
Durham E-Theses

A supportive environment for the management of

software testing

Liu, Lulu

How to cite:

Liu, Lulu (1992) A supportive environment for the management of software testing, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5726/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5726/
 http://etheses.dur.ac.uk/5726/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

A Sopport EimvSraimmeinit

illbjr the

Management of Software Testin&f

Lule Lie

Disseirtatioim gimbmitted ffoir the degree of

Master off Science

Cojnmpnnteir Science

School off Engineering amid Compnteir Science

Univeirsity off Dmurlhiaim

1 J U L 1992

Dedicated to my grandparents who brought me up

Abstract

This dissertation describes research undertaken on the management of software test­

ing. A support environment for the management of software testing, entitled SEMST,

is presented. The research approach involves the investigation of software configuration

management and its application to the testing process; the study of software testing tech­

niques and methods; the exploration of the significance of software testing management; a

survey of related work; the development and analysis of the requirements for SEMST; its

implementation and an assessment. The current version of SEMST is a prototype built

on the top of Unix and RCS on a Sun workstation. It is able to maintain all versions of

specifications, test cases and programs, as well as to manage the relationships between

these components.

"The copyright of this thesis rests with the author. No quotation from it should be

published without her written consent and information derived from it should be acknowl­

edged."

i

Acknowledgements

This is a revision to the version submitted in January 1991. During the modification, I

obtained financial support and resources from The Polytechnic of Central London, School

of Computer Science & Information Systems Engineering. I am extremely grateful to

them. The original work was funded by a European Commission Grant under the Esprit

II Programme - R E D O . I would like to thank the University of Durham, Department of

Computer Science for this grant and the facilities provided. I am deeply indebted to my

supervisor Dr. D. J . Robson for his advice and patience while supervising me on this work.

I would also like to express my great gratitude to Prof. K. H. Bennett and Dr. G. Edmunds

for their careful reading of this work and constructive criticisms that significantly helped

to improve the previous version of the text. In the course of writing this dissertation, I

have received assistance from a number of people. In particular, thanks are due to Rachel

Kenning who helped me in understanding software configuration management. Finally, I

thank my sister and my parents for their concern and encouragement when I was doing

this work. My good will goes to all of them.

ii

Comiteimts

1 Introduction 2

1.1 Overview 3

1.2 Software Testing: A Historical Perspective 4

1.3 Objectives of the Research 6

1.4 Structure of the Dissertation 7

2 Software Configuration Management 9

2.1 What is SCM? 10

2.1.1 Origins of CM 10

2.1.2 Definition of SCM 11

2.1.3 The Problems 11

2.2 Software Configuration Concepts 12

iii

2.2.1 Configuration 12

2.2.2 Baselines 14

2.2.3 Software Configuration Items 14

2.2.4 SCM database 15

2.2.5 SCM Constitution 16

2.3 Overview of Software Configuration Management Tools 17

2.4 Characteristics of SCM Techniques 19

2.4.1 Technical Features of SCM Tools 20

2.4.2 RCS Functionalities 20

2.5 Summary of SCM and Project Requirements 22

2.5.1 SCM Highlights 22

2.5.2 Requirements Of the Research Project 23

2.5.3 Functional Requirements For SEMST 25

2.5.4 Environmental Requirements For SEMST 26

3 Software Testing 28

3.1 Testing Principles 29

3.2 Testing Methods 29

iv

3.3 Classification of Testing Techniques 31

3.4 Specification-Based versus Program-Based Testing 32

3.4.1 Specification-Based Testing 33

3.4.2 Program-Based Testing 34

3.4.3 Summary 37

3.5 Test Case Generation 38

3.5.1 Specification-Based Approaches 38

3.5.2 Program-Based Approaches 41

3.6 Testing During the Maintenance Phase 43

3.7 Other Testing Techniques 45

3.8 Automated Testing Tools 50

3.9 Comparative Review of the Testing Techniques 51

3.9.1 Specification-Based Testing Techniques 53

3.9.2 Program-Based Testing Techniques 56

3.9.3 Regression Testing Techniques 61

3.10 Summary 62

v

Software Testing Management 63

4.1 Testing In the Software Life Cycle 64

4.1.1 Early Test Planning 66

4.1.2 Reviews 67

4.1.3 Unit Testing 68

4.1.4 Integration Testing 69

4.1.5 System Testing 70

4.1.6 Retesting 71

4.2 Test Data 72

4.2.1 Test Cases 73

4.2.2 Program Specifications 74

4.2.3 Programs 75

4.2.4 Relationships Between Test Cases, Specifications and Programs . . . 75

4.3 The Need for Software Testing Management 76

4.3.1 Difficulties in Early Planning for Testing 77

4.3.2 Large Amount of Data 78

4.3.3 Testing Software Changes 78

4.4 Software Configuration Management in Context of Software Testing 79

4.4.1 Change Control 80

vi

4.4.2 Version Control 80

4.4.3 Record-Keeping and Traceability 81

4.5 Summary 82

4.5.1 The Purpose of This Chapter 82

4.5.2 Combining the Testing Process with SCM - a Refinement of Previ­

ous Discussions 82

4.5.3 Limitations of Testing Management 84

Survey of Previous Work and Analysis of SEMST Requirements 85

5.1 Integrated Software Engineering Environments 86

5.2 Management Systems 87

5.2.1 Object Management Systems 88

5.2.2 Persistence 91

5.2.3 Concurrency and Distribution 91

5.3 Hypertext Systems 92

5.4 Software Maintenance Environments 93

5.5 Integrated Software Testing Environment - T E A M 95

5.6 Test Management Support Techniques 96

5.6.1 Test Execution Aids 96

vii

5.6.2 Documentation Aids 96

5.6.3 Test Controls 97

5.7 SDDB - System Description Data Base 98

5.8 Analysis of the Requirements for SEMST 100

5.8.1 Motivation For SEMST 100

5.8.2 Review of the Previous Work 103

5.8.3 Design Criteria for Prototype SEMST 106

5.9 Summary 107

SEMST - A Support Environment for the Management of Software Test­

ing 108

6.1 SEMST Capabilities 109

6.1.1 Loading Data 109

6.1.2 Maintaining Versions 110

6.1.3 Retrieving and Updating I l l

6.1.4 Managing Links I l l

6.1.5 Controlling Security 114

6.2 System Architecture 115

6.2.1 Overview Of the System 115

viii

7 Assessment and Conclusion 138

7.1 Assessment of SEMST and Future Work 139

7.1.1 Further Review of the SEMST System 140

7.1.2 Lessons Learnt From the Research 143

7.2 Overview of the Major Topics of the Dissertation 145

7.3 Summary of the Dissertation 147

Appendix A How to use SEMST 148

A . l Enter the System 149

A.2 Manipulating the Subsystems 149

A.3 Specification Manipulation 150

A.3.1 Input/Add 150

A.3.2 Retrieve/Update 151

A.3.3 Links Enquiry 152

A.3.4 Secure Enquiry 152

A.3.5 Directory 153

A.4 Test Case Manipulation 153

A.4.1 Input/Add 154

A.4.2 Retrieve/Update 155

x

6.2.2 Functional Structure 115

6.2.3 System Database 118

6.3 User Interface 122

6.4 An Example 124

6.5 The Design of SEMST 129

6.5.1 The System Functional Structure 129

6.5.2 The SEMST Database 130

6.5.3 The Links in SEMST 131

6.6 The SEMST Properties 132

6.6.1 Highlights of the SEMST Achievements 132

6.6.2 Application of SEMST To the Real Project System 134

6.7 Testing SEMST 136

6.7.1 Review development Documents 136

6.7.2 Unit/Module Testing 136

6.7.3 Integration/Subsystem Testing 136

6.7.4 System Testing 137

ix

A.4.3 Links Enquiry

A.4.4 Secure Enquiry

A.4.5 Directory

Chapter 1

Introduction

The research described in this dissertation is intented to apply software configuration

management methods and database support techniques to the testing process. In the area

of software engineering, particularly in the context of software testing, this research can

be classified as an activity which is investigating the support techniques and methods for

test data control and management.

This chapter is an introduction to the research. Section 1.1 presents a conceptual

overview of software engineering, software configuration management and software test­

ing. Section 1.2 describes the evolution of software testing, and section 1.3 addresses the

objectives of this research. The structure of the dissertation is presented in the last section.

2

1.1 Overview

The term software engineering was first introduced in the late 1960s at a NATO conference

[82] held to discuss what had been described as the software crisis. The software crisis is a

term used to cover the problems of the production of reliable and maintainable software on

schedule. The problems involved in the construction of large software systems are immense

so that software engineering is concerned with the activity of developing and maintaining

large software system. According to [33], "software engineering is the technological and

managerial discipline concerned with systematic production and maintenance of software

products that are developed and modified on time and within cost estimates". The primary

goals of software engineering are to improve the quality of software products and to increase

the productivity and job satisfaction of software engineers. In the construction of a large

software system, a number of distinct stages can be identified. These make up what is

known as the software life cycle.

Basic to the concept of the software engineering is the need to manage and control all

software components developed, used and modified during the software life cycle and to

ensure a correct software product is produced. Software configuration management is a

method which applies an engineering approach to tracking and controlling the evolution of

software components. Software testing is a method used to assess and improve the quality

of software. It is viewed as, the. continuous task, of .planning, designing, and constructing

tests, and of using these tests to assess and evaluate the quality of work performed at each

step of the system development. The term 'software testing' has been used broadly to

include the full scope of what is sometimes referred to as test and evaluation or verification

and validation activities.

It has been said that [81] "approximately 50% of the elapsed time and over 50% of

the total cost are expended in testing a program or a system being developed". As a

large proportion of the total software expense is spent on software testing, this area has

considerable potential for reducing the cost of software production.

3

1.2 Software Testing: A Historical Perspective

The notion of testing programs arose almost simultaneously with the construction of the

first program. According to the early view of software testing a program is first written

then tested and debugged. This view considers testing a follow on activity and embraces

the effort not only to discover errors but also to correct and remove them. A number of

the earliest papers on testing actually address "debugging". It was not until 1957 that

program testing was clearly distinguished from debugging [50].

During the late 1950s and 1960s, software testing came to assume more and more

significance because of both experience and economics. It was evident that computer

systems contained many deficiencies, and the cost of the recovering from these problems

were substantial. Because of that, more emphasis was placed on "better testing" by users

and project managers.

The first formal conference on software testing was held in June 1972 at the University

Of North Carolina. Program Test Methods written by William Hetzel was published as a

result of this conference and established the view that "testing encompassed a wide array

of activities all associated with obtaining confidence that a program or system performed

as it was supposed to" [49].

Since that initial conference many conferences and workshops have been devoted

to software quality, reliability, and engineering. Gradually the "testing discipline" has

emerged as an organised element within software technology, and testing technology has

been given individual emphasis in software development.

During the last few years a number of books on testing have contributed to this growing

technology [81] [4]. Many programming and project management texts have included

several chapters on testing, and testing basics are taught in most programming courses.

However, the testing field is far from mature. Even satisfactory agreement on a def-

4

inition of testing still remains in question. The following is the traditional definition of

testing, which was made by Myers [81], and is still supported by some people: "Testing is

the process of executing a program with the intent of finding errors."

This view of testing makes "finding errors" the goal. Myers thinks that people should

start with the assumption that the program contains errors and then test it to find as many

of the errors as possible. He states that "if our goal is to demonstrate that a program has

errors, our test data will have a higher probability of finding errors and we become more

successful in testing [81]."

While Myers' definition and its implications have been important in understanding

testing, it has frequently been argued by many researchers that it is too narrow and

restrictive to accept as a definition of testing. The disagreement centres on finding errors

as the goal. Weyuker and Ostrand in [118] introduced the notion of error-based testing

which is performed with the aim of eliminating errors in the programs. They believe that

a careful study of a test method can uncover the class of errors detectable by the method.

If the method fails to detect any errors, one can conclude that all errors in the detectable

class are absent.

Hetzel [50] gave another view of testing, which I shall use as the definition of testing

in this dissertation:

Testing is any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required results.

Two terms often associated with testing are verification and validation. Verification

refers to ensuring correctness from phase to phase of the software life cycle. Validation

involves checking the the software against the requirements. Sometimes, verification is

associated with formal proofs of correctness, while validation is concerned with executing

the software with test data. Under the present state of software quality control technology,

5

testing is widely believed to be an important pragmatic verification and validation mecha­

nism for a software project. Therefore, as Hetzel says [50], "testing should be looked at as

a broad and continuous activity throughout the development process. Any activity that

is undertaken with the objective of evaluating or measuring an attribute of the software

should be considered a testing activity. This includes most reviews, walk-throughs, and

inspections, and many judgements and analyses that are performed."

For the past two decades, there have been a wide range of research and development

activities in software testing. These activities can be classified as follows:

1. Establishment of testing theory. This research focuses on the criteria for ade­

quate and reliable testing.

2. Exploration of new testing techniques. This activity is concerned with the

study and development of the requirements for new testing tools and techniques. It

is the area in which most researchers have put their efforts in the past.

3. Assessment of existing testing techniques. This involves the evaluation and

comparison of the effectiveness of various testing methods.

4. Management of productive testing processes. This is associated with the re­

search into controlling and managing the testing organisation, resources, scheduling

and ensuring a smooth data flow through the whole process of testing.

The research described in this dissertation belongs to the fourth category.

1.3 Objectives of the Research

There is no doubt that even use of the best design and requirements methods and of the

best testing techniques will not result in the construction of a cost-effective and high qual-

6

ity system if the testing process is poorly managed. Unfortunately, in the past years little

attention has been given to the management of the testing process. Although there has

been significant progress in the development of database support techniques and project

management tools which provide systematic approaches to managing a software develop­

ment process, the management mechanisms for the testing process is not well-furnished

in these tools. The growth of testing techniques and methods requires more management

and control in testing.

The research effort described in this dissertation is devoted to developing a database

support system for the management of software testing. The intention is to apply software

configuration management method to the software testing process. The following is a list

of the research objectives:

o The study of software configuration management methods.

o The study of software testing principles and techniques.

o An investigation into the management of software testing.

o A survey and evaluation of previous work in software testing management.

o The establishment and analysis of the requirements for the new system to be devel­

oped.

o The design and implementation of the system prototype.

G An assessment of the developed new system,

o A discussion of possible future extensions.

1.4 Structure of the Dissertation

This dissertation consists of seven chapters.

7

Chapter 2 describes the concepts of software configuration management as well as

existing tools and techniques in this area; the project requirements are proposed in this

chapter. Chapter 3 presents an overview and analysis of software testing techniques; it

focuses on a discussion of specification-based/program-based testing techniques and re­

gression testing techniques. Chapter 4 is concerned with software testing management, in

which the testing activities in the software life cycle, the need for testing management, and

configuration management in software testing are described. Chapter 5 presents an inves­

tigation of previous work and an analysis of the requirements for the new system. Chapter

6 introduces the new system developed for supporting testing management. Chapter 7

presents an assessment of the system prototype; discusses possible future research work in

this area; and summarises the results of the research.

The use of the new system is described in Appendix A.

8

Chapter

Software Configuration

Management

Introduction

This chapter describes Software Configuration Management (SCM) - the discipline of

controlling the evolution of software systems. SCM applies to all representations of the

software system from requirements through to executable code and is based on four-sub-

disciplines: software configuration identification; software configuration control; software

configuration status accounting; and software configuration audit.

The chapter is organised into three main parts. The first part, consisting of sections

2.1 and 2.2, addresses the concepts of SCM and the reasons for its existence. The second

part, comprising sections 2.3 and 2.4, describes several existing SCM tools from a technical

perspective. The third part is section 2.5 which summarises the descriptions in this chapter

and presents the project requirements.

9

2.1 What is SCM?

2.1.1 Origins of C M

The term configuration management derives from hard engineering disciplines, such as

mechanical, electrical and industrial engineering, which use change control techniques to

manage blueprints and other design documents [2]. These techniques were then used

to bring computer hardware production under configuration management (CM) control.

As the complexity and lengthy time scales of software production increased, the use of

configuration management was expanded to include software.

One of the earliest definitions of configuration management was given by the Depart­

ment of Defense (DoD) in the 1968 Military Standard (MIL-STD) 480 [24]. This standard

was later revised to include the management of software and was re-issued in 1970 as MIL-

STD-483 to describe the use of configuration management techniques in the production

of systems for the military [25] [3].

In 1983 an I E E E standard for configuration management was produced [54], which

outlines the structure for developing a configuration management plan.

From the SCM point of view, the software product is not a single system, but a set

of similar configurations, organised in families. SCM differs from CM in that software is

easier to change and therefore changes more rapidly than hardware; and in that SCM is

potentially more easily automated because all components of a software system are stored

online.

Initially, SCM was a manual set of procedures, mainly used as a management discipline.

It has been more recently developed as an automated procedure used for both technical

and management practice, and is the subject of increasing interest because of its use in

integrated programming support environments.

10

2.1.2 Def ini t ion of S C M

According to [54], the definition of SCM is:

The process of identifying and defining the configuration items in a system,

controlling the release and change of these items throughout the system life

cycle, recording and reporting the status of configuration items and change

requests, and verifying the completeness and correctness of configuration items.

There are also a number of similar definitions of SCM. A collection of these definitions

can be found in [64].

2.1.3 T h e Problems

The importance of SCM for managing and maintaining large software projects, and for

coordinating software development to minimise confusion caused by interaction among

team members is now recognised. Babich [2] illustrates this by describing three problems

associated with software development.

1. T h e Double Maintenance Problem. Double maintenance is the problem of

keeping multiple identical copies of software. When there are two copies of the same

software, then both copies need to be maintained. When a bug is found, it must be

fixed identically in both copies.

2. T h e Shared Data Problem. This problem arises when the software consists of a

single entity and many people are simultaneously accessing and modifying it. Thus

the changes made by one programmer can interfere with the progress of others. The

most obvious case of interference is when the modification is wrong.

11

3. T h e Simultaneous Update Problem. One solution to the above problems is to

divide the software into a set of modules and store these modules in a shared data

area. When a module needs to be modified, a copy of the module should be made

and taken away from the shared data area. After the modification the validity of

the changed module must be ensured before storing it in the shared data area as a

replacement of the previous version of the module. However, a new problem may

arise when two or more people update the copy of the same module at the same

time. It is possible that someone's modification will get overwritten.

2.2 Software Configuration Concepts

This section presents the fundamental concepts of SCM. The concepts addressed in this

section are based on the descriptions by Babich [2], Pressman[92] and Kenning[64].

2.2.1 Conf igurat ion

A configuration is the set of objects from which the software system is composed. Figure

1 shows the configuration of two different versions, named versionl and version2. Objects

A, B, D, and F appear in both configurations.

VERSION!

A
B
C
0
h
F

A
8
D
ft
F

a

m 0
0 0
E0R
0 0

(A) (C)

V * J
(B)

F i g u r e 1. C o n f i g u r a t i o n Concept

12

Choosing which items to go into a particular software product is called configuring the

software. In Figure 1, (C) is called a library or a database.

Versions

Versions arise from changes made to software objects as a result of the need to correct,

adapt or enhance the software. A source version group is the collection of interrelated

source objects resulting from changes to a particular component in the system. Versions

may be revisions or variants.

Revisions

Two versions of an object may differ because one is a revision of another. A revision is

produced by changing an earlier version of a software object such that the new version is

intended to supersede the old.

Variants

Unlike revisions, new variants do not supersede the old. Multiple variants coexist as equal

alternatives by having the same functionality but for slightly different situations. Variants

are named, not numbered, because there is no meaningful linear order among them. Thus

the name of a variation reflects the purpose it serves, not the order in which it was created.

Derivations

The history of a software item is called its derivation. The purpose of the derivation is

to record precisely and accurately all the information tracing the evolution of a software

configuration item. Each software configuration item has a derivation and each derivation

13

references other software configuration items and therefore other derivations rather like a

family tree. Derivations should identify the tool, the input to the tool, the options, the

author and the reason for the change.

2.2.2 Basel ines

A baseline in the context of SCM is defined as a milestone in the development of software

that is marked by the delivery of a software configuration item, and the approval of this

item by formal technical review. For instance, a preliminary design has been documented

and reviewed; errors are found and corrected; the approved preliminary design becomes a

baseline. Further changes to this item can now only be made after each change has been

evaluated and approved.

2.2.3 Software Configuration I tems

Software configuration items are the information created in a software development pro­

cess. A software configuration item could be a single section of a large specification, a test

case in a large suite of tests, a document, or a named program component (e.g. a Pascal

procedure or an.Ada package).

The following items, which can form a set of baselines [92] are considered as targets

for configuration management techniques, and are examples of so-called software objects:

o System Specification

o Software Project Plan

o Requirements Documents

(a) Software Requirements Specification

14

(b) Executable or Paper Prototype

o PreUrninary User Manual

o Design Specification

(a) Preliminary Design

(b) Detail Design

o Source Code Listing

o Test Design Specification
(a) Test Plan and Procedure

(b) Test Cases and Recorded Results

o Operation and Installation Manual

o Executable Programs

o As-built User Manual

o Maintenance Documents

(a) Software Problem Reports

(b) Maintenance Requests

(c) Engineering Change Orders

o Standards and Procedures for Software Engineering

2.2.4 S C M database

Tichy in [115] defines the basic elements of a database for SCM. This database stores

all software objects produced during the project life cycle. Every object in the database

has a unique identifier and a body containing the actual information. A set of attributes

associated with the objects and a facility for linking objects via various relations are also

needed. The set of attributes and relations must be extensible in a SCM database.

15

2.2.5 S C M Const i tut ion

SCM is composed of four components:

1. Configuration Identification. This involves naming all items and baselines in the

software configuration. The term "naming" refers to an identification scheme that

provides the following information:

o software configuration item type (e.g. document, program, test case);

o software configuration item name;

o project or product identification;

o version number;

o last release date;

The identification data may be maintained in an automated database so that all rel­

evant software configuration items for a specific version of software may be retrieved

when requested.

2. Configuration Control. This is the systematic evaluation, coordination, and ap­

proval or rejection of proposed changes to the design and construction of the software,

that have been requested by the development team, support group, or users.

3. Configuration Status Accounting. This is the recording and reporting of the

identities and descriptions of all the software configuration items in the system,

together with records of the status of proposed changes and the implementation

state of approved changes. That is, it provides an administrative history of the way

in which the system has evolved.

4. Configuration Audits and Reviews. These ensure compliance with configura­

tion management requirements. Configuration management requires evidence that

certain reviews and audits have been passed before products can be accepted.

16

2.3 Overview of Software Coiafflguratioia Management Tools

In the past years, many tools have been developed to aid the SCM process. These tools

are categorised [64] as single function tools such as SCCS [100] and .Res'[112] for change

and version control and MAKE [34] for program building; complete configuration man­

agement systems such as CCC [105] and Lifespan [90], and comprehensive programming

environments such as Gandalf [61], DSEE [69] and Adele [30]. Most of these tools deal

with SCM on the UNIX operating system and the literature is dominated by discussions

centred around Unix.

M A K E is the 'original' program build tool in the family of SCM tools. It has been in

use on Unix since 1975. M A K E provides a simple mechanism for maintaining up-to-date

versions of programs that result from many operations on a number of files. It essentially

performs the effects of a complete build without the cost of rebuilding files that are correct

to begin with. The input to the M A K E tool is a file named 'Makefile1 which specifies for

each object module, the module on which it depends and the Unix commands required to

perform the functions on the objects. The Makefile is commonly stored under SCCS and

RCS control. There are however, a number of limitations to M A K E [115]. For instance,

M A K E only considers the most recent versions of a configuration, it does not maintain

information of previous configuration, detection is based only on timestamps, and there is

not easy integration with file archive and version control tools.

SCCS(The Source Code Control System) was developed by Rochkind in the early

70's [3] [100] and is distributed with most AT&T-derived versions of Unix. The purpose of

SCCS is to control the baseline of source code for a software project. It can also be used

to control baselines of documentation, tests, or other textual data. Each of the data files

in the baseline may have multiple revisions and variants. SCCS manages all the files and

can produce any versions of any file on demand. The 'charge-in' and 'charge-out' facilities

are available so that team members may transfer objects into their working spaces (i.e.

directories) for update. However, SCCS is weak in naming of versions when there are a

17

great number of variations of the objects, and it does not support merging of development

paths [2],

R C S (T h e Revision Control System) is a similar system to SCCS, but it has some

capabilities that SCCS lacks. It was developed by Tichy in 1982 [112] with the intention

of improving on some of the inadequacies of SCCS. For instance, RCS provides support for

semiautomatic merging of parallel development paths using a line-by-line comparison of the

different versions, a facility not included in SCCS. The descriptions of RCS functions are

presented in the next section. Both SCCS and RCS do not however provide management

of object code, load image or other non-ASCII files.

Gandalf [61] is a software development environment which integrates the notions

of programming and systems development. It consists of three components: System Ver­

sion Control(SVCE), Incremental Program Construction and Project Management. These

components operate on a common database through a uniform user interface provided by

a syntax-directed editor. The S V C E provides a system generation facility based on system

descriptions which include descriptions of system and subsystem interfaces, interdepen-

dencies, and parallel and successive versions. The S V C E keeps track of the location and

status of all system objects, including the source programs, and can automatically generate

an executable system from a system description.

Adele [30] is a programming environment developed at the University of Grenoble.

It is independent of programming languages and operating systems, running on Unix,

VAX/VMS and MS-DOS. Adele has four main components: a program editor, compiler

and debugger; a parametrised code generator; a user interface; and a program base. The

program base is used to support a configuration management system. It borrows some

ideas of constructing tools and the program base from the Gandalf system.

D S E E (D O M A I N Software Engineering Environment) [69] is a distributed computer-

aided software engineering environment that runs on Apollo workstations. It is thought

to be one of the most sophisticated configuration tools based on Unix. It distinguishes

18

between a system model and a configuration thread. The system model describes the

components of a software system, and the configuration thread describes the versions

of the building blocks (i.e. compilation units) of a corresponding system model. The

components of D S E E are:

o The History Manager controls source code and provides complete histories of ver­

sions.

o The Configuration Manager detects the need to rebuild system components and

performs the builds when necessary.

o The Release Manager saves "good" configurations and helps relate released software

to the sources which built the configuration.

o The Task Manager relates source code changes made throughout the network to

particular high-level activities.

o The Monitor Manager watches user-defined dependencies and alerts users when such

dependencies are triggered.

o The Advice Manager holds general project related information and provides tem­

plates for re-doing common tasks.

A drawback of D S E E is that it does not provide general rule for processing configura­

tions [115].

2.4 Characteristics of SCM Techniques

As development of the new test support management system is based on RCS, this section

illustrates the functions provided in RCS. However, the general features of SCM tools are

necessarily summarised first.

19

2.4.1 Technica l Features of S C M Tools

The role of SCM is to control the evolution of program families. Control is required at

two levels, namely the individual component level and the configuration level [64].

At the component level, the change control process is driven by change proposals.

Changes are made to individual components via a check-out/ edit /check-in cycle. Access

controls prevent unauthorised changes from being made. Merging mechanisms are provided

to deal with parallel development, and efficient storage of the resultant versions is achieved

through delta techniques.

At the configuration control level, Programming-in-the-large techniques (e.g. mod­

ule interconnection languages [23], and configuration languages [123]) are being utilised

to express both the construction and evolution of system configurations. Generic repre­

sentation methods of system configurations and version selection mechanisms for specific

configurations are both active areas of research. Additionally the need to maximise pro­

ductivity has resulted in mechanisms for more efficient rebuild strategies such as smart

recompilation [114], opportunistic processing [62], parallel and concurrent building [70].

The underlying object base of SCM systems has been advanced to store the system

configurations, their constituent components and associated information. These include

extensions to the underlying file structure of the operating system [116], and the use of

relational and customised databases [121]. Additional research is active in the areas of

object-oriented and entity-relationship approaches to object storage [62].

2.4.2 R C S Functionalit ies

The Revision Control System (RCS) manages multiple revisions of text files. It greatly

increases software team productivity by providing the following functions [113]:

20

1. It stores and retrieves multiple revisions of software objects. It allows the storage

and use of one or more releases whilst the next release is under development, with a

minimum of space overhead. Changes never destroy the original - previous revisions

remain accessible.

2. It maintains a complete history of changes. Therefore the information about how a

module which has been modified can be easily and quickly found out.

3. It manages multiple lines of the development.

4. It can merge multiple lines of development. Thus, when several parallel lines of

development must be integrated into one main line of development, the merging of

changes may be made semi-automatically.

5. It flags coding conflicts. If two or more lines of development modify the same section

of code, RCS can alert programmers about overlapping changes.

6. It resolves access conflicts. If two or more programmers wish to modify the same

revision, it alerts them and provide a mechanism to ensure that one change will not

wipe out another.

7. It provides high-level retrieval functions. Revisions can be retrieved according to

revision numbers, symbolic names, dates, authors and states.

8. In conjunction with Make, it provides release and configuration control. Revisions

can be marked as released, stable, or experimental. Configurations of modules can

be described simply and directly.

9. It performs automatic identification of modules with name, revision number, creation

time, author, so that it can help to determine which revisions of which modules make

up a given configuration.

There has no RCS mechanism been found which prevents released software items from

being casually modified. RCS does not manage non-ASCII files.

21

2.5 Summary of SCM amd Project Requirements

2.5.1 S C M Highlights

SCM is an important software engineering discipline whose application is vital to the

development and maintenance of the software systems. Apart from several well-known

SCM tools presented in this chapter, there are also quite a number of other tools which

have been produced in recent years to aid SCM [124].

Based on the descriptions in this chapter, the advantages of a SCM tool can be sum­

marised as:

o it provides an approach to identifying both objects and their relationships.

o it is a mechanism for controlling and managing the changes to a software object or

configuration.

o for a large software development project, it can be used to coordinate the staff work­

ing in teams, and improve productivity by reducing or eliminating the confusions

caused by the communications among the team members.

o it provides traceability of the status of each configuration object.

o it provides the method to ensure compliance of software deliverables to their required

configuration.

Although many tools have been developed to advance SCM, each of them has its

limitations. The remaining problems associated with SCM can be categorised as below:

1. The problem with long-term maintainability of the software system [95]:

The emphasis of SCM has been primarily focused on the code rather than provid­

ing: a well-developed baseline mechanism; and traceability and consistency checking

22

of the code to the system design architecture. This results much of the system re­

quirements and design information being lost during a transition to the maintenance

phase.

2. The problem with programming-in-the-large [124]:

Most existing SCM systems are oriented towards programrning languages that do

not support programming-in-the-large. Hence, these systems are not often directly

applicable to modern programming languages like Ada, Modula-2, C + + and Pascal-

X T .

3. The problem with non-textual(non-ASCII) representations [117]:

There are few SCM techniques which are able to manage the non-textual software

representations. The non-textual representations include object code, load images,

database and graphics.

4. The problem with distributed and heterogeneous systems [17]:

Large distributed development teams are usually connected by a net with servers

and client machine, and the development environment may be heterogeneous(e.g.

different machines, operating systems, software packages, and derived files). Thus,

there is a general access and update problem in such system environment. Existing

SCM techniques have the problem in dealing with network applications, and few

SCM tools have been provided for supporting the distributed and heterogeneous

systems.

2.5.2 Requirements O f the Research Projec t

The research project described in this dissertation is aimed at providing a support envi­

ronment for the management of software testing(SEMST), which uses SCM techniques to

manage test data produced during the testing process. In the past, little research atten­

tion has been given to solve the same problem. The motivation for doing this research is

23

supported by the following:

1. There is a need for computer-based management of test data produced during the

testing process [section 4.3.2].

Testing activities are performed in each phase of the software life cycle. A large

amount of test data are produced during the testing process. The following is three

essential features of the test data components:

o There are many types of the test data components;

o These components are subjected to frequent change, resulting in a number of

versions;

o One data component has close relationships with others.

It would facilitate the testing process if the above three aspects could be dealt with

by a computer-aided database management system.

2. There is a need for computer-based control of retest process during software mainte­

nance [section 3.6, 4.1.6 & 4.3.3].

Software maintenance is thought of as the most expensive phase in the software life

cycle. Much of the time spent on maintenance is the modification and retest of the

delivered software system. Giving automatic support to the maintenance activities

will help to reduce the cost of maintenance. Generally, the activities involved in the

retest process are the following two categories:

o determine and select the test cases to rerun,

o update the old test plan.

For the first activity, it would be helpful if a way could be provided to tell the testers

about which part of test cases has been affected by the modifications of specification

or code. From the knowledge of the affected test cases, the testers would be able to

determine which part of test cases should be selected to rerun.

24

After the test cases have been reselected for retest, the old test plan must be changed

for use in the next retest. Therefore, help in updating the test plan should be also

considered.

3. It is believed that automatic tools benefit software production in two main senses:

lower cost and more reliability.

2.5.3 Funct iona l Requirements F o r S E M S T

From the above considerations, SEMST is expected to satisfy the following functional

requirements:

1. It should supply essential SCM functionalities to manage test data, which include

abilities to:

o load test data;

o maintain data versions and releases;

o retrieve and update of any version of the data;

o manage relationships between the data;

o trace between the data; and

o prevent simultaneous update by multiple people.

2. It should provide the information about the changes undertaken to the data.

3. It should be able to identify the change effect on the data and relationships.

4. It should support the management of all test data used at different test levels,

including unit testing, integration testing, system testing and regression testing.

5. It should provide an integrated environment to enable the communication of SEMST

with a static program analyser, a test case generator and a regression testing tool.

25

6. It should be a part of a software testing support environment, which can be a com­

ponent of a software engineering environment or a maintenance environment.

On the whole, SEMST is intended to manage the testing process with SCM techniques

support and to provide traceability between the test data across the software life cycle.

Section 5.8 presents an analysis of the SEMST requirements in more detail.

2.5.4 E n v i r o n m e n t a l Requirements F o r S E M S T

Hardware

The project has chosen the Unix operating system as the environment because of its good

programming utilities. The actual implementation was on a Sun workstation.

Software

The SEMST system is written in C in the Unix environment. Other software packages

used in the system development include: C complier, Make and RCS.

As mentioned previously, Make and RCS are of the SCM tools which are available in

Unix. Make is used in the project because it helps to maintain all files produced during the

system development, and to keep track of the most recent source file versions. After the

source file have been changed, Make will regenerate the object code without recompiling

unchanged source files. Make also controls the relationships between files and commands.

RCS is chosen as a SCM tool, based on which SCM mechanisms of SEMST are im­

plemented. The major functionalities of RCS have been described in section 2.4.2. The

project adopts an existing SCM tool rather than developing a SCM tool by itself. This is

because:

26

RCS provides the functionalities which are compatible with the project requirements;

RCS is generally regarded as superior to SCCS [112];

RCS has interfaces with C and Make;

The use of existing software tools saves time and resources; and

The project was planned to develop a prototype environment as an initial product.

27

Chapter 3

oftware Testim

Introduction

Software testing in this dissertation is viewed as the continuous activity and task of plan­

ning, designing and constructing tests, and of using those tests to assess and evaluate the

quality of work performed at each stage of the software development life cycle.

This chapter presents a study of the software testing discipline. It describes and

compares various testing techniques based on the classification of testing techniques into

specification-based and program-based strategies. The methods of test case generation

associated with these two strategies are discussed. It also presents the descriptions of the

testing techniques used in software maintenance. The principles and methods of testing

are addressed first in the chapter, and these provide a foundation for the testing techniques

to be discussed in the later sections.

28

3.1 Testing Principles

A testing principle, as used here, means an accepted or professed truth of software testing.

There are a few basic testing principles established by testing researchers and practitioners.

The common agreed testing principles are:

1. Complete testing is impossible, testing can not guarantee the absence of error in a

program [81] [50].

2. Testing work is creative and difficult [81] [50].

3. Testing must be planned [50].

3.2 Testing Methods

The traditional view of software testing is primarily focussed on the code, that is known as

program testing. With this view, two major forms of systematic method are suggested to

perform testing: top down and bottom-up[78] [81]. In a top-down method, the highest level

modules are examined first, and then the process continues building increasingly detailed

tests until all of the elements-have-been- tested. The bottom-up method begins with the

lowest level modules and continues upward through the hierarchy until adequate tests of

the whole system have been completed. Bottom-up corresponds to "build with proven

components", and top-down to the strict "hierarchical decomposition" technique.

When testing is focussed on a module, the smallest unit of software, it is called unit

testing. A program testing procedure starts with unit testing and progresses into integra­

tion testing, where the focus is on design and construction of the software architecture.

The final step of program testing is system testing, where the software and other system

29

elements are tested as a whole [81] [92]. Figure 2 shows a testing procedure.

Module

Module

Design Information
Software
Requirement

Assembled

Module O VTest, . A

Tested
° o ^JL Module

Module /Unir
^"VTestv

Integration] Software

Other
System
elemem

Operational
system

In recent years, a different view of testing has emerged, which considers testing not

as a phase or step in the development cycle, but as a continuous activity over the entire

software development period [86] [50]. In this view, testing is an activity to be performed

in parallel with the system development and consists of its own phases. A test life cycle

was discussed in [50] as a model of representing testing activities embedded within the

overall software life cycle. [50] states that a test life cycle includes the following phases:

o Analysis: planning and setting test objectives and test requirements;

o Design: specifying the tests to be developed;

o Implementation: constructing or acquiring the test procedures and cases;

o Execution: running and rerunning the tests;

o Maintenance: saving and updating the tests as the software changes.

30

In addition, the STEP, Systematic Test and Evaluation Process, developed by Software

Quality Engineering, based on ANSI testing standards, was also presented [50] as an

example of a testing method.

The evolution of a testing method can be seen by contrasting it with the evolution of a

software development method. Software development has gradually been recognised to in­

clude analysis, design and other phases, but initially the emphasis of software development

was solely on coding.

3.3 Classification of Testing Techniques

Since the application of systematic testing technique requires automated help, much re­

search effort has been devoted to providing automatic (computer-based) tools and tech­

niques to aid software testing. This section concentrates on addressing the classifications

of these tools and techniques. Meanwhile, "human testing"(non-computer-based) tech­

niques are worthy of mention because they are still considered as practical and effective

ways of finding errors. A Review is a widely accepted testing method which can be used

throughout the software development process. It is a useful technique when testing re­

quirements and specifications. Many present texts on testing still include the emphasis

on a review as well as other "human testing" methods such as inspection and walkthrough

methods [81] [92]. The review technique is discussed in section 4.1.2.

The range of techniques employed in testing is very broad. Generally, these can be clas­

sified by two strategic dimensions: specification-based/program-based and static/dynamic.

Specification-based testing has been termed a functional or black-box approach as

it treats the program as a black-box and tests the program according to the functions

described in the specification without looking at structural details of the program. In this

case, test cases are derived solely from the specification. Program-based testing, sometimes

31

referred to as structural or white-box testing, is the technique of testing programs based

upon the details of program structure. The test cases used for this strategy are derived

from the program to be tested. These two testing strategies are described in the next

section.

A testing technique that does not involve the execution of the program with data is

known as static analysis. It includes program proving, symbolic evaluation and anomaly

analysis. Dynamic analysis requires that the program be executed. It can act as a bridge

between specification-based and program-based testing [19]. Both specification-based and

program-based testing can be performed either statically or dynamically.

In addition, there is a family of related tools, that neither perform direct tests nor use

any specific testing technique. Such tools are considered as test support tools. Within

this group, the tools provide their support for the testing activities in a variety of ways.

Some tools perform the function of test execution coordination, rerunning test cases for

a modified program (regression testing), or comparing the resulting output. Some tools

provide a controlled environment in which testing can take place, such as R UTE - a real­

time Unix simulator for PSOS [75]. The test support systems are discussed in section 5.6.

The research described in this dissertation is aimed at developing a tool belonging to this

category.

3.4 Specification-Based versus Program-Based Testing

This section is used to discuss two popular testing strategies: specification-based and

program-based testing. In fact, each strategy is associated with methods of test case

generation because no program can be tested without selected test cases. The next section

will address the techniques for generating test cases.

32

3.4.1 Specif icat ion-Based Test ing

Specification-based testing aims to check whether or not the code.is complete with respect

to the specification. It involves two main steps:

1. Identify the functions which can be tested independently from the specification and

partition the program input domain for each identified functional unit into a finite

number of equivalence classes.

2. Select the representative elements from each class as the test cases which check

whether these functions are performed by the program.

Testing is carried out by executing the code which corresponds to the identified functions.

No consideration is given to how the program performs the functions.

Specification-Based testing is essentially the traditional approach to testing a program.

However it has the major difficulty of identifying the functions to be tested [51]. It would be

considerably more convenient if there were some automated ways of recognising functions

and to determine if they had been adequately tested.

The traditional approaches to performing specification-based testing are equivalence

partitioning, boundary-value analyzing, , cause-effect graphing, and. error-guessing, which

were described by Myers in [81]. Earlier than Myers, Goodenough and Gerhart proposed

a method to derive a condition table using multiple sources of information where a column

in the condition table represents a test case, which is a combination of conditions to be

tested [44]. Later on, Weyuker and Ostrand proposed revealing subdomains constructed by

subdividing path domains based on likely errors, which may be derived from the specifica­

tion [118]. Richardson and Clarke proposed the partition analysis method, which develops

a partition by overlaying a program-based partition and specification-based partition [97].

Howden's functional testing employs specification and design information for functional

decomposition and applies guidelines for using different functional classes to select test

33

cases [51]. A more radical solution perhaps is to use formal specification methods by which

the functions can be completely and clearly specified in formal specification language so

that the automated approaches as described in a program-based approach can become

applicable. A method of extending program-based techniques, known as error-based and

fault-based, to be applicable to formal specification languages has also been described [98].

Specification-Based testing also depends on the availability of an oracle. An oracle

is an external source of information about functions, which specifies precisely what the

outcome of a program execution will be for a particular test case [51].

More emphasis has been given to the specification-based approach since 1980. Gourly

provides a mathematical framework for testing that confirms the need for specification-

based testing [43]. Laski illustrates that informal specification does not help uncover

errors [68]. There are also some techniques directed toward testing the specification rather

than the program. These techniques provide the capability to test the system under

development before implementation is underway. For instance, Kemmerer proposes two

methods of testing functional specifications based on InaJo: symbolic execution of the

specification and rapid prototyping by transformation to a procedural form [63].

In spite of many methods proposed, specification-based testing often involves the doc­

ument reading activities.

3.4.2 P r o g r a m - B a s e d Test ing

If the testing strategy is based on deriving test case from the structure of the program, it

is known as program-based testing. The aim of program-based testing is to exercise the

program with a certain degree of thoroughness. It may involve the execution of a single

path through the program, or it may involve a particular level of coverage such as 100%

of all statements have been executed. Over the past years, the notion of a minimally-

34

thorough test (e.g. using the minimum amount of tests to ensure a degree of reliability as

high as possible), has occupied researchers. Some of the coverage criteria are given below

[81]:

o All statements in the program should be executed at least once.

o All branches in the program should be executed at least once.

o All linear code sequences and jumps in the program should be executed at least once.

o All paths in the program should be executed at least once.

The best testing method is supposed to be an exhaustive one where all possible paths

through the program are tested so that the program can be said to be completely tested.

However there are live flaws in this approach [81] [19].

1. The number of possible paths in a program is often too large to be tested completely.

Because the number of paths is determined by the numbers of conditions and loops

in the program, even trivial programs contain a large number of paths.

2. There may be some infeasible paths in the program which cannot be tested.

3. An exhaustive path testing cannot guarantee that the program matches its specifi­

cation.

4. A program may be incorrect because of missing paths, but exhaustive path testing

can not detect the absence of necessary paths.

5. An exhaustive path testing might not uncover data-sensitivity errors.

Program-based testing involves a wide range of program analysis techniques. The main

technique is path selection, augmented by a test case selection technique. Path selection

techniques are concerned with which statements or combination of statements should be

35

executed. For the path selection problem, a number of path selection criteria have been

proposed, such as control flow coverage, data flow coverage and perturbation testing. The

following illustrates two common criteria used in path selection.

o Control Flow Coverage is the most common path selection criterion. I t uses a flow

graph (or program graph) to depict logical control flow of the program so that the

tester is able to derive a logical complexity measure of a procedural design and

use this measure as a guide for defining a basic set of execution paths. Test cases

derived to exercise the basic set are guaranteed to execute every statement in the

program at least one time during testing [92]. Path coverage is believed to be the best

criterion for path selection. Since i t implies the selection of all feasible paths through

a program, attaining path coverage is usually impractical. I t is generally agreed

that branch coverage should be a minimum criterion for path selection. However,

achieving this level of coverage is not always straightforward. Statically generating a

list of paths that satisfy this criterion usually results in a number of infeasible paths

being selected [96].

o Data Flow Coverage techniques entail exercising a set of paths that cover particular

uses of defined variables. Rapps and Weyuker define a family of criteria for selecting

some or all subpaths from a definition statement to some or all uses of that definition

statement in the program [94]. Ntafos' criteria requires variable-length chains of

alternating definition statements and use statements [83]. The criteria proposed

by Laski and Korel requires the selection of different combinations of definitions

that reach a statement, where many variables may be referenced [67]. Data flow

techniques that attempt to generate only feasible paths by excluding inconsistent

pairs of branch predicates are impossible to complete [96].

Recently many researchers on path selection and test data selection techniques have

based their analysis on the information provided by symbolic evaluation [96]. Symbolic

evaluation provides a functional representation of the paths in a program. To create this

36

representation, i t assigns symbolic names for the input values and evaluates a path by

interpreting the statements on the path in terms of these symbolic names. The branch

predicates for the conditional statements on a path are represented by constraints in terms

of symbolic names. After symbolically evaluating a path, its functional representation

consists of two parts, path computation and path condition. The path computation is a

vector of algebraic expressions for the output values, which include written output values

as well as output parameters and exported global values. The path condition is the

conjunction of the path's branch predicate constraints. For the path selection aspects of

testing, symbolic evaluation is useful in determining path feasibility for control flow and

data flow criteria. I t is also being used in the analysis employed by perturbation testing,

a vector space analysis technique developed by Zeil [127].

Symbolic evaluation is a promising testing technique, which can be used to aid auto­

mated test case generation, program proving as well as specification-based testing strategy.

However at present stage, symbolic evaluation has several unsolved problems, such as eval­

uation of loops, module calls and arrays in a program.

3.4.3 Summary

For many years program-based testing was the most common testing, strategy, and i t

received much attention in software testing research and development. Its popularity is

mainly due to its simplicity and the availability of software tools. In recent years, program-

based testing techniques have been criticised for their weakness by focusing only on actual

behaviour. There has been a growing literature in testing which claims that specification-

based testing techniques should be used to augment program-based testing to enable the

testing of intended behaviour as well as the actual functionality of the program. However,

although some specification-based testing strategies have been proposed for the specifica­

tions written in informal and formal languages, few useful tools have been implemented

to support this strategy. This is due to the difficulties of specification-based testing with

37

automated support.

On the whole, i t has been agreed that specification-based and program-based testing

are two complementary approaches to software testing. One of them cannot be used to

replace the other.

3.5 Test Case Generation

Based on the concepts of specification-based and program-based testing, the possible tech­

niques for generating test case are discussed in this section. Due to the fact that "complete"

testing is impossible, the generation of effective test cases is extremely important. The

principle of test case generation is therefore to produce a subset of all possible test cases

which has the highest probability of reducing the incompleteness as much as possible.

Basically, there are two types of test cases used in the normal testing process, known as

functional test cases and structural test cases. Functional test cases are used to test all

of the functions of a software system. Functional test cases should also be used to test

boundary conditions, special cases and error handlers in a software system. Functional

test cases can be derived from the system requirements, specifications, design informa­

tion, or from the code itself [85]. In this section, the discussion is only focusing on the

specification-based approaches to generating functional test cases. Structural test cases

relate directly to the program's structure, logic, control flow and data flow. These can be

derived solely from the code.

3.5.1 Specification-Based Approaches

The goal of specification-based testing of a software system is to find inconsistencies be­

tween the actual behaviour of the implemented system's functions and the required be-

38

haviour as described in the system's functional specification. To achieve this goal, i t

requires that

1. the test cases be executed for all of the system's functions;

2. the test cases be designed to maximise the chances of finding errors in the software

system.

A standard approach to generating specification-based functional test cases is first to

partition the input domain of a program into a finite number of equivalence classes, such

that all elements within an equivalence class are essentially the same for the purpose of

testing. The next step is to select test cases from each class of the partition. I f the main

emphasis of the testing is to attempt to show the presence of errors, then the assumption

is that any element of a class wil l explore the errors. I f the main emphasis of the testing

is to attempt to give confidence in the correctness of the software, then the assumption is

that correct results for a single element in a class will provide confidence that all elements

in the class would be processed correctly [85].

On the use of specification-based approach to generate test cases, there have been

various methods developed over the past years, quite a few of which describe the techniques

for creating test partitions. However, the partitioning process lacks a systematic approach

[85]. The following paragraphs are used to describe some well-known methods proposed

for generating functional test cases by this approach.

o The Condition Table Method was proposed by Goodenough and Gerhart [44]. I t is

used to construct a condition table in which each column represents a combination

of conditions that can occur during the execution of a program. By examining

the program's specifications, the conditions that have a significant impact on the

execution behaviour of the program are identified.

39

Cause-Effect Graphing is the strategy originally defined by Elmendorf [29] and illus­

trated by Myers [81]. I t begins with the identification of each individual function or

command of the system to be tested. Then for each function, all significant causes

that influence the function's behaviour and all effects of the function are identified.

The next step is to construct a graph that relates combinations of the causes to

the effects they produce. Test cases are defined for each effect by considering all

combination of causes that produce that effect. Although the use of this method

can produce effective tests, the method is difficult to apply in practice. In particular

the cause-effect graph can become very complex when a function has a large number

of causes.

The Revealing Subdomainsmethod is proposed by Weyuker and Ostrand [118], which

combines the specification-based and program-based approaches to derive a parti­

tion of a function's input domain into revealing subdomains. A revealing subdomain

contains elements that are either all processed correctly or all processed incorrectly.

Once such a subdomain has been identified, executing the program on a single el­

ement is sufficient to test the entire subdomain. The revealing subdomains can be

constructed by identifying the most likely places for errors to occur. The first step is

to create a problem partition from the specification, by looking for classes of inputs

that should be treated the same way by the program. The next step is to create a

path partition, whose equivalence classes contain inputs that actually are treated_ the

same way by the program. The partition used for specification-based testing is then

created by intersecting the problem partition and the path partition, creating a set

of equivalence classes whose elements both should be and are treated the same way

by the program. A test set is built by choosing one element from each of the testing

partition's classes.

Equivalence Partitioning is the method proposed by Richardson and Clarke [97] to

generate functional tests based on both specification and program. I t is similar

to the revealing subdomain approach in the way that i t partitions a function's in­

put domain into a procedure partition, which is the intersection of a program-based

40

path domain and a specification-based specification domain. The path domain is

constructed by applying symbolic execution to the program. To construct the spec­

ification domain, the authors assume that the specification is presented in a formal

specification language, to which symbolic execution techniques can be applied. Test

data are selected according to the types of errors to be detected.

G The Category-Partition Method is proposed by Ostrand and Bacler[85]. The method

analyses the specification and identifies testable functional units, categorises each

function's inputs, and then partition categories into equivalence classes. The main

characteristics of this approach are: test specification can be easily modified when

necessary and it can control the complexity and number of tests by annotating the

tests specification with constraints.

Despite the common agreement on this key approach to generating test cases and its

progress since the 1980's, none of these test case generation approaches has been sufficiently

well-defined to be generally applicable. Nevertheless, this research represents a significant

step in the achievement of reliable software since i t allows earlier derivation of tests and

an oracle which clearly determines whether or not the output produced is correct.

3.5.2 Program-Based Approaches

For program-based approaches, test cases are derived from the program according to

certain test criterion. The well-known test criteria are statement coverage, branch coverage

and path coverage. In particular, great attention has recently been paid to path coverage

criterion. Testing based on this criterion is called path testing which is intended to execute

all paths reaching from an entry to an exit on a control flow graph of a program. I t has

been realised that complete testing of all paths is in general impractical. Therefore a

technique called sensitising the path [4] has been proposed in order to make path testing

practical. In this technique a subset of paths is selected, and test cases that wil l cause

41

those paths to be executed are found. Unfortunately, path testing has two major problems.

One problem is that most path selection techniques proposed do not provide the guidelines

for selecting test data. Another problem is that even exhaustive testing of all paths in the

program may not necessarily find all errors [section 3.4.2],

The best known approach to deriving test cases for path testing is achieved by the

technique of symbolic evaluation, which involves four steps:

1. To construct a program flow graph. The program is preprocessed to create a digraph

representation of control flow in the program. Other relevant information is collected

for later analysis.

2. To select the paths. The path selection is concerned with selecting program paths

that satisfy a level of test coverage. The process can be manual or automatic,

static or dynamic. In automatic static selection, paths are automatically selected by

symbolic execution.

3. To execute program symbolically. Once a path is selected, symbolic execution is

used to generate path constraints. Input data satisfying these constraints wil l result

in the execution of that path.

4. To generate test cases. This step includes selecting data that will cause the execution

of selected paths. A widely used technique is linear programming algorithms by

which numerical solutions to the inequalities of path constraints can be found.

The Domain testing technique [15] [119] appears to be promising for a large class of data

processing programs. The method is also a path-oriented testing approach. I t concentrates

on the detection of domain errors by analysing the path domains and selecting test data

"on" and slightly "off" the closed borders of each path domain. I f the correct results are

produced for each of the on and off test points, the border must be "close" to the correct

border. An undetected border shift can only occur if the on test points and the off test

42

points lie on opposite sides of the correct border. The undetectable border shifts are kept

"small" by choosing the off testing points as close to the border being tested as possible.

Wi th the proper selection of on and off test points, a quantified error bound measuring the

set of elements placed in the wrong domain by an undetected border shift can be provided.

In [98], program-based test case generation techniques are classified as error-based and

fault-based.

Error-based techniques are aimed at revealing specific types of errors, where an error

is a mental mistake by a programmer or designer. Symbolic evaluation and the domain

testing strategy are considered to be in the range of error-based techniques. Error-based

strategies are sometimes referred to as error-sensitive heuristics.

Fault-based testing selects test cases that focus on detecting particular types of faults,

where a fault is a mistake in the source code. I t consists of "rules" that are applied to

the source code to select test data sensitive to commonly-introduced faults. The RELAY

model [99] provides a fault-based technique for test case selection. RELAY guarantees the

detection of errors caused by any fault in a user-chosen fault classification. The RELA Y

model proposes the selection of test data that originates an error (introduces an incorrect

state) for a potential fault of some type and transfers that error along some route through

computation and data flow until a failure is revealed. RELA Ydevelops revealing conditions

that describe how to distinguish the source from the variant. Any test data set satisfying

the revealing conditions contains some test datum that reveals the chosen fault. RELAY

is limited to the detection of errors resulting from a single fault in a module.

3.6 Testing During the Maintenance Phase

Software maintenance can account for over 60% of all effort expended in a software life

cycle [92]. I t falls into four categories: adaptive, perfective, corrective and preventive

43

maintenance. Each of these terms may best be described by their definition, which are

stated below [55]:

1. Adaptive Maintenance - the maintenance performed in order to make a software

product usable in a changed environment.

2. Perfective Maintenance - the maintenance performed to improve performance, main­

tainability, or other software attributes.

3. Corrective Maintenance - the maintenance performed specifically to overcome exist­

ing faults.

4. Preventive Maintenance - the modification of a system to ease future maintenance.

Modification to the software after its completion is inevitable: the software system

and its application wil l evolve as i t is adapted to a changing environment, changing needs,

new concepts and new technologies; a software system will have an increasing number of

functions, components and interfaces; old modules may be expanded for uses beyond their

original design. Thus, much of the time spent on software maintenance is in modifying

and retesting the software.

A widely used testing technique in software maintenance is called regression testing.

I t is well recognised that many of the errors appearing in a software product do not

exist in the original implementation, but are accidentally introduced during a number

of modifications undertaken in subsequent revisions. In order to combat such problems,

the original implementation of the software product should include a thorough set of test

cases or procedures that exercise and verify all functional aspects of the program. I t

should possess the capabilities of retaining and extending these test procedure during the

software life cycle. Thus, in subsequence error corrections or modifications, all or at least

a specific subset, of the previously executed test cases can be rerun in order to ensure

that the changes had only the local effects intended. Regression testing is the technique

44

used to solve the above problem and manage the process of software revalidation after

modification to the software. Efficient and effective regression testing can reduce the cost

of maintenance.

Regression testing has been identified as two types [71]: corrective regression test­

ing and progressive regression testing. Corrective regression testing involves a constant

specification and progressive regression testing is concerned with a modified specification.

There are two major problems associated with regression testing[58]: the test selection

problem and the test plan update problem. The first problem is concerned with the selection

of test cases from the existing test plan and generation of new test cases for the modified

program or specification. The second problem involves the management of the test plan.

The earliest regression testing tool known as the Automatic Test Unit System (AUT)

was developed by I B M in 1972 [47]. I t was mainly used in unit testing. Subsequently, in

1975, the General Electric Research and Development Centre implemented an automatic

software test driver, which became known as the Test Procedure Language(TPL/F) sys­

tem. These early regression testing tools have failed in gaining wide acceptance because

they were restricted to use a specific language [47].

Regression testing is currently receiving more research attention, but most methods

are restricted to testing- at the unit level.

3.7 Other Testing Techniques

Apart from the software testing techniques addressed above, there are also a number of

other methods which have been developed to aid software testing.

45

Program mutation [12] is an error-based technique for the measurement of test data

adequacy. Test adequacy refers to the ability of the data to ensure that certain errors

are not present in the program under test. In mutation testing, test data is applied

to the program being tested and its "mutants"(i.e., programs that contain one or

more likely errors). I f a program passes a mutation test, then either the program is

correct or i t does not contain a most likely error. A difficulty for mutation testing is to

determine the equivalence of mutant program to original program. When a mutant

program is equivalent to the original program, mutation testing may not provide

correct results. Another problem with mutation testing is that a large number of

mutants can be generated for even a simple program.

Random testing [28] is essentially a black-box testing strategy in which a program is

tested by randomly choosing a subset of all possible input values. The distribution

may be arbitrary, or may attempt to accurately reflect the distribution of inputs

in the application environment. Random testing is usually considered as very weak

testing technique. The problem is that i t may seem that there is no guarantee

to complete coverage of the program. However, Duran and Ntafos [28] claim that

random testing is a useful validation, and they present the some results of actual

random testing experiments. A recent study by Loo and Tsai [74] shows that random

testing works well on several kinds of programs, but not at all. They provide the

conditions under which random testing can be effective:

1. When the program being tested is error-prone. For example, a program in an

early stage of its development.

2. When the expected outputs of the test inputs are known or can be easily ob­

tained. This implies that a lot of test cases can be generated with a low cost.

Without the above conditions the effectiveness of random testing is significantly

reduced, because test case generation will be expensive and not many faults can be

found.

46

Real-time software testing. Real-time systems possess additional attributes that

must be given special consideration in the testing process. The typical attributes of

real-time software are the large number of modules that have to be integrated and

tested and the same sequence of test cases, when input at slightly different times,

may produce different outputs. Real-time software testing can be characterised as

host and target computer testing. The goal of host computer testing is to reveal

errors in the modules of software. Most of the testing techniques that are used

for testing on a host computer are the same as for non-real-time applications. In

target computer testing, module testing is conducted first. Integration testing is then

conducted sometimes using an environment simulator to drive the target computer.

Proving program correctness. Program proving, recently referred to as formal verifi­

cation involves the use of rigorous, mathematical techniques to demonstrate that a

program conforms to its requirement specifications. The method of inductive asser­

tion (also called an input-output assertion), developed by Floyd [37] was seminal to

the field of formal verification [33] [41]. During the early years, formal verification

was concentrated on the program, known as program verification. There had been a

number of methods developed on the basis of Floyd's work to prove the correctness

of a program. However, several disadvantages of only verifying a program have been

recognised[103]:

- The program may be written in such a way that verification is very difficult

(e.g. some implementation-dependent constructs whose semantics are not clear

may have been used to satisfy efficiency requirements).

- The programming languages used may be so low level that verification is im­

possible (e.g. Assembly language).

- I f the verification of a program uncovers design errors, i t may involve consider­

able work in redesign and reimplementation of the program. I t is far better to

detect these errors at the design stage.

47

- Since an implementation is usually larger than a design, program verification

is longer and more expensive than design verification.

- I f the specification is incorrect, i t is impossible to verify the program.

Wi th the growth of the formal methods in the area of software engineering, the

attention of those working in formal verification has been turning to the specifica­

tions written in a mathematical language, namely formal specifications(e.g. V D M

[59] and Z [106]). Formal specifications employ mathematical notation in order to

achieve both precision and conciseness. The key to the brevity is abstraction. When

the requirements are specified in such a mathematical form, proving correctness of

the requirement specifications can be based on the proof theory which has been

well-established in the area of mathematics. The deduction and induction meth­

ods with the relevant inference or reasoning rules are used in mathematics to prove

the propositions and predicates. These two proof methods have been introduced in

many formal methods texts(e.g. Jones [59]) for proving specifications, as a formal

specification is in fact an integration of a set of propositions or predicates. A formal

specification can be constructed with the proof of its correctness at the same time.

One of the advantages of formal methods is verified design [59]. Verified design uses

the concept of proof as a way of checking design steps. Steps in a systematic de­

velopment can be based on, and verified against, a formal specification. The idea

that programs are mathematical texts shows the possibility of reasoning about their

formal relationship to specifications, which means that i t is possible to transform

the design automatically into several different programs, depending on the system

required. Thus, by verifying the design, as many errors as possible can be eliminated

at an early stage of the software system development, and only a single verification is

necessary for the implementation. The advantage of this formal verification approach

is its attempt to produce a correct specification. However, such a verification process

is still very expensive because both the design and the implementation should be

verified.

48

Newer ideas are to ensure that correct programs are generated from the specifica­

tions so that the work on verifying the implementation can be saved. I t is viewed

that both the specifications and the implementations are all programs, but the for­

mer are abstract programs, not necessarily executable, and the latter are executable

programs [80]. Wi th this view, the process of transformation of the specifications

to the programs is called refinement. I f the transformation process correctly follows

refinement rules and steps, the derived programs are believed to be correct with

respect to the specifications. The advantage of this transformational approach com­

pared to formally verifying that a program meets its specification(i.e. the approach

mentioned before) is that the distance between each transformation is less than the

distance between a specification and a program[104]. Program verification is usually

very long and impractical for large-scale systems, but a transformational approach

which is made up of a sequence of smaller steps may be more eifective. However,

this process is not easy to perform. Choosing which transformation to apply is a

skilled task and proving the correspondence of transformations is difficult[104].

In practice, a specification seems never initially complete enough to allow the com­

plete system to be generated from i t . Few software systems have been developed

using refinement and transformation, and i t is unlikely that a pure refinement and

transformation approach will be adopted for the development of very large system.

However, recent research in formal methods has been making this process a more

practical one, and the incorporation of this process model into other process model

is likely to lead to the improvement of software development process[104].

The opposite process to refinement is abstraction, which is concerned with recovery

of a specification from the code. This is useful for program maintenance, especially

for maintaining the programs for which no accurate written specification exists.

49

3.8 Automated Testing Tools

Automated testing tools provide the following attributes that are not as easily attainable

by manual testing approaches:

o Improved organisation of testing through automation

o Measurement of testing coverage, and

o Improved reliability

The following presents a number of categories for test tools which have been developed

over the past years, according to [22]:

o Static Analysers. Static analysers are programs that analyse source code to reveal

global aspects of program logic, structural errors, syntactic errors, coding styles, and

interface consistency. They consist of a front end language processor, a data base,

an error analyser, and a report generator.

o Dynamic Analysers. Dynamic analysers include the operation of coverage analysis,

tracing, tuning, simulation, timing, resource utilisation, symbolic execution, asser­

tion checking; and"constraint evaluation.

o Symbolic Evaluator. Symbolic evaluators are programs that accept symbolic values

and execute them according to the expression in which they appear in a program.

They are used to support test data generation, assertion checking, path analysis, and

detection of data flow anomalies. Some of the well-known systems include SELECT

[10], EFFIGY [65], ATTEST [14], DISSECT [52], and SMOTL [7].

o Test Data Generators. A test case generator is a tool which assists a user in the

generation of test data. The example systems are the ATTEST [14] and SMOTL

[7].

50

o Program Instrumenters. Program instrumenters are systems that insert software

probes into source code in order to reveal its internal behaviour and performance.

The main applications include coverage analysis, assertion checking and detection of

data flow anomalies. The PET - Program Evaluator and Tester [107] is an example

of program instrumentors.

o Mutation Testing Tools. An automatic mutation system is a test entry, execution,

and data evaluation system that evaluates the quality of test data based on the

results of program mutation. In addition to a mutation"score" that indicates the

adequacy of the test data, a mutation system provides an interactive test environ­

ment and reporting and debugging operations which are useful for locating and

removing errors. FMS.3 [108] is a Fortran mutation analyser.

o Environment Simulators. An environment is a specialised automatic system that

enables the tester to model the external environment of real-time software and then

simulate actual operating conditions dynamically.

There are many tools developed for software testing but have not been used widely to

date. The restricted scope of many tools and the difficulty in applying the more powerful

tools have limited their utilisation across software engineering application areas. However,

recent work in Al-based testing techniques shows promise [92].

I t is said that "Testing never ends, i t just gets transferred from you (the developer) to

your customer. Every time your customer uses the program, a test is being conducted." [92]

3.9 Comparative Review of the Testing Techniques

In section 3.3, a classification of software testing techniques was presented. Manual meth­

ods of finding software errors such as review, inspection and walkthrough have been con­

sidered as one type of testing technique in this dissertation, and is called "human testing".

51

While much research effort has been paid to develop automatic (computer-based) testing

techniques, human testing still plays an important role in evaluating the quality of soft­

ware products produced during the system development process because of its simplicity

in practice. Since the dissertation is intended to address the management of the testing

process, human testing techniques are worthy of consideration. However, human testing

is generally believed to be less cost-effective and reliable than automatic testing, although

it is generally agreed that both methods should be employed.

The systematic testing process requires automatic support. Over the past years, a wide

range of the tools and techniques have been produced to aid automatic software testing.

Basically, these tools and techniques can be seen as two families. The first family consists

of the testing techniques used to directly perform the tests, and is primarily addressed

in this chapter. The second family is those techniques provided for supporting the tests,

called test support techniques, which are discussed in section 5.6.

Various testing techniques can be essentially classified into either specification-based/program-

based testing strategies or static/dynamic testing strategies. The methods of generating

test cases are associated with each testing strategy. Because the SEMST system, presented

in chapter 6, supports the management of test cases derived on the basis of specification-

based/program-based strategies, this chapter is mainly devoted to describing the testing

techniques developed for specification-based/program-based testing.

Based on the previous sections of this chapter, the major specification-based and

program-based testing techniques are reviewed and compared in the following sections

in order to stress their distinct advantages and disadvantages.

52

3.9.1 Spec i f i ca t ion -Based T e s t i n g Techniques

Specification-based testing, also known as functional or black-box is designed to validate

functional requirements without regard to the internal workings of the code. The tech­

niques of this approach focus on the information domain of the software, generating test

cases by partitioning the input and output domain of the program according to the func­

tions described in specification. Section 3.4.1 and 3.5.1 presented a number of well-known

techniques for specification-based testing, which include the condition table method [44],

cause-effect graphing [81], the revealing subdomains [118], equivalence partitioning [97], and

the category-partition method [85]. In the following, these techniques are evaluated.

1. The Condition Table Method

This method was developed by Goodenough and Gerhart [44]. From the descriptions

in [44], the main benefit of this method can be said to be that i t provides a way

to develop and describe the test predicates (i.e. a set of descriptions of conditions

and combinations of conditions relevant to the program's correct operation [44]).

Because each column in the condition table contains a combination of conditions

that can occur during the execution of a program, each column actually represents

a test predicate. The test predicates are useful for test case selection. However, [44]

did not discuss how to construct the condition table automatically. To identify the

conditions, the testers must read the program's specmcatibn carefully.

2. Cause-Effect Graphing

Cause-effect graphing is a traditional specification-based testing approach which has

been included in many testing texts [81] [92] [91] [85]. The advantages of cause-effect

graphing method can be summarised as [91]:

o i t is a systematic method of selecting a set of the test cases which have a high

probability of detecting errors in a program.

o i t provides a way to identify individual function from the requirement specifi­

cation.

53

o it has the added capability of pointing out incompleteness and ambiguities in

the requirement specification.

The criticisms for this approach can be illustrated as follows [91] [85]:

o i t is difficult to apply in practice. When a function has a large number of causes,

the cause-effect graph can become too complex to deal with.

o i t does not produce all the useful test cases that can be identified.

o i t does not adequately explore boundary condition.

o i t is difficult to update when a change is required.

o i t is difficult to verify its correctness after a change to i t .

3. The Revealing Subdomains

Weyuker and Ostrand [118] proposed a technique that attempts to construct reveal­

ing subdomains by identifying the most likely places for errors to occur. Two steps to

the test cases generation by this method were described previously. The advantage

of this technique is that i t combines both specification-based and program-based ap­

proaches to deriving test cases. The main limitation of this technique is its difficulty

in providing formal or systematic guidelines for creating problem partition from the

specification.

4. Equivalence Partitioning

This technique, developed by Richardson and Clarke [97] is similar to the revealing

subdomain technique because i t also uses both specification-based and program-

based approaches to generating test cases. However, i t has its own characteristics

which differ from the revealing subdomain approach.

© The problem of systematically creating the specification domain, existing in the

revealing subdomain method, is solved in this method by assuming that the

specification is presented in a formal specification language, to which symbolic

execution techniques can be applied.

54

o This method relies on the types of errors for generating test case. There are

two types of errors identified in this method: computation errors and domain

errors. Unlike this method, the revealing subdomains method identifies the

errors which are most likely to occur.

The main drawback of the equivalence partioning method is that i t crucially depends

on a formal specification to allow the symbolic execution that creates the specification

domain, but many specifications today are still written in natural language.

5. Category-Partition Method

This method was proposed by Ostrand and Bacler in 1988 [85], I t has several merits

that the above methods lack:

o i t is applicable to an informal specification. For a system that is specified in

natural language, this method could be used to determine an appropriate set

of specification domain, by converting the informal representations of these do­

mains into an intermediate representation similar to that produced by symbolic

execution of a formal specification.

e i t provides the tester with a systematic method for decomposing a functional

specification into test specifications for individual functions.

a i t allows the tester to modify the test specification.

© it can control the complexity and number of the tests by annotating the tests

specification with constraints.

9 i t emphasizes both the specification coverage and error detection of testing.

Unfortunately, this method is not completely automatic. I t involves testers in doc­

ument reading activities [98].

To summarise, a number of specification-based testing techniques have been proposed

and research in this area has been in progress since the 1980's. However few automatic tools

have been implemented to support this strategy. The major difficulty of this approach

55

is the identification of the functions to be tested from the specification. Specification-

based testing requires knowledge of the specification, and attaining automatic support

for such approach needs formal specification, on the basis of which program-based testing

approach can be employed. Gourlay [43] has used mathematical theory to assess the above

specification-based testing techniques. Because of the difficulty in practice, none of these

testing techniques has been experimentally evaluated on their effectiveness.

3.9.2 P r o g r a m - B a s e d T e s t i n g Techniques

Program-based testing is also termed structural or white-box testing and focuses on the

program's structural details. In this approach, test cases are derived from the program,

and are used to assure that the program is exercised with a certain degree of thoroughness.

The major techniques used in program-based testing are: path testing, statement testing,

branch testing [81], symbolic evaluation [96], and domain testing [119], and data flow testing

[94], which were discussed in the previous sections. Except data flow testing, other testing

techniques listed above are path-oriented and based on the use of control flow of the

program [120]. This section reviews these techniques with an assessment.

1. Path Testing

Path testing requires that all possible paths in a program be executed at least once

over the selected test cases [81]. I t is considered as the strongest test coverage

criterion for test case generation. However, since even a small program can contain

a large number (potentially infinite) of paths, complete path testing is impractical.

Section 3.4.2 illustrates five flaws associated with this approach.

2. Statement Testing and Branch Testing

Because complete testing of all paths in a program is in general impractical, state­

ment and branch testing criteria are used in order to achieve a minimal set of test

coverage. Statement testing means that all statements in the program should be

56

executed at least once. This approach is generally regarded as the weakest test

criterion in program-based testing as i t fails to detect many kinds of errors [81].

Branch testing requires all branches in the program be executed at least once, that

is each predicate decision assumes a true and a false outcome at least once during

the test execution. This technique is generally considered to be a minimal testing re­

quirement. Branch testing is stronger than statement testing because branch testing

implies statement testing. However, i t is still shown to be inadequate [81].

I t is said that about 65% of all bugs can be caught in unit testing, which is dominated

by path-testing methods(50% - 60% of all bugs caught), of which statement and

branch testing dominate [4]. These testing techniques would be more effective when

they are combined with other methods, such as limit checks on loops.

3. Symbolic Evaluation

Symbolic evaluation, sometimes referred to as symbolic execution[96], provides a

functional representation of the paths in a program by creating a path computation

and a path condition after symbolically evaluating a path. Symbolic evaluation is a

promising testing technique, which can be generally used to aid [96]:

o automated test case generation

o path selection

o program proving

o determining path feasibility

o partition analysis

o specification-based testing strategy

An investigation of the effectiveness of symbolic evaluation and some other testing

techniques has been done by Howden [52]. For 28 errors occurring in 6 programs, the

reliability 1 of each technique was indicated in his study. The conclusions were that

1 A testing technique is reliable for an error only if every test data set that satisfies the criterion of that
technique is guaranteed to reveal the errors[52].

57

path testing was reliable for 18 errors of the 28 errors; branch testing was reliable for

only 6 errors; symbolic testing of the set of path chosen to approximate path testing

guaranteed the detection of 17 errors; and the combination of symbolic evaluation

with other testing and analysis methods was reliable for 25 errors of 28 errors.

There are three major problems which have not been well-solved in symbolic eval­

uation. These problems are the evaluation of loops, module calls and arrays in a

program.

4. Domain Testing

Domain testing attempts to uncover errors in a path domain, known as domain

errors, by selecting test cases on and near the boundaries of the path domain [119].

The main features of this approach include [15]:

o i t provides a formal approach for satisfying the often suggested guideline that

boundary conditions should be tested.

G i t can be easily modified to handle equality and nonequality predicates.

o i t may inadvertently uncover computation errors, since the program is executed

on several test points.

Generally, the domain testing strategy requires at most s(N+3) test points per do­

main, where JVis the dimensionality of the input space in which the domain is defined,

and s is the number of border segments in the boundary of the specific domain[120].

White and Cohen[119] have addressed that "for linearly domained programs, with

each Off point chosen a distance D from the corresponding border, the domain test­

ing strategy is guaranteed to detect all errors of magnitude greater than D using no

more than s(N+3) test points per domain, where Vindicates the dimensionality of

the input space and s is the number of predicates along the path to be tested".

Domain testing has some limitations as i t is based on the following assumptions

[119]:

o coincidental correctness does not occur for any test cases.

58

o a missing-path error is not associated with the path being tested,

o each border is produced by a simple predicate,

o the given border is linear.

o the input space is continuous rather than discrete.

The above path-oriented testing techniques all suffer the following two problems:

o unable to deal with coincidental correctness problem

o unable to deal with missing path errors

5. Data Flow Testing

The testing strategy based on data flow analysis is known as data flow testing. A

family of test case selection criteria for data flow testing was defined in [94] [83]

and [67]. Existing data flow testing techniques include: all-du paths(d - defined or

initialised, and u - used), all-use, all-use/some-c-use and all-e-use/some-p-use (c

- used in a calculation, and p - used in a predicate), all-definition, all-p-use and

all-c-use [4] [58]. Among these, the all-du paths technique is the strongest data flow

testing strategy. The advantages of data flow testing can be described as follows [91]

[128] [96]:

o it is easier to achieve than path testing. Path testing involves path selection

activities which are often difficult in practice, but data flow testing is only based

on a program flow graph which is usually easy to construct.

o data flow coverage can be used as one of the path selection criteria.

o data flow criteria are more selective than the control flow criteria with respect

to selection of simple transference paths.

o data flow testing bridges the gap between all paths and branch testing.

59

An experiment which compared random testing, branch testing and data flow test-

ing(au strategy) has given the following result[83]:

Strategy Mean No. Test Cases Bugs Found (D

Random t e s t i n g
Branch t e s t i n g
Data floH t e B t i n g (a l l use)

100
34
84

79.5
85.5
90.0

There have been relatively more experiments on effectiveness of data flow testing

than other testing strategies, a summary of which can be found in [4].

The limitations of data flow testing have been generally considered as [128] [4]:

o i t cannot detect unexecutable paths,

o i t is weaker than path testing strategy.

To summarise, program-based testing techniques have drawn much research attention

over the past years, and these techniques have been practically available. Section 3.8

described some such automated tools developed in the past. Among the program-based

testing techniques reviewed above, symbolic evaluation appears to be promising [96] [19].

Symbolic evaluation can be used to assist all of the above testing techniques [96]. Howden

[53] found that combining both symbolic evaluation and other- testing methods was reliable

for more errors than either method used alone. I t has been realised that using a variety of

testing techniques together produces more reliable software [19]. However, program-based

testing has one serious shortcoming, namely that this strategy entirely depends on the

internal structure of the program, but the structure itself may be incorrect with respect

to the functional requirements.

60

3.9.3 Regress ion T e s t i n g Techniques

Regression testing concerns the revalidation process in software maintenance. I t can also

be performed on the basis of specification-based/program-based testing approaches. In

comparison with the testing techniques mentioned above, regression testing focuses on

detecting the errors which may have been caused by program changes. Two types of

regression testing have been identified and they were indicated in section 3.6. Generally,

regression testing involves the following major activities:

o identifying the effects of the change to code or to both code and specification;

© selecting the existing test cases and new test cases which will be used to test the

affected region;

© executing the modified program based on the selected test cases;

o ensuring that the modified program still performs the intended behaviour specified

in the (possibly modified) specification;

o updating the old test plan for the next regression testing process.

There have been several issues on regression testing strategies, which include Fischer's

method[36], Yau et al's method[126] and Hartmann et al's method [48]. An evaluation of

these regression testing strategies can be found in [58].

Section 3.6 illustrated some regression testing tools developed in early 1970's. However,

these tools were limited to use a specific language and test the program at unit level. Hence

these tools have gained little wide acceptance.

At the present stage, regression testing is not effective. The following descriptions

present the problems associated with current regression testing techniques [48] [47], and

these problems are considered by the research project described in this dissertation.

61

o test selection problem. Using an entire baseline set of test cases to validate a few

changes may cost a large amount of time and computational resources. I t needs a

systematic selection of the test cases to ensure a reliable revalidation process.

o test cases maintenance problem. Test cases used in regression testing comprise two

classes. The first class is the old test cases derived during the system development

process, and the second is the new test cases generated during maintenance. This

means that all baselined old test cases and new test cases must be maintained in order

to support a continuous regression testing activity during software maintenance.

Furthermore, regression testing requires the maintenance not only for input test

data but also for the resulting test output. The combination of the input tests and

the resulting outputs makes a test suite.

None of the regression testing strategies has been fully evaluated. To develop an effective

regression testing strategy much research is required.

3.10 Summary

Based on the classification of various testing techniques into specification-based/program-

based "strategies, this chapter has presented the descriptions of a number of well-known

testing techniques associated with these two approaches, together with their individual

advantages and disadvantages. To conclude, specification-based testing and program-

based testing are two complementary approaches to software testing.

62

Chapter 4

oftware Testlee Management

I n t r o d u c t i o n

This chapter presents an investigation of software testing management and stresses its

necessity. The chapter is divided into five secstions: section 4.1 is used to describe the

testing activities in the software life cycle; section 4.2 addresses the characteristics of test

data components concerned by this research and describes their relationships; section 4.3

discusses the problems in testing so as-to indicate the need for testing management; section

4.4 applies SCM methods to testing; and section 4.5 is a summary of the chapter.

63

4.1 Testing I n the Software Life Cycle

The term software life cycle is used as a model to represent the process of software project

development and maintenance. The traditional waterfall model of software life cycle in­

cludes five primary phases shown in figure 3. In this model, each phase of system de­

velopment has identifiable activities and end products(or deliverables). There are also

well-defined links between the end products and these serve as the basis for the various

testing activities described throughout the dissertation.

The traditional view of software testing is simply a process of exercising code with a

number of test cases. This dissertation adopts a wider view of software testing, shown

in figure 4: testing is a broad and continuous activity throughout the software life cycle.

It embraces a wide spectrum of activities ranging from informal design reviews, through

rigorous test case analysis to formal proofs of correctness. Wi th this view of software test­

ing, six essential activities, namely early test planning, reviews, unit testing, integration

testing, system testing and revalidation are described in the sections that follow.

64

A N A L Y S I S

Determing feasibility and specifying requirements

T O P - L E V E L DESIGN)

Specifying the general design

[D E T A I L E D DESIGN

Specifying detailed design

Coding, testing, debugging and installing

M A I N T E N A N C E

Enhancing and modifying

Figure 3 . The Software L i f e Cycle Model

Traditional View

DESIGN

BUILD

T E S T

New View

A ANALYSIS
T
E T O P - L E V E L DESIGN
S
T
I
N
G

?

DETAILED DESIGN

IMPLEMENTATION

MAINTENANCE

F i g u r e 4. T e s t i n g I n the L i f e C y c l e

65

4.1.1 Early Test Planning

Early test planning, as a key factor for project success, is addressed in [32]. During the

initial periods of the project, test planning should be emphasised and the plans, schedules

and budgets for the implementation of the project should be established. These plans

serve as the basis for denning the specific tools, techniques, and methods to be applied

to the test implementation. An appropriate system test plan could have built a smooth,

controlled flow of data and responsibility, clear, baselined requirements, controls over

resources, data, the accomplishment of work, and a sustained project focus toward testing

milestones. This pre-planned and controlled application of resources, technical methods,

and tools and techniques would have assured that testing structure was consistent with

other project areas and was tailored to the characteristics of the project.

The test planning activities include system test planning, integration test planning and

unit test planning. Implementation of the test plans should result in a structured flow of

data and responsibility through all levels of test and integration. The basic elements of

each plan have been described [32].

The System Test Plan defines the requirements of system testing. I t describes the test

case definition and the environment and methods to be used for qualifying the hardware

and software system operational components. Also, the organisational structure, resource

requirements, and system technical and management controls to be applied by the program

during the system testing are described.

An Integration Test Plan describes how the individual software subsystems wil l be

integrated and qualified in an operational configuration. A separate software integration

test plan should be developed for each software subsystem in the system configuration.

The Unit Test Plan is the basis for the individual unit test specifications included in

the Unit Development Folders. I t describes unit test organisation, test procedures, test

66

case definition and test tools and techniques used.

The format of the plans mentioned above has been illustrated by Evans [32]. ANSI/IEEE

(Std 1008-1987) [56] provides the standard format for writing a test plan.

4.1.2 Reviews

Reviews in this dissertation are considered as a testing technique, but in some other cases,

reviews are described as a software quality assurance activity during testing [92].

A review is performed using a group of people to:

1. point out needed improvements in the end products;

2. confirm those parts of an end product in which improvement is neither desired nor

needed.

3. achieve technical work of more uniform quality than can be achieved without reviews,

in order to make technical work more manageable.

There was a time when a review was only used to examine the quality of technical work,

known as a technical review. Now many different types of reviews can be seen throughout

the development life cycle. This includes the reviews of requirements documents, design,

code logic, test plan and test documentation.

Reviews may be formal or informal. Formal reviews involve the accurate evaluations

and well-written reports of findings. A formal review is quite different from an informal

reviews, which involves the sharing of opinions between reviewers. The formal review is

designed to provide reliable information about technical matters and may be more suitable

to be considered as a testing technique.

67

If rigorously enforced and used as the configuration management status monitoring

points, these reviews ensure that the data placed under project control meets project

requirements, standards and conventions.

4.1.3 U n i t Test ing

Unit testing focuses on the smallest unit of a software system - the module. It tests

whether the units function properly with respect to the detailed design description.

Unit testing basically consists of the tests for the interface, local data structures, bound­

ary conditions, and independent paths within a module. The module interface is tested

to show that data correctly flows into and out of the program unit under test. The local

data structure is examined to assure that data stored temporarily maintain their integrity

during all steps in an algorithm's execution. Boundary conditions are tested to assure that

the module operates properly at boundaries established to limit or restrict processing. All

independent paths(basic paths) through the control structure are exercised to show that

all statements in a module have been executed at least once.

Unit test planning occurs in parallel with the derivation of detailed design, and the unit

test plan should be documented into a unit development plan. Unit testing is normally

conducted in the implementation step. After source code has been developed, reviewed

and verified for correct syntax, unit test case design begins. The driver and stub modules

are usually needed to aid the unit test. A driver module is used to simulate the module

which call the module being tested and a stub module is used to simulate the module

which is called by the module being tested.

The Unit Test Walkthrough is the last informal review of the unit testing conducted

by the developing organisation [92]. This will mainly check:

1. The code meets the functional, performance, interface, and design requirements.

68

2. The unit test plan requirements have been completed, the test execution has been

in accordance with the requirements of the plan.

After completion of the unit test walkthrough, the unit design, code and test informa­

tion as defined in the unit development plan is baselined and is placed under configuration

management and control.

4.1.4 Integrat ion Test ing

Integration testing is a systematic technique for constructing the program structure while

at the same time conducting tests to uncover errors associated with interfacing. The

objective is to take unit-tested modules and build a program structure that has been

specified by design.

At the integration testing level, modules are integrated in a hierarchical fashion track­

ing the execution sequence of the software within a subsystem. Qualified units are in­

tegrated into an operational configuration, and data relationships and internal execution

characteristics, including performance, are verified against the subsystem design. Inte­

gration testing is conducted using versions of software formally controlled by the project

through configuration management [32].

The integration test plan should be established at the stage of subsystem design and

incorporated into the documentation of the Subsystem Development Plan. Integration

testing is normally performed by an incremental integration approach which involves two

main strategies: top-down integration and bottom-up integration. These two strategies

were described in section 3.2.

All problems uncovered during integration testing should be documented and correc­

tions should be formally controlled and tracked. The released software should be saved in

a project library. Completion of final functional integration is a full qualification of the

69

software subsystem.

4.1.5 S y s t e m Test ing

System testing begins when integration testing has been completed. It is actually a series

of different tests whose primary purpose is to fully exercise the computer-based system.

In [50] system tests are categorized as requirement-based testing, performance testing and

design-based testing.

Requirement-based system testing concentrates on demonstrating system functional

capabilities. Performance testing is the test of system performance capability. One of the

performance tests has been given the special name of volume testing. A volume test is

planned with the specific objective of determining how many transactions or how many

records can be operationally supported. Other special performance tests include tests of

system documentation (usability, completeness); system reliability (failure analysis, stress

testing, operational testing); and system maintainability(documentation, time to make

standard changes). Design-based system testing is used to test software design. Most of

the tests derived from the design are suitable as system level tests and should be included

in the system test set.

The planning-for system testing starts with requirement analysis and may be continued

in the next phase of system design. The planned tests should be documented in the system

development plan. During system testing, corrections are made by the software organisa­

tion and regression tested and approved prior to integration into the test configuration.

System testing ensures that a qualified software system is in operation.

70

4.1.6 Retes t ing

The need for the continuous modifications of software after initial delivery is one of the rea­

sons for software maintenance. It has been stated [section 3.6] that about 60% of the total

software life cycle costs is spent on maintenance. Based on this figure, software mainte­

nance deserves individual emphasis, however it has historically not been given appropriate

attention.

Changes required during maintenance may be due to [57]:

o Errors not discovered during original testing;

© Failures outside the data processing system, which can be corrected by software

changes;

o Changing requirements for use of system;

o Modification to make people in system more efficient;

© Modification to make hardware and software more efficient; or

s Modification to algorithms to take account of experience with real data.

When a change is attempted to an item of a-software system, three steps are usually

involved:

1. Design the changes. This requires understanding the system or program logic; un­

derstanding the intended new result.

2. Build the changes. This involves actually changing the code and modifying the

system to conform to the new design.

71

3. Implement changes and install a new system version. This involves replacing the

changed items in the project library, ensuring that users are familiar with any new

impacts and updating documentation.

When software is modified, a retest must be performed to ensure the modified software

is correct with respect to the requirements and there have been no unintended changes

made to the original system function. These retest activities are in general observed in

three categories [38]:

o Confidence Testing. In this activity the main intended effect of the change is demon­

strated.

o Localised Testing. This concerns that a check is made to see that all expected effects

of the change are indeed observed. If the change is sufficiently small, it may well

be possible to ensure during this testing that all modified code is executed. This is

rarely possible for a system as a whole.

G Non-Localised Testing. This is to check the operation of the system as a whole and

reveal any unintended side-effects of the changes.

Regression testing, embracing these three aspects, is a technique used in software

maintenance to deal with the retest problem after software modification, which is described

in sections 3.6 & 3.9.3.

4.2 Test Data

In this dissertation, the test data is denned to be all the data produced or used throughout

the testing process, such as a test plan, a test design specification, a test case, a program

specification and a program. This section focuses on the discussion of the characteristics

of a test case, a program specification and a program.

72

4.2.1 T e s t Cases

A test case, consisting of a description of the input data to the program and a description

of the expected output of the program for that input data, is a key element in software

testing [81]. The purpose of a test case is to execute a program under certain conditions.

Generally, all test cases belonging to a project are categorized in various levels according

to testing levels(e.g. unit testing, integration testing and system testing) and defined in

the different levels of test plans.

Test cases can be considered as software elements with the same characteristics as

general software. The life of a test case also needs to pass the phases of analysis, design,

implementation, execution and maintenance, which is in accordance with a testing life

cycle described in section 3.2.

On the other hand, test cases have their own characteristics which make them different

from other software elements. It can be easily recognised that the quality assessment of

test cases is as important as program testing. However, a reliable test case has been

defined differently from a reliable program [22] although both of them are categorized

as software. For the reason that test cases can be derived either from specifications or

from programs, test cases are usually required to be changed whenever a program or a

specification changes.

The test case used during the maintenance phase evolve from the test cases used during

development. However, new test cases created during maintenance must be included in

the test suite to reflect changes to the system's specification, and redundant or irrelevant

test cases must be eliminated. Recently, several techniques have been proposed to cope

with the problem of how to identify obsolete test cases after a software modification [71].

73

4.2.2 P r o g r a m Specifications

A program specification is a description of the desired program behaviour. Initially, a

detailed functional specification of what the system should do can be developed from the

requirements. The specification can then be verified against the requirements early in the

development of the software.

Currently, program specifications are most commonly written in a natural language.

However, using a natural language leads to specifications that are vague and ambiguous.

Although such specifications do aid in detecting errors early in the development process,

the imprecision of an informal specification leads to misunderstandings, both in testing

the specification against the user requirements and testing in the implementation against

the specification. Therefore, many people have argued that a more formal approach to

specification is required.

There are a number of techniques that have been developed to aid in the writing

of precise specifications. One technique is to use mathematical notation to document

equations or algorithms whenever appropriate. Another technique is to construct tables

of all the input and output variables and group them into some logical fashion [102].

Recently, more efforts have been made to produce a formal language which could be used

to transform formal requirements into precise specifications. This precise specification can

also be used td~verify~the resulting~programs. Several well-known specification systems

have been described such as ISDOS, CLEAR, OBJ, GYPSY, and AFFIRM [41]. VDM

[59] and Z [106] are formal specification languages provided to support systematic software

development and software verification.

Program specifications associated with a particular project may change during the

project life cycle. These changes may take place for various reasons. One obvious case is

when users add new requirements to the system. Regression testing is attempting to solve

the problem of how to select test cases and how to keep test plans up to date after the

74

program specification has been changed.

4.2.3 Programs

A program is an implementation of a (program) specification. It is a vehicle for com­

munication between humans and computers. Many programming languages have been

developed for writing programs. Generally, all programming languages can be charac­

terized with respect to three topics: data typing, subprogram mechanisms, and control

structure [92].

Programming language characteristics and coding style can profoundly affect software

quality, testability and maintainability. The effect of programming language characteris­

tics on software testing and maintenance is a large and difficult subject of research. There

is no question, however, that technical characteristics that enhance code readability and

reduce complexity are important for effective testing and maintenance.

Automatic programming systems have been provided for transforming a precise spec­

ification into a program written in a specific language.

4.2.4 Relat ionships Between Test Cases , Specifications and Programs

Based on the characteristics of test cases, specifications and programs described above,

the relationships among these components can be summarised below:

o A specification is a basis on which both programs and test cases can be generated.

o When a specification has been changed, programs and some test cases also need to

be changed.

o The test cases can be derived from programs.

75

o When a program is modified, the test cases based on the program should be rese-

lected.

4.3 The Need for Software Testing Management

A frequent criticism of current testing techniques is that they are less effective and efficient

for large scale software. One of the main reasons for this is that although the techniques

developed for a certain testing strategy are said to be powerful, the testing activities in

each phase of the software development cycle are poorly managed. Generally, software

testing management can be divided into three aspects: the management of the testing

process, the management of testing organisation and resources, and the management of

test data.

There have been a few methods proposed to manage the testing process, testing team

and testing resources in the literatures. Miller [78] suggests that:

o The management monitoring of the testing process should indicate clearly at the

outset the importance of a wide spectrum of information that relates to the testing

process. The simplest method is to ask testers to share access to daily test progress

reports.

© Testing is a labor-intensive activity, and choice of a testing team can be of crucial

importance.

o The management can monitor testing progress indirectly by keeping track of the

computer resource devoted to testing activities.

o Coverage measures and complexity measures are effective techniques for manage­

ment, particularly for assessing the level of testing that will be required for deter­

mining the budget allocations needed to effectively complete a testing activity that

76

is mid-way to completion.

o Management can also be sensitive to the psychological interplay between program

testers and program developers.

Evans [32] addressed the approaches to a productive software test management. He de­

scribed how to plan, manage, and control the integration and testing of a multi-subsystem

system configuration. The careful planning for the testing process was mainly discussed

as a vital factor for testing success.

The research described in this dissertation, however, is mainly concerned with the

management of test data.

In the following sections, three problems associated with testing will be discussed.

These problems serve to show the need for the management of test data.

4.3.1 Diff icult ies in E a r l y P lanning for Test ing

Early planning testing is a difficult activity. It requires that the project managers have an

early understanding of what is to be accomplished. Without this understanding, it will be

difficult to project how the testing process is to be managed and controlled; to estimate

resources needed; to plan for applying the resources and doing the work; or to develop a

realistic test schedule.

Even initial project planning is often an imprecise process based on incomplete in­

formation, poorly specified and misunderstood requirements. As a result, what normally

happens is that the allocation and commitment of resources to the various test levels are

confused and there is little way to ensure a smooth flow of data, effectiveness of test data

integrity, and a clear transition of responsibility.

77

4.3.2 L a r g e A m o u n t of D a t a

The testing process is the constant checking of one developed item against another(e.g. to

review the design specification against the requirements). It involves enormous amounts of

data, and this data is in a state of constant change so that a number of versions associated

with every data item are produced. Therefore, test managers and testers usually need to

determine the state of the testing process and make a comparison of the data produced.

This can be controlled only if the status of each data element is known at all times.

In comparison with controlling the large amount of data versions produced, the re­

lationships among these data items are more complicated to maintain. Usually, these

relationships are loosely coupled. For instance, when a function needs to be changed in

the specification or new features are added into a specification, a caucus must be held to

determine what activities must be reinitiated, what program modules and manual pages

will be affected, and what test cases must be reselected. This management level infor­

mation is more likely to be held on paper or in people's minds and be exchanged orally

without records. For a project of long duration, staff turnover is normal and effective

project management becomes threatened due to the lack of sufficient information.

4.3.3 Test ing Software Changes

When a software item is changed, testing must be performed to make sure that the changed

software functions correctly with respect to the specification. One of the major problems

in testing changes is test selection which is concerned with how to select which test cases to

rerun after a modification. It is important that these test cases be selected systematically,

because executing an entire test suite to validate a few modifications can consume large

amounts of time and computational resources and involve many people, and it is unreliable

to exercise a system by selecting test cases intuitively or randomly. When the test cases

have been determined to be used for retesting, the old test plan must be updated so that

78

it can be used for the next cycle of changes and regression testing.

Under the present state of maintenance testing technology, effective regression testing

is seldom possible or complete. The problems are that the input test cases are usually

stored and organised in a variety of different file and data formats, and storage media.

Furthermore, complicated procedures are needed to enter the initially large set of baseline

test cases and verify the individual responses from the software under test. Generally,

the verification team has no way of correlating any of the functional requirements to the

associated test cases, leading to a situation in which the testers do not know if the results

obtained by executing the test descriptions are correct and coincide with the required user

specification [47].

It is believed that the support of software configuration management will greatly benefit

the solution of the above problems. In practice, it is difficult to construct a cost-effective

and usable software system without a good system of configuration management in place.

The next section describes the aspects of software configuration management which are

applicable to the software testing process.

4.4 Software Configuration Management in Context of Soft­

ware Testing

As discussed in chapter two, software configuration management is the complete mech­

anism for controlling and recording the status of all deliverables, their relationships and

their changes. All software items concerned with testing should be subject to configuration

management control.

Software configuration management is a large subject with a literature of its own, but

there are three aspects that concerns testing: change control, version control and record

keeping, which are discussed in the following subsections:

79

4.4.1 C h a n g e Contro l

Software development is a process of change. In the area of testing, there are four areas

in which change control is required:

o the need to keep the Test Plan up to date when designs and other deliverables

change.

o the need to modify code, specifications, test cases and other documents when errors

are revealed by testing.

o the need to retest items whose specification have been changed.

o the need to identify the effect of change when the data has been modified.

The change control process should take place when there is a need for modification

after testing has been conducted. A simple example could be seen when some errors

are found in dynamic testing, either the item being tested or the specification on which

the test case is based or both will require modification. The change control process is

especially useful for the revalidation process in software maintenance. The revalidation

process is concerned with the test of modified software, and ususlly involves the problems

of reselecting the test cases and updating-the-previous-test plan.

4.4.2 Vers ion Contro l

Most deliverables will evolve iteratively and thus go through several versions during system

development and subsequent maintenance. This may occur simultaneously for different

deliverables in the life cycle. Testing cannot be done sensibly unless the version of each

item relevant to the test is known and confirmed as the correct version for the test.

80

Version control is especially important when a subsystem or entire system is being built

and then tested. Each version of the built software contains a particular version of each

of its components, and the management of this process requires thorough record-keeping

of these versions, which is described in the next section.

4.4.3 R e c o r d - K e e p i n g and Traceabi l i ty

Neither change nor control can function without adequate record-keeping. It is suggested

in [86] that the best criterion for record-keeping is that of traceability, the ability to

establish an audit trail of relevant information. In the context of testing, this can be

interpreted as the ability to trace an error to its source. To provide for traceability, each

item in the chain should provide full cross-referencing of its components to the items on

which it is based. For example, each component in the design specification should be

cross-referenced as far as possible to those features in the system specification which it

implements.

Another aspect of traceability in testing is the ability to follow the progress of errors

revealed by testing. For each error found, it should be possible to trace the process of

correction through the audit trail from the point where the error was found to the point

where it was corrected.

The third aspect of traceability in testing deals with the links of test cases with the

specifications and programs. For each test case designed, it should be possible to trace a

specific test case to the system specification on which the test cases are based.

A final criterion of traceability is the ability to trace the static and dynamic tests that

were performed on an item after each change in its development history.

81

4.5 Summary

4.5.1 T h e Purpose of T h i s C h a p t e r

With, the aim of applying SCM techniques to the testing process, an investigation into

various aspects associated with software testing management has been conducted. This

chapter is devoted to presenting such an investigation. The objectives of this chapter are

concluded here:

o To address the testing activities at different levels across the software life cycle, to­

gether with the management aspects which should be applied to each testing activity.

o To stress the importance of early test planning.

o To define the test data to be applied in the SEMST system and specify the relation­

ships between the data.

o To analyse the need for software testing management.

o To discuss SCM techniques concerned with the software testing activities.

4.5.2 Combin ing the Test ing Process wi th S<UM - a Ref inement of P r e ­

vious Discussions

The previous chapters of this dissertation have presented:

e the objectives of this research project;

o software configuration management and testing as two disciplines of software engi­

neering;

82

o the tools and techniques of software configuration management and testing.

Based on the definition of software testing described in section 1.2, this dissertation

regards testing as a broad and continuous activity over the software life cycle, ranging from

informal design reviews through rigorous test analysis to formal proofs of correctness.

Once the basic features of SCM and testing discipline are understood, the research and

development activities will then concentrate on the methods for applying SCM techniques

to the testing process. The significance of such methods has been analysed from the

following aspects:

o Early test planning is important but seldom complete in the actual software devel­

opment [section 4.1.1 & 4.3.2].

o Review activities can ensure that a testing process is under SCM methods control

[section 4.1.2, 4.1.3, 4.1.4 & 4.1.5].

o The large amount of test data and their versions produced during the testing process

must be managed and controlled [section 4.3.2].

o The retesting process requires that the previous test cases and their execution results

be stored and maintained [section 3.9.3 & section 4.3.3].

s Software testing is a process of change. Change control must be applied to software

testing [section 4.4.1].

© To provide the long-term maintainability of software systems, record-keeping and

traceability are required for software testing [section 4.4.3].

o Measurements of test coverage and complexity are considered as effective techniques

for software testing management [section 4.3] [78].

83

4.5.3 Limitat ions of Test ing Management

The remaining problems with the current SCM techniques were described in section 2.5.1.

These problems may affect the application of SCM to testing. For example, SCM tech­

niques may be difficult to use in conjunction with distributed and heterogeneous software

systems as such systems make SCM a more difficult task.

On the other hand, management of software development is usually regarded as a

support technique used to facilitate the development of a complex software project on

schedule and within budget. However, the success of a software system development

is not dependent solely on the management mechanisms. It has been stated [20] that

"management review of development progress will not ensure successful completion". The

advanced tools and techniques used to aid the system development are very necessary,

and these should come first. In the area of software testing, management support will not

necessarily result in a successful testing process unless there are good testing techniques

or tools which are also used in the testing process.

84

Chapter 5

Survey of Previous Work and

Analysis of SEMST Requirements

Introduction

This chapter presents a survey of previous work associated with the management of the

software development and testing process, and analyses the requirements for SEMST.

Much effort has recently.b.een_deyoted.to_the development of.integrated_database support

techniques and project management tools. These tools provide systematic approaches to

managing a software development process. However, little attention has been given to

provide the tools and environments to support the management of software testing. By

evaluating previous work, the benefit of developing SEMST will become clear.

85

5.1 Integrated Software Engineering Environments

In the last few years, much emphasis has been given to the research and implementation

of Software Engineering Environments{SEEs). The purpose of a S E E is to support users

in their software development and maintenance activities. These environments range from

simple tool kits to fully integrated tools supporting a software engineering method. It can

be concluded that SEEs can offer significant productivity improvement, higher software

quality, and better project management and control.

In general terms, SEEs have been viewed as being composed of two distinct classes:

program environments and project support environments.

Programming environments concentrate on the support of the coding stage of the

software development cycle. Some examples of this kind of environment are: APSE -

Ada Programming Support Environment [77], the Interlisp programming environment

[111], the Cedar environment [110], and the Smalltalk environment [42]. These systems

incorporate tools for editing, parsing, debugging, and documentation.

The project support environment, recently referred to as an integrated project sup­

port environment(IPSE), is an environment to support the whole range of development

activities carried out in a project, including programming-in-the-large tasks such as config­

uration mangement and programming-in-the-many tasks such as project and team man­

agement. This means that the integrated environments should provide a homogeneous

support for specification, design, development, testing, management of versions and re­

leases, distribution activities, configuration and customisation, error reporting and mea­

surement collection. There are quite a few of thiB kind of environments developed in recent

years. Several well-known examples are: Gandalf- a integrated software engineering en­

vironment [45], PCTE - a Portable Common Tools Environment [13], ECLIPSE - An

Integrated Project Support Environment [9], ISTAR - second generation of I P S E [27],

and Arcadia - an advanced software engineering environment [109].

86

5.2 Management Systems

The management system, classified as project management, process management and object

mangement, is an important part of the integrated project environments described above.

Project management involves cost estimation, resource estimation, and scheduling.

Traditional project management systems were developed by using a Gantt chart, CPM

or Pert algorithm. Recently a DesignNet model [73] has been produced on the basis of a

Petri net notation to support rescheduling and reinitiation of the project management.

Process management is concerned with the industrial approach to the software pro­

duction. In the context of a software factory, the integration of tools differs from the

traditional approaches in that it includes the integration of people and their "corporate

knowledge": their organisation, their rules and polices and their methods. The E S F [35]

is an example of this type of system.

An object management system, sometimes referred to as a data management or in­

formation management system, provides the support for managing different kinds of data

ranging from source code, executable code to documentation, test plan and test data.

Such a system has been identified as the core of any automated S E E and is vital to the

success of a Computer-Aided Software Engineering(CASE) tool.

Traditional SEEs are built on the basis of a file system or a database system. There

has been criticism that such file and database systems are inadequate for handling the

large amount, wide kinds of types and complex relationships of data in the real world.

Recently, an object management system has been proposed to overcome the weakness of

previous work on data management, and it has been drawing a lot of research attention.

The next section describes the characteristics of an object management system.

87

5.2.1 Object Management Systems

A large software product consists of a wide variety of objects. It consists not only of

source, object and executable code objects, but also of requirement, specification, design,

schedule, test plan, test data, and other documentation objects. The systems to manage

these objects must address a number of problems. These problems include [5]:

o Storing multiple versions of data objects(e.g. multiple releases of software and doc­

uments);

o Storing large, variable-length objects whose internal structure is hidden from the

object management system(e.g. programs and documents as text);

o Creating multiple objects representations to allow different languages, tools or hard­

ware;

o Producing flexible and powerful operators, such as operators on directed graphs to

manipulate syntax trees, flow graphs, and dependency graphs, including set-at-a-

time capability;

o Providing flexible data types to store arbitrary types supported by the programming

languages.

Most environments have been built on the basis of a traditional file or database system

for managing the objects associated with a project. In a traditional database, the infor­

mation is usually modelled as records. Relationships among data entities are constructed

through primitive reference to related records [73]. However, in practice, even the most

powerful database systems are inadequate for the data handling requirements of C A S E [5],

which are described above. It is now believed that an object management system can deal

with the above problems and enhance the environment support for change, integration,

software reuse, and cooperative work by multiple people. The advantages of an object

88

management system can be seen in its object-oriented approach to capturing relationships

among objects. It allows more complicated relationships. For example, an association

between entities may itself be considered as an entity and further relationships can be

built upon this entity.

According to [109], an object management system for a S E E should provide support

for: types, relationships, persistence and concurrency and distribution, which are described

in the following section.

Type Systems

A type system is viewed as the primary mechanism for describing and maintaining objects.

An object management system should be able to enforce the type system, hiding the

internal structure of typed objects behind well-defined interfaces and strictly controlling

the operations that can be performed on those objects. If all objects are instances of

abstract data types, it is easier to share objects or to change their implementations.

Thus, basing the object management system on a typing system that fully supports data

abstraction will result in environment flexibility and software reuse.

Typing of objects in programming languages is a well researched area and generally

considered to be of significant benefit to software engineering. However ,jcurrent approaches

to object management in SEEs are far from providing full support of typed objects. Typ­

ically, the components of a product are treated simply as files and tools are viewed as

operators applicable to the contents of those files. Usually in such systems, only a prede­

termined and limited number of different kinds of components and operations are available

[109]. Make [34] and Oc?m[64] use file names extensions as a weak form of typing mecha­

nism. It also allows users to define which tools could operate on or produce files of various

types. The System Modeller, developed as part of the Cedar system [66] used the term

"object" for referring to the files containing product components but did not treat the

89

objects as instances of abstract data types. The Common APSE Interface Set (CAIS)

defines a system model with three kinds of nodes - file, structural, and process, but does

not treat those nodes as typed objects. Gandlfa S V C E mechanism employs strong type

checking to determine consistency of syntactic units during version control. Recent work

on rich type systems, particularly in the system context of object-oriented languages, is

also encouraging, but also still not mature.

Relationship Systems

Closely related to the ability to precisely define and maintain the typed objects in the

environment is the ability to capture and maintain the relationships among those objects.

Examples of relationships include those connecting various versions of a module, or those

between the modules constituting a configuration, or those between a module and all the

others that it calls, or those joining activities in a work breakdown structure [109]. Ex­

amples of tools that reason about or exploit relationships among objects include a version

control system [100] [112], automated system building tools [34] and call graph analyser.

Associated with the relationship system is a set of capabilities, such as consistency check­

ing, derivation tracking, and inferencing.

Clearly indicating the relationships among an environment's tools and information

structures could provide an easy-way to modify the environment since the effect of changes

can be determined. Furthermore, capabilities that rely on relationships, such as inference

and derivation, can enhance environment integration by providing abstract type mecha­

nism and allowing users to interact with the environment at a high level. Generic relation­

ship capabilities can also enhance integration by providing a uniform set of capabilities

across different kinds of relationships.

The previous work on building relationships in the environments is weak. There was

little systematic method provided to manage numerous and complex relationships between

90

objects.

5.2.2 Persistence

Persistence support in an object management system means that it should be able to allow

the objects to continue to exist beyond the lifetime of any of the tools or process programs

that manipulate them and preserve the integrity of their types and relationships to other

objects [109].

Current approaches to persistence are based on files or databases. Using a file system,

a tool should be provided for converting the internal form of an object to an acceptable

(e.g linear) external form and, when needed converting it back. Using a database system,

the tool must make calls on the databases to explicitly store and retrieve information.

These traditional approaches have the limitation that they are only applicable to a limited

number of object types. Thus providing persistence for arbitrarily complex, typed objects

is an important research subject.

5.2.3 Concurrency and Distribution

An object management system should be able to allow multiple users to work on the same

software development project. This requires the support of concurrent and distributed ca­

pabilities. In a network of workstations, different members of a development project may

simultaneously invoke the same or different tools to operate on one or more of the same ob­

jects. Thus, the object management system should have the ability to mediate concurrent

use of objects and to maintain consistency of both the objects and their relationships.

A number of approaches for handling distribution and concurrency have emerged from

programming languages, and file system and database research [109]. However, few of

91

them have been universally accepted. Some of the difficulties of providing this capability

are discussed in [109].

5.3 Hypertext Systems

Hypertext systems [8] provides information management, in which documentation is dis­

played as a network of nodes connected by links. Such nodes can contain text, graphics,

audio, video or can link to other software or data. The distinguishing feature of hypertext

systems is that they allow a non-linear organisation (i.e. it supports the links between

parts of the documentation for purposes such as explanation and comments).

In the past years, a number of research projects have significantly advanced the tech­

nology of hypertext. Some examples are the following:

o Brown University's Intermedia was the direct descendant of an early hypertext

project called F R E S S [21] by Nelson and Dam at Brown University in early 1970s.

The institute for Research in Information and Scholarship (IRIS) at Brown Univer­

sity has developed hypertext systems for a variety of courses, including for the course

of English Literature [125].

o Carnegie-Mellon's ZOG was a research project on information management, con­

ducted in most of the 1970's and early 1980, for use in USS Carl Vinson. USS Carl

Vinson is the largest aircraft carrier in the world. A commercial product, KMS, was

derived from this project and is marketed by Knowledge Systems Inc. to run on Sun

and other workstations[l].

o Xerox PARC's Notecards is a system developed on Xerox Lisp machines at the Palo

Alto Research Centre(PARC) of the Xerox Corporation [46]. NoteCards provides an

environment in which the electronic equivalent of 3" plus 5" note cards can be created

92

to contain both texts and graphics, and hypertext links can be created between the

cards.

o University of Kent's Guide was initially developed in 1982 running on Unix by Brown

at the Computing Laboratory of the University of Kent at Canterbury [11]. Guide

was further developed by Office Workstations Ltd. as a commercial product for the

Apple Macintosh and the IBM PC.

o Apple Computer Inc. 's HyperCard was developed in 1987. It is one of the most

widely available hypertext systems at the moment.

Because hypertext systems are useful in large scale information management, it has

been suggested that the integrated software engineering environments include support

for hypertext [40]. The combination of hypertext system and software engineering en­

vironment can advance an integrated software engineering environment in a way that

relationships between the data information can be controlled. Therefore, hypertext tech­

niques should be adopted in a testing environment to manage and control testing data

documentation.

5.4 Software Maintenance Environments

In the context of building software tools applied in the life cycle, attention has traditionally

been focused on the design and development of new software. The maintenance and

enhancement of existing software has received relatively less attention. However, there is

an increasing recognition that maintenance of software is very expensive, so that there are

now a number of researchers working in this area. A number of tools and environment

have been produced to support maintenance activities.

The maintenance techniques have been classically viewed from technical and manage­

ment perspectives. From the technical perspective, the maintenance task is thought of

93

being composed of four main activities [16].

o The first activity is understanding the software which is to be changed. The mainte­

nance environment will provide several tools to assist in this activity such as extensive

cross referencing reports and query capability into the maintenance database.

o The second activity is to incorporate changes into the software. Therefore trace-

ability from requirements through design into the code should be provided in the

maintenance environment to control software change.

o The third activity is the accounting for possible ripple effects as a consequence of

the changes introduced in the second activity. A ripple effect analyser should be

included into the maintenance environment to guide in ascertaining the ramification

of the changes throughout the program.

o The last activity is the testing of changes. This testing must be done in a cost-

effective way, minimising the number of test cases which must be rerun. The main­

tenance environment should provide mechanism to support this activity.

Examples of this kind of maintenance environment have been described [39].

From the management'point of view, maintenance activities can be divided into two

classes: product-related and process-related.

The product-related maintenance management systems include version and revision

systems (e.g. RCS and SCCS, see chapter 2), change coordination systems (e.g. Infuse

[89]), reuse support systems (e.g. Draco [84]) and configuration management systems (e.g.

Make, D S E E , see chapter 2).

Process-related maintenance management activities [88] include personnel manage­

ment, resource management, subprocess scheduling, walk-throughs, quality audits and Plan-

94

ning. These are generally done manually, although some machine aids have been devel­

oped.

As described above, the activity of testing software changes is one of main concerns

of software maintenance environments. In order to support this activity, a software main­

tenance environment should be able to manage the test data which ranges from the old

data used during development to the new data produced during maintenance. However,

there are few research literatures which have described this aspect.

5.5 Integrated Software Testing Environment - T E A M

In [18], a support environment for testing, evaluation and analysis (TEAM) is introduced.

The T E A M project started in 1986 when the authors recognised that there was no single

testing or analysis technique alone that can provide assurance of reliable software, but

the careful integration of a number of diverse testing and analysis techniques can achieve

software reliability needs. Thus the T E A M environment has been designed to support the

integration of and experimentation with an ever growing number of testing and analysis

tools, such as data flow analysers, symbolic evaluators and debuggers. T E A M provides

the interpretation, data flow analysis, and reasoning facilities to aid the understanding of

the execution results of the-tools. It has-been claimed that the T E A M can offer:

o integration of diverse testing and analysis tools;

o extensibility of that tool set so that new tools can be easily added;

o experimentation with different approaches to software reliability, and

o full software life cycle testing and analysis.

95

The current version of T E A M is an initial prototype which runs on the Sun, Dec/Ultrix

and Dec/VMS. It is addressed by the authors as part of Arcadia Environment.

The aspects of management and control over the tests are not well-addressed in

T E A M , although it is described in [18] that T E A M uses an object management system-

PGRAPHITE [122] to deal with the objects.

5,6 Test Management Support Techniques

Test management techniques, as a class of supporting test tools, are not used directly for

testing purposes; rather, they provide support to the testing environment by increasing

test effectiveness and control. These are summarised below.

5.6.1 Test Execution Aids

These are techniques which are applicable to the test phase. Commonly used test aids

include test scenario files and test drivers. Some of these tools, such as the simulators,

can be essential to conducting certain levels of maintenance testing, even though they

may have been developed-to assist initial-software development [87][101] [75]. Automatic

development and verification systems are emerging, which help to enhance error detection,

facilitate test case generation, and provide structured testing environment [60] [93].

5.6.2 Documentation Aids

Large amounts of documentation are prepared to support formal testing. Documenta­

tion aids help to reduce documentation cost and facilitate document preparation and

maintenance. These aids include test editors, documentation and report generators, and

96

automated logic and flow chart generators.

5.0.3 Test Controls

Test controls aid in controlling test configurations, data, and test conduct. Often used

test control techniques include version control, automated program libraries, critical path

scheduling techniques, and data and file management tools. Unit development folders [32]

provide historical logs of completed tests, and success criteria or test completion criteria

help to define when to stop testing.

Automatic test drivers, such as the T P L / F system [26], developed in the late 1970's,

are tools to simulate an environment for running module tests. Its advantages include

the standardisation of test case descriptions and ease of regression testing. The main

drawback is the difficulty in learning and writing a test language [22].

Comparators are data and file management tools used in comparing two versions of

data to identify their differences. The data may be program code, output of an execution,

or data files [26]. The comparators can be used in the validation process to help limit the

scope of reverification of revised software. Some example systems are described in [22].

In [72], Assay is introduced as a taol,_on__Unix, _to support xegression_testing. The

main features of the system include configuration control of the tests, the ability to con­

tinue testing after a mismatch had occurred, and the filtering and substitution of selected

character sequences. It is important that Assay provides test case management and ex­

ecution facilities with an intention of support for efficient management and execution of

available test data. Unfortunately, Assay does not include the facilities for managing data

relationships.

Recently, there have been publications associating testing with Hypertext support [76]

[47] [79]. By implementing a testing system with hypertext support, users would be able to

97

store, retrieve and execute not only the relevant test cases, but also maintain the necessary

functional and design specifications, establishing links between the different contexts such

as test documentation, test case coverage statistics, and the source/object code of the

associated software under test. However, there are few hypertext tools provided with the

entire capabilities described above and the idea of a testing system with hypertext support

is therefore at the stage of concept and research.

5.7 SDDB - System Description Data Base

The SDDB [31] has been developed as a repository of the REDO project. R E D O , standing

for REengineering, Validation and Documentation of systems, is an Esprit II project

concerning with the methodologies and tools to facilitate efficient and high quality software

maintenance. There are several maintenance tools which have been developed in R E D O .

The SDDB is used in REDO as a central database which stores all data relevant to the

maintained application(e.g. reverse engineering), shared by the REDO tools, together

with the appropriate links and relationships between such data. According to [31], the

main functionalities of SDDB are the following:

o it provides a central store of all information about the reverse-engineered application,

o it provides explicit representation of the application structure and logic(i.e. the

structural representation of syntax and semantics of the source code),

o it enables the REDO tools to manipulate applications which are language and envi­

ronment independent,

o it supports the integrity and consistency of data relevant to the reverse-engineered

application,

o it allows the users to access and update the integrated toolset,

98

o it acts as a means of communication between tools, and

o it enables version control of information during the maintenance activities.

The need for using such a central, shared database in REDO can be justified as follows:

o Software maintenance involves a large amount of complex data and a persistent data

store is required for any realistic maintenance application.

o The various tools used to support software maintenance manipulate interconnected

and overlapping data types and often deal with the same data instances. Therefore,

the data should be stored so that it is accessible to the different tools.

o Due to the complexity and long time scale of maintaining a large software system,

it is necessary to enable and control complex patterns of read and write access by

multiple users.

o Data integrity is important when many tools share the same data and the central,

shared database can enforce the data integrity.

o There are many functions common to many different maintenance activities. It is

sensible to put these common functions in a shared database.

The SDDB is based onan-Objeet-Management System(OMS)-withthe-Entity-Relationship-

Attribute data model[31]. It has chosen the Tool Builders's Kit (TBK) in ECLIPSE[9] as its

platform, which is a software engineering environment extending PCTE[13] with additional

database facilities. UNIFORM has been developed as an intermediate representation of

the various REDO applications, which allows a reasonably direct translation of the source

code to be restructured. The hypertext technique has been employed for managing the

links between the entities stored in the SDDB.

The items which can be stored in the SDDB are all the information about an ap­

plication which is used or generated by REDO's tools, including source code, historical

99

life-cycle documents, diagrams, ad-hoc notes and links created by the maintainers, metrics,

application data models and formal specifications.

The SDDB has been intended primarily to support the reverse engineering activities in

software maintenance, so it has provided little help for the testing process. As a software

maintenance environment, however, the SDDB has not claimed its support for regression

testing.

5.8 Analysis of the Requirements for SEMST

The purpose of system requirements is to state the functionalities of the system. Without

system requirements, the development of a software system becomes chaotic. This section

presents an analysis of the problems attempted to be solved by SEMST. It acts as the

bridge between the related work, described in the previous sections of this chapter, and

the requirements for SEMST, described in section 2.5.2. To avoid repeating what has

already been described, this section focuses its attention on addressing the motivation for

those requirements.

5.8.1 Motivation For SEMST

The SEMST system is intented to use software configuration management techniques to

aid the testing process. The major functions that SEMST will supply include version

control, relationship control and traceability of the test data. These requirements are

motivated partly by the need for automated support for the testing process; partly by the

demand for the long-term maintainability of software products; and partly by the need

for a regression testing database. Each of these is elaborated in turn.

100

5.8.1.1 Controlling the Testing Process

SCM techniques manage the evolution of software systems by controlling and recording

the status of all deliverables, their relationships and their changes in the software life

cycle. It has been well-recognised that application of SCM methods is vital to the system

development and maintenance. Much work in the past few years has led to considerable

achievements in this field.

Unfortunately, there have been very few texts or research contributions which specif­

ically address the methods of applying SCM to software testing, and very few such tools

have been developed.

With the progress of software engineering research, the view of software development

has been changed from focusing solely on implementation to a wider scope which includes

analysis, design and other activities. Similarly, software testing has been gradually viewed

as a broad activity which is performed at each stage of the software development life

cycle rather than just a follow on activity after the coding. In fact, whenever a software

system evolves, a relevant testing activity should be performed in order to ensure that

the software system evolves correctly with respect to its requirements. Therefore, it can

be easily understood that the evolution of the testing process follows the evolution of a

software system. Section 4.4 has addressed the SCM areas that should be applied to the

testing process.

The problem is that the testing process becomes difficult to carry out when coping

with large and complex software. To determine the test cases for testing software changes,

the tester normally needs to understand the relationships between the current versions of

system components. However, in large and complex system, developed over a long period,

such information about the system is usually not readily available.

Therefore, SEMST is attempted to help this problem. It is required to maintain all

101

versions of the specifications, test cases and programs produced during the project life

cycle, and to control the links between these data items. Thus, the users can obtain the

traceability between these data items over the whole testing process.

5.8.1.2 Supporting the Long-Term Maintainability of the Software System

Associated with the evolution of software systems is their long-term maintainability prob­

lem. What normally happens in a real software development is that the documentation is

not maintained, and the traceability of the code to the system design is lost. This results

in a situation that the software system becomes difficult to maintain after the system has

evolved over a long time.

By emphasising the management of test information, SEMST would enable the SCM

techniques to be embedded within the software development and maintenance. It could

help to ensure the system's documentation and design information are maintained along

with the code. Furthermore, the versions of these components and their relationships

would be controlled by SEMST. This will benefit a testing process, particularly the reval­

idation precess during software maintenance. Other maintenance activities may also be

helped by SEMST.

5.8.1.3 Regression Testing Database

The design of SEMST is strongly influenced by a repository required for regression testing.

The problems associated with regression testing have been previously described. In order

to solve these problems, a database which supports automatic regression testing is needed.

Basically, a regression testing database should store three test components namely

specifications, test suits, and programs. The important requirements for the regression

testing database are that the history record of these components must be maintained, and

102

all possible links between these three components must be identified and controlled.

So far, however, no regression testing database which satisfies the above requirements

has been found. SEMST can be essentially considered as a database for supporting re­

gression testing.

5.8.2 Review of the Previous Work

To analyse the requirements for SEMST, the related work should be evaluated. This

section explains why SEMST is needed by reviewing the previous work which has been

described in the previous sections.

1. Integrated Software Engineering Environments [section 5.1]

An integrated software engineering environment is designed to support various soft­

ware development and maintenance activities. It consists of the mechanisms for

software configuration management and software testing. However, management in­

formation for software testing is not fully captured in the current integrated software

engineering environments, as the requirements made for these environments are too

broad to focus on testing management.

2. Object Management Systems[section 5.2]

Most modern software engineering environments are built on the basis of an ob­

ject management system(OMS) because an OMS has the advantages in supporting

change; integration and reuse of the software systems; as well as supporting coop­

erative work by multiple people. Based on an object-oriented approach, the OMSs

enable the control of the typed objects with inheritance; complicated relationships

among the objects; data persistence; and the concurrency and distribution. From

the above, the OMSs can be used to provide the management and control of test

data used in the testing process. However, the current OMSs provide little sys­

tematic method to support rich type system and complex relationships between the

103

objects. To provide the ability of persistence, concurrency and distribution in the

OMSs, much research work is still needed. The few OMSs to have been developed

give no emphasis to supporting the management of testing.

3. Hypertext Systems[section 5.3]

Hypertext techniques have been recently developed to control the relationships be­

tween the life-cycle documentation, based on the notion of links and nodes. Ob­

viously, hypertext techniques can be used to manage the test documentation and

its links. However, the current hypertext techniques are not concerned with change

effect on the data and the links. The links which have been created between data

would become insecure after a change to the data. But the current hypertext tech­

niques do not provide an approach to deal with this problem. There have been few

hypertext systems practically available. Moreover, version control is not actually

well-provided in the current hypertext tools.

4. Software Maintenance Environments[section 5.4]

One of the activities that the software maintenance environments should support

is testing changes. To aid this activity, a maintenance environment should be able

to manage the old test data generated or used in the system development as well

as the new test data generated or used in the system maintenance. The history of

the system documents and their relationships should also be managed in a mainte­

nance environment. Unfortunately, few research issues have been found to_address

the above in the software maintenance environments, and currently, the available

software maintenance environments are few.

5. Integrated Software Testing Environments [section 5.5]

It has been recognised that no single testing technique alone can assure a reliable soft­

ware system. The integrated testing environments have been proposed to integrate

a number of diverse testing techniques in order to achieve the software reliability

requirements. TEAM[18] is one of the examples of the integrated testing environ­

ments. There are however, some limitations to T E A M . For instance, although it has

104

been claimed that T E A M can support full life cycle testing and analysis, the mech­

anism for regression testing is not actually provided in T E A M . In addition, T E A M

does not include the ability to control test data versions and their relationships.

6. Test Management Support Techniques[section 5.6]

Test management support tools provide their support for the testing activities in

many ways. Some tools perform the function of test execution coordination. Some

tools provide a controlled environment in which testing can take place. There are also

a number of such tools which aid the test documentation. Assay [72] is a support tool

for regression testing, which is aimed at providing efficient test data management

and execution facilities. It has been developed to use SCM techniques to control

tests(e.g. it provides test cases version control). However, Assay does not provide

the management of links between test data. Unlike these previously developed test

support systems, SEMST emphasizes its support for the whole testing process and

its evolution. It is designed to manage the test data associated with each testing

activity across the software life cycle.

7. SDDB[section 5.7]

The SDDB, developed in R E D O , is a central, shared database in which all the

data relevant to maintenance and their relationships are stored and controlled. The

SDDB belongs to the class of software maintenance environments which have been

designed to provide sophisticated mechanisms for supporting the maintenance ac­

tivities. In comparison with the SDDB, SEMST is proposed as a system developed

within R E D O , which focuses on control and management of the testing process. De­

spite that the SDDB has been described to provide the support for various mainte­

nance activities, it is actually focused on the support for reverse engineering. Regres­

sion testing is a maintenance testing technique used to ensure a reliable maintenance

activity. However, the SDDB has not addressed problem of supporting regression

testing. Therefore, SEMST is to be developed as a testing support environment

which may augment regression testing systems in R E D O , and thus it may be as a

useful part of the REDO environment.

105

5.8.3 Design. Criteria for Prototype SEMST

In association with the requirements for SEMST, this section identifies the design criteria

for the SEMST prototype version.

o SEMST should be built as a database system which includes basic SCM abilities.

o SEMST should be able to load three types of test data, namely specifications, pro­

grams and test cases into its database.

o SEMST should manage the specifications written in a formal or informal language.

o SEMST should manage the test cases derived or used over the entire software life

cycle.

o SEMST should maintain all versions of these three components.

o SEMST should enable the user to retrieve and update these components in the

database.

o SEMST should allow a set of test data to be baselined(i.e. a release).

o SEMST should be able to identify and control the links of test cases with specifica­

tions and programs.

o SEMST should report~the~changes made to these test data.

o SEMST should keep track of the state of links between these data and report insecure

links caused by the changes to these components.

o SEMST should provide the user with information about the affected test cases re­

sulting from the specification and program changes.

o SEMST should allow multiple users.

o SEMST should provide data security control, preventing multiple people from up­

dating the same data item simultaneously.

106

o SEMST should provide a user-friendly interface.

5.9 Summary

In this chapter the tools developed in the area of software engineering have been discussed

from the point view of data control, management and maintenance. Although many cur­

rent software environments claim applicability over the entire software life cycle, their

effectiveness during the testing process can be greatly improved. Actually, the manage­

ment and control information provided for the software testing process is not fully captured

in these environments. Therefore, it is necessary to develop a management environment

to support the testing process. This support environment can then be built within a soft­

ware engineering environment. The analysis of SEMST requirements has indicated the

significance of developing SEMST.

107

Chapter 6

SEMST — A Suipport

Environment for the Management

of Software Testing
Introduction

The SEMST system is aimed at managing the testing-process with SGM support. Gen­

erally, testing management is a broad term which can include management of the testing

process, management of test data and management of the testing organisation and re­

sources. The current SEMST focuses on managing and controlling the test data produced

in the project life cycle. The test data involved in SEMST is the following: specifications,

test cases and programs. In this chapter, the SEMST system is presented by looking at

its properties and design. An example of applying SEMST is also described.

108

6.1 SEMST Capabilities

SEMST supports the management and control of test data (e.g. specifications, test cases

and programs) produced in a project development cycle. Its support covers all levels

of software testing, including unit testing, integration testing, system testing as well as

regression testing.

It possesses the ability to store, retrieve and update all the versions of test cases,

specifications and programs associated with a project. The links between these objects

can be established and controlled. When a modification has been undertaken to one of

these items, the system will provide users with change information so that the items linking

with this changed item should be given attention. In this situation, the current state of

the links between them is defined to be insecure. The system allows multiple users to

access the database and some security checking will take place in order to prevent two

people from updating the same file at the same time.

The overall capabilities of SEMST can be categorised as: loading the data into the

system, maintaining the versions, retrieving and updating the data, managing the links

between the data, and controlling security over the data. The following sections consider

the properties of SEMST in more detail.

6.1.1 Loading Data

There are three categories of data stored in the SEMST database, namely specifications,

test cases and programs. The specifications supported by the SEMST prototype are those

with a style which is rule-based or functionality-based, although specifications written in

other styles are also acceptable to the system. The test cases are usually described in a

variety of formats. In SEMST, the test cases are represented by the description of the

input data, the description of the output data and other relevant attributes. In SEMST,

109

a program is stored together with its attributes. The program's attributes are generated

from a static program analyser, which are usually represented by a number of tables(e.g.

subroutine table, branch table and path table). SEMST provides a connection to a static

program analyser so that the program attribute tables can be loaded into the system. The

data representation in SEMST is presented in section 6.2.3.2.

Two ways have been provided to input the data into the SEMST database. If a data

file already exists in the machine, SEMST is able to convert this file into the database,

when given the complete path name of the file. SEMST also provides a facility to guide

the users to input new data into the system. This means the users can input the data by

following the instructions provided by the system.

6.1.2 Maintaining Versions

This is based on RCS - A Revision Control System [113] [section 2.4] on Unix. SEMST

provides basic version control, history management and configuration management mech­

anisms to maintain all the data stored in the system. SEMST keeps track of any changes

made to a file and controls all versions of the files. Any version of a file can be retrieved

from the system database provided that the version number is given. The latest version

can be retrieved by using the default option.

The first version of a file is numbered 1.1 and successive revisions are numbered 1.2,

1.3, etc. The first field of a revision number is considered as the release number and the

second one the level number. A release is a software deliverable or an end product which

may be baselined [see section 2.2.2]. SEMST supports releases, so for example the user

can define all the latest versions of test cases used for unit testing to be a release, and

users are allowed to retrieve any version of a file from a release. SEMST also allows the

retrieval of a branch version of a file by giving the branch number. Suppose in SEMST a

file version sequence is as follows:

110

1.1—1.2—1.3—2.1—2.2—

A branch occurs when a modification has been undertaken to any version before the

latest version. The first branch starting at 1.3, for example, has a number 1.3.1, and the

revisions on that branch are numbered 1.3.1.1, 1.3.1.2, etc.

6.1.3 Retrieving and Updating

SEMST supports the retrieval of any version of the data from the system database. The

users are allowed to retrieve a test data item by providing the system with the file

name/item's identifier and the version number. The system uses the file name/item's

identifier as a keyword to make a search among the data in the database. If the search is

successful, the system will then check the version number. Thus, the users can obtain the

content of the data item retrieved on the screen as long as the file version related to the

version number exists.

The users can modify the data retrieved from the system. When a change has been

undertaken to a file, the new version of this file must be brought into the system and the

system is supposed to conduct the tasks relevant to the change, which will be described

in the section 6.1.4.4.

6.1.4 Managing Links

In order to allow the traceability between the test data, a link management mechanism

has been provided in the SEMST system.

I l l

0.1.4.1 T h e Link Concept in S E M S T

Links are used to represent the relationships between several objects. The links among

objects can be defined in many ways according to their particular purpose. For instance,

links can be established between data files to indicate the versions. In SEMST, the re­

lationships between test cases, specifications and programs are maintained by creating

links among them. The links are managed on the basis of the identifiers associated with

these components. SEMST requires that each data element be given a name as its iden­

tifier. In SEMST, the relationships between test cases and specifications are represented

by links of the test cases with the parts of the specification1, and the relationships be­

tween test cases and programs are represented by links of test cases with the program's

attributes(e.g. the procedures/functions, the paths, the branchs, and statements etc.).

A link can be given between two elements when either one element is a derivation from

another or one element's execution can cause another to be activated. For example, if a

test case is generated by means of a specification-based testing strategy, there must be

a link between this test case and a part of the specification. When using a test case to

run the program, if the execution fires a part of the specification, we can say that there

are certain links between this test case and the specification. A part of the specification

may have links with several test cases and a test case may have links with several parts of

the specification. Therefore SEMST manages many-to-many relationships. A description

of the links is shown in figure 5, where Si-indicates a part of specification, Pi indicates-a

procedure/function in a program, and Ti indicates a set of test cases.

6.1.4.2 Links Establishment

In SEMST, the links are established while the test cases are entered into the system. Each

test case in the system also contains two pointer elements which are used to point to the

'The term 'part of the specification' is used to represent any subset of the specification which can be
tested, such as a rule or a functionality described in the specification.

112

part of the specification and the part of the program linked with the test case. The links

are represented by the item identifiers. If a test case has a link with a rule identified as

rulel, the users need to type in rulel when creating the link.

P I P2 Sn Pn P3 S2

DM

T2 T3 Tn

E> Links

o Insecure Links

A Data F i l e

Figure 5. I n t e r n a l S t r u c t u r e of the SEMST Database

6.1.4.3 Enquiry

SEMST allows the users to make an enquiry about links among the data in the system.

When such an enquiry is made, the system provides the corresponding link information on

the screen. With this mechanism, the users are able to know the current state of the links

created between the data in the system. To operate this function, the users are asked to

give the identifiers of the items whose link states are required.

113

6.1.4.4 Insecure Links

When an update has been conducted to a part of the specification or program, the links

of the test cases with that part of the specification and program have become insecure.

In order to keep the links among the data in the system up to date, SEMST provides a

mechanism to control and manage these insecure links. The users can be made aware of

which parts of the specification or program have been changed; which links have become

insecure; and which test cases have been affected by the change. The insecure links can

be changed to secure by modifying them.

6.1.5 Controlling Security

An attempt to update the same file by two persons at the same time is a dangerous activity,

and will cause unexpected results. For example, suppose two people retrieve revision 2.4

of a file at the same time and modify it. Person A deposits his revision first, and person

B somewhat later. Unfortunately, person B knows nothing about A's changes, so the

effect is that A's changes are "undone" by B's deposit. A's changes are not lost since

all revisions are saved, but they are confined to a single revision. SEMST prevents this

conflict by locking. When a user wants to retrieve a revision from the system, the system

will checkjt ojit__and lock.it so that the second user cannot retrieve the same file before

a new revision of the file has been saved into the system. This function is also based on

RCS.

114

6.2 System Architect me

6.2.1 Overview Of the System

SEMST is built on top of UNIX and RCS on a Sun workstation and has the abilities

described in the previous sections. On the other hand, SEMST is designed as an integrated

tool including interfaces with a test case generator, static program analyser, and regression

testing tool etc.. Figure 6. shows an overview of the SEMST environment.

6.2.2 Functional Structure

SEMST provides its functionalities through four major components: system monitor, spec­

ification management segment, program management segment and test case management

segment, which operate on the SEMST database. The functional structure of SEMST is

shown in figure 7.

115

Specification

wmmJm^
Test C&se
^e&er&tor

Source
Program

S t a t i c

Regression
T e s t i n g

F i g u r e 6. SEMST Environment Overview

The System Monitor

The S p e c i f i c a t i o n s
Segment

The Programs Segment The Test Cases
Segment

SEMST
DataBase

F i g u r e 7 . SEMST System F u n c t i o n a l A r c h i t e c t u r e
116

The system monitor is responsible for controlling the whole system. Its functions

include receiving and analysing the user commands selected from the system menu, and

invoking the subsystem corresponding to the user command.

The specification management segment is used to control the user's access to program

specifications. It involves several functions, such as aiding the user inputing a specifi­

cation; retrieving or updating all versions of the specifications; and providing link state

information.

The program management segment has the responsibility for controlling and managing

the source code to be tested. The tasks include editing, storing, retrieving and updating

all versions of a program file. It has been designed to include an interface with a static

analyser and a mechanism to load the program static attributes tables into the system

database. The purpose of these functions is to provide the data information to support

the management of test cases used for program-based testing.

The test case management segment takes charge of controlling and managing all the

activities with test cases. It provides the mechanisms to assist the user to input and

update the test cases, to store the test cases into the system database, and to retrieve all

versions of the test cases from the system database. It manages the links of test cases

with specifications and programs.

From the above descriptions, five general functional areas associated with each segment

can be categorised as follows:

© input process. This is concerned with actual inputs of the system (i.e. the input of

specifications, test cases and programs).

o output process. This involves the output from the system. The system outputs are

mainly a history of a test case/specification/program, link information and change

information.

117

o data maintenance. This is relevant to the storage, update and retrieval of all versions

of the data.

o linkage management. This involves establishing and controlling the links of test cases

with specifications and programs.

o security control. This involves the control over the security of the data stored in the

system database.

6.2.3 System Database

Whenever a new project enters into SEMST, the system creates three different directories,

in each of which relevant type of the data associated with the project will be stored. The

system database is built on the Unix file system.

6.2.3.1 Data Model

SEMST can be considered as an object-oriented database which supports an Entity-

Relation-Attributes data model. It provides structural object-orientation concepts for the

direct representation of real world entities with their complex structure. The objects in the

database are the data files (specifications, test cases and programs) which are treated as

entities with attributes and relationships. At the lowest level, this model is implemented

as a collection of directories with each data class mapped onto a Unix directory. An object,

which is an instance of a data class, is then implemented as a file within the directory.

When on-line, objects are held as C structures. However, to store them in the database,

each object is output into a separate file. The database has two primitive interface func­

tions for this purpose; one for reading objects from and one for writing objects to the

database. To do this the functions must access the description of the appropriate C struc­

ture definition from a library of object descriptions. The data model is therefore easily

118

extended because all that is needed for the addition of an object to the data model is

simply the creation of a new description in the object description library.

8.2.3.2 Data Representation

The format of specifications used in SEMST is shown in figure 8, in which the Rule/Functionality

Identifier is an identifier used to identify each rule/functionality described in a specifica­

tion file, and the Rule/Functionality Description is a context describing the contents of

rule/functionality corresponding to the identifier.

Rule/Functionality Identifier Rule/Functionality Description

Figure 8. Logical Structure of a rule/functionality description in SEMST

There is a literal definition of the test case [81] that states a test case must consist of

two components: a description of the input data and a description of the output for that

set of input. The representation of test cases in SEMST is an adaptation of this definition

which is shown in figure 9, where, the Identifier is used to identify a test case, the Inputs

is the description of input data and the Outputs is the description of expected_output, the

Strategy-base is used to represent the testing strategies(known as Specification-based or

Program-based) on which the test case is constructed, the Link with P is a pointer used

to point to the part of the programs linked with the test case and the Link with 5 is a

119

pointer used to point to the paxt of the specifications to which the test case is relevant.

Identifier Inputs Expected Outputs Strategy_base Link with P Link with S

Figure 9. Logical Structure off a test case in SEMST

The program attribute tables in SEMST are the same format as those tables in a static

program analyser. This analyser should be able to produce the module, path, branch and

statement tables associated with a program. Generally, a module table consists of an

identifier of a procedure or function (normally the name of procedure or function is used)

and a statement number indicating the place of the module in the system. A branch table

should contain a branch number used as an identifier of the branch and a description of

the branch (normally the numbers of statement sequence are used). It is the same idea

for the format of the path table and statement table.

The object descriptions stored in the library are shown below:

typedef s t r u c t s p e c _ f i l e

{

char r u l e _ i d e n t [1 5] ;

char rule_content[15];

s t r u c t s p e c . f i l e * next;

} SF, *PSF;

typedef s t r u c t spec.management

{

char filename[16];

120

char rula_ i d e n t [1 5] ;

char secure_mark[3];

s t r u c t specmanagament * next;

} SMT, *PSMT;

typedef s t r u c t T e s t _ C a s e _ f i l e

•C

char TC_ident[15];

char input_data[15];

char expected.output[15];

char TC_strategy[3];

char P _ l i n k [2 0] ;

char S _ l i n k [2 0] ;

char TC_type[3];

s t r u c t T e s t _ C a s e _ f i l e *next;

} TCF, *PTCF;

typedef s t r u c t Test„Case.jnanagement

{

char filename[16];

char TC_ident[15];

char secure_mark[3];

s t r u c t Test.Case.management *next

} TCMT, *PTCMT;

typedef s t r u c t program.name.management

{

char filename[16];

char proc_func_name[15];

121

char secure_mark[3];

s t r u c t program=name_management *next;

} PMMT, *PTPMNT;

typedef s t r u c t t e s t c a s e

•C

char i d e n t [1 5] ;

s t r u c t t e s t c a s e *next;

} TC,*PTC

typedef s t r u c t l i n k s

•C

char l i n k [1 5] ;

s t r u c t l i n k s *next;

} LINK, *PLINK;

PSF psf.head, p s f _ t a i l ;

PSMT psmt.head, psmt_tail,pro_psmt;

PTCF ptcf.head, p t c f . t a i l ;

PTCMT ptcmt„head, p t c m t . t a i l ;

PTPMT prant J i e a d , „pmnt_tail;

PTC ptc_head;

6.3 User Interface

SEMST is an interactive system. A menu is provided to the users to operate the system.

There are two kinds of menus in SEMST. The system menu (or main menu), indicated in

figure 10, is used to guide the users into the subsystem; and the subsystem menu is used

122

to list the functions of each subsystem from which the users can select an appropriate

function. SEMST contains three subsystems, namely the specification segment, the test

case segment and the program segment, each of which includes the same function menu

shown in figure 11. To use SEMST, the users do not need to learn any new command

languages.

1) To manipulate the s p e c i f i c a t i o n s

2) To manipulate the programs

3) To manipulate the t e s t c a s e s

F i g u r e 1 0 . The System Menu

Input/Add: (I)
R etrieve/Update: (U)
L i n k s Enquiry: (L)
Secure Enquiry: (S)
D i r e c t o r y : (D)
Q u i t : (Q>

F i g u r e 1 1 . The Subsystem Menu

123

6.4 An Example

SEMST has been implemented as a prototype system to examine its utility in an industrial

environment, it has been used to manage the testing documentation associated with part

of a Tunnel-Control system developed by Marconi Command and Control System in 1985.

The System Functional Specification in the Tunnel-Control project is referred to as an

example of a rule-based specification which is composed of a set of rule descriptions, and

the Test Case Specification document in the Tunnel-Control project is referred to as an

example of the test cases relevant to the rule-based specification. This section illustrates

several outputs from the SEMST. Appendix A describes the use of SEMST in more detail.

Suppose that the specification document, consisting of a set of rule descriptions iden-

tifiered as ruleO, rulel, rule2, rulen and the test case document, consisting of a set

of descriptions of the test cases identified as testOO, testOl, test02, testmn have been

loaded and stored in the SEMST database.

The Retrieve/Update function in the specification subsystem of SEMST provides the

user with the ability to retrieve or update a rule/functionality specified in the specification.

Figure 12 shows a rule description retrieved from the system database. The description

of the rule is identified as "rule5w, and its file name is "d_rule5".

The Link Enquiry function in the specification subsystem of SEMST helps the users

to obtain the information about the linkage of specification with test cases. Figure 13

illustrates what test cases are linked with "rulel", "rule2", "rule3", "rule4", "rule8", and

"rule9".

124

RULE/FUNCTIONAL
FILENAME OF THE

I TV DESCRIPTION: r u l e 5 ; (The L a t e s t U e r s i o n)
DESCRIPTION. d_ r u l e 5

KEV SVSTEM EQUIPMENT SIGNRL <SDD) HI LO STATUS

K i l f , S i t e _ X , Uenti I a t ion, Depo t JCon tro I , On, Off, i T r u e) ;
KiUhen, S i t e _ X , Uenti l a t i o n , RutoJControl, Off, x, i F a l s e) ;
K i T h e n , S i t e _ X , Uenti l a t i o n , flu to JCon tro I , Off, x, i F a l s e) ;
K i f l l s o , S i t e _ X , U e n t i l a t i o n , O v e r r i d e _ F a c i I i t y , Barred, Normal, LOJHI);

I
Update i t ? <yes or no):Q

3 q

Figure 1 2. The Display Of a Retrieved Rule Description

SEBDSTI
R u l e / F u n c t i o n a l i ty I denti f i e r : r u l e 9
R u l e / F u n c t i o n a l i t y I d e n t i f i e r : .

r u l e l no l i n k s with twe t e s t c a s e s

R u l e / F u n c t i o n a l i t y r u l e 2 has the l i n k s with the f o l l o w i n g t e s t c a s e s : t e s t 0 2 t e s
t04

R u l e / F u n c t i o n a l i t y r u l e 3 has the l i n k s with the f o l l o w i n g t e s t c a s e s : t e s t 0 2

R u l e / F u n c t i o n a l i t y r u l e 4 has the l i n k s with the f o l l o w i n g t e s t c a s e s : t e s t O I t e s
t03

r u l e 8 no l i n k s with the t e s t c a s e s .

R u l e / F u n c t i o n a l i t y r u l e 9 has the l i n k s with the f o l l o w i n g t e s t c a s e s : t e s t 0 2 tesP*1

t03 t e s t 0 4
0
0

Figure 13. Links Between the Rules and the test cases
125

The Secure Enquiry function in the specification subsystem of SEMST provides the

user with the information about what rule/functionality described in the specification has

been changed and what links have become insecure due to the change. Figure 14 indicates

that the "rule3", "rule5", and "rule7" are modified so that the links of these rules with

test cases may be insecure. Insecure links can become secure after proper changes to them.

Similar to the functions provided in the specification subsystem of SEMST, the test

case subsystem also provides the functions to retrieve or update a test case record in the

system database, and to make the enquiries about the links and change information.

Figure 15 shows a retrieved test case record whose identifier is tttest04". The first five

lines in the figure shows the attributes of test case record "test04". After that it is a

display of the contents of the input data file and expected output file.

Figure 16 shows the links of "testOl", "test02" and "test04" with the specification and

the program.

Figure 17 indicates the insecure links of the test cases with the rules in the specification.

126

SEff lSTI
The fo l l o w i n g r u l e / f u n c t i o n a l i t y d e s c r i p t i o n s used to be modified,
r u l e 3 r u l e 5 r u l e ?

The l i n k s of the f o l l o w i n g t e s t c a s e s may be insecure:

TE
te
D

TEST CASE LINK WITH SPECIFICATION LINK WITH PROGRAM
testOI r u l e 4 r u l e 5 r u l e 6 SensorJCheck

01 l ^ t
Figure 14 . An Example of the Secure links Checking in
the Specification Segment

SE01ST!
TEST CASE test04 ; (The L a t e s t U e r s i o n) J O
FILENAME OF INPUT DATA: t e s t 0 4 _ i n p u t
FILENAME OF EXPECTED OUTPUT DATA: test04^output
TESTING STAATEGIES BASED: s p e c i f i c a t i o n _ b a s e d (b I a c k box)
LINKS WITH THE (RULES)SPECIFI CAT I ON: ruleO r u l e 2 r u l e 11 r u l e 9
LINKS WITH THE PROGRAMS:

THE INPUT DATA SHOWN BELOW
E x i t Transmissionmeter:
T e s t Ualue (m) One S t a t e s Zero S t a t e s

1) 395 12.11/A
9.05/fl

2) 605 " 12.11/R
3) 315 12.11/A 9.05/A

9.05/fl

51
Figure 15 . The Display of a Retrieved Te3t Case Record

127

S E d S T l
T h i s subsystem p r o v i d e s you the information about the linkage of t e s t c a s e s (with
the r u l e s / f u n c t i o n a l i t i e s in s p e c i f i c a t i o n and the program a t t r i b u t e s .

There a r e the f o l l o w i n g t e s t c a s e r e c o r d s in the system

test O I t@st02 t e s t 0 3 t e s t 0 4

P l e a s e input the IDENTIFIERS of the t e s t case you a r e i n t e r e s t e d , end with a

Tes t Case I d e n t i f i e r : t e s t O I
T e s t C a s e I d e n t i f i e r : t e s t 0 2
Tes t Case I den t i f i e r : t e s t04
T e s t Case I d e n t i f i e r : .
TEST CASE LINK WITH SPEC IFI CAT I ON
testOI r u l e 4 r u l e 5 r u l e 6
t e s t 0 2 r u l e 2 r u l e 3 r u l e 9 rule11
t e s t 0 4 ruleO r u l e 2 r u l e l l r u l e 9
D

LINK WITH PROGRAM
Sensor JCheck
ProcedureO1
None

Figure 16 . Links Between The Test Cases and the Rules

S E M S T !
T e s t Case Subsystem:

Input/Add : <I>
Retrieve/Update: < U>
L i n k s Enquiry: (L>
Secure Enquiry: CS)
D i r e c t o r y : CD)
Quit: <Q>
Pl e a s e choose one fu n c t i o n :S

The r i n k s of the fol l o w i n g t e s t c a s e s may be insecure:

TEST CASE LINK WITH SPECIFICATION LINK WITH PROGRAM
testOI r u l e 4 r u l e 5 r u l e 6 Sensor JCheck
D I II

•
s ids

Figure 17 . An Example of the Secure Links Checking in
The Test Case Segment

128

(5.5 The Design off SEMST

SEMST is designed as a database environment which manages and maintains test data

in the project life cycle. Section 6.2, the section on the system architecture, has been de­

voted to describing how the prototype SEMST has been designed to achieve its functional

requirements. This section is used to clarify and complement several points about the

design of the SEMST system.

6.5.1 The System Functional Structure

From functional structure point of view, the SEMST system consists of five major parts

which have been shown in figure 7:

1. the system monitor;

2. the specifications segment;

3. the programs segment;

4. the test cases segment; and

.5. the SEMST database.

The system monitor acts as a main control program in the SEMST system, whose major

functions are:

o to analyse the user commands and call the relevant subsystems;

o to create a new database(i.e. new directory) for a new project user; and

o to save the system information into the database before exiting SEMST system.

129

The above three segments are the subsystems of SEMST, and each of them is functionally

independent of the other. The SEMST database is designed as a central repository where

the test data and the analysed information are stored, and shared by these subsystems. It

is the common data area on which the independent subsystems are able to communicate

with each other.

6.5.2 The SEMST Database

The Database Model

As described in section 6.2.3, the SEMST can be thought of as an object-oriented database

management system. The specifications, test cases and programs used in the real world

are represented using the Entity-Relation-Attribute data model and stored as the files

with data records in the SEMST database. The objects in the SEMST database are files,

namely specification files, test case files and program filesfsee section 6.2.3.1].

SEMST
DATABASE

P R O J E C T 1 P R O J E C T ^ 2 P R O J E C T 3 P R O J E C

Z X X •
F i g u r e 18. The S t r u c t u r e of SEMST Database

130

The Database Structure

Since SEMST is implemented in the UNIX environment, its structure is tailored to the

Unix file system which is a hierarchical architecture. As shown in Figure 18, the SEMST

database directory can be separated into a number of subdirectories in terms of the project

users. Each project directory comprises three data areas: specification area(i.e. the "S" in

figure 18), test case orec(i.e. the "T" in figure 18); and program area(\.e. the "P" in figure

18). In these three areas, the data are maintained under RCS control(e.g. all versions of the

test cases are stored in area "T"). In addition, each of these areas comprises a management

table, whose purpose is to register each of the new data items loaded into the database

(e.g. in area "T", a test-cases management table(TCMT) is stored to record every name

of the new test case record or test case file 2) . The management tables mentioned above

are main data structures in SEMST, based on which the system is manipulated.

6.5.3 The Links in SEMST

SEMST manages the links between test data based on the identifiers associated with each

test data item. SEMST requires that each test data item be given a name as its identifier.

For instance, a rule/functionality specified in the specification must have a name, and

this name will be contained in the test case records if these test cases are based on such

rule/functionality. The links are established when the test cases are entered into the

SEMST database. The links can be changed when the test cases are modified.

Guide [11] is a hypertext tool available in the Unix on the Sun workstations. However,

link management is poor in Guide, and it is unsuitable for satisfying the SEMST functional

requirements. It is unrealistic to develop a hypertext system for managing the links within

the time constraints of this project. For these reasons, the prototype version of SEMST

3 A test case file stores a set of test case records, and each test case record is identified by a test case
name. See Appendix A for more details.

131

uses the identifiers concept as a case study of managing the links.

<B.6 Tine SEMST Properties

The capabilities of the prototype version of SEMST have been described in section 6.1.

This section firstly summarises the results that SEMST has achieved, and then gives a

further description of applying SEMST to a real project - the Tunnel Control System,

which has been presented in section 6.4.

6.6.1 Highl ights of the SEMST Achievements

1. Loading Data. SEMST consists of a mechanism for helping the user input the test

data into its database. The user can be guided by the SEMST system instructions

to input the data. The vi screen editor is provided for inputing and editing the new

data files. If the data files are already in the machine, SEMST can convert these

files into its database.

2. Maintaining Versions and Releases. SEMST keeps track of the changes to the

files and maintains all versions of the files in its database. Given this version history,

four vital questions can be answered: _

o what changes were made,

o who made the changes,

o when were the changes made, and

o why were the changes made.

SEMST allows the user to define the releases in order to baseline a number of versions

of test data.

132

3. Retrieving amid Updating. The user is allowed to retrieve any version of the data

files from the SEMST database and to update the data information in the SEMST

system. In SEMST, the links between the test data can also be updated. The reasons

for providing this functionality are the following:

o The previous links established between the data may be wrong.

o When a new function is added to the specification or program, there may be a

new link that should be created between the added function and the previous

test cases.

o When a modification has been made to a part of the specifications or programs,

the current links of test cases with the modified specification or program have

become insecure. A change of the insecure links may have the effect of changing

these links back to secure.

4. Managing Links. The links of test cases with specifications and programs are

controlled and maintained in association with each version of these components.

SEMST provides the user with information about the insecure links resulting from

the changes to the specification or program. Prom this information, the user can

become aware of the affected test cases because of specification or program changes.

After a modification is made to the insecure links, SEMST can change the links to

secure status automatically.

5. Controlling Data Security. SEMST prevents multiple users from updating the

same file simultaneously. When a user has retrieved a file from the system, this file

is then locked by SEMST to stop the second user retrieving it again until the first

user's task is finished.

133

®.©.2 Appl ica t ion off SEMST To the Real Projec t System

The prototype version of SEMST has been used to manage the test documents in the

Tunnel-Control system3. A demonstration of such application has been presented in sec­

tion 6.4. This section is intended to give a more detailed explanation about the use of

SEMST with the Tunnel-Control System.

Relevant Features of the Tunnel-Control system

The following illustrates some relevant features of the Tunnel-Control system, which should

be considered when applying SEMST to it :

o the System Specifications in the Tunnel-Control system are rule-based, and written

in a Pascal-like language,

o the test cases specified in the Test Case Specifications in the Tunnel-Control system

are functional test cases.

o the outputs from the execution of the system may be the inputs to the next execution

of the system. Therefore, the test cases have been selected from part of the system's

outputs.

The SEMST Approach

SEMST is able to handle the above features associated with the Tunnel-Control system,

by doing the following:

o defining an identifier for each rule described in the System Specification,

3The Tunnel-Control System is a real-time system for controlling and managing the various conditions
in a road Tunnel. The system was developed by Marconi Command and Control System.

134

o defining an identifier for each test case specified in the Test Case Specification,

o defining an identifier for each test case selected from part of the system's outputs,

o defining a file for each set of the relevant test cases(e.g. all the test cases used for

testing ventilation function should be put in one file),

o defining a file for the test cases selected from the part of system execution outputs,

o if a test case is used to test a rule specified in the System Specification, there is then

a link between this test case and rule,

o if the execution of a test case traverses a part of the program(e.g. some branches in

a program module), there is then a link between such test case and part of program.

Figure 12 has shown a retrieved rule specification from the SEMST database, whose

identifier is "rule5" and filename is "d_rule5".

Figure 15 has shown a retrieved test case from the SEMST database. The first six

lines in the figure are the header of this test case, which list: the name of this test

case(i.e. Mte8t04"); the name of its input data file (i.e. "test04_input"); the name of its

expectedjoutput file(i.e. "testCM-output"); the testing strategy it is based on(i.e. "speci-

fication_based"); its links with specification(i.e. the rules("ruleO", "rule2'', "rulel l" and

"rule9") linking with it) and its links with programs(this test case has no link with the

programs). The test case record displayed in figure 15 is incomplete. The user can see the

complete test case by typing "return".

Figure 14 has shown that due to the change of "rule3", "rule5" and "rule7" the links of

test case "testOl" with the 8pecincation("rule4", "rule5" and "rule6") and the program(

the Sensor.Check subroutine) have become insecure. Hence, the test case "testOl" is the

affected by the specification changes.

Other figures have been explained in section 6.4.

135

(B.f Testiimg SEMST

The development process of the SEMST system has passed phases of analysis, specification,

design, implementation and testing. Each of these phases has produced the appropriate

documents. This section describes how the SEMST system has been tested during its

development.

0.7.1 Review development Documents

In the phases of requirement analysis, functional specification and design of the SEMST

system development, a review was used as the testing method to examine the development

deliverables/documents. The development documents were reviewed to be correct with

respect to the system requirements.

6.7.2 U n i t / M o d u l e Testing

During the implementation of SEMST, each module in the system was tested first. The

test cases chosen for testing the modules were based on both functional/specification-

based and structural/program-based testing strategies. Therefore each module was tested

functionally and structurally. The objective of unit testing was to ensure that each module

in the SEMST system satisfied its design requirements.

6.7.3 Integrat ion/Subsystem Testing

After the module testing, the qualified modules were integrated into the subsystems of

SEMST. When testing the subsystems, the test cases were selected mainly for checking

136

the interfaces between modules and examining the functionalities of each subsystem. The

subsystems were tested against the subsystem design.

0.7.4 System Testing

During system testing, interfaces between the subsystems of SEMST were checked, and

the communication between the subsystems on the basis of the SEMST database were

examined. The test documents associated with the Tunnel-Control system were used as

the test cases for system testing SESMT. The results of the system testing indicated that

the prototype SEMST satisfied its functional requirements.

137

Assessment amid Cojmckasion

Introduction

This chapter concludes the dissertation by presenting a review of the SEMST system.

Three sections are included in the chapter. Section 7.1 presents an assessment of the

prototype version of SEMST and also discusses the future research and development di­

rections. Section 7.2 gives an overview of-the major topics addressed in the dissertation.

A summary of this dissertation is included in the last section.

138

7.1 Assegsmiiiemt of SEMST amd Fotere Work

SEMST is one kind of data management system used for supporting the testing process. It

has the following important features which distinguish it from similar testing management

tools.

o Storage, retrieval and update of the specifications, programs, and test cases.

o Maintenance of the versions of these components

o Baseline of a number of these component versions.

o Management of the relationships among these components.

o Traceability after a modification is made to one of the items.

At present, SEMST is a prototype version consisting of 2,500 lines of C code. As a

prototype, it inevitably has some limitations such as the length of a file name is limited to

15 letters and a non-text file cannot be updated in SEMST. Possible extensions to SEMST

have been considered and are described below:

o Firstly, the support for complex interrelationships among the data should be ex­

tended in SEMST. At the moment SEMSTxan only support the management of the

relationships of test cases with specifications and programs.

o Secondly, the present SEMST prototype uses its own file formats and is not actually

able to share or interchange data with other life cycle tools, although i t is required

and designed to be able to do so. Therefore, in the future an interface model should

be explored to furnish an integrated environment.

o Thirdly, RCS provides the configuration management support by defining a config­

uration as a set of revisions and checking the revisions out according to a certain

139

criterion. The criteria include the default (the latest version), the release-based (a

release or a branch number), the author-based and state (author name or state at­

tribute), the date-based (the date), and the name-based (the symbolic name). The

SEMST prototype adopts the first two as the criteria used for retrieving a version of

a file. Later development of SEMST should add the rest of the aspects in improving

the configuration management.

o Fourthly, to improve the configuration management support, SEMST should also

provide a facility to prevent the released items in the system database from being

casually modified.

o Fifthly, the programs and their attributes in SEMST are designed to be well format­

ted, and language-independent. However, this can be achieved only when a generic

static program analyser is provided. Since there is neither a generic static program

analyser nor a specific language static analyser implemented on the Sun workstation,

the features of storage of program's attributes and the management of the linkage

of test case with program attributes remains undeveloped in the prototype version

of SEMST.

o Finally, future work is also needed to provide a U6er-friendly interface in SEMST

such as windows and graphics.

7.1.1 Fur ther Review of the SEMST System

This section is used to present a further analysis and evaluation of the SEMST system

based on a comparison of SEMST with some other existing database systems.

140

7.1.1.1 Advantages off SEMST

The key concept in the SEMST system is its attempt to apply SCM techniques to the

testing process and to provide traceability between test data(e.g. the specifications, test

cases and programs) across the system life cycle. One important, distinguishing feature

of SEMST is its ability to support the retesting process which is performed in association

with the evolution of software system. In summary, the SEMST system would be beneficial

to the testing process in the following:

o A way of computer-aided test data management is provided;

o All versions of the data items can be maintained, so that the details of change to

each test data item(e.g. when and what the changes are made) can be recorded;

o The baseline for a set of test data items can be denned and managed;

o The links between test data can be controlled(e.g. creating, enquiring and modifying

the links);

o By managing the links, the following can be identified:

— derived data items to their sources;

— activated parts by the execution of data items; and

— change effect on the data items and their links (e.g. the affected parts by

the change, and the links possibly no longer valid between the changed data

items(i.e the insecure links)).

o The modification of links has the advantage of keeping the state of data relationships

up to date.

o By locking a retrieved file from the system, the shared data and simultaneous update

problems[section 2.1.3] may be solved.

141

Many existing database systems claim their cooperation with a hypertext system, so

that the relationships between the life-cycle data can be managed. In contrast to SEMST,

however, the current hypertext systems do not involve the identification of change effect

on the data and the relationships between the data. There is no mechanism provided in a

hypertext system to manage the insecure links which could possibly result from the data

modifications. Moreover, the current hypertext systems have not addressed the question

of ensuring the reliability of the links established in their systems. Hence, few of these

database systems are sufficient for supporting the evolution of software and the revalidation

process.

7.1.1.2 Limitations of SEMST

The limitations of the current version of SEMST have been identified as follows:

o The support for configuration management in SEMST is only based on the facilities

provided in RCS, and therefore SEMST has the limitations which exist in RCS. For

example, RCS does not provide a mechanism to prevent a released(baselined) data

item from being randomly modified. But according to SCM discipline, any baselined

data items should not be modified unless it has been agreed by the board of SCM.

o It is not actually able to communicate with other life-cycle tools.

o It does not provide control for all possible links between the specifications, the test

cases and the programs;

o In comparison with the hypertext systems, SEMST does not support for non-linear

data relationships control(which is provided in the hypertext systems). On the other

hand, the hypertext systems are designed to manage a wider range of data, including

the storage of graphic, audio and video data applications. However, SEMST has only

considered the support for text data. RCS has the same problem.

142

o The current SEMST uses the concept of an identifier to manage the links between the

data items. However, this approach may be less effective than the approach provided

in the hypertext systems. In the hypertext systems, a graph concept is used to deal

with the relationships between data components. The graph is a collection of the

nodes and the links, and each node and link(i.e. the edge between the nodes) in the

graph are given a name. The users are allowed to traverse the nodes and links on

the graph. A graphic representation of data and relationships is usually much easier

to understand than other forms of data output.

o The current version of SEMST has not provided a systematic approach to ensure

that the links(original or changed) created between the data are accurate to reflect

the data relationships, although it provides certain assistant mechanisms to allow

the users to check the created links and to update the links.

o The current SEMST system does not name the links, so that the kind of relationships

existing between the linked data are not clear.

o As a prototype, it is ineffective for a large amount of test data. For instance, the

output information on the computer screen will become messy when there are a lot of

the information. There is no printed data output provided in the SEMST prototype.

o The present SEMST system is weak in query operations compared to other database

management systems(e.g relational database).

o SEMST needs to improve its user interface.

7.1.2 Lessons Learnt F rom the Research

The following presents a summary of what has been learnt from doing this research project.

o The View of Software Testing. Software testing has evolved from being viewed

as a follow on activity after the coding to being viewed as a continuous activity

143

performed in each phase of the software life cycle. Recently, the formal transforma­

tion process has been accepted as a software development process mo del [104], which

is intended to support the generation of correct programs from the specifications.

However, this model still stays at a theoretical level and is unlikely to be used in

practice in the near future. Therefore, at the present stage, testing is still widely

believed to be a pragmatic verification and validation mechanism for ensuring a high

quality software production. The testing process has been represented using a test

life cycle model which is embedded within the whole software life cycle[section 3.2].

o The Application! of SCM to Testing. SCM, as a software engineering discipline,

is concerned with the management and control of the evolution of software system.

The testing process is associated with the evolution of software system. This could

be understood from the following. Firstly, when a software error is found by a testing

activity, a modification of the specification or program or both will occur. On the

other hand, after the change to the specifications or programs, a relevant testing

activity will require to take place in order to ensure the changed system is correct

with respect to its requirements. Furthermore, the test data components have close

relationships between each other; a change of one component could affect the validity

of other relevant components. Finally, the revalidation of changes is a major task

in software maintenance. It requires the reselection of test cases and the update of

the previous test plan. Because of the above features, the testing process should be

subject to the control of SCM. Of the SCM methods, change control, version control

and record-keeping/traceability are relevant to the management of test data [section

4.4].

o The Development of SEMST. The application of SCM to testing deserves in­

dividual emphasis, but it has been overlooked in past years. In this research, the

SEMST system has been designed and developed as a practical model of combining

the testing process with SCM methods. The application of SEMST would augment

current testing or maintenance support environments in a way that supports the

testing activities associated with software changes. Little such help has been given

144

in previously developed database systems. Hence, the development of SEMST is

significant, although the present version of SEMST has some weakness.

o The Way of Doing Research. Undertaking a research project is also a vehicle

for learning the way of doing research. Generally, a research project involves the

activities of investigation, analysis, design, implementation and evaluation. From

doing this research, especially by rewriting the original version of the dissertation, the

lesson has been particularly learnt in how to sensibly conduct analysis and evaluation

of a research deliverable. It has been realised that without an appropriate analysis,

the research will not lead to progress.

7.2 Overview off the Major Topics off the Dissertation

This dissertation has presented a description of research undertaken on the topic of soft­

ware testing management.

The background and purpose of this research have been introduced in the first chapter.

The research approach involves the investigation of software configuration management

methods and its application to the testing process; the study of software testing techniques

and methods; the exploration of the significance of software testing management; the

survey of related work in the past; and the development of a new environment - SEMST.

In the dissertation, software testing has been viewed as the continuous activity and

task of planning, designing and constructing tests, and of using those tests to assess and

evaluate the quality of work performed at each stage of the software development life cycle.

The dissertation has concluded that software configuration management is the com­

plete mechanism for controlling and recording the status of all deliverables, their relation­

ships and their changes. In practice, it is difficult to construct a cost-effective and usable

145

software system without a good system of configuration management in place. All soft­

ware items concerned with software testing should be subject to configuration management

control.

The dissertation has discussed software testing methods and techniques based on the

classification of testing into specification-based and program-based testing. It has con­

cluded that these two testing strategies are basically complementary approaches to soft­

ware testing; one of them can not be used to replace the other.

The dissertation has given a description of testing in the software life cycle and an

emphasis on the early test planning. It has also addressed the needs for the management

of software testing by discussing three major problems associated with software testing:

o difficulties in early planning for testing;

o large amount of data produced during the testing process; and

o testing software changes.

The dissertation has pointed out that the support of software configuration management

will help to solve the above problems.

The examples of other existing systems described in this dissertation indicate that

many environments provide certain management assistance but few of them provide enough

information to enable the management of the testing process.

SEMST, a support environment for the management of software testing, has been

described in the dissertation as a practical model resulting from the research.

A number of shortcomings of the current version of SEMST have been discussed which

are considered as the future development directions.

146

7.3 Seminary of the Dissertation

This dissertation has been devoted to addressing a significant issue namely to apply soft­

ware configuration management methods to the testing process. The SEMST system

presented in this dissertation is an implementation of managing the testing process with

SCM support. It is believed that the application of SEMST will enhance the scope of

software testing environments with respect to control and management of testing changes.

However, the current SEMST is a prototype and many improvements are needed.

In summary, the design of integrated testing support environments that covers a full

spectrum of management activities in an integrated manner will need further attention

before they become reality for practical use. The support environments need to take into

account not only the management of test data, like the features of the current SEMST, but

also other management activities(e.g. test resources management, test plan and schedule

management). The support environments should also provide facilities for reflecting both

the evolutionary nature of the software development^.e. change to software component,

software system structure and process, plans and schedules, etc.) and the relevant testing

activities associated with such evolutionary features.

The dissertation is now concluded with the wish that one day more advanced solutions,

techniques and tools would be explored to solve the problem area that this dissertation

has considered.

147

Appendix A

How to us® SEMST

SEMST helps the users to maintain all the versions of specifications, test cases and pro­

grams associated with a particular project, as well as to manage the relationships among

these components. The characteristics of SEMST are described in the main body of this

dissertation. This section focus on explaining the procedures to use SEMST. In this

section, the examples used to illustrate a rule-based specification and the test case de­

scriptions are from the Tunnel Control project documents developed by Marconi Limited

in 1985.

148

A o l Emteir the System

The format of the command for entering SEMST is as follows:

% semst ProjectName

Suppose a user wants to use SEMST to manage the project entitled Tunnel-Control,

then the user should type "semst Tunnel-Control". For a new project which has not

previously been entered into SEMST, the system will create three new directories for

storing the data associated with this new project. To do this, the system will ask the

users if they are sure they want to create a new project in SEMST and the user should

answer ttyes"(user can simply type 'y')> otherwise it will quit from SEMST.

A.2 Manipulating the STubsystems

To operate the functions of the subsystem the user selects a number relevant to the sub­

system in the main menu. For instance, if the users want to operate the functions in the

test case subsystem, the users should type "3" after the SEMST prompt.

Each subsystem has the functions listed in the menu shown in figure 11, where:

o the I n p u t / A d d is the function for loading the data (e.g. descriptions of specifica­

tions and test cases) into the SEMST database, including the input of a new file and

addition of new data items to an existing file. When a new project is entered into

the SEMST, this function should be selected first;

o the Retrieve/Update is the functions that perform the retrieval of any version of

data items from the database and control the update to this item when required by

the users;

149

o the Limits E n q u i r y is the function used to help the users to get the information

about the current state of the links among the data items in the system;

o the Secure E n q u i r y function helps the users to know what part of specification

has been changed and what links have become insecure;

o the D i r e c t o r y is the function listing all names associated with the files stored in

the directory. All files are under the control of RCS;

o the Quit is the function provided for exiting the subsystem.

A.3 Specification Mamipralatiom

The users operate the functions in the specification segment by selecting "1" from the

system menu. The functions listed in this subsystem menu are summarised in the above

section. In this section more detailed descriptions are given on how to operate each of

them.

A.S.1 I npu t /Add

In order to input a specification, the user should choose M F from the menu provided in

the specification segment. The system provides the users with a mechanism to input their

specifications with respect to the project by a set of rule/functionality descriptions with the

relevant rule/functionality identifiers and to store these descriptions in a number of files.

This kind of file is called the Specification File in SEMST. There is another kind of file

in SEMST called Rule/Functionality File which contains the descriptions of a particular

rule/functionality. This kind of file may be constructed outside of SEMST. SEMST can

convert these files into its database when the users give the complete path name of the

file. On the other hand, the users are allowed to input a new rule/functionality file with

150

the vi screen editor when the users give a name of the rule/functionality file. The format

of a specification file is shown in figure 8.

The procedure of inputing/adding the specification descriptions is guided by the sys­

tem, and the options are illustrated bellow:

1. To input a name of the specification file

2. To input a rule/functionality identifier.

3. To input a name of the rule/functionality file. If the file exists, go to step 5, otherwise

go to the next step.

4. To input the contents of rule/functionality description.

5. If more rule/functionality descriptions are required to input, go to step 2, otherwise

end the procedure.

A.8.2 Retrieve/Update

By selecting "U" from the menu in the specification segment, the user can conduct the

operations of retrieval and update. There are two ways offered by SEMST to retrieve a

version of a rule/functionality description from the specification files stored in SEMST

database. One way is to retrieve by the Filename of the specification file. Another way

is to retrieve by the rule/functionality identifiers. When the first method is chosen, the

system will display all the names of specification files in the system relevant to the user

project. The users should then select the name of a file to be retreived and input it into the

system. After that, the system will show all the rule/functionality identifiers included in

this file on the screen. Then the user can retrieve a rule/functionality description from the

database by inputing a rule/functionality identifier and a version number into the system.

Similarly, all of the rule/functionality identifiers in SEMST database will be displayed

151

on the screen after the user chooses the second method to retrieve the rule/functionality

descriptions, and the retrival is then same as described above.

The contents of a rule/functionality description can be shown on the screen after it

has been retrieved from the system database, see figure 12 for an example. In this figure,

the display of a rule description whose file name is "d_rule", identifiered as "ruleS", is

reflected. If the users want to make a modification to the description contents, they type

"yes" after SEMST prompt. Then the system will provide the vi screen editor to assistant

the modification.

A.3.3 Links Enquiry

This function in the specification subsystem helps the users to obtain the information

about the linkage of the specification with test cases. After the users choose " L " from

the menu, the system will firstly display all of the rule/functionality identifiers in SEMST

relevant to the user's project, and then ask the users to input the interested identifiers one

by one. When the users finish the input, the system will show the relevant information

about the links on the screen. Figure 13 shows what test cases are linked with "rulel",

"rule2", «rule3", "rule4M, "rule8" and «rule9".

A.3.4 Secure Enquiry

This function provides the users with the information about what rule/functionality de­

scribed in the specification files has been modified and what links have become insecure

due to the modification. Figure 14 shows an example.

152

A. 8.5 Directory

This displays all of the names of the files stored in the specification directory of SEMST

including the specification files and rule/functionality files. The files are all under RCS

control.

A«4 Test Case

This section describes how to operate the functions provided in the test case subsystem

of SEMST.

To begin this function, select "3" from the main menu. In the test case directory of

the SEMST database, there are also two kinds of files, namely the Test Case File and

the Input data or Expected Output File. A test case file is used to store a set of test case

records consisting of the following attributes:

o the test case identifier,

© the input data,

o the expected outputs,

@ the testing strategy based,

o the testing coverage criterion used, and

o the links with the specification and the program.

The format of a test case record is shown in figure 9. An input data or expected output

file contains a description of the inputs or expected outputs associated with a test case

record. This kind of file may be constructed outside of SEMST. SEMST is able to load

153

these files into its database when the user gives the complete path name of the file. If the

file dose not exist, the system will provide a vi screen editor to help the users to input a

new input data or expected file as long as the users give a file name to the system.

A.4.1 I n p u t / A d d

The users wanting to operate the function to input/add the test case into SEMST should

select " F from the menu provided in the test case subsystem. The whole procedure of

inputing/adding the test cases into SEMST is to input each test case record into various

test case files, while the input/ add of a test case record includes the input of each attribute

associated with the test case mentioned above.

In SEMST, the attribute named "Strategy-Base" is defined as a necessary item for a

test case record and is used to represent the testing strategies on which the test case is

based. It is widely recognized that there are two classes of the testing strategies used in

software testing: Specification-Based and Program-Based. In SEMST, the users should use

"S" to represent the specification-based strategy use "P" to represent the program-based

strategy and use "SP" for the both of strategies. The users are required to input the test

coverage criterion when "P" is selected for the strategy- based. In this case, "s" should be

used to represent satement coverage, "f" should be used to represent the module testing

(or unit testing), "b" should be used to represent the branch coverage and "p" should be

used to represent the path coverage.

At the stage of inputing/adding, the links between the test cases and the specification

or the program can be established. To do this, the users should give the relevant identifiers

of the rule/functionalities or the program attributes. On the whole, the procedure to

input/add the test cases into the SEMST database can be summarized as follows:

1. To input a name of the test case file.

154

2. To input a test case identifier.

3. To input the attributes of a test case record.

4. If more test case records are required to be input, go to step 2, otherwise end of the

procedure.

A.4.2 Retrieve/Update

Prom the menu in the test case segment, "U" should be selected to start this function.

Similar to the procedure of retrieving/updating a rule/functionality description described

in section A.3.2, the users can retrieve a version of a test case record by checking the test

case files or test case identifiers and then give the version's number to be retrieved. When

a version of the test case record is retrieved from the system database, the contents of its

each attribute will be displayed on the screen. Figure 15 shows a retrieved test case record

whose identifier is "test04". The first five lines in the figure shows the attributes of test

case record "test04". After that it is a display of the contens of the input data file and

expected output file.

The users are allowed to modify every attribute of a test case record after it has been

retrieved from the system database. The modification of a test case record is divided

as four part8: the modification of input data, the modification of expected outputs,, the

modification of testing strategy and the modification of the links with the specification and

program. All these functions can be guided by the system to operate, and vi is provided

as a screen editor to help the modification.

When a modification has been undertaken to the links between a test case and the

specification or program, the system will make secure mark to these link states. As a

result, if the modified link states were previously insecure, it will become secure due to

the modification.

155

A.4 .3 Links Enquiry

This function is provided to help the users get the information about the linkage of the test

cases with the specification and program. After the users choose W L " from the function

menu, the system will display all of the test case identifiers in SEMST associated with the

users' project, and then will ask the users to input the identifiers one by one. When the

users finish the input, the relevant link information will be shown on the screen. Figure 16

shows the links of "testOl", "test02'' and atest04" with the specification and the program.

A.4.4 Secure Enquiry

By selecting "S" from the function menu in the test case segment, the users can obtain what

links have become insecure due to the modification taken on the parts of the specification.

Refer to figure 17 for an example.

A.4.5 Directory

This function lists all of the names of the files stored in the test case directory of SEMST

including the test case files and the input data/ expected outputs files. These files are

"controlled by the RCS.

156

[1] Akscyn, R. M., McCracken, D. L . and Yoder, E.A. , A Distributed Hypermedia System

for Managing Knowledge in Organisations, Communications of the A C M , 31 (7), pp.

820-835, 1988.

[2] Babich, Wayne A., Software Configuration Management Coordination for Team Pro­

ductivity, Addison-Wesley, Reading M.A. 1988.

[3] Bazelmans, Rudy, Evolution of Configuration Management, ACM Sigsoft Software

Engineering Notes, Vol.10 No.5, pp. 37-46, Oct 1985.

[4] Beizer, Boris, Software Testing Techniques, -2nd E D . , New York: Van Nostrand Rein-

hold, 1990.

[5] Bernstein, Philip A., Database System Support for Software Engineering - An Ex-

tebdedAdstract, 9th International Conference on Software Engineering, pp. 166-178,

Monyerey, USA, March 30 - April 2, 1987.

[6] Bersoff, Edwrad H., Handerson, Vilas and Siegel Standley G. , Software Configuration

Management, Prentice Hall, Englewood Cliffs, N.J., 1980.

[7] Bicevskis, J . , Borzovs, J . , Stranuiums, U., Zarins, A., and Miller, E . F . , SMOTL -

A System to Construct Samples for Data Processing Programming Debugging, I E E E

Transactions on Software Engineering, SE-5, (1), pp.60-66,1979.

157

[8] Bigelow, J . , Hypertext and CASE, I E E E Software, Vol. 5, No. 2, pp. 23-7, March

1988.

[9] Bott, M.F., ECLIPSE - An Integrated Project Support Environment, Peter Peregri-

HUB, London, UK, 1989.

[10] Boyer, R.S., Elpas, B., and Levit, K.N. , SELECT - A Formal System for Testing and

Debugging Programs By Symbolic Execution, Proceedings of International Conference

on Reliable Software, pp. 234-244, April 1975.

[11] Brown, Peter J . , Turning Ideas Into Products: The Guide System, Proceedings of the

Hypertext '87 Workshop, The University Of North Carolina, pp.30-40„ Novermber

1987.

[12] Budd, T.A. and Demillo, R.A., Lipton, R. J . , and Sayward, F . G. , Theoretical and

Empirical Studies on Using Program Mutation to Test the Functional Correctness of

Program, 7th A C M Symposium on Principles of Programming Languages, January

1980.

[13] Bull, G E C , I C L , Nixdorf, Olivertti, Siements, PCTE: A basis for a Portable Common

Tool Environment, Functional Specification, Fourth Edition, 1986.

[14] Clarke, L .A. , A System to Generate Test Data and Symbolically Execute Programs,

I E E E Transactions on Software Engineering, SE-2, (3), pp.215-222, 1976.

[15] Clarke, C.A. and Hassel, J . , A Close Look at Domain Testing, I E E E Trasactions on

Software Engineering, Vol. 8, No. 4, July 1982.

[16] Collofello, James S. and Woodfield, Scott N., A Proposed Software Maintenance En­

vironment, I E E E 1984.

[17] Conradi, Reidar and Normann, gerhard, CM for Distributed and Heterogeneous Sys­

tems, A C M SIGSOFT, Software Engineering Notes, Vol.13, no.4, pp.69-70, Oct. 1988.

158

[18] Clarke, Lori A., Richardson, Debra J . , and Zeil, Steven J . , TEAM: A Support Environ­

ment for Testing, Evaluation, and Analysis, ACM Sigsoft/Plan Software Engineering

Symposium on Practical Software Development Environment, November 1988.

[19] Coward, P David, A Review of Software Testing, Information and Software Technol­

ogy, Vol. 30, No.3, April 1988.

[20] Daly, E .D. , Management of Software Development, I E E E Transactions on Software

Engineering, pp. 229-242, May 1977.

[21] Dam, A. van, Hypertext '87 keynote address, Comm. A C M 31 (7), pp. 887-895, 1988.

[22] Demillo, Richard A., McCracken, W. Michael, Martin, R .J . and Passafiume, John,

Software Testing and Evaluation , Software Engineering Research Centre, Georgia

Insititute of Technology, Library of Congress Cataloging-in-Publication Data, August

1986.

[23] DeRemer, F . and Kran, H.H., Programming-in-the-Large Versus Programming-in-

the-Small, I E E E Transactions on Software Engineering, Vol. SE-2, pp.80-86, June

1976.

[24] Department of Defense, Military Standard, MIL-STD-480, Configuration Control -

Engineering Changes, Deviations, and Waivers, 1968.

[25] Department of Defense, Military Standard, MIX-STD-483, Configuration Manage­

ment Practices-for Systems, Equipment, Munitions and Copmputer Programs, 1970.

[26] Donohoo, J . D. and Searingen, D., A Review of Software Maintenance Technology,

Rome Air Development Centre, RADC-TR-80-13, Interim Report, Feb. 1980.

[27] Dowson, M., ISTAR - An Integrated Project Support Environment, Sigplan Notices:

Proceedings of 2nd S I G S O F T / S I G P L A N Symposium on Practical Software Develop­

ment Environments, pp. 27-33, Jan. 1987.

[28] Duran, J . W. and Ntafos, S., An Evaluation of Random Testing, I E E E Transactions

on Software Engineering, Vol. SE-10, No. 4, pp. 438-444, July 1984.

159

[29] Ebnendrof, W.R., Functional Analysis Using Cause-Effect Graphs, Proceedings of

SHARE X L I H , SHARE, pp. 567-577, New York, 1974.

[30] Estublier, Jacky, Configuration Management: the Notion and the Tools, International

Workshop on Software Version and Configuration Control, Grassau, pp. 38-61, Jan­

uary 1988.

[31] Estdale, J . , Ostrolenk, G. , Atles, A. and Younger, E . , The System Description

Database, The R E D O handbook, A Compendium of Reverse Engineering for Soft­

ware Maintenance, Edited by Zuylen, Henk van, 2487-TN-WL-1027, Version 0.8, pp.

261-285, August 1991.

[32] Evans, Michael W., Productive Software Test Management, John Wiley & Sons, Inc.,

1984.

[33] Failrley, Richard, Software Engineering Concepts, McGraw-Hill International Edi­

tions, 1985.

[34] Feldman, S.I., Make - A Program for Maintaining Computer Programs, Unix Pro­

grammer's Supplementary Documents, Vol.1, 4.3 Berkely Software Distribution, Vir­

tual VAX-11 Version, University of California, Berkeley, California, April, 1986.

[35] Fernstrom, Christer and Ohlsson Lennart, ESF -An Approach to Industrial Software

Production, Software Engineering Environments:Research and Practice, Edited by

Keith Bennett. Published by Ellis Horwood Limited,"pp. 17-28, 1989.

[36] Fischer, K . F . , Raji , F . and Chrusciki, A., A Methodlogy for Re-Testing Modified

Software, National Telecomms Conference Proceedings, pp. B6.3.1-6, Nov. 1981.

[37] Floyd, R. W., Assigning Meaning to Programs, Proceedings of the Symposia in Ap­

plied Mathematics, Vol. 19, pp. 19-32, 1967.

[38] Foster, John, Software Maintenance, Technical Report, British Telecommunications

P i c , 1989.

160

[39] Gamaiel-Din, Shehab A. and Osterweil, Leon J . , New Perspectives on Software Main­

tenance Process, I E E E Conference Software Maintenance, Phoenix, Arizona, pp. 14-

22, October 1988.

[40] Garg, Pankj K. and Scacchi, Walt, On Designing Intelligent Hypertext Systems for

Information Management in Software Engineering, Hypertext '87 papers, pp. 409-

432, November 1987.

[41] Gehani, N., and McGettrick, A.D., Software Specification Techniques, Addison-

Wesley Publishing Company, 1986.

[42] Goldberg, A., The Influence of an Object-Oriented Language on the Programming

Environment, Interactive Programming Environments, New York, pp. 141-174, 1984.

[43] Gourlay, John S., A Mathematical Framework for the Investigation of Testing, I E E E

Transactions on Software Engineering, SE-9(6):666-709, November 1983.

[44] Goodenough, J.B. and Gerhart, S.L., Toward a Theory of Test Data Selection, I E E E

Transactions on Software Engineering, SE-1(2):156-173, June 1975.

[45] Habermann, A. Nico and Notkin, Dave, Gandalf: Software Development Environ­

ments, I E E E Transactions On Software Engineering, Vol. SE-12, No. 12, December

1986.

[46] Halasz, F . G. , Reflections on NoteCards: Seven Issues For the Next Generation of

Hypermedia System, Communications of the ACM, 31 (7), pp. 836-852, 1988.

[47] Hartmann, J . and Robson, D.J. , Regression Testing with Hypertext Support, Technical

Report - 1989, University of Durham, 1989.

[48] Hartmann, J . and Robson, D.J. , Techniques for Selective Revalidation, I E E E Soft­

ware, pp. 31-36, January 1990.

[49] Hetzel, William, Program Test Methods, Englewood Cliffs, N.J. Prentice-Hall, 1973.

161

[50] Hetzel, William, The Complete Guide to Software Testing, Second Edition, Q E D

Information Sciences, Inc., 1988.

[51] Howden, William E . , A Functional Approach to Program Testing and Analysis, I E E E

Transactions on Software Engineering, Vol. SE-12. No. 10, October, 1986.

[52] Howden, W . E . , Symbolic Testing and the DISSECT Symbolic Evaluation System,

I E E E Transactions On Software Engineering, SE-3, July 1977.

[53] Howden, W . E . , An Evaluation of the Effectiveness of Symbolic Testing, Software

Practice and Experience, Vol. 8, pp. 381-397, July 1978.

[54] I E E E , IEEE Standard for Software Configuration Management Plans, Std. 828-1983,

1983.

[55] I E E E Std. 729-1983, IEEE Standard Glossary of Software Engineering Terminology,

I E E E Press, 1983.

[56] I E E E Standards Board, Software Engineering Standards, A N S I / I E E E , Std. 1008-

1987.

[57] Jensen, Randall W. and Tonies, Charles C , Software Engineering, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey 1979.

[58] Jiang, J . Liu, L . and Robson, D. J . , Research Exisiting Tools and Techniques for

Dynamic Analysis, Generation of Test Case, Linkage of Test Gases With Specifioa^

Hons and Programs, and Selection of Test Cases to Rerun, Esprit 2487 R E D O report,

2487-TN-DU-1008, 30 March 1990.

[59] Jones, C.B. , Systematic Program Development Using VDM, Secon Edition, Prentice

Hall International(UK) Ltd, 1990.

[60] Jonson, D.W., The Development Facility Approach to Improved Software Develop­

ment, AFIPS Conference Proceedings of the National Computer Conference, pp. 235-

239, May 1981.

162

[61] Kaiser, Gail E . and Habermann, A. Nico, An Environment for System Version Con­

trol, I E E E Computer, Vol. Feb., pp. 415-420, 1983.

[62] Kaiser, G . E . , Feiler, P.H., and Popovich, S.S., Intelligent Assistance for Software

Development and Maintenance, I E E E Software, pp.40-49, May 1988.

[63] Kemmerer, Richard A., Testing Formal Specifications to Detect Design Errors, I E E E

Transctions on Software Engineering, S E - l l (l) , January 1985.

[64] Kenning, Rachel J . and Munro, Malcolm, Configuration Management - The State of

the Art, Technical Report, Centre for Software Maintenance, University of Durham,

1989.

[65] King, J . C . , Symbolic Execution and Program Testing, Communications of the A C M ,

Vol. 19(7), pp. 385-394, July 1976.

[66] Lampson, B.W. and Schmidt, E . E . , Organizing Software in a Distributed Environ­

ment, In Proceeding of the ACM SIGPLAN '83 Symposium on Programming Lan­

guage Issues in Software Systems, pp. 1-13, June 1983.

[67] Laski, Janusz W. and Korel, Bogdan, A Data Flow Oriented Program Testing Strat­

egy, I E E E Transactions on Software Engineering, SE-9(3): 347-354, May 1983.

[68] Laski, Janusz W., Testing in Top-Down Program Development, Second Work Shop

on Software Testing and Verification, and Analysis, pp.72-79, July 1988.

[69] Leblang, David B. and McLean, Gordon D. Jr., Configuration Management For

Large-Scale Software Development Efforts, Workshop on Software Engineering En­

vironments For Programming in the Large, pp. 122-127, June 1985.

[70] Leblang, David B, Chase, R.P.Jr., and Spike, H., Increasing Productivity with a Par­

allel Configuration Manager, International Workshop on Software Version and Con­

figuration Control, Grassau, pp.21-37, January 1988.

163

[71] Leung, Hareton K.N. and White, Lee J . , A Study of Regression Testing, Technical

Report T R 88-15, Department of Computer Science, The University of Alberta, Ed­

monton, Alberta, Canada, September 1988.

[72] Lewis R., Beck D. W., Hartmann J . and Robson D. J . , Assay - A Tool To Support

Regression Testing, B T R L / Dept. of Computer Science, Durham, Technical Report,

1988.

[73] Liu, Lung-Chun and Horowitz, Ellis, Object Database Support For A Software Project

Management Environment, Proceedings of the Third ACM S I G S O F T / S I G L A N Soft­

ware Engineering Symposium on Practical Development Environments, pp. 85-96,

1988.

[74] Loo, P. S. and Tsai, W. K. , Random Testing Revisited, Information and Software

Technology, Vol. 30, No. 7, pp.407-417, September 1988.

[75] Lutz Mike, Testing Tools, I E E E Software, pp.53-57, May 1990.

[76] Marchionini G. and Shneiderman, B., Finding Facts vs. Browsing Knowledge in Hy­

pertext Systems, I E E E Computer, Vol.4, No.l2,pp.70-80, Jan. 1988.

[77] Military Standard, Common Ada Programming Support Environment (APSE) Inter­

face Set (CAIS), DOD-STD-18S6 , DOD-STD-1836, 9 October 1986.

[78] Miller, Edward Introduction to Software Testing Technology, Tutorial: Software Test­

ing & Validation Techniques, Second Edition, Edited by Miller, E . and Howden, W . E . ,

The I E E E Computer Society Press, pp. 1-16,1981.

[79] Mohammed, A.H., Hypertex in Testing Support, M.Sc Dissertation, Department of

Computer Science, University of Durham, 1988.

[80] Morgan, Carroll, Programming from Specifications, Prentice Hall International Series

in Computer Science, 1990.

[81] Myers, G.J . , The Art of Software Testing, July 1979.

164

[82] Maur, P. and Randell, B., Software Engineering: A Report On a Conference Sponsored

By the NATO Science Committee, NATO, 1969.

[83] Ntafos, Simeon C , On Required Element Testing, I E E E Transactions on Software

Engineering, SE-10(6):795-803, November 1984.

[84] Neighbors, J . , The Draco Approach to Constructing Software From Reusable Com­

ponents, I E E E Transactions on Software Engineering, V. SE-10, No. 5, September

1984.

[85] Ostrand, Thomas J . and Baker, Marc J . , The Category-Partition Method For Spec­

ifying and Generating Functional Tests, Communication of the ACM, Vol.31, No.6,

pp. 676-686, June 1988.

[86] Quid, Martyn A., Testing In Software Development, Cambridge University Press,

1986.

[87] Panzl, D.J. , Automatic Software Test Drivers, Computing, pp. 44-50, April 1978.

[88] Parikh, G. , Handbook of Software Maintenance, John Wiley and Sons publishers,

1986.

[89] Perry, D. and Kaiser, G. , Infuse: A Tool for Automatically Managing and Coordi­

nating Source Changes in Large Systems, Proceedings of the A C M Fifteenth Annual

Computer Science Conference, 1987.

[90] Pirie, I . , Benefits of Automating Configuration Management, Notes 1st Software

Maintenance Workshop, Durham, England, 1987.

[91] Powell, Patricia B. , Software Validation, Verification, and Testing Technique and Tool

Reference Guide, NBS Special Publication 500-93, U.S. Government Printing Office,

1982.

[92] Pressman, Roger S., Software Engineering - A Practitioner's Approach, Second Edi­

tion, McGraw-Hill International Editions, 1987.

165

[93] Ramamoorthy, C.V. and Ho, S.F., Testing Large Software With Automated Software

Evaluation System, I E E E Transactions On Software Engineering, SE-1, No.l, pp. 157-

169, March 1975.

[94] Rapps, Sandra and Weyuker, Eline J . , Selecting Software Test Data Using Data Flow

Information, I E E E Transactions on Software Engineering, SE-ll(4):376-375, April

1985.

[95] Reedy, A., Stephenson, Dudar, E . and Blumberg, F . C . , Software Configuration Man­

agement Issues in the Maintenance of Ada Software Systems, I E E E Computer, pp.

234-245, 1989.

[96] Richardson, D.J. and Clarke, L .A. , Testing Techniques Based on Symbolic Evaluation,

Software Requirements, Specification and Testing, Proceedings of CSR Workshop,

University of East Anglia,10-12 April 1984, Edited by T . Anderson.

[97] Richardson, D.J. and Clarke, L .A. , Partition Analysis: A Method Combining Testing

and Verifications, I E E E Transactions on Software Engineering, SE-11(12): 1477-1490,

December 1985.

[98] Richardson, D.J . , Approaches to Specification-Based Testing, Software Engineering

Notes, Volume 14, No. 8, Proceedings of the ACM Sigsoft'89 Third Symposium on

Software Testing, Analysis and Verification(TAC3), Edited by Richard A. Kemmerer,

December 1989.

[99] Richardson, D.J. and Thompson, M.C., Test Data Selection Using The RELAY Model

of Error Detection, Proceedings of 5th Annual Pacific NW Conference on Software

Quality, 1987.

[100] Rochkind, Marc J . , The Source Code Control System, I E E E Transactions on Soft­

ware Engineering, Vol. SE-1, No.4, pp. 364-370, December 1975.

[101] Schneidewind, N.F., The Use Of Simulation in the Evaluation of Software, Com­

puter, pp. 47-53, April 1977.

166

[102] Shooman, Martin L . , Software Engineering, McGraw-Hill International Book Com­

pany, 1983.

[103] Sommerville, Ian, Software Engineering, Second Edition, Addison-Wesley Publishing

Company, 1985.

[104] Sommerville, Ian, Software Engineering, Third Edition, Addison-Wesley Publishing

Company, 1989.

[105] Softool Corporation, Configuration Control CCC/DM Turnkey Dependency and

Build Option, Users Manual, 1989.

[106] Spivey, J.M., Understanding Z - A Specification Language and Its Formal Semantics,

Cambridge University Press, 1988.

[107] Stucki, L . G . and Foshee, G.L. , New Assertion Concepts for Self-Metric Software

Validation, Proceedings of I E E E Confemece on Reliable Software, Los Angeles, CA,

pp. 59-65, April 1975.

[108] Tanaka, A., Equivalence Testing For Fortran Mutation System Using Data Flow

Analysis, Georgia Institute of Technology, Department of Information and Computer

Science, 1981.

[109] Taylor, Richard N., Belz, Frank C , Clarke, Lori A., Osterweil, Leon, Selby,

Richard W., Wileden, Jack C , Wolf, Alexander L . , and Young, Michal, Founda­

tions For The Arcadia Environment Architecture, Proceedings of the Third A C M

S I G S O F T / S I G L A N Software Engineering Symposium on Practical Development En­

vironments, pp. 1-13, 1988.

[110] Teitelbaum T. , A Tour Through Cedar, I E E E Transactions on Software Engineering,

SE-11 (3): 285-302, 1985.

[I l l] Teitelman, W. and Masinter, L . , The Interlisp Programming Environment, Com­

puter, 14(4): 25-33, April 1981.

167

[112] Tichy, Walter F . , Design, Implementation, and Evaluation of a Revision Control

System, Proceedings of the 6th International Conference on Software Engineering,

I E E E , Tokyo, pp. 58-67, 1982.

[113] Tichy, Walter F . , An Introduction to the Revision Control System, Programmer's

Supplementary Documents, Vol.1, 4.3 Berkely Software Distribution, Virtual VAX-

11 Version, University of California, Berkeley, California, April, 1986.

[114] Tichy, Walter F . , Smart Recompilation, ACM transactions on Programming Lan­

guages and Systems, Vol. 8, No. 3, pp.273-291, July 1986.

[115] Tichy, W.F . , Tools for Software Configuration Management, International Workshop

on Software Version and Configuration Control, Grassau, pp. 1-20, January 1988.

[116] Venkatramani, K. and Clark, R., Using Configuraed Directories to Solve Software

Maintenance Problems, Proceedings of Conference on Software Maintenance, Phoenix

Arizona, pp. 172-177, October 1988.

[117] Scacchi, Walt and Stadel, Manfred, CM for Non-Textual Representation, A C M SIG-

S O F T , Software Engineering Notes, Vol. 13, No.4, pp. 71-73, Oct. 1988.

[118] Weyuker, E . J . and Ostrand, T . J . , Theories Of Program Testing and the Application

of Revealing Subdomains, I E E E Transaction on Software Engineering, SE-6, 3, pp,

236-246, May 1980.

[119] White, L . J . and Cohen E . I . , A Domain Strategy for Computer Program Testing,

I E E E Transaction on Software Engineering, Vol. 3, pp. 247-257, 1980.

[120] White, L . J . , Software Testing and Verification, Advances In Computers, Vol.26, pp.

335-391, Orlanao, Fla: Academic Press, 1987.

[121] Whitley, D.J. , The Benefits of Automated Configuration Managment, Scicon Lim­

ited.

168

[122] Wileden, Jack C , Wolf, Alexander. L , Fisher, Charles D. and Tarr, Peri L . ,

PGRAPHITE: An Experiment in Persistent Typed Object Management, Proceed­

ings SIGSOFT '88: Third Symposium on Software Development Environments, Dec.

1988.

[123] Winkler, F .H . and Stoffel, C , Version Control in Families of Large Programs, Pro­

ceedings 9th International conference on Software Engineering, Monterey, California,

March 1987.

[124] Winkler, F .H. , Report on the First International Workshop on Software Version and

Configuration Control, ACM SIGSOFT, Software Engineering Notes, Vol.13, No.4,

pp.61-63, 1988.

[125] Yankelovich, N., Meyrowitz N. and Dam, A. van, Reading and Writing the Electronic

Book, I E E E Computer 18 (10), pp. 15-30, 1985.

[126] Yau, S. S. and Kishimoto Z., A Method for Revalidating Modified Programs in the

Maintenance Phase, I E E E COMPSAC 87 Int. Conf. Procs. pp.272-277, Tokyo, Japan,

1987.

[127] Zeil, S.J., Perturbation Testing for Computation Errors, Seventh International Con­

ference on Software Engineering, March 1984.

[128] Zeil, S.J., Selectivity of Data-Flow and Control-Flow Path Criteria, Proceeding of

the Second Workshop on Software Testing, Verifcationm and Analysis, pp. 216-222,

Banff, Canada, 19-21 July 1988.

169

