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ABSTRACT 

The aim of this project was to investigate a possible link between environmental phosphorus 

status and the root surface phosphatase activities of three species of emergent macrophytes, with a 

view to assessing their potential for use as "biondicators". c / 

Analyses of water phosphorus concentrations and rates of surface phosphatase activities of 

Juncus ejfusus, Phragmites australis and Typha latifolia were carried out on samples from Bakethin 

Reservoir, Northumberland and Durham University Botanic Garden. Differences were found in water 

phosphorus concentrations at the sites. Water from Bakethin Reservoir was found to have lower levels 

of P than water from the Botanic Garden. Interspecific differences at p = 0.0002 were discovered in 

rates of phosphatase activity between Juncus, Phragmites and Typha. Juncus and Typha were found to 

exhibit significantly lower rates of phosphatase activity at the Botanic Garden than at Bakethin 

reservoir (p = 0.026 for Juncus, p = 0.037 for Typha). High rates of phosphatase activity in Juncus 

and Typha at Bakethin Reservoir conesponded with low concentrations of environmental phosphorus, 

so it is possible that root surface phosphatases of both species are inducible in conditions of P-

limitation. Juncus and Typha may therefore have the potential for use as bioindicators of 

environmental phosphorus status. 

Several practical problems were encountered, and may be of general significance. Rates of 

phosphatase activity declined rapidly in 100 | i M pNPP assays. As a consequence, assays were 

terminated after 10 min. It was also observed that roots removed after assays had been terminated 

often showed a yellow coloration, presumably due to the retention of pNP. The accuracy of the pNPP 

assay relies upon all the pNP produced by the hydrolysis of pNPP being released into solution. The 

apparent retention of pNP by roots therefore brings the use of the pNPP assay, as a method for 

determining rates of phosphatase activity in eukaryotes, under scrutiny. One preliminary experiment 

carried out showed that more pNP was retained by roots under conditions of low pH. 
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ABBREVIATIONS 

°C degrees Celsius 

mg milligramme 

^g microgramme 

1 litre 

ml millilitre 

m metre 

ha hectares 

h hour 

min minutes 

m M millimolar 

HM micromolar 

^mol micromoles 

P phosphorus 

Pi orthophosphate 

FRP titrable reactive phosphorus 

TFP total filtrable phosphorus 

FOP filtrable organic phosphorus 

PMEase phosphomonoesterase 

pNPP /jora-nitrophenylphosphate 

pNP />ara-nitrophenol 

BCIP 5-bromo-4-chloro-3-indolyl phosphate 

CAPS 3 -(cyclohexamino)-1 -propanesulphonic acid 

DMG 3,3-dimethyl glutaric acid 

EDTA ethylenediamine-tetra-acetic acid 

HEPES N-2-hydroxymethylpiperazine-N'-2-ethanesulphonic acid 

pKa dissociation constant 

p probability 

S standard deviation 
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CHAPTER 1 INTRODUCTION 



1.1 Phosphorus 

1.11 Occurrence and forms of phosphorus 

Phosphorus (P) is the eleventh most abundant element in the earths crust. Its average 

concenfration in the environment has been estimated as 0.1% by weight, which results in it being 

classed geochemically as a trace element. Phosphorus occurs in nature almost exclusively as 

phosphate"(Holtan et al, 1988). Van Wazer (1973) described phosphates as "chemical structures in 

which a phosphorus atom is more or less tetrahedrally surrounded by four oxygen atoms". Phosphates 

can be divided into two broad categories : inorganic and organic. In inorganic forms one to three of 

the hydrogen ions of the phosphoric acid is replaced by metallic cations. In organic forms one or more 

of the hydrogen ions is eliminated in an ester linkage. The remaining cations are replaced in part or 

completely by metallic cations. 

1.12 Phosphorus in soil 

The total content of phosphorus in soils is relatively low, most soils containing between 0.022 

and 0.083 % P. Areas prone to prolonged leaching can have P contents lower than these values 

however. P is released in a soluble form into soils from the weathering of primary P bearing minerals 

with additions from plant residues and fertilisers. A large proportion of this soluble P is sotbed to soil 

particles or incorporated into soil organic matter (Holtan et al., 1988). 

Most of the phosphorus sorption capacity in soil is due to the soils finest fiBctions, as the 

active surface area decreases/with increasing particle size. Because of this there is a positive p^r i\c f n . 

correlation between P sorption and clay content (Holtan et al, 1988). This correlation is also due to 

the iron and aluminium on the surface of clay minerals (Stuanes, 1982). Humus is not thought to 

retain much P by itself in soils since it is normally negatively charged. In association with cations 

such as Fe2+, AI^+ and Ca^^ however, i t is able to sorb significant amounts (Wild, 1950). Organic 

matter can also act by blocking sorption sites on inorganic particles (Sample et al., 1980), so the 

importance of organic matter on phosphate absorption is ambiguous. 

A 
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The pH of soil strongly infiuences the chemical reactivity of soil constituents causing a 

negative correlation between phosphate sorption and pH. Soils where only the pH differs are rare 

however and differences in soil properties are likely to override the effects of pH (Stuanes, 1982). 

Generally phosphate sorption decreases with decreasing redox potential due to the transformation of 

Fê "̂  to Fe^* (Holtan et al, 1988). The amount of P sorbed by soils therefore depends on many factors 

including geology, soil composition, particle size, pH, redox potential and precipitation (leaching 

effects) (Holtan et al., 1988). 

1.13 Phosphorus in water 

Natural phosphorus fractions are defined by Rigler (1973). Total P is divided into particulate 

P (PP) with particles larger than 0.45 nm, and filtrable P (FP) with particles smaller than 0.45 nm. FP 

is subdivided into filfrable reactive P (FRP) and filtrable uiu-eactive P (FUP). Particulate P consists of 

minerals, amorphous precipitates, sorbed reaction products and organic particles. Filtrable P is 

normally considered to be orthophosphate, inorganic polyphosphates and organic P compounds. 

Both organic and inorganic forms of phosphorus are involved in transformations between the 

solid and liquid phases, either by the release of water-soluble P from the solid phase, or the uptake of 

dissolved P by the solid phase (Holtan et al., 1988). 

1.14 Phosphorus in sediment 

The source of sediment phosphorus is partly settled particulate P of allochthonous or 

autochthonous origin, and partly dissolved phosphate sorbed to the surface sediments and accumulated 

in the interstitial water (Holtan et al., 1988). The P content of sediment depends on many factors: 

sediment composition and grain size, pH, redox potential (all determining sorption potential) and the 

P content of the lake water. As sediments vary so much in composition there is never a consistent 

relationship between the P content of water and P content of sediment. Lake sediments generally act 

as sinks for P, especially i f there are high P levels in the water. I f the P level of the water was to 

decrease suddenly however previously soibed P may be released back into solution and into the lake, 

hence the sediments would act as a source of? (Holtan et al., 1988). This effect means that the 

13 



amount of P in sediments is also related to the history of the nutrient status of the water body. No 

direct correlation can therefore be made between water and sediment phosphorus levels. 

1.15 Methods of assaying sediment phosphorus concentration 

There are several methods of assaying the phosphorus content of sediment, mostly based on 

sequential chemical exfractions in which P is selectively removed from different compounds in the 

sediments. In the 1970's researchers became more interested in the algal availability of sediment P and 

methods were designed to measure this. As yet however no general methods have been developed or 

accepted for describing the quality of P in sediments, mainly due to the fact that the composition of 

sediments is highly variable so no scheme can be used generally. Comparisons between different 

sequential extraction schemes have shown that the results are heavily biased towards the method used 

(PetterssoneM/., 1988). 

1.16 Biologically available phosphorus 

Schaffner and Oglesby (1978) considered total phosphorus to include some or all of the 

following fractions: crystalline, occluded, adsorbed, particulate organic, filtrable organic and filtiable 

inorganic phosphorus. They defined "biologically available phosphorus" as filtrable reactive 

(inorganic) P, filti-able imreactive (organic) P and labile P. Filtrable reactive P is considered to be 

entirely biologically available. Filtrable unreactive P is considered to be available by enzymatic 

hydrolysis (e.g. phosphatase enzymes). Labile P associated with soil particles may dissolve into an 

aqueous solution (desorption). 

1.17 Function of phosphorus in higher plants 

Phosphorus in the form of phosphates is removed from soils and remains in this oxidised 

state within higher plants. Phosphates are extremely important to plants. They are present in many 

different forms both organic and inorganic, and cany out many diverse functions. Organic forms may 

be broadly classified as storage compounds, sUiictural compounds or compounds of intermediate 

metabolism. 
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Phytin is one example of a storage compound. It is present within seeds and hydrolysed 

enzymatically during germination liberating inorganic phosphorus (Pj) for growth. Phospholipids also 

act as storage material in seeds and growing plants, as well as being involved in metabolism and 

important constituents of cell membranes (Mazliak, 1973). Nucleic acids are compounds of high 

molecular weight containing phosphoric acid. They are present in genetic material (DNA). In plant 

metabolism phosphorus plays a direct role as a carrier of energy through high energy phosphate 

bonds. Adenosine triphosphate (ATP) is the most important energy carrier. Phosphorus also plays an 

important part in photosynthesis. In the initial reaction light energy is trapped and water molecules 

split in the presence of P j , Adenosine diphosphate (ADP) and the coenzymeiNAPP (Slatter, 1989). !\j ip 

Phosphorus is so essential to plants that i f the level of P in the environment is low, the rate of 

metabolic processes may be severely limited. Phosphorus is therefore a major factor limiting biomass 

production. It is classed as a macronutrient. 

1.18 Environmental significance of phosphorus concentration 

As phosphorus is such an important limiting factor natural ecosystems are "finely tuned" to 

the level of phosphorus in the environment. Even small changes in phosphorus levels can bring about 

significant changes in ecosystems including the introduction of new species, loss of original species 

and alteration of species abundances. Man has disrupted the natural enviroiunent by extensively 

mining phosphate deposits that took millions of years to accumulate, and making them available for 

the production of agricultural fertilisers facilitating rapid plant growth, and other domestic and 

industrial products e.g. detergents. Much of this phosphate eventually finds its way into ecosystems, 

particularly aquatic ones, causing their alteration and disruption (Holtan et al., 1988). Phosphorus is 

now a major anthropogenic pollutant. 
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1.2 Phosphatases 

1.21 Biological importance 

Phosphatases are enzymes which promote the degradation of complex phosphorus 

compomids into orthophosphate (Pj) and an organic moiety (Jansson et al., 1988). They have been 

observed in bacteria, algae, fungi, bryophytes and higher plants (Suida, 1984; Press and Lee, 1983). 

PMEases are the most researched group of phosphatases. They can catalyse the hydrolysis of a rich 

variety of phosphomonoesters. Similar but functionally different enzymes are the phosphodiesters 

(Jansson et al., 1988). PMEases were studied in this project. They have been referred to as 

"phosphatases" for reasons of simplicity. 

Phosphatases are extremely important in nature as they hydrolyse filtrable unreactive P into 

filtrable reactive P (Pj), which can be utilised by organisms. Phosphatases therefore increase the level 

of P in the environment which is biologically available, enabling organisms to survive in conditions of 

low environmental Pj. 

1.22 Alkaline and acid phosphatases 

Phosphatases typically have maximum hydrolysis capacity at different pH values, hence the 

division in to alkaline and acid phosphatases. Alkaline phosphatases have pH optima above pH 7, 

most commonly between pH 9 and pH 11. Acid phosphatases express their maximum activity below 

pH 7, generally between pH 4 and pH 6. Both groups of phosphatase enzymes are broad in specificity 

hydrolysing a wide range of substrates (Jansson et al., 1988). 

Researchers have commented on the contrast in many organisms between the high and low 

pH optima found experimentally, and the pH conditions in which they live in the field. No clear 

explanation for this has been provided however. 

1.23 Constitutive and inducible phosphatases 

Inducible enzymes are those whose synthesis starts in the presence of suitable substrates. 

Constitutive enzymes are produced independently of an activator i.e. they are more or less constantly 

synthesised within the cell (Jansson et al., 1988). Repression occurs when a compound, often an end 
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product of the enzyme-catalysed reaction, turns off the enzyme synthesis. I f there is a depletion of the 

repressor then derepression may occur and the enzyme wil l be synthesised again. It is thought that 

high levels of inorganic phosphate may often repress phosphatase synthesis (Cembella et al., 1984). 

While alkaline phosphatases tend to occur as extracellular or surface enzymes (Flynn et al., 

1986), acid phosphatases have also been located within cells (intracellular). Wynne (1977) found acid 

phosphatase within cells of Peridinium cinctum. As a general rule, extracellular and surface 

phosphatases (mostly alkaline phosphatases) are regarded as being inducible, produced in conditions 

of P-limitation. They play an important role in the P nutrition of organisms. Intracellular 

phosphatases (mostly acid phosphatases) are regarded as constitutive, with the fimction of serving the 

internal P metabolism (Jansson et al., 1988). 

1.24 Phosphatase activity in bacteria 

Bacteria are the most important contributors to environmental phosphatase activity. Most 

investigations on PMEase structure and fimction have been done on E. coli (McComb et al., 1979). 

Studies on marine bacteria have shown that PMEase is located in the periplasmic space. 

1.25 Phosphatase activity in cyanobacteria and algae 

Phosphatase activity has been found in all major groups and numerous species of 

cyanobacteria and algae (Healey, 1982). A great majority of cyanobacteria reported possess alkaline 

phosphatase activity, they have probably received the most detailed study (Doonan and Jensen, 1980; 

Healey 1982). It has been shown that cyanobacteria with trichomes ending in multicellular hairs 

nearly always have high phosphatase activity associated with the structures (Whitton, 1981). 

Eukaiyotic algae also show predominantly alkaline phosphatase activity which is particularly marked 

in hair-forming species (Whitton, 1988). Acid phosphatases have been reported in a few species of 

algae, although predominantly those living in neutral or acidic waters e.g. Chlamydomonas 

acidophila (Boavida and Heath, 1986). Phosphatase activity has been shown to be inducible in all 

hair-forming species of cyanobacteria showing activity (Whitton, 1988), and most diatoms and green 

algae showing activity (Fitzgerald and Nelson, 1966; Hino, 1989). 
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Phosphatase activity has been located on the cell surface and in cell membranes (Flynn et al., 

1986). The release of extracellular enzymes in algal cultures has also been reported, (Whitton et al., 

1991). 

1.26 Phosphatase activity in bryophytes 

Little is known about phosphatase activity in bryophytes. Studies have revealed however that 

acid phosphatases are predominant. Press and Lee (1983) showed that acid phosphatase activity was 

detectable in all eleven Sphagnum species, and that the level of activity was related to their phosphate 

nutrient status i.e. activity was inducible. A l - Shehri (1992) observed acid phosphatase activity in all 

fractions (rhizoids, protonema, and leafy shoots) of the moss Hydrogonium fontamm. Activity was 

highest in the rhizoids. Some leafy shoots collected in the field had low phosphorus contents and 

exhibited high levels of phosphatase activity, while other shoots had high P contents and exhibited 

low rates of phosphatase activity. This indicates that phosphatase activity of the moss is inducible in 

conditions of P-deficiency. 

1.27 Phosphatase activity in higher plants 

It has been reported that most higher plants while rich in non-specific and specific acid 

phosphatases do not contain appreciable amounts of alkaline phosphatases (McComb et al., 1979; 

Lee, 1988; Gabbrielli et al., 1989). Acid phosphatase activity has been reported in a number of plant 

tissues including roots. Acid phosphatases occur intracellularly, are localised in apical meristems and 

outer surface cells (surface phosphatases) (Shaykh and Roberts, 1974) and are more rarely released 

extracellularly (Goldstein et al., 1988). Extracellular alkaline phosphatases are synthesised by some 

species of higher plants. Bieleski (1974) observed extracellular alkaline phosphatases in P-deficient 

Spirodela. 

1.28 Phosphatase activity as a bioindicator for the phosphorus status of the environment 

As phosphatase enzymes in some organisms are inducible, their production being derepressed 

under conditions of moderate P limitation, it should be possible to use the rate of phosphatase activity 

as a guide to the status of phosphorus in the environment i.e. as a bioindicator. This method is easiest 

18 



to apply to assess the P status of aquatic environments, by analysing the phosphatase activity of 

various species of filamentous algae (Whitton, 1991). The use of freshwater algae in this way was first 

suggested by Fitzgerald and Nelson (1966) who found that cultures of three green algae, four 

cyanobacteria and two diatoms all showed inducible alkaline phosphatase activity. Other researchers 

who have suggested that phosphatase activity can be used as an indicator of P status in natural 

populations include: Reichardt et al. (1967), Healey (1978), and Rivkin and Swift (1982), cited by 

Whitton (1991). 

Acid phosphatases have been shown to be inducible in Euglena gracilis (Price, 1962) and 

Chlamydomonas acidophila (Boavida and Heath, 1986). Experiments have been carried out on 

extracellular alkaline phosphatases of some species of aquatic higher plants including Spirodela 

oligoirhiza (Beleski, 1974). It was shown that the phosphatases are inducible as plants grown in 

media without phosphate showed an increase in activity. 

The research carried out has therefore shown that provided suitable precautions are taken, 

measurement of phosphatase activity fi^om a wide variety of organisms provides a rapid and robust 

means of assessing the phosphorus status of aquatic environments (Whitton, 1991). 

In comparison, the possibility of using higher plant phosphatases as bioindicators for soil and 

sediment phosphorus status has been little investigated. Previous studies have concentrated on the role 

of extracellular phosphatases in the P nutrition of a few species of higher plants. It has been shown 

that extracellular phosphatases are inducible in condifions of moderate P limitation in wheat 

(McLachlan, 1980) and tomatoes (Boutin et al, 1981). Ueki and Sato (1971) demonsti:ated that 

omitting Pi fiom the medium resulted in an increase in acid phosphatases excreted by tobacco plants. 

Goldstein et al. (1988) showed that under conditions of severe P-starvation acid phosphatases are 

released extracellularly by tomato plants. These extracellular phosphatases have the potential to be 

used as bioindicators. 

Little research has been done on the effects of P limitation upon the activity of surface and 

intracellular acid phosphatases of higher plants. Woolhouse (1969) found that the phosphatase activity 

of cell walls fxomAgrostis tenuis was inducible. Dracup et al. (1984) showed that the cell wall bound 

phosphatases of the roots of Trifolium subterraneum increased in activity with imposed P- deficiency. 

Goldstein et al. (1988) demonstrated that Pi-starved tomato plants produced six-times the amount of 
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phosphatase of control plants in P-sufficient conditions. BCIP staining revealed that increased activity 

was primarily in root surface phosphatases. Surface-bound acid phosphatases of some species of 

higher plants may therefore have the potential to be used as bioindicators of P status. 

Intracellular acid phosphatase activity is generally thought to be constitutive, with the main 

function of serving the internal P metabolism (Jansson et al., 1988). Goldstein et al. (1988) 

demonstrated that although rates of activity of surface and extracellular phosphatases in P-starved 

tomato plants increased, intracellular phosphatase activity remained the same. Research has therefore 

indicated that intracellular phosphatases of higher plants are not good bioindicators for environmental 

phosphorus status. 

3 Aims 

The aim of this project was to investigate the surface phosphatase activities of three species of higher 

plants: Juncus effusus, Phragmites australis and Typha latifolia. By collecting plant material from 

two different sites, Bakethin Reservoir, Northumberland, and Durham University Botanic Garden, and 

carrying out chemical analysis on water samples collected from the sites, it was hoped to assess 

whether any recorded differences in phosphatase activity of the species could be related to differences 

in water phosphorus levels; and thus determine whether any of the species would be suitable to use as 

"bioindicators" of environmental phosphorus status. 
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CHAPTER 2 MATERIALS AND METHODS 



2.1 Computing and statistical treatments 

Two computer systems were used for study. Statistical analysis was carried out on Microsoft 

Excel. Graphic output on Cricket Graph, Word for Windows. 

2.2 Sample collection 

Small plants or parts of plants were dug up to obtain root material. The plants were then 

immediately transfened to polythene bags which were tied to retain moisture and labelled. The material 

was kept cool by immersing it in an ice bucket on the return journey from Bakethin Reservoir and then 

immediately transferring it to a 4 ^C cool room. The root material was kept for no longer than 24 hours. 

Water samples were collected in labelled, acid washed, polypropylene bottles. They were returned 

to the laboratory in a box filled with ice. Phosphorus analysis was carried out on them inunediately. 

2.3 Laboratory analytical methods 

2.31 p H 

pH measurements were carried out using an Ingold combination WTW E50 Electrode and EIL 

Meter (Model 7050). The probe was calibrated with BDH standard buffer solutions, prepared with Mill iQ 

water. 

2.32 Mass determination 

Mass was measured on an A&B Company Ltd electronic analytical balance (model ER-182A), to 

5 decimal places. A l l references to weight refer to mass. 
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2.33 Colorimetric analysis 

Colorimetric analysis was carried out using a Schimadzu Digital Double-Beam 

Spectrophotometer (model UV-15G-02). Glass cuvettes with a path length of 1.0 cm were used for all 

readings of phosphatase activity (pNPP substrate) at wavelength 405 nm. Glass cuvettes with a path 

length of 4.0 cm were used for phosphorus readings at 882 nm. 

2.34 Light microscopy 

In the laboratory, material was examined using a Nikon type 109 Fluorphot microscope filtered 

with a Nikon micrometer eyepiece. 

2.4 Media 

2.41 Stock Solutions 

A l l stocks were BDH Analar grade stock prepared in Mil l iQ water and kept in the refiigerator at 

4 ''C until required. Stock solutions were renewed every three months. 

2.42 Phosphatase assay medium 

The concentrations of mineral salts in assay mediiun are presented in Table 2.1. Assay medium 

was usually made up fresh for every phosphatase assay. 
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Table 2.1 The concentration of mineral salts in assay medium 

Majo r elements 

MgS04. 7H2O 

NaHCOj 

CaClj. 2H2O 

KCl 

Salt (mg l>) 

25.0 

15.85 

35.83 

4.28 

^ M 

101.4 

188.6 

243.7 

57.38 

Stock added as Fe Chelate 

Na2-EDTA-2H20 

Salt (mg l>) 

1.67 4.17 

Microelements (Trace elements) Salt (mg I ' ) 

M n C l j . 2H2O 0.04 

CUSO4. 5H2O 0.02 

C0SO4. 7H2O 0.01 

NiS04.7H20 0.038 

ZnS04. 7H2O 0.056 

Na2Mo04 0.007 

H3BO3 0.72 

HM 

2.28 

0.078 

0.035 

0.03 

0.019 

0.028 

11.56 
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2.43 p H buffers 

pH buffers were prepared in assay medium to have a final concentration of 50 mM. A list of the 

buffers is shown in Table 2.2. They were kept in the refiigerator at 4 until required. They were 

removed from the refiigerator several hours before each assay so that they would warm to room 

temperature. They were then checked with the pH meter to ensure that they were accurate. 

Table 2.2 A list of pH buffers 

p H buffer buffering capacity pKa at 20 

3.0 DMG - Na OH 3.2 - 7.6 3.66 + 6.20 

4.0 DMG - Na OH 3.2-7.6 3.66 + 6.20 

4.5 DMG - Na OH 3.2-7.6 3.66 +6.20 

5.0 DMG - Na OH 3.2 - 7.6 3.66 + 6.20 

5.5 DMG - Na OH 3.2-7.6 3.66 + 6.20 

6.0 DMG - Na OH 3.2 - 7.6 3.66 + 6.20 

6.5 DMG - Na OH 3.2-7.6 3.66 + 6.20 

7.0 HEPES - Na OH 6.8 - 8.2 7.50 

7.5 HEPES - NaOH 6.8 - 8.2 7.50 

8.0 HEPES - Na OH 6.8 - 8.2 7.50 

9.0 glycine - Na OH 8.6 - 10.6 8.0 

10.0 glycine - Na OH 8.6 -10.6 8.0 

11.0 CAPS - Na OH 9.8-11.1 10.40 

A l l the chemicals used in the buffers were supplied by British Drug House Ltd (BDH), except 

HEPES which was supplied by Sigma Chemical Co, USA. 
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2.44 p-nitrophenyl phosphate disodium (pNPP) substrate solution 

100 (iM pNPP solution in assay medium was made up fresh for every phosphatase assay. 

2.5 Cleaning of glassware and utensils 

A l l glass vials were soaked in tap water with 2% Decon detergent overnight. They were then 

rinsed three times in tap water and three times in distilled water prior to drying at 100 °C. A l l volumetric 

glassware used for phosphorus analysis was soaked in 4% nitric acid for 20 min, then rinsed three times 

in tap water and three times in distilled water. It was dried at room temperature. Plastics were also soaked 

in 2% Decon overnight, rinsed, and then dried at 40 ̂ C. 

2.6 Water phosphorus analysis 

Water for phosphorus analysis was filtered immediately on arrival back at the laboratory through 

a Whatman GF/F filter, washed with Mil l iQ water. Phosphorus analysis was performed the same day 

using the method proposed by Eisemeich et al. (1975). 

2.7 Root Staining 

Localisation of PMEase activity was carried out using 5-bromo-4-chloro-3-indolyI phosphate 

(BCIP) as an organic phosphorus substrate (Coston and Holt, 1958; Holt and Withers, 1958). Roots were 

washed three times in assay medium and then cut into 1 cm lengths. One piece of root was put in to each 

labelled universal bottle and immersed in 1 mM BCIP in assay medium, at pH 5.0. The bottles were then 

placed in a 32 °C water bath for 20 minutes and shaken firequently. After this time the roots were 
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removed, washed three times in distilled water and analysed under the microscope. Shaking was necessary 

throughout the staining procedure as oxygen is required to form the insoluble blue indigoid. 

2.8 The phosphatase assay 

2.81 Preparation of root material 

Plant material was removed fiom the 4 ^C cold room and lengths of root were cut into sterilised 

plastic petri dishes. The roots were then thoroughly washed in assay medium to remove any dirt. This was 

done very carefully to ensure that the roots were not damaged. 

2.82 Assay procedure for acid phosphatase activity 

1.5 ml pH 5.0 solution (DMG and NaOH) and 1.4 ml assay mediiun were pipetted into snap cap 

glass vials. 1 cm lengths of root from one particular species were then added to the vials. They were 

transferred to a shaking tray over a water bath at 25 '̂C and left to equilibriate for 10 min. Assays were 

initiated by the addition of 0.1 ml of 100 nM pNPP substi-ate. Assays were run for varying lengths of 

time. Termination of the assay was achieved by the addition of 0.25 ml 5 M NaOH. The roots were then 

immediately removed from the vials. Each assay was carried out with a minimiun of four replicates and 

two controls but frequentiy ten replicates were used. The control assay had no root material. Colorimetric 

readings were taken of the contents of each vial. 

2.83 Effect of p H on phosphatase activity 

A range of pH buffers from pH 3.0 to pH I I.O were used to determine the effect of pH on 

phosphatase activity. 
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2.84 Measurement of dry weights 

Glass vials were labelled, put in the 100 ^C oven overnight and then weighed on the fine balance. 

After the assay was terminated roots were transferred fi^om the assay vials to the diy weight bottles and 

they were returned to the oven overnight. The following day the bottles were removed from the oven and 

placed in a dessiaitor. The bottles were then each reweighed. The dry weight of each root was obtained by <̂ (̂̂  

subtracting the initial weight of the bottle from the final weight (of the bottle and root). 

2.85 Calculation of phosphatase activity 

The phosphatase activity of each root, in nmol per gramme dry weight per hour, was calculated 

using the equation shown below. 

Reading (on spectrophotometer) - Control X 0.0032 X 60 

0.0158 Dry weight (g) assay length (min) 
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CHAPTER 3 FIELD LOCATIONS AND SPECIES STUDIED 



3.1 Field Locations 

3.11 Backgrmind information on Bakethin Reservoir 

Bakethin Reservoir lies 116 Km north west of Durham City, in the county of 

Northiunberland. It is the shallow feeder to Kielder Reservoir and is situated approximately 2 Km 

south east of Kielder village and to the west of Kielder Water. The two reservoirs are connected by a 

dam. Bakethin Reservoir fimctions as a moderately open system with major inputs from the river 

North Tyne and Kielder Bum, and many smaller inputs including Capon Bum and Bakethin Bum. 

The output is Kielder Reservoir which is the largest man made lake in Europe. 

Bakethin Dam was originally built in the interests of conservation. The Nature Conservancy 

Council envisaged that the shallower edges of Kielder Water would make the most effective nature 

reserves, and that naturally fluctuating water levels would be favourable for the development of 

marginal vegetation and animal conuniuiities (Northern Sports Council, 1976). Bakethin Dam 

separates a shallow water upstream area with fluctuating water levels (Bakethin Reservoir) from the 

rest of Kielder Water, which is much deeper with more constant water levels. Water recreational 

activities have been directed towards the main reservoir so that Bakethin has remained quiet except 

for a few fishermen in rowing boats. Islands and lagoons have been created in an attempt to encourage 

wildlife. Bakethin Conservation Area is owned by Noithumbria Water Pic. It covers an area of 123 ha, 

approximately half of which are water surface. 

The underlying geology of the area consists mainly of Clarboniferous limestone. The water of 

Bakethin Reservoir is slightiy alkaline (pH 7.3). It is moderately nutrient poor as most of the 

catchment area consists of conifer plantations owned by the Forestry Commission, which have never 

been fertilised. Moorland vegetation also makes up a large proportion of the catchment area. The most 

important inputs of nutrients to the reservoir come from run off from agricultural land upstream, and 

outiets from Kielder sewage works. 
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Figure 3.1 Bakethin Reservoir from the disused viaduct 
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3.12 Background information on Durham University Botanic Garden 

The first botanic garden in Durham was founded in 1925 when the grounds around the 

science laboratories were laid out as an experimental garden. As the sciences expanded within the 

university however the gardens decreased in size, so it was decided in 1969 to move the garden to its 

present site at HoUingside Lane (Sayers, 1975). 

Work commenced on the new garden in 1971. It was originally divided spatially into two 

sections, a north section and a south section. The south section has since been abandoned however and 

the trees remain growing in a wilderness. The original north section at the top of HoUingside Lane has 

been developed in to the garden that we know today. It is centred around an old fi^agment of garden 

from HoUingside House (Sayers, 1975). The garden slopes towards the south west but the large 

number of trees planted (over 21,000) protect other plants from the prevailing winds. 

The underlying geology of the garden is Carboniferous sandstone (Coal Measures). The 

average pH of the soil is pH 7.5. Areas of the gardens are fertilised, so it is likely that many plants live 

in nutrient-rich conditions. 
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3.2 Plants studied 

3.21 Introduction 

Initially trial phosphatase assays were carried out on seven species of higher plants collected 

from Bakethin Reservoir: Care'binervis, Equisetum fluviatile, Glyceria fluitans, Juncus effusus, X / 
/s A 

Phalaris arundinacea, Phragmites australis and Typha latifolia. A l l seven species showed positive 

results in the assays i.e. they all exhibit surface phosphatase activity. On 19th May 1993 there was 

such heavy rainfall that the water level of Bakethin Reservoir rose over 5 m, totally submerging many 

of the aquatic pants. The water level remained high for six weeks. The study was then forced to 

concentrate on a few species of plants that could still be obtained. Juncus effusus, Phragmites australis 

and Typha latifolia were chosen as all three species are common, in abundant supply at Bakethin 

Reservoir and showed relatively high rates of surface phosphatase activity in the trial assays. Juncus 

effusus and Typha latifolia also both grow at Durham University Botanic Garden. This provided the 

opportunity to compare rates of phosphatase activity of these two species at separate localities. 

3.22 Description of the species 

Juncus effusus (soft rush) 

Height: 30 to 150 cm. A densely tufted perennial; stems stiffly erect, leafless, hairless, 

smooth, glossy; bright green, dark brown or reddish, but not shining at the base. Flowers less than 5 

mm, of greenish perianth segments; in loose or compact clusters on the sides of the stems, below the 

top. June to August. Habitat: damp, frequently acid pastures, marshes, woods. (Whitton, 1979) 

Phragmites australis (common reed) 

Height: 1.5 to 3m. A stout, erect, perennial grass with extensive creeping rhizomes growing 

in dense clumps. Leaves are less than 60 cm long and 2 cm wide, tapering to a fine point, greyish 

green, with a ring of hairs at the base. Flowers awnless, in 2 to 6 flower spikelets, less than 16 mm in 

loose, silkily hairy paricles, less than 40 cm. August to September. Habitat: swamps, shallow water. 

(Whitton, 1979) 
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Typha latifolia (bulrush) 

Height: 150 to 250 cm. A stout peremiial. Leaves linear, leathery, less than 18 mm wide. 

Flowers in a terminal spike. June to July. Habitat: margins of ponds, lakes, slow moving water. 

(Whitton, 1979) 

3.3 Location of species at the field sites 

3.31 Bakethin Reservoir 

A l l plant material was collected from the northern shore of Bakethin Reservoir, between the 

disused viaduct and the calcareous flush. Typha was collected from the marsh near the viaduct. Juncus 

and Phragmites were collected from the edge of the reservoir, below the calcareous flush. See Figures 

3.2 and 3.3. 

3.32 Botanic Garden 

No Phragmites grows at the Botanic Garden. Typha was collected from a small neglected 

pond behind the public glasshouses. Juncus was collected from the edge of CoUingwood College 

Pond, just outside the Botanic Garden. See Figures 3.4 and 3.5, 
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Figure 3.4 Juncus effusus at Collingwood College Pond 

Figure 3.5 Typha latifolia at the Botanic Garden 
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CHAPTER 4 RESULTS 



4.1 Phosphorus analysis of water 

Phosphorus analysis was carried out on water samples from Bakethin Reservoir, the pond 

behind the glasshouses at the Botanic Garden and CoUingwood College Pond. This was done in order 

to determine the P-status of the environments of the species studied. The results are shown in Table 

4.1 

Table 4.1 Results of chemical analyses of phosphorus content (^g 1 ' ) of water collected from 

Bakethin Reservoir, the Botanic Garden and CoUingwood College Pond 

Location TFP (ng I •) FRP (ng I >) ORP (j ig I ") %ORP 

Bakethin Reservoir 10.0 4.4 5.6 55.7 

Botanic Garden Pond 56.9 27.3 29.6 52.0 

CoUingwood College Pond 670.0 667.0 3.0 0.2 

4.2 Phosphatase activity assays 

4.21 Phosphatase activity of different types of roots f rom the same species 

Phosphatase assays were carried out on different types of roots from the same species to 

determine whether there was any significant difference in rates of phosphatase activity. By doing this, 

suitable types of roots exhibiting high rates of activity could be chosen for use in subsequent assays. It 

was hoped that by standardising the types of roots used, variability between the roots would be 

reduced thereby producing more accurate results. 

4.211 Juncus effusus 

Phosphatase assays were carried out on two types of root from Juncus effusus: white roots 

and brown roots (containing ferric oxides). Four replicates were used for each assay. The results are 

shown in Table 4.211 
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Table 4.211 Phosphatase activity (nmol mg ' h ' ) of different types of roots from Juncus effusus 

Type of root Mean phosphatase activity ((imol mg h ' ) Standard deviation 

White roots 0.0045 0.0003 

Brown roots 0.0045 0.0013 

Student t tests carried out on the data for Table 4.211 showed that p = 0.94, so there was no 

significant difference in rates of phosphatase activity between white roots and brown roots of Juncus 

effusus. Despite this, brown roots were used in all subsequent assays to standardise the procedure. 

Brown roots were chosen because they were more abundant than white roots. 

4.212 Phragmites australis 

Assays were carried out on two types of roots from Phragmites australis: roots with root hairs 

and roots without root hairs. Four replicates were used for each assay. The results are shown in Table 

4.212 

Table 4.212 Phosphatase activity (jimol mg ' h ' ) of different types of roots from Phragmites 

australis 

Type of root Mean phosphatase activity (^mol mg > h ' > Standard deviation 

Roots with root hairs 0.0070 0.0035 

Roots without root hairs 0.0094 0.0040 

Student t tests carried out on the data for Table 4.212 showed that p = 0.48, so there was no 

significant difference in rates of phosphatase activity between roots with root hairs and roots without 

hairs of Phragmites australis. Despite this, roots with root hairs were used in all subsequent assays to 

standardise the procedure. Roots with root hairs were chosen because they were more abundant. 
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4.213 Typha latifolia 

Phosphatase assays were carried out on two different types of roots from Typha latifolia: 

roots with root hairs and roots without root hairs. Four replicates were used for each assay. The results 

are shown in Table 4.213 

Table 4.213 Phosphatase activity (^.mol mg ' h ' ) of different types of roots from Typha 

latifolia 

Type of root Mean phosphatase activity (^mol m g ' h *) Standard deviation 

Roots with root hairs 0.0161 0.0015 

Roots without root hairs 0.0160 0.0021 

Student t tests carried out on the data for Table 2.413 showed that p = 0.94 so there was no 

significant difference in rates of phosphatase activity between roots with root hairs and roots without 

root hairs of Typha latifolia. Despite this, roots without root hairs were used in all subsequent assays 

to standardise the procedure. Roots without root hairs were chosen because they were more abundant. 

4.22 Phosphatase activity of roots of the same species prepared in different methods 

Phosphatase assays were carried out to determine the effect of preparing roots of the same 

species in different methods. Three methods of root preparation were investigated: rinsing roots, 

thoroughly washing roots and crushing roots (with forceps and a seeker). Some roots were gently 

rinsed in order to remove particles of dirt. Some roots were washed more thoroughly and rubbed, in 

an attempt to remove any bacteria which may be living on the root surface, and could exhibit 

phosphatase activity. Other roots were severely crushed. 
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4.221 Juncus effusus 

Juncus roots were prepared by the three methods mentioned above. Four replicates were used 

for each assay. The results are shown in Table 4.221 

Table 4.221 Phosphatase activity ( junol mg •' h • ' ) of roots of Juncus effusus prepared in 

different methods 

Method of root preparation Mean phosphatase activity (fimol mg> h ' ) Standard deviation 

Rinsing 0.0045 0.0003 

Washing 0.0054 0.0007 

Crushing 0.0063 0.0019 

The results show that increase in preparation time i.e. from rinsing of roots, to thorough 

washing of roots, to crushing of roots, corresponded with an increase in phosphatase activity. 

"Analysis of variants" tests carried out on the data for Table 4.221 showed that p = 0.27 so there was C £^ 

no significant difference in rates of phosphatase activity between the three methods of freatment. 

Phragmites australis 

The results of phosphatase assays of Phragmites australis roots prepared in the three 

different methods all ready mentioned are shown in Table 4.222. 

Table 4.222 Phosphatase activity (ixmol mg ' h ' ) of Phragmites roots prepared in different 

methods 

Method of root preparation Mean phosphatase activity (fxmol m g ' h ' ) Standard deviation 

Rinsing 0.0070 0.0035 

Washing 0.0071 0.0037 

Crushing 0.0182 0.0162 
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The results show that there was an increase in phosphatase activity corresponding with an 

increase in preparation (handling) time i.e. rinsed roots, to thoroughly washed roots, to crushed roots. 

"Analysis of variants" tests carried out showed that p = 0.34 so there was no significant difference in 

rates of phosphatase activity between the three methods of treatment. 

4.223 Typha latifolia 

The results of phosphatase assays carried out on Typha roots prepared in the three different 

methods are shown in Table 4.223. 

Table 4.223 Phosphatase activity (^.mol mg ' h ' ) of Typha roots prepared in diflerent methods 

Method of root preparation Mean phosphatase activity (|xmol mg-' h ' ) Standard deviation 

Rinsing 0.0160 0.0021 

Washing 0.0259 0.0026 

Crushing 0.0353 0.0160 

The results in Table 4.223 show that there was an increase in phosphatase activity 

corresponding with an increase in preparation time. "Analysis of variaiV' tests carried out showed 

that p = 0.052 so there was no significant difference in rate of phosphatase activity between the three 

methods of treatment. 

The results displayed in Tables 4.221, 4.222 and 4.223 indicate that in all three species 

(Juncus effusus, Phragmites australis and Typha latifolia) there was an increase in phosphatase 

activity corresponding with an increase in handling time of the roots, although statistical analysis has 

shown that this trend was not significant. This increase in phosphatase activity may have been caused 

by the release of intracellular phosphatases from the lysed cells of roughly handled roots. 

In subsequent assays, roots were rinsed extremely carefully in order to minimise damage to 

root cells and the release of intracellular phosphatases. These would have obscured the levels of 

activity of "surface" phosphatases. 
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4.23 p H spectra 

Phosphatase assays were carried out over a range of pH values, from pH 3.0 to pH 11.0 for 

Juncus, Phragmites and Typha. The purpose of these assays was to determine the optimum pH for 

phosphatase activity in each species, under the particular assay conditions. The results are shown in 

Tables 4.231,4.232, and 4.233, and are displayed in Figure 4.1. Four rephcates were used for each 

assay. 

Table 4.231 Phosphatase activity (iimol mg ' h ' ) of Juncus from pH 3.0 to pH 11.0 

pH Mean phosphatase activity ( ^mol m g ' h ' ) Standard deviation 

3.0 0.0079 0.0021 

4.0 0.0100 0.0046 

5.0 0.0127 0.0048 

5.5 0.0089 0.0010 

6.0 0.0121 0.0058 

6.5 0.0083 0.0076 

7.0 0.0080 0.0032 

8.0 0.0071 0.0038 

9.0 0.0081 0.0037 

10.0 0.0086 0.0034 

11.0 0.0084 0.0052 

The results in Table 4.231 show that pH 5.0 appears to be the optimum pH for phosphatase activity in 

Juncus effusus imder the particular assay conditions. 
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Table 4.232 Phosphatase activity (nmol mg ' h ' ) of Phragmites from pH 3.0 to pH 11.0 

p H Mean phosphatase activity (^mol mg-' h->) Standard deviation 

3.0 0.0120 0.0070 

4.0 0.0153 0.0106 

5.0 0.0096 0.0066 

5.5 0.0116 0.0070 

6.0 0.0068 0.0026 

6.5 0.0070 0.0024 

7.0 0.0080 0.0041 

8.0 0.0059 0.0049 

9.0 0.0046 0.0017 

lO.O 0.0035 0.0016 

11.0 0.0053 0.0026 

Table 4.233 Phosphatase activity (^mol mg -' h • ' ) of Typha from pH 3.0 to pH 11.0 

p H Mean phosphatase activity (^mol mg h ) Standard deviation 

3.0 0.0042 0.0051 

4.0 0.0062 0.009 

5.0 0.0102 0.0013 

5.5 0.0093 0.0016 

6.0 0.0083 0.0018 

6.5 0.0061 0.0015 

7.0 0.0036 0.0011 

8.0 0.0026 0.0018 

9.0 0.0032 0.0019 

10.0 0.0034 0.0016 

11.0 0.0019 0.0006 
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Figure 4.1 pH spectra 
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Results in Table 4.222 show that pH 4.0 appears to be the optimum pH for phosphatase 

activity in Phragmites australis, under the particular assay conditions. Results in Table 4.233 show 

that pH S.O appears to be the optimum pH for phosphatase activity in Typha latifolia, under the 

particular assay conditions. 

All subsequent assays were carried out at pH S.O so that high rates of phosphatase activity 

could be recorded and compared between species. 

4.24 Time trials 

In order to determine how rates of phosphatase activity changed during the course of assays, 

phosphatase assays were carried out for all three species and terminated after different time intervals 

ranging from 10 min to 90 min. Ten replicates were used for each assay. The results are shown in 

Tables 4.241, 4.242 and 4.243. 

Table 4.241 Phosphatase activity (nmol mg ' h ' ) of Juncus over different time periods 

Time (min) Substrate utilised (n-molmg:') 

mean ± Standard deviation. 

10 0.0133 0.0062 

20 0.0134 0.0051 

30 0.0143 0.0065 

60 0.0142 0.0073 

90 0.0144 0.0041 

Phosphatase activity (jimol mg-' h ' ) 

mean 

0.0798 

0.0402 

0.0287 

0.0142 

0.0096 

Standard deviation 

0.0373 

0.0264 

0.0130 

0.0308 

0.0012 
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Table 4.242 Phosphatase activity ((imol mg ' h ' ) of Phragmites over different time periods 

Time (min) Substrate utilised (^molmg-' ) Phosphatase activity (^moI mg-' h ' ) 

10 

20 

30 

60 

90 

mean 

0.0072 

0.0086 

0.0118 

0.0176 

0.0179 

Standard deviation mean 

0.0024 0.0432 

0.0030 0.0258 

0.0049 0.0237 

0.0067 0.0176 

0.0076 0.0119 

± Standard deviation 

0.0141 

0.0089 

0.0098 

0.0067 

0.0051 

Table 4.243 Phosphatase activity (^mol mg -' h •') of Typha over different time periods 

Time (min) 

10 

20 

30 

60 

90 

Substrate utilised (^.mol mg-' ) Phosphatase activity (^mol mg-' h ' ) 

mean 

0.0050 

0.0071 

0.0076 

0.0085 

0.0102 

Standard deviation 

0.0015 

0.0034 

0.0035 

0.0028 

0.0024 

mean 

0.0301 

0.0214 

0.0152 

0.0085 

0.0068 

Standard deviation 

0.0092 

0.0095 

0.0070 

0.0028 

0.0016 

The results in Tables 4.241, 4.242 and 4.423 show that for all three species rates of 

phosphatase activity were initially high, but declined rapidly after the first 10 min. Phosphatase 

activity was therefore at its highest during the initial 10 min of the assay. All subsequent assays were 

terminated after 10 min. 
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4.25 Comparisons between the phosphatase activity (jimol mg • h ) of Juncus, Phragmites and 

Typha at Bakethin Reservoir 

Phosphatase assays for all three species bam Bakethin Reservoir were carried out. Assays 

were done at pH 5.0 and terminated after 10 min in order to record high rates of phosphatase activity. 

Ten replicates were used for each assay. The results are shown in Table 4.25. 

Table 4.25 Phosphatase activity (fxmol mg ' h •') of Juncus, Phragmites and Typha from 

Bakethin Reservoir 

Species Phosphatase activity (̂ mol mg-> b-') Standard deviation 

Juncus effusus 0.0798 0.0373 

Phragmites australis 0.0432 0.0141 

Typha latifolia 0.0301 0.0092 

Results in Table 4.25 show that Juncus effusus exhibited the highest rate of phosphatase 

activity, followed by Phragmites australis. Typha latifolia exhibited the lowest rate of phosphatase 

activity. "Analysis of varianX t̂ests carried out showed that p = 0.0002 so there was a significant 

difference in rates of phosphatase activity between the three species. 

4.26 Comparisons between the phosphatase activity (^mol mg~' h ') of Juncus and Typha at 

Baketbin Reservoir and the same species at the Botanic Garden 

Phosphatase assays were carried out for Juncus and Typha from the Botanic Garden. Assays 

were done at pH 5.0 and terminated after 10 min. Ten replicates were used for each assay. The results 

are shown in Table 4.26. Rates of phosphatase activity of Juncus and Typha from Bakethin Reservoir 

(shown in Table 4.25) are also included in Table 4.26 for easy comparison. 
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Table 4.26 Comparisons of the phosphatase activity (limol mg h ' ) of Juncus and Typha at 

Bakethin Reservoir and the Botanic Garden 

Species Location Phosphatase activity (^mol mg-'h ' ) Standard deviation 

Juncus effusus Botanic Garden 0.0377 0.0320 

Juncus effusus Bakethin Reservoir 0.0798 0.0373 

Typha latifolia Botanic Garden 0.0182 0.0084 

Typha latifolia Bakethin Reservoir 0.0301 0.0092 

Results in Table 4.26 show that in both species, Juncus ejfusus and Typha latifolia, rates of 

phosphatase activity were significantly higher in plants from Bakethin Reservoir than the same 

species from the Botanic Garden. Student t tests carried out on the data for Table 4.26 showed that 

Juncus from Bakethin Reservoir and the Botanic Garden had a p value of 0.026. Typha had a p value 

of 0.0037. 

4.3 Localisation of phosphatase activity 

Staining procedures using BCIP were carried out several times, in an attempt to localise 

phosphatase activity of the roots. These procedures proved unsuccessfizl however. Juncus roots were 

too pigmented for the indigoid dye to be observed. Typha never retained much dye, and any root 

coloration was general. No specialised cells for phosphatase activity could be observed under the light 

microscope. 
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4.4 Time courses comparing rates of phosphatase activity of Juncus effusus between 100 

and 250 pNPP assays 

During the course of investigations it was discovered that rates of phosphatase activity in 

100 pNPP assays declined rapidly after the initial 10 min, for all three species (results are shown 

in Tables 4.241,4.242 and 4.423). To compare how rates of phosphatase activity varied over time in 

250 )iM assays, 100 and 250 nM pNPP assays were carried out and terminated at the same times 

using roots of Juncus effusus from CoIIingwood College Pond. The results are shown in Tables 4.41 

and 4.42. 

Table 4.41 lOOjiM pNPP assay of roots of Juncus effusus collected from CoIIingwood College 

Pond 

Time (min) Substrate utilised (^mol mg-') Phosphatase activity {\uao\ mg-' h ' ) 

mean ± standard deviation mean ± standard deviation 

10 0.0063 0.0053 0.0377 0.0320 

20 0.0063 0.0036 0.0189 0.0107 

30 0.0080 0.0032 0.0160 0.0064 

40 0.0093 0.0063 0.0139 0.0094 

50 0.0091 0.0047 0.0109 0.0025 

60 0.0075 0.0029 0.0075 0.0013 
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Table 4.42 250 nM pNPP assay of roots of Juncus efiusus collected firom Collingwood College 

Pond 

Time (min) Substrate utilised (^mol mg-') Phosphatase activity (^mol mg-' h ' ) 

mean ± standard deviation mean ± standard deviation 

10 0.0048 0.0016 0.0289 0.0097 

20 0.0075 0.0021 0.0225 0.0064 

30 0.0102 0.0064 0.0204 0.0128 

40 0.0145 0.0077 0.0181 0.0116 

50 0.0151 0.0049 0.0181 0.0059 

60 0.0189 0.0089 0.0189 0.089 

Results in Tables 4.41 and 4.42 show that the rates of phosphatase activity decreased rapidly 

after the initial 10 min in 100 | iM phosphatase assays whereas they remained more constant, 

decreasing gradually after the first 10 min, in 250 jiM assays. 

4.5 Retention of pNP by roots 

During the course of investigations it was noted that roots removed after assays had been 

terminated often had a yellow coloration. This yellow colour was presumably due to the retention of 

pNP by the roots. To investigate this fiuther, experiments were carried out on Typha latifolia from 

the Botanic Garden in order to determine how much pNP was retained by roots after a phosphatase 

assay, and how much of the pNP was later released into solutions of different pH values. The results 

are shown in Table 4.5. 
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Table 4.5 The release of pNP from roots over a range of pH values 

pH pNP released from pNP released from %pNP released 

roots during the assay roots after tbe assay after the assay 

( ^mol mgr') (iuaol mg*) 

mean ± standard deviation mean ± standard deviation 

3.0 0.0047 0.0029 0.0002 0.0001 2.99 

4.0 0.0050 0.0017 0.0003 0.0002 3.31 

5.0 0.0048 0.0027 0.0007 0.0007 8.03 

6.0 0.0048 0.0018 0.0005 0.0002 10.31 

7.0 0.0050 0.0013 0.0003 0.0001 5.05 

8.0 0.0038 0.0014 0.0009 0.0004 20.51 

9.0 0.0045 0.0016 0.0008 0.0004 15.93 

10.0 0.0050 0.0038 0.0010 0.0004 18.47 

11.0 0.0051 0.0028 0.0012 0.0002 21.10 

Table 4.5 shows that an increasing amount of pNP is released into solution by Typha roots 

with increasing pH. This indicates that more pNP is retained by roots in acidic conditions. 
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CHAPTERS DISCUSSION 



The initial experiments for this project were important to determine which roots from each 

species were most suitable for use in phosphatase assays, how to prepare them for assaying, and for 

how long, and under what pH conditions, the assays should be run. 

Phosphatase assays were carried out on different types of roots from the same species (results 

are shown in Tables 4.211. 4.212 and 4.213). Statistical analysis revealed that there was no 

significant difference in rates of phosphatase activity between the different types of roots of Juncus, 

Phragmites or Typha. Despite this, in subsequent assays it was ensured that the roots used were as 

uniform as possible, in size, shape, colour, and number of root hairs, to reduce variations in 

phosphatase activity. This was particularly important for Juncus and Phragmites, as results showed 

that there was a large standard deviation in phosphatase activity between roots, even of the same type. 

Typha roots showed less variation in rates of phosphatase activity. 

Phosphatase assays were carried out using three methods of root preparation: rinsing, 

thorough washing and crushing (results are shown in Tables 4.221, 4.222 and 4.223). Statistical 

analysis revealed that there was no significant difference in rates of phosphatase activity, for any of 

the three species. A trend of increasing phosphatase activity corresponding with an increase in 

handling time, was observed in all three species. This may have been due to the release of 

infracellular phosphatases from lysed cells of damaged roots. Intracellular phosphatases are not 

normally thought to have an external function, but are thought to be constitutive enzymes produced 

mainly to serve the internal P metabolism (Jansson et al., 1988). Intracellular phosphatases were not 

of interest in this project, the aim of which was to investigate the possible inducible nature of root 

"siuface" phosphatases. As a consequence, roots were prepared extremely carefiilly in all subsequent 

assays, to minimise damage to cells and the release of intracellular phosphatases, which would have 

obscured levels of activity of the surface phosphatases. 

Phosphatase assays carried out over a range of pH values from pH 3.0 to pH 11.0, showed 

that the optimum pH for phosphatase activity in Juncus and Typha was pH 5.0, under the particular 

assay conditions. The optimum pH for Phragmites was pH 4.0. The results are shown in Tables 4.231, 

4.232 and 4.233. The fact that the peak phosphatase activity of the species were found to occur in the 

acid range of the pH spectrum, agreed with the findings of other research workers who reported that 
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acid phosphatases are predominant in higher plants (McComb et al., 1979; Lee, 1988 and Gabbrielli 

etal., 1989). 

The pH spectra for all three species also showed second peaks in phosphatase activity in the 

alkaline range. Juncus and Typha had second peaks in activity at pH 10.0. Phragmites exhibited a 

second peak at pH 7.0. Second peaks in phosphatase activity have been foimd by other research 

workers investigating the phosphatase activity of higher plants. It is open to question whether the 

alkaline peaks were due to bacteria living on the surface of the roots exhibiting alkaline phosphatase 

activity, or whether alkaline phosphatases were produced by the roots themselves. Bieleski (1974) 

found that Spirodela normally exhibits acid phosphatase activity, but produces alkaline phosphatases 

in conditions of P-deficiency. The possibility of Juncus, Phragmites and Typha synthesising alkaline 

phosphatases in conditions of phosphorus limitation merits ftuther investigation. The aim of this 

project however was to investigate levels of surface acid phosphatase activity, so subsequent assays 

were carried out at pH 5.0. 

Time trials carried out showed that rates of phosphatase activity of all three species declined 

rapidly in 100 pNPP assays, (results are shown in Tables 4.241, 4.242 and 4.243). Rates 

decreased more rapidly in assays with higher initial rates of activity e.g. Juncus effusus from Bakethin 

Reservoir. Extra time course assays were carried out on Juncus to compare rates of phosphatase 

activity between assays with 100 and 250 \JM pNPP, (results are shown in Tables 4.41 and 4.42). 

They showed that there was a more constant rate of phosphatase activity over time in assays with 250 

HM pNPP, which agrees with the findings of other researchers e.g. Al-Shehri (1992). 

The rapid decline in phosphatase activity in 100 |xM pNPP assays may be due to all of the 

substrate having been utilised. As more substrate is present in 250 nM assays it will take longer for it 

all to be hydrolysed, so rates of phosphatase activity will remain constant for longer. Despite the rapid 

decline in phosphatase activity, 100 | iM assays continued to be carried out in this project, as low 

levels of organic phosphorus are more comparable to conditions in the natural environment. Assays 

were terminated after 10 min in order to measure high levels of phosphatase activity. 

When the preparatory experiments were completed, assays were run to compare the rates of 

phosphatase activity of Juncus, Phragmites, and Typha at Bakethin Reservoir, (results are shown in 

Table 4.25). Results showed ihai Juncus exhibited the highest rate of phosphatase activity (0.080 ^ 
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mol mgr' h"' ), followed by Phragmites, (0.043 junol mgr' h"' ). Typha showed the lowest rate of 

activity, (0.030 nmol mg-' h-'). Statistical analysis showed that there was a significant difference (p = 

0.0002) between the three species. 

Differences in phosphatase activity between the species may have ecological implications. 

Juncus effusus was found to exhibit higher rates of phosphatase activity than Phragmites australis and 

Typha latifolia, and therefore may be capable of living in conditions of lower environmental 

phosphorus. Further investigations need to be carried out before conclusions can be drawn on the 

relationship between phosphatase activity of species, and the range of environmental P conditions they 

are capable of living under. That was beyond the scope of this project however. 

Phosphorus analysis of water samples from Bakethin Reservoir, the Botanic Garden and 

Collingwood College Pond revealed marked differences in P concentrations. Bakethin Reservoir had 

the lowest levels of P (4.43 ng l"' filtrable reactive P, 10.01 ng 1"' total P). The pond at the Botanic 

Garden had higher levels (27.3 ng 1"' filtrable reactive P, 56.9 ng 1"' total P). Collingwood College 

Pond had high levels of orthophosphate (667 ^g 1-' filtrable reactive P, 670 ng 1-' total P). 

Phosphatase assays were carried out on Juncus from Collingwood College Pond, and Typha 

from the pond at the Botanic Garden. Both species were found to exhibit lower rates of phosphatase 

activity than the same species at Bakethin Reservoir, (results are shown in Table 4.26). Statistical 

tests revealed that in both species, there were a significant differences in rates of phosphatase activity 

between the sites. 

Low rates of acid phosphatase activity exhibited by Juncus and Typha from the Botanic 

Garden corresponded with high concentrations of Pj. This indicates that acid phosphatase activity of 

both species may be inducible. Low levels of Pj at Bakethin Reservoir would stimulate the production 

of phosphatases, whereas higher concenfrations of Pj at the Botanic Garden and Collingwood College 

Pond would repress the synthesis of phosphatase enzymes. Inducible surface phosphatase enzymes 

have been observed inAgrostis tenuis (Woolhouse, 1969), Trifolium subterraneum (Dracup et al., 

1984) and tomato plants (Goldstein et al., 1988). 

Another possibility is that there are several ecotypes of each species (Woolhouse, 1969), the 

ecotypes growing at Bakethin Reservoir being adapted to lower Pj conditions and exhibiting higher 

rates of phosphatase activity than the ecotypes at the Botanic Garden. 
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As investigations into whether JMWCW* and Typha growing at Bakethin Reservoir and the 

Botanic Garden belong to different ecotypes were beyond the scope of this project, it is possible to 

suggest only that i f Juncus and Typha from both sites belong to the same ecotype, or if there are no 

different ecotypes, then both species may exhibit inducible acid phosphatase activity. If this is the 

case, then both species could have the potential for use as bioindicators of environmental phosphorus 

status. 

It was hoped that BCIP staining procedures would reveal the locality of phosphatase enzymes 

in the roots. Staining proved unsuccessfril however as Juncus roots were too heavily pigmented for the 

indigoid dye to be observed. Typha roots retained only a small amount of dye which appeared to be 

distributed generally throughout the root. No specialised areas for phosphatase activity were observed 

under the light microscope. 

Several problems with the methodology of this project were encountered throughout the 

course of investigations. One important problem lay with the actual experiment for measuring 

phosphatase activity. The " pNPP assay" is most suitable for measuring rates of phosphatase activity 

in algae, bacteria, and other organisms which produce extracellular phosphatases. The pNPP is 

hydrolysed to pNP and Pj exfracellularly. All the pNP produced is released into solution and its 

concentration can be measured using a spectrophotometer. 

The process is more complicated in the case of eukaryotes however. Acid phosphatases in 

higher plants are located mostly infracellularly, or as surface enzymes. They are more rarely 

exfracellular (Dracup et al, 1984). pNPP is taken by the cells and hydrolysed intracellular^ or by 

enzymes bound to cell walls. For phosphatase activity to determined accurately, all the pNP must be 

released back into solution so that its concentration can be measured. It was observed however, that 

in phosphatase assays carried out on Juncus, Typha and Phragmites, roots were often stained yellow 

after assaying, presumably due to the retention of pNP. As a result, phosphatase assays carried out on 

the species may not have measived the true rates of phosphatase activity but recorded lower values. 

A great deal of investigation needs to be done to determine how capable the pNPP assay is of 

accurately measuring the phosphatase activity of eukaryotes. ff it is proved that a significant amount 

of pNP is retained by certain species, and not released into solution, then the validity of research 

carried out previously by many workers will be open to question. 
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One preliminary experiment investigating the retention of pNP by roots, was carried out on 

Typha, (results are shown in Table 4.5). It was found that more pNP was retained at lower pH values. 

This may have important repercussions on the results produced in this project. Most of the 

phosphatase assays were carried out at pH 5.0 so actual rates of phosphatase activity may have been 

significantly higher than those recorded. Unfortunately the time limit of the project meant that it was 

not possible to investigate this potential problem fiirther. For the purposes of analysis, it has been 

assumed that the amount of pNP retained by the roots of Juncus, Phragmites and Typha was not 

significant, and that there was no significant difference in levels of retention between species. 

Another problem encountered in this project, was that it would have been more accurate to 

correlate rates of phosphatase activity with sediment P concentrations, than water P concentrations. 

The P content of lake sediments depends on many factors including sediment composition, grain size, 

pH and redox potential, as well as the P content of the water (Holtan et al., 1988). As sediments vary 

so much in composition, there is no consistent relationship between the P content of a water body and 

P content of the sediments. Unfortunately there was not time to cany out phosphorus analysis of 

sediments, so for the purpose of this project it has been assumed that sediment P levels can be 

correlated with water P concentrations. As such marked differences were found in phosphorus 

concentrations of water from Bakethin Reservoir, the Botanic Garden Pond and Collingwood College 

Pond, it was hoped that the large differences in P levels of the water bodies would outweigh any 

differences in the sorption capacity of the sediments. 

Another difficulty with this project was relating the rates of phosphatase activity measured in 

assays to the situation in the natural environment. Phosphatase assays were carried out at the optimum 

pH for phosphatase activity (pH 5.0), whereas the water was pH 7.3 at Bakethin Reservoir and pH 

7.5 at the Botanic Garden. Rates of phosphatase activity occurring in all three species would therefore 

have been lower in the environment than the values measured in the assays. In this project it has been 

assumed that the differences in phosphatase activity between the species were not greatiy effected by 

the small difference in pH. 
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CONCLUDING REMARKS 

Despite the problems with the methodology of this project mentioned above, interesting 

results have been obtained. Phosphatase assays carried out on Juncus effusus, Phragmites australis 

and Typha latifolia have revealed that the roots of all three species exhibit acid phosphatase activity, 

and that there is a statistically significant difference in rates of activity between the species. 

Assays carried out on root material from Bakethin Reservoir, the Botanic Garden and 

CoIIingwood College Pond (sites with markedly different levels of phosphorus), have shown that 

Juncus and Typha both exhibit significantly higher rates of phosphatase activity at Bakethin Reservoir 

(where environmental Pj concentrations are low), than at the Botanic Garden (where P, levels are 

higher). This indicates that acid phosphatase activity in both Juncus and Typha may be inducible in 

conditions of P-Iimitation. ff further studies reveal that this is the case, then both species may have the 

potential for use as biondicators of environmental phosphorus status. 
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SUMMARY 

1. Phosphorus analysis of water samples collected from Bakethin Reservoir, the Botanic Garden and 

CoIIingwood College Pond showed marked differences in phosphorus concentrations. CoIIingwood 

College Pond had the highest concenfration of phosphorus, followed by the Botanic Garden. Bakethin 

Reservoir had the lowest concentration of phosphorus. 

2. Phosphatase assays showed no significant difference in rates of phosphatase activity between 

different types of roots from the same species i.e. between brown roots and white roots of Juncus 

effusus (p = 0.94), and between roots with root hairs and roots without root hairs of Phragmites 

australis (p = 0.48 ) and Typha latifolia (p = 0.94). 

3. Phosphatase assays showed that phosphatase activity increased in all three species with increased 

handing time of roots i.e. from rinsing, to thorough washing, to crushing. This trend was not 

statistically significant however. The observed increase in phosphatase activity may have been caused 

by the release of intracellular phosphatases from lysed cells of damaged roots. Phosphatase activity 

exhibited by bacteria living on the siuface of the roots was not significant. 

4. Phosphatase assays from pH 3.0 to pH 11.0 showed that pH 5.0 was the optimum pH for 

phosphatase activity in Juncus and Typha. pH 4.0 was the optimum pH for phosphatase activity in 

Phragmites, under the particular assay conditions. 

5. Time trials showed that rates of phosphatase activity declined rapidly after the initial 10 min in 

100 nM assays for all three species. Subsequent assays were terminated after 10 min. 

6. Phosphatase assays of all three species from Bakethin Reservoir revealed significant differences (p 

= 0.0002) in rates of phosphatase activity. Juncus showed the highest rate of activity followed by 

Phragmites. Typha exhibited the lowest rate of phosphatase activity. 
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7. Phosphatase assays of Juncus and Typha showed significantly higher rates of phosphatase activity 

at Bakethin Reservoir than the Botanic Garden (p = 0.026 for Juncus, p = 0.037 for Typha). High 

rates of phosphatase activity at Bakethin Reservoir corresponded with low levels of phosphorus, so it 

is possible that root surface phosphatases are inducible in conditions of P-limitation. Juncus and 

Typha may both therefore have the potential for use as bioindicators of environmental phosphorus 

status. 

8. Time courses on Juncus showed that in 100 nM assays, rates of phosphatase activity declined 

rapidly after the initial 10 min. This may have been caused by rapid hydrolysis of all of the substrate. 

In 2 5 0 J J M assays rates of phosphatase activity remained more constant, declining gradually over the 

course of one hour. 

9. Phosphatase assays showed that roots retained more pNP under conditions of low pH. The 

retention of pNP by roots has serious implications for the validity of the pNPP assay, as a method for 

determining rates of phosphatase activity in eukaryotes. 
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