NSAMR
IF (AINV.NE'Y') THEN
CXB $(\mathrm{J})=\mathrm{CXB}(\mathrm{J}) * \mathrm{CX}$

ENDIF
IF (NSAMR - NLAGOP + J.GT. NSAM) GO TO 670
$670 \quad \begin{aligned} & \text { R4DAT(NSAMR - NLAGOP }+\mathrm{J.II})-\operatorname{REAL}(C X B(J) \\ & \text { CONTINUE }\end{aligned}$
DO $\operatorname{\text {IF(J}}$-NLAGOP GT NSAM) GO TO 680
R4DAT(J - NLAGOP.II) - REAL(CXB(J))
680 COL RMSERR(NSAM. R4DAT(1.11). RMS1)
SCALE - RMSO / RMS
R4DAT(J.II) $=$ R4DAT(J.II) * SCALE 690
700
CONTINUE
IF (IOPT .NE O) GO TO 610 ELSE IF (IANS.EQ. S) THEN
710 IF (IBAT.NE.I)THEN
WRITE (6.*)

Appendix C xhrp.dfault1

Given here are four example xhrp.dfault 1 files required by the xhr1 program. They are for the four surveys in this study, i.e. Groningen, Physical Model, Lowther South 3437-3436, Lowther South 3500-3496.

Groningen gasfield	I Site name
19-24 Nov 1990	1 Acquisition date
Compu-log	I Scismograph type
Stanford hender	1 Source type
X551.55.Y273.09.Z0.0	I Source liocation
hydrophone	1 Receiver type
X553.60.Y133.12.20.0	I Receiver Incation I Common shot traces
BANDPASS $350-2000 \mathrm{~Hz}$	I Analogue filters
NEW	1 Method of data 1/P
delfu2350n.dat	1 Input disc name
delft 2.350 fk	I Input disc name
delfi/23500ut	1 Output dise name
DIRECT	1 Input format
DIRECT	1 Output furmat
IN	1 Headers in with data
2001	I\# of samples/trace
6.3	I\# of channels
1	1 \# of files for I/P
1	1 ID of first file
0	1 ID of 2nd file
0	l) Common receiver 1) channels
2.350 .0	I Source depth
223.3.0	1 Top receiver depth
3.00	1 Receiver separation
200.00	I Sampling interval
3.00	1 Spatial interval met
5.00	1 Plot scaling factor
OFF	1 Titles switch
ALL	1 Channel plot switch
NORMAL	1 Polarity switch
OFF	\| Variable area swtch
300	11 st plot sample
500	I Last plot sample
1	I Switch for CHNSPL
2.3	I Default trace save
Groningen CSG - depth 23.350 m	1 Plot title
Travel time in milliseconds	I Xaxis label
Receiver depth in metres	1 Yaxis label

I Site name
I Acquisition date
I Seismograph type
I Source type
I Source location
I Receiver type
I Receiver location
I Common shot traces
I Analogue filters
I Method of data I/P
1 Input dise name
I Input dise name
I Output disc name
I Input format
I Output format
I Headers in with data
I \# of samples/race
I \# of channels
I \# of files for I/P
I ID of first file
I ID of 2nd file

1) Common receiver
I\} channels
I Source depth
I Top receiver depth
I Receiver separation
I Sampling interval
I Spatial interval met
I Plot scaling factor
I Titles switch
I Channel plot switch
I Polarity switch
I Variable area swtch
I Is plot sample
I Last plot sample
I Switch for CHNSPL
I Defaull trace save
I Plot title
I Xaxis label
I Yaxis latel

n
\vdots
\vdots
\vdots
\vdots

 둡保 $z \stackrel{N}{n}$
$\stackrel{\sim}{n}$
$\mathrm{N}_{2}-00$

8
8
8

 NORMAL
OFF 울 8 Lowther South CSG
Travel time in milliseconds

Appendix D xhr3

This program was adapted from xhr1 to perform 3-D $f-k-k$ filtering and plotting. Also given is an example of the xhr3.dfolt file required by the program. All subroutines, including plotting, are given. Subroutines are in libxh3.a in the dgl3psr user area on the University of Durham Geological Sciences Department's SUN system. Plotting routines use UNIRAS.

2 SORDEP.DBGAIN.GCMSCL,DT,LEN,NF, SORPOS,
3 NPROCS, IDPROC, IPDISC, IHFORM, IFNOHD, A, 4 TEMP, IBAT) IF (IANSWR .EQ. 2) THEN
DO $121 \mathrm{KK}=1, N S O R$

DO $121 \mathrm{KK}=1$,NSOR
DO $122 \mathrm{~J}=1$ NREC
$\mathrm{NF}(\mathrm{J})=\operatorname{NFIRST}(\mathrm{KK}, \mathrm{J})$
$\mathrm{DO} 122 \mathrm{I}=1, \mathrm{NSAM}$
RDAT(I.J) $=$ R4DAT(I.KK.J)
122 CONTINUE
CALL WRFIL3(NSAM, NREC, NSAMR, NRECS, RDAT, 1 NF, NRECS,RECDEP, DBGAIN, GCMSCL, KK, DT, LEN, 2 SORPOS, NPROCS, IDPROC, OPDISC, IHFORM, LOCATE.

3 DATE, DEVICE, SORTYP.SORLOC,RECTYP,RECLOC,
4 COMSHT,FILREC.DBGAIN,IHEAD.IBAT) 4 COMSHT,FILREC.DBGAIN.IHEAD.IBAT)
121 CONTINUE

ENDIF
IF (IANS
IF (IANSWR .EQ. 3) CALL MENUF3(NSAM, NSOR, NREC,
1 NSAMR, NSORS, NRECS, NFK 1, NFK2. NFK3, R4DAT,
2 RTEMP. DZ, DZ, DT, NSNR,RDUM,CPDUM,CWDUM,
3 FILDUM, AMPDUM.RDUM I,KKDUM,NDUM,IBAT,NFIRST)
IF (IANSWR .EQ. 4) CALL MENUIO3(NSAM, NSOR, NREC. IF (IANSWR .EQ. 4) THEN IF (NSAM.LT.1024) THEN

LEN - 4104
LEN $-($ NSAM +2$) * 4$
ENDIF
IF (IANSWR .EQ. 5) THEN
IF (IBAT.EQ.0) THEN
IF (IBAT.EQ.0) THEN
IBAT $=1$
ELSE
IBAT $=0$
ENDIF
F (IANSWR .EQ. 0) CALL EXIT(0)
$\mathrm{DZ}-\mathrm{ABS}(\operatorname{RECDEP}(2)-\operatorname{RECDEP}(1))$
$\mathrm{NFK}-\mathrm{NFK} 1^{*} \mathrm{NFK} 2 * \mathrm{NFK} 3$
NFK-NFKI*NFK2*NFK3
NFKA-NFK $1 * N F K 3$
NFKB $=$ NFK2*NFK 3
CALL ZERO(NFKB. KKDUM)
CALL ZERO(NDUM, RDUMI)
CALL ZERO(NSNR, RDUM)
CALL ZERO(NSNR, RDUM)
CALL ZERO(NFK, FILDUM)
CALL ZERO(NFK. RTEMP)
CALL ZERO(NFKA, AMPDUM)

FILE - xhr 3.dfolt
IPDISC A25
OPDISC A25
IHFORM A4
NSAM 14
NSOR 13
NREC 1.3
TOPSOR F6.1
TOPREC F6.1
RECSEP F6.2
DT F6.2

(SORTYP.A(4)). (SORLOC,A(5)). (RECTYP,A(6)),
(RECLOC,A(7)), (COMSHT,A(8)). (FILREC,A(9)) C Set up initial default values - READ IN FROM DEFAULT FILE

OPEN(UNIT = 1 ,FILE-'xhr3.dfolt')
READ (1, 10) IPDISC, OPDISC, IH
READ (1,10) IPDISC, OPDISC, IHFORM,NSAM,NSOR,NREC
10 FORMAT (A $25 /$ A $25 /$ A $4 / 14 / 13 / 13$)
READ (1,30) TOPSOR. TOPREC, RECSEP, DT
30 FORMAT (F6.1/F6.1/F6.1/F6.2/F6.2)
CLOSE (1)
NAHL (t201~LTWVSN) 4 LEN $=4104$

ELSE
ENDIF
$\operatorname{RECDEP}(1)=$ TOPREC
RECDEP(1) = TOPDEP
JヨyN $2-10500$
$\operatorname{RECDEP}(1)=\operatorname{RECDEP}(1-1)+\operatorname{RECSEP}$
SORDEP(I) - SORDEP(I-1) + SORSEP
SO CONTINUE
SO CONTINUE
NPROCS $=1$
$\operatorname{IDPROC}(1$, NPROCS $)=1$
IHEAD $=0$
I
IFNOHD $=0$
IBAT $=0$
C DT in microsecs, SAMFRQ in kHz
70 IF (IBAT.NE.I) THEN
PRINT*',DT-',DT
WRITE (6,*) WRITE $\left(6,{ }^{*}\right)^{\prime}$

告
WRITE (6.*
WRITE (6.*
WRITE $(6, *)$
WRITE $(6, * * *)$
WRITE (6.*
WRITE 66^{*}
WRITE $\left(66^{*}\right)$
3D XHR MENU '
MASTER MENU $\begin{array}{lll}\text { WRITE }\left(6 .{ }^{*}\right)^{\prime} & 1 & \text { Read data from file(s) } \\ \text { WRITE }\left(6,{ }^{*}\right)^{\prime} & 2 & \text { Write contents of R4DAT to file } \\ \text { WRITE }\left(6,{ }^{*}\right)^{\prime} & 3 & \text { F-K transform traces } \\ \text { WRITE }\left(6,{ }^{*}\right) & & \end{array}$ Read data from file(s)
Write contents of R4D
F-K

WRITE $\left(6 .{ }^{*}\right)^{\prime} \quad 4$ Adjust I/O parameters
WRITE (6.71) IBAT
71 FORMAT(' 5 Batch mode (text off $=1) \quad$ ' \quad ',II)
0 Exit
ENDIF
IF (IANSWR.EQ.I) CALL RDFILE3(NSAM.NSOR.NREC.
I NSAMR.NSORS.NRECS,R4DAT.NFIRST, RECDEP
I COMSHT
1 COMSHT
COMPLEX
INTEGER NFIRST(NSORS.NRECS). IDPROC(5.NRECS).
1 NF(NRECS)
REAL R4DAT(NSAMR.NSORS.NRECS). SORDEP(NSORS) REAL RDUM(NSNR). GCMSCL(NRECS).TEMP(NSAMR)
REAL RTEMP(NFK3,NFK2.NFK1), RDUMI(NFK2,NDUM) REAL RTEMP(NFK3,NFK2.NFK1), RDUMI(NFK2,NDUM) REAL FILDUM(NFKI.NFK2.NFK3), RDAT(NSAMR.NRECS) REAL FILDUM(NECDEP(NRECS), DT, DBGAIN(NRECS)
REAL SORPOS. RECDEP
EQUIVALENCE (LOCATE.A(1)). (DATE.A(2)), (DEVICE.A(3)).

READ (5,490) ANP

F (ANP.EQ.'N'.OR.ANP.EQ.'n') THEN
CALL PIE3B(NSK, NRK, NF, FILSPC. DSK, DRK, DF, IBAT)
ELSE CALL
DO $77 \mathrm{II}-\mathrm{I}, \mathrm{NF}$
RTEMP(K,J,I) $=$ FILSPC(I, $\mathrm{J}+\mathrm{NSORS} / 2, \mathrm{~K}+$ NRECS/2 $)$
CONTINUE
$\begin{array}{ll} & \text { DO } 772 \text { I }-1, \text { NF } \\ & \text { RTEMP(K.J,I) }- \text { FILSPC(I.J }- \text { NSORS/2.K }+ \text { NRECS/2) } \\ 772 & \text { CONTINUE } \\ 770 & \text { CONTINUE }\end{array}$
$\begin{array}{ll}772 & \text { CONTINUE } \\ 770 & \text { CONTINUE }\end{array}$ DO $790 \mathrm{~K}=$ NRECS $/ 2+1$. NRECS
$\mathrm{c}+/-\mathrm{kr} / \mathrm{ks}$ quadrant

DO $792 \mathrm{I}=\mathrm{I}, \mathrm{NF}$
RTEMP $(\mathrm{K}, \mathrm{J}, \mathrm{I})=$ FILSPC $(\mathrm{I}, \mathrm{J}-$ NSORS/2,K - NRECS/2 $)$
RTEMP(K,J,I) $=$ FILSPC(I,J - NSORS/2,K - NRECS/2)
792 CONTINUE
790 CONTINUE

$$
\begin{aligned}
& 790 \text { CONTINUE } \\
& \text { ELSE }
\end{aligned}
$$

$$
\begin{gathered}
\text { ELSE } \\
\text { DO } 321 \mathrm{~K}=\mathrm{I}, \mathrm{NRECS} \\
\text { DO } 321 \mathrm{~J}=\mathrm{I}, \mathrm{NSORS} \\
\text { DO } 321 \mathrm{I}=\mathrm{I}, \mathrm{NF} \\
\text { IF (SQRDAT .EQ. 'Y') THEN } \\
\text { RTEMP(K.J,I) - SQRT(CABS(CP(I,J.K))) } \\
\text { ELSE } \\
\text { RTEMP(K.J.I) }=\mathrm{CABS}(\mathrm{CP}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})) \\
\text { ENDIF } \\
\text { CONTINUE } \\
\text { ENDIF } \\
\text { IF (KORSSL.EQ.'T) KORSSL - 's' } \\
\text { IF (KORSSL.EQ.'p') KORSSL - 'q' }
\end{gathered}
$$

1 'filter slices ($\mathrm{s} / \mathrm{r} / \mathrm{q} / \mathrm{p} / \mathrm{f}$)?'
IF (KORSSL.EQ.'f.OR.KORSSL.EQ.'p') THEN
DO $770 \mathrm{~K}=1$, NRECS $/ 2$
quadrant 1 NSORS 12
DO $791 \mathrm{~J}-1$. NSORS $/ 2$
CP(I,J.K) $-\mathrm{CP}(1 . J . K) *$ FILSPC(1,J + NSORS/2.K + NRECS/2)
CONTINUE
DO $250 \mathrm{~J}=\mathrm{I}, \mathrm{NSORS}$
DO $250 \mathrm{I}=\mathrm{I}, \mathrm{NF}$
FILSPC $(\mathrm{I}, \mathrm{J}, \mathrm{K})=1.0-\mathrm{FILSPC}(I, J, K)$
PRINT*', 'PIE OK'
IF (ANS .EQ. 'R') THEN
DO $250 \mathrm{~K}=\mathrm{I}$. NRECS
DO $250 \mathrm{~J}=1$, NSORS \qquad 250 CONTINUE
C APPLY FILTER FILSPC
DO $270 \mathrm{~K}=1$, NRECS $/ 2$
$\mathrm{c} \% \mathrm{kr} / \mathrm{ks}$ quadrant
DO $2721=1, N F$
$C P(I, J, K)=C P(I, J . K) *$ FILSPC(I,J - NSORS/2,K + NRECS/2 $)$
271 conadrant
72 CONTINUE
70 CONTINUE
DO 290 K - NR
DO $290 \mathrm{~K}-$ NRECS / $2+1$. NRECS
$\begin{aligned} & \mathrm{c}+/-\mathrm{kr} / \mathrm{ks} \text { quadrant } \\ & \mathrm{DO} 291 \mathrm{~J}=1 \text {. NSORS } / 2\end{aligned}$
DO 291 $=1 . \mathrm{NF}$
$\mathrm{CP}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{CP}(\mathrm{I}, \mathrm{J} . \mathrm{K}) *$ FILSPC(I,J + NSORS/2.K - NRECS/2 $)$
$C P(I . J, K)=C P$
CONTINUE
291 conthrant
DO 292 I - I. NF 292 CONTINUE

[^3]A41
$$
\text { DO } 792 \mathrm{~J}=\text { NSORS } / 2+1 . \text { NSORS }
$$

WRITE (6.*)'APPLY SAME MUTE TO ALL TRACES ($1=\mathrm{Y}$) :' ENDIF

IF (IOANS .EQ. 1) THEN READ (5,*) NTAPI0

IF (NTAP10 EQ. 0) GO TO 730 READ (5,*) NTAPOO

SHON 'I=ff IELOO
DO $730 \mathrm{~J}=\mathrm{I}$. NCHR
NTAPO = NFIRST(JJ, J) + NTAPOO

IF (IBAT.NE. 1) THEN
WRITE (6.*)'ERROR NTAP0,NTAPI = ',NTAPO,NTAPI ENDIF

GO TO 700
END IF
$1-I d \forall L N ' I+0 d \forall L N=I 01 L O Q$
FAC - REAL (I - NTAPO) / REAL(NTAPI - NTAP0)
$\mathrm{FAC}=\mathrm{FAC} * 3.1415926535$
FAC $=0.5^{*}(1.0-\operatorname{COS}(F A C))$
$R 4 D A T(1, J, J, J)=R 4 D A T(I, J J, J) * F A C$
CONTINUE
DO $720 \mathrm{I}=1$, NTAPO
CONTINUE
CONTINUE
(I2ANS.EQ.0) THEN
WRITE (6,*) 'Gather', JJ+1
IF (IBAT.NE.1) WRITE ($\left.6,{ }^{*}\right)^{\prime}$ 'Length of cos tap in sams:'
READ (5,*) NTAP10
IF (IBAT.NE. I) WROD (5.*) NTAP00
ENDIF
ELSE
40 IF (IBAT.NE.I)
1 WRITE (6.*)'Length
1 WRITE (6,*)'Length of cosine taper ($0-\mathrm{NO}$ mute) :'
READ (5.*)NTAP10
IF (NTAPIO.EQ. 0) GO TO 781

READ (5,*) NTAP00
IF (IBAT.NE.1)
I WRITE (6.*)'Firs
1 WRITE (6.*)'First and last traces to apply mute:'
$\therefore(\mathrm{N}$
LSE IF (IANSWR .EQ. I0.OR.IANSWR.EQ. 12) THEN
IF (IBAT.NE.I) PRINT*.'How many traces (in Id) affected?'
READ(5,*) NTRGA
IF (IBAT.NE.1) PRIN
IF (IBAT.NE.1) PRINT*'. Enter trace/id no, gain :'
DO 480 I $=1$ NTRGA
READ(5,*) IDTRGA(I),GAINAP(IDTRGA(I))
480 CONTINUE
DO $481 \mathrm{~K}=$ IDTRGA(1).IDTRGA(NTRGA)
DO $481 \mathrm{~J}=$ IDTRGA(1),IDTRGA(NTRGA)
DO $481 \mathrm{I}=1 . \mathrm{NSAM}$
IF(GAINAP(K).GT.C
R4DAT $(1, J, K)=$ R4DAT(I.J.K)*GAINAP(K
ELSE
R4DAT(I.J.K) $=$ R4DAT(I.J.K)*GAINAP(J)
ENDIF
481 CONTINUE
ELSE
IF (IBAT.NE.I) PRINT*'.Shot (1) or Receiver(0) gathers :'
READ(5,*) IRORS
DO $482 \mathrm{~J}=$ IDTRGA(1),IDTRGA(NTRGA)
DO 482 I- 1 INSAM
IF (IRORS.EQ.1) THEN
R4DAT(1.J.K) $=$ R4DAT(1.J.K)*GAINAP(J)
ELSE
482 CONTINUE
ENDIF
ELSE IF (IANSWR .EQ. 11) THEN
IF (IBAT.NE.1) THEN
READ (5.*) I2ANS
700 IF (IBAT.NE.1) THEN
A43

IF (IBAT.NE.I) WRITE (6.*)	Number of shots:'	INTEGER KSNYQ. KRNYQ
IF (IBAT.NE. I) WRITE (6,*)'		CHARACTER*I ANS
READ (5.*) NSOR		$\mathrm{Pl}=3.1415926535$
ENDIF		KSNYQ $=$ NSK $/ 2+1$
IF (IANSWR EQ.6) THEN		KRNYQ $=$ NRK $/ 2+1$
IF (IBAT.NE.I) WRITE (6.*)	Number of receivers :'	10 FORMAT (Al)
IF (IBAT.NE.I) WRITE (6.*)'		DO $20 \mathrm{~K}-1$. NRK
READ (5.*) NREC		DO $20 \mathrm{~J}=1$, NSK
END IF		CALL ZERO(NF, PIEFLT(1,J.K))
IF (IANSWR .EQ. 7) THEN		20 CONTINUE
IF (IHEAD EQ . 0) THEN		IF (IBAT.NE.I)
IHEAD-1		1 WRITE (6,*)'TAPER IN OR OUTWARDS FROM SLOPE (1/O) ?'
ELSE IHEAD $=0$		READ (5.10) ANS
END IF		IF (IBAT.NE.1)
END IF		1 WRITE (6.*)'/P HIGH CUTOFF SLOPE (m / s) (-VE for L quad):'
IF (IANSWR . EQ. 8) THEN		READ (5.*) HISLOS
IF (IFNOHD .EQ. 0) THEN		IF (ANS .EQ ' ${ }^{\text {O }}$. OR. ANS . EQ. 'o') THEN
IFNOHD-1		IF (IBAT.NE.1)
ELSE		1 WRITE (6.*)'INPUT HI CUTOFF TAPER SLOPE $(\mathrm{m} / \mathrm{sec})$:'
IFNOHD - 0		READ (5,*) HICTSS
END IF		IF (HISLOS + HICTSS SQ. 0.0) THEN
END IF		MS3-0.0
IF (IANSWR .NE. 0) GO TO 10		ELSE
RETURN		MS3 $=\left(\right.$ (HISLOS ${ }^{*}$ HICTSS-1)-SQRT(HISLOS**2+ HICTSS**2
END		$\left.\left.1+(\text { HISLOS } * \text { HICTSS })^{* *} 2+1\right)\right) /($ HISLOS + HICTSS $)$
		END IF
C.-.	------------------	IF (IBAT.NE.1) PRINT*.'HISLOS, HICTSS.MS3'.
C. subroutine to calculate pie slice fil	er for application to FKK	1 HISLOS.HICTSS.MS3
C Spectrum PASS IN KS - PASS IN		MULTS 1 - 1
C		MULTS2-1
C REMEMBER TO TRANSFORM	TO CORRECT QUADS	IF (HICTSS .LT. 0.0) MULTSI -1
c (this advice seems to be for when y	u leave the routine)	IF (HISLOS LTT. 0.0.AND. HICTSS .GE. HISLOS) MULTS2 - - 1
c (ic. rearrange FILSPC as you appl	it to CP PSR 92)	ENDIF
C sample ordering in K space is $\mathrm{I}=$	KNQ	IF (IBAT.NE.1)
C $\quad \mathrm{nk} / 2+1=0$		1 WRITE ($6, *$ ' ${ }^{\prime} /$ P LOW CUTOFF SLOPE (m / s) (-VE for L quad) :'
C $\quad \mathrm{nk}=+$ KNYQ		READ (5.*) LOSLOS
C Note: must wrap around sample \#	to sample \#nk before	IF (ANS .EQ. 'O' . OR. ANS EQ. ' O' $^{\prime}$) THEN
C calling routine must also have da	a arranged in appropriate	IF (IBAT.NE. ${ }^{\text {a }}$)
C sequence require an odd no. of sam	ples e.g 65,129.257	1 WRITE (6,*)'INPUT LOW CUTOFF TAPER SLOPE (m/sec) :'
SUBROUTINE PIE3(NSK, NRK	, NF, PIEFLT, DSK. DRK.	READ (5,*) LOCTSS
1 DF. IBAT)		IF (LOSLOS + LOCTSS . EQ, 0.0) THEN
REAL PIEFLT(NF.NSK.NRK),	DIST, RHISLO, RHICTS.	MS6 $=0.0$
REAL RLOSLO. RLOCTS		ELSE
REAL SHISLO, SHICTS. SLOS	O. SLOCTS	MS6-((LOSLOS*LOCTSS-1)-SQRT(LOSLOS**2+ LOCTSS**2
DOUBLE PRECISION HISLOS	HICTSS, LOSLOS, LOCTSS	$1+\left(\right.$ LOSLOS $\left.\left.{ }^{\text {LOCTSS }}{ }^{* *} 2+1\right)\right) /($ LOSLOS + LOCTSS $)$
DOUBLE PRECISION MS3, M	6.MR3. MR6	ENDIF
DOUBLE PRECISION HISLOR	. HICTSR, LOSLOR. LOCTSR	MULTS ${ }^{-1}$

IF (ANS .EQ. 'I' .OR. ANS .EQ. 'i') THEN IF (IBAT.NE.I)		$\begin{aligned} & \text { RESPI }=0.5 \text { * (} 1-\operatorname{COS}(\text { THETA })) \\ & \text { ELSE IF (DIST(Z.Y,RLOSLO.RLSLIN.MULTR } 3) . \mathrm{GT} .0 .0) \end{aligned}$
1 WRITE (6.*)'INPUT DISTANCE IN SAMPLES FOR TAPER :'	1	THEN
READ ($5, *$) NSAMTP		RESP1 $=1.0$
END IF	1	ELSE IF (DIST(Z,Y,RLOCTS,RLCTIN,MULTR4) .GT. 0.0) THEN
SHISLO $=$ REAL (HISLOS)		D1 m (Y-LOSLOR*Z - RLSLIN) / (LOSLOR - MR6)
SHICTS = REAL(HICTSS)		$\mathrm{D} 2=(\mathrm{Y}-\mathrm{LOCTSR} * \mathrm{Z}-\mathrm{RLCTIN}) /($ LOCTSR - MR6)
SLOSLO = REAL(LOSLOS)		$\mathrm{D} 1=\mathrm{ABS}(\mathrm{D} 1)$
SLOCTS $=$ REAL(LOCTSS)		$\mathrm{D} 2=\mathrm{ABS}(\mathrm{D} 2)$
RHISLO = REAL(HISLOR)		THETA $=$ PI * D2 / $\mathrm{D} 1+\mathrm{D} 2)$
RHICTS = REAL(HICTSR)		RESPI $=0.5 *(1-\operatorname{COS}($ THETA $)$)
RLOSLO $=$ REAL (LOSLOR)		ELSE
RLOCTS = REAL(LOCTSR)		RESP1 $=0.0$
IF (ANS .EQ. 'O' .OR. ANS .EQ. 'o') THEN		END IF
IF (IBAT.NE.1) THEN		IF (RESP1 .EQ. 0.0) GO TO 70
WRITE (6.*)'Enter ks/frequency axis intercepls Hicut, '//		DO 71 J - 1, NSK
'Hizero, Locut, Lozero :'		X = DSK * (J-KSNYQ)
READ (5,*) SHSLIN, SHCTIN, SLSLIN, SLCTIN		IF (DIST(X,Y,SHICTS,SHCTIN,MULTS 1) .GT. 0.0) THEN
WRITE (6,*)'SHICTS,SHCTIN,MULTSI '.		RESP $=0.0$
1 SHICTS, SHCTIN, MULTSI		ELSE IF (DIST(X,Y,SHISLO,SHSLIN,MULTS2) .GT. 0.0)
WRITE (6.*)'SHISLO.SHSLIN,MULTS2 ',	1	THEN
1 SHISLO, SHSLIN, MULTS2		DI - (Y - HISLOS*X - SHSLIN) / (HISLOS - MS3)
WRITE (6.*)'Enter kr/frequency axis intercepts Hicut,' //		D2 - (Y - HICTSS*X - SHCTIN) / (HICTSS - MS3)
1 'Hizero, Locut, Lozero :'		$\mathrm{DI}=\mathrm{ABS}(\mathrm{D} 1)$
READ (5,*) RHSLIN, RHCTIN, RLSLIN, RLCTIN		$\mathrm{D} 2=\mathrm{ABS}(\mathrm{D} 2)$
WRITE ($6,{ }^{*}$)'RHICTS,RHCTIN.MULTS 1^{\prime}.		TE : COSMS3 TERM CANCELS OUT
1 RHICTS, RHCTIN, MULTRI		THETA - P1 * D2 / (D1 + D2)
WRITE (6,*)'RHISLO,RHSLIN,MULTS2 ',		RESP $=0.5$ * (1 - COS(THETA $)$)
1 RHISLO, RHSLIN, MULTR2		ELSE IF (DIST(X,Y,SLOSLO,SLSLIN,MULTS3) .GT. 0.0)
ELSE	1	THEN
READ (5,*) SHSLIN, SHCTIN, SLSLIN, SLCTIN		RESP $=1.0$
READ ($5, *$) RHSLTH, RHCTTH, RLSLTH, RLCTTH		ELSE IF (DIST(X,Y,SLOCTS,SLCTIN,MULTS4) .GT. 0.0)
ENDIF	1	THEN
$50 \mathrm{DO} 60 \mathrm{I}=1, \mathrm{NF}$		D1 - (Y-LOSLOS* X - SLSLIN) / (LOSLOS - MS6)
$\mathrm{Y}=\mathrm{DF}$ * ($\mathrm{I}-1)$		D2 = (Y - LOCTSS*X - SLCTIN) / (LOCTSS - MS6)
DO $70 \mathrm{~K}=1$. NRK		$\mathrm{DI}=\mathrm{ABS}(\mathrm{DI})$
Z - DRK * (K-KRNYQ)		D 2 - $\mathrm{ABS}(\mathrm{D} 2)$
IF (DIST(Z,Y,RHICTS,RHCTIN,MULTR1) .GT. 0.0) THEN		THETA - PI * D2 (D1 + D2)
RESP1-0.0		RESP - 0.5 * (1-COS(THETA)
ELSE IF (DIST(Z.Y.RHISLO,RHSLIN,MULTR2) .GT. 0.0)		ELSE
THEN		RESP $=0.0$
DI $=$ (Y - HISLOR*Z - RHSLIN) / (HISLOR - MR3)		END IF
D2 - (Y - HICTSR*Z - RHCTIN) / (HICTSR - MR3)	c	IF (IBAT.NE.1)PRINT*'RESP - -'RESP
D1 - ABS(DI)		IF (RESP .EQ. 0.0) GO TO 71
D 2 - $\mathrm{ABS}(\mathrm{D} 2)$		SP1 (pie taper over $k r$) only used when no pie taper over k s
C NOTE : COSMS3 TERM CANCELS OUT		ne below is uncommented
THETA - PI * D2 (D 1 + D2)		IF (RESP .EQ. 1.0) RESP - RESP*RESPI

WRITE (II,REC-IDCODE) A. SORPOS. NCHR. RECDEP.
DBGAIN, GCMSCL. NFIRST. NCR. NPROCS. IDPROC, DT
ELSE
C for use if header is ux) ling
WRITE (11 , REC-IDCODE) A. SORPOS, NCHR
ENDF
CRITE SEISMOGRAM RECORDS
DO $101-1$. NCHR
NREC - IDCODE +J
ELSE
C for use if header is ux) ling
WRITE (11 , REC-IDCODE) A. SORPOS, NCHR
ENDF
CRITE SEISMOGRAM RECORDS
DO $101-1$. NCHR
NREC - IDCODE +J
ELSE
C for use if header is ux) ling
WRITE (11 , REC-IDCODE) A. SORPOS, NCHR
ENDF
CRITE SEISMOGRAM RECORDS
DO $101-1$. NCHR
NREC - IDCODE +J
INTEGER LENGTH(6),LENAR2().IMANE(4) KIN K2MAX REAL CHTS(NCHTS). FKDATA(NRK.NSK.NF). K2MIN. K2NYQ REAL TEMPLO(NRK,NDUM), KKPLO(NSK.NRK)
CHARACTER TXTARI(6)*10, ${ }^{\text {TXTAR(4)* }}$, TXTAR2(3)*5
CHARACTER TXTARI(6)*10, TXTAR(4)*1,TXTAR2(3)*5
$\begin{array}{ll}\mathrm{C} & \text { Axis text strings and character string lengths } \\ \mathrm{C} & \text { of axis texts. }\end{array}$ C of axis texts.
DATA TXTSTR/'KS',/m','KR','/m','Hz'.
'.'Freq',LENGTH/6*-2/
PRINT.,NRK, NSK, NF, DT, DSZ, DRZ, FMAX.
I SQRDAT, KORSSL, NSLICE, NDUM
C Planes for axis annotation. C of axis texts.
DATA TXTSTR/'KS',/m','KR','/m','Hz'.
'.'Freq',LENGTH/6*-2/
PRINT.,NRK, NSK, NF, DT, DSZ, DRZ, FMAX.
I SQRDAT, KORSSL, NSLICE, NDUM
C Planes for axis annotation.
NF. NK no, of frequencies, wavenumbers in picrosecs and metres
DT. DZ temp and spat sampling intervals in mico
NCHTS nos, of contour levels

C INTEGER NSK.NRK.NF.LENAR1(6).LENAR(4)

MIN, K2MAX DATA IPLANE/3 3.3/
DATA LENAR $14 * 0!$
Data TXIARI ${ }^{(6 * 1 /}$
DATA TXTAR $1 / \mathrm{k}(/ \mathrm{m})$ ','Wavenumber,'f (Hz)','Frequency'
1 .'units','Amplitude'/
DATA LENAR2 $/ 5.5,0 /$
DATA TXTAR2 $/$ 'Below','Above'.".
ICOUNT = 0
RESERV $=$-30.
FMIN $=0.0$
AMIN $=0.0$
AMAX -1.
NLF $=1+\mathrm{NI}$
NLF $-1+$ NINT(FMAX
IF (KORSSL.ENYQ)
$\begin{array}{lll}\text {.B. Sample order in } K \\ \mathrm{nk} / 2+1=0.0 & 1 \\ \mathrm{nk} & =+ \text { knyq }\end{array}$
NREC - IDCODE
10 WRITE (11, REC=NREC)(R4DAT(I,J),I= 1, NSAM $)$
0 CONTINUE
ELSE IF (IHFORM EQ. 'OUT') THEN
LENI $=($ NSAM +2$) * 4$
LEN $=($ NSAM +2$)$
IDCODE $=$ NSHOT
IDCODE $=($ NSHOT- 1) $*$ NCHR
IF (IBAT.NE. 1) PRINT $*$ IDCODE
IF (IBAT.NE. I) PRINT *, IDCODE, LEN I
FI - OPDISC($1: \operatorname{Inb}\left(\right.$ OPDISC) $/$ /d ${ }^{\text {d }}$
F2 $=$ OPDISC($1: \ln b(O P D I S C)$)//' h^{\prime}
OPEN (II.FILE=FI.STATUS='UNKNOWN',
FORM $=$ 'UNFORMATTED',ACCESS $=$ 'DIRECT.RECL=LEN $)$
OPEN (I2.FILE $=$ F2.STATUS $=$ 'UNKNOWN'.
1 FORM='UNFORMATTED'ACCESS-'DIRECT,RECL=LEN $)$
OUTPUT PROCESSING AND DISPLAY PARAMETERS
IF (IHEAD.EQ.0) THEN
WRITE (I2.REC=IDCODE) A.NSAM.NCHR.DT.NFIRST.
ELSE
C for use if header is too long
WRITE (12.REC-IDCODE) A, SORPOS, NCHR
ENDIF
ELSE
NKF-NRK
ENDIF
IF (NSLICE.EQ.1) THEN
ASPECI-(NKF-1)/2
ELSEIF (NSLICE.EQ.3) THEN
INTPL $=($ NKF-1 $) / 2$
ELSEIF (NSLICE.EQ.5) THEN

ENDIF
CALL GEYE(22.-20..20.)

GFOCUS is the direction of view (default $0.0,0$)
CALL GFOCUS(0.0..-9999999.)
CALL GFOCUS(0.0..-9999999.)
Set a text height based on the dimensions of the
vXTHGTI $=0.035^{*} \mathrm{MIN}\left(0.7^{*}\right.$ XSIZE. 0.8^{*} ZSIZE
TXTHGT2 $=0.1^{*} \mathrm{MIN}\left(0.7^{*}\right.$ XSIZE. 0.8^{*} ZSIZE $)$
TXTHGT2 $=0.1^{*} \mathrm{MIN}\left(0.7^{*}\right.$ XSIZE. 0.8^{*} ZSIZE $)$
Select z up coordinate system.
CALL GVPROJ(2)
Set textfont for numeric axis latels.
CALL RAXTEF (4.'ITAL'0)
CALLRAXTEF(4.'ITAL'. 0)
Set textfont for axis text.
CALL RAXTEF(6.'ITAL',0)
Suppress ploting of first numeric labe
Suppress plotting of first numeric label.
CALL RAXDIS $(4,1,1)$
Mark axis texts for display. They are not
Mark axis texts for display. They are nols
are displayed by default.
CALL RAXDIS $(6,1,0)$
CALL RAXDIS($6,1,0$)
C CALIRAXIS $3(0,1.25 *$ TXTHGT2,IPLANE,LENGTH,TXTSTR)
CALL RAXIS3(0.1.25
$\mathrm{DKF}=2 . * \mathrm{~K} 1 \mathrm{NYQ} /(\mathrm{NK}-1)$
CALL RCLASS(CHTS,NCHTS.0)
CALL GCONWI(-1.0.1)

ILPL $=$ NK INTPL $=$-INTPL IFPL - NK

ILPL-1
IFPL-1
ILPL - NLF
DKF - FMAX/(NLF-1)
KINYQ $=0$.
IF (NSLICE.EQ.1) THEN
$\mathrm{IFPL}=\operatorname{INT}(\mathrm{NK} / 2)+1$
$\mathrm{ILPL}=\operatorname{INT}(\mathrm{NK} / 2)+1$
INTPL-1
C Set up the 3D scaling mode by calling RWALL. The

 $=-$ knyq

NK2, NK1 no. of wavenumbers for plot
NK2.NK1
NCHTS no. of conteur levels
INTEGER NK1. NK2. LENAR1(6), LENAR(4), LENAR2(3)
INTEGER IPLANE(3) , KIMIN KIMAX. CHTS(NCHTS)
REAL DZI.DZ2. K
REAL KKDATA(NK1,NK2)
REALAMAX, AMM,K2NYQ. K2MIN, K2MAX
CHARACTER TXTARI $(6)^{*} 10$, TXTAR $(4) * 1$, TXTAR2(3)*5
CHARACTER DATE*24. SQRDAT* DATA IPLANE $/ 1.1,1 /$
DATA LENAR $/ 4 * 0 /$

DATA LENAR $/ 4 * 0 /$
DATA LENARI $/ 6^{*}-1 /$

DATA LENAR $2 / 5.5,0 /$
DATA TXTAR2 $/$ Bclow
DATA TXTAR2 /'Bclow'.'Above'."/
RESERV $=30.0$
$\mathrm{~K} 2 \mathrm{NYQ}=.5 / \mathrm{DZ1}$
$\mathrm{K} 2 \mathrm{NYQ}=.5 / \mathrm{DZ1}$
$\mathrm{KINYQ}=5 / \mathrm{DZ2}$
$\mathrm{~K} / \mathrm{MIQ}=51 \mathrm{NYQ}$
KIMIN =-KINYQ
KIMAX - KIMIN
K2MIN - -K2NYO
K2MIN $=-$ K2NYQ
K2MAX - K2MIN
AMAX $=0$.

XOFF - RESERV
ZOFF - RESER CALL GLIMIT (KIMIN.KIMAX.K2MIN.K2MAX.AMIN.AMAX)
CALL GLIMIT(KIMIN.K IMAX.K2MIN.K2MAX.AMIN.AMAX)
CALL GVPORT(XOFF.ZOFF.XSIZE*.6.ZSIZE*.8) CALL GVPORT(XOFF.ZOFF.XSIZE*.6.ZSIZE*.8)
CALL GWBOX(1.0,1.0.0.0)

CALL GWBOX(1.0, 1.0.0.0)
CALL GSCALE
CALL RCLASS(CHTS.NCHTS.0)
CALL RCLASS(CHTS.NCHTS.0)
CALL GCONWI(-1.0.1)
CALL GCONWI(-1.0.1)
CALL GCONCO 1.1)
HEIGHT - 0.05*MIN(70.0.220.0)
HEIGHT - $0.05 *$ MIN(70.0.220.0)
CALL RAXDIS(2.1.0)
CALL RAXDIS (2.1.0)
CALL RAXDIS $(6,1.0)$
CALL GCNR2S(KKDATA.NKI.NK2)
CALL GCNR2S(KKDATA.NKI.NK2)
CALL RAXIS2(K2MIN,KIMIN,HEIGHT,LENARI.TXTARI)

CALL RAXDIS(4,0.0)	C^{*} THIS ROUTINE EXPECTS SINGLE PRECISION ARGUMENTS	500 CW3(I) $=\operatorname{CDAT}(\mathrm{J} .1)$ CONTINUE
CALL RAXIS2(K2MAX.KIMAX.HEIGHT.LENAR.TXTAR)	C^{*} THE ARRAY CX IS COMPLEX. **	CALL FFT(N2,CW3 SIGNB)
C DRAW CONTOUR KEY	C ${ }^{* * * * * * * * * * * * * * * * * * ~}$	
CALL RTXFON('SWIM',1)	C Subroutines called: None	
CALL GCLOPT(LENAR2.TXTAR2,1.75*HElGHT.1.0.0.1)	C Source: Clacrbout	
CALL GCOSCL(K)MAX*1.1.K2MIN)	SUBROUTINE FFT(LX,CX,SIGNI)	600 CONTIN
C DRAW TITLE	COMPLEX CX(LX),CARG,CEXP,CW,CTEMP	400 CONTINUE
CALL FDATE(DATE)	$\mathrm{J}=1$	RETURN
CALL RTXSPM(0)	SC=SQRT(1.0/FLOAT(LX))	END
CALL RTXPAT(0)	DO 30 l=1, LX	
CALL RTXJUS (1.1)	IF(I.GT.J)GO TO 10	SUBROUTINE FFT3D(NSZ.NSX.NSY.CDAT.SIGNZ.
CALL RTXHEI(3.5)	CTEMP=CX(J)*SC	SUBROUTINE FFTSD(NSZ,NSX.NSY,CDAT,SIGNZ.
c CALL RTX (-1.DATE.XSIZE.RESERV-120)	$C X(J)=C X(1) * S C$	COMPLEX CDAT(NSZ.NSX.NSY),CW(NSX)
CALL RTXFON(ITAL',0)	CX(I)=CTEMP	DO $10 \mathrm{IY}=1$ NSY
ZTITLE $=$ K2MAX + 100	$10 \mathrm{M}=\mathrm{LX} / 2$	PRINT* '2d fft pass (1-',NSY,')',IY
CALL RTXHEI(5.0)	20 IF (J.LE.M)GO TO 30	CALL FFT2D(NSZ,NSX,CDAT (1,1,IY),SIGNZ,SIGNX,CW)
IF (SQRDAT .EQ. 'Y') THEN	$\mathrm{J}=\mathrm{J}-\mathrm{M}$ $\mathrm{M}=\mathrm{M} / 2$	10 CONTINUE
c CALL RTX(-I.'K-K SQRT Amp Spectrum (inear)'.0,ZTITLE)	IF(M.GE.1)GO TO 20	PRINT*.'Started 3rd d'
ELSE c CALL RTX(-1,'K-K Amplitude Spectrum (linear)',0,ZTITLE)	$30 \mathrm{~J} \mathrm{~J}+\mathrm{M}$	DO $20 \mathrm{IZ}=1 . \mathrm{NSZ}$
ENDIF	L-1	PRINT*, 3 rdd (1-512), ${ }^{\text {, }}$
CALL GEND	40 ISTEP-2*L	DO $301 \mathrm{C}=1$ NSX
RETURN	DO $50 \mathrm{M}=1, \mathrm{~L}$	CW(IY) $=$ CDAT(IZ,IX,IY)
END	CW $=$ CEXP(CARG)	40 CONTINUE
	DO $501-\mathrm{M}, \mathrm{LX}$ ISTEP	CALL FFT(NSY,CW,SIGNY)
C FAST FOURIER TRANSFORM	CTEMP-CW*CX(I+L)	DO SOIY $=1, \mathrm{NSY}$
	CX(I+L)-CX(I)-CTEMP	(X,IY) $=$ CW(${ }^{(1)}$
C	$50 \mathrm{CX}(\mathrm{I})=\mathrm{CX}(\mathrm{I})+$ CTEMP	50 CONTINUE
C Subroutine name: FFT	L-ISTEP	30 CONTIN
C	IF(L.LT.LX)GO TO 40	20 CONTINUE
C Description :	RETURN	
C This subroutine des a fast Fourier transform using	END	
C		
C LX		integer function lnb(string)
C $\quad \mathrm{CX}(\mathrm{K})=\mathrm{SQRT}(1 / L X)$	SUBROUTINE FFT2D(NSAMS.N2.CDAT.SIGNA,SIGNB,CW3)	c-t determines tast non blank character in a string
	C 2-d fft using fork	
C J=1	C Signa-1. $1>8$	c-a dave stevenson 1986
	C Signh-1. $x>k$ COMPLEX CDAT(NSAMS,N2),CW3(N2)	$c-d+$
C for $\mathrm{K}-1.2 \ldots . . . \mathrm{LX} 2$ (LX 2 is $2^{* *} \mathrm{~N}$)	REAL SIGNA SIGNB	c scans the string starting at the last column and checks each
C		c character in tum to see if it is a space, if not it retums
C Arguments:	PRINT*.'Id ffl pass (1-64)',I	c the character position number. if all string is blank then
C LX - Length of input string. (Must be a power of 2)	c CALL FFT(NSAMS,CDAT (1,I),SIGNA)	c zero is returned.
C CX - Input string on entry, transform on exit.	100 CONTINUE	c routines called:-
C If +1 will transform from frequency to lime domain.	DO $400 \mathrm{~J}=1 . \mathrm{NSAMS}$	c len
C	c PRINT*, 2 nd d (1-512)', J	C-d
C********************	DO 5001-1.N2	character**) string

\bar{x}
Inb=0
do 100 i-l, I. -1
if(string(i:i).ne
$\ln b=\mathrm{i}$
goto 10
else
endif
100 continue
10 return
end

C----..----------- \quad SET ELEMENTS OF ARRAY TO ZERO
C Subroutine name : ZERO
C Description:
C This subroutine sets all the elements of the
C input array to zero. (Real elements only)
C Arguments:
C LX - Length of time series in samples.
C X - Array containing time series.
C Subroutines called : None
C Source : Robinson
SUBROUTINE ZERO(LX,X)
IMPLICIT REAL (A-H.O-Z)
DIMENSION X(LX)
IF(LX.LE.O)RETURN
A52

Appendix E

berrymig

This program was adapted from kirchmig and performs GK, GB and GRT migration, raytracing by the layer and boxel method, and image point dip calculations. Also given are raytra.f (layer raytracing) and raytl4.f (boxel raytracing). The results are plotted with nscap.f (not given), which uses UNIRAS. Subroutines are in libkir.a in the dgl3psr user area on the University of Durham Geological Sciences Department's SUN system.

READ (5.*) DXGRID. DZGRID	READ (5,*) IMIGTY
WRITE (6.*)'ENTER MINIMUM AND MAXIMUM X-VALUES :'	IF (IMIGTY EQ. 5) $\mathrm{NX}=1$
READ (5.*) XMIN, XMAX	WRITE (6,*)'ENTER stacking cutoff :'
WRITE (6.*)'Enter Imaging grid area (X0,X1,Z0,Z1) :'	READ ($5 . *$ * STKOFF
READ (5.*) XIM0, XIMI, ZIM0. ZIMI	WRITE (6,*)'DIPS OF SOR AND REC ARRAYS IN DEGS :'
21 NX - INT((XMAX - XMIN)/DXGRID $)+1$	READ (5,*) DIPS. DIPR
NZ $=1$ INT(DEPTH(NDEPTH)/DZGRID) - 1	DIPS - DIPS * PI/ 180.
ENDIF	DIPR = DIPR * PI / 180.
C SET UP SOURCE AND RECEIVER COORDINATES	C READIN DATA FILE
WRITE (6.*)'Enter no. of source positions:'	WRITE (6,*)'Enter name of datafile to migrate : '
READ (5.*) NSOR	READ (5.50) FNAME
DO $30 \mathrm{~J}=1$, NSOR	50 FORMAT (A25)
WRITE (6.*)'ENTER COORDINATES OF SOURCE '. J. ' $:$ '	WRITE ($6, *$)'Header IN/OUT of file : '
READ (5.*) XSOR(J). $\mathrm{ZSOR}(\mathrm{J})$	READ (5.51) IHFORM
30 CONTINUE	51 FORMAT (A3)
WRITE (6,**)'Enter no. of rec posns wanted. no in file :'	IF (IHFORM EQ. 'OUT) FNAME - FNAME($1: \operatorname{lnb}$ (FN
READ (5.*) NREC.NRFILE	WRITE ($6, *$ * UP (1) or DOWN (0) -going wavefield :'
DO $40 \mathrm{~J}=1$, NREC	READ (5.*) IUP
WRITE ($6,{ }^{*}$)'ENTER COORDINATES OF RECEIVER ', J. ' :'	IF (FNAME EQ. 'DUMMY') THEN
READ (5.*) XREC(J), $\mathrm{ZREC}(\mathrm{J})$	C INVERSE IMPULSE RESPONSE
40 CONTINUE	WRITE (6,*)'Enter coxrdinates of diffracting point :'
CALL MAXSN(NSOR. ZSOR. ZSBOT. II)	$\operatorname{READ}\left(5,{ }^{*}\right)$ XDIF. ZDIF
CALL MINSN(NSOR, ZSOR, ZSTOP, II)	DO $70 \mathrm{~K}=1$, NSOR
ZBOT-ZSBOT	$\left.\mathrm{D} 0=\mathrm{SQRT}(\text { (} \operatorname{SSOR}(\mathrm{K})-\mathrm{XDIF})^{* * 2}+(\mathrm{ZSOR}(\mathrm{K})-\mathrm{ZDIF})^{* * 2}\right)$
ZTOP-ZSTOP	T0-D0/VV(1)
CALL MAXSN(NREC, ZREC, ZRBOT. II)	NSAMR $=256$
CALL MINSN(NREC, ZREC, ZRTOP, II)	- $5 \mathrm{E}-3$
IF (ZRBOT LTT. ZBOT) ZBOT-ZRBOT	K24-NSM * NREC
IF (ZRTOP .GT. ZTOP) ZTOP=ZRTOP	CALL ZERO(K24, CSG(1,1,K))
OR if you include reflections from the zone between top rec and source for up, or bot rec and source for down	DO $60 \mathrm{~J}=1$, NREC DI - SQRT((XREC(J) - XDIF)**2 + (ZREC(J) - ZDIF)**2)
IF (ZRBOT .GT. ZBOT) ZBOT $=$ ZRBOT	$\mathrm{Tl}=\mathrm{DI} / \mathrm{VV}(1)$
IF (ZRTOP .LT. ZTOP) ZTOP-ZRTOP	TIMAG - T0 + T1
DSG $\left.-\operatorname{SQRT}(\text { (ZREC }(2)-\operatorname{ZREC}(1))^{* *} 2+(\operatorname{XREC}(2)-\operatorname{XREC}(1))^{* *} 2\right)$	AMP $=1.0 /$ SQRT(TIMAG)
IF (NREC .EQ. 1) $\mathrm{DSG}=0.0$	NIMAG $=$ INT(TIMAG/DT) +1
DSS - SQRT($\left.\mathrm{ZSOR}(2)-\mathrm{ZSOR}(1))^{* *} 2+(\operatorname{XSOR}(2)-\mathrm{XSOR}(1))^{* * 2}\right)$	CSG(NIMAG,J,K) - AMP
IF (NSOR .EQ. 1) DSS - 0.0	60 CONTINUE
WRITE (6, *)'Apply Newman amplitude-phase correction (1-Y) ?'	70 CONTINUE
READ (5,*) NEWMAN	ELSE
WRITE (6.*)'Enter aperture.taper,raymute.apemute in degrees :'	WRITE (6.*)'Enter no. of samples per trace \& NO. NEEDED
READ (5.*) APRANG, APRTAP, THETMU, APRMUT	WRITE (6,*)'(Include extra for static correction) '
C APRMUT is also used as stacking angle cut-off	READ (5.*) NSAMR, NSAM0
APRANG - . 5 * APRANG * PI/ 180.	WRITE (6.*)'Enter sampling interval in millisecs :'
APRTAP - APRTAP * PI/ 180.	READ (5.*) DT
THETMU - THETMU * PI / 180.	DT-DT* 1.E-3
APRMUT- 5 - APRMUT * PI/ 180.	IF (NSAMR.LT. $1024 . A N D . I H F O R M . N E . O U T) ~ T H E N ~$
WRITE (6.*)'ENTER Migration type I-Kir stack.2-Kir int.3-GK.	LEN-4104
1 4-GRT.5-CDP gath. 9-Berryhill'	ELSE
A55	

CALL ZERO(NSOR. ANGS)
DO $170 \mathrm{KK}=1 . \mathrm{NSOR}$
c
c
C
c
c
C
c
END IF
RAY TRACE TO SOURCE FROM IMAGE POINT
THETAP $=9.9$
TAU0 $=0.0$
IF(METHR.EQ.2) THEN
COORDS(4)=BOXX*ICELLX-XSOR(KK)
COORDS(1)=XSOR(KK)-XSTART+COORDS(4)
COORDS(3)=ZSTART
COORDS(6)=ZSOR(KK)
IWRYN $=0$
ISTRT -0
CALL RAYT14(COORDS.SLM.TK.DTOT0.TAU0,
ORAYS.BOXX,BOXZ,ICELLS.NIT, ICELXZ.ICELLX,
CELLZ.XMAX.ZMAX.ASD,ASTEP.ACC, NTRIES,
RAY,THETA0,THETAS.IWRYN.ISTRT)
THETA0=PI-THETAO
THETAS=PI-THETAS
IST = IST+ISTRT
IF (ISTINC.EQ.O.AND.ISTRT.EQ.1) GO TO I70
ELSE CALL RAYTRA(NLAMAX. NDEPTH. DEPTH. VH. V 1 XSTART. ZSTART. XEND. ZEND, DZGRID. ACC. NTRIES. ENDIF
IF (NRAY .EQ. NTRIES) THEN
LOST $=$ LOST + NREC
GO TO 170
END IF
TAUS(KK) - TAU0
DTOTS(KK) - DTOTO ANGO(KK) - THETAO ANGS(KK) - THETAS
IFOUND - IFOUND +1

CONTINUE
RAY trace to receivers
CALL ZERO(NREC, TAUR)

 230 CONTINUE 230 CONTINUE
CLOSE (11)
WRITE ($6, *)^{\prime}$ 'LEN, NX, NZ - '. LEN, NX, NZ
WRITE ($6, *$ 'LOST RAYS < ', LOST
WRITE ($6^{*}{ }^{*}$ 'LOST RAYS < ', LOST
WRITE $\left(6,,^{*}\right.$)'FOUND RAYS -', IFOUND
PERCL $=100, *$ REAL(LOST) / REAL(LOST + IFOUND)
WRITE (6.*)'PERCENT LOST <'. PERCL
WRITE (6,**)'NSM ='NSM
WRITE $(6, *)^{*}$ 'NTMAX $(-0$ if less than NSM)-', NTMAX
WRITE $(6, *)$ (if >0, then NSM must be $>$ NTMAX)'
WRIE (6,*'(if >0, then NSM must be $>$ NTMAX)
IF(METHR.EQ.2) WRITE($6, *$ ')'straight rays $s / r-$ IST.IRT

END

c------ L-----------------------------

C. SUBROUTINE TO RAYTRACE FROM POINT
C (XSTART,ZSTART) TO (XEND,ZEND)
C IN 2-DIMENSIONAL VELOCITY FIELD DEFINED BY:
C Variables: ACC defines raytracing accuracy in metres
C LAYIMG $=$ layer of starting povint
C THETAO $=$ takeoff angle (-pi/2
 TAU0 - travel time
NLAMAX - total no. of
NLAMAX - total no. of layers; there are (NLAMAX +1) depths
MAXLOP - Maximum no. of raypath searches to be attempled
DTOT - Total distance rravelled (Peter Rowbothan Aug 1991
C WRITTEN BY M J Findlay 1990

$\mathrm{DZ}=\mathrm{DEPTH}(\mathrm{NLAY}$
$\mathrm{ZPO}=\operatorname{DEPTH}(\mathrm{NLAY}+1)$
IF (ABS(THETA) .EQ. P12 .OR. THETA .EQ. $3^{*}{ }^{*} 12$) THEN DX $=0.0$
ELSE
DX - DZ / TAN(THETA)
END IF
DIST(NLAY) $=\operatorname{SQRT}(D X * * 2+D Z * * 2)$
THET(NLAY $)=$ THETA
THET(NLAY) $=$ THETA

ISN- -1	GOTO 157
$\mathrm{K}=1$	ENDIF
ENDIF	ENDIF
VL=1.0/SL(ICELL)	KFLAG=1
AIN1 = ABS(AIN)	GOTO 1699
C IF-ROUTINE FOR STRAIGHT THROUGH RAYS ie horizontal	ENDIF
IF(AIN1.LE.0.001)THEN	VELI $=1.0 / \mathrm{SL}\left((\mathrm{IZ}+\mathrm{ISN}-1)^{*}\right.$ ICELLX +IX$)$
RLEN=BOXX	c if lowp to test for critical ray
TD $=$ BOXX/VL	156 IF(VL.L.T.VELI) THEN
XPO $=$ XPO + RLEN	CRIT=ACOS(VL/VELI)
$\mathrm{IX}=1 \mathrm{X}+1$	IF(ABS(AAA).LE.ABS(CRIT)) THEN
GOTO 1220	DI $=-$ DIF
ENDIF	IF (ISTRT.EQ.0) THEN
AAA = AIN	IF ((XPO+SQRT((RLEN*RLEN)-
c big if for start points near a horizontal line or not (ends before 1220)	(BOXZ*BOXZ)), LTT.XEND) THEN
IF (ABS (FLOAT (IZ - I + K)*BOXZ - ZPO) .LE. 0.001) THEN	GOTO 1800
C DYN. SOURCE EITHER ON HOR. MESH LINE OR CORNER	ELSE
C RAY SEGMENT AS AN ARC OF A CIRCLE?	AIN = AAA
c IF (ABS(AAA) .LE. ASD) THEN	GOTO 157
c $\operatorname{NSUB}=\mathrm{NSUB}+1$	ENDIF
c $\quad \mathrm{ISW}=0$	ENDIF
c CALL CIRCLE(XPO, ZPO, ISW, ISN, AIN, IX, IZ, SL, RLEN,	ENDIF
c 1 TD, ICELLX, ICELXZ,BOXX,BOXZ, GRAD, APR, AINI,NIT, 1)	ENDIF
C if no velocity gradient in box, ISW returns 1	c refract ray or straight ray
c IF (ISW .EQ. 0) GO TO 1220	IF(ISTR'T.EQ.0) THEN
c IF (ISW.EQ. 10) GO TO 1800	AIN=ACOS(VELI*COS(AAA)/VL)*FLOAT(ISN)
c ENDIF	ELSE
c GRAD $=0.0$	AIN - AAA
C* DIS IS DISTANCE FROM DYNAMIC SOURCE TO NEXT	ENDIF
C VERTICAL MESH LINE. BX IS VERTICAL DISTANCE FROM	157 ZPO = FLOAT(IZ - K) * BOXZ
C DYN.SOURCE TO EXIT POINT ON VERTICAL MESHLINE.	IZ $=1 \mathrm{Z}+\mathrm{ISN}$
DIS = FLOAT(IX) * BOXX - XPO	XPO $=$ XPO + (SQRT ((RLEN*RLEN) - (BOXZ*BOXZ $)$) $)$
BX = DIS * TAN(AIN) * FLOAT(ISN)	ELSE
IF (BX .EQ. BOXZ) BX - BX + 0.0001	C* RAY THROUGH VERT. SIDE OF BOX -------1......
C* RAY THROUGH HOR. SIDE OF BOX ---------------	RLEN = ABS (DIS/COS(AIN))
IF (BX .GE. BOXZ) THEN	TD - RLEN / VL
RLEN = ABS (BOXZ/SIN(AIN))	IF(IX+I.GT.ICELLX)THEN
TD - RLEN / VL	VELI-VL
IF (IZ+ISN.GT.ICELLZ + I OR.IZ+ISN.LT.1)THEN	ELSE
VELI-VL	VELI - 1.0/SL($(1 \mathrm{Z}-1)^{*}$ ICELLX+IX+1)
DIF-ZPO-ZEND+(XEND-XPO)*TAN(AIN)	ENDIF
IF(DIF*ISN.GT.0.0) THEN	c if lowp to test for critical ray
IF ((XPO+SQRT((RLEN*RLEN)-(BOXZ*BOXZ $)$)).	IF(VL.LT.VELI) THEN
1 LT.XEND) THEN	CRIT-ASIN(VLVELI)
GOTO 1800	IF(ABS(AAA).GE.ABS(CRIT)) THEN
ELSE	DI - -DIF
VELI - VL	IF (ISTRT.EQ.0) THEN
AIN $=$ AAA	IF ((FLOAT(IX)*BOXX).LT.XEND) THEN

140 TOTR=ABS(DX/COS(AINI))
 CRIT=ASIN(VLVELI) (F(ABS(AIN),GE.ABS(CRIT).AND.ISTRT.EQ.0) THEN
 (Nop to test for critical ray F(VLLTTVELI) THEN CRIT-ASIN(VLVELI)

 TTOT-TOTR*SL(ICELL) 1X=IX+1 NCELL=(IZ-1)*ICELLX+IX

 TTOT-TOTR*SL(ICELL) 1X=IX+1 NCELL $=($ IZ-1)*ICELLX $+1 X$
 c if loop to test for critical ray

 GOTO 1800AIN = AINI
Itlolo
ENDIF
cefract ray or straight ray
IFIISTRT.EQ.0) THEN
IF(ISTRT.EQ.0) THEN
AIN-ASIN(VEL*SIN(AINI)/VL)
ELSE
AIN $=$ AINI
141 XPO=FLOAT(IX-1)*BOXX $141 \begin{aligned} & \text { XPO-FLOAT(X-1) } \\ & \text { ZPO }=\text { ZPO }\end{aligned}$

150 TK(ICELL)=TOTR
IF(ICELL.LE.0) THEN
AINI=AINI+ASTEP
GOTO 120
GOTO 120
ENDIF
C END OF SOURCE CELL CALCULATION
C CHECK TO SEE IF RAY ALREADY PAST X POSITION
IF (XPO.GE.XEND) GOTO 1220
C NOW FOR MAIN LOOP - I.E. CELLS EXCLUDING SOURCE
C ISN - SIGN OF AIN ic: +VE - RAY TRAVELLING DOWN 155 ISN-1

K-0
C RAY GOING TO LEFT TRY NEXT ANGLE INCREMENT
IF(ABS(AIN).GE.PI2) THEN
DIF-ZPO-ZEND+(XEND-XPO)*TAN(AIN)
GOTO 1699
ENDIF
RAY GOING UP
IF(AIN.LT.0.0) THEN

[^0]: * Some irregular spacing occurred in the middle of this gather i.e. receivers at ...2416m, $2419 \mathrm{~m}, 2423 \mathrm{~m}, 2426 \mathrm{~m}, \ldots$ depth.

[^1]: ${ }^{1}$ No correction has been applied for cable stretch - see §2.1.2.

[^2]: SUBROUTINE MENPL2 (NSAM, NCHR, NSAMR, NCHRR, R4DAT, NFIRST, TITOFF, CHNSPL, POLART, VARARE, NPLFST, NPLLST, IOPT, SORPOS, RECDEP, NCR, DT, 3 LOCATE, DATE, DEVICE, SORTYP, SORLOC, RECTYP,
 4 RECLOC, COMSHT, FILREC, NSHOT, NPROCS, 4 RECLOC, COMSHT, FILREC, NSHOT, NPROCS, C plan to pass three dumny arrays for B, RDAT all NSAMS,NCHR C Subroutine for graphics output of array R4DAT(NSAMR.NCHRR) C NB This is MENPL3_U in Mike Findlay's MTS archive

 PARAMETER(NS1-2048.NS2-128)
 CHARACTER*20 LOCATE.DATE.DEVICE.SORTYP.SORLOC
 CHARACTER*20 RECTYP.RECLOC,COMSHT,FILREC
 CHARACTER CHNSPL*26,POLART*7,COMENT*40,ANS*1
 CHARACTER* 30 TITLE,XLB, YLB,FNAME
 CHARACTER*3 VARARE,TITOFF,FLAGBR.COLOUR,RMSYN CHARACTER*3 AGCYN. RAMYN.AMSPEC.SPYES.TRAMP
 REAL RECDEP(NCHRR), TEMP(NS2),RECDI(NS2)

 INTEGER NFIRST(NCHRR).NCR(2),IDPROC(5,NCHRR)

[^3]: ELSE IF (IANSWR .EQ. 5) THEN
 IF (IBA T.NE. 1)
 ' or $3 \mathrm{~d}(\mathrm{~s} / \mathrm{r} / \mathrm{k} / \mathrm{f} / \mathrm{d})$?'
 $\operatorname{READ}(5, *)$ KSORR
 IF (IBAT.NE.1) PRINT *. 'SELECT MAX FREQY FOR PLOT'
 IF (IBAT.NE.I) PRINT *. 'SELECT MAX FREQY FOR PLOT'
 READ (5,*) FMAX
 IF (KSORR.EQ.'D'.OR.KSORR.EQ.'d') THEN
 IF (KSORR.EQ.

