

Durham E-Theses

The synthesis and characterisation of new macrocyclic complexing agent for use in tumour targeting

Matthews, Robert Carl

How to cite:

Matthews, Robert Carl (1993) The synthesis and characterisation of new macrocyclic complexing agent for use in tumour targeting, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5721/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

THE SYNTHESIS AND CHARACTERISATION OF NEW MACROCYCLIC COMPLEXING AGENTS FOR USE IN TUMOUR TARGETING

Robert Carl Matthews BSc

University of Durham

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

A Thesis Submitted for

the Degree of Doctor of Philosophy at the University of Durham

July 1993

- 8 DEC 1993

STATEMENT OF COPYRIGHT

The Copyright of this thesis rests with the author. No quotation or diagram from it should be published without his prior written consent and information derived from it should be acknowledged.

DECLARATION

The work herein was carried out at Durham University between October 1988 and August 1991. It has not been submitted for a degree at this or any other University and is the author's own work unless otherwise indicated by reference or footnote.

Publications

Some of the author's research, presented in this thesis, form the basis of the following publications:

 Synthesis of 1,10-Dithia-4,7,13,16-tetra-azacyclooctadecane, 1aza-4,7-dithiacyclononane, and N,N'-1,2-Bis(1-aza-4,7dithia-carbonyl) ethane. Structual and Solution Studies of their Silver Complexes.
 A.S. Craig, R Kataky, R.C. Matthews, D. Parker, G. Ferguson, A. Lough, H. Adams, N. Bailey, H. Schneider, J. Chem. Soc. Perkin Trans., 1523, 2, (1990).

2. Synthesis and Structure of Stable Indium and Gallium Complexes of (R)-1,4,7-Tris(2'-methylcarboxy-methyl)-triazacyclononane. R.C. Matthews, D. Parker, G. Ferguson, B. Kaitner, A. Harrison and L. Royle. Polyhedron 1951, <u>16</u>, (1991).

 ⁶⁷Ga-9N₃ Uptake by Xenografts of Human Melanotic Melanoma in Mice. A. Harrison, C.A. Walker, K.A. Pereira, D. Parker, L. Royle, R.C. Matthews, A.S Craig, Nucl. Med. Comm. <u>13</u>, 667, (1992).

ACKNOWLEDGEMENTS

I would like to thank David Parker for his guidance and commitment to both the project and myself.

Also I would like to acknowledge the help of the following people: Alice Harrison and Louise Royle for collecting the invaluable biodistribution data and their help in analysing it, Professor George Ferguson for the crystal structure determination, Hermann Schneider for measuring the enthalpies of complexation of the <u>silver</u> complexes, Julia Say, Alan Kenright and Ray Matthews for their help in acquiring the NMR spectra, Mike Jones and Vince McNeilly for running the mass spectra, Mr R Hart and Mr G Haswell for their good humour and glassblowing skills, and to all the other technical staff, and especially the cleaners, in the department.

I acknowledge the financial support of Celltech Ltd.

I would like to thank all the people that have helped me fill my leisure time, and especially Pete for his endless enthusiasm, Jenny for her invaluable support, Penny for her friendship and help in preparing this thesis, Ben for his intellectual stimulus, and not forgetting Paul and his good humoured banter. In addition, a special thank you to Einar and Rod.

Finally, I thank my brother Andrew for his support over the last few years.

ABSTRACT <u>THE SYNTHESIS AND CHARACTERISATION OF NEW</u> <u>MACROCYCLIC COMPLEXING AGENTS FOR USE IN TUMOUR</u> <u>TARGETING</u>

Macrocyclic complexing agents have been synthesised for the binding of indium(III), gallium(III), yttrium(III), gold(I), silver(I) and rhenium(V) and a comparative study has been made between the macrocyclic complexing agents, 18N4S2, 18N4S2Me4, 18N4O2 and 18N4O2Me4 and their ability to bind silver (I).

The gallium(III) and indium(III) complexes of 9N3C3Me3 and 9N3C3Ph3 have been investigated extensively both in vitro and in vivo. The stability of the complexes have been characterised using ⁷¹Ga NMR, ¹H NMR, U.V. spectral analysis, ligand protonation constants, and complex binding constants. A full X-ray crystallographic structural determination has been obtained for the indium-9N3C3Me3 complex. Following confirmation of the excellent binding characteristics of the 9N3C3Me3 and 9N3C3Ph3 complexing agents, the in vivo kinetic stability of the indium and gallium complexes has been investigated. The 9N3C3Me3 complexes were exceptionally stable and cleared rapidly (99% within 24 hrs) via the renal excretion pathway. The complexes of the 9N3C3Ph3 were less stable and also showed a preference for clearance via the kidneys. Further to this, the tumour localising properties in a human melanotic melanoma has been investigated for the 67Ga-9N3C3Ph3 complex. The complex has shown a preference for tumour localisation, although a low tumour: blood ratio (1:1) may prohibit its application for tumour targeting.

The stability constants of the silver(I) complexes of $18N_4S_2$, $18N_4S_2Me_4$, $18N_4O_2$ and $18N_4O_2Me_4$ have been measured both in methanolic and aqueous media. The [Ag- $18N_4S_2Me_4$]+ complex stability (log K_{ML}= 14.6) is the highest stability constant recorded in methanol. In aqueous media, of the four complexes, the [Ag- $18N_4S_2$]+ is the most stable (log K_{ML}=10.4) a reversal of the observed order of complex stability in methanol.

The stability of the new yttrium(III) complexing agent has been ascertained using ¹H NMR and HPLC radiometry and proved to be insufficiently stable for *in vivo* use, and was easily displaced by DTPA in a trial experiment.

ABBREVIATIONS

EDTA	Ethylenediamine-N,N,N',N'-tetraacetic acid
DTPA	Diethylenetriamine-N,N,N',N",N"-pentaacetic acid
NTA	Nitrilotriacetic acid
PCA	Polyaminocarboxylate complexing agent
DOTA	1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic
	acid
TRITA	1,4,7,10-Tetraazacyclotridecane-1,4,7,10-tetraacetic
	acid
TETA	1,4,8,11-Tetraazacyclotetradecane-1,4,8,11-tetraacetic
	acid
DOTA-BMA	4-(N-Benzyl-N-methylcarboxamidomethyl)-1,4,7,10-
	tetraazacyclododecane-1,4,7-triacetic acid
ODOTRA	1-Oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid
DTCTA	1,7-Dioxa-4,10,13-triazacyclopentadecane-4,10,13-
	triacetic acid
9N3	1,4,7-Triazacyclononane
$9N_3C_3$	1,4,7-Triazacyclononane-1,4,7-triacetic acid
9N ₃ C ₃ Me ₃	(R)-1, 4, 7 -Tris (2'-methylcarboxymethyl) -
5-19-5	triazacyclononane
9N3C3Ph3	-1, 4, 7 -Tris (2'- phenylcarboxymethyl) -
<i>y</i> =	triazacyclononane
9N3P3Ph3	1, 4, 7 triazacyclononane-1,4,7-
	triyltris[methylene(phenylphosphinic acid)] -
9N3P3Me3	1, 4, 7 triazacyclononane-1,4,7-
	triyltris[methylene(methylphosphinic acid)] -
15N ₃ O ₂	1,4 -Dioxa-7,10,13-tris- (carboxymethyl) -
101.302	triazacyclopentadecane
RII	Radioimmunoimaging
RIT	Radioimmunotherapy
DNA	Deoxyribonucleic acid
MoAb	Monoclonal antibody
IgG	Immunoglobulin
3,2,3-tet	4,7-Diaza-1,10-dodecanediamine
cyclam	1,4,8,11-Tetraazacyclotetradecane
mal	Maleimide
Me	Methyl
Et	Ethyl
Ac	Acetyl
Ph	Phenyl
Bz	Benzyl
Ts (Tosyl)	4-Toluenesulphonyl -
Ar	Aromatic
THF	Tetrahydrofuran
Ln	Lanthanide
MPt	Melting point
dec	Decomposes
IR	Infra-red
TT .	

.

UV	Ultraviolet
NMR	Nuclear magnetic resonance
HPLC	High performance liquid chromatography
MS	Mass spectroscopy
CI	Chemical ionisation
DCI	Desorption chemical ionisation
FAB	Fast atom bombardment
TLC	Thin layer chromatography
NBS	N-Bromosuccinimide
PBS	Phosphate buffered saline
en	Ethylenediamine

CH 1.0		ONE: INTRODUCTION	2
1.1	THE N	EED FOR IMPROVED CANCER THERAPY	2
	$1.1.1 \\ 1.1.2 \\ 1.1.3$	0.0 0	2 3 5
1.2	ANTIE	BODIES	7
	$1.2.1 \\ 1.2.2 \\ 1.2.3$	Monoclonal Antibodies And Cancer Therapy	7 8 11
1.3		DIMMUNOTHERAPY AND RADIO- NOIMAGING	13
	$\begin{array}{c} 1.3.1 \\ 1.3.2 \end{array}$		13 13
		1.3.2.1 Radioimmunoimaging 1.3.2.2 Radioimmunotherapy	13 15
	1.3.3	Bifunctional Complexing Agents	18
1.4.	MACR	OCYCLIC COMPLEXING AGENTS	21
	$1.4.1 \\ 1.4.2 \\ 1.4.3 \\ 1.4.4$		21 21 22 24
1.5	THE S	SCOPE OF THIS WORK	26
	$\begin{array}{c} 1.5.1 \\ 1.5.2 \end{array}$	Introduction Indium(III) and Gallium(III) Coordination	26
		Chemistry And Proposed Macrocycles For Synthesis	26
	1.5.3	Yttrium Coordination Chemistry And Proposed Macrocycles For Synthesis Rhenium And Technetium Coordination	28
	1.5.4	Chemistry And Proposed Macrocycle For Synthesis.	31
	1.5.5	Gold Coordination Chemistry And Proposed Complexing Agents For Synthesis.	- 33
	1.5.6	Silver Coordination Chemistry And Proposed Complexing Agents For Synthesis.	35

٠

CONTENTS

CHAPTER TWO: SYNTHESIS AND CHARACTERISATION OF COMPLEXING AGENTS 9N₃C₃Me₃ AND 9N₃C₃Ph₃ AND THE ATTEMPTED SYNTHESIS OF A PHOSPHINIC ACID POLYAZACYCLE.

2.1	THE SY	YNTHESIS OF THE COMPLEXING AGENTS	42
	2.1.1	Introduction	42
	2.1.2	The Synthesis Of (R)-1, 4, 7 -Tris (2'-methylcar- boxymethyl - triazacyclononane (4)	44
	2.1.3	The Synthesis of 1,4,7-Tris (2'-phenylcar- boxy) -1,4,7 - triazacyclononane (5)	46
	2.1.4	The Attempted Synthesis Of O,O',O"- Trimethyl-1,4,7-tris(phosphonatomethyl)	_
		-triazacyclononane(6)	47
2.2	CHARA 9N ₃ C ₃ I	ACTERISATION OF 9N3C3Me3 AND Ph3	51
	2.2.1	Introduction	51
	2.2.2	Synthesis And Structual Analysis Of [In(III).9N3C3Me3]	51
2.3	71-GAI	LLIUM NMR INVESTIGATION OF THE CTURE OF THE GALLIUM COMPLEXES	
		3C3Me3	55
2.4	DETEI BINDI	RMINATION OF PROTONATION AND NG CONSTANTS OF $9N_3C_3Me_3$	58
2.5		LE SPECTRAL ANALYSIS OF [3C3Me3] ²⁺ AND [Cu.9N3C3Ph3] ²⁺	- 60
	-		
2.6	REFEI	RENCES	64

CHAPTER THREE: BIODISTRIBUTION STUDIES OF THE GALLIUM AND INDIUM COMPLEXES OF $9N_3C_3Me_3$ AND $9N_3C_3Ph_3$ IN ATHYMIC NU:NU MICE

3.1	INTRODUCTION	66
	3.1.1 The Phosphinic Acid-9N3 Complexing Agents	-67
3.2	EXPERIMENTAL METHOD OF INVESTIGATION	68
3.3	BIODISTRIBUTION DATA FOR THE GALLIUM COMPLEXES IN NON-TUMOUR BEARING MICE.	69

	3.3.1	The Data	69
	3.3.2	The Stability Of The Gallium Complexes In Vivo	80
	0 0 0		81
	$3.3.3 \\ 3.3.4$	Conclusions	83
	0.0.4		
3.4	BIODI	STRIBUTION OF THE INDIUM	85
	COMP.	LEXES IN ATHYMIC NU:NU MICE	00
	3.4.1	Introduction	85
	3.4.2	Experimental Method Of Investigation	85
	3.4.3	The Data	86
	3.4.4	The Stability Of The ¹¹¹ In-Complexes In Vivo .	95 05
	3.4.5	The Fate Of The Indium Complexes.	95 97
	3.4.6	Conclusions	91
	3.4.7	A Second Investigation Into The	98
		Biodistribution Of The ¹¹¹ In-9N ₃ C ₃ Ph ₃ Complex	9 9
	3.4.8	The Data Discussion	101
	3.4.9	Discussion	
3.5	GALLI	UM - 67 COMPLEX UPTAKE BY	
	XENO	GRAFTS OF HUMAN MELANOIC	104
	MELA	NOMA IN MICE	104
	951	Introduction	104
	$\begin{array}{c} 3.5.1 \\ 3.5.2 \end{array}$	Experimental Method	105
	3.5.2 3.5.3	The Biodistribution Of The ⁶⁷ Gallium	106
	0.0.0	Complexes In Tumour-Bearing Mice	
	3.5.4	The Tumour : Blood Ratios At 4 Hours	109
	3.5.5	Conclusions	109
	ותנתנו	DENCES	111
3.6	REFEI	RENCES	
	CHAP	TER FOUR: SYNTHESIS AND INVESTIGATI	ON OF
	THE (COMPLEXING AGENTS 18N4S ₂ , 18N4S ₂ Me ₄ , 18	(19)
	$18N_4C$	2Me4, N,N-DIBENZYLETHYLENE-THIOURE	A(12), TEP(I)
	$15N_3C$	D_2C_3 (7) AND LIGAND (9) AND THEIR SILV D(1) XTTRIUM(III), AND RHENIN	$IM(\mathbf{X})$
	GOLI	D(I), YTTRIUM(III), AND RHENI PLEXES.	
	COM		
4.1	INTRO	DUCTION	113
. ~		SAMUTESIS OF THE SULVER (I) COMPLEXING	
4.2	THES	SYNTHESIS OF THE SILVER (I) COMPLEXING	
		TS $,18N_4S_2Me_4$ $,18N_4O_2$ $,18N_4O_2Me_4$ AND ATTEMPTED SYNTHESIS OF LIGAND (13)	-
	AND (114
	MID (17/	
	4.2.1	The Attempted Synthesis Of 1,7,13-Trithia-	
		4,10,16-Triazacyclooctadecane(13)	114

,

·

69

	4.2.2	The Attempted Synthesis Of 1,7- bis(dimethylaminoethyl)-4,10- dithia-1,7-diazacyclooctadecane(14)	116
		4.2.2.1 ROUTE1 4.4.2.2 ROUTE 2 4.2.2.3 Conclusions	117 117 118
	4.2.3	Synthesis Of N,N',N'',N''' - Tetramethyl-1, 10 -dithia-4,7,13,16-tetraazacyclooctadecane (15)	119
	4.2.4	Synthesis Of N, N', N", N"' -tetramethyl - 1,10 -dioxa -4, 7, 13, 16 -tetraazacyclooctodecane (49)	120
	4.2.5	Comparison Of The Silver(I) complexes Of 18N4S 18N4S2Me4, 18N4O2, And 18N4O2Me4.	2, 122
		4.2.5.1 Introduction 4.2.5.2 Complex Stability As Determined By A Thermodynamic Study Of	122
		Complexation 4.2.5.3 Discussion 4.5.5.4 Complex Stability As Determined By A	$\begin{array}{c} 123 \\ 123 \end{array}$
		4.5.5.4 Complex Stability As Determined By A Study Of The Protonation Constants Of The Ligands And The Binding Constants Of The Silver Complexes	125
		4.5.5.6 Discussion	126
4.3	COMP	HESIS AND CHARACTERISATION OF THE LEX OF GOLD(I) WITH THE NEW COMPLEXIN	G
	AND T	T N,N-DIBENZYLETHYLENE -THIOUREA(12) HE ATTEMPTED SYNTHESIS OF LIGAND (56)	127
	AND T	T N N-DIBENZYLETHYLENE -THIOUREA(12)	
	AND T AND L	T N,N-DIBENZYLETHYLENE -THIOUREA(12) THE ATTEMPTED SYNTHESIS OF LIGAND (56) IGAND (57) THE SYNTHESIS OF THE COMPLEXING	<u>1</u> 27
	AND T AND L 4.3.1 4.3.2 4.3.3	 T N,N-DIBENZYLETHYLENE -THIOUREA(12) THE ATTEMPTED SYNTHESIS OF LIGAND (56) JGAND (57) THE SYNTHESIS OF THE COMPLEXING AGENTS FOR GOLD(I). 4.3.1.1 Introduction The Attempted Synthesis Of (57) The Attempted Synthesis Of Ligand (56) 	127 127
	AND T AND L 4.3.1 4.3.2 4.3.2 4.3.3 4.3.4	 T N,N-DIBENZYLETHYLENE -THIOUREA(12) 'HE ATTEMPTED SYNTHESIS OF LIGAND (56) JGAND (57) THE SYNTHESIS OF THE COMPLEXING AGENTS FOR GOLD(I). 4.3.1.1 Introduction The Attempted Synthesis Of (57) The Attempted Synthesis Of Ligand (56) The Synthesis Of N,N- Dibenzylethylenethiourea (12) 	127 127 127 127 128
	AND T AND L 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	 T N,N-DIBENZYLETHYLENE -THIOUREA(12) 'HE ATTEMPTED SYNTHESIS OF LIGAND (56) JGAND (57) THE SYNTHESIS OF THE COMPLEXING AGENTS FOR GOLD(I). 4.3.1.1 Introduction The Attempted Synthesis Of (57) The Attempted Synthesis Of Ligand (56) The Synthesis Of N,N- Dibenzylethylenethiourea (12) Complexation Of Gold(I) By N,N- Dibenzylethylenethiourea (12) 	127 127 127 127 128 131
	AND T AND L 4.3.1 4.3.2 4.3.2 4.3.3 4.3.4	 T N,N-DIBENZYLETHYLENE -THIOUREA(12) 'HE ATTEMPTED SYNTHESIS OF LIGAND (56) JGAND (57) THE SYNTHESIS OF THE COMPLEXING AGENTS FOR GOLD(I). 4.3.1.1 Introduction The Attempted Synthesis Of (57) The Attempted Synthesis Of Ligand (56) The Synthesis Of N,N- Dibenzylethylenethiourea (12) Complexation Of Gold(I) By N,N- 	127 127 127 128 131 135
4.4	AND T AND L 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 SYNTI	 T N,N-DIBENZYLETHYLENE -THIOUREA(12) 'HE ATTEMPTED SYNTHESIS OF LIGAND (56) JGAND (57) THE SYNTHESIS OF THE COMPLEXING AGENTS FOR GOLD(I). 4.3.1.1 Introduction The Attempted Synthesis Of (57) The Attempted Synthesis Of Ligand (56) The Synthesis Of N,N- Dibenzylethylenethiourea (12) Complexation Of Gold(I) By N,N- Dibenzylethylenethiourea (12) Use Of N,N-Dibenzylethylenethiourea (12) 	127 127 127 128 131 135 136

•

4.4.1 Introduction

٠

		 4.4.1.1 Stability Constants Of Tetraazatetra- carboxylic Acid Macrocyclic Complexes Of Yttrium(III) 4.4.1.2 Measurement Of The Rate Of Uptake Of Yttrium(III) By The Macrocyclic 	140
		Complexes	143
		4.4.1.3 15N ₃ O ₂ C ₃ - A New Macrocyclic Complexing Agent for Yttrium(III).	144
	4.4.2	Synthesis of 7,10,13-Tris (carboxymethyl) -1,4 -dioxa-7,10,13- triazacyclopentadecane(7)	144
	4.4.3	Estimation Of The Rate Of Yttrium Uptake Using ¹ H NMR	147
	4.4.4	An Assessment Of The Kinetic And	
		Thermodynamic Strength Of 153Gd(15N3O2C3) By HPLC Radiometry	149
•		iscussion onclusions	150 151
4.5	ATTEN	SYNTHESIS OF LIGAND (9) AND THE APTED SYNTHESIS OF THE RHENIUM LEX OF (9).	152
	4.5.1	Synthesis Of (9) 1,9-Diamino-(5-p-aminomethyl- benzyl)-3,7-diazanonane(9)	152
	4.5.2	The Attempted Synthesis Of The Rhenium Complex Of (12)	155
5.6	REFE	RENCES	156
СН	APTER	FIVE: EXPERIMENTAL PROCEDURES	
5.1	INTRO	DUCTION	159
5.2	THE S	YNTHESIS OF THE COMPLEXING AGENTS	160
	5.2.1	(R) - 1,4,7-TRIS(2'-METHYLCARBOXYMETHYI TRIAZACYCLONONANE (4)	ב)- 160
	5.2.2	1,4,7-TRIS(2'-PHENYLCARBOXYMETHYL)-1,4 TRIAZACYCLONONANE (5)	,7- 161
	5.2.3.	THE ATTEMPTED SYNTHESIS OF O,O',O"-TRIMETHYL-1,4,7-TRIS (PHOSPHONATO METHYL)- TRIAZACYCLONONANE (6)	163
	5.2.4	1,4 -DIOXA-7,10,13-TRIS	

140

		(CARBOXYMETHYL) - TRIAZACYCLOPENTADECANE (7) 165	
	5.2.5	1,9-DIAMINO-5-(P-AMINOMETHYLBENZYL) -3,7-DIAZANONANE) (9)	168
	5.2.6	THE ATTEMPTED SYNTHESIS OF LIGAND (57)	171
	5.2.7	THE ATEMPTED SYNTHESIS OF LIGAND (56)	174
	5.2.8	N,N-DIBENZYLETHYLENETHIOUREA (12)	176
	5.2.9	ATTEMPTED SYNTHESIS OF 1,7,13 -TRITHIA-4,10,16-TRIAZACYCLO- OCTADECANE(13)	 178
	5.2.10	ATTEMPTED SYNTHESIS OF 1,7- BIS(DIMETHYLAMINOETHYL)-4,10- DITHIA-1,7-DIAZACYCLODODECANE (14)	182
	6.2.11	N,N',N"',N"'' - TETRAMETHYL-1, 10-DITHIA -4,7,13,16 - TETRAAZACYCLO- OCTADECANE (15)	185
	6.2.12	N,N',N",N"'-TETRAMETHYL-1,10-DIOXA- 4,7,13,16-TETRA-AZA-CYCLO -OCTADECANE (49)	186
	5.2.13	INDIUM(III) COMPLEX OF R) - 1,4,7-TRIS(2- METHYLCARBOXYMETHYL)- TRIAZACYCLONONANE (4)	188
	5.2.14	SYNTHESIS OF THE GOLD(I) COMPLEX OF N,N-DIBENZYLETHYLENETHIOUREA	189
	5.2.15	ATTEMPTED SYNTHESIS OF THE RHENIUM(V) COMPLEX OF 1,9- DIAMINO-(5-P-AMINOMETHYL -BENZYL) 3,7-DIAZANONANE) (9)	190
5.3		XPERIMENTAL METHODS USED IN THE STRIBUTION STUDIES	191
	$5.3.1 \\ 5.3.2$	Preparation Of The ⁶⁷ Ga And ¹¹¹ In Complexes The Experimental Details Of The Biodistribution In Athymic NU:NU Mice	191 192
		-	

.

5.4	¹ H NMR DETERMINATION OF THE RATE OF YTTRIUM UPTAKE BY (7)	193
5.5	STABILITY CONSTANT AND PROTONATION CONSTANT MEASUREMENTS OF THE 9N ₃ C ₃ Me ₃ COMPLEXING AGENT	194
5.6	X-RAY CRYSTAL STRUCTURE DETERMINATION	193
5.7	DETERMINATION OF THE BINDING CONSTANTS FOR THE SILVER(I) COMPLEXES	196
5.8	REFERENCES	199
APP	ENDIX	
	Colloquia And Conferences Crystal Data	202 213

-

-

.

CHAPTER ONE

INTRODUCTION

1.0 INTRODUCTION

1.1 THE NEED FOR IMPROVED CANCER THERAPY

1.1.1 What Is Cancer?(1,2)

Cancer is a disease of the cell. It normally appears as a growth or *tumour*, a large mass of tissue cells. The tumour is the result of a multi-stage process known as *carcinogenesis*. Carcinogenesis involves, firstly, an initiation step by a *carcinogen*, followed by the second stage, the activation of the damaged cell. The time span between the appearance of the tumour and the initiation step may be many years. Carcinogens can be physical (e.g. U.V. or X-Ray radiation) or chemical (e.g. benzene). What is common to both is the ability to severely damage cellular DNA.

The activation step is less well understood and may be the result of environmental factors (e.g. diet, exposure to sunlight, nicotine and alcohol abuse). However there is some evidence that susceptibility runs in families, suggesting genetic inheritance.

Another possibility is the effect of certain viruses on the immune system which may inhibit the body's natural defence against a mutant cell. Although there is much research and debate over the actual cause of the cell activation, it is clear once the cell is activated a tumour will begin to grow.

The cells of a tumour no longer respond to normal growth mechanisms and may replicate *-their natural function*, at a rate which far exceeds the normal rate, producing a growth and possibly damaging the surrounding tissues. If the tumour remains in a fixed position, it is known as a *benign* tumour. If the tumour fragments and invades other organs, it is a *malignant*

tumour. The process of fragmentation is known as *metastasis*. Metastasis is very difficult to control, and is responsible for the major number of deaths of those people that die from cancer.

1.1.2. The Incidence Of Cancer⁽³⁾

Cancer is a very common disease and was responsible for 163,000 deaths in the U.K. in 1990. In the U.K. alone, more than 250,000 people are diagnosed with cancer each year. The incidence of the ten most common forms of cancer are given in figure 1.1 (A). Present statistics show that one in three people will develop cancer during their lifetime. Most (70%) of the people who contract cancer are over 60 years old.

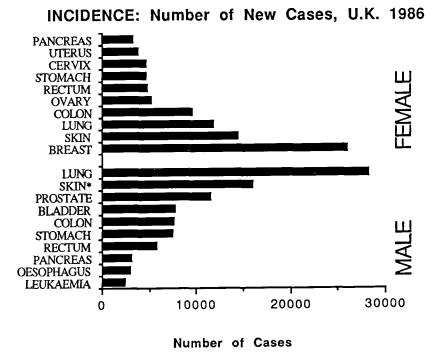


Figure 1.1(A) The Incidence Of The Ten Most Common Forms Of Cancer In The U.K., 1986.⁽²⁾ * "Skin" does not include malignant melanoma.

Survival from cancer depends greatly on the stage at which it is diagnosed; the more advanced the disease, the more likely it is that metastasis has occurred and that other tumours are developing away from the primary site. Figure 1.1(B) shows the five year relative survival rates for the ten most common forms of cancer.

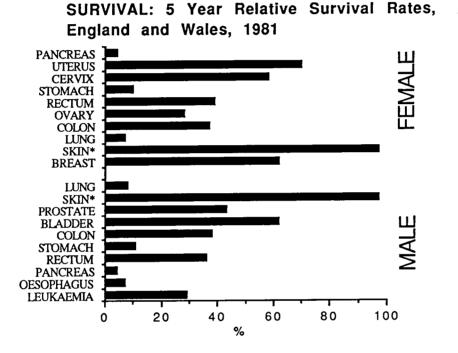


Figure 1.1(B) The Five Year Survival Rate For Patients With The Ten Most Common Forms Of Cancer. England and Wales, 1981.⁽²⁾ *"Skin"`does not include malignant melanoma.

Figure 1.1(C) shows the ten cancers which cause the most deaths in men and women. With men, lung cancer is the major cause of death from cancer (one third), whereas with women, breast cancer is the largest cause of death for women who contract cancer (one fifth).

4

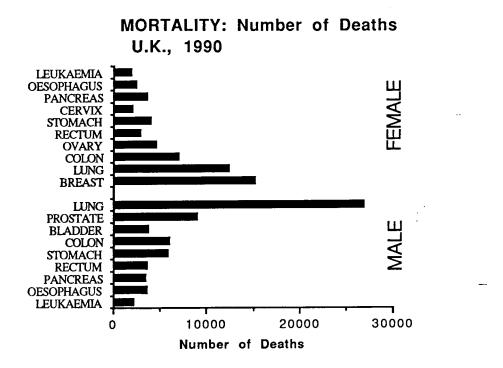


Figure 1.1(A) The Number Of Deaths From The Ten Most Common Forms Of Cancer In The U.K., 1990.⁽²⁾

1.1.3 The Treatment Of Cancer⁽¹⁾

Surgery can be used to remove a tumour, and is very effective in the treatment of benign tumours. *Radiotherapy* - the use of Xrays and Gamma-rays, and *chemotherapy* - the use of drugs (e.g. cis-platin and 5-fluorouracil) are used to combat benign tumours *in situ*. These techniques do meet with some success, for example, more than 80% remission is occurring for testicular and ovarian cancers, but this degree of success is limited to the treatment of a small group of cancers. In fact lung, colon, rectum and prostate cancers, are virtually untreatable using chemotherapy. Because chemotherapy involves the destruction of the DNA of tumour cells, a side effect of the technique is the destruction of healthy tissue and possibly vital organs. The need for new treatment is clear. Those cancers which are currently untreatable, surgery aside, call for new methods for their treatment, and the intrinsic danger of chemotherapy puts the emphasis on finding a new *cell-selective* approach to the treatment of cancer. One such approach is to specifically target the cancer cells using the molecular blood hounds - *monoclonal antibodies*.

1.2 ANTIBODIES

1.2.1 Introduction

Antibodies are proteins known as *immunoglobulins*. They are produced in vertebrates by white blood cells called *B-lymphocytes* in response to invading *pathogens* or other foreign substances. *Tlymphocytes* alert the B-cell to the presence of the foreign substance; the B-cells produce huge quantities of antibodies which recognise and subsequently give rise to their destruction by the white killer cells, or *macrophages*⁽⁴⁾. The mechanism of antigen recognition is achieved by binding to the surface with partial structures (*determinants*) in a highly specific fashion.

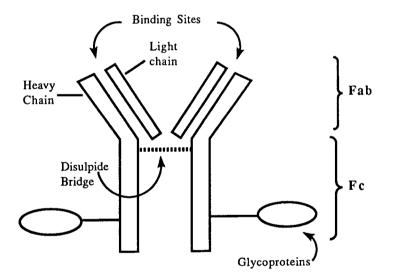


Figure 1.2 Schematic Diagram Of An Antibody

Antibodies, in their simplest form, consist of two identical heavy chains and two identical light chains linked together by disulphide bridges in a complex three dimensional structure. The antibody has three regions: of these two are Fab regions (ab stands for antigen binding), consisting of one light chain and part of the heavy chain. Each Fab is a single binding site, thus each molecule is bivalent, giving rise to two identical binding sites. The third region is the Fc or constant region, consisting of two parts of the heavy chains. The Fc fragment mediates the effector functions by initiating a sequence of immunological reactions which lead to the elimination of the antigen. It is the spatial arrangement of the amino acid residues in the Fab fragments that determine the individual binding specificity of the antibody.

1.2.2 Monoclonal Antibodies And Cancer Therapy

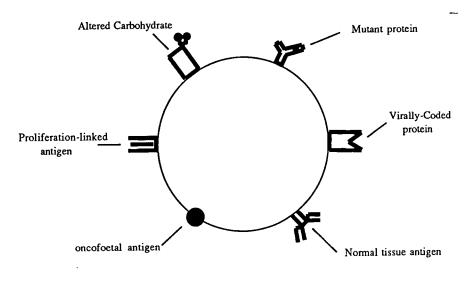


Figure 1.3 Target Antigens

A tumour cell expresses glycoproteins and glycolipids (Figure 1.3) on its surface which are not normally expressed. The body's immune system should recognise these as antigenic and the response process described above should take place. Often this is not the case and the mutant cell is allowed to proliferate causing the growth of a tumour. This fact in itself demands to be understood. Why is it that the cell is not recognised and destroyed?

Aside from this apparent malfunction of the immune system, the presence of these glycolipids and glycoproteins can be advantageous. If an antibody, specific to these unique antigens, could be labelled with an imaging agent (*Radioimmuno-scintigraphy*, RII) or a therapeutic agent (*Radioimmunotherapy*, RIT), this would provide us with a cell selective approach to the treatment of cancer.

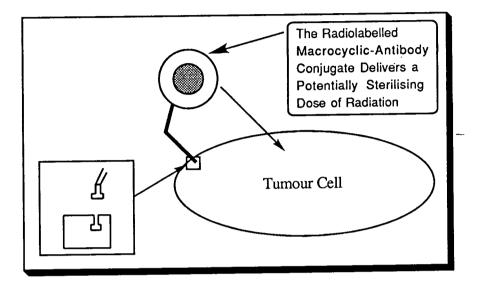


Figure 1.4 Radioimmunotherapy

~

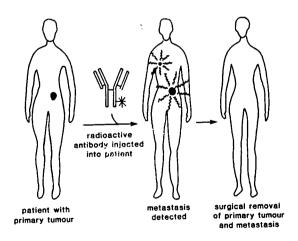


Figure 1.5 Radioimmunoimaging⁽¹⁾

Nearly one hundred years ago, Ehrlich postulated that it may be possible to target therapeutic agents at specific tissues. He suggested that antibodies would be likely agents for the job, but until the 1970's this was an impossible task. At that time, it was impossible to raise a specific antibody for a specific antigen - amonoclonal antibody.

In 1975, Kohler and Milstein⁽⁷⁾ were responsible for solving this problem. They discovered, that if a plasma-B-cell could be immunised against one antigen and fused to a malignant myeloma cell (a hybridoma), the resultant hybrid is capable of maintaining the characteristics of both cells, namely, to produce an abundance of antibodies specific to one antigen, (Figure 1.6). Since then, this hybridoma technology has made it possible to produce large quantities of monoclonal antibodies.

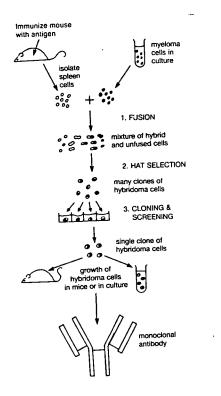


Figure 1.6 Hybridoma Technology⁽¹⁾

1.2.3 Chimaeric Antibodies^(8,9) And Antibody Fragments⁽¹⁰⁾

Kohler and Milstein used mice for their initial work. From the diagram, it is shown that part of the process involves injecting a tumour antigen into a mouse, from which the resultant lymphocytes are taken. The antibodies produced by a mouse are *murine* antibodies and are recognised by the human immune system as foreign or *immunogenic*. If they are used *in vivo* they may cause an immune response that would obliviate the desired process. If a fully human antibody is required, somebody must be inoculated with the tumour antigen. This obviously poses a severe difficulty.

This problem has been partially overcome by employing humanised or *chimaeric* antibodies. These antibodies have the hypervariable region of the mouse for the tumour antigen, but human constant and variable regions. These antibodies should prove less immunogenic than the murine antibodies.

Important advances have also taken place in the production of antibody fragments directly from E-coli⁽¹⁰⁾. An antibody fragment, as the name suggests, is just the binding part of the antibody. Figure 1.7 shows the possible fragments. As the constant region does not take part in the recognition process, it is disposable. Apart from reducing immunogenicity, their smaller size should improve transport time to the tumour site and also allow better access into more hindered sites. These antibody fragments are also cleared more rapidly from the blood and eventually from the body, and should improve the tumour : background ratio.

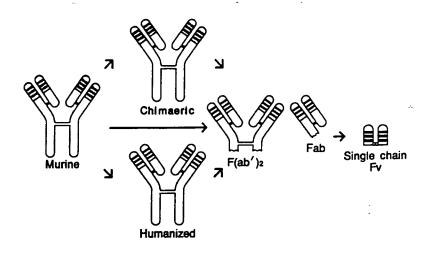


Figure 1.7 Antibody Fragments of an IgG

1.3 RADIOIMMUNOTHERAPY AND RADIOIMMUNOIMAGING

1.3.1 Introduction

Tumour targeting employing antibody conjugated radiolabels, allows both therapy and imaging to be achieved within a single treatment $protocol^{(11,12)}$. The use of monoclonal antibodies provides a method of achieving a high target : non-target ratio. To facilitate the successful use of these techniques a number of factors must be addressed. The method of radiolabelling is of crucial importance (section 1.3.3), as is the choice of a suitable radiolabel.

1.3.2 The Choice Of Radionuclide (13,17)

1.3.2.1 Radioimmunoimaging

When imaging is intended, what is required is a high photon density to maximise the resolution of the image produced (13). For therapeutic use, a radionuclide with high energy is required.

More specifically, for imaging, the minimum possible interaction with the tissue is crucial. Also the nature of the radiation emitted must allow an easy and preferably cheap method of detection. As most in-house detectors are tuned for the detection of technetium 99m (E = 141 keV), a photon energy close to this value would be beneficial. Gamma and positron emitting isotopes of sufficient energy fall into this category. Detection of a single photon emitter can take place using a conventional Anger camera, with a resolution of 1 cm, which can be improved using a tomographic detector. A positron colliding with another electron creates two colinear photons of 511 keV, and gives improved resolution (3mm) using a positron emission tomography scanner⁽¹⁷⁾.

Common requirements for both imaging and therapy isotopes are as follows:

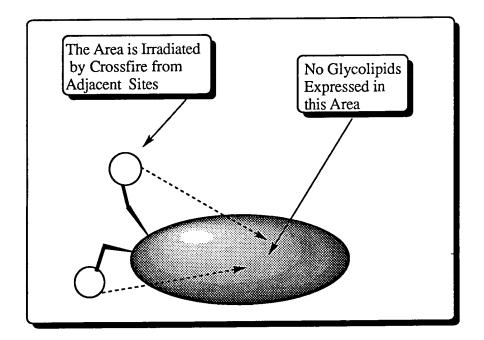
- 1) A half-life of between 6 hours and 8 days. The physical process of getting the conjugated antibody (mass = 150000) is relatively slow, $t_{1/2} = 24$ hours.
- 2) The production of stable daughter products.
- 3) Must be cheap and readily available.
- Must be carrier free (not contaminated with stable isotopes of the element) to achieve maximum dosage for the tumour.
- 5) The radionuclide must possess the appropriate chemical properties to enable its attachment to the antibody with a specially chosen complexing agent.

A list of possible isotopes is given below.

Radionuclide	T _{1/2}	E photon
		(%)
123 _I	13.2 hr	159 (83)
125 _I	60.0 days	27(138)
		35(7)
131 <u>1</u> *	8.05 days	364(82)
113mIn	1.68 hr	391(66)
111 _{In}	2.83 days	171(88)
		247(94)
99mTc	6.02 hr	141(89)
67Ga	3.25 hr	184(24)
⁸² Rb (PET)	1.4 hr	511
⁶⁴ Cu**(PET)	12.8 hr	511(120)
⁶⁸ Ga (PET)	1.20hr	511(178)

* 131 I has an accompanying β^2 emission E_{max} 0.188 MeV

** 64Cu has an accompanying β ⁻ emission E_{max} 0.57 MeV


Table 1.1 List Of Candidates For Tumour Imaging

Gallium 67 And Indium 111

Despite being more expensive and less easy to detect than technetium 99m, both of these isotopes have a convenient coordination chemistry, and suitable half-lives making them very strong candidates for imaging.

1.3.2.2 Radioimmunotherapy

For radioimmunotherapy, the antibody-radiolabel conjugate needs to be able to deliver a sterilising dose of radiation that is of sufficient energy to cause cleavage of the cellular DNA. This constitutes a dosage of between 600 to 40000 rads. This suggests that an alpha or beta emitter is the most suitable. There is one more consideration that must be borne in mind -that of the tumour $morphology^{(16)}$. It is impossible for any one nuclide to meet the morphological demands of every tumour. For instance, leukaemia is a single cell cancer, and if a long range emitter was employed, many healthy cells in the local environment would be damaged. In this case it would be best to employ a short range beta or alpha emitter. For large and dense tumours, a long range beta emitter would be best. This would enable the whole tumour to be irradiated, even when antigen distribution is non-uniform, Figure 1.7

Figure 1.7 The Remote Part Of The Tumour Where No Tumour Specific Antigens Exist Is Irradiated By The Long Distance Beta Emitter - **Crossfire.**

The problem with alpha emitters is that they have a very short range (1 to 2 cell diameters), and therefore are not suitable for most tumours. Also, many alpha emitters produce potentially harmful daughter products, or possess undesirable chemical properties. Beta emitters that may be suitable are given in table 1.2.

Isotope	Half Life hr	Bmax (Mev%)	Mean Range mm	Gamma (KeV %)
67Cu	62	0.40 (45)	0.2	93 (17)
		0.48 (35)		184 (47)
		0.58 (20)		
90Y	64	2.25 (100)	3.9	
111 _{Ag}	179	1.04 (93)	1.1	342(6)
		0.69 (6)		
131 _I	193	0.61 (90)	0.4	364(79)
161 _{Tb}	166	0.45	0.3	75
		0.57		57 (21)
		0.58		
188Re	17	1.96	3.3	155
		2.12		
199Au	75	0.25 (22)	0.1	158 (76)
		0.3 (72)		

 Table 1.2 Possible Isotopes For Use In RIT

Rhenium 188

Of these candidates, rhenium 188 is a potential candidate. Unfortunately, the low oxidation state chemistry is rather complex and difficult synthetically, although stable cationic $\text{Re}(V)O_2$ complexes with 1,4,8,11- tetrazaundecane have been characterised⁽¹⁸⁾.

Gold 199 And Silver 111

Gold 199 has similar problems to the rhenium 188 isotope associated with its usage, in that its coordination chemistry is complicated by the fact that whilst Au(III) complexes are kinetically inert, they are strongly oxidising and Au(I) complexes preferring a linear coordination geometry - tend to disproportionate readily. However, silver 111 is much more amenable to complexation. If a more stable complex can be made⁽¹⁸⁾, this isotope could prove to be a very effective therapeutic agent.

Yttrium 90

Yttrium 90 is particularly well suited to therapy. It has a suitable half life ($t_{1/2} = 64$ hours) and is a pure beta emitter of intermediate energy (2.3 MeV). The daughter products are stable and it is readily available from a generator from its parent strontium 90.

Because yttrium 90 has a range of 3.9mm, it is very suitable for lung, ovarian^(19,20), colorectal⁽²¹⁾ and breast cancer. However if it becomes dislodged from the antibody, it can build up in the bone marrow causing the potentially lethal myelosuppression. It is crucial that the radiometal is bound irreversibly to the antibody.

1.3.3 Bifunctional Complexing Agents

In order to achieve successful tumour targeting the radiolabel must be irreversibly bound to the antibody. To achieve this a bifunctional complexing agent is required (22,23). A bifunctional complexing agent consists of an activated moiety that can be conjugated to an antibody, possibly via the NH₂ group of a lysine residue. This is combined with a complexing agent specifically chosen to bind the radionuclide irreversibly. (Figure 1.8)

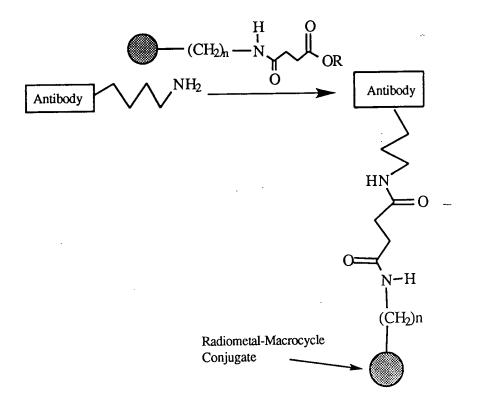


Figure 1.8 Radiolabelling A Monoclonal Antibody

The choice of complexing agent is governed by the radiometal ion that will be used as the radiolabel⁽²⁴⁾. It is impossible for any one complexing agent to form stable complexes with all of the choice radiometals. Each metal ion will have a distinctive coordination requirement comprising of a specific number and type of donor atoms with a suitable spatial arrangement to achieve coordination saturation. Previous workers concentrated on this one ligand approach employing functionalised EDTA^(25,26) or DTPA⁽²⁷⁾ as the complexing agent for all choice radiolabels. The instability of such complexes *in vivo* predetermined the use of selectively tailored complexing agents. The problems encountered with EDTA and DTPA, namely acid catalysed decomplexation *in vivo*, may be partially or completely solved by a judicious choice of a macrocyclic complexing $agent^{(28,29)}$.

....

1.4. MACROCYCLIC COMPLEXING AGENTS.

1.4.1 Introduction

A macrocycle is a polydentate ligand, accommodated by a cyclic array of atoms containing at least three donor atoms; the macrocyclic ring containing at least nine atoms, (Figure 1.10). Macrocyclic complexing agents ⁽²⁹⁾ are a better choice for *in vivo* work for a number of reasons.

1.4.2 Macrocycles - Superior Complexing Agents?

Macrocycles form complexes with metals that are usually of greater thermodynamic stability than their acyclic counterparts⁽³²⁾ such as EDTA and DTPA.

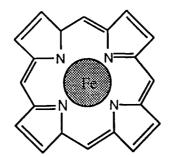
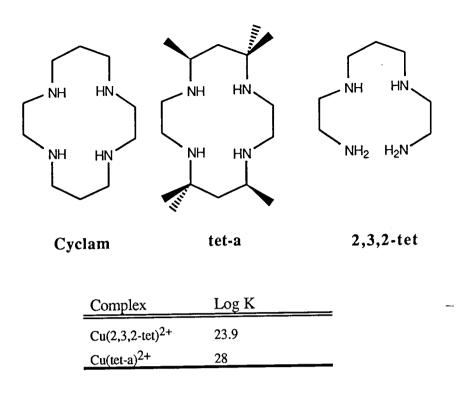


Figure 1.10 A Macrocyclic Complex

We should expect an extra increase in the stability constant, due to the formation of another chelate ring - *the chelate effect*. Polydentate chelating agents are always thermodynamically more stable than monodentate ligands. The example below clearly demonstrates this effect:

$$Ni^{2+}(aq) + 6 NH_3(aq) \longrightarrow Ni(NH_3)_6^{2+} + aq logK=8.6$$

 $Ni^{2+}(aq) + 3 en(aq) \longrightarrow Ni(en)_3^{2+} + aq logK=18.2$


The introduction of three chelate rings produces a large increase in the stability constant (K) and therefore a large decrease in the Gibbs free energy(ΔG°).

$\Delta \mathbf{G}^{\circ} = -\mathbf{RT}\mathbf{lnK} = \Delta \mathbf{H}^{\circ} - \mathbf{T}\Delta \mathbf{S}^{\circ}$

The free energy of a reaction is a combination of the enthalpy (ΔH°) and the entropy (ΔS°) of the reaction. The enormous increase in the stability constant is a combination of these parameters. Although the main effect, in this case, is due to the increase in translational entropy of the system when monodentate ligands are replaced by the polydentate ligand.

1.4.3 The Macrocyclic Effect

Macrocyclic complexes are, almost always, kinetically and thermodynamically more stable than their acyclic analogues. The increase in stability found with a macrocyclic ligand far outweighs that which might be expected with the addition of another chelate ring. Cabbiness and Margerum⁽³³⁾ have reported that the copper(II) complex of tet-a was 10,000 times more stable than the copper(II) complex of the acyclic of 2,3,2-tet.

This effect has been primarily ascribed to an increased entropy of complexation.

The Ni(II) complex of cyclam and its acyclic analogue have also been compared by $Margerum^{(33)}$.

Complex	logK	∆H/kcal mol ⁻¹	$\Delta S/cal K^{-1} mole^{-1}$
Ni(2,3,2-tet) ²⁺	15.8	-13.0	7.4
Ni(cyclam) ²⁺	22.2	-19.4	-2.0

In this case the enthalpic factor dominates and the macrocyclic effect results in a stability that is of the order of 10⁷ greater than its acyclic analogue.

The extra stability of macrocyclic complexes may be attributed to either favourable enthalpy or favourable entropic contributions. In many cases it is a mixture of both, but often the entropie factor is the main contribution. The conformational change an acyclic complexing agent must undergo to form the complex, far outweighs that of the already pre-organised macrocycle.

Kinetic Stability is also associated with macrocyclic complexing agents. Most macrocycles show a kinetic inertness and do not readily dissociate, even in acidic conditions. These kinetic properties may also effect the equilibrium constant of such complexes. For instance, it is possible with the open chain series to undergo S_N1 displacements, where the displaced donor can be readily solvated. With the macrocyclic ligand, this is much more difficult because of the rigidity. The cycle does not allow the passage of incoming ligands, or the subsequent solvation and stabilisation of the displaced donor moiety.

1.4.4 Specific Tailoring Of The Macrocycle

Because each macrocycle can be synthesised specifically, containing the required number and type of donor atoms to coordinately saturate the metal ion, this considerably reduces the risk of competitive demetallation *in vivo*. Also, macrocyclic complexes are less sensitive to acid catalysed dissociation^(30,31), and therefore tend to be more kinetically stable *in vivo* (the pH in the region of the liver may be as low as 2).

In addition, each macrocycle can be designed to form a neutral or cationic complex, which will not attract protons and other cations encountered in the blood stream, again reducing the chance of the formation of mixed complexes with metals already in relatively high concentration in the body (Ca²⁺ is 1.26 mmol dm⁻³, Mg²⁺ is 0.8 mmol dm⁻³, and Zn is 10⁻⁵ mmol dm⁻³ in human

serum). The overall charge on the complex may also influence its excretion pathway in the body.

..**.**.

-

~

.

1.5 THE SCOPE OF THIS WORK

1.5.1 Introduction

As previously discussed, stable complexes of the chosen radiometals are of primary importance for tumour targeting and *in vivo* work in general. This research aims to synthesise a number of macrocyclic complexing agents and the subsequent complexes, in order to clarify whether the complexing agents are viable candidates for *in vivo* use.

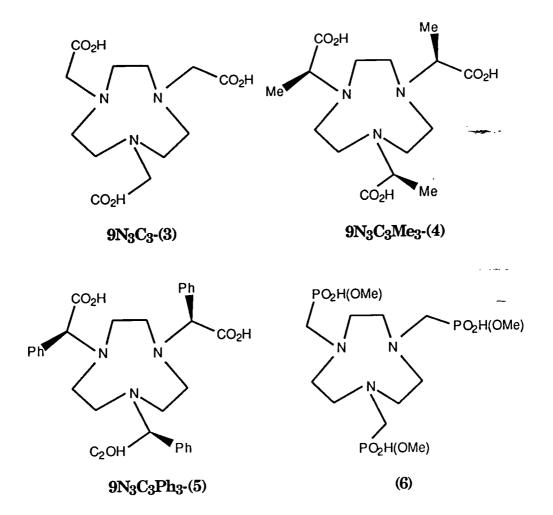
Selected methods of investigation have been employed, including NMR studies, protonation constant measurements, calorimetric determination of binding constants, crystallographic determination of structure, and biodistribution studies.

The remainder of this chapter is concerned with a brief description of the relevant coordination chemistry of the chosen radiolabels, leading to our choice of proposed macrocycle for synthesis.

1.5.2 Indium(III) And Gallium(III) -Coordination Chemistry And Proposed Macrocycles For Synthesis

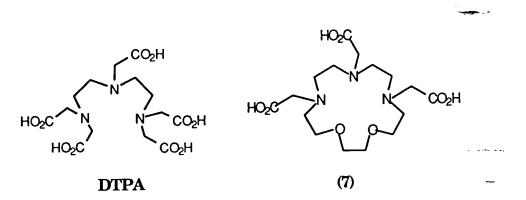
Indium is a group III metal possessing the electron configuration $(Kr)4d^{10}5s^{2}5p^{1}$. The +3 ion is the common oxidation state. Many examples⁽³⁴⁾ of neutral octahedral complexes exist with both mono and polydentate ligands.

Indium complexes of EDTA and DTPA have been used in Radioimmunoimaging⁽³⁵⁾. These anionic complexes, despite being stable at pH 7, readily protonate at a lower pH and as suggested earlier, are susceptible to competitive demetallation *in vivo*.

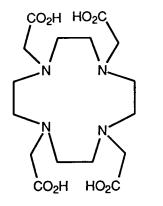

Gallium possesses similar coordination chemistry to indium, the tripositive ion being the most stable. Both the DTPA and EDTA complexes readily protonate at a lower pH.

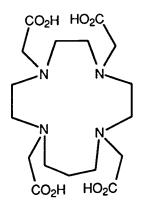
Both gallium(III) and indium(III) readily hydrolyse in aqueous media. Thus the ligand employed should be tri-basic in order to neutralise the resultant complex. As suggested the complex ought to be hexadentate in order to coordinately saturate the ion.

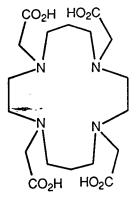
Complexes of indium(III) and gallium(III) with (3) (page 28) have been reported⁽³⁵⁾, and indium is bound very rapidly under ambient conditions. This suggests that the carboxylate or similar acid donor groups allow fast complexation, a prerequisite for radio isotopic tumour targeting. Also acid donor groups like the carboxylate group or alkylphosphinic acid group⁽³⁶⁾, will also resist protonation of the complex. The stability of the complexes of $9N_3C_3$ (3) has been studied and it has been shown that the complexes are very stable with respect to acid-catalysed dissociation, therefore being suitable for *in vivo* use.


Bearing this in mind, it was decided to synthesise (4), (5) and (6) (page 28). The addition of the methyl and phenyl groups with (4) and (5) should radically alter the lipophilicity (and the solubility) of the complexes, compared to (3), and should produce some interesting characteristics.

It was hoped in the synthesis of (6) that a successful synthetic route to phosphinic acid - polyazacycles could be found.

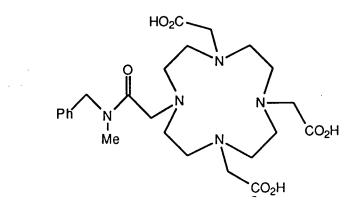

1.5.3 Yttrium Coordination Chemistry And Proposed Macrocycles For Synthesis

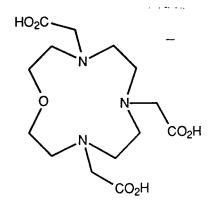

Yttrium has the electronic configuration (Kr)5s²4d¹. It lies above La in the transition group 3. The values of the atomic and ionic radius lie close to the corresponding values for terbium and dysprosium (the lanthanide contraction). Yttrium resembles the lathanides in its chemistry, forming a very stable tripositive ion. The yttrium(III) ion has low polarisability and tends to form electrostatic bonds with hard donors like O and N. The coordination of the tripositive ion is characterised by octadentate complexes⁽³⁷⁾. DTPA is an acyclic complexing agent which forms a thermodynamically stable $(\log K_{ML} = 22.1)$ complex with yttrium(III).



The good thermodynamic stability is not sufficient for *in vivo* use and the complex undergoes measurable demetallation in the human $body^{(49)}$.

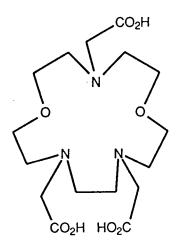
J.P.L. $Cox^{(38)}$ has compared the stabilities of the complexing agents on page 30, concluding that Y(DOTA) is the most stable complex. Therefore it was decided in the light of this work to prepare ligand (7), which may be considered as a macrocyclic analogue of DTPA. In Chapter 5 the background chemistry is discussed in more detail.



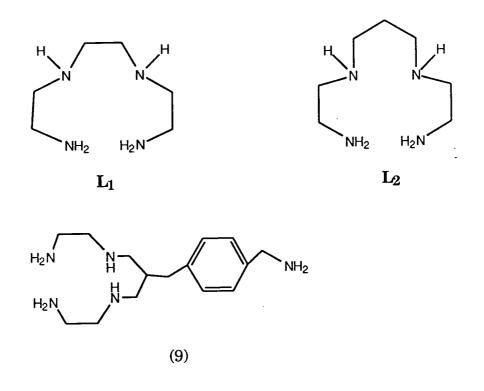


DOTA

TRITA



DOTA-BMA



DTCTA

1.5.4 Rhenium And Technetium Coordination Chemistry And Proposed Macrocycle for Synthesis.

The extensive use of the metastable isotope $99mTc(\gamma = 140 \text{ keV}, t_{1/2} = 6.02 \text{ h})$ in medicine as a scanning agent for specific vital organs has been documented⁽⁴⁶⁾. In recent years $186Re (\beta^- = 1.07 \text{ MeV}, t_{1/2} = 90 \text{ h})$ and $188Re (\beta^- = 2.12 \text{ MeV}, t_{1/2} = 17 \text{ h})$ have been suggested as suitable candidates for diagnostic work.⁽⁴⁷⁾ As mentioned earlier in this chapter these isotopes may be suitable for RIT if they can be irreversibly bound to a bifunctional complexing agent and subsequently attached to an antibody.

Parker and $Roy^{(48)}$ have made stable complexes with rhenium(V) of the type [LReO₂]X, (where X = Cl⁻, CH₃COO₂⁻, PF₆⁻) where L is either L₁ or L₂ from below.

It was decided to synthesise an analogue of L_2 , functionalising the ligand at the 6 position to allow attachment to an antibody. Therefore it was proposed to synthesise (9) as a suitable complexing agent for rhenium and technetium.

1.5.5 Gold Coordination Chemistry And Proposed Complexing Agents For Synthesis.

Gold(I) readily disproportionates unless stabilised by strong complexing agents. Gold(III) is more stable but may be unsuitable for *in vivo* use, as it carries a +3 charge that cannot easily be neutralised by the complexing agent. In addition, complexes of gold(III) are strongly oxidising.

Gold(I) forms many complexes - linear, trigonal and tetrahedral. Linear complexes are favoured eg, $[Au(PPh_3)_2]^+$. There is a strong tendency for the gold atoms in linear complexes to interact with one another to produce polymeric chains⁽⁴¹⁾, and for this reason it is necessarily difficult to form macrocyclic complexes.

Gold(I) forms a stable complex with ethylenethiourea (Figure 1.11) and an X-ray structure has been determined^(41b). However, the complex is susceptible to nucleophilic attack and is unstable at low and high $pH^{(41c)}$.

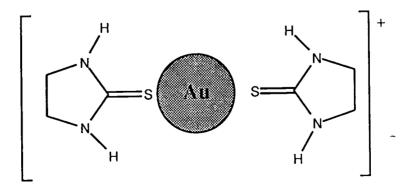


Figure 1.11 The Gold(I) - Ethylenethiourea Complex

After carrying out some modelling studies, using information gained from the aforementioned crystal structure, we proposed to synthesise two acyclic complexing agents (56) (figure 1.12) and (57) (figure 1.13). The 'bite' of the two complexing moieties is sufficient to fit the gold(I) ion and the use of a bidentate chelate should provide an advantage (*-the chelate effect*) over monodentate ligands, and may produce a more thermodynamically, as well as more kinetically stable complex.

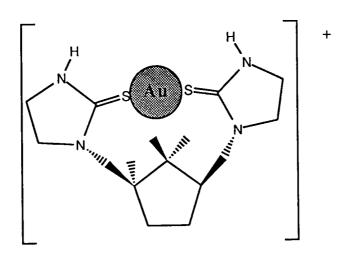


Figure 1.12 The Proposed Gold(I) Complex Of (56)

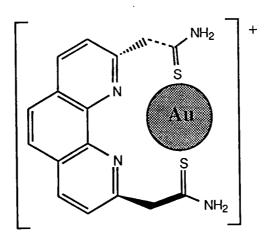
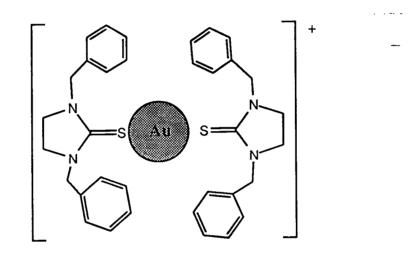
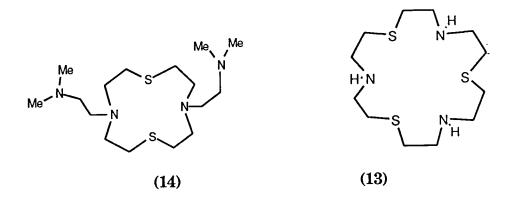
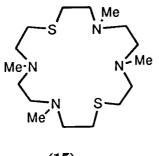


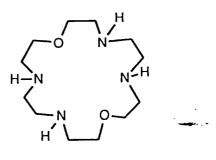
Figure 1.13 The Proposed Gold(I) Complex Of (57)

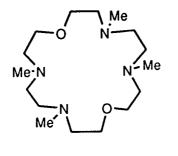
To begin with it was decided to synthesise (12) (figure 1.14), the lipophilic phenyl groups providing us with a monodentate molecule functionalised in such a way as to resemble the bidentate ligands (56) and (57). We hoped, due to the bulky side-arms, that the complexing agents would protect the gold ion from nucleophilic attack providing a more stable complex. Also if (12) was successful as a complexing agent for gold(I) we would synthesise (56) and (57).

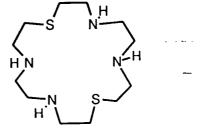




Figure 1.14 The Proposed Gold(I) Complex Of (12)

1.5.6 Silver Coordination Chemistry And Proposed Complexing Agents For Synthesis.


Silver prefers the unipositive oxidation state. The Silver(I) ion is large and polarisable, has a d^{10} electron configuration—and an ionic radius of 1.15A°. From ligand field considerations, no coordination geometry is preferred, but in practice, linear and tetrahedral coordination are the most abundant. With macrocyclic complexing agents five and six coordinate complexes are common, and seven and eight coordination numbers are also known⁽⁴²⁾. Silver(I) shows a preference for soft donor atoms eg. sulphur and nitrogen⁽⁴³⁾, and prefers the 18-crown cavity size⁽⁴⁴⁾. Even though silver(I) has a greater preference for sulphur over nitrogen, because polysulphur cycles tend to adopt an 'endodentate' conformation⁽⁴⁴⁾, a mixed sulphur and nitrogen cycle will be preferred. Taking these points into consideration we proposed to synthesise (13) and (14).


To further investigate the thermodynamic properties of the silver complexes of (15), (48), (49) and $18N_4S_2$ these macrocycles were synthesised.



(48)

.

.____

~

1.6 REFERENCES

- a) "Introduction To The Cellular and Molecular Biology of Cancer", Ed. L.M. Franks and N. Teich.
 b) J. Cairns, 'The Cancer Problem', Scientific American-64, 233, (1978).
- 2. MRC, Private communication
- 3. J. Cairns, Nature, <u>289</u>, 359, (1991).
- 4. "Biochemistry", L. Stryer, Freeman, New York, (1988).
- 5. C. Milstein, Sci. Amer., <u>243(4)</u>, 56, (1980).
- D. Parker and K. Jankowski, 'Advances In Metals In Medicine', ed. M.A. Abrahms, P.A. Murrer, Volume 1, 29-73, (1993), Jai Press, New York.
- 7. G. Kohler and C. Milstein, Nature, <u>256</u>, 495, (1975).
- 8. J. L. Marx, Science, <u>229</u>, 455, (1985).
- L. Riechmann, M. Clark, H. Waldman, and G. Winter, Nature, <u>332</u>, 323, (1988).
- E.S. Ward, R. Gussow, A.D. Griffiths, P.T. Jones, and G. Winter, Nature, <u>341</u>, 544, (1989).
- 11. D. Parker, Chem. Soc. Rev., <u>19</u>, 271, (1990).
- D. Parker and K. Jankowski, 'Advances In Metals In Medicine', ed. M.A. Abrahms, P.A. Murrer, Volume 1, 29-73, 1993), Jai Press, New York.
- 13. B. W. Wessels and R.D. Rogus, Med. Phys., <u>11(5)</u>, 638, (1984).
- 14. R. P. Spencer, Therapy in Nuclear Medicine, <u>3</u>, (1978).
- 15. J. L. Humm, J. Nucl. Med., <u>27(9)</u>, 1490, (1986).
- 16. R.D. Neirinckx, Chem. Br., <u>335</u>, (1986).
- 17. M.E. Phelps and J.C. Mazziotta, <u>228</u>, 799, (1985).
- 18. D. Parker and P.S. Roy, Inorg. Chem., <u>27</u>, 4127 (1988).

- D. J. Hnatowich, M. Chinol, D.A. Siebecker, M. Gionet, T. Griffin, P.W. Doherty, R. Hunter and K. R. Kase, J. Nucl. Med., <u>29(8)</u>, 1429, (1988).
- L.C. Washburn, Y.C. Lee, T.T.H. Sun, B. Byrd, J.E. Crook, M.G. Stabin and Z. Steplewski, Nucl. Med. Biol., <u>15(6)</u>, 707, (1988).
- R. M. Sharkey, F.A. Kaltovich, L.B. Shih, I. Fand, G. Govelitz, and D. M. Goldberg, Cancer Res., <u>48</u>, 3270, (1988).
- 22. C.F. Meares, Acc. Chem. Res., <u>17</u>, 202, (1984).
- 23. C. F. Meares, Nuc. Med. Biol., <u>13(4)</u>, 311, (1986).
- 24. R.D. Hancock, and A.E. Martell, Chem Rev., 89, 1874, (1989).
- S.M. Yeh, D.G. Sherman, C.F. Meares, Anal. Biochem., <u>100</u>, 152, (1979).
- C.F. Meares, and T.G. Wensel, Acc. Chem. Res., <u>17</u>, 202, (1984).
- M.W. Brechbiel, O.A. Gansow, R.W. Atcher, J. Schlom, J. Esteban, D.E. Simpson, and D. Colcher, Inorg. Chem., <u>25</u>, 2772, (1986).
- 28. D. Parker, Chem. Soc. Rev., <u>19</u>, 271 (1990).
- S.V. Despande, S.J. DeNardo, C.F. Meares, M.J. McCall, G.P. Adams, M.K. Moi, and G.L. DeNardo, J. Nucl. Med., <u>29</u>, 217, (1988).
- 30. D. Parker, Adv. Inorg. Chem. Radiochem., 26, 1, (1983).
- 31. L.H. Chen, C.S. Chung, Inorg. Chem., 27, 1880, (1988).
- "Stereochemical and Stereophysical Behaviour of Macrocycles", J.C.A. Boeyens, and S.M. Dobson, ed. I. Bernal, Elsevier, Oxford, <u>2</u>, 1, 1987).
- a) D.K. Cabbiness, and D.W. Margerum, J. Am. Chem. Soc., <u>91</u>, 6540, (1969).

b) D.K. Cabbiness, and D.W. Margerum, J. Am. Chem. Soc., <u>92</u>, 2151, (1970).

- 34. A.J. Carty, and D.G. Tuck, Prog. Inorg. Chem., <u>19</u>, 243, (1975).
- A.S. Craig, D. Parker, H. Adams, N.A. Bailey, J. Chem. Soc. Chem. Commun., 1793, (1989).
- C. J. Broan, R. Kataky, K. Jankowski and D. Parker, J. Chem. Soc. Chem. Commun., 1738, (1990).
- a) M.F. Loncin, J.F. Desreux, E. Merciny, Inorg. Chem., <u>25</u>, 2646, (1986).
 b) "Comprehensive Coordination Chemistry", Vol. 3, P. 1059, ed. G. Wilkinson, R.D. Gillard, Pergamon (1987).
- C.J. Broan, K. Jankowski, R. Kataky, D. Parker, A. Harrison, and A.M. Randall, J.Chem. Soc. Chem. Coomun., 1738, (1990).
- a) M.R. Spirlet, J. Rebizant, J.F. Desreux, and M.F. Loncin, Inorg. Chem., <u>23</u>, 359, (1984).
 b) M.K. Moi, C.F. Meares, and S.J. DeNardo, J. Am. Chem. Soc., <u>110</u>, 6266, (1988).
- 40. "The Chemistry of Gold", R. J. Puddephat, Elsevier, (1978).
- 41. a) D. Parker, P.S. Roy, Inorg. Chim. Acta., <u>155</u>, 227, (1988).
 b) P.G. Jones, J.J. Guy and G.M. Sheldrick, Acta Cryst. 3321, <u>B32</u>, (1976).

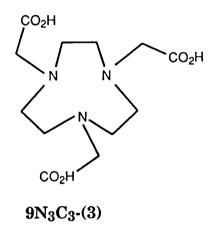
c) D.Parker, Unpublished Data.

- D. Parker, and K.E. Matthes, Ch. 3 in "Stereochemical and Stereophysical Behaviour of Macrocycles", ed. I. Bernal, Elsevier, New York, (1987).
- 43. a) H.K. Frennsdorf, J.Am. Chem. Soc., <u>85</u>, 3533, (1963).
 b) C.J. Pedersen, J. Org. Chem., <u>36</u>, 254, (1971).

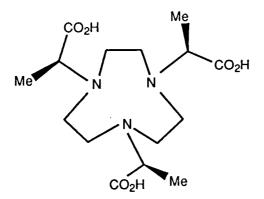
- 44. A.S. Craig, PhD Thesis, University of Durham, (1989).
- R.E. Wolf, J.R. Hartman, S.M.E. Story, B.M. Foxman, S.R.
 Cooper, J.Am. Chem. Soc., <u>109</u>, 4328, (1987).
- a) A. Davison, A.G. Jones, Int. J. Appl. Radiat. Isot <u>33</u>, <u>875</u>, (1982)
 b) D. Brenner, J, Lister-James, A.G. Jones, Inorg. Chem. <u>23</u>, 3793, (1984).
 c) S. Jurrisson, E.O. Slemper, D.E. Troutner, L.R. Canning, D.P. Nowotnik, R.D. Neirinckx, Inorg. Chem. <u>25</u>, 543, (1986)
- E. Deutsch, K Libsow, J.L. Vanderheydon, A.L. Ketring, H.R. Marxon, Nucl. Med. Biol. <u>13</u>, 465, (1986)
- 48. D. Parker, P.S. Roy, Inorg. Chem., 127, 23, (1988)
- 49. A. Harrison, D.Parker, Int. J. Nucl. Med (1991)

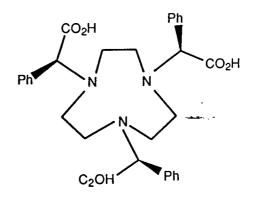
CHAPTER TWO

SYNTHESIS AND CHARACTERISATION OF COMPLEXING AGENTS 9N3C3Me3 AND 9N3C3Ph3 AND THE ATTEMPTED SYNTHESIS OF A PHOSPHINIC ACID POLYAZACYCLE.

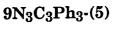

, ... [•]

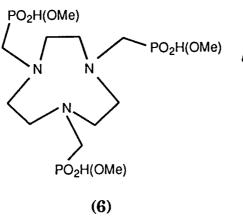
2.0 SYNTHESIS AND CHARACTERISATION OF COMPLEXING AGENTS 9N₃C₃Me₃ AND 9N₃C₃Ph₃ AND THE ATTEMPTED SYNTHESIS OF A PHOSPHINIC ACID POLYAZACYCLE.

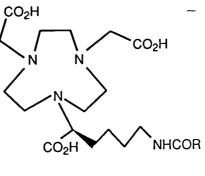

2.1 THE SYNTHESIS OF THE COMPLEXING AGENTS


2.1.1 Introduction

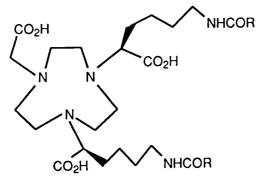
The synthesis of $9N_3C_3$ (3) was first reported in $1973^{(1)}$. The subsequent formation of neutral stable complexes with Fe(III) and Cr(III) was reported in $1977^{(2)}$.



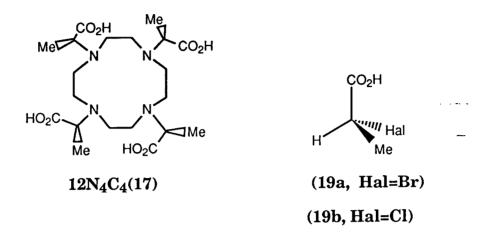

Stable complexes of (3) with indium and gallium have been synthesised in this laboratory⁽³⁾. As mentioned in the introduction (4), (5) and (6), are excellent models for the N-functionalised ligands (54) and (55) that may be attached to tumour-localising antibodies and rapidly radiolabelled with indium or gallium isotopes⁽³⁾.



9N₃C₃Me₃-(4)



(54)


-

(55)

2.1.2 The Synthesis Of (R)-1, 4, 7 -Tris (2'-Methylcarboxymethyl)-Triazacyclononane(4)

Desreux has reported⁽⁴⁾ the synthesis of the supposedly enantiopure tetraazacycle (17).

The synthesis involves the nucleophilic attack of the tetraamine's nitrogen atoms on the electron deficient carbon of the substituted acid (19a). The configuration of the stereocentre at C-2 is inverted during the concerted S_N2 reaction.

For our synthesis, we used 1,4,7-triazacyclononane (22) with the enantiopure α -chloropropanoic acid (19b).

The liberated proton from the amine lowers the pH of the reaction mixture as the reaction proceeds, and is a suitable method of monitoring the reaction. The initial pH of the reaction was adjusted to pH 10, with lithium hydroxide and the pH was maintained throughout the reaction by adding solid lithium hydroxide. If the pH falls too low, protonation of the nitrogen occurs inhibiting alkylation. If the pH was taken much higher than pH10, the possibility of competitive nucleophilic attack by hydroxide ions is increased (Figure 2.1), resulting in the formation of the unwanted alpha-hydroxy acid (18). Concurrent base catalysed racemisation of the enantiopure alpha-chloro acid is also more likely at elevated pH (Figure 2.2).

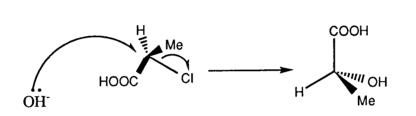


Figure 2.1 Competitive Nucleophilic Substitution From Hydroxide Ions

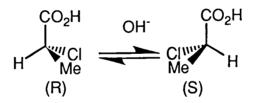
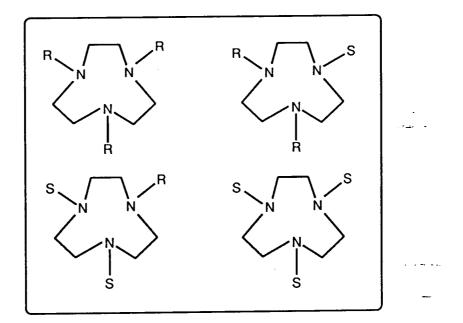


Figure 2.2 Base Catalysed Racemisation

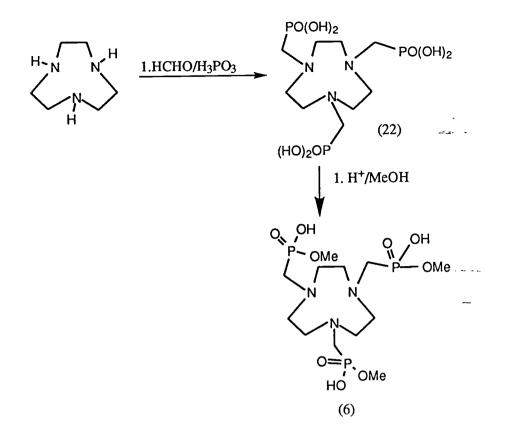
Purification was attempted by recrystallisation at pH 12, 7 and 3. These attempts proved fruitless, and the complexing agent was purified by column chromatography as the tri-ester (MeOH/H⁺), followed by hydrolysis giving the hydrochloride salt, (HCl(6M) 120°C, 18h).

2.1.3 The Synthesis of 1,4,7-Tris (2'-Phenylcarboxy methyl)-1,4,7-Triazacyclononane (5)


The synthesis of (5) was approached in a similar manner-to-that of (4). However, the partial insolubility of the phenyl substituted acid (20) in aqueous methanol retarded the progress of the reaction, (followed as a function of the pH of the reaction mixture).

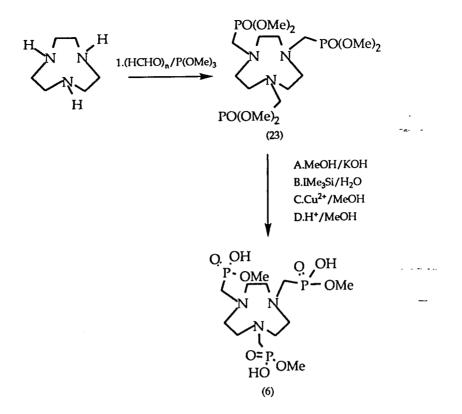
Therefore the synthesis of the methyl ester (21) of (20) was undertaken and (21) was purified by column chromatography. The reaction of $9N_3$ (22) with the racemic ester in a suitable polar solvent (CH₃CN)¹ was successful, and the compound was purified with column chromatography, followed by acidic hydrolysis.

At this stage, it must be noted that the purified compound was most probably a mixture of the four possible stereoisomers, RRR, SSS, SRS, RSR (i.e. two chiral diastereoisomers).


¹ This reaction was tried in a number of solvent/base systems in order to improve the relatively slow rate of alkylation. Acetonitrile and LiOH (pH maintained at 8 -9) or THF/methanol/CH₃CN with K₂CO₃were both tried, the latter proved to be the best system and was chosen for further syntheses of this molecule.

The Possible Stereoisomers

2.1.4 The Attempted Synthesis of O,O',O"-Trimethyl-1,4,7-tris(phosphonatomethyl)-triazacyclononane(6)


The proposed synthesis of (6) is in Scheme 2.1. The initial reaction of $9N_3$ with formaldehyde and H_3PO_3 to form (22) has been used in this laboratory previously ⁽⁵⁾ with success.

Scheme 2.1

Following formation of (22) and purification by recrystallisation, the amino phosphinic acid was boiled under reflux in methanol in the presence of sulphuric acid. According to the ³¹P and ¹H NMR and mass spectral analysis, the nitrogen-carbon bond had cleaved under these conditions.

An alternative route was attempted, (Scheme 2.2).

Scheme 2.2

The first step involving the formation of (23) was successful. Selective hydrolysis was attempted by the following four methods:

a) The use of MeOH/KOH was entirely unsuccessful and produced no detectable reaction (NMR and Mass Spectrum).

b) Dealkylation using Me₃SiI, involving alkyl-oxygen cleavage, yielded a large mixture of species as deduced by ³¹ P and ¹H NMR.

If this reaction had been selective and therefore successful, in so much as it was mainly the desired product, simple base hydrolysis should have resulted in the target molecule.

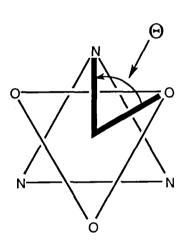
c) The use of copper to control the base hydrolysis was suggested by Thomas Kaden and co-workers⁽⁶⁾, who achieved selective hydrolysis of diethyl phosphonate moieties attached to tetraazacycles. With or without the copper present, no reaction could be detected even at elevated temperature. This result could be explained as an

effect of the smaller ring size of the 9-membered cycle, and thus the proximity of the copper to the reaction site would be very different than the case with the 12-membered cycle.

d) Finally, acid hydrolysis ($H_2SO_4/MeOH$) was attempted which produced a large mixture of inseparable products as deduced from ¹H and ³¹P NMR spectra.

. -- . .

2.2 CHARACTERISATION OF 9N3C3Me3 AND 9N3C3Ph3


2.2.1 Introduction

This section reports the information acquired about the two new hexadentate ligands $9N_3C_3Me_3$ and $9N_3C_3Ph_3$. The structures of the new complexing agents and of selected complexes (Cu(II), Ca(II), Ga(II), In(III)) were determined using ¹H and ⁷¹Ga NMR, mass spectral analysis and X-ray crystallographic methods of analysis. Binding constants of $9N_3C_3Me_3$ with Ca(II) and Cu(II) were measured by pH potentiometric titrations, as were the pK_a values of the ligands. Having gained the confidence that the gallium and indium complexes were of similar stability to the parent ligand ($9N_3C_3$), the *in vivo* kinetic stability was investigated through biodistribution studies of the ⁶⁷Ga-ligand complexes in mice. Further to this, an assessment of the localising properties of the complexes in a xenograft of a human tumour in mice was investigated. The details of that investigation are reported in *chapter* 3.

2.2.2 Synthesis And Structural Analysis Of [In(III).9N3C3Me3]

The neutral indium(III) complex was prepared at pH 2 following admixture of equimolar quantities of 9N₃C₃Me₃ and indium trinitrate solutions. The complex readily crystalised at room temperature, producing clear and colourless crystals. The crystals showed unusual insolubility and would not dissolve in any common laboratory solvent.

X-ray analysis¹ (figure 2.4) revealed that indium is very tightly bound by the oxygen and nitrogen donors, with shorter In-O and In-N bond lengths than any previously reported hexacoordinate indium complex⁽⁷⁾. The crystal possesses an orthorhombic space group (P22₁2₁) and takes the form of a distorted trigonal prism. The angle of distortion (twist angle, figure 2.3) is 20.8°. This value is approximately the same as that found for the ferric complex of the parent triacetate ligand⁽⁸⁾

Figure 2.3: The Twist Angle (Θ) - A measure Of The Distortion From C₃ Symmetry

¹The X-ray crystal structure was determined by Professor George Ferguson (Department of Chemistry, University of Guelph, Ontario, Canada).

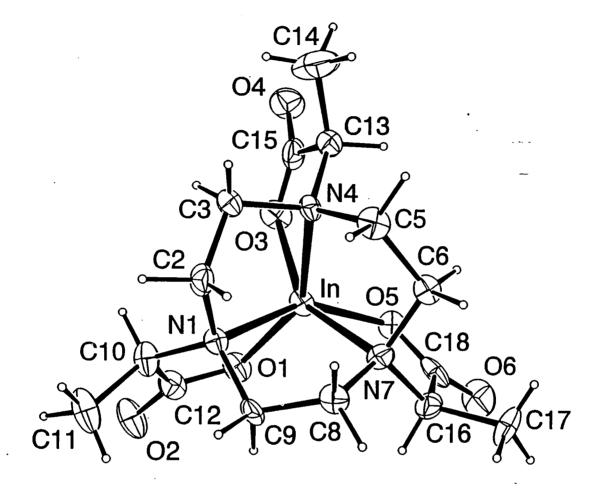


Figure 2.1 Perspective (ORTEP) View of the Indium -9N₃C₃Me₃ Complex. Selected bond lengths and bond angles: In-N(1) 2.258(4), In-N(4) 2.270(5), In-N(7) 2.254(5), In-O(1) 2.101(4), In-O(3) 2.094(4), In-O(5) 2.094(4)A°; N(1)-In-N(4) 79.2(2), N(1)-In-N(7) 79.7(2), N(4)-In -N(7) 79.3(2), O(1)-In-O(3) 93.6(2), O(1)-In-O(5) 93.9(2), O(3)-In-O(5) 94.1(2), N(4)-In-O(3) 77.0(2), N(7)-In-O(5) 77.0(2), N(1)-In-O(1) 77.7(1).

It is the first structural analysis of a neutral indium(III) complex with hexacoordinate geometry which possesses non-crystallographic C_3 symmetry.

Using a similar method to that described above, an attempt was made to crystalise $9N_3C_3Me_3$ with gallium(III) and copper(II). The admixture of the ligand with gallium trinitrate solution produced an unusual result. After 60 minutes the solution became viscous and opaque. Presumably, this was caused by the insolubility of the complex. The reason why it should show a marked difference to the indium-ligand complex is unclear. The difference in the ion size and thus the polarising strength may render the complex more lipophilic causing it to come out of solution so quickly that it has no time to crystallise uniformly as in the case of the corresponding indium complex.

The copper complex did not crystallise. Changes in the concentration of the solution and in the pH made no difference and the solution did not produce any crystals.

Similar attempts were made with the complexing agent $9N_3C_3Ph_3$ and gallium, indium and copper. With gallium and indium, the complex was very insoluble -similar to the gallium- $9N_3C_3Me_3$ complex, and it did not prove possible to grow any crystals for X-ray analysis. With copper(II), crystals have been grown but they were deliquescent and it was not possible to analyse them using X-ray methods.

2.3 71Ga NMR INVESTIGATION OF THE STRUCTURE OF THE GALLIUM COMPLEXES OF 9N3C3Me3 AND 9N3C3Ph3

Using ⁷¹Ga NMR, [9N₃C₃Me₃.Ga] can be observed in 6M HNO₃ as a singlet at +149 ppm ($\omega_{1/2}$ = 1100Hz). The investigation was problematic due to the aforementioned solubility of the gallium complexes of these ligands. The solution had to be introduced to the NMR probe immediately after mixing, to enable enough time for the measurement to be taken before the complex came out of solution.

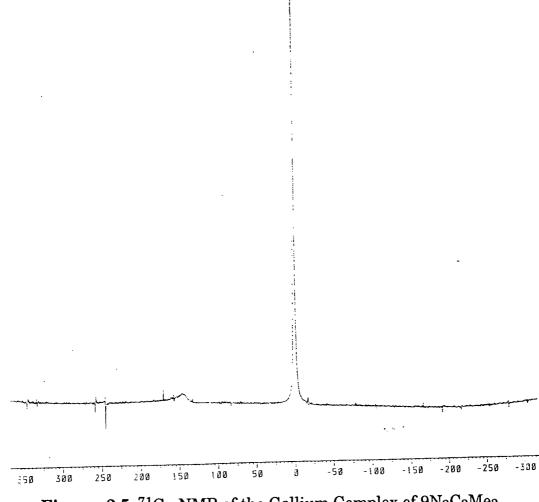


Figure 2.5 ⁷¹Ga NMR of the Gallium Complex of 9N₃C₃Me₃ The reference signal is Gallium trinitrate in 6M HN03

Figure 2.5 shows the ⁷¹Ga spectrum, and it can be seen that the signal width of the complex at the baseline is broader than that of the reference complex $Ga(H_2O)_6^{3+}$. The origin of line broadening with quadrupolar nuclei is related to the interaction of the electric field gradient with the quadrupolar moment at the nucleus. Any distortion of the field gradient away from cubic symmetry results in an interaction with the nuclear quadrupole causing an increase in the relaxation times T_1 and T_2 . The effect of this is to produce line broadening as illustrated in figure 2.5. The gallium ion in the nitric acid solution is symmetrically surrounded by water molecules producing minimal interaction of the electric field gradient and guadrupole at the nucleus resulting in a very sharp signal peak. The fact that the complex gives such a broad signal would suggest that the symmetry of the complex is distorted from the C₃ symmetry as we might expect from a comparison with other similar complexes.

Complexing Agent	NMR Signal ppm (pH)	ω1/2 Hz	Complex Symmetry	Twist Angle degrees
9N ₃ C ₃ Me ₃	+149 (0.7)	1100	non C3	20.5
9N ₃ C ₃ ⁽⁹⁾	+171 (0.7)	210	C3	0
9N3P3Ph3(9)	+132 (0.7)	560	≈ C3	7.9

 Table 2.1: A Comparison Of ⁷¹Ga NMR Signals And Complex

 Symmetry For Related Complexes

Table 2.1 shows the relationship between line width $(\omega_{1/2})$ and the symmetry of the complex in its crystalline form.

Complexes of 9N₃C₃ possess crystallographic C₃ symmetry⁽⁹⁾ and the 9N₃C₃-gallium complex produces a sharp signal with similar line width to $[Ga(H_2O)_6]^{3+}$ ion. Crystallographic analysis of Ga-9N₃P₃Ph₃⁽¹⁰⁾ complex shows the complex possesses only approximate crystallographic C₃ symmetry and the ⁷¹Ga NMR signal is rather broad ($\omega_{1/2} = 560$ Hz). The 9NC₃Me₃ complex shows even greater line broadening and this may suggest that the departure from C₃ symmetry in solution is even greater than that of 9N₃P₃Ph₃. Comparing the twist angle (the angle between the oxygen donor and the nearest nitrogen donor in the ring, (Figure 2.3) of the crystals of each complex (Table 2.1), a similar trend is apparent, suggesting that the solid state conformation is similar to the average conformation in solution.

The insolubility of the gallium complex of $9N_3C_3Ph_3$ prevented any determination of the ⁷¹Ga NMR spectrum.

2.4 DETERMINATION OF PROTONATION AND BINDING CONSTANTS OF 9N3C3Me3

Using pH potentiometric titrations, the protonation and selected binding constants have been obtained for $9N_3C_3Me_3$. The experimental procedure (Section 5.5) employed was similar to that used by $Zompa^{(10)}$ in his investigation of the parent ligand $9N_3C_3$.

The ligand or 1:1 complex of known concentration was titrated against an accurately calibrated alkaline solution and the data analysed using SCOGS to obtain the required equilibrium constants.¹

	pK1	pK2	pK3	logKCaL	logKCaLH	logKCuLH2*
Ligand	ľ					
9N3C3 (7a)	11.2	6.10	3.48	10.8	5.75	2.9
9N3C3Me3	11.7	5.74	3.16	8.92	5.06	2.77
Difference	0.5	0.36	0.32	0.12	0.69	0.13

Table 2.2 The pK_a and Stability Constants of $9N_3C_3$ and $9N_3C_3Me_3$

* From spectraphotometric analysis of the 780 nmand 660 nm bands

The results of our investigation show that complexing agent $9N_3C_3Me_3$ shows similar complexing behaviour to the parent $9N_3C_3$. The steric effect of the methyl group in the alpha position is limited as it is exocyclic. The bond attaching it to the cycle may freely rotate so that the methyl moiety does not interfere with complexation (Figure 2.6 and Figure 2.1).

¹The analysis of the data was carried out at the University of Durham by Dr Ritu Kataky.

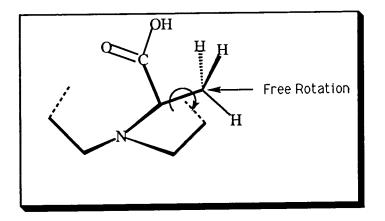
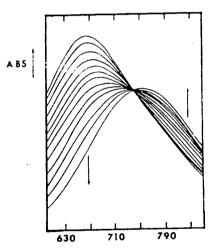


Figure 2.6 The Alpha-Methyl Group May Rotate Freely

The electronic effect of the methyl group, may slightly increase the electron density at the carbonyl, although the measurements suggest the effect is negligible.


From this comparison, it is clear that $9N_3C_3Me_3$ possesses similar complexing abilities to the parent $9N_3C_3$ and the effect of the methyl group on the ability to form complexes is minimal, although the change in the solubility of the resultant complexes is marked.

2.5 VISIBLE SPECTRUM ANALYSIS OF [Cu.9N₃C₃Me₃]²⁺ AND [Cu.9N₃C₃Ph₃]²⁺

The copper(II) complexes of $9N_3C_3Me_3$ and $9N_3C_3Ph_3$ are blue. The parent ligand complex $[Cu.9N_3C_3]^{2+}$ forms two distinct species with copper(II) between pH 1.8 and 3.5. Within this pH range, the protonation of the species $[Cu.9N_3C_3]^{-}$ occurs forming H[Cu.9N_3C_3] (10) (equation 2.1).

Figure 2.7 The Visible Spectrum Of The $9N_3C_3$ -Copper(II) Complex At Various Values Of $pH^{(10)}$.

The two species possess different absorption maxima and are distinguishable using visible spectroscopy. Zompa used this quantifiable difference to determine the pK_a value for the equilibrium shown in equation 2.1. Using accurately known concentrations of ligand and copper (II) solutions, the pH was varied between pH 1.8 and pH 3.5 in small accurate increments and the visible spectrum was recorded.

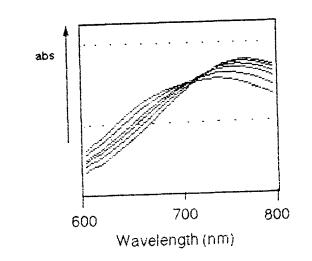
The two distinct peaks at either side of the figure correspond to the two distinct species. Situated between them is the isosbestic point (720 nm), which is related to the equilibrium of the two complexes. Using the information from the visible spectrum and the exact concentrations of the reagents, the pK_a of the protonation can be calculated as follows:

If the extinction coefficients of the species are calculated using the Beer-Lambert equation (1):

$$\log I^{\circ}/I = A = \varepsilon.l.c \tag{1}$$

Where the optical density, A, can be measured at λ_{max} for a known concentration, c, to give a value for e at l_{max} . Therefore at an accurately known value of pH the concentration of each species can be calculated, using the Beer-Lambert relationship, by measuring the absorption value at either value of λ_{max} and combining this result with (2).

$$[Cu.L] + [Cu.LH] = [Cu.L]^{\circ}$$
(2)


Where [Cu.L]° is the initial concentration of copper complex

The pK_a of the protonation (2), can then be calculated from (3);

$$K_{Cu,LH} = [Cu,L] \cdot [H^{+}]$$
(3)
[Cu,LH]

When
$$I = 1.0M$$

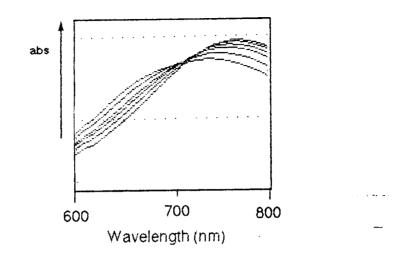

The pH gives a value of $[H^+]$ (I=1.0), and the concentrations of species can be calculated as described above. Therefore at different values of pH a value for the pK_a can be calculated.

Figure 2.8 The Visible Spectrum Of The Copper - 9N₃C₃Me₃ Complex Between pH 2.0 And pH 3.2

Using a similar but less rigourous method to Zompa's, the experiment was repeated to estimate the pK_a of this protonation for the two new complexing agents.

The visible spectrum, of a known concentration of the Cu- $9N_3C_3Me_3$ complex at a known value of pH(2.0-3.4), was measured, (I=1.0 M, NaClO₄). The pH was adjusted in small increments and the spectrum measured again. The visible spectra are shown in figure 2.8 and figure 2.9.

Figure 2.9 The Visible Spectrum Of The Copper - $9N_3C_3Ph_3$ Complex Between pH 2.0 And pH 3.2

As with $9N_3C_3$ -copper complex, the isosbestic points are clearly visible at 720 nm as are the peaks corresponding to the individual species, within this pH range.

From this information, using the procedure outlined above, we estimated that this pKa for the two new complexing agents is approximately 2.9 ± 0.2 @ 25° C, very similar to that for the $9N_3C_3$ -copper complex.

The method Zompa used was extremely thorough, using SQUAD, to analyse his data. Our investigation experiment was much less rigourous, and the value calculated for both values of the pka carries an error of ± 0.2 .

2.6 REFERENCES

- T. Arishma, K. Hamada, S. Takamoto, Nippon Kagaka, Kaishi, 1119, (1973).
- M. Takahashi, S. Tahamoto, Bull. Chem. Soc. Jap., <u>50</u>, 3413, (1977).
- 3. D. Parker, Chem. Soc. Rev. 271, <u>19</u>, (1990).
- M.F. Loncin, J.F. Desreux, E. Merciny Inorg. Chem. 2646, <u>25</u>, (1986).
- 5. D.Parker, Unpublished Data, 1989.
- D. Tschudin, A. Riesen, and T.A. Kaden, Helv. Chem. Act., <u>72</u>, (1989).
- a) A.S. Craig, I.M. Helps, D. Parker, H. Adams, M.G. Williams, G. Ferguson, Polyhedron 2482, <u>18</u>, (1989).
 b) A. Riesoen, T.A. Kaden, W. Ritter, M.J. Mache J. Chem. Soc. Chem. Commun. 460, (1989)
 c) H. Prent, F. Faber, Z. Anorg. Allg. Chem. 120, <u>450</u>, (1979)
 d) A.N. Christenson, N.C. Bloch, O. Heidenstamm, H. Nilsson, Acta. Chem. Scand. 1046, <u>21</u>, (1967).
 K. Wieghardt, V. Bossek, P. Chaudhuri, W. Hermann, B.C.
- K. Wiegnardt, V. Bossek, P. Chaudhurl, W. Hermann, B.C.
 Menke, J. Weiss, Inorg. Chem. 4308, <u>21</u>, (4308).
- 9. E. Cole, D. Parker, G. Ferguson, J.F. Gallagher, B. Kaitner, J. Chem. Soc. Chem. Commun.,(1991)
- A. Bevilacqua, R.I. Gelb, W.B. Hebard, L.J. Zompa, Inorg. Chem., 2699, <u>29</u>, (1987).

CHAPTER THREE

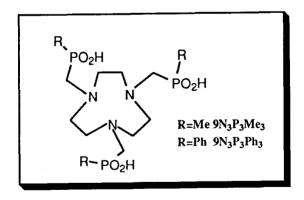
BIODISTRIBUTION STUDIES OF THE GALLIUM AND INDIUM COMPLEXES OF 9N3C3Me3 AND 9N3C3Ph3 IN ATHYMIC NU:NU MICE

3.0 BIODISTRIBUTION STUDIES OF THE GALLIUM AND INDIUM COMPLEXES OF 9N3C3Me3 AND 9N3C3Ph3 IN ATHYMIC NU:NU MICE

3.1 INTRODUCTION

Interpretation of the U.V spectra, NMR data, crystal analysis and stability constant measurements of the two new complexing agents $9N_3C_3Me_3$ and $9N_3C_3Ph_3$, suggests that both ligands form stable indium(III) and gallium(III) complexes and possess similar coordination chemistry to the parent $9N_3C_3^{(4)}$. As mentioned previously the *in vivo* kinetic stability of the complexes is of the upmost importance to their suitability for use in diagnostic and nuclear medicine (111In, γ , $t_{1/2} = 2.83$ days; 67 Ga, γ , $t_{1/2} = 3.25$ days; 68 Ga, β^+ , $t_{1/2} = 68$ min).

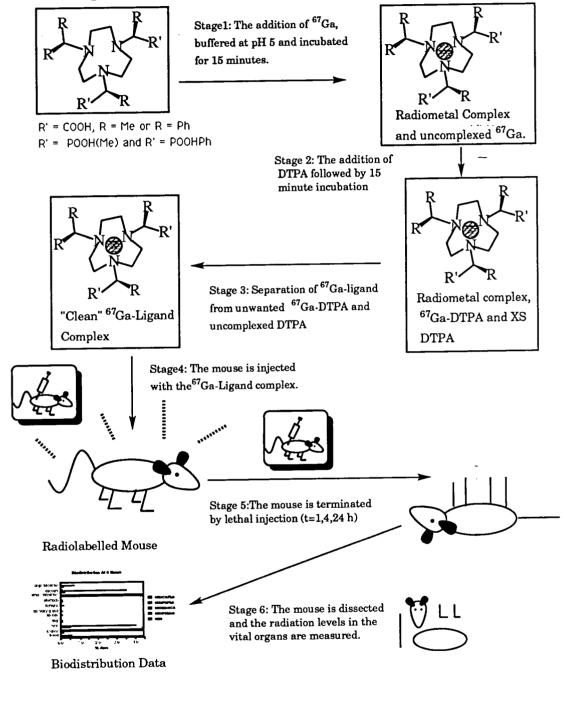
With variable pH (2-8) and a high concentration of cations *in vivo*, it is crucial that the complex remains stable despite the *in vivo* environment. We knew from the results of previous biodistribution⁽²⁾ investigation that the parent gallium complex, gallium-9N₃C₃, possesses high stability *in vivo*, with virtually no decomplexation occurring. A further biodistribution study was undertaken to test and compare the *in vivo* kinetic stability of gallium and indium complexes of 9N₃C₃Me₃, 9N₃C₃Ph₃, 9N₃P₃Me₃^{**} and 9N₃P₃Ph₃^{**} with that of the parent complex.


Later in this chapter, localising properties of the complexes within a human melanotic melanoma implanted in mice, are reported.

^{* 9}N3P3Me3 wase synthesised by C. Broan at the University of Durham.

^{** 9}N₃P₃Ph₃ were synthesised by T. Norman at the University of Durham.

3.1.1 The Phosphinic Acid-9N3 Complexing Agents


All these complexeing agents are derived and synthesised from the cyclic polyamine 1,4,7-triazacyclononane. The physical and chemical properties of 9N₃C₃Me₃ and 9N₃C₃Ph₃ have already been discussed in chapter 2. The other two complexing agents, 9N₃P₃Me₃ and 9N₃P₃Ph₃ are aminoalkylphosphinic acids and possess distinct chemical differences to the carboxylic acid analogues^(5,6). Compared to a carboxylic acid, the phosphinic analogue is usually more acidic and the complex is more resistant to protonation and acid-mediated decomplexation. In addition, when the oxygen of the phosphinic acid is interacting with a metal, the position of the phosphinic acid is fixed and a new stereogenic centre is produced at the pentavalent phosphorus, allowing the possibility of stereoisomeric complexes. Similarly to the two carboxylate complexing agents they are hexadentate, and possess strong complexing characteristics.

3.2 EXPERIMENTAL METHOD OF INVESTIGATION¹

Scheme 3.1 shows an overview of the experimental procedures.

Details are given in section 5.3.

Scheme 3.1 Experimental Method

¹These experiments were carried out by A. Harrison and L. Royle, MRC, Radiobiology Unit, Didcot, Oxon.

3.3 BIODISTRIBUTION DATA FOR THE GALLIUM COMPLEXES IN NON-TUMOUR BEARING MICE.

3.3.1 The Data

Gallium	Citrate	9N3	9N3P3- Me3	9N3C3- Me3	9N3P3- Ph3	9N3C3- Ph3
One Hour						
Tissue	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose
blood	11.55 39.13	0.15 0.53	0.09 0.31	0.11 0.41	0.12 0.40	0.15 0.55
kidney	3.92 2.04	4.57 3.28	3.18 1.89	8.37 5.20	3.49 1.97	5.78 4.55
liver	2.61 4.89	0.65 1.18	0.14 0.26	2.10 4.01	0.65 1.32	0.41 - 0.87
lung	5.20 0.98	0.42 0.08	0.24 0.05	0.17 0.03	0.14 0.03	0.14 0.030
spleen	2.26 0.27	0.11 0.02	0.07 0.01	0.10 0.01	0.08 0.01	0.07 0.011
salivary glands	2.83 0.62	0.08 0.03	0.07 0.02	0.08 0.02	0.05 0.01	
urine	19.4	449.8	257.4 0.28	268.8	119.00	146.3
brain		0.017 0.008			0.010 0.0047	0.009 0.0045
femur *2	3.16 0.56	0.07 0.01	0.07 0.01	0.07 0.01	0.05 0.10	0.07 0.014
gall bladder		0.034			0.185	0.471
muscle skel.	1.18	0.06	0.08	0.06	0.05	0.06
stomache	0.80	0.05	0.03	0.03	0.13 0.07	0.07 0.05
sm. intestine	4.92	0.61	0.36	0.79	15.7 31.87	25.2 - 57.39 ·
caecum	1.03	0.06	0.08	0.11	4.6 3.45	0.07 0.06
la. intestine	1.65	0.08	0.04	0.10	1.04 0.70	0.06 0.05
no. of mice	4	5	7	4	4	3
mean wt g.	34.0	36.7	35.2	37.2	33.5	36.9

Table 3.1	The	Biodistribution	at	1	Hour
-----------	-----	-----------------	----	---	------

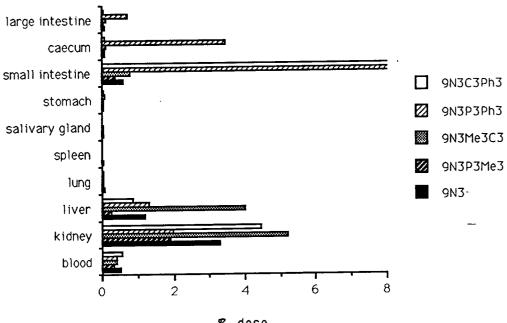
Gallium 4 Hours	Citrate	9N3	9N3P3- Me3	9N3C3- Me3	9N3P3- Ph3	9N3C3- Ph3
Tissue	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose
blood	8.26 30.37	0.005 0.021	0.005 0.018	0.023 0.081	0.058 0.02	0.121 0.420
kidney	4.63 2.95	1.11 0.76	1.86 1.21	3.74 2.39	0.75 0.47	0.551 0.293
liver	3.09 6.44	0.29 0.73	0.084 0.17	1.34 2.8	0.3 0.55	0.216 0.367
lung	3.62 0.97	0.05 0.01	0.05 0.011	0.06 0.013	0.05 0.01	
spleen	3.17 0.47	0.04 0.006	0.033 0.005	0.07 0.008	0.036 0.004	0.055 0.006
salivary glands	2.32 0.62		0.03 0.008	0.05 0.012	0.032 0.008	
urine	7.49	16.5	15	18 2	32	10 0.7
brain		0.009 0.004			0.005 0.002	0.007 0.003
femur *2	3.39 0.67	0.019 0.003	0.022 0.004	0.036 0.006	0.035 0.007	0.082 0.014
gall bladder		0.001		0.05	1.35 0.018	0.100
muscle	0.92	0.016 0.02	0.015		0.029 0.006	
stomach	0.90	0.02	0.069	0.014	0.05 0.033	0.09
small intestine	7.44	0.17	0.21	0.36	0.37 0.74	1.35
caecum	2.79	0.28	0.19	0.52	13.3 11.4	19.46
large intestine	2.24	0.30	0.12	0.51	16.7 15.3	21.19
no. of mice	3	4	3	4	3	4
mean weight g.	36.2	41.5	38.3	34.7	34.7	34.9

•

 Table 3.2 The Biodistribution at 4 Hours

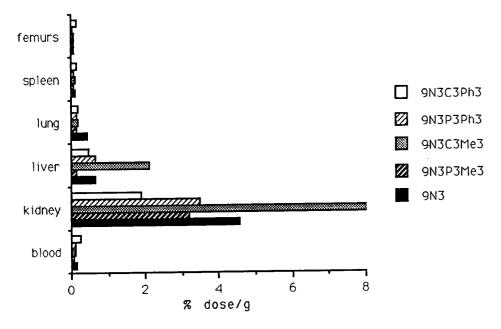
_

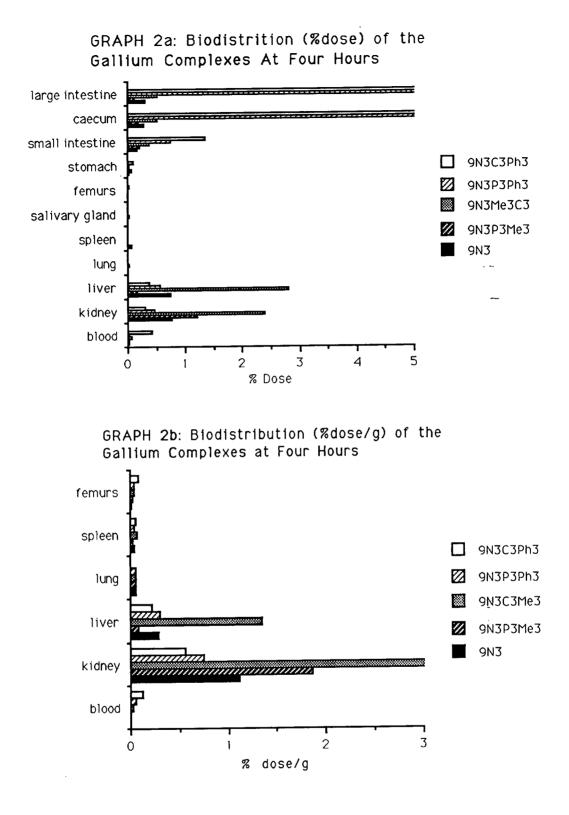
24 Hours	Citrate	9N3	9N3P3- Me3	9N3Me3- C3	9N3C3- Ph3	9N3P3- Ph3
Tissue	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose
blood	1.66 6.23	0.002 0.007	0.001 0.004	0.0245 0.089	0.122 0.347	0.0195 0.0701
kidney	3.46 2.10	0.021 0.012	0.359 0.208	0.107 0.062	0.296 0.153	0.121 0.0716
liver	3.39 7.18	0.124 0.235	0.0385	0.124 0.251	0.342 0.602	0.161 0.32
lung	1.81 0.42	0.037 0.009	0.0157 0.0031	0.059 0.01	0.180 0.048	0.027 0.0057 -
spleen	2.53 0.33	0.028 0.004	0.0226 0.003	0.0527 0.007	0.169 0.017	0.028 0.0035
salivary glands	2.32 0.60		0.025 0.0059			0.024 0.0056
urine	3.35	0.22	0.186 0.22	0.22		0.064
brain				0.0067 0.0029	0.006 0.003	0.017 0.0008
femur *2	4.41 0.82	0.015 0.002	0.0164 0.003	0.0978 0.0166	0.278	0.0437 0.0074
gall bladder					0.001	0.09 0.0007
muscle	0.43	0.005	0.0078	0.0193	0.026	0.0062
stomach	1.21	0.006	0.1036	0.036	0.084	0.017 0.012
small intestine	6.59	0.03	0.0603	0.14	0.322	0.045 0.1
caecum	2.13	0.03	0.0234	0.21	0.279	0.083 0.081
large intestine	2.87	0.03	0.0234	0.16	0.162	0.072 0.068
no. of mice	3	3	4	5	4	3
mean weight g.	37.9	37.5	34.8	36.1	30.6	35.8

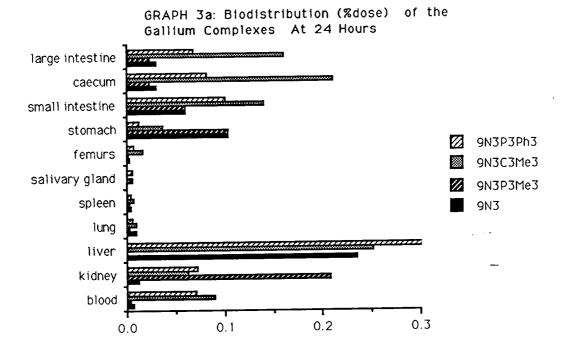

.

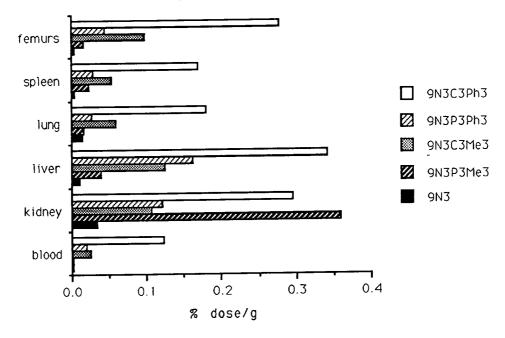
.

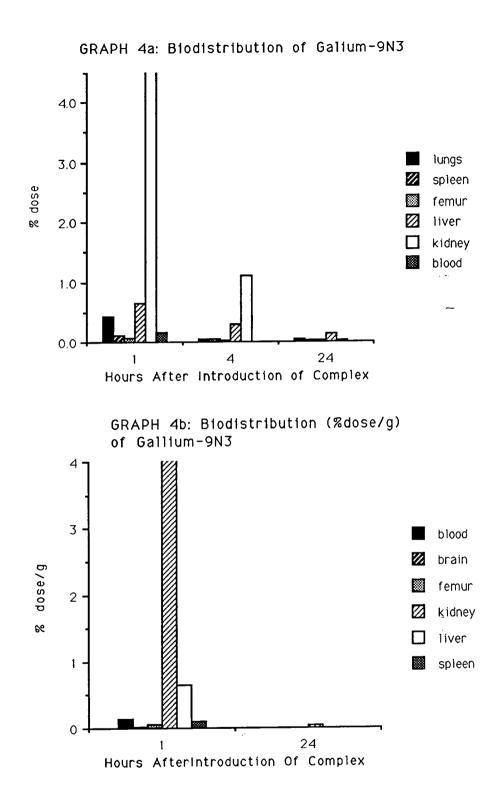
 Table 3.3 The Biodistribution at 24 Hours

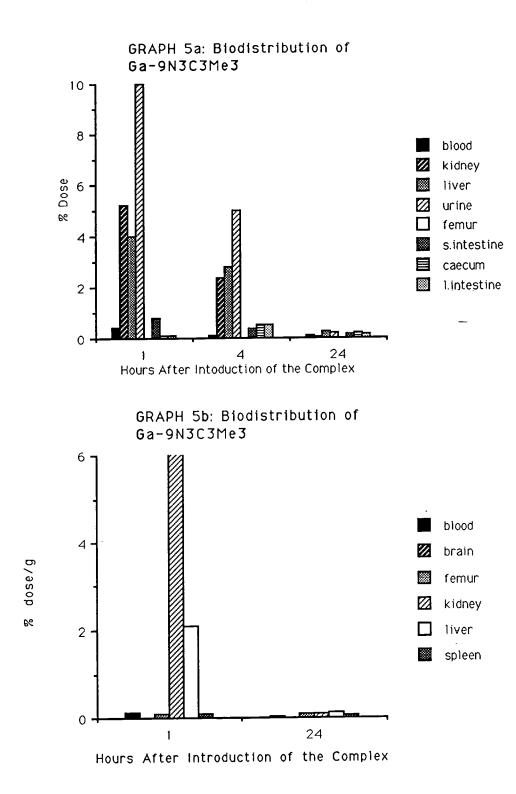



GRAPH 1a: Biodistribution (% Dose) of the Gallium Complexes at 1 hour

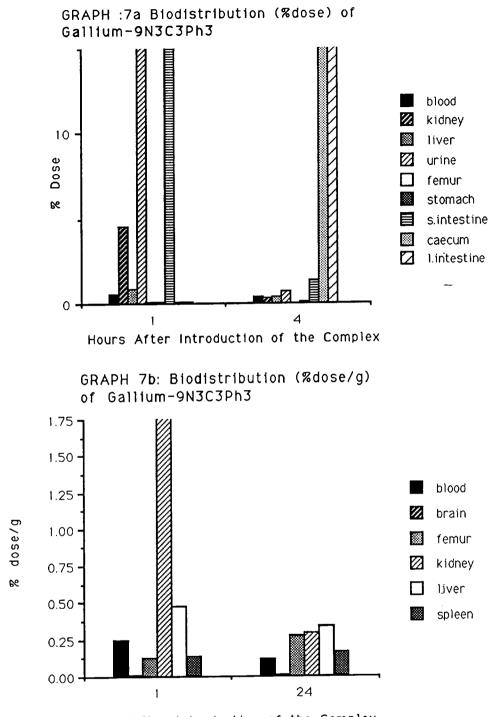


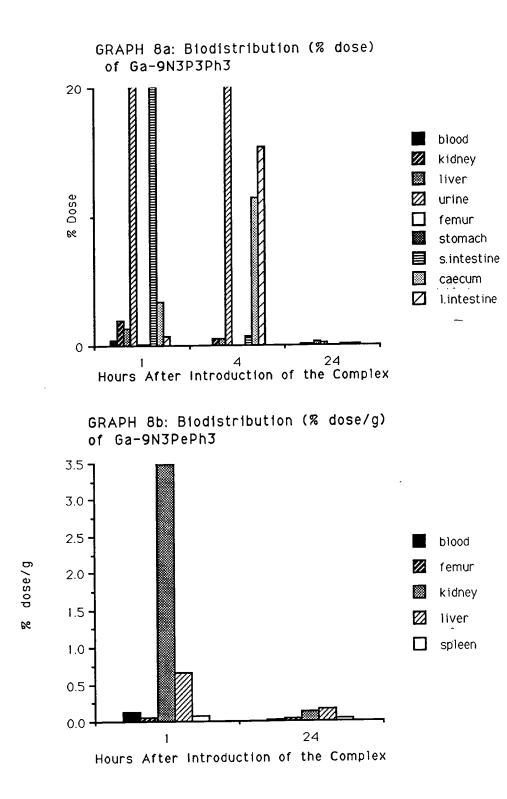

GRAPH 1b: Biodistribution (% dose/g) of the Gallium Complexes at 1 hour

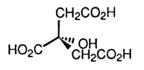






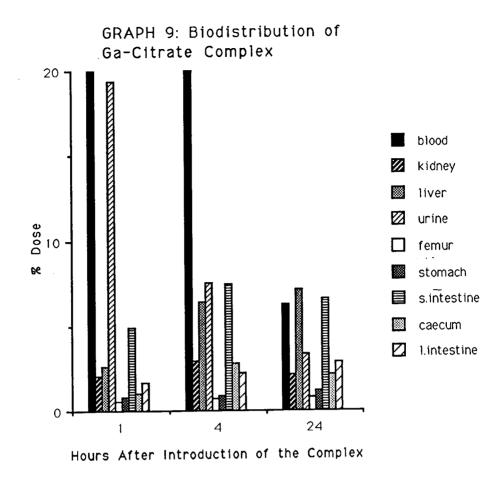

GRAPH 3b: Biodistribution (%dose/g) of the Gallium Complexes At 24 Hours




Hours After Introduction of the Complex

3.3.2 The Stability Of The Gallium Complexes In Vivo

During the preparation of the the complexes (Section 5.3), the uncomplexed ⁶⁷Ga is removed from the sample using a ten-fold excess of DTPA. All the complexes remained intact in the presence of the DTPA. This confirmed our previous experimental measurements and also demonstrates the high kinetic stability of all the complexes.


The stability of the complexes *in vivo* can be ascertained visually when comparing the graphical data for the gallium-citrate complex (graph 9) with that of the gallium-9N₃C₃ complex.

CITRATE

The biodistribution of the weak gallium-citrate complex was undertaken to compare the results against and provide a bench mark for assessing the stability of the complexes. The citrate complex readily dissociates *in vivo*. Therefore much of the gallium-67 localises in the body (liver and skeleton) and clears more slowly from other tissues than a stable complex.

The new complexing agents contrast well with the citrate complex and have almost completely cleared after 24 hours. This indicates that the complexes remain intact *in vivo*.

3.3.3 The Fate Of The ⁶⁷Ga-Complexes

The parent $9N_3C_3$ complex (graph 1 and 4) is cleared mainly through the renal *pathway* (kidneys). The activity of the complex in the kidneys is 4.57, 1.11, and 0.021 % dose g⁻¹ at 1, 4, and 24 hours respectively. The measured activity that remains at 24 hours is very small indicating the complex has mostly been excreted, presumably intact.

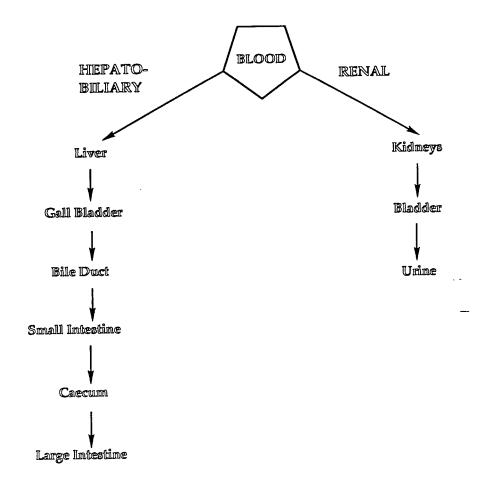


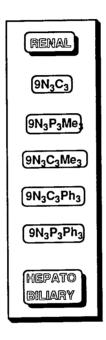
Figure 3.1 Renal And Hepato-Biliary Excretion Pathways

The ${}^{67}\text{Ga-9N_3P_3Me_3}$ complex is excreted via the kidney and the biodistribution is very similar to the parent complex, ${}^{67}\text{Ga-9N_3C_3}$. After 24 hours most of the activity has cleared.

The 67Ga-9N₃C₃Me₃ also shows a substantial concentration (8.37 % dose g⁻¹) in the kidney at one hour. In addition, graph 1b indicates that, after one hour, there is a substantial amount of 67Ga-9N₃C₃Me₃ in the liver. On closer inspection of graph 2a, there is no indication of the complex in the small and large intestine. Figure 3.1 describes the two main excretion pathways. It is slightly surprising that the high concentration of the complex in the liver is not mirrored with a proportionally high concentration in the small and large intestine - the *hepato-biliary* excretion pathway. The explanation for this

anomaly may be that the complex is unstable *in vivo*. Graphs 5a and 5b show that in femur, kidney, liver and blood there is a little activity ($\approx 0.25 \%$ dose g⁻¹). Comparing this to the activity of the other complexes at 24 hours (graph 3a and 3b), the concentration of the 67Ga-9N₃C₃Me₃ is less than that of the other complexes. Therefore it is unlikely that decomplexation is the cause of this phenomenon. The presence of the 67Ga-9N₃C₃Me₃ complex in the liver in such a relatively high concentration cannot be explained at present.

After one hour, the 6^7 Ga-9N₃C₃Ph₃ and 6^7 Ga-9N₃P₃Ph₃ complexes show a comparatively lower concentration in the kidney than the other complexes. In addition, high concentrations in the small and large intestines (graph 1a and 8a) have been observed. This indicates that a proportion of the complex is passing through the liver and bile duct and into the intestines to be excreted in the caecum. This preference for the *hepato-biliary* route may be related to the lipophilicity of these complexes. The addition of phenyl groups to the complex, does alter the solubility characteristics of their complexes, and may be expected to influence the *in vivo* pharmacokinetics of these complexes as well.


The clearance of all the complexes is fast, after 24 hours less than 1 % of each complex remains in the body.

3.3.4 Conclusions

The experiment was designed to determine the eligibility of the gallium complexes of the new complexing agents for use *in vivo*. All the complexes demonstrated excellent *in vivo* stability, and all of them cleared quickly from the body, with little evidence of dissociation.

Secondly, the modification to the lipophilicity of the complexes introduced by the presence of the methyl and phenyl groups affects the way the complexes are processed by the body. The more lipophilic complexes tend to excrete via the hepato-biliary route, whereas the parent and $9N_3P_3Me_3$ are mainly excreted through the kidneys.

The following list shows the order which is observed.

The application of the new ${}^{67}\text{Ga}(\gamma)$ complexes for *in vivo* imaging of the liver, bile duct and small intestine is feasible as the concentration in these organs, although small, compared to the background may be within the lower limits that allow successful imaging. Also the use of ${}^{68}\text{Ga}$ for positron emission tomography (PET) or stable gallium for *in vivo* NMR detection may also be feasible.

3.4 BIODISTRIBUTION OF THE INDIUM COMPLEXES IN ATHYMIC NU:NU MICE

3.4.1 Introduction

In chapter 1 (1.3.2), it was noted that ¹¹¹In is a good imaging isotope. This gamma emitter has a half-life of 2.83 days and is a potential candidate for single photon emission computed tomography (SPECT).

Although indium(III) has a larger ionic radius than the gallium ion, indium forms strong complexes with the $9N_3C_3$ family of complexing agents.⁽⁴⁾

	Gallium(III)	Indium(III)
Ionic Radius A°		
(hexacoordinate)	0.76	0.94

A second set of biodistribution experiments, similar to the gallium work, was made using indium 111 as the radiometal.

Once again the aim of the investigation was to determine the stability of the indium complexes *in vivo* and observe if the complexes displayed a preference for a particular excretion pathway, i.e. whether the more lipophilic indium complexes were excreted via the hepato-biliary route.

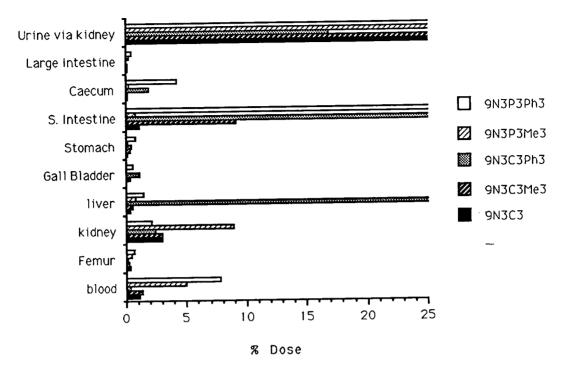
3.4.2 Experimental Method Of Investigation

The experimental details were analogous to those used in the gallium work.

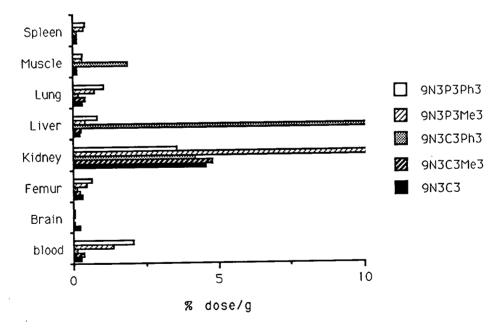
3.4.3 The Data

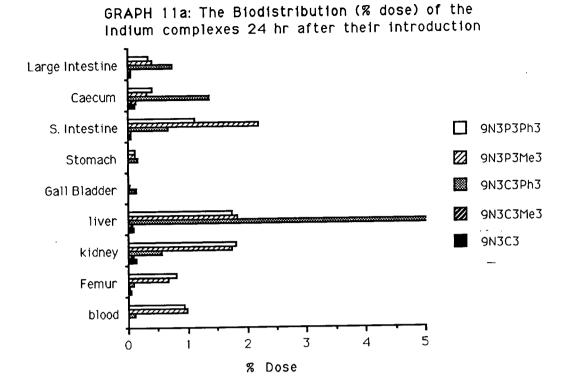
In (1 Hour)	9N3	9N3P3- Me3	9N3C3- Me3	9N3P3- Ph3	9N3C3- Ph3
Tissue	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose
Blood	0.28 1.08	1.38 4.95	0.38 1.37	2.06 7.79	0.12 0.38
Brain	0.024 0.010	0.049 0.02	0.028 0.013	0.055 0.026	0.011 0.005
Femur	0.34	0.45	0.21	0.64	0.134
Kidney	4.55 2.99	13.81 8.91	4.81 2.96	3.53 2.04	4.2 2.38
Liver	0.25 0.28	0.39 0.79	0.29 0.58	0.68 1.40	23.3 40.50
Lung	0.33 0.07	0.74 0.13	0.4 0.08	1.03 0.20	0.20 0.03
Muscle	0.12	0.30	0.13	0.33	0.04
Skeleton	1.28	1.62	0.73	2.41	0.42
Spleen	0.12 0.02	0.35 0.05	0.14 0.02	0.42 0.05	0.14 0.02
Gall Bladder	0.02	0.01	0.28	0.56	1.15
Stomach	0.08	0.11	0.33	0.8	0.45
S.Intestine	1.08	0.78	9.18	30.21	29.8
Caecum	0.09	0.17	0.14	4.18	1.87
L.Intestine	0.09	0.19	0.12	0.45	0.03
Urine Via Kidney	79.77	69.77	70.59	27.85	16.6
Total Gut	1.35	1.25	9.77	35.64	32.16
no. of mice	9	4	4	8	4
mean weight	38g	34.9	35.2	37.2	31.9

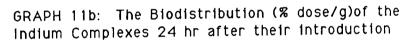
Table 3.4	The Biodistribution Of	The Indium	Complexes At One
Hour			

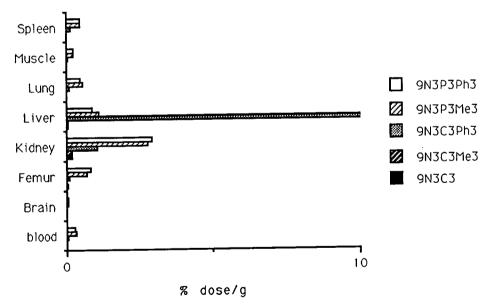

In (24 Hours)	9N3	9N3P3- Me3	9N3C3- Me3	9N3P3- Ph3	9N3C3- Ph3
Tissue	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose	%dose/g %dose
Blood	0.002 0.009	0.31 0.99	0.002 0.007	0.25 0.93	0.034 0.105
Brain	0.001 0.0006	0.03 0.013	0.0008 0.0003	0.03 0.013	0.004 0.002
Femur	0.05	0.67	0.019	0.80	0.10
Kidney	0.19 0.13	2.78 1.74	0.17 0.10	2.89 1.81	1.02 0.55
Liver	0.05 0.10	1.09 1.84	0.04 0.07	0.84 1.73	14.72 24.28
Lung	0.02 0.004	0.56 0.09	0.010 0.002	0.43 0.08	0.073 0.012
Muscle	0.004	0.21	0.002	0.19	0.024
Skeleton	0.17	2.13	0.065	1.18	0.31
Spleen	0.02 0.002	0.44 0.05	0.012 0.001	0.47 0.06	0.124 0.01
Gall Bladder	0.0004	0.02	0.0005	0.007	0.13
Stomach	0.008	0.11	0.004	0.12	0.16
S.Intestine	0.05	2,.19	0.04	1.11	0.67
Caecum	0.11	0.31	0.14	0.4	11.37
L.Intestine	0.05	0.41	0.05	0.34	0.74
Total Gut	0.21	3.01	0.23	1.97	2.94
no. of mice	4	4	4	7	4
mean weight g.	38.3	32.0	34.1	-	31.0

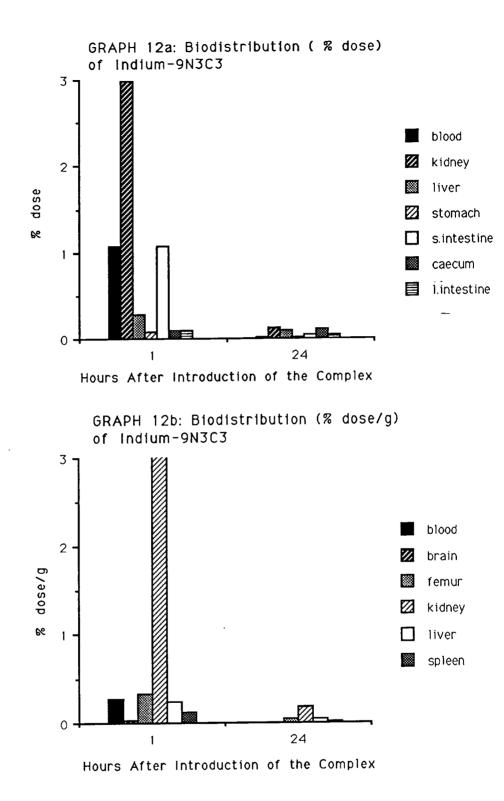
.

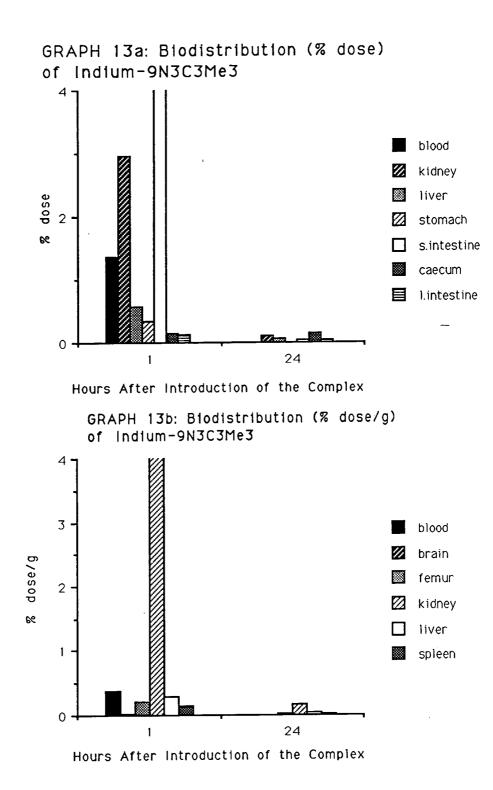

. . .

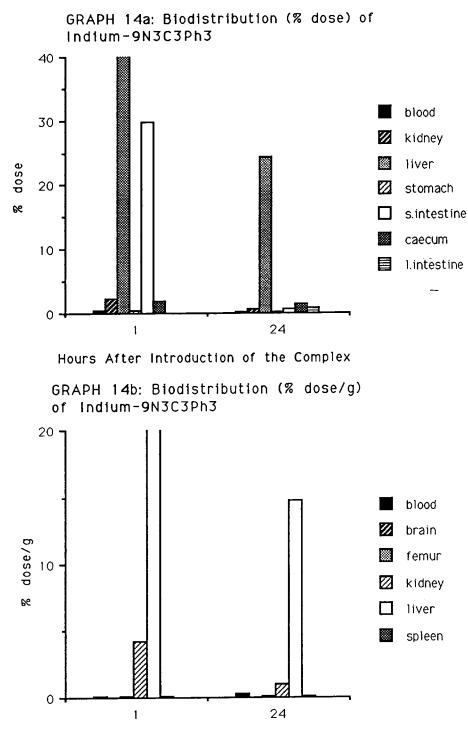

Table 3.5 The Biodistribution Of The Indium Complexes At 24Hours

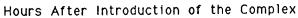

GRAPH 10a: Biodistribution of (% dose)the Indium Complexes 1 hour after introduction

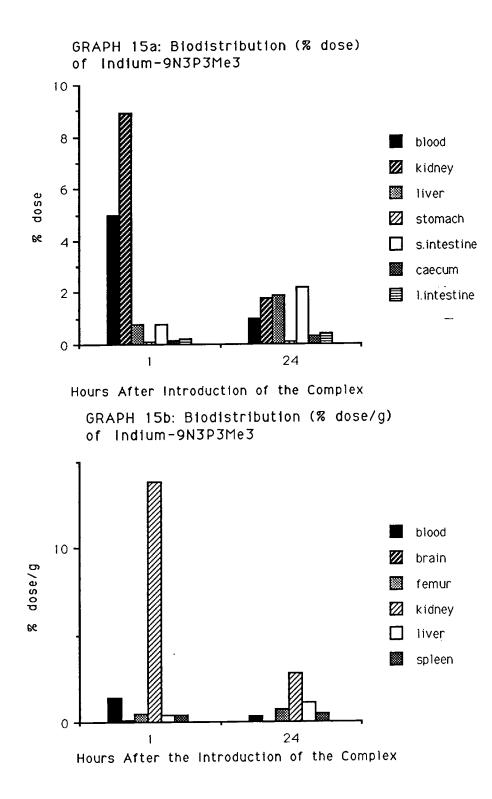


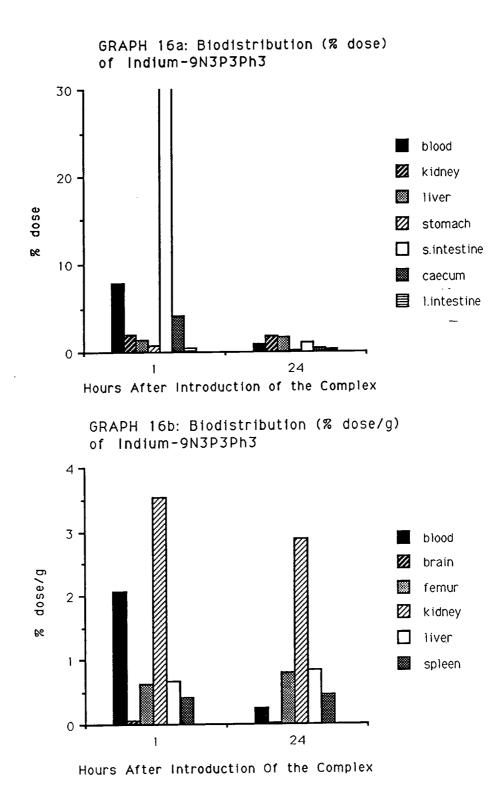

GRAPH 10b: Biodistribution (% dose/g) of the Indium Complexes 1 hour after introduction

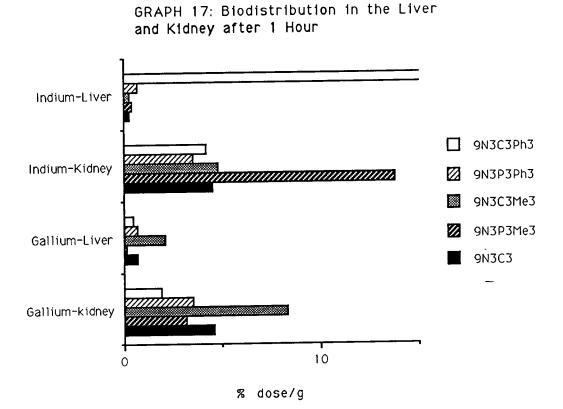











3.4.4 The Stability Of The ¹¹¹In-Complexes In Vivo

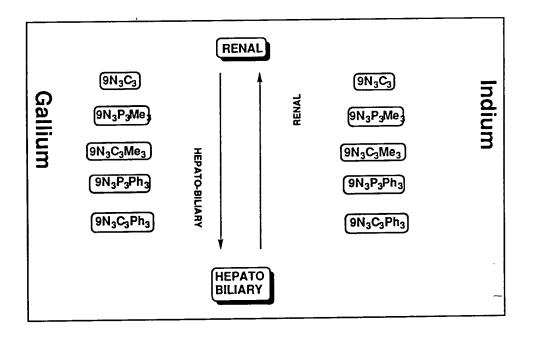
Comparing graphs 11a and 11b with graphs 3a and 3b (the biodistribution of the gallium and indium complexes at 24 hours), the amount of radioactivity still present with some of the indium complexes is greater by almost a factor of 10 in certain organs (kidney, liver, femur) and this effect is most notable with the $9N_3P_3Ph_3$ indium complex.

This suggests that, in general, the indium complexes are less stable *in vivo* than the analogous gallium complexes. An explanation for this may lie in the size of the ion. The larger indium(III) ion may be too large to allow the macrocycle to bind properly. It is possible that the indium ion is less well bound by the 'tighter bite' of the $9N_3$ moiety. The position of the pendant acid groups will be affected and they may not be able to bind cooperatively at their optimum In-O distances.

3.4.5 The Fate Of The Indium Complexes.

Graph 17 compares the biodistribution data at one hour to see if the indium complexes are excreted in a similar manner to those of gallium.

The parent indium- $9N_3C_3$ complex is excreted via the renal pathway (Graphs 10 and 12).


The ¹¹¹In-9N₃C₃Me₃ and ¹¹¹In-9N₃P₃Me₃ complexes also show renal excretion, with very little activity detected in the liver, (Graphs 10, 13 and 14). The unexplained presence of a large concentration of the ⁶⁷Ga-9N₃C₃Me₃ complex in the liver does not occur with the indium analogue. However graph 1a shows, after one hour, a relatively large concentration in the intestines indicating that a proportion of the complex is passing through the liver, and excreted via the hepato-biliary pathway.

The ¹¹¹In-9N₃C₃Ph₃ and ¹¹¹In-9N₃P₃Ph₃ complexes display a preference for the hepato-biliary pathway (Graphs 1, 14 and 15). After one hour, graph 10a shows that both complexes were present in the caecum. This gives an indication of the rate at which the complexes are cleared via the hepato-biliary route (< 1 hour).

96

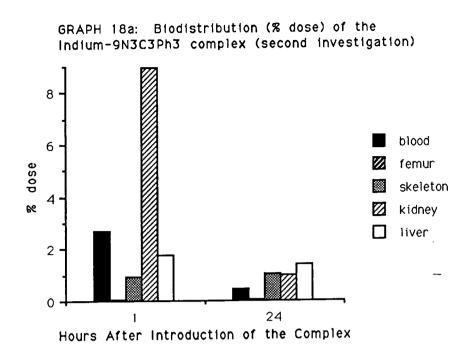
3.4.6 Conclusions

The experiment was designed to determine the eligibility of the indium(III) complexes for their use in vivo.. The complexes demonstrated less adequate in vivo stability than the analogous gallium complexes and there is evidence for dissociation with activity present in the liver, in particular, after 24 hours. The $In-9N_3C_3Ph_3$ complex appears to be the most unstable, the high concentration of indium in the liver after 24 hours is probably due to the free indium being scavenged by transferrin and deposited in the liver._The modification to the lipophilicity of the complexes introduced by the presence of the methyl and phenyl groups affects the way the complexes are processed by the body. With the gallium complexes, the more lipophilic complexes (phenyl) tend to excrete via the hepatobiliary route, whereas the parent, $9N_3P_3Me_3$ and $9N_3C_3Me_3$ are mainly excreted through the kidneys. The indium complexes show a similar order of preference which is shown below. The only difference is that the ¹¹¹In-9N₃C₃Me₃ shows a slight preference for the hepatobiliary route, although it is excreted mostly via the renal pathway. The excretion preferences for the complexes are summarised below.

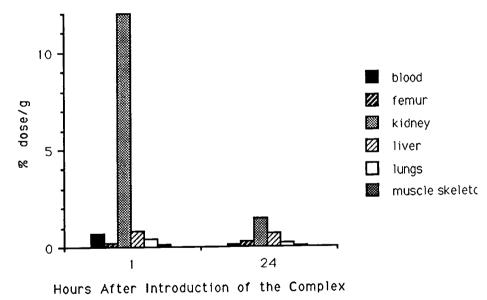
3.4.7 A Second Investigation Of The Biodistribution Of The 111In-9N3C3Ph3 Complex

Graphs 14a and 14b, indicated that the 111In-9N3C3Ph3 complex was unstable *in vivo*. A second sample of the 9N3P3Ph3 was submitted for biodistribution to clarify this.

3.4.8 The Data


.

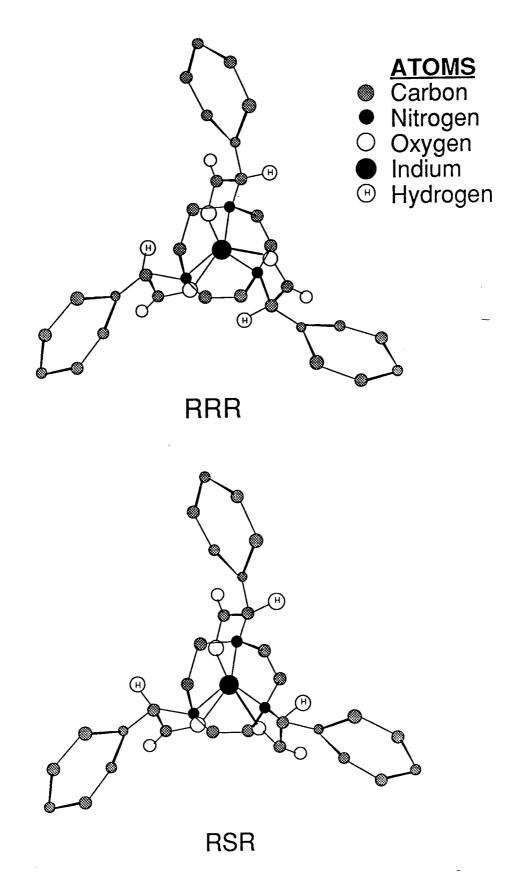
The experimental details are the same as those used in the previous experiments. The data is presented below (Table 3.6):


.

	9N ₃ C ₃ Ph ₃	9N3C3Ph3
	One Hour	24 Hours
Tissue	%dose/g	%dose/g
	%dose	%dose
Blood	0.694	0.115
	2.70	0.478
Brain	0.036	
	0.017	
Femur	0.234	0.247
	0.038	0.039
Skeleton		
	0.915	1.03
Heart	0.219	
	0.034	
Kidneys	12.0	1.48
	8.935	0.96
Liver	0.821	0.664
	1.77	1.4
Lungs	0.446	0.177
	0.095	0.036
Spleen	0.166	0.17
_	0.019	0.016
Gall bladder		
	0.100	
Stomach		
	0.095	0.038
S. Intestine		
	8.86	0.437
Caecum/L.Int		
-estin	1.638	0.425
Urine		
	66.3	0.08

Table 3. 6 The Biodistribution Of The $^{111}In-9N_3C_3Ph_3$ Complex

GRAPH 18b: The Biodistribution (% dose/g) of the Indium-9N3C3Ph3 complex (second investigation)


3.4.9 Discussion

The new results indicate that the complex was excreted quickly and remained stable. The excretion pathway is similar to the analogous gallium complex and travels via the liver (Hepato-biliary) with some going via the renal pathway. This is substantially different to the results of the previous experiment, where we concluded that the complex was unstable.

This difference may be explained by the influence of the ligand's stereochemistry. The sample, used in the second experiment, was from the first batch of elutants, containing the triester, taken off the alumina column. The previous sample had been from the main fraction of elutants. If the diastereoisomers have different polarities, then it is possible that each sample may have contained a larger amount of either diastereomeric pairs, e.g. SSS and RRR or SRS and RSR. If that was the case, the results indicate that the isomer present in the first experiments forms a less stable complex with indium, than the predominant isomer used in the second experiment.

Figure 3.3 represents the possible solid state conformation of the two diastereomers. The drawing is based on the conformation of the $9N_3C_3Me_3$ ligand when complexed with indium (Section 2.3). Phenyl groups have been added in place of the methyl groups.

Figure 3.3 Schematic Representation of the Complex's Solid State Conformation

With the RSR (and SRS) isomer, the acid group attached to the carbon with the S configuration is twisted in the opposite direction to the other carboxylate groups (Figure 3.3) The effect of this may influence the ability of the macrocycle to adopt a conformation that provides optimum donor-atom-In bond lengths. Therefore it may be possible that one of the diastereomeric pairs is less stable than the other.

To summarise, it seems that each experiment was carried out using a mixture of the $9N_3C_3Ph_3$ isomers which contained more of one set of diastereomers than the other. Those diastereomers predominant in the second experiment form a much more stable complex than those isomers predominant in the first experiment.

To further investigate this phenomena would necessitate the separation of the isomers, identification of the configuration of each one, and a further biodistribution study.

3.5 GALLIUM-67 COMPLEX UPTAKE BY XENOGRAFTS OF HUMAN MELANOTIC MELANOMA IN MICE¹

3.5.1 Introduction

This section reports on the biodistribution of the gallium 67 complexes 9N3, $9N_3P_3Me_3$, $9N_3C_3Ph_3$, DOTA and citrate in mice that had previously grafted with a human melanotic melanoma (HX118).

The incentive for this study arose from the results of a investigation into the biodistribution of the gallium-9N3 complex in tumour bearing mice.

The summarised results are as follows;

67Ga-9N3 complex cleared faster from all tissues (and the blood) than from the tumour.

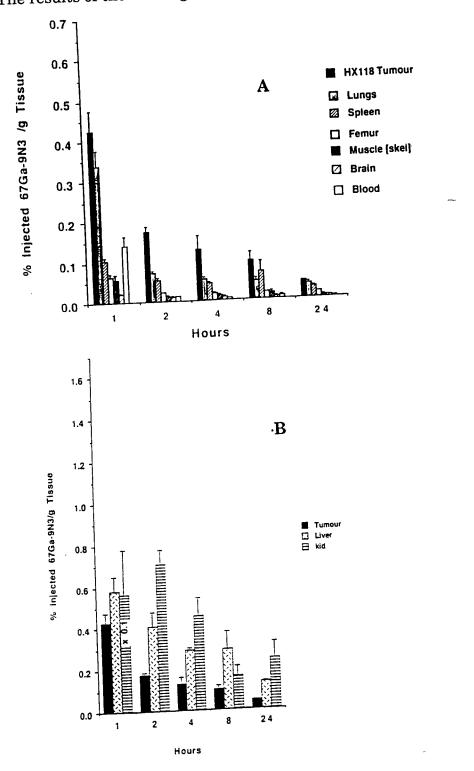
The concentration ratio xenograft : blood was $\approx 20:1$, 4 hours after introduction of the complex.

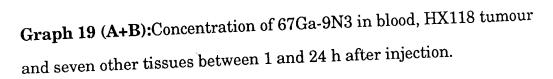
After 4 hours only 4.5 % of physical decay has occurred ensuring near maximum signal : noise ratio.

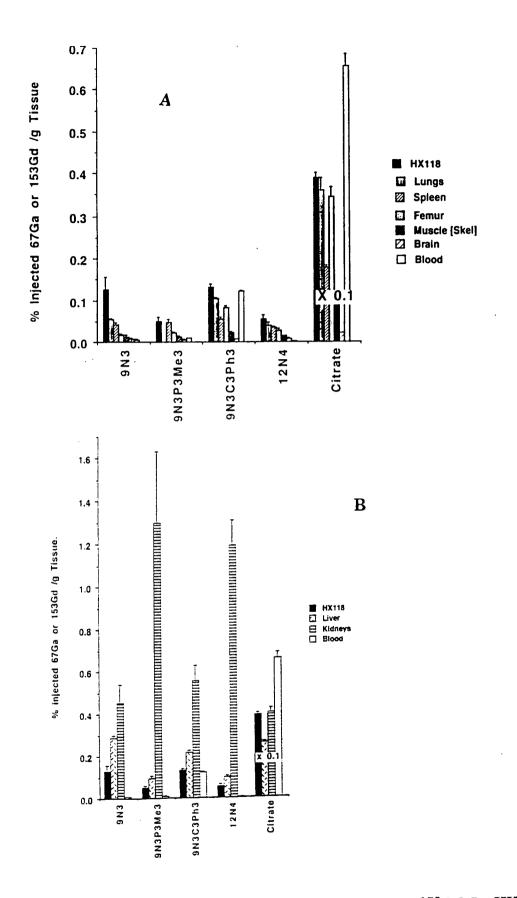
This led to a suspicion that the complex was specifically binding to melanin and may provide a useful means of detecting melanotic melanoma metasteses using SPECT.

¹The data collection was carried out by A. Harrison and L. Royle, MRC, Radiobiology Unit, Didcot

3.5.2 Experimental Method


The experimental method used was similar to that given in chapter 5. The major difference is that the mice had been previously injected subcutaneously in the flank with HX118 cells. After 6 to 8 weeks, the tumour volume is large enough (0.05ml) for their use in these experiments. At this time the mice are injected with 10-25 μ Ci of the radiometal complex. A fatal injection of sodium pentabarbitone was administered to kill the mice at 1, 2, 4, 8 and 24 hours.


Also ¹⁵³Gd-DOTA was investigated as part of the experiment. Because the ¹⁵³Gd-DOTA complex is anionic and remains extracellular, it was hoped to to compare its biodistribution with those of the other (charge neutral) complexes, that can diffuse into the cells.


3.5.3 The Biodistribution of the 67Gallium Complexes in Tumour-Bearing Mice

The results of the investigation are shown in graphs 19-20.

÷

Graph 20 (**A+B**): Concentration Of ⁶⁷Ga And Of ¹⁵³Gd In HX118 Tumour And Other Tissues 4 h After Injection.

The data from the graphs is summarised below;

$67Gallium-9N_3C_3$

At all times the the radioactivity produced by the complex, as compared to all the other organs, was greatest in the tumour (approximately twice), except for the liver and the kidneys, where the activity was 2 and 3 times that of the tumour.

The complex was excreted through the kidneys (RENAL).

The Other Complexes

The gallium-citrate complex demonstrates what occurs when a weak complex is introduced *in vivo* and dissociates, clearing slowly from all the organs and especially slowly from the liver, lungs and femur. At 4 hours the concentration of the gallium in the citrate treated mice was very high, and the amount ⁶⁷Ga in the blood is 5.8%g⁻¹ -this value is higher than in any other tissue and the HX118 tumour.

The lipophilic complexes 67 Ga-9N₃C₃Ph₃ and 67 Ga-9N₃P₃Ph₃ cleared from the blood comparatively more slowly than Ga-9N₃C₃ and the concentration in the tumour at 4 hours was $\approx 0.13\%$ g⁻¹. Both of the complexes cleared quickly and we may conclude that they remained intact *in vivo*.

The ¹⁵³Gd-DOTA complex cleared faster than Ga-9N3 in most tissues. This resulted in much lower concentrations in these tissues.

3.5.4 The Tumour : Blood Ratios At 4 Hours

The tumour : blood ratios are given in table 3.6. It is essential to have a high value for this ratio if the tumour is to be detected successfully (SPECT, PET).

Of all the complexes tested only the $9N_3C_3$ complex may meet the required ratio for successful imaging (tumour: blood ≈ 21).

	Injected	Activity	% g ⁻¹	
⁶⁷ Ga-Complex	Blood	Tumour	Tumour: Blood	Clearence
9N ₃ C ₃	0.005	0.127	21.5	Renal
9N ₃ P ₃ Me ₃	0.008	0.05	5	Renal
9N ₃ C ₃ Ph ₃	0.121	0.13	1.1	HBiliary
DOTA*	0.002	0.055	22	Renal
Citrate	5.57	3.88	0.64	

* 153Gd

 Table 3.6 Concentrations of Radioactivity in Tumour and
 Blood at 4 h.

The 67 Ga- $9N_3C_3$ and 67 Ga- $9N_3C_3$ Ph3 complexes, which were eliminated via the renal pathway, had the highest tumour:blood ratios. The $9N_3C_3$ Ph3 complex is excreted via the hepato biliary route. As mentioned earlier in this chapter, the rate of clearance via the liver is very much fast than renal excretion with these complexes. This may partially explain the very low tumour:blood ratio for this complex.

3.5.5 Conclusions

The results from this investigation confirm the previous $results^{(4)}$ that the concentration of ${}^{67}Ga-9N_3C_3$ complex is greater in the HX118 xenograft than in the blood at 4 hours. The mechanism by

which the gallium-9N₃C₃ complex localises in the melanin is not understood, but is likely to be related to the slower rate of clearance of the complex from the tumour cells. Also this behaviour is not specific to the melanotic melanoma⁽¹⁾. Despite this, the tumour localising abilities of the complex in human melanotic melanoma grafted in mice are adequate for *in vivo* imaging.

3.6 REFERENCES

- A. Harrison, C.A. Walker, K.A. Pereira, D. Parker, L. Royle, R.C. Matthews, A.S Craig, Nucl. Med. Comm. <u>13</u>, 667, (1992).
- A.S. Craig, I.M. Helps, D.Parker, A. Harrison, K.J. Jankowski, N.R.A. Bailey, M.A.W. Eaton, A.T. Millican, K. Miller, A. Phipps, S.K. Rhind, A.M. Randall, G. Ferguson. J. Chem. Soc. Chem. Commun. (1984), 794.
- R.C. Matthews, D. Parker, G. Ferguson, B. Kaitner, A. Harrison, L. Royle. Polyhedron, 1951, <u>10</u>, (1991).
- C.J. Broan, J.P.L. Cox, A.S. Craig, R. Kataky, D. Parker, A. Harrison, A. M. Randall, G. Ferguson. J Chem. Soc. Perkin Trans. 87, <u>2</u>, (1991).
- E. Cole, D. Parker, G. Ferguson, J. Gallagher, B. Kaitner, J. Chem. Soc. Chem. Commun. 1473, (1991).
- C.J. Broan, K.J. Jankowski, R. Kataky, D. Parker, J. Chem. Soc. Chem. Commun. 1739, (1990).
- 7. Private communication, A. Harrison.

CHAPTER FOUR

SYNTHESIS AND INVESTIGATION OF THE COMPLEXING AGENTS 18N4S2, 18N4S2Me4, 18N4O2, 18N4O2Me4, N,N-DIBENZYLETHYLENETHIOUREA (12), 15N3O2C3 (7) AND LIGAND (9) AND THEIR SILVER(I), GOLD(I), YTTRIUM(III), AND RHENIUM(V) COMPLEXES.

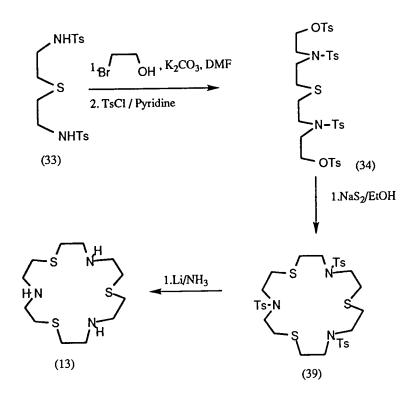
4.0 SYNTHESIS AND INVESTIGATION OF THE COMPLEXING AGENTS 18N4S2, 18N4S2Me4, 18N4O2, 18N4O2Me4, N,N-DIBENZYLETHYLENETHIO-UREA (12), 15N3O2C3 (7) AND LIGAND (9) AND THEIR SILVER(I), GOLD(I), YTTRIUM(III), AND RHENIUM(V) COMPLEXES.

4.1 INTRODUCTION

This chapter is split into four sections. Each section describes the synthesis or attempted synthesis of the macrocycles described in section 1.5. Where the synthesis was successful, the results, outlined below, of the complexation experiments are reported.

The first section reports the comparison of the stability of the silver(I) complexes of $18N_4S_2$, $18N_4S_2Me_4$, $18N_4O_2$, and $18N_4O_2Me_4$. This investigation involves the use of calorimetrically determined entropies of complexation and pH - metric determination of protonation constants of the ligands and binding constants of the complexes.

The second section describes the complexation of gold(I) by the new complexing agent (12).

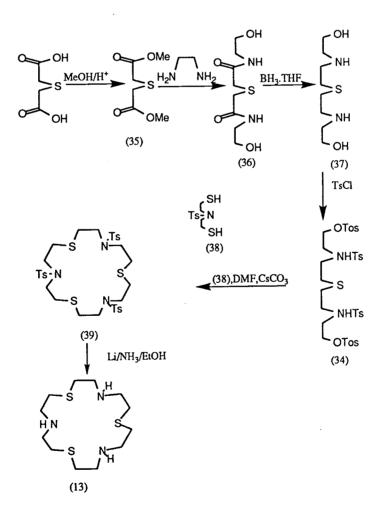

The third section reports the characterisation of the yttrium(III) complex of $15N_3O_2C_3$ (7). ¹H NMR and HPLC radiometric methods were used to determine its possible use for *in vivo* applications.

The final section of the chapter reports attempted the synthesis of the rhenium complex of (9).

4.2 THE SYNTHESIS OF THE SILVER(I) COMPLEXING AGENTS 18N4S2Me4, 18N4O2, AND 18N4O2Me4, THE ATTEMPTED SYNTHESIS OF LIGAND (13) AND (14) AND THE COMPARISON OF THE STABILITY OF THE SILVER (I) COMPLEXES OF 18N4S2, 18N4S2Me4, 18N4O2, AND 18N4O2Me4

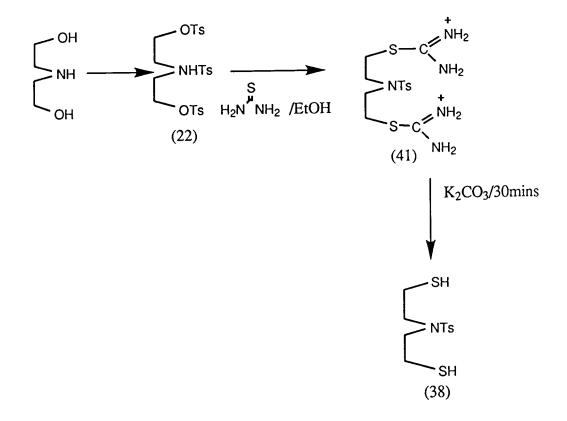
4.2.1 The Attempted Synthesis Of 1,7,13-Trithia-4,10,16-Triazacyclooctadecane (13)

Aza-thia macrocycles are difficult to prepare by standard macrocyclisation methods, but may be made from either tosylamide/thiol⁽¹⁰⁾ or amine/acid chloride⁽¹¹⁾ precursors.



Scheme 4.1

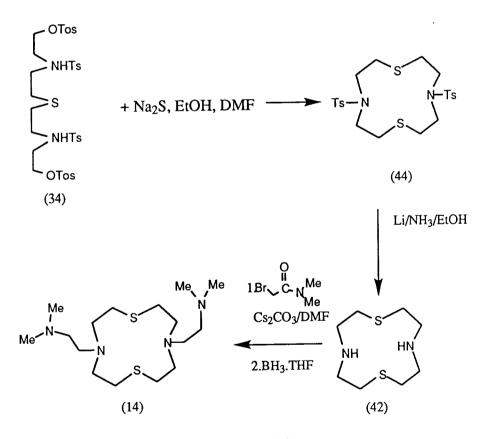
The original synthetic proposal, Scheme 4.1, resulted in a mixture of tosylated material which proved intractable, and it was decided to attempt the longer synthesis outlined in scheme 4.2.


The esterification of thioglycolic acid with methanol yielded compound (35). Aminolysis (24 hour reflux in ethanolamine) resulted in a 43% yield of the diamide (36). Successful reduction was carried out with Borane-THF.

After trying a variety of solvents and temperature variations, tetratosylation was achieved with the highest yield using a mixed solvent system of acetonitrile and chloroform, with the initial reaction temperature at -15°C. The reaction could be monitored by TLC. After 4 hours, the reaction was allowed to warm up to room temperature, and was filtered after a further four hours. Column chromatography on alumina purified the reaction mixture.

Scheme 4.2

Synthesis of the dithiol (38) was carried out using a standard procedure, (Scheme 4.3)⁽¹²⁾ However, this method resulted in a mixture of two compounds, presumably the thiol and the related disulphide, which could not be separated by chromatography. To remedy this problem, the reflux time of the intermediate salt (41), was reduced to thirty minutes. This resulted in the formation of the dithiol, free from the disulphide.

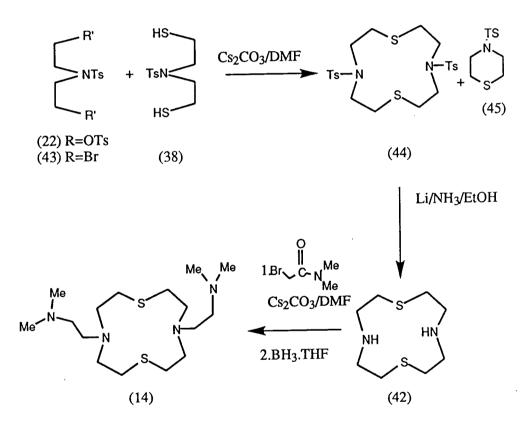

Scheme 4.3

The cyclisation step was attempted in DMF using caesium carbonate as the base. The reaction was followed by TLC, and after seven days, and elevation of temperature, there was no reaction. If more laboratory time had been available, different conditions could have been tried to facilitate the formation of the cyclic molecule (39).

4.2.2 THE ATTEMPTED SYNTHESIS 1,7-BIS(DIMETHYLAMINOETHYL)-4,10-DITHIA-1,7-DIAZACYCLOOCTADECANE (14)

4.2.2.1 ROUTE 1

The reaction of (34) with sodium sulphide was attempted, Scheme 4.4. The insolubility of sodium sulphide was a concern and a mixture of DMF and ethanol seemed to provide slight solubility and a finer suspension. The heterogenous reaction mixture was heated to 80 °C for four days but no chemical change was observed.

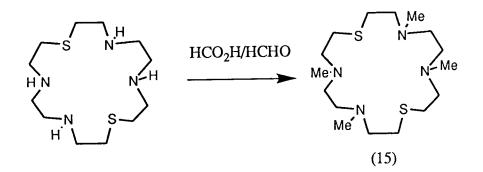


Scheme 4.4

4.2.2.2 ROUTE 2

Reaction of (22) with the dithiol (38), Scheme 4.5, produced no detectable change. Whereas reaction of (43) with the dithiol (38),

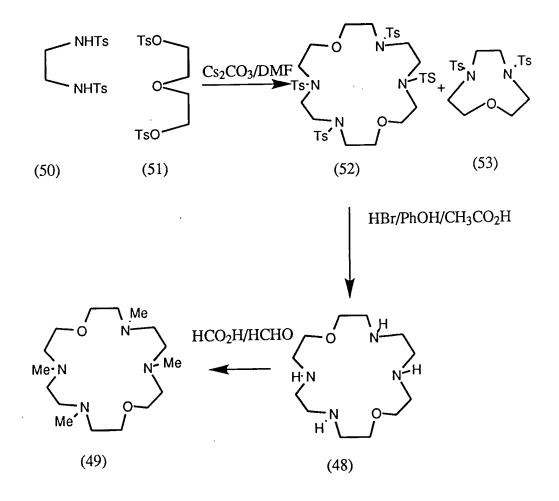
produced a mixture of products with (45) as the main component of the mixture (NMR and mass spectral analysis). The nature of the reaction pathway that facilitated the formation of this product (and why the reaction conditions favoured (45) is not clear). The deprotonation of the thiol and subsequent nucleophilic attack at the opposite carbon is the obvious reaction pathway. Displacement of a leaving group must have occurred, although the nature of the leaving group is unclear.


Scheme 4.5

4.2.2.3 Conclusions

Both of these attempts proved inconclusive. However, other similar cyclisation reactions^(11,12) have proved successful. With more laboratory time, and a variation of the reaction conditions, both of these routes may be successful in producing an alternative route to the thiol/acid chloride method of producing $12N_2S_2$

4.2.3 SYNTHESIS OF N,N',N'',N''' - TETRAMETHYL-1, 10-DITHIA-4,7,13,16 - TETRAAZA -CYCLOOCTADECANE (15)


To further investigate the thermodynamic properties of $(15)^{(12)}$, the tetramethylated $18N_4S_2$ complexing agent was synthesised (Scheme 4.6). Tetramethylation was carried out using the Eschweiler-Clarke methylation procedure. Equimolar quantities of acetic acid and formaldehyde (37%) was added with $18N_4S_2$ and heated to $100^{\circ}C$ for twenty-four hours. Purification of the tetra-amine was achieved by a recrystallisation from hexane.

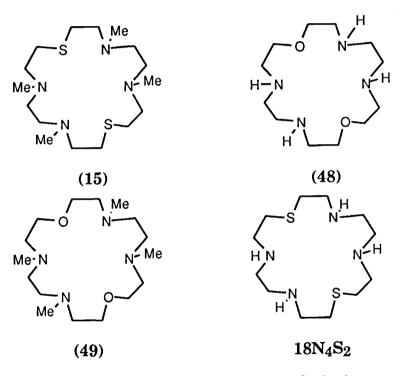
Scheme 4.6

4.2.4 SYNTHESIS OF N, N', N", N"' - TETRAMETHYL -1,10-DIOXA -4, 7, 13, 16 -TETRAAZACYCLOOCTADECANE (49)⁽¹²⁾

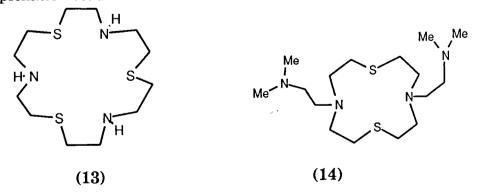
In order to make comparative thermodynamic studies with the tetramethylated $18N_4S_2$ (15) and its silver(I) complex, it was necessary to synthesise the $18N_40_2$ macrocycle $(48)^{(12)}$, and its tetramethyl derivitives (49) (Scheme 4.7).

Scheme 4.7

The cyclisation (DMF, caesium carbonate) of (50) and (51) gave two main products, the 9-membered (53), and the 18-membered (52) rings in a ratio of 2:1 respectively. Detosylation was effected using HBr/acetic acid/phenol, followed by recrystallisation from hexane to give the $18N_4O_2$ as a colourless solid in 28% yield. Tetramethylation was carried out using the Eschwieler-Clarke methodology as with the $18N_4S_2$.


.

•


4.2.5 COMPARISON OF THE SILVER(I) COMPLEXES OF 18N4S2, 18N4S2Me4, 18N4O2, AND 18N4O2Me4.

4.2.5.1 Introduction

This section describes the results of the thermodynamic and pH - metric investigation of the silver(I) complexes of (14), (48), (49) and $18N_4S_2$.

The failed synthesies of (13) and (14) prevented any complexation studies with these molecules.

4.2.5.2 Complex Stability As Determined By A Thermodynamic Study Of Complexation¹

The entropies of complexation for the silver complexes of $18N_4S_2$, $18N_4S_2Me_4$, $18N_4O_2$ and $18N_4O_2Me_4$ were calculated from calorifically determined enthalpies of complexation.

Ligand	log K _s @/ dm ³ mol ⁻¹	-∆H/ kJ mol ⁻¹	TΔS/ kJ mol ⁻¹
N_4S_2	14.1	77.0	+ 3.3
$N_4S_2Me_4$	14.6	102.1	- 18.7
N4O2	11.2	59.5	+ 4.4
$N_4O_2Me_4$	13.4	84.3	- 7.8
$N_2O_4^*$	10.0	51.4	+ 5.7
$N_2S_4^*$	13.7	83.2	- 5.0
$S_2O_4^*$	10.3	64.0	- 5.3
O ₆ **	4.6	38.3	- 12.1

* Data from ref. 3. ** Data from ref.4.

@ Errors in log K are typically (\pm 0.1) 0r less, and for Δ H \pm 0.3 kJ mol-1 or less

Table 4.1 Stability Constants, Entropies And Enthalpies Of

Complexation

4.2.5.3 Discussion

The data in table 4.1 indicates that the silver (I) complex of $18N_4S_2Me_4$ possesses the highest stability constant of all the 1:1 complexes with these ligands. It is 10 times greater than the oxygen analogue and slightly more stable than the unfunctionalised parent macrocycle, ($18N_4S_2$).

The extra stability as a result of tetra methylation (as also seen with the $18N_4O_2$ complex) can be explained in terms of an increase in the enthalpy of complexation (table 4.1, third column). This suggests

¹Carried out by H. Schneider, Max-Planck Insitut fur Biophysikalische Chemie, D-3400, Gottingen, FRG.

that a tertiary nitrogen is a superior σ -donor for silver(I) in methanol solution.

Closer scrutiny of the table also shows that the enthalpic advantage afforded by the tertiary amine is offset by the decrease in the entropy of complexation for these methylated macrocycles. A difference of 22 kJ mol⁻¹ and 12.2 kJ mol⁻¹ between the $18N_4S_2$, $18N_4O_2$ complexes and the methylated analogues may be understood as a result of two factors:

Firstly, the presence of the methyl groups causes a strained transition state leading to the complexation, which forces the macrocycle into an unfavourable conformation before complexation is attained. The obvious reason for this is that the methyl groups are interacting unfavourably with their neighbours.

Secondly, the desolvation of the ligand is an important contributory factor in the ΔS term. The secondary amines of (14) will form stong hydrogen bonds with the solvent whereas the methylated macrocycle cannot, and futhermore solvation is inhibited by the presence of the bulky methyl groups. Undoubtedly the higher (unfavourable) enthalpy of ligand desolvation for the secondary amine cycles compared to the tertiary amine analogues is also contributing to the observed ΔH differences.

124

4.2.5.4 Complex Stability As Determined By A Study Of The Protonation Constants Of The Ligands And The Binding Constants Of The Silver Complexes¹.

The protonation and binding constants of the silver (I) complexes of $18N_4S_2$ and $18N_4S_2Me$ in aqueous solution were measured (298K, 0.05 mol dm⁻³ NMe₄NO₃) (Table 4.2). The method employed was to use pH-metric titrations in the absence and presence of Ag⁺.

Ligand	pK ₁	рК ₂	pK3	рК4	log K _{AgL}	•	log K _{AgLH2}	log K _{AgLH3}
N4S2	9.26	8.45	5.81	4.88	10.4 (7.91)	9.05 (5.40)	6.00 (3.94)	4.13
N4S2- Me4	8.82	8.35	4.13	3.71	9.47 (7.41)	8.06 (4.60)	4.31	-
N4O2*	9.67	8.85	6.61	3.21	-	-	-	-

Table 4.2 Protonation for the ligands and binding constants for thesilver(I) complexes. (298K, H_2O , I =0.1 NMe4NO3). Values in parentheserefer to protonation constants of the complexes (±0.1). * Ref 5.

Two experimental points worthy of note are that firstly, the protonation constants were obtained using SCOGS and formation constants by SUPERQUAD and also all the pH-Metric data was analysed by SCOGS and SUPERQUAD

¹Data analysed by R. Kataky, Unversity of Durham, Durham.

4.2.5.6 Discussion

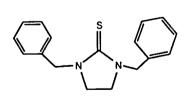
The protonation constants for $18N_4S_2$ and $18N_4S_2Me_4$ are similar to those for the $18N_4O_2$ which have been reported previously⁽⁵⁾.

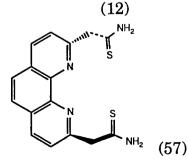
The effect of the sulphur atoms has little effect on the basicity of the nitrogen atoms. The methylated molecule shows a slightly lower pK_a value which is accounted for by less effective solvation of the conjugate acid.

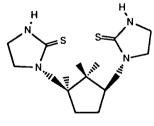
However, the binding constants for the 1:1 complexes in water are of the order of 10⁴ times lower than those recorded in methanol (Table 4.3). The explanation for this lies in the better solvation of the cation and of the ligand provided by the water molecules.

Complex	Log K dm3 mol-1 (methanol)	Log K dm3 mol-1 (water)	Δlog K	
N4S2	14.1	10.4	3.7	
N4S2Me4	14.6	9.47	5.13	

Table 4.3 A Comparison Of The Silver(I) Complex's BindingConstants In Water And Methanol

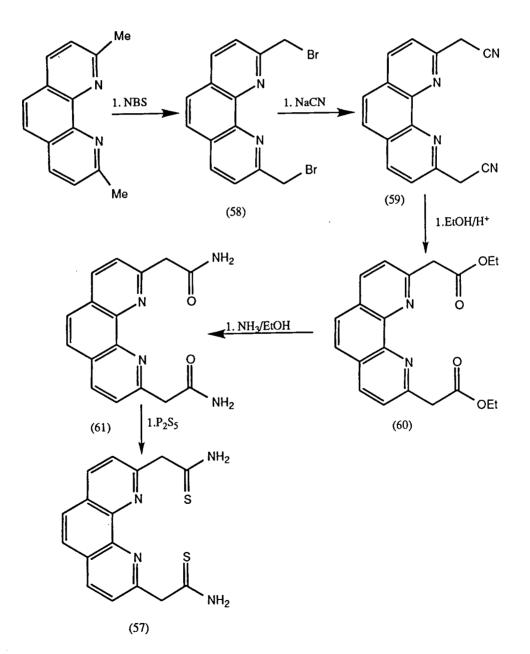

Also the order of the magnitude of the binding constants for 18N4S2 and 18N4S2Me4 is reversed in water. The explanation for this is in accord with the previous discussion: an enhanced negative entropy of complexation, whose main contributory factor is the ligand desolvation. In the case when water is the solvent, the nonmethylated ligand is more highly solvated by water, and the increase in entropy when these molecules are released (complexation), outweighs the loss of enthalpic energy needed to remove them.


4.3 SYNTHESIS AND CHARACTERISATION OF THE COMPLEX OF GOLD(I) WITH THE NEW COMPLEXING AGENT N,N-DIBENZYLETHYLENE -THIOUREA(12) AND THE ATTEMPTED SYNTHESIES OF LIGAND (56) AND LIGAND (57)

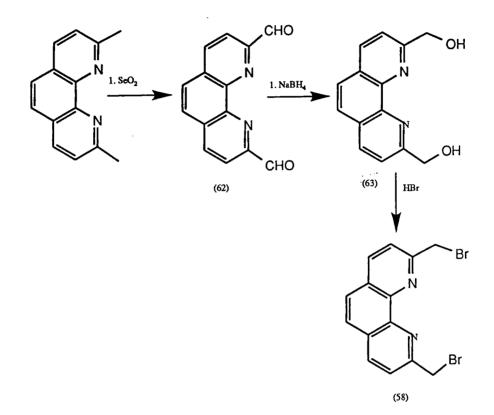

4.3.1 The Synthesis Of The Complexing Agents For Gold(I).

4.3.1.1 Introduction

It was decided to synthesise (12), in the hope that the addition of the lipophilic phenyl groups would provide us with a monodentate molecule functionalised in such a way as to resemble the bidentate ligands (56) and (57), (Section 1.5.5). The synthesis of (12) was successful and two methods were employed to attempt the formation of the gold(I) complex. The failed syntheses of (56) and (57) prevented any complexation studies with these molecules.



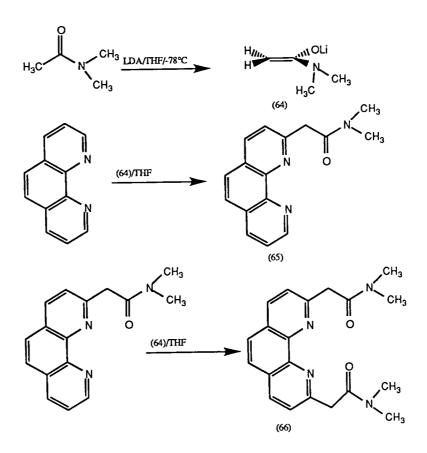
(56)


4.3.2 The Attempted Synthesis of (57)

The synthetic route outlined in scheme 4.8 begins with the selective mono-bromination of 2,9-dimethyl-1,10-phenanthroline using NBS. This was unsuccessful and the reaction produced mixed products of the di- and tri-brominated species, despite varying the reaction time and concentration of the reactants.

Scheme 4.8

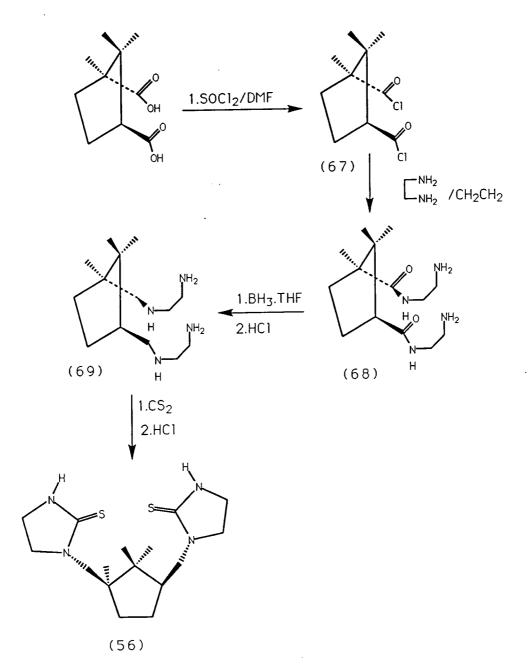
Another approach, to synthesis (58), was attempted⁽¹⁵⁾ (Scheme 4.9).



Scheme 4.9

The difficulty in this scheme was the use of borohydride to reduce the carbonyl to the alcohol. The reaction was very unreliable and the yield always unpredictable and small. Work up conditions were optimised to give the maximum and cleanest yield, but the product was always contaminated by an unknown species. We presumed that the boron from the reducing agent was binding to the phenanthroline ring and this was the cause in yield fluctuation and contamination of the product. Bromination was successful, and cyanation (Scheme 4.8) was attempted using sodium cyanide. The micro-analysis confirmed that the mono nitrile was the major isolated product. The synthesis was not completed due to more emphasis being placed on the synthesis and data collection for the $9N_3$ complexing agents.

Synthesis of ligand (57) has also been attempted using a different strategy involving the use of lithium amide (Scheme 4.10).


The monoalkylated phenanthroline (65) was detected in a low yield, but the subsequent di-alkylation was unsuccessful.

Scheme 4.10

4.3.3 The Attempted Synthesis Of Ligand (56)

Our initial strategy was to synthesise the diamide (68), and reduce this to give the tetra-amine (69), followed by cyclisation to give the desired ligand (56), (Scheme 4.11).

Scheme 4.11

Unfortunately, the formation of the amide via the diacid chloride, was unsuccessful. There was ¹H and I.R. evidence that the monoalkylated species had formed but no indication of the formation of the dialkylated molecule. We were conscious of the possible intramolecular reaction forming camphoric anhydride (Figure 4.1). An I.R of the reaction mixture showed the distinctive stretch at 1770 cm^{-1} .

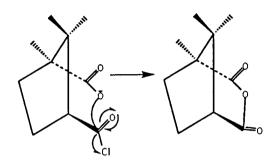
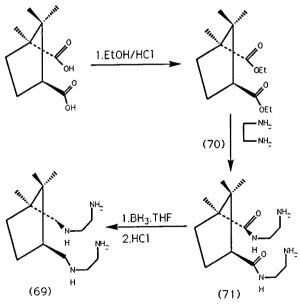
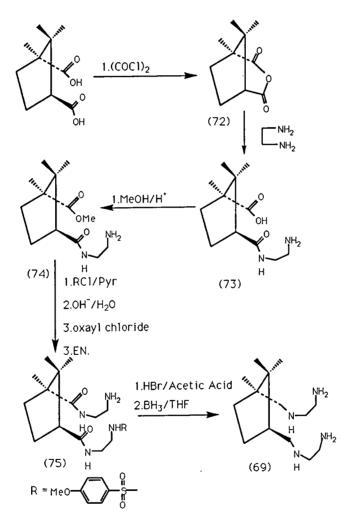



Figure 4.1 The formation of Camphoric Anhydride.

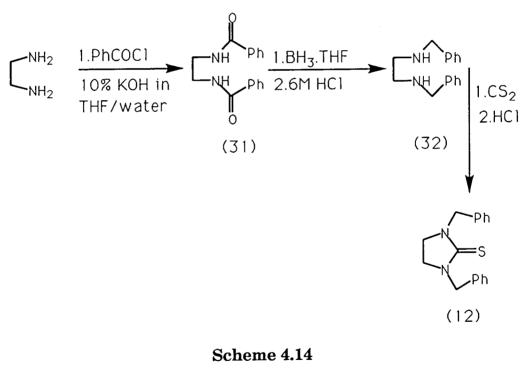

We proposed a different synthetic pathway, firstly forming the ester of the camphoric acid to inhibit anhydride formation (Scheme 4.12).

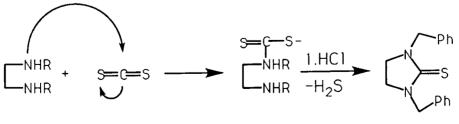
Scheme 4.12

This esterification was successful (50% yield) but the conversion of (70) to the diamide took 14 days and the reaction mixture still contained starting material. The reduction was problematic also, as the diamide did not dissolve in THF. The reduction took 3 weeks at reflux and resulted in a complex mixture which proved intractable.

Formation of the diacid chloride was attempted again, this time using oxalyl chloride; the infra red spectrum (I.R. 1750, 1810 cm⁻¹) of the product suggests that the anhydride had formed. A new synthetic sequence was scheme 4.13.

Scheme 4.13

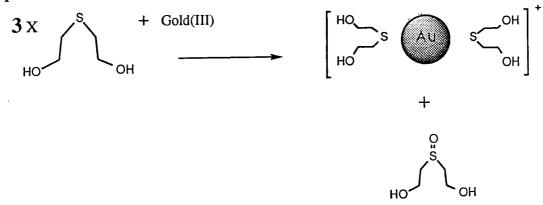

The reaction of the anhydride (72) with ethylenediamine may give (73), which may be protected by forming the methyl ester (74). The reaction of (21) with methoxybenzenesulphonyl chloride, followed by saponification and treatment with oxalyl chloride and ethylene diamine would give (75). Deprotection of the amine followed by a reduction may gives us (69), which should be readily cyclised, using the CS₂ reaction, to give ligand (56).


This synthetic scheme was not carried out as the synthesis of the polyaza and polyoxaaza ligands took precedence.

4.3.3 THE SYNTHESIS OF N,N-DIBENZYLETHYLENETHIOUREA (12)

N-alkylation of thiourea, a more direct route to (12), was not attempted as it was assumed that S-alkylation would occur preferentially.

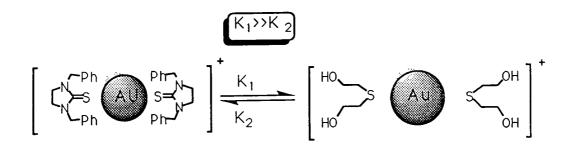
N-benzoylation of ethylenediamine, followed by subsequent reduction with BH₃.THF yielded (32) in a modest yield. The cyclisation step⁽¹⁶⁾ (Scheme 4.15) involves nucleophilic attack on the electron-deficient carbon centre of the carbon disulphide, followed by protonation and a second nucleophilic attack resulting in the formation of (12) (Scheme 4.14).


R=CH₂Ph

Scheme 4.15

4.3.4 Complexation Of Gold(I) By N,N-Dibenzylethylenethiourea (12)

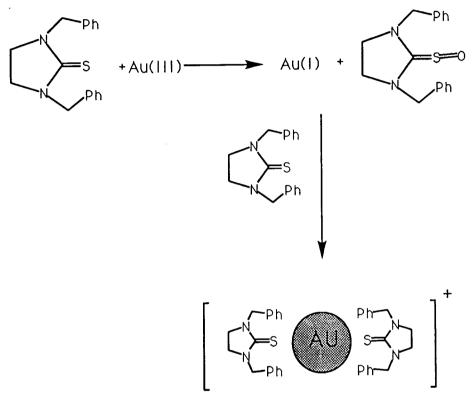
Parker and $Roy^{(17)}$ have shown that thiodiglycol is a suitable reducing agent for gold(III). The propensity for thiodiglycol to reduce gold(III) is coupled with its ability to form a stable gold(I) complex in water. The complex is strong enough to stop the disproportionation of the gold(I) ion, but is easily displaced by a stronger donor. It was for these reasons that thiodiglycol was chosen as the reducing agent which permitted an attempt to form the complex of (12) with the gold(I) ion stabilised and reduced in one step. Evidence for the reduction and stability of the gold ion is given by ¹H NMR and is also indicated by the lack of appearance of a gold mirror.


The experimental procedure (Scheme 4.16) involved mixing of the gold(III) precursor with three equivalents of thiodiglycol. Gentle warming of the solution is all that is necessary to form the gold(I) precursor.

Scheme 4.16

After the formation of the intermediate, one equivalent of (12) was added. At this stage no reaction could be observed (precipitation, colour change, etc.) and to facilitate the precipitation of the complex a large anion was added (BPh₄⁻, PF₆⁻). After the addition of these

anions, no precipitation was observed. ¹NMR showed that the complex in solution was the gold complex of thiodiglycol. This suggested that the thoiodiglycol was in some way preventing (12) from binding. The possible reasons for this may have been that (12) was thermodynamically a weaker ligand and thiodiglycol binds in preference (Equation 4.1).


Equation 4.1

Another possible reason may be that the presence of the bulky benzyl moiety could be causing a steric hindrance and creating an energy maximum in the kinetic profile which drastically slows down the rate of complexation.

After incubating the solution at 40°C for 24 hours no precipitate was observed.

4.3.5 Use Of N,N-Dibenzylethylenethiourea (12) To Reduce Gold(III) To Gold(I).

Another attempt was made to form the complex using (12) itself to reduce the gold(III) *in situ* (Scheme 4.17).

Scheme 4.17

After warming the coloured solution of gold(III) with (12) the solution became colourless¹ ¹H NMR showed the characteristic signal shift for (12) indicating that the change in colour of the solution was due to the reduction of the gold(III). The addition of the larger anion, tetraphenylborate caused the precipitation of a pale yellow solid. Microanalysis, NMR and FAB mass spectral analysis indicated that the complex had formed, although it was contaminated

¹Prolonged or excessive heating resulted in disproportionation, suggesting that the complex was unstable.

with a coprecipitate, probably a salt of teraphenylborate. ¹H NMR indicated that the previously equivalent protons of the ligand had become nonequivalent upon complexation.

.

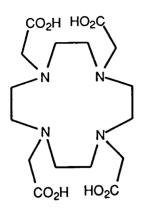
4.4 SYNTHESIS OF 15N3O2C3 (7)AND CHARACTERISATION OF THE YTTRIUM COMPLEX

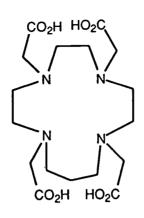
4.4.1 Introduction

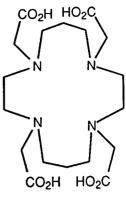
As mentioned briefly in chapter 1, a substantial amount of research has taken place in the use of polyaza and polyazaoxa macrocycles to complex yttrium(III)⁽⁶⁾. The work of Cox and Parker is briefly summarized below and gives a formative overview of the precedent set by their extensive research.

4.4.1.1 Stability Constants Of Tetraazatetracarboxylic Acid Macrocyclic Complexes of Yttrium(III)

Cox reports the stability constants of five known yttrium complexes given in table 4.4

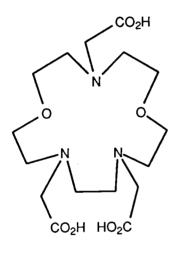

Complex	DOTAa	TRITA ^a	TETA ^a	DTPA ⁽⁸⁾	EDTA ⁽⁸⁾
YL	24.9	19.6	16.3	22.1 ^b	18.1 ^b

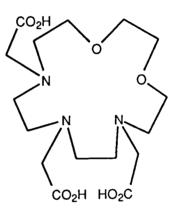

Table 4.4 Stability Constants (Log K) of the Yttrium Complex.a) $T = 298 \pm 0.1 K$ I = 0.1 M [(CH₃)₄NNO₃].


b) $T = 298K I = 0.1M [KNO_3]$

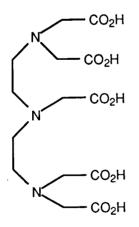
The order of magnitude of the stability constants measurements are:

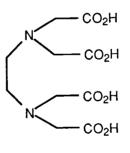
Y(DOTA) > Y(DTPA) > Y(TRITA) > $Y(EDTA)^2$ > Y(TETA)




DOTA

TRITA


TETA



DTCTA

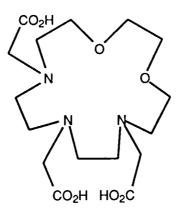
 $15N_{3}O_{2}C_{3}(7)$

In a summary of this work, Cox discussed the possible reasons for this trend. He suggested the following explanations:

The propylenediamine groups of the six-membered chelate rings are more sterically crowded, due to unfavourable eclipsing interactions, than the smaller fivemembered chelate rings.

The macrocyclic conformation - that is the position adopted by the macrocycle after complexation - is dependent on the size of the chelate rings. The conformation adopted by Y(DOTA) is the antiprismatic quadrangular [3,3,3,3] conformation. This is known to be the most stable conformation for octadentate yttrium complexes, as the repulsion energy between donors is minimised. The other possibility is a dodecahedral conformation, which is a less stable structure due to unfavourable steric interactions.

4.4.1.2 Measurement Of The Rate Of Uptake Of Yttrium(III) By The Macrocyclic Complexes


If the eventual use of the yttrium complexes is the specific targeting of radionucleides *in vivo*, the rate of uptake by the complexing agent is a critical factor in a successful application. This becomes obvious when taking into consideration the half-life of the yttrium nuclide and the time taken for the radio-conjugate to localise at the tumour site. (90 Y: β - (2.3 MeV), $t_{1/2} = 64$ hours)

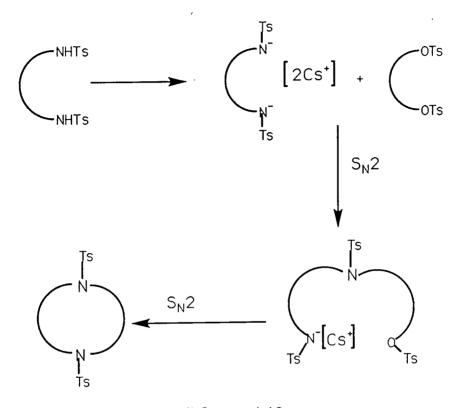
Using ¹H NMR, Cox⁽¹⁾ was able to estimate the rate of uptake of the yttrium complexes of DOTA, TRITA, ODOTRA, and DTCTA. His results show that all the complexes are fully formed within ten minutes.

Further to this, the rate of forward binding was assessed by HPLC radiometry. He concludes that the approximate order for the extent of yttrium uptake is:

DOTA > DTCTA > ODOTRA ≈ TRITA >> TETA

4.4.1.3 15N3O2C3 - A New Macrocyclic Complexing Agent For Yttrium(III).

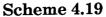
15N₃O₂C₃ (7)


The yttrium complex of DTCTA which was synthesised by $Cox^{(6)}$, proved to be a poorer complexing agent than DOTA. The presence of the five-membered chelates and the overall neutrality of the complex appeared to be offset by the presence of the harder oxygen donors and possibly a more strained conformation.

It was decided to prepare $15N_3O_2C_3$, which could be considered as a macrocyclic analogue of DTPA, with three contiguous nitrogen donors. The macrocycle was synthesised and characterised by FAB MS, ¹H NMR and HPLC radiometry.

4.4.2 SYNTHESIS OF 7,10,13-TRIS(CARBOXY METHYL)-1,4 -DIOXA-7,10,13-TRIAZACYCLOPENTA -DECANE (7)

The crucial step in this synthesis (Scheme 4.18) is the cyclisation step (Scheme 4.19), and a judicious choice of base is required^(7c). It is thought that because of the size of the caesium ion, the use of caesium carbonate is advantageous. The reaction proceeds via the di-


caesium salt followed by two nucleophilic displacements of the tosyl groups .

Scheme 4.18

An excess of base is required, as the bicarbonate ion is not sufficiently basic to deprotonate the tosyl-amide at a reasonable rate. It has been suggested that the ion-pairing ability of caesium carbonate in DMF (caesium is a large ion and is poorly solvated by such dipolar solvents) causes contact pairs to be formed rather than purely solvated ions. The effect of this is to bring caesium into close proximity to the counter-ions and to promote intramolecular reactions as opposed to oligomer-forming intermolecular reactions. In addition, due to the large size of the caesium ion, it enables the S_N2 reaction to occur on the surface of the ion, with a prearranged position, creating a favourable entropy change for the reaction.

Detosylation of (26) was at first attempted with hydrobromic acid, acetic acid, and phenol. The isolated yield of this reaction was less than 5%. The use of liquid ammonia and lithium metal was much more successful, giving yields of up to 80%. The final stages of this synthesis involved alkylation followed by hydrolysis of (28), to yield the target molecule which was isolated as the hydrochloride salt.

4.4.3 Estimation Of The Rate Of Yttrium Uptake Using ¹H NMR

Using a similar experimental method as $Cox^{(6)}$ a series of ¹H NMR experiments were made to make a semi-quantitive assessment of the forward rate of yttrium uptake by $15N_3O_2C_3$.

An ¹H NMR spectra was recorded of a 0.028 mol⁻¹dm⁻³ solution of the complex at pD 5 as a comparison for the ¹H NMR of the yttrium complex.

Next the solution of the macrocycle was mixed with one equivalent of yttrium nitrate (in D_2O) and immediately placed within the NMR probe and the spectra recorded. After a further 10, 50, 110 and 170 minutes the spectrum was measured again. After three hours, ten more equivalents of yttrium were added and the ¹H NMR measured after 30 minutes. Figure 4.2 shows some of the spectra.

The spectrum of the complex is complicated and precludes any detailed analysis. The presence of the yttrium metal causes the various signals to spread out. The complex pattern suggests that previously equivalent methylene protons were diastereotopic and once the ligand is bound to the yttrium ion the position of these protons becomes fixed and they are no-longer symmetrically equivalent. Also the sharpness of the spectral peaks indicate that the ring is rigid.

After ten minutes there was no significant change in the ¹H NMR spectrum. Neither was there any change when further yttrium(III) was added. Therefore it was concluded that the complex must have formed within 10 minutes.

147

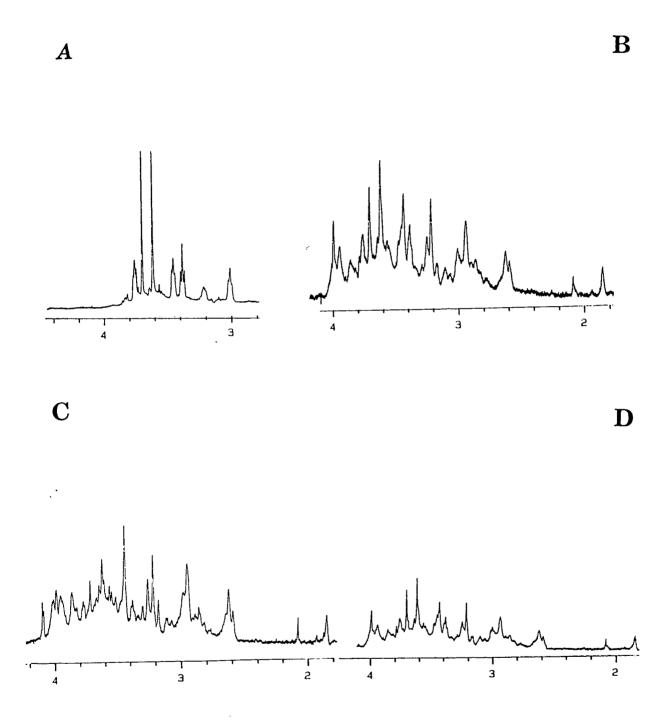


Figure 4.2 ¹H NMR Spectra (400MHz, D₂O, pD 5, 298K) of;
A) 15N₃O₂C₃ B) Y(15N₃O₂C₃) after 10 min. C) Y(15N₃O₂C₃) after 3 hours. D) Y(15N₃O₂C₃) after 3.5h and with 11 equivs. of Y³+.

4.4.4 An Assessment Of The Kinetic And Thermodynamic Strength Of ¹⁵³Gd(15N₃O₂C₃) Using HPLC Radiometry¹.

Using ¹⁵³Gd a semi-quantitive assessment was made of the kinetic and thermodynamic stability of the new complexing agent. Because ¹⁵³Gd is physically and chemically very similar to yttrium it was chosen as a suitable radioisotope to test the new macrocycle.

Gd-15N₃O₂C₃ was prepared by incubating 2 mmols of $15N_3O_2C_3$ in 200 nM ammonium acetate solution (pH 6.5) with trace amounts of 15^3 Gd at 37°C for between 0.5 and 5 hours.

The 153Gd- $15N_3O_2C_3$ was then incubated with DTPA;

- a) Ten-fold excess of DTPA for 5 mins..
- b) Hundred-fold excess of DTPA for 5 mins..
- c) One-fold excess of DTPA for 5 mins..
- d) Ten-fold excess of DTPA for 30 mins..

a) 1. The gadolinium and $15N_3O_2C_3$ were incubated together for 30 minutes before the addition of the DTPA.

a) 2. The gadolinium and $15N_3O_2C_3$ were incubated together for 4 hours before the addition of the DTPA.

The results of these experiments are given in table 4.6.

¹ Experiments performed by A. Harrison and L. Royle, MRC, Radiobiology Laboratory, Didcot, Oxon.

Retention Time (mins)	a) 1.	a) 2.	b)	c)	d)	Species
[DPTA]	10 x	10 x	100 x	1 x	10 x *	Detected
4.4	6.04	6.49	5.70		4.73	Gd-15N ₃ O ₂ C ₃
4.9	4.35	4.60		36.64		Gd-15N ₃ O ₂ C ₃
6.8		0.08				Intermediates
7.5	1.35	0.89		10.91		Intermediates
9.9			35.85			Gd-DTPA
10.2			58.29			Gd-DTPA
10.9	88.26	87.95				Gd-DTPA
11.3			·	52.45	95.27	Gd-DTPA
14.2			0.16			Gd-DTPA

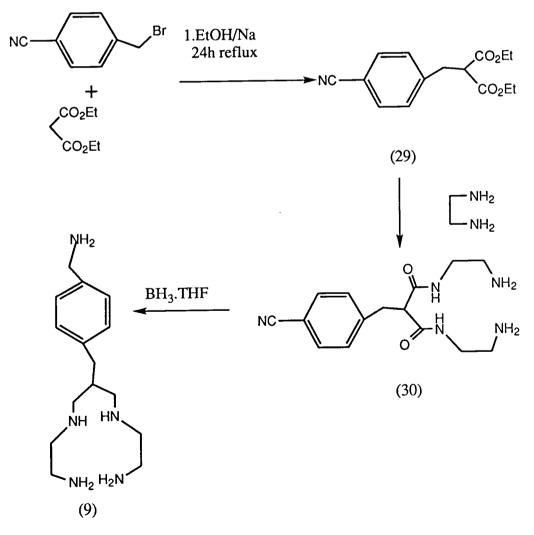
Table 4.6 The Retention Times and Peak Areas. * 30 Minutes incubation period. The letters a) to d) refer to the preparation conditions described on the previous page.

4.4.5 Discussion

The HPLC results indicate that the DTPA had stripped the gadolinium from the Gd- $15N_3O_2C_3$ complex with ease. When 10 and 100 equivalents of DTPA are present, approximately 90% of the gadolinium is complexed by the DTPA. When only one equivalent of DTPA present 36% of the Gd- $15N_3O_2C_3$ complex remains intact.

The difference in incubation period a) 1. (30min) and a) 2. (4 h) made no significant difference to the results, which confirmed the results the of ¹H NMR experiment i.e that the complex must have formed formed quickly (< 30 min).

DTPA forms a very thermodynamically stable complex with yttrium(III) (log $K_{ML} = 22.1$)⁽⁸⁾. The successful challenge by DTPA on the Gd-15N₃O₂C₃ complex indicates substantial kinetic instability in the Gd-15N₃O₂C₃ complex.


4.4.6 Conclusions

The ¹H NMR experiment gave evidence to suggest that the Yttrium- $15N_3O_2C_3$ 1:1 complex is formed quickly (< 10 min) at pH 5. This was confirmed (for Gd) by HPLC radiometry.

The kinetic instability of the complex has been demonstrated using a DTPA challenge and the complex is therefore deemed unsuitable for *in vivo* use. 4.5 THE SYNTHESIS OF LIGAND (9) AND THE ATTEMPTED SYNTHESIS OF THE RHENIUM COMPLEX OF (9).

4.5.1 Synthesis Of (9) 1,9-Diamino-(5-paminomethylbenzyl) -3,7-diazanonane(9)

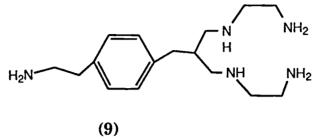
The first step in this reaction scheme (Scheme 4.20) had been previously carried out in this laboratory⁽¹³⁾. The same procedure was followed. The formation of the di-amide was achieved by reaction of the diester (48h, 60°C) using dried ethylene diamine as the solvent and reactant.

Scheme 4.20

The following reduction reduces both the amide groups and the nitrile in a single step. BH₃.THF was the reducing agent used, and completion of the reaction was deduced by monitoring the infra-red spectrum of quenched samples of the reaction mixture. However, the work up and extraction of the amine (9) proved not to be straightforward. The work-up begins with the cooling of the reaction mixture followed by the quenching of the excess borane by adding methanol dropwise. Next, the solution was refluxed in HCl (6M) for 2 hours, and the water removed under reduced pressure.

This procedure is followed with a methanol wash to convert any of the boron species to the volatile B(OMe)₃, which can be removed, alongside the methanol, under reduced pressure. In most cases, the residue is dissolved in a sodium hydroxide solution bringing the pH to 14, thereby freeing the amine. Extraction is achieved using dichloromethane.

At this point, the mixture containing (9) was a white emulsion which would not separate. With the other half of the reaction products, the same procedure was repeated. After washing with methanol, instead of basifying the solution to pH 14, a different method of extraction was used. The approximate quantity of sodium hydroxide needed to neutralise the salt was dissolved in the minimum quantity of water. This was added to the solid residue. The mixture was warmed and the pH monitored and maintained (addition of sodium hydroxide), above pH 7. When all the residue had dissolved, the water was removed under reduced pressure. The neutralised amine residue was dissolved in hot dichloromethane, filtered, dried over a drying agent and the solvent removed under reduced pressure,


153

It is important to note that the solvent used to extract the compound was dichloromethane as opposed to chloroform, the reason being that at pH > 7, there is a possibility of the chloroform losing H-Cl, and forming the highly reactive dichlorocarbene, which may have reacted with the amine and contaminated the product. Recrystallisation from chloroform /methanol gave the pure product.

The next stage in the synthesis was to functionalise the pendant arm, so it may be attached to an antibody. Selective acylation (PhCOCl) of the primary amine was attempted using a Pipes buffer (pH 6.4) to selectively protonate the ring amine groups to allow for selective acylation. Unfortunately the pentaamine (9) would not remain in solution with the pH stabilised below pH 7. Dioxan was added to aid the solubility of the compound but was unsuccessful. Selective acylation was not achieved using this strategy.

4.5.2 THE ATTEMPTED SYNTHESIS OF THE RHENIUM COMPLEX OF (9)

This section reports the attempted synthesis of the rhenium complex of (9).

The synthetic method that was used was similar to the method employed by Parker and Roy⁽⁹⁾.

The complexing agent was dissolved in chloroform and the rhenium was added as trans-ReOCl₃(PPh₃)₂. The mixture was stirred at room temperature and a small quantity of a yellow/green solid precipitated and was collected by filtration.

Micro-analysis of this compound showed it to contain less than 5% rhenium, suggesting a 1:1 complex had not been formed. ¹H NMR showed no indication of complexation.

4.6 REFERENCES

- A.S. Craig, R Kataky, R.C. Matthews, D. Parker, G. Ferguson,
 A. Lough, H. Adams, N. Bailey, H. Sneider, J. Chem. Soc.
 Perkin Trans., 1523, <u>2</u>, (1990).
- J. Guthrecht, H. Schneider and J. Stroka, Inorg. Chem. 3326, <u>17</u>, (1978).
- H.J. Buschmann, in 'Stereochemical and Stereophysical Behaviour of Macrocycles', ed. I. Bernal, Elsevier, 1987, ch2.
- R.M. Izatt, J.S. Bradshaw, S.A. Nielson, J.D. Lamb, J.J. Christenson, Chem. Rev. 271, <u>85</u>, (1985). R.D. Hancock, A.E. Martell, Chem. Rev. 1875, <u>89</u>, (1989).
- E. Luboch, A. Cygan, J.F. Biernat, Inorg. Chim. Acta., 201, <u>168</u>, (1983).
- 6. J.P.L. Cox, PhD Thesis, University of Durham, 1989.
- a) J.P.L. Cox, K.J. Jankowski, R.Kataky, D. Parker, N.R.A. Bealy, B.A. Boyce, M.A.W. Eaton, K. Miller, A.T. Millican, U.T. Cobly, A. Harrison, C. Walker, J. Chem. Soc. Chem, Commun., (1989) 797.
 b) D. Parker, J.R. Morphy, K.J. Jankowski, J.P.L. Cox, Pure Appl. Chem., (1989) 61(A) 1637.
 c) R.M. Kellogg, J. Org. Chem., 100, <u>49</u>, (1984)
- 8. A.E. Martell and R.M. Smith, "Critical Stability Constants", Plenum, New York, (1974) Volume 1 + 3.
- 9. D. Parker, P.S. Roy, Inorg. Chem., <u>27</u>, 23, (1988).
- J.E. Richman, T.J. Atkins, J. Am. Chem, Soc., 2268, <u>96</u>, (1974);
 B.K. Vriesman, J. Butler, R.M Kellogg, J. Org. Chem., 110, <u>49</u>, (1984).

- A. Alberts, J.M. Lehn, D.Parker, J. Chem. Soc. Dalton Trans.,
 2311,(1985); B. Dietrich, J.M Lehn, J.P. Sauvage, J. Blanzat,
 Tetrahedron, 1629, <u>29</u>, (1973).
- 12. A.S. Craig, PhD Thesis, 1989, University of Durham.
- 13 R. Morphy PhD Thesis, 1988, University of Durham.
- J. Clarkson, R. Yagbasan, P.J Blower, S.C. Rawle and S.R. Cooper, J. Chem. Soc. Chem. Comm., 950, (1987).
- C.J Chandler, L.W. Deady, J.A. Reiss, J. Hetero. Chem. 599, (1981)
- 16 Org. Syn. Coll., Vol. 3, 394.
- 17 D. Parker, P.S. Roy Inorg. Chim. Acta , 227, <u>155</u>, (1988)

CHAPTER FIVE

EXPERIMENTAL PROCEDURES

5.0 EXPERIMENTAL PROCEDURES

5.1 INTRODUCTION

Throughout this work, temperatures are quoted in °C, and pressures in mbar. The alumina used in chromatography was Merck alumina, activity II-III, 70-230 mesh and unless stated always presoaked in ethyl acetate to deactivate it.

Proton and carbon-13 NMR spectra were recorded on a Varian 400, Varian Gemini 200, or a Bruker AC250 spectrometer. Proton and carbon chemical shifts are quoted in ppm to higher frequency of TMS. Coupling constants are given in Hz.

Infrared spectra were recorded on a Perkin-Elmer 577 spectrometer, as a thin film for liquid samples or a Nujol mull for solids, between NaCl plates. Mass spectra were recorded on a VG 7070E mass spectrometer, using CI, DCI, FAB, or EI ionisation modes as stated.

All solvents were dried using the normal laboratory procedures and all reactions were carried out under a dried inert gas (Nitrogen or Argon) unless the solvent used is water. "Water" refers to deionised water throughout. DMF and BH3.THF refer to Aldrich 'Sure-Seal' reagents.

5.2 THE SYNTHESIS OF THE COMPLEXING AGENTS

5.2.1 (R) - 1,4,7-TRIS(2'-METHYLCARBOXYMETHYL)-TRIAZACYCLONONANE(4)

(R) - 1,4,7-Tris(2'-Methylcarboxymethyl)-Triazacyclononane (4)

To a mixture of triazacyclononane (1.5g, 11.7mmol) and (S)-(-)-2 chloropropionic acid (4.44g, 40.95mmol) in water (50 $m cm^3$) was added lithium hydroxide until the pH reached 10. The mixture was vigorously stirred at 45 °C and the pH periodically monitored and maintained with the addition of more lithium hydroxide. During the reaction, samples were removed and examined using ¹H NMR to ascertain the amount of acid which had hydrolysed and, if necessary, up to 3 equivalents of acid were added. After 10 days, the reaction was complete (TLC, NMR). The pH was adjusted to 2 (HCl) and the mixture filtered and the water evaporated under reduced pressure. The addition and evaporation of methanol to the residue (x3) ensured that it was free from water. Esterification was achieved by refluxing the residue in methanol (20 cm^3) with 1 cm^3 of sulphuric acid present. After 24 hours the mixture was cooled, neutralised with dry sodium bicarbonate, filtered and the solvent removed under reduced pressure. Purification was achieved on an alumina column using methanol (0-2%) / dichloromethane followed by acid hydrolysis (6M HCl, 60°C, 4hr) to give a white crystalline solid. (2.3g, 61%) m.p. 265°C

Ester:

NMR: $\delta_{\rm H}$ (CDCl₃) 3.6 (9H,s,0C<u>H</u>₃), 3.5 (3H,quartet,C<u>H</u>(Me)-C0₂Me), 2.7 (12H, m, N-C<u>H</u>₂-C<u>H</u>₂-N), 1.25 (9H, d, C<u>H</u>₃); $\delta_{\rm C}$ (CDCl₃) 173.86 (carbonyl), 60.95 (OMe), 52.99 (β-C), 50.1 (N-CH₂-CH₂-N), 15.7 (-CH₃); IR (Nujol) 2900 (CH₃), 1730 (CO); MS: m/z (DCI,NH₃) 404 (M⁺ + 17)100%, 389 (M⁺ + 2) 22%.

Acid:

Analysis found: C, 45.20; H, 7.51; N, 10.40; $C_{15}H_{27}N_3O_6$.HCl.H₂O requires C, 45.06; H, 7.56; N, 10.51 %. NMR: δ_H (D₂O) 4.0 (3H, quartet, N-C<u>H</u>(Me)-COOH), 3.3 (12H, m,(N-C<u>H₂-CH₂-N), 1,4 (9H,d - CH₃); δ_C (D₂O) 175.0 (carbonyl), 60.55 (β–C), 46.41 (N-CH₂-CH₂-N), 10.51 (-CH₃); IR (Nujol) 1740 (carbonyl);MS: m/z (DCI, NH₃) 362 (M++17) 100%.</u>

5.2.2 1,4,7-TRIS(2'-PHENYLCARBOXYMETHYL)-1,4,7-TRIAZACYCLONONANE (5)

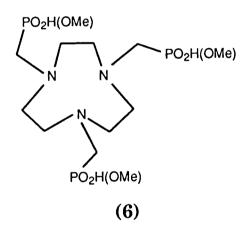
(2)-Bromophenylmethylpropanoate (21)

1

To a mixture of (2)-bromo-phenylacetic acid (5g, 0.23mol) in methanol (50 cm³) was added sulphuric acid (1 cm³) and the vigorously stirred mixture was brought to reflux for 24 hours. The cool acidic mixture was neutralised with excess sodium bicarbonate and following filtration, the solvent was removed under reduced pressure. Purification was achieved on an alumina column eluted with CH₂Cl₂/hexane (1:100) and produced a clear oily residue after the elutants had been removed. (4.3g, 81%). b.p.112°C, 3mmHg [lit⁽⁷⁾ 113°, 3mmHg]; NMR: $\delta_{\rm H}$ (CDCl₃) 7.4 (5H, s, phenyl), 4.6 (1H, m, CH(Ph)-C), 3.71 (3H, s, OMe); $\delta_{\rm C}$ (CDCl₃): 171.1 (carbonyl), 136.1, 128.1, 127.9, 126.1 (aromatic), 70.2 (β -carbon); MS: m/z (DCI) 230 (M++1) 64%.

1,4,7-Tris(2'-phenylcarboxymethyl)-1,4,7triazacyclononane (5)

To a vigorously stirred solution of 1,4,7-triazacyclononane (0.200g, 15.6 mmol) with potassium carbonate (0.72g, 52 mmol) in acetonitrile (10 cm^3) was added the ester (21) (1.18g, 51.5 mmol). The temperature of the mixture was adjusted to 60° C and maintained for 7 days. The cooled mixture was filtered and the solvents removed under reduced pressure. Purification by an alumina column eluted with (0-2%) methanol in dichloromethane resulted in a clear oily residue. After checking the purity of the ester using carbon and proton NMR, the compound was hydrolysed (6M HCl, 60° C, 24hr), to yeild a colourless solid, (3.8g, 48%).


Ester

NMR: $\delta_{\rm H}$ (CDCl₃): 7.35 (15H, s, Phenyl), 4.37(3H,quartet, N-C<u>H</u>(Ph)-CO), 3.60 (9H, s, OMe), 2.75, 2.99 (12H, d, AA'BB', J=13.1, CH₂-N); $\delta_{\rm C}$ (CDCl₃): 173.68 (carbonyl), 135.9, 128.5, 126.8, 125.3 (aromatic), 71.49 (β -C), 52.8, 54.8 (N-CH₂-CH₂-N); MS: m/z (DCI) 574 (M++1) 100%.

Acid

Analysis found: C, 61.0; H, 6.11; N, 6.9; $C_{30}H_{33}N_3O_6$.HCl.H₂O requires C, 61.48; H, 6.19; N, 7.17 %. NMR: δ_H (CD₃OD): 7.44 (15H, s, Phenyl), 3.8 (3H,quartet,N-C<u>H</u>(Ph)-C), 3.1 (12H,m,N-C<u>H</u>(Ph)-C); δ_C (CD₃OD): 173.71 (carbonyl), 137.9, 129.5, 128.8, 128.3 (aromatic), 72.51 (b-C), 51.9, 53.9 (N-CH₂-CH₂-N);MS: m/z (DCI, NH₃) 532 (M++1) 100%.

5.2.3. THE ATTEMPTED SYNTHESIS OF 0,0',0"-TRIMETHYL-1,4,7-TRIS(PHOSPHONATOMETHYL)-TRIAZACYCLONONANE(6)

1,4,7-Tris(phosphonoxy methyl)triazacyclononane(22)

To a stirred solution of 1,4,7-triazacyclononane (0.19g, 1.5mmol) and phosphorous acid (0.374g, 4.6mmol) in 6M hydrochloric acid (3 cm³) at 120°C was added aqueous formaldehyde (37%, 0.38g, 4.7mmol) dropwise over 2.5 hours. After evaporation the solid was redissolved in the minimum quantity of water (0.5 cm³) and 3 cm³ of acetone added. The solution was decanted off; the resulting oil was dissolved in the minimum quantity of water and acetone added until the solution became turbid. One drop of water was added and the mixture was warmed until clear. The cooled solution was filtered and the white crystals collected (0.23g, 47%). NMR: $\delta_{\rm H}$ (D₂O) 3.55 (12H, s, N-CH₂-CH₂-N), 3.31 (16H, d(J_{PH}=11.9 Hz), N-CH₂-P); $\delta_{\rm P}$ (D₂O) 11.65 (s). [lit⁽⁶⁾].

O,O',O''-Trimethyl-1,4,7-tris(phosphonatomethyl)triazacyclononane(6)

A stirred solution of (22) (0.1g, 0.2mmol) with 1 cm³ of sulphuric acid and methanol, was heated under reflux for 3 days. ¹H and ¹³C NMR and mass spectral analysis indicated that the sample had degraded.

Hexamethyl-1,4,7-Tris(phosphonatomethyl)-1,4,7triazacyclononane(23)

To a stirred solution of 1,4,7-triazacyclononane (0.2g, 1.6mmol) and paraformaldehyde (0.24g, 5.22mmol) was added trimethylphosphite (0.58g) and the mixture was brought to reflux for 24 hours. After evaporation of the solvent the oil was dissolved in dichloromethane, decanted off and evaporated to yield a brown oil . The oil was chromatographed on alumina, eluting with 1% methanol / dichloromethane (Rf 0.8) to yield a colourless oil (39%). Found 495.38649, $C_{27}H_{36}N_3O_9P_3$ requires495.38538; NMR: δ_H (CDCl₃) 3.8, 3.75 (9H,d,OMe), 3.05, 3.01 (6H, d, CH₂-P), 2.95 (12H, s, N-CH₂). δ P (CDCl₃) 31.68 (s); m/z (DCI, NH₃) 512 (M++ 17).

5.2.4 1,4 -DIOXA-7,10,13-TRIS (CARBOXYMETHYL) -TRIAZACYCLOPENTADECANE(7)

1,8-Bis(p-toluenesulphonato)-3,6-dioxa-octane (24)

To a solution of triethyleneglycol (5g, 26mmol) in pyridine was added p-toluenesulphonylchloride (15g, 26mmol). Following dissolution of all the solid, the flask was cooled to -18 °C for 48 hours. The solution was poured onto ice and filtered, washed with hydrochloric acid (1M, 2x50cm³) and water (2x50cm³). The solid was dissolved in dichloromethane, dried with potassium carbonate and was evaporated to yield an oil which was recrystallised from methanol (11.9g, 70%).m.p. 80-83°C [lit⁽⁷⁾ 80-82°C]; NMR: $\delta_{\rm H}$ (CDCl₃) 7.34, 7.77 (8H, AA'BB', J= 8, OTs), 4.0 (4H, m, CH₂-OTs), 3.6 (4H, m, O-CH₂), 3.4 (6H, s, OCH₂), 2.43(6H, s, Me); MS: m/z (DCI) 476 (M+17).

1,4-Dioxa-7,10,13-tris(p-toluenesulphonato)-7,10,13triazacyclopentadecane(26)

To a solution of the ditosylate (24) (3.22g, 5.7mmol) and caesium carbonate (3.88g, 11.4mmol) in DMF (250 cm³) was added a solution of the tritosylamide (25) (2.6g, 5.7mmol) in DMF (100 cm³) over 2.5 hours. The mixture was heated to 60°C for 24 hours. The DMF was removed under vacuum (150°C, 0.1 mmHg) and the residue dissolved in hot chloroform and filtered while still hot. Following evaporation the solid was recrystallised from hot toluene (70%, 2.7g). Analysis found: C, 54.70; H, 5.93; N, 6.3; C₃₁H₄₁N₃O₈S₃ requires C,54.77; H, 6.10; N, 6.18 %. NMR: $\delta_{\rm H}$ (CDCl₃) 7.83 7.32 (4H, d, AA'BB',.(J=8.1), aromatic H), 7.72, 7.32 (8H, d, AA'BB'(J=8.1), aromatic H), 3.58 (4H, t, O-CH₂-CH₂-N), 3.50 (4H, s, CH₂-O), 3.39 (4H, m, N-CH₂), 3.29 (8H, m, N-CH₂), 2.44 (3H, s, Me) 2.43 (6H, s, CH₃).; $\delta_{\rm C}$ (CDCl₃) 142.3, 142.1, 141.8,137.9,137.6, 126.9 (aromatic), 68.2 67.3 (O-CH₂), 43.5, 45.6, 42.4 (N-CH₂), 23.1, 22.4 (CH₃) MS: m/z (DCI) 682 (M++3) 100%, 680(M++1) 32%.

1,4,-Dioxa-7,10,13-triazacyclopentadecane(27)

To a solution of the tosylamide (26) (0.94g, 1.3mmol) in THF (24 cm³) was added 5 cm³ of ethanol and the mixture was cooled to -78°C under an atmoshere of argon gas. Ammonia was condensed into the mixture using a cold finger until about 50 cm³ had been added. To this was added lithium metal(0.5g). The solution became intense blue and was left for 2 hours with the temperature maintained. After allowing the temperature to gradually rise and the ammonia to bubble off through a trap, water was added (20 cm³) and the solvents were removed under reduced presure. The residue was dissolved in 6M HCl (50 cm³) and washed with ether (3x50cm³). The water was removed and the residue redissolved in 6M sodium hydroxide solution (25 cm³), washed with dichloromethane (3x50cm³), and dried with anhydrous magnesium sulphate. After filtration the solvents were removed under reduced presure and the residue

dissolved in chloroform; dried again using anhydrous magnesium sulphate, filtered and the solvent was evaporated under reduced presssure. The solid residue was recrystallised from dichlorometane/cyclohexane to give a white crystalline solid. (0.28g, 85%). Found (M++1) 218.1832 C₁₀H₂₄N₃O₂ requires 218.1869. NMR: $\delta_{\rm H}$ (CDCl₃): 3.61(4H, m, O-CH₂), 3.59 (4H, s, O-CH₂), 2.74 (12H, mult, N-CH₂). 13C NMR $\delta_{\rm C}$ (CDCl₃): 69.3 (O-C), 69.2 (O-C), 48.5, 48.4, 47.3 (N-C); MS m/z (DCI) 219 (M++2).

7,10,13-Tris(ethoxycarbonylmethyl)-1,4-dioxa-7,10,13triazacyclopentadecane (28)

To a stirred solution of (27) (150mg, 0.68mmol) and caesium carbonate (760mg, 2.04mmol) was added ethylbromoacetate (0.28 cm³, 2.3mmol.) The stirred mixture was heated to 60°C and left for 24 hr. The alkylation was monitored by TLC. After cooling, the mixture was filtered and the solvent removed under reduced pressure. The oily residue was purified by column chromatography (alumina) using 0-2% methanol in dichloromethane as the elutant, giving a clear oil. (134mg, 44%), Analysis found: 476.5763 (M⁺+1) $C_{22}H_{42}N_3O_8$ requires 476.5891. NMR δ_H (CDCl₃): 4.15 (6H, m, O-CH₂-CH₃), 3.58 (8H, mult.,O-CH₂), 3.44 (4H, s.,CH₂-N), 3.39 (2H, s, CH₂-N), 2.85 (12H, m, CH₂-N) 1.27 (9H, m, O-CH₂-CH₃).; δ_C (CDCl₃): 170.53, 170.49 (carbonyl), 69.87, 69.79, (N-CH₂-CO), 59.49, 59.44, 59.33, 55.41 (O-CH₂), 45.1, 46.9, 48.3 (CH₂-N), 13.36, 13.35 (CH₃); MS: m/z (DCl) 476 (M⁺+1) 90%).

1,4 -Dioxa-7,10,13-tris- (carboxymethyl) triazacyclopentadecane(7)

Hydrolysis of the triester (28) was carried out in 6M HCl (60°C, 4hr). The solvents were removed under reduced pressure to yield the hydrochloride salt, a glassy solid. NMR $\delta_{\rm H}$ (D₂O): 4.07 (4H, s, N-CH₂-C=O or CH₂O), 3.82 (6H, s, N-CH₂-C=O or CH₂), 3.41-3.63 (16H, m, NCH₂, OCH₂); $\delta_{\rm C}$ (D₂O): 170.5, 165.4 (carbonyl), 67.1,66.9 (CH₂-O), 65.3 (CH₂-C=O), 47.2, 49.3,52.1, 52.3 (CH₂-N). MS (FAB) 392 (M ++ 1).

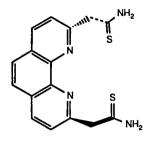
5.2.5 SYNTHESIS OF 1,9-DIAMINO-5-(P-AMINOMETHYLBENZYL) 3,7-DIAZANONANE)(9)

Diethyl-p-cyanobenzylmalonate(29)

To a solution of sodium ethoxide in ethanol (1 mol dm⁻³, 125 cm³) was added dropwise at room temperature diethylmalonate (20g, 125mmol) in ethanol (50 cm³). The mixture was stirred for thirty minutes. α -Bromo-p-toluonitrile (12g, 61mmol) was added in DMF (60 cm³) dropwise, and the mixture refluxed for twenty-four hours. After filtration, and the addition of water, an oil formed and the water was decanted off. The oil was dissolved in ether, dried over potassium carbonate, filtered, and the solvent removed under reduced pressure. The product was purified by fractional distillation at 0.01mm/Hg at 50°C. (9g, 51%). TLC R_f 0.25 [lit. 0.26⁽²⁾] (20% EtOAc/petrol); NMR: $\delta_{\rm H}$ (CDCl₃): 7.61, 7.32 (4H, d,J=8, aromatic),

4.2 (4H, m, OCH₂), 3.4 (1H, t,C<u>H</u>) 3.27 (2H, m, CH₂-phenyl), 1.2 (6H, t, CH₃); δ_C 172.3 (CO), 141.2, 139.8, 132.6, 131.1 (aromatic), 123.5(CN), 63.4 (O-CH₂), 41.4, 39.2 (CH₂-Ph), 21.3(CH₃); I.R.(thinfilm): 3010 (CH), 2980(CH), 2230(CN); MS: m/z 276 (M++1) 100%.

1,9-Diamino-5-(p-cyanobenzyl)-4,6-dioxa-3,7diazanonane(30)


To a neat solution of ethylenediamine (100 cm³) was added (29) (2.5g, 0.11mmol). The mixture was heated to 60°C for 48h. After the solution cooled, the ethylenediamine was removed at reduced pressure leaving a solid yellow residue. NMR: $\delta_{\rm H}$ (MeOD) 7.72, 7.41 (4H, d, J=8, aromatic) 3.48(7H, m, CH₂, CH, N-CH₂), 2.9 (4H, m, N-CH₂); $\delta_{\rm C}$ (MeOD) 171.8 (C=O), 146.2 , 133.7, 131.5, 120.18, (aromatic), 111.8 (CN), 46.9, 45.1(CH₂-N), 43.5(C-CO), 37.4 (C-aromatic); MS m/z (DCI, NH₃) 320 (M++17) 100%.

1,9-Diamino-5-(p-aminomethylbenzyl)-3,7,diazanonane(9)

To a solution of BH_3 .THF (52mmol) was added the diamide (30) (1g, 3.4mmol), and the mixture was heated to reflux for 72h. After cooling, the mixture was quenched by the dropwise addition of methanol. After the borane was deemed to have been quenched, the methanol was removed under reduced pressure, and the residue refluxed in 6M HCl (250 cm³) for 3.5 hours. After the solution had cooled the water was removed under reduced pressure and the residue washed with methanol to convert any of the remaining boron

species to the volatile B(OMe)₃. After the methanol had been removed (rotary evaporator), the estimated quantity of NaOH required to neutralise the hydrochloride salt was dissolved in the minimum quantity of water. This basic solution was added to the solid residue and warmed until all the solid had dissolved, maintaining the pH at > 7. The water was removed under reduced pressure and the dichloromethane (100 cm^3) added to the solid residue. This mixture was heated to reflux until the solid had dissolved. The cool solution was dried over anhydrous potassium carbonate, filtered and the solvent removed under reduced pressure, to yield a clear oily residue. The compound was purified by recrystallisation from chloroform/methanol to yield a glassy solid, (45%, 0.46g). Analysis found: C, 64.38; H, 9.47; N, 25.14; $C_{15}H_{29}N_5$ requires C, 64.48; H, 9.46; N, 25.06%; NMR: δ_H (CDCl₃) 7.87, 7.46 (4H, d, AA'BB', J=8.1, aromatic) 3.4 (4H, m, CH₂-phenyl), 3.13-2.51 $(12H, m, N-CH_2)$ 1.3 (1H, m, CH); δ_C (CDCl₃) 140.71, 138.67, 128.74, 126.759, (aromatic), 52.71, 52.36, 51.06, 45.84, 41.2 (CH₂-N, CH₂phenyl), 21.2 (CH); MS: m/z (DCI, NH₃) 296 (M++17) 33%.

5.2.6 THE ATTEMPTED SYNTHESIS OF (57)

1,10-Phenanthroline-2,9-dicarbaldehyde (62)

To a stirred solution of selenium dioxide (7.5g, 68mmol) in aqueous dioxan (96% w/v) was added 2,9-dimethyl-1,10phenanthroline (3.0g, 14.9mmol) and the mixture was heated to reflux for two hours. The red solution was filtered hot through celite and cooled. The orange precipitate was collected by filtration (3.8g, 76%). m.p. 231-232. [lit.⁽¹⁾ 231°C] v_{max} 2900 (br), 1700 (CHO, s). NMR $\delta_{\rm H}$ (DMSO) 10.2 (CHO), 8.81 (2H, AB, aromatic), 8.43 (2H, AB, aromatic), 8.25 (2H, s, aromatic) ; MS: m/e (DCI) 237 (M+1) 100%.

2,9-Bis(hydroxymethyl)1,10-phenanthroline (63)

To a stirred solution of (62) (1g, 4.4mmol) in 50 cm³ of ethanol, sodium borohydride (0.45g, 12mmol) was added slowly to prevent overheating. The mixture was refluxed overnight. After evaporation the residue was redissolved in the minimum volume of water, filtered hot and allowed to cool. The orange crystals were collected by filtration (10%). m.p. 196-199° [litt.⁽¹⁾ 197-199°] NMR: $\delta_{\rm H}$ (DMSO) 8.94,(2H, AB, Ar), 8.37 (2H,AB, Ar), 5.31 (2H, s, Ar) 4.9(4H,s,CH₂). I.R. ν_{max} 3600-3100, 1630, 1510, 1170, 850 cm⁻¹; MS: m/z (DCI) 241 (M⁺+1), 100%.

2,9-Bis(bromomethyl)1,10-phenanthroline hydrobromide. (58)

A stirred solution of (63) (1.35g, 5.8mmol) in 48% (w/v) hydrogen bromide solution (60 cm³) was heated to reflux over-night. The solution was cooled and solid potassium hydroxide added until precipitation was complete (2.5g, 95%). Analysis found; C, 44.2; H, 3.5; N, 7.3; C₁₄H₁₂N₂Br₂ requires C, 43.2; H, 3.15; N, 7.3; m.p. 111-112°C [lit.⁽¹⁾ 110-111]; NMR: $\delta_{\rm H}$ (DMSO) 8.63, 8.04 (2H, AB, J=11.2, Ar), 8.12 (2H, s, Ar), 4.93 (4H, s, CH₂). MS: m/z (DCI) 359 (M+1).

2-cyanomethyl-9-bromo-1,10-phenanthroline(59)

To a stirred solution of (13) (0.18g, 0.35mmol) in 20 cm³ of ethanol was added potassium cyanide (0.056g, 0.87mmol) and the mixture heated to reflux overnight. The cooled solution was poured onto aqueous sodium carbonate (20 cm³, 5%) and extracted with dichloromethane (4x20cm³), dried with potassium carbonate and evaporated to yield a brown oil (0.06g, 70%).; Analysis found; C, 56.79; H, 4.05; N, 9.27; C₁₆H₁₀N₃Br requires C,57.7; H, 3.3; N, 13.46 NMR: $\delta_{\rm H}$ (DMSO) 7.8, 8.5, 7.95 (6H, mult., Ar), 4.9 (4H, s, CH₂-Br); 4.1 (2H, s, CH₂-CN); $\delta_{\rm C}$ (DMSO) 150.1, 145.7, 136.5, 125.6, 129.0, 110 (aromatic) 36.7 (CH₂) 34.7 (CH₂): I.R:. (thinfilm) 2950, 2220 (CN); MS m/z 312, (M++1)100%.

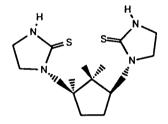
2,9-BIS(N,N-DIMETHYLACETEMIDO)1,10-PHENANTHROLINE (15)

2-(N,N-dimethyleneacetamido)-1,10-phenanthroline (65)

1) Preparation of LDA

To a solution of diisopropylamine (6.2 cm³, 44mmol) in 10 cm³ of THF was added butyllithium (17 cm³, 2.55M, 44mmol) and the solution stirred for twenty minutes at -78° C.

2) Preparation of Lithiate (64)


To a solution of LDA (44mmol) was added N,N-dimethyl acetmide (4 cm³, 44mmol) and the solution stirred for sixty minutes at room temperature.

To a suspension of phenanthroline (1g, 5.1 mmols) in benzene (20 cm³) was added (64) (44mmols) and the mixture was stirred overnight at room temperature. Water was added (10 cm³) at 0°C and the aqueous layer separated and extracted with dichloromethane (4x20cm³). After combining organic washings, 20g of manganese dioxide was added. The reaction was followed by TLC. When it was complete 20g of magnesium sulphate was added and the filtered solution evaporated to yield a dark red oil. $\delta_{\rm H}$ (CDCl₃) 8.7 (2H,m, Ar), 7.7 (2H, m, Ar), 7.1 (2H, m, Ar), 3.6 (4H, s, CH2-C=O), 2.63 (3H, s, CH3), 2.54(3H, s, CH3). MS: m/z (DCI) 266 (M+1).

2,9-Bis(N,N-dimethylacetamide)-1,10-phenanthroline (66)

Procedures 1), 2) and 3) were repeated substituting the monoalkylated phenanthroline (65) for phenantholine in procedure 3). No further reaction could be detected.

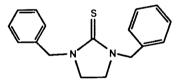
5.2.7 THE ATTEMPTED SYNTHESIS OF LIGAND (56)

Diethyl camphorate(70)

To a solution of camphoric acid (20g, 100mmol) in ethanol (500 cm³) was added sulphuric acid (2 cm³) and the mixture brought to reflux for 48 hours. Sodium carbonate solution (5%) was added to pH 7 and the mixture evaporated. Water (100 cm³) and ether (100 cm³) were added forming an inseparable viscous solid. After evaporation to give a clear oil, ether was added (100 cm³), the solution washed with water (3x20cm³), dried over magnesium sulphate and evaporated to leave a clear oil (10g, 50%). NMR: $\delta_{\rm H}(\rm CDCl_3)$ 4.12 (3H, m, CH₂), 4.15 (3H, m, CH₂) 2.3 (1H, m, CH), 1.85 (2H, m, CH₂), 1.63 (2H, m, CH₂) 1.21-0.97 (15H, m, CH₃); I.R. 2900 (CH,br), 1720 (MeOC=O) cm-1. M/e (DCI) 257 (m+1, 100%).

2,5-Bis-(N-2-aminoethylcarbamoyl)-1,1,2trimethylcyclopentane(71)

A solution of (70) (10g, 50mmol) in dioxan (10 cm³) was added dropwise over one hour to 50 cm³ of ethylenediamine. It was heated under reflux for 2 weeks. The reaction was followed by its I.R spectrum. The solvents were removed under vacuum (20°C, 0.3mmHg) and a brown gum resulted, which was used directly without purification. I.R. 1650 (C=O, sh); MS: m/z (CI) 285 (M++1) 80%.


2,5-Bis(4'-amino-2'aza-butyl)-1,1,2trimethylcyclopentane(69)

Borane-THF (150 cm³, 131mmols) was added to (71) (3.7g, 13mmols) and the mixture brought to reflux for three weeks. The reaction was followed by the change in its I.R. spectrum. After addition of methanol (50cm⁻³) followed by evaporation and reflux with 6M hydrochloric acid (100 cm³) for two hours, the mixture was brought to pH 14 with solid potassium hydroxide and extracted with dichloromethane (5x20cm³). The carbon-13 spectrum of the resulting oil contained a myriad of signals suggesting the product had degraded.

Camphoric anhydride(72)

To a suspension of camphoric acid (1g, 5mmols) in dichloromethane (20 cm³) was added oxalyl chloride (2 cm³) and one drop of DMF. The mixture was stirred at room temperature until the suspension became clear. Solvents were removed under vacuum (0.1mmHg), dichloromethane added (5 cm³) and removed under vacuum (x3). Dichloromethane (10 cm³) was added and to this solution was added ethylenediamine (1 cm³) in dichloromethane (10 cm³). After evaporation, a white gummy solid resulted. I.R. 1650 (RHN-C=O,HO-C=O, br) cm⁻¹. MS: m/z (DCI) 243 (M+1).[lit ⁽⁴⁾]

5.2.8 N,N-DIBENZYLETHYLENETHIOUREA(12)

N, N-Dibenzoylethylenediamine(31)

To a stirred solution of aqueous KOH in THF (100 cm³, 10% KOH w/v, 50% THF) and ethylenediamine (5g, 28mmol) at 0°C was added benzoyl chloride (11.9g, 85mmol) over 1 hour. The mixture was stirred at room temperature for 24 hours. The white solid was filtered off, washed with methanol and dried under vacuum. (4.5g, 60%). m.p. 75°C; I.R.; ν_{max} (thin film) 3280 (NH, Br), 1625 (NC=O) cm⁻¹; MS: m/z (CI) 269 (M+1).

N,N-Dibenzylethylenediamine (32)

BH₃.THF (1M, 75 cm³, 75mmol) was added to dry (31) (2g, 7.5 mmol) and the mixture was stirred at reflux for 24 hours. Methanol was added dropwise to quench the excess borane until the effervescence had ceased. After evaporation of the solvent, 6M HCl (200 cm³) was added to the oil and the mixture left to boil under reflux for three hours. After evaporation, 50 cm³ of distilled water was added along with solid KOH and the solution brought to pH 14. Extraction with dichloromethane (3x20cm³) followed by drying with potasium carbonate and evaporation yielded a clear oil. (1.67g, 90%). b.p 196°C. 4mmHg [lit⁽⁷⁾ 195°C]; NMR: $\delta_{\rm H}$ (CDCl₃) 1.4 (2H, s, N-H), 2.5 (4H, s, CH₂-Ph), 3.6 (4H, s, CH₂-N), 7.1 (10H, s, Ph); $\delta_{\rm C}$ (CDCl₃) 141.2, 138.6, 132.1, 129.3 (aromatic), 65.1 (N-CH₂), 54.1(N-CH₂-CH₂-N); I.R: $\nu_{\rm max}$ 3000-3500 (NH,Br), 1200 cm⁻¹; MS: m/z (CI) 241 (M+1).

N, N-Dibenzylethylenethiourea(12)

To a stirred solution of (32) (1.81g, 8.6 mmol) in aqueous ethanol (150 cm³, 1:1) at O^oC was added carbon disulphide (0.65g, 8.6mmol) in dioxan (100 cm³) over one hour. After the mixture was heated at 100^oC for three hours, conc. HCl (10 cm³) was added and the mixture was heated under reflux for 12 hours. After evaporation the solid was redissolved in chloroform (50 cm³) and filtered whilst hot. The cooled solution was filtered and the crystals washed with water and dried under vacuum. (1.6g, 70%). m.p. 81^oC. Analysis found: C, 71.91; H, 6.42; N, 9.53; C₁₇H₁₈N₂O requires C, 72.3; H, 6.42; N, 9.92; NMR: $\delta_{\rm H}$ (CDCl₃) 3.38 (4H, s, CH₂-Ph), 4.89 (4H, s, CH₂-N), 7.35

(10H, s, Ph); $\delta_{\rm C}$ (CDCl₃), 182.8 (C=S), 136.3, 128.5, 128.1, 127.5 (aromatic), 51.6, 45.3 (CH₂-N) MS: m/z (CI) 283 (M+1), 100%.

5.2.9 ATTEMPTED SYNTHESIS OF 1,7,13-TRITHIA-4,10,16-TRIAZACYCLOOCTADECANE(13)

1,10-Bis(p-toluenesulphanato)-3,8-N,N-bis(ptoluenesulphanotoamide) -5-thia-decane(34)

To a solution of (33) (2.3mmol, 1g) in 50 cm³ DMF was added 2bromoethanol (5mmol, 0.36 cm³). The mixture was heated to 60°C for 5 days. This resulted in a mixture of tosylated material which proved intractable.

Dimethylthiodiglycolate(35)

The esterification of thiodiglycolic acid was achieved by refluxing the acid (0.32mol, 48g) in 100 cm³ of methanol and 5 cm³ of acetyl chloride for 48h. Any excess acid was neutralised with potassium carbonate. The pure ester was extracted into dichloromethane and was isolated as a colourless oil. (0.31mol, 95%) b.p 137°C, 11mmHg [lit⁽⁴⁾ 135°,11mmHg]; NMR: $\delta_{\rm H}$ (CDCl₃) 3.2(6H,s,OMe), 2.97(4H,s,CH₂); $\delta_{\rm C}$ (CDCl₃) 169.6(C=O), 51.8(OMe), 32.8(CH2); IR (thin film), 1730 (carbonyl); MS m/z 179 (M++1).

3,8-(N,N'-2'-hydroxy ethyl)-thiodiglycolamide(36)

The diester(35) (32mmol) was added to 100 cm³ of ethanolamine. The mixture was refluxed overnight. The solvent was removed under reduced pressure and the pale yellow solid recrystallised from ethanol/toluene. (31g, 43%) m.p 245°C; Analysis found C, 40.77; H, 6.92; N, 11.74; C₈H₁₆N₂O₄S requires C, 40.69; H, 6.82; N, 11.85; NMR: $\delta_{\rm H}$ (CD₃OD) 4.59 (4H, s, S-CH₂), 3.31 (4H, t, J=5.7, CH₂-OH, 2.99 (4H, m, CH₂-N), 2.22 (2H, t, OH); $\delta_{\rm C}$ (CD₃OD) 172.0 (carbonyl), 61.4 (CH₂-OH), 43.2 (CH₂-N), 36.5 (CH₂-S); IR (thin film) 3100-3500 (OH), 1650 (carbonyl); MS m/z (EI) 237 (M⁺+1), 219,176.

3,9-Diaza-6-thia-undecan-1,11-diol(37)

To a solution of BH₃.THF (8 equivalents) was added (36) (15g, 0.06mol) and the solution was heated under reflux for 4 days. The cool solution was quenched by the dropwise addition of methanol. Excess methanol was added and removed under reduced pressure. The residue was washed with ether. The residue was refluxed in 6M HCl (30 cm^3) for 2 hours. The water was removed under reduced pressure and the residue washed with ether ($3x20 \text{ cm}^3$). The residue was dissolved in a solution of NaOH (25 cm^3 , 0.1mol dm⁻³) and the amine extracted with dichloromethane ($3x20 \text{ cm}^3$). The solution was dried over K₂CO₃, filtered and the solvents removed to give a grey oil (5g, 33%). An alternative method of extracting the amine from the basic solution was the use of a anion exchange column. NMR: δ_{H} (CDCl₃) 3.4 (4H,t,O-C<u>H</u>2), 2.7 (4H,t,O-CH₂-C<u>H₂-N), 2.5 (4H,t,S-CH₂-</u>

CH₂-N) 2.3 (S-CH₂); δ_C (CDCl₃) 62.7 (CH₂O), 51.6 (CH₂-N), 48.9 (CH₂-N), 31.1 (CH₂-S); MS m/z 209 (M⁺+1).

3,9-N,N'-Bis(p-toluenesulphanato)-1,11-bis(ptoluenesulhonyl)-3,9-Diaza-6-thia-undecan-1,11diol(34)

(100mgs, 0.026mmol) in of (37) То а solution acetonitrile/chloroform (3cm³) (50:50) and Et₃N (0.16g, 1.58mmol) at -15°C was added tosylchloride (0.3g, 1.5mmol). The temperature was maintained at -15°C and the reaction vigorously stirred for 4h. The reaction mixture was allowed to warm up to room temperature and was filtered after a further 4hours. The solvents were removed under reduced pressure and the residue purified on an alumina column eluted with 0.75% methanol in dichloromethane to yield a colourless oil. NMR: $\delta_{\rm H}$ (CDCl₃) 7.49 ,7.46 (4H,AA'BB', aromatic H), 7.65, 7.34 (4H,AA'BB',aromatic H), 4.15 (4H,t,J=5.4,CH₂-O), 3.41 $(4H,t,J=5.4,O-CH_2-CH_2-N), 3.25 (4H,t,J=8.4,CH_2-N), 2.69$ $(6H,t,J=8.4,CH_2-S)$ 2.45, 2.41 (CH₃); δ_C 145.2, 143.9, 135.91, 132.16, 130.06, 129.97, 129.91, 130.6, 127.98, 127.26 (aromatic), 68.9 (CH_2 -O), 50.14, 48.28(CH₂-N), 30.41 (CH₂-S), 21.66, 21.51 (CH₃-aromatic); MS m/z 826 (M++1).

N-(p-toluene-sulphonyl)-3-aza-1,5-bis(ptoluenesulphonato)pentane (22)

To a solution of toluene-p-sulphonyl chloride (107.8g, 0.565mol) in pyridine (100cm³) was added a solution of bis-(2hydroxyethyl)amine (16.5g, 0.157mol) in pyridine (90cm³) dropwise over a period of 30 min. The mixture was left at - 18°C for 48h. After pouring the mixture onto ice (400g), with stirring until the ice melted, the mixture was left at room temperature for 2h to give a yellow-brown solid which was collected by filtration and twice recrystallised from ethanol-toluene (5:1) to give a yellow solid (75.0g, 84%); m.p. 96-97°C [lit⁽⁷⁾ 96-98°]; (Found: C, 52.5; H, 4.92; N, 1.81. $C_{25}H_{29}NO_8S_3$ requires C, 52.9; H, 5.11; N, 2.11); NMR: δ_H (CDCl₃) 7.75 (2H, d, J=8.1, part of AA'BB' system, aromatic H), 7.35 (2H, d, J=8.1, part of aromatic AA'BB' system, aromatic H), 7.28 (4H,d, J=8.1, part of AA'BB' system, aromatic), 4.11 (4 H, t, J=5.9, CH₂-O), 3.37 (4H, t, J=5.9, CH₂-N), 2.43 (3 H, s, CH₃), and 2.35 (6H, s, CH₃). MS: m/z (DCI, NH₃) 585 (M⁺+ 18), 568 (M⁺+1).

N-(Tolyl-p-sulphonyl)- 3-azapentane-1,5-dithiol, (38)

Thio-urea (22.8g, 0.299mol) was added to a solution of compound, (22), (75.0g, 0.136mol) in dry ethanol (500cm³) and the solution was heated under reflux, under a nitrogen atmosphere for 30h. The solvent was evaporated under reduced pressure and the residue taken up in saturated sodium bicarbonate solution (250cm³) and heated under reflux for 30 minutes. The cooled solution was adjusted to pH 7 with hydrochloric acid (6 mol dm⁻³). The aqueous layer was extracted with dichloromethane (3x250cm³), dried (anhydrous MgSO₄), filtered and the solute chromatographed on "flash" silica gel eluting with dichloromethane:methanol, (199:1). Evaporation of the elutes gave a clear oil which crystallised over a period of 24h (32.7g, 83%); R_F 0.5 [silica gel: CH₂-Cl₂-MeOH (99:1)]; Analysis found (M⁺+1) 292.0490. C₁₁H₁₇NO₂S₃ requires 292.0496;

NMR: $\delta_{\rm H}$ (CDCl₃) 7.70 (2H, d, J=8, part of AA'BB' system, aromatic H), 7.33 (2H, d, J=8.1, part of AA'BB' system, aromatic H), 3.28 (4H,t, J=7.5, N-CH₂), 2.74 (4H, m, S-CH₂), 2.43 (3H, s, CH₃), and 1.44 (2H, t, J=8.5, SH); $\delta_{\rm C}$ (CDCl₃) 21.4 (CH₃), 23.8 (CH₂-S), 52.6 (CH₂-N), and 126.7, 126.9, 129.7, 135.9, 143.6 (aromatic C). MS: m/z (DCI, NH₃) 292 (M++1).

1,7,13-Trithia-4,10,16-N,N,N-(p-toluenesulphonyl)-4,10,16-Triazacyclooctadecane(39)

To a solution of (34) (2g, 2.43mmol) and $CsCO_3$ (2g, 6mmol) in DMF (80 cm³) was added (38) (0.78g, 2.1 equivalents). The solution was heated to 55°C with vigorous stirring for 2 weeks. After the removal of the DMF under reduced pressure, no signs of reaction could be discerned (TLC, ¹H NMR).

5.2.10 ATTEMPTED SYNTHESIS OF 1,7-BIS(DIMETHYLANIMOETHYL)-4,10-DITHIA-1,7-DIAZACYCLODODECANE(14)

Route 1

To a solution of Na₂S (0.04g, 0.026mmol) in ethanol (10 cm³) was added (34) (220mg, 0.267mmol), and CsCO₃ (0.09g, 2 equivalents).

The mixture was refluxed at 40°C for 4 days with no detectable reaction taking place (TLC, ¹H NMR).

Route 2

N-(p-toluene-sulphonyl)-3-aza-1,5-bis(ptoluenesulphonato)pentane (22)

See above in section 5.2.9.

N-(p-toluene-sulphonyl)-3-aza-1,5-dibromopentane (43)

To a solution of (22) (2g, 3.52mmols) in DMF was added potassium bromide and the solution stirred at 60°C for 48 hours. The DMF was removed under reduced pressure and the residue dissolved in dichloromethane and washed with water (3 x 50cm³). The organic solution was dried with potassium carbonate, filtered and the solvent evaporated to yield a pale yellow solid. Analysis found C, 34.23; H, 3.97; N, 3.71% C₁₁H₁₅NSBr₂ requires C, 34.30; H, 3.93; N, 3.63%; NMR: $\delta_{\rm H}$ (CDCl₃) 7.7, (2H,d,J=8, part of AA'BB', aromatic), 7.39 (2H,d,J=8,part of AA'BB, aromatic H), 2.43 (3H, s, CH₃), 2.21 (8H, s, CH₂-CH₂). $\delta_{\rm C}$ (CDCl₃) 141.6,141.1. 136.7,136.2 (aromatic), 71.3 (CH₂-N-tosyl), 21.5 (CH₂-Br). MS: m/z 386 (M⁺+1).

1,4-Dithia-7,10-N,N-Bis-(p-toluenesulponyl)-7,10diazacyclodecane(44)

Using reagent (22)

To a solution of (22) (2.0g, 3.4mmol) and caesium carbonate (2.2 equivalents) in DMF (200 cm³) was added a solution of (38) (1.0g, 3.25mmol) in DMF (100 cm³) with vigorous stirring. The mixture was stirred at room temperature for two hours and monitored by TLC. The temperature was raised to 80°C after 3 days. TLC showed no change in the starting reagents.

Using reagent (43)

To a solution of (43) (1.1g, 2.65mmol) and caesium carbonate (2.2 equivalents) in DMF (200 cm³) was added a solution of (38) (0.8g, 2.7mmol in DMF (100 cm³) with vigorous stirring. The mixture was stirred at 65°C for 4 days. The solvent was evaporared under reduced pressure and the residue dissolved in dichloromethane and washed with sodium hydroxide solution and dried over potassium carbonate, filtered and the solvent evaporated. The residue was dissolved in toluene, filtered and the solvent evaporated. The product was purified using an alumina column eluted with (1:1) dichloromethane:toluene. The oil was recrystallised from a toluene/hexane mixture (9:1).(0.3g, 22%).Analysis found; C, 51.24; H, 5.93, N, 5.44; C₁₁H₁₅NO₂S₂ requires C, 51.34; H, 5.87; N, 5.44; The analysis confirms that the major isolated product is molecule (45): NMR: $\delta_{\rm H}({\rm CDCl}_3)$ 7.72 (2H, d, ,J=8.1, part of AA'BB' system, aromatic

H), 7.31 (2H, d, J=8.1, part of AA'BB' system, aromatic H), 3.65 (4H,t,CH₂-N), 3.01(4H,t, CH₂-S). δ_C (CDCl₃) 142.5, 135.7, 128.8, 125.9 (aromatic), 50.5 (CH₂-N), 38.9(CH₂-S); MS: m/z (DCI) 258 (M⁺+1).

5.2.11 N,N',N'',N''' - TETRAMETHYL-1,10-DITHIA-4,7,13,16 - TETRAAZACYCLOOCTADECANE (15)

N,N',N'',N''' - Tetramethyl-1,10-dithia-4,7,13,16-tetraaza-cyclo-octadecane, (15).

1,10-Dithia-4,7,13,16-tetra-azacyclo-octadecane (80.0mg, 0.274mmol) was heated at 95°C with formaldehyde (0.24cm³, 37% solution) and formic acid (0.32cm³) for 20h. To the cooled solution was added hydrochloric acid (1.0mol dm⁻³, 5.0cm³) and the solution evaporated under reduced pressure to give a pale brown residue. After dissolving in water (3cm³) the pH was adjusted to 14 with KOH solution and the solution extracted with dichloromethane (5 x 5cm³), dried (anhydrous K₂CO₃) and the solvent removed under reduced pressure to give a colourless residue. Recrystallisation from hexane gave a white solid (52.0mg, 55%); m.p. 43-44°C; (Found: C, 54.8; H, 10.8; N, 15.5. C₁₆N₃₆N₄S_{2.1/2H₂O requires C, 54.6; H, 10.4; N, 15.9); NMR: $\delta_{\rm H}$ (CDCl₃) 2.64 (16H, s, CH₂-N, CH₂-S), 2.51 (8H, s, CH₂-N) and 2.27 (12H, s, CH₃); $\delta_{\rm C}$ (CDCl₃) 29.2 (CH₃), 43.1 (CH₂-S), and 55.2, 57.7 (CH₂-N). MS: m/z (DCI, NH₃) 350 (M⁺+2), 351 (M⁺+3), 335, 323, 262, 161.}

5.2.12 N,N',N'',N'''-Tetramethyl-1,10-dioxa-4,7,13,16tetra-aza-cyclo-octadecane (49)

N,N',N'',N'''-Tetrakis(tosyl-p-sulphony)-1,10-dioxa-4,7,13,-16-tetra-azacyclo-octadecane, (52), and N,N'bis (tolyl-p-sulphonyl)-1-oxa-4,7-diazacyclononane, (53).

Caesium carbonate (8.26g, 25.4mmol) was added to a solution of 3-oxa-1,5-bis (tolyl-p-sulphonyloxy) pentane (5.00g, 12,1mmol) in anhydrous DMF (50cm³) under a nitrogen atmosphere. A solution of N'N"-bis (tolyl-p-sulphonyl) ethane-1,2-diamaine (4.44g, 12.1mmol) in anhydrous DMF (50cm³) was added dropwise over a period of 4h with The reaction mixture was stirred at room vigorous stirring. temperature for 12h and heated to 60°C for 4h. The solvent was removed under reduced pressure, the residue taken up in dichloromethane (100cm³) and washed with distilled water (2 x 100 cm^3). The organic layer was dried (anhydrous MgSO₄), filtered and the solvent removed under reduced pressure to give a pale yellow solid. The mixture was taken up in hot toluene (40 cm^3) and the 18membered ring compound was collected as a white solid by filtration (warmed filtration apparatus) (1.06g, 20%). The nine-membered ring compound was obtained from the cooled filtrate as a crystalline solid, collected by filtration and dried in vacuo (10-2mmHg) (2.17g, 41%).

Compound (53)- M.p. 160 - 161°C; (Found: C, 54.8; H, 6.02; N, 6.34. $C_{20}H_{26}N_2O_5S_2$ requires C, 54.8; H, 5.94; N, 6.39;) NMR: δ_H (CDCl₃) 7.70 (4H, d , J= 8.1, part of AA' BB', aromatic H), 7.32 (4H, d, J=8.2, part of AA'BB' system, aromatic H), 3.90 (4H, t, J=4.3 Hz, CH₂-O), 3.47 (4H, s, N-CH₂-CH₂-N), 3.26 (4H, t, J=4.3, CH₂-N), and 2.43 (6H, s, CH₃). MS: m/z (CI, NH₃) 440 (M++2), 439 (M++1) and 283.

Compound (52) - M.p. 242-244°C; Found: C, 55.0; H, 6.13; N, 6.12. $C_{40}H_{52}N_4O_{10}S_4$ requires C, 54.8; H, 5.94; N, 6.39); δ_H (CDCl₃) 7.71 (8H, d, J=8.1, part of AA' BB', aromatic H), 7.32 (8H, d, J=8.1, part of AA' BB', aromatic H), 3.54 (8H, t, J=4.9, CH₂O), 3.32 (8H, s, N-CH₂-CH₂-N), 3.22 (8H, t, J=4.8, CH₂-N), and 2.44 (12H, s, CH₃). MS: m/z (CI, NH₃) 880 (M⁺+ 2) and 722.

10-Dioxa-4,7,13,16-tetra-azacyclo-octadecane (48)

A solution of hydrogen bromide in acetic acid (45%, 100cm³) and phenol (5.0g, 53mmol) was added to compound (52) (1.25g, 1.43mmol) and the solution heated under reflux for 6 days. Diethyl ether (40cm³) was added to the cooled reaction mixture and a fine white precipitate collected by filtration. This was taken up in distilled water (40cm³), basified with aqueous KOH (30%) and extracted with dichloromethane (4x40cm³). The organic layer was dried (anhydrous K₂CO₃), filtered and the solvent removed under reduced pressure. The residue was recrystallised from dichloromethane-hexane to give a colourless crystalline solid (90mg, 25%); m.p. 58 - 60°C; NMR: $\delta_{\rm H}$ (CDCl₃) 3.59 (8H, t, J=4.9, CH₂-O), 2.80 (8H, t, J=4.0, CH₂-N), 2.78 (8H, s, N-CH₂-CH₂-N), and 2.07 (4H, br, s, NH); $\delta_{\rm C}$ (CDCl₃) 70.0 (CH₂-O) and 49.2 (CH₂N); MS: m/z (DCI, NH₃) 262 (M⁺+1) and 204, 131.

N,N',N'',N'''-Tetramethyl-1,10-dioxa-4,7,13,16-tetraaza-cyclo-octadecane (49)

1,10-Dioxa-4,7,13,16-tetra-azacyclo-octadecane (60mg, 23mmol) was heated at 95°C with formaldehyde (37%, 0.20cm³) and formic acid (0.27cm³) for 20h. Hydrochloric acid (1.0mol dm⁻³, 5.0cm³) was added to the cooled solution and the solvent removed under reduced pressure. The residue was redissolved in water (3.0cm³) and adjusted to pH 14 with potassium hydroxide. After extraction with dichloromethane (5 x 5cm³), the organic layer was dried (anhydrous K_2CO_3), filtered and the solvent removed under reduced pressure. The residue was treated with hexane (3 x 5cm³), the extracts combined and the solvent removed under reduced pressure to give a clear oil which crystallised on cooling (5°C) (59mg, 80%); m.p. = 23 -25°C; NMR: $\delta_{\rm H}(\rm CDCl_3)$ 3.55 (8H,t, J= 5.5, CH₂-O), 2.63 (8H, t, J=5.5, CH₂-N), 2.59 (8H, s, NCH₂-CH₂-N), and 2.28 (12H, s, CH₃).

5.2.13 Indium(III) Complex of (R) - 1,4,7-Tris(2'-Methylcarboxymethyl)-Triazacyclononane (4)

A solution of indium trinitrate (30.4mgs, $1x10^{-4}mols$) in 0.001 mol dm⁻³ nitric acid (1 cm³) was added to a mixture of (R) - 1,4,7-Tris(2-Methylcarboxymethyl)-triazacyclononane (4) (34.9mgs, $1x10^{-4}mols$) in 0.001 mol dm⁻³ nitric acid (1 cm³). The solution was gently warmed and allowed to cool to room temperature. After 24 hours an opaque crystalline solid precipitated. The mother liquors were decanted off, and the residue washed with acetone (2 cm³ x 3) and the solvent allowed to evaporate. The crystals were insoluble in all common laboratory solvents. Analysis found: C, 38.08; H, 5.38; N, 8.82; C₁₅H₂₄O₆N₃In.0.9H₂O requires C, 38.12; H, 5.4; N, 8.88; MS: m/z (FAB) 458 (M⁺+1) 3%.

5.2.14 SYNTHESIS OF GOLD(I) COMPLEX OF N,N-DIBENZYLETHYLENETHIOUREA

Using N,N-Dibenzylethylenethiourea as the Reducing Agent.

To a solution of the ligand (12) (0.3g, 1.05mmol) in chloroform (5 cm³) was added potasium tetrachloroaurate (0.13g, 0.35mmol). The mixture was gently warmed and the solution became colurless. After cooling, tetramethylammonium tetraphenylborate(0.35mmol) was added and a pale yellow solid precipitated, the solution was filtered and the solid dried *in vacuo*. (32%, 0.12g) Analysis found C, 59.4; H, 4.98; N, 6.3 C₅₈H₅₆N₄S₂Au requires C, 64.4; H, 5.2; N, 5.1%;Analysis for Au gave 12.3%, complex requires 18.25 % NMR ¹H (DMSO) 7.13, 7.12, 7.10, 7.03 (5H, s, aromatic), 4.28, 4.23 (4H, AB,J=20Hz, N-CH₂), 4.15, 3.95, (4H,t,N-CH₂); $\delta_{\rm C}$ (DMSO) 23.2 (C=S), 135.6, 134.4, 126.4, 125.3, 125.2, 124.3, 121.5 (aromatic), 56.24, 50.81, 45.50, 44.86, 44.21 (N-CH₂); MS m/z (FAB) 762(M⁺+1) 33%.

5.2.15 ATTEMPTED SYNTHESIS OF THE RHENIUM(V) COMPLEX OF 1,9-Diamino-(5-p-AMINOMETHYL-BENZYL) 3,7-DIAZANONANE)(9)

To a solution of the ligand (9) (0.5 mmol) in chloroform (20 cm^3) was added trans ReOCl₃(PPh₃)₂ (0.21g, 0.4mmol). The solution was stirred at room temperature for 15 minutes. A pale green precipitate was collected and washed with chloroform ($3x3cm^3$) and ether ($3x3cm^3$) and dried over P₂O₅ in vacuo.(0.006g, 5%) Analysis for rhenium gave Re (4.9%) 1:1 complex requires 34%.

5.3 THE EXPERIMENTAL METHODS USED IN THE BIODISTRIBUTION STUDIES*

5.3.1 Preparation of the ⁶⁷Gallium and ¹¹¹Indium Complexes

The complexes were prepared as follows**

1. A 250 μ l solution of 2nM of the macrocycle is added to 100-200 μ Ci ⁶⁷Ga and 0.2 M ammonium acetate at pH 5.

2. The solution is incubated at 37°C for 30 minutes before the addition of a ten-fold excess of DPTA for 5 minutes to quench any unreacted gallium 67.

3. The mixture is purified by HPLC on an AX300 anion exchange column with 0.2% ammonium acetate pH 6.8, 10% acetonotrile as the running buffer at 1ml/minute.

4. The peak corresponding to the ⁶⁷Ga-complex, as measured by a radiometer, was collected and left at 37°C overnight to allow the acetonitrile to evaporate.

5. This solution is then diluted with PBS in preparation for the injection.

^{*} These experiments were carried out by A. Harrison and L. Royle, MRC, Radiobiology Unit, Didcot, Oxon.

^{**} Quantities may differ with respect to each complex

5.3.2 The Experimental Details of the Biodistribution in Athymic NU:NU Mice^{*}

The experimental details, as represented in scheme 3.1 are as follows.

1. The subcutaneous injection of congenitally athymic nu:nu mice (8-10 weeks) with a suspension of human melantoic melanoma (HX118). After 6 weeks the tumour volume is checked (minimum 0.5 ml) before proceeding.**

2. The mice were injected with 10-25 μCi of the radiometal complex.

3. At 1, 4 and 24 hours*** the mice were terminated with a lethal injection of sodium pentabarbitone.

4. Samples of blood and urine were removed and analysed.

5. Other tissues, as specified in the results tables, were analysed for radioactivity.

^{*} These experiments were carried out by A. Harrison and L. Royle, MRC, Radiobiology Unit, Didcot, Oxon.

^{**} This only applies to the experiments where the mice had been induced with a tumour (4.4.1)

^{***} This may vary between experiments

5.4 ¹H NMR DETERMINATION OF THE RATE OF YTTRIUM UPTAKE BY (7)

Spectra were recorded on a Varian 400 spectrometer at 293K. The pD was kept constant at 5.0 by a d₃-sodium acetate (0.14 M)-d₄acetic acid (0.06 M) buffer in D₂O). Ligand and metal ion concentrations were both 0.028 M.

Yttrium (III) was added to the ligand in solution as $Y(NO_3)_3.6D_2O$, and the D_2O salt obtained by adding D_2O to $Y(NO_3)_3.6H_2O$, evaporating and repeating this process twice.

Reagents

 $Y(NO_3)_2.6H_2O$ was obtained from Alfa; and used as recieved.

5.5 STABILITY CONSTANT AND PROTONATION CONSTANT MEASUREMENTS FOR THE 9N₃C₃Me₃ COMPLEXING AGENT⁽¹⁾

Potentiometric titrations were carried out at 298 ± 0.1 K. The molarities of tetramethylammonium hydroxide (Sigma) titrant solutions were corrected for carbonate contamination by previous titration against dilute hydrochloric acid (0.1 <u>M</u>, BDH). Ionic strength was kept constant with tetramethylammonium nitrate (0.1 <u>M</u>, Sigma).

The titration system consisted of a double-walled glass cell thermostatted at 298(± 0.1)K containing the ligand solution coupled to a Mettler DV401 automatic burette containing the titrant. The pH was monitored with a Corning 001854 combination microelectrode. Titrations were controlled by a BBC microcomputer which also handled data storage. Data were transferred to an MTS mainframe computer by the program KERMIT and analysed using the program SUPERQUAD.

5.6 X-ray Crystal Structure Determination⁽³⁾

The X-ray crystal structure was determined by Professor George Ferguson (Department of Chemistry, University of Guelph, Ontario, Canada). The cell and intensity data were collected with an Enraf-Nonius CAD-4 diffractometer using graphite monochromated Mo-K $^{\alpha}$ radiation. All calculations were carried out on a PDP11-73 computer system using the SDP-Plus system of programs and data therein. The structures were solved by the heavy-atom method. Hydrogen atoms (visible in difference maps) were allowed for, and refinement was by full-matrix least squares calculations with all non-H atoms allowed ansiotropic motion.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters and remianing bond length and angles.

Cell data, experimental details, positional and thermal parameters and molecular dimensions for each structure are given in the Appendix.

5.7 DETERMINATION OF THE BINDING CONSTANTS FOR THE SILVER(I) COMPLEXES

5.7.1 pH - Metric titrations - Water.

(i) Apparatus

The titration cell was a double-walled glass vessel (capacity 5 cm³) which was maintained at 25°C, using a Techne Tempette Junior TE-8J. Titration solutions were stirred using a magnetic stirrer and kept under an atmosphere of nitrogen. Titrations were

performed using an automatic titrator (Mettler DL20, 1 cm³ capacity) and burette functions (volume increments and equilibration time) were controlled by a BBC microprocessor. The pH was measured using a Corning 001854 combination microelectrode which was calibrated using buffer solutions at pH 4.008 (CO₂H. C₆H₄CO₂K, 0.05mol dm⁻³) and pH 6.865 (KH₂PO₄, 0.025mol dm⁻³-N_{a2}HPO₄, 0.025mol dm⁻³). Data was stored on the BBC microprocessor and transferred to the MTS mainframe using KERMIT and subsequently analysed by two non-linear least-squares programs SCOGS and SUPERQUAD.

(ii) Acid-dissociation constants

Stock solutions of the ligand (0.002mol dm⁻³) in Milli-Q water (25.0 cm³) with nitric acid (1mol equiv. per amine nitrogen of the ligand) and tetramethylammonium nitrate (I = 0.10mol dm⁻³) were prepared. In each titration 3.5 cm³ of the stock ligand solution was titrated with tetramethylammonium hydroxide (0.109mol dm⁻³), the exact molarity of which was determined by titration against hydrochloride acid, 0.100mol dm⁻³.

*Methanol. Metal binding constants.** Stock solutions were prepared as above with the addition of one equivalent of silver nitrate. Titrations were performed as beofre.

Using the assumption that only 1:1 complex formation was occurring we have equations (1) and (2).

$$C^{o}_{Ag} = [Ag^{+}] + [AgL^{+}]$$
 (1)

$$\mathbf{C}^{\circ}_{\mathbf{L}} = [\mathbf{L}] + [\mathbf{A}\mathbf{g}\mathbf{L}^+] \tag{2}$$

Here C°_{Ag} was the initial concentration of silver ion and C°_{L} was the overall concentration of ligand in solution (free or complexed). Thus:

$$K_{s} = \frac{C_{Ag}^{\circ} [Ag^{+}]}{[Ag^{+}] (C_{L}^{\circ} [AgL^{+}])} = \frac{C_{Ag}^{\circ} [Ag^{+}]}{[Ag^{+}] (C_{L}^{\circ} C_{Ag}^{\circ} + [Ag^{+}])}$$
(3)

Varying the initial silver ion concentration from $5 \ge 10^{-4}$ to $5 \ge 10^{-4}$ to $5 \ge 10^{-3}$ mol dm³ did not affect the calculated $K_{\rm s}$ values. The enthalpies of complexation (ΔH) were measured by standard calorimetric methods using a Tronac 450 microcalorimeter.

A solution of silver nitrate (1.0mmol, 20 cm³) in methanol was titrated with a solution of the ligand in methanol (0.02mol dm³). The ionic strength was kept constant at I = 0.05 mol dm³ by addition of tetramethyl ammonium percholate. The concentration of free silver

^{*} These analyses by Dr H.J. Buschmann, Krefeld, Germany.

ion was measured using a silver ion selective electrode (Metrohm EA282) with a second silver electrode as a reference electrode. The emf observed could be used directly to determine the free silver ion concentration, according to the Nernst equation, which simplifies to equation (4),

$$E = E_0 + \operatorname{Aln}[\operatorname{Ag}^+] \tag{4}$$

where $[Ag^+]$ is the concentration of free silver ion and A is a constant which may be determined using appropriate calibration solutions. The stability constant K_s which refers to the reaction, equation (5)

$$Ag^{+} + L = AgL^{+}$$
 (5)

is defined by equation (6)

$$K_{S} = \frac{[AgL^{+}]}{[Ag^{+}][L]}$$
 (6)

 K_s is the concentration stability constant, assuming that the activity coefficients of the three species are equal to unity.

5.8 REFERENCES

- C.J Chandler, L.W. Deady, J.A. Reiss, J. Hetro. Chem. 599, (1981)
- 2. R. Morphy, PhD Thesis, University of Durham, 1988.
- 3. B.A. Frenz and Associates, Inc., SDP Structure Determination Package, College Station Texas and Enraf-Nonius, Delft, 1983
- 4. Rodd's Chemistry of Carbon Compounds 1^D, Elsevier, (1965)
- 5. A.S. Craig, PhD Thesis, University of Durham, 1989.
- M.Y. Antipin, A.P. Baranov, M.I. Kabachnik, T.Y. Medved, Y.M. Polikarpov, Y.M. Struchkov, B.K. Shcherbakov, Dok. Akad. Nauk. SSSR, 130,287, (1986).
- Aldrich Catalogue Handbook of Fine Chemicals, Aldrich, 1992-93.

APPENDIX

.

.

Colloquia And Conferences

UNIVERSITY OF DURHAM

Board of Studies in Chemistry

COLLOQUIA, LECTURES AND SEMINARS GIVEN BY INVITED SPEAKERS

A list of all the research collquia, lectures and seminars arranged by the Department of Chemistry during the period of the author's residence as a postgraduate student is presented: "*" indicating the author's attendance.

1st October to 31st July 1991

6th October 1988	Schmutzler, Professor R. (Technicsche Uniersitat Braunschweig) Fluorophosphines Revisited - New Contributions to an Old Theme *
18th October 1988	Bollen, Mr. F. (Durham Chemistry Teachers'Centre) Lecture about the use if SATIS in the classroom
18th October 1988	Dingwall, Dr. J. (Ciba Geigy) Phosporus-containing Amino Acids: Biologically Active Natural and Unnatural Products*
18th October 1988	Dingwall, Dr. C.J. Ludman (University of Durham) The Energetics of Explosives *
21st October 1988	von Rague Schleyer, Professor P. (Universitaty Erlangen Nurnberg) The Fruitful Interplay Between Calculational and Experimental Chemistry
27th October 1988	Rees, Professor C.W. (Imperial College, London) Some Very Heterocyclic Compounds *
9th November 1988	Singh, Dr. G. (Teesside Polytechnic) Towards Third Generation Anti- Leukaemics*
10th November 1988	Cadogan, Professor J. I. G. (British Petroleum) From Pure Science to Profit

16th November 1988	McLauchlan, Dr. K.A. (University of Oxford) The Effect of Magnetic Fields on Chemical Reactions
24th November 1988	Baldwin, Dr. R. R. and Walker, Dr R.W. (University of Hull) Combustion: Some Burning Problems *
1st December 1988	Snaith, Dr. R. (University of Cambridge) Eyptian Mummies: What, Where, Why and How?
7th December 1988	Hardgrove, Dr. G. (St. Olaf College , USA) Polymers in the Physical Chemistry Laboratory
9th December 1988	Jager, Dr. C. (Friedrich-Schiller University GDR) NMR Investigations of Fast Ion Conductors of the NASICON Type
14th December 1988	Mortimer, Dr. C. (Durham Chemistry Teachers' Centre) The Hindeberg Disaster - An Excuse for Some Experiments
26th January 1989	Jennings, Professor R. R (University of Warwick) Chemistry of the Masses*
1st February 1989	Walters, Mr. D. and Cressey, T. (Durham University Teachers' Centre) GCSE Chemistry 1988: A Coroner's Report
2nd February 1989	Hall, Professor L. D. (Addenbrooke's Hospital, Cambridge) NMR - A Window to the Human Body*
9th February 1989	Baldwin, Professor J.E. (University of Oxford) Recent Advances in Living Metathesis*
15th February 1989	Butler, Dr. A. R. (University of St. Andrews) Cancer in Linxiam: The Chemical Dimensions*

16th Febraury 1989	Aylett, Professor B.J. (Queen Mary College, London) Silicon-Based Chips: The Chemist's Contribution
22nd February 1989	MacDoughall, Dr. G. (University of Edinburgh) Vibrational Spectroscopy of Model Catalytic Systems
23rd February 1989	Johnson, Dr. B.F.G.(University of Cambridge) The Binary Carbonyls
1st March 1989	Errington, Dr. R. J. (University of Newcastle-Upon-Tyne) Polymetalate Assembly in Organic Solvents
9th March 1989	Marko, Dr. I. (University of Sheffield) Catalytic Asymmetric Osmylation of Olefins
14th March 1989	Revell, Mr. P. (Durham Chemistry Teachers' Centre) Implementing Broad and Balanced Science
15th March 1989	Aveyard, Dr. R. (University of Hull) Surfactants at your Surface
20th April 1989	Casey, Dr. M. (University of Salford) Sulphoxides in Stereoselective Synthesis*
27th April 1989	Crich, Dr. D. (University College London) Some Novel Uses of Free Radicals in Organic Synthesis)
3rd May 1989	Ashman, Mr. A. (Durham Chemistry Teachers' Centre) The Chemical Aspects of the National Curriculum
3rd May 1989	Page, Dr. P.C.B. (University of Liverpool) Stereocontrol of Organic Reactions Using 1,3- dithiane - 1 - oxides *
10th May 1989	Wells, Professor P. B. (University of Hull) Catalyst Characteristics of Activity
11th May 1989	Frey, Dr. J. (University of Southampton)

	Spectroscopy of the Reaction Path: Photodissociation Raman Spectra of NOCI
16th May 1989	Stibr, Dr. R. (Czechoslovak Academy of Sciences)
	Recent Developments in the Chemistry of Intermediate-Sited Carboranes
17th May 1989	Moody, Dr. C.J. (Imperial College London) Reactive Intermediates on Heterocyclic Synthesis *
23rd May 1989	Paetzold, Professor P. (Aachen) Iminoboranes XB=NR: Inorganic Acetylenes?
14th June 1989	Jones, Dr. M.E. (Durham Chemistry Teachers' Centre) Discussion Session on the National Curriculum
15th June 1989	Pola, Professor J. (Czechoslovak Academy of Sciences) Carbon Dioxide Laser Induced Chemical Reactions - New Pathways in Gas-Phase Chemistry)
28th June 1989	Jones.Dr. M.E. (Durham Chemistry Teachers' Centre) GCSE and A Level Chemistry 1989
11th July 1989	Nicholls, Dr. D. (Durham Chemistry Teachers' Centre) Demo: Liquid Air *

UNIVERSITY OF DURHAM

Board of Studies in Chemistry

COLLOQUIA, LECTURES AND SEMINARS GIVEN BY INVITED SPEAKERS

1st October 1989 to 31st July 1990

17th October 1989	Palmer, Dr. F . (University of Nottingham) Thunder and Lightning*
25th October 1989	Floriani, Prof. C. (University of Lausanne) Molecular Aggregates - A Bridge Between Homogeneous and Heterogeneous Systems
1st November 1989	Badyal, Dr. J. P. S. (University of Durham) Breakthroughs in Heterogeneous Catalysis
9th November 1989	Greenwood, Prof. N. N. (University of Leeds) Novel Cluster Geometries in Metalloborane Chemistry*
10 November 1989	Bercaw, Prof. J. E. (California Institute of Technology) Synthetic and Mechanistic Approaches to Ziegler - Natta Polymerization of Olefins
13 November 1989	Becher, Dr. J. (University of Odense) Synthesis of New Macrocyclic Systems Using Heterocyclic Building Blocks*
16 November 1989	Parker, Dr. D. (University of Durham) Macrocycles, Drugs and Rock 'n' Roll*
29 November 1989	Cole-Hamilton, Prof. D. J. (University of St. Andrews) New Polymers from Homogeneous Catalysis
30 November 1989	Hughes, Dr. M. N. (King's College, London) A Bug's Eye View of the Periodic Table

4th December 1989	Graham, Dr. D. (B. P. Research Centre) How Proteins Adsorb to Interfaces
6th Decenber 1989	Powell, Dr. R. L. (ICI) The Development of C.F.C. Replacement
7th December 1989	Butler, Dr. A. (University of St. Andrews) The Discovery of Penicillin : Facts and Fancies*
13 December 1989	Klinowski, Dr. J. (University of Cambridge) Solid-State NMR Studies of Zeolite Catalysts
15th December 1989	Huisgen, Prof. R. (Universität München) Recent Mechanistic Studies of [2 + 2] Additions
24 January 1990	Perutz, Dr. R. N. (University of York) Plotting the Course of C-H Activations with Organometallics*
31 January 1990	Dyer, Dr. U. (Glaxo) Synthesis and Conformation of C- Glycosides
1st February 1990	Holloway, Prof. J. H. (University of Leicester) Noble Gas Chemistry
7th February 1990	Thompson, Dr. D. P. (University of Newcastle upon Tyne) The Role of Nitrogen in Extending Silicate Crystal Chemistry
8th February 1990	Lancaster, Rev. R. (Kimbolton Fireworks) Fireworks - Principles and Practice*
12 February 1990	Lunazzi, Prof. L. (University of Bologna) Application of Dynamic NMR to the Study of Conformational Enantiomerism*
14th February 1990	Sutton, Prof. D. (Simon Fraser University, Vancouver) Synthesis and Applications of Dinitrogen and Compounds of Rhenium and Iridium
15 February 1990	Crombie, Prof. L. (University of Nottingham)

	The Chemistry of Cannabis and Khat
21st February 1990	Bleasdale, Dr. C. (University of Newcastle upon Tyne) The Mode of Action of some Anti - Tumour Agents*
22nd February 1990	Clark, Prof. D.T. (ICI Wilton) Spatially Resolved Chemistry (using Nature's Paradigm in the Advanced Materials Arena)
28th February 1990	Thomas, Dr. R. K. (University of Oxford) Neutron Reflectometry from Surfaces
1st March 1990	Stoddart, Dr. J. F. (University of Sheffield) Molecular Lego
8th March 1990	Cheetham, Dr. A. K. (University of Oxford) Chemistry of Zeolite Cages
21st March 1990	Powis, Dr. I. (University of Nottingham) Spinning Off in a Huff : Photodissociation of Methyl Iodide
23 March 1990	Bowman, Prof. J. M. (Emory University) Fitting Experiment with Theory in Ar-OH
9th July 1990	German, Prof. L. S. (Soviet Academy of Sciences) New Syntheses in Fluoroaliphatic Chemistry : Recent Advances in the Chemistry of Fluorinated Oxiranes
9th July 1990	Platanov, Prof. V.E. (Soviet Academy of Sciences, Novosibirsk Polyfluoroindanes : Synthesis and Transformation
9th July 1990	Rozhkov, Prof. I. N. (Soviet Academy of Sciences, Moscow) Reactivity of Perfluoroalkyl Bromides

UNIVERSITY OF DURHAM

Board of Studies in Chemistry

COLLOQUIA, LECTURES AND SEMINARS GIVEN BY INVITED SPEAKERS

1st August 1990 to 31st July 1991

11th October 1990	Macdonald, Dr. W.A. (ICI Wilton) Materials for the Space Age*
24th October 1990	Bochmann, Dr. M. (University of East Anglia) Synthesis, Reactions and Catalytic Activity of Cationic Titanium Alkyls
26th October 1990	Soulen, Prof. R. (South Western University, Texas) Preparation and Reactions of Bicycloalkenes
31st October 1990	Jackson, Dr. R.F.W. (University of Newcastle upon Tyne) New Synthetic Methods : a-Amino Acids and Small Rings *
1st November 1990	Logan, Dr. N. (University of Nottingham) Rocket Propellants
6th November 1990	Kocovsky, Dr. P. (University of Uppsala)
	Stereo-Controlled Reactions Mediated by Transition and Non-Transition Metals *
7th November 1990	Gerrard, Dr. D. (British Petroleum) Raman Spectroscopy for Industrial Analysis
8th November 1990	Scott, Dr. S.K. (University of Leeds) Clocks, Oscillations and Chaos*
14th November 1990	Bell, Prof. T. (SUNY, Stoney Brook, USA) Functional Molecular Architecture and Molecular Recognition
21st November 1990	Pritchard, Prof. J. (Queen Mary & Westfield College) Copper Surfaces and Catalysts*

28th November 1990	Whitaker, Dr. B.J. (University of Leeds) Two-Dimensional Velocity Imaging of State-Selected Reaction Products
29 November 1990	Crout, Prof. D. (University of Warwick) Enzymes in Organic Synthesis
5th December 1990	Pringle, Dr. P.G. (University of Bristol) Metal Complexes with Functionalised Phosphines*
13th December 1990	Cowley, Prof. A.H. (University of Texas) New Organometallic Routes to Electronic Materials
15th January 1991	Alder, Dr. B.J. (Lawrence Livermore Labs., California) Hydrogen in all its Glory
17th January 1991	Sarre, Dr. P. (University of Nottingham) Comet Chemistry
24th January 1991	Sadler, Dr. P.J. (Birkbeck College London) Design of Inorganic Drugs : Precious Metals, Hypertension & HIV
30th January 1991	Sinn, Prof. E. (University of Hull) Coupling of Little Electrons in Big Molecules : Implications for the Active Sites of Metalloproteins and other Macromolecules
31st January 1991	Lacey, Dr. D. (University of Hull) Liquid Crystals
6th February 1991	Bushby, Dr. R. (University of Leeds) Biradicals and Organic Magnets
14th February 1991	Petty, Dr. M.C. (Durham University) Molecular Electronics
20th February 1991	Shaw, Prof. B.L. (University of Leeds) Syntheses with Coordinated, Unsaturated Phosphine Ligands*
28th February 1991	Brown, Dr. J. (University of Oxford) Can Chemistry Provide Catalysts Superior to Enzymes?

.

6th March 1991	Dobson, Dr. C.M. (University of Oxford) NMR Studies of Dynamics in Molecular Crystals
7th March 1991	Markam, Dr. J. (ICI Pharmaceuticals) DNA Fingerprinting
24th April 1991	Schrock, Prof. R.R. (M.I.T.) Metal-Ligand Multiple Bonds and Metathesis Initiators
25th April 19921	Hudlicky, Prof. T. (Virginia Polytechnic Institute) Biocatalysis and Symmetry Based Approaches to the Efficient Synthesis of Complex Natural Products
20th June 1991	Brookhart, Prof. M.S. (University of North Carolina) Olefin Polymerizations, Oligomerizations and Dimerizations Using Electrophilic Late Transition Metal Catalysts*
29th July 1991	Brimble, Dr. M.A. (Massey University, New Zealand) Synthetic Studies Towards the Antibiotic Griseusin-A*

.

,

RESEARCH CONFERENCES

1. U.K. Macrocycle Group, Annual Meeting, University of Durham, 19 April, 1989.

2 R.S.C. Perkin Division, N.E. Regional Meeting, University of York, 16 December, 1989.

3 RSC Graduate Symosium, University of Durham, 12 April 1989

4 R.S.C Dalton and Industrial Division, Inorganics In Human Health, UCL, 1989.

CRYSTAL DATA

Space Group Cell Dimentions Orthorhombic P22121			
a 6.6785(21) b 15.551(3) c 17.361(3)			
Volume 1803.1(7)A**3			
Empirical Formula : C15H25.80InN3O6.90			
$C_{15}H_{25,80}InN_{3}O_{6,90}$ or $C_{15}H_{24}InN_{3}O_{6,0.9}H_{2}O$			
Cell dimensions obtained from 25 reflections with 2 theta angle in			
the range 15.00-32.00 degrees.			
Crystal dimensions: 0.29 x 0.22 x 0.08 mm			
FW = 473.41 $Z = 4$ $F(000) = 964$			
Fw = 475.41 $Z = 4$ $T(000) = 504Dcalc 1.744Mg.m-3, mu = 1.33mm-1,$			
lambda = 0.70930°A, 2Theta(max) = 53.8°			
The internsity data was collected on a Nonius diffractometer,			
using the theta/2theta scan mode.			
the h,k,l ranges are: 0 8, 0 18, 0 22.			
No. of reflections measured 2267			
No. of unique reflections 2266			
No. of reflections with Inet > 5sigma(Inet) 1986			
Absorbtion corrections were made.			
The minimum and maximum transmission factors are 0.758165 and 0.896510.			
The last least squares cycle was calculated with 51 atoms, 245 parameters and			
1973 out of 1973 reflections.			
Weights based on counting statistics were used.			
The residuals are as follows:			
For significant reflections, RF 0.029, RW 0.025, GoF 2.28			
For all reflections,			
Where $RF = sum(F_0-F_c)/sum(F_0)$,			
$RW = sqrt [sum(w(F_0-F_c)^{*2})/(No. of reflns - No. of params.)]$			
GoF = sqrt [sum(w(F ₀ -F _c)**2)/(No. of reflins - No. of params.)]			
The maximum shift/sigma ratio was 0.200.			
In the last D-map, the deepest hole was -0.44e/A**3,			
and the highest peak 0.380e/A**3			

DEPOSITION DATA

90-39

.

Table . Calculated hydrogen coordinates (C-H 0.95 Å).

H2A	.4344	.3543	.3587
H2B	.5244	.2934	.2970
НЗА	.4379	.4142	.2326
НЗВ	.2291	.4168	.2716
H5A	.4195	.3100	.0921
H5B	.5192	.2827	.1690
H6A	.4442	.1588	.1081
H6B	.2295	.1903	.0890
H8A	.4480	.0777	.2608
H8B	.5271	.1695	.2436
нэа	.4586	.1667	.3706
H9B	.2491	.1267	.3562
H10	.1151	.3339	.4058
H11C	.1757	.2720	.5237
H11A	.2946	.1991	.4833
H11B	.3739	.2928	.4810
H13	.1000	.3585	.0868
H14C	.1361	.5053	.0770
H14A	.2537	.5061	.1540
H14B	.3434	.4607	.0823
[.] H16	.1302	.0376	.2285
H17C	.1717	0443	.1201
H17A	.2780	.0325	.0805
H17B	.3748	0111	.1517

DEPOSITION DATA

.

Table . Anisotropic thermal parameters U_{ij} (x10²).

90-39

	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
In	1.971(15)	4.418(20)	2.425(16)	.147(22)	.151(16)	.041(22)
Nl	2.4 (2)	3.7 (3)	2.4 (2)	1 (3)	.3 (2)	.1 (3)
C2	3.1 (4)	4.3 (4)	3.5 (4)	8 (3)	1 (3)	-1.1 (3)
С3	4.4 (4)	3.7 (3)	3.3 (4)	.0 (3)	.8 (4)	.1 (3)
N4	2.8 (3)	3.1 (3)	2.7 (3)	1 (3)	.3 (3)	3 (2)
C5	2.8 (3)	5.1 (4)	2.7 (3)	1 (3)	.8 (3)	.2 (3)
C6	3.1 (4)	4.2 (4)	2.0 (3)	.5 (3)	.3 (3)	1 (3)
N7	2.7 (3)	2.9 (3)	2.6 (3)	.0 (3)	1 (3)	.2 (2)
C8	2.6 (3)	4.0 (3)	4.1 (4)	.7 (2)	4 (3)	1 (3)
C9	2.8 (4)	4.4 (4)	2.9 (4)	6 (3)	5 (3)	.3 (3)
C10	3.2 (3)	6.0 (5)	2.5 (3)	.5 (3)	.2 (3)	-1.1 (3)
C11	5.6 (4)	11.9 (7)	3.0 (3)	2 (7)	4 (3)	-1.7 (5)
C12	3.8 (3)	5.3 (5)	3.4 (3)	1.2 (3)	1.2 (3)	.3 (3)
C13	4.5 (4)	4.0 (4)	3.1 (4)	.1 (3)	6 (3)	.1 (3)
C14	7.6 (6)	5.7 (5)	6.6 (6)	.2 (5)	1.1 (6)	2.8 (5)
C15	4.2 (5)	4.5 (4)	3.4 (4)	1.2 (4)	4 (4)	8 (3)
C16	4.7 (4)	3.3 (4)	2.9 (3)	7 (3)	.3 (3)	.2 (3)
C17	7.9 (6)	4.0 (4)	5.7 (5)	.5 (5)	5 (5)	-2.0 (4)
C18	5.1 (5)	5.7 (5)	2.4 (4)	-2.4 (4)	1 (4)	.8 (3)
01	2.8 (2)	6.8 (3)	2.8 (2)	5 (2)	.5 (2)	.3 (2)
02	5.7 (3)	11.0 (5)	2.9 (2)	6 (3)	1.7 (2)	1 (3)
03	3.2 (2)	5.3 (3)	4.5 (3)	1.7 (2)	.4 (2)	.4 (2)
04	6.5 (4)	5.9 (4)	5.3 (4)	2.7 (3)	.1 (3)	1.1 (3)
05	2.6 (3)	5.3 (3)	3.7 (3)	4 (2)	2 (2)	4 (2)
06	6.9 (5)	6.8 (4)	6.8 (4)	-3.0 (3)	-1.1 (4)	2 (3)
OW1	7.1 (7)	17.9 (1.9)	7.9 (1.1)	4.6 (9)	-2.3 (9)	-4.0 (1.5) ⁻
OW2	17.2 (2.1)	32.2 (9.1)	7.9 (1.4)	-7.9 (3.8)	3 (3)	4.6 (4.9)

Anisotropic temperature factors are of the form:

 $\exp\left[-2\Pi^{2}(h^{2}U_{11}a^{*2} + k^{2}U_{22}b^{*2} + l^{2}U_{33}c^{*2} + 2hkU_{12}a^{*}b^{*} + 2hlU_{13}a^{*}c^{*} + 2klU_{23}b^{*}c^{*}\right)\right].$

DEPOSITION DATA

Torsion angles for $C_{15}H_{24}InN_3O_6 \times 0.9H_2O$.

-

90-39

											• •
N4	In	N1	C2	7.6(3)	N4	In	N1	C9	-111.9(4)
N4	In	N1	C10	130.4	4)	N7	In	N1	C2	88.4(3)
N7	In	NI	C9	-31.1(3)	N7	In	N1	C10	-148.7	4)
					•	01	In	N1	C9	90.9(3)
01	In	Nl	C2	-149.6(4)					-61.9(
01	In	Nl	C10	-26.8(3)	03	In	N1	C2		3)
03	In	Nl	C9	178.6(4)	03	In	Nl	C10	60.9(3)
05	In	Nl	C2	132.7(4)	05	In	N1	C9	13.3(3)
05	In	N1	C10	-104.4(3ý	Nl	In	N4	C3	-30.5(3)
				89.7(3)	NI	In	N4	C13	-148.5	4j
Nl	In	N4	C5				In	N4 N4	C5	8.3(3)
N7	In	N4	C3	-111.9(4)	N7					
N7	In	N4	C13	130.1(4)	01	In	N4	C3	15.1(3)
01	In	N4	C5	135.3(4)	01	In	N4	C13	-102.9(4)
03	In	N4	C3	90.8(4)	03	In	N4	C5	-149.0(4)
	In	N4	C13	-27.1(3)	05	In	N4	C3	178.9(4)
03						05	In	N4	C13	60.9(3ý
05	In	N4	C5	-61.0(3)						
N1	In	N7	C6	-112.3(4)	N1	In	N7	C8	7.5(3)
N1	In	N7	C16	129.5(4)	N4	In	N7	C6	-31.0(3)
N4	In	N7	C8	88.9(4)	N4	In	N7	C16	-149.2(4)
01	In	N7	C6	177.6	4)	01	In	N7	C8	-62.5(3)
			C16	59.5(3ý	03	In	N7	C6	13.2(3)
01	In	N7				03	In	N7	C16	-105.0(- 4́)
03	In	N7	C8	133.1(4)						
05	In	N7	C6	90.2(4)	05	In	N7	C8	-149.9(4)
05	In	N7	C16	-28.0(3)	N1	In	01	C12	17.0(3)
N4	In	01	C12	-29.0(3)	N7	In	01	C12	88.2(4)
03	In	01	C12	-100.1(4 ý	05	In	01	C12	165.5(4)
			C15	89.7(4)	N4	In	03	C15	18.7(4)
N1	In	03						03	C15	167.8(5)
N7	In	03	C15	-26.0(4)	01	In				
05	In	03	C15	-98.1(4)	Nl	In	05	C18	-22.8(4)
N4	In	05	C18	92.7(4)	N7	In	05	C18	22.1(4)
01	In	05	C18	-95.9(4)	03	In	05	C18	170.2(5)
	N1	C2	C3	17.3(зĵ	C9	Nl	C2	C3	131.0(6)
In				-100.6(5)	In	N1	C9	C8	51.9(зj
C10	Nl	C2	C3	-100.0(C9	C8	164.8(7)
C2	N1	C9	C8	-66.0(5)	C10	N1			33.1(
In	Nl	C10	C11	162.5(5)	In	N1	C10	C12		3)
C2	N1	C10	C11	-77.1(5)	C2	N1	C10	C12	153.5(6)
C9	Nl	C 10	C11	51.3(4)	C9	N1	C10	C12	-78.1(5)
	C2	C3	N4	-48.2(4)	C2	C3	N4	In	51.0(3)
N1			C5	-67.9(5)	C2	C3	N4	C13	165.0(7)
C2	C3	N4				C3	N4	C5	C6	131.1(6)
In	N4	C5	C6	16.7(3)				C14	160.6(6)
C13	N4	C5	C6	-101.8(6)	In	N4	C13			
In	N4	C13	C15	32.3(3)	C3	N4	C13	C14	48.8(5)
C3	N4	C13	C15	-79.6(5)	C5	N4	C13	C14	-78.5(6)
C5	N4	C13	C15	153.1(7)	N4	C5	C6	N7	-48.2(4)
					3)	C5	C6	N7	C8	-65.0(5)
C5	C6	N7	In	51.8(In	N7	C8	C9	18.4(Зĵ
C5	C6	N7	C16	164.7(7)				C9	-98.5(6)
C6	N7	C8	C9	131.7(6)	C16	N7	C8			
In	N7	C16	C17	161.6(6)	In	N7	C16	C18	31.2(3)
C6	N7	C16	C17	50.4(5)	C6	N7	C16	C18	-80.1(5)
C8	N7	C16	C17	-79.6(6)	C8	N7	C16	C18	149.9(7)
	C8	C9	N1	-49.8(4)	Nl	C10	C12	01	-22.9(3)
N7						C11	C10	C12	01	-152.7(7)
Nl	C10	C12	02	159.2(7)		C10	01	In	-2.4(2)
C11	C10	C12	02	29.4(4)	C10				-20.3(
02	C12	01	In	175.4(6)	N4	C13	C15	03		3)
N4	C13	C15	04	162.0(. 9)	C14	C13	C15	03	-150.5(9)
C14	C13	C15	04	31.8(5)	C13	C15	03	In	-5.1(3)
	C15	03	In	172.4(7)	N7	C16	C18	05	-16.6(3)
04						C17	C16	C18	05	-147.2	9 ý
N7	C16	C18	06	165.1(9)			05	In	-10.2(3)
C17	C16	C18	06	34.5(5)	C16	C18	05	T 11	10.4(5,
06	C18	05	In	167.9(7)						
1											

10Fo, 10Fc, 10 Columns a:		for $C_{15}H_{24}InN_3O_6 \times 10Fc$ 10Sig,	0.9H ₂ O 90-39		
l kFo Fc	Sig l	l kFo Fc Sig	* for Insignificant l kFo Fc Sig	l kFo Fc Si	g
0, 0, 1 2 3054 3191	6 15 7		6 1073 1124 5 7 337 327 4	2 177 206 3 103 99	58
4 272 291	38	3 926 919 5	8 962 955 5	4 244 258	5
6 112 101 8 1565 1603	6 10 7 11		9 419 427 4 10 932 924 4	6 307 317 7 255 253	5 5
10 1262 1229	6 12	2 738 728 4	11 180 182 7	8 474 474	4
12 1095 1087 14 786 787	5 14 5 16		12 805 806 4 13 155 153 9	9 263 269 10 439 453	6
16 371 364	6 18	3 547 550 6	14 466 474 5		5 8
18 381 388	6 20		15 163 180 9	12 316 303	6
20 191 179 22 172 143	10 11 0	0, 4, 1 0 1971 1983 5	18 255 265 8 20 202 205 10	13 204 203 14 202 199	7 8
0, 1, 1	1	L 511 506 2	0, 7, 1	15 170 161	9
2 412 407 3 77 81	2 2 5 4		1 128 144 5 2 473 454 3		7 .2
4 1208 1192	55	5 95 93 6	4 271 263 4	18 247 255	9
6 244 233	36	6 1044 1054 5	5 174 171 5	0, 10, 1	
8 853 849	4 7		6 427 443 4		5
10 675 678 11 102 109	4 8 10 9	3 1439 1412 7 9 591 575 4	7 353 356 4 8 268 271 5		5 [°] 5
12 762 770	4 10	821 813 4	9 288 287 5	3 467 468	4
13 151 162 14 164 149	8 11 8 12		10 314 316 5 12 529 530 5		5 4
16 441 432	6 (13	8 164 179 9	13 192 207 8	6 670 653	4
18 597 606 20 456 463	6 14 7 16		14 394 397 6 15 178 193 9		5 5
22 343 344	8 18	302 291 7	16 377 376 6	9 153 114	8
0, 2, 1 0 2689 2736	20 13) 174 175 11 0, 5, 1	17 205 225 9 18 321 321 7		6 5
1 215 215	23	111 113 5	19 153 143 12	13 221 192	7
2 1755 1780 4 1824 1840	4 4 5 5		20 314 298 8 0, 8, 1		6 8
5 149 143	56	273 243 4	0 1183 1177 6	16 204 204	8
6 1097 1102 7 183 170	67 48		1 288 308 4 2 1002 1018 5	17 146 125 1 18 149 159 1	
8 635 645	3 9		3 350 350 4	0, 11, 1	5
9 185 184	5 10	580 578 4	4 1078 1097 6	1 95 94 1	1
10 945 949	4 11	. 187 172 6	5 491 500 4	2 88 58 1	2
11 196 211 12 927 952	6 12 5 14		6 1087 1144 6 7 233 222 5		5 7
13 159 176	8 16	492 482 6	8 1010 1009 5	6 545 562	4
14 772 764 16 193 191	5 17 8 18		9 216 235 6 10 678 685 4		7 [·] 6
18 363 360	6 19	202 207 9	11 150 156 9	12 185 178	8
20 200 189 22 139 145	9 20 14	401 395 7 0, 6, 1	12 501 507 5 13 160 162 9	14 284 281 15 159 167 1	7 1
0, 3, 1	0	737 782 4	14 340 360 6	16 288 291	8
1 258 248 2 1545 1495	2 1 5 2		16 264 270 7 18 258 261 8	17 171 162 1 18 203 207 1	
3 129 142	5 3		20 206 190 10	0, 12, 1	0
4 90 85		1357 1356 6	0, 9, 1		4
5 73 63	85	418 424 3	1 172 173 5	1 559 538	4

)Sig(F		or C ₁	5H24Inl	N ₃ O ₆ x	0.9H ₂	<u>0</u>		90-39			Page 2	2
1 2 3	kFo 0, 1 702 457	nns ar Fc 12, 1 696 455	Sig 4 5	Fo 13 14		Fc 190 137 16, 1	0Sig, Sig 11 14 8	1	kFo 1,	signif Fc 1, 1 1083 344 248	Sig 4 2 3	1 15 16 18 20	kFo 134 474 483 339	Fc 151 484 492 349	Sig 11 6 6 7
4 5	462 311	476 306	5 5	0 1	176 123	165 113	11		1099		5		1,	4, 1	
6 7 9 10 11 12	239 173 187 198 318 249 389	223 151 172 176 305 261 391	6 8 7 7 6 7 6	2 3 4 5 6 7 8	267 236 345 303 305 247 250	263 229 330 284 285 246 254	7 7 6 7 8 8	6 7 8 10 12 13 14	772 280 457 461 636 237 541	762 274 453 475 630 213 545	4 4 3 4 4 5	0 1 2 3 4 5 6	238 1478 120 1644	385 1448 254 1485 119 1632	5 3 6 3 6 7
13 14 15 16	298 283 217 156	293 284 231 168	7 7 9 12	9 10 11 12	201 206 171 155	187 213 173 154 .7, 1	9 9 10 12	15 16 17 18 20	204 587 296 562 361	214 598 303 562 348	8 5 7 6 7	7 8 9 10 11	171 1149 199 879 335	185 1170 197 900 333	5 6 4 5
17 1 2 3 8 9	154 0, 1 108 160 167 143 111	143 .3, 1 80 167 166 145 62	12 11 8 8 10 11	8 11 0 1 2	136 111	131 114 .8, 1 158 205 182	12 16 11 9 10	0 1 1 2 1	1, 1547 160 137	2, 1 1533 139 1160 1966 77	4 4 5 6 8	12 13 14 15 16 18	741 205 659 202 379 359	734 213 665 216 374 359	4 8 5 8 6 7
10 11	251 124	245 114	7 12	3 4	176 188	158 194	10 10		.590 309	1604 306	7 4	20	264 1,	249 5, 1	8
12 13 14 15 16		200 153 215 124 247 4, 1	8 9 13 10	5 6 7 8 9	178 162 215 173 171 1,	170 181 214 169 173 0, 1 2523	10 11 9 11 12	8 1 9 10 11 12 13 14	.059 83 757 351 867 177 622	1053 89 768 351 867 178 621	5 10 4 5 4 8 5	0 1 2 3 4 5 6	397 106 173 239 192 381 372	382 99 172 225 198 370 366	3 6 4 3 4 3 3
0 1 2 3 4 5 6	415 312 356 316 271 310 300	414 311 359 295 266 302 282	5 6 6 6 6 6 6 6	1 2 3 4 5	102	57 1620 198 791 459	4 5 4 4 3 6	14 16 18 20 21	285 291 236 114	277 284 234 126 3, 1 390	6 7 9 16 2	7 8 9 10 11 12	143 530 202 545 176 477	141 518 177 546 196 481	5 4 6 4 8 5
7 8 9 10 11 12	289 339 259 292 221 244	290 327 264 284 227 264	6 6 7 7 8 8	7 8 9 10 11 12 13	370 891 112 934 124 806 363	380 899 136 961 136 802 366	3 4 8 5 9 4 5	1 2 3 4 5	312 951 86 246 310 832 144	308 940 90 243 287 827 125	3 5 7 3 4 5	13 14 16 17 18 19 20	243 402 441 156 424 129 318	247 391 431 146 430 153 319	7 5 6 10 6 14 8
13 14	171 205	168 212	10 10	14	597 122	602 134	5 13	, 8 9	773 199	764 206	4 5		1, 1679	6, 1	6
7 8 9 10 11	142 140 153 164 172	5, 1 151 145 138 173 150	10 11 10 10 10	15 16 18 19 20 21	179 246 191 197 119	157 225 212 183 147	13 8 7 9 9 16	10 11 12 13 14	577 188 537 222 355	565 179 533 231 373	4 7 5 7 6	1 2 3 4 5	860	845 1271 315 981 266	4 6 3 5 4

-

10Fo			Sig(Fo								90-39		Pa	age 3	
1 6 7 8 9		mns ai Fc 6, 1 896 185 904 321 733	re 10 Sig 4 6 4 5 4	Fo 18 19 0 1 2	10Fc kFo 245 145 1, 289 202 147	1 Fc 229 127 9, 1 293 208 170	0Sig, Sig 12 4 5 6	* fo 1 11 12 13 14 15 16	r Ins kFo 177 271 183 319 124 296	ignif Fc 179 261 179 310 120 285	icant Sig 7 9 7 12 8	1 11 12 13 14 15	kFo 171 200 104 141 137 1,	Fc 169 192 118 142 116 15, 1	Sig 10 9 16 13 13
11 12 13 14 15 16 17 18 20	265 691 229 520 138 328 101 285 198	252 699 228 539 144 331 101 275 193	6 4 7 5 11 6 15 7 10	3 4 5 6 7 8 9 10 11	181 162 207 194 221 345 268 500 231	189 191 200 192 220 345 283 503 251	676655 5557	17 18 0 1 2 3 4 5	218 211 1, 1 612 375 591 233 555 192	200 212 2, 1 610 380 616 232 547 189	9 11 4 5 4 7 5 7	0 1 6 8 9 10 11 13	128 127 93 140 168 157 184 157 1,	151 147 97 118 141 163 178 158 16, 1	10 11 15 10 9 11 10 12
0 1 3 4 5 6 7 8 9 10 11 12	1, 433 320 246 189 119 230 279 316 470 484 321 523	7, 1 430 315 242 177 109 258 294 331 472 466 310 518	3 3 4 5 7 5 5 5 4 5 6 5	12 13 14 15 16 17 18 19 0 1 2 3	426 242 323 111 335 128 164 1, 1 773 423 795 337	419 259 315 69 333 120 312 145 0, 1 763 432 773 336	5 7 6 13 7 13 8 12 4 4 4 4 5	6 7 8 9 10 11 12 13 14 15 16 0	495 250 452 329 401 225 355 165 236 127 205 1, 1 96	479 249 438 332 406 220 358 163 235 143 189 3, 1 101	5 6 6 7 6 10 8 14 10 13	0 1 2 3 4 5 6 7 8 9 10 12	172 255 245 301 281 212 257 254 212 168 171 123 1,	155 272 235 310 287 314 234 249 195 168 168 122 17, 1	9 7 7 7 7 7 7 7 8 11 10 15
13 14 16	176 389 440	172 403 431	8 6 6	4 5 6	734 387 717	737 394 726	4 5 4	1 2 3	148 260 190	140 285 191	9 6 8	5 10	102 113 1,	86 104 18, 1	14 15
17 18 19 20 0 1 2 3	111 377 130 298 1, 1081 617 910 406	99 363 123 288 8, 1 1095 620 921 408	13 7 13 8 5 3 5 4	7 8 9 10 11 12 13 14 16	472 541 344 407 246 338 174 329 260	481 547 353 398 245 332 172 328 263	5 5 5 7 6 9 7 8	4 5 10 11 12 13 14 15 16	224 109 146 169 214 146 219 142 208	230 112 134 147 195 166 219 133 200	7 11 10 9 8 11 9 13 10	0 1 2 3 4 5 7 8	179 244 182 218 151 214 170 142 2,	165 246 180 219 158 187 165 128 0, 1	10 8 10 9 12 9 11 12
4 5 6 7 8 9 10 11 12 13 14 16	774 398 890 317 749 394 520 309 426 183 365 330	784 414 867 318 738 406 515 309 424 167 375 355	4 4 4 5 4 5 5 6 5 8 6 7	18 1 2 3 4 5 6 7 8 9 10	204 1, 1 230 285 192 337 135 244 275 143 124 187	204 1, 1 230 310 167 344 138 260 270 160 141 176	10 6 5 7 5 9 6 6 9 11 8	0 1 2 3 4 5 6 7 8 9 10	1, 1 372 330 384 294 350 265 378 316 382 283 292	4, 1 364 326 382 294 347 275 373 323 395 293 313	5656666677	3 4 5 6 7	73 156 1343 555 1633 576 1735 148 1002 926 801 449	536 1643 542 1708 136	8 5 6 3 7 6 5 4 4 5

-

10F0,		c, 10s mns ar			r C ₁₅ F 10Fc	H ₂₄ InN	306 x (0.9H	20 27 TR	ciani	90-39 Eicant		Pa	age 4	
,										-		1	1-17-	-	a : _
1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	Fc	Sig
	2,	0, 1	-	3	744	718	4	14	468	478	5	4	822	822	4
15	241	257	7	4	561	540	3	15	262	266	7	5	368	376	4
16	325	322	7	5	598	568	3	16	406	415	6	6	852	850	4
17	165	177	10	6	622	627	3	17	160	157	11	7	306	299	5
18	287	262	7	7	612	590	3	18	415	416	7	8	648	631	4
19	177	179	10	8	283	289	5	20	324	325	8	9	292	283	6
20	257	249	8	9	214	220	6		2,	6, 1		10	520	506	5
21	131	131	15	10	573	580	4	0	1519	1500	7	11	290	306	6
	2,	1, 1		11	355	365	5	1	337	342	3	12	460	459	6
0	181	i81	4	12	478	482	5	2	1383		6	13	200	203	8
1	851	811	4	13	260	239	6	3	254	263	4	14	359	362	6
2	234	245	4	14	498	514	5	4	746	745	4	16	299	297	7
3	372	373	3	15	156	151	10	5	194	191	5	17	155	126	11
4	519	509	3	16	457	464	6	6	848	860	4	18	219	202	- 9
	738	716	4	17	140	142	11	7	233	235	5	19	152	129	12
5								8			4	19			12
6	311	323	4	18	445	433	6	0	785	777	4		2,	9, 1	
7	772	748	4	20	340	344	8	9	253	251	6	1	156	164	6
8	183	159	6	21	136	141	14	10	590	595	4	2	202	226	6
9	126	110	8		2,	4, 1		11	273	259	6	3	105	126	10
10	536	540	. 4	0	896	910	5	12	446	447	5	4	146	151	7
12	645	642	4	1	132	134	5	13	142	141	10	5	138	129	8
13	108	128	12		1554		6	14	410	407	6	6	254	263	6
14	720	740	5	3	395	383	3	16	352	360	6	7	180	176	· 7
15	214	204	8	-	1560		7	18	279	268	8	8	219	212	7
16	493	511	6	5	673	659	3	19	175	169	11	9	196	212	7
17	185	189	9		1314		7	20	168	192	13	10	327	322	6
			7	7	348	347	4	20	2,		10	11	254	254	7
18	374	364				660		1	607	7, 1	3	12	326	320	6
20	271	270	9	8	681		4	1		597					9
•	2,	2, 1	~	10	604	603	4	2	697	685	3	13	181 328	175 334	
	1484		6	11	90	92	14	3	114	95	7	14			7
1	286	290	3	12	605	593	5	4	509	502	4	15	149	141	11
2	1390		6	13	246	242	7	5	198	188	5	16	310	316	7
3	413	407	3	14	490	492	5	6	265	253	5	17	130	152	14
4	954	901	5	15	294	321	7	7	224	220	6	18	329	318	8
5	370	360	3	16	418	422	6	8	158	179	8		2,	10, 1	
6	1675	1573	7	17	160	136	9	9	281	279	5	0	431	440	4
7	337	325	4	18	368	361	7	10	384	382	5	1	389	397	5
	1302		6	20	241	237	9	11	237	229	7	2	541	557	4
•		~~ <i>····</i>	-	20			2	12	332	335	6	3	310	309	5
9	231	231	5	~		5, 1	2			108		4	655	650	4
10	800	788	4	0	458	451	3	13	114		12			352	
11	293	294	5	1	786	766	4	14	365	378	6	5	359		5
12	544	548	5	2	321	313	3	15	118	116	13	6	821	806	4
13	191	196	8	3	900	885	4	16	419	416	6	7	364	376	5
14	466	474	5	4	716	705	4	17	142	158	12	8	671	683	5 6
15	290	286	7	5	595	575	3	18	392	375	7	9	266	274	6
16	453	462	6	6	780	767	4	19	122	102	15	10	471	481	5
18	343	332	7	7	325	310	4	20	280	269	8	11	247	246	7
20	255	228	8	8	289	296	5	-		8,1	_	12	287	301	7
	2,	3, 1		10	338	352	5	0	745	746	4	13	259	251	7
0	491	479	3	11	308	302	5	1	308	313	4	14	306	292	7
1	510	501	3	12	351	358	6	2	869	877	4	15	161	148	10
2	483	480	3	13	287	311	6	3	336	335	4	16	258	255	9

.

· .

10Fo,			Sig(Fo							ciani	90-39		Р	age 5		
1	kFo	mns ar Fc 10, l	re 10 Sig	1 0	10Fc kFo 291	1 Fc 279	USIG, Sig 6	* ro 1 5	kFo 188	signi: Fc 181	ficant Sig 11	1 8		Fc 1038	Sig 5	
18	185	180 11, 1	11	1 2	327 346	326 347	6 6	6 7	147 140	131 151	13 15	9 10	223 720	232 731	7 4	
0	83	86	14	3	242	238	7		З,	0, 1		11	265	266	6	
1 2	251 194	228 192	6 7	4 5	402 224	396 228	6 8	0 2	359 1031	400 1024	3 5	12 13	489 345	477 345	5 6	
3 5	149 149	127 144	9 9	6 7	338 230	333 224	6 7	3 4	313 1424	294 1456	4 7	14 15	378 271	380 284	6 7	
7	167	167	9	8	235	227	8	5	168	159	6	16 18	467 269	490 272	6 8	
8 9	228 266	223 265	7 6	9 10	172 177	193 173	10 10	7	121	105	9	20	121	126	15	
10	332	333	6	11	151	168	11	8			5		з,	3, 1		
11 12	274 290	288 288	7 7	12 13	140 166	128 168	12 11	9 10	158 704	172 711	8 4	0	120 487	82 498	6 3	
13	178	203	9	14	129	148	15	11	368	378 643	5	2	640 565	633 565	3	
14 15	309 181	307 171	7 10	1	2, 1 171	182	9	12 13	643 329	643 338	5 6	3 4	565 450	565 456	3	
16	272	263	8	2	105	100	13	14	408	406 205	6 9	5 6	432 288	417 302	4 5	
17	193 2, 1	186 L2, 1	11	3 4	124 156	138 165	11 10	15 16	204 466	489	6	7	451	470	4	
0	474	448	5	5	119	106 150	11 12	18 19	291 173	288 159	8 11	8 9	324 369	325 369	5 5	
1 2	351 509	342 489	5 5	6 7	126 118	98	12	20	222	210	10	10	536	544	5	
3	271	266	6	8	184 178	171 165	9 9	о	3, 221	1, 1 222	4	11 12	386 438	389 426	5 5	
4 5	457 293	459 303	5 6	9 10	145	153	12	1	266	278	4	13	124	139	12	
6	524 332	543 338	5 6	11 12	131 101	142 95	14 17	2 3	216 537	223 554	4 3	14 15	406 210	424 207	6 8	
7 8	332 469	474	5	12	2, 1			4	265	260	4	16	422	415	6	
9	281 388	289 378	6 6	0 1	239 283	244 308	8 7	5 6	655 294	653 306	4 5	18 19	356 185	372 185	7. 11	
10 11	228	226	7	2	258	252	7	7	868	852	4	20	359	368	8	
12	272	264	7	3	265	264	7	8	369	352	5		з,	4, 1		
13	177 226	181 201	10 8	4 5	265 220	264 215	7 8	9 10	506 563	511 562	4 5	0 1	874 382	896 377	4 3	
14 16	152	144	12	6	227	232	8	11	397	379	5	2	1121	1135	6	
1	2, 1 89	.3, 1 95	14	7 8	166 157	167 149	10 11	12 14	451 415	442 426	5 6	3	543 1085	533 1097	3 6	
3	182	169	8	9	138	120	11	15	275	268	7	5	623	621	4	
4 5	115 261	139 278	12 6	10 11	115 126	103 114	14 15	16 17	360 235	366 251	7 8	6 7	859 380	858 389	4 5	
6	163	178	9	12	128	106	14	18	347	328	7	8	695	688	4	
7 8	248 163	250 163	7 9	2	2, 1 94	7, 1 104	15	19 20	166 402	176 390	11 7	10 12	511 481	528 473	5 5	
9	205	220	8	4	121	123	13		з,	2, 1		13	282	289	7	
10 11	149 204	140 177	10 8	7	104 2, 1	131 8. 1	17	0	1227 480	1220 477	6 3	14 15	323 336	316 334	7 6	
12	245	230	7	0	187	172	10	2	1316	1317	6	16	320	335	7	
13 14	144 247	143 246	12 9	1 2	232 211	221 186	8 9	3 4	107 698	113 717	7 4	17 18	152 173	166 173	11 11	
15	157	138	11	3	205	208	10	6	987	1008	5	19	129	136 5, 1	15	
	2, 1	.4, 1		4	ταρ.	176	10	7	307	290	5		3,	J, I		

10Fo, 101			or C ₁₅ 1 10Fc	H ₂₄ InN ₃ C	$b_6 \times 0$).9H ₂ C)		90-39 icant		Pa	age 6	
l kFc 3, 0 238 1 524 2 202 3 654 4 383 5 419 6 533 7 262 8 330	5, 1 3 223 4 508 2 200 4 639 3 379 9 413 3 513 2 254	Sig 1 4 1 3 1 5 1 3 1 4 1 4 1 4 1 4 1 5 5	L kFo 1 226 2 335 3 190 4 398 5 293 5 375 7 200	Fc 222 316 166 404 290 365 210 244 8, 1	Sig 7 6 8 6 7 7 10 9	1 4 5 6 7 8 10 11 12 13 14	kFo 559 256 459 235 410 389 178 351 244 269	Fc 554 241 452 234 419 406 190 361 236 286	Sig 5 6 5 7 6 6 9 6 8 8 8	1 5 7 8 9 10 11 12 14	kFo 280 173 213 225 169 203 166 190 180 3,	Fc 290 175 238 233 167 214 165 174 142 14, 1	Sig 7 9 8 9 9 10 10 11
9 203 10 340 11 243 12 436 14 498 15 228 16 433 17 214 18 276 19 160 3, 0 1023 1 436 2 1033 3 523	318 247 429 503 239 416 220 5266 171 6, 1 21031 5429 521031 5427 1047	5 7 5 6 8 6 9	1 159 2 488 3 222 4 394	218 850 223 818 289 653 372 489 107 496 141 503 220 408 241	6 4 5 4 5 5 2 5 9 6 8 6 8 8 8 8 8	15 16 17 0 1 2 3 4 5 6 7 8 9 10	203 165 157 3, 1 120 151 175 190 193 358 168 329 289 194 317	199 153 156 1, 1 120 139 180 201 195 360 169 327 293 188 334	10 12 13 10 9 8 7 6 9 6 6 8 7	0 1 2 3 4 5 6 7 8 9 10 11 12 13	366 307 345 290 368 257 282 220 228 184 201 248 224 205 3,	362 305 349 290 363 270 273 211 210 176 192 243 211 205 15, 1	6 6 7 6 7 8 8 9 9 8 9 10
4 859 5 433 6 807 7 434 8 718 9 223 10 582 11 196 12 476 13 160	3 433 7 816 4 445 3 710 3 234 2 581 5 216 5 478	7 5 8	7 182	256 173 179 9, 1 260 268 385 309 374 323	8 11 12 6 5 5 5 5 5	11 12 13 14 15 16 0 1 2	216 250 222 169 196 167 3, 13 479 289 382	204 256 214 167 207 160 2, 1 492 288 380	8 8 11 11 11 5 6 5	0 1 2 3 7 8 10 11 12	117 203 108 121 115 151 129 135 138 3,	111 211 99 115 133 134 145 108 127 16, 1	13 9 13 12 13 11 14 13 14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 167 1 241 5 231 6 168 5 244 7, 1 4 356 6 325 4 403 7 341	9 8 9 1 12 1 10 1 1 4 1 5 1 4 1 5 1 5 1	1 349 2 230 3 206 4 271 5 227 5 275	357 164 351 215 200 266 229 260 183	6 6 8 9 8 9 8 11 10	3 4 5 6 7 8 9 10 11 12 13 14	374 320 362 297 339 323 235 311 196 251 180 187	375 308 375 302 355 338 208 313 183 237 183 182	6 6 6 7 7 9 8 10 10	0 1 2 3 4 5 6 7 8 9 10	339 200 251 165 190 188 227 176 235 114 188 3,	338 218 245 176 175 177 221 164 250 140 172 17, 1	6 9 7 10 9 9 9 10 9 17 11
6 260 7 498 8 229 9 234 10 270	8 499 9 219 4 241	6	3, 503 1 295 2 491 3 293	308 484	5 5 5 5	15 2 3 4	144 3, 1 154 191 174	153 3, 1 178 210 157	14 9 8 8	2 3 4 5	132 145 106 153 3,	120 142 125 132 18, 1	12 12 16 12

• • •

. . .

10Fo			Sig(Fo								90-39 icant		Pa	age 7	
1 1 2	kFo 3, 142	Fc 18, 1 141 129	re 10) Sig 13 13	1 10 12 13	10Fc kFo 486 497 242	Fc 480 502 243	Sig 5 6 8	1 2 3 5	kFo 188 476 478	FC 182 471 479	Sig 7 4 4	1 16 17	kFo 253 191 4,	Fc 259 196 8, 1	Sig 9 11
3 0 1 2 3 4 6 7 8 9 10 11 12 13 14 16 17 18	4, 353 99 810 199	118 0, 1 333 87 821 217 1039 892 308 557 486 380 267 353 199 348 366 237 224	12 4 9 4 6 5 5 6 5 5 6 7 6 9 7 7 9 9	14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11	384 237 363 233 166 201 4, 189 631 246 638 264 500 361 269 336 499 307 425	374 244 354 257 189 212 3, 1 201 634 248 649 265 512 363 272 363 272 332 501 316 437	7 8 7 10 13 11 6 4 5 4 5 6 5 6 5 6 6 5 6	6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4	125 407 391 490 464 326 423 268 380 266 323 201 237 4, 785 99 753 227 712	119 408 405 485 461 328 410 263 376 277 313 201 213 6, 1 786 83 747 238 723	10 5 5 6 7 6 8 7 10 10 4 11 4 6 4	0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 11 2 11 2 11 2 11 2 11 2 11 2	703 298 593 157 479 150 289 308 369 250 371 261 370 286 283 246 172 137 4,	720 305 588 156 470 145 293 314 365 227 380 264 365 288 294 250 184 139 9, 1	4 6 4 8 5 9 6 6 6 7 6 7 8 9 2 15
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	278 4, 688 160 661 195 556 451 377 416 577 248 361 209 250 344 224 373	273 1, 1 704 163 659 168 565 438 392 425 596 265 378 214 238 363 243 371	9 4746455557687797	1		331 335 372 250 375 267 4, 1 1024 134 1006 255 786 284 656 336 684 179 655	776879 59554545485	5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3	278 556 359 573 262 584 219 500 215 269 200 143 157 4, 241 302 251 552	273 548 359 583 256 572 217 482 211 276 202 139 165 7, 1 255 290 255 559	6 5 5 7 5 8 6 8 8 9 14 13 6 5 6 4	0 1 2 3 4 5 6 7 8 9 10 112 13 14 5 16	141 527 126 445 157 279 173 192 280 271 283 210 198 138 139 171 4,	132 535 111 449 173 278 174 198 298 274 263 288 194 185 132 148 186 10, 1	9 5 10 5 9 6 9 8 7 7 7 7 8 9 12 14 12
17 18 0 2 3 4 5 6 7 8 9	166 262 4, 785 918 196 1068 254 674 447 601 297	156 253 2, 1 785 925 175 1056 257 692 442 580 311	11 9 4 5 6 5 5 4 5 6	11 12 13 14 15 16 17 18 19 0 1	128 539 255 383 218 246 202 115 176 4, 447 436	135 525 250 355 216 249 198 103 177 5, 1 456 455	12 5 8 9 9 10 17 12 4 4	4 5 7 8 9 10 11 12 13 14 15	255 595 276 370 427 251 379 263 323 281 258 285	246 598 268 355 426 247 386 258 332 295 259 292	6 5 6 5 7 6 7 7 8 8	0 1 2 3 4 5 6 7 8 9 10 11	612 364 464 260 327 182 257 213 355 183 351 246	637 370 484 281 330 179 261 206 352 173 338 240	5 6 5 6 6 8 7 8 6 9 6 8

10Fo,	10Fc	, 10	Sig(Fo) foi	с С ₁₅ н	24InN	30 ₆ x	0.9H ₂ 0	c		90-39		Pa	age 8	
	Colum	ins ai	re 10	Fo	10Fc	1	OSig,	* fo	r Ins kFo	signif Fc	icant Sig	1	kFo	Fc	Sig
. 1	kFo 4.1	Fc 0, 1	Sig	1 3	kF0 232	FC 222	Sig 8	1 6	159	147	10	4	465	469	5
12	251	264	8	4	274	254	7	7	179	164	9	5	300	319	6
13	225	218	9	5	222	231	8	8 9	252 458	269 453	7 6	6 7	425 210	421 211	5 7
14 15	197 211	215 189	11 9	6 7	215 207	219 222	9 9	10	299	309	7	8	507	505	5
16	189	166	11	8	201	189	10	11	363	351	6	9	360	356	6
	4, 1		_	9	132	140	14	12	280	300	8	10	474 282	485 271	6 7
1 3	236 317	244 323	7 6	10 11	194 128	185 147	10 15	13 14	363 357	355 338	7 7	11 12	311	298	7
4	169	163	9	**		5, 1	13	15	230	232	9	13	249	227	8
5	325	340	6	0	169	170	10	16	235	220	9	14	222	215	9
6	129	142	12	1	181	192 166	9 9	17	141 5,	149 2, 1	14	15 16	137 223	154 210	14 10
7 8	217 222	229 207	8 8	2 3	168 116	120	13	0	597	598	4	17	190	190	11
9	179	169	9	4	158	147	11	2	719	732	4		5,	5, 1	
10	235	232	8	5	130	124	13	3	186	183	7	о	155	154	8
11	195	200	9	6	102	117	17	4	714	698	4	1	371	371	5
12	189	190	10	7	171	186	11 15	5 6	258 573	254 568	6 5	2 3	241 393	246 392	6 5
13	143 4, 1	162 2, 1	.13	8 9	121 173	116 190	15	7	474	473	5	4	207	197	7
0	486	486	5			6, 1		8	430	418	6	5	466	463	5
1	239	243	7	0	213	230	9	9	241	246	7 6	6 7	110 484	117 488	- 13 5
2 3	397 212	373 223	6 8	1 2	178 161	157 157	10 11	10 12	464 320	463 332	7	8	196	211	8
4	327	325	6	3	146	144	12	13	275	274	7	9	609	621	5
5	266	269	7	5	148	178	13	14	272	275	8	10 11	305 362	303 372	7 6
6 7	311 310	300 311	6 7	6 7	130 195	106 205	13 10	15 16	261 268	250 250	9 8	12	261	277	8
8	346	342	6	'		7, 1	10	17	198	200	12	13	286	274	7
9	179	170	9	2	106	113	17	_	5,	3, 1	••	14	254	261	8
10	273	262	7 13	0	5, 693	0, 1 695	4	0 1	120 680	130 685	10 4	15 16	207 228	221 223	11 10
11 12	121 197	105 191	10	2	680	696	4	2	228	231	6	17	148	145	14
14	184	182	11	3	245	268	7	3	608	620	4		5,	6, 1	
	4, 1	3, 1		4	721	710	4	4	256	247	6	0	402	394	5
0	109	102	13	5	115	125	13	5	419	430	5	1	183	191 483	8 5
1	224	235 151	8 10	6 7	603 448	612 453	5 6	6 7	174 227	177 210	8 7	2 3	489 325	338	6
2 3	148 211	207	8	8	537	541	5	8	183	180	8	4	507	523	5
4	166	180	10	9	358	382	6	9	573	578	5	5	241	257	7
5	205	204	8	10 12	439 311	429 286	6 7	10 11	290 457	276 471	7 6	6 7	516 274	525 280	5 7
6 7	160 217	154 225	10 8	13	221	210	8	12	317	333	7	8	479	469	5
8	199	201	9	14	261	249	8	13	380	385	7	9	341	342	6
9	243	242	8	15	217	209	9 8	14 15	366 231	371 229	7 9	10 11	360 230	364 236	6 8
10 11	196 197	200 219	10 10	16 17	293 225	279 210	10	16	258	254	9	12	235	235	8
12	168	150	12	± /	5,	1, 1		17	148	150	14	13	188	205	10
	4, 1	4, 1	~	1	863	878	12	0	5, 740	4, 1 747	4	14 15	195 150	189 152	10 13
0 1	314 208	305 202	7 8	2 3	106 776	98 773	12 4	0 2	622	629	4 4	16	180	187	12
2	264	261	7	5	545	532	5	3	130		10		5,	7, 1	
							-								

			Sig(Fo								90-39		Pa	age 9		
1			re 10 Sig)Fo 1 1	10Fc kFo 284		OSig, Sig 7		r Ins kFo 151	signif Fc 172	ficant Sig 13	1 5	kF0 207	Fc 215	Sig 8	
0 1	120 336	130 322	11 6	2	402 319	393 334	6 6	10	156	136	12	6 7	443 230	444 240	6 8	
3 4	460 194	466 201	5 8	4 5	301 264	296 272	7 7	0 1	180 136	197 117	11 12	8 9	386 228	384 221	6 8	
5 6	437 233	446 243	5 7	6 7	295 226	291 211	7 8	2 4	201 192	195 181	9 10	10 11	348 229	343 218	7 9	
7 8	308 263	326 256	6 7	8 9	338 191	341 186	7 9	5 6	153 157	140 154	12 12	12 13	229 278	218 277	9 9	
9 10	398 221	409 218	6 8	10 11	296 174	292 178	7 11	0	5, 1 108	5, 1 95	14	14 15	207 225	183 226	10 11	
11	283	300	8	12	203	206	10	3	116	127	16	_	6,	3, 1		
12 13	184 222	164 237	9 9	13 14	164 174	167 160	12 12	4 5	153 143	119 136	12 14	0	140 645	145 626	10	
14 15	200 202	184 200	10 10	0	229	1, 1 243	8	6		141 6, 1	16	2 3	121 560	111 548	11 5	
16		206 8, 1	11	1 2	362 193	365 191	6 9	0		0,1	14	4 5	158 401	155 394	9 6	
0	384 242	380 254	5 7	3 4	363 176	386 164	6 9	2	404 431	416 425	5 5	6 7	126 406	127 398	12 6	
2	444 252	440 244	5 6	5	318 153	316 153	7 10	467	460 494	440 499	6 6	8 9	162 507	148 511	11 6	
4 5	452 145	449 149	5 11	7 8	250 165	247 169	8 11	7 8	289 429	283 436	7 6	10 11 12	181 378 193	174 372	10 7 10	
6 7	425 181	419 184	6 9 6	9 10	229 179	228 177	9 11 10	9 10 11	272 397 192	275 384 184	8 7 10	12 13 14	233 240	204 235 250	10 9 10	
8 9 10	400 225 334	406 235 343	6 8 7	11 12 13	191 181 164	180 169 168	10 11 13	11 12 13	201 230	194 194 242	10 10 10	14	240 230 6,	230 237 4, 1	10	
10	232	225	8	13	5, 1		10	14	195	184	11	0	449	446	5	
12 13	255 182	251 177	8 11	0 1	233 192	212 213	8 9	15	279	262 1, 1	9	1 2	205 464	205 455	8 5	
14 15	190 141	184 155	11 15	2 3	281 230	271 229	7 8	1 3	686 640	683 647	5 5	4 6	426 389	403 376	6 6	
0		9, 1 343	6	4 5	311 221	321 217	7 8	4 5	105 452	107 456	14 6	7 8	191 290	186 276	9 7	
1 2	5.72 267	588 270	5 7	6 7	283 188	274 180	7 9	6 7	157 358	136 351	10 6	9 10	290 286	287 271	7 7	
3 4	369 186	376 171	6 8	8 9	207 124	172 147	9 14	8 9	250 477	259 478	8 6	11 12	267 206	235 191	8 10	
5 6	.234 135	235 127	7 11	10 11	134 165	128 153	14 11	10 11	274 413	282 406	8 7	13 14	215 222	212 198	10 10	
7 8	284 185	282 171	7 9	0	5, 1: 153	3, 1 126	10	12 13	215 290	203 307	9 9	15	216 6,	202 5, 1	11	
9 10	307 190	322 202	7 10	1 2	257 104	260 122	8 15	14 15	218 249	225 239	10 10	0 1	158 373	177 367	9 6	
10 11 12	216 179	202 203 176	9 10	2 3 4	173 112	184 116	10 14	0		2, 1 424	5	23	157 472	170 479	9 5	
12 13 14	203 230	190 197	10	5 6	170 176	152 168	10 10	1 2	93 422	122 419	15 5	4 5	192 507	184 520	8 5	
0		0,1	6	7 8	193 180	188 176	10 11	- 3 4	148 442	168 453	10 5	6 7	138 490	133 483	11 6	
						,										

. .

10Fo,			Sig(Fo re 10		r C ₁₅ H 10Fc	H ₂₄ InN ₃	0 ₆ x (0.9H ₂ 0	0		90-39 icant		Pa	age 10).
1 8 9 10 11 12 13	kFo 6, 112 449 151 269 180 206	mns an Fc 5, 1 110 439 136 257 166 193	10 Sig 15 6 12 8 11 11	1 0 1 2 3 4 5	kFo 6, 213 382 184 386 183 357	Fc 9, 1 218 364 186 392 188 353	Sig 8 6 9 6 10 6	1 0 2 4 5 6 7	kFo	Fc 0, 1 491 386 342 139 231 184	Sig 6 6 7 12 9 11	1 6 7 8 9 10 11	kFo 179 198 207 182 235 163 7,	Fc 171 193 201 180 237 154 5, 1	Sig 10 10 10 11 11 14
14 0 1 2 3 4 5 6 7 8	204 6, 293 312 380 201 462 138 431 211 265	191 6, 1 286 315 380 196 470 136 437 207 249	10 6 6 8 6 11 6 8 7	6 7 8 9 10 11 12 0 2 4	159 343 142 281 158 235 231 6, 1 250 257 225	162 331 144 283 141 219 214 0, 1 233 246 204	10 7 13 8 12 9 10 7 7 8	8 9 10 11 12 1 3 5 6 7	208 176 205 135 177 7, 398 507 503 129 546	208 173 203 167 175 1, 1 387 499 510 124 540	10 12 11 17 13 6 6 6 14 6	0 1 2 3 5 7 8 9 10 11	229 475 179 545 477 367 181 246 176 213 7,	253 465 198 551 477 363 185 238 161 222 6, 1	8 6 6 7 12 9 12 11
9 10 11 12 13 14 0 1 2 3	255 142 168 171 210 226 6, 144 385 147 478	258 138 173 144 209 220 7, 1 139 367 139 483	8 12 12 11 10 11 10 6 10 6	5 6 7 8 9 10 11 0 1 2	140 205 165 179 193 188 161 6, 1 160 262 154	164 201 169 190 200 194 139 1, 1 156 271 155	12 10 11 11 11 11 12 10 8 11	8 9 10 11 0 1 2 3 4 5	203 443 145 351 7, 415 98 332 107 292 124	182 430 134 361 2, 1 419 113 321 122 281 101	9 7 14 9 6 15 7 15 7 12	0 2 3 4 5 6 7 8 9 10	184 205 146 228 199 210 156 225 158 177 7,	195 194 172 220 193 214 149 192 144 167 7, 1	10 9 12 8 9 9 12 9 12 12
4 5 7 8 9 11 12 13	185 441 209 387 181 364 268 144 190 6,	186 438 223 394 177 373 263 131 176 8, 1	9 6 9 7 8 14 11	3 4 5 6 7 9 0 2 3	300 162 284 153 250 236 6, 1 144 173 115	305 150 268 149 241 223 2, 1 104 171 133	7 12 8 12 9 9 9 12 11 16	6 8 9 10 11 12 0 1 2	222 203 187 249 224 228 7, 155 461 109	204 213 186 259 228 215 3, 1 153 466 86	8 10 11 10 10 10 6 13	0 1 2 3 4 5 7 8 9	204 447 187 459 134 379 341 210 273 7,	196 437 171 449 127 380 345 213 274 8, 1	9 6 9 7 13 7 8 10 9
0 1 2 3 4 5 6 7 8	229 165 306 230 377 192 336 159 239	209 196 312 242 367 208 339 148 246	8 10 7 8 6 9 7 10 8	4 5 6 7 8 1 3 4	212 139 238 104 199 6, 1 224 207 161	216 126 225 88 177 3, 1 221 211 151	9 13 9 17 11 9 10 8	3 5 7 8 9 11 12 0	490 479 472 132 374 251 162 7, 291	493 465 482 145 364 269 172 4, 1 287	6 6 14 7 10 15 7	0 2 3 4 5 6 7 8	262 221 169 190 172 183 115 239 7,	256 216 170 192 165 198 121 221 9, 1	8 9 11 10 11 11 17 9
9 10 11 12	194 201 141 217	201 204 143 177	10 10 13 10	5 0 1	199 6, 1 144 167	184 4, 1 152 146	10 14 11	2 3 4 5	238 107 238 203	226 119 220 198	8 15 8 9	1 2 3 4	275 107 342 127	235 128 348 135	8 16 7 15

-

10Fo,	, 10F	c, 105	Sig(Fo)	fo:	r C ₁₅ F	H ₂₄ InN-	₃ 0 ₆ x /	0.9H2	0	9	90-39		Pa	age 11		
			ce 10F					* fo	or Ins	signif	icant					
1		Fc				FC			kFo	Fc	Sig	1	kFo	Fc	Sig	
		9, 1	-		8,	0, 1		0	271	280	8	4	188	172	11	
5	336		8	0		332	8	2	214	216	10	5	132	146	15	
6	147	139	13	2	238	235		4	158	148	12	6	147	165	14	
7	325	304	8	4	146	141	14		8,	3, 1			8,	5, 1		
	7.	10, 1			8,	1, 1		1	430	428	7	1	472	462	7	
0		210	10	1		438	7	3	406	403	7	3	359	376	8	
2		223	9		426		7	4	176	172	12	4	155	137	12	
3	124		15	4	124	113	15	. 5	409	407	7	5	307	302	9	
- 4	190		11	5		432	8	6	169	167	13		8,	6, 1		
	7.	11, 1		6	133	136	15		8,	4, 1		0	106	121	17	
1		197	10	7		416		0	173	168	11	2	127	110	15	
2		116	16	•			-	2	149	148	13	3	131	151	16	

Table	

. Final Atomic Coordinates $(x10^4, x10^5$ for In) and B_{iso} (Å²) with e.s.d.'s in parantheses.

	×	У	z	B _{iso}	occ.
			041004 00	2 22 (1)	
In			.24128(2)		
Nl			.3352 (2)		
C2	.4055 (10)	.3208 (4)			
C3	.3293 (9)	.3803 (3)	.2506 (4)		
N4	.2424 (9)	.3326 (3)	.1844 (3)		
C5	.3979 (10)	.2829 (4)	.1404 (3)	2.8 (3)	
C6	.3327 (10)	.1905 (4)	.1267 (3)	2.4 (3)	
N7	.2561 (8)	.1476 (3)	.1977 (3)	2.1 (2)	
C8	.4130 (8)	.1368 (3)	.2581 (4)	2.8 (3)	
C9	.3460 (10)	.1660 (4)	.3372 (3)	2.6 (3)	
C10	.1413 (8)	.2738 (4)	.4072 (3)	3.1 (3)	
C11	.2571 (10)	.2580 (6)	.4806 (3)	5.4 (4)	
C12	0663 (9)	.2297 (4)	.4061 (3)	3.3 (3)	
C13	.1216 (10)	.3898 (4)	.1330 (4)	3.1 (3)	
C14	.2232 (14)	.4733 (5)	.1094 (5)	5.2 (4)	
C15	0894 (12)	.4056 (5)	.1677 (4)	3.2 (3)	
C16	.1428 (10)	.0666 (4)	.1806 (3)	2.9 (3)	
C17	.2519 (13)	.0053 (5)	.1284 (5)	4.6 (4)	
C18	0712 (13)	.0859 (5)	.1550 (4)	3.5 (3)	
01	1403 (6)	.2093 (3)			
02	1518 (7)	.2189 (3)	.4671 (2)	5.1 (3)	
03	1515 (6)	.3510 (3)			
04			.1449 (3)	4.6 (3)	
05			.1689 (2)		
06	· · ·		.1246 (4)		
OW1			0069 (10)		0.5
OW2			.0005 (48)		
	••••••	· • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • •	

 \boldsymbol{B}_{iso} is the mean of the principal axes of the thermal ellipsoid.

In-N(1)	2.258(4)	C(10)-C(11)	1.512(8)			
In-N(4)	2.254(5)	C(10)-C(12)	1.547(8)			
In-N(7)	2.270(5)	C(12)-O(1)	1.286(7)			
In-0(1)	2.101(4)	C(12)-O(2)	1.215(7)			
In-0(3)	2.094(4)	C(13)-C(14)	1.522(11)			
In-0(5)	2.094(4)	C(13)-C(15)	1.552(10)			
N(1)-C(2)	1.489(8)	C(15)-O(3)	1.288(9)			
N(1) - C(9)	1.491(8)	C(15)-O(4)	1.214(9)			
N(1) - C(10)	1.498(7)	C(16)-C(17)	1.503(11)			
C(2)-C(3)	1.528(9)	C(16)-C(18)	1.526(11)			
C(3)-N(4)	1.486(8)	C(18)-O(5)	1.296(10)			
N(4)-C(5)	1.504(8)	C(18)-O(6)	1.211(9)			
N(4)-C(13)	1.496(8)	O(4)OW(2)(i)	2.65(8)			
C(5)-C(6)	1.520(9)	O(4)OW(2)(ii)	2.84(6)			
C(6)-N(7)	1.491(8)	O(6)OW(1)(i)	2.752(17)			
N(7)-C(8)	1.492(8)	O(6)OW(1)(iii)	2.749(17)			
N(7)-C(16)	1.499(8)	OW(1)-OW(1)(iv)	1.20(3)			
C(8)-C(9)	1.514(10)	OW(2) - OW(2)(v)	0.92(14)			
Symmetry codes:						
(i) x-1	, y, z	(iv) x, -	y, −z			
(ii) x-1	, -y+1, -z	(v) x, -y+	1, - z			
(iii) x-1	, -y, -z					

Table . Bond angles (°).

· .			
N(1) - In - N(4)	79.7(2)	C(5) - C(6) - N(7)	113.0(5)
N(1) - In - N(7)	79.7(2)	In-N(7)-C(6)	102.7(3)
N(1) - In - O(1)	77.7(1)	In-N(7)-C(8)	108.6(4)
N(1) - In - O(3)	117.3(2)	In-N(7)-C(16)	105.4(4)
N(1) - In - O(5)	147.7(2)	C(6) - N(7) - C(8)	113.0(5)
N(4) - In - N(7)	79.3(2)	C(6) - N(7) - C(16)	112.7(5)
N(4) - In - O(1)	148.0(2)	C(8) - N(7) - C(16)	113.5(4)
N(4) - In - O(3)	77.0(2)	N(7) - C(8) - C(9)	113.4(5)
N(4) - In - O(5)	117.0(2)	N(1) - C(9) - C(8)	111.9(5)
N(7) - In - O(1)	118.1(2)	N(1) - C(10) - C(11)	114.1(5)
N(7) - In - O(3)	147.3(2)	N(1) - C(10) - C(12)	110.9(4)
N(7) - In - O(5)	77.0(2)	C(11)-C(10)-C(12)	113.3(5)
O(1) - In - O(3)	93.6(2)	C(10) - C(12) - O(1)	117.7(5)
O(1)-In-O(5)	93.9(2)	C(10) - C(12) - O(2)	118.2(5)
O(3)-In-O(5)	94.1(2)	O(1) - C(12) - O(2)	124.1(6)
In-N(1)-C(2)	109.9(3)	N(4) - C(13) - C(14)	115.4(6)
In-N(1)-C(9)	102.8(3)	N(4)-C(13)-C(15)	110.6(5)
In-N(1)-C(10)	105.5(3)	C(14)-C(13)-C(15)	112.0(6)
C(2)-N(1)-C(9)	112.1(4)	C(13)-C(15)-O(3)	116.9(6)
C(2) - N(1) - C(10)	113.6(5)	C(13)-C(15)-O(4)	119.4(7)
C(9)-N(1)-C(10)	112.2(4)	O(3)-C(15)-O(4)	123.6(7)
N(1)-C(2)-C(3)	112.1(5)	N(7) - C(16) - C(17)	114.1(6)
C(2)-C(3)-N(4)	112.8(4)	N(7) - C(16) - C(18)	111.4(5)
In - N(4) - C(3)	103.0(4)	C(17)-C(16)-C(18)	113.8(6)
In - N(4) - C(5)	110.5(3)	C(16)-C(18)-O(5)	118.0(6)
In-N(4)-C(13)	106.4(4)	C(16)-C(18)-O(6)	117.0(7)
C(3) - N(4) - C(5)	112.3(5)	O(5)-C(18)-O(6)	125.0(8)
C(3)-N(4)-C(13)	112.0(4)	In-0(1)-C(12)	117.8(4)
C(5)-N(4)-C(13)	112.0(5)	In-O(3)-C(15)	118.8(4)
N(4)-C(5)-C(6)	111.6(5)	In-0(5)-C(18)	117.5(5)

.

-

N(1) - In - N(4)	79.72(18)	C(5) - C(6) - N(7)	113.0(5)
N(1) - In - N(7)	79.74(18)	In - N(7) - C(6)	102.7(3)
N(1) - In - O(1)	77.70(15)	In-N(7)-C(8)	108.6(4)
N(1) - In - O(3)	117.31(18)	In-N(7)-C(16)	105.4(4)
N(1) - In - O(5)	147.70(18)	C(6)-N(7)-C(8)	113.0(5)
N(4) - In - N(7)	79.31(18)	C(6)-N(7)-C(16)	112.7(5)
N(4) - In - O(1)	148.03(17)	C(8) - N(7) - C(16)	113.5(4)
N(4) - In - O(3)	77.03(18)	N(7)-C(8)-C(9)	113.4(5)
N(4) - In - O(5)	116.98(18)	N(1) - C(9) - C(8)	111.9(5)
N(7) - In - O(1)	118.05(17)	N(1) - C(10) - C(11)	114.1(5)
N(7) - In - O(3)	147.31(17)	N(1) - C(10) - C(12)	110.9(4)
N(7) - In - O(5)	76.95(19)	C(11)-C(10)-C(12)	113.3(5)
O(1)-In-O(3)	93.64(17)	C(10) - C(12) - O(1)	117.7(5)
O(1)-In-O(5)	93.90(17)	C(10) - C(12) - O(2)	118.2(5)
O(3)-In-O(5)	94.11(18)	O(1) - C(12) - O(2)	124.1(6)
In-N(1)-C(2)	109.9(3)	N(4) - C(13) - C(14)	115.4(6)
In-N(1)-C(9)	102.8(3)	N(4) - C(13) - C(15)	110.6(5)
In-N(1)-C(10)	105.5(3)	C(14)-C(13)-C(15)	112.0(6)
C(2) - N(1) - C(9)	112.1(4)	C(13)-C(15)-O(3)	116.9(6)
C(2) - N(1) - C(10)	113.6(5)	C(13)-C(15)-O(4)	119.4(7)
$C(9) \div N(1) - C(10)$	112.2(4)	O(3)-C(15)-O(4)	123.6(7)
N(1) - C(2) - C(3)	112.1(5)	N(7)-C(16)-C(17)	114.1(6)
C(2)-C(3)-N(4)	112.8(4)	N(7) - C(16) - C(18)	111.4(5)
In-N(4)-C(3)	103.0(4)	C(17)-C(16)-C(18)	113.8(6)
In-N(4)-C(5)	110.5(3)	C(16)-C(18)-O(5)	118.0(6)
In-N(4)-C(13)	106.4(4)	C(16) - C(18) - O(6)	117.0(7)
C(3)-N(4)-C(5)	112.3(5)	O(5)-C(18)-O(6)	125.0(8)
C(3)-N(4)-C(13)	112.0(4)	In-O(1)-C(12)	117.8(4)
C(5)-N(4)-C(13)	112.0(5)	In-0(3)-C(15)	118.8(4)
N(4) - C(5) - C(6)	111.6(5)	In-0(5)-C(18)	117.5(5)

