
Durham E-Theses

Early detection of ripple propagation in evolving

software systems

Turner, Richard john

How to cite:

Turner, Richard john (1993) Early detection of ripple propagation in evolving software systems, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5702/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5702/
 http://etheses.dur.ac.uk/5702/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Early Detection of Ripple Propagation

in Evolving Software Systems

Richard John Turver M.Sc. (Dunelm)

Thesis submitted for the reqtiirements of the

degree of Doctor of Philosophy

School of Engineering and Computer Science

Faculty of Science

University of Durham

1993

2 1 OCT 1993

Abstract

Ripple effect analysis is the analysis of the consequential knock on effects of a change to a software

system. In the first part of this study, ripple effect analysis methods are classified into several

categories based on the types of information the methods analyse and produce. A comparative

and analytical study of methods from these categories was performed in an attempt to assist

maintainers in the selection of ripple effect analysis methods for use in different phases of the

software maintenance process. It was observed that existing methods are most usable in tiie iater

stages of the software maintenance process and not at an early stage when strategic decisions

concerning project scheduling are made.

The second part of the work, addresses itself to the problem of tracing the ripple effect of a

ciiange, at a stage earlier in the maintenance process than existing ripple effect analysis methods

allow. Particular emphasis is placed upon the development of ripple effect analysis methods for

analysing system documentation. The ripple effect analysis methods described in this thesis involve

manipulating a novel graph theory model called a Ripple Propagation Graph. The model is based

on the thematic structure of documentation, previous release information and expert judgement

concerning potential ripple effects.

In the third part of the study the Ripple Propagation Graph model and the analysis methods are

applied and evaluated, using examples of documentation structure and a major case study.

Acknowledgements

This work was supported by a CASE studentship from the Science and Engineering Research

Council and TSB Bank pic.

I am grateful to my supervisor Malcolm Munro for his encouragement and guidance throughout

this study. I am grateful to Professor K . H . Bennett for the facilities provided. I am grateful to my

parents who have encouraged me throughout this venture.

I would also like to thank the following staff associated with TSB Bank pic Retail Bajiking Tech

nology.

Mr B. Edisbury for his support and provision of help in developing the cooperation between myself

and TSB Bank pic and for organising meetings which enabled me to rapidly establish contact

wi th TSB staff. Mr J. Rudolph the Head of Technology Research, for discussing current research

interests and the development and maintenance of the TSB core banking system. Mr R. Broughton

the Head of Implementation and Testing, for the provision of useful information and helping me

refine the project focus. Mr S. Temple and Mr C. Evans for their time, helpful discussions and for

selecting a suitable case study for the evaluation stage of the project. The author acknowledges

wi th gratitude the permission of TSB Bank pic Retail Banking Technology to use their data to

support the thesis.

I would also like to thank members of the Centre for Software Maintenance for invaluable discussions

during the last three years.

This thesis has been produced using the M j X t e x t formatting system.

Contents

1 Introduction and Aims 1

1.1 The Problem and Its Context 1

1.2 Research Method and Objectives 3

1.3 The Criteria for Success 4

1.4 The Limitations of the Approach 4

1.5 Author's Contribution 4

1.6 Organisation of Thesis 5

2 T h e Software Maintenance Process 7

2.1 Introduction 7

2.2 The Software Engineering Context 7

2.3 A Change Analysis View of Software Maintenance 13

2.4 Classifying Impact Analysis Techniques 21

2.5 Summary 23

3 Impact Analysis Techniques: A n Analysis and Comparison 24

3.1 Introduction 24

3.2 What is an Impact Analysis? 25

3.2.1 Definition 25

3.3 Historical Overview of Impact Analysis Techruques 28

3.4 Analysis of Existing Impact Analysis Techniques 29

3.4.1 The 1970's Developments 29

3.4.2 The Early 1980's Developments 32

3.4.3 The Late 1980's Developments 34

3.4.4 Recent Advances 38

3.5 Comparison of Existing Impact Analysis Techniques 42

3.6 What is Documentation? 45

3.6.1 Definition 45

3.6.2 Classes of System Documentation Components 46

3.6.3 Characteristics of System Documentation 48

3.7 Summary 49

4 Ripple Propagation Graph Definition 51

4.1 Introduction 51

4.2 Impact Analysis at the Documentation Level 51

111

4.3 Philosophy of the New Model 53

4.4 Theoretical Basis of the New Model 57

4.4.1 Set Theory 57

4.4.2 Bag Theory 59

4.4.3 Relations 60

4.4.4 Functions 60

4.4.5 Graph Theory 61

4.4.6 Summary of the Theoretical Basis 63

4.5 Model Definition 64

4.5.1 Hierarchical Interconnection Graph 65

4.5.2 Thematic Interconnection Graph 68

4.5.3 Source Code Association Graph 71

4.5.4 Weighted Interconnection Graph 76

4.6 Summary 80

5 Ripple Propagation Graph Construction 81

5.1 Introduction 81

5.2 Philosophy of the Graph Construction Techniques 82

5.3 HIG Crystallisation 83

5.3.1 Technique Description 83

I V

5.3.2 HIG Construction Guidelines 84

5.4 T I G Crystallisation 85

5.4.1 Technique Description 86

5.4.2 Thematic Structure Detection Guidelines 87

5.5 Graph Annotation 88

5.5.1 Technique Description 89

5.5.2 Source Code Entity Detection Guidelines 90

5.6 Graph Edge Parameterisation 91

5.6.1 Technique Description 91

5.6.2 Expert Judgement Collection Guidelines 93

5.6.3 Release Information Collection Guidelines 93

5.7 Graph Splicing 94

5.7.1 Technique Description 94

5.8 Graph Clipping 95

5.8.1 Technique Description 95

5.9 Summary 99

6 Ripple Propagation Graph Analysis 100

6.1 Introduction 100

6.2 Philosophy of the Graph Slicing Techniques 101

6.3 Constructing a Graph Slicing Criterion 104

6.3.1 A Model of a Change Proposal 104

6.3.2 Technique Description 105

6.3.3 Theme Bag Construction Guidelines 105

6.3.4 Results Produced by the Technique 106

6.4 Overview of the Graph Shcing Techniques 106

6.5 a Graph Slice (Thematic) 108

6.5.1 Reasons for Developing the Techiuque 108

6.5.2 Technique Description 108

6.5.3 Results Produced by the Technique 110

6.6 /? Graph Slice (Complex Thematic) I l l

6.6.1 Reasons for Developing the Technique I l l

6.6.2 Technique Description 112

6.6.3 Results Produced by the Technique 116

6.7 7 Graph Slice (Weighted) 117

6.7.1 Reasons for Developing the Technique 117

6.7.2 Technique Description 117

6.7.3 Results Produced by the Technique 122

6.8 6 Graph Slice (Augmented) 123

6.8.1 Reasons for Developing the Technique 123

vi

6.8.2 Technique Description 123

6.8.3 Results Produced by the Technique 128

6.9 € Graph Slice (Attributed) 129

6.9.1 Reasons for Developing this Technique 129

6.9.2 Technique Description 129

6.9.3 Results Produced by the Technique 136

6.10 Summary 137

7 Prototype Implementation 140

7.1 Introduction 140

7.2 Rationale and Overview 140

7.3 RPG Description Language 146

7.4 RPG Construction 152

7.5 RPG Analysis 154

7.6 Conclusions 158

7.7 Summary 160

8 Application of the Method 161

8.1 Introduction 161

8.2 Method of Application 161

8.3 Example 1 163

vii

8.3.1 Scenario Description 163

8.3.2 Slicing and Results 165

8.3.3 Discussion 168

8.4 Example 2 168

8.4.1 Scenario Description 168

8.4.2 A Change Proposal 169

8.4.3 Proposal Analysis 170

8.4.4 Slicing and Results 171

8.4.5 Discussion 182

8.5 Case Study 185

8.5.1 Scenario Description 185

8.5.2 Graph Construction 189

8.5.3 Examples of Simple Slices 199

8.5.4 A Change Proposal 203

8.5.5 Proposal Analysis 203

8.5.6 Slicing and Results 204

8.5.7 Discussion 210

8.5.8 Interesting Additional Features 214

8.6 Summary 215

V l l l

9 Evaluation of the Method 219

9.1 Introduction 219

9.2 Evaluation Against the Criteria for Success 219

9.3 Strengths and Weaknesses 222

9.4 Comparison with Other Methods 225

9.5 Interesting Observations 226

9.6 Summary 227

10 Conclusions 228

10.1 The Main Achievements of the Research 228

10.2 General Conclusions of the Research 228

10.3 Relationship with the Wider Field 230

10.4 Suggestions for Future Research 230

10.4.1 Improved RPG Impact Analysis 230

10.4.2 Clustering Proposed Changes using Impact Information 231

10.4.3 A Unified Impact Analysis Model 231

10.4.4 Impact Analysis on Real Time Software Systems 231

10.4.5 Impact Analysis on Graphical Notations 232

10.4.6 A Process Model for Change Analysis 232

10.5 Summary 232

I X

A Glossary of Notation 233

B Glossary of Terminology 235

C Prototype Demonstration 245

C . l RPG Description Language: An Example 245

C.2 Theme Catalogue Description: An Example 251

C.3 Change Proposal Description: An Example 253

C.4 Prototype Consultation: An Example 254

Bibliography 265

List of Figures

7.1 A Diagram of the Prototype Development Cycle 142

7.2 An Example of a Prolog Fact 143

7.3 An Example of a Prolog Rule 144

7.4 RPG Construction and Analysis 145

7.5 An Example of a Hierarchical Graph 147

7.6 An Example of RPG{V,e) Relations 147

7.7 An Example of 5 P G (V , £ :) Relations in Prolog 148

7.8 An RPG{V, £) Query Written in Prolog 149

7.9 Structure of the Prototype Implementation(i2PG(V, £) Construction) 153

7.10 An Example of Themes Recorded in a Prolog 154

7.11 Structure of the Prototype Implementation(iiPG(V, f) Analysis) 157

7.12 The RPG{V,S) Analyser Invocation Interface 157

7.13 An Example of the RPG{V, S) Analyser User Interface 158

8.1 ii :PG(V, 5) Example 1 166

xi

8.2 Example 1 aCIG(V, £) 167

8.3 Example 2 Traceability between code and documentation 169

8.4 i?PG(V, £:) Example 2 172

8.5 Example 2 with Composite and Segment Types 173

8.6 Example 2 containing WIG{y,£) 174

8.7 Example 2 containing WIG{V,£) based on expert judgement 175

8.8 Example 2 containing 5AG(V, 177

8.9 Example 1 a C / G (V , f) 178

8.10 Example 2/3C/G(V, ̂ T) 179

8.11 Example 2 7 C / G (V , 5) 180

8.12 Example 2 7 bags containing multiple impacts 181

8.13 Example 2 6CIG{V,£) 183

8.14 Example 2 €CIG{V,£) 184

8.15 Case Study Traceability between the code and documentation 189

8.16 An Overview of the System to be Analysed 190

8.17 A Simple Context Sketch of the RPG{V,£) Entity Types 191

8.18 An Example of a Documentation Fragment Containing Hierarchical Structure 192

8.19 An Example of a Factored Documentation Fragment 193

8.20 An Example of an HIG{V,£) 194

8.21 An Example of a Document Fragment Containing a Segment Entity 195

xii

8.22 A graph recording the content of a segment entity 195

8.23 An Example of Edge Parameterisation 197

8.24 An Example of Annotation 198

8.25 RPG{V,£) Case Study 199

8.26 Case Study aCIGiV, £) 200

8.27 Case Study/3C/G(V, f) 202

8.28 Case Study A further PCIG{V,£) 206

8.29 Case Study jCIG{V,e) 207

8.30 Case Study SCIG{V,£) 209

8.31 Case Study €CIG{V,£) 211

8.32 Case Study €CIG{V,£) Key 212

8.33 CIG{V,£) Splicing 213

8.34 A System Interconnection Graph (SIG(V,5)) 216

xin

List of Tables

2.1 Existing Maintenance Models 11

2.2 Deliverables Represented in the Model 17

2.3 Decisions Based on Impact Information 22

2.4 Information Requirements for Decision Making 22

3.1 Histogram of the Frequency of Techniques which can be used in various states of the

Maintenance Process 43

5.1 Mappings between Data and the RPG{V,£) 83

6.1 Theoretical Evaluation of the Graph Slices 139

7.1 Hierarchical Interconnection Graph Description 150

7.2 Thematic Interconnection Graph Description 151

7.3 Source Attributes Graph Description 151

7.4 Weighted Interconnection Graph Description 151
7.5 Change Proposal Description 157

X I V

8.1 Example 2 A Theme Catalogue 171

8.2 Case Study A Theme Catalogue 204

8.3 Practical Application of the Graph Slices 217

8.4 Techniques Demonstrated 217

X V

Chapter 1

Introduction and Aims

1.1 The Problem and Its Context

The accurate estimation of the resources required to implement a change in software is not a straight

forward task. A method for achieving this should include the analysis of the impact of the change

on the existing system. A number of methods for analysing the impact of a change on the source

code have been described in the literature. Although these methods provide a good example of

how to apply ripple effect analysis to source code, a weakness is that they can be difficult to apply

in the early stage of a maintenance project. This is because the relationship between the change

proposal and the source code is often not very well understood at this stage, since change proposals

are writ ten at a much higher level of abstraction than the code. I t is therefore often the case,

that in practice subjective impact analysis methods are used for project investment appraisal. The

under-estimated resources for dealing with the r ipp le effects^ of a change can result in project

schedules becoming so tight that only the minimum quality is achieved.

Software often needs changing to reflect changes in real world situations. These changes create the

need for new software products and changes to existing software products. Changes to software

can be problematic since internal coupling, interconnections and dependencies which superficially

^In this thesis, words in bold typeface are defined in the glossary given in Appendix B

appear localised may even cause changes to impact the code elsewhere in a program. Thus when

changes are made to the code, deviations from absolute correctness wiU occur and unexpected side

effects wiU appear. These errors are likely to necessitate further corrective action [53].

In a study by CoUofello and Buck [19] i t was observed that more than 50% of errors were introduced

by previous changes. In the article "KiU that Code!", [90] Weinberg describes his private list of the

world's most expensive program errors. The top three disasters were caused by a change to exactly

one line of code: "each one involved the change of a single digit in a previously correct program."

Since the change was only to one line the usual mechanisms for change control were not used and

the results were disastrous. Weinberg offers a partial explanation: "unexpected linkages," i.e., the

value of a modified variable was used in some other place in the program. Changes with unexpected

linkages annoy users and consume precious personnel time and resources [59]. Therefore impact

analysis is an important research topic. In particular research investigating the detection of ripple

effects at the beginning of a maintenance project has significant strategic importance.

The assessment of the impact of a proposed change on an existing system at the beginning of a

maintenance project is an important aspect of the software maintenance process [12]. However i t

is generally not practised at an early stage in the maintenance process. There are strong economic

arguments for planning the contents of software releases based on impact analysis information in

addition to planning a release using the business justification for a project. However the contents

of releases are often customer driven only.

Given that impact analysis is accepted as a useful maintenance tool and that i t has clear economic

benefit, then i t may be asked why is i t not practised. The reason why impact analysis is the

exception rather than the rule is technical. Most impact analysis methods are source code based

which implies that the source code is well understood when these methods are applied. This is not

the case at the start of a maintenance project. Therefore i f impact analysis methods are to be used

at this early stage they must address the part of the software which is in a level of language similar

to that of the change proposal, such as documentation.

The principle of this work is that the impact of a change can be detected at an earlier stage in the

maintenance process than existing methods allow. This thesis addresses this issue.

1.2 Research Method and Objectives

The research method used in this thesis is based on the engineering research method which consists

of, problem, theory, design, prototype, evaluation, feedback and iterative refinements [8]. Other

approaches considered were the mathematical approach or experimental approach. However a

mathematical approach is more suited to investigations into formal methods such as program cor

rectness, formal specification or computability. The experimental approach is also not partictilarly

suitable for this investigation as i t would involve data collection from real maintenance projects

over a number of years.

The main objective and the research question addressed are:

How can the impact of a change be detected at an earlier stage in the maintenance

process than existing methods allow?

As the investigation progressed and a solution was developed, other smaller research questions

presented themselves. These were the following :

1. What information is available to management to make decisions about change proposal po

tential impacts at an early stage in the maintenance process?

2. What information, produced as a by-product of the software maintenance process, can be re

used from previous maintenance projects to help in tracing the impact of a proposed change,

without increasing the costs of developing new software?

3. How can the thematic structure of a documentation system and system release information

be used to understand the impact of a change?

4. How can the thematic structure of a documentation system and system release information

be modelled with graph theory?

5. How can such a model be created and analysed objectively?

1.3 The Criteria for Success

The criteria for the success of the investigation are the following :

1. The production of an interconnection graph usable by management.

2. The ability to be able to trace user change requirements through to operational software.

3. The production of a method for building and maintaining the graph.

4. The provision of impact information using the graph slicing methods.

5. The evaluation of the information produced by the model with respect to other impact analysis

methods.

1.4 The Limitations of the Approach

Although the approach is a general approach, based on neither a proprietary documentation method

nor on a particular documentation standard, there are limits to the situations to which the approach

should be applicable. These limits can be stated as follows:

1. Domain: The approach has been developed in the context of commercial data processing

systems. The approach cannot be used to model documentation which describes real time

software systems.

2. Documentation Style: The approach has not been evaluated in the context of graphical

notations. Instead the approach addresses written documentation.

1.5 Author's Contribution

The contribution to knowledge of this work is a method for the early detection of the impact of

a change. In particular, the method is based on the analysis of a new model of interconnectivity

within documentation and source code [89]. The novelty of the model is that i t attempts to

capture abstract system properties such as thematic structure of documentation, expert judgement

concerning potential ripple effects and software release information. These extra features lead to

the development of a set of model analysis methods which help in tracing the ripple eflfect.

1.6 Organisation of Thesis

Chapter 2 introduces the software engineering context of the work and develops a new classification

scheme for impact analysis methods. Two important observations were made at this stage. Ex

isting impact analysis methods are only applicable near the end of a maintenance project and few

people have explored the early detection of the impact. Chapter 3 analyses the models of system

interconnectivity upon which existing impact analysis methods are based. The evidence suggests

that existing models of interconnectivity are not suitable for early detection of the impact as i t is

difficult to link source code components with requirements documents. This chapter substantiates

the observations made in the previous chapter.

Chapter 4 argues that a model can be devised and also develops the requirements for such a new

model of software system structure. The philosophy of the model is introduced before formally

defirung the model. Chapter 5 describes the methods developed for constructing the graph model.

Chapter 6 formally defines how the model can be analysed to derive impact information.

Chapter 7 describes a prototype implementation of a software tool called MAGENTA (MAnaGe-

mENt Technical impact Analyser) to support ripple effect analysis, that is, the recording of struc

tural information about software and the analysis of this information. Chapter 8 describes the

application of the model and model analysis methods, to examples of software system structure

and also to a major case study. In particular, the use of the information produced by the method

is discussed.

Chapter 9 discusses the results of the application of the model and model analysis methods and

determines the worth of these impact analysis methods. In particular i t investigates the extent

to which the information produced by the method can be trusted. The strengths and weaknesses

of the method are discussed and the method is compared and contrasted with other methods.

Chapter 10 provides a summary of the investigations. The objectives which have been achieved

process and the wider field.

Finally the appendices contain, firstly a glossary of mathematical notation and secondly a glossary

of terminology used within this thesis. The third appendix describes the use of the prototype

developed to test the ideas which evolved within this work, followed by a bibliography.

Chapter 2

The Software Maintenance Process

2.1 Introduction

In this chapter the subject of the thesis is placed in its software engineering context. The notion

of software engineering process and software maintenance process are discussed. The reasons for

the importance of impact analysis within the software maintenance process are argued. A detailed

examination of the decisions made within the software maintenance process is presented. The results

are used for developing a classification scheme into which existing impact analysis techniques can

be placed. The classification scheme sorts existing impact analysis techniques according to how

early in the software maintenance process the impact analysis techniques can be used to produce

impact information.

2.2 The Software Engineering Context

Computer users first became aware of a software crisis 20 years ago. Many software projects were

being delivered far behind the planned schedule, quality was poor and maintenance was expensive.

As more complex applications were found, programmers fell further behind than the demand for

new and modified software, a backlog of application development was created and their results were

of poorer quality. The large backlog of application development, enhancement and low productivity

increased the cost of producing systems. The cost of software development and maintenance is still

growing [20]. During the eighties considerable attention was aimed at software tools. Software

systems are large, commoidy occurring and highly coupled to business orgaiusational systems.

The requirement for a systematic approach to software development and software maintenance

has become increasingly important. Software Engineering is the field of study concerned with

this emerging technology [29]. The techniques of software engineering have been introduced in

an attempt to counteract these cost trends in the computer industry. Boehm defines software

engineering in the following way [11] :

Software engineering involves the practical application of scientific knowledge to the

design and construction of computer programs and the associated documentation required

to develop, operate and maintain them.

The IEEE Standard Glossary of Software Engineering terminology [46] defines software engineering

as:

The systematic approach to the development, operation, maintenance and retirement of

software.

Both of these definitions suggest that methods, procedures, rules and principles are used in software

engineering. In this thesis software is defined as computer programs, procedures, rules, and possibly

any associated documentation and data pertaining to the operation of a computer system. Once

software systems have been installed they are often changed to reflect changes in other sub systems

with which they are connected [88]. Software maintenance has been defined by the IEEE [46] as:

The modification of a software product after delivery, to correct faults, to improve per

formance or other attributes or to adapt the product to changed environment.

Over the total life of software the software maintenance effort has been estimated to be frequently

more than 50% of the life cycle costs [55]. An update survey indicates the maintenance cost shows

no sign of declining [66]. Software Maintenance can be classified into four categories [7] :

8

1. Perfective: changing the functional behaviour of a software system to reflect a revised set of

system requirements.

2. Adaptive: changing the software in response to a change in the data environment or in the

processing environment.

3. Corrective: diagnosing system incidents such as errors which cause the termination or incor

rect behaviour of the software.

4. Preventive: improving the quality of a software system in areas where future maintenance is

anticipated.

There are many factors involved in the high cost of software maintenance [66]. One of the reasons

for this high cost of maintenance is the way in which requests for change are processed [4]. If change

requests are serviced in the order in which they are made then extra costs may be involved. This

is because some changes may overlap with others, resulting in duplication of work and increased

complexity. Costs can be reduced by scheduling change requests and batching similar requests

together. Detailed analysis of the system is required in order to determine the effect of each

change on other programs and documentation. A software system should not be considered only

in terms of its source code, i t consists of many other related items such as specification and design

documentation. Often a change may have system wide ramifications which are not obvious. When

considering a change to the source code of a system i t is important to assess the impact of that

change not only on the source code but on the other elements of the system. In this thesis impact

analysis is defined as :

The analysis of the consequential effects on other parts of the system resulting from a

change to a system where a system consists of all source code entities and documentation

entities.

In order to improve the maintenance process, by providing impact information at an early stage

in the process, i t is necessary to analyse and understand the process. This chapter presents a new

model of the maintenance process for the purpose of evaluating existing impact analysis techniques.

In particular the model is used to demonstrate the stages in the maintenance process when impact

analysis techniques can be applied and when they cannot. After a brief reprise of software process

modelling and a short introduction to software maintenance modelling, the definition of the new

model follows. I t is necessary to introduce process modelling and existing software maintenance

models in order to highlight the difference between the model developed in this thesis and other

models. The model developed in this thesis is only a model of the information required to make

decisions during the software maintenance process and not a process model.

Existing models of maintenance are used as a foundation for the new model. In recent years the

software engineering research community has been focusing attention on the software processes

used to develop and maintain software. Dowson and Wildeden [26] define a software process as :

A set of related activities, seen as a coherent process subject to reasoning, involved in

the production of a system.

A process can be regarded as a systematic approach to the creation of a product or the accomplish

ment of some particular task. A set of instructions to accomplish a task is a process. This set of

instructions is called a process description. A process description is a specification for how the task

should be carried out. The process description purports to model the behaviour of an instantiation

of the process. Therefore a software process description may be regarded as a software process

model [33].

Hinley and Bennett [43] argue that process models need to have the following characteristics in

order to provide real benefits for maintenance management :

1. The model must contain organisational, behavioural and functional aspects of the mainte

nance process.

2. Real world objects such as documentation, source code and change requests must be recog

nised.

3. The roles of the people involved in the maintenance process must be recognised.

4. The model must be represented in diagrammatic form so that measurement and control points

can be identified.

5. The model must also recognise how communication between people involved in the mainte

nance process is achieved.

10

6. A framework for maintenance managers which provides guidance in the use of the model must

also be included.

7. The model must be capable of being easily changed in order to reflect both changes in working

practice or experimental changes to the model itself.

Imposing a structure of work within the maintenance process may reduce the difficulty of the

whole task by decomposing i t into a number of sub tasks of reduced complexity [15]. Kellner

[52] identifies process understanding and analysis of processes as one of the objectives of process

modelling. Examples of maintenance models are shown in table 2.1. The models developed between

1976 and 1983 are very simplistic and the order of the phases are indicated. However these models

present no descriptive details of how tasks are to be conducted. The models developed between 1984

and 1987 provide further details of how to perform maintenance tasks. The different categories of

maintenance tasks are also addressed. The models developed between 1988 and 1991 have emphasis

on change control, measurement and different organisational perspectives on maintenance. Most of

the previous models of the maintenance process which have led to publication are very general and

do not include identification of decision points where impact analysis information is useful. The

models above the double horizontal line shown in the table 2.1 focus on technical issues whereas

the models below the line focus on management issues.

Maintenance Model Year Published Bibliographic Entry
Boehm 1976 [11]
Liu 1976 [56]
Swanson 1976 [84]
Sharpley 1977 [77]
Yau and CoUofello 1978 [95]
Parikh 1982 [68]
Mart in and McClure 1983 [59]
Patkau 1983 [69]
Osborne 1987 [67]
Arthur 1988 [4]
Foster 1989 [32]
Pfleeger and Bohner 1990 [72]
Bennett 1991 [9]

Table 2.1: Existing Maintenance Models

I t is clear from the evidence presented in Chapter 1 concerning unexpected linkages that existing

impact analysis techniques are not providing accurate information about the impacts of changes

11

at an early stage in maintenance projects. One of the software maintenance models most relevant

to this thesis was developed by Arthur [4]. This model is relevant to the model developed in this

Chapter because i t focuses on management issues to optimise maintenance process and use available

resources in an effective way, rather than concentrating on purely technical issues. The model

represents the software maintenance from the release planiung perspective, and impact analysis is

implicit within this model. The model is as follows :

1. Rank change requests into a priority order;

2. Select highest priority changes that can be made with available resources;

3. Secure agreement on the content and timing of system releases;

4. Obtain approval to implement the changes;

5. Schedule work into groups to maximise productivity;

6. Prepare release information.

The objectives of release planning are to establish a schedule of system releases and to determine

the contents of each release. I t is important to rank the changes in some order of priority so

that, for example, those changes a yielding the greatest profits to an organisation are implemented

first. The ranking of changes is an important activity which has an impact on the profitability

of a system. However in practice subjective ranking methods are the norm [31]. The software

maintenance process can be optimised by the use of release planning techniques. Examples of

such optimisations are a reduction in both project costs and introduced defects, by scheduling

and batching of releases, based on change impact or impact information. The cost of the software

maintenance process can be reduced i f precise and unambiguous information is available concerning

the potential impacts of a change on an existing system. This information can be provided with

impact analysis techniques. The earlier the information is produced in a maintenance project the

greater wi l l be the reduction in cost.

12

2.3 A Change Analysis View of Software Maintenance

In order to judge at which stage of a project a particular impact analysis technique can be used, i t is

necessary to identify where change information is required within the software maintenance process,

also to what extent a particular impact analysis technique can provide this change information.

Change analysis is the decomposition of a change in a software system into the different facets of the

change such as costs benefit analysis, impact analysis, testing planning, project priority analysis.

The maintenance model developed in this thesis is not a process model but a model to achieve the

following :

1. To identify the decisions made during the change analysis process.

2. To identify the information needed to support the change analysis process.

The model does not include the roles of maintenance staff, nor the behavioural and organisational

aspects of the maintenance process which a process model would. In order to understand the impact

analysis process, i t is necessary to understand the information upon which this process relies and in

particular how the information is collected, derived and disseminated. The decision making process

must be clearly understood. The making of a decision means the designing and committing to a

strategy, to irrevocably allocate valuable maintenance resources.

The scope of the model includes the change proposal evaluation phase to the post implementation

review activity. Some phases are identified but are not necessarily refined i f they are not considered

pertinent to the change analysis process. Prototyping and packages are not considered in this model

as these approaches largely address the development of new software and not the evolution of old

systems.

The model in this thesis is broken into six phases in order to investigate decision making processes

and in particular the assessment of the impact of a change. The model is based on a consolida

tion of existing maintenance models and some of the concepts extracted from the TSB Bank pic

development method.

Each phase is separated into states and tasks. Existing maintenance models are general and high

level. A model whose granularity is fine will allow a more detailed analysis of the process being

13

modelled. The model developed in this thesis consists of three levels.

1. The phase level, which represents the phases which a project wiU pass through before its

completion.

2. The state level, which represents the states in which a project may be at any given time.

3. The task level, which represents the tasks which must be completed in order to reach a

particular state. Included at this level are the project deliverables and the decisions made.

Two types of decisions are recorded management decisions and technical decisions. The

decisions are not impact analysis decisions but are change analysis decisions which often

make use of impact analysis information.

The phases represented by this model are:

Phase 1. C H A N G E P R O P O S A L E V A L U A T I O N .

Phase 2. C H A N G E D E S I G N .

Phase 3. C H A N G E I M P L E M E N T A T I O N .

Phase 4. S Y S T E M T E S T I N G .

Phase 5. S Y S T E M H A N D O V E R .

Phase 6. P O S T I M P L E M E N T A T I O N R E V I E W .

The definition of each phase of the model and the objectives of the phase are the following :

Phase 1. C H A N G E P R O P O S A L E V A L U A T I O N .

The objectives of change proposal evaluation are to provide information enabling the selection of

change proposals for maintenance most beneficial to the business and also to provide information

enabling development resources to be used efficiently and effectively.

Phase 2. C H A N G E D E S I G N .

The objectives of the change design phase are to carry out detailed investigations establishing a

clear understanding of the existing software system. A second objective is to produce a change

design in sufficient detail to confirm the technical approach and identify any critical areas of system

performance. Other objectives of this phase are to refine the estimates for resources and equipment

14

and to define the roles and responsibilities involved in the maintenance of the system.

Phase 3. C H A N G E I M P L E M E N T A T I O N .

The objectives of this phase are firstly to produce the technical documentation describing what

the application must do in order to satisfy the business proposal and system proposal produced in

the earlier phases. The second objective is to develop and change the source code to reflect the

technical documentation. A third objective is to test the program modules and connecting modules

unti l they function to specification without error.

Phase 4. S Y S T E M T E S T I N G .

The objectives of this phase are firstly to ensure that current facilities are not degraded by new or

amended facilities and secondly to ensure that the new or amended facility satisfies the business

proposal and system proposal. A final objective is to ensure that the interfaces between sub-systems

are correct and also that the interfaces between systems are correct. .

Phase 5. S Y S T E M H A N D O V E R .

The main objectives of this phase are to obtain user acceptance of a project or release and to

produce user, operations and support documentation. Other important objectives are to identify

and carry out the necessary training for the users of the system, the support staff and the operations

staff. The system must then be operated in as near as possible to operational conditions.

Phase 6. P O S T I M P L E M E N T A T I O N R E V I E W .

The objectives of this phase are to identify the good and bad features in a project development in

order to identify and eliminate bad practices and ensure good ones are adopted. This phase of the

model is not particularly relevant to this thesis so i t is not developed.

The model is now further refined to include the various states within a project.

Phase 1. C H A N G E P R O P O S A L E V A L U A T I O N :

State 1: Init ial Investigation of Change:

State 2: Authority to Proceed:

State 3: Determine Business Requirements:

15

State 4: Develop System Proposal:

State 5: Project Review and Scheduling:

State 6: Q A Checkpoint

P h a s e 2. C H A N G E D E S I G N :

State 1: Per form Design:

State 2: Q A Checkpoint

P h a s e 3 . C H A N G E I M P L E M E N T A T I O N :

State 1: Prepare Technical Documentat ion:

State 2: Prepare for Testing:

State 3: Create Test Data :

State 4: Produce Source Code:

State 5: Module Test:

State 6: Q A Checkpoint:

P h a s e 4. S Y S T E M T E S T I N G :

State 1: Prepare fo r Testing:

State 2: Per form Testing:

State 3: Release for Acceptance Testing:

State 4: Q A Checkpoint:

P h a s e 5. S Y S T E M H A N D O V E R :

State 1: Prepare for implementa t ion in to organisation:

State 2: Per form user acceptance:

State 3: Per form confidence testing:

State 4: Run p i lo t :

State 5: Per form implementat ion:

State 6: Q A Checkpoint:

P h a s e 6. P O S T I M P L E M E N T A T I O N R E V I E W :

State 1: Prepare for maintenance review

State 2: Per form Maintenance Review

State 3: Project Analysis

16

State 4: Pe r fo rm Actions

I n t l ie effective management of a software process the use of models which organise the process and

make i t visible, are most useful. This can be achieved by making documents, reports and reviews

more visible [80]. I n order t o reach a par t icular state a number of tasks must be completed. These

tasks are added to the model below. The fo l lowing documents i n table 2.2 are also included in

this model .

Documents Represented Abbrevia t ion used in the Model
Change Request (C R)
Business Requirements (B R)
System Proposal (S P)
Project Schedule Offer to User (P S O)
System Design (S D)
Technical Documentat ion (T D O C)
Test Plan (T P)
Test D a t a (T D)
Source Code (S C)
Test Results (T R)
System Test P lan (S T P)
System Test Da ta (S T D)
Review Plan (R V P)
Review Document (R D)
Analysis Report (A R)

Table 2.2: Deliverables Represented i n the Model

Documents are represented i n the model so tha t progress can be moni tored at various stages during

a pro jec t . Such a document-oriented model is used by many government organisations and software

houses [80]. The documents also serve to iden t i fy the in fo rmat ion which is produced as the by

product of the maintenance process. Decisions made i n one phase of the model w i l l be based on

the i n f o r m a t i o n contained i n documents produced f r o m previous process model phases. Therefore

model l ing the document deliverables in this change analysis process model w i l l help in deciding

i n which phases exist ing impact analysis techniques can be used effectively. B o t h the informat ion

available to maintenance s taff and also the in fo rmat ion which existing impact analysis techniques

analyse in order to determine the change impact w i l l be two factors i n this study.

17

A n y maintenance task which involves making a decision is underlined. For example, "Task 4:

Iden t i fy T i m e Scales f o r Hand Over {Decision No. 2)" indicates tha t a decision must be made.

These decisions are discussed i n Section 2.4.

P H A S E 1 C H A N G E P R O P O S A L E V A L U A T I O N .

State 1. I n i t i a l Invest igat ion of Change:

Task 1. Receive Change Request f r o m user (C R)

Task 2. Define Development or Amendment to Service (B R)

Task 3. Calculate Costs and Benefits {Decision No. 1)

Task 4. Define the business case for the change

State 2. A u t h o r i t y to Proceed:

Task 1. Assign P r io r i t y for Investigation

Task 2. A d d Project to Project Register

State 3. Determine Business Requirements:

Task 1. Investigate Exis t ing Service

Task 2. Iden t i fy Requirements for New Service

Task 3. Iden t i fy Service Levels Required

Task 4. Iden t i fy T i m e Scales for Hand Over {Decision No. 2)

Task 5. Re-calculate Costs and Benefits {Decision No. 3)

Task 6. Document Business Requirements

State 4. Develop System Proposal:

Task 1. Define Outputs , Inputs and Processing {Decision No. 4)

Task 2. Est imate the Project Risks

Task 3. Est imate Costs and Benefits of the Project (Decision JVo. 5)

Task 4. Document System Proposal (S P) {Decision No. 6)

State 5. Projec t Review and Scheduling: {Decision No. 7

Task 1. Categorise Projects {Decision No. 8)

(Adap t ive , Corrective, Perfective, Preventive)

Task 2. Assign Priori t ies to Projects (P S O) (Decision JVo. 9)

State 6. Q A Checkpoint

P H A S E 2. C H A N G E D E S I G N .

State 1. Per form Design: (S D)

18

Task 1. Walk through System Proposal

Task 2. Refine Da ta Requirements

Task 3. Prepare Physical Data Design (Decision No. 10)

Task 4. Design Da ta Base Schema

Task 5. Separate Processing in to Components (Archi tec tura l Level)

Task 6. Update Estimates (Decision No. 11)

State 2. Q A Checkpoint

P H A S E 3 . C H A N G E I M P L E M E N T A T I O N .

State 1. Prepare Technical Documentat ion:

Task 1. Decompose Processing in to Components (Detai led Level)

Task 2. W r i t e Technical Documentat ion (Decision JVo. 12) (T D O C)

Task 3. Define or Redefine Internal Fi le Design

Task 4. Produce Da ta Base Schemas

Task 5. Update Estimates

State 2. Prepare for Testing:

Task 1. Produce Test Strategy (T P)

Task 2. Iden t i fy Tests to Perform

Task 3. Determine Order of Testing

Task 4. Determine Test Resource Requirements

Task 5. Specify Expected Results

State 3. Create Test Data :

Task 1. Determine Requirements (Decision No. 13)

Task 2. Create Environment for Testing (T D)

State 4. Produce Source Code:

Task 1. Analyse Exis t ing Code i f necessary

Task 2. Design Programs and/or Program Modif icat ions (S C)

Task 3. Per form Source Code Impact Analysis (Decision No. 14)

Task 4. Review and Update Estimates

Task 5. Extend Test Plan i f necessary

Task 6. Produce and/or Amend Code

Task 7. Desk Check New Code

Task 8. Walk th rough Code

19

State 5. Module Test:

Task 1. Test According to Tests Plan

Task 2. Note Test Results

Task 3. Check Results Against Expectations {Decision No. 15)

Task 4. Review and Update Estimates

State 6. Q A Checkpoint:

P H A S E 4. S Y S T E M T E S T I N G .

State 1. Prepare for T e s t i n g . (S T P , S T D)

State 2. Per form Testing. (Decision JVo. 16) (T R)

State 3. Release fo r Acceptance Testing.

State 4. Q A Checkpoint .

P H A S E 5. S Y S T E M H A N D O V E R .

State 1. Prepare for implementa t ion in to organisation.

State 2. Per form user acceptance.

State 3. Per form confidence testing.

State 4. R u n p i lo t System.

State 5. Re-Insertion.

State 6. Q A Checkpoint.

P h a s e 6. P O S T I M P L E M E N T A T I O N R E V I E W :

State 1: Prepare for maintenance review. (RVP)

State 2: Per form Maintenance Review.(RD)

State 3: Project Analysis . (A R)

State 4: Per form Act ions .

The model developed i n this thesis implies a waterfa l l l i fe cycle model where one phase flows into

another. Th i s type of model was derived f r o m other engineering activities [76]. The waterfal l l ife

cycle style model is by far the most widely used software l i fe cycle model and is well accepted

[80]. However i t is expected tha t the model i n this thesis may be cyclic. The cycles represent the

i t e r a t i on of phases and tasks which may occur in the event of changes to the system proposal which

may be i n i t i a t ed by users or maintenance staff.

20

I n the model developed i n this thesis there is no indicat ion of parallelism. However there is no

reason why various tasks cannot be performed i n parallel . For example as soon as the content of

the project is known i n deta i l , such as, which source code modules wiU be affected, then preparations

can be made for test ing, system testing and system hand over. Therefore the amount of parallel

processing would seem to be affected by the avai labi l i ty of in fo rma t ion regarding the impact of

a change. This also suggests tha t the inclusion of parallel processes i n the maintenance model

w i l l reduce the t ime between request for change and system hand over. This is another important

strategic reason for early detection of the impact of a change.

I t is thought tha t the paral lel ism and cyclic nature of this model are organisation specific features

and not generic features. The level of cycles and parallelism w i l l depend on the technology used to

support the tasks i n the model . I f poor requirements analysis technology is used then there w i l l be

many cycles. This is because the business proposal and system proposal w i l l not be frozen i f the

requirements are i n i t i a l l y incorrect. On the other hand i f no impact analysis techniques are used,

there may be few parallel maintenance processes except perhaps for any independent maintenance

processes which can be ident i f ied by examining task dependencies [80].

2.4 Classifying Impact Analysis Techniques

The f o l l o w i n g questions, which are shown i n table 2.3 must be answered i n order to proceed f rom

one state to another. A l l of the decisions made i n Phase 1 are management decisions and all of the

decisions i n phases 2,3 and 4 are technical decisions. I n order to answer the questions satisfactorily

the fo l lowing i n f o r m a t i o n shown in table 2.4 must be available.

This table 2.4 w i l l f ac i l i t a te a phased classification of impact analysis techniques according to when

par t icular techniques may be used by maintenance staff. There are 16 possible classes w i t h i n which

impact analysis techniques can be placed, corresponding to the sixteen decision points i n the table

2.3. F rom the table 2.4 i t can be concluded tha t i n knowing the direct impacts, then the indirect

impacts and the relat ionship of new software t o these components, can be regarded as central to

the decision making process. This i n fo rma t ion is therefore very impor tan t i n enabling maintenance

and development resources to be used efficiently and effectively.

21

D E C I S I O N P H A S E S T A T E D E C I S I O N

No. 1 Phase 1 State 1 W h a t are the cost benefits?
No. 2 Phase 1 State 3 W h a t are the t ime scales required?
No. 3 Phase 1 State 3 W h a t are the cost benefits?
No. 4 Phase 1 State 4 W h a t are the inputs , outputs , processing and data?
No. 5 Phase 1 State 4 W h a t is the implementat ion strategy?
No. 6 Phase 1 State 4 W h a t is the testing strategy?
No. 7 Phase 1 State 4 W h a t are the cost and benefits?
No. 8 Phase 1 State 5 How can the project be categorised?
No. 9 Phase 1 State 5 W h a t is the p r io r i ty for the project?
No . 10 Phase 2 State 1 W h i c h are the impacted system features?
No. 11 Phase 2 State 1 W h a t are the estimates now?
No. 12 Phase 3 State 1 W h i c h technical documentation needs to be

writ ten/amended?
No. 13 Phase 3 State 3 W h i c h test data is required?
No. 14 Phase 3 State 4 W h a t is the source code impacted?
No. 15 Phase 3 State 5 W h a t caused a part icular defect?
No. 16 Phase 4 State 2 W h a t caused a part icular defect?

Table 2.3: Decisions Based on Impact In fo rmat ion

D E C I S I O N P H A S E S T A T E I N F O R M A T I O N R E Q U I R E D T O M A K E DECISION

No. 1 Phase 1 State 1 benefits to business i n financial terms
No. 2 Phase 1 State 3 volume of work i n to t a l
No. 3 Phase 1 State 3 impacts and new inputs , outputs , processing and data
No. 4 Phase 1 State 4 impacts and new inputs , outputs , processing and data
No. 5 Phase 1 State 4 impacts and new inputs , outputs , processing and data
No. 6 Phase 1 State 4 impacts and new inputs , outputs , processing and data
No. 7 Phase 1 State 4 impacts and new inputs , outputs , processing and data
No. 8 Phase 1 State 5 impacts and new inputs , outputs , processing and data
No. 9 Phase 1 State 5 impacts and new inputs , outputs , processing and data
No. 10 Phase 2 State 1 impacts and new inputs , outputs , processing and data
No. 11 Phase 2 State 1 amount of work lef t
No . 12 Phase 3 State 1 technical documentation needing maintenance
No. 13 Phase 3 State 3 test data required
No. 14 Phase 3 State 4 source code entities
No. 15 Phase 3 State 5 source code entities
No. 16 Phase 4 State 2 source code entities

Table 2.4: I n f o r m a t i o n Requirements for Decision Mak ing

22

2.5 Summary

I n this chapter the thesis is placed i n the software engineering context. The reasons for the im

portance of impact analysis are presented. The maintenance process is examined and the results,

namely a model of the decisions made i n this process, are used to develop a classification scheme

in to which exist ing impact analysis techniques can be placed.

Unexpected linkages and errors i n l ive systems suggest that maintenance staff are not provided wi th

sufficient impact analysis i n fo rma t ion about a maintenance project . Many maintenance projects are

delivered late or delivered on t ime but w i t h a deterioration i n system qual i ty because the amount of

work involved i n a maintenance project was under-estimated. This is probably because the impact

of a change to a system was not known at the beginning of the projec t . Therefore existing impact

analysis techniques were perhaps d i f f icu l t to apply at an early stage i n the project .

The next chapter strengthens the argument that existing techniques are not usefid for the early

detection of the impact of a change. This is achieved by placing exist ing impact analysis techniques

in to the classification scheme developed i n this Chapter.

The placement of each technique w i t h i n the classification scheme is achieved by analysing the theory

underpinning the technique, the characteristics of the technique, the in fo rma t ion analysed by the

technique and finally the results which may be produced by applying the technique in practice.

The use of this classification scheme provides an or iginal method of evaluating and ident i fying the

significance o f exis t ing impact analysis techniques w i t h respect to how early these techniques can

detect r ipple effects. The same classification scheme is applied to the work developed i n this thesis

i n order to fac i l i t a te a comparison between previous work and this new work.

23

Chapter 3

Impact Analysis Techniques: An

Analysis and Comparison

3.1 Introduction

This chapter defines impact analysis and presents a review of the impact analysis l i terature in

chronological order. A n analysis and comparison of existing impact analysis techniques is discussed.

The theoret ical basis of each technique or approach is examined, aswell as i ts practical use, its value

and significance, and also the problems associated w i t h i t . I n part icular the stage the techniques

can be used i n the maintenance process is identif ied. Last ly the characteristics of documentation

are examined.

24

3.2 What is an Impact Analysis?

3.2 .1 D e f i n i t i o n

The t e rm impact is used by many authors to denote the knock on effects propagated through

software, because of the different types of dependencies i n software systems. Some authors use the

t e r m impact to mean the same as r ipple effect. Yau [95] defines the r ipple effect as the fol lowing :

Ripple effect is the phenomenon by which changes to one program area may be felt in

other program areas.

This view suggests tha t r ipple effects only occur at the source code level. For example a modification

i n an assignment statement for variable A may have impacts i n any statement i n which A is used.

A mod i f i ca t ion i n an I F or W H I L E type statement may affect each statement whose execution is

condit ioned by the I F or W H I L E construct. Each ripple effect i n t u r n can have other ripple effects

when the new value of A is used to evaluate another variable B . Every statement where B appears

may be affected. This type of eflTect is called a copy propagation [3].

Agusa et a l , [2] define the r ipple effect as the fo l lowing :

The ripple effect is the situation that some modification of requirements description

results in a logical inconsistency and we are unable to read that description as intended.

This view suggests tha t the ripple effect can also occur i n documentat ion. Pfleeger and Bohner [72]

define impac t analysis as the fo l lowing :

Impact analysis is the assessment of the effect of a change and aids the maintenance

team in identifying software work products affected by software changes.

This view of the detection of the ripple effect, that is, impact a n a l y s i s or r ipp le effect analys is ,

suggests tha t a l l work products , bo th documentation and source code are prone to the impact. This

type of analysis allows the maintenance managers and programmers to assess the consequences of

25

a par t icu lar change t o the source code. I t can be used as an estimate of the cost of a change. The

more the change causes other changes to be made ('r ipples ') then, i n general, the higher the cost.

Car ry ing out this analysis before a change is made, allows an assessment of the cost of the change

and allows management t o make a trade-off between alternative changes.

I n this thesis the phrase impact analysis wiU be used instead of ripple effect analysis and two types

of impacts w i l l be addressed :

1. d i rec t i m p a c t s which are work products specifically mentioned i n a change request;

2. i n d i r e c t i m p a c t s which are addi t ional work products requiring maintenance i n order to

remain consistent w i t h the changes made by the direct impacts.

I n order to ma in t a in a software product , impacts must be considered i n two types of work products:

1. system documentat ion which includes al l of the products describing the source code of a

product ;

2. source code which includes a l l data files descriptions, modules and job control language.

System documentat ion consists of the fo l lowing components :

1. requirements;

2. specifications;

3. archi tectural designs;

4. detailed designs.

Indirect impacts on documentat ion can be caused by the fo l lowing :

1. description of assignment of data f r o m one data ent i ty to another data ent i ty where a data

en t i ty can be any source code component capable of storing data;

2. deletion of a document component which another document component may explicit ly or

i m p l i c i t l y reference.

26

Indirect impacts i n source code can be caused by:

1. data declaration change;

2. da ta flow value assignment;

3. contro l flow i f assignments;

4. cal l ing nested procedure or func t ion ;

5. f unc t iona l f u n c t i o n assignment.

There are two types of indirect impact identif ied by Yau, Collofello and McGregor [95] First ly

the log ical r i p p l e effect which is an inconsistency introduced in to a program area by a change

to another p rogram area and secondly the p e r f o r m a n c e r ipp le effect which is a change in a

module's performance as a consequence of a software change i n another module. I n this thesis

performance r ipple effects are not considered because they are complex and certainly merit a

separate invest igat ion. The t e rm r ipple propagat ion means the spreading of the ripple effect.

S t a b i l i t y a n a l y s i s differs f r o m impact analysis i n that i t considers the sum of the potential impacts

rather than a par t icular impact caused by a change .

S t a b i l i t y is considered as one of the m a j o r at tr ibutes of main ta inabi l i ty because the understanding

and mod i f i ca t ion of a program, and also the calculation of possible impacts, constitutes a major

p ropor t ion of the software maintenance effor t . Program stabi l i ty has been defined by Yau and

Collofel lo [97] as :

The resistance of a program to the amplification of changes in the program

D o c u m e n t a t i o n s tab i l i t y is defined i n this thesis as :

The resistance of documentation to the amplification of changes in the docu

mentation

This thesis concentrates on impact analysis and is not directly concerned w i t h evaluating the quality

a t t r ibutes of s tabi l i ty .

27

3.3 Historical Overview of Impact Analysis Techniques

The research in to impact analysis has evolved over two decades. The origins of impact analysis

research can be traced back to 1972 when Haney published the first paper addressing the subject.

This paper presented an adjacency m a t r i x which stored probabilit ies of one module propagating

an impact to other modules. The probabili t ies were based on previous changes.

Since 1972 many people have investigated the problem of detecting the impact of a proposed

change. Most approaches have analysed source code impacts and not documentation ripple effects.

There have been several lines of approach taken. Surprisingly few people have explored the sta

t i s t i ca l approach in t roduced by Haney which offers a very practical approach to detecting indirect

impacts . Several researchers have analysed source code dependencies and i n particular data flow

dependencies. Some methods are based on storing semantic in format ion concerning dependencies

i n source code. Yau [95, 96, 97, 98] produced several noteworthy results i n the f o r m of algorithms

to compute the r ipple effect and a module's s tabil i ty. I n the early 1980's these techniques were

studied i n great deta i l . Other contr ibutions i n the m i d 1980's looked in to documentation traceabil-

i t y , fo r example SODOS [44] and D I F F [34, 36]. One other noteworthy result is impact analysis i n

algebraic specifications [64]. None of the previous approaches involved any k i n d of mathematical

f o r m a l specification, except for the Designer/Verifier Assistant [62]. One of the most important

recent contr ibut ions was made by Pfleeger and Bohner [72]. The approach adopted was a graph

model of a l l the l i fe cycle work products which could be measured. As changes were requested,

measurements of the impact could be made and implementat ion decisions could be made [72].

The t rend i n impact analysis research, as well as i n software engineering, is towards representing and

using higher levels concepts rather than just source code listings [18]. The reasons for this trend are

related to the developments i n software engineering namely, the recognition of work products other

than p rogram code as impor t an t i n part icular for large systems. The fu tu re directions for impact

analysis research w i l l be firstly, i n characterising interconnectivi ty i n work products other than

source code and secondly i n the development of techniques for iden t i fy ing projects, w i t h possible

system wide ramif icat ions .

28

3.4 Analysis of Existing Impact Analysis Techniques

Recently a very simple scheme fo r classifying impact analysis techniques was proposed by Collofello

and Vennergrund [18]. I n this scheme, impact analysis techniques are divided into two types, as

determined by i n f o r m a t i o n analysed by part icular techniques. The two types identified were syn

tact ic and semantic impact analysis techniques. The scheme is broad but not free f r o m objections.

The classification is very simple and clear however i t is not useful when choosing particular impact

techniques to be applied at various stages dur ing a software maintenance project .

There are actual ly three dist inct categories of impact analysis techiuques. Syntactic based impact

analysis techniques work on source code representations [97]. The impacts are determined by

analysing the control and data flow of the source code. Semantic based impact analysis techniques

work on higher level representations than the source code [18, 93]. The semantic informat ion

reflects the in ten t ion of the program and represents knowledge of the basic assumptions which

must be t rue fo r the correct operat ion o f the system. Statistically based impact analysis techniques

work on source code representations such as probabi l i ty interconnection matrices representing the

p robab i l i t y of impacts to other source code components [41, 81].

I n this thesis an al ternative scheme of classification w i t h finer divisions is proposed. The divisions

are based on when the techniques can be applied i n the software maintenance process. Specifically

the states modelled i n Chapter 2 wiU f o r m the divisions of classification scheme .

A n y research contr ibut ions which f a l l in to any of these three categories syntactic, semantic and

s ta t i s t ica l are discussed i n this thesis.

3 .4 .1 T h e 1970 ' s D e v e l o p m e n t s

I n 1971 Grosch [40] ident i f ied tha t for some large systems the problem to be solved and the system

designed to solve i t are i n such a constant flux tha t s tabi l i ty of the software is never achieved. The

paper indicated tha t impact analysis was a problem but d id not propose any solutions.

M o d u l e C o n n e c t i o n A n a l y s i s (1972)

29

Haney [41] was not the first person to iden t i fy that the problem of contingency laden estimates

for development projects are frequently exceeded. However Haney was one of the first people to

i d e n t i f y the problem of underestimated maintenance project resources :

Our most significant problem has been gross underestimation of the effort required to

change (either for purpose of debugging or adding function) a large, complex system.

Haney describes a technique which models the s tabi l i ty of a large system as a func t ion of its internal

s t ructure. This technique includes a m a t r i x fo rmula for modell ing the ripple effect of changes in a

system. The m a t r i x records the probabi l i ty tha t a change i n one module w i l l necessitate a change

in any other module i n the system. For example a release in fo rma t ion sheet can be used to revise

the probabil i t ies of module impact propagation by recording the changes made to modules and also

to the other modules affected. The more this technique is used the greater the predictive value of

the model .

The m a t r i x f o r m u l a based on these probabili t ies can be used fo r explaining why the process of

changing a system is more involved than maintainers might believe. The technique can be used

to estimate the number of changes required as a result of changing one part icular module. No

data is presented t o show how the estimated to t a l changes are related to cost of the actual changes

required. A weakness i n this technique, namely the assumption tha t al l modifications to a module

have the same magnitude of impact , could make the est imation of change resources inaccurate. The

dis t inct ive feature of this approach is that i t analyses source code only. Hence i t is only possible

to deduce source code impacts using this technique. Therefore the technique can ordy support the

decisions 13,14,15 and 16 ^.

A P r o g r a m S t a b i l i t y M e a s u r e (1977)

A program s tab i l i ty measure was also developed by Song [81]. A technique is presented which

quantifies the qual i ty of a program i n terms of i ts in fo rma t ion structure. The in format ion structure

is based on the sharing of i n fo rma t ion between components of a program. The technique is based

on a connect ivi ty m a t r i x and random Markovian processes and makes a similar assumption to the

technique described by Haney, that a l l modules changed share the same in fo rmat ion content and

^These decisions are presented in Chapter2, table 2.3, page 22

30

the sharing of i n f o r m a t i o n between modules is equal. The technique presented is more complicated

than tha t of Haney and has not been validated. The dist inctive feature of this approach is that

i t analyses source code only. Hence i t is only possible to deduce source code impacts using this

technique since only source code in fo rma t ion is analysed. Therefore the technique can only support

the decisions 13,14,15 and 16.

R i p p l e E f f e c t A n a l y s i s (1978)

Yau et al [95] make an impor t an t contr ibut ion to impact analysis techniques. This was probably one

of the first papers to coin the phrase ripple effect. T w o techniques developed to analyse the impact

of a change f r o m the func t iona l and performance perspectives are developed. The first technique

tracks a l l statements w i t h i n a module which may be affected by the def ini t ion of a variable. Then

the in ter-module boundaries are considered. The performance ripple effect, that is, the analysis of

a p rogram module whose performance may change as a consequence of a program modificat ion, is

a complex task. This is achieved by developing a performance dependency relationship between

pairs of modules. This exists i f one module can cause a change i n performance i n another module

i f i t should be modif ied . B o t h techniques are discussed f r o m a philosophical point of view and

details of a lgori thms are not included. I t is only possible to deduce source code impacts using this

technique and therefore the technique can only support decisions 13,14,15 and 16.

A D e s i g n e r / V e r i f i e r A s s i s t a n t (1979)

M o r i c o n i [62] describes a theory which can answer questions about the effects of hypothesised

changes and can make proposals on how to proceed in an orderly fashion when making changes to

software. This was the first paper to give advice on how to make changes and i t was the first paper

to address the changing of designs for fo rmal ly verified programs. The dist inctive feature of this

approach is tha t i t analyses source code and documentation i n the f o r m of func t iona l specifications

therefore i t is only possible to deduce inconsistencies i n design specifications and direct impacts on

the source code, f r o m specifications. This is because the theory developed is for s imulat ing changes

to software designs. Therefore the technique can support the decisions 12 and 14.

P r o g r a m S l i c i n g (1979)

Weiser [91] demonstrated tha t programmers view programs not necessarily f r o m a textual or module

31

structure point of view. Participants in experiments were asked to debug three programs and they

were provided with program fragments some of which were based on slices and others were random.

The participants were then asked to rate the fragments, based on how sure they were that it had

been used in the programs. The results showed that programmers view programs in terms of

independent strands of execution. A strand of execution is defined as aU the program statements

which contribute to the contents of a program variable. It is only possible to deduce source code

impacts using this technique and therefore the technique can only support the decisions 14,15 and

16.

3.4.2 The Ear ly 1980's Developments

Stability Measures (1980)

A measure of the logical stability of software systems was proposed by Yau and CoUofeUo [97]. The

logical stability of a module is a measure of the resistance to the impact of such a modification

on other modules in the program in terms of logical considerations. There are two parts of logical

ripple effect considered by Yau and CoUofello. One part concerns intra-module change propagation

and the other concerns inter-module change propagation. Therefore the information on which the

metric is based can be used to identify other modules impacted. This is achieved by analysing the

data flow within modules and the data flow between modules. It is only possible to deduce source

code impacts using this technique since only source code information is analysed. Therefore the

technique can only support the decisions 14,15 and 16.

System Level Ripple Eflfect Analysis (1983)

Agusa, Kishimoto and Ohno [2] convert system requirements into clausal form and analyse them

using resolution and predicate calculus. The technique is one of the more theoretically motivated

approaches to ripple effect analysis. This approach is an early ripple detection approach. The

information analysed by the analyser is the requirements specifications. The approach adopted

was significant. It advanced ripple effect techniques because it was the first approach to detecting

the ripple effect in a top down manner though various levels of abstraction. Resolution is used to

detect logical inconsistencies in the requirement description clauses. The distinctive feature of this

approach is that it analyses documentation and therefore the technique can support the decisions

32

12 and 14.

Requirements Impact Analysis (1983)

Chikofsky [16] discusses a Problem Statement Analyser (PSA) and its associated Problem State

ment Language for software maintenance. This tool manipulates user requirements and system

design at the beginning of the life cycle. Queries are given to the tool to produce the modules

affected by a change to a system. This was a significant contribution to the field of impact anal

ysis as i t was the first investigation to address early detection of the ripple effect. The distinctive

feature of this approach is that it analyses documentation and therefore the technique can support

the decisions 12 and 14.

An Efficient Technique for Impact Analysis (1984)

Yau and Chang [98] developed a new stability analysis technique which is similar to the technique

described above but which is easier to apply to large programs. This technique is not a code

based technique, it is instead intended to be applied to the design phase of software project.

The technique is more efficient because the source code is not analysed. The complete information

regarding variable definition and usage is not a requirement of tliis technique. Instead dependencies

between global variables and modules are extracted from design documents. This approach uses

whatever design information is available and therefore the technique can support decisions the 14,

15 and 16.

Relational Query Languages (1985)

Glagowski [38] developed a software maintenance tool to support ripple effect analysis. The tool is

based on a relational model to store system documentation and is designed to help the maintainer

achieve a quick understanding of system structure. The documentation is very low level, for example

flow charts, procedural abstractions and data abstractions. This relationship information can

be produced from source code itself, automatically. However it is not abstracted from written

documentation. The tool is very useful for recording graphical information because the lines on

flow diagrams can be represented by relations. The distinctive feature of this approach is that it

analyses documentation only. However it is only possible to deduce source code impacts. Therefore

the technique can support the decisions 14, 15 and 16.

33

Design Stability Measures (1985)

Yau and Collofello [99] also developed design stability measures that are intended to be used for

assessing the quality of program designs based on design documentation in the design phase of soft

ware development. They are based on the counting of assumptions made about module interfaces

and shared global data structures. This information is taken from program design documentation.

The distinctive feature of this approach is that it identifies source code impacts by analysing design

information. Therefore the technique can support the decisions 12 and 14.

Implicit Information Detection (1985)

Stankovic [82] investigated the implicit information problem, that is, the detection of relationships

that are not directly implemented in the code and data. For example two copies of a data structure

which must remain consistent, are modified by two different procedures. The procedures must

update both copies of the data structure otherwise the requirement wiU be violated. This work is

an extension to the work by Chikofsky [16]. Control flow and data flow information are recorded and

information is displayed in a flow chart form to the user. The PSL/PSA structures are connected to

the source code information to allow the user to detect implicit relations which may be violated by

proposed changes. The distinctive feature of this approach is that it analyses implicit dependencies

stored in database and therefore the technique can support decisions 12 and 14.

3.4.3 The Late 1980's Developments

S O F T L I B (1986)

Sommerville et al [79], developed a documentation library system based around the UNIX file store.

In this paper all documentation for a source code component is grouped into a set. This makes

it easy to trace the different representations of a particular component. The distinctive feature of

this approach is that it analyses both documentation and source code. Therefore the technique can

support the decision 12.

Document Support Environment (1986)

This work by Horowitz and Williamson [44] describes a computerised environment, SODOS (Soft-

34

ware Documentation Support), which supports the defirution and manipulation of documents used

in developing software. In SODOS software life cycle documents are linked by recording intra and

inter document relationships. The underlying graph model is independent of any particular docu

mentation or development method. The main contribution is the facility to detect inconsistencies

before the later stages in the maintenance process. The model of documentation is based on a graph

structure and is represented as a relational model. No impact analysis algorithms are suggested

in SODOS. The distinctive feature of this approach is that it analyses documentation only and

therefore only decision 12 is supported.

Neptune (1986)

Delisle and Schwartz [22] describe a documentation system called Neptune which is a hypertext

database for documenting program structure. Neptune uses a directed graph of nodes to model the

structures of a program and documentation text. Attributes attached to nodes describe the content

of the nodes. Links between documentation can also have attributes assigned to them. Neptune

concentrates on documenting the coarse structure of documentation at the level of modules and

procedures. The distinctive feature of this approach is that it analyses both documentation and

source code. The system, like the SODOS system, has no underlying impact model therefore only

decision 12 is supported.

Enhancing Software Reliability (1986)

Thebaut and Wilde [85] argue that since the impact of a proposed change helps the maintainer

understand the program before it is changed this understanding wiU lead to greater reliability in

the new version of the source code. This approach includes three techniques for achieving this goal,

namely impact analysis, dynamic analysis and symbolic evaluation. The impact analysis algorithm

marks the program statements which are directly affected by the change. Then other statements

which are affected by the first set of changes are marked and so on. This approach is very simplistic

and readily applied. The distinctive feature of this approach is that it analyses source code only

and therefore the technique can support the decisions 14, 15 and 16.

F O R T U N E Document Environment (1987)

FORTUNE as described by MuUin and McGowan [63], is a collaborative project forming part of the

Alvey Software Engineering programme. Its objective was to produce an integrated documentation

35

tool that wiU support the creation and update of textual and graphical documentation throughout

a project life cycle. FORTUNE is based on a traditional life cycle model. The facility provided

supports links between different levels of documentation such as requirements and design. The dis

tinctive feature of this approach is that it analyses documentation oidy and therefore the technique

can support decision 12.

Semantic Information Tool (1987)

Ripple effect analysis is based on semantic information which is higher level than source code and

not derivable from source code. The semantic information represents both the intent of the program

(function) and also knowledge of the basic assumptions which must be true for correct operation

of the system using semantic nets. A prototype impact analysis tool based on both syntactic and

semantic information was constructed by Collofello and Vennergrund, and is described [18]. The

prototype enables the maintenance information to be captured in the form of semantic conditions

which can be linked to syntactic constructs. This allows the maintainer to determine the impact

of a change based on semantic and syntactic information. The distinctive feature of this approach

is that it analyses source code only. Therefore the technique can support decision 14.

Data Flow Analysis (1988)

Keables et al. [50] developed algorithms for regression testing. The algorithms are used for variable

analysis, reaching definitions, definition chains and use chains. The algorithms are used to detect

new undefined references and useless definitions. The reaching definitions and modified definition

and reaching chains assist the maintainer in debugging modified code. The distinctive feature of

this approach is that it analyses source code only and therefore the technique can support decision

14.

Dependency Directed Reasoning (1988)

Dhar and Jarke [23] present a maintenance tool which supports an approach to impact analysis using

a knowledge based system. The system stores knowledge about a software system which can be

used to deduce which impacts will result from a modification. This is achieved by using a formalism

called REMAP (REpresentation and MAintenance of Process Knowledge). The contribution of this

paper was the recording of design decisions, for example the reasons for the use of a particular design

solution in a system. The distinctive feature of this approach is that it analyses documentation

36

and source code. Therefore the technique can support the following decisions 12 and 14.

Modifiability Metrics (1988)

Yau and Chang [100] present a model for measuring software modifiability . The central concept

of this model is attributed to its localisation property. The localisation property of a module

indicates whether or not changes made to the module would have only a localised effect. The

metric is developed in two stages, firstly the intra-localisation property is developed and secondly

an inter-localisation property is developed. A number of experiments were conducted to validate

the metric. 180 maintenance changes were made to five programs. The results show that the

metric is a good measure for the estimation of the effort required to modify the modules of the

programs. The distinctive feature of this approach is that it analyses source code only and therefore

the technique can support decision 14.

Hypertext and C A S E (1988)

This work by Bigelow [10] describes the basis for a programming environment. Hypertext is used

as a CASE environment in which documents and code can be related to each other. Whilst this

tool provides traceability it is not a good facility for impact analysis since there is no underlying

model of interconnectivity. Instead the links between objects are created freely. The distinctive

feature of this approach is that it analyses both documentation and source code. Therefore the

technique can support the decisions 12, 13 and 14.

Module Interconnection Graphs (1989)

Calliss [14] provides a model of interconnectivity between modules which is well founded in graph

theory. The model of inter-module dependencies can be used for impact analysis between modules.

Previous models of interconnectivity had concentrated on intra-module dependencies. Techniques

are provided which analyse the entities shared between groups of modides. The model and model

analysis techniques were implemented using a relational database. The distinctive feature of this

approach is that it analyses source code and therefore the technique can support decision 14.

37

3.4.4 Recent Advances

Document Integration Facility (1989 and 1990)

The System Factory project [34, 36] contains a document integration facility which provides a

mechanisms for developing and documenting software development objects and their relationships.

DIF, Document Integration Facility is a hypertext system for integrating and managing documents

produced during the development of a project. The hypertext features provide traceability between

life cycle documents including source code and test cases. Each document has a hierarchical struc

ture and a template which is filled in as a form. This ensures that all documents of a particular

type are standardised. The distinctive feature of this approach is that it analyses documentation

and source code. Therefore the technique can support decision 12,13 and 14.

Deductive Databases for Code Analysis (1989)

Dietrich and Calliss [24] developed a deductive database for analysing the interconnections between

source code modules. This work is based on the theoretical work on interconnection graphs devel

oped by Calliss [14]. The distinctive feature of this approach is that it analyses source code only

and therefore the technique can support decision 14.

Dynamic Slicing (1990)

The conventional notion of a program slice is the set of all statements which might affect the value

of a given variable occurrence. The notion of dynamic slice is introduced by Agrawal and Horgan

[1] and is the set of all statements which actually affect the value of a variable occurrence of a given

program input. Four approaches are considered by Agrawal and Horgan for dynamic program

slicing.

The first approach considers the nodes of a dependence graph which appear in the execution history

for any given program. Then the dynamic slice is derived by slicing the projected dependence graph

with respect to a particular variable. The second approach is a more accurate approach than the first

as only the edges of the dependence graph which are actually executed are traversed. This solves

the problem of multiple out-going data dependencies. The problem with the first two approaches

is that i f a node occurs multiple times in an execution history such as in an iterative control

construct, large slices will be computed. The third approach creates a node for each occurrence

38

of a statement in an execution history, with outgoing dependency edges to only those statements

on which the statement occurrence is dependent. The fourth approach only creates a new node if

another node with the same transitive dependencies does not already exist. The distinctive feature

of this approach is that it analyses source code only and therefore the technique can support decision

14.

Traceability Graphs (1990)

A framework was postulated by Pfleeger and Bohner [72] which defines horizontal traceability

as the relationship between particular work products and vertical traceability as the traceability

within a particular object. The authors claim to have introduced vertical traceability. However this

appears to be a synonym of intra-document relationships which is included in the SODOS approach.

Whilst this paper provides a good framework for maintenance impact metrics, nevertheless the

documentation aspects of the graph model appear imprecise, for example the question of what

constitutes a node in the graph. Many requirements, specifications and designs are written in

natural language and therefore there must be strict transformations performed on the document

to produce a traceability graph which is a good model of the system interconnectivity. Pfleeger

and Bohner recognise impact analysis as a primary activity in software maintenance and present

a framework for software metrics which could be used as a basis for measuring stability of the

whole system including documentation. The framework is based on a graph, called the traceability

graph, which shows the interconnections among source code, test cases, design documents and

requirements. This framework provides a good example of including software work products as

part of the system, although it is anticipated that the level of detail on a diagram is insufficient to

make detailed stability measurements. The distinctive feature of this approach is that it analyses

documentation and source code and therefore the technique can support the decisions 12 13 and

14.

Slicing Using Dependence Graphs (1990)

Horwitz et al, [45] advanced program slicing techniques by developing a program slicing technique

which generates a slice of an entire program, where slices cross boundaries of procedure calls .

This is achieved by a slicing a dependence graph called a system dependence graph. The graph

models the main program and a collection of procedures, and any parameters which passed between

the procedures. The distinctive feature of this approach is that it analyses source code only and

39

therefore the technique can support decision 14.

Teleological Models (1990)

Karakostas [48, 49] addresses the problem of mapping change requirements to operational software

and contributes a new model which maps requirements to operational software. The model is

a teleological model which records the purpose of source code objects with respect to business

system processes. The model is different from an architectural model as an architectural model

only concentrates on source code. The teleological model is also different from a conceptual model

as it does not model how the system is implemented. This approach is probably the best early

detection method as it links domain concepts with source code objects. Therefore the technique

can support decisions 4, 12 and 14. The reason a teleological model can help a maintainer or

maintenance manager to make decision 4 is because the model links application domain concepts

with source code objects and change proposals are written at the domain level.

Graph Model for Software Evolution(1990)

Luqi [57] presents a graph model of software evolution. The objects and activities in software

evolution are modelled with a graph to enable automatic assistance in maintaining consistency in

an evolving software system. The model consists of two components namely system components and

evolution steps. Two dependencies of interest are "uses" and "derives". The derives dependency

provides relationships between different levels of abstraction and the uses dependency provides a

structural relationship at the source code level. The distinctive feature of this approach is that it

analyses both documentation and source code. Therefore the technique can support decision 12

and 14.

The Evolution Support Environment System (1990)

Ramamoorthy et al [75] present a system providing a framework for capturing and making available

semantic information about software components. The system provides traceability among specifi

cations, design, code, and test cases during development. However the main aim of this work is to

provide version control for evolving systems. The interconnection model underlying the traceability

facilities is based on an entity relationship model. The main navigation facilities are forward and

backwards through different levels of abstraction. The distinctive feature of this approach is that

it analyses both documentation and source code. Therefore the technique can support decisions 12

40

and 14.

An Environment for Documenting Software Features (1990)

Hart [42] developed an environment which addresses the problems in modifying software by ex

plicitly linking software designs to implementations. The implementation is partitioned according

to the features i t supports. This paper argues that existing approaches do not make explicit links

between design and source code. The approach adopted in this paper is to document the design

document elements with feature contexts. Features can span a range of program structures and

Hart claims that they provide the maintainer with a functional slice of a system. The distinctive

feature of this approach is that it analyses documentation and therefore the technique can support

decision 12.

Software Evolution Expert System (1990)

Pau and Kristinsson [70] describe a software maintenance system for understanding programs,

generating and updating software correction documentation and helping interpret errors and is

called SOFTM. The system relies on a transition network based code description and diagnostic

inference procedures. The system is aimed at error-prone corrective maintenance tasks by non-

designer staff. The distinctive feature of this approach is that it analyses source code and therefore

the technique can support decision 14.

Propagating Changes in Algebraic Specifications (1991)

Nakagawa and Futatsugi [64] explore the use of algebraic specification methodologies in dealing with

the impacts of changes during the software development processes. Algebraic specifications are used

because algebraic specifications arose out of abstract data type research. Algebraic specifications

offer mechanisms for modidarisation which in turn offer a neat way of defining products and their

relations. This paper is a significant contribution because it offers the first precise analysis of the

impact of a change unlike other approaches all of which offer approximations of changes. The

distinctive feature of this approach is that it analyses documentation and therefore the technique

can support decision 12.

Decision Based Software Development (1991)

41

Wild et al., [93] proposed an interesting new paradigm for impact analysis on the products involved

in the maintenance activity. This paradigm views the design process as a series of interelated

decisions which provide a new abstraction of the documentation base. The relationships between

decisions in life cycle products can help assess the impact of changing a system. Some evidence is

provided that this approach is useful for assessing the impact of change. A comparison between a

functional based impact and decision based impact was conducted. The decision based approach

was a lower level of granularity than the functions. The evidence presented showed that the impact ^

on decisions was more precise than the functions based approach. Whilst this approach appears

very useful for making new systems which are highly maintainable, it may be difficult to take an

existing release of documentation and code and then establish a decision dependency graph. The

distinctive feature of this approach is that it analyses documentation and therefore the technique

can support decision 12.

A Code Analysis Knowledge Base (1992)

Dietrich and Calliss [25] produced a knowledge base for inter-module code analysis. The knowledge

base can be used to analyse programs written in languages that contain a clustering concept called

module. The work includes a general design for a code analysis knowledge base using an entity

relationship modelling approach. The contribution of this work is analysis techniques for new

languages which have scoping rules for importing and exporting data to and from modules. The

distinctive feature of this approach is that it analyses source code and therefore the technique can

support decision 14.

3.5 Comparison of Existing Impact Analysis Techniques

By considering the information analysed by existing impact analysis techniques they can be placed

in the table 3.1. The double horizontal line in table 3.1 indicates the critical region in the

maintenance process where projects are allocated budgets based on the contents of the project. It

is clear from the evidence in this chapter that most techniques for impact analysis are more useful

in the later stages of software maintenance but not before the allocation of resources to projects are

made. Therefore software maintenance managers will have to estimate the size of a maintenance

project rather than using an impact analysis technique to understand the components of a proposed

42

maintenance project.

NO. DECISION NUMBER OF TECHNIQUES
No. 1 What are the cost benefits?
No. 2 What are the time scales required?
No. 3 What are the cost benefits?
No. 4 What are the inputs, outputs,

processing and data? *

No. 5 What is the implementation strategy?
No. 6 What is the testing strategy?
No. 7 What are the cost and benefits?
No. 8 How can the project be categorised?
No. 9 What is the priority for the project?
No. 10 Which are the impacted system features?
No. 11 What are the estimates now?
No. 12 Which technical documentation needs to be

written / amended?
No. 13 Which test data is required? ******
No. 14 What is the source code impacted?
No. 15 What caused a particular defect?
No. 16 What caused a particular defect?

Table 3.1: Histogram of the Frequency of Techniques which can be used in various states of the
Maintenance Process

The author's view of existing impact analysis techniques is that they are difficult to apply at

an early stage in the software maintenance process. There are a number of problems which are

associated with existing approaches to impact analysis :

1. Existing source code syntactic techniques are difficult to apply at the change proposal phase

of a project because the relation of the change proposal to the source code is often not very

well understood at this stage, and change proposals are written at a much higher level of

abstraction than the code.

2. Existing syntactic techniques do not provide sufficient detail to give an accurate understanding

of the effect of a change because most of the emphasis concerns the impact on the source

code.

3. Semantic annotations of source code syntactic relationships are also difficult to reason with

at the change proposal evaluation phase, because change proposals are written at a much

higher level of abstraction than these semantic annotations.

43

4. Statistical techniques have only addressed the connections between modules and have ignored

intra-module connections and also documentation inter and intra-document connections.

5. Documentation impact analysis techniques are often just an analysis of keywords common to

two or more documents. This approach is practical, however it does not capture the essence

of the indirect impact.

Gallagher [33] argues that the maintainer can locate the documentation to be maintained once

the source impacts have been analysed. However system documentation should reflect changes in

business requirements before the source code is considered. Often during the development of a new

software system the deliverables produced at particular phases are validated against deliverables

produced in previous phases. For example checking a design satisfies a specification. Therefore in

the maintenance process the same approach should be adopted. It is therefore not possible to start

examining source code impacts at a requirements stage of a maintenance project.

In making a change, it is desirable to minimise the defects, effort and cost whilst maximising the

customer satisfaction [33]. To minimise defects the impact of software changes must be detected

before they manifest themselves during the various testing phases of the maintenance process. To

minimise the effort and cost afforded to a project, the proposal formulated must be produced using

accurate information in order to provide a sound basis for the development process in subsequent

phases. Customer satisfaction can only be achieved if the service provided by the delivered system

conforms with the requirements set out in the business requirements. The required functionality

will only be delivered if the correct budget is allocated to a project. This is heavily dependent on

the assessment of the size of a project. Customer satisfaction can also only be achieved if the service

provided by the system operates free from error. All of these requirements are heavily dependent

on the production impact analysis information early in the maintenance process.

In order to achieve an insight into and an understanding of the impact at an early stage it is

necessary to analyse the information which is available at such a stage in the maintenance process.

Since documentation is maintained before source code, it is necessary to analyse documentation

in order to achieve an understanding of the impact [28]. A model of documentation is easier to

manipulate than the actual documentation as it would contain less details. A sample of publications

concerning documentation are analysed to abstract some general principles and characteristics of

structure and content of documentation. The results of this analysis with added new ideas will

44

form the basis of a new model developed in Chapter 4.

3.6 What is Documentation?

3.6.1 Definition

Documentation is defined by [46] as:

A collection of documents on a given subject.

A document is defined by [46] as:

A medium, and the information recorded on it, that generally has permanence and can

be read by a person or a machine. Examples in software engineering include project

plans, specifications, test plans, user manuals.

The survey conducted by Lientz and Swanson [55] identifies the quality of software documentation

as the most significant technical problem in program comprehension. High level documentation

explaining the overall purpose of the software system and the relationships between components

can be useful in obtaining an overview picture of a system [59]. Low level documentation explains

what a program does, and why. It is essential for maintaining all but the simplest of programs.

Both types of documentation can be stored in a documentation base. A documentation base is a

set of many different kinds of document components. Document components are defined in this to

be :

One of the parts of which a document base is composed such as textual components,

graphical components and components of mathematical text.

In commercial data processing departments informal specifications seems to be favoured. However

formal specifications tend to be favoured where there is a necessity for precision and where a strong

45

mathematical background exists. Although mathematically based specifications are used in some

organisations it is argued that these will have evolved from natural language specifications.

It is diffictdt to detect impacts in systems produced by traditional development methods because

of the informality and implicitness of the interconnection relationships between the entities of

the system. The problem is also compounded by the fact that these systems have often been

revised many times and the quality of the source code and documentation will have been degraded

with an increase in structural complexity [53]. If keyword descriptions are used to characterise

interconnections in documentation then many false predictions may be made about the impact

of a change. A keyword has no meaning, for example the word "file" could be a noun in one

document and a verb in another document. The fact that both documents contain this word does

not necessarily imply any dependency between these documents. Keywords do not provide an

accurate description of what may be contained in a document or document component. It may

also be difficidt to control the amounts of document components impacted. For example little or no

information may be produced because of a bad choice of keyword, or large amounts of document

components may be impacted which are not relevant to a change because of the context of the

keywords.

Hence in order to increase the predictive value of an impact analysis technique, an attempt at

understanding the semantics of a documentation must be made. In addition the documents must

be decomposed into a unit of analysis which makes the results produced by applying an impact

analysis technique meaiungful. For example to say that two chapters are impacted is not meaningful

because the amount of information they convey could be very different. Secondly these chapters

may be very different in length. If the chapters are converted into standard units of analysis then

it can be more appropriate to make a comparison between them.

3.6.2 Classes of System Documentation Components

Software Documentation as defined in [46] consists of:

• User Documentation:

— User Manual

46

• Program Documentation:

— Requirements Specification

— Design Specification

• Data Documentation:

— Data Model

— Data Dictionary

Data documentation can be useful for determining where data is used in software systems. However

data documentation does not describe any indirect impacts. For example an entity relationship

model can describe indirect ripple effects but there may no link between the entities in the model

and the entities within software constructs. A requirements specification describes the requirements

for a system. Typically included are functional requirements, performance requirements, interface

requirements, design requirements and development standards. This document may therefore in

clude descriptions of the processing of data. A design specification is a document which describes

the design of a system or component. Typical contents include system or component architectures,

control logic, data structures, input/output formats, interface descriptions and algorithms. There

may be much impact information detectable at this level of abstraction. User documentation de

scribes the way in which a system or system component is to be used in order to obtain the desired

result. It therefore does not describe any impact information. The requirements specification and

design specification seem to be most useful in detecting the impact information of a change. In

software documentation a requirement component in a requirement specification will be linked to

one or more design components in a design specification. This type of dependency can be called a

life cycle link.

The components of documentation must be capable of having their contents described sufficiently

well in order to form interconnections between components. This is because interconnections are

based on the content of document components.

Arthur in [4] describes several types of document content types, which are the following :

1. description of input;

2. description of output;

47

3. description of processing;

4. description of an interface;

5. description of a data flow;

6. description of human factors;

7. description of hardware;

8. description other systems;

9. description of other documents.

This list of content types could easily be extended. For example the document type description

of input could be decomposed into two sub-types such as description of keyboard input and the

sub-type description of file input.

The concept of a documentation segment can also be introduced, where a segment is defined to

be :

a defined size of unit of documentation which can be characterised in terms of document

types.

3.6.3 C h a r a c t e r i s t i c s of S y s t e m Documentat ion

The sheer diversity of the constructs and facilities which form documentation poses a challenge to

formal models of the structure of documentation. I t is possible however to analyse documents if

the following observations on documentation are taken into consideration :

• documentation has some sort of topology which can be subjected to analysis;

• documentation consists of one or more documents;

• documentation can be hierarchical in structure;

• documents can contain hierarchically structured sections;

48

• documents are logically connected through the mutual information they share, for example

two documents could both describe the processing of a data file;

• documents can contain inter and intra document dependencies;

• documents can contain text and/or graphics;

• sections can be decomposed into segments which provide analysis with standard size document

component;

• these irreducible segments can represent the smallest component of documentation;

• some documents may be missing or incomplete;

• some sections of documents may be missing or incomplete;

• document sections may contain subjects or topics that we shall call themes.

From these observations the hierarchical structure of documentation can be modelled for subsequent

analysis. This hierarchical structure can be mapped to a documentation tree. A documentation

tree is a hierarchy and is defined by [46] as:

A diagram that depicts all of the documents for a given system and shows their rela

tionships to one another.

Documentation components can be regarded as entities where entities are parts of documentation

which can be named or denoted. For example a document section, document summary, data file

description and a process description are all entities.

3.7 Summary

After making a comparative analysis of existing impact analysis techniques i t can be seen that

most impact analysis techniques can only be used in the later stages of a maintenance project.

However the impact information is required in the early stages of a maintenance project [27]. This

early detection of the impact is a very important area that has been li t t le explored. Few models or

49

model analysis techniques are available for documentation impact analysis or source code impact

analysis by analysing the content of related documentation.

The remainder of this thesis develops and evaluates both a new model of documentation inter-

connectivity and also techniques with which to analyse this model. These techniques are used to

consider the possible impacts of proposed changes to software systems. The next chapter presents

the underlying principles of the new model developed by the author, an informal description and a

formal description of the model.

50

Chapter 4

Ripple Propagation Graph Definition

4.1 Introduction

In this chapter the general principles underlying the new model of ripple propagation developed axe

discussed. A l l of the necessary mathematical concepts and terminology used within this thesis are

introduced before providing a formal definition of the model. The formal definition of the model

is split into four model components. Each component of the model is described informally with

respect to its purpose and characteristics before a formal description is presented.

4.2 Impact Analysis at the Documentation Level

In this thesis a new approach to impact analysis based on the analysis of documentation is presented.

Glagowski in [38] argues:

Maintenance personnel usually begin their task by acquiring an understanding of rele

vant system parts by browsing the development documents. When a proposed change is

formulated, the system must once again be searched for possible impacts. These infor

mation processing tasks can be extremely laborious and time consuming especially when

51

personnel changes are frequent or when the original designers no longer maintain the

system leaving the job to those not yet familiar with the system. Efficient maintenance of

software demands better access to software documentation than manually sifting through

piles of listings, manuals and other documents.

The model developed in this Chapter will address the above problem area, specifically to enable

the detection of ripple effects in documentation. The model will apply certain principles of existing

impact analysis techniques. These principles are :

1. The idea of using program dependence graphs to model data flow, except that a model de

scription of data flow (in the documentation) wi l l be modelled. These principles of modelling

data flow are described in [14, 50].

2. The concept of program slicing wil l be applied to documentation. These principles are de

scribed in [92].

3. The idea of using previous source code impact information to indicate where previous impacts

have occurred wil l be applied to documentation. These principles are described in [41].

None of these principles has been applied to documentation. The model developed will be akin

to some existing work addressing impact analysis at the documentation level such as that of the

following :

Agusa, Kishimoto and Ohno (1983) System Level Ripple Effect Analyser[2]

Chikofsky (1983) Requirements Impact Analysis [16]

Horowitz and Williamson (1986) SODOS [44]

SommerviUe et al (1986)DIF [79]

Delisle and Schwartz (1986) NEPTUNE [22]

MuUin and McGowan (1988) FORTUNE [63]

Pfleeger (1990) Traceability Graphs [72]

Karakostas (1990) Teleological Models [48]

wi th the notable difference that none of the above research provided a decompositional characteri

sation of documentation, or any document abstraction algorithms which are useful for tracing the

52

indirect impact of a change. In particular, few techniques provide any assistance in how to navigate

through highly interconnected documentation.

4.3 Philosophy of the New IModel

A new model called a Ripple Propagation Graph (RPG{V,£)) , is described in the remainder

of this Chapter. The RPG{V, S) models interconnections at the documentation level. This thesis

describes a model of the data flow at the documentation level. The model concentrates on describing

the processing of data at the segment level and the dependencies between these segments. There

are a number of underlying features of this model, namely:

1. Segment content representation.

2. Thematic structure for characterising segments.

3. Modelling thematic properties of document segments.

4. Modelling the likelihood of ripple effects.

5. Modelling expert judgement.

6. Modelling release information.

Segment Content Representation: The modelling of dependencies in documentation necessitates

the consideration of how a segment wil l be represented in the RPG(V, S) model. Indirect impacts

in source code can be caused by:

1. dataflow value assignment;

2. control flow i f assignments;

3. calling nested procedure or function; and

4. functional function assignment

53

as described in Chapter 3. In order to model the description of these features in documentation,

a representational system that encodes the meaning of the content of a document segment by

decomposition into a set of primitive features is required. The core of this approach must include

some fundamental concepts which are sufficient to capture the description of indirect impacts. Two

concepts are introduced:

1. A conceptual action which can be thought of as being a verb.

2. A conceptual object which can be thought of as being a noun.

In terms of data flow analysis the conceptual action would be a definition or use of a data item. The

conceptual object would be a data item which can be named or denoted in a computer program.

Considering this copy propagation scenario,

If a document describes a process where module A creates a file, which module B uses

to create a second file, which module C uses then there is a dependency between module

A and module C.

here the conceptual actions are "create" and "uses" and the conceptual objects are the files created

by "module A " and "module B" . There is a direct relationship between the verbs in software

descriptions and functions of software components. I f the files have different identifiers then this

dependency wiU not be detected in the documentation with a keyword approach. Therefore in

order to detect indirect impacts in documentation i t is necessary to understand the semantics of

document segments.

Thematic Structure for Characterising Segments: An efficient scheme for classifying document

segments into categories would greatly facilitate impact analysis at the documentation level. Doc

ument segment classification is a special instance of the general problem of pattern recognition and

determination of clusters of related items. A documentation segment could be classified according

to the conceptual object or objects described or referenced in a document segment.

The recognition of a particular conceptual object and action could be thought of as the recognition

of a particular theme. A theme in linguistical terms is a subject written about [30]. Each theme

could be thought of as being a category. Therefore by discovering the particular objects and actions

54

i t would be possible to map a document segment to one or more theme categories.

Each theme can be given a context. For example i t would be useful to record the particular

context of the processing of data in terms of definition or use. It would be possible to identify

where themes co-occur in the system documentation in a more precise manner than using keyword

indexes. Descriptions of copy propagations in the documentation can also be recorded which

would facilitate a thematic data flow analysis, that is, a data flow analysis view of source code at

the documentation level. As change proposals describe changes to information requirements and

changes to data then i t is possible to provide a mapping from a change proposal to the operational

software by linking the themes in change proposals to themes recorded in segments.

Modelling Thematic Properties of Document Segments: The content of a document segment entity

can be modelled by recording both the theme or themes in the segment and whether they co-

occur in other segments. The description of copy propagations could be modelled by recording a

relationship between two different segments. In particular the segment describing the source code

which is the recipient of the data in the assignment can be recorded.

Modelling the likelihood of Ripple Effects: By assigning a number, a probability, between zero and

unity to the occurrence of an event, one has a measure of the likelihood of the occurrence. For

example unity indicates that the event wil l occur with certainty.

Modelling Expert Judgement: Judgement is extensively applied in searching for the solution to

any significant technical problem [51]. Judgements are needed in all stages of dealing with impact

analysis problems at an early stage in the process. I t is better that these judgements are made by

experts rather than non experts, because they have the knowledge and experience to make these

judgements.

Expert judgements typically break the thought process of a maintainer into smaller parts and apply

logic to integrate these parts. For example a maintainer might judge that module A could connect

with module B. The maintainer might also judge that module B is connected to module C, therefore

the maintainer may conclude module A may propagate an indirect impact to module C. Data and

calculations may provide numerical estimates for some of the problem parts of the thought process.

In addition the steps and the judgements used in an explicit thought process can be documented.

If knowledge of several areas of a software system is required on a specific impact analysis problem,

55

then i t is possible that no maintainer has the expertise to make overall judgements. The problem

must be decomposed and expertise used from various maintainers.

The quantification of maintainer's expert judgement concerning software interconnectivity has

many advantages over words. First words are ambiguous and imprecise. For example "small

chance of a ripple effect" has a large range of interpretation. On the other hand, a "10 percent

chance of a ripple effect" has an unambiguous meaning, so quantification facilitates communication.

Furthermore numerical expression of judgements both allow and force maintainers to be precise

about what they know about software interconnectivity within a particular system and in addition

to acknowledge what they do not know about i t .

I f multiple lines of reasoning and judgements lead to the same result then i t wil l provide comfort

in the use of this judgement as representing the current state of knowledge about the interconnec

t ivi ty within a system. An extremely important part of any elicitation of expert judgement is the

accompanying documentation. I t is desirable to make the reasoning on which expert judgements

are based as clear as possible. Any assumptions and reasoning must be recorded [51].

Modelling Release Information: A software release can be defined as the set of components which are

affected by a group of related maintenance projects. Release information is information concerning

the contents of a software release. For example which documents were changes and which modules

were changed. In particular which documents affected other documents and which modules affected

other modules can also be included [4].

Cooper and Munro in [21] recognise the uti l i ty of collecting change information. Cooper and

Munro argue that a record of changes to a software system forms a store of experience gained by

programmers while maintaining a system. It is also argued that given a method of extracting this

change information i t can be of use in future maintenance projects which impact similar areas of a

software system.

In quantitative terms i t may provide a method of ranking indirectly impacted document entities

and source modules according to the probability of them being affected, based on past experience.

I t was observed in Chapter 3 that most existing source code based ripple effect techniques detect

the worst case indirect impact. It may be useful to see what the most likely indirect impact is.

To summarise, the principles underlying the model are :

56

1. The source code potential indirect impacts are abstracted from the documentation to form a

model of the source code interconnectivity.

2. The model attempts to re-use the information produced as a by-product of the maintenance

process in order to determine the likelihood of indirect impacts. This is achieved by feeding

back release information and maintainer's expert judgement concerning interconnectivity of

particular systems.

3. The components of the model can be linked directly to the change proposals to provide early

detection of the indirect impact of a change.

4. The model integrates concepts of deterministic models (the modelling of structure and content

of documentation) with non deterministic models (the use of probablistic information).

4.4 Theoretical Basis of the New Model

The translation of problems into abstractions based on the use of mathematical models, provides

the manipulation and reasoning about model properties in a rigorous way. Therefore the model

developed in this thesis has rigorous foundation and theoretical basis. This section is intended to be

a brief introduction to the basic mathematics used as the theoretical basis within this thesis. The

mathematics required is as follows: set theory, bag theory, relations, functions and graph theory.

Most of the mathematical definitions have been taken from [73, 94, 61].

4.4.1 Set T h e o r y

A set is a collection of unique objects. Any object a; in a set X is called an element or member of

X; X being an element of X wi l l be denoted by z € X , while the opposite wil l he x ^ X. A set X

is a proper subset (proper inclusion) of set Y denoted by X C ^ , i f and only i f set X is included in

but not equal to set Y:

{X C y) ^ {X C Y)k{X ^ Y)

57

A set X is a subset (inclusion) of a set y , denoted by A" C y , i f and only i f whatever is a member

of X , is also a member of y:

X CY ^ (Vx)(x e X ^ x £ Y)

Y = X wi l l denote X is equal to Y\ that is all elements of X are also elements of y and all elements

of y are elements of X . X U y denotes the union of sets X and Y; that is the set consisting of

those elements belonging either to X or to y. X n y denotes the intersection of the sets X and

Y; that is the set of elements belonging to both X and Y. 0 denotes an empty set\ that is a set

wi th no elements. The cardinality of set X is the number of elements in the set and is denoted as

I X |. Often there is a large set containing all the elements of interest called the space, universe or

universal set and is denoted by 5.

Operations on sets provide methods for creating subsets of particular sets. The following notation

{ y I J/ G X } defines a set indicating that all y in the set are members of a set X . The | indicates

2/ € X is a property of that set. This notation is used for defining properties on sets which are

produced as the results of set operations.

Let X and y be subsets of some universal set S. The set operations intersection, union and

difference can be defined as follows:

1. The set intersection of X and Y is the set X n y defined b y X n y = { x | x G X A x 6 y }

2. The set union of X and Y is the set X U y defined by X U y = {x | x e X V x G y }

3. The set difference, of X and Y is the set X - y defined by X - y = {x | x 6 X A x ^ y } .

The term disjoint describes sets that have no common members. Two sets are disjoint i f the

intersection of the two sets is empty. A partition of a set X is a collection of mutually disjoint

nonempty subsets of X (that is, the intersection of any pair of subsets is an empty set) whose union

equals X .

Sets can be explicitly enumerated; the elements are written between the braces { and } . For

example {4,2,5,56} denotes a set with elements 4,2,5 and 56.

58

4.4.2 B a g T h e o r y

In this thesis the notion of bag is also used. A bag, is similar to the notion of set, in that it is a

collection of elements. Unlike a set, however, an element can belong to a bag more than once.

B[e] is used to denote the cardinality of element e in bag B, i.e., e G B if B[e] > 0. The set

operations intersection, union and difference carry across to bags:

1. The bag union of bl and b2 (bl U b2)[e] = bl[e] U b2[e\

2. The bag intersection of bl and b2 (bl n b2)[e\ = bl[e] n b2[e]

3. The bag difference of bl and b2 (hi - b2)[e] = (bl[e] - b2[e\) U 0

4. The bag addition of bl and b2 (bl -|- b2)[e] = bl[e] + b2[e]

Like sets, bags can be explicitly enumerated; the elements are written between bag brackets -< and

y. For example -<1,1,2,2,2>- denotes a bag with elements 1 and 2 whose frequency of occurrence

are equal to 2 and 3 respectively.

The function set converts a bag to a set by forgetting multiplicity:

set: bag A set B.

For example set ^ 1,2,2,3 y = { 1,2,3 }.

The function bagn, goes the other way converting a set into a bag:

bag : N ^ set T bag T.

For example bag2 {1,2} =•< 1,1,2,2 y.

In this thesis sets are converted to bags to indicate elements which may be duplicated after a bag

operation is performed on a set. This conversion is denoted by changing from brackets representing

a set { and } to brackets representing a bag, -< and y.

59

4.4.3 Re la t ions

A relation is an association between, or property of, one or more objects. A term is interpreted as

an object. For example {x \ x £ Y} defines a set with predicate indicating that all a; in the set

are members of a set y . A sentence describes a relation. A predicate is an expression that, when

combined with one or more terms, forms a sentence. The notation {x -.T \ P{x)} represents the set

containing exactly those elements x of type T such that, the predicate P holds (the | is pronounced

'such that ') . The :T can be removed i f i t is obvious what the type of elements x are.

4.4.4 Funct ions

A function f f rom set X to set Y , written / : X —*• F , is a rule which associates with each element

X e X , one and ordy one element in Y . This element of Y is usually denoted by f{x). Set X is

called the domain of the function and set Y the image set of the function. I t is not necessary for

all the elements of Y to be the image of some x £ X under / .

The range (or codomain) of the function is that subset of the image set Y which consists of all the

possible images under / of all the elements of the domain X. I t is denoted by f { X) . A function

with domain X and range Y is also called a mapping or map from X toY.

The function / is called one to one i f the images of distinct elements of X , under / , are distinct

elements of Y. Functions can be many to one or one to one relations between two sets. A partial

function f f rom set X to set y is a function which maps from a subset of X to F .

The set of all such partial functions from a set X to a set Y is denoted as X - H - F . These functions

are partial as there is no necessity for aU the members of set X to be mapped to members of set Y,

the function may be defined only on a subset of set X . Sometimes i t is important that the domain

of a function / :X Y is the whole of X. This type of function is called a total function from X

to Y and i t is denoted as f : X Y.

For any function, i t is useful to record its domain and range. The signature of a function is written

with the domain and range sets separated by an arrow. For example slice: A ^ B. The domain

of a function of more than one argument is given as a list of all of the argument sets separated by

60

crosses. For example slice: Ax B ^ C.

4.4.5 G r a p h T h e o r y

A graph consists of a set of elements called vertices, and a set of arcs connecting the vertices called

edges. Formally a graph is represented by G (V , £) , where F is a set of vertices {ni,..., n^} and S is

the set of ordered pairs called edges, {(x,y) \ {x,y) eVxV}. The number of vertices is represented

by |V| and the number of edges by \£ |. Given any graph edge (u i , U 2) , then ui vertex is called the

start vertex of the edge and the V2 is called the stop vertex of the edge.

The graph Gg{Vg,£3) is a subgraph of G(V,£) i f the vertices in are also V and the edges in

are also in £. This subgraph relationship is denoted as G 3 (V a , 5 a) C G { V , £) .

A strict subgraph of G { V , £) is a subgraph which does not contain all the vertices and edges of

^ (V , £) . This subgraph relationship is denoted as ^^^(V,,,^^^*) C G { V , £) . The graph Gps{Vps,£ps)

is a proper subgraph of ^ (V , £) i f G s { V 3 , £ s) C G { V , £) and i f in the graph G p s (V p 3 , ^ p s) there is no

edges in £ which has only the start vertex or stop vertex in Vps, but not both the start vertex or

stop vertex in V p ^ .

E two vertices are indirectly connected through one or more intermediate vertices, then there is

said to be a path between the two vertices. A path is a sequence of vertices such that successive

pairs of vertices are adjacent (connected by an edge). I f in a given path each vertex is visited only

once the path is called a simple path. The neighbours of a vertex n is the set of vertices adjacent to

n. A directed path is a sequence of vertices such that successive pairs of vertices are adjacent and

the order of the pairs indicates the direction of the path.

Graphs have two kinds of edges: directed and undirected. A directed edge indicates that information

can flow only in the direction of the edge. An undirected edge indicates that information can flow

both ways. An undirected edge can be defined as the pair of directed edges (^ 1 , ^ 2) and (^2)1^1)

A graph containing only directed edges is called a directed graph. Similarly a graph containing

only undirected edges is called an undirected graph. A multigraph is a set of vertices and a bag of

edges so there may be two or more edges joirung two given vertices in the same direction. A simple

graph has at most one edge joining the vertices. A graph G is termed connected \i for every pair of

61

vertices u and v of V(G), u is connected to v, otherwise G is said to be disconnected. A circuit is

a path whose first and last vertices are the same. A simple circuit is a circuit where except for the

first and last vertices, no vertex appears more than once. A cycle in a graph is a simple circuit. A

graph that has no cycles is said to be an acyclic graph.

The valency of a vertex u of G is the number of edges incident at v, i.e., the number of edges {v', v)

in £ for each v' in V. This is written as p{v). Any vertex of valency 0 is called an isolated vertex

and any vertex wi th valency 1 is called a terminal vertex.

In many applications of graph theory i t is useful to assign weights to graph edges. The weight can

represent the carrying capacity of an edge or the strength of the relationship between two vertices.

Such a graph is called a parameterised graph. An edge belonging to a parameterised graph can be

defined as a triple (ra ,̂ nj,w) where w is the weight. A graph may also have information associated

with each member of the vertex set. Such a graph is called a labelled graph, which is a pair {G, 9)

where G is the graph and 9 is the label information.

Given a directed graph G{V,£), the transitive closure C{V,£) of G is a directed graph such that

there is an edge {v, w) in C i f and only i f there is a directed path from u to to in G.

In this thesis the model analysis techniques introduced in Chapter 6 make extensive use of the

analysis of graph theory models. The following describes the graph operations used for this analysis.

Graph Union is the creation of a graph that contains all the vertices and edges from two given

graphs. The graph union operation is denoted by :

Graph Union Gi(Vi,£i)UG2{V2,£2)

and can be specified as follows :

Graph Union: Graph X Graph —>• Created Graph

where the created graph is (V i U V 2 , 5 i U ^ 2)

The notation Graph : Graph x Graph -s- Created Graph represents a total function. The graph

union operation is based on the set union property and ensures duplicate vertices and edges are

removed.

Distributed Graph Union Gi(Vi,£i) U ... U G „ (V n , £ n)

62

and can be specified as follows :

Distributed Graph Union: Graphs —>• Created Graph

where the created graph is (V i , U...UV„,£i U ...U5„)

Graph Intersection is the process of creating a graph from two graphs in terms of characteristics

which are common to both graphs. The graph intersection operation is denoted by the following :

Graph Intersection G i { V i , £ i) n G 2 (V 2 , ^ 2)

and can be specified as :

Graph Intersection: Graph X Graph Created Graph

where the created graph is {Vi,nV2,£ir\£2)

The Distributed Graph Intersection is the process of creating a graph from two or more graphs in

terms of characteristics which axe common to these graphs. The graph intersection operation is

denoted by the following :

Distributed Graph Intersection G i { V i , £ i) fl ... n Gn{Vn,£n)

and can be specified as :

Distributed Graph Intersection: Graphs —>• Created Graph

where the created graph is { V i , n . . . V n , £ i n ...£n)

Several techniques of abstracting subgraphs from a graph model are developed in Chapter 6. Each of

these techniques are based on combinations of these graph intersection and graph union operations.

4.4.6 S u m m a r y of the Theore t i ca l Bas is

In this thesis graphs are used to model and reason about components of software systems where

the vertices are the components and the edges are the relationships between the components. The

edges are weighted to give an indication of the probability of one component being affected with

an inconsistency by a change to another component. This weight is derived from quantitative

63

expert judgement concerning potential indirect impacts and also from release information. Sets

are used to describe the vertices and edges which make up the graph models. The graph models

wil l be analysed by extracting subgraphs using combinations of graph union and graph intersection

operations. Relations are used to define properties on the edge sets and vertex sets during various

steps of the graphs analysis. The bag theory is used to represent vertices which are impacted more

than once by a change.

4.5 Model Definition

In this thesis a graph called a Ripple Propagation Graph^ RPG{V, £) is used to record the

interconnection between document entities and the interconnection between document entities and

source code. The RPG{V,S) is an interconnection graph of the form :

D E F I N I T I O N 1. Let the Ripple Propagation Graph — {Entities, Dependencies) where,

1. a set of Entities that are the components of interconnection, i.e., a set of graph vertices

{ n i , n ^ } called a vertex set;

2. a set of Dependencies that define the interconnection that exists among entities, i.e., a set of

ordered pairs representing the graph edges {(n,- ,nj) | n,, n j G Entities} called an edge set.

Some graph edges are parameterised therefore a parameter is associated with a graph edge of the

form :

{{ni,nj,edge parameter) \ ni,nj G Entities}

The RPG{V,£) consists of four independent and specialised forms of interconnection graph which

comply with the above specification, they are the following :

^ Any of the author's notations or abbreviations are also defined in the glossary of notation given in Appendix A

64

• The Hierarchical Interconnection Graph (HIG{V, £) j which models the decompositional struc

ture of documentation;

• The Thematic Interconnection Graph (TIG{V,£)) which models the content of documenta

tion;

• The Source Attributes Graph (SAG{V,£)) which models the source code entities described

within document entities;

• The Weighted Interconnection Graph (WIG(V,£)) which models the probability of ripple

propagation between document entities and between source code entities.

D E F I N I T I O N 2. Let the RPG{V,£) = HIG{V,£) U TIG{V,£) U SAG{V,S) U WIG{V,£).,

a connected graph. Each of these four interconnection graphs is a subgraph of the RPG{V,£)

denoted as:

Interconnection Graph C RPG{V,£).

The distributed intersection of the four specialised interconnection graphs, HIG{V, £) n TIG{V, £)

n SAG{V,£) n WIG(V,£) wil l produce a graph G' = {V,£') where Vis a set of segment entities

with valency equal to 0, that is, they are all terminal vertices. The set V C RPG{V,£), in other

words the segment entity is the entity which is common to all four interconnection graphs. The set

RPG{£i) is an empty set after the distributed intersection operation has been performed.

Before formally defining each interconnection graph of the RPG(V, £) , the distinctive features of

each subgraph are discussed. The RPG(V, £) is defined set theoretically in the same fashion as in

DEFINITION 1. This wiU allow properties to be defined on the sets and wil l be of use in later

chapters when defining operations on the RPG(V,£) . The properties wil l show the conditions

which wi l l be true after a particular graph operation has been performed on the RPG{V,£) .

4.5.1 H i e r a r c h i c a l Interconnect ion G r a p h

The Hierarchical Interconnection Graph {HIG{V,£))is a specialised form of interconnection

graph which records dependencies between any entities within a documentation hierarchy. The

65

graph provides a compositional characterisation of the hierarchy in terms of the different document

entities i t contains. The HIG(V, £) also records each document entity type from the large granu

larity to the smallest granularity. The HIG{V, £) contains segment entities which are the smallest

document entities. Any entity in the hierarchy above a segment entity is called a composite

entity. The decompositional dependencies exist between HIG{V, £) entities and are the following:

• consis ts of dependency

this dependency is associated with an edge of the form

(composite entity, composite entity).

• has segment dependency

this dependency is associated with an edge of the form

(composite entity,segment entity).

• composite e n t i t y type dependency

this dependency is associated with an edge of the form

(composite entity,composite type entity).

• segment e n t i t y type dependency

this dependency is associated with an edge of the form

(segment entity,segment type entity).

• composite e n t i t y type d e s c r i p t i o n dependency

this dependency is associated with an edge of the form

(composite type entity,composite type description entity).

• segment e n t i t y type d e s c r i p t i o n dependency

this dependency is associated with an edge of the form

(segment type entity,segment type description entity).

66

Each of the dependencies above shows what the document hierarchy consists of and how it is

structured. For example the consis ts of^ dependency shows that the start vertex of this edge

represents a document entity which contains another document entity represented by the stop ver

tex. The has segment dependency records that a particular document entity represented by the

start vertex of this edge contains a segment entity represented by the stop vertex. These dependen

cies provide information regarding the role of each document entity in the hierarchy. For example

the composite e n t i t y type dependency records the type of the composite entity. The segment

e n t i t y type dependency records the type of the segment entity. The composite e n t i t y type

d e s c r i p t i o n p roper ty and segment e n t i t y d e s c r i p t i o n proper ty dependencies record a

description of the type of entities within the hierarchy. The HIG{V,£) can be specified set theo

retically as follows :

D E F I N I T I O N 3. Let the Hierarchical Interconnection Graph = (Documentation Entities, De

compositional Dependencies) be a directed and labelled graph where,

Documentation Entities =

composite entities U segment entities U composite type entities U

segment type entities U segment type description entities U

composite type description entities

Decompositional Dependencies =

consists of dependencies U has segment dependencies U

composite entity type dependencies U segment entity type dependencies U

composite entity type description dependencies U

segment entity type description dependencies

and,

consists of dependencies=

{(a,b) \ a £ composite entities, b G composite entities }

^ Words written in typeface highlight graph dependencies

67

has-segment dependencies=

{(a,b) \ a £ composite entities, b £ segment entities }

composite entity type dependencies=

{ (a,b) \ a £ composite entities, b £ composite type entities}

segment entity type dependencies=

{(a,b) \ a £ segment entities, b £ segment type entities}

composite entity type description dependencies^

{(a,b) \ a £ composite type entities, b £ composite type description entities}

segment entity type description dependencies=

{(a,b) \ a £ segment type entities, b £ segment type description entities}

and the Hierarchical Interconnection Graph C RPG{V, £).

4.5.2 T h e m a t i c Interconnect ion G r a p h

The thematic structure of documentation, models the organisation of themes in the documen

tation. The Thematic Interconnection Graph (TIG{V,£)) is a specialised form of interconnection

graph which records dependencies between segment entities based on the content of each segment

entity. The TIG{V, £) records the thematic structure and the semantic role of each document

entity within a documentation system. This is achieved by modelling the description of data flow

within a software system. The thematic dependencies are:

• has theme ver tex dependency

this dependency is associated with an edge of the form

(segment entity,theme vertex entity).

• has theme dependency

this dependency is associated with an edge of the form

(theme vertex entity,theme code entity).

68

• co-occurs dependency

this dependency is associated with an edge of the form

(theme vertex entity,theme vertex entity).

• copy propagat ion d e s c r i p t i o n dependency

this dependency is associated with an edge of the form

(theme vertex entity,theme vertex entity).

• d e f i n i t i o n use d e s c r i p t i o n chain dependency

this dependency is associated with an edge of the form

(theme vertex entity,theme vertex entity).

• thematic context proper ty dependency

this dependency is associated with an edge of the form

(theme vertex entity,context entity).

• theme category dependency

this dependency is associated with an edge of the form

(theme code entity, category description entity).

Each of these dependencies shows the content of the segment entities. This set of dependencies

provides information to logically deduce the indirect impacts rather than just the direct impacts

of a change. The has theme ver tex dependency records that a segment entity represented by the

start vertex of the edge contains a theme represented by the stop vertex of the edge. The has theme

dependency records that theme vertex represented by the start vertex of the edge has a particular

theme associated with i t which is represented by the stop vertex of the edge. The co-occurs

dependency records that a theme vertex represented by the start vertex of the edge is associated

with another theme vertex represented by the stop vertex of the edge because both theme vertices

have the same theme. The copy propagation d e s c r i p t i o n dependency records that a theme

69

vertex represented by the start vertex of the edge is connected to a segment which describes data

transmitted to another part of a source code system. The segment entity describing the receipt

of data has a theme vertex entity represented by the stop vertex of the edge. The d e f i n i t i o n

use d e s c r i p t i o n chain dependency records that there is a description of a definition use chain

represented by the start vertex of the edge with the represented by the stop vertex of the edge.

The thematic context p roper ty dependency records that the theme vertex represented by the

start vertex of the edge has a particular definition or use property with the represented by the stop

vertex of the edge. The theme category dependency records that a theme code represented by

the start vertex of the edge is associated with a thematic category with the represented by the stop

vertex of the edge. The TIG{V,£) can be specified set theoretically as follows :

D E F I N I T I O N 4. Let the Thematic Interconnection Graph = (Thematic Interconnection Entities,

Thematic Dependencies) be a directed and labelled graph where,

Thematic Interconnection Entities =

segment entities U theme vertex entities U theme code entities U

thematic context entities U category description entities

Thematic Dependencies =

has theme vertex dependencies U has theme dependencies U

co-occurs dependencies U copy propagation description dependencies U

definition use description chain dependencies U

thematic context property dependencies U theme category dependencies

and.

has theme vertex dependencies =

{(a,b) \ a £ segment entities, b £ theme vertex entities}

has theme dependencies=

{(a,b) \ a £ theme vertex entities, b £ theme code entities}

co-occurs dependencies =

{(a,b) \ a,b £ theme vertex entities}

70

copy propagation description dependencies—

{(a,b) \ a,b £ theme vertex entities}

definition use description chain dependencies=

{(a,b) \ a,b £ theme vertex entities}

thematic context property dependencies=

{(a,b) \ a £ theme vertex entities, b £ context entities}

theme category dependencies=

{(a,b) \ a £ theme code entity, b £ category description entities}

and the Thematic Interconnection Graph (I RPG{V, £) .

4.5.3 Source C o d e Assoc iat ion G r a p h

The Source code Association Graph SAG{V,£) is a specialised form of interconnection graph

which records dependencies between segment entities and source code entities. The dependencies

are based on the source code entities which are explicitly or implicitly described in a segment

entity. This graph provides information regarding the source code components of a system which

are associated with particular document entities within a system.

The document entity and module entity association dependencies are:

• segment describes pa r t of module dependency

this dependency is associated with an edge of the form

(segment entity,module entity).

• module type dependency

this dependency is associated with an edge of the form

(module entity,language type entity).

• module belongs t o system dependency

71

this dependency is associated with an edge of the form

(module entity, system entity).

• associated system dependency

this dependency is associated with an edge of the form

(system entity,system entity).

• module t e s t r equ i r ed dependency

this dependency is associated with an edge of the form

(module entity,module test entity).

• system t e s t r equ i r ed dependency

this dependency is associated with an edge of the form

(module entity,system test entity).

• module uses data f i l e dependency

this dependency is associated with an edge of the form

(module entity,data file entity).

• module uses job c o n t r o l language dependency

this dependency is associated with an edge of the form

(module entity,jcl entity).

• module uses map base dependency

this dependency is associated with an edge of the form

(module entity,map base entity).

• system suppl ies data t o dependency

this dependency is associated with an edge of the form

72

(system entity,system entity).

• system data rece ived f rom dependency

this dependency is associated with an edge of the form

(system entity,system entity).

• module uses data d i c t i o n a r y reg ion dependency

this dependency is associated with an edge of the form

(module entity,data dictionary region area entity).

• segment describes pa r t of system dependency

this dependency is associated with an edge of the form

(segment entity,system entity).

Each of these dependencies shows the relationship between segment entities and source code mod

ules. The segment describes pa r t of module dependency records that a segment entity rep

resented by the start vertex of the edge is associated with a source code module represented by

the stop vertex of the edge. This association exists because the segment describes part or all

of the source code module. The module type dependency records that a source code module is

represented by the start vertex of the edge which is associated with module type entity.

The module type entity is represented by the stop vertex of the edge which indicates the module

type i.e, the programming language in which the module is written. The module belongs to

system dependency records that a source code module represented by a start vertex of the edge

is associated with a system represented by the stop vertex of the edge. The associated system

dependency records that a system is represented by the start vertex of the edge and is associated

to another system through a system interface. The other system is represented by the stop vertex

of the edge.

The remaining dependencies show relationships at the source level which could be detected from

the documentation. The module t e s t requi red dependency records that a source code module is

73

represented by the start vertex of the edge and is associated with a unit test represented by the stop

vertex of the edge. The system t e s t r equ i red dependency records that a module is represented

by the start vertex of the edge and is associated with a system test represented by the stop vertex

of the edge. The module uses data f i l e dependency records that a module is represented by

the start vertex of the edge and is associated with a data file represented by the stop vertex of the

edge. The module uses job c o n t r o l language dependency records that a module is represented

by the start vertex of the edge and is associated with a job control language file represented by

the stop vertex of the edge. The module uses map base dependency records that a module is

represented by the start vertex of the edge and is associated with a module map base mapping

between data file and physical storage) represented by the stop vertex of the edge.

The system suppl ies data t o dependency records that a system comprising of modules is repre

sented by the start vertex of the edge and is associated with another system comprised of modules

represented by the stop vertex of the edge because data is transmitted through an interface from

one system to another. The system data received from dependency records that a system com

prising of modules is represented by the start vertex of the edge and is associated with another

system comprising of modules represented by the stop vertex of the edge. This is because the

system represented by the start vertex receives data through an interface from the system repre

sented by the stop vertex of the edge. The segment uses data dic t ioneiry reg ion dependency

records that a segment entity is represented by the start vertex of the edge and is associated with

a component of a data dictionary represented by the stop vertex of the edge. This association

exists because the segment entity refers to the data dictionary. The segment describes par t of

system dependency records that a segment entity is represented by the start vertex of the edge

and is associated with a group of modules whose system name is represented by the stop vertex of

the edge. The SAG(V, £) can be specified set theoretically as follows :

D E F I N I T I O N 5. Let the Source Association Graph = (Source Code Entities, Document Entity

and Module Association Dependencies) be a directed and labelled graph where.

Source Code Entities =

segment entities U module entities U system entities U module test entities U

data file entities U jcl entities U map base entities U

system test entities U data dictionary region area entities U language type entities

74

Document Entity and Module Association Dependencies =

segment describes part of module dependencies U module type dependencies U

module belongs to system dependencies U associated system dependencies U

module test required dependencies U system test required dependencies U

module uses data file dependencies U

module uses job control language dependencies U

module uses map base dependencies U system supplies data to dependencies U

system data received from dependencies U

segment uses data dictionary region dependencies U

segment describes part of system

and.

segment describes part of module dependencies=

{(a,b) \ a £ segment entities, b £ module entities}

module type dependencies=

{(a,b) \ a £ module entities, b £ module type entities}

module belongs to system dependencies^

{(a,b) \ a £ module entities, b £ system entities}

associated system dependencies =

{(a,b) \ a ,b £ system entities}

module test required dependencies^

{ (a,b) \ a £ module entities, b £ module test entities}

system test required dependencies=

{(a,b) \ a £ module entities, b £ system test entities}

module uses data file dependencies—

{(a,b) \ a £ module entities, b £ data file entities}

module uses job control language dependencies=

{(a,b) \ a £ module entities, b £ jcl entities}

75

module uses map base dependencies^

{(a,b) \ a £ module entities, b £ map base entities}

system supplies data to dependencies=

{(a,b) \ a,b £ system entities}

system data received from dependencies^

{(a,b) \ a,b £ system entities}

segment uses data dictionary region area dependencies=

{ (a,b) \ a £ segment entities, b £ data dictionary region area entity}

segment describes part of system dependencies=

{ f a , 6 ^ I a £ segment entities, b £ system entities}

and the Source Code Association Graph C RPG{V,£) .

4.5.4 Weighted Interconnect ion G r a p h

The Weighted Interconnection Graph (WIG{V,£)) is a specialised form of interconnection

graph which provides information regrading the likelihood of a indirect impact between two entities

on the graph model. This is achieved by maintaining a probability of indirect impact as a parameter

on the graph edge between two entities forming a weighted edge. The xveighted dependencies are:

• document p o t e n t i a l impact dependency

this dependency is associated with an edge of the form

(segment entity,segment entity, release information parameter).

• module p o t e n t i a l impact dependency

this dependency is associated with an edge of the form

(module entity,module entity,release information parameter).

76

• document expert judgement dependency

this dependency is associated with an edge of the form

(segment entity,segment entity,expert judgement parameter).

• module expert judgement dependency

this dependency is associated with an edge of the form

(module entity,module entity,expert judgement parameter).

The dociiment p o t e n t i a l impact dependency represents a dependency between a segment entity

represented by the start vertex of the edge and a segment entity represented by the stop vertex of

the edge. The parameter associated with the edge represents the probability of a indirect impact

being propagated from the start vertex to the stop vertex i f the start vertex is modified, based on

previous indirect impacts recorded as release information.

The module p o t e n t i a l impact dependency represents a dependency between a module entity

represented by the start vertex of the edge and a module entity represented by the stop vertex of

the edge. The parameter associated with the edge represents the probability of a indirect impact

being propagated from the start vertex to the stop vertex, if the start vertex is modified based on

previous indirect impacts recorded as release information.

In the case of the document p o t e n t i a l impact dependency and the module p o t e n t i a l impact

dependency i t is necessary to associate information with edge between the stop and start vertices.

• Release In fo rma t ion Parameter

this parameter is associated with the following piece of information

percentage chance of propagation :

The expert judgement dependency represents a historical dependency between a module entity

represented by the start vertex of the edge and a module entity represented by the stop vertex of

the edge. The parameter associated with the edge represents the probability of a ripple effect being

77

propagated from the start vertex to the stop vertex i f the start vertex is modified.

• Expert Judgement Parameter

this parameter is associated with the following information :

judgement number,

release number,

project number,

quantitative judgement,

qualitative judgement,

judgement reason,

judgement assumption,

judgement made by,

date

The expert judgement parameters record the judgement number, the software release number and

project number which the judgement was based on. A quantitative judgement is recorded in the

form of a percentage. The corresponding qualitative judgement, the reason behind the judgement

and any assumptions which are made are also recorded. One judgement is recorded for each pair of

entities in the model. Several maintainers will estimate the potential indirect impact and a single

judgement wi l l be arrived by consensus and then recorded. The person who controls this process

will have his or her name associated with the judgement. The WIG{V,£) can be specified set

theoretically as follows :

D E F I N I T I O N 6. Let the Weighted Interconnection Graph = (Weighted Interconnected Entities,

Weighted Dependencies) be a directed, parameterised and labelled graph where,

Weighted Interconnected Entities =

segment entities U module entities

Weighted Dependencies =

document potential impact dependencies U module potential impact dependencies

78

document expert judgement dependencies U module expert judgement dependencies

Edge Parameters =

release information parameters U expert judgement parameters

and an

expert judgement parameter^

a£N,

b 6 real numbers,

c £ real numbers,

d e real numbers • a => 0 and a <= 100,

e £ character strings, f £ character strings,

g £ character strings, h £ character strings,

i £ character strings.

and a

release information parameter=

a £ real numbers • a >= 0 and a <= 100,

These parameters are used to label the folloiuing edges,

document potential impact dependencies=

{(a,b,p) \ a,b £ segment entities,

p £ release information parameters }

module potential impact dependencies=

{(a,b,p) \ a,b £ module entities,

p £ release information parameters }

module expert judgement dependencies=

{(a,b,p) I a,b £ module entities,

p £ expert judgement parameters }

79

document expert judgement dependencies—

{(a,b,pj \ a,b £ segment entities

p 6 expert judgement parameters }

and the Weighted Interconnection Graph C RPG{V,£) .

4.6 Summary

I n this chapter the principles underlying the new model developed have been presented. The

dis t inct ive features of the approach to modelling ripple propagation have been discussed before

p rov id ing a f o r m a l def in i t ion of the model w i t h a mathematically sound basis.

The model is based on graph theory and records the inter- and intra- connections between docu

menta t ion entities by considering the description of source code data flow w i t h i n these document

entities. I n par t icular the model records the probabi l i ty of potential indirect impacts between docu

ment entities. The probabili t ies are recorded on the edges in the graph model and are derived f r o m

expert judgements concerning system interconnectivity and previous system release informat ion.

The next chapter shows how the RPG(V,£) model can be constructed f r o m the documentation

system, the understanding of in fo rmat ion produced during the maintenance process, the expert

judgements on potent ia l indirect impacts and also the previous system release informat ion .

80

Chapter 5

Ripple Propagation Graph

Construction

5.1 Introduction

I n this chapter techniques for constructing ripple propagation graphs are presented. Each technique

is based on a mapping f r o m the data extracted f r o m the documentation and f r o m the maintainer's

understanding of system structure, to the RPG(V,£). The RPG(V,S) construction technique

is decomposed in to four main graph construction techniques in order to muke the building of the

model easier, by considering each subgraph of the model independently. Each technique is described

by an a lgor i thm after the principles of the technique have been discussed.

Some of the graph construction techniques also make use of certain guidelines. These guidelines

are not merely checklists but relate to the structure of the graph model and the source of data.

The guidelines take the f o r m of situations which can occur when collecting data to construct the

model and contain the consequential reaction to be made.

81

N o t a t i o n for D e s c r i b i n g the A l g o r i t h m s :

I n addi t ion to describing the graph construction techniques, simple pseudocodes are included for

the algori thms. The pseudocodes are included to enhance the description of the graph construction

techniques. For the algori thms a Pascal like language has been used w i t h B e g i n ... E n d constructs.

5.2 Philosophy of the Graph Construction Techniques

The data for the model comes f r o m different sources and i t would be complicated to provide a

single graph construction technique. Therefore four different graph construction techniques are

developed. T w o addi t ional techniques are also developed for maintaining existing graphs (addition

and deletion of edges and vertices). The six techniques are :

1. The H I G C r y s t a l l i s a t i o n technique which is used for constructing the HIG{V,S).

2. The T I G C r y s t a l l i s a t i o n technique which is used for constructing the TIG{V,£).

3. The G r a p h A n n o t a t i o n technique which is used for constructing the SAG{V,£).

4. The G r a p h P a r a m e t e r i s a t i o n technique which is used for constructing the WIG(V,£).

5. The G r a p h S p l i c i n g technique which is used for constructing the RPG{V,S) by combining

subgraphs.

6. The G r a p h C l i p p i n g technique removes R.PG{V,S) components.

The RPG{V, S) can be constructed incrementally by bui lding a subgraph and adding i t to the main

RPG{V,£). The table 5.1 shows the system documentation, the maintainer's understanding of

possible r ipple effects, the data extracted and the subgraph which is constructed f r o m this data.

The f i rs t column i n the table shows the sources of data which a.re used to bui ld the RPG{V,S)

model . The second column shows exactly the data which is extracted f r o m the data sources and

the t h i r d column shows which type of subgraph of the R.PG{V,£) the data is used to construct.

82

Source of Da ta Da ta for the Model RPG{V,S) Model

System Documenta t ion structure of documentation
content of documentation

HIG{V,£)
TIG{V,e) and SAG{V,£)

Release In fo rma t ion modules changed
document segments changed

WIG{V,S)
WIG{V,£)

Expert Judgement modules that w i l l change
documents that w i l l change

WIG{V,S)
WIG{V,£)

Table 5.1: Mappings between Data and the RPG{V,£)

The construct ion techniques presented in this Chapter are augmented by a set of guidelines which

are to be carried out manually. There are no provisions for automating these guidelines.

5.3 H I G Crystallisation

T h e P r o b l e m : To extract the HIG{V,£) from a (iocumentation system. The HIG{V,£) can be

partially constructed or fully constructed.

5.3.1 T e c h n i q u e D e s c r i p t i o n

The aims of this technique are firstly, to ident i fy the composite entities and to record the hierarchical

s tructure of the composite entities that f o r m a documentation system. The second aim is to factor

the document entities in to standard sized units of analysis called segment entities.

The technique builds the HIGiV, £) by adding the HIG{V, £) edges and vertices which are defined

i n Chapter 4, def in i t ion 3. The document entities are decomposed f r o m a document into segment

entities. This is called compos i te ent i ty factoring. Each enti ty i n the hierarchy is allocated an

ent i ty type i n order to bu i ld up a picture of the composition of the documentation.

The technique can be described in the fol lowing way,

HIG Crystallisation: Documentation HIG(y,£)

This operation can be denoted as :

83

HIG Crystallisation (Documentation, HIG{V, S)) A :

Algorithm H I G C r y s t a l l i s a t i o n

I n p u t : Documenta t ion

O u t p u t : HIG{V,S)

B e g i n (Crystallisation of the HIG{V,£))

L e t V be a set o f vertices, {ni, ...,n^}, and

L e t £ is the set of edges, {{x,y) \ {x,y) G V X V }

{composite entity factoring - this models the hierarchy and segments}

parse-documentation-structure and:

create the set Documentation Entities {Chapter 4, Definition 3}

create the set Decompositional Dependencies {Chapter 4, Definition 3}

L e t V = Documentation Entities

L e t £ = Decompositional Dependencies

construct-graph HIG{V,£)

E n d (Crystallisation of the HIG{V, £))

R e m a r k s .

Parse-documentation-structure is a func t ion which extracts the s t ructural features of the documen

ta t ion and maps i t to the sets V and £ . This func t ion w i l l have to be instantiated for a particular

documentat ion method. Construct-graph is a func t ion which creates a graph f r o m the two sets

(V ' , ^ ') . The two sets V and £ separately do not f o r m a graph.

The subgraph produced contains al l the vertices and edges which make up the HIG{V,£).

5.3 .2 H I G C o n s t r u c t i o n G u i d e l i n e s

The H I G graph crystal l isat ion construction technique uses guidelines to support the f imct ion Parse-

documentat ion-structure and are the fo l lowing :

84

1. Iden t i fy ing Documentat ion Enti t ies:

(a) Iden t i fy the range of documentation to be modelled, that is ident i fy which documents

are to be modelled.

(b) Iden t i fy the set of unique document ent i ty types to be recorded in the HIG{V,£).

(c) Iden t i fy the sequences of document ent i ty types which may occur wi th in a document

hierarchy. For example a sequence could be Book, Chapter, Section and Segment.

(d) Iden t i fy which types of ent i ty are to be classed as segment entities.

(e) Iden t i fy the document ent i ty types which can be connected to the segment entities.

2. Detect ing Documenta t ion Enti t ies:

(a) Detect al l document entities w i t h i n the given range of documentation.

(b) As each document ent i ty is detected, assign a document ent i ty type to i t .

(c) I f an ent i ty is a segment enti ty, then add i t to the set of segment entities.

(d) I f an ent i ty is not a segment entity, then add that document ent i ty to the set of composite

entities.

3. Creat ing Decomposit ional Dependencies:

(a) Connect the composite entities together w i t h the consists of dependency ensuring that

the composite entities appear in the right order i n the hierarchy.

(b) Connect the document entities to the segment entities w i t h the has segment dependency.

Only a segment ent i ty which is contained w i t h i n a composite ent i ty can be connected to

the composite enti ty.

5.4 T I G Crystallisation

T h e P r o b l e m : To extract the TIG{V,£), from a documentation sy.stem.

85

5.4.1 T e c h n i q u e D e s c r i p t i o n

The aims of this technique are to record the meaning of the segment and its role w i t h the document

hierarchy. The technique records the t h e m a t i c s t r u c t u r e (the organisation of the themes) wi th in

the document hierarchy being modelled. This is achieved by recording the vertices and edges

defined i n Chapter 4, def ini t ion 4. For each theme vertex in the TIG{V,£) a theme is recorded.

The segments where these themes also co-occur are recorded. Theme vertices may be linked together

w i t h copy propagation dependencies. The choice of the direction a dependency is an important

concept of this par t ic idar part of the technique. This is achieved by recording the thematic context

of a theme. For example whether a theme describes a defini t ion or a use in the source code. This

second par t of the technique is called segment theme analys i s .

The technique can be described i n the fo l lowing way.

TIG Crystallisation: Documentation —> TIG{V, £)

This operat ion can be denoted as :

TIG Crystallisation {Documentation,TIG{V,£)) A

Algorithm T I G C r y s t a l l i s a t i o n

I n p u t : Documentation

O u t p u t : TIGiV,£)

B e g i n ('Crysta/Iisatjon o f the TIG{V,£) and TIG{V,£))

L e t V fae a set o f vertices, { r i i , n ^ } , and

L e t £ is the set of edges, {{x,y) \ {x,y) e V x V }

{segment theme analysis- this records the thematic structure }

parse-documentation-for-themes and:

create the set Thematic Interconnection Entities {Chapter 4, Definition 4}

create the set Thematic Dependencies {Chapter 4, Definition 4}

L e t V = Thematic Interconnection Entities

L e t £ = Thematic Dependencies

86

construct-graph TIG(V,£)

E n d

R e m a r k s .

parse-documentation-for-themes is a func t ion which analyses documentation w i t h respect to the

Themat ic Interconnection Entit ies and Thematic Dependencies contained w i t h i n documentation.

Construct-graph is a func t ion which creates a graph f r o m the two sets (V , £ ') . The two sets V and

£ separately do not f o r m a graph.

5.4 .2 T h e m a t i c S t r u c t u r e D e t e c t i o n G u i d e l i n e s

The graph crystal l isat ion construction technique uses guidelines to aid the detection of themes in

segment entities, that is the parse-documentation func t ion . The guidelines are the fol lowing :

1. A segment ent i ty can be considered to contain descriptions of the processing of data called

conceptual actions (CAs) . The actual data can be considered to be conceptual objects (COs).

2. Read the entire segment entity.

3. Decompose the segment ent i ty content, based on i ts language primit ives into a set of tokens.

4. I den t i fy a l l the tokens that i m p l i c i t l y or explici t ly imply COs w i t h i n the token set. One or

more tokens can represent a CO.

5. I den t i f y a l l the tokens that i m p l i c i t l y or explici t ly imp ly CAs w i t h i n the token set. One or

more tokens can represent a C A .

6. Relate the CAs to the COs. For example ident i fy which CA processes a particular CO. This

w i l l consti tute a theme.

7. Determine whether a C A is a description of assignment of data or a use data.

8. Determine which C A w i l l be the next C A to process a part icidar CO. This w i l l be sufficient

i n fo rma t ion to bu i ld a picture of the assignment and usage of data w i t h i n a software system.

87

9. A n example of a theme is "the summation of employee salaries" and its theme code might be

" T h 5 " . The "summat ion" would be a CA and "employee salaries" would be CO.

10. Furthermore this could be "The salary to ta l is set equal to the summation of employee

salaries". The "salary t o t a l " is also a CO and the word "set" also implies an assignment of

data.

11 . Locate to which theme category the data entities belong. This is achieved by consulting a

catalogue of themes. The theme catalogue contains a list of themes and theme codes which

can be recorded in a table w i t h two columns, one column for the theme and one column for

the theme code. (The rows should be ordered in alphabetical order). The theme codes are

used to abbreviate the themes. Once the theme in a segment has been matched w i t h a theme

i n the theme catalogue the corresponding theme code is extracted f r o m the theme catalogue.

12. F ind ing the theme (C A and CO) w i t h i n the theme catalogue is open to human interpretation.

Guidelines for this process are the fol lowing :

(a) The themes i n the catalogue are separated classes(Which can be defined by a mainte

nance manager).

(b) Select the classes i n which a theme might belong.

(c) Examine each class and ident i fy a set of candidate themes which might map to the theme

(C A and C O) .

(d) Give each theme i n the candidate list a score (the higher the score the closer the match

to the C A and C O) .

(e) Rank the candidate themes in descending order.

(f) Select the theme w i t h the highest score and extract the corresponding theme code f rom

the theme catalogue.

(g) The segment ent i ty can now be coded w i t h this code.

5.5 Graph Annotation

T h e P r o b l e m : Extract the SAG(V,£) from a documentation system. The SAG{V,£) can be

partially constructed or fully constructed.

88

5.5.1 T e c h n i q u e D e s c r i p t i o n

The aims of this technique are to record any source code objects imp l i c i t l y or explici t ly described

by a par t icular segment ent i ty. These relationships help improve the mapping between system

documentat ion and operational software, and also improve the characterisation of document con

tent . The ma in concept of this technique is segment scanning. The segment scanning part of the

technique analyses a segment ent i ty and detects the description of source code entities wi th in seg

ment entities. Conceptually this technique is very similar to that of the Crystal l isat ion technique

w i t h the notable difference tha t the Annota t ion technique concentrates on recording any source

code objects described w i t h i n a segment whereas the Crystal l isat ion technique concentrates only on

thematic s tructure. The at t r ibutes recorded by the technique are defined in Chapter 4, definition

5.

The technique can be described in the fol lowing way.

Graph Annotation : HIG{V,£) X Documentation SAG{V,£')

This operation can be denoted as :

Graph Anno t a t i on {HIG{V,£),Documentation) A :

Algorithm G r a p h A n n o t a t i o n

I n p u t : ir /G (V, ^) , Documentat ion

0\itY>Mi:SAG{V',£')

B e g i n ^Annota t ion o f the SAG{V',£'))

L e t V be a set o f vertices, { n i , ...,n{\, and

L e t £' is the set of edges, {{x,y) | {x,y) e V x V }

{segment scanning}

parse-documentation-for-source-code and:

create the set Source Code Entities {Chapter 4, Definition 4}

create the set Document Entity and Module Association Dependencies

{ Chapter 4, Definition 4}

L e t V — Source Code Entities

89

L e t £' = Document Entity and Module Dependencies

construct-graph SAG{V',£')

E n d ^Annota t ion o f the SAG{V',£'))

R e m a r k s .

This technique can be applied either incrementally or to the whole system, parse-documentation-

for-source-code is a func t ion to analyse the content of documentation w i t h respect to the Source

Code Ent i t ies and Document E n t i t y and Module Dependencies.

Construct-graph is a func t ion which creates a graph f r o m the two sets (V , £ ') . The two sets V and

£ separately do not f o r m a graph.

5.5 .2 S o u r c e C o d e E n t i t y D e t e c t i o n G u i d e l i n e s

The graph annota t ion construction technique uses guidelines to aid the detection of source code enti

ties described i n segment entities. These guidelines are for the realisation of the parse-documentation-

for-source-code func t ion . The guidelines are the fol lowing :

1. Read the entire segment enti ty.

2. Decompose the segment content, based on the language pr imit ives , into a set of tokens.

3. Iden t i fy al l the tokens tha t i m p l i c i t l y or explici t ly imply COs w i t h i n the token set. One or

more tokens can represent a CO.

4. Iden t i fy a l l the tokens tha t i m p l i c i t l y or explici t ly imply CAs w i t h i n the token set. One or

more tokens can represent a C A .

5. Iden t i fy the module entities which relate to the CAs. In other words ident i fy which source

code module is described by each segment entity.

6. Iden t i fy al l the COs which relate to a particular module which is described w i t h i n a segment

enti ty.

90

7. A d d to this l ist of COs, a list other source code objects which are related to a particular

module.

5.6 Graph Edge Parameterisation

T h e P r o b l e m : To extract the WIG{V,£) from a documentation system in particular the release

information documentation. TheWIG{V,£) can be partially constructed or fully constructed. The

second part of this problem is to add maintainer's expert judgements about potential ripple effects

to the RPG{V,£).

5.6.1 T e c h n i q u e D e s c r i p t i o n

The aims of this technique are to add weighted edges between segment entities i n order to indicate

the strength of the relationship between the entities. The parameterised edges are added as the

in fo rma t ion becomes available.

The name graph edge parameterisation was selected as i t indicates the process of adding param

eterised edges the RPG{V,£) according to previous release informat ion and expert judgements.

This techruque involves parameterising the edges between segments which is called edge param

eter i sat ion . There are two methods of achieving this, namely d irect edge parameter i sat ion

and i nd irec t edge p a r a m e t e r i s a t i o n . Direct edge parameterisation data is recorded f r o m re

lease in fo rma t ion which describes which segments had previously affected other segments. As an

extension to this feature the previous ripple effects between the modules referenced or described

i n the segment entities are also recorded. The indirect data comes f r o m expert judgements about

the potent ia l r ipple effects between segment entities. The connections between module entities are

more easy to visualise than connections between segment entities because of the implicitness of

the segment en t i ty interconnections. Expert judgements are recorded about possible inter-module

r ipple effects i n addi t ion to inter-segment ripple effects. The vertices and edges recorded by this

technique are defined in Chapter 4, defini t ion 6.

The technique can be described in the fol lowing way,

91

Graph Edge Parameterisation : RPG{V,£) X {vl,v2,w) RPG{V',£')

(Note : The WIG{V, £) C RPG(V', £'))

This operat ion can be denoted as :

Graph Edge Parameterisation {RPG{V, £),{vl,v2, w)) A :

Algorithm G r a p h E d g e P a r a m e t e r i s a t i o n

I n p u t : RPGiV,£), {vl,v2,w)

O u t p u t : RPG{V',£')

B e g i n (Edge Parameterisation)

L e t V be a set of vertices, {ni, ...,n^}, and

L e t £' be the set of edges, {(a;,?/) | {x,y) e V x V }

L e t the triple (vl,v2,xu) be an edge from vertex vl to v'2 with parameters

{ w (weight) are parameters recording the probability of a ripple effect}

delete-edge RPG{{vl,v2))

L e t £' = RPG{£) U {vl,v2,w)

L e t V = V

construct-graph RPG{V', £')

E n d (Edge Parameterisation)

10

R e m a r k s :

The edge {vl,v2) w i t h a parameter can represent a possible r ipple eff'ect between two modules

described i n the documentation or between two segment entities belonging to the documentation.

The parameter can be expert judgement (indirect parameterisation) or release informat ion (direct

parameterisat ion). Construct-graph is a func t ion which creates a graph f r o m the two sets {V',£').

The two sets V and £ separately do not f o r m a graph.

92

5.6 .2 E x p e r t J u d g e m e n t C o l l e c t i o n G u i d e l i n e s

The graph edge parameterisation construction technique uses guidelines to aid the detection of

expert judgement. These guidelines support the creation of the parameter w, that is, the weight

for the graph edges i n the WIG{V,£). The guidelines are the fo l lowing :

1. Select two segment entities on the model (or two modides described in two different segment

enti t ies) .

2. Record assumptions and reasons for a particular judgement.

3. I f two conf l ic t ing judgements are made then the maintainer who is most reliable in making

judgements and the most experienced at maintaining the system should have their judgement

recorded.

4. The edge on the model [u, v, w) should be created by mapping an enti ty to u and entity to v

and the expert judgement should be mapped to lu.

5 .6 .3 R e l e a s e I n f o r m a t i o n C o l l e c t i o n G u i d e l i n e s

The graph edge parameterisation construction technique uses guidelines to aid the collection of

release i n f o r m a t i o n . These guidelines support the creation of the parameter w, that is, the weight

f o r the graph edges i n the WIG{V,£). The guidelines are the fo l lowing :

1. W h e n a segment en t i ty propagates a ripple effect to another segment ent i ty or where a modide

ent i ty propagates a ripple effect to another module entity, then a new percentage probabili ty

of a r ipple effect between these two entities must be recorded on the edge.

2. The percentage probabi l i ty is calculated by:

the number of times the ent i ty has propagated a ripple effect to a part icular entity \ the

number of times the ent i ty propagating the ripple effect has been modified * 100.

3. The edge on the model {u,v,w) should be created by mapping an ent i ty to u and an entity

to V. The probabi l i ty of a ripple effect should be mapped to w.

93

5.7 Graph Splicing

T h e P r o b l e m : Create an RPG(V,£) from one or more of the subgraphs or create a model of

multiple systems by combining RPG{V,£) models.

5.7.1 T e c h n i q u e D e s c r i p t i o n

The a im of this technique is to combine two graphs together to f o r m one graph. Duplicate vertices

and edges do not appear i n the resultant graph. The technique takes any named graph and adds

i t t o the m a i n RPG(V, £) model .

The technique can be described in the fol lowing way.

Graph Splice: RPG{V,£) X graph RPG{V',£')

This operation can be denoted as :

Graph Splice RPG{V,£)\J g r a p h (V , f) A

Algorithm G r a p h Sp l i ce

I n p u t : RPG{Vi,£i),graph{V2,£2)

O u t p u t : RPG(V',£')

B e g i n (Spiice graph w i t h an RPG{V,£))

L e t V" be a set of vertices, { ^ i , ...,n^}, and

L e t £' is the set of edges, {{x,y) \ {x,y) G V X V }

L e t V ' = V l U V2

L e t £' = £iU £1

construct-graphRPG{V', £')

E n d (Splice graph with an RPG{V,£))

94

R e m a r k s .

The graph union operation is based on the set union property and ensures that the duplicate ver

tices and edges are removed. Construct-graph is a func t ion which creates a graph f r o m the two

sets (V ' , ^ ') - The two sets V and £ separately do not f o r m a graph.

5.8 Graph Clipping

T h e P r o b l e m : To remove vertices and edges f r o m the RPG{V,£) given an ordered pair {a,b) or

a vertex a or b representing the item to be clipped from the RPG{V, £).

5.8.1 T e c h n i q u e D e s c r i p t i o n

This techrdque can be applied when any informat ion in the model becomes outdated and needs to

be removed. The a im of this technique is to remove vertices and edges f r o m the RPG{V,£).

The technique can be described i n the fo l lowing way.

Graph Clipping : RPG{V,£) X item to he clipped-^ RPG{V,£')

This operation can he denoted as :

Graph Clipping (RPG{V,£), item to be clipped) A :

Algorithm G r a p h C l i p p i n g

I n p u t : RPG{V,£), item to be clipped (i.e., edge or vertex)

O u t p u t : RPG{V,£')

95

(The edge to be clipped is denoted as {a,b), and

the entity to be dipped is denoted as a or b.)

Begin (Clipping RPG{y,S))

1. If the item to be clipped is a Composite Entity perform step 10 & i 7 else

2. If the item to be clipped is a Segment Entity perform step 11 & 17 else

3. If the item to be clipped is a Thematic Entity perform step 12 &: 17 else

4. If the item to be clipped is a Consists of Dependency perform step 13 & 17 else

5. If the item to be clipped is a Has Segment Dependency perform step 14 & 17 else

6. If the item to be clipped is a Describes Part of Modxile Dependency perform step 15 k 17

else

7. If the item to he clipped is a Thematic Dependency perform step 16 & 17 else

8. If the item to be clipped is any other entity remove that entity from the set V else

9. If the item to be clipped is any other dependency remove that dependency {a,b) from the set

£ and perform step 17.

10. Clip Composite Entity a from the HIG{V, £):

(a) Find the edge (a, 6) connecting entity a to the next hierarchical level in the HIG{V, £).

(b) Delete this edge (a, 6).

(c) Delete all decompositional entities below entity a in the HIG{V,£).

(d) Delete all decompositional dependencies below entity a in the HIG{V, £).

(e) Delete all thematic entities connecting to the decompositiomd entities which were deleted

in step 9(c).

(f) Delete all thematic dependencies associated with deleted thematic entities .

11. Clip Segment Entity a from the HIG{V,S):

96

(a) Find the set of has segment edges connecting entity a to the next hierarchies.! level in

the HIG{y,£).

(b) Delete this set of has segment edges from the HIG{V,£).

(c) Delete all weighted dependencies associated with the segment entities deleted.

(d) Delete all associated Document Entity and Module Association Dependencies from the

SAG{V,£).

(e) Delete all thematic entities connecting to deleted segment entities from the TIG{V,£).

(f) Delete all thematic dependencies connecting to deleted segment entities from theTIG{V, £).

12. Clip Thematic Entity from the TIG(V,£):

(a) Delete Thematic Entity, from TIG{V,£)

(b) Delete all thematic dependencies connecting to deleted Thematic Entity, from TIG{V, £).

13. Clip Consists of Dependency from the HIG{V,£):

(a) Delete dependency a,b from HIG{V,£).

(b) Delete all decompositional entities below entity a.

(c) Delete all decompositional dependencies below entity a.

(d) Delete all thematic entities connecting to decompositional entities in the TIG{V, £).

(e) Delete all thematic dependencies connecting to decompositional entities in the TIG{V, £).

(f) Delete all associated Document Entity and Module Association Dependencies from the

SAG{V,£).

(g) Delete all Source Code Entities from the SAG(V,£).

14. Clip Has Segment Dependency from the HIG{V,£):

(a) Find the set of has segment edge connecting entity a to the next hierarchical level in the

HIG{V,£).

(b) Delete this has segment edge from the HIG{V,£).

(c) Delete all associated weighted dependencies from the SAG{V,£).

(d) Delete all thematic entities connecting to deleted segment entities from the TIG{V,£).

97

(e) Delete all associated Document Entity and Module Association Dependencies from the

SAG{V,£).

(f) Delete all Source Code Entities affected, from the SAG(V,£).

(g) Delete all thematic dependencies connecting to deleted segment entities from the TIG(V, S).

15. Clip Describes Part of Module Dependency from the SAG{V,S):

(a) Delete all associated Document Entity and Module Association Dependencies from the

SAG(V,£).

(b) Delete all Source Code Entities from the SAG{V,£).

16. Clip Thematic Dependency from the TIG{V,£):

(a) If the edge is a has theme vertex dependency then firstly delete the edge and the stop

vertex and secondly delete all edges arriving at the stop vertex in the TIG{V,£).

(b) If the edge is a has theme dependency then delete the edge and the stop vertex from the

TIG{V,£).

(c) If the edge is a co-occurs dependency then delete the edge from the TIG{V,£).

(d) If the edge is a copy propagation dependency then delete the edge from the TIG{V, £).

(e) If the edge is a definition use description chain dependency then delete the edge from

the TIG{V,£).

(f) If the edge is a thematic context property dependency then delete the edge and the stop

vertex from the TIG(V, £).

(g) If the edge is a theme category dependency then delete the edge and the start and stop

vertex from the TIG{V, £).

17. Construct Graph RPG(V',£')

End (Clipping RPG{V, £))

Remarks.
This simple technique can be applied to any RPG{V,£) or any subgraph C RPG{V,£).

98

5.9 Summary

In this Chapter techniques for constructing the RPG(V,£) model have been presented. Each

technique builds or changes a different facet of the model. The graph crystallisation technique

constructs the HIG{V,£) and the TIG{V,£). The graph annotation technique constructs the

SAG{V,£). The graph parameterisation constructs the WIGiV,£). The graph splicing technique

joins together any two subgraphs or any two RPG{V,£) models and the graph clipping technique

removes any unwanted graph edges and vertices. These techniques will be applied to examples of

documentation structure and case study in Chapter 8 and will be evaluated in Chapter 9. The next

chapter presents several techniques for analysing the B.PG{V,£) model, once it has been partially

or fully constructed.

99

Chapter 6

Ripple Propagation Graph Analysis

6.1 Introduction

The proposed documentation analysis techniques make extensive use of ma.nipulating the RPG{V, £)

introduced in Chapter 4. This Chapter explains the gra,ph manipulations and the notation that will

be used. The graph manipulations are described formally. Collectively this set of manipulations

for RPG{y,£) analysis is called thematic graph slicing.

Notation for Describing the Techniques:

Each RPG{V, £) analysis technique presented in this Chapter includes the problem to be solved by

the technique, reasons for developing the technique, the technique description, the residts produced

by the technique, the use of the results and the limitations of the technique. The algorithms within

this Chapter operate on the two RPCT sets V and £. The impacted bag of entities BV and the

impacted bag of edges B£ are constructed from different subsets of the RPG{V,£). The impacted

set of entities V and the impacted set of edges £' are constructed from different subsets of the

RPG{V,£). These subsets are identified by propagating the ripple effect from specified entities in

set V along directed paths recorded in set £. The following is an example of the notation used :

100

Find the Theme Vertex Entities Impacted:

1. Let Theme Vertex Entities Impacted =

-< Ai I (Ai,tn) 6 Has Theme Dependency and i„ 6 TB >-

2. Let B£ = B£ + | G Fas T/terne Dependency and t^ E TB >

The above example maps entities in a bag called TB, to entities in a bag called Theme Vertex

Entities Impacted. The mapping is achieved using the Has Theme Dependency, where Ai is a

member of Theme Vertex Entities Imqiacted and „̂ is a member of the bag TB. The bag B£

contains the impacted edges between the two bags, Theme Vertex Entities Impacted and TB.

This approach will make the algorithms ea.sier to comprehend. Another notation considered for

describing the graph analysis techniques was to use the transitive closure of the change. This

notation, whilst being elegant and concise, may he more difficult to understand than describing

how the bags of impacted entities are built up.

6.2 Philosophy of the Graph SHcing Techniques

The aims of the graph analysis techniques are to manipulate the RPG{V,£) model and extract

subgraphs from it . The subgraphs extra.cted represent impacted documentation entities and rela

tionships between these entities. The impact a,nalysis techniques are based on the ideas of program

slicing. The idea of program slicing a,s a form of program decomposition was introduced by Weiser

[91, 92]. A program slice is a source code to source code transformation where the residting program

statements conform to some criterion. Examples of slicing criterion a.re :

1. Program statements which do not affect the vaJue of a par ticular variable in a given range of

program statements.

2. All of the program statements which have contributed to the value within a chosen variable,

within a range of progra.m statements.

The following is an example of a program which is sliced with respect to the second slice criterion

mentioned above.

101

The o r i g i n a l program fragment:

1 BEGIN

2 READ(X,Y);

3 TOTAL : = 0.0;

4 SUM : = 0.0;

5 I F X< = 1

6 THEN SUM : = Y

7 ELSE BEGIN

8 READ(Z);

9 TOTAL :

10 END;

11 WRITE(TOTAL,SUM)

12 END.

= X*Y;

One slice is for the variable Z and from line 12 and the other for the variable X from line 9.

S l i c e on c r i t e r i o n <12,{Z}>. S l i c e on c r i t e r i o n <9,{X}>

1 BEGIN 1 BEGIN

102

2 READ(X,Y); 2 READ(X.Y);

5 I F X< = 1 12 END

6 THEN SUM : = Y

7 ELSE READ(Z);

12 END.

There have been several refinements to the theory of program slicing [33, 45, 1, 35] including recently,

the slicing of models of module interconnection. These models were based on graph theory. Graph

slicing is defined by Calliss [14] to be :

The process of creating a new graph by extracting a subgraph from a given grapli accord

ing to some criterion.

In the concluding Chapter of the Gallagher thesis [33] the following question is posed :

Slicing is a data fioiu and control fl.ow method, for analysis of source text. Can it be

done on higher level objects to yield any insiglit?

To date, there have been no pul)lications which have addressed this prolilem. The solution to the

early ripple effect problem presented in this thesis, uses the idea of slicing graph theory models of

higher levels of abstraction than source code itself.

In this thesis a new type of slice called thematic graph slicing is proposed. Thematic graph

slicing is defined as the analysis of the thematic structure of a ripple propa,gation graph. Each

document segment entity on an R.PG{V, £) is characterised with the thematic structure describing

the semantic role of that document segment entity. A bag of themes is extracted from a change

proposal and the resulting bag forms the slice criterion. These themes are then mapped to

segments on the graph, for the identification of the set of directly a.ffected document segment

entities. The members of this set are called the impact points. The graph can then be traversed

from these impact points to identify a.ft'ected components. This a.S])ect is descril)ed in more detail

in the following pages.

103

6.3 Constructing a Graph Slicing Criterion

This section presents a technique for extracting information from change proposals and creating a

criterion for the slicing techniques which have been developed.

6.3.1 A Model of a Change Proposal

Examples of a change proposal can be found in [4, 15]. These proposals are very simple and

contain proposal identification information, the proposed change and the reasons for the change.

The following is an example of the content a change proposal l)a.sed on [4, 15] :

1. Proposal Identification Information.

2. Contents.

3. Business Summary.

4. Detailed Business Requirements.

5. Service Levels.

6. Timescales.

7. Assumptions and Constraints.

Change proposals for perfective maintenance focus on cha,nge to the services provided by a computer

system. Change to services can imply cha,nges in the way data a.lrea.dy in the system and also new

data are processed. A generalisation tha.t ca,n lie stated aliout change proposals is tha.t they discuss

changes to the processing of data. Processing ca,n be considered as conceptual actions (CAs), whilst

data can be considered as conceptual objects (COs). The problem is how to map change proposal

contents onto known objects and processes in an operational system.

A change proposal containing the above information needs to be analysed with respect to themes

(description of the processing of data) which it contains. These themes may be orientated towards

the user or customer view of an application (business system oriented themes). Hence themes which

104

may be familiar to a maintenance programmer may not be explicitly mentioned in the proposal.

There needs to be some corresponding business themes and technical themes.

6.3.2 Technique Description

The Problem: To extract a bag of themes mentioned in a change proposal.

The aim of the technique is to extract a l)ag of themes from a change proposal. This is achieved by

analysing the content of the change proposal and identifying the themes. Some themes occur more

than once in a change proposal therefore a bag is used to accommodate multiple occurrences of the

same theme. For example a proposed project may have two different work packages affecting the

processing of the same piece of da.ta. The technicpie then converts these themes into themes which

occur at the system level. The technique ha,s the following definition :

Create Theme Bag : Change Proposal Theme Bag

This operation can be denoted as :

Create Theme Bag (Change Proposed, Theme Bag)

6.3.3 Theme Bag Construction Guidelines

The strategy for analysing a change proposal and creating a theme bag is a midtipass strategy,

namely :

1. Divide the change proposal into units where each unit maps onto the model of a change

proposal.

2. Identify the detailed lousiness requirements.

3. Decompose detailed business requirements into a set of individual requirements.

105

4. For each requirement, study the content of the requirement with references to the proposed

changes to the way data is processed.

5. Identify the CAs and COs m the change proposal to produce a candidate list of themes.

6. Identify any phrases or paragraphs which may imply themes.

7. Repeat this steps 4 to 6 until the whole of the business requirements have been analysed.

6.3.4 Results Produced by the Technique

This theme ba.g can be regarded a,s a model of the change proposal and will he used for analysing

the RPG{V,£) model. The theme bag will be used as the gra,ph slicing criterion for the graph

slicing techniques described in this thesis. Associated with this theme bag will be the following :

1. proposal identification information such as proposal numlier a.nd project number,

2. source of cha,nge information indicating where the change proposal originated, such as the

division, department and originators name.

This is so that the results of analysing the impact of a proposal can be linked with a proposal when

considering the impact of many competing change proposals. The theme l)ag will he denoted as

TB within the description of the R.PG{V,£) slicing techniques.

6.4 Overview of the Graph Slicing Techniques

In this thesis there are five techniques for slicing documentation. All of the techniques take as

input a Theme Bag which is then used as a slice criterion. All the techniques manipulate the

RPG{V,£) model. The extracted i?,PG'(V , ^') subgraph is called a Change Implication Graph

(CIG{V,£')). The five techniques are the following :

1. The Thematic Graph Slicing is a primitive slicing technique which only considers the

co-occurrence of themes in the RPG{V,£) model. A prolilem with this technique is that it

106

only extracts directly impacted segment entities and composite entities. The technique does

not capture the essence of the secondary ripple effect, namely the description of source code

assignments in documentation.

2. The Complex Thematic Slicing analyses firstly the co-occurrence of themes and then

the indirect ripple effects using the copy propa.ga,tion dependencies. This technique not only

identifies segment entities impacted but also includes the composite entities impacted. A

problem with this technique is that it prodiices a large amount of information. This is also

a problem of source code based slicing techniques. Dynamic slicing [1] was introduced at

the source code level to alleviate this problem. However, documenta.tion cannot be executed.

A second problem with this techni(ine is that it only informs the maintainer of the entities

impacted but does not indica.te the types of entity impacted.

3. The Weighted Graph Slicing is a Complex Thematic Slice which includes probabilities

on the edges of the resulting CIG{V',£'). The proliabilities are ba,sed on previous release

information. This is to help the ruaintainer reduce this slice further by removing entities

and edges which in all probability will not l)e impacted. This is so that the maintainer can

analyse all of the edges with low prolial>ilities of ripple effects, with a view to removing them

from the CIG{V', £'). This technique also identifies all of the types of entities impacted. A

problem with this techni<[ue is that it is necessa.ry to ha,ve a data iia.se of release information

with which to calculate the probaliilities of ripple effects.

4. The Augmented Graph Slicing is also a Complex Thematic Slice which includes prob

abilities on the edges of the resiilting CIG{V', £'). However the probal^ilities are based on

quantitative expert judgement, therefore a. datal)a.se of release information is not required.

The problem with this technique is that it does not indicate any source code objects which

are mentioned in the documenta.tion.

5. The Annotated Graph Slicing is also a Conii)lex Thema.tic Slice which includes a compo

sitional characterisa.tion of the impacted segment entities. This slice analyses the RPG{V,£)

with respect to the source code entities inipa.cted. This technique does not analyse source

code but extracts source code entities descriljed l)y im])acted segment entities.

When the above slicing algorithms termina.te, the {V',£') produced is a sul)gra,ph of the RPG{V,£)

and is denoted as graph containment :

107

CIG{y',£') C RPG{y,£) .

The CIG{V', £') produced by the slicing techniques has the following properties. It is a directed,

acyclic, labelled and strict sub graph. The 7 and S CIG{V',£') s are also parameterised graphs.

The CIG{V', £') contains the transitive closure of the change characterised by TB. The names a

graph slice, /3 graph slice, 7 graph slice, S graph slice, and e graph slice are used to abbreviate the

five graph slicing techniques respectively.

6.5 a Graph Slice (Thematic)

The Problem: To extract a CTG(V', £') containing composite entities and segment entities which

are directly impacted by tracing the co-occurs dependencies.

6.5.1 Reasons for Developing the Technique

The reasons for developing this technique are firstly to find all of the segment entities which are

impacted by the themes within the theme bag. The second reason for developing this technique is

to trace vertically upwards from a segment following the has segment dependency and the consists

of dependency to the top of the HIG{V, £) identifying all of the composite entities impacted.

6.5.2 Technique Description

The technique can be descril)ed in the following way,

a Graph Slice : RPG{V,£) ^ a CIG{V',£')

This operation can be denoted as :

Q Graph Slice (i?.PG(V, £) ,TB) ^ :

108

Algorithm a Graph Slice

Input: RPGiV,£) , TB

Output: g CIG{V',£')

Begin (a Graph Slice)

1. Find the Theme Vertex Entities Impacted:

(a) Let Theme Vertex Entities Impacted =

-< Ai I (A,-,f„) e Has Theme Dependency and tn G TB >-

(b) Let B£ = B£ -\- -<{A,,tn) \ (/!,•,<„) £ Has Theme Dependency and 6 TB>-

2. Find the Co-occurs Dependencies Im.jiacted:

(a) Let B£ = B£ -\- -<(Ai,Bu) | (A^,Bn) 6 Co-occurs Dependency a.nd A, £ Theme Vertex

Entities Impacted, B^ 6 Theme Vertex Entities Impucted>-

3. Find the Theme Entities Impacted (directly a,nd indirectly impa.cted themes)

(a) Let Theme Entities Impacted =

-<Bn I (A, , 5 „) G Has Theme Dependency and Ai G Theme Vertex Entities Impacted >-

(b) Let B£ =B£ -<{A,, Bn) \ {A^, 5 „) G Has Theme Dependency and Ai G Theme Vertex

Entities Impacted y

4. Find the Segment Entities Impacted:

(a) Let Segment Entities Impacted =

<Ai I {Ai,Bri) G Has Theme Vertex Dependency and Bu G Theme Vertex Entities

Impacted >-

(b) Let B£ =B£ ^ (A , , 5 , J j (A , , 5 „) G Has Theme Vertex Dependency and Bn G Theme

Vertex Entities Impacted >-

5. Find the Composite Components Impacted^:

^This step in the aiialysi.s is called the composite entity slice

109

(a) Let Composite Components Impacted =

-< Ai \ (Ai, Bn) Has Segment Dependency a.nd i?„ 6 Segment Entities Impacted)-

Let B£ = B£ -f -<{Ai,Bn) \ (/I,, i?„) G Has Segment Dependency and 5„ 6 Segment

Entities Impacted >-

(b) Let Composite Components Impacted = Composite Components Impacted -|-

-<Ai I (A ,-,5„) £ Consists of Dependency and J5„ E Composite Components Impacted

>-

Let B£ = B£ -<(A,-,5,i) | (,4,-,5„ ^ 6 Consists of Dependency and ^Composite

Components Impacted >-

(c) Extract the set of Composite Components from the ba,g of Composite Components

Impacted.

(d) Repeat step 5.(b) and 5.(c) for ea.ch hierarchical level in the RPG{V,£) until the newly

calculated set of Composite Components does not cha.nge;

6. Find all impacted documentation entities :

(a) Let BV =

Composite Components Impacted -j- Segm.ent Entities Impacted Theme Vertex Entities

Impacted -\- Them,e Entities Impacted

7. Create the sets V and £' from BV , B£ :

(a) Extract set £' from B£

(b) Extract set V from BV

8. Construct the /? CIG(V',£') by associating the sets V and £'

End (a Graph Slice)

110

6.5.3 Results Produced by the Technique

The a CIG{V',£') contains the following types of impacted vertices a,nd edges.

1. Graph Vertices: Composite Entities U Segment Entities U Theme Vertex Entities U Theme

Entities

2. Graph Edges: Co-occurs Dependencies U Consists of Dependencies U Has Segment Depen

dencies U Has Theme Vertex Dependencies U Has Theme Dependencies

3. Other Features: This technique identifies direct impa.cts.

The results produced by this graph slicing technique, a CIG{V',£') can be used to help make the

decisions identified in Chapter 3 (see ta])le 3.1) :

1. Decision No. 12 Which technical documentation needs to be written/amended?

The bags BV , B£ ca.n be used to show multiple impacts in the sliced /? CIG{V', £').

A problem with this technique is that it does not capture the essence of the secondary ripple effect,

that is the description of source code assignments in documentation.

6.6 / 3 Graph Slice (Complex Thematic)

The Problem: To extract a /? CIG{V',£') containing composite entities and segment entities

which are directly impacted by tracing the co-occurs dependencies and the copy propagation de

pendencies.

6.6.1 Reasons for Developing the Technique

The reasons for developing this technicpie a.re tliat the a graph slice does not analyse the essence of

the ripple effect, namely, descriptions of a,ssignnieuts also the a gra,i)h slice only considers the co

l l i

occurrence of themes. Tins techniciue also addresses the proljlem of identifying the different types

of entities appearing in the impacted slice. For example some entities will describe input, output,

possibly hardware and human factors etc. This part of the theory provides a more precise picture

of what is impacted than simply identifying entities im])acted. Another reason for developing this

technique is to detect multiple impacts on the same entity.

6 .6 .2 T e c h n i q u e D e s c r i p t i o n

The technique can be described in the following way,

/3 Graph Slice : RPG(V,S) - P CIG{V',n

This operation can be denoted as :

P Graph Slice (ii:PG(V, , T B) A:

Algorithm P G r a p h Sl ice

I n p u t : B.PG{V,£) , TB

O u t p u t : P CIG{V',£') , ba,g BV , ba,g BS

B e g i n (p Graph Slice)

1. Find the Theme Vertex Entities Impcicted:

(a) L e t Theme Vertex Entities Irnpncted =

^ ^ , I (A,-, ^n) S Hfis Theme Dependency and t„ 6 IB >-

(b) L e t BS = B£ + -<{A,,tn) | G Has Theme Dependency and <„ eTBy

2. Find the Co-occurs Dependencies Impacted:

(a) L e t BE = BE + -<{A,,B„) \ {A^,B„) e Co-occurs Dependency and A,- £ Theme Vertex

Entities Impacted, B„ G Theme Vertex Entities Impact.eily

112

3. Find the Theme Vertex Entities Impacted using Copy Propafjntion Dependency:

(a) L e t Theme Vertex Entities Impacted = Theme Vertex Entities Impacted +

<Bn I {Ai,Bn) 6 Copy Propagation Dependency and Ai 6 Theme Vertex Entities

Impacted >-

(b) L e t BS = B£ + -<{Ai,Bn) \ {Ai,Bn) £ Copy Propagation Dependency and A, G Theme

Vertex Entities Impacted y

(c) E x t r a c t the set of Theme Vertex Entities Impacted from the bag of Theme Vertex

Entities Impacted

(d) Repeat steps 3.(a), 3.(b) a.nd 3.(c) until the newly calculated set of Theme Vertex

Entities Impacted does not change;

4. Find the Thematic Context Entities:

(a) L e t Thematic Context Entities Impacted =

-< B„ I (Ai, Bn) G Thematic Cov.text Dependency and Ai 6 Tlieme Vertices Impacted

>-

(b) L e t B£ = B£ + 5 n) | (A , - ,5„) G TJiematic Context Dependency and Ai G Theme

Vertices Impacted y

5. Find the Theme Entities Impacted (directly and indirectly impacted themes)

(a) L e t Theme Entities Impacted =

-<Bn I (Ai,Bn) G Has Th.emc Dependency and Ai G Th.eme Vertex Entities Impacted

y

(b) L e t BS = BS - < (A „ 5 „) | (.4,:,5,J G Has Theme Dependency and A. G Theme

Vertex Entities Impacted y

6. Find the Segment Entities Impacted:

(a) L e t Segment Entities Impacted =

^ A , I (A , , i ? „) G Ihis Tlieme Vertex Depend.cn.cy and 5 „ G Theme Vertex Entities

Impacted y

113

(b) L e t BE = BE -\- ^ (A , - , 5 „) | (A , , 5 „) £ Has Theme Vertex Dependency and 5 „ G

Theme Vertex Entities Impacted >-

7. Find the Composite Components Impacted:

(a) L e t Composite Components Impacted =

-< A, I (A,-, B-n) G Has Segment Dependency and G Segment Entities Impacted >-

L e t 5<f = BE + - ^ (A i , 5 „) I (A i , 5 „) G Segment Dependency and 5 „ G Segment

Entities Im,pacted >-

(b) L e t Composite Components Impacted = Composite Components Impacted +

^ A , I (A , - , 5 j i) G Consists of Dependency and 5.„ G Composite Components Impacted

y

L e t BE = BE -\—<(A,, | (A , , 5 „ j G Consists of Dependency and J3„ ^Composite

Components Impacted y

(c) E x t r a c t the set of Composite Components from the bag of Composite Components

Impacted.

(d) R.epeat steps 7.(b) and 7.(c) for ea.ch hierarchical level in the R.PG(V. E) until the newly

calculated set of Composite Components does not change;

8. Find Segment Entity Types Impacted:

(a) L e t Segment Entity Types Impacted =

-< 5 „ I (Ai,Bn) G Segment Entity Type Dependency and A, G Segment Entities Im

pacted >-

(b) L e t BE = BE + -<;(A,-,i?„) | (A , , 5 , J G Segment Entity Type Dependency and A.- G

Segment Entities Impacted >-

9. Find Segment Type Description Entities Iinpa.cted:

(a) L e t Segment Type Description Entities Impacted =

-< 5 „ I (Ai ' , Bn) G Segment Entity Type Description Dependency and A, G Segment

Entity Types Impacted >-

(b) L e t BE = BE + - < (A , , 5 „) | (A , , 5 , J G Segment Entity Type Description Dependency

and Ai G Segment Entity Types Impacted >-

114

10. Find Composite Entity Types:

(a) L e t Composite Entity Types Impacted =

-< Bri I {Ai,Bn) G Composite Entity Type Dependency and Ai G Composite Components

Impacted y

(b) L e t B£ = B£ -<(Ai , i?„) | (A i , i ?„) G Composite Entity Type Dependency and A,- G

Composite Components Impacted y

11. Find Composite Type Description Entities Impacted:

(a) L e t Composite Type Description Entities Impacted =

< Bn I (Ai,Bn) G Composite Entity Type Description Dependency and Ai G Composite

Entity Types Impacted y

(b) L e t B£ = B£ + -<{Ai,Bn) \ {A^,Bn) G Composite Entity Type Description and Ai G

Composite Entity Types Impacted y

12. Find all impacted documenta.tion entities :

(a) L e t BV =

Composite Components Impacted + Composite Entity Types Impacted + Composite

Type Description Entities Impacted + Segment Entities Impacted + Segment Entity

Types Impacted + Segment Type Description Entities Impacted + Theme Vertex Entities

Impacted + Theme Entities Impacted + Thematic Context Entities Impacted

13. Create the sets V and £' from BV , B£ :

(a) E x t r a c t set £ ' from B£

(b) E x t r a c t set V from BV

14. Construct the f3 CIG(V',£') by associating the sets V and £ '

E n d (/? Graph Slice)

115

6 .6 .3 R e s u l t s P r o d u c e d b y t h e T e c h n i q u e

The /? CIG{V',£') contains the following types of impacted vertices and edges.

1. Graph Vertices: Composite Entities U Composite Type Entities li Composite Type Description

Entities U Segment Entities U Segment Type Entities U Segment Type Description Entities

U Theme Vertex Entities U Theme Entities U Thematic Context Entities U Composite Type

Description Entities U Segment Type Description Entities

2. Graph Edges: Co-occurs Dependencies U Consists of Dependencies U Has Segment Depen

dencies U Copy Propagation Depend.cncies U Has Th.eme Dependencies U Has Theme Depen

dencies U Thematic Context Depen.dencies U Segment En.tity Type Dependencies U Segment

Entity Type Description Dependencies U Composite Entity Type Dependencies (J Composite

Entity Type Description Dependencies

3. Other Features : This technique identifies the direct impa.cts and also the indirect impacts

of a theme bag.

The bags BV , B£ contain the frequency of occurrence of impa,cted vertices and edges within the

CIG{V',£'). The frequency of multiple occurrences of a particular entity ca,n be examined with

the following bag operation : BV [x].

The results produced by this graph slicing technique namely, the CIG{V', £') can be used to help

make the following decisions identified in Cha,pter 3 (see table 3.1).

1. Decision No. 4 Wha.t are the ixLputs, outputs, processing and data.?

2. Decision No. 12 Which technical documenta.tion needs to be written/amended?

The bags BV , B£ can be used to show multiple impacts in the sliced /? CIG(V\£').

A problem with this technique is that it produces a large amount of information within the extracted

graph slice. Dyna,mic slicing wa,s introduced a,t the so\irc.e code level approach to slicing [1] to

alleviate this problem. However documentation ca,nuot l)e executed. A second problem with this

technique is that it only informs the ma.inta.iner of the entities impacted but, does not indicate the

116

types of entity impacted. It is important to know the types of document entities impacted as it

provides an insight into the impacted source code.

6.7 7 Graph Slice (Weighted)

T h e P r o b l e m : To extract the 7 CIG(V',E') containing the following : impacted documenta

tion based on co-occurrence of themes, impacted documentation based on descriptions of source

code a.ssignments in the documentation. An analysis of the types of document entities impactec/.

Impacted modules and proba.bilities of ripple effects between modules based on change history.

6.7.1 R e a s o n s f o r D e v e l o p i n g t h e T e c h n i q u e

This graph slicing technique is an extension to the previous work on the a and P graph slicing

techniques. This technique attempts to improve the characterisation of the slice by considering the

weights on the edges. The weighted edges which appear- in the residtant 7 CIG{V',E') are within

specified range of probabilities. This probaliility ra.nge is specified with two parameters supplied

by the person using this analysis technique. This facility enables the size of the 7 CIG(V',E') to

be reduced.

6 .7 .2 T e c h n i q u e D e s c r i p t i o n

The technique can be described in the following way,

7 Graph Slice : RPG{V,E) 7 CIGiV',E')

This operation can be denoted as :

7 Graph Slice { R.PG{V,E) , TB,CV, UP) A

Algorithm 7 G r a p h S l ice

117

I n p u t : RPG(V,E) , TB,

CP (lowest probability to a.ppear in the ']CIG{V', E'))

HP (highest probability to appear in the -{CIG{V', E'))

O u t p u t : 7 CIG{V', E') , bag BV , bag BE

B e g i n (7 Graph Slice)

1. F ind the Theme Vertex Entities Impacted:

(a) L e t Theme Vertex Entities Impacted =

-< Ai I {Ai,tn) G Has Tlieme Dependency and tj^ G TB y

(b) L e t BE = BE -\- -<{A„t,,) \ (A,-,t„) G Has Tlieme Dependency and t^eTBy

2. Find the Co-occurs Dependencies Impacted:

(a) L e t BE = BE + -<(A,, 5 „) | (A, , 5,,,) G Co-occurs Dependency and Ai G Theme Vertex

Entities Impacted, Bn G Theme Vertex Entities Impactedy

3. Find the Theme Vertex Entities Impacted using Cfjpy Propagation Dependency:

(a) L e t Theme Vertex Entities Impacted = Theme Vertex Entities Impacted +

-<Bn I (A i , 5 „) G Copy Propagation Dependency and Ai G Theme Vertex Entities

Impacted y

(b) L e t BE = BE -\- -<(Ai,Bn) \ (A , , 5 „) G Copy Propagation Dependency and A; G Theme

Vertex Entities Impacted y

(c) E x t r a c t the set of Theme Vertex Entities Impacted from the bag of Theme Vertex

Entities Impacted

(d) Repeat steps 3.(a), 3.(b) and 3.(c) until the newly calculated set of Theme Vertex

Entities Impacted does not change;

4. F ind the TJiematic Conte:rt Entities:

l i s

(a) L e t Thematic Context Entities Impacted =

•< Bn I {Ai,Bn) G Thematic Context Dependency and Ai G Tlieme Vertices Impacted

y

(b) L e t B£ = B£ + -({Ai, B,,) \{A^, 5 „) G Thematic Context Dependency and Ai G Theme

Vertices Impacted y

5. Find the Theme Entities Impacted (directly and indirectly impacted themes)

(a) L e t Theme Entities Impacted =

-<Bn I {Ai,Bn) G Has Theme Dependency anil. Ai G Th.eme Vertex Entities Impacted

y

(b) L e t B£ = B£ ^ -<(5 .„ ,Ai) | {Bn,A,) G Has Theme Dependency and Ai G Theme

Vertex Entities Impacted y

6. Find the Segment Entities Impacted:

(a) L e t Segment Entities Impacted =

-<Ai I {Ai,B^|) G Has Tlieme Vertex Dependency and Bn G Theme Vertex Entities

Impacted y

(b) L e t B£ = B£ + ^ (A i , 5 „) | (A i , 5 „) G Has Theme Vertex Dependency and Bn G

Theme Vertex Entities Impacted y

7. F ind the Composite Components Impacted:

(a) L e t Composite Components Impacted =

-< Ai I {Ai,Bn) G Has Segment Dependency and B„. G Segment Entities Impacted y

L e t B£ = B£ -\- -<{Ai,Bn) \ {Ai,B.„) G Has Segment Dependency and 5 „ G Segment

Entities Impacted y

(b) L e t Composite Components Impacted = Composite Components Impacted +

•<Ai I {Ai,Bn) G Consists of Dependency and B.^ G Composite Components Impacted

y

L e t B£ - B£ + -((A,, 5. ,J 1 {A,,B.,^) G Consists of Dependency and 5 „ EComposite

Components hnpacted y

119

(c) E x t r a c t the set of Composite Components from the ba.g of Composite Components

Impacted.

(d) Repeat steps 7.(b) and 7.(c) for each hierarchical level in the R.PG{V, E) until the newly

calculated set of Composite Components does not change;

8. F ind Segment Entity Types Im.pacted:

(a) L e t Segment Entity Types Impacted =

-< Bn I {Ai,Bn) G Segment Entity Type Dependency and Ai G Segment Entities Im

pacted y

(b) L e t BE = BE + <{A„Bn) | {A„Bn) G Segment Entity Type Dependency and A, G

Segment Entities Impacted y

9. F ind Compo,site Entity Types:

(a) L e t Composite Entity Types Impacted =

-< Bn I {Ai,Bn) G Composite Entity Type Dependency an,d Ai G Composite Components

Impacted y

(b) L e t BE = BE + - < (A , , 5 „) | (A , , 5 „) G Composite Entity Type Dependency and A,- G

Composite Components Impacted y

10. Find Segment Type Description Entities Impacted:

(a) L e t Segment Type Description Entities Impacted =

-< Bn I (A, , 5 „) G Segment Entity Type Description Dependency and Ai G Segment

Entities Types Impacted y

(b) L e t BE = BE -\- -<(Ai , i?„) | {Ai,Bn) G Segment Entity Type Description Dependency

and Bn G Segment Entity Types Impacted, y

11. Find Composite Type Description Entities Impacted:

(a) L e t Composite Type Description Entities Impacted =

-< Bn I {Ai,Bn) G Composite Eniity Type Description Dependency and Ai G Composite

Entity Types Impacted y

120

(b) L e t B£ = B£ -\- -<{Ai,Bn) | (A , - ,5„) G Composite Entity Type Description and Ai G

Composite Entity Types Impacted y

12. Find all Document Potential Impact dependencies :

(a) L e t B£ = B£ -\- -<{Ai,Bn) \ {Ai,Bn) G Document Potential Impact Dependency, per

centage chance of propagation >= CP [\ percentage chance of propagation <= TiV and

Bn G Segment Entities Impacted y

13. F ind Module Entities described by impacted Segment Entities:

(a) L e t Module Entities Impacted =

-< B„ I {Ai,Bn) G Segment Describes Part of Module Dependency and Ai G Segment

Entities Impacted y

(b) L e t B£ = B£ -\- - < (A , , 5 „) | (A, ,J5„) G Segment Describes Part of Module Dependency

and Ai G Segment Entities Impacted y

14. Find all Module Potential Impact dependencies imjjacted:

(a) L e t B£ — B£ + -<{Ai,B.a) \ (.4,-,.B„) G Modide Potential Impact Dependency, percent

age chance of propagation > = CP /\ percentage ch.ance of propagation < — "HV and

Bn G Module Entities Impacted y

15. Find all impacted documentation entities :

(a) L e t BV =

Composite Components Impacted + Composite Entity Types Impacted + Segment En

tities Impacted + Segment Entity Types Impacted + TJieme Vertex Entities Impacted

+ Tlieme Entities Impacted + Tlieinatic Context Entities Impacted + Composite Type

Description Entities Impacted + Segment Type Description Entities Impacted + Module

Entities Impacted ;

16. Create the sets V and £' from BV , B£ :

(a) E x t r a c t set £' from B£

121

(b) E x t r a c t set V from BV

17. Construct the 7 CIG{V',E') by a,ssociating the sets V, and E,.

E n d (7 Graph Slice)

6 .7 .3 R e s u l t s P r o d u c e d b y t h e T e c h n i q u e

The 7 CIG{V,E) contains the following types of impa.cted vertices a.nd edges.

1. Graph Vertices: Composite Entities U Composite Type Entities U Segment Entities U Segment

Type Entities U Theme Vertex Entities U Theme Entities U Thematic Context Entities U

Composite Type Description Entities U Segment Type Description Entities U Module Entities

Impacted

2. Graph Edges: Co-occurs Dependencies U Con.^ists of DependerwiesU Has Segment Dependen

cies U Copy Propagation Dependencies U Document Potential Impact Dependencies U Module

Potential Impact Dependencies U Has Theme Dependencies U Thematic Context Dependen

cies U Segment Entity Type Dependencies U Segment Entity Type Description Dependencies

U Composite Entity Type Dependencies U Composite Entity Type Description Dependencies

U Segment Describes Part of Module

3. Other Features : This technique indicates the direct impa.cts, indirect impacts and the chance

of propa,gation between segment entities.

The bags BV , BE contain the frequency of occurrence of imi)acte(l vertices and edges within the

CIG{V',E'). The frecpiency of multiple occurrences of a particula,r entity car: be examined with

the following bag operation : BV [.7:] .

The results produced by this gra.ph slicing techni(iue, 7 CIGiV',E') can be used to help make the

following decisions identified in Chapter 3 (see ta.ble 3.1).

122

1. Decision No. 4 What are the inputs, outputs, processing a.nd data?

2. Decision No. 12 Which technical documentation needs to be written/amended?

The bags BV , B£ can be used to show multiple iinpa.cts in the sliced 7 CIG{y',£').

A problem with this technique is that it is necessary to have a data base of release information

with which to calculate the probabilities of ripple effects.

6.8 6 Graph Slice (Augmented)

T h e P r o b l e m : To extract the 6 CIG{V',£') containing the following : impacted documentation

based on co-occurrence of themes and impacted documentation based on descriptions of source

code assignments in the documentation. An analysis of the types of document entities impacted.

Impacted modules and probabilities of ripple effects between modules based on receded expert

judgement in the form of probabilities.

6.8 .1 R e a s o n s for D e v e l o p i n g t h e T e c h n i q u e

The reasons for developing this technique are to solve the prol)lem of orga.nisations which are with

out data describing previous impacts of projects. This is achieved i)y considering probabilities based

on expert judgements. The weighted edges which apjjear in the resulta.nt S CIG{V',£') are within

specified range of probabilities. This prol)a,bility range is specified with two parameters supplied

by the person using this a.nalysis technique. This facility enables the size of the S CIG{V',£') to

be reduced.

6 .8 .2 T e c h n i q u e D e s c r i p t i o n

The technique can be descrilied in the following way.

123

S Graph Slice : RPG{V,£) 6CIG(V',E')

This operation can be denoted as :

8 Graph Slice (RPG{V,£) , TB,CV, HV) A

Algorithm 6 G r a p h Sl ice

I n p u t : RPGiV,£) , TB

CV (lowest probability to appear in the SCIG{V',£'))

nV (highest probability to appear in the fiCIG{V', £'))

O u t p u t : S CIG{V', £') , bag BV , bag BE

B e g i n (S Graph Slice)

1. Find the Theme Vertex Entities Impacted:

(a) L e t Theme Vertex Entities Impacted =

-< Ai I {Ai,tn) G Has Theme Dependency and t „ G TB y

(h) L e t BE = BE ^ (A , , i „)] (A , , t „) G Has Theme Dependency and f„ G TBy

2. Find the Co-occurs Dependencies Impacted:

(a) L e t BE = BE + -<{Ai,Bn) \ (A i , 5 „) G Co-occurs Dependency and A; G Theme Vertex

Entities Impacted, Bn G Theme Vertex Entities Impactedy

3. F ind the Theme Vertex Entities Impacted using Copy Propagation Dependency:

(a) L e t Theme Vertex Entities Impacted = TJieme Vertex Entities Impacted -\-

<Bn I {Ai,Bn) G Copy Propagation Dependency and .4i G Theme Vertex Entities

Impacted y

(b) L e t BE = BE + -<(A,, 5 „) | (A , , i?„) G Copy Propagation Dependency and A, G Theme

Vertex Entities Impacted y

(c) E x t r a c t the set of Theme Vertex Entities Impacted from the ba,g of Theme Vertex

Entities Impacted

124

(d) Repeat steps 3.(a), 3.(b) and 3.(c) until the newly calculated set of Theme Vertex

Entities Impacted does not change;

4. Find the Thematic Context Entities:

(a) L e t Thematic Context Entities Impacted =

-< Bn I (A , , 5 „) G Thematic Context Dependency and Ai G Theme Vertices Impacted

y

(b) L e t B£ =B£ <{Ar,Br,) \ (A , , 5 „) G Thematic Context Dependency and Ai G Theme

Vertices Impacted y

5. Find the Tlieme Entities Impacted (directly and indirectly impacted themes)

(a) L e t Theme Entities Impacted =

<Bn I (A , , 5 „) G Has Theme Dependency and A, G Theme Vertex Entities Impacted

y

(b) L e t B£ = B£ ^- -<(A„ Bn) \ (A , , 5 . „) G Has Theme Dependency and Ai G Theme

Vertex Entities Impacted y

6. Find the Segment Entities Impacted:

(a) L e t Segment Entities Impacted =

-<Ai I (A i , j9„) G Has Them.e Vertex Dependency and Bn G Theme Vertex Entities

Impacted y

(b) L e t B£ = B£ + -<(Ai,Bn) \ (A i , 5 „) G Has Theme Vertex Dependency and 5 „ G

Theme Vertex Entities Impacted y

7. Find the Composite Components Impacted:

(a) L e t Composite Components Impacted =

-< Ai I (A , - , 5 „) G Has Segment Dependency and 5.„ G Segment Entities Impacted y

L e t B£ = B£ + -<(Ai , i?.„) | (A , , 5„.) G Has Segment Dependency and Bn G Segment

Entities Impacted y

125

(b) L e t Compo.site Components Impacted = Composite Components Impacted +

-<Ai I {Ai,Bn) G Ccmsists of Dependency and Bn G Composite Components Impacted

y

L e t BE = BE -\- -<{Ai,Bn) \ (A i , 5 „) G Consists of Dependency and Bn ^Composite

Components Impacted y

(c) E x t r a c t the set of Composite Components from the bag of Composite Components

Impacted.

(d) Repeat steps 7.(b) and 7.(c) for each hierarchical level in the RPG{V, E) until the newly

calculated set of Composite Components does not change;

8. F ind Ccmposite Entity Types:

(a) L e t Composite Entity Types Impacted =

< Bn I {Ai,Bn) G Composite Entity Type Dependency and .Ai G Composite Components

Impacted y

(b) L e t BE = BE -)- -<(Aj, 5 „) | {At,Bn) £ Compo.nte Entity Type Dependency and Ai G

Composite Components Impacted y

9. Find Segment Entity Types Impacted:

(a) L e t Segment Entity Types Impacted

- Bn \ (Ai.Bn) G Segment Entity Type Dependency and Ai G Segment Entities Im

pacted y

(b) L e t BE = BE + - < (A , , 5 „) | (A, , 5 , 0 G Segment Entity Type Dependency and Ai G

Segment Entities Impacted y

10. Find Composite Entity Types:

(a) L e t Composite Entity Types Impacted =

-< Bn I (A , - , 5 „) G Composite Entity Type Dependency and A; G Composite Components

Impacted y

(h) L e t BE = BE + -<{Ai,Bn) \ (A, , i?„) G Composite Entity Type Dependency and Ai £

Composite Components Impacted y

120

11. Find Segment Type Description Entities Impacted:

(a) L e t Segment Type Description Entities Impacted =

< Bn I (Ai,Bn) G Segment Entity Type Description Dependency and Ai G Segment

Entity Types Impacted y

(b) L e t B£ = B£ -\- -<{Ai,Bn) \ (A , - , 5 „) G Segment Entity Type Description Dependency

and Ai G Segment Entity Types Impacted y

12. Find Composite Type Description Entities Impacted:

(a) L e t Composite Type Description Entities Impacted —

-< Bn I {Ai,Bn) G Composite Entity Type Description Dependency and Ai G Composite

Entity Types Impacted y

(b) L e t B£ = B£ + - < (A , , 5 „) | (A i , i ? „) G Composite Entity Type Description and Ai G

Composite Entity Types Impacted y

13. Find Modide Entities described by impacted Segment Entities:

(a) L e t Module Entities Impacted =

-< B„ I {Ai,Bn) G Segment Describes Part of Module Dependency and Ai G Segment

Entities Impacted y

(b) L e t B£ = B£ + -<(Ai,Bn) \ (A , , 5 „ .) G Segment Describes Part of Module Dependency

and A , G Segment Entities Impiictcd y

14. Find all Expert Judgement Con.cernin.g Modules for Impacted Segment Entities:

(a) L e t B£ = B£ + -<{Ai,Bn) \ (A ; , Bn) G Module Expert Judgement Dependency,percentage

chance of propagation >= CP f\ percentage chance of propagation <= HV and, Bn G

Modide Entities Impacted, y

15. Find all Expert Judgement Concerning Segmen.t, Entities for Impacted Segment Entities:

(a) L e t B£ = B£ -\- •<{Ai,B.n) \ {Ai,Bn) G Document Expert Judgement Dependency,

percentage chance of propagation >— CP /\ percentage cJiance of propagation <— "HV,

and Bn G Segment Entities Impacted y

127

16. F ind al l impacted documentation entities :

(a) L e t BV =

Composite Components Impacted + Composite Entity Types Impacted + Segment En

tities Impacted + Segment Entity Types Impacted + Tlieme Vertex Entities Impacted

+ Theme Entities Impacted + Thematic Context Entities Impacted + Module Entities

Impacted + Segment Type Description Entities Impacted + Composite Type Description

Entities Impacted

17. Create the sets V and £ ' f r o m tlie Ij^igs BV , BS :

(a) E x t r a c t set V f r o m BV

(b) E x t r a c t set £ ' f r o m B£

18. Construct the S CIG{V',£') by associating the sets V, and

E n d (6 Graph Slice)

6 .8 .3 R e s u l t s P r o d u c e d b y t h e T e c h n i q u e

The (5 CIG{V',£') contains the fo l lowing types of impacted vertices a.nd edges:

1. Graph Vertices: Composite Components Impacted U Composite Type Entities U Segment En

tities U Segment Type Entities U Composite Type Description. Entities U Segment Type De

scription Entities U Theme Vertex Entities U Th.em.e Entities U Th.ematic Context Entities

U Module Entities Impacted

2. Graph Edges: Co-occurs Dependencies 1} Con.sists of Dependencies \J Has Segment Dependen

cies U Segment Entity Type Dependencies U Segment En.f.ity Type Description Dependencies

12S

U Composite Entity Type Dependencies U Composite Entity Type Description Dependencies

U Has Theme Dependencies U Has Theme Vertex Dependencies U Thematic Context De

pendencies U Copy Propagation Dependencies U Module Expert JiuUjement Dependencies U

Document Expert Judgement Dependencies

3. Other Features : This technique indicates the direct impacts, indirect impacts and the chance

of propagation between segment entities. The chance of propagation is based maintainers

expert judgement.

The bags BV , B£ contain the frequency of occurrence of imparted vertices and edges wi th in the

CIG{V',£'). The frequency of mult iple occurrences of a pa.rticula.r entity can be examined wi th

the fo l lowing bag operation : BV [x] . The results produced l)y this gra.ph slicing techirique namely

the, 6 CIG{V',£') can be used to help make the fo l lowing decisions identified i n Chapter 3 (see

table 3.1).

1. Decision No. 4 Wha.t are the inputs , outputs , processing and data?

2. Decision No. 12 W h i c h technical documenta.tiou needs to lie written/amended?

The bags BV , BS can be used to show mul t ip le impacts i n the sliced CIG{V', £').

The main problem i n this technique and its predecessors, the a , , and 7 techniques is that

they do not give a good cha,ra,cterisation of a.ny of the source code constructs mentioned wi th in

the impacted documentat ion. This is impor tan t since the documentation descril)es the source code

constructs.

6.9 e Graph Slice (Attributed)

T h e P r o b l e m : To extract the e CIG{V',£') impacted docnmentntion based on co-occurrence

of themes a,nd impacted docmnentAtion based on descriptions of source code assignments in the

documentat ion. A list of sonrce code entities mentioned in impacted document entities.

129

6.9.1 R e a s o n s f o r D e v e l o p i n g t h i s T e c h n i q u e

This technique has been developed to improve the characterisation of the composition of the slice

produced by the 6 Graph Slice. The slice aims to l ink the change proposal w i t h the operational

software constructs which are described in the documentation.

6 .9 .2 T e c h n i q u e D e s c r i p t i o n

The technique ca,n be descril)ed in the fol lowing way,

e Gj-aph Slice : RPG{V, £) - e CIG{V\ £')

This operation can be denoted as :

e Gra.ph Slice (i? .PG'(V,^) , T^?) A :

Algorithm e G r a p h Sl ice

I n p u t : RPG(V,S) , TB

O u t p u t : e C 7 G (V ' , £') , BV , BE

B e g i n (e Graph Slice)

1. F i n d the Theme Vertex Entities Impacted:

(a) L e t Theme Vertex Entities Impacted

•: y4, I (i4j-,i„) 6 Has Tlieme Dependency and /„ G TB

(h) L e t Bt: = B£ + t , J | (A , , / „) G Has Theme Dependency and t,, 6 TBy

2. F i n d the Co-occurs Dependencies Impacted:

(a) L e t B£ = B£ + ^ (/ l , , i ? „) | (A , , fi,,) G Co-nccurs Dependency and A, G Theme Vertex

Entities Impacted, B„, G Theme Vertex Entities Im.pactcd.y

m

3. F ind the Theme Vertex Entities Impacted using Copy Propagation Dependency:

(a) L e t Theme Vertex Entities Impacted = Theme Vertex Entities Impacted +

-<Bn I {Ai,Bn) 6 Copy Propagatum Dependency and Ai 6 Theme Vertex Entities

Impacted >-

(b) L e t B£ = B£ + -<{Ai,B,^) \ (Ai,Bn} e Copy Propagation Dependency and Ai £ Theme

Vertex Entities Impacted >-

(c) E x t r a c t the set of Theme Vertex Entities Impacted f r o m the ba.g of Theme Vertex

Entities Impacted

(d) Repeat steps 3.(a), 3.(1)) a.ud 3.(c) un t i l the newly calculated set of Theme Vertex

Entities Impacted does not change;

4. F i n d the Thematic Context Entities:

(a) L e t Thematic Context Entities Impacted =

-< 5„ I (Aj-,5„) G Thematic Context Dependency and Ai G Theme Vertices Impacted

y

(b) L e t B£ =BE + - < (A „ 5 , J | (A,, 5,,,) G Thematic Context Dependency and A, G Theme

Vertices Impacted >-

5. F i n d the Theme Entities Impacted (direct ly and indirect ly impacted themes)

(a) L e t Theme Entities Impacted =

-<Bn I {Ai,Bn) G Has Tliem.e Depen.dency and Aj G Tlieme Vertex Entities Impacted

(h) L e t BS = Bt: + -<(A,, 5,,) | (A,;,i?„) G Has Theme Dependency and A, G Theme

Vertex Entities Impacted y

6. F i n d the Segment Entities Impacted:

(a) L e t Segment Entities Impacted =

-<Ai I (Aj ,5. , i) G Has Th.emc Vertex Dcpen.dcncy and B,, 6 Theme Vertex Entities

Impacted >-

131

10. F i n d Segment Type Description Entities Impacted:

(a) L e t Segment Type Description Entities Impacted =

-< Bn ((Ai,Bn) G Segment Entity Type Description Dependency and A,- 6 Segment

Entity Types Impacted >-

(h) L e t B£ = B£ -<{Ai,Bn) \ (Ai,Bn) € Segment Entity Type Description Dependency

and Ai G Segment Entity Types Impacted >-

11. F i n d Composite Type Description Entities Impacted:

(a) L e t Composite Type Desc:ript.ion Entities Impacted =

-< Bn I (A i , 5 „) G Composite Entity Type Description Dependency and A ; G Composite

Entity Types Impacted y

(h) L e t B£ = B£ -\- ^ (A i , 5 „) | {Ai,Bu) S Composite En/tity Type Description and Ai G

Composite Entity Types Impacted >-

12. F i n d Module Entities descriljed by impacted Segment Entities:

(a) L e t Module Entities Impacted -

< I {Ai,Bn) £ Segment Describes Part of Module Dependency and A; G Segment

Entities Impacted >-

(b) L e t B£ = B£ + <{Ai,Bn) \ (A , , S „) G Segment Describes Part of Module Dependency

and Ai G Segment Entities Impacted >~

13. F i n d System Entities Impn.cted:

(a) L e t System Entities Impacted =

<Bn I (A , , i?„) G Module belongs to System Dependency A, G Module Entities Impacted

>-

(b) L e t B£ -B£ + -<(A,- ,5„) | (A „ 5 „) G Module belongs to System Dependency ^ind Ai G

Module Entities Impacted y

14. F i n d Associated System Entities Impacted:

133

(a) L e t Associated System Entities Impacted =

-<Ai I {Ai,Bn) G Associated System Dependency Bn G System Entities Impacted >-

(b) L e t BS = B£ -\- ^ (A . , 5 „) | (A,-, 5 „) G Associated System Dependency and Bn G System

Entities Impacted y

15. F i n d Module Type Entities Impacted:

(a) L e t Module Type Entities Impacted —

-<Bn I (A i , 5 n) G Module Type Dependency A i G Module Entities Impacted y

(b) L e t BS = BS + <{A^,Bn) \ (A , : , 5 „) G Module Type Dependency and Ai G Modide

Entities Impacted y

16. Find Module Test Entities lmY>a.cte(\:

(a) L e t Module Test Entities Impacted =

-<Bn I {Ai,Bn) G Module Test Required Dependency A, G Module Entities Impacted y

(b) L e t BS = BS + <{A^,Bn) \ (A , , i ? „) G Module Test Required Dependency and A, G

Module Entities Impacted y

17. F i n d System Test entities Impacted:

(a) L e t System Test Entities Impacted

- 11, I (A i , Bn) € System Test Required Dependency A , G Module Entities Impactedy

(b) L e t BS = BS + -<(A,, j9„) | (A ; , 5 „ .) G SystcMi Test Required Dependency and Ai G

Module Entities Impacted y

18. F i n d Data File Entities Impacted:

(a) L e t Data File Entities Impacted =

<Bn I (A i , 5 „) G Module Uses Data File Dependency Ai G Module Entities Impactedy

(b) L e t BS = BS + <{A,,Bn) \ (A „ 5 , J G Module Uses Data File Dependency and A . G

Modide Entities Impacted y

19. F i n d Job control language Entities Impacted.:

134

(a) L e t Job Control Language Entities Impacted —

-<Bn I (A , , JB„) G Module uses Job Control Language Dependency Ai G Module Entities

Impactedy

(b) L e t B£ -- B£ + ^ (A j , 5 „) [(A , , Bn) € Module uses Job Control Language Dependency

and Ai G Module Entities Impacted >-

20. F ind Map Base Entities Impacted:

(a) L e t Map uses Base Entities Impacted =

-<Bn I (A i , Bn) 6 Module uses Map Base Depemdency Ai G Module Entities Impacted >-

(b) L e t B£ = B£ + -<{A,,Bu) \ (A , , 5,,) 6 Module uses Map Base Dependency and Ai G

Module Entities Im/pacted >-

2 1 . F i n d System Entities Supplying Data Impacted:

(a) L e t System Entities Supplying Data =

-<Ai 1 (A i , 5 „) G System Supplies Data to Dependency Bn S System Entities Impacted)-

(b) L e t B£ = B£ -\- <(A,, Bn) \ (A „ J5„) G System Supplies Data to Dependency and Bn £

System Entities Impacted >-

22. F i n d System Entities B.eceiving Data Impacted:

(a) L e t System Entities Receiving Data =

-<Ai I (Aj - ,5n) G System Entity Receives da.ta from Dependency Bn G System Entities

Impactedy

(b) L e t B£ — B£ + -<{A„Bn) \ (A , , i ? , J G System Entity Receives data from Dependency

and Bn € System Entities Impacted y

23. F i n d System Entities Described by Segments Impacted:

(a) L e t System Entities Described by Segments =

-<Bn I (A , - ,5„) G Segment Describes Part of System Dependency A, G Segment Entities

Impactedy

(b) L e t B£ = B£ -\- -<{Ai,Bn) \ (A , , J3,,,) G Segment Describes Part of System Dependency

and Ai G Segment Entities Impacted y

13')

24. Create bag S by per forming a liag a.dditiou on all bags of inipa.cted Entities

(a) L e t BV = Theme Vertex Entities Impacted + Thematic Context Entities + Theme

Entities Impacted + Composite Entities Impacted + Composite Type Entities Impacted

+ Segment Entities Impacted + Segment Entity Types Impacted + Segment Type De

scription Entities Impacted + Composite Type Description Entities Impacted + Module

Entities Impacted + System EnXities Impacted + Associated System Entities Impacted

+ Module Type Entities Impacteil + Module Test Entities Impacted + System Test Enti

ties Impacted + Data File Entities Impacted + Job Control Language Entities Impacted

+ Map Base Entities Impacted + System Entities Supplying Data to + System Entities

Receiving Data + System Entities Described by Segments Impacted

25. Create the sets V and S' f r o m BV , BS :

(a) E x t r a c t set V f r o m BV

(b) E x t r a c t set S' f r o m BS

26. Construct the e CIG{V',S.') by associating the sets V, and S,

E n d (e Graph Slice)

6 .9 .3 R e s u l t s P r o d u c e d b y t h e T e c h n i q u e

The € CIG{V',S') produced contains the fo l lowing tyjies of impa.cted vertices and edge:

1. Gra.ph Vertices: Composite Entities U Composite Type Entities U Segment Entities U Segment

Type Entities U Composite Type Description Entities U Segment Type Description Entities

U Module Entities U Module Type Entities U Module Test File Entities U System Test File

Entities U Modide Data File Entities U Dictionary Region Entities U Job Control Language

136

Entities U Map Base Entities U System Entities U Theme Vertex Entities U Theme Entities

U Thematic Context Entities

2. Graph Edges: Co-occurs Dependencies U Consists of Dependencies U Has Segment Depen

dencies U Segment Entity Type U Segment Entity Type Description U Composite Entity Type

U Composite Entity Type Description U Has Theme Dependencies U Has Theme Vertex De

pendencies U Has Context Dependencies U Copy Propagaiion Dependencies U Segment De

scribes Part of Module Type Dependencies U Module Test Retjuired Dependencies U Module

System Test Required Dependencies U Module uses Data File Dependencies U Module uses

Data Dictionary Dependencies U Module uses Job Control Langu-age Dependencies U Module

uses Map Base Dependencies U Module belongs to System Dependencies U System Supplies

Data to Dependencies U System Data Received from Dependencies

3. Other Fea.tures : This technique identifies the source code ol)jects described wi th in segment

entities.

The bags BV , B£ contain the frequency of occurrence of impacted vertices and edges wi th in the

€ CIG{V',£'). The frequency of mul t ip le occurrences of a particular entity can be examined wi th

the fo l lowing bag operation : BV [x].

The results produced by this graph slicing techni(iue namely, the e CIG(V', £') can be used to help

make the fo l lowing decisions identif ied in Chapter 3 (see ta.ble 3.1).

1. Deci.sion No. 4 Wha,t are the inputs, outputs , processing a,n(i da,ta,?

2. Decision No. 5 W h a t is the implementat ion stra.tegy?

3. Decision No. 6 W h a t is the testing strategy?

4. Decision No. 10 W h i c h are the imi)acted system features?

5. Decision No. 12 W h i c h technical documentation needs to be written/amended?

6. Decision No. 13 W h i c h test da.ta is required?

The bags BV , B£ can be used to show mul t ip le impa.cts in the sliced e CIG{V',£').

137

6.10 Summary

I n this Chapter an model of a change proposal has been presented. A technique for constructing

slicing cr i ter ion by extract ing the themes f r o m this change proposal has been developed. The

resultant slice cr i ter ion is called a theme bag. Several techniques for slicing the RPG{V,S) are

presented. The theme bag is used as a slicing cri terion for all of the RPG{V, S) slicing techniques.

The slicing techniques developed are based on source code slicing techniques. I t has been shown how

the principles o f the work of Weiser [91] can be applied to higher levels of abstraction than source

code, such as documentat ion i n order to give an insight into the direct impacts and indirect impacts

of a proposed change to a software system. A t the source code level, slicing as been extended to

dynamic slicing to consider the statements i n a source code slice which were only executed [1]. This

reduced the size of the resultant slice and helps the maintainer focus on impor tant contents of a

slice.

Theoret ical ly this has been achieved at the documentation level by producing probabilities of ripple

effects based on release in fo rmat ion and expert judgements about proliable ripple effects. These

probabil i t ies help reduce the size of the graph slice. This is achieved by deleting weighted edges

and associated start and stop vertices whose weights are not w i t h i n a specific range probabilities.

The range be selected by a maintenance manager or a maintainer.

The RPG(V, S) analysis techniques can be combined by adding the resulting CIG{V', S') s together.

For example the splicing operation can be used for this purpose.

Graph Splice CIG{V[, S[) U CIGiV'^ , S'^)

The resultant spliced graph w i l l only have one occurrence of any duplicate vertices or edges.

B y associating at tr ibutes w i t h segment entities the value of the model can be in tui t ively increased.

A t t r i bu t e s can describe entities and provide in format ion about them. For example i f i t is deduced

tha t a par t i cu la r segment ent i ty is impacted then a l l of the at tr ibutes for that segment could be

impl ica ted . By varying the themes in the TB i t is possible to study the differing impacts on the

system. This allows a maintainer or maintenance manager to conduct an analysis of the impact of

d i f fe r ing hypothesised changes.

138

To summarise the RPG{V,£) slicing techniques presented in this Chapter can be placed wi th in

the impact analysis classification scheme presented in Chapter 3, (see table 3.1).

N O . D E C I S I O N T E C H N I Q U E S

No. 1 W h a t are the cost benefits?

No. 2 W h a t are the t ime scales required?

No. 3 W h a t are the cost benefits?

No. 4 W h a t are the inputs , outputs , processing
processing and data?

a ,P ,f ,S ,e

No. 5 W h a t is the implementat ion strategy? S e

No. 6 W h a t is the testing strategy? e

No. 7 W h a t are the cost and benefits?
No. 8 How can the project be categorised?
No. 9 W h a t is the p r io r i ty for the project?
No. 10 W h i c h are the impacted system features? €

No. 11 W h a t are the estimates now?

No. 12 W h i c h technical documentation needs to be
writ ten/amended? a ,P , j ,S ,€

No. 13 W h i c h test data is required? e

No. 14 W h a t is the source code impacted? 6

No. 15 W h a t caused a part icular defect?

No. 16 W h a t caused a part icular defect?

Table 6.1: Theoretical Evaluation of the Graph Slices

I t can be seen i n table 6.1 that the RPG(V,£) slicing techniques can be used to :

1. The iden t i fy the inputs , outputs , processing affected by the proposed change.

2. The iden t i fy the documentation needed to be maintained.

3. The iden t i fy the testing required for the proposed change.

4. The i d e n t i f y the software constructs which are impacted by the proposed change.

The next Chapter presents a prototype implementat ion of the RPG(V,£) model construction

techniques, and the thematic graph slicing techniques.

139

Chapter 7

Prototype Implementation

7.1 Introduction

This chapter describes a prototype too l , M A G E N T A (M A n a G e m E N t Technical impact Analyser),

to support two aspects of ripple effect analysis. These are the recording of the RPG{V,£) and

the thematic slicing. A def ini t ion of a prototype is given and its usefulness in evaluating the

ideas i n this thesis are discussed. A n overview of the prototype implementat ion for the model and

model analysis techniques described i n Chapter 4, 5, and 6 is presented before introducing a graph

description language which facili tates the entry of the documentation graphs. Finally, details are

given to show how the software tools can be used to automate the construction and analysis of the

r ipple propagation graph {RPG{V,£)).

7.2 Rationale and Overview

A proto type implementa t ion is defined in [46] as :

A preliminary type, form or instance of a system that serves as a model for the later

stages, or for the final complete version of the system.

140

A pro to type incorporates components of the actual product. Typical ly , a prototype exhibits func

t iona l capabilities, low re l iab i l i ty and inefficient performance. A prototype is useful for :

1. p rov id ing feedback on the technique;

2. determining the feasibil i ty of the technique;

3. a iding the investigation of other issues such a s technical issues in the proposed tool .

Another reason for developing a prototype implementat ion of M A G E N T A is that i t was not possible

to wr i t e a reasonably complete set of specifications due to an incomplete understanding of the

problem. I tera t ive expansion and refinement of the system were therefore required. This was

because pr ior to the development of the prototype, the method had not been completely refined.

This meant i t was not possible to define the prototype implementat ion of M A G E N T A without

some exploratory development. Of ten i t was not clear how to proceed w i t h the next enhancement

of the method u n t i l the current version of the method was implemented and evaluated.

A model and method can be examined f r o m a theoretical point of view but can only be evaluated

w i t h small examples. Software tools provide automation which enables more realistically sized

models to be produced. The use of the prototype implementat ion of M A G E N T A can facil i tate the

evaluation of the model and provide pointers as to how i t can be exploited in a real world setting.

The proto type implementat ion of M A G E N T A was developed using i terative refinements based on its

operat ion w i t h i n several testbeds, see figure 7.1 . Each of the testbeds are examples of the structure

of software and its associated documentation described using the R.PG{V,£). Each version of the

proto type was evaluated w i t h respect to the val idi ty of the too l , that is, the correctness of the

results produced. The strengths and weaknesses were also identified to provide feedback for further

development of the method.

The requirements of the prototype implementat ion of M A G E N T A are :

1. Easy entry of the graph model.

2. Eff icient representation of the graph model.

3. Eff ic ient retrieval of a l l or par t of the graph model.

141

Define

Feedback

Refine Operate

R P G Prototype

1 . .

Testbed Results
Examples

i

Prototype

1 . . 1

Evaluate

Val id i ty

Figure 7.1: A Diagram of the Prototype Development Cycle

I n order to satisfy these requirements i n the prototype, i t is necessa,ry to make use of data base

technology. Conventional languages are capable of implementing a data base using a file based

approach. However there are some l imi ta t ions i n adopting this approach. For example, the data

base w i l l store the graph model. As the method develops, so the data base w i l l also change, to

reflect revisions i n the graph model. Changes i n the data base w i l l also propagate changes through

the code prov id ing the graph operations. I n conventional programming languages an application

is data-dependent. I t is impossible to change the storage or access strategy wi thout affecting the

appl icat ion. Large amounts of source code woidd also have to be wr i t t en to faci l i ta te retrieval of

i n f o r m a t i o n f r o m the graph data base. The use of a dedicated data base system w i l l address these

problems. Three well known conventional data models are relat ional , hierarchical, and network

models [86]. Hierarchical data base models have a tree structure, network data base models have

a graph s tructure and relational data base models consist of rectangular tables. When providing a

data base for the storage of a graph model which is l ikely to develop in unforeseen ways i t is necessary

to choose a data model which can easily be changed. In the hierarchical and network approach the

l inks between the data are bu i l t in to the data base hence making cha.nges to its structure dif f icul t .

I n the relat ional model, links are established in the data itself making unforeseen changes easier

to implement . Deductive data bases and programs can be viewed as a powerful extension to the

relat ional data base model, the extra power coming f r o m the abi l i ty to specify rules for drawing

142

conclusions about the stored data.

A deductive data base provides a general purpose question-answering system based on the facts i t

contains. The set of facts necessary for question answering can be viewed as a statement, derived

f r o m premises rather than f r o m assumptions. Therefore, the advantage of such a data base system

is i t s deductive power. The name of the relationship between stored objects is called a predicate, the

various objects connected by the predicate are called arguments and each instance of a predicate

is called a clause. There are two different types of clauses, namely facts and rules. A fact is a

predicate w i t h a number of arguments and a rule provides a description of how conclusions can be

drawn f r o m facts. Further i n fo rma t ion concerning the l ink between logic and data bases can be

found i n [39].

The example i n figure 7.2 shows two facts wr i t t en i n the programming language Prolog (Programming

i n Logic) . The has-theme(VERTEX,THEME) fact indicates a relationship between the two arguments

^ VERTEX and THEME and the, has-theme-vertex(SEGMENT,VERTEX) fact indicates a relationship

between the arguments SEGMENT and VERTEX.

has-theme(VERTEX,THEME),
has-theme-vertex(SEGMENT,VERTEX)

Figure 7.2: A n Example of a Prolog Fact

A rule w i l l have a predicate w i t h arguments enclosed i n parentheses; but i t w i l l also have informat ion

fo l lowing . Facts can be thought of as storing in format ion and rides can be thought of as ways of

drawing conclusions about the stored in format ion .

Consider the example of a Prolog rule in figure 7.3. This rule indicates that a particular SEGMENT

is coded w i t h a par t icular THEME i f (denoted by the :- symbol) the VERTEX has that particular THEME

and the SEGMENT has this part icular VERTEX. Therefore given a SEGMENT the THEME can be deduced

or a l ternat ively given a THEME, the SEGMENT w i t h that part icular THEME can be deduced.

I t is very easy to draw conclusions by combining different clauses.

^the arguments in a Prolog fact are often referred to as objects

143

segment-theme(THEME,SEGMENT):-
has-theme(VERTEX,THEME),
has-theme-vertex(SEGMENT.VERTEX).

Figure 7.3: A n Example of a Prolog Rule

One of the most a t t ract ive features of deductive data bases is that the nature of a problem to

be solved can be described, rather than l i s t ing the steps the computer should take to solve this

problem.

Logic no ta t ion provides a precise language for the explicit expression of goals knowledge and as

sumptions. I t provides the foundat ion for deducing goals f r o m premises, for studying the t r u t h or

fa ls i ty of statements given the t r u t h of fals i ty of other statements, for establishing the consistency

and for ve r i fy ing arguments.

In this work the prototype implementat ion provides the user w i t h in format ion that allows an assess

ment o f where the r ipple effect of a change may be. The prototype implementat ion of M A G E N T A

consists of two tools:

1. the graph construction too l which automates the RPG{V, £) crystall isation, edge parameter-

isat ion and annotat ion operations;

2. the graph analysis too l which implements the RPG{V,£) thematic slicing operations.

The diagram i n figure 7.4 shows the process for constructing the graph and analysing as change

proposals are formula ted . The diagram illustrates a simple maintenance model starting w i t h a

change proposal f r o m which a bag of themes is extracted to deduce the impact of the proposed

change. As the system is maintained the in fo rmat ion produced as a by product of the maintenance

process such as programmer understanding, is recorded i n the RPG{V,£). Release information is

also recorded in to the RPG{V,£) model. Al ternat ively a reverse engineering process could also be

used as a source of in fo rma t ion to bui ld up the RPG{V, £) model for a particular system. The more

the system is maintained the greater the graph w i l l be trained to approximate the interconnectivity

of the system being modelled by the RPG(V,£).

144

^^change proposal

RPG ANALYSER

RPG MODELS

impact impact
analysis

proposal themes

maintainer s maintain
understanding system

release
system

maintainer's
understanding

release information

reverse
engineering

new release

Figure 7.4: RPG Construction and Analysis

145

7.3 R P G Description Language

A graph model of the structure of documentation can be regarded as an abstraction of the material

which describes the semantics of a software system. Diagraming tools can be useful for entering

graph theory pictures but they can be expensive to customise to the requirements of a particular

model. A more reasonable solution to the entering of information is to use a graph description

language written in some notation which can be easily entered using a text editor. A graph

description written in such a language also provides a convenient method of storage, and the graph

can easily be analysed in this machine readable form. The requirements of such an RPG{V,S)

description language are the following :

1. I t wi l l record the interconnectivity within a system.

2. I t wi l l represent the structure of the documentation, including the content and interconnec

tions between these components.

3. I t wi l l be possible to query systems expressed in the language in order to derive impact

analysis information siich as which other documents and source code modides are affected by

a change to a particular component.

In considering the example of a simple hierarchical graph in figure 7.5, a representation of the

graph can be recorded using relations between graph vertices as in figure 7.6. These relations are

a description of the decompositional structure described in Section 4.3 and can easily be described

in the programming language Prolog, as in figure 7.7.

In order to show how graph operations can be implemented in the form of queries consider the

example of the following :

given a set of segment entities containj/ig one member, determine the composite

entities connected to that segment.

Theoretically the slicing criterion of the BPG{V,S) is a tuple (f/,r), where g denotes a specific

segment in RPG{V, S) and T is a subset of themes in RPG{V, €) . The slicing criterion determines

a projection function from a documentation segment trajectory in which only the value of themes

146

v l

1 s2 Q- s3^o s4 b s5

sb3 O sbl O sb2

g l (5 g2 5 g3

Figure 7.5: An Example of a Hierarchical Graph

11 i s composed of v l s2 i s composed of s b l
11 i s composed of v2 s2 i s composed of sb2
v2 i s composed of b l s5 i s composed of sb3
b l i s composed of c l s5 i s composed of sb4
b l i s composed of c2 sb2 has segment g l
c l i s composed of s i sb2 has segment g2
c l i s composed of s2 sb2 has segment g3
c l i s composed of s3 sb4 has segment g4
c2 i s composed of s4 sb4 has segment g5
c2 i s composed of s5 sb4 has segment g6

Figure 7.6: An Example of RPG{V,£) Relations

147

c o n s i s t s '
c o n s i s t s
c o n s i s t s
c o n s i s t s
c o n s i s t s
c o n s i s t s
c o n s i s t s
c o n s i s t s
c o n s i s t s
c o n s i s t s

• o f (l l . v l) .
• o f (l l , v 2)
•of(v2,bl)
- o f (b l . c l)
-of(bl,c2)
- o f (c l . s l)
- o f (c l , s 2)
- o f (c l . s S)
-of(c2,s4)
-of(c2.s5)

c o n s i s t s - o f
c o n s i s t s - o f
c o n s i s t s - o f
c o n s i s t s - o f
has-segment
has-segment
has-segment
has-segment
has-segment
has-segment

(s 2 . s b l)
(s2,sb2)
(sS.sbS)
(s5.sb4)
(sb2,gl)
(sb2,g2)
(sb2.g3)
(sb4.g4)
(sb4,g5)
(sb4,g6)

Figure 7.7: An Example of B.PG{V,£) Relations in Prolog

in T are preserved. This RPG{V,S) slicing operation provides a restriction transformation which

gives a mapping from one set to another and filters out any vertices in the R.PG{V, £) not satisfying

a particular slicing criterion. Formally this consists of two steps, the second of which iterates until

the top of the document hierarchy is reached. The algorithm is:

Algorithm, (Find composite entities affected •^.)

1. Find the Composite Components Impacted:

(a) Let Composite Components Impacted =

-< A,- I {Ai,Bn) e Has Segment Dependency and 5 „ G Segment Entities Impacted y

Let B£ = BS + -<{Ai^Bn) | [Ai,Bn) G Has Segment Dependency and Bn G Segment

Entities Impacted >-

(b) Let Composite Components Impacted = Composite Components Impacted +

-<Ai I (Ai,Bn) G Consists of Dependency and Bn G Composite Components Impacted

y

Let B£ = B£ + -<{Ai,Bn) \ {Ai,Bn) G Consists of Dependency and 5 „ GComposite

Components Impacted y

(c) Extract the set of Composite Components from the bag of Composite Components

Impacted.

^This algorithm is taken from Section 6.5.2 of Chapter 6

148

(d) Repeat step l . (b) & l.(c) for each hierarchical level in the RPG{V,8) until the newly

calculated set of Composite Components does not change;

This can be implemented in Prolog as given in figure 7.8. This is a particularly illustrative example

of how a small amount of Prolog source code can implement some queries.

doc-affected(G):-
has-segment(F,G),
c o n s i s t s - o f 2 (R . F) ,
f a i l .

c o n s i s t s - o f 2 (R , F) : -
c o n s i s t s - o f (R , F) .

c o n s i s t s - o f 2 (R , F) : -
c o n s i s t s - o f (F l . F) .
c o n s i s t s - o f 2 (R , F 1) .

Figure 7.8: An RPG{V,S) Query Written in Prolog

The segment is supplied in the argument G of doc-a f fec ted and the first composite entity F is

determined with the has-segment(F,G) clause. The object F is then used to find the next composite

entity F l in the hierarchy using the recursive consists-of2 rule. There are two consists-of2 rules,

the first one is for the detection of the top of the hierarchy in the graph and the second rule is

for the detection of other composite entities which are not located at the bottom or top of the

hierarchy. The second consists-of2 rule implements the recursion i.e. the repetition of the second

step of the algorithm. So for example the query doc-a f f ec ted(g l) applied to the graph in figure

7.5 determines the composite entities which are impacted by a change to the segment entity g l and

would produce the following output :

sb2

s2

c l

b l

v2

11

149

I t is therefore possible to conclude, for example, that composite entity c l is connected to segment

entity g l .

This indicates the feasibility and power of the Prolog representation of the relations and the anal

ysis of them. The problem in inventing new notations is that tools must be built for interpreting

these notations or for transforming these notations into programming language representations

understood by compilers or interpreters. The use of Prolog as a documentation description lan

guage ensures that a powerful amount of automatic processing is available without implementing

additional source code routines.

Each graph dependency mentioned in Chapter 4 is described using a Ripple Propagation Graph

Description Language (R P D G L) sentence. Each RPDGL sentence has the same syntax and

semantics as a Prolog fact. The name of each fact has exactly the same name as that dependency

in the graph that i t represents. The objects between which there is a dependency are enclosed in

parenthesis and also have the same name as the graph vertices described in Chapter 4. Therefore a

mapping can be clearly seen between the method and its realisation in a prototype implementation

of MAGENTA.

The following four tables give example definitions of each sentence in the language. The sentences

in table 7.1 describe the Hierarchical Interconnection Graph {HIG{V, £)), in table 7.2 describe the

Thematic Interconnection Graph {TIG{V, £)), in table 7.3 describe the Source Attributes Graph

{SAG{V,£)) and in table 7.4 describe the Weighted Interconnection Graph {WIG{V,£)).

rpg(system).
consists-of(composite-entity,composite-entity).
has-segment(composite-entity,segment-entity).
has-theme-vertex(segment-entity,theme-vertex-entity),
composite-entity-type(composite-entity,composite-entity-type).
segment-entity-type(segment-entity,segment-entity-type),
composite-entity-type-description(composite-entity-type,type-description).
segment-entity-type-description(segment-entity-type,type-description).

Table 7.1: Hierarchical Interconnection Graph Description

150

has-theme(theme-vertex-entity,theme-entity).
co-occurs(theme-vertex-entity,theme-vertex-entity).
copy-propagation-description(theme-vertex-entity,theme-vertex-entity).
definition-use-description-chain(theme-vertex-entity,theme-vertex-entity).
thematic-context(theme-vertex-entity,context-entity).
theme(theme-code-entity,category-description-entity).

Table 7.2: Thematic Interconnection Graph Description

segment-uses-data-dictionary-region(segment-entity,region-area-entity).
segment-describes-part-of-module(segment-entity,module-entity).
segment-describes-part-of-system(segment-entity,system-entity).
module-belongs-to-system(module-entity,system-entity).
system-supplies-data-to(system-entity,system-entity).
system-data-received-from(system-entity,system-entity).
module-type(module-entity,module-type-entity).
module-test-required(module-entity,module-test-entity).
system-test-required(modide-entity,system-test-entity).
module-data-file(modide-entity,data-file-entity).
module-uses-job-control-language(module-entity,jcl-entity).
module-map-base(mod\ile-entity,map-base-entity).
associated-system(system-entity,system-entity).

Table 7.3: Source Attributes Graph Description

document-potential-impact-dependency(segment-entity,segment-entity,
percentage-chance-of-propagation).

module-potential-impact-dependency(segment-entity,segment-entity,
percentage-chance-of-propagation).

module-expert-judgement(judgement-nuniber,module-entity,release-number,module-entity,
quantitative,qualitative).

document-expert-judgement(judgement-number,module-entity,release-number,module-entity,
quantitative,qualitative).

judgement-reason(judgement-number,judgement-reason,judgement-assumption).
judgement-person(judgement-number,staff-name,date).
staff-responsible-for-system(system-entity,staff-name).
staff-who-have-maintained(system-entity,staff-name,.system-knowledge).

Table 7.4: Weighted Interconnection Graph Description

151

7.4 R P G Construction

There are four requirements for the graph data base construction process which the prototype

implementation of MAGENTA must support:

1. recording the HIG{V,£);

2. recording the T / G (V , f) ;

3. recording the SAG{V,£)\ and

4. recording the WIG{V,£).

In figure 7.9 a structure chart shows the design of the prototype implementation of MAGENTA ^.

The labelled boxes represent modules and the edges labelled with capital letters represent param

eters. The functional components are :

Control Module. ^ This invocates all other modules. There is no user interface within this

prototype therefore the control module deals with output to the maintainer.

1. RPG{V,£) Loader. This loads into the construction tool an existing B.PG{V,£) model. The

parameter A denotes that the RPG{V,£) is passed as an output parameter to the control

module.

2. Command Interpreter. This allows the maintainer to select particular construction facilities.

The parameter B denotes that an output parameter containing the graph operation required

is returned to the control module.

3. Structure Crystal l iser. This implements the graph crystallisation operation described in

Chapter 5 to construct the HIG{V,£). The parameter C denotes that the RPG{V,£) is

passed as input parameters and the Delta CIG{V,£) is returned as an output parameter to

the control module.

4. Theme Crystal l iser. This implements the graph crystallisation operation described in Chap

ter 5 to construct the TIG{V,£). The parameter D denotes that the RPG{V,£) is passed as

^This figure relates to the final version of the prototype after iterative refinement
*The functional components written in boldface are not entries in the bibliography.

152

input parameters and the transformed RPG{V, £) is returned as an output parameter to the

control module.

5. Annotator. This implements the graph annotation operation described in Chapter 5 to con

struct the SAG{V,S). The parameter E denotes that the RPG{V,S) is passed as input

parameters and the transformed RPG{V,S) is returned as an output parameter to the con

trol module.

6. Parameteriser. This implements the graph edge parameterisation operation described in Chap

ter 5 to construct the WIG{V,E). The parameter F denotes that the RPG{V,S) is passed

as input parameters and the transformed RPG{V,£) is returned as an output parameter to

the control module.

7. RPG(y, S) Saver. This stores the graph for subsequent analysis the RPG{V, £) Analyser. The

parameter G denotes that the RPG{V,£) is passed as input parameters.

D

RPG
Construction

Control I ̂ lodule

1 2 3 4 5 6 7

Figure 7.9: Structure of the Prototype Implementation(i?.PG(V, £") Construction)

In addition to constructing a graph a theme catalogue must also be constructed to hold a record

of all the theme codes and themes associated with a particular R.PG{V,€). The theme catalogue

is simply a text file of Prolog facts, which are entered with a text editor as they are detected in

documentation. Each Prolog fact in the catalogue records a theme. For example :

t h e m e (t h 5 2 , d e s c r i b e s - p r o c e s s i n g - o f - r e p o r t - l i n e s - f i l e s) .

153

indicates that theme code "th52" represents the theme "processing of report lines files". The

following figure 7.10 shows a fragment of a theme catalogue.

theme(th50,describes-processing-of-recycled-reconciliation-movements).
theme(th51.describes-processing-of-rcn-movements-drip-ffed-file).
th e m e (t h 5 2 , d e s c r i b e s - p r o c e s s i n g - o f - r e p o r t - l i n e s - f i l e s) .
theme(th53,describes-processing-of-audit-tapes).

Figure 7.10: An Example of Themes Recorded in a Prolog

7.5 R P G Analysis

In order to derive impact information such as which other documents are affected by a change to a

particular document segment or bag of segments, the graph slice operations described in Chapter

6 must be applied to the model. The requirements (informal) of the RPG(V, £) analyser tool are

the following :

1. Tool overview and summary

The prototype implementation of MAGENTA automates the graph storage and analysis.

2. Operating environment

The prototype implementation of MAGENTA operates in a Unix ^operating system environ

ment and is written in the programming language Edinburgh Prolog.

3. User displays and report formats

The six techniques for analysing an RPG{V,£) described in Chapter 6 each produce a sub

graph of the RPG(V,£) called a Change Implication Graph (GIG). The prototype im

plementation of MAGENTA produces change implications reports to describe each of the

Change Implication Graphs. The Change Implication Reports (CIR) produced simply

identify all the graph vertices and edges present in the extracted CIG{V,£) .

4. Modes of operation

There are two modes of operation for the RPG{V, £) analyser tool :

'Unix is registered trademark of A T & T

154

(a) Interactive, that is, subgraphs of the RPG{V,£) can be produced by the maintainer

by constructing queries in Prolog. For example i f a change implication report indicates

that a particular segment entity or module is impacted, then i t is possible to go through

the graph dictionary step by step to examine the graph.

(b) Selective, that is, the RPG{V,S) can be sliced on particular themes to produce change

implication graphs using the five analysis techniques developed in Chapter 6.

5. User command summary

Each command is the name of the graph slice operation and the argument represents the

change proposal number. Each change proposal number represents a bag of themes extracted

from a change proposal and entered into the data base. The argument P enclosed in paren

theses contains the change proposal number.

(a) view-change-proposal(P).

(b) view-thematic-graph-slice(P).

(c) view-complex-thematic-graph-slice(P).

(d) view-weighted-graph-slice(P).

(e) view-annotated-graph-slice(P).

(f) view-augmented-graph-slice(P).

(g) view-all-slices(P).

Alternatively Prolog's query interface can be used as a graph manipulation language, that is

the interactive mode of operation.

6. Command syntax and system options

Each command has the name for the query and one or more arguments enclosed in round

brackets followed by a fu l l stop.

7. Tool usage

The tool is operated by entering Prolog on the Unix command line. A question mark followed

by a minus sign wil l then appear "?-". This is a prompt indicating either a graph slice

command or graph dictionary query is required.

155

The hierarchical structure of the prototype implementation of the method described in Chapters

4, 5, and 6 is shown in figure 7.11 ^. The labelled boxes represent modules and the edges labelled

with capital letters represent parameters. The functional components are the following :

Control Module. This is responsible for invocating all other modules.

8. RPG{V,£) Loader. This loads in a particular RPG(V,S) model. The parameter H denotes

that the RPG{V,S) is an output parameter from module 8 to the control module.

9. Command Interpreter. This allows the maintainer to select particular RPG{V,S) transfor

mations. The parameter I denotes that the transformation selected by the maintainer is an

output parameter to the control module.

10. A lpha Graph Slicer. This extracts an Alpha CIG{V,S) from the RPG{V,£), The param

eter J denotes that the RPG{V,£) and Alpha criterion are passed as input parameters and

the Alpha CIG(V, £) is returned as an output parameter to the control module.

11. Beta Graph Slicer. This extracts a Beta CIG{V, £) from the RPG(V, £), The parameter K

denotes that the RPG{V, £) and Beta criterion are passed as input parameters and the Beta

CIG{V,£) is returned as an output parameter to the control module.

12. G a m m a Graph Slicer. This extracts a Gamma CIG(y,£) from the R.PG{V,£), The pa

rameter L denotes that the RPG{V, £) and Gamma criterion are passed as input parameters

and the Gamma CIG{V,£) is returned as an output parameter to the control module.

13. Delta Graph Slicer. This extracts a Delta CIG{V,£) from the RPG{V,£), The parameter

M denotes that the RPG{V,£) and Delta criterion are passed as input parameters and the

Delta CIG{V, £) is returned as an output parameter to the control module.

14. Epsi lon Graph Slicer. This extracts an Epsilon CIG{V,£) from the RPG{V,£), The pa

rameter N denotes that the RPG{V,£) and Epsilon criterion are passed as input parameters

and the Epsilon CIG{V,£) is returned as an output parameter to the control modide.

15. Interactive Graph Slicer. This allows the maintainer to construct his or her own queries as

an alternative to executing the 5 graph slicing algorithms above. The parameter 0 denotes

that the RPG{V,£) and a maintainer defined criterion are passed as input parameters and

the maintainer defined CIG{V,£) is returned as an output parameter to the control module.

^This figure relates to the final version of the prototype after iterative refinement

156

RPG
Analysis

Control I klodule

Figure 7.11: Structure of the Prototype Implementation(iZPG(V, f) Analysis)

To analyse the impact of a change proposal a bag of themes must be created and recorded.

Each bag of themes is associated with a change proposal by using the change proposal number,

project number and the release number. Examples of other change proposal attributes that can

be recorded are division, department, originators-name, date etc. A Change Proposal Description

(CPD) is recorded using the graph description language and is loaded into the RPG{V, £) analyser.

An example of this is given in table 7.5.

proposal-identification(proposal-number,release-number, project-number).
source-of-change(proposal-number,division,department,originators-name,date).
proposal(proposal-number,theme).

Table 7.5: Change Proposal Description

For example i f a description of a system was stored in the file "rpg-system-name" and the change

proposals were stored in the file "proposals" then they would be loaded into the analyser as in

figure 7.12.

: p r o l o g
I ? - [rpg-system-name].
I ? - [p r o p o s a l s] .
I ? - [r p g - g r a p h - t r a n s l i b] .
I ? -

Figiire 7.12: The RPG{V,£) Analyser Invocation Interface

157

The "?-" is the Prolog prompt to select a graph transformation from the analysis tool. These

transformations are stored in the file "rpg-graph-translib". Consider the example in figure 7.13

The command "view-change-proposal(P)" would display the details of the proposal whose number

I ?- view -chang6-proposal(P).

I ?- view-complex-thematic-slice(P).

Figure 7.13: An Example of the RPG{V,£) Analyser User Interface

is specified with the argument "P". The command "view-complex-thematic-slice(P)" would extract

the subgraph according to this particular slice criterion and the themes associated with the proposal

whose number is specified with the argument "P". Al l of the graph operations are specified in this

way.

The output from the prototype implementation of MAGENTA is called a Change Implica.tion Graph

and is described by Change Implication Reports. The change implication reports are simply lists of

vertices and edges remaining in the CIG{V,£) after applying particular graph operations. There

are five types of change implication reports produced, one for each of the CIG{V,£) s defined in

Chapter 6. The CIR consists of a header describing the graph manipulation applied to the specified

RPG(V,£) model followed by the change details. The CIR consists of documentation and source

code components impacted and is annotated with the probabilities of ripple effects, i f these have

been recorded. Actual examples of these reports are discussed in the next Chapter in which the

method is applied.

7.6 Conclusions

A prototype of MAGENTA has been implemented using the language Prolog for both the slicing

techniques and the graph description language. Using Prolog as a graph description language means

that the graph description is machine readal)le and can therefore be converted into an alternative

158

form for use by another type of tool. For example another tool may require the use of the release

information. In order to access this information li t t le work would have to be done in integrating

the two tools. I t is possible that both tools may use the Prolog facts as the internal structure

for information. In this instance the tools would be well integrated with each other with respect

to inter-operability, that is they would have a common view of the data. This inter-operability

aspect is beyond the scope of this work, however i t is an important consideration if the tool is

to be incorporated into an integrated project support environment. The use of Prolog as a graph

description language makes entry of the graph model easy since a text editor can be used. The use

of Prolog facts as a representation requires one line of a text file to store each graph edge, start

vertex and stop vertex. Using Prolog's inference engine makes retrieval of all or part of the graph

model eflRcient, in terms of the amount of source code which must be written to achieve this.

The prototype implementation of MAGENTA is not integrated with a static analysis tool such as

an inter-module code analyser. This could be a useful feature when, for example, a dependency

is discovered between two source code modules in analysing the R.PG{V, £). Then the actual

dependency in the source code could be examined. It would also l)e useful to have a master

index of all the components which comprise a software system. Such a master index could include

the components which are live, also components which not contained in a live system but are

potentially re-usable and finally the components which are being developed or maintained. Thus

any source code entities impacted by a change proposal could quickly be located. The current

prototype implementation does not provide information for the maintainer to interpret transformed

RPGiy, £)s. This would be a useful extension to the prototype implementation as i t would provide

guidance to the analysis of a large CIG{V, £).

It is argued that the user interface is an important part of a graph construction and analysis tool

which wi l l be used by information systems professionals. A poorly designed interface will increase

the chance of errors and can significantly increase the time taken by a user to complete a graph

construction or transformation task. There are many factors to consider when designing an interface

for a tool. However i t is thought that the treatment of this subject is beyond the scope of this

work. The evaluation of the RPG{V, £) will not be affected by the lack of a user interface.

159

7.7 Summary

This Chapter described the prototype implementation of software tools to support the model and

model analysis. It has also introduced the graph description language.

160

Chapter 8

Appl ica t ion of the Method

8.1 Introduction

In this chapter the concepts and ideas developed in Chapters 4, 5 and 6 are demonstrated with

three prototyping experiments. The prototyping experiments use two examples of documentation

structure and a major case study. Example 1 and 2 are small examples to demonstrate what can be

achieved with the model and model analysis techniques. The third example, the application of the

model to a real documentation system, is designed to determine the practical utility and feasibility

of the model and model analysis techniques. Examples 1 and 2 and the case study collectively

address the issues raised in the criteria for success in Chapter 1.

8.2 Method of Application

The method of application of the RPG{V, £) and its associated analysis techniques is a case study.

A case study is a worked example of the application of technique. The reasons for using a case

study are to provide a practical evaluation of the model and analysis techniques and also to provide

pointers on how the analysis techniques can be used. The problem with using a case study and

in particular one case study is that i t is difficult to interpret the worth of the technique and in

161

particular its comparison with other competing techniques.

Before the case study is presented the theoretical application of the technique is demonstrated using

two examples of documentation structure. The examples presented in this Chapter are examples

of the RPG{V,£) at different stages in the development. The first two examples of application

are both small and theoretical, so that the RPG{V, S) can be visualised and the results of the

analysis can be easily understood. The third example, namely the case study is considerably larger

than the examples. This is used to provide insights into the practical utility of the RPG{V,S)

in industrial/commercial size systems. The first example presented is the example containing the

least amount of detail. The second example presented includes all of the features of the model and

all of the analysis techniques. The third example applies the B.PG{V,S) and all of the analysis

techniques to a case study.

The examples and case study presented in this Chapter include a description of the scenario, a

description of the techniques which were actually applied and a description of the results achieved.

The examples presented in this Chapter relate to the characteristics of documentation described in

Chapter 3. For example, each of the examples and the case study include the following features :

1. one or more documents;

2. hierarchical structure;

3. logically connected documents through the mutual information they share, for example two

documents could both describe the processing of the same data file;

4. inter and intra-document dependencies;

5. the documents contain text;

6. the documents can be factored into segments;

7. some documents may be missing or incomplete;

8. some sections of documents may be mis.sing or incomplete;

9. the segment entities contain themes.

The following steps form the thematic slicing method :

162

RPG{V, S) Construction Steps:

Step 1: ^ J G (V , i :) Crystallisation

Step 2: T / G (V , 5) Crystallisation

Step 3: WIG{V,£) Parameterisation

Step 4: SAG{y,e) Annotation

RPG{V,£) Analysis Steps:

Step 5: a Slicing

Step 6: (3 Slicing

Step 7: 7 Slicing

Step 8: S Slicing

Step 9: e Slicing

Examples 1 and 2 are theoretical examples of documentation. Example 1 demonstrates the alpha

slice on a very simple RPG{V, £) and example 2 demonstrates all of the slicing techniques on a

more complicated RPG{V,£). However the major case study demonstrates all of the construction

and analysis steps as the data for the model was extracted from a real documentation system.

8.3 Example 1

8.3.1 Scenario Descr ipt ion

The purpose of this example is to show a very simple application of the RPG{V,£) to model

interconnectivity within a document hierarchy. This section describes an example rather than a

real documentation system. This is because the complexity of a real documentation system is too

great to clearly demonstrate the analysis of the model.

163

This example of a documentation system contains six levels of hierarchy which are the following

document types Libraries, Volumes, Chapters, Sections, Sub-sections and Segments.

The library is decomposed into two volumes Fi and V2. In order to make the example concise,

only V2 is decomposed. V2 is decomposed into 2 chapters, 5 different sections, 4 subsections and

6 segments. Segments are factored into 9 theme vertices and 7 themes. In this example the two

entities Ci and C2 represent two chapters describing two different modules. Co-occurs dependencies

are included this example to show the description of the sharing of data between the two modules.

The graph can be described set theoretically in the following way :

Composite Entities = { Li, V j , V2, Ci, C2, Si, S2, S3, S4, S5, SBi, SB2, SBi, SB4 }

Segment Entities — { G\, G2, G3, G4, G5, GQ }

Thematic Entities = { T i , T2, T3, T4, T5, TQ, TJ, TS, Tg)

Themes = { ti, t^, ts, tg, iis, ^20, hi }

Hierarchical Interconnection Graph:

Consists of Dependencies =

{ (Z i , F i) , (X i , V2), (F2, C2), (C i , 5 i) , (Ci , S2), (C i , 53), (C2, 54), {C2, Ss), {S2, SBi),

(55,553), (55,554), (552, G i) , {SB2, G2), (552, G 3) , (554, G 4) , (554, G 5) , (554, Ge)}

Thematic Interconnection Graph:

Has Theme Vertex Dependencies =

{ (C i , T i) , (G2, T2), (G2, Ts), {Gs, T,l (G 3 , T,), (G4, Te), (6-5, Tr), (Go, Ts), (Gg, T^)}

Has Theme Dependencies =

{(Ti , i i) , (T2, i i) , (Ta, f 4) , (T4, iis), (T5, f2o), (Te, ^4), (T 7 , ^32), (Ts, is), (Tg, to)}

Co-occurs Dependencies =

{(Ti,T2),(T3 ,T6)}

164

8.3.2 Sl ic ing and Resul t s

Given the RPG{V,£) in figure 8.1 and the bag of themes TB, where 7B =< ti,<4,<20 ^ the

following sets can be derived by applying the a slice over the RPG{V,£).

1. Thematic Components Impacted = { r i , r 3 , T 6 } ;

2. Segment Components Impacted = {Gi,G2,G4};

3. Composite Components Impacted =

(a) Composite Components Impacted

(b) Composite Components Impacted

(c) Composite Components Impacted

(d) Composite Components Impacted

(e) Composite Components Impacted

- {5^2,5-04};

= {552,554,52,55};

— {552,5^4,52,55, Ci , C2};

= {552,554,52,55,Ci,C2,V^2};

= {552,554,52,55,Ci,C2,V2,ii};

4. Documentation Entities Impacted = { Z i , V2; C i , C2, 52, 55, 5^2, 5^4, G'l, G2, ^ 4 } ;

Although the change proposal could be directed towards the application documented in entity Ci,

due to the thematic interconnectivity recorded in the RPG{V, £) the ripple effect propagated to C2

is detected. The figure 8.1 shows the example described by the scenario. The figure 8.26 shows

the a slice of the RPG{V, £) described by the scenario.

Step 5: q; S l ic ing

Figure 8.2 represents the resultant RPG{V,£) slice if the a slice is applied with the theme bag

-< h,i'i,ho The slice shows the segment entities impacted and composite components impacted.

The BV =

-< Li,V2,C2,Ci, S2, Ss, SB2., SB4,Gi,G2,G:i,Gi >-

165

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

t20 t4

Figure 8.1: RPG{V,£) Example 1

166

KEY:

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

SB4

t20 t4

Figure 8.2: Example 1 aCIG{V,£)

167

The B£ =

-< (T i , V2), (V2, G2), (F2, Gi) , (Gi, 52), (G2, 55), (52,552), (55,554),

(552, G i) , (552, G2), (552, G 3) , (554, G4), y

8.3.3 Discuss ion

In this example the a slicing technique is demonstrated using a very simple example of a document

hierarchy where each of segments modelled are given one or more themes. The co-occurs depen

dencies are used to describe the interconnectivity within the document hierarchy. In this particular

example a change is made to Ci (representing Chapter 1 of the document). As G2 also contains

themes which are common to Ci i t is possible that both Chapters Ci and C2 will be affected by

the proposed change. The a slice provides information for a maintenance manager or maintainer

to understand both the sharing of data used within an application and how it is described in

documentation.

8.4 Example 2

8.4.1 Scenario Descr ipt ion

The purpose of this example is to show a very simple application of the complete RPG{V,£) to

model interconnectivity within a document hierarchy. The objective is to show all of the features of

the model and all of the thematic graph slicing techniques developed in this thesis. This particidar

example, like example 1, is an example rather than a real documentation system. This is because

the complexity of a real documentation system is too great to clearly demonstrate the analysis of

the model.

This example is supported with Appendix C. The appendix demonstrates the use of the RPGDL for

describing the RPG{V, S) example 2, the associated theme catalogue, examples of change proposals

and a consultation with the prototype implementation MAGENTA.

This example of a documentation system is an exten.sion of the previous example and contains six

168

levels of hierarchy namely Libraries, Volumes, Chapters, Sections, Sub-sections and Segments, as

before. This example also contains the addition of the WIG{V,£) and SAG{V,£) to show the

advantage of recording such information on the RPG{V,£).

Since this second example is also theoretical i t is unnecessary to describe the system described by

the documentation, its features and functionality. However the links between the main documents

and source code entities contained within this example is shown in figure 8.3.

Source code
Modules

Technical Documentation

Subsection 1

Module 1

Subsection 2

Subsection 3

Module 2

Subsection 4

Figure 8.3: Example 2 Traceability between code and documentation

8.4.2 A C h a n g e Proposa l

Although this example is theoretical, the extraction of themes from a change proposal is demon

strated. The 'Business Summary' and the 'Detailed Business Requirements' are the most important

part of the change proposal as these are the only sections of the change proposal which are used

for constructing a theme bag.

169

1. Proposal Identification Information.

Feasibility No: 1, 'Improve Data, Placement' September 91

2. Business Summary.

The proposal is to incorporate the Last Charges Date into

personal cheque accounts an investment accounts.

3. Detailed Business Requirements.

The system needs to establish the Last Charges date for an account record

for personal cheque accounts an investment accounts

4. Service Levels.

This proposal will help to ensure that existing service level agreements are met on a more

regular basis.

5. T i m e scales.

The project can be implemented with very little effort if the implementation coincides with

other similar database changes.

6. Assumptions and Constraints.

The iast charges date is the only data item to be considered.

8.4.3 P r o p o s a l Ana lys i s

The proposal can be decomposed into the following CAs and COs :

C A s : incorporate, establish

C O s : Last Charges Date, personal cheque accounts, investment accounts, account record

These CAs and COs can be related in the following way :

170

1. establish Last Charges Date.

2. account record.

3. Incorporate Last Charges Date onto personal cheques.

4. Incorporate Last Charges Date onto investment accounts.

The following table 8.1 represents a catalogue of themes. In this theme description the conceptual

objects have a two descriptors. For example line one of the catalogue contains "a l" and "(account)".

The first descriptor is the system orientated name of the conceptual object, whilst the second

descriptor is the domain or business oriented descriptor.

theme code theme description

t l describes-processing-of-al (account record)
t2 describes-processing-of-bl
t3 describes-processing-of-cl
t4 describes-processing-of-dl (personal cheque accounts)
t5 describes-processing-of-el
t31 describes-processing-of-e2
t32 describes-processing-of-f2 (investment accounts)

Table 8.1: Example 2 A Theme Catalogue

The CAs one in this case i.e., 'incorporate' is mapped onto the 'describes-processing' part of the

theme and the COs are mapped onto the ' -of-al ' part of the theme. By identifying the themes

within the system a theme bag can be constructed.

TB = ^ t l , t4,t32 y

In this particular case there are no multiple changes to any themes in the proposal.

8.4.4 S l ic ing and Resu l t s

Figure 8.4 shows the example described by the scenario.

171

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

Copy Propagation

t20 t4

Figure 8.4: RPG{V,£) Example 2

172

Output

Consists of

Has Segment

Segment Type

Segment Type Description

Composite Type

Composite Type Description

s section

SB4

04 O G5 06

O d4

O
Processing Interface

Figure 8.5: Example 2 with Composite and Segment Types

173

Step 1 and 2: Crys ta l l i sa t ion

The HIG{V,£) and TIG{V,£) Crystallisation techniques were not applied in example two as the

example is not based on an actual real example of documentation. The figure 8.4 shows the

RPG{V,£) used as example 2. The figure 8.5 shows the example 2 with the composite and

segment types.

Step 3: WIG{V,S) Parameter i sa t ion

In this example release information and expert judgements on interconnectivity are simulated to

demonstrate in a concise way the usefulness of this information when slicing a model of documen

tation. Figure 8.6 shows an example of a WIG{V,£) after direct edge parameterisation. Figure

8.7 shows an example of a WIG{V,£) after indirect edge parameterisation.

KEY:

0 , Weighted Dependency

O 0 1

(100)

Figure 8.6: Example 2 containing ^ ^ (V , ^)

Q Of

174

KEY:

(75) Weighted Dependency

Segment describes part of module

Expert .Tudgement

O G I

o
module 1

0 Gf

module 2

Figure 8.7: Example 2 containing WIG{V,o) based on expert judgement

175

step 4: SAG{V,£) Annotat ion

Each of the segment entities have their content further characterised by this graph operation. See

figure 8.8.

Step 5: a Sl ic ing

Figure 8.9 represents the resultant RPG{V, S) slice if the a slice is applied to example 2 with the

TB — -< t l , t4 , t32 The slice shows the segment entities impacted and composite components

impacted.

Step 6: /? S l ic ing

Figure 8.10 represents the resultant RPG{V, S) slice if the (3 slice is applied to example 2 with the

particular TB = -< t l , t4, t32 The slice shows the segments impacted and composite components

impacted based on tracing the copy propagations.

Step 7: 7 S l ic ing

Figure 8.11 represents the resultant RPG{V,S) slice if the 7 slice is applied to example 2 with

the particular TB — < t l , t4, t32 >-. The slice shows the segments impacted and the composite

components impacted based on tracing the copy propagations. In addition the probabilities of

ripple effects between segment entities are also impacted. These probabilities are based on previous

release information. For this particular example the bags B£ and BV are given to show their utility

see figure 8.12.

I f the TB is expanded to < thi,th4,th32,thi,th4,th32 >- the actual impact of the change doubles

and would be shown in the resultant bags BV,BS.. However the CIG{V,£) does not change. This

demonstrates the importance of constructing impacted bags containing multiple impacts on the

same entity or edge and shows the weakness of sets which only contain one occurrence of each

entity.

176

module 1 module 2

o o o o o o o
9 10 11 12 13 14 15

KEY:

SAG Entities SAG Dependencies

1 COBOL 9 j e l l a module type

2 assembler 10 ni^P 1 b module test file

3 test mod 1 11 COBOL
c system test required

4 test mod 2 12 test mod 2
d modide data file

5 test mod 4 13 system test 1 e module job control language

6 system test 1 14 jcl 2 f modide map base

7 system test 16 15 map 2
8 batch file

Figure 8.8: Example 2 containing SAG{V,£)

177

KEY:

T5. V T6

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

SB4

Figure 8.9: Example 1 aCIG{V,S)

178

KEY:

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

Copy Propagation

Figure 8.10: Example 2 PCIG{V,S)

179

KEY:

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

Copy Propagation

Weighted Dependency

Figure 8.11: Example 2 jCIG{V,£)

180

BS =
< {h,Tx), {h,T2), {U,Ts), {U,Te), {m.Tj), {T^^T^), {T^^T^), iTs,^), (T2,r3) ,
(Ta, T 4) , (Ts, T 4) , (Ta, Tg), (Te, Tj), (Tj, Tg), (Tg, Ts), (Ts, Ts), {Tj, To), (Tc,, Tg),
(Ts, Ts), (Ti, G i) , (r2, G2), (Ta, G2), (Te, G 4) , (Tj, G 5) , (T3, G2), (T 4 , G3), (T 4 , G3),
(TT, G5), (Tg, Ge), (Ts, Ge), (T5, G3), (Tg, Ge), (Ts, Ge), (T5, G3), (Gj , 5^2), {SB^, S2),
(52, Ga), (Gi, ^2), (V2, i i) , (G2,5^2), (5^2, 2̂
(552,52), (52, Cx), (Gi, ^2), (^2, Xi) , (G3, 552
(Gs, 5^2), (5^2,52), (52, Gi) , (Gi, ^2), (F2, Xi
(^2, Tx), (G3, 552), (552,52), (52, Gi) , (Gi, 1̂2
(Gi, ^2), (V2, i i) , (G5, 552), (552, S2), (52, Gi
(55, G2), (G2,1/2), (1 2̂, i i) , (Ge, 554), (554, 55
(554,55), (55, G2), (G2, V2), (F2, Z i) , (Ge, 554
(Ge, 554), (554,55), (55, G2), (G2, V2), {V2, Ti

(52,Gi),(Gi,y2),(^2,i l) , (G2,552),
(552,52),(52,Gi),(Gi,F2),(^2,Xi),
(G2, 552), (552,52), (52, Gi), (Ci , ^2),
(V2,i:i),(G3,552),(552,52),(52,Gi),
(Gi, F2), {V2, Xi) , (Ge, 554), (554,55),
(55,G2),(G2,F2),(V2,Xi),(G3,554),
(554,55),(55,G2),(G2,V2),(F2,Xl),
(G3,554), (554,55), (55, G2), (G2, V2),

BV =
-< h , t i , t4,t4, T i , T2, T3, Te, T i , T2, T3, Te, T7, T3, T4, T4, T7, Tg, Tg, T5, Tg, Ts, T5,

G i , G2, G2, G3, G5, G2, G3, G3, G5, Ge, Ge, G3, Ge, Ge, G4, 552, 52, Gi , V2, Li, SB2, S2, Gi,
^2, T i , 552, 52, Gi , F2, T i , 554,55, G2, V2, T i , 554, 55, G2, V2, T i , 552, 52, C i , ^̂ 2, Xi , 552,
52, Gi , V2, X i , 552, 52, Gi , V2, Xi , 552, 52, Gi , V2, Xi , 554, 55, G2, V2, Xi , 554,55, G2,
F2, X i , 552,52, Gi , V2, X i , 554,55, G2, V2, Xi , 554,5s, G2, V2, X i , 552,52,G], V2, Xi

Figure 8.12: Example 2 7 bags containing multiple impacts

181

step 8: 6 Slicing

Figure 8.13 represents the resultant RPG{V,S) slice if the 6 slice is applied to example 2 with

the TB = -< t l , t4, t32 X. The slice shows the segments impacted and the composite components

impacted based on tracing the copy propagations. In addition the probabilities of ripple effects

between segment entities are also impacted. These probabilities are based on expert judgement.

Step 9: e Slicing

Figure 8.14 represents the resultant RPG{V,£) slice if the e slice is applied to example 2 with

the particular TB = -< t l , t4, t32 y. The slice shows the segments impacted and the composite

components impacted, based on tracing the copy propagations. In addition, the probabilities of

ripple effects between segment entities are also impacted. These probabilities are based on expert

judgement.

8.4.5 Discussion

In this example all of the analysis techniques have been demonstrated on a small example in order

to demonstrate the usefulness of graph slicing. It has been shown how the themes within the change

proposal formally traced to operational software by analysing documentation interconnectivity and

content.

The analysis techniques have been shown to provide a method of understanding the documentation

and also a method of manipulating the documentation without getting overwhelmed by the volume

of information. The maintenance manager is able to focus on the impacted documents, the impacted

source code constructs and the reasons why they are impacted.

The extraction of a subgraph representing the impact of a change allows the maintenance manager

or maintainer to investigate the edges on the subgraph representing the transitive closure. This

helps the maintenance manager understand the reasons why a particular component is impacted.

The use of bag theory for storing multiple impacts of the same entity has also been demonstrated.

182

KEY:

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

Copy Propagation

Expert .ludgement

T5 Q T6

Figure 8.13: Example 2 6CIG{V,S)

183

Consists of

Has Segment

Has Theme Vertex

Has Theme

Co-occurs

Copy Propagation

Expert .Judgement

Describes part of

Module

KEY:

module 2 module 1

source
attributes

source
attributes

Figure 8.14: Example 2 eCIG{V,S)

184

8.5 Case Study

The purpose of the case study is to provide insight into the practical feasibility of the RPG{V,S)

and thematic graph slicing techniques. The example used for this case study is a real example of

system documentation.

8.5.1 Scenario Description

The financial system is a system supporting the banking business. The banking system has an

onion shaped architecture with all of the banking data files at the centre of the system and layers

of transaction processing, networking and application software around the data files. The whole

system consists of 900 source code modules. The core banking system (the application software)

consists of many different applications supporting the retail banking business and contains 2 million

lines of COBOL source code.

A subsystem from the batch processing component was chosen as i t is the simplest part of the

banking system. A simple system for the case study called the End of Day system (EOD) was

selected from an area of the banking system called Batch Applications. Most of these applications

read data from files, process the data and then write i t back to the same or new data files. The

EOD system is designed to fu l f i l l the following functions :

1. Extract all relevant information from the Audit tapes relating to the banking data.

2. Maintain a historical record of transactions processed on a daily, weekly, monthly and quar

terly basis, and produce relevant reports for the banks.

3. Control the production of all printing requirements in terms of reports, statements and mi

crofiche.

There are several major suites of programs within the area of Batch Applications. These are the

following :

1. Audit Tape Extract (AUT)

185

2. Transaction History (HST)

3. Reports Production System (RPS)

The main functions of A U T are to extract all relevant data from the day's audit tapes and to sort

the data into the required sequence. I t also produces files for external transmission at the earliest

point after the bank closes down.

The main function of HST is to produce daily and periodic reports for the branches showing com

plete historical records of all transactions which have been input to the system. This also involves

the creation and maintenance of various master files for subsequent reporting and interrogation.

A l l report lines produced by On-line, Drip Feeds and Sequential Passes, as well as those created

by EOD programs, are input to the RPS for sul)sequent production of statements, microfiche, or

paper reports for the branches. A special file is used, namely the R.eports Control File to control

the various different formats and layouts of these reports.

This case study is based on the AUT program suite. The documentation is not in formal math

ematical notation. Instead i t is written in natural language. However, the documentation does

have a clear hierarchical structure. The case study is taken from the financial services sector. The

style of the document maps onto the languages used within this sector. For example the pro

gramming language COBOL has procedures which map onto the process descriptions within the

documentation example used. This style of documentation was chosen because the interconnections

between the documentation entities are more implicit tha,n the document interconnections within

mathematically based specifications and designs.

The reason why the financial services were chosen is because the type of processing is very data

intensive. There is also much sharing of data through a central data base within the financial

services, which is one of the main factors causing the indirect ripple effect.

The actual case study document provided contained 2849 lines in 67 pages and 22908 words. The

document was the smallest piece of documentation which could be located within the project

sponsoring organisation. The documentation had a hierarchy containing 7 levels and at the bottom

level is 437 entities wide. These levels were :

186

1. Library

2. Volume

3. Book

4. Chapter

5. Process Description

6. Process Elements

7. Segments

The documentation for the entire financial system is stored within a library containing a Chapter for

each sub-system. The case study presented in this thesis contains one Chapter. A Chapter describes

a complete application. Within this Chapter there are five process descriptions describing the five

functions of the system used as the case study. Each process description contains a number of

process elements which describe discrete steps within the process. There are 44 different process

elements. Process description 1 contains 4 process elements, process description 2 contains 26

process elements, process description 3 contains 1 process element, process description 4 contains

11 process elements and process description 5 contains 2 process elements. These process elements

were decomposed into 437 different segments.

The document describes 3 source code modules which form a sub-system. Process descriptions 1 and

2 describe 1 module, process description 3 describes another module and process descriptions 4 and

5 describes the third module. The modules communicate through shared data. The documentation

describes the processing and data within each module and therefore the process descriptions are

implicitly connected because of this.

The system is written in the programming language COBOL and the data files are stored in a

CODASYL data base. The source code is 9000 lines in total. The COBOL source code is 5000

lines long and the data file descriptions are 4000 lines long. The supporting documentation consists

of system presentation and system technical documentation. The system presentation gives an

overview of the application whilst the system technical documentation describes the source code of

the application.

187

The audit tape extract program suite is the first EOD suite to be run operationally each day. It

comprises 9 live programs. Collectively these programs use many of the database areas of the

CORE banking system

The major program in the suite is AUTOl. It is the most important program in the whole EOD

system since i t extracts all relevant transactions from the day's audit tapes, reformats them where

necessary and passes them on to the appropriate areas. The other AUT programs process files

created by AUTOl , and produce output files for immediate transmission to external agencies or for

examination at the bank's computer centre.

The AUTOl program was selected for this case study. Figure 8.15 shows the relationship between

the modules and the documentation of the AUTOl sub-system.

This program consists of 3 modules, namely AUTOla, AUTOlb and AUTOlc. These three modules

provide input, sorting and output functions respectively. Al l of these modules are described by the

document used in this case study. Process descriptions 1 and 2 describe module AUTOla, process

description 3 describes AUTOlb and process descriptions 4 and 5 describe module AUTOlc.

The AUTOl program takes as input, the Audit Tapes and Reconciliation Movements. I t sorts

these records and outputs them to the following files : Reconciliation Movements Drip Feed, Rec

onciliation Movements Drip Feed Control File, Interest Capital Transactions File, Interest Capital

Control File, Sorted Transaction File, Report Lines File, External Transactions, AUT control File,

and Computer Centre Report Lines File.

The following data flow diagram presented in fig 8.16 describes the main stores and processes

which comprise the AUTOl sub-system of Batch Application System. The documentation used as

the case study describes this process. The rest of this Chapter describes the employment of the

RPG{V,S) and its analysis techniciues to the EOD system.

188

Source Code Modules

AUTOla
INPUT
Module

AUTOl
AUTOlb
SORT
Module

AUTOlc
OUTPUT
Module

Technical
Documentation

Process

Description 1

Process

Description

Process

Description

Process

Description 4

Process

Description 5

Figure 8.15: Case Study Traceability between the code and documentation

8.5.2 Graph Construction

Step 1: HIG{V,£) Crystallisation

Analysis of the documentation gives a simple context diagram, see figure 8.17. This context

diagram does not reflect the actual structure of the document analysed in this case study. Instead

189

Audit Tapes
Recycled
Reconciliation
Movements

AUTOl

External
TXNS
BAGS File

AUT
Control
File

Computer
Centre Report
Lines File

RCN Movements

Drip Feed File

RCN Movements

Drip feed
Control File

Interest Cap

Transactions

Interest Cap
Transactions
Control File

Sort

Transactions

File

Report
Lines

File

Figure 8.16: An Overview of the System to be Analysed

190

the context diagram reflects the entity types which may occur in the hierarchy and at which levels

in the hierarchy they are permitted to occur.

LIBRARIES

VOLUMES

BOOKS

CHAPTERS

PROCESS DESCRIPTIONS

PROCESS ELEMENTS

Figure 8.17: A Simple Context Sketch of the RPG{V,S) Entity Types

Figure 8.18 shows an example of a fragment of text from the documentation case study. The

fragment of text shown in figure 8.18 is decomposed into four segment entities. This factoring

process was performed by dividing the document fragment into rectangles as shown in figure 8.19.

Figure 8.20 shows an example of the graph extracted from the fragment of text in figure 8.18. Each

rectangle represents a document entity type. The case study was also mapped to graph fragments

like the graph presented in figure 8.20

Once the set of segment entities were created they were analysed with respect to their thematic

structure.

191

ELEMENT INITIAL ENTRY TO AUDIT TAPE DEBLOCK
ELEMENT SUMMARY

The standard routine i s informed which types of audit tape
records are required by the e x t r a c t and w i l l v a l i d a t e the
processing range determined by Operator Communication against the
audit tapes to be read. I f the range i s not consistent with
information on each audit tape header the routine w i l l inform the
Control procedure which w i l l take the appropriate action.

1. The A p p l i c a t i o n Date i s requested from the Operator using
Operator Communication Standard Routine (OCSR).

2. The date i s v a l i d a t e d by the Date V a l i d a t i o n Standard
Routine, i f i t i s i n v a l i d , a message ' I n v a l i d Date' i s
output and the operator i s requested to re-input the
date.

3. I f t h i s i s the f i r s t run of the day the Application Date
input i n step 1 i s stored f o r updating the AUT Control
F i l e at the end of run.

Figure 8.18: An Example of a Documentation Fragment Containing Hierarchical Structure

192

ELEMENT INITIAL ENTRY TO AUDIT TAPE DEBLOCK

ELEMENT SUMMARY

The standard routine i s informed which types of audit tape
records are required by the e x t r a c t and w i l l v a l i d a t e the
processing range determined by Operator Communication against the
audit tapes to be read. I f the range i s not con s i s t e n t with
information on each audit tape header the routine w i l l inform the
Control procedure which w i l l take the appropriate action.

1. The Appl i c a t i o n Date i s requested from the Operator using
Operator Communication Standard Routine (OCSR).

2. The date i s v a l i d a t e d by the Date V a l i d a t i o n Standard
Routine, i f i t i s i n v a l i d , a message ' I n v a l i d Date' i s
output and the operator i s requested to re-input the
date.

3. I f t h i s i s the f i r s t run of the day the Application Date
input i n step 1 i s stored f o r updating the AUT Control
F i l e at the end of run.

I

Figure 8.19: An Example of a Factored Documentation Fragment

193

chapter

process description

process element

segment entities

Figure 8.20: An Example of an HIG{V,S)

Step 2: TIG{V,S) Crysta l l i sa t ion

Before each segment entity could be coded with one or more themes, a theme catalogue had to

be created. The appendix contained within the documentation described the data files used by

the modules AUTOla, AUTOlb and AUTOlc. Therefore a simple list of data items which may

be described within the documentation was created. Each of the segments in the RPG{V,S) was

analysed for its content. This was conducted manually. In terms of size, all of the segments were

between two lines and ten lines. In terms of information content they were all about the same. For

example most segment entities contained one, two or three themes.

Where copy propagations were detected, the thematic context of themes were recorded, for example,

whether or not the theme is a definition or use of a data item. Figure 8.21 is an example of a

segment isolated from the process description 1 in the case study.

The "11" is the identification mimber of this text fragment and the "C134E012" is the project code

which produced this piece of documentation. The "account number", "low values" and "parent

account number" are the Conceptual Objects a,nd the "move" is the Conceptual Action. The word

" I f " implies a conditional logic construct and the word "move" implies an a,ssignment. Each theme

194

11 I f the account number i s not present and not a v a i l a b l e , C134E012
move low values to parent account number. C134E012

Figure 8.21: An Example of a Document Fragment Containing a Segment Entity

is given a theme code. The themes are added to the set of known themes if they are not already

members of the set of themes. "Low values" is assigned " t h l " , "account number" is assigned "th2"

and "parent account number" is given "th3". The resulting graph fragment is shown in figure 8.22.

The dotted line in figure 8.22 records the "move", i.e., the copy propagation.

KEY:

Has Theme Vertex
Context Property Model

Has Theme

Copy Propagation

Segment 11

t n l Q t n 2 Q tn3

6
t h l

6
th2

6
th3

O
definition

Figure 8.22: A graph recording the content of a segment entity

The whole text fragment is mapped to a segment on the graph and each CO is modelled with

a theme vertex. The "parent account number" is the recipient of the data in the assignment

described, therefore the thematic context is the description of a data definition. This is used to

ensure that the edge representing the copy propagation points in the right direction. Each segment

content was modelled in this way.

195

s t e p 3: WIG{V,£) Parameter i sat ion

No directed fine grained release information was available for this particular case study because the

bank does not collect this type of information. Therefore simulated release information was used to

put weights on the edges joining the segment entities (direct edge parameterisation). Some of the

weights were also based on simulated quantitative expert judgements (indirect edge parameterisa

tion) concerning potential ripple propagation. Figure 8.23 shows an example of the addition of a

weighted edge to the WTG(V,£) between segment 4 and segment 1. The weight on this particular

graph has been extracted from previous release information using the guidelines in Section 5.6.3.

Figure 8.23 also shows an example of the addition of a weighted edge between segment 4 and

segment 1, containing a probability of a ripple effect between two segment entities based on expert

judgement using guidelines presented in Section 5.6.2. This particular probability has been arrived

at by the consensus of maintainers associated with the maintenance of the system which is used as

the case study.

There is also another weighted edge added between segment entity 13 and segment entity 4. This

is an example of an implicit link between segment entity 13 and segment entity 4. It is implicit

because there is no link between this pair of segment entities based on thematic dependencies.

However from past experience the weight shows that i f segment entity 13 is changed then segment

entity 4 must also be changed.

Step 4: ^ ^ ^ (V , ^) Annotat ion

The segment entities were also scanned for any source code entities which were implicitly or ex

plicitly mentioned. For example the source modules, and test files which are described by the

documentation were recorded. Figure 8.24 shows an example of a segment which describes a mod

ule called AUTOla. Within this segment several source code entities are described. Figure 8.25

shows the model extracted from the case study described by the scenario.

196

KEY:
lb

Consists of

Has Segment

Has Theme Vertex

Has Theme

Copy Propagation

Co-occurs

0^6 "
v l

KEY:

Composite Type Dependency

Segment Type Dependency

Weighted Dependency

Expert .Judegment

seg 13

tn 78

6
th 42 th36 th26

Figure 8.23: An Example of Edge Parameterisation

197

KEY:

SAG Dependencies

• Describes part of modide

^—*- module type

module test file

—*• system test required

—*" module data file

—*• module map base

Q segO

SAG Entities

1 Cobol

2 Module test 1

3 Module test 3

4 Module test 4

5 End of Day 1
6 End of Day 2

7 Reconciliation File

8 Audit Tapes File

9 Reconciliation Map Base

10 Audit Tapes Map Base

o o

A U T O l a

o O o
Figure 8.24: An Example of Annotation

198

8.5.3 E x a m p l e s of S imple Slices

Step 5: a S l ic ing

O 11

(4) pe

(28) seg

KEY:

LB
1
V

b
ch
pr
pe

Libraries
Library
Volume
Book
Chapter
Process Description
Process Element
Segment
Frequency of Entity

O Pr l

(26) pe (1) pe (11) pe

(211) seg (S) seg (138) seg

(2) pe

(17) seg

Figure 8.25: RPG{V,S) Case Study

Assuming a TB containing the following theme th5 >- has been created from a change proposal,

the resulting ty.CIG{V,S) is shown in figure 8.26. The theme code "th5" represents a change to

any document entities describing the processing of aut control file. Figure 8.26 is an abstraction of

the graph shown in figure 8.25. The graph indicates that all the segment entities have the theme

code -< th5 Therefore i t can be concluded that the entities p r l , pr2 and pr5 are all potentially

impacted by the change proposal containing "th5".

199

O i l

Ovl

Obi
KEY:

Consists of

Has Segment

O pe 2

o o o o o o o o o
2 3 4 13 15 17 19 1 5 10 1 1 11 12 13 15

segment entities

Figure 8.26: Case Study aCIG{V,e)

200

step 6: /3 Slicing

The theme th34 is chosen to simulate a change proposal. The theme th34 represents a change

affecting the "processing of the recycled reconciliations movements". This theme was used as a

slicing criterion for the beta slice. The use this particular slice and slice criterion on the case study

resulted in a small subgraph of the RPG{V, £) which actually contained no copy propagations.

However the resulting /3CIG{V, £) was an better characterisation of the impact than that produced

by the a slice. The PCIG{V,£) produced contains all the types of entities impacted by the TB.

This helps a maintenance manager deduce what may be impacted at the source code level without

consulting any source code. I t can be seen from consulting the gra,ph that segment entities of

types d l and d2 are impacted. Types d l and d2 represent the description of input and output

respectively. The /3CIG{V,£) is shown in figure 8.27.

By examining the segment entities and segment entity types in this extracted subgraph it can be

seen that the impacted segment entity types are d l and d2. In this particidar case study d l and

d2 represent the description of input and output respectively. This particular subgraph informs

a maintenance manager or maintainer that the proposed change impacts the input modide and

output module of the program AUTOl because entities p r l and pr5 describe these modules and are

both in extracted the subgraph.

The next example of a /3 slice shown in figure 8.28 demonstrates how the copy propagation

dependency can be used to consider indirect impacts at the documentation level.

201

Q seg 11 Q

tnl003

Consists of

Has Segment

Co Occurs

Has Theme Vertex

Has Theme

Composite Entity Type

Segment Entity Type

el 2

seg 9

Figure 8.27: Case Study /3C/G(V, £)

202

8.5.4 A C h a n g e Proposa l

This example of a proposed change only contains the 'Business Summary' and the 'Detailed Business

Requirements' as these are the only sections of the change proposal which are used for constructing

a theme bag.

1. Proposal Identification Information.

FecLsibility No: 1, 'Revise Region Code' October 91

2. Business Summary.

The proposal is to change the style of the region code data item.

3. Detailed Business Requirements.

The proposal is to incorporate the revised region code onto the system. The code will changed

from numeric to alphanumeric.

4. Service Levels.

This proposal will help to ensure that existing service level agreements are met on a more

regular basis.

5. T i m e scales.

The project can be implemented with very little effort if the implementation coincides with

other similar database changes.

6. Assumptions and Constraints.

The region code is the only data item to be considered.

8.5.5 P r o p o s a l Ana lys i s

The proposal can be decomposed into the following CAs and COs :

C A s : incorporate

203

C O s : region code

These CAs and COs can be simply related in the following way :

1. incorporate region code

The following table 8.2 represents a fragment of a catalogue of themes. In this particular case

study only one theme descriptor is used since the business system data names are the same as the

software system names of data.

theme code theme description

th34
th35
th36
th37
th38
th39
th40

describes-the-processing-of-recyc-rec-movements-file
describes-the-processing-of-region-closure-indicators
describes-the-processing-of-region-code
describes-the-processing-of-region-of-ori gin-branch
describes-the-processing-of-reports-data-block
describes-the-processing-of-residt-indicator
describes-the-processing-of-scottish-pre-cutover

Table 8.2; Case Study A Theme Catalogue

The CAs, one in this case i.e., 'incorporate' is mapped onto the 'describes-the-processing' part of

the theme and the COs are mapped onto the '-of-region-code' part of the theme. By identifying

the themes within the system a theme bag can be constructed.

TB = < th36 y

8.5.6 S l ic ing and Resu l t s

The theme th36 represents a change affecting the "processing of region code". The theme th36 co-

occurs in several segment entities and has a ripple effect on another process description throiigh a

copy propagation dependency. The other theme affected is th26 which "describes the processing of

branch code". By traversing up the graph it is possible to conclude that another process description

is affected by the change i.e., process description pr3.

204

This particular subgraph shown in figure 8.28 informs a maintenance mananager or maintainer

that process description 2 and process description 3 will be impacted by the proposed change.

The copy propagation dependency between theme vertex tnlO and tn780 indicates why the process

description 3 is impacted.

Considering the /3 slice shown in figure 8.28, if the theme bag was increased from -< th36 >- to

-< th36,th26,th26 X the resultant graph remains exactly the same. However the theme bags B£

and BV actually increase in size to reflect the multiple impacts on the entities in the P slice. For

example the bags will be the same as the sets representing the graph except that the directed path

from 11 to th26 wil l be in the bag BV three times and the entities on this path will occur in the

bag BV three times. This is because the theme bag directly impacts theme vertex tn780 twice and

i t is also impacted indirectly from theme vertex tnlO. Therefore to estimate the volume of work

involved in processing the change -< th36,th26,th26 y i t would incorrect to base the estimation on

the graph. Instead the bags BE and BV should be used.

Step 7: 7 S l ic ing

The jCIGiV, E) is shown in figure 8.29. The same theme bag is used, that is th36. The 7C/G(V, S)

produced contains the same features as the previous graph except that the chance of ripple propa

gation is included. This probability is based on simulated previous ripple effects. The graph shown

in figure 8.23 shows two weighted dependencies 25% and 80%. When the 7 slice is applied to the

RPG{V,£) with CV equal to 80% and HV equal to 100%, then only weighted edges within this

range of probabilities appear in the resultant 7 CIG{V, S) presented in figure 8.29.

The weighted edge shows there is an 80% chance that i f segment 4 is changed then segment 1 will

be affected. In this case i t shows that i t is very likely that the proposed change to segment 4 will

propagate a change to segment 1. In terms of the case study this extracted subgraph suggests that

both modules AUTOla and AUTOlb will be impacted.

205

5
th36

Oil

O ^1

Qbi

KEY:

Consists of

Has Segment

Has Theme Vertex

Has Theme

Copy Propagation

Co-occurs

tn7S0

th36

Figure 8.28: Case Study A further (iCIG{V,£)

206

Oil

6 ^1

Obi

KEY:

— h —

0 .

Consists of

Has Segment

Has Theme Vertex

Has Theme

Copy Propagation

Co-occurs

Weighted Dependency

O tn780

Figure 8.29: Case Study iCIG{V,£)

207

step 8: 6 Slicing

The 6CIG{V,£) is shown in figure 8.30. The CIG{V,£) produced contains the same features as

the previous graph except that the chance of ripple propagation is included based on simulated

expert judgement about ripple effects. When the S slice is applied to the RPG{V,£) with CV

equal to 85% and TiV equal to 100%, then only weighted edges within this range of probabilities

appear in the resultant S CIG{V,£), which is presented in figure 8.30. The graph indicates that

there is 85% chance of the ripple effect being propagated from segment entity 4 to segment 1. This

probability has been estimated by maintainers who have previously maintained the system.

In terms of the case study the 6 CIG{V,£) suggests that module AUTOla and AUTOlb will be

impacted and i f module AUTOla is changed then there is 85% chance that module AUTOlb will

also be impacted as a result of this change.

Step 9: e Slicing

The eC/G(V, £) is shown in figure 8.31. The extra key for the eCIG{V, £) is shown in figure 8.32.

This graph shows the actual source code entities which are impacted. This particular subgraph

shown in figure 8.31 informs a maintenance manager or maintainer that process description 2 and

process description 3 wil l be impacted by the proposed change. The copy propagation dependency

between theme vertex tnlO and tn780 indicates the description of an assignment of data to a data

item. This is the reason why the process description 3 is impacted.

One of the most important features of this particidar type of CIG{V,£) is that i t shows the type

of source code entities which are described in the impacted segment entities.

For example the process description 2 (pr2) shown in 8.31 is impacted because segment enti

ties 0,9,13 and 4 are all impacted by theme th36 (the processing of region code). The segment

entities 0,9,13 and 4 all describe part of the module AUTOla. The CIG{V,£) also informs the

maintenance manager or maintainer that the documentation describing this module also contains

descriptions of source code entities related the module AUTOla. The dependencies shown in 8.31

indicate these related source code entities. The meaning of the dependencies a to e and the entities

1,2,3,5,6,7,8,9,10 etc are shown in key associated with this graph in figure 8.31. The SAG{V,£)

208

0^1

6 ^ 1

Obi

K E Y :

• •

0 .

Consists of

Has Segment

Has Theme Vertex

Ha,s Theme

Copy Propagation

Co-occurs

Expert Judgement

seg 13

O tn780

Figure 8.30: Case Study SCIG{V,S)

209

entities associated w i t h AUTO l a i n f o r m a maintenance manager that i f process description 2 of

Chapter 1 is changed then the C O B O L module A U T O l a w i l l need to be changed and tested w i t h

module tests 1,3,4 and the system tests End of Day 1 and 2. The dependencies marked d and e

also indicate the data files and map bases which may be implicated by the change. As segment

ent i ty 1 of process description three is impacted therefore module A U T O l b is also impacted wi th

its associated source code entities 1,4,5 and 6.

The combinat ion of al l of the results of the slicing techniques together provides many viewpoints

of the interconnect ivi ty of the documentation in one graph slice. This is shown in figure 8.33.

8.5.7 Discussion

I n this case study each of the nine steps of the RPG{V,£) construction and analysis have been

demonstrated on a real documentat ion subsystem f r o m the financial services sector.

I t has been shown how the themes can be detected w i t h i n a change proposal and then formally

traced to operational software by analysing documentation interconnectivity and content. The use

o f probabil i t ies of r ipple effects based on both expert judgement and previous ripple effects, can

help a manager focus on a part icular document ent i ty or module which has a high prol)abili ty of a

r ipple effect.

The HIG(V,S) Crystal l isat ion technique was very simple to apply to this case study once the

context sketch had been drawn. The TIG{V,S) Crystall isation technique relies on human inter

pre ta t ion of the meaning of a document entity. This enables the precise extraction of themes. The

WIG{V,S) Parameterisation technique was applied using simulated data.

The SAG{V, £) Anno ta t i on technique relies on human interpretat ion of the meaning of a document

ent i ty. Therefore, l ike the TIG{V,S) Crystal l isat ion technique, i t enables the precise extraction

of the description of source entities i n document entities. The recording of al l of the features

mentioned in the RPG{V,£) seems an in tu i t ive ly at tract ive th ing to do. However in practice the

content analysis processes must be supported by software tools, i f B.PG{V,S) models are to be

constructed f o r large systems.

One notable feature of the C / G (V , £) is the size of the graphs produced even for a small case study.

210

Oil

6

K E Y :

m

Consists of

Has Segment

Has Theme Vertex

Has Theme

Copy Propagation

Co-occurs

Describes part of module

O tn780

th26

A U T O l b
A U T O l a

Figure 8.31: Case Study eCIG{V,£)

211

K E Y :

SAG Dependencies

a module type

b module test file

c system test required

d module data file

e module map base

SAG Entit ies :

1 Cobol 6 End of Day 2

2 Module test 1 7 Recycled Reconciliation

3 Module test 3 Movements File

4 Module test 4 8 A u d i t Tapes File

5 End of Day 1 9 Recycled Reconciliation

Movements File Map Base

10 A u d i t Tapes File Map Base

Figure 8.32: Case Study eCIG{V,£) Key

212

K E Y :
lb

-l-l-

Consists of

Has Segment

Has Theme Vertex

Has Theme

Copy Propagation

Co-occurs

0 ^ 6 «>
v l

K E Y :

m

-22-

Describes part of module

Composite Type Dependency

Segment Type Dependency

Weighted Dependency

Expert .Judegment

O tn780

6
th26

autolb autOla

1 2 3 5 6 7 9 10 1 4 5 6

Figure 8.33: CIG{V,S) Splicing

213

This par t icular case study is actually l inked to the rest of the core banking system through its input

and ou tpu t files, therefore a slice through the whole system could be very large indeed.

8.5.8 Interesting Additional Features

Dur ing this case study a number of other labels and dependencies were recorded in the model.

These were the fo l lowing :

• Segment Describes Part o f System Dependency

This dependency is associated w i t h an edge of the f o r m

(Segment Enti ty,System Entity)

• System E n t i t y Supplies Data To Dependency

This dependency is associated w i t h an edge of the f o r m

^System Entity,System Entity)

• System E n t i t y Receives Data f r o m Dependency

This dependency is associated w i t h an edge of the f o r m

(System Enti ty,System Entity)

• S k i l l Base E n t i t y Label

- W h o is responsible for the system.

- W h o has maintained the system.

- How much experience does a part icular person have.

A n example of this graph is shown figure 8.34. By recording the Segment Describes Part of

System dependency i t is possible t o iden t i fy al l system names which may be implicated by the

change proposal. By recording the System S u p p l i e s Data To and System Receives Data from

dependencies i t is possible to investigate why part icular system interfaces are impacted. The faci l i ty

to add a label to any vertex w i t h i n a part icidar I{.PG{V,S), describing who is responsible for

the par t icular work product is useful for the fol lowing reasons. I t allows any key staff who are

214

responsible for any system to be identif ied at the beginning of a project . I t allows the forward

p lanning of project meetings between key personnel.

F ina l ly by recording who has maintained the system(s) impacted and by recording the experience

these personnel have, i t is possible to allocate maintainers w i t h experience of particular systems to

projects which affect these systems. This should reduce the cost of understanding existing systems.

Another interesting feature of the RPG{V,£) is the fac i l i ty to detect impl ic i t dependencies in

documentat ion, that is dependencies which are not based on the thematic structure of the docu

menta t ion . For example, once a CIG{V, S) has been extracted f r o m an RPG{V, £), the CIG{V, €)

can be fu r the r analysed i n the fo l lowing way :

1. Examine each segment ent i ty i n the CIG{V,£).

2. Check i f any segment ent i ty has a weighted edge to another segment entity. The stop vertex

of this weighted edge may be either i n the CIG{V,S) or i n part of the RPG{V,S) which

is not impacted using the slicing techniques. Add each weighted edge to a set of impacted

i m p l i c i t edges.

3. Delete al l edges f r o m the impacted impl ic i t edges set which have thematic dependencies

jo in ing the theme vertices associated w i t h each start and stop vertex of edges in the impacted

i m p l i c i t edges set.

The remaining members of the impacted impl ic i t edges set represent the impl ic i t dependencies

based on previous changes.

8.6 Summary

I n this chapter the RPG{V,£) construction and analysis techniques ha.ve been demonstrated using

two examples of documentation structure and a major case study. I t has been demonstrated how

the RPG{V,S) can be used at the change proposal stage of the maintenance process by extracting

theme bags f r o m change proposals. I t has also be shown how the themes w i t h i n the change proposal

can be fo rma l ly traced to operational software constructs. The techniques for constructing the

215

K E Y :

Has Theme Vertex

Module Data File

System Receives Da ta

System Supplies Da ta

Segment Describes Part of system

Copy Propagation

• *• Segment Describes Part of Module

System Interface

A u d i t Tapes
Ext rac t ion

Ski l l Base Label

O
Computer Center
Report Generation

A U T O l c O

o
Computer Center

Report Lines File

seg
1800

>• t n l 2 0 0

seg
2000

Computer Center
Report Generation

O Skill Base Label

O
A u d i t Tapes
Ext rac t ion

tn3000

^ AUT03a

System Interface

0
Computer Center

Report Lines File

Figure 8.34: A System Interconnection Graph (S I G (V , ^))

216

RPG{V,£) have been shown before demonstrating how the RPG{V,S) can be sliced to provide

impact i n f o r m a t i o n . The table 8.3 shows which particular thematic slices can be used to provide

impact i n f o r m a t i o n to help a maintenance manager or maintainer make the decisions identified in

Chapter 2.

N O . D E C I S I O N T E C H N I Q U E S

No. 1 W h a t are the cost benefits?
No. 2 W h a t are the t ime scales required?

No. 3 W h a t are the cost benefits?

No. 4 W h a t are the inputs, outputs , processing
processing and data?

a , /3 ,'y ,6 ,e

No. 5 W h a t is the implementat ion strategy? 6 €

No. 6 W h a t is the testing strategy? €

No. 7 W h a t are the cost and benefits?
No. 8 How can the project be categorised?
No. 9 W h a t is the p r io r i ty for the project?

No. 10 Which are the impacted system features?

No. 11 W h a t are the estimates now?

No. 12 W h i c h technical documentation needs to be
writ ten/amended? a , /? , 7 , (5 , e

No. 13 Which test data is required? e

No. 14 W h a t is the source code impacted? 6

No. 15 W h a t caused a part icular defect?

No. 16 W h a t caused a part icular defect?

Table 8.3: Practical Appl ica t ion of the Graph Slices

A summary of the techniques demonstrated is presented is shown in tal)le 8.4.

Steps Technique Example 1 Example 2 Case Study

Step 1 HIG{V,£) Crystal l isat ion - -

Step 2 TIG{V,£) Crystal l isat ion - -

Step 2 Theme Catalogue Construction - -

Step 3 WIG{V, €) Parameterisation -
Step 4 SAG{V,S) Annota t ion -

Step 5 TB Construct ion - V
Step 5 a Slice
Step 6 /3 Slice -

Step 7 7 Slice -

Step 8 S Slice -

Step 9 e Slice -

Table 8.4: Techniques Demonstrated

217

The table represents the different steps which were applied to the examples and case study. The

tests were designed to show the fo l lowing :

1. The use of the four specialized subgraphs of the RPG{V, S).

2. The techniques for slicing documentation to produce impact in format ion .

3. The use of impact in fo rma t ion to help make decisions w i t h i n the maintenance process.

I n the next Chapter the results and evidence presented in this Chapter is used to evaluate the

RPG{V,S), i ts associated analysis techniques, and in particular the value of the informat ion pro

duced by the analysis techniques i n comparison w i t h other impact analysis techniques.

218

Chapter 9

Evaluation of the Method

9.1 Introduction

I n this chapter the method of this thesis is compared w i t h other methods for the detection of the

ripple effect of a change. The method is evaluated f r o m the point of view of its feasibility, the

extent to which the impact in fo rmat ion can be trusted and in particular, how early in a project

this impact i n f o r m a t i o n can be produced.

9.2 Evaluation Against the Criteria for Success

The evaluation of impact analysis is very prolilematic because i t involves conducting controlled

experiments to determine the precision of the method. Precision measures the size of the estimated

impact of change. This can be used to determine the value of a method compared wi th another

competing method , provided tha t they are used under the same experimental conditions. The

conduction of an experiment would involve collecting data f r o m many projects of a similar profile.

There is also another problem, which consists of ident i fy ing that which is relevant to a change, in

addi t ion to tha t which is actually impacted. For example a component of a system might need

219

to be understood when making a change, yet i t may not require actually changing. Depending on

whether the maintenance programmer is fami l ia r w i t h a system this notion of relevance becomes

subjective.

Ideally a large number of users should t r y to map change proposals into change proposal bags.

Proposals affect ing many parts of the system should be produced. This would mean producing a

model of a very large system and would be impract ical as an experiment w i t h i n the time allocated

for a Ph .D projec t . However the use of small subsystems as sources of data woidd inadvertently

suggest specific themes to be used. This would probably bias any metrics for measuring the precision

and relevance of the predict ion.

As a consequence of the d i f f icu l ty of f inding realistic test conditions i t was fel t that a.ny attempt to

deduce experimental results would be too subjective to be of value in assessing the validity of this

par t icular impact analysis model and analysis techniques.

The cr i ter ia for the success of the investigation have been achieved and are as follows :

1. The product ion of an interconnection graph usable by management.

2. The ab i l i ty to trace user requirements to operational software.

3. The product ion of a method for bui ld ing a.nd maintaining the graph.

4. The early provision of impact in fo rmat ion using the graph slicing methods.

5. The evaluation of the in fo rmat ion produced by the model w i t h respect to other impact analysis

methods.

I n examples of the method application i t was shown how a bag of themes could be extracted f rom

a change proposal i n order to analyse the graph. I f a.n RPG{V,S) has been constructed f rom

i n f o r m a t i o n drawn f r o m a number of projects and also i f the change proposal affects this part

of the system, then i t w i l l be possible to trace the change proposal to the operational software.

Simple methods have been developed for constructing the graph namely the graph crystallisation,

parameterisation and annotat ion. As i t is possible to trace the change proposal to the operational

software and also the graph contains an abstraction of the interconnectivity of the source code,

then the early provision of impact in format ion using the graph is possible, rather than having to

wai t u n t i l the coding phase for the detection of the ripi)le effect.

220

Instead of an experiment, an openly subjective argument is offered for the use of thematic structure,

the use of release in fo rma t ion and expert judgement. This can be discussed under the fol lowing

headings :

• Theory of structure: The model provides an explanation of the organisation of the documentation

of a system. I t is not just a simple hierarchy but rather i t explains the role of each document com

ponent using the segment types and composite enti ty types. These features provide a disposition of

the document components which provide descriptions of the software. This model of documenta

t i o n s t ructure provides a greater understanding of the arrangement and purpose of documentation

than does the existing book, chapter and section paradigm. This is a practical paradigm which is

of ten used i n indus t ry [27].

• Use of thematic structure: The thematic structure provides a mapping between change proposals

and operat ional software. The thematic structure is a more precise method of receding the meaning

of document segment entities than using keywords. Many document components can be impacted,

some of which w i l l need understanding but not maintaining where as other components wi l l need

bo th .

• Use of weighted graph edges: The use o f the weighted edges on the graph provides informat ion

w i t h which the maintainer may wish to classify impacted document entities and source code modules

according to the chance of being impacted. For example i f the ma.intainer discovers that one

document en t i ty w i l l propagate a r ipple effect to another and this would imply the maintenance

and testing of another source code module. The chance of this happening can be examined. I f

a module has a 1% chance of being impacted, then this does not imp ly that the modide is not

relevant to a proposed maintenance project . I t means that based on past experience this particidar

module probably does not require main ta in ing .

• Use of expert judgement: The recording of expert judgement is useful for the purpose of formally

carrying fo rward expertise concerning interconnectivity and ripple propagation, f r o m one project

to another. I t is useful to analyse the parametrised edges containing expert judgement probabilities

and the reasons and assumptions behind these probabilities. This is because i t tells the maintainer

the actual chance of the r ipple effect occurring rather than just providing the worst case estimate

of the r ipple effect, which is of ten much larger than the actual ripple effect. This may mean in

some cases tha t certain maintenance projects would be rejected on technical grounds. Hence the

221

value of using probabi l i ty is that i t allows maintainers to see that a strategic project w i t h a large

r ipple effect which would normal ly be rejected, could be actually cost effective. Expert judgement

data is not a substitute fo r release in fo rma t ion but i t is useful to use when there is a only small

amount release in fo rma t ion available or none at a l l .

• Intuitive Evidence: Most software processes data and most software shares data. I t is this sharing

and processing of data which causes the ripple effect. Documentation describes software in terms of

what the software does and how the software achieves this. Therefore i f a model of documentation

is to be used to reason about the r ipple effect, then such a model must capture the description of

the sharing and processing of data.

9.3 Strengths and Weaknesses

The fo l lowing strengths of the RPG{V,£) approach are recognised.

The method is well founded in graph theory, bag theory and set theory. Also unlike other impact

analysis methods, i t is sensitive to previous ripple effects. This is achieved by recording the release

in fo rma t ion and expert judgement.

I t is easy to extract themes incrementally when performing maintenance because the documentation

must be understood i n order to perform maintenance tasks anyway.

The model can be used at an earlier stage than most other impact analysis methods because

the concept of a theme provides a good interface or protocol between change proposal and the

RPG{V,S) model .

The precision of the graph slicing methods, also the authenticity of the answers produced, are

dependent on how well the themes are extracted f r o m the documentation and then added to the

RPG{V,€).

This approach to impact analysis at the documentation level is based on source code principles,

unlike exist ing methods for documentation analysis.

The RPG{V,€) can provide the maintainer w i t h a wealth of valuable in fo rmat ion . For example i t

222

can indicate the inputs , outputs processing and interfaces impacted. The model also indicates the

modules which support these features. The model indicates direct impacts and indirect impacts at

the documentat ion level and the probabili t ies of these impacts. The model can also indicate the

impacted ski l l base. No other document model provides this in fo rmat ion . Other document models

can iden t i fy impacted document based on keywords common to al l documents.

The model provides the maintainer w i t h explanations and just if icat ions for the advice given about

r ipple effects. No other document model provides this to date.

By analysing the impacted weighted edges i t is possible to detect impl ic i t dependencies in the

documentat ion.

The en t i ty fac tor ing provides a sound basis for interpret ing results because change proposals can

be compared i n terms of the number of segment entities impacted. This is because the same unit

of analysis is used to describe the change for different cha,nge proposals.

B y using this RPG(V,£) model i t is possible to ident i fy the software system structure affected. I f

a conceptual model is examined at an early stage, i t w i l l only indicate features of a system at the

domain level and not the architectural structure of a system.

The method is a feasible approach since i t feeds back in format ion produced as a by-product of

software maintenance. I t does not need a new development paradigm to support the model.

The fo l lowing weaknesses of the RPG{V, £) approach are recognised.

A maintainer presented w i t h a large amount of documentation may find i t d i f f icul t to obtain an

overview o f the architecture of documentat ion even when i t is s tructured like a program. Therefore

an abstract HIG{V,E) needs to be drawn first. This is required for orientation.

The model l ing of documentat ion f r o m the perspective of description of data flow wi th in docu

menta t ion , can be problematic since algorithms are only contained in low levels of abstraction in

documentat ion. The extract ion of thematic properties f r o m documentation can lead to property

d i s to r t ion , which is the misunderstanding of the actual meaning of the documentation. Theme

detection is current ly human oriented and open to interpreta t ion. Themes are not conducive to

precise def in i t ion . This makes i t d i f f i cu l t for an automated tool to extract the meaning of a docu-

223

ment segment. Another problem associated w i t h understanding documentation is the reqiurement

of domain knowledge which may not be available to a maintainer constructing the graph model.

Theme extract ion can be very tedious to do manually. I f the graph is bu i l t up incrementally during

maintenance then the model w i l l only describe the parts of the system which have previously been

mainta ined.

Documenta t ion does not always reflect the semantics of the source code. Therefore basing a model

of source code interconnect ivi ty on the in fo rmat ion derived f r o m documentation could lead to false

conclusions about the effects of hypothesized cha.nges.

The use of previous r ipple effect in fo rma t ion has been shown to be useful for understanding potential

r ipple propagat ion. However different types of maintenance work can make different types of

impact . For example dur ing the l i fe t ime of a system i t may undergo corrective maintenance when

i t is f i rs t released bu t may later undergo perfective maintenance. The model does not take this

in to account and therefore false conclusions could be reached concerning the likelihood of a ripple

effect. Perhaps the reasons for r ipple effects should be recorded as part of the documentation.

There are problems i n using expert judgement to understand the potent ia l ripple effect of a project.

For example, expert judgements are not equivalent to technical calculations based on laws or

the avai labi l i ty of extensive data, therefore they may be incorrect. Judgements i n the fo rm of

probabil i t ies represent a snapshot at a point i n t ime of a given state of knowledge of a particular

expert . Therefore they may not necessarily be applicable to fu ture maintenance projects.

The probabil i t ies of r ipple effects must be interpreted w i t h care. For example each time a module

propagates a r ipple effect to another module i t is possil)le that the structure and content of the

module may change. A drastic change in structure and content of one module may alter the

probabi l i ty of r ipple propagation to other modules and document entities. This is why i t is very

impor t an t to update the expert judgement weightings in order to ensure that misinterpretations of

release i n f o r m a t i o n are minimized.

The l i m i t a t i o n of using graph theory to model the content and interconnectivity of documentation

is tha t the resultant models can be very large indeed.

There are a number of issues which have arisen during this research work. For example the interpre-

224

tation of the results of graph analysis can be particularly difficult when using the slicing methods

based on probabilities of ripple effects. There is the question of at which level of probability

maintenance managers should focus.

A balance has to be struck between the need for meaningful representation, partial detection and

ease of use whilst at the same time considering the feasibility of the method. A method of coding

segments which is based on formal semantics provides a meaningful representation but suffers

in other respects. The use of keywords to characterise segments provides ease of use but lacks

meaningful representation. It is argued that the use of the theme as a method of capturing the

role of a document segment entity provides sufficient information to achieve an understanding of

the ripple effect and strikes the balance required. A ripple effect analysis method which is based

on describing segment entity contents using themes and describing change proposals as a bag of

themes, has a better capability of matching the change proposal to the documentation than one

which is based on keywords.

9.4 Comparison with Other Methods

The extraction of the themes from change proposals and the recording of themes in documentation

provide a mapping between change proposals and operational software. This is not possible with

existing ripple effect methods. The existing syntactic, semantic and statistical methods are aimed

at source code and do not provide ripple effect analysis of documentation. The method developed in

this work is the only method which captures expert judgement explicitly and then formally carries

i t over to future maintenance projects. The method developed is the only method which is based

on a model of documentation.

I t is argued that the thematic slicing of RPG{V,S) models can be conducted at phase 1 state 4 of

the maintenance model presented in Chapter 2, when decision 4 needs to be made. The teleological

approach described in Section 3.4.4, can also be used at this same phase however i t does not indicate

the documentation to be maintained and neither does i t indica,te the proljaljle impact of a change

but only the worst case. I t is thought that both B.PG{V,£) and the teleological approach can be

complementary.

225

I f ripple effect methods are not used at all, then large amounts of contingency money will be tied

up with projects. This may imply that certain projects which have good business cases are not ever

committed. On the other hand maintenance projects often fail to meet deadlines and cost targets,

because of the under-estimated resources required for dealing with the ripple effects of a change.

9.5 Interesting Observations

An interesting feature of the graph model developed is that i t can he analysed with respect to

segment entities. Some of these are dependent upon each other because themes co-occur in these

segments or, the segments describe copy propagations. I t is possible to observe segment entities

which are independent of other segment entities. These segments could 1)e called solitary segment

entities. I t may be that such entities are actually connected, however the model does not reflect

this. Such segment entities could cause unexpected linkages.

One observation made about the size of slice trajectories is that they can be very large for any

software systems bigger than toy examples. As each segment has a particular type then it may be

possible to analyse the slice in terms of the type of segments which i t contains. This is useful as some

segments wil l describe data which is being output. Such segments can be removed from the slice

as these segments do not describe ripple effects. Only segments describing assignments contribute

to the ripple effect. For example the description of a subroutine, procedure or module containing

output statements such as COBOL WRITE statements does not cause ripple effects. This idea

of analysing slices originates from the doctoral thesis of Gallagher [33] describing decompositional

slicing where source code slices are reduced to contain only assignment statements, that is, they

are output restricted. This concept could be applied to the B.PG{V,£) slices to make the slices

smaller and more manageable.

Another feature of the RPG{V, £) which was observed, is that after the graph has been built up it is

possible to analyse the interconnectivity of the entire system rather than just following a particular

chain of graph edges.

Another interesting feature of the RPG(V,o) not directly related to ripple effect analysis is that

it may give rise to the production of a much better inventory of technical documentation than

226

documentation systems which are simply based on keyword interconnections.

Using the RPG{V, S) with large amounts of release information fed back into the RPG{V, £) edges

would enable the maintenance manager to determine which are the fundamental themes in the

documentation. A fundamental theme is a theme which plays a critical role in a documentation

system. For example i t would be possible to observe which themes in a change proposal cause

excessive amounts of ripple effects.

9.6 Summary

In this chapter the information which can be derived from the analysis of the ripple propagation

graph is discussed with respect to its value and utility. The strengths and weaknesses of the ripple

propagation and the graph analysis methods presented are also discussed. Finally the method

presented is compared with other methods for the detection of the ripple effect of a change.

227

Chapter 10

Conclusions

10.1 The Main Achievements of the Research

The main achievement and result of this research is a ripple effect detection method. The ripple

effect method developed in this thesis consists of analysing a new type of interconnection graph,

called a Ripple Propagation Graph. The analysis techniques for reasoning and understanding

interconnections in documentation are collectively called Thematic Slicing and are based on

abstracting subgraphs from the Ripple Propagation Graph. These subgraphs are called Change

Implication Graphs and represent the impact of a proposed change.

10.2 General Conclusions of the Research

There are a number of conclusions which can be inferred from the results of this investigation

presented in this thesis :

• Impact analysis techniques provide information which is necessary to make decisions regarding

the scope, priority, costs and testing involved in maintenance projects.

228

• Impact analysis techniques can be classified according to the stage in which the techniques

can be used in the maintenance process and existing impact analysis techniques are most

useful at a later stage in the maintenance process after important decisions regarding the

scope, priority, costs and testing involved in maintenance projects have been made.

• The subject of impact analysis has been advanced because the graph model developed in this

thesis can guide maintenance managers and programmers in tracing the ripple effects of a

change at an earlier stage in the maintenance process than existing methods allow.

• A thematic graph slicing method for analysing documentation interconnections has been

produced. The thematic graph slicing method is al)le to trace the contents of change proposals

to operational software by analysing the thematic structiire of documentation. This method

of slicing has demonstrated that higher level objects than source code can be sliced.

• The hierarchical interconnection graph allows maintenance managers or maintainers to anal

yse the decompositional structure of documentation without navigating through large amounts

of interconnected documentation.

• The thematic interconnection graph allows the maJntenance programmer to determine the

role a particular document entity plays in a documentation system and enables the searching

for possible impacts of proposed changes.

• The source attribiites graph allows the maintainer to determine source code entities described

by particular documentation entity without having to read the document entity itself.

• The weighted interconnection graph models the previous dynamic l)ehavionr of the system

at the documentation level. This allows the maintainer to analyse the probable source code

and documentation ripple effects of a proposed change based on change history and expert

judgement concerning potential ripple effects. The weighted interconnection graph also allows

the resultant thematic slices to be reduced in size. This can be achieved l)y eliminating

weighted edges which are not with a specified range of probabilities.

• The weighted interconnection graph also allows the detection of implicit and unforseen de

pendencies.

• The use of bags for storing impacted graph edges and graph vertices enables the detection of

multiple impacts. The provides a more precise a.nalysis of the impact of a proposed change

than simply examining the change implication graphs.

229

10.3 Relationship with the Wider Field

The work presented in this thesis has links with other software engineering topics.

The RPG{V,S) may help maintenance managers in improving the management of projects, since

more impact information wil l be known at the beginning of a project. This information will also

have some bearing on setting project milestones, cost estimation and scheduling.

I t may be possible to compare the thematic structure with the actual structure of the source code

data flow to determine whether the documentation is consistent with the source code. It may also

be possible to determine which parts of the documentation may need restructuring, by considering

the thematic interconnections in those areas of documentation which change frequently.

The RPG{V,£) wi l l facilitate the production of new kinds of hypotheses concerning structural

features of documentation and may provide clarification of concepts such as 'documentation sta

bi l i ty ' , 'documentation maintainability' and 'documentation change complexity'. The analysis of

the graph model wi l l also allow the production of impact analysis metrics.

The information produced by the RPG{V,£) analysis methods will help a configuration manager

to ensure that changes are incorporated in a controlled way, providing an improved understanding

of the work involved in processing a system proposal.

10.4 Suggestions for Future Research

10.4.1 I m p r o v e d R P G Impac t Analys i s

RPG{V, £) slices may contain much information for analysis by the maintainer. Hence i t would

seem worthwhile investigating how a slice could l)e viewed in a more al)stract way. It would be a

very useful aid to the maintainer, in program understanding, to present the graph model developed

in this work. However graph models of real world systems can be very large, so a practical method

of presenting the abstract structure of the model would be useful. A more efficient method of coding

the segments of the HIG{V, £) with themes, needs to be investigated. In particular a method which

230

lends itself to automation would be beneficial.

10.4.2 C l u s t e r i n g Proposed Changes using Impact Informat ion

I t would be useful to develop a method for clustering together groups of change proposals which

impact similar areas of a system to form software releases. It would also be most useful to extend

such a clustering method to plan software releases which are of particular sizes.

10.4.3 A Uni f i ed I m p a c t Analys i s Mode l

Several models for documentation have been developed, for example [93, 17, 48]. Each of these

models argues a strong case for the value of the model. However nobody has yet investigated the

value of a unified model containing all of these models in one single model. The results of the

investigation could also be added to the RPG{V,S) model.

10.4.4 I m p a c t Ana lys i s on R e a l T i m e Software Systems

Real time software systems design has not l)een considered from the perspective of ripple effect

analysis. Real time software systems are systems where the correct functioning of the system

depends on both the results produced by the system and the time at which the results are produced.

Real time software systems are frequently very large. Hence coping with change and complexity

during software maintenance is problematic for two main reasons :

1. Interfaces to environments are complex, asynchronous, highly parallel and distributed, all of

which makes detection of the ripple effect difficult.

2. Performance of other related software sub-systems can be affected by minor ripple effects in

the source code. Often these ripple effects are unforeseen at an early stage of a maintenance

project.

231

10.4.5 I m p a c t Ana lys i s on G r a p h i c a l Notations

Another possible direction for future research is the maintenance of graphical notations, which

have been produced by software engineering tools. There are no methods for impact analysis on

graphical notations.

10.4.6 A Process M o d e l for Change Analys i s

The model of the change analysis process developed in this thesis served as a means to rank existing

impact analysis methods according to when they may be applied in the process. However it would

very useful to develop the model into a process model to facilitate the improvement of the change

analysis process.

For example one important use of the process model would be the identification of independent

tasks and parallel maintenance processes. This would reduce the lead time between a request for

change and the delivery of the new system.

10.5 Summary

The contribution of this work is a method for the detection of the ripple effect of a change using

a model of documentation interconnectivity. This chapter has presented the main achievements of

the research, the general conclusions, the relationship with the wider field and some suggestions

for future research.

232

Appendix A

Glossary of Nota t ion

Author's Notation and Abbreviations.

Words in boldface may be found in Appendix B, the Glossary of Terminology.

A Denotes is defined to be.

B£ Denotes a bag of impacted entities.

BV Denotes a bag of impacted vertices.

C A Denotes a Conceptual Action.

CIG{V,£) Denotes a Change Implication Graph.

C I R Denotes a Change Implication Report.

C O Denotes a Conceptual Object.

(V , £') Denotes an extracted subgraph from an RPG{V, £)

HIG{V,£) Denotes a Hierarchical Interconnection Graph.

SAG{V,£) Denotes a Source Attributes Graph.

233

T / G (V , £) Denotes a Thematic Interconnection Graph.

TB Denotes a Theme Bag.

WIG{V,£) Denotes a Weighted Interconnection Graph.

RPG{V,£) Denotes a Ripple Propagation Graph.

234

Appendix B

Glossary of Terminology

This glossary defines many technical terms as they are used in the text. Whenever understanding

can benefit f rom referring to other terms in the glossary, the corresponding glossary entries are

noted in boldface. For simplicity, formal definitions are avoided in favour of informal explanations.

Annotated Graph Slicing

A method of slicing graph theory models of documentation based on analysing the

thematic structure within a document hierarchy. In particular with respect to indirect

impacts. In addition the source code entities described by impacted segment entities

is also included in the resultant slice.

Augmented G r a p h Slicing

A method of slicing graph theory models of documentation based on analysing the

thematic structure within a document hierarchy. In particular with respect to indirect

impacts. In addition the probability of ripple effects between segment entities, based

on previous ripple effects, and expert judgements is included in the resultant slice.

Change Implication Graph

235

A graph describing the impact of a change. The graph describing the impact of a

proposal change is a subgraph of a Ripple Propagation Graph.

Change Implication Report

A report describing a change implication graph.

Change Proposal

A form which triggers the process of maintenance. The form contains a recpiest for

software maintenance.

Complete Thematic Slicing

A method of slicing graph theory models of documentation based on analysing the

thematic structure within a document hierarchy. In particular with respect to indirect

impacts.

Composite Ent i ty

Any entity in a document hierarchy which is not a segment entity. A composite entity

is composed of other entities.

Composite Ent i ty Factoring

The decomposition of composite entities into segment entities.

Composite Ent i ty Slice

A subgraph containing all the vertices and edges between a segment entity and the

top of a Hierarchical Interconnection Graph.

236

Conceptual Action

The description of a process acting on a data item.

Conceptual Object

The description of a data item.

Direct Edge Parameterisation

The addition of weights to edges based on previous ripple effects.

Direct Impact

An entity affected by a change proposal. The entity being explicitly mentioned in change

proposal.

Documentation Stability

The analysis potential ripple effect propagated to all material that serves primarily

to describe a computer program.

Edge

An ordered pair of vertices denoting a dependency between the start vertex and stop

vertex.

Edge Parameterisation

The addition of weights to edges.

Enti ty

237

An entity is anything which can be named or denoted within a document.

Ent i ty Attributes

Details about the characteristics of an entity.

Ent i ty Type

The class or group of entities in which an entity belongs.

Graph Annotation

Firstly, the process of analysing documentation with respect to the source code entities

described with the documentation and the construction of the corresponding Source

Attributes Graph.

Graph Clipping

The process of deleting vertices and edges from a graph.

Graph Parameterisation

The process of adding weighted edges between segment entities. The weighted edges

represent probabilities of ripple effects between segments. (See the other glossary en

tries edge parameterisation, direct edge parameterisation and indirect edge

parameterisation.)

G r a p h Splicing

The process of combining two graphs together.

H I G Crystall isation

238

The process of analysing documentation with respect to its structural decomposition

and the construction of the HIG to model this structural decomposition.

Hierarchical Interconnection Graph

A subgraph of the Ripple Propagation Graph. The Hierarchical Interconnection Graph

records composite entities, segment entities and their structural dependencies.

Impact Analysis

The study of the consequential effects of changing entities on other entities.

Impact Points

The set of directly affected document segment entities. (See also Direct Impact)

Indirect Edge Parameterisation

The addition of weights to edges based on expert judgements concerning potential ripple

effects.

Indirect Impact

The consequential effect on an entity caused by a change to another entity.

Interconnection Graph

An interconnection graph is a graph that is used to represent the dependencies between

entities in a program, and a piece of the program documentations.

Logical Ripple Effect

239

An inconsistency introduced into a program area by a change to another program area

[95].

Module

A module is a named collection of source code entities, where the programmer has

precise control over the entities that are imported from and exported to the surrounding

environment. A module can contain routines.

Performance Ripple Effect

The performance ripple effect which is a change in a module's performance as a

consequence of a software change in another module.

Release Information

Information which describes which modules and documents were changed in a project

or group of projects. This information also describes any ripple effects involved with

a particular project.

Ripple Effect

Ripple effect is the phenomenon by which changes to one program area have tendencies

to be felt in other program areas [95].

Ripple Effect Analysis

To break down the complete ripple effect of a proposed change into its component

parts.

Ripple Propagation

The spreading of the ripple effect.

240

Ripple Propagation Graph

A graph theory model for recording the entities within a document hierarchy and their

dependencies. The dependencies help model possible ripple propagation and previous

ripple propagation in a document hierarchy.

Ripple Propagation Graph Description Language

A language for describing the Ripple Propagation Graph.

Routine

A sub-program unit that could be either a procedure or a function.

Segment Ent i ty

The smallest type of entity within a document hierarchy

Segment Scanning

The process of examining a segment entity to determine the source code entities de

scribed within i t .

Segment Theme Analysis

The process of examining a segment entity to determine the contained within i t .

Slice Criter ion

The criteria with which to judge whether or not a particular entity appears in a slice.

Source Attributes Graph

241

The Source Attributes Graph is a subgraph of the Ripple Propagation Graph and

records all source code entities described implicitly or explicitly in segment entities.

Stability

The sum of the potential ripple effects that may be propagated within source code.

Stability Analysis

The analysis of sum of the potential ripple effects that may be propagated in a software

system.

Start Vertex

The vertex that marks the starting point for an edge.

Stop Vertex

The vertex that marks the terminating point for an edge.

Thematic G r a p h Slicing

A method of slicing Ripple Propagation Graphs models of documentation based on

analysing the thematic structure within a document hierarchy.

Thematic Interconnection Graph

A subgraph of the Ripple Propagation Graph which records a model of the themes

contained within a document hierarchy.

Thematic Structure

242

The organisation of the content of documentation, that is the organisation of the themes.

This is modelled with a Thematic Interconnection Graph.

Theme

A theme in linguistical terms is a subject written about [30]. In this thesis a theme

consists of a Conceptual Object and Conceptual Action.

Theme Bag

A theme bag contains the themes within a change proposal. Some themes may occur

more than once.

T I G Crystall isation

The process of analysing documentation with respect to its thematic structure and

the construction of the TIG to model the thematic structure.

Vertex

The objects that comprise a tree or a graph. Objects can be a start vertex or a stop

vertex

Weighted G r a p h Slicing

A method of slicing graph theory models of documentation based on analysing the

thematic structure within a document hierarchy. In particular with respect to indirect

impacts. In addition the probability of ripple effects between segment entities, based

on previous ripple effects is included in the resultant slice.

Weighted Interconnection Graph

243

The Weighted Interconnection Graph is a subgraph of the Ripple Propagation Graph.

This subgraph records the probable ripple effects between segment entities. These prob

abilities are based on previous release information and expert judgements about the

probability of ripple effects.

244

Appendix C

Prototype Demonstration

This appendix demonstrates the use of the RPGDL, a theme catalogue, the description of change

proposals and an actual example of the consultation with the prototype implementation. The

example given in this appendix shows only one of the reports produced by the implementation.

This is because the reports are long and mostly the same format. From the report the impacted

bags BV and Bo and the (3 CIG for example 2 (presented in Chapter 8) can be constructed. The

purpose of this appendix is to support Chapter 7 and Chapter 8 by demonstrating how the prototype

implementation of MAGENTA was used to help evaluate the RPG{V, S) a,nd its associated thematic

graph slicing techniques.

C . l R P G Description Language: An Example

This section presents an example of the use of R.ipple Propa.gation Graph Description Language

in describing the RPG{V,£). Example 2 was chosen because it is concise and it exercises all of

the descriptive power of the graph description language. This graph description example is the

verbatim RPGDL script for example 2.

245

rpg(banking-sub-system-l)
c o n s i s t s - o f (1 1 , v l) .
consists-of(11,v2).
c o n s i s t s - o f (v 2 , b l) .
c o n s i s t s - o f (b l , c l) .
c o n s i s t s - o f (b l , c 2) .
c o n s i s t s - o f (c l , s i) .
c o n s i s t s - o f (c l , s 2) .
c o n s i s t s - o f (c l , s 3) .
consists-of(c2,s4).
consists-of(c2,s5) .
c o n s i s t s - o f (s 2 , s b l) .
consists-of(s2,sb2).
consists-of(s5,sb3).
consists-of(s5,sb4).
has-segment(sb2,gl).
has-segment(sb2,g2) .
has-segment(sb2,g3).
has-segment(sb4,g4).
has-segment(sb4,g5).
has-segment(sb4,g6).
has-theme-vertex(gl,tl).
has-theme-vertex(g2,t2).
has-theme-vertex(g2,t3).
has-th6me-vertex(g3,t4).
has-theme-vertex(g3,t5).
has-theme-vertex(g4,t6).
has-theme-vertex(g5,t7).
has-theme-vertex(g6,t8) .
has-theme-vertex(g6,t9).
h a s - t h e r a e (t l , t h l) .

246

has-theme(t2,thl).
has-theme(t3,th4).
has-theme(t4,thl8).
has-theme(t5,th20).
has-theme(t6,th4).
has-theme(t7,th32).
has-theme(t8,th5).
has-theme(t8,th9).
c o - o c c u r s (t l , t 2) .
co-occurs(t3,t6).
copy-propagation-description(t2,t3).
copy-propagation-description(t3,t4).
copy-propagation-description(t6,t7).
copy-propagation-description(t7,t9).
copy-propagation-description(t9,t8).
copy-propagation-description(t8,t5).
document-potential-impact-dependency(g2,g2,75).
document-potential-impact-dependency(g2,g3,25).
document-potential-impact-dependency(g2,g4,75).
document-potential-impact-dependency(g4,g5,50).
document-potential-impact-dependency(g6,g3,100)
d e f i n i t i o n - u s e - d e s c r i p t i o n - c h a i n (t l , t 2) .
d e f i n i t i o n - u s e - d e s c r i p t i o n - c h a i n (t 3 , t 6) .
t h e m a t i c - c o n t e x t (t l , d e f i n i t i o n) .
thematic-context(t2,use).
t h e m a t i c - c o n t e x t (t 3 , d e f i n i t i o n) .
t h e m a t i c - c o n t e x t (t 4 , n u l l) .
t h e m a t i c - c o n t e x t (t 5 , n u l l) .
thematic-context(t6,use).
thematic-context(t7,use).
t h e m a t i c - c o n t e x t (t 8 , n u l l) .
t h e m a t i c - c o n t e x t (t 9 , n u l l) .
c o m p o s i t e - e n t i t y - t y p e d l , 1) .

247

composite-entity-type(vl,v)
composite-entity-type(v2,v)
composite-entity-type(bl,b)
composite-entity-type(cl,c)
composite-entity-type(c2,c)
composite-entity-type(sl,s)
composite-entity-type(s2,s)
composite-entity-type(s3,s)
composite-entity-type(s5,s)
composite-entity-type(sbl,ss).
composite-entity-type(sb2,ss).
composite-entity-type(sb3,ss).
composite-entity-type(sb4,ss).
segment-6ntity-type(gl,dl).
segment-entity-type(g2,d2).
segment-entity-type(g3,dl).
segment-entity-type(g4,d3).
segment-entity-type(g5,d3) .

segment-uses-data-dictionary-region(gl.region-1)
segment-uses-data-dictionary-region(g2,region-l)
segraent-uses-data-dictionary-region(g3.region-1)
segment-uses-data-dictionary-region(g4.region-1)
segment-uses-data-dictionary-region(g5,region-l)
S6gment-uses-data-dictionary-region(g6.region-1)
segment-describes-part-of-module(gl.modulel) .
segment-describes-part-of-module(gl.module2).
segment-describes-part-of-module(g2,modulel).
segment-describes-part-of-module(g3,modulel) .
segment-describes-part-of-module(g4.module2).
segment-describes-part-of-module(g5,module2).
segment-describes-part-of-module(g6,module2).
module-belongs-to-system(modulel.end-of-day-run)
module-belongs-to-system(module2,end-of-day-run)

248

module-type(modulel,cobol).
module-type(modulel.assembler).
module-type(module2,cobol).
module-test-required(modulel,test-mod-l).
module-test-required(modulel,test-mod-3).
module-test-required(modulel,test-mod-4).
module-test-required(module2,test-mod-2).
system-test-required(modulel,system-test-l).
system-test-required(module3,system-test-16).
system-test-required(module2,system-test-l).
module-uses-data-file(modulel,batch-file).
module-uses-data-file(module2,batch-file) .
module-uses-job-control-language(modulel,jcl-1).
module-uses-job-control-language(module2,jcl-1).
module-uses-map-base(modulel,map-l).
module-uses-map-base(module2,map-l).
associated-system(end-of-day-run,accounts-a).
associated-system(end-of-day-run,accounts-b).
associated-system(end-of-day-run,creditors-run).
module-expert-judgeraentd.modulel,module2,1.1.10,not-likely) .
module-expert-judgement(2.modulel,module2,1.1,15,probably-not).
module-expert-judgement(3,modulel,module2,1.2,20,fairly-unlikely)
judgement-reasond , s h a r e - l i t t l e - d a t a , n u l l) .
judgement-reason(2,only-one-file-used,null).
judgement-reason(3,not-much-interconnection.null).
judgement-persond .turver. a p r i l l 11990) .
judgement-person(2.turver.decemberl21990).
judgement-person(3.munro,march211991).
c o m p o s i t e - e n t i t y - d e s c r i p t i o n - p r o p e r t y (1 , l i b r a r y) .
composite-entity-description-property(v,volume).
composite-entity-description-property(b,book).
composite-entity-description-property(c.chapter).
composite-entity-description-property(s,section).

249

composite-entity-description-property(ss.sub-section).
segment-entity-type-description(dl,description-of-input).
segment-entity-type-description(d2,d6scription-of-output).
segment-entity-type-description(d3,description-of-processing).
segment-entity-type-description(d4,description-of-an-interface).
segment-entity-type-description(d5,description-of-data-flow) .
segment-entity-type-description(d6,description-of-data-store).
segment-entity-type-description(d7,description-of-human-factors).
segment-entity-type-description(d8.description-of-hardware).
segment-entity-type-description(d9.description-of-other-system).
segment-entity-type-description(dlO,description-of-other-dociunent)

250

C.2 Theme Catalogue Description: An Example

The following shows the theme catalogue developed for example 2 in Chapter 8. Each line in the

catalogue records a theme. For example :

theme(thl,describes-processing-of-al).

indicates that theme code " t h l " represents the theme "-processing-of-al". This catalogue of themes

enables change proposals to be mapped to the "describes-processing-of" part of a line in the theme

catalogue. This allows a change proposal to be modelled with a set or bn.g of theme codes. The

theme codes in each table are also recorded on an B.PG{V,S).

theme(thl,describes-processing-of-al
theme(th2,describes-processing-of-bl
theme(th3,describes-processing-of-cl
theme(th4,describes-processing-of-dl
theme(th5,describes-processing-of-el
theme(the,describes-processing-of-f1
theme(th7.describes-processing-of-gl
theme(th8,describes-processing-of-hi
theme(th9,describes-processing-of-il
theme(thlO,describes-processing-of-j
theme(thl1.describes-processing-of-k
theme(thl2,describes-processing-of-l
theme(thl3.describes-processing-of-m
theme(thl4.describes-processing-of-n
theme(this,describes-processing-of-o
theme(thl6.describes-processing-of-p
theme(thl7,describes-processing-of-q
theme(this.describes-processing-of-r
theme(this,describes-processing-of-s

251

theme(th20.describes -processing--of - t l) .
theme(th21.describes -processing-•of - u l) .

theme(th22,describes -processing--of - v l) .

theme(th23,describes -processing--of -wl) .

theme(th24.describes -processing--of - x l) .
theme(th25.describes -processing-- o f - y l) .
theme(th26.describes -processing--of-zl) .

theme(th27.describes -processing--of -a2) .
theme(th28.describes -processing--of -b2) .

theme(th29.describes -processing-•of -c2) .

theme(th30.describes -processing-•of -d2) .

theme(th31.describes -processing-•of -e2) .
theme(th32.describes -processing-•of - f 2) .

theme(th33.describes -processing-•of -g2).
theme(th34.describes -processing-•of -h2).
theme(th35.describes -processing-•of -12) .

theme(th36.describes -processing-•of - j 2) .

theme(th37.describes -processing-•of -k2) .

theme(th38.describes -processing-•of -12) .

theme(th39.describes -processing-•of -m2) .

theme(th40.describes -processing-•of -n2) .

theme(th41.describes -processing-•of -02) .

theme(th42.describes -processing-•of-p2).

theme(th43.describes -processing-•of-q2).

theme(th44.describes -processing-•of - r 2) .

theme(th45.describes -processing-•of -s2) .

theme(th46,describes -processing- of -t2) .

theme(th47.describes -processing- of -u2) .

theme(th48.describes -processing- of -v2).

theme(th49.describes -processing- of -w2) .

theme(th50.describes -processing- of -x2).

252

C.3 Change Proposal Description: An Example

The following shows two change proposals described in the RPGDL. The first two lines "proposal-

identification" identify the proposal number, project number and release number respectively. Lines

three and four indicate the origin of the particular proposal. For example each "source-of-change"

line describes the proposal number, division, department, name of originator and date of proposal.

Each change proposal has one or more lines forming a list of the themes contained within each

proposal.

p r o p o s a l - i d e n t i f i c a t i o n d ,2,2.1) .
p r o p o s a l - i d e n t i f i c a t i o n (2 , 2 , 2 . 2) .
source-of-changed,sees,cs.s-carter,jan041992)•
source-of-chcinge(2,secs ,cs ,s-carter, jan071992).

change-proposald . t h l) .
change-proposal(1,th4).
change-proposald .th32) .
change-proposal(2.thS).
change-proposal(2.the) .

253

C.4 Prototype Consultation: An Example

This section of the appendix presents an annotated version of a verbatim report produced by the

prototype implementation for example 2. This particular example of system structure and content

under consideration is theoretical, although an attempt has been made to make i t realistic.

This consultation describes the prototype implementation's (3 slice analysis of the example 2 dis

cussed in Chapter 8. For further clarity, explanatory notes have been added throughout the con

sultation report. Computer messages of no consequence have been deleted and blank space has

been added or deleted to improve readability. Otherwise the report is a facsimile of the prototype

implementation's operation as seen on a computer terminal.

II N O T E : Explanatory notes (such as this one) appear at appropriate places throughout the

consultation report. For clarity they are always marked by douljle bar " j j N O T E : " on the left

margin.

User input is highlighted in underscore italic chnrarAers.

Prototype implementation output i s denoted by simulated typed t e x t .

Edinburgh Prolog version 1.5.04 (12 September 1988)
AI Applications I n s t i t u t e . U n i v e r s i t y of Edinburgh

II N O T E : This command loads into MAGENTA a file called rpg2 which contains the RPGDL for

example 2 and the graph slicing algorithms.

[rpg2].

yes

254

b(l).

II N O T E : This command " b (l) " executes the beta slicing algorithm on proposal number 1.

MAGENTA

Durham RPG Analyser Prototype Version 3.0 (March 31st 1993)
Centre f o r Software Maintenance, University of Durham

N O T E : This section of the report describes the characteristics of the report.

RPG Beta S l i c e (without thematic s t r u c t u r e) : Change Imp l i c a t i o n Report (Beta)

Tramsformation Description : document types and
: i n d i r e c t r i p p l e e f f e c t s

S l i c e C r i t e r i o n : Theme Bag

State T r a j e c t o r y (Domain) : Ripple Propagation Graph

P r o j e c t i o n Property B i j e c t i v e Mapping

Codomain Properties Directed.
Labelled,
S t r i c t Sub-Graph.
D i s j o i n t

255

The CIG contains the f o l l o w i n g types of e n t i t i e s and dependencies:

Graph Vertices:
Composite E n t i t i e s
Composite Type E n t i t i e s
Segment E n t i t i e s
Segment Type E n t i t i e s

Graph Edges:
Co-occurs Dependency
Consists-of Dependency
Has-Segment Dependency
Copy Propagation Dependency

Features:
Direct Impacts Indicated
I n d i r e c t Impacts Indicated

The CIG contains the f o l l o w i n g impacted e n t i t i e s and dependencies:

II N O T E : The first section of the report shows all of the directly impacted segment entities, the

segment entity types and the composite entity slices. The composite entity slice contains all of the

composite components and their types which are connected to each impacted segment entity.

DIRECT IMPACT on segment e n t i t y : g l

segment g l i s a : de s c r i p t i o n - o f - i n p u t

composite e n t i t y s l i c e on g l i s :

256

sb2 document e n t i t y type sub-section
s2 document e n t i t y type section
c l document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

DIRECT IMPACT on segment entity:g2

segment g2 i s a : description-of-output

composite e n t i t y s l i c e on g2 i s :

sb2 document e n t i t y type sub-section
s2 document e n t i t y type section
c l document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

II N O T E : As in the (3 CIG{V, S) for example 2 which is described in Chapter 8, the segment entity

2 is impacted twice by the theme bag. This is also reflected in tliis CIB.{V,S).

DIRECT IMPACT on segment entity:g2

segment g2 i s a : description-of-output

composite e n t i t y s l i c e on g2 i s :

sb2 document e n t i t y type sub-section

s2 document e n t i t y type section

257

c l document e n t i t y type chapter
b l document e n t i t y type book
v2 doc\iment e n t i t y type volume
11 document e n t i t y type l i b r a r y

DIRECT IMPACT on segment ent i t y : g 4

segment g4 i s a : description-of-processing

composite e n t i t y s l i c e on g4 i s :

sb4 document e n t i t y type sub-section
s5 document e n t i t y type section
c2 dociiment e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

DIRECT IMPACT on segment entity:g5

segment g5 i s a : description-of-processing

composite e n t i t y s l i c e on g5 i s :

sb4 document e n t i t y type sub-section
s5 document e n t i t y type section
c2 document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 docviment e n t i t y type l i b r a r y

N O T E : This section of the report shows all the indirect impacts in the document hierarchy

258

through descriptions of copy propagations.

INDIRECT IMPACT on segment e n t i t y : g2
propagated from segment e n t i t y : g2

segment g2 i s a : description-of-output

composite e n t i t y s l i c e on g2 i s :

sb2 dociiment e n t i t y type sub-section
s2 document e n t i t y type section
c l document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g3
propagated from segment e n t i t y : g2

segment g3 i s a : des c r i p t i o n - o f - i n p u t

composite e n t i t y s l i c e on g3 i s :

sb2 document e n t i t y type sub-section
s2 document e n t i t y type section
c l document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : gS
propagated from segment e n t i t y : g2

259

segment g3 i s a : de s c r i p t i o n - o f - i n p u t

composite e n t i t y s l i c e on g3 i s :

sb2 document e n t i t y type sub-section
s2 document e n t i t y type section
c l document e n t i t y type chapter
b l document e n t i t y type book
v2 dociiment e n t i t y type volume
11 docioment e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g5
propagated from segment e n t i t y : g4

segment g5 i s a : description-of-processing

composite e n t i t y s l i c e on g5 i s :

sb4 document e n t i t y type sub-section

s5 document e n t i t y type section
c2 docximent e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g6
propagated from segment e n t i t y : g4

segment g6 i s a : description-of-an-interface

composite e n t i t y s l i c e on g6 i s :

260

sb4 document e n t i t y type sub-section
s5 document e n t i t y type section
c2 docxunent e n t i t y type chapter
b l docment e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g6
propagated from segment e n t i t y : g4

segment g6 i s a : description-of-an-interface

composite e n t i t y s l i c e on g6 i s :

sb4 document e n t i t y type sub-section

s5 document e n t i t y type section

c2 document e n t i t y type chapter

b l document e n t i t y type book

v2 document e n t i t y type volume

11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g3
propagated from segment e n t i t y : g4

segment g3 i s a : des c r i p t i o n - o f - i n p u t

composite e n t i t y s l i c e on g3 i s :

sb2 document e n t i t y type sub-section
s2 document e n t i t y type section

c l document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume

261

11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g6
propagated from segment e n t i t y : g5

segment g6 i s a : description-of-an-interface

composite e n t i t y s l i c e on g6 i s :

sb4 document e n t i t y type sub-section
s5 document e n t i t y type section
c2 document e n t i t y type chapter
b l document e n t i t y type book
v2 doctunent e n t i t y type voliime
11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g6
propagated from segment e n t i t y : g5

segment g6 i s a : description-of-an-interface

composite e n t i t y s l i c e on g6 i s :

sb4 docximent e n t i t y type sub-section

s5 document e n t i t y type section

c2 document e n t i t y type chapter

b l document e n t i t y type book

v2 document e n t i t y type volume

11 document e n t i t y type l i b r a r y

INDIRECT IMPACT on segment e n t i t y : g3

propagated from segment e n t i t y : gS

262

segment g3 i s a : des c r i p t i o n - o f - i n p u t

composite e n t i t y s l i c e on g3 i s :

sb2 document e n t i t y type sub-section
s2 document e n t i t y type section
c l document e n t i t y type chapter
b l document e n t i t y type book
v2 document e n t i t y type volume
11 document e n t i t y type l i b r a r y

II N O T E : This section of the report contains the information associated with a theme bag such as

the themes and proposal identification information.

CHANGE PROPOSAL DETAILS:

Ripple Propagation Graph Analysed : banking-sub-system-1

Source of Proposal Number

proposal number
release n\mber
p r o j e c t number
D i v i s i o n
Department
Name
Date

1

2
2.1
sees
cs
s.carter
jan041992

Content f o r Proposal Number : 1

Proposal 1 contains the f o l l o w i n g

263

Contains Thematic Category
Thematic Category Description
Contains Thematic Category
Thematic Category Description
Contains Thematic Category
Thematic Category Description

t h l
describes-processing-of-al
th4

describes-processing-of-dl
th32
describes-processing-of-f2

no

II N O T E : The "no" indicates that no furtlier impact information can be located. However when

Prolog is used to prove that a goal such as "Chapter 1 is connected to Chapter 2", then if "no"

was returned it would indicate that the goal is false and if "yes" was returned it would indica.te the

goal is true.

halt.

Prolog terminated

264

Bibliography

[1] Agrawal, H . and J.R. Horgan, 1990, Dynamic Program Slicing, In the Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation, White

Plains, New York, June 20-22 pp 246-256

[2] Agusa, K. , Y. Kishomoto, and Y. Ohno, 1983, A Supporting System for Software Main

tenance, In the Proceedings of the IFIP TC2 pp 481-501

[3] Aho, A .V . , R. Sethi, J.D. UUman, 1986, Compilers Principles, Techniques and Tools,

Addison- Wesley

[4] Arthur, J . , 1988, Software Evolution, A Wiley-Interscience Publication, John Wiley & sons

pp 74-75

[5] Avellis, G., A. lacobbe, D. Palmisano, G. Semeraro, C. Tinelli, 1991, A n Analysis of In

cremental Assistant Capabilities of a Software Evolution Expert System, In the

Proceedings of the IEEE Conference on Software Maintenance, Sorrento, Italy pp 220-227

[6] Bennett, K .H. , B.J. Cornelius, M . Munro and D.J. Robson, 1988, Software Maintenance:

A K e y A r e a For Research, University Computing, 10(4) PP 184-188

[7] Bennett, K . H . , 1990, The Software Maintenance of Large Software Systems: Man

agement, Methods and Tools, Software Engineering for Large Software Systems, edited by

B.A. Kitchenham, Elsevier Science Publishers Ltd pp 1-26

[8] Bennett, K.H. , 1992, The Post Graduate Handbook, University of Durham, SECS, Com

puter Science

265

[9] Bennett, K .H . , B.J., Cornelius, M . Munro and D.J. Robson, 1991, Software Maintenance.

Software Engineer's Reference Book, edited by J.A. McDermid, Butterworth-Heinemann, Sec

tion 20

[10] Bigelow, J., 1988, Hypertex and C A S E , IEEE Software, 5(2) pp 23-27

[11] Boehm, B., 1976, Software Engineering, IEEE Transactions on Computers, 25(12) pp

1226-1241

[12] Broughton, R., 1991, Private Communication, May 2nd, TSB Bank pic, Retail Banking,

Implementation and Testing

[13] Bundy, A., 1983, A Computer Model of Mathematical Reasoning, Academic Press

[14] Calliss, F.W., 1989, Inter-Module Code Analysis Techniques for Software Mainte

nance, Ph.D thesis, University of Durham, Computer Science

[15] Capretz, M.A.M., 1992, A Software Maintenance Method Based on the Software

Configuration Management Discipline, Ph.D thesis. University of Durham, Computer

Science

[16] Chikofsky, E., 1983, Application of an Information Systems Analysis and Develop

ment Tool to Software Maintenance, In the Proceedings of the IFIP TC2 pp 503-516

[17] Cimitle, A. , F. Lanubile, and G. Visaggio, 1992, Traceability Based on Design Decisions,

In the Proceedings of the IEEE Conference on Software Maintenance, Orlando, Florida pp

309-317

[18] Collofello, J. and D.A. Vennergrund, 1987, Ripple Effect Based on Semantic Informa

tion, Proceedings AFIPS Joint Computer Conference, 56 pp 675-682

[19] Collofello, J.S. and J.J. Buck, 1987, Software Quality Assurance for Maintenance, IEEE

Software 1987 ^-p 46-51

[20] Conte, S.D., H.E. Dunsmore and V.Y. Shen, 1986, Software Engineering Metrics and

Models, The Benjamin/Cummings Publishing Company, Inc.

[21] Cooper, S.D. and M . Munro, 1989, Software Change Information for Maintenance

Management, Technical Report 89/4, University of Durham, School of Engineering and

Computer Science

266

[22] Delisle, N . and M . Schwartz, 1986, N E P T U N E : A Hypertex System for C A D Appli

cations, In the Proceedings of the ACM SIGMOD International Conference on Management

of Data pp 132-143

[23] Dhar, V . and M . Jarke, 1988, Dependency Directed Reasoning and Learning in Sys

tems Maintenance Support, IEEE Transactions on Software Engineering, 14(2) pp 211-

277

[24] Dietrich, S.W. and F.W. Calliss, 1991, The Application of Deductive Databases to

Inter-Module Code Analysis, In the Proceedings of the IEEE Conference on Software

Maintenance, Sorrento, Italy pp 120-128

[25] Dietrich, S.W. and F.W. Calliss, 1992, A Conceptual Design for a Code Analysis Knowl

edge Base, Journal of Software Maintenance: Research and Practice, 4(V 19-36

[26] Dowson, M . and J.C. Wileden, 1985, A Brief Report on the International Workshop on

the Software Process and Software Environment, ACM Software Engineering Notes,

10 pp 19-23

[27] Edisbury, B., 1990, Private Communication, December 5th, TSB Bank pic, Technology

Research, Retail Banking

[28] Evans, C , 1991, Private Communication, May 2nd, TSB Bank pic. Retail Banking,

Implementation and Testing

[29] Fairley, R., 1985, Software Engineering Concepts, McGraw-Hill International Editions

[30] Farbey, B.A., 1984, The Use of Graph Theory for Modelling Thematic Structure in

the Context Documents, Ph.D Thesis City University, Department of System Science

[31] Foster, J.R., 1989, Priority Control in Software Maintenance, In the Proceedings of 7th

International Conference Software Engineering for Telecommunications Switching Systems,

Bournemouth U.K. pp 163-167

[32] Foster, J.R., 1989, A Process Model for Software Maintenance, In the notes of the Third

Software Maintenance Workshop, Centre for Software Maintenance, University of Durham

[33] Gallagher, K . B . , 1989, Using Program Slicing in Software Maintenance, Ph.D. Thesis,

University of Maryland, Baltimore

267

[34] Gallagher, K.B. , 1990, Surgeon's Assistant Limits Side Effects, IEEE Software 7(64) pp

90-98

[35] Gallagher, K .B . and J.R. Lyle, 1991, Using Program Slicing in Software Maintenance,

IEEE Transactions on Software Engineering, 17(8) pp 751-761

[36] Garg, P.K. and W. Scacchi, 1989, Ishys: Designing an Intelligent Software Hypertext

System, IEEE Expert, 4(3) pp 52-63

[37] Georges, M., 1992, M A C S : Maintenance Assistance Capability for Software, Journal

of Software Maintenance and Practice, 4(1) PP 199-213

[38] Glagowski, T . , 1985, Using a Relational Query Language as a Software Maintenance

Tool, In the Proceedings of the IEEE Conference on Software Maintenance, Washington, DC

pp 211-220

[39] Gray, P., 1984, Logic Algebra and Databases, Ellis Horwood Limited

[40] Grosch, H.R.J., 1971, W h y M A C , M I S and A B M won't fly. Datamation 17 pp 71-72

[41] Haney, F .M. , 1972, Module Connection Analysis, In the Proceedings of the AFIPS Joint

Computer Conference pp 173-179

[42] Hart, C .F. and J.J. Shilling, 1990, A n Environment for Documenting Software Fea

tures, In the Proceedings of the Fourth ACM SIGSOFT Symposium on Software Development

Environments pp 120-121

[43] Hinley, D.S. and K . H . Bennett, 1992, Using a Model to Manage the Software Main

tenance Process, In the Proceedings of the IEEE Conference on Software Maintenance,

Orlando, Florida pp 174-182

[44] Horowitz, E. and R. Williamson, 1986, S O D O S : A Software Document Support

Environment- Its Definition, IEEE Transactions on Software Engineering, 12(8) pp 849-

859

[45] Horwitz, S., T . Reps, and D. Binkley, 1990, Interprocedural Slicing using Dependence

Graphs, ACM Transactions on Programming Languages and Systems, 12(1) pp 35-46

[46] IEEE Standards Board and ANSII Standards Institute, 1990, A n American National

Standard and I E E E Standard Glossary of Software Engineering Terminology,

ANSI/IEEE StdeiO.12-1990

268

[47] Kaiser, G.E. and D.E. Perry, 1987, Workspaces and Experimental Databases: Auto

mated Support for Software Maintenance and Evolution, In the Proceedings of the

IEEE Conference on Software Maintenance, Austin, Texas pp 108-114

[48] Karakostas, V. , 1990, A Teleological Perspective of Software and its Application to

Large Scale Reuse and Software Maintenance, Ph.D Thesis, Manchester, UMIST

[49] Karakostas, V. , 1990, Modelling and Maintenance of Software Systems at the Tele

ological Level , Journal of Software Maintenance and Practice, 2(1) pp 47-59

[50] Keables, J., K. Robertson, and A. von Mayrhauser, 1988, Data Flow Analysis and its

Application to Software Maintenance, In the Proceedings of IEEE Conference on Software

Maintenance, Phoenix, Arizona pp 335-347

[51] Keeney, R.L. and D. Winterfeldt, 1989, On the Uses of Expert Judgement on Complex

Technical Problems, IEEE Transactions on Enginering Management, 36(2) pp 83-86

[52] Kellner, M . I . , 1991, Multiple-Paradigm Approaches for Software Process Modelling,

In the Proceedings of the Twenty-Second Annual Hawaii International Conference on System

Sciences pp. 175-188

[53] Lehman, M . M . , 1980, On Understanding Laws, Evolution, and Conservation in the

Large-Program Life Cycle, The Journal of Systems and Software 1 pp 213-221

[54] L i , D. , 1984, A Prolog Database System, John Wiley & Sons Inc, Research Studies Press

[55] Lientz, B.P. and E.B. Swanson, 1980, Software Maintenance Management, Addison Wes

ley

[56] L iu , C , 1976, A Look at Software Maintenance, Datamation, 22(11) pp 51-5

[57] Luqi , 1990, A Graph Model for Software Evolution, IEEE Transactions on Software

Engineering, 16(8) pp 912-927

[58] Mandrioli, D . and C. Ghezzi, 1987, Theoretical Foundations of Computer Science, John

Wiley & Sons

[59] Mart in , J. and C. McClure, 1983, Software Maintenance - The Problem and its Solu

tion, Prentice Hall

269

[60] McCabe, T.J. , 1976, A Complexity Measure, IEEE Transaction on Software Engineering,

2(4) pp 308-320

[61] Morgan, C , 1990, Programming From Specifications, Prentice Hall, International Series

in Computer Science

[62] Moriconi, M . and C. McClure, 1979, A Designer/Verfier's Assistant, IEEE Transactions

on Software Engineering, 5(4) pp 387-400

[63] MuUin, D. and S. McGowan, 1988, Fortune's Functional Definition, Technical Report

2017/twp/128, CAP(UK) Limited, January, Alvey Project ALV/PRJ/SE/050

[64] Nakagawa, A . T . and K. Futatsugi, 1991, Propagating Changes in Algebraic Specifica

tions, Software Engineering Journal, 6(6) pp 476-486

[65] Nilson, N.J., 1971, Problem Solving Methods in Artificial Intelligence, McGraw-Hill

Publications, New York

[66] Nosek, J.T. and P. Prashant, 1990, Software Maintenance Management: Change in

the Last Decade, Journal of Software Maintenance Research and Practice, 2(3) pp 157-174

[67] Osborne, W . M . , 1987, Building and Sustaining Software Maintainability, In the Pro

ceedings of the Conference on Software Maintenance, Austin Texas pp 13-23

[68] Parikh, G., 1982, Some Tips , Techniques, and Guidelines for Program and System

Maintenance, Winthrop Publishers, Cambridge, MA pp 65-70

[69] Patkau, B.H. , 1983, A Foundation For Software Maintenance, PhD Thesis, Department

of Computer Scinence, University of Toronto

[70] Pau, L.F. and J.B. Kristinsson, 1990, S O F T M : A Software Maintenance Expert System

in Prolog, Journal of Software Maintenance: Research and Practice, 2(2) pp 87-111

[71] Penedo, M . H . and E .D. Stuckle, 1984, Integrated Project Master Database (P M D B) ,

IR & D Final Report, TRW Technical Report, TRW-84-SS-22, December

[72] Pfleeger, S.L. and S.A. Bohner, 1990, A Framework for Software Maintenance Metrics,

In the Proceedings of the Conference on Software Maintenance, San Diego California pp 320-

321

270

[73] Polimeni, A.D. and H.J. Straight, 1985, Foundations of Discrete Mathematics,

Brooks/Cole

[74] Ramamoorthy, C.V., V . Carg and A. Prakash, 1986, Programming in the Large, IEEE

Transactions on Software Engineering 12(7) pp 769-783

[75] Ramamoorthy, C.V., Y.Usuda, A. Prakash and W.T.Tsai, 1990, The Evolution Support

Environment System, IEEE Transactions on Software Engineering, 16(11) pp 1225-1234

[76] Royce, W.W., 1970, Managing the Development of Large Software Systems, In the

Proceedings of WESTCON, San Francisco

[77] Sharpley, W.K. , 1977, Software Maintenance Planning for Embedded Computer Sys

tems, In the Proceedings of IEEE COMPSAC 77 pp 520-6

[78] Smith, J.Q., 1988, Decision Analysis A Bayesian Approach, Chapman and Hall

[79] Sommerville, I . , R. Welland, I. Bennett, and R. Thomson, 1986, S O F T L I B - a Documen

tation Management System, Software- Practice and Experience, 16(2) pp 131-143

[80] SommerviUe, I . , 1992, Software Engineering- Fourth Edition, Addison-Wesley Publishing

Company

[81] Song, N.L. , 1977, A Program Stability Measure, In the Proceedings of the 1977 Annual

ACM Conference pp 163-173

[82] Stankovic, J.A., 1985, A Technique for Identifying Implicit Information Associated

with Modified Code, In the Proceedings of the IFIP TC2 pp 457-478

[83] Sterling, L. and E. Shapiro, 1986, The A r t of Prolog Advanced Programming Tech

niques, MIT Press, Massachusetts Institute of Technology

[84] Swanson, E.B., 1976, The Dimensions of Maintenance, In the Proceedings of the 2nd

IEEE International Conference on Software Engineering pp 492-497

[85] Thebaut, S. and N . Wilde, 1986, Program Change Analysis: Improving the Reliability

of Modified Programs, University of Florida, Technical Report SERC-TR-l-F

[86] Tsichritzis, D.C. and F .H . Lochovsky, 1982, Data Models, Prentice Hall

271

[87] Turski, W . M . , 1981, Software Stability, In the Proceedings of the ACM EUR Conference on

Systems Architecture pp 107-116

[88] Turver, R.J., 1989, Software Maintenance: Generating Front Ends for Cross Refer-

encer Tools, M.Sc. Thesis, University of Durham, Computer Science

[89] Turver, R.J. and M . Munro, 1993, A n E a r l y Impact Analysis Technique for Software

Maintenance, Journal of Software Maintenance: Research and Practice (To Appear)

[90] Weinberg, G., 1983, K i U that code!, Infosystems, August pp 48-49

[91] Weiser, M.D. , 1979, Program Slices: Formal , Psychological and Practical Investi

gations of A n Automatic Program Abstraction Method, Ph.D. Thesis, University of

Michigan

[92] Weiser, M.D. , 1984, Program Slicing, IEEE Transactions Software Engineering, 10(4) PP

352-357

[93] Wi ld , C , K. Mally and L. Liu, 1991, Decision Based Software Development, Journal of

Software Maintenance Research and Practice, 3,(2) pp 17-43

[94] Woodcock, J. and M . Loomes, 1989, Software Engineering Mathematics, Pitman

[95] Yau, S.S., J.S. Collofello and T. MacGregor, 1978, Ripple Effect Analysis of Software

Maintenance, In the Proceedings of the IEEE COMPSAC November 1978 pp 60-65

[96] Yau, S.S. and J.S. Collofello, 1979, Some Stability Measures for Software Maintenance,

in the Proceedings of the COMPSAC '79, New Yorkpp 674-679

[97] Yau, S.S. and J.S. Collofello, 1980, Some StabiHty Measures for Software Maintenance,

IEEE Transactions on Software Engineering, 6(6) pp 545-552

[98] Yau, S.S. and S.C. Chang, 1984, Estimating Logical Stability in Software Maintenance,

In the Proceedings of the IEEE Computer Society Computer Software and Applications Con

ference, Chicago, Illinois pp 109-119

[99] Yau, S.S. and J.S. Collofello, 1985, Design Stability Measures for Software Mainte

nance, IEEE Transactions on Software Engineering, 11(9) pp 849-856

272

[100] Yau, S.S. and P. Chang, 1988, A Metric of Modifiability for Software Maintenance,

In the Proceedings of the IEEE Conference on Software Maintenance, Phoenix, Arizona pp

374-381

[101] Yeh, R.T. and F.G. Sobrinho, 1984, Complexity Measures for Software Evolution,

Technical Report TR-1422, University of Maryland, Computer Science

273

