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ABSTRACT 

The Lusitanian Basin forms a long (250km), narrow (50-lOOkm), NE-SW 
trending outcrop of inverted Mesozoic carbonates and clastics. The outcrop of the 
Mesozoic sequence is flanked by two Neogene sub-basins, the contact between which 
is commonly faulted indicating that the Lusitanian basin underwent inversion during 
the Miocene. This inversion was achieved by reactivation of Jurassic extensional faults, 
which were originally formed above reactivated Hercynian basement faults during the 
Atlantic rifting event. The Serra de Montejunto/Candeeiros fault system (SMCF) forms 
the eastern boundary to this inverted zone, and is dominated by the NNE trending 
Serra dos Candeeiros fault (SCF). Towards the northern end of this fault system is a 
complex, uplifted, 15x20km fault bounded block, the Candeeiros block. At the 
southern termination of the SMCF, the fault orientation changes abruptly from NNE to 
ENE. This change in fault orientation coincides with the Serra de Montejunto 
mountain range, a narrow zone of tectonic uplift. 

Detailed studies of the main fault zones and adjacent wall rock deformation, 
allows the kinematics and strain to be characterised. These studies have revealed a 
complex history of Miocene to Recent reactivation along the boundaries of the 
Candeeiros block. Initial reactivation of the cross-faults of the block was synthetic to 
the sinistral SCF. Initial sinistral motion along the cross-faults was superimposed by a 
late period of dextral transpression, as evidenced by the inverted Alvados pull-apart 
basin preserved along the Alvados/Minde cross-faults. Dextral transpressive strains 
along the cross faults of the Candeeiros block, appear to be intimately related to the 
southerly directed extrusion and anti-clockwise rotation of the block. Structural 
relationships suggest up to 30° of rotation has occurred. Rotation of the Candeeiros 
Block is believed to be associated with the change from sinistral simple shear to 
sinistral transpression along the SCF, during the Late Miocene. 

The Serra de Montejunto region also displays a complex kinematic history, 
initiated by N-S shortening across the range, which was superseded by a late stage of 
sinistral transpression. This transpressive phase manifests itself as both simple and 
complex transpressive strains. The overall structural geometry of the region is that of a 
flower structure, formed in a major restraining bend at the termination of the SMCF. 

The kinematic and deformation style of the early Miocene reactivation in both 
the Candeeiros and Montejunto regions are consistent with the application of a N-S 
regional shortening direction, or o 1, on the pre-existing Jurassic age structure of the 
areas. This initial phase of deformation is overprinted by a distinct late phase of 
deformation related to sinistral transpression along the SCF, which was probably 
responsible for the inversion of the Lusitanian Basin. The orientation, and chronology 
of the regional shortening directions responsible for the evolution of the SMCF are in 
agreement with the relative plate motion history for Africa-Europe (Dewey et al., 
1989). 

A comparison of instrumental seismicity and neotectonic surface faults 
associated with the SMCF, suggests that the basin is undergoing basement driven 
sinistral deformation, which is decoupled from the cover sequence by a thick evaporite 
sequence. The sinistral displacement along the proposed concealed, steep, basement 
faults appears to be transferred laterally along the sub-horizontal evaporite horizon, for 
up to 20km, to the steep cover faults of the SMCF. 
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"We've done the bugger!"* 

Sherpa Tenzing Norgay (1914-1986) 

29th May 1953 

(Attr., on conquering Mount Everest.) 

• Source: The New Penguin Dictionary of Quotations, eds., J.M. & M.J. Cohen 
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CHAPTER I 

Overview of strike-slip and transpressive tectonics 

Strike-slip tectonics 

1.1.1 Introduction 

The first scientific recognition of a strike-slip fault was probably made by Arnold 

Escher von der Linth, a Swiss geologist, who in the 1850's correctly mapped an 8km 

trace of the "Sax Schwendi fault". Observations of the horizontal slickenlines lead to 

the discovery of a 500-800m sinistral displacement. However, this work was not 

published until 1885 by Suess (Sylvester, 1988). Anecdotal reports of the first strike

slip surface rupture due to an earthquake were made in the 1857 earthquake along the 

San Andreas fault, where a sheep corral that lay astride the fault was distorted into an 

"S" shape (Wood, 1955). Freund (1971) credits the first published reports of a strike

slip rupture to Mckay ( 1890, 1892) who observed the 1888 earthquake along the Hope 

fault of southern New Zealand. These initial observations on strike-slip faults were 

brought abruptly to the scientific fore by the 1906 earthquake that occurred along the 

San Andreas fault, when 4.7m of dextral motion occurred along a fault which prior to 

1906 would probably have been classified as a normal fault (Willis, 1938). 

Several decades passed after the observations in New Zealand before the 

geological community had sufficient evidence to extrapolate from instantaneous strike

slip in earthquakes to interpretations that involved tens, or even thousands of 

kilometres of horizontal slip. The key to this thinking was the seminal paper of 

Kennedy represented to the Geological Society of London in 1939 (Kennedy, 1946), 

who correlated rocks and structures on either side of the Great Glen fault that were 

separated by 1 OOkm of sinistral displacement since the Middle Carboniferous. This 

work spawned several papers that recognised large displacements along strike-slip 
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faults around the world; 450km along the Alpine fault, (Wellman in Benson, 1952); 

more than 560km dextral displacement along the San Andreas fault {Hill and Dibblee, 

1953); and lOOkm offset along the Dead Sea Rift (Quennell, 1958, 1959). The 

development of plate tectonics allowed geologists to overcome the limitations of fixist 

tectonics which prevailed before the late 1960's and led to an understanding of the 

mechanical complexities and tectonics of strike-slip fault zones. Extensive field 

observations, experimental studies, three-dimensional imag.. ing by seismic reflection 

and drilling, refined dating techniques, paleoseismic investigations, and analysis of 

modem earthquakes provide a theoretical basis to relate strike-slip faulting to the 

concepts of pure and simple shear. 

The following section is intended to discuss the pertinent features of strike-slip 

faulting and associated structures, as they will be applied and interpreted within this 

thesis. It is not intended to be an exhaustive review of the subject matter, although 

there is additional discussion of some subjects omitted from, or insufficiently discussed, 

in Sylvester's excellent review of strike-slip tectonics (1988). No attempt has been 

made to discuss the seismotectonics of strike-slip faults. 

1.1.1.1 Classification and terminology 

A strike-slip fault is "a fault on which most of the movement is parallel to the fault's 

strike" (Bates and Jackson, 1987), however, faults displaying this basic relationship 

·~ have been described using various terminolog.~. The term "wrench fault" was proposed 

by Kennedy (1946) who had been influenced by Anderson (1905) who had used 

"wrench plane" in the Scottish Geological survey for many years. These authors, and 

latterly Moody and Hill (1956), used this term to describe a deep-seated, regional, 

nearly vertical strike-slip fault which involves igneous and metamorphic basement 

rocks as well as supracrustal sedimentary rocks. Geikie (1905) referred to similar faults 

as "transcurrent faults". Increasingly "wrench fault" has frequently been used to 

describe any and all strike-slip faults by many authors, whether or not they conform to 

the characteristics of Moody and Hill (1956). Wrench faults have also been linked to 

2 
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late compressional regimes that pass into transpression (Harland, 1971 ), thus adding 

even more confusion to the nomenclature. In this text, the author agrees with Sylvester 

( 1988) who recommends that strike-slip fault be used for a fault of any scale which 

moves dominantly parallel to its strike. Strike-slip faults can be sub-divided into two 

general groups based on their relationship to the lithosphere; strike-slip faults that 

bound plates are termed transform faults, whereas transcurrent fault can be used to 

generally group the wide variety of strike-slip faults which do not cut the lithosphere 

(Sylvester, 1988). Woodcock (1986) has further classified the above groups on their 

plate-tectonic setting (figure 1.1 ), a summary of which can be found in Table 1.1. In 

depth discussions of the various attributes of the various types of transform and 

transcurrent faults are provided in Woodcock (1986) and Sylvester (1988). 

Within this section words highlighted in italics will represent the terminology 

employed throughout the rest of text. 

1.1.2 Mechanics of strike-slip faulting 

The presence of shortening structures such as folds and thrust faults, of extensional 

structures including normal faults and dykes, and structures representing horizontal 

shear on nearly vertical surfaces, together in a single deformational regime represent 

the concept of strike-slip tectonics (Anderson, 1942; Moody and Hill, 1956; Wilcox et 

al., 1973). Two principal mechanisms explain the geometric and dynamic relations 

between these faults and associated structures: pure shear or Coulomb-Anderson 

model, and simple shear 

Pure shear 

This mechanism was originally proposed by Anderson ( 1905), it predicts that a 

conjugate set of complementary sinistral and dextral strike-slip faults will form at an 

angle of <1> and -<1> about the shortening direction, where <1> is the angle of internal 

3 
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Table 1.1 Classification of strike-slip fauiiS 

indent-linked 
strike-slip fault back-arc basin 

ridge oceanic crust ridge transform 

Figure 1.1 Summary of the major classes of strike-slip fault in their plate tectonic setting (Woodcock, 

1986) 

friction. It also predicts that extension fractures or nonnal faults will fonn 

perpendicular to the elongation axis, and that folds and thrusts will fonn perpendicular 

to the shortening axis (figure 1.2). These conjugate faults can accommodate 
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irrotational bulk strain as long as they operate simultaneously, otherwise space 

problems occur that can only be resolved by rotational strain and alternating 

differential slip on each of the conjugate faults. Strike-slip faults in areas of pure shear 

do not exhibit displacements measurable in hundreds of kilometres, because of the 

room problems produced by the convergence of large crustal masses (Sylvester, 

1988), however, conjugate faults displaying many kilometres displacement are well 

documented. These fault sets are commonly found in fold-thrust systems, and 

frequently transect the fold trends. The conjugate faults develop on all scales, both 

pre- and post-folding, and help to accommodate the brittle component of strain in 

regimes of crustal shortening. 

Simple shear 

The major strike-slip faults of the world are in domains of simple shear which can be 

thousands of kilometres long, and tens of kilometres wide, with the most recently 

active fault only a few metres wide. 

Simple shear has a monoclinic symmetry of strain as it is rotational. Due to this 

fact, a greater variety of structures form in a simple shear domain as opposed to pure 

shear (Sylvester, 1988). The complexity and variety of these structures individually or 

in combination have three main aspects; ( 1) the faults and folds form en-echelon arrays 

in relatively narrow zones; (2) complications related to components of reverse or 

normal slip on the basement fault; and (3) the formation of localised areas of 
or b<.....a.5 

extensional or shortening structures due to the lateral offsets"in the master strike-slip 

faults (Naylor et al., 1986). 

The various structures developed within a simple shear regime, although 

commonly found in association with one another, merit individual discussion which 

form the remainder of section 1.1. 

5 
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<l 

Figure 1.2 Figure 1.3 4 

Figure 1.2 Plan view of incremental geometric relationship among structures for a Coulomb

Anderson model or Pure shear (Sylvester, 1988). 

Figure 1.3 Riedel model of simple shear displaying incremental orientations of structures in a dextral 

system. (Sylvester, 1988) 

Key to figures 1.2 and 1.3- Double parallel lines represents extensional structures, wavy line 
represents fold axes, or compressional structures, P- P fracture, R and R' are Riedel and Antiriedel 
faults, PDz- principal displacement zone. Short black arrows ~ shortening axis, open arrows - axis 
of lengthening. 
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1.1.3 Secondary fault sets and fault geometries 

From observations of model simple shear experiments, deformation experiments of 

homogeneous rocks under confining pressure, and surface ruptures in alluvial deposits, 

six sets of faults have been seen to form. These fractures form en-echelon arrays of 

kinematic and spatially distinct faults: (1) Riedel (R) shears (Tchalenko, 1970), or 

"synthetic" (Cloos, 1928) strike-slip faults; (2) conjugate Riedel (R') shears 

(Tchalenko, 1970), Antithetic Riedel shears (Naylor, 1986), or more concisely 

Antiriedel shears; (3) secondary synthetic strike-slip faults or P shears (Skempton, 

1966; Tchalenko, 1970); ( 4) extensional fractures (T fractures of Tchalenko and 

Ambraseys, 1970) or normal faults; (5) reverse and thrust faults; and (6) faults parallel 

to the principal displacement zone (Y shears Morgenstern and Tchalenko, 1967; and 

Logan et al., 1979). 

Figure 1.3 shows the incremental orientation of the above fault sets for a 

sinistral simple shear regime. The R, P, andY shears are synthetic to the sense of shear 

along the principal displacement zone, whereas the R' shears are antithetic. All of the 

faults within this system are nearly vertical, except for the thrust faults. Thrust, 

reverse, and extensional faults form perpendicular and parallel, respectively to the 

maximum principal shortening direction across the fault zone, which forms an angle of 

45° for simple shear. The conjugate R and R' shears form symmetrically about this 

principal shortening direction, defining angles of 45°-cp/2 and 45°+cp/2 to the maximum 

compressive stress 01 (Naylor et al., 1986), respectively. This relationship means that 

R faults form between 15-20° to the principal displacement zone, while the R' faults 

form at 60-75° (Tchalenko and Ambraseys, 1970). 

Fault zone evolution 

The evolution of strike-slip fault zones have been studied experimentally by several 

authors (Cloos, 1928; Riedel, 1929; Tchalenko, 1968; Wilcox et al., 1973, Bartlett et 

al., 1981; and Naylor et al., 1986). These analogue models consisted of either clay 

(Tchalenko, 1970), or loosely packed sand (Naylor et al., 1986) to represent 
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sedimentary cover, that overlies a ''basement fault" represented by two plates that are 

free to move laterally past each other. The results of these experiments w~,ere largely 

compatible with one another, and displayed a consistent kinematic and structural 

evolution with increasing ''basement fault" displacement. The fault zone development 

proceeds as follows: 

(1) Initial displacement results in the formation of en-echelon Riedel shears that strike 

at an average of 17° (Naylor et al., 1986) to the ''basement fault". The R shears 

overlap slightly, and commonly have lengths between 1 and 2 times the overburden 

thickness. Each fault has a helicoidal geometry, so that the sense of vertical 

displacement changes across the "basement fault" (figure 1.4). 

(2) Short lived splays develop at or near the tips of the R shears, the strike of which 

curve towards parallelism with the principal shortening axis, resulting in the 

extremities of the shears commonly becoming extensional. 

(3) With further displacement, lower angle splays form after the short lived splays 

become inactive. They form either at the tips of the R shears, or from the inactive 

splays. Occasionally Antiriedel shears develop at approximately 72° to the ''basement 

fault", but their formation is dependant on a substantial overlap between the adjacent 

R shears, hence in nature they are rarely developed (Keller et al., 1982). 

( 4) The discontinuous R shears are incapable of taking up all the ''basement" 

displacement, thus interconnecting shears are required. These typically occur between 

two R shears where the direction of the shortening axis becomes reoriented toward 

the R shear (figure 1.5), resulting in P shears forming at an angle of -<j)/2 to the 

underlying basement fault (Naylor et al., 1986). 

(5) The final fault pattern is that of an anastomosing zone of faults that define shear 

lenses, with displacement concentrated on the central throughgoing faults (figure 1.6 

and plate 1.1 ). 

During the deformation of media with a much greater elastic stiffness, such as 

limestone, the R and P shears form almost simultaneously (Bartlett et al., 1981 ). In 

such rock models the limestone accommodates very little displacement along the R 
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Riedel fault surface 

Basement 

Figure 1.4 Helicoidal geometry of an individual Riedel shear (Re drawn from Naylor et al., 1986) 

a 
Riedel shear 

b R 
;:.;... 

--~' 

Figure 1.5 A) Stress re-orientation at the compressive and extensional sides of a Riedel shear tip, 

showing the potential secondary faults. B) Stress re-orientation between two Riedel shears, generating 

P shears. (Nay lor et al., 1986) 
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Oi$pl. 2.1cm Riedel snears 

--
Disci. 2.8cm Riedel shears and first SPlays CSJ 

Doscl. 3.5cm Lower anole shears/first P shears CPJ 

~ - -- L ' ·-. 
' ' ' ' . • .......,. l . 

l ~ -......:::: -----, -- ~"":""-- .. -·- ' 
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-' . 
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Figure 1.6 The evolution of an experimental strike-slip zone (Naylor et al. , 1986) 

Plate 1.1 Minor strike-slip fault zone, from Whitley Bay, NE England. Zone displays well developed 

shear lenses. 
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shears, therefore, P shears must form to allow continued displacement within the fault 

zone. 

Although there may be slight variations in the chronology of the shear sets for 

different rock types, their geometric relationships are quite consistent and have been 

observed from the microscopic scale (Tchalenko, 1970) to the macroscopic scale in 

earthquake rupture patterns (Tchalenko and Ambraseys, 1970). 

Variations in fault zone geometries 

The dominance, and indeed the presence of Riedel shears is not a prerequisite 

in a strike-slip fault system. Gamond (1983) demonstrated experimentally that if the 

normal . · . · stress across the deformation zone is sufficiently low, dilation can exist 

and P shears will become the locus of slip with continued offset. Moore and Byerlee 

( 1991) have recognised the dominance of P shears along 'creeping' or stable sliding 

segments of the San Andreas fault, which have been interpreted as being the result of 

near-lithostatic fluid pressures along these creeping sections (Moore and Byerlee 

1991 a). These observations have an important bearing on the possible structure of 

strike-slip regimes with components of shortening or dilation across them, i.e. 

transpressional or transtensional fault zones, respectively. In transtensional fault zones 

the normal stress will be low, producing stress conditions favourable for the 

development of P shears. Transpressional fault zones will have a much greater normal 

shear stress which may possible lead to an increased dominance of R shears, (which 

due to their geometry and kinematics will tend to narrow the fault zone), to the P 

shears (which have the opposite tendency), resulting in a bulk shortening across the 

fault zone. 

Transpressional and transtensional strains also have theoretical and 

experimental (Sanderson and Marchini, 1984; and Naylor et al., 1986) effects on the 

geometry of the secondary fault sets and associated structures (see section 1.2). 
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Additional secondary fault sets associated with strike-slip fault zones 

Strike-slip faults commonly have an offset and/or overlapping geometry producing an 

en echelon arrangement in map view. These stepovers are a fundamental feature along 

strike-slip faults of varying lengths (Aydin and Nur, 1985). They have been described 

by several authors in tenns of dilational and antidilational jogs (Sibson, 1985), and 

compressive and tensile bridges (Gamond, 1987), on a larger scale as pull-apart basins 

(see section 1.1.5.1) and push-ups or pressure ridges (see section 1.1.5.2) at 

extensional and compressional stepovers, respectively. Where the rupture of these 

bridges has lead to the fonnation of fault bounded lenses and slabs they are described 

in terms of duplex nomenclature (Woodcock and Fischer, 1986), see figure 1.7. Unlike 

their dip-slip counterparts, strike-slip duplexes are commonly not affected by strong 

anisotropies parallel to the fault orientation, resulting in the braided and apparently 

disorganised nature of many strike-slip fault zones (ibid.). Where strong vertical 

anisotropies are found (e.g. mylonitic fabrics at seismogenic depths, or vertical 

bedding), far more consistent fracture geometries are produced, albeit more complex. 

Swanson (1988) has recognised several new fracture sets from stepover zones along 

the Fort Foster Brittle Zone, southern Maine, USA. These extensional and 

contractional duplexes contain all the fractures previously noted by Logan et al., 

( 1979), plus several extra. The resultant composite fracture pattern is considerably 

more complex than a simple shear system, but it still maintains its overall asymmetry to 

the fault zone and sense of shear (figure 1.8). The fractures can be segregated into 

conjugate sets and related faults that correspond to simple shear, and fault parallel 

contraction and extension, as follows: 

Typical Riedel faults (R and R') are present with associated oblique Tl 

fractures, which jointly are related to layer parallel simple shear. A second set of 

conjugate shears is present, the X-X' set, that together with T2 extensional fractures, 

accommodate layer parallel extension (see figure 1.9). Shear fractures similar to the P 

shears of Logan et al., ( 1979), fonn lateral ramp structures between the layer parallel 
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restraining bend 
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Figure 1.7 Nomenclature related to strike-slip duplexes (from Woodcock and Fischer, 1986) 

Fig. 1.8 

Fig. 1.9 

Layer Parallel Extension Layer Parallel Shortening 

X' T2 X 
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X X' 

~ 
Complete fracture assemblage 

T2 
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R'X'T1 P A 

Simple shear assemblage 
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Contractional Stab Duplex Extensaonal Slab Duplex 

~,~~ ~<~~~"~ 
- P-ramP 

Figure 1.8 Incremental orientations of fracture sets formed in slab duplexes. Fracture sets associated 
with layer parallel extension, layer parallel shortening, and simple shear are shown. A composite 
diagram of potential fracture sets features in the centre of the figure. 
Figure 1.9 Idealised fault slab-duplex configurations for contractional and extensional slab-duplexes. 
(Both figures taken from Swanson, 1988) 
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faults, and fonn in two orientations. The third conjugate shear set, the P-P' shears 

(Tchalenko, 1968) with associated T3 extensional fractures that lie parallel to the -

layering, are related to layer parallel shortening. A second lower angle P* shear 

commonly links layer parallel surfaces. Y shears cut through the duplexes fonning 

multiple slab duplexes (Swanson, 1988). 

The spatial distribution of the various fracture sets within the slab duplex 

depends on the overstepping configuration of the main layer parallel shear surfaces. In 

a dextral system, left-stepping contractional duplexes develop the P-P' fracture sets, 

with leading or trailing P* or P shear fractures, that together accommodate layer 

parallel shortening (figure 1.9). Right-stepping extensional duplexes will develop the 

X-X' shear set and T2 tension fractures, with leading and trailing Rand X' shears, that 

together accommodate layer parallel extension (figure 1.9). Simple shear related R-R' 

and T 1 fractures may also develop in the slab duplex. 

Cross-cutting relationships within extensional duplexes suggest that duplex 

development occurs by alternating sequences of R-R' and X-X' shear fractures. 

Assuming that the shear fractures are each conjugate Coulomb shear sets, the 

maximum principal stress directions can be constrained to lie at -48° to the main fault, 

bisecting the R-R' set, and at -85° bisecting the X-X' (figure 1.1 0). Changes in the 

stress orientation, and the observed cross-cutting relationships indicate cyclic stress 

field variations. Slip along the dominant fault segments and rupture of the linking R 

shears in response to the pre-failure stress orientations result in localised decoupling of 

the stepover zone, which effectively eliminates shear stress on the layer parallel 

segments. This would in tum lead to later adjustments on X-X' shear sets in response 

to post-failure stress conditions (figure 1.1 0). Strain hardening effects along the 

stepover lead to a build up of shear stress, until the cycle begins again (Swanson, 

1990). 
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Figure 1.10 Local stress configurations for a left stepping releasing offset between sinistral strike

slip fault segments where principal stress orientations bisect sets of conjugate Coulomb shear 

fractures: (a) pre-failure stress orientations at offset during slip on weaker layer-parallel segments; 

(b) failure of intervening competent slab by early R-R' ruptures; and (c) post-failure stress orientations 

during additional fault parallel extension along late X-X' ruptures. (From Swanson, 1990). 
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1.1.4 En echelon folding 

Typically, en echelon folds are distributed in relatively narrow, persistent zones above 

or adjacent to the master fault or principal deformation zone. However, they can fonn 

in regions of broad deformation between two strike-slip faults, such as occurs in the 

East Bay Hills of the San Francisco Bay region (Aydin and Page, 1984). The 

overstepping relationship of the en echelon folds reveal the direction of shear along the 

adjacent zone of principal displacement; right-stepping folds form in zones of dextral 

shear, and left-stepping folds form in sinistral shear regimes (figure 1.11 ). 

En echelon folds develop during the initial stages of deformation in clay model 

experiments, becoming dissected by R shears during further increments of shear, to 

form half-anticlines and synclines (Wilcox et al., 1973). With increased displacement 

on the master fault, the early folds become complexly faulted in association with a 

general widening of the deformation zone and a progressive extension of the en 

echelon folds away from the master fault (figure 1.12). The largest amplitude folds are 

found at depth adjacent to the main fault, while the least developed occur at the 

margins of the deformation zone (Harding, 1976). 

In ideal simple shear1 the crestal traces of incremental en echelon folds should form an 

angle of 45°, in plan view, to the fault zone. However, in practice, en echelon folds 

form lower angles to the fault zone of I 0-35° (Harding and Lowell, 1979). This is not 

unexpected as the first increments of strain will initiate folding at 45° to the fault, with 

an interlimb angle of 180°. The presence of the folds will not be realised until the bulk 

strain has tightened the folds, and in doing so will have rotated the fold axis toward the 

fault. Little (1992) documents a consistent relationship between a clockwise rotation 

of the strike of the fold axial planes, and fold appression adjacent to the Boarder 

Ranges Fault system, southwest Alaska. Theoretical curves have been constructed to 

describe the relationship between fold appression and the orientation of the axial plane 

strike, for different strain paths (ibid.), i.e. simple shear, transtension, and 

transpression (figure 1.13). The strain path followed by the folds control the initial 

orientation of the folds and the rate of subsequent rotation and 
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San Andreas Faull 

Figure 1.11 Multiple right-stepping en echelon folds in Plio-Pleistocene lake beds along the southern 
end of the San Andreas fault near the Salton Sea (re drawn from Sylvester, 1988). Box summarises 
the relationship between fault/folds, for fault movement determination. 

Incipient 
atrike-&bp 
zone 

Early stage 

@Potential anticlinal closure 

Intermediate stage 

......_ Approx. relative 
,...... plate motion 

Mature stage 
strike-slip zone 

' Basin mar~in 

Faults: ~strike-slip 'normal ~reverse 

figure 1.12 Schematic diagrams of en echelon fold development, and their relationship to the rest of 
the structural assemblage (re drawn from Harding and Lowen, 1979) 
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appression (Sanderson and Marchini, 1984). As can be seen in figure 1.13, a 

transpressive strain path requires a smaller strain (')'-value) to produce a fold with the 

same apparent rotation as that formed by simple shear or transtension. In the latter, 

folds initiate at angles greater than 45° to the fault zone (Sanderson and Marchini, 

1984; and Little, 1992). Other variables may effect the fold orientation and the 

interlimb angle, i.e. heterogeneities, variations in the strain rate, and the rigidity or 

anisotropy of the multilayers. 
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Figure 1.13 Graph displaying the relationship between fold appression. and the strike of the fold 
axial plane. Theoretical curves representing simple transpressional, and transtensional deformation 
paths are shown. Stippled area represents a simple shear deformation path. Shear strain (y) marked 
along thin dashed lines. (Modified from Little, 1992) 

In three dimensions, the axial surfaces of en echelon folds in a sedimentary 

sequence above a rigid basement fault, are nearly vertical, and parallel to the fault at 

basement levels. At higher levels the surfaces flatten upward and twist away from the 

fault strike (Gamond and Odonne, 1984; and Koral, 1983), with the fold axes 

generally plunging away from the zone of principal displacement (Harding and 

Tuminas, 1988). These observations imply that the observed angular relationship 
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between the en echelon fold axis and the master fault may depend on the depth of local 

erosion, as well as the amount of internal rotation of the shear zone (Sylvester, 1988). 

Bearing this in mind, alternative evidence is desirable, such as the secondary fault 

geometries and incremental structures (Little, 1992), to characterise the strain path of 

en echelon fold arrays developed in such a scenario. 

1.1.5 Stepovers along strike-slip faults 

Stepovers are fundamental features along strike-slip faults (Aydin and Nur, 1985), the 

geometry of which is the most important factor governing localised uplift or 

subsidence (Sylvester, 1988). If the sense of stepover or fault bend is the same as the 

sense of fault slip (i.e. right overstep along a dextral fault), crustal extension, 

subsidence and pull-apart basin (Burchfiel and Stewart, 1966) or rhomb-shaped graben 

(Freund, 1971) formation occurs. Where the sense of overstep contrasts with the shear 

sense, crustal shortening occurs with the formations of push-ups (Aydin and Nur, 

1985) or pressure ridges (Aydin and Nur, 1982). The following section aims to 

describe; (l) the basic types of stepover, and their formation; and (2) the geometry of 

secondary structures associated with these stepovers. 

1.1.5.1 Pull-aparts and rhomb grabens 

Extensional overstepping en echelon faults or releasing bends (Crowell, 1974b) fonn 

sites of local extension and basin formation along strike-slip faults. In general, these 

structures have a rhomboidal geometry, exceptions to which occur during the early 

stages of basin evolution. 

Controls on the shape and geometry of pull-a parts 

Numerous field and theoretical studies have been made regarding the shape and 

geometries of pull-apart basins. The majority of models suggest that the basin width is 

controlled by the original separation of the en echelon master faults, or the width of 

the restraining bend, while the length of the basin is related to the amount of 

displacement along the master fault (Rodgers, 1980; and Mann et al., 1983). The 

simplest model of basin formation suggests that the dip-slip faults at each end of the 
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basin were once a single fault prior to extension, therefore the length of the pull-apart 

basin equals the displacement along the master faults (Crowell, 1974b; Quennell, 1959; 

and Freund & Garfunkel, 1976). However, mathematical modelling by Mann et al., 

(1983) predicts that this is a gross simplification of the geometry of a basin initiating 

with zero fault overlap (see below). Aydin and Nur (1982) suggest that there is a scale 

independent relationship between the length and width of pull-aparts in map view, 

forming an approximate aspect ratio of 3:1. For this relationship to be valid, it 

necessitates an increase in the width of the basin relative to the increase in 

displacement along the master faults. It is proposed that this is achieved by a 

coalescence of neighbouring pull-aparts, as they increase in length, or new faults form 

parallel to existing ones, aiding the accommodation of large displacements. However, 

the observed aspect ratio of a pull-apart may vary widely, depending on whether the 

structural, physiographic or active dimensions are measured (Sylvester, 1988). 

Although the process of basin capture does occur, (e.g. the coalescence of small 

adjacent pull-aparts may occur along releasing bends with large widths during the early 

stages of evolution), the aspect ratio of the main basin is still controlled by the initial 

bend width and total displacement (Mann et al., 1983). 

Evolution and structural patterns of pull-aparl basins. 

The structural and sedimentary evolution of pull-apart basins has been modelled for 

various fault configurations. Mann et al., (1983) has produced a generalised 

continuum model for the formation of basins that nucleate at releasing bends along 

fault segments. In this model the initial opening produces "spindle shaped" basins 

defined by oblique transverse faults (Ben-Avraham and Garfunkel, 1986) that connect 

the ends of the master faults (figure 1.14b). Along releasing bends with large widths or 

master fault separation, several pull-aparts may nucleate across the bend. Increased 

displacement along the master faults produces pull-aparts with 'lazy-S' shapes at 

sinistral releasing bends, and 'lazy-Z' shaped basins at dextral bends (figure 1.14c), at 

this stage, deep topographic depressions form. Again, for larger bend separations the 

extension can be achieved by two or more smaller pull-aparts that relay extension 
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Initial fault geometry: 
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C) 
'Lazy-S' shaped basin .u-., 
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E) Extreme development 

Figure 1.14 Continuum model for pull-apart basin development. (a) Pull-aparts nucleate at releasing 
fault bends along faults which are oblique to the direction of relative plate motion. (b) Spindle-shaped 
pull-aparts nucleate on releasing bends. (c) Continued offset produces "lazy S" basin geometries 
("lazy Z" in a dextral system); extension across bends with a large separation may be relayed by two 
or more buried pull-aparts. (d) Continued offset of lazy S-shaped basins produces rhomb-shaped 
grabens; buried pull-aparts within bends with large fault separations may coalesce. (e) With steady 
offset rhomb-shaped grabens can develop in to long narrow troughs, within which at some point, 
short spreading ridges and oceanic crust will initiate. (From Mann et al., 1983) 
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across the basin. Continued strike-slip offset along the master faults results in the 

lengthening of the 'lazy-S or z• basins, forming rhomb-shaped grabens (figure 1.14d). 

As the width of the basins are fixed by the initial bend width, continued displacement 

results in an increase in the aspect ratio, which can occur to extremes, (figure 1.14e) 

e.g. the Cayman trough, which has a fault overlap of 1400km, and a fault separation of 

1 00-150km producing an aspect ratio of 1 0. The general aspect ratio of less than 4 

(Aydin and Nur, 1982), probably reflects the tendency of pull-aparts to become 

deformed by the rapidly changing conditions common to strike-slip environments 

(Mann et al., 1983). 

Mathematical modelling of pull-apart basins formed between overstepping en 

echelon faults by Rodgers (1980), and Segall & Pollard (1980), has allowed the 

displacements, stresses, and strains for fault configurations with varying degrees of 

fault overlap and separation, to be calculated. These models indicate that the basin 

depth and shape is directly related to these two parameters. In en echelon fault 

configurations where the overlap is between zero, and equal to the separation of the 

master faults, a basin forms that possesses a single deep-elongate depositional centre, 

the axis of which forms a line joining the ends of the master faults (figure 1.15). In 

models where the fault overlap is greater than the fault separation, two depositional 

centres form adjacent to the extensional tips of the master faults, the maximum depth 

of which is less than basins where the overlap is less than, or equal to the separation, 

given the same amount of displacement along the master faults (figure 1.15). These 

models also predict that uplift occurs at the outer-compressional tips of the master 

faults, the spatial extent of which is also related to the master fault configuration. 

The pattern of predicted secondary fault formation is also intimately related to 

the master fault configurations, producing a complex distribution of faults for the 

various en echelon fault arrangements. When the master fault overlap is less than or 

equal to the fault separation, normal faulting occurs at the centre of the developing 

basin, and synthetic strike-slip faults form the basin bounding transverse faults (figure 

1.16a & b). Where the overlap of the master faults is greater than the fault 
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Figure 1.15 The vertical displacement in em of the ground surface, associated with extensional 
stepovers along en echelon strike-slip faults (from Rodgers 1980). In the upper pair of diagrams fault 
overlap is Jess than or equal to the separation. In the lower pair, fault overlap is greater than the 
separation. 
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Figure 1.16 Potential fault pattern related to various en echelon fault configurations (from Rodgers, 
1980). In the upper pair of diagrams fault overlap is less than or equal to the separation. In the lower 
pair, fault overlap is greater than the separation. N denotes normal faults, R denotes reverse faults. 
Single lines represent potential sinistral fault orientations. 
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separation, normal faults form two distinct zones near the ends of the basin, with 

strike-slip faults forming in the centre of the basin (figure 1.16c & d). As can be seen 

from figures 1.16a to d, the normal faults start out on the basin side of the master 

faults as strike-slip faults, that transform into normal faults as they are followed into 

the basin. This suggests that oblique-slip faulting occurs at the internal ends of the en 

echelon master faults. 

The predictions of the secondary fault distributions and kinematics have 

important implications for the development of pull-aparts. If it is assumed that during 

the accumulation of displacement, the master faults propagate along strike, the 

predicted basin geometries and fault patterns, as seen in figures 1.15 and 1.16, can be 

used to predict the structural implications of the development of this hypothetical pull

apart basin. 

If the faults start with a zero overlap, normal faulting will occur in the centre, 

with strike-slip faults forming at the ends of the basin. As the master faults propagate 

to an overlap of 1/2 the fault separation the systems remain the same, except that the 

zone of normal faulting becomes enlarged. When the fault overlap becomes equal to 

the separation, the kinematics and geometry of the basin begin to change. Two distinct 

depocentres begin to form near the ends of the master faults with strike-slip faulting 

occurring in the centre. Assuming the orientations of the initial secondary faults have 

remained similar to their initiation positions, they represent a pre-existing fabric. The 

stress associated with the new overlapping fault configuration will act on this existing 

structural fabric, probably resulting in its reactivation, even though the stress system 

may be quite different, therefore, some of the faults must change from strike-slip to 

normal, and vice-versa (figure 1.17). 

This model suggests an extremely complex kinematic history for the basement 

fault patterns, with changes in the sense of shear on many of the faults. Such complex 

changes in the kinematics of transverse faults has been described at the northern end of 

the southern basin of the Dead Sea graben (Ben-A vraham et al., 1990), where 
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Miocene - Early Pleistocene nonnal faulting has been replaced by Late Pleistocene -

Recent strike-slip. 
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Figure 1.17 Sketch of possible pull-apart basin evolution based on figures 1.15 and 1.16. Numbers 
refer to locations of the ends of the master faults. Zones labelled 'N' are zones of normal faulting. 

Floors to pull-apart basins 

Pull-apart basins can be divided into two groups with regard to their style of floor. 

One group fonn true rifts that extend at depth to the hot rocks of the upper mantle, 

similar to those found above an oceanic spreading ridge. These basins are fonned by 

attenuation of the upper crust during extension, which is followed by the forceful 

upwelling of hot mantle material. These basins lack true basement, however, the lower 

sediments do lie above a volcanic sill and dyke complex, but this is seen to intrude the 
. 

older sediments. The Salton Sea basin is an example of such a basement. (!<err c... K•clwe.lt 1qq1) 

The second group of pull-aparts are those who floor along a detachment or 

decollement surface. This style of basin can be further divided into two subgroups: I) 

Those that detach against flat lying tectonic surfaces, and 2) those that bottom out 

unconfonnably along older basement, or large rheological contrasts within a 

sedimentary sequence. Seismic profiling and other geophysical observations, show that 
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much of southern California is underlain by sub horizontal tectonic surfaces (Cheadle 

et al., 1986). These surfaces may possibly represent the decollements on which crustal 

blocks may pull-apart, or rotate. (J .C. Crowell, unpub. data). The Vienna basin 

(Royden, 1985), and of particular relevance to the thesis, the Dead Sea basin 

(Manspeizer, 1985) terminate on detachments at shallow crustal levels. Seismic 

profiles across the Amaziahu fault, a major transverse fault in the Dead Sea basin, 

show the fault has a spectacular listric geometry (ten Brink and Ben-Avraham, 1989). 

The fault surface bends abruptly as it intersects an extensive evaporite layer, which 

effectively decouples the formation of the pull-apart basin in the overlying sedimentary 

fill, from the deformation occurring in the underlying basement (figure 1.18). 

Sedimentation related to pull-apart basins 

Many basins are typified by high sedimentation rates, rapid facies changes, abrupt 

thickening of sedimentary sequences over short distances, numerous unconformities 

which reflect syntectonic sedimentation, and the presence of locally derived, skewed 

fan-bodies of fault margin breccia facies representing talus detritus or alluvial fans 

(Crowell, 197 4a, 197 4b; Mitchell and Reading, 1978; Hempton et al., 1983; Dunne 

and Hempton, 1984; Nilsen and McLaughlin, 1985). 

The most distinctive stratigraphic feature of pull-apart basins is the extreme 

thickness of onlapping sedimentary sequences relative to their area. This occurs due to 

the migration of the depocentre by means of syndepositional strike-slip faulting 

(Crowell 1974b, 1982a). The centre of deposition migrates in the direction opposite to 

that of strike-slip movement of the basin, so that as the basin lengthens over time, 

sediments are deposited in an overlapping "venetian blind" arrangement (Crowell, 

1982a, 1982b; Hempton and Dunne, 1984). The Hornelen Basin of western Norway 

has an areal extent of less than 1,250 km2, but it has a stratigraphic thickness 

approaching 25km in a basin 60-70km long, by 15-25km wide. The true maximum 

vertical thickness of the succession at any one point, is probably less than 8km (Steel 

and Gloppen, 1980). 
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Figure 1.18 Interpreted migrated seismic sections across the Amaziaha fault, displaying its 
spectacular listric nature. Sub-horizontal segment of the fault runs along a Pliocene evaporite 
horizon. The hatched areas probably represent salt pockets. (Taken from ten Brink and Ben
A vraham, 1989). 

Thrust fault 

Pressure ridge or 'Push-up' 

Figure 1.19 Schematic diagram of a compressional overstep between en echelon strike-slip faults, 
forming a pressure ridge, or push-up. (Adapted from Ramsay and Huber, 1987) 
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1.1.5.2 Pressure ridges, push-ups and restraining bends 

Where the sense of shear and overstep along a strike-slip fault differ, a localised area 

of compression exists, resulting in significant uplift (Aydin and Page, 1984). Due to 

the reduced hydrocarbon potential of compressional oversteps, detailed experimental 

and field descriptions of their structure and kinematics is sparse in comparison to their 

extensional counterparts. The compression within these stepovers may be 

accommodated by pressure solution surfaces and cleavages (Moore, 1963; and Segall 

& Pollard, 1980) or folds, thrust faults, and possibly secondary strike-slip faults (Sharp 

& Clark, 1972; and Aydin & Page, 1984), see figure 1.19. As with extensional 

overstepping en echelon faults, the orientation at the time of initiation of these 

secondary structures is strongly influenced by the geometry of the en echelon master 

faults, i.e. overlap, separation, and length. Considering the stress orientations present 

in a compressional overstep with a fault overlap equal to the fault separation (Segall 

and Pollard, 1980), and assuming the contractional structures will form perpendicular 

to the maximum compressive stress, the average angle of folds and reverse faults at 

initiation is approximately 65° to 75° to the strike-slip master faults (Aydin and Page, 

1984). In order to accommodate the shortening within the compressed stepover, the 

reverse faults should dip toward the compressed domain. In addition, reverse faulting 

and I or folding may occur parallel to the overlapping segments of the master faults 

(ibid.). In general, the orientation of secondary structures within a compressed 

overstep will be approximately 90° from those developed within extensional oversteps 

along the same fault zone (Aydin and Nur, 1985). 

Restraining bends along strike-slip faults result in compression and uplift. The 

style of deformation, however, is very different from that associated with en echelon 

oversteps. As mentioned above, the orientation of secondary structures formed at 

pressure ridges is dependent on the state of stress at the fault tips, whereas, 

deformation at a restraining bend predominantly results from convergent strike-slip or 

transpression. The strain associated with these transpressional restraining bends is 

commonly manifest as flower structures, e.g. the Mecca Hills, southern California 
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(Sylvester and Smith, 1976). These structures will be discussed more thoroughly in 

section 1.2.3. 

1.1.6 Tectonic rotations in strike-slip environments 

The governing constraints on distributed deformation within a strike-slip environment 

are kinematic: the fault bounded blocks must remain in contact with each other and the 

deformation must fit its surroundings. As a result, blocks moving laterally without 

significant internal deformation will rotate about a vertical axis (Garfunkel and Ron, 

1985). This combination of strike-slip faulting and block rotation provides an efficient 

mechanism of deformation compared with other types of coeval deformation, as 

modest offsets and rotations change the linear dimensions of faulted areas by several 

tens of percents (ibid.). 

Tectonic block rotation about a vertical axis has recently been recognised as a 

common, if not essential, manifestation of large scale shearing of the brittle crust. This 

phenomenon was suspected or postulated to occur along the American Pacific coast 

and Dead Sea region by many authors during the middle 19601s to 19701s. Jones et al., 

( 1976) noted a 90° contrast between the structural grain of the Catalina and Santa 

Cruz islands of off-shore southern California, compared with the Sierra Nevada 

foothills. Although the authors speculated that tectonic rotation was responsible, no 

sense of rotation was specified. Inspired by these early indications of block rotations 

Luyendyk et al., ( 1980, 1985) applied paleomagnetic techniques on Neogene volcanic 

rocks in the western Transverse Ranges in an attempt to determine the amount and 

sense of rotation. The results of these studies confirmed the clockwise rotation 

inferred by Hamilton and Myers (1966), but more importantly it determined the 

dimensions of the domains of rotation. Luyendyk et al., ( 1980) proposed a geometric 

model, albeit a parochial one, to describe these rotations, the essentials of which are: 

(I) that the blocks are defined by antithetic cross faults between a zone of dextral 

shear, that slipped simultaneously with the block rotation, (2) the amount of slip on the 

antithetic faults is related to the width and amount of rotation of the block (or vice-
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versa), (3) the rotation causes the assemblage of blocks to extend within the shear 

couple resulting in compression at their ends. This compression is manifest as folds, 

thrust I reverse faulting and crush zones, ( 4) triangular or deltoid basins open at the 

junction of the rotated and unrotated blocks. Garfunkel and Ron ( 1985) concur with 

the initial two points of the Luyendyk et al., ( 1980) geometric model. 

McKenzie and Jackson (1983) modelled tectonic rotations using a velocity 

gradient model, deriving an instantaneous rotation rate equal to wl2 for small blocks 

'floating' in the deformation zone, where w is the vorticity of the ductile substrate. In 

such a model the continuous, ductile deformation at the middle and lower crustal 

levels controls the displacement rate, strike, and finite rotation of the brittle faults. 

Lamb ( 1987) modelled tectonic block rotation about vertical axes as isolated rigid 

ellipses within a highly viscous fluid, assuming a constant relative motion vector across 

the deforming zone. The model has some major differences to a zone of distributed 

deformation in the upper crust as: ( 1) continental crust is not a highly viscous fluid, (2) 

the rigid blocks are not elliptical, and may not maintain the same shape, and (3) rigid 

blocks are not in isolation, but are in contact with neighbouring blocks I inclusions. 

However, continental crust may approximate to a viscous fluid containing rigid blocks 

if the block size is much smaller than the overall zone of deformation, and the motion 

of the blocks is mainly driven by shear stresses at their base, as suggested by 

McKenzie and Jackson (1983). This modelling shows that the rate of rotation varies 

with time and is dependent on: the instantaneous orientation of the block, the aspect 

ratio of the block dimensions, and the relative plate motion vector. A constant rate of 

rotation is found only for near circular blocks, with a rate equal to wl2. Nelson and 

Jones (1987), use this model to describe the deformation style within the Las Vegas 

Valley Shear Zone (L VVSZ), where the amount of rotation, derived from 

paleomagnetic studies, displays a smooth increase toward the L VVSZ. This indicates 

that deformation is occurring via many small-rigid blocks, relative to the width of the 

deformation zone, unlike the large blocks modelled by Luyendyk et al., 1980; and Ron 

et al., 1984. 
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Where elongate blocks are 'pinned" or mechanically connected to the edges of 

the zones, the rotation rate of the blocks is equal to the velocity gradient across the 

zone i.e. equal to w, which is twice the rate of blocks driven mainly by viscous forces 

at the bottom of the blocks (McKenzie and Jackson, 1986). This 'pinned block" 

model, raises a number of important points with regards to the kinematic and tectonic 

environment expected in zones of block rotation. The model predicts that for 

deformation to become distributed across a zone and not concentrated along a single 

strike-slip fault, there must be a component of shortening or extension across the 

deformation zone, i.e. transpression or transtension. Slip along the block bounding 

cross faults is predicted to be oblique, displaying antithetic strike-slip, relative to the 

main faults, and a dip-slip component of motion, synthetic to that occurring across the 

deformation zone. Therefore, the cross faults may display antithetic transpressive or 

transtensive strain, depending on the type of stress applied across the main 

deformation zone. The analogue model does not allow fmite rotations of the blocks to 

occur due to their totally rigid nature, but rotation can be accommodated by internal 

deformation between the blocks and the rigid plates on either side of the deformation 

zone (figure 1.20). 

Pivot 

Deforming 
a 

Zone 

Antithetic Transpression 

2Ta 

~Wa 

:000. 

' ' .. , 

Sinistral Transpression 

.. ', 
' 

/ 
.. , ______ _ 
, , 

Figure 1.20 'Pinned' block model for block rotations about a vertical axis (modified from McKenzie 
and Jackson, 1986). The model has been re drawn to display block rotations induced by a 
transpressional regime. Wa - Component of oblique motion parallel to the deformation zone, 2Ta 

component normal to zone, 2T rate of crustal thickening. Large black arrow is the slip vector between 
the adjacent blocks. Dashed lines represent position of zone margins and blocks after displacement 
and rotation.· - -
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Variations in the relative motion vectors between two plates can have fundamental 

effects on the deformation style of strike-slip systems. Studies of the Neogene block 

rotations within the Transverse Ranges of California, where significant changes in the 

relative plate motion vectors occurred, have important implications for block rotations 

(Luyendyk, 1991 ). During the Middle Miocene, a transtensional regime existed along 

the deformation zone, this resulted in the rotating blocks rapidly becoming 

disconnected from the zone boundaries. As the zone widened the blocks effectively 

"floated" within the deformation zone being driven by the viscous forces along their 

bases, hence they possessed a rotation rate of w/2 (McKenzie and Jackson, 1983, 

1986). In the Pliocene, the relative plate motion vector changed, inducing transpression 

along the deformation zone. The resulting component of shortening reconnected the 

blocks to the zone boundaries, effectively 'pinning" the blocks, therefore increasing 

the rotation rate equal to w (McKenzie and Jackson, 1986). As well as these 

fundamental changes in the control on block rotation rates, transtensional deformation 

zones develop elongate sedimentary basins parallel to both the zone boundaries and 

the antithetic transtensive cross faults (Luyendyk, 1991 ). 

A consequence of block rotation is the space problems that occur between the 

ends of rotating blocks and the deformation zone boundaries. Regions of shortening 

and dilation form at opposite comers of rotating blocks due to the block edges 

impinging and "pulling-away", respectively from the zone boundaries. Where the 

rotating block "pulls-away" from the unrotated zone boundary, deep-triangular or 

deltoid transrotational basins form (Luyendyk et al., 1980 and Luyendyk, 1991 ). 

However, basins need not form at all extensional joins between rotated and unrotated 

blocks. In Southwest Japan, plutonic intrusions have occupied these triangular gaps 

adjacent to the Median Tectonic Line (Kanaori, 1990). Freund (1974) has shown how 

these spaces may also be accommodated by splay faulting, indeed Horns (1991) 

observed pervasive extensional normal faulting at the location of an extensional block 

comer, at Pt. Afio Nuevo, along the San Gregorio fault zone, California The adjacent 

compressional block comer is characterised by numerous reverse faults, due to the 
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impingement of the block against the fault zone boundary. Thrusting, folding and 

crush zones may also accommodate shortening at these compressional block comers 

(Luyendyk et al., 1980). 

A further consequence of block rotations, is the requirement for the block 

bounding cross-faults to rotate. Based on simple mechanical considerations the 

amount of fault rotation permissible under a stationary stress field is limited to between 

20° and 45°. Consequently, block rotations larger than 40° to 45° require more than 

one set of faults to accommodate the rotation (Nur et al., 1986). 

Rotating blocks possess a variety of aspect ratios, but their scale in the ~ertical 

dimension is rarely seen. Intuition suggests that these blocks must detach on some 

decollement surface in order to facilitate the rotation, therefore, rotating crustal blocks 

must be flakes (Oxburgh, 1972), slabs, or crustal panels (Dickinson, 1983). In a 

homogeneous brittle crust it would be expected that the decollement horizon would 

locate along the brittle-ductile transition. The slab geometries of crustal blocks form 

due to weak horizons or variations in the underlying lithologies (Brown, 1928), or 

changes in pore fluid pressures which cause modifications in the applied shear stress 

on the sides of the block, which produces a torque and eventually leads to block 

break-up (Horns, 1991). Terres and Sylvester (1981) observed elongate blocks of soil, 

originally defined by plow-cuts, rotated between 20° and 40°, forming deltoid 'basins• 

and slipping along anithetic cross faults, as a result of dextral shear during the 1979 

Imperial earthquake. The rotation had detached at a mechanical anisotropy 15cm 

below the surface: the dry-soil I wetted-soil interface. A similar mechanical analogy 

was observed by Wilson ( 1960), where large slabs of ice rotated in a simple shear zone 

between the Filchner Ice shelf and the Antarctic mainland. Horns ( 1991) suggests from 

seismic reflection data, and observed exposures, that the shallow-dipping faults of 

flower structures may act as decollements for rotating blocks along the San Gregorio 

fault zone. In a similar style much of the Transverse Ranges is detached on deep, blind, 

northward dipping thrust faults (Webb and Kanamori, 1985). 
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Many authors suggest that rotating blocks will have a thickness : width ratio of 

I: I (ibid.), however, this relationship is probably fortuitous, as it appears to be the 

rheological variations within the crust, either stratigraphic or structural, that controls 

the vertical dimensions of the blocks 

Transpressional tectonics 

1.2.1. Introduction 

Transpression is a term that has become increasingly widely used within the published 

literature. However, as with its extensional counterpart transtension, it is often abused 

in reference to the tectonic setting being described. The term, therefore, requires 

defining in order to prevent any misconceptions in its use within this text. 

Harland ( I97I) defined transpression in terms of stress, as those regimes which 

"operate in zones with oblique compression", this definition unfortunately infers an 

association with oblique collision processes due to its application to the Caledonian of 

Spitsbergen, which is clearly not the exclusive tectonic setting of transpression zones. 

Sanderson and Marchini (1984) redefined transpression as " ..... a wrench or 

transcurrent shear accompanied by horizontal shortening across. and vertical 

lengthening along, the shear plane". This definition is non specific to any one tectonic 

setting, and provides a basic description of the gross fmite strain state within a 

transpressional environment. The complexity of the strain within natural examples of 

transpression zones makes the evaluation of the principal stress direction extremely 

difficult, therefore the finite strain concept is far easier to elucidate. For these reasons, 

the author will use transpression as defined by Sanderson and Marchini in the ensuing 

chapters. 

More succinct definitions such as "convergent strike-slip" (Sylvester, 1988), 

allows transpression to be invoked wherever zones of uplift or shortening occur as a 

result of strike-slip deformation, e.g. pressure ridges or push-ups developed between 
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overstepping en echelon faults (Erdlac, 1990). As discussed in section 1.1.5, pressure 

ridges and pull-apart basins formed between such en echelon fault configurations, are 

the result of fault tip stress interactions, and not due to a component of shortening 

across a strike-slip fault, therefore, transpression should be reserved for continuous 

fault planes displaying a component of shortening. Where stepovers are achieved by 

restraining bends, transpression may be used, as the fault segment is subject to strike-

slip plus a component of shortening, fulfilling the required strain state. These localised 

structures are referred to as secondary transpressive structures (Harland, 1971 ). 

1.2.2 Modelling of transpressive strains 

Sanderson and Marchini ( 1984) produced a general model for transpression by 

factorizing the deformation into its pure and simple shear components. The 

assumptions made were that the deformation occurs in isotropic rock and that no 

volume change or lateral extrusion occurs along the zone, therefore, shortening across 

the zone must result in vertical thickening to conserve volume. Figure 1.21 defines the 

factorisation and the parameters used in this model; a.-1 specifies the shortening across 

the zone, or more specifically the ratio of the deformed to original width of the zone; 

a. the vertical stretch; and 'Y the shear strain parallel to the zone. 

z 

f 

"-/" 
~ 

v 
Figure 1.21 Transpression geometry, showing deformation of a unit cube by shortening parallel toY
axis and shear parallel to X-axis. Volume is conserved by lengthening parallel to Z-axis (vertical). 
from Sanderson & Marchini, 1984. 
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Finite transpressional strain 

This factorisation process (equation 1, ibid.) enables the strain to be defined in terms 

of two factors a andy. By assigning different values to the parameters a-1 andy the 

finite strain can be evaluated for varying amounts of shortening and shear strain (figure 

1.22). Obviously, as seen in figure 1.22, the shape of the strain ellipsoid varies with a-

1: when a-1 < 1, k-values less than 1 are produced; an a-1 = 1, results ink-values equal 

to 1; and when a-1 > 1, k-values greater than 1 result. Although figure 1.22 gives the 

shape of the finite strain ellipse, it does not show the variations in the orientation of the 

principal strain axis, one of which is always vertical. For simple shear (a-1 = 1) theY 

axis is vertical, for a-1 < 1 the vertical axis maybe X or Y, therefore the XY plane is 

always vertical, but at an angle of 8' to the deformation zone boundary (see figure 

1.23). Where a-1 > 1, either Z or Y may be vertical, therefore the XY cleavage plane 

converts from vertical to horizontal. Observations of figures 1.22 and 1.23 reveal an 

important concept, that of lineation switching. In figure 1.22, the X-axis switches from 

vertical to horizontal with increasing shear strain (y) where the solid lines 'bounce' off 

the b-axis of the graph, within the oblate field of the Flinn plot. This relationship is also 

seen in figure 1.23. However, it is important not to assume that these lines are 

deformation paths, as a multitude of superimposed deformation paths can combine to 

produce any given finite strain, hence the progressive formation of structures within 

the deformation zone will depend on the actual deformation path followed. In order to 

fully understand transpressional kinematics further assumptions about the deformation 

must be made. 

Incremental transpressional strain 

Constant incremental strain - By letting y ~ 0 and a-1 ~ 1 the incremental strain can 

be approximated, allowing the deformation path resulting from a constant incremental 

strain to be modelled (see Sanderson & Marchini, 1984). This allows plots of constant 

incremental deformation paths to be plotted (figure 1.24). As with the finite models 

presented above, the swapping of the principal strain axes can occur along paths of 
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Figure 1.22 Flinn diagram showing axial ratios a .. XJy and b=Y/Z produced by transpressional 
model for various values of u- 1 (continuous lines) and 'Y (dashed lines). (Sanderson & Marchini, 

1984) 90 
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Figure 1.23 Plot of orientation of long axis of strain ellipse in horizontal plane (0'). Continuous lines 

indicate X-axis horizontal, dashed lines indicate X-axis vertical. Note for u- 1 values between 0.8 and 
0.4 stretching axis (X) switches from vertical to horizontal with increasing 'Y· (Sanderson & Marchini, 

1984). 
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constant incremental strain (swapping occurs where path 3 'bounces' off the b-axis in 

figure 1.24). The Flinn diagram also shows a change from low k-values and X vertical, 

to higher k-values and X horizontal. The presence of axis swapping indicates that the 

finite stretching direction may be norma] to the incremental stretching direction, 

resulting in a complex relationship between finite strains (c1eavages and stretching 

lineations) and incremental strains (fractures). The presence of these incremental 

strains, help to constrain the deformation path followed. 

a=X/Y 

2 

high k-values 
X horizontal 

3 

b=Y/Z 

low k-values 

X vertical 

4 5 6 7 8 9 

Figure 1.24 Constant incremental strain paths for transpressional model. Values on paths are 
numerical labels derived by dividing incremental shear strain by (1-a·1). Note the switching of axes 
indicated by 'bouncing' of strain path off the b-axis for path number 3 (from Sanderson & Marchini, 
1984). 

Simple Transpression - Deformation paths are probably determined by two 

mam factors, the external boundary displacement of the system, and internal 

rheological variations, such as differential layering (Sanderson & Marchini, 1984). 

Harland ( 1971) suggested a scenario in which the deformation can be quantified in 

terms of boundary conditions, which involves two rigid boundaries approaching one 
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another obliquely. Assuming the deforming material is isotropic_,the finite strain can be 

determined at various increments of shortening (S), and hence the deformation path 

may be defined. The parameters a-1 and 'Y used in the constant incremental strain 

model, can be expressed in terms of S for any given value of ~ (see figure 1.25a), 

where ~ is the angle between the relative movement vector and the rigid boundary. 

Figure 1.25b shows the deformation paths for the various values of ~- Again, very 

similar results to the constant incremental strain model are obtained, with axis 

swapping occurring in cases where ~ is small. 
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figure 1.25 (a)Simple transpressive model involving the movement of rigid blocks (diagonal 
shading), defining S and ~- (b) Strain paths for Simple Transpression model. Continuous lines are 

strain paths for labelled ~ angles, dashed lines indicate amount of shortening across the zone (a- 1), 

a=XIY. b=YIZ. (Both figures taken from Sanderson & Marchini, 1984). 

39 



Chapter 1 

The relative magnitudes of the principal incremental strain axes for simple 

transpression can be determined by a geometrical construction (McCoss, 1986), 

assuming the constant volume model of Sanderson and Marchini, (1984). This is 

achieved by measuring the angle (A) between S and the zone normal (figure 1.26a). 

The incremental relative magnitudes, orientations and ellipsoid shapes are a function of 

A, and are outlined in figure 1.26b. 

In figure 1.26b eight precise values of A can be recognised, which bound 

distinctly different tectonic regimes (A = 0°, 180°, the sinistral and dextral systems 

where A = 90°, and where A = 70.5°, 109.5°), which define more concisely terms 

such as compression, extension, and strike-slip. These critical field boundaries can be 

followed into the finite strain field where the angles remain stable with increasing 

strain, except where A = 70.5° (ASTP or axially symmetric transpression angle) and 

109.5° (ASTT or axially symmetric transtension angle), these boundaries migrate 

slowly towards 90° with increasing strain. The field of fmite general compression 

expands from its incremental limits with increasing strain, at the expense of the general 

strike-slip field, which contracts. This has two important consequences on the 

kinematics and deformation paths of transpressional zones. First, if the direction of 

displacement is constant, A will be fixed, therefore only within the regime of 

incremental general strike-slip (70.5° < A <1 09.5°) can axes switching occur, and then 

at only fairly high strains, except where A is very close to the ASTP angle. The angle 

between S the relative motion vector and the zone boundary (McCoss, 1986), or the ~ 

angle (Sanderson and Marchini, 1984), when lineation switching occurs are very 

similar, i.e. low (see figures 1.25b and 1.26b). Secondly, the stability of a regime with 

a constant motion direction suggests that if axis switching does occur it is more likely 

to be due to changes in the displacement direction relative to the zone boundary than 

progressive strain. Therefore, at high crustal levels where incremental strains 

dominate, the latter scenario is probably occurring. Where multiple switches occur 

within a zone of superimposed incremental strains, it suggests that the relative 

displacement direction is varying slightly about the critical ASTP angle. Using such 
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Figure 1.26 (a) The geometric construction for ASTP transpression, modified from McCoss, 1986. 
See text for detail. (b) A graphical solution for determining the characteristics of (a) the incremental 
strain ellipsoid and (b & a) the finite ellipsoid. The orientations where axially symmetric 
transpression and transtension occur are shown by ASTP and ASTI, respectively. A.; is the venical 

principal quadratic elongation. A1 > "-2 are horizontal principal strains. emax is the maximum finite 
extension. Shaded quadrant highlights transpressional regime. Note that lineation switching occurs at 
ASTP where A.; crosses A1. (Re drawn from McCoss, 1986) 
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construction methods as that of McCoss (1986) the deformation style of a zone may 

be characterised with either some knowledge or assumption of the boundary condition. 

Secondary structures 

Incremental strain axes are parallel to the principal stress axes, therefore, the 

orientation of faults, fractures, and folds at initiation can be predicted (figure 1.27). 

The effect of a-1 on the orientation of the maximum compressive stress axis for 

transpression (a-1 <1), relative to strike-slip (a-1=1) and transtension (a-1>1) is 

clearly seen in figure 1.27. Where a-1<1 the maximum compressive stress direction 

forms an angle greater than 45° to the deformation zone. The secondary structures are 

arranged about this maximum compressive stress, therefore, folds and thrusts will 

initiate at angles much lower to the zone than in simple shear, and extensional 

structures will form at higher angles. Subsequent rotation as the strain progresses will 

modify these original orientations as with simple shear, but their rate of rotation will 

depend on the bulk strain path. 

,. A 

C';I;F N~~· 
T{f;C E~ ~ ~ 

Figure 1.27 Diagram to show the initiation orientations of fractures and associated structures for a 
Simple Transpression model (top), compared with simple shear (centre) and transtension (bottom). C, 
'compression axis'; E, 'extension axis'; N, normal faults; T, thrust faults; R, R', conjugate Riedel 
shears; and F, fold axis. (Redrawn from Sanderson & Marchini, 1984). 
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1.2.3 Complex transpression and kinematic partitioning 

In recent years the identification of regions of partitioned strain and kinematics 

(Harland, 1971; Woodcock et al., 1988; Holdsworth & Strachan, 1991; and Sanderson 

et al., 1991) has become intimately associated with 'complex' transpressional 

deformation. The models of transpression presented above all assume that deformation 

occurs within an isotropic medium, however, as areas of natural deformation are rarely 

homogeneous the effects of previous anisotropies and rheological variations must be 

taken into consideration. 

Strain or kinematic partitioning results from the resolution of the oblique 

relative plate motion vector, into its two components perpendicular and parallel to the 

plate margin, with shortening structures forming parallel to the margin and strike-slip 

along the deformation zone (Woodcock et al., 1988). The style of partitioning tends to 

be manifest into two types defined by the chronological relationship of kinematics: (1) 

Spatial strain partitioning, and (2) Temporal strain partitioning. 

Spatial strain partitioning - 'Spatial strain partitioning occurs when the resolved 

components of the oblique relative motion vector are manifest as synchronous, 

spatially distinct domains of deformation.' 

Modelling of constant incremental and simple transpressive strains (section 1.2.2) does 

not predict the synchronous development of zone normal shortening structures, and 

zone parallel strike-slip. Instead the deformation paths predict a gradational change in 

the fmite strain ellipsoid relative to the increasing shear strain, with lineation switching 

occurring at specific points for given deformation paths (see figures 1.24 & 1.25b). 

However, Holdsworth and Strachan (1991 ), and Strachan et al., (1992) provide 

persuasive evidence for the coeval formation of spatially partitioned strain within NE 

Greenland, but the presence of a possible pre-Caledonian shear zone architecture may 

be responsible for this deformation style (Holdsworth, R.E., pers. comm.). The 

influence of pre-existing basement structure has been invoked by Woodcock et al., 

(1988) to explain the structure and kinematics observed across north and west Wales, 
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suggesting that even the partitioned component of shortening can be further 

partitioned into discrete zones of simple and pure shear. The most obvious present day 

examples of spatial strain partitioning are trench-linked strike-slip faults (e.g. 

Segmangko system, Sumatra), which accommodate oblique subduction (Woodcock, 

1986). The central Californian region also displays synchronous fault parallel thrusts 

and folds, accommodating 8mm-yr displacement, and a narrow (3-lOmetre wide) 

strike-slip fault accommodating 43mm-yr (San Andreas fault). Mount & Suppe (1987) 

have demonstrated that the partitioned nature of the San Andreas fault in this region is 

due to the very low shear stress of the main fault zone, relative to the Coast Ranges, 

which causes the principal stresses to be almost perpendicular and parallel to the fault. 

In regions that have suffered prolonged transpressive deformation vertical anisotropies 

can form that possibly result in spatial strain partitioning. However, the time aspect 

involved in such a deformation history leads to the introduction of temporal strain 

partitioning. 

Temporal strain partitioning- 'Temporal strain partitioning describes the change 

in deformation style from one resolved component to the other, with respect to time, 

in a region suffering a constant incremental transpressive strain'. 

Unlike spatial partitioning, temporal strain partitioning is predicted in the 

transpressive models of Sanderson & Marchini (1984) and McCoss (1986), and is 

dependent on the specific deformation path followed, i.e. depends on the values of y 

and a-1 (see figures 1.24 and 1.25b). In these cases, the orientation of the X-axis of 

the finite strain ellipsoid transforms from vertical to horizontal (Sanderson & Marchini, 

1984) or vice-versa (McCoss, 1986) at high values of shear strain (y). As mentioned 

earlier, the progressive development of vertical anisotropies such as slaty cleavage or 

the rotation of incompetent layers into the vertical by tight folding (Harland, 1971) can 

result in the introduction of the strike-slip component of the transpressive strain. 

Therefore, the individual rheology of different layers within a sequence can cause 

partitioning, as can the changing rheological behaviour of a deeply exhumed rock. 

Within the southern Bohemian massif (Fritz & Neubauer, in press) recognised that at 
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lower crustal levels ductile deformation accommodated the transpressive stress as a 

large reverse shear zone, but with increased exhumation more brittle behaviour 

resulted in partitioned strain along discrete fault zones, with plate boundary parallel 

and perpendicular components. Another obvious cause of temporal strain partitioning 

is a change in the incremental strain either due to a change in the relative plate motion 

vector, or a change in the value of a-1 (shortening across the zone) due to 

irregularities along the deformation zone, with time. 

It is quite evident that the parameters controlling the partitioning of 

transpressive strains, are varied and are often of a transient nature. The definitions 

presented are for ideal situations, however, it appears that neither phenomena is 

mutually exclusive of the other. Commonly a lack of certainty regarding the relative 

chronologies of the kinematics within the deformation zone, means that quite often it 

is not known if the partitioned components occurred simultaneously or were 

differentially distributed or indeed formed in sequence. Perhaps a more reasonable 

expectation would be a complex distribution of deformation modes that possess an 

intricate chronological relationship. This is likely to be especially true for brittle upper 

crustal deformation, which due to its very nature, induces extremely heterogeneous 

strain, and is strongly effected by local anisotropies. 

1.2.4 Transpression and associated en echelon folding 

In simple shear the incremental shortening direction (Z;) is at 45° to the shear plane, 

therefore, folds would be expected to initiate normal to this direction. However, 

documented en echelon folds commonly form angles much less than 45° to the main 

fault zone (Moody and Hill, 1956; Harding, 1973; and Wilcox et al., 1973). Folds 

formed in an ideal simple shear regime would not be expected to display a 45° 

relationship to the zone as at initiation the folds will possess an interlimb angle of 

180°, only after rotation and fold appression, will the· fold develop enough to become 

recognised. To achieve an angle of less than 25° (Moody and Hill, 1956) in a simple 

shear system requires high shear strains (y > 2) which corresponds to 60% shortening 
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across the folds, a value which is clearly in excess of that observed in southern 

California. A transpressive model, however, allows fold initiation at angles <45°, and 

requires a much smaller amount of shear strain to achieve a given amount of rotation 

when compared to simple shear. Figure 1.28 shows the angle of initiation (8') of folds 

and their subsequent rotation due to increasing shear strain 'Y· 

30 

20 

simple transpression 
10 f3=45° 

0 
0 1 2 

Figure 1.28 Initiation angle of fold axis within a simple transpression model, assuming the fold 
developed as a material line during the first increments of strain and then rotated passively. F, refers 
to fold axis. XY, cleavage plane. (Redrawn from Soper, 1986). 

Theoretical curves have been constructed by Little (1992) to describe the 

relationship between fold appression and the axial plane strike. The construction 

procedure assumes that the hinges of ideal chevron-shaped folds initiate and 

subsequently behave as passive material lines or they migrate in order to remain 

parallel to the XY plane of the finite strain ellipsoid. Using the equations of Sanderson 

and Marchini (1984) curves can be derived for 'simple transpression' and constant 

incremental transtension (figure 1.13). The behaviour of certain fold types at higher 

strains, i.e. chevron folds tend to lock up at an interlimb angle of 60°, can result in 

curves with very similar slopes from their initiation orientations to their tightly 

appressed, and rotated equivalent. Therefore, independent incremental strain data is 

required to discriminate a true ideal transpressive path. It is important, however, not to 

overlook the possibility of strain variations, rigidity differences, or anisotropies within 

the folded layers which may exert an influence over the orientations of folds (Little, 

1992). 
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Folds and cleavage transection 

Cleavage transection has become synonymous with transpression, m particular 

clockwise transection with sinistral transpression in the British Caledonides (Soper & 

Hutton, 1984; Soper et al., 1987, Woodcock et al., 1988). Soper (1986) modelled 

cleavage transection as a series of incremental pressure solution cleavages, that 

sequentially become passively rotated, which are all superimposed upon a fold whose 

hinge initiated and •passively• rotated prior to the first increments of cleavage 

development. This model produced a range of transection angles up to 10°, however, 

it requires specific assumptions regarding fold and cleavage development. Soper 

himself recognised the importance of the timing between the two structures and their 

effect on the sense of transection, with both axial planar and anticlockwise transection 

possible in a sinistral event. If cleavage development initiated during layer parallel 

shortening and continued into the buckling stage an axial planar relationship would be 

formed, or if the cleavage development was confined to the early layer parallel 

shortening an anticlockwise transection angle would be formed. 

The model of fold development considered has a strong bearing on the 

modelled transections. Sanderson and Marchini (1984), and Soper (1986) considered 

fold hinges to be incremental strain markers, that become passively rotated with 

further increments of strain, i.e. the hinge does not remain parallel to the fmite XY 

plane, and in fact rotates faster. However, as mentioned in the section on 

transpression and associated en echelon folding, and also by Treagus and Treagus 

(1992), no fold would be visible after the first increments of strain, and that only after 

considerable layer shortening and fold development by an •active• hinge migration 

mechanism (the fold hinge tracks the XY plane of the fmite strain ellipsoid) does the 

fold hinge become fixed, and hence passively rotated. Thus the fold axis will only lie 

slightly closer to the zone margin than the cleavage (approximately 1-2°). Therefore, 

the transpressive deformation of horizontal layers cannot account for folds transected 

by cleavage by as much as 10° (ibid.). 
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The above models assume non-dipping, strike-parallel beds. By considering 

inclined layered systems a variation in transection relationships can be modelled, which 

are controlled by two different cases of inclined layers: ( 1) dipping layers that strike 

parallel to the zone margin, and (2) layers oblique in both strike and dip. (All the 

models described are sinistrally transpressive) 

In the first case, the XY plane (cleavage) trace forms anticlockwise of the fold 

axis developed within the various dipping layers, opposite to the relationship 

commonly associated with sinistral transpression. Also the transection angle increases 

relative to the amount the layer dips (figure 1.29a). In the second case, dipping layers 

that strike oblique to the rigid plate margin display a wide range of discordance in 

transection angles and sense, between the expected fold axes and the XY plane (figure 

1.29b ). The orientation of the layering to the XY plane is critical, and divides fields of 

anticlockwise, axial planar, and clockwise transection. Figure 1.29c summarises the 

fields of transection sense, which distinguish fields in which poles to bedding will 

develop folds with either anticlockwise or clockwise transection. Hence, it is 

theoretically possible to get the complete variation of relationships, however the first 

case of simple dipping layers is more likely to be the •normal• situation for the closure 

of a sedimentary basin. 

These models assume a constant transpressive incremental strain history. If the 

strain path varies from shortening dominated transpression to strike-slip dominated 

transpression, a clockwise transection angle (or vice-versa) can form in a sinistral 

event. The resultant finite strains can be the same as for constant incremental 

transpressive strains, but the relationships between the coaxial and non-coaxial 

microstructures evidence the strain paths followed (figure 1.30). 

The consistency of the sense of cleavage transection in the British Caledonides 

is strong evidence for its use in determining the sense of transpression, however, 

theoretical evidence suggests that it should not be used to assume the sense of 

transpression without additional supporting kinematic and structural data (Soper, 

1986; and Treagus & Treagus, 1992). 

48 



Chapter 1 

Al Cl Bl 

Figure 1.29 The effect of inclined and oblique layering on cleavage transection, with respect to a 
sinistral transpressional deformation. Transpression vector id bold arrow, transpression zone margin 
(a) east-west. Solid line is XY plane, broken curves circular sections. (a) Planes striking parallel to 
zone margin, dips 20°,40° and 60°. Fold axes (solid dots) are cutanticlockwise by the XY plane. (b) 
Planes striking 20° to the zone margin, otherwise as (a). Fold axes are transected clockwise. (c) Fields 
for which bedding poles would have anticlockwise transection of fold axes by XY plane (ACL 
shaded), and clockwise (CL, blank). Positions for examples in (a) and (b) indicated by broken lines, 

labelled a.b. (from Treagus ~ Treagus, 1992) 

4 

Figure 1.30 Three deformation histories producing an identical finite transpressive strain. (a) 
Incremental simple transpression. (b) initial pure shear to later simple shear, producing clockwise 
transection of folds by the XY plane. (C) Opposite deformation path, with a late reversal of shear 
direction (producing anticlockwise transection of folds by the XY plane). (after Harland, 1971) 
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1.2.5 Flower structures 

Transpression zones located within the upper levels of the crust are commonly 

characterised by a distinctive structural geometry. This commonly comprises a central 

vertical zone which rises upward and outward along convex-up faults. The geometry 

of these structures, as imaged in seismic sections, lead Wilcox et al., (1973) to 

describe them as •positive flower structures•, which have become known simply as 

•flower structures•. Although Sylvester (1988) argues that the term •palm-tree structure• 

more adequately describes the geometry of the structure, the more widespread 

acceptance of the meaning of •flower structure• prompts this author to employ its use 

within this text. Transtensional structures will not be discussed in any detail within the 

following chapters. However, it is important to distinguish the nomenclature of the 

transtensional counterpart of the flower structure as the plethora of botanical jargon 

could cause some confusion. The term •negative flower structure• (Harding & Lowell, 

1979) is redundant without its •positive• variation, therefore the more descriptive term 

•tulip structure• (Naylor et al., 1986) is adopted, although it is not meant to imply a 

circular structure in plan view. 

The type example of a flower structure was described by Sylvester & Smith 

(1976) along one of a series of secondary transpressive structures or restraining bends 

along the San Andreas fault, namely the Mecca Hills (Sylvester, 1991 ). Within the 

central Mecca Hills, the San Andreas, Skeleton Canyon, and Painted Canyon faults dip 

60°-70° toward the central uplifting block in the deepest exposures. The faults flatten 

upward into short, oblique-slip (presumably) thrust faults beneath rocks of the central 

block that have been thrust between 50 and 200 metres upon the footwall of the 

adjacent block (see plate 1.2 and figure 1.31. Convex upward strike-slip faults are 

common elsewhere, e.g. the Alpine fault (Wellman, 1955), and San Jacinto fault 

(Sharp, 1967). Nappe displacements of 1km along the •Big Bend• section of the San 

Andreas (Davis & Duebendorfer, 1987), and 5km in West Spitsbergen (Craddock et 

al., 1985) represent some of the largest observed shortening displacements. Strachan 

et al., (1992) describe a mid-crustal tro.r\s?r~55tofl zone in which the .zone normal 
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Plate 1.2 View looking NW along the Painted Canyon fault , Mecca Hills, southern California. The 
shallowing upward geometry of this fault is quite evident. 

200011 Mecca Anticl ine 

1000 

Figure 1.31 Structural cross section through the central Mecca Hills, southern California. The 
shallowing upward geometry of the bounding faults near the surface are shown. Box indicates the 
view shown in plate 1.2 above. (Re drawn from Sylvester & Smith, 1976). 
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movement amounts to tens of kilometres, and recognised that movements of this 

magnitude cannot be accommodated easily by a steeply-rooted shear zone, therefore, 

in examples where large shortening displacements are observed the steep shear zone I 

fault is envisaged to root onto a low-angle regional detachment I thrust fault. 

As highlighted above, the cross-sectional geometry, and in the case of the 

Mecca Hills, the three dimensional geometry of flower structures are relatively well 

understood. However, as these structures are commonly identified on seismic sections, 

or unfortunately within rocks rheologically unsuitable for the preservation of kinematic 

indicators, the dynamic element to such structures is seldom known. 

1.3 Sense of movement determination in a brittle deformation regime 

The determination of the direction and sense of movement from fault surfaces is a 

basic requirement for the study of upper crustal tectonics, and is indispensable in 

establishing the kinematics of individual faults, and the regional evolution. This is 

especially true when the sense of slip cannot be determined from offset of geological 

structures. Observation of the minor structures (sense of movement criteria) associated 

with slickensides and slickenlines, the presence of secondary structures associated with 

faults, and the adjacent wallrock deformation can be used independently, but 

preferably together, to infer the relative sense of movement on brittle faults. When 

considering the larger scale, the asymmetry of structures formed in simple shear, or for 

that matter transpressional and transtensional regimes can be used to determine the 

sense of movement (i.e. the skewed distribution of fault populations, en echelon 

folding, and general fold vergence). 

1.3.1 Slickenside striations 

The morphology and cause of lineations on a slickenside fault surface may be varied, 

depending on the lithology, and seismic behaviour of the fault. Figure 1.32 illustrates 

several slickenside lineations, and their sense of movement interpretation. 
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Figure 1.32 Types of slip parallel movement indicators found on slickensides. (a) Asperity 
ploughing, (b) accretion steps and fibres, (c) Tails or ridges of erosion-sheltered material on the 
down-slip side of hard asperities, (e) Oblique spikes on slickolite surfaces. (Adapted from Means, 
1987) . 

Asperity ploughing (Means, 1987) 

This is represented by furrows, grooves or scratches on slickenside surfaces, which are 

produced by resistant protuberances on one side of a pair of surfaces moving relative 

to one another, scoring a groove in the opposite block. The grooves terminate in the 

final ploughing element position, the end of which points toward the movement of the 

missing fault-wall. Excavation of the groove may be accomplished by brittle or ductile 

(i.e. pressure solution) processes (figure 1.32a). 

Erosional sheltering 

When a surface containing hard asperities becomes eroded by fault movement, 

elongate ridges are preserved behind the hard particle parallel to the slip direction. The 

leading face of this hard particle may display minor pressure solution effects, especially 

within carbonate rocks (figure 1.32c). 
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Crystallisation linked to steps along the fault surface 

These steps generally form perpendicular to the striation on the fault surface, the risers 

to which face the direction of movement of the missing block (figure 1.32.b and plate 

1.3). These accretion steps (Petit, 1987) produce potential voids that can either be 

filled by elongate crystals of calcite (in the case of limestones) during slow dilation of 

the voids (Durney & Ramsay, 1973), or blocky euhedral calcite precipitation in rapidly 

opened voids, i.e. microseismic events. Individual accretion steps can display a 

combination of these crystal growth styles, indicating a change between aseismic and 

seismic motion. 

Slickolites (Bretz, 1940) 

Slickolites are similar to stylolites in being dissolution surfaces, however, unlike 

stylolites the spikes and columns of slickolites point sub parallel to the slip surface, and 

parallel to the direction of movement. The solution spikes and columns observed on a 

slickolite surface point in the direction relative motion of the block containing them 

(figure 1.32d). 

1.3.2 Sense of movement structures involving secondary fractures 

An important feature commonly observed along fault planes is the presence of 

secondary repeated fractures of the same type, that possess a regular angle with 

respect to the mean fault plane. These structures were reviewed by Petit ( 1987), 

whose nomenclature will be employed in this sub-section unless otherwise stated. This 

terminology is based mainly on Riedel-type experimental nomenclature, to describe the 

geometrical position of the fractures, but does not imply that the fractures can be 

explained mechanically by Riedel experiments. 

These secondary fractures can be divided into three groups based on fracture 

type (striated or non-striated), and orientation: group T, includes repetitive tension 

fractures and no shear fractures, group R, all synthetic shear fractures of R orientation, 
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and group P, all types of secondary shears of P orientation. Within groups R and P 

morphological differences can be distinguished by use of a second letter: 0, if only R 

or P secondary shear fractures are present; M, if the main or mean fault plane is 

completely striated; and T, if non-striated secondary fractures are present (see figure 

1.33a to c). 

T criteria: 

The characteristic of T criteria movement sense indicators is the mean fault plane is 

fully striated, and intersected by fractures that are dominantly perpendicular to the 

striations, which are themselves non-striated. These 'tensile' fractures make an angle of 

30° to 90° to the main fault plane, can be open or filled, and their intersections with 

the main fault either planar or curved. In the latter case the fractures tend to be 

perpendicular to the main fault, forming a crescent shape, the 'horns' of which point in 

the direction of movement of the missing block (figure 1.33a and plate 1.4). These 

directly correspond to 'crescentic fractures' associated with glacier striations. 

R criteria: 

R criteria indicators are characterised by a mean fault plane which is joined by repeated 

secondary striated fractures, which describe a small angle to the fault wall, and have a 

R shear orientation. Again, their intersection with the main fault is virtually 

perpendicular to the slip direction (figure 1.33b ). 

RO (R only) type. There is no mean striated fault plane. The R shears are very 

closely and regularly spaced, displaying a slight striation. The fault displays a serrated 

profile, due to the intersection of R and R' secondary shears. This type is uncommon. 

RM type. The main fault plane is fully striated, with irregularly distributed R 

shears of various size intersecting the fault surface. 
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Figure 1.33 (a) - (c) Main types of criteria 
for sense of motion determination based on 
repetitive secondary fractures. (a) T -criteria, 
(b) R-Criteria, and (c) P-criteria. See text 
for details. (Adapted from Petit, 1987) 
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P criteria: 

Characteristically the fault plane is always incompletely striated, but where developed, 

it appears on the side of asperites facing the movement of the missing block (figure 

1.33c). The formation of this criterion implies very small slips, otherwise the striation 

would have become more extensive and could have led to a fully striated slickenside. 

Again, this category can be split into two types: 

PT type. Planar non-striated surface clearly dip into the fault-wall at a small 

angle, where as the P shears are well developed and strongly striated. Some of the 

more strongly striated P surfaces show shallow steps which always ascend in the 

direction of the missing block. 

PO (P only) type. The non-striated (protected) surfaces of the asperites (lee 

side) do not project into the fault-wall. The P shears display only a weak striation. 

Bridge structures 

In addition to the secondary fractures associated with slickensides and main fault 

planes, Gamond (1987) describes a fundamental relationship between first-generation 

en echelon faults at any scale. Depending on the sense of fault stepover compressive or 

tensile bridges form. Small compressive bridges provide criteria based on the increase 

in the linear density of solution seams at the stepover relative to the en echelon fault 

trace, while tensile bridges yield criteria based upon vein fillings (figure 1.34). On the 

large scale these features manifest as •push-ups• and pull-apart basins. 
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Cleavages and cataclasites 

The development of pressure solution cleavages in association with simple shear 

produces a characteristic asymmetric relationship with the fault plane, the vergence 

relationship between which indicates the sense of fault movement. Pressure solution 

cleavages can be strongly developed in coherent cataclasites, and especially in the 

narrow zones of residual clay squeezed between the two fault planes (Petit, 1987). 

Small elongate clasts of wallrock are commonly found within these clayey fault rocks, 

with their long axes lying within the cleavage planes. The clast sides parallel to the 

cleavage planes display dissolution effects, therefore, these clasts have been modified 

by the same incremental strain that forms the cleavage, allowing them to be used as 

sense of movement indicators. 

Plate 1.3 Accretionary calcite steps along fault plane. Moitas Venda, Portugal. 
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The Mesozoic to Cenozoic evolution of the Lusitanian 
basin 

Introduction 

The Lusitanian Basin forms a narrow coast-parallel outcrop of Mesozoic sediments, 

that extend approximately 250km from Coimbra in the north, to Setubal, south of 

Lisbon. These outcrops do not exceed 60km in width, and form a total onshore area of 

23,000 km2• The Lusitanian Basin sensu stricto, is characterised by an inverted zone of 

Mesozoic sediments which are flanked by Tertiary sub-basins to the NW and SE, the 

Monte Real filled mainly with Paleogene sediments, and the Lower Tagus basins 

possessing Neogene fill (figure 2.1 ). The boundary between the Monte Real and 

Lusitanian basin is the Nazare fault, a major tectonic feature associated with the 
(f~vre. :J..2) 

Nazare submarine canyon (see later\ Between the Lusitanian and the Lower Tagus 

Basins the boundary is marked by a more complex series of faults that have facilitated 

basin inversion~ namely the NNE Vila-Franca fault immediately north of Lisbon, then a 

less distinct N-S trending fault toward the Montejunto Range, where the NNE trend is 

regained and can be followed for 60km along the Serra dos Candeeiros fault zone to 

Leiria. The northern end of the Serra dos Candeeiros fault displays a complex 

geometry of distributed deformation due to the interaction of large fault bounded 

blocks. These latter faults and their southern extensions at Serra de Montejunto 

constitute one of the major basin structures, the Serra de Montejunto - Candeeiros 

(SMC) fault system. 

The aim of this thesis is to characterise the kinematics and style of deformation 

responsible for basin inversion along this fault system, with particular interest in two 

areas~ the Candeeiros block region immediately east of Porto de M6s; 
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Figure 2.1 General geological map to show the distribution of the Lusitanian Basin sensu stricto, and 

the adjacent Tertiary sub-basins 
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Figure 2.2 Generalised structural map of the Lusitanian Basin, displaying the dominant NNE and NE 
trends to the structure. Figure also displays the component structures of the S. de Montejunto
Candeeiros fault system. To the south, the Montejunto massif, joined by the NNE trending Cereal ~s. 
dos Candeeiros faults, to the Candeeiros fault block. 
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and the southern termination of the Serra dos Candeeiros fault, at Serra de Monte junto 

(figure 2.2). This inversion is, however, only the last event in a long history of tectonic 

activity since the inception of the basin. The Lusitanian basin has undergone two 

phases of continental rifting, and latterly two phases of inversion, including the subject 

inversion event which occurred during the Late Miocene to Recent. The combination 

of structural, sedimentological, -and seismic stratigraphic analysis by many authors 

( Guery, 1984; Wilson, 1988; Montenat et al., 1988; Leindfelder & Wilson, 1989; Ellis 

et al., 1990; Wilson et al., 1990), has provided a relatively comprehensive study of the 

basin development, emphasising the influence of pre-existing Hercynian basement 

structures (Wilson et al., 1990). The following chapter summarises the essential 

sedimentary and structural features of the basin during its evolution, to determine the 

basin architecture prior to inversion, and in doing so, provide a reference point when 

assessing the influence of pre-existing structures and lithologies on the structural style 

and kinematics of the inversion event documented in later chapters. 

2.2 The plate kinematics of Africa-Europe since the Middle Jurassic 

The relative plate motion vectors between Africa and Europe/Iberia have ultimately 

been responsible for the geological evolution of the Portuguese region, therefore, a 

discussion of the plate kinematics is essential. The most recent reconstruction of the 

palaeopositions of the African plate relative to the European plate was conducted by 

Dewey et al., ( 1989). This model is based on a re-identification of all magnetic 

anomalies in the Late Cretaceous to Tertiary sequence (Anomalies 1-34) in the North 

and Central Atlantic Ocean, combined with bathymetric maps and SEAS AT altimetry 

data and gravity images. The model also introduces geological data from the western 

Mediterranean region which correlates with the plate motions, allowing the relative 

motion paths of the plates to be adjusted and smoothed (figure 2.3), unlike the earlier 
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Figure 2.3 Smoothed and corrected flow lines depicting the path of Africa's motion relative to 
Europe, corrections made by correlations with geological events (Dewey et al., 1989). Numbers in 
circles refer to dominant motion phase (1-6), numbers sitting off the flow lines, refer to time before 
present (Ma). 

models of Smith (1971 ), Dewey et al., (1973), Bi.~ u-Duval et al., (1977) which have 

portrayed drastic changes in Africa's motion with respect to Europe. 

Several distinct phases of relative motion can be distinguished from figure 2.3. 

During the first phase of motion, > 175 Ma until Anomaly M-0 (118 Ma), Africa 

moved sinistrally with respect to Europe, due to the differential opening of the Central 

Atlantic, while the north and south Atlantic regions had not begun separating, but were 

undergoing rifting (Pindell et al., 1988). 

Between Anomaly M-0 (118 Ma) and Anomaly 34 (84 Ma), the relative 

motion changed to a northeasterly directed compression. However, as this time period 

coincides with the Cretaceous Quiet Zone, a period when no large scale magnetic 

reversal occurred, the precise timing of this change in relative plate motion is difficult 

to establish. It was during this period that sea floor spreading initiated between Iberia 

and North America, north of the Azores-Gibraltar fracture zone. Anomaly M-0 has 
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been identified off Iberia by Group Galice ( 1979) which has been suggested to 

correlate to the J-Anomaly Ridge of off-shore Newfoundland. However, Anomaly 34 

(84 Ma) is the first clearly identifiable anomaly seen on both sides of the Atlantic, 

between the Azores-Gibraltar and Charlie-Gibbs fracture zones (Dewey et al., 1989). 

The presence of Cenomanian-Turonian aged (92 Ma) high pressure metamorphism in 

the Alps, prompts Dewey et al. ( 1989) to suggest that this age coincides with the 

observed change in relative plate motion. 

During this period of plate vector change Iberia rotated 35° anti-clockwise, as 

established by the classic work of Van der Voo ( 1969) and Van der Voo and 

Zijderweld (1971 ). However, the exact mechanism of the rotation is debatable. 

LePichon and Sibuet ( 1971 a,b) and Schott and Peres ( 1988) argue for a transcurrent 

model whereby large amounts of dextral strike-slip occurred along the Pyrenees 

during the opening of the Bay of Biscay. More radical solutions such as Galdeano et al. 

( 1989) suggest that the opening of the Bay of Biscay was due to the transcurrent 

movement of Iberia without rotation, and introduce an earlier Late Jurassic simple 

rotation of Iberia. The relative plate motion vectors of Dewey et al. (1989) derived 

from sea floor spreading evidence, appears to be more compatible with 

contemporaneous rotation of Iberia and the opening of the Bay of Biscay after the late 

Aptian, which is the proposed time of plate vector change. 

The third motion phase commenced shortly after Anomaly 30 (66.7 Ma), in the 

earliest Palaeocene. This phase is marked by a dramatic slowing of the convergence 

rate, and a somewhat variable motion. This apparent complexity of relative motion 

between Africa and Europe 'may be the consequence of the errors involved in 

combining north and central Atlantic rotation parameters" (Dewey et al., 1989). 

However, similar relative motion paths for Africa-Europe are suggested by the 

published poles of Srivastava and Tapscott ( 1986), and Klitgord and Schouten ( 1986), 

plus the motion paths of Livermore and Smith ( 1985). 

Resumption of the northward motion of Africa occurred after Anomaly 24 

(55.7 Ma), and with only minor variations between aN and NNE direction, continued 
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until Anomaly 5 (8.9 Ma), in the late Miocene. This period of motion accounts for 

phases 4 & 5 identified by Dewey et al., ( 1989). The fmal phase of motion represents a 

marked change in the relative plate motion vector, from a dominantly northwardly 

directed compression, to a northwesterly directed closure, after Anomaly 5 (8.9 Ma, 

late Tortonian to Messinian). 

The effects of these tectonic phases have been directly correlated by Dewey et 

al., to specific Alpine events in the western Mediterranean. However, only the final 

two tectonic phases effect west central Portugal and the Lusitanian Basin. Chapters 3 

and 4 discuss how these tectonic phases are manifest within the basin, whereas the 

complexities of relating continental crustal response to these relative plate motions will 

be addressed in chapter 6. 

Basin structure 

2.3.1 Basement structures 

The structural grain of the Lusitanian basin is the result of the reactivation of 

Hercynian basement structures during both the Mesozoic extensional, and Tertiary 

compressional episodes (LePichon et al., 1977; Wilson, 1988; Wilson et al., 1990). 

Therefore, a brief overview of the Hercynian orogeny and the resultant structures 

formed within the western Iberian Meseta is necessary before the Mesozoic and 

Cenozoic evolution of the Lusitanian Basin can be discussed. 

Hercynian structural architecture 

After the final closure of the Iapetus Ocean in the Mid Devonian, the tectonic 

setting of western Europe was dominated by the northerly subduction of the Proto

Tethys Ocean beneath the southern border of the Laurasian Megacontinent (Ziegler, 

1982). Several microcontinents (Austro-Alpine, Avalon, Iberia), were sequentially 

accreted at the plate boundary, causing a step by step southward migration of the 

subduction zone. Iberia collided with Laurasia during the late Early Carboniferous, and 

a zone of N-S sinistral shear (NNW -SSE in present orientation) probably linked two 
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offset zones of subduction during the latest stages of the northward displacement, 

leading to the complex shape of the Iberian part of the Hercynian fold belt. The major 

tectonic boundaries of the western Iberian Meseta are sinistrally transpressive in 

nature, as evidenced by the southern margin of the Central Iberian Zone (Sanderson et 

al., 1991 ), and suggested by the downward convergence of the bounding reverse faults 

of the 1 OOkm wide Ossa Morena Zone (Fonseca, 1989). 

The consolidation of the Hercynian fold belt was not synchronous along its 

length; by the end of the Carboniferous the mountain building process was already 

dormant in western and central Europe, but crustal shortening continued to the west 

(Appalachians) and to the east (Urals) until the end of Early Permian times (Ziegler, 

1982). This was achieved by the development of a dextral 'Megashear' zone, 10,000 

km long and 1 000 km wide, connecting the two active belts through most of the 

recently consolidated section of the orogen (Arthaud and Matte, 1977). The main 

strike-slip faults had an east-west strike, forming angles of 20-30° with the strike of the 

shear zone. These synthetic shears measure several hundred kilometres in length and 

show tens of kilometres of offset, e.g. South Atlas Fault of Morocco, and the Biscay

North Pyrenean fault. In western Iberia, a set of left lateral strike-slip shears were 

particularly well developed, with dominant directions of030° and 015°. Several dextral 

faults striking approximately 130° also originated in this period. 

Figure 2.4 shows the spatial arrangement of the principal zones of Hercynian 

basement in western Iberian and their relationship to the Lusitanian basin. These zones 

are separated by major thrusts which strike NW-SE or NNW-SSE. The Central Iberian 

and Ossa Morena zones consist of metamorphosed Precambrian and Lower Paleozoic 

rocks, where as, the south Portuguese zone consists of low-grade Upper Paleozoic 

metasediments. All the zones are characterised by two phase folding that possesses a 

NW -SE orientation. 

When the transpressional setting of the Late Palaeozoic gave way to the 

tensional regime of the Mesozoic, a vast network of strike-slip shears dissected the 

Hercynian basement of western Europe. A comparison of these trends with that of the 
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successively younger structures of the Lusitanian basin (figure 2.2), displays their 

dominance over the mechanical behaviour of the crust during the subsequent 250 

million years of Iberian geological history (LePichon et al., 1977). 

\ MaJor Thrust 

J' Late Hercynian Strike-Slip Faults 

Axial Trends of Folds 

' 1st Phase 

2nd Phase 

Figure 2.4 Sketch summarising the principal zones of Hercynian basement in western Iberia, and the 
orientation of the major Hercynian structures within the vicinity of the Lusitanian Basin. Comparison 
with structures within the Lusitanian Basin, fig. 2.2, reveals the significant control exerted on later 
deformation by basement anisotropies .(Adapted from Wilson et al., 1990) 

2.3.2 Halokinetic structures and faulting 

Broad geometry 

A structural map of the Lusitanian basin depicts a relatively simple NE-SW 

trending outcrop of Mesozoic sediments, possessing a parallel depositional axis in 

which just over 4km of sediment has accumulated. However, in the southern part of 

the basin (the Estremadura trough) this interpretation proves to be _an over-

67 



Chapter 2 

simplification, where several sub-basins are present. These basins were particularly 

active during the Late Jurassic (Wilson, 1979), one of which, the Bombarral sub-basin, 

subsided largely due to salt withdrawal during the formation of large diapiric structures 

along its flanks, whereas the Arruda and Turcifal sub-basins developed in grabens and 

half-grabens. The exceptionally thick lower Kimmeridgian sequence (>2.2km) within 

the Arruda sub-basin, which accumulated at a rate of 85Qm-m.y., suggests that the sub

basin may have in fact formed as a pull-apart basin (Wilson et al., 1990). The northern 

half of the basin also displays a salt withdrawal sub-basin, the Alcoba<;:a sub-basin, 

which represents the along-strike northern end of the Bombarral sub-basin (figure 2.2). 

Halokinetic structures 

These structures are common in the northern part of the basin, where they fonn 

NNE-SSW, and to a lesser extent, NE-SW linear structures, which mirror the trend of 

the basement strike-slip faults. The spatial distribution of these Halokinetic structures 

is probably related to the original depositional thickness of the Hettangian evaporites 

of the Dagorda formation, which was in tum controlled by the Hercynian basement 

faults that became reactivated during the initial rift phase (see 2.3). Where the 

evaporite formation was thick, diapiric structures developed over the reactivated 

basement faults, but where the formation was thin or absent the faults propagated into 

the cover sequence (Zbyszewski, 1959; and Wilson, 1988). Such an evaporitic 

structure is suggested to exist along the Torres Vedras-Montejunto anticline, which 

separates the Bombarral sub-basin (containing a thick Dagorda sequence), from the 

Arruda sub-basin (containing only thin evaporites). The onlapping and thinning of the 

formations toward the axis of the structure indicates that the Montejunto anticline 

initiated as a salt pillow (ibid.). The largest of these diapiric structures is the Caldas da 

Rainha diapir, a 35km by 7k.m, NNE trending structure that forms the western flank of 

the Bombarral-Alcoba<;:a sub-basin. 
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Faulting 

As mentioned above most of the linear halokinetic structures within the basin 

are suggested to be related to Mesozoic extensional reactivation of Hercynian 

basement faults. The major normal faults bounding the sub-basins and also those found 

in the northern half of the basin display dominant activity during the Late Jurassic and 

Early Cretaceous. Significant Late Jurassic faulting occurred to the east of the Serra 

dos Candeeiros region, along a NW -SE trend (Alvados, Minde and northwestern 

Alcanede faults), some of which are intruded by dolerite dykes that have produced 

ages of 140Ma (Willis, 1988). Transtensional motion has been suggested for the Vila 

Franca de Xira fault (Wilson et al., 1990), and by its association with the Arruda pull

apart basin, the Serra dos Candeeiros fault may also have been transtensional, with a 

dextral strike parallel component of motion (see 2.4.2). 

Miocene compressional structures 

Most of the structures already mentioned have been reactivated during 

Miocene to Recent times, and in the case of the Montejunto anticline, have undergone 

extensive deformation and modification of the original structure (Guery, 1984, and this 

work, chapter 4). In general, the Miocene tectonics of onshore Portugal can be split 

into two distinct structural styles: NNE-SSW oriented faults and salt ridges commonly 

display sinistral strike-slip motion, whereas ENE-WSW oriented structures display 

contractional or transpressional deformation. The tectonic style of Portugal during the 

Miocene has been described as a thrust and lateral ramp system, driven by a NNE 

directed compressive stress (Ribeiro et al., 1988; 1991 ). 

The continental margin of Portugal displays extensive deformation 

predominantly by three sets of faults; a NNE-SSW set displaying strike-slip motion, 

possibly transpressional (flower structure geometries) with a sinistral sense of 

displacement; a N-S trending set of normal faults that bound possible pull-apart basins; 

and finally a NE-SW set of reverse I transpressive faults. An upper Miocene 

unconformity overlies most of these structures indicating that the majority of 
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deformation occurred during the middle Miocene, however, late reactivations are 

evident (Mauffret et al., 1989) indicating that the Miocene to Recent tectonics of 

western Portugal represent a progressive, albeit waning, event. 

The tectonic interpretation of Ribeiro et al. (op. cit.) is somewhat simplistic in 

that it ignores the importance of sinistral transpression within the Lusitanian Basin, and 

the western margin of Portugal in general. It also fails to take into account the 

changing regional stress field that occurred during the Miocene to Recent. An 

alternative tectonic model for the Miocene to Recent will be presented and discussed in 

chapter 6. 

12.4 Stratigraphy 

This section deals predominantly with the Mesozoic sedimentary fill of the 

Lusitanian Basin, which represents the only onshore exposure of pre-, syn-, and post

rift sediments related to the opening of the North Atlantic. Due to the efforts of many 

workers, notably Wilson (1975, 1979, 1988, and 1990), Guery (1984, and 1986), and 

Montenat et al. (1988), the Mesozoic evolution of the basin is extremely well 

understood. In contrast, the Late Mesozoic to Cenozoic sediments have received little 

attention and therefore are poorly understood, with no modem interpretation available. 

According to Wilson et al., (1990) the sedimentary fill of the Lusitanian Basin 

consists of five mega-sequences separated by basin-wide unconformities. The mega

sequences represent two periods of Late Triassic and Late Jurassic rifting, and later 

tectonic inversion. The unconformity bounded sequences are as follows: 

Upper Triassic - Upper Callovian. 

2 Middle Oxfordian - Berriasian. 

3 Valanginian - Lower Aptian. 

4 Upper Aptian - Turonian. 

5 Uppermost Cretaceous - Miocene 

70 



Chapter 2 

Figure 2.5 summarises the Mesozoic stratigraphy within the Lusitanian Basin as 

proposed by Wilson ( 1988). The stratigraphic nomenclature shown below will be 

employed throughout this thesis. 
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Figure 2.5 Summary of the Mesozoic and earliest Tertiary lithostratigraphy in the southern part of the 
Lusitanian Basin, and the succession drilled during ODP Leg 103 (from Wilson et al., 1990). 
Formations are shown in capitals, and members in lower-case letters. Note the five unconformity 
bounded sequences: ( 1) Upper Triassic - Upper Callovian; (2) Middle Oxfordian - Berriasian; (3) 
Valanginian- Lower Aptian; (4) Upper Aptian- Turonian; (5) Uppermost Cretaceous- Miocene 
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2.4.1 Aborted rift stage 

Upper Triassic- Upper Callovian 

The basal sequence is formed of Late Triassic fluviatile sediments of the Silves 

formation which lies unconformably upon the Hercynian basement. Overlying these 

sandy marls and sandstones are clays and evaporites of the Dagorda sequence, the age 

of which is subject to argument. Montenat et al., ( 1988) assigns a Carnian age to the 

Dagorda marls based on microflora, therefore indicating that the underlying evaporites 

are Triassic in age. However, Wilson et al., (1990) assigns a Hettangian (base Jurassic) 

age for the Dagorda sequence. 

The Dagorda sequence is not uniformly deposited across the Lusitanian Basin. 
p(e>J\OIJS ly, 

As mentioned" the distribution of halokinetic structures is interpreted to represent 

thickness variations, or localised depocentres, inferred to have formed in graben or 

half-graben structures. This in tum suggests that initial rifting and subsidence started 

possibly as early as the Late Triassic with the reactivation of NNE trending basement 

faults. These same faults may also have controlled the intrusion of Triassic mafic 

volcanics which are commonly associated with the halokinetic structures. 

During the Lower to Middle Jurassic, open marine conditions prevailed across 

the Lusitanian Basin, with the deposition of marls interbedded with fine grained 

limestones. No abrupt lateral facies or thickness changes are seen in outcrop or on 

seismic section, instead, the Lower Jurassic shows a general northward thickening 

approximately coincident with the present day Atlantic coastline (Wright & Wilson, 

1984). The absence of siliciclastic input in the east of the basin, within the Coimbra, 

Brenha, and Candeeiros formations, suggests that the marine carbonate conditions 

extended into the interior of Iberia. Wilson et al., ( 1990) suggest that the facies 

distributions within the Lower Jurassic formations indicate the presence of a westerly 

dipping carbonate ramp, as opposed to an easterly inclination as proposed by Montenat 

et al., (1988), with barrier-system ooid grainstones separating lagoonal and peritidal 

facies to the east, from deeper water micritic limestones and shales of the Brenha 

formation to the west. This carbonate ramp is believed to have been located above the 
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hanging wall of an easterly dipping bounding fault on the west of the basin (op. cit.). 

Faulting does not have a significant influence on the sedimentation except for the 

Nazare fault which was active from the Middle Lias (Montenat et al., 1988). When the 

influences of the limited faulting are combined with the facies thickness and 

distribution, the Lower Jurassic sequence probably represents a regional sag due to 

thermal relaxation of the thinned lithosphere caused by the aborted Late Triassic rifting 

event, which appears to be combined with an element of extensional faulting. 

By the Middle Jurassic (Toarcian and Aalenian),resedimented carbonate and 

siliciclastics, with a northwest derivation, were appearing within the basin indicating 

that the Berlengas horst block system, presently located offshore Peniche, was active. 

The Bajocian to Bathonian shallow water carbonates of the Candeeiros formation 

result from a long term Middle Jurassic sea-level fall which affected the carbonate 

ramp (Wilson et al., 1990) 

The main control on the distribution of sedimentation during the Lower, and 

more importantly, the Middle Jurassic are the halokinetic structures, which initiated as 

early as the Toarcian along such structural lineaments as the Caldas de Rainha, Rio 

Maior/Candeeiros, and Torres Vedras salt ridges. These salt ridges formed above NNE 

and NE trending basement faults, forming steep asymmetric structures, displaying rim 

synclines along their steep eastern sides. The initiation of these salt ridges is evidenced 

by synsedimentary slumps on the flanks of the structures, and emersion of the capping 

facies. The thinning of Middle Jurassic sediments against the diapiric ridges indicate 

that the greatest halokinetic activity took place at this time (Montenat, op. cit.). 

2.4.2 Successful rifting event 

Middle Oxfordian to Berriasian 

The absence of latest Callovian - early Oxfordian sediments represents the first mega

sequence boundary ·(Wilson et al., 1990), and forms a basin wide hiatus marking the 

beginning of a new tectonic setting, related to the early stages of the opening of the 

North Atlantic. The Middle Oxfordian sediments are commonly underlain by karstified 
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surfaces (Wright & Wilson, 1987). The lower parts of the mega-sequence are 

characterised by abrupt changes in facies and thickness, indicating the presence of 

localised fault and halokinetic movement. Several of the N-S trending faults, that are 

not easily related to the basement structures, subdivide the Lusitanian Basin into a 

number of sub-basins. These structures (e.g. Pragan~a, Sobral, and Alcochete faults) 

created a complex structural pattern consisting of half-grabens, as well as true horst 

and graben structures. 

The post-hiatus Caba~os formation is dominated by lacustrine carbonates, 

characterised in the Serra dos Candeeiros region by lignite horizons. The Caba~os 

formation is overlain by marine carbonates of the Montejunto formation, within which 

two types of carbonate build-ups have formed (Ellis et al., 1990): Fault controlled 

build-ups on the east side of the basin, forming relatively thin (200-500m) sequences 

over tilted fault blocks. These build-ups display well developed lateral facies zonation 

and are dominated by lime mudstones and wackestones; the second form of build-up, 

salt controlled build-ups, are seen on the northwestern margin of the basin and are 

relatively thick (500-1500m) forming as rapidly subsiding salt withdrawal basins, 

dominated by grainstones and packstones that display only gradual lateral facies 

variations. During the latest Oxfordian - early Kimmeridgian, rejuvenation of the 

Berlengas block coincided with a sudden relative sea-level rise, drowning or partially 

drowning the carbonate build-ups and depositing dominantly marine marls (Abadia 

formation) with localised siliciclastic sediments (Tojeira member) over the entire basin 

(Leinfelder & Wilson, 1989). The upper Abadia formation is characterised in seismic 

sections by southward dipping clinoforms, indicating a southward prograding slope 

system (ibid.). The Abadia formation is believed to have formed at water depths of 

200-500m (Starn, 1986), and coincided with the maximum rates of apparent basement 

subsidence (Wilson et al., 1990). 

In the Arruda sub-basin, to the SE of Montejunto, 2200m of arkosic gravel 

filled the sub-basin during the lower Kimmeridgian at a rate of 850m-m·Y·, which has 

been interpreted by Wilson et al., (op. cit.) to be a pull-apart basin. The presence of 
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NW -SE oriented dykes, and similarly oriented synsedimentary normal faults within the 

Serra dos Candeeiros region (Montenat et al., 1988), has lead Wilson et al. (1990) to 

propose a pulse of NE-SW lithosphere extension. This oblique extension is cited as the 

cause of the 'pull-apart' nature of the Arruda sub-basin, however, the sense of 

movement derived for the Montejunto fault (fig.18 in Wilson et al., 1990) is dextral, 

which clearly conflicts with the expected sinistral component of motion associated with 

such a fault configuration (figure 2.6). A sinistral system appears to explain the fault 

geometries and depositional pattern more adequately than the dextral, however, 

structures consistent with an early (late Oxfordian/Kimmeridgian) period of dextral 

transtension are present along the S. dos Candeeiros fault (section 3.2.1). In addition, 

the estimated extension direction associated with a dextral system correlates with that 

suggested by Dewey et al., 1989 (figure 2.6a). 

A 

25km 

Figure 2.6 Kinematics of the Arruda sub-basin. (A) Dextral transtensional motion (DTI)along the S. 
dos Candeeiros fault (SCFZ), as suggested by Wilson et al.. 1990 and this thesis. Arrows refer to 
suggested extension direction (Dewey et al., 1989). (B) The kinematics associated with the NE-SW 
extension indicated by Wilson et al., 1990. Sinistral transtension (STI). A, Arruda sub-basin, B, 
Bombarral sub-basin. Stipple refers to diapiric salt walls. 
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The effect of this extensional pulse was to trigger salt migration above 

reactivated basement faults during the Oxfordian and early Kimmeridgian, with fault 

movements only becoming significant in the Kimmeridgian. Stratigraphic constraint 

can be placed on age of these movements, as the Abadia formation does not thin over 

the Montejunto salt pillow or the Arruda sub-basin (Wilson, op. cit.) indicating that 

salt migration and fault movement in the Montejunto region, and along the Candeeiros 

salt ridge ceased in middle Kimmeridgian times. After the deposition of the upper 

Abadia formation thermal uplift of the basement occurred, counteracting the 

subsidence due to sediment loading. This late Kimmeridgian regressive period resulted 

in almost total emersion of the Lusitanian Basin, with the deposition of Portlandian 

aged red marls and continental fluviatile sandstones that constitute the Lourinha 

formation. The Lourinha formation has a variable thickness due to the inherited 

structure of the basin, with over 400m of sediment deposited in the Bombarral sub

basin compared with their absence or reduced thickness on the structural highs, such as 

the &pigao plateau (Montenat et al., 1988). Tectonic activity appears to have been 

restricted to the south of the basin, with erosional processes prevailing in the northern 

half of the basin (ibid.). 

By the end of this rifting event, the majority of structures presently seen within 

the Lusitanian Basin were already established (figure 2. 7). 

2.4.3 Post rift passive margin phase 

The Valanginian-Lower Aptian, and Upper Aptian-Turonian mega-sequences 

Both of these mega-sequences display very similar facies distributions, and hence will 

be discussed together. Both sequences are thin (200-300 metres) relative to their deep 

marine counterparts drilled off-shore northwest Iberia (Sibuet & Ryan, 1979; and 

Boillot et al., 1987). Onshore the sequences consist of fluviatile sands in the north, that 

became replaced to the south by marine marls and rudist limestones (Wilson et al., 

1990). Within the Serra dos Candeeiros and Montejunto study areas, these mega

sequences are undifferentiated, and in the case of the Candeeiros region the presence 
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Late Cretaceous age volcanics and plutons 

Diapirs and salt ridges 
Jurassic faults 

Olistoliths and breccias along ~ 
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and evaporitic Triassic facies 
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figure 2.7 Mesozoic structural framework of the Lusitanian Basin, at 80-70Ma (Late Cretaceous). 
Boxes highlight the southern Montejunto region, and the Candeeiros block region. Note that the 
major structures of the S. de Montejunto-Candeeiros faults system are already defined. (Compiled 

from Montenat et al., 1988; and Wilson et al., 1990). 
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of the Neocomian (i.e. Valanginian-Lower Aptian) mega-sequence is uncertain. 

However, in both regions the sequences lie unconformably on strata ranging from 

Middle Jurassic to Portlandian in age. The Cretaceous sequences have a characteristic 

yellow I gold weathering colour within the Candeeiros region, and are formed of 

coarse grained sandstones with intercalated conglomerates and purple marl horizons. 

In the Montejunto region the Cretaceous is characteristically a red coloured coarse 

grained sandstone. The extent of these Cretaceous facies 'wo..s controlled by the 

variable degree of transgression, with marine deposits restricted to the west of a line 

running from Torres Vedras through Lisbon, to Sezimbra (Montenat et al., 1988). The 

unconformities found at the base of these mega-sequences increase in magnitude in the 

eastern margin of the Lusitanian Basin, suggesting that continued movement along the 

basin-bounding faults was occurring, which are related to the onset of rifting and ocean 

opening documented further to the west by ODP Leg 103 results (Wilson et al., op. 

cit.). The presence of late Mesozoic and early Tertiary igneous activity, and the lack of 

significant subsidence during these periods indicates that very little post-rift thermal 

subsidence took place in the Lusitanian Basin, which lead Wilson ( 1988), and 

Montenat et al. (1988) to suggest an upper-plate passive-margin setting for the 

-onshore Lusitanian basin at this time. 

2.4.4 Emergence and tectonic inversion of the Lusitanian Basin 

Latest Cretaceous- Miocene 

During the Cretaceous-Miocene period significant compressional events occurred 

along the various margins of Iberia, ending the typical passive margin setting of 

western Iberia (Rehault and Mauffret, 1979). Along the northern margin the first 

compressional events of the Pyrenean orogeny occurred in the Late Cretaceous as 

Iberia began its 1 OOkm northwestward movement toward Europe, which continued 

into the Paleocene with ocean crust subduction (Boillot, 1984). The culmination of this 

mountain building phase occurred during the Eocene with Pyrenean nappe 

emplacement. 
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The focus of deformation changed to the southern margin of Iberia during early 

Oligocene times, with the onset of subduction beneath the Betics. This period of 

compression is marked by north-south nappe emplacement during the early Miocene 

(25-15Ma), which was followed by major thrusting during the Tortonian (Leblanc & 

Oliver, 1984). The Miocene age of these Betic compressional events is clearly 

evidenced in the Arrabida region south of Lisbon, where unconformable middle 

Miocene and Plio-Pleistocene sediments overlie folded Jurassic to Lower Miocene 

strata, which are themselves cut by a reverse fault carrying Middle Jurassic carbonates 

in its hanging wall (Choffat, 1908). In post-Tortonian times, c.9Ma (Dewey et al., 

1989), the regional compressive stress rotated to a NNW-SSE orientation across the 

Lusitanian Basin (Ribeiro et al., 1988), which according to Hutton & Gawthorpe 

(1988), and Wilson et al. (1990) induced transpression along the NNE-SSW oriented 

structures of the Lusitanian Basin. The timing of this Miocene deformation has not 

been so tightly constrained within the Lusitanian Basin as it has been in the Arrabida 

region, but the detailed structural and kinematic analysis of several of the major basin 

structures allows the deformation to be dated relatively between the Middle Miocene 

and possibly the Recent (see sections 3.8 and 4.5, this thesis). 

This complex period of superimposition of compressive stresses is reflected in 

the stratigraphy of the basin during this time period. During the Turonian the whole of 

the area between the Nazare fault and Arrabida emerged causing a depositional hiatus 

in the southern half of the basin which spanned the uppermost Cretaceous. The only 

deposition during this period occurred to the north of the Nazare transform fault, 

where marine siliciclastic sediments are found. The end of this period of emergence is 

marked by the intrusion of the Sintra granite, 68 Ma (Ribeiro et al., 1979), and the 

basaltic lava flows of Lisbon, which are mainly Paleocene in age (Wilson et al., 1990). 

Sedimentation resumed during the Eocene, with thick clastics deposited south of the 

River Tagus, however, the sequence is thin or absent within the northern study areas of 

Serra de Montejunto, and the Serra dos Candeeiros - Serra D'Aire. In the Alcanede 

region of the Serra dos Candeeiros area, the Oligocene sequence crops out along the 
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Alcanede fault zone as a thin (200 m+ ), unconformable sequence, the base of which is 

locally formed by a 20-30m thick carbonate unit. This limestone unit consists of micrite 

with occasional marly layers, which gives way to a heavily, non-tectonically, brecciated 

upper surface which probably represents a karstified surface. Overlying this emergent 

surface are coarse grained sandstones and conglomerates that have a basement 

provenance. 

The Lower Tagus Sub-basin, and to a lesser extent the Monte Real Sub-basin, 

possess between 1 000 metres (Wilson et al., 1990) and 1400 metres (Dunod, 1980) of 

Miocene siliciclastic sediments, which alternate from coarse sandstones to silty 

mudstones (Ribeiro et al., 1979). Carbonate horizons become increasingly more 
. ! 

significant towards the top of the Miocene, reflecting the maximums of late Miocene 

marine transgressions. In the Lisbon area, the Miocene sequence displays a 

depositional hiatus during late Tortonian and Messinian times (Ribeiro et al., 1979) 

which may correspond to the onset of inversion tectonics, especially within the central 

area of the Basin (see Chapter 6). Based on the thermal maturation studies of Middle 

and Upper Jurassic organic matter by Willis (1988), Wilson et al. (1990) suggest that 

the central inversion zone of the Lusitanian Basin may have been buried by 1 000 

metres of Miocene sediments, which in tum suggests significant uplift has occurred to 

remove this Miocene overburden and produce the present day mountain ranges of up 

to 677 metres in height (Serra D'Aire ). 

The deformation and kinematics of this Miocene inversion event will be 

discussed in the following chapters, based on extensive fieldwork in the S. dos 

Candeeiros and S. de Montejunto regions, and integrated with geophysical data to 

produce a new tectonic model for the Lusitanian Basin. 
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The structure and kinematics of the Serra dos 
Candeeiros region 

"Traditionally, structural geologists have been preoccupied with the complexity of 

the finite deformation within fault zones and with the stress states prevailing at the 

initiation of faults in intact crust. Future work should be directed more towards 

understanding the dynamic character of fault reactivation during incremental slip, 

and related effects." 

(Richard H.Sibson, 1989) 

13.1 Introduction 

The town of Porto de M6s is located approximately 35km due south of the city of 

Leiria, and lies along the western edge of a narrow zone of up I• pte<;\ Mesozoic 

carbonates, that form two fault bounded blocks (Figure 3.1 ). The southern block 

(Candeeiros block) has dimensions of approximately 15x20k.m, producing a plateau 

between 250 and 600 metres high. The adjacent northern block has produced a similar 

plateau and contains the largest mountain in central and southern Portugal, Serra 

D'Aire (677 metres). Both of these blocks testify to the uplift and inversion that has 

occurred within the Lusitanian basin during the Miocene period. The internal geometry 

of the blocks is remarkably undeformed in contrast to the block boundaries which 

display complex kinematic and strain histories. The aim of this chapter is to 

characterise the deformation style within the bounding faults of the Candeeiros block, 

paying particular attention to the kinematics of both macro and mesoscale structures. 

As the deformation within the cover of the Lusitanian basin has occurred within the 

upper 2km of the crust, many of the strains preserved are incremental and have later 

become passively rotated either by folding, or block rotation. Therefore, the detailed 

· structural study of these fault zones has enabled the construction of the relative 

structural and kinematic evolution of the Candeeiros block. 
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Figure 3.1 General geological map of the Porto de M6s, and Serra dos Candeeiros region displaying 
the main towns (solid dots) and main faults: S.C.F.Z, Serra dos Candeeiros fault zone; A.F.Z., 
Alvados fault zone; M.F.Z., Minde fault zone; M.D.F., Mira D'Aire fault; M.T., Monsanto thrust; 
A.B.T., Amiais de Baixo thrust; Al.F.Z., Alcanede fault zone, Men.F., Mendiga fault. 

\3.2 Serra dos Candeeiros Fault 

3.2.1 The pre-Miocene history of the Serra dos Candeeiros fault 

The NNE-SSW oriented Serra dos Candeeiros fault zone (S. dos Candeeiros fault 

zone) extends approximately 70km from Leiria in the north to Cereal in the south. 

Along the northern half of its trace the fault zone is marked by a pronounced 

topographic scar formed, due to the presence of Hettangian aged Dagorda evaporites 

intruded along its trace (Rio Maior or Candeeiros salt wall). The presence of 
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evaporites within the fault zone is virtually continuous from Leiria to Rio Maior 

(Figure 3.1 ). The S. dos Candeeiros fault zone forms one of several significant north

northeast trending faults, along which halokinetic structures occur. The spatial 

distribution of these faults is controlled by the Mesozoic extensional reactivation of 

Hercynian age basement shear zones on the same trend. Synsedimentary extensional 

faulting and halokinetic movement occurred along the S. dos Candeeiros fault zone as 

early as the Toarcian producing the Candeeiros anticlinal ridge in the hanging wall, 

parallel to the fault zone (Montenat et al., 1988). Wilson et al., (1990), in an attempt to 

explain the Arruda sub-basin as a pull-apart, imply that the S. dos Candeeiros fault 

zone may have possessed a dextral component of motion during the Late Jurassic. 

Most of the extensional and possible transtensional fault movement occurred during 

the Late Jurassic, and maybe into the Cretaceous. The Mesozoic extensional history of 

the S. dos Candeeiros fault zone is probably represented by the preservation of large 

amounts of calcite extensional vein systems, that have since undergone extensive 

faulting and pressure solution during Miocene to Recent reactivation (see 3.2.3). The 

calcite is present in three forms: massive calcite, distinct calcite zones coating 

hydraulically brecciated wall rock clasts, and earlier generations of calcite, and as thick 

(up to 1 Ocm wide) discrete calcite veins with oblique crystal growth. 

Mesoscopic structural field evidence supporting a pre-Miocene period of dex

tral transtension, as suggested by Wilson et al., ( 1990), is meagre. At Serra de Lua)a 

pair of gentle anticlines are present in the Oxfordian argillaceous limestones, that 

describe an anti-clockwise fold axis to fault zone angle (8') of 63°. Such high angles 

for 8' suggests a dextral transtensional deformation style (Sanderson & Marchini, 

1986; and Little, 1992). Rare examples of dextral transtensional calcite veins are also 

present along the outer extremes of the fault zone (plate 3.1 ). The age of these dextral 

structures is difficult to constrain. As will be demonstrated in section 3.2.2, the S. dos 

Candeeiros fault system had a consistent sinistral strike-slip history from the Miocene 

to Recent, therefore, the dextral structures are unlikely to be of the same age and are 

thus earlier and of pre-Miocene age. The anomalous presence of numerous northeast 

verging thrusts along the S. dos Candeeiros fault zone west of Serro Ventoso are 

consistent in both geometry, and principal displacement direction, with a dextral 

transtensional incremental strain. The thrusts truncate the sub-vertically bedded 

Oxfordian limestones, formed by the forceful asymmetric emplacement and 

development of the Candeeiros salt wall (Montenat, 1988), indicating that dextral 

transtension was operative until at least the full development of the Rio Maior salt 

wall, and lithification of the Oxfordian strata. The development of contractional 

structures within a transtensional environment may be explained by the buoyancy force 

of the emplacing salt wall being in excess of the extensional tectonic force, 
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Plate 3.1 Oblique calcite crystal growth in a fault parallel vein along the outer extreme of the S. dos 
Candeeiros fault zone, suggesting dextral transtension, location: Serra de Lua. 

b 

I Permitted emplacement! 

Rate of extensional space creation 

Figure 3.2 a) Equal area stereonet revealing highly oblique thrust faults to the S. dos Candeeiros fault 
zone. Geometry and sense of obliquity of the thrusts to the SCFZ implies dextral transtension. b) 
Simplified relationship between halokinetic buoyancy forces and strain rates, and extensional tectonic 
'space creating' rates. Salt ridge along the SCFZ will plot in the stippled field. Modified from Hutton, 
1988. 
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resulting in the localisation of shortening across the fault zone which, coupled with the 

dextral shear component of the transtensional tectonics, produced dextral contractional 

structures (Figure 3.2). 

3.2.2 Kinematics of Serra Dos Candeeiros fault 

Kinematic analysis of the S. dos Candeeiros fault was carried out mainly on the eastern 

fault contact between the Dagorda evaporites and the Oxfordian wall rocks, along a 

composite length of road cuttings totalling 450 metres. In these road cuts 197 

measurements of fault plane orientations and slickenline lineations for mesoscopic 

faults were recorded. Where it was possible to determine, the sense of shear was also 

recorded. Shear sense was determined using the following characteristics: consistent 

accretion steps on mineralised fault surfaces (Hancock, 1985), debris trails (Means, 

1987), erosional shelter behind asperites, plough marks (Petit, 1987; and Means, 

1987), slickolite spikes (Means, 1987; and Bretz, 1940), 'T' and 'R' criteria, and 

crescentic tension fractures (Petit, 1987). To a lesser extent: en-echelon folding 

(Wilcox et al., 1973), oblique tectonic cleavages, visible offsets, asymmetries of fault 

zone clasts or "bull nose" clasts (Skempton, 1966), and mesoscopic fault relationships 

i.e. Horse-tails (Segall and Pollard, 1983), and bridge structures (Gamond, 1987) were 

used (See section 1.3). 

3.2.2.1 Kinematics derived from mesoscopic and secondary faults 

Mesoscopic faults measured along these road cuts can be split into several sets based 

on fault orientation and shear sense. One set occurs parallel to the main fault trace, 

with several en-echelon faults sets oblique to it. 

A total of 32 fault zone parallel 'Y' shear plane surfaces were measured, the 

statistical mean strike of which is 031.6°. These measurements compare very 

favourably with the orientation of the fault trace measured directly from the 

Portuguese 1:50,000 geological map (031 °). Where the sense of shear could be 

determined, all'Y' shears displayed a sinistral sense of offset. However, the 'Y' shears 

do not display pure strike-slip motion, since a minor component of dip-slip is present 

within the fault zone (plate 3.2). The mean lineation vector for 14 sinistral slickenlines 

measured on 'Y' shear planes is 12°/200 (figure 3.3a). 

The most consistent oblique mesoscopic fault set consists of synthetic sinistral 

faults that form an angle of 40-50° anti-clockwise of the 'Y' shears. These synthetic 

faults correspond to Riedel or 'R' shears observed in numerous simple shear 

experiments (Cloos, 1928; Riedel, 1929; Tchalenko, 1970; and Naylor et al., 1984). 

Rare antithetic dextral shears are present oriented between 85-95° anti-clockwise of the 

'Y' shear orientation, and correspond to antiriedel or R' faults. These two sets form 
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Figure 3.3 Equal area stereonets 
displaying fault data from the S. dos 
Candeeiros fault. A) Above and top left, 
cyclographic projections of secondary R 
and Y shears from Serra de Lua, and 
Portela do Vale de Espinhos, respectively. 
Left, Y shears (triangles) with mean plane 
represented by cyclographic trace. 
Sinistral slickenlines (dots), diamond 
represents mean slickenline. s, sinistral; 
D, dextral; N, normal; R, reverse B) Below 
left. poles to fault planes showing the 
various fault sets. Below, schematic 
representation of fault sets in plan view. 
High angle of a implies transpression. 
See text for details. 
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Plate 3.2 Sinistral calcite accretionary steps on a Y-fault plane, along the S. dos Candeeiros fault 
zone. Photograph looking toward the ESE. 

an asymmetrical development of conjugate en-echelon faults characteristic of rotational 

shear, and consistent with sinistral strike-slip motion. 

In addition to the three sets of strike-slip faults, two dip-slip sets are present, 

albeit in reduced numbers. Thrust and reverse faults define a 10-40° clockwise angle to 

the 'Y' shears, with slickenlines indicating a NW -SE direction of thrust transport. 

Extensional faults define a 50-60° anti-clockwise angle to the 'Y' shears, and a NE-SW 

extension direction (figure 3.3b). These fault sets are also consistent with sinistral 

motion. 

3.2.2.2 En-echelon folding 

En-echelon folds are an extremely common and characteristic structural feature of 

most ancient and recent strike-slip and transpressional fault zones (Wilcox et al. , 1973; 

Harding, 1973; Aydin & Page, 1984; Sylvester, 1988; Little, 1990; 1992; Sanderson & 

Marchini, 1984; and Burgmann, 1991 ). However, they are not very common along the 

S. dos Candeeiros fault zone, with only small isolated oblique folds mapped along the 

fault trace between Porto de M6s and Portela do Vale de Espinho. The only example 

of an en-echelon fold array was observed at Serra de Lua along a short (2km) segment 

of the S. dos Candeeiros fault where no evaporites are present along the fault zone. 
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The folds vary from gentle to open with axes several tens of metres in length. They 

describe a mean clockwise 9' angle (fold axis to fault angle) of 32°, again consistent 

with a sinistral sense of motion. 

The paucity of en-echelon folds may be due to the presence of the salt wall, 

which intruded along the S. dos Candeeiros fault during the Late Jurassic. The 

evaporites within the fault zone may have represented a mechanically weak, and easily 

deformable material therefore making it unnecessary for high threshold strains to 

develop before fault movement took place (i.e. preventing low strain rate folding in the 

wall rocks). The evaporites therefore, effectively lower the fault zone shearing 

resistance (j). Where no evaporites occur within the fault zone, the increased shear 

resistance induces fault-drag en-echelon folding. Hence, the effect and presence of 
of 

evaporitic material along the fault zone may explain the localised developmentJold. 

arrays. A similar mechanism involving the factoring of relative plate motions into 

independent components based on the variation in shear stress has been proposed by 

Mount & Suppe (1987) for the San Andreas fault zone. The authors suggest that 

strike-slip zones with low shear stresses effectively behave as an 'almost free surface'. 

Wall rock anisotropy may also contribute to the scarcity of folds, as the sub

vertical fault parallel bedding produced by Late Jurassic evaporite diapirism, may lie in 

a mechanically unfavourably orientation for the development of en-echelon folding. 

3.2.2.3 Cleavage 

Cleavage is largely absent in the wall rocks, but where present it forms a weak, spaced 

cleavage within the argillaceous limestones of the Oxfordian, and tectonic stylolites 

within more pure limestone lithologies. The cleavage lies at an oblique clockwise angle 

to the S. dos Candeeiros fault zone, with a mean orientation 080/82 NW (Figure 3.4) 

indicating sinistral displacement along the S. dos Candeeiros fault zone. 

3.2.3 Cleavage development and fold relationship 

Figure 3.4 Poles to cleavage planes 
(solid circles) from Serra dos Casais, 
adjacent to the S. dos Candeeiros fault 
zone(SCFZ). The clockwise obliquity of 
the cleavage relative to the mean fault 
orientation (cyclographic trace) 
indicates a sinistral sense of 
displacement for the SCFZ. 

The cleavage defines a 32° clockwise transection angle with the fold axis of the Serro 

dos Casais (S. dos Casais) syncline which is itself obliquely clockwise to the S. dos 
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Candeeiros fault. Several authors have discussed the implications for the kinematic and 

strain evolution of cleavage transected folds (Murphy, 1985; Soper, 1986; Borradaile, 

1978; Soper and Hutton, 1984; Treagus and Treagus, 1981; and Sanderson et al., 

1980). The formation of contemporaneous transecting cleavage may be produced by 

the superimposition of two geometric systems: coaxial strain on bedding not initially 

parallel to the principal strain plane, and, non coaxial strains on originally orthogonal 

bedding, or by a combination of these two end member geometries (Soper, 1986). The 

cleavage transection associated with the Serro dos Casais syncline falls in the latter of 

the possibilities. The S. dos Casais syncline was originally a large fault-zone-parallel 

overturned syncline, related to halokinesis along the S. dos Candeeiros fault zone 

during the Upper Jurassic. Subsequent Late Miocene reactivation superimposed a 

sinistral transpressive incremental strain across the S. dos Candeeiros fault zone (see 

this chapter 3.8.1 ). Rotation of the syncline was possibly induced by a synthetic fault 

splay that formed a strike-slip duplex adjacent to the northeast trace of the syncline. 

Figure 3.5a shows the deformation associated with the duplex formation, clearly there 

is a striking similarity between the theoretical and observed structure. 
i 

~\ 

J t 
Figure 3.Sa A comparison of the observed structural geometry of the Serra dos Casais syncline 
(SDC), and theoretical wallrock deformation associated with strike-slip duplex formation (top), from 
Woodcock & Fischer, 1986. 

The pattern of cleavage transection suggests that it was formed by the superimposition 

of incremental strains onto the passively rotating syncline. Successive later increments 

of cleavage have increasingly lower transection angles as the rotating fold approaches 

parallelism with the incremental XY plane of the strain ellipsoid. If this cleavage spread 

does represent the incremental rotation of the fold, it suggests a 38° clockwise 

rotation. This figure seems plausible when compared with the orientation of the 

northern end of the S. dos Casais synclinal axis which indicates a 35° clockwise 

rotation. The rocks do not display a penetrative deformation fabric, indicating that the 
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rotation did not occur by bulk deformation, instead the rotation appears to have been 

facilitated by an accommodation fault trending NW -SE, allowing a rigid block to 

rotate passively (Figure 3.5b). 

1km 

"' ;, 2 Passioe rolatlan ol nrty 

_ ~~.:: __ (j) "'""""c~aavave 

Pre Miocene Late Miocene ,... Present day geometry 

Figure 3.Sb Model for the structural evolution of the Serra dos Casais syncline, and development of 
cleavage transection relationships. 

3.2.4 Deformation style of Serra dos Candeeiros fault 

Data pertaining to the kinematics of this fault have been described above (section 

3.2.2). However, the oblique en-echelon folds and secondary fault sets do not confonn 

to the observed and experimentally derived geometries and structural orientations for a 

simple shear system (Various authors, section 1.1.3). Experimental results show that 

for a sinistral simple shear system Riedel or R shears initiate at an average anti

clockwise angle of 12° (Tchalenko, 1970) to 17-20° (Naylor et al., 1986), and that 

Antiriedel or R' faults strike approximately 72° anti-clockwise of the fault trace 

(Naylor et al., 1986). Clearly the observed secondary faults present along the S. dos 

Candeeiros fault have a strike at least 20° greater than is predicted. The orientations of 

reverse/thrust faults ( <45°) and extensional faults (>45°) also conflict with a simple 

shear system. These geometric relationships can be explained by using a simple 

transpressive model as proposed by Sanderson and Marchini (1984). In the case of 

simple transpression the incremental strain ellipse has a Z axis (maximum principal axis 

of shortening) at an angle >45° to the fault zone. Riedel faults or shears will develop 

with orientations much greater than the 12-20° seen in simple shear systems, likewise 
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Antiriedel faults will be oriented> 72° anti-clockwise of the fault zone. Contractional 

and dilational structures will form perpendicular and parallel to the Z axis respectively. 

In simple shear experiments en-echelon folds have been shown to form early in the 

deformation of a fault or shear zone (Wilcox, 1973), at an initiation angle of 

approximately 45°. The low (<45°) clockwise fold axis to fault angle (9') of the fold 

array, relative to their open to gentle interlimb angles, indicates a sinistral transpressive 

motion for the S. dos Candeeiros fault zone (Little, 1992). 

13.3 The Alvados-Minde fault system 

The Alvados-Minde fault system can be traced from the town of Porto de M6s 

southeast to Moitas Venda along a length of approximately 17 km. The fault system is 

composed of two major left stepping faults (Alvados and Minde faults), the traces of 

which are marked by pronounced fault scarps. Wilson et al., (1990) suggest that both 

the Alvados and Minde faults were originally Late Jurassic extensional faults, which 

became reactivated during the Miocene. In the stepover zone between these two 

overlapping faults is a rhombohedral arrangement of faults, dominantly oriented along 

an east-west trend (Figure 3.6). Again these faults have a prominent topographic 

expression that is suggestive of their neotectonic nature (Cabral and Ribeiro, 1988). 

3.3.1 The Alvados fault zone 

The Alvados fault zone forms a northwest to southeast trending compound fault zone, 

bounding a tectonic sliver of Bathonian and Oxfordian aged limestones. The sliver 

varies in width from 200m to 5m, and forms a pronounced topographic lineament 

(plate 3.3). The fault zone has been exposed by quarrying behind the Restaurante Bela 

Vista near Alcaria, forming a superb transverse section (Figure 3.7). The fault zone 

displays a complex array of mesoscopic faults bounded by two upward divergent 

faults, whose gross geometry is reminiscent of a flower or palm tree structure (Wilcox 

et al., 1973, and Sylvester & Smith, 1976, respectively). Open to close upright folds 

are present in the Aalenian aged shales and argillaceous limestones bordering the 

southwest side of the fault zone. Although data collection was greatly impeded due to 

the inaccessibility of the outcrop, the measurements obtained revealed that the folds 

have sub-horizontal hinges that describe a 20° anti-clockwise angle to the Alvados fault 

zone. Tectonic stylolites from the SW edge of the Alvados fault 
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Figure 3.6 General geological and structural map of the inverted Alvados pull-apart basin. The 
kinematics associated with each fault refers to the most recent identifiable sense of motion. 
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Figure 3.7 Traverse across the Alvados fault zone, immediately behind the Bela Vista Restaurante, 
Alcaria. Note the downward convergent nature of the boundary faults, and the shallowing upwards of 
the Bathonian/ Aalenian boundary fault. 

Plate 3.3 View looking due south from the triangulation point ( 423m) on Pragosa, towards the 
Alvados fault zone visible in the mid-ground. The uplifted block of Bathonian micrite (middle right) 
has 1OOm of relief. The fault trace continues to the left where it is marked by two small pressure 
ridges (P.R.). The 300m+ Costa de Alvados scarp (background left) marks the topographic boundary 
of the basin. 
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zone form a mean 7° anti-clockwise transection angle to these folds. In contrast, the 

Bathonian micrites that form the tectonic sliver are gently folded with a horizontal fold 

axes parallel to the Alvados fault zone. Kinematic analysis of fault plane slickensides 

reveal a similar proportion of reverse and thrust faults verging to the SSW-SW, and a 

dominant set of dextral faults, which represent Y shears, the mean strike of which is 

144 o. Minor numbers of secondary strike-slip faults are present forming three spatial I 

kinematic sets: a synthetic dextral set forming a 38° clockwise angle with the main fault 

(R shears), an antithetic sinistral set describing a 116° clockwise angle (R' shears), and 

an anomalous sinistral set parallel to the dextral Riedel faults. 

The southwestern boundary of the Alvados fault zone forms an extremely sharp 

contact between the micritic Bathonian aged, Candeeiros formation, and shale 

dominated Aalenian aged, Brenha Formation. A strong sub-vertical fabric, parallel to 

the fault is seen within the shales. Slivers and blocks of micrite up to 40cm long are 

enclosed by the anastomosing fabric, which is most intense around the margins of the 

blocks and poorly developed in shale dominated areas. In places the shale is seen to 

infill fractures in the large micrite clasts, and commonly acts as detachment surfaces for 

mesoscopic faults. Internally the isolated clasts of micrite are only weakly deformed by 

the development of calcite extensional veining. In contrast the Bathonian micrites of 

the hanging wall display a spectacular stylobreccia up to 20cm wide, along this faulted 

contact. The clasts are composed of micrite, calcite and veined micrite varying in 

length from 1 mm to 6cm. Clast shapes are generally elongate along a horizontal axis, 

with a correlation between increasing roundness and decreasing size. The clasts are 

bounded to a varying degree by stylolitic sutures, the smaller clasts are commonly 

entirely sutured possibly indicating the freedom to rotate. Transfer shears within the 

breccia cause the pressure solution to compartmentalize, producing domains of high 

residue to clast proportions, adjacent to domains of relatively low amounts of solution 

(plate 3.4a,b). The amount of residue present increases toward the fault plane, where a 

narrow zone of red fault gouge is present. It appears from observations of this fault 

rock that pressure solution has played an important role in strain softening the fault 

zone, by the production of clay rich residue. 

3.3.1.1 Kinematics and deformation style 

Fault plane kinematics and the sense of fold obliquity indicate a component of dextral 

motion along the Alvados fault zone. In addition, the geometric relationships of these 

structures consistently indicate a transpressive deformation style. A comparison of the 

fold axis orientation and interlimb angle of the oblique folds within the Aalenian, and 
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Plate 3.4a Stylobreccia within the Bathonian aged micrites of the Alvados fault zone. Note clast size 
decrease, and residual increase towards the fault plane (right to left in this view). A dominant oblique 
fracture/shear set is present (see arrows). Coin diameter 2.6cm. 

Plate 3.4b Close up of compartmental shears within the stylobreccia, resulting in differential amounts 
of solution. Note more rounded nature of clasts within the residual rich areas. 20 Escudos coin 2.6cm. 
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the predicted relationship of these features for simple transpression (Little, 1992) are in 

very close agreement. Likewise, a low angle of anti-clockwise cleavage transection has 

been suggested by Murphy (1985) to be a common relationship in a dextral 

transpressive system (Figure 3.8). Mesoscopic and macroscopic fault orientations also 

suggest a dextral simple transpressive shear along the Alvados fault zone (Sanderson & 

Marchini, 1984). The mesoscopic secondary faults display larger angles to theY shears 

than are observed for simple shear fault zones, indicating they formed in a simple 

transpressive regime. As mentioned earlier the Alvados fault zone displays a gross 

flower or palm tree structure, such structural geometries are commonly associated with 

transpressional fault segments e.g. Mecca and Durmid hills of southern California. 
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Figure 3.8 A) Equal area stereonet displaying fold axial plane and cleavage transection relationships 
(Cleavage and axial plane are represented as poles, hinge data as lines). B) Fold appression plot (after 
Little, 1992) for the Bela Vista data suggests a simple transpressive deformation path (solid line) for 
fold formation. 

The Alvados fault zone does not conform entirely with the simple transpressive 

model. The gentle folding within the competent Bathonian micrites is parallel to the 

fault zone, indicating an orthogonal maximum shortening axis. Clearly this is 

inconsistent with the predicted and observed simple transpressive structures. Due to 

the large rheological contrasts present between the competent micrites, the shale rich 

Aalenian and poorly consolidated Kimmeridgian sandstones, partitioning of strain may 
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be likely. Mount & Suppe (1987) describe a strain partitioned system along the San 

Andreas fault in central California. where the competent wall rocks deformed with 

folds and thrusts orthogonal to the main wrench fault. and strike-slip motion 

partitioned along the lower shear stress fault zone. A similar scenario could be invoked 

for the Alvados fault zone, but this would require a change in the style of strain to 

account for the mesoscopic faulting previously described. The Alvados fault zone may 

have suffered an early component of compression perpendicular to the zone which 

produced fault zone parallel folds, followed by the superimposition of simple 

transpressive strain as the fault zone evolved. 

3.3.2 The Minde Fault 

The Minde fault forms a spectacular fault scarp of up to 300 metres high, trending 

northwest-southeast past the villages of Mira D'Aire and Minde, and onto Moitas 

Venda (Figure 3.9a and plate 3.5). Although the fault has produced this strong 

topographic expression, exposure of the fault zone is poor due to Quaternary 

deposition and agricultural working. However, the fault was studied at the northwest 

end of its trace, due west of Mira D'Aire, and at its southeastern end between Minde 

and Moitas Venda. 

Plate 3.5 View looking SE along Coasta de Mira towards Minde. The Minde fault lies at the base of 
the scarp. Relief of the scarp is approx. 300 metres. 

3.3.2.1 Fault Kinematics 
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The Mira D'Aire section of the Minde fault zone has a trace bearing 144° and is 

marked on its eastern side by a minor fault scarp beneath the main Costa de Mira 

scarp, where micritic and oolitic Bathonian rocks are juxtaposed against Aalenian 

limestone and shales. This juxtaposition is a relict normal throw from its extensional 

origins in the Late Jurassic (Willis, 1988). A small exposure of the fault zone is present 

along a minor agricultural track, beneath the memorial erected on Cabeco de Mira. 

Kinematic analysis of the fault surfaces reveal a set of high angle fault-zone-parallel, 

dextral faults, with several lower angle faults of varying obliquity to the Minde fault 

trace, displaying reverse movements with top-to-the NNFJNE and S/SW (Figure 3.9a). 

This thrust transport direction is consistent with minor thrust fault transport directions 

measured to the west and northwest of Mira D'Aire. 

3.3.2.2 En-echelon folding 

En-echelon folding is present along the Minde fault zone southeast of Cabeco de Mira, 

forming an oblique anti-clockwise angle to the fault zone, indicating dextral shear. The 

folds are upright and have gentle to open interlimb angles. An analysis of the interlimb 

angle to angle of axial plane obliquity with the fault zone (0') was conducted, based on 

the fold appression graph of Little (1992). The fold axis azimuth was substituted for 

the axial planar strike, as axial plane measurements were not possible given the 

exposure. Due to the upright nature of these folds and their low angle of plunge, the 

fold axis azimuth is considered to be a very good approximation for the axial planar 

strike, hence making this substitution acceptable. Figure 3.1 Ob shows the plot of 

interlimb angle verses approximated axial plane strike, for individual folds and the total 

fold data set. The plot of individual folds produces a confused scatter between a 

transpressional and transtensional origin. This scatter may be the result of the inclusion 

of subjectivity in the data caused by field mapping of the fold axis. To counter this 

problem all the fold limb data was collated and a best fit 7t-girdle calculated using the 

geological software package ROCKW ARE. The result was a statistical mean fold axis 

(1t pole) of 07°/120, with a mean interlimb angle of 120°. When plotted on the fold 

appression graph, it coincides with the predicted curve for simple transpression. The 

Minde fault zone is therefore similar in both shear sense and deformation style to the 

left stepping Alvados fault zone. 

On a larger scale a prominent strike swing can be mapped between the Minde 

fault and the Mira D'Aire fault (Figure 3.9a). The strike swing defines an 'S' shape in 
Q\ 

plan view, striking sub-perpendicular between the faults and swinging into sub-

parallelism adjacent to the fault traces. This strike swing is suggestive of fault drag on 

originally non-parallel bedding during dextral motion. 
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Figure 3.9 a) Structural map of the northwest end of the Minde fault. b) Equal area stereonet of fold 

limb data for en echelon folds, plus 1t-diagram construction for the mean fold axis. Fold appression 
graph displaying data derived from Costa de Mira. 
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Locally, the fault trace is marked by the development of a zone of 

dolomitisation up to 40 metres wide and 300 metres long. In placesJthe extent of the 

dolomitisation obliterates the original bedding orientation, although anti-clockwise 

oblique folds are seen partially dolomitised within these zones. A traverse through one 

of these zones of dolomitisation reveals an increase in tectonic fabrics and brittle 

structures related to a dextral shear, some apparently syn-dolomitisation and other 

structures obviously post-dolomitisation. Therefore, the dolomitisation process is 

probably related to localised syntectonic fault zone fluid movements. 

The southeastern end of the Minde fault zone, between Minde and Moitas 

Venda, is more complex and marks the confluence of several faults, including the Mira 

D'Aire fault. The Minde fault zone trace trends at 125° and is marked by a zone of 

steep to sub-vertical bedding, which is dolomitised up to 50 metres across. The 

dolomitisation does not prevent recognition of bedding because of the variable 

interbedded shale content of the Aalenian sequence. 

Kinematic evidence along this section of the fault is sparse. A limited number of 

synthetic secondary shears were observed in the dolomitised zone that fonn a 45-65° 

clockwise angle to the fault trace, a much greater angle than R shears of a simple shear 

system. Mesoscopic thrust transport directions indicate a 025° axis of maximum 

incremental shortening (Z axis). This is supported by the orientation of en-echelon 

folds mapped at Casais Robustos, whose fold axes are oriented 02°/118 (Figure 3.10), 

orthogonal to the Z axis. The configuration of structures along the southeast segment 

of the Minde fault zone suggest a maximum shortening direction 80° anti-clockwise of 

the fault trace, indicating a dominant pure shear component of defonnation across this 

segment. However, the sense of obliquity and the formation of the Serra D'Aire thrust 

zone at the eastern termination of the Minde fault zone implies that a significant 

component of dextral motion must be present along the fault zone. Dextral motions 

can be demonstrated on several of the faults parallel to the Minde fault zone (figure 

3.1 0). The presence of both dextral slip and shortening across the fault zone suggest 

that the Minde fault zone is transpressive in nature. Using the graphical construction 

method of McCoss (1986) it is possible to determine the relative displacement vector 

between the S. dos Candeeiros and Serra D'Aire blocks. Using the fold axis orientation 

of the en echelon folds at Casais Robustos as the axis of maximum infinitesimal strain, 

a displacement vector (S) oriented toward 1900 was derived. The angle between the 

displacement vectorS and the perpendicular to the deformation zone (angle A), is 35°. 

This indicates a transpressive strain that is generally contractional with an oblate strain 

ellipsoid. 

In summary, the Minde fault can be considered as segmented in its deformation 

style. The northwest segment is transpressive with fault zone localised 
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Figure 3.10 General structural map of the southeastern end of the Minde fault. (Top left) Equal area 
stereonet of antithetic cross faults that form clockwise rotating blocks within the Mira D'Aire fault 
zone. (Top right) contoured poles to fold limb data, and 1t-pole reconstruction of the mean fold axis, 
for the en echelon folds at Casais Robustos. Fold appression graph indicates a pure shear dominated 

transpressive deformation path (solid circle) 
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folding and fault development. The southeastern segment is transpressive but 

dominated by the pure shear component, resulting in considerable steepening of the 

adjacent bedding and a greater complexity in the form of the localisation of many 

faults. This segmented nature is due to the change in Minde fault zone strike, 144° in 

the northwest to 125° in the southeast, therefore increasing the amount of oblique 

convergence between the fault walls. It was suggested by Willis (1988) that the Minde 

fault has been reactivated by reverse motion during the Miocene, but it would appear 

that the fault zone is transpressive in nature displaying an increasing component of 

pure shear toward the southeast end of its trace. 

3.3.3 The inverted Alvados pull-apart basin 

The Alvados pull-apart basin is located between the dextral transpressive left stepping 

Alvados fault zone and Minde fault zone. It forms a rhombohedral configuration of 

faults, bounded on its southwest and northeast sides by the Alvados fault zone and 

Minde fault zone, respectively. The structure is closed by east-west to east-southeast 

striking transverse faults. Linking these extensions across the graben are northwest

southeast trending faults. The Alvados pull-apart basin is 7km by 3.3km with an aspect 

ratio (length:width) of 2.12, smaller than the commonly observed aspect ratio of 3 

(Aydin and Nur, 1982). The centre of the structure contains the Oxfordian interbedded 

limestones and shales that comprise the youngest part of the sedimentary sequence, 

which is in tum, surrounded by large bounding fault scarps and tectonic ridges (e.g. the 

Castelejo ridge, see Plate 3.6). 

Plate 3.6 View looking due west from the Grutas de Alvados towards the Castelejo ridge (middle 
distance), and Costa de Alvados, the Alvados fault scarp (far distance). 
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3.3.3.1 Structure and kinematics of the Alvados pull-apart basin 

The structure of the Alvados pull-apart basin is domainal with a concentration of 

deformation at the northern and, in particular, the southern boundaries. The southern 

boundary is dominated topographically by the fault bounded Castelejo ridge, that runs 

from the southeastern termination of the Alvados fault zone to the regional high at 

Pedra do Altar, adjacent to the Minde fault zone (Figure 3.6). 

The southern boundary - the Castelejo ridge 

The Castelejo ridge is formed from Bathonian micrites and oolites of the Candeeiros 

fm., that are fault bounded to the north and south by downward convergent moderate 

to high angled faults, which are thrust onto Oxfordian and Aalenian aged sediments, 

respectively. The Southern Castelejo fault zone is well exposed and accessible in many 

places, striking between 135-118° and dipping between 56-78° to the north. The fault 

zone consists of several fault planes that coalesce along strike. The fault planes display 

dip-slip to oblique-slip reverse lineations with a component of dextral motion. Each 

plane has an associated breccia zone up to 30cm wide with dolomite mineralisation 

causing yellow staining. Well-developed oblique anti-clockwise sigmoidal platey 

fabrics are present within some breccia zones, indicating reverse shear with a 

component of dextral motion. The adjacent wall rocks show contrasting deformation 

styles: the competent Bathonian micrites of the hanging wall are gently to openly 

folded, whereas the less competent Aalenian shales of the Brenha fm., form a 

prominent footwall syncline, with localised tight synclines isolated by the progressive 

propagation of northwards verging thrusts (plate 3.7). The relationship of Bathonian 

and Aalenian age strata in the hanging wall and footwall respectively indicates a net 

normal throw on the fault zone. 

The northern fault zone is composed of several discrete faults that anastomose 

along strike with a mean orientation 117/22-53° S. The fault planes display reverse 

dip-slip motion, although minor strike-slip lineations are present. The main fault, 

between the hanging wall Bathonian and footwall Oxfordian, shallows upwards, and is 

marked by a thick breccia zone that is dissected by numerous small scale faults. In 

contrast to the southern fault zone, the northern fault has a reverse throw. 

The micrites and oolites of the Candeeiros fm. are bounded by these faults, and 

define an array of en-echelon folds with a mean fold axis oriented 04°/112, which 

forms an anti-clockwise 8' angle varying between 05-22°. Coaxial mesoscopic reverse 

faults are also present, that together with the folds indicate a principal axis of 

shortening (Z axis) that is sub-horizontal and trending N22°E. Minor faults striking 

parallel to the reverse faults and displaying strike-slip movements are present, although 

not common. On the mesoscopic scale, tectonic pressure solution stylolites 
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Plate 3.7 (Above) View looking east along the Southern Castelejo fault (SCF). Sub-vertical bedding 
of the footwall syncline can be seen immediately beneath the SCF (marked by an arrow). (Below) 
Looking west along the SCF, gentle folding and flexure of the Bathonian micrites contrasts with the 
well developed folds of the footwall Aalenian aged lsts. and shales, above. 
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occur adjacent to the main faults forming a dense (1.1 to 1.6 stylolites/em) sub-vertical 

anastomosing cleavage, that is contemporaneous with sub-horizontal calcite veins. 

The 67° clockwise oblique angle between the Castelejo ridge and the maximum 

shortening direction suggests the ridge underwent dextral transpression with a domi

nant pure shear component. Its gross geometry is that of a flower structure, consistent 

with a transpressive strain model (Figure 3.11a). 

N 

AAF 

N 

Castelejo 
ridge 

Pedra do 
Altar 

I 
I 

I 

I 
I 

I 

s 

Figure 3.11 a) N-S cross section through the Castelejo ridge. b) N-S cross section through the Pedra 
do Altar region, revealing its contrasting structural geometry relative to the Castelejo ridge. (Aal., 
Aalenian; Baj., Bajocian; Bath., Bathonian; Ox., Oxfordian) Fault names the same as fig.3.6 

Pedra do Altar region 

The Castelejo ridge is structurally divided by a low angle fault striking approximately 

north-south, separating the flower structure to the west from a dominantly pure shear 

domain in the east. Across this fault the structural geometry is fundamentally different 

(Figure 3.6). The en-echelon folding to the west has been replaced by a large faulted 

monoclinal structure with minor folding superimposed upon the low angle limbs. A 1t-

diagram analysis of bedding indicates a mean fold axis oriented at 08°/091, with a steep 
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sub-vertical limb dipping to the north (figure 3.11 b). The sub-vertical limb of the 

monocline is dissected by a strike parallel fault, which juxtaposes Bathonian aged 

carbonates in the north, against Bajocian aged carbonates to the south. The fault trace 

is marked by a zone of dolomitisation, displaying a prominent low angled fabric on a 

variety of scales, from centimetres to several metres. Thin section analysis indicates 

that some of the discrete planes are shears, however the fabric appears to be 

predominantly an original bedding feature. It appears that the dolomitised zone 

represents a narrow sliver of low angled bedding faulted between the steep monocline 

limbs. 

A second less prominent strike parallel fault is present 150 metres north of the 

main fault discussed above. This fault can be traced for approximately 1.5km between 

three disused quarries. At its western exposure, in a quarry east of Grutas de Alvados, 

the fault is sub-parallel to the regional tectonic stylolites, and truncated near the top of 

the quarry face by a low angle thrust that steepens downwards into a bedding parallel . 
sub-vertical fault. The fault zone is marked by a thick copper-blue clay zone containing 

disseminated pyrite and chalcopyrite cubes that display calcite pressure shadows 

formed parallel to the fault zone (plate 3.8). The clay has an intense 

planar fabric which is commonly sigmoidal in geometry due to the propagation of 

conjugate reverse faults out of the fault zone, and offset the fault walls (figure 3.12). 

The clay zone contains numerous rounded to sub-rounded clasts of wall rock <1mm to 

60cm in diameter. The clasts are commonly unbrecciated, displaying solution pits on 

surfaces parallel to the regional cleavage (i.e. the XY plane of the strain ellipsoid) and 

slickolites on surfaces oblique to XY plane, indicating that dissolution processes have 

taken place over the entire surface of the clast. The intensity of stylolites within the 

wall rocks, and the presence of isolated clasts, increase towards the clay rich fault 

zone. In areas of moderate strain, anastomosing stylolites isolate elongate, multi

allochem clasts up to several centimetres in size. In the higher strain fault zone 

margins, the stylolites anastomose around individual oncoliths producing rounded 

clasts contained in a soft residual matrix (plate 3.9). The large clasts appear to become 

isolated by a combination of concentrated pressure solution and mesoscopic faulting 

(figure 3.12). The eastern exposure of the fault is located due south of Pedra do Altar. 

The fault zone has the same characteristics as the western end, although a more closely 

spaced pressure solution cleavage has formed adjacent to the fault. The fault again 

displays dominantly reverse faults propagating out of the fault zone, but oblique-slip 

and even strike-slip sinistral slickenlines were observed along the main fault plane. 
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Figure 3.12 A)Fault zone observed in quarries SE of Grutas de Alvados. Quarry face displaying 
conjugate brittle/ductile shear zones, and high angle reverse faults. Selected mesoscale structural 
relationships are shown. B) Detailed structure of the clay rich fault zone. See text for details. 
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Plate 3.8 Micrograph displaying calcite pressure shadows formed between stretched and boudinaged 
pyrite cubes. Field of view 1.9mrn. 

Plate 3.9 Differential pressure solution of micritic matrix relative to Oncoliths, resulting in the 
isolation of single or multi-allochem clasts within a soft residual matrix. 
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The parallelism of the fault zone to the regional tectonic stylolites indicates that 

it has formed parallel to the XY plane of the finite regional strain ellipsoid in a pure 

shear regime. Therefore, the fault zone does not conform with an Andersonian model 

for fault geometry and formation. The absence of fault breccia and fault gouge also 

indicates that the fault zone did not evolve via typical cataclastic processes. As the 

faulting present appears to post date the formation of the clay rich zone another 

process for fault formation must be invoked. The intimate relationship between 

stylolitic sutures and fault zone clasts suggests that pressure solution may have had an 

important role in concentrating strain along a heterogeneous stratigraphic horizon 

within the sub-vertical monocline limb. A good candidate for such a horizon may be a 

coarse oncolithic horizon similar to the oncolithic rock that constitutes the fault zone 

clasts. The differential solution of the micritic matrix not only has a role in the 

formation of clasts, but also in the production of pressure solution residual which has 

resulted in strain weakening. With increased dissolution the residual rich zone becomes 

the site for strain concentration and the formation of mesoscopic reverse faults. The 

large amount of clay material along the fault zone produces a 'free surface' (a plane of 

low coefficient of friction) which probably acts as an accommodation structure for 

minor movement within the region, explaining the anomalous kinematic interruptions 

observed on the fault planes. 

Geometry and kinematics of the mesoscopic faults 

. Mesoscopic faulting coaxial t~ regional folding is abundant throughout the area (Figure 

3.13a) with two dominant fault sets; a low angle southward verging thrust set, and a 

sub-vertical reactivation of bedding planes within the steep limb of the monocline. 

The thrusts are commonly simple low angle planar faults exploiting bedding planes. 

However, in the steep monocline limb the spatial relationship of the thrusts to other 

structures is more clearly defined. Two relationships appear common: thrusts 

becoming discordant to bedding at the monocline hinge, and thrusts propagating from 

sub-vertical reactivated bedding planes. Slickenlines along the low angle thrusts have a 

mean vector azimuth 015°, while slickenlines along the sub-vertical reactivated 

bedding planes are more complex. A dominant dip-slip lineation is present, parallel to 

the mean thrust vector of 015°, however, these dip-slip lineations are regularly 

interrupted by oblique and strike-slip fault movements (plate 3.1 0). These disruptions 

in the dip-slip lineation have varying plunge but a consistent azimuth towards the east 

(Figure 3.13b). Where shear sense is unambiguous, the oblique and strike-slip 

component has a sinistral sense of motion. The presence of sinistral interruptions along 

the high angle faults may be due to the accommodation of a slight sinistral 
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Figure 3.13 a ) Equal area stereonets of (left) 
contoured pole to bedding data for bedding in 
Pedra do Altar region displaying two nodes: 
northerly dipping low angle, and steep bedding, 
with an E-W strike. (right) contoured poles to fault 
planes revealing two sets of faults spatially 
coincident with regional bedding. b) Fault planes 
with lineations. Note oblique and strike-slip 
lineations consistently plunge to the east, 
suggesting a sinistral component. 

Plate 3.10 Short sinistral interruption in the dominantly reverse slickenlines on a steep fault plane, 
near the Grutas de Alvados. 2.5 Escudos coin 2cm in diameter. (Grid reference: 08°45'01 " 39°32'02") 
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component introduced into the Pedra do Altar system due to the slight obliquity of the 

Z axis to the area's structural grain. 

Mesoscopic structures 

The Pedra do Altar region is exceptionally good for observing detailed mesoscopic 

structures since the steep zone has been extensively quarried for decorative stone. 

Thrust plane parallel brittle/ductile shear zones are common throughout this region and 

form a 48° conjugate set with reverse shear sense. The shear zones display a variety of 

relationships between pressure solution stripes or stylolites and en-echelon tension 

gash veins. A common relationship is the presence of both pressure solution effects and 

veins in the same shear zones, with intensely sigmoidal stylolites approximately at right 

angles to the veins. The two structures must be contemporaneous as veins can be seen 

cutting stylolites and stylolites seen removing vein material. The stylolitic solution 

planes form at angles slightly less than 45° to the shear zone walls, and '!fe commonly 

interconnected, possibly forming the channel ways required for the removal of 

carbonate material in solution. A second relationship is the superimposition of a 

regional tectonic stylolitic cleavage over a conjugate array of tension gashes. The 

cleavage is not deflected within the shear zone, but it does become modified by 

extensional veining. The brittle shear zones display a cyclic strain pattern of regional 

cleavage overprinting brittle shears and vice versa. The sub-vertical cleavage also 

overprints the brittle/ductile shears. 

Ramsay & Huber ( 1987) produced a model based on the concept of shearing 

acting together with dilation, this links the shear zone orientations with the orientation 

and type of regional bulk strain inducing the shear zones. Figure 3.14 shows the 

complete spectrum of bulk two-dimensional deformation between uniaxial bulk 

shortening and uniaxial bulk stretching. Furthermore, the authors relate overall positive 

dilation with any system that forms primarily extensional veins, and overall negative 

dilation where pressure solution seams remove material out of the system. 

What is immediately apparent from an examination of the structures present in 

the quarry face is that two differing styles of strain are present. The 48° 29 angle of the 

brittle tension gash arrays, and the lack of pressure solution effects within the shear 

zones, suggests a bulk strain involving positive dilation with the development of shear 

zones similar in strain and orientation to the positive dilational model B, figure 3.14. 

However, as mentioned sub-vertical stylolites overprint this system and vice versa, 

suggesting that bulk shortening (the pure negative dilation model E, fig 3.14) along a 

sub-horizontal axis is intermittently occurring. These two conflicting systems indicate 

that there has been a cyclic change between sub-horizontal bulk shortening and vertical 

stretching combined with shortening. The presence of brittle/ductile shear 
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Figure 3.14 Model spectrum for relating the geometric features of conjugate en echelon vein arrays to 
the overall bulk shape changes and dilation talking place. Vein and stylolite surfaces are located in 
their initiation orientations. (Re-drawn from Ramsay & Huber, 1987 fig.26.42) 

zones suggest that the change in strain may have been progressive, from negative 

dilation, through constant volume (model C, fig 3.14), to the positive dilation model. 

It is suggested that the strain system observed is related to increases in the 

applied tectonic stress due to stress cycling in the seismogenic regime. Temporal 

variations in the shear stress ('t) fluctuate in a crude saw tooth oscillation (figure 3.15), 

the cycle of which is subdivided into four phases: the a-phase, during which mainly 

elastic strain accumulation takes place, the ~phase which is possibly preseismic 

anelastic deformation, the coseismic y-phase of mainshock rupturing, and a post

seismic B-phase of decelerating aftershocks. These oscillations of shear stress have 

been shown to extend considerable distances into the surrounding crust of seismically 

active faults (Sibson, 1989). The structures preserved within the quarry appear to be 
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related to the earthquake stress cycle. Due to the susceptibility of limestones to 

undergo low strain rate pressure solution processes, the sub-vertical stylolitic cleavage 

that forms a uniaxial bulk shortening strain, probably occurred during the (>-phase of 

the cycle when mainly elastic strain was accumulating. The heterogeneous deformation 

in the form of conjugate vein arrays probably formed during the ')'-phase, perhaps 

representing microseismic foreshocks. Following the main rupture event along one of 

the adjacent faults, the stress is dissipated and the process repeated. 

Figure 3.15 Temporal variations in the shear stress ('t) and displacement (u) for seismically slipping 
crustal fault zones (modified from Sibson, 1989). The anelastic ~ phase has be extended to take into 
account the low strain-rate pressure solution processes. 

The strain systems observed in the Pedra do Alto region represent a complex 

relationship between wall-rock rheology, the earthquake stress cycle, and bulk strain. 

In this region) the seismic cycle exerts a control over the temporal variation in bulk 

strain, with initial sub-horizontal, uniaxial bulk shortening, followed by biaxial strain 

resulting in extension along a vertical axis with associated continued shortening along 

the Z axis. It appears that lithologies susceptible to pressure solution processes in the 

upper seismogenic zone, preserve an oscillating strain path that alternates between k

values of 0 and 1 , relative to the earthquake cycle. Such cyclic strains at this crustal 

level, are dependant on lithologies that permit low strain rate/low shear stress 

deformation mechanisms, such as pressure solution within limestones. Hence, care 

must be taken when attempting to describe the bulk deformation controlling these 

structures, as they are subjected to temporal variations in stress and its resultant 

incremental strain. 

The steeply bedded zone also has a well developed sub-vertical anastomosing 

stylolitic cleavage. As observed within the Castelejo ridge, the stylolites are 

contemporaneous with sub-horizontal calcite veins indicating that the strain varied 

during the deformation cycle i.e. anelastic pressure solution processes take up strain, 
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possibly during the ~phase of the earthquake stress cycle. An increase in shear stress 

will eventually result in preseismic strains and the release of stress. The cycle will then 

begin again with aseismic diffusional mass transfer processes. Estimates can be made 

for the amount of shortening along the Z axis using the cross cutting relationships of 

the stylolites and veins. Using a thin section micrograph the amount of solution for a 

single stylolite can be calculated applying simple trigonometry on the offsets created by 

the solution of non perpendicular calcite veins. The results indicate a mean shortening 

across each stylolite of 1.26mm. When this figure is projected for the entire thin 

section these calculations indicate a possible 25% shortening parallel to the Z axis. The 

corresponding vertical extension in the X direction can be calculated by restoring the 

extensional calcite veins. This method gives a mean vertical extension of 7%. 

Extensional veining perpendicular to the Y axis is minimal, and can therefore be 

ignored for these purposes. The disparity in the Z and X axes indicates that there has 

been an approximate net volume decrease of 18% (max.). The studied sample is 

representative of the deformation along the steep zone. The data set is admittedly 

limited but it provides an estimate for the finite strain, being dominantly oblate. As 

there has been a net loss of carbonate material by dissolution, it indicates that the 

extensional veining is not synchronous with stylolite formation, as in such a system the 

amount of material in dissolution would equal the amount of precipitate in the 

extensional veins (i.e. conservation of volume). 

The incremental strain at any moment in time is essentially a uniaxial strain 

(only one principal axis length is changing), for the stylolites the Z axis shortens, for 

the sub-horizontal fracturing the X axis increases. The result of the cyclic superimposi

tion of these incremental strains is a biaxial (plane strain) finite strain, with sub

horizontal Z and Y axes and a vertical X axis. This situation is complicated where 

conjugate vein arrays form an intermediate strain state, which is biaxial (figure 3.16a). 

The orientations of the principal strain axes can be derived from the mesoscopic faults. 

The Z axis is derived from the mean slickenline vector on the thrusts faults combined 

with the acute bisectrix of the conjugate brittle'ductile shears, producing an orientation 

of 06/015 . The Y axis can be calculated by constructing a ~plot for mesoscopic fault 

planes (assuming Andersonian faulting), this gives a Y axis oriented 03/270. The X 

axis, being orthogonal to Z and Y can be constructed on a Lambert equal area stereo 

net, orientation 82°/159 (figure 3.16b). However, as can be seen in figure 3.16b, the 

strain axes are not exactly mutually perpendicular, which when taken with the evidence 

for a minor component of sinistral motion within the Pedra do Altar region, suggests 

the strain is slightly non-coaxial. 
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Figure 3.16 A) Cyclic strain related to the seismic cycle. (Top) ~-phase anelastic strain in the form of 
pressure solution stylolites results in pure shear and volume loss (uniaxial strain). (Bottom) 
Complicated deformation associated with the ')'-phase, sub-horizontal veining produces uniaxial 
stretching along the X-axis, however, this is commonly combined with a stretching dominated biaxial 
strain resulting in model B vein arrays. B) Reconstruction of principal strain axes for the Pedra do 
Altar region, see text for details. 
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Northern boundary of the pull-apart basin 

The northern boundary of the Alvados pull-apart basin is defined by the Alto de Alva

dos fault, a reactivated normal fault striking approximately 100°, which displays 

reverse motion. The Alto de Alvados fault trace can be followed from the Alvados 

fault zone 1km south of the village of Alcaria, along a prominent fault scarp to the 

northern end of the Minde fault zone. The fault scarp coincides with the confluence of 

several faults: the Alcaria fault joining from the north, and two splays joining from the 

south. The western splay splits the Castelejo ridge, the Central Alvados fault, and the 

easterly splay (Chao da Cadela fault) striking southeast joining the eastern limit of the 

Pedra do Altar region. In general these fault zones are poorly exposed (figure 3.6). 

The Alcaria fault divides the northern side of the Alto de Alvados fault zone 

into two structural domains. On the western side of the Alcaria fault, Oxfordian 

limestones and shales increase in dip towards the Alto de Alvados fault zone becoming 

parallel to it, with a maximum southerly dip of 70°. In contrast the Bathonian micrites 

on the eastern side have only moderate northerly dips against the Alto de Alvados fault 

zone (maximum 38°). Oblique anti-clockwise folds have developed adjacent to the 

northwest end of the Chao da Cadela fault near its confluence with the Alto de Alva

dos fault zone indicating a component of dextral motion is present. At the junction of 

the southeastern end of the Chao da Cade1a fault and the main Pedra do Altar fault, a 

fanned array of folds has developed. 

The Central Alvados fault was not observed at any point along its trace, 

however, its relationship to topographic contours indicates the fault plane has a low to 

moderate westerly dip. Given the most recent and possibly the current dextral sense of 

motion on the master faults, the Central Alvados fault is oriented in a position 

favourable for extensional movement, as indicated by its net normal throw. As 

mentioned before the Central Alvados fault exerts a structural control on the Castelejo 

ridge indicating that it must have evolved early in the history of pull-apart basin 

development. 

Evolution of the inverted Alvados pull-apart basin 

The complex fault system at Alvados is formed by two left stepping, NW -SE, dextral 

transpressive faults (Alvados and Minde faults), with approximately E-W transverse 

reverse faults closing the structure to the north and south. As mentioned many of the 

individual faults display normal stratigraphic throws, with the structure as a whole 

displaying the youngest stratigraphic levels at its centre (figure 3.11 ). Based on the 

stratigraphic relationships the structure can be termed a rhomb-shaped graben or pull

apart basin. Pull-apart basin formation occurs when the direction of stepover and 

lateral offset of the master faults have the same sense, i.e. left stepping sinistral faults 
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or right stepping dextral faults. If the stepover relationships are the opposite, the result 

is a compressional structure or pressure ridge. As described, the master faults are 

presently left stepping and have a dextral component of motion producing the 

transpressive and pure shear strains observed along the Castelejo ridge and the Pedra 

do Altar and Alto de Alvados faults. These observations indicate that the Alvados pull

apart basin has undergone an inversion event which has not fully recovered the 

extensional throw on the faults. The presence of the pull-apart basin, albeit partially 

inverted, necessitates an initial sinistral phase of motion along the Alvados and Minde 

master faults. Kinematic evidence for an initial period of sinistral motion is scant, a 

solitary oblique clockwise fold adjacent to the Alvados fault zone is present and 

labelled F1 in figure 3.6. However, the preponderance of net extensional throws on 

most of the major faults provides strong evidence of this sinistral phase. 

It is therefore clear that the Alvados pull-apart basin has a complex evolution 

involving multiple reactivation and inversion. Wilson et al., (1990) suggest that the 

Alvados and Minde faults formed during extensional faulting east of the S. dos 

Candeeiros fault during the Late Jurassic. Some of these extensional structures are 

intruded by penecontemporaneous basic dykes that yield dates of 140 Ma (Willis, 

1988), base Cretaceous. In the early Miocene,sinistral reactivation of the Alvados and 

Minde faults took place, initiating pull-apart basin formation. Based on structural and 

stratigraphic relationships, a fault chronology can be constructed. The Southern 

Castelejo fault and Alto de Alvados fault zone formed in response to fault tip stresses, 

and define the boundaries of the basin. As previously mentioned, the Central Alvados 

fault exerts a control over the structure of Castelejo and the Pedra do Altar region, 

indicating it initiated early in the basin development. As the Central Alvados fault is a 

low angle sub-bedding parallel structure, and that during the period of basin 

development it was oriented in a position favourable for contractional movement, it is 

proposed that the Central Alvados fault was initially a thrust. Figure 3.17 shows a 

proposed method for the formation of Central Alvados fault. The model depends on 

the Alvados fault zone forming a continuous fault with the Southern Castelejo fault, 

therefore allowing the subsidence of the basin floor down the Southern Castelejo fault 

and along the Alvados fault zone which would act as a lateral ramp. In this scenario the 

bend in the Alvados fault zone at Lagoa de Alvados would act as a restraining bend, 

creating a compressional stress build-up around it. The Central Alvados fault is seen as 

a necessary response to this, if continued movement along the Alvados fault, and basin 

subsidence is to be allowed. Continued basin extension resulted in the formation of the 

Pedra do Altar fault as an extensional rider on the Southern Castelejo fault, although it 

was confined to the east of the Central Alvados fault. 
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Figure 3.17 Formation of the Central Alvados fault. Initial sinistral motion along the Alvados fault 
(AFZ) during the Middle Miocene, creates localised transpressional stresses along a restraining bend 
at Lagoa de Alvados (thick arrow), resulting in the formation of the Central Alvados fault as a 
bedding parallel thrust. (SCF., Southern Castelejo fault; AAF., Alto de Alvados fault). 

Inversion of the basin occurred due to the dextral transpressive reactivation of 

the Alvados and Minde faults, and the production of a pressure ridge or 'push-up'. The 

Northern Castelejo fault formed during this inversion event to complete the fault 

bounded, transpressive Castelejo ridge. Also initiated during this period was the Chao 

da Cadela fault. The Central Alvados fault, now oriented in an extensional field, was 

probably reactivated with a normal sense of motion to give the extensional throw seen 

at present. The fact that net extensional throws are present within the basin suggest 

that either the amount of dextral offset was not as great as the sinistral phase, or that 

the partitioning of strain between fault slip and bulk deformation was sufficient to leave 

a remnant throw. Given the more pervasive nature of the compressive structures in the 

southern region, i.e. the tightening of extensional drag folds into a steep monocline 

against the Pedra do Altar fault, large numbers of mesoscopic thrusts, and net 

shortening and volume loss by pressure solution, suggest that strain partitioning 

between fault slip and bulk deformation may be important. 

Estimates for the amount of shortening, and hence the amount of dextral 

motion along the Alvados and Minde faults, were made by comparing the aspect ratio 

of the present structure and that predicted by Aydin and Nur (1982), who suggested 
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that the aspect ratio of pull-apart basins is scale independent, and has a value of 3. 

Comparing these ratios suggests that 32% shortening has occurred along the basin, 

which in tum, suggests 2.9km of right lateral movement on the Alvados-Minde fault 

system. Folding accounts for -12% of the shortening within the basin, allowing for 

volume loss via concentrated pressure solution (estimated maximum of 5% relative to 

the whole basin), leaves a minimum of 15% shortening to be taken up on basin faults. 

If distributed equally among the three main basin faults, 15% shortening represents 

450m on hade by reverse · slip. This figure seems unrealistic, even allowing for 

unaccounted movement out of the plane of section. This estimate has not taken into 

account the cumulative displacements along the abundant mesoscopic faults, and may 

underestimate the amount of pressure solution. However, the afore mentioned 

structures seem unlikely to account for the additional shortening predicted by the 

model of Aydin & Nur. In addition, no evidence of an increase in the separation of the 

Alvados and Minde faults was seen, as is required by the model, on the contrary, the 

fault separation appears to be fixed. Therefore, this model of basin formation appears 

to be inappropriate for the Alvados pull-apart, hence the displacement estimates are 

erroneous. Therefore, the dextral displacement is likely to be less than 2.9 km. 

13.4 The Alcanede fault zone 

The Alcanede fault zone trends 124° forming the southwestern boundary of the 

Candeeiros block. The fault zone joins the southern end of the Mendiga fault with the 

Arniais de Baixo thrust, and is marked by a pronounced topographic feature. The fault 

juxtaposes Jurassic and Cretaceous rocks of the Candeeiros block over Cretaceous to 

Tertiary sediments on the southern side. The fault zone has two distinct segments: a 

northwestern segment displaying a discrete fault zone separating Oxfordian limestones 

in the hanging wall from footwall Kimmeridgian and Portlandian siliciclastics, and a 

southeastern segment marked by a fault parallel monocline that translates into an over 

thrust footwall syncline marking the beginning of the Arniais de Baixo thrust zone. The 

segments are separated by a transfer fault trending 160° immediately northeast of the 

village of Mosteiros (Map)). 

3.4.1 Southeastern segment 

The trace of the southeastern segment is marked by a conspicuous topographic ridge 

running adjacent to the village of Alcanede, produced by a steeply inclined Oligocene 

limestone horizon dipping toward the southwest. Deformation along the fault segment 

is represented by a broad monocline with a steep limb up to lkm wide, displaying a 

fault parallel, sub-horizontal fold axis and distributed mesoscopic faulting. A weak, 

roughly axial planar, pressure solution cleavage is present within the competent 
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limestones of the monocline limb. Bedding plane reactivation has occurred along the 

steep limb with movement striae indicating an oblique dextral/extensional sense of 

shear. The extensional component probably results from flexural slip along the limb as 

the Candeeiros block uplifted relative to the southeast side of the fault zone. At the 

southeastern termination of the Alcanede fault zone lithological truncations were 

mapped indicating a change in deformation style from monoclinal folding to faulting. 

Along the same section of the deformation zone the monocline transforms 

gradationally via a strike swing from NW -SE to E-W, into an overthrust footwall 

syncline located beneath the Amiais de Baixo thrust. 

3.4.1.1 Mesoscopic faulting along the southeast fault segment 

The mesoscopic faults within the deformation zone define an almost orthogonal 

conjugate set of strike-slip faults, formed dominantly by a set of fault zone parallel 

dextral oblique faults, and to a lesser extent, a sinistral set, oriented NNE-SSW (figure 

3.18). The acute bisectrix of this conjugate angle suggests a NNW-SSE oriented axis 

N 

N 

Figure 3.18 Equal area stereonet displaying secondary faults located along the southeastern segment 
of the Alcanede fault. 

of principal shortening (Z axis). Slickenlines observed on high angle reverse faults are 

not coincident with the conjugate acute bisectrix, and indicate an approximately N-S 

oriented Z axis. The faults sets have small displacements, which probably approximate 

to incremental strains, and are presumed to be coeval. Therefore, the faults are 

expected to be coaxial. However, as pointed out the orientation of the dextral fault set 

exploits the steeply dipping bedding of the monocline limb, therefore increasing the 

conjugate angle of the fault sets from that expected to form in a homogeneous rock. 

Hence, the azimuth of the acute bisectrix for the fault set does not lie parallel to the 

azimuth of the incremental Z axis derived from thrust fault slickenside striae. 
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3.4.2 The northwestern segment 

The northwest segment of the Alcanede fault zone displays a contrasting structural 

style to the southeastern segment. Lithological truncations, and/or abrupt changes in 

strike, can be mapped along the length of fault segment. A marked topographic 

lineament is present where Oxfordian limestones and shales are juxtaposed against 

younger, poorly consolidated, clastic sediments. Deformation along the northeastern 

side wall varies due to the presence of a NE-SW oriented compartment fault. 

Southeast of this compartment fault the bedding strikes parallel to the fault trace with a 

regional dip of 15° towards the fault. Within 150 metres of the fault the bedding 

steepens rapidly becoming locally overturned. Northwest of the compartment fault the 

Jurassic limestones strike approximately N-S dipping 30° to the east, adjacent to the 

fault trace the strike swings from N-S to ENE-WSW indicating possible fault drag 

folding by a dextral component of slip . 
.,...,.~,; 

Several oblique"clockwise fold traces were mapped along the southwestern side 

wall within the incompetent Kimmeridgian and Portlandian coarse sandstones. The 

sense of obliquity is again suggestive of a dextral component of slip along the 

northwest segment (figure 3.19a). 

3.4.2.1 Shear sense evidence along the northwest fault segment 

As mentioned above, oblique fold axes and fault drag, adjacent to the northwest fault 

segment, suggests a dextral component of motion is present along the northwestern 

segment. Where exposed the fault commonly manifests itself as zones of anastomosing 

breccias, within which asymmetric clasts or 'bull-nose• clasts are common. The 

asymmetry of these clasts is commonly accentuated by the development of debris trails 

from the long axis of the clast. In rare examples asymmetric growths of calcite pressure 

shadows can be seen. These asymmetries again suggest a dextral component of motion 

within the fault zone, a sense of motion that is corroborated by observed mesoscale 

lithological offsets and mesoscopic fault geometries. Examination of slip surfaces along 

the fault zone reveals a spectrum of slip directions from reverse dip-slip, through 

oblique-slip to strike-slip. The best exposure of the fault zone is found directly north of 

the village of Mosteiros 
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Figure 3.19a Structural map of the northwestern segment of the Alcanede fault. (Bath. Jsts., 
Bathonian aged limestones; Ox. Lsts., Oxfordian aged lacustrine carbonates; Kim., Kimmeridgian 
Ssts. and marls; Port., Portlandian aged red beds; Cret., Early Cretaceous yellow ssts.) 
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in a road section running parallel to Vale das Fontes Regueiras (grid ref. 50'72'' 

25'80"*). The fault zone is 15-20 metres wide at this location, and is characterised by a 

strong fabric produced by numerous cross cutting mesoscopic faults. The faults form 

two sets, a high angle set (dipping up to 85° N), and a lower angle set (dipping at 70° 

N), suggesting that the northwest segment of the Alcanede fault dips at a high angle to 

the north. Visible offsets and slickenlines along these mesoscopic faults indicate that 

the lower angle faults have a reverse sense of shear and appear to post-date the higher 

angle set. The steep faults define platey slivers of rock forming bundles, that are bound 

on upper and lower sides by reverse faults. Slickenlines observed along these steep 

faults reveal a dominant strike-slip component. These mesoscopic faults form an 18° 

oblique clockwise angle to the main fault trace. The strong presence of oblique 

clockwise reverse faults together with a strike-slip component suggests a dextral 

transpressional strain along the fault zone. 

Fault geometries and kinematics observed within the sub-vertical bedding 

adjacent to the northwest segment is also suggestive of a transpressive nature for the 

Alcanede fault. A flower or palm-tree structure is present displaying partitioned strain. 

The central 'stem' is formed by steep oblique or strike-slip faults, with numerous 

convex upward reverse faults splaying out from it. The thrust transport directions are 

away from the central fault and change across the 'stem'. The flower structure 

truncates sub-vertical to overturned bedding therefore indicating it was a late stage 

structure (Figure 3.19b ). 

E 

t 
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Figure 3.19b Transpressional fault system displaying a flower structure geometry and spatial strain 
partitioning of the strike-slip and shortening components. Location highlighted in fig. 3. I 9a 

* All grid references for the S. dos Candeeiros region are prefixed by 08° (Lat.) and 39° (Long.). 
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3.4.3 The deformation style and kinematics of the Alcanede fault 

Considering the data presented in sections 3.4.1 to 3.4.2, the Alcanede fault appears to 

have a complex deformation style. In both the southeastern and northwestern segments 

of the fault) dextral and reverse components of shear are evident, and where thrust 

transport directions are found the strain appears to be transpressional. However, the 

strain in the southeast segment cannot be modelled by simple transpression, and 

appears to display temporally partitioned strain. The formation of the fault-parallel 

monocline along the southeastern segment indicates that initial deformation occurred 

via fault perpendicular contraction, producing a high angle fault-parallel anisotropy 

that has been reactivated by the dextral component of slip. The presence of a dextral 

component within the extensional flexural shear suggests that a component of dextral 

slip was occurring during the latter stages of monocline formation. Therefore, the 

progressive formation of a sub-vertical anisotropy (steep bedding) appears to have 

exerted a fundamental control on the temporal partitioning of strain in the southeastern 

segment. 

The variation in deformation style along the northwestern segment also 

suggests that the initial orientation of bedding with respect to the fault zone at the 

onset of deformation is important. A similar style of deformation to that observed 

along the southeast segment is found along the northwest segment, with fault-parallel 

folding of presumed originally fault parallel bedding. However, the timing of the two 

strain components is not clear. The presence of flower structure geometries 

demonstrating spatial strain partitioning, and zones of contemporaneous strike-slip and 

reverse slip suggest that the two components were coeval. 

13.5 The Mendiga fault zone 

The Mendiga fault zone trends NNE-SSW, sub-parallel to the S. dos Candeeiros fault 

zone, and forms the northwestern boundary of the Candeeiros block. The fault trace 

coincides with a large fault scarp running southwest from the quarry overlooking Porto 

de M6s towards the village of Mendiga, from which it derives its name. Jurassic aged 

fault scarp talus deposits are found along its trace, indicating that it initiated during the 

Jurassic rifting episode. Since the Jurassic the fault has undergone a period of 

reactivation with two distinctly different structural and kinematic styles present at its 

northeastern and southwestern ends. 

3.5.1 The northeastern segment 

The northeastern segment of the Mendiga fault is exposed in a large quarry 

overlooking the town of Porto de Mos. The quarry is currently being worked for road 

stone therefore it provides superb unobscured exposures of the structures. The quarry 
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has been cut into an Aalenian aged limestone and shale sequence approximately 300m 

wide, and is bounded on two sides by the steep northwesterly dipping Mendiga fault on 

the northwest, and a large extensional fault on the southeastern side. In the hanging 

wall of the Mendiga fault is the black pebbled conglomerate horizon that represents the 

base of the Oxfordian sequence, indicating that the fault has an extensional 

stratigraphic throw. The limestone and shale sequence contained between these main 

faults is intensely faulted, with numerous steep extensional faults producing an intricate 

fault system. Where offsets are discemible_,they are commonly only a few metres to less 

than a metre in magnitude. Some of the more continuous faults have large throws that 

are greater than the height of the excavation face (i.e. greater than I Om), and are 

presumed to be first order faults, onto which numerous smaller extensional faults ride. 

These relatively large throws are suggested by: the presence of subtle roll-over 

anticlines, formed where fault planes shallow slightly, and the distribution of 

deformation in the adjacent fault walls by small rotated fault blocks. The fault blocks 

accommodate extensional motion via a network of faults that extend the thickness of 

individual limestone units becoming listric along shale horizons (plate 3.11 ). 

Plate 3.11 Distributed faulting adjacent to an extensional fault with a relatively large displacement. 
Distributed deformation is manifest as listric faults within competent Lst. beds that detach along shale 
horizons producing equi-dimensional (in profile) rotated fault blocks. 
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A plot of extensional fault plane orientations on an equal area stereonet reveals 

that the faults generally strike northeast to southwest, however, the poles to fault 

planes cluster into three distinct sets. Such multi-modal fault sets indicate that a triaxial 

strain has occurred, in this particular case the three sets of faults accommodated a 

three-dimensional, coaxial, extensional strain, as non-coaxial rotational strain fields 

produce quadrimodal fault systems (Reches, 1978). 

Examination of the extensional fault planes reveals a sub-horizontal corrugation 

due to the differential abrasion of the truncated limestone and shale beds. These 

corrugations produce elongate depressions that behave as erosional shelters allowing 

the accumulation of fault breccias, while the crests of the corrugations become 

polished due to the precipitation of clear calcite, which are in tum striated and deeply 

grooved by plough marks produced by asperites along the fault walls. These striations 

indicate a dip-slip extensional movement along the faults. The fault planes are 

commonly reactivated, displaying sub-horizontal calcite fibres, striated accretionary 

calcite steps and thin zones of striated red fault gouge. Shear sense indicators suggest a 

consistent sinistral motion, although occasional dip-slip reverse slickenside striae were 

also observed. 

Late dextral faults are also seen offsetting many of the structures within the 

quarry. They possess a NNW to SSE orientation, and form a conjugate set with the 

sinistral reactivation faults. The reverse slickenside striae lie within the acute bisectrix 

of this conjugate set, suggesting they are coeval. These dextral fault planes are covered 

with slickolites indicating that the strain rate and amount of displacement along the 

faults was low (figure 3.20). 

The bedding within the quarry faces defines a monoclinal fold adjacent to the 

main Mendiga fault plane, with reverse faulting present within its hinge zone, 

suggesting that the monocline is a result of compression, and is not a relic drag fold 

formed during the Jurassic when the Mendiga fault was extensional. The main Mendiga 

fault plane trends NNE-SSW and dips steeply to the northwest. Slickenside striations 

vary from dip-slip to strike-slip, which in all cases display components of dextral and 

reverse slip. This shear sense is confirmed by a wide variety of shear sense criteria; T 

fractures, 'R' fractures, and accretionary calcite steps. 

The faulting in the quarry indicates that two phases of deformation have occurred 

within this region, an early probably Late Jurassic extensional phase of faulting that 

produced three sets of coeval extensional faults indicating a triaxial strain, and a later 

compressional phase, resulting in the reactivation of the extensional faults as sinistral 

strike-slip faults, and the formation of dextral faults to form a conjugate set, with 

occasional coaxial reverse faults present. The component of dextral motion along the 

Mendiga fault suggests that the reactivation may be related to the late transpressive 

126 



Chapter 3 

phase of motion along the Alcanede and Alvados/Minde faults, with the generally late 

compressive structures related to the contractional strain at the termination of the 

Alvados fault during its dextral phase of motion. 

N 

Figure 3.20 (Top) Equal area stereonet displaying fault planes and slickenlines. Triangle-sinistral, 
square-dextral, circle-extensional, diamond-reverse, and star~unknown shear sense. (Bottom left) 
Contoured poles to fault planes for same data set. Ext-extensional faults, Sin-sinistral faults, and 
Dex-dextral faults. Reactivation shear sense indicated by lower abbreviation. (Bottom right) 
Schematic representation of the fault sets. (solid semi-circle indicates downthrow side) 

3.5.2 The southwestern segment 

The southwestern segment of the Mendiga fault is marked by a thick zone (3-4 metres 

wide) of composite extensional calcite veining (plate 3.12). The fault zone has been 

127 



Chapter 3 

locally excavated along its length, presumably for the calcite mineralisation. The 

excavated sections provide excellent exposures revealing slickenside surfaces. These 

surfaces have a corrugated nature with secondary extensional fractures or 'comb 

structures' developed orthogonal to the crests and troughs of the corrugation These 

structures clearly indicate an oblique sense of slip in the fault zone, with components of 

dextral and extensional motion. Extensional veining elsewhere along the fault trace 

displays oblique mineral growth, suggesting that constant, low strain rate, dextral slip 

was occurring across the vein during extension and calcite precipitation. Slickensides 

on the vein walls have an oblique striation consistent with dextral oblique extension. 

Examination of rarely exposed mesoscopic faults along the main fault trace reveal the 

presence of a dextral 'horsetail' fault system (Segall and Pollard, 1983), sub-parallel to 

the main Mendiga fault, again confirming a dextral component of motion along the 

main fault zone. · 

Plate 3.12 View looking SSE along the Mendiga fault, showing the composite extensional calcite 
veining common along its southeastern end. Hammer shaft 35cm. 

The southwest segment is further complicated by the development of a first

order, right steeping, en-echelon fault geometry. The faults have a relay zone 3km 

long, and are separated by a fault bridge 1.25km wide. The fault bridge appears to be 

partially breached by a connecting splay, (nomenclature from Ramsay & Huber, 1987). 

The northwesterly stepover can be traced to the northwestern termination of the 

Alcanede fault. The fault zone is very poorly exposed, but anastomosing breccia zones 

can occasionally be seen along its trace. The breccias do not possess a cataclastic 
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texture, instead they display asymmetric 'bullnose' clasts with cataclastic debris trails 

and rare calcite pressure shadows developed from their long axes. This suggests that 

these narrow zones are small splays associated with the main fault that have not 

accommodated large displacements. However, the clasts consistently indicate a dextral 

extensional shear sense within the zones, confirming their structural and kinematic 

relationship to the main trace of the southwest Mendiga fault segment. 

As shown above, the southwestern segment of the Mendiga fault possesses a 

consistent oblique sense of slip with components of both dextral and extensional 

movement. Like the northeastern segment of the fault, the kinematics of the 

southwestern segment appear to be the result of extensional strains associated with the 

northwest termination of a dextral strike-slip/transpressive fault, i.e. the Alcanede fault. 

The variation in the normal component of strain across the Mendiga fault from 

contractional in the northeast to extensional in the southwest, suggests that it is due to 

tip line stresses at the termination of dextral strike-slip faults (Sanderson & Marchini, 

1984; and Rispoli, 1981). The dextral component of motion along the fault is 

presumably the result of relative motion between the rotation of the Candeeiros fault 

block (see section 3.8) and the 'sheet' of Oxfordian aged strata that sitS between the S. 

dos Candeeiros fault and the Mendiga fault zone. 

3.6 The southeastern thrust zone of the Candeeiros block 

The southeast boundary of the Candeeiros block is formed by a continuous thrust fault 

(Amiais de Baixo thrust zone) connecting the termination of the Alcanede fault zone to 

the southeast termination of the Minde fault zone. The thrust sheet carries Middle 

Jurassic to Upper Cretaceous age strata over Oligocene to Miocene clastics of the 

Lower Tagus sub-basin. A second thrust sheet (the Monsanto thrust) is present 

forming a diverging splay above the Amiais de Baixo thrust, the branch point of which 

is located approximately 2km northeast of the village of Monsanto. The Monsanto 

thrust transports Bathonian limestones over Cretaceous and Oligocene sediments that 

form a nested basin on the back of the Amiais de Baixo thrust sheet. 

3.6.1 The Amiais de Baixo thrust zone 

As mentioned the Amiais de Baixo thrust zone joins the southeast terminations of the 

Alcanede and Minde faults. The strike and geometry of deformation associated with 

the Alcanede fault gradually transforms into the adjacent thrust zone. In contrast, the 

junction of the thrust zone with the Minde fault zone displays abrupt truncations and 

changes in structural geometry. 

The thrust zone produces a dominant fault scarp in the southwest which 

diminishes toward the northeast where poorly consolidated Cretaceous clastics overlie 
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the Upper Cretaceous and Oligo-Miocene clastics. This decrease in throw suggests a 

northeasterly propagating thrust, alternatively it may be the effect of a superimposed 

anti-clockwise block rotation upon southerly directed thrusting (section 3.8), resulting 

in differential amounts of thrust transport. The thrust sheet can be divided into three 

sub-areas: the area southwest of the village of Abra, the area to the east of Abra 

(Relvinhas sub-area), and the perched Oligocene clastic basin north of Abra. (Map 1). 

3.6.1.1 Southwestern sub-area 

The southwestern sub-area is formed of Bathonian and Oxfordian aged limestones, 

bounded on its eastern side by a NNW-SSE oriented compartment fault (the Prado 

fault), the Amiais de Baixo thrust to the south, and an upper Jurassic unconformity to 

the north. The area is dominated by a periclinal anticline cored by Bathonian micrites, 

the fold axis of which swings from NW-SE to E-W following the local trace of the 

Amiais de Baixo thrust. The anticline initiates parallel to the Alcanede fault and its 

associated monocline. However, unlike the Alcanede monocline, which straddles its 

deformation zone, the Amiais de Baixo anticline has formed in the hanging wall of the 

fault and is southwest verging. Discrete stratigraphic truncations are present in the 

footwall of the thrust zone with a NW -SE oriented overturned footwall syncline 

present which verges to the southwest. Following the thrust zone east, the structural 

grain changes to an east-west orientation, with approximately southerly directed thrust 

transport. A poorly developed axial planar pressure solution cleavage is associated 

with the Mesozoic carbonates. 

The thrust zone is exposed immediately north of the village of Prado (grid ref. 

46'37" 24'1 0"), where it forms a 1 metre thick breccia zone separating Oxfordian 

limestones of the hanging wall, from Lower Cretaceous coarse yellow sandstones of 

the footwall. The thrust zone consists of sub-rounded to sub-angular, commonly 

rhomboidal shaped clasts, up to 20cm in length, set in a coarse grained sandstone 

matrix. A strong planar fabric is present within the breccia zone, along which many of 

the elongate clasts lie. No slickenline lineations were observed due probably to the 

distributed nature of the deformation and the poor cohesion of the fault rock. At the 

upper limit of the thrust zone the rhomboidal or 'bullnose' clast formation process can 

be observed. Large clasts are formed by the intersection of two discrete fracture sets, 

Rand P shears, which form anastomosing shear lenses or 'bullnose' clasts (figure 3.21 

and plate 3.13). The shear sense derived from these bullnose clasts indicate a top to the 

south thrust transport direction. The orientation of the planar fabric suggests that the 

Amiais de Baixo thrust strikes 080° at this point along its trace. 
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Plate 3.13 Anastomosing shear lenses or 'bullnose' clasts along the Amiais de Baixo thrust, indicating 
top to the right (south) thrust transport direction . 

.... 

p 

Figure 3.21 Geometry of shear lenses relative to the fracture sets. R, Riedel shears; P, P-shears. 

3.6.1.2 The Relvinhas sub-area 

The Relvinhas sub-area is composed of Aalenian to Bathonian age micrites uncon

formably overlain by Lower Cretaceous clastics. Together they form a southeast 

verging hanging wall anticline within the thrust sheet. The thrust sheet sequence 

overlies Cretaceous and Oligocene aged rocks of the footwall , that form an overturned 

syncline. 1t-diagram analysis of hanging wall bedding indicates a consistent orientation 

for the hanging wall anticline fold axis of 20°/071 within the vicinity of the Prado fault, 

to 14°/067 around Relvinhas hill top (figure 3.22). 
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Figure 3.22 Equal area stereonets displaying rt-diagrams for bedding in the Amiais de Baixo thrust 
sheet near the Relvinhas region (left), and the area east of the Prado fault (right). Cleavage transects 
the fold axes in a clockwise sense. Dots - poles to bedding; squares = poles to cleavage; triangles -
lineations on bedding surfaces. 

Cleavage 

A weakly developed pressure solution cleavage is present throughout the sub-area, 

commonly manifesting itself as isolated stylolitic seams observable only in freshly ham

mered surfaces. The cleavage is sub-perpendicular to bedding and dominantly east

west striking, forming a clockwise transection angle with the hanging wall anticline of 

approximately 23°. Axial planar cleavage is also present. The chronological relation

ship between the cleavage sets indicates that the transecting cleavage post-dates the 

axial planar cleavage (see 3.6.2.1 ). 

Mesoscopic faulting and bedding plane reactivation along the Relvinhas 

thrust segment 

The main thrust plane is not exposed along this segment of the fault trace, 

consequently there is a paucity of data for this section. The data obtained represents 

mesoscopic thrust faults that display a SSE direction of transport which coincides with 

the fold profile plane for the hanging wall anticline, indicating they have a coaxial 

relationship. The thrust sheet is dissected by a north-south oriented dextral fault that 

forms a roughly transport parallel compartment fault. The deformation style varies 

abruptly across this fault suggesting it has a controlling influence on the developing 

structures (see Map 1 ). 

By far the most common mesoscopic faults observed are bedding parallel 

reactivation faults formed along the steep southern forelimb of the hanging wall· 

anticline. These faults are discrete planes and do not possess breccia zones or gouge. 

The fault planes display short calcite accretion steps and pressure solution slickolites, 

·b~arin.9_, testimony to the minor displacements which have occurred. The slickenline 

lineations derived from the calcite slickenlines and slickolites, display a very consistent 

sinistral sense of shear with a minor component of reverse motion (figure 3.23). Good 
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Figure 3.24 a)Mesoscale structures associated with the fonnation of the hanging wall anticline. b) 
Late non-coaxial structures overprinting initial set by 25-30°. See text for detail. 
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The strain preserved in the hanging wall rocks at Penas de Prado, allows a 

detailed insight into the evolution of the Amiais de Baixo thrust zone. The last 

structures to form indicate an almost due south direction of thrust transport, and are 

superimposed upon structures associated with an apparent south southeasterly thrust 

transport direction. This scenario can be interpreted in two ways: either the regional 

principal shortening direction responsible for the thrust development rotated from a 

SSE-NNW orientation to a N-S configuration, or the rock body was rotated about a 

vertical axis in an anti-clockwise sense relative to a stable shortening axis. As 

mentioned in section 2.2, the relative orientation of the regional shortening direction to 

the Lusitanian basin changes in an anti-clockwise sense between the Late Miocene and 

Recent. This is opposite to the relative sense of strain rotation in the quarry, therefore) it 

appears that the rock body must have rotated relative to the shortening direction, 

suggesting a 25-30° anti-clockwise rotation of the S. dos Candeeiros block. Figure 

3.24- is a schematic block diagram showing the evolution of strain within the hanging 

wall incorporating the block rotation. The detailed structural relationships, so well 

preserved in the fresh exposures of the Penas de Prado quarry, are not found in such 

completeness elsewhere due to the poor exposure. However, sinistral reactivated 

bedding planes plus transecting cleavages were observed along the length of the 

Relvinhas sub-area suggesting that the rotation occurred on a regional scale. 

3.6.1.4 The perched Oligocene basin 

The Oligocene sediments form an elongate 6.5km x 1.5km basin which trends parallel 

to the thrust zone, and lies to the north of the towns of Amiais de Baixo and Canal. 

The Oligocene sediments lie unconformably on Cretaceous sediments which in tum are 

unconformable on Middle to Upper Jurassic carbonates. 

Stratigraphic relationships, based on the Servi~os Geol6gicos De Portugal 

I :50,000 geological map, reveal that the base Aptian-Albian unconformity has a 

varying relationship to the underlying Jurassic stratigraphy indicating that tectonic 

disruption had taken place during the Late Jurassic. The relationships show that the 

Prado fault is post-Portlandian and pre-Cretaceous in age and therefore is most 

probably a Late Jurassic to base Cretaceous extensional fault. The Cretaceous 

sequence displays a straight succession from Albian to Turonian, that has been gently 

folded into a syncline parallel to the Amiais de Baixo thrust. The overlying Oligocene 

forms a northwestward over-stepping relationship with the Cretaceous. 

The structural and stratigraphic relationships seen in the Amiais de Baixo 

region, may be explained by a thrust top model. This model involves the formation of 

an elongate, thrust parallel depositional basin on the back of a developing thrust sheet 

behind the thrust front. During hanging wall anticline development and uplift at the 
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thrust front, the deposition centre of the perched basin will move toward the hinterland 

resulting in the syntectonic sedimentary sequence forming an over stepping 

unconformity. If this interpretation is correct, it suggests that the initiation of thrusting 

in this region occurred in the Oligocene. Alternatively, these stratigraphic relationships 

may simply relate to localised uplift relative to the present day position of the Amiais 
0. 

de Baixo thrust (Figure 3.25). Evidence supportingJocalised L early phase of uplift 

was recognised by Wilson et al., (1990) who speculate that uplift may have begun as 

early as the uppermost Cretaceous within the Lusitanian basin. Therefore, it seems 

likely that regional uplift in the Amiais de Baixo region may be related to Betic 

tectonics to the south of Portugal, during early Oligocene subduction (Leblanc and 

Oliver, 1984), which was the precursor to the main Miocene inversion event in the 

Lusitanian basin. However, detailed stratigraphic and sedimentological studies are 

required to validate this hypothesis. 

PRE-Ol..IGOCENE OLIGOCENE 

Onlap due tectoniC uplift? SE 

Figure 3.25 Possible origins of the Oligocene basin northwest of Amiais de Baixo. 

3.6.2 Monsanto Thrust Zone 

As mentioned in the introduction to section 3.6 the Monsanto thrust forms a diverging 

splay above the Amiais de Baixo thrust sheet, placing Bathonian micrites over the 

Cretaceous and Oligocene clastics of the Amiais de Baixo perched basin. The thrust 

trace can be followed for approximately 14km, from Moitas Venda in the northeast, to 

its lateral thrust tip near the village of Estudante in the southwest. 

Deformation in the hanging wall is confined to a zone up to 2km wide along 

the thrust front, the structure of which is dominated by a hanging wall anticline and a 

gentle hinterland syncline, that overlie a truncated footwall syncline. The geometry of 

this hanging wall anticline varies quite dramatically along the fault trace from an open 

inclined fold to a tight overfold. The tightness of the interlimb angle and hence the 
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amount of strain does not adhere to a pattern of increasing strain away from the lateral 

tip, instead the most developed folds coincide with compartment faults that lie parallel 

to the thrust transport direction. These compartment faults also coincide with 

systematic strike swings, and therefore appear to exhibit an important control on the 

structural development of the thrust sheet (Map 2 ). 

The complexity of the thrust zone increases towards its northeast termination, 

where a number of spectacular thrusts have developed which are confined between the 

Moitas Venda fault and a compartment fault approximately 700 metres to the 

southeast. The lateral relationship between these faults is unclear, however they appear 

to die out laterally with a small overlap. 

3.6.2.1 Thrust zone kinematics 

The main thrust plane was not exposed, but numerous mesoscopic reverse and thrust 

faults were encountered. The dominant set of faults, by far, are ENE-WSW striking 

back thrusts. The best exposure of which, was observed in a road cut along a single 

track road at Penas dos Corvos, (grid ref. 43'89" 27'90"). The exposure is dominated 

by post-folding back thrusts that reactivate bedding surfaces in the forelimb of the 

hanging wall anticline. Numerous thrust geometries are present including a bedding 

parallel duplex zone, and 'extensional' back thrusts (figure 3.26a). These 'extensional' 

thrusts are formed where back thrust faults cut down sequence in previously tilted 

strata so that the contractional faults carry younger rocks over older therefore 

displaying 'extensional' stratigraphic throws (see figure 3.27). The fault planes are 

commonly coated with fault precipitated calcite accretionary steps or slickolite striae, 

which allow for easy shear sense determination. Figure 3.26b displays a equal area 

stereographic projection for thrust and reverse fault slickenside striae, the vector mean 

thrust transport direction derived from this data set being 172°. When considering only 

the late back thrusts a transport direction of 359-179° is derived. This direction of 

thrust transport is very similar with that derived from the Penas de Prado quarry, 

namely a north-south orientation. 

3.6.2.2 Large scale fold geometry and associated structures 

As mentioned, the thrust sheet is dominated by a well developed hanging wall anticline 

and a complimentary, gentle to open, hinterland syncline. Although systematic strike 

swings are present along these structures, they are not of a large magnitude and 

therefore do not affect the large scale analysis of the fold. A 7t-diagram of total bedding 

from the Monsanto thrust sheet and underlying footwall syncline reveals a fold axis 

oriented 03/073 (Figure 3.28a). The data points represented by poles form a tight 

scatter along the constructed 7t-circle. Using 
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Figure 3.26 a) Sketch of road cut at Penas dos Corvos displaying the exploitation of bedding by late 
back thrusts which frequently cut down section. b) Equal area stereonet of fault planes and lineations 
measured along the Monsanto thrust zone (left), and (right) thrust and reverse fault transport 
directions, indicating a mean transport direction of 172-352° 
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figure 3.27 Schematic diagram showing the relationship between thrusts that cut down sequence and 
thrust tip fold limbs. 

Ramsay and Huber's (1987) classification the fold can be considered as sub-cylindrical 

since approximately 90% of the data points lie within 20° of the 1t-circle. 

Bedding planes throughout the deformation zone commonly display reverse 

shear sense slickenside striae, that have an approximate pitch of 90°. An equal area 

stereographic projection of slickenlines measured on bedding surfaces show that their 

mean lineation and mean vector lie along the 1t-circle or fold profile plane (Figure 

3.28b ), suggesting that they are related to flexural slip during fold generation. 

A well developed and frequently intense pressure solution cleavage, in the form 

of normal stylolite seams, is present throughout the deformation front. When plotted 

on an equal area stereonesthe poles to cleavage form a rough scatter along then-circle 
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indicating an axial planar relationship to the folds (Figure 3.28a). Unlike the Amiais de 

Baixo thrust zone there is no transecting cleavage post dating the anticline formation. 

a b 

Figure 3.28 Equal area stereonets of a) poles to bedding (crosses), and cleavage solid (circles). 7t

diagram analysis reveals a mean fold axis oriented 03°/073, and b) bedding plane slickenlines with 
fold profile plane for reference. 

Localised fold variations 

In general there is an increase in the degree of fold development, from the lateral thrust 

tip in the southwest to the complex zone of thrusts and folds adjacent to Moitas Venda 

in the northeast. However, this trend is punctuated by the localised development of a 

tight overfolded anticline and an associated hinterland synclinal and anticlinal pair to 

the immediate northwest of the village of Monsanto. These folds can be traced 

westwards for a short distance where they merge to become the regional hanging wall 

anticline. To the east, the folds end abruptly against a north-south oriented 

compartment fault, beyond which the structural style differs considerably. The marked 

variation in fold style on either side of this fault may be related to a basic difference in 

the basal thrust plane geometry: to the west, a localised flat-ramp geometry thrust 

plane is envisaged to generate the complex fold geometries in the overlying thrust 

sheet and, to the east, a much simpler uniformly dipping thrust plane (figure 3.29). The 

relationship between localised fold geometry variations and compartment faults is 

common along the Monsanto thrust zone, as well as the Amiais de Baixo thrust zone, 

suggesting that the faults have had a fundamental influence on the adjacent thrust plane 

geometry and thrust zone development. This fundamental control suggests the faults 

may pre-date the Monsanto thrust. Given the similar orientation and structural 

relationships of these faults to the Prado fault (discussed in 3.6.1) they may be of 

similar age and origin, i.e. reactivated Late Jurassic extensional structures. 
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Figure 3.29 Schematic diagram displaying inferred thrust plane geometries and their effect on thrust 
sheet structure, either side of N-S oriented transfer fault. 

3.6.2.3 Strain and small scale structures associated with folding 

Due to the relatively low strain states within the Monsanto thrust sheet it is possible to 

identify a varied development of small scale structural features within different regions 

of the folds. These structures can be related to the large scale fold geometry by 

considering the incremental and finite strain models for flexural folds and tangential 

longitudinal strain, plus the consideration of prefold strains arising from initial 

compaction, layer parallel shortening and oblique early tectonic strains. Definite 

chronologies can be established for these strains from cross cutting relationships and a 

strain model for the progressive development of the folds established. 

Prefold Strains 

The strain produced by either flexural folding or · aucKL'"'rr is commonly 

superimposed on a pre-existing strain. There are three common types of prefold strain 

that can occur before the active folding of a layer. They are: layer parallel shortening 

and bed thickening, some earlier period of tectonic deformation that produces ellipses 

with their principal strain axes oriented obliquely to the layer surfaces, and diagenetic 

compaction or shortening perpendicular to bedding. Layer parallel shortening and early 

tectonic deformation will be treated together as in this case some of their effects 

produce coaxial structures that effectively shortened the rock parallel to bedding. 

Pure layer parallel shortening strains are common throughout the Monsanto 

region. They are homogeneous and manifest themselves as bedding perpendicular 

stylolite seams and contemporaneous bedding parallel extensional calcite veining. 

Heterogeneous layer parallel shortening strains or pure shear tectonic deformation 

142 



Chapter 3 

parallel to bedding, is represented by the development of conjugate brittle/ductile 

tension gash arrays whose Y -axes are perpendicular to bedding surfaces. By 

stereographically rotating the tension gash data to correct for the effects of folding, it 

is seen that they form two strike-slip sets, a NE-SW oriented sinistral set and a dextral 

WNW -ESE set. The principal strain axes for these conjugate shears can be calculated 

by hand using the method of Hobbs et al., (1976) and Ramsay & Huber (1987), (see 

Appendix 1) This reconstruction produces a mean Z axis oriented 10°/340, indicating 

that the prefold strain is coaxial with the large scale fold structures (Figure 3.30). 

Figure 3.30 Equal area stereonet of 
reconstructed principal shonening directions 
(Z axes) of prefold strains in the Monsanto 
thrust sheet. 

Early tectonic deformation, in the form of layer parallel simple shear, is difficult 

to distinguish as its effects are similar to those generated by flexural fold strains. 

However, unlike flexural fold strains, prefold strains develop independent of their 

position within the later fold. Therefore, early increments of tectonic strain can be 

distinguished due to their inconsistent strain pattern relative to the overprinting flexural 

fold or tangential longitudinal strain. 

Flexural fold strain 

In well bedded rocks,the strains set up during the folding process are often controlled 

by simple shear parallel to bedding. If the simple shear is distributed continuously 

through the structure the fold formed is termed a flexural flow fold, whereas if the 

shear is discontinuous (confined to bedding planes) the fold is termed a flexural slip 

fold (Ramsay and Huber, 1987). The sense of shear associated with flexural slip 

displacements have a systematic relationship to the fold with the structurally 

uppermost layer always displaying movement towards the antiformal hinge, relative to 

the lowermost structural layer. Slickensides and the precipitation of overlapping 

fibrous calcite along the bedding surfaces, with a lineation perpendicular to the fold 

hinge is also typical of flexural slip. Such relationships are found throughout the 
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Monsanto region, especially within the forelimb, indicating that the flexural slip 

process is a dominant fold mechanism. 

In flexural flow folds,the evenly distributed simple shear strains which occur 

throughout a layer, sometimes produce extensional vein systems. The geometry of 

these vein systems follows the same principals as tension gash array formation, with 

the veins commonly initiating at angles of about 45 and 135° to the bedding surfaces. 

As the fold develops the vein systems become modified by later strain increments, 

figure 3.31 displays a common progression in the geometrical modification of the 

Figure 3.31 a)· flexural slip model, b) formation and modification of 'ideal' extensional veins 
produced by flexural shear (Re-drawn from Ramsay & Huber, 1 987). 

vein system. However, in nature, these ideals are rarely realised and a complex 

relationship between extensional veins, cleavage and the incremental and fmite strains 

exist. Figure 3.32 shows a simplified line drawing of the relationship between small 

scale structures from two localities within the southeast forelimb of the main anticline 

immediately north of Monsanto village. Figure 3.32a displays the relationship between 

cleavage and veins in a flexural flow strain system. The extensional veining has been 

localised into bedding parallel tension gash arrays within the layer. Overprinting these 

vein arrays, at an angle slightly less than 90°, is an intense pressure solution cleavage. 

The removal of vein material in solution along these oblique cleavage planes has 

resulted in the formation of 'bowtie' veins. In this situation the vein arrays represent the 

first increments of simple shear strain that have not undergone further increments of 

growth and rotation. Instead, with continued fold development, the vein systems have 

been overprinted by a solution cleavage which has formed parallel to the maximum 

finite longitudinal strain trajectory (1 +e 1 ). A 
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Figure 3.32 a) Flexural flow strain within the Monsanto thrust sheet. The structures formed are 
commonly non-coaxial, with pressure solution cleavage rotating faster than extensional veins. b) 
Complex strain history: I) prefold strains, layer parallel shortening; 2) flexural shear, and flexural 
slip strain; 3) layer parallel extension. 

more complex relationship is shown in figure 3.3Z.b. Within the micritic beds an initial 

layer parallel shortening strain is overprinted by flexural flow strain, in the form of 

oblique extensional veins. This in tum is superimposed by a layer parallel extensional 

strain and related vein arrays. Evidence for flexural slip folding is present with 

abundant slickensides developed on the bedding surfaces, therefore the fold mechanism 

is a combination of both flexural fold models and produces an inhomogeneous strain. 

The strain history of prefold layer parallel shortening, flexural flow/slip folding and 

late-fold layer parallel extension is common, but it does not fully explain the strain 

accommodation during folding. 
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Tangential longitudinal strain 

In sequences of varying lithology and hence rheology, strains other than those of 

simple shear must be incorporated to allow for strain compatibilities. The principal 

axes of these additional strains act sub-perpendicular and sub-parallel to the bedding 

surfaces and are termed tangential longitudinal strains. This type of strain tends to 

dominate thick ·J ·competent units in interlayered sequences. To maintain geometric 

compatibility when folding a competent bed the outer arc of the layer must undergo 

layer parallel extension, while the inner arc undergoes layer parallel compression. At a 

point between the inner and outer arc is a surface of no finite strain, known as the finite 

neutral surface (figure 3.33). The geometric features of the small scale structures that 

form under conditions of tangential longitudinal strain are summarised in figure 3.33 b 

to d. Strain within the outer arc is characterised by layer parallel cleavage and layer 

perpendicular veining, that commonly tapers toward the base of the bed, while the 

inner arc is dominated by a layer perpendicular convergent cleavage fan and layer 

parallel veining. However, in natural rocks, small scale structures commonly 

superimpose upon one another, producing apparent strain reversals where the sense of 

shortening implied by one structure may be perpendicular to the maximum shortening 

implied by another. These structural relationships are the result of the migration of the 

finite neutral surface toward the inner arc. Finite neutral surface migration is a 

geometric necessity, enabling layer parallel extension in the outer arc to more or less 

equal the layer parallel shortening in the inner arc. Figure 3.33e & f show the 

progressive development of folds by tangential longitudinal strain processes indicating 

the strains developed with fixed (3.33e) and migrating (3.33f) fmite neutral surfaces 

(Ramsay and Huber, 1987). In natural rocks the pure tangential longitudinal strain 

model briefly discussed above, is rarely developed in its ideal form and is generally 

combined with layer parallel simple shear strains. 

Within the gentle mesoscale folds found along the Monsanto anticline the fold 

hinges are dominated by outer arc extension •style• strain with the development of 

radial, downward-tapering, perpendicular extensional veins, and layer parallel pressure 

solution cleavage. Rare examples of neutral surface folding can be found with apparent 

•strain reversals• present between the inner and outer arcs suggesting migration of the 

finite neutral surface. Commonly, however, the strain observed can not be completely 

explained by the tangential longitudinal model. Outer and inner arc strain is rarely 

observed within a single layer or bed, instead the strain is dominated by perpendicular 

vems and parallel cleavage, suggesting that individual layers have 
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Figure 3.33 a) Tangential longitudinal strains (T.L.S.) associated with neutral surface folding. b) 
Cleavage, c) Extensional veining, and d) shears, associated with T.L.S. e) and f) strain compatibilities 
for fixed and migrating neutral surface folds. (Taken from Ramsay & Huber, 1987, figs 21.18, 21.21 ). 

undergone layer parallel extension. This scenario may be due to the fact that the 

tangential longitudinal strains are not acting on the scale of individual beds, but on 

packages of rheologically similar beds within the sequence, with the studied outcrops 

located in the outer arc of the deforming package. The bedding surfaces exposed along 

the hinge zones of these folds do not display slickenside striae, therefore indicating that 

hinge zone migration has not occurred. 

Strain and kinematics within the Monsanto thrust sheet 

As presented above, the type of strain preserved within the Monsanto thrust sheet, 

particularly in the Monsanto anticline, does not conform to any one particular model or 

mechanism of fold formation, but is commonly a combination of several models. A 

more actualistic model is presented below, based on the observed relationships. 

Initial deformation began in the prefold stage with the initiation of tectonic 

compression and the formation of a layer parallel shortening strain, commonly 
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accompanied by the formation of a coaxial set of conjugate strike-slip tension gash 

arrays. Progressive deformation and fold development was facilitated by a combination 

of flexural slip and flow folding within the fold limbs. This strain was inhomogeneous 

with a concentration of strain along the bedding surfaces producing interlayer slip. 

Layer parallel extension took place within the hinge zones, possibly as part of the 

neutral surface folding of rheologically similar rock packages. Layer parallel extension 

also occurred within the steep limb as it rotated to an angle of approximately 90° with 

the incremental tectonic strain. 

This distribution of deformation, as represented by the mesoscopic structures, 

indicates that insignificant fold hinge migration has occurred. The concentration of 

tangential longitudinal strains and the absence of slickenlines along the hinge suggest 

that the folds have formed by fixed hinge kinking or buckling, with further deformation 

occurring by the passive rotation of the limbs. These fold kinematics suggest that the 

folds are break-thrust folds (Fischer et al., 1992). 

3.6.2.4 Evidence within the Monsanto thrust zone for the rotation of the 

Candeeiros block 

Structural studies on both meso and macro scales within the Monsanto thrust sheet 

reveal that the early prefold strain and the large scale folds are coaxial in nature, with a 

mean azimuth of maximum shortening oriented 160°. A thrust transport direction of 

179° was derived from the movement striae on post-fold fault surfaces, suggesting that 

thrust movement and fold formation were non-coaxial. This relationship is remarkably 

similar to the Amiais de Baixo thrust zone (3.6.1.3). Both zones display an early strain 

that corresponds to an axis of principal shortening that is oblique and anti-clockwise of 

the principal direction of shortening suggested by the later thrust faults. In the 

Monsanto thrust sheet this relationship suggests that 18° of anti-clockwise rotation has 

occurred since the initiation and development of folding, and the late stage thrusting. 

13.7 Serra D 'Aire thrust zone 

The Serra D'Aire thrust carries Middle Jurassic Bajocian and Bathonian micritic 

limestones of the Candeeiros formation onto, and over Cretaceous and Oligocene 

clastics. The fault trace is marked by a pronounced fault scarp, northwest of which is 

the 668m Serra D'Aire summit. This is the highest mountain in southern and central 

Portugal, and coincides with the large Serra D'Aire anticline that runs parallel to the 

thrust zone. 

The exposure southeast of Serra D'Aire is generally poor and often restricted to 

the fault scarp. The best exposures were found along several road cuttings that 

intermittently cross the thrust zone. From these limited exposures it is possible to 
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appreciate the increased structural complexity of the thrust zone, relative to the 

Monsanto or Amiais de Baixo thrust zones. The large scale structures of this thrust 

front are commonly discontinuous along strike due to the presence of several NW -SE 

oriented compartment faults, and north-south trending reverse faults. At the 

northeastern end of the studied fault segment the thrust sheet is intensely faulted by 

anomalous strike-slip faults that have complex kinematic relationships with the thrust 

faults. At the southwestern termination of the thrust zone, near Moitas Venda, a well 

defined strike swing from northeast-southwest to an east-west orientation is present. 

This strike swing coincides with a complex kinematic fault system. (Map 3). 

3.7.1 Moitas Venda region 

The main fault scarp of the Serra D'Aire thrust can be seen immediately to the 

southeast of the village of Moitas Venda. At the time of study, a large civil engineering 

project was blasting a road cutting through the thrust front to accommodate a new 

motorway link between Lisbon and Leiria. During this period of construction before 

the walls of the road cut had been stabilised, a superb view of the geometry of the main 

Serra D'Aire thrust plane and associated structures was available. 

The thrust zone strikes east-west dipping at approximately 40° to the north 

and truncates the footwall syncline. The zone is formed by two discrete parallel thrust 

faults between which is a 2-3 metre thick fault zone. This zone separates the steeply 

bedded Candeeiros formation in the hanging wall, from overturned Aptian-Albian age 

terrestrial clastic deposits in the footwall. The fault zone is formed of elongate rhombic 

'horse' shaped clasts of micrite up to I Ocm in length, that have an imbricate geometry. 

The clasts display extensional calcite veins perpendicular to their long axes and 

occasionally pressure shadows, formed by calcite fibre growths parallel to their 

elongate axis. The possession of structural continuity between the clasts suggest that 

they are 'insitu' or unrotated and hence were formed by systematic faulting in response 

to simple shear and not the process of cataclasis where the multiple mechanical 

fracturing of rock particles is combined with rotation and mechanical mixing. The 

surfaces of these micrite clasts are smeared with a dark grey clay that forms the matrix 

to the thrust zone. The clay itself possesses a scaly fabric formed by the interaction of 

two surfaces: a closely spaced penetrative fabric that is sheared and rotated into a 

sigmoidal geometry by a later set of discrete anastomosing shear planes, producing a 

similar geometry to the micrite clasts. The shear plane surfaces display a lustrous sheen 

and are strongly lineated by plough marks. Such scaly clay fabrics have been described 

in many soft sediments deformed experimentally by Maltman ( 1987), and Will & 

Wilson (1989), and are characteristic of deformation in weakly lithified sediment 

(Knipe, 1986). It therefore seems probable that during thrust zone formation there was 
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a large influx of wet unlithified clays along the thrust plane, possibly derived from the 

underlying Lower Jurassic shales and mudstones of the Brenha fm. Immediately below 

the thrust zone are overturned Cretaceous clastics that form the northern inverted limb 

of a large footwall syncline. Folding has been accommodated by flexural shear and 

grain boundary slip. Possible sheared rootlets appear to be present in the Cretaceous. 

They are manifest as anoxic green 'streaks' within the coarse red sandstone and form a 

consistent oblique angle from perpendicular of 38°. If these are indeed rootlets they 

would have originally been perpendicular to bedding, therefore their present attitude 

allows a calculation of the amount of shear strain (Y) within the fold limb 

y =Tanl!' 

where 1!' the angular shear strain, is the angular deflection of the rootlets from the 

perpendicular. Therefore, 

y =Tan38° 

Shear strain (y) = 0. 781 

This value is not representative of the footwall as a whole as the strain is a flexural 

flow strain, and hence decreases near the fold hinge. However, due to the 

homogeneous nature of the Cretaceous sandstones it is a representative strain for that 

section of the synclinal limb. 

The footwall rocks also preserve evidence of footwall collapse, as a thrust 

duplex is seen beneath the main thrust zone offsetting sub-vertical to overturned 

footwall bedding. Due to the steep overturned nature of the bedding, the steep 

imbricate faults are in fact thrust flats ·sensu stricto' as they are parallel to bedding, the 

sub-horizontal faults represent thrust ramps (plate 3.15). 

The steep southerly limb of the hanging wall anticline is separated from the 

hinge by a strike parallel reverse fault. High angle mesoscopic reverse faults are 

prevalent within this steep limb, they are commonly the origin of low angle thrusts that 

shallow upwards and away from these mesoscopic reverse faults. North of the large 

reverse fault the bedding is sub-horizontal with a slight dip to the south. Some bedding 

planes display tectonic reactivation with various small scale fault geometries common 

to thrust systems. The development of footwall rip-outs, geometrically identical to the 

side-wall rip-outs of Swanson (1989), and extensional down dip rhombochasms (Aydin 

and Nur, 1985), indicate a southerly direction of thrust transport (Figure 3.34). 
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Figure 3.34 Small scale thrust geometries indicating southerly vergent thrust reactivation of bedding 
plane, Moitas Venda. 

Plate 3.15 Footwall collapse beneath the Serra D'Aire thrust plane, producing a thrust duplex. M1 
roadcut at Moitas Venda. 

3. 7.2 Northern region 

In contrast to the Moitas Venda region_, the north easterly end of the thrust zone 

displays a NNE-SSW structural grain. A best fit n-circle to bedding for folding along 

the thrust front indicates a fold axis oriented 04°/214. This constructed fold axis plots 

closely to bedding/extensional vein intersection lineations on an equal area stereonet, 

suggesting that these veins were formed by tangential longitudinal strains. A second set 

151 



Chapter 3 

of bedding/vein intersections plot orthogonally to the fold axis along the 1t-circle, 

suggesting that fold axis parallel extension has taken place, probably due to the non

cylindrical nature of the fold. Cleavage is poorly developed within the thrust sheet, but 

where present it is axial planar (figure 3.35). 

F.gure 3.35 Equal area stereonet of 
poles to bedding (dots), and cleavage 
(squares). Open triangles represent 
bedding/vein intersection lineations. 
Open circle equal to fold axis. See text 
for details. 

A localised zone of complex thrusting is present west of the village of Alqueidao, 

consisting of three thrust faults that coalesce along strike, with the middle thrust 

carrying younger Cretaceous clastics over older Bathonian micrites. This zone has 

been interpreted as a foreland propagating thrust sequence, within which the frontal 

fault has cut up through the initial thrust to produce the observed structural and 

stratigraphic relationships (see figure 3.36). 

The structure of the thrust sheet is divided into two domains by a NW -SE 

oriented dextral compartment fault. The northern side of the fault is dominated by a 

steep back-thrust that cuts obliquely across strike and separates the forelimb and the 

backlimb of the hanging wall culmination. Early prefold thrust structures can be seen in 

the forelimb which have since been passively rotated during folding (Figure 3.37). The 

majority of the mesoscale faulting within the thrust sheet is post folding, with a 

dominance of backthrusts which exploit the tilted bedding planes. The structure is 

further complicated by the presence of anomalous sets of dextral and sinistral faults 

commonly orthogonal to the thrust front. 
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S.L. o..,_ __ ~100m 

Figure 3.36 Interpretation of thrust sequence exposed to the west of the village of Alqueidao, see text 

for details. 

ssw 

F.W.A. 

F.W.R. - Footwall ramp 

incipient thrust ramp 

Figure 3.37 Rotated early formed thrusts within the forelimb of the Serra D'Aire thrust sheet, 

overlooking the village of Pafarrao. 
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Plate 3.17 View of thrust plane displaying the fault stylobreccia, which consists of multiply fractured 
micrite (dominant) and calcite clasts, Extensional veins filled by red fault gouge and cataclasti·te lie 
approx. orthogonal to the fault plane striations (top right of finger) 

3. 7.3 Fault kinematics 

3.7.3.1 Moitas Venda region 

Thrust and reverse faults observed along the road section east of Moitas Venda display 

a consistent east-west strike with a top to the SSW direction of transport, consistent 

with thrust transport directions seen along the Monsanto and Amiais de Baixo thrusts. 

An anomalous set of steep NNE-SSW oriented faults displaying sinistral oblique 

extensional movement striae are present along the road cutting. The fault set is parallel 

to the direction of thrust transport and hence is parallel to the local plane of finite 

extension suggesting they are related to the exhumation of the thrust sheet and the 

associated reduction in confining stresses. This change in stress conditions may have 

been sufficient to allow extension parallel to the thrust strike. However, the origin of 

the sinistral component remains unclear. 

3.7.3.2 Northern region 

As mentioned above, the northern region possesses a complex fault system associated 

with the south-southeast movement along the basal thrust. A plot of total thrust and 
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reverse fault lineations for the area indicates a mean transport azimuth of 148°. 

Roughly parallel to this transport direction is a set of closely spaced mesoscopic 

dextral strike-slip faults. Rare sinistral faults were observed sharing this orientation, but 

they are more commonly parallel to the thrust zone. 

A comparison of thrust transport directions observed along the main thrust 

plane in both the northern and Moitas Venda regions suggests a mean southerly 

direction of transport. This suggests that oblique thrusting has occurred along the 

Serra D'Aire thrust zone. Using the simple graphical construction presented by 

McCoss (1986), the principal axes of the infinitesimal or incremental strain ellipse can 

be determined (figure 3.38). Using the north-south thrust direction as the displacement 

vector S, an axis of minimum incremental strain, Z axis, oriented to 148° degrees, was 

derived. The model predicts precisely the observed thrust transport direction, therefore 

suggesting that the mean displacement vector for the Serra D'Aire block is correct. The 

relative magnitudes of the principal infinitesimal strain axes and ellipsoid shapes are a 

function of the angle A, which is the angle between S and the fault zone normal, these 

relationships are shown in figure 3.38. In this case A=65°, indicating that the tectonic 

regime is transpressive but dominantly compressive. However, A is very close to the 

critical angle of 70.5° (the ASTP, or axially symmetric transpression angle), which has 

important consequences for the kinematics of the deformation zone (see section 1.2.3, 

p.40). When A is very close to the ASTP angle, the relative magnitudes of principal 

axes of incremental strain can vary due to minor variations in the displacement vector 

S, relative to the deformation zone. This in effect allows lineations to switch from dip

slip to strike-slip. 

This theory has important implications for the kinematics of the Serra D'Aire 

thrust zone. As mentioned the model already predicts the thrust transport direction 

observed, it also predicts that the zone has a transpressive incremental strain and has 

an A value close to the ASTP angle, suggesting that lineation switching may be 

possible (Figure 3.39b). This may explain the occurrence of thrust faults and sinistral 

strike-slip faults sharing the same strike (Figure 3.39c ). The anomalous dextral wrench 

faults are interpreted as being the result of distributed sinistral shear along the 

deformation zone with the dextral faults acting as antithetic cross faults that 

accommodate anti-clockwise domino style block rotations (Figure 3.39a). 
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Figure 3.38 McCoss constructions ( 1986) for the Serra D'Aire thrust zone. The graphical construction 
predicts a thrust transport direction for small displacement faults (small displacements approximate to 
the increment strain direction), of 148°. The observed mean thrust or reverse lineation vector is 148°, 
suggesting the proposed N-S thrust sheet displacement direction is correct. (See text for details) 
S=thrust sheet displacement direction, Large arrow ~ proposed thrust displacement direction. 
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Figure 3.39 a) Schematic block diagram of the Serra D'Aire thrust zone. Sinistral transpression along 
the oblique ramp induces small scale anti-clockwise block rotation. b) Transpressive strain field from 
the McCoss ( 1986) graph of angle A against the axes of principal quadratic elongation (see fig. 1.26, 
p41, this thesis). 11 indicates how minor variations in A about the critical ASTP angle (70.5°) may 
induce switching between strike-slip and reverse slip motion. c) Equal area stereonet of faults and 
slickenlines from the northern Serra D'Aire thrust zone. Note sinistral faults and thrusts share the 
same strike. Dextral faults are orthogonal and are related to small scale block rotations. 

3.8 Structural and kinematic evolution of the Candeeiros block 

The basic geometry of the Candeeiros block was defined by the end of the Jurassic 

period by several extensional faults: the S. dos Candeeiros fault, Alvados-Minde faults, 

Mendiga fault, and the northwest end of the Alcanede fault (Figure 3.40/1). These 

faults exerted a fundamental control on the tectonic style and evolution of the 

Candeeiros region. 
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Figure 3.40 Kinematic evolution of the Candeeiros block: 1) Pre-Middle Miocene structural 
framework; 2) Synthetic reactivation of the Alvados/Minde fault system, and late formation of the 
Amiais de Baixo thrust (A.B.T.); 3) Rotation of regional shortening direction induces sinistral 
transpression along the S.dos Candeeiros fault, and block rotation; 4) After 7-12° of block rotation the 
Monsanto thrust (M.T.) forms. See text for more detail. 

The earliest record of Cenozoic deformation within the region is possibly of 

Oligocene age. Stratigraphic relationships within the Canal and Amiais de Baixo region 

suggests that the perched basin developed adjacent to a structure, which later became 

the site of the Amiais de Baixo thrust. This early deformation was possibly related to 

Oligocene age subduction beneath the Betics, south of Portugal (Leblanc & Oliver, 

1984). More detailed stratigraphic field studies are required to resolve the true 

relationship, if any, of the Oligocene sequence to the present day Amiais de Baixo 

thrust. The main phase of deformation, including the initiation of thrusting within the 

Lusitanian Basin (Ribeiro et al., 1990), occurred during the Miocene period due to the 

superimposition of a north-south oriented shortening direction across the Lusitanian 
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Basin. The result of this shortening was the reactivation of NNE-SSW and NE-SW 

oriented faults, causing basin inversion (Wilson et al., 1990). The presence of 

evaporites along the S. dos Candeeiros fault made the fault zone susceptible to slip and 

it was probably reactivated as a sinistral strike-slip fault during the initiation of the 

north-south compression. The orientation of the S. dos Candeeiros fault to the regional 

compression direction suggests that a simple shear system would have existed during 

this initial phase of reactivation. However, a sinistral transpressive strain has been 

demonstrated along the S. dos Candeeiros fault, suggesting a change from simple shear 

to transpressive strain, probably due to the rotation of the regional shortening direction 

from north-south to a northwestJsoutheast orientation during the Miocene to Recent. 

Penecontemporaneous sinistral strike-slip motion occurred along the left-stepping 

Alvados arid Minde faults, suggest they behaved as synthetic fault splays to the main S. 

dos Candeeiros fault. The synthetic reactivation of the Alvados-Minde system 

produced the Alvados pull-apart basin in the stepover between the faults. Along the 

southeast boundary of the Candeeiros block, the perched Oligocene basin implies that 

initiation of fault movement in the Amiais de Baixo region may have begun during the 

Oligocene. Detailed studies of superimposed strain systems suggest that the large scale 

structure of the Amiais de Baixo thrust formed in response to north-south directed 

shortening, and may have occurred as a prelude to the drastic change in tectonic style, 

and the initiation of block rotation (Figure 3.40.2). 

Following the formation of these major structural features a significant change 

in the kinematic and tectonic style of the Candeeiros region occurred. The sense of 

motion along the Alvados-Minde fault system reversed producing a dextral pair of left 

stepping strike-slip faults. This reversal of motion initiated a pressure ridge, or push up 

between the faults, resulting in the inversion of the Alvados pull-apart basin. Detailed 

structural studies suggest that the strain along the Alvados-Minde faults was dextrally 

transpressive. Assumed coeval dextral transpressive motion also occurred along the 

southwest boundary of the Candeeiros block, producing the Alcanede fault zone, 

therefore, completing the fault boundaries of the Candeeiros fault block as observed 

today.(Figure 3.40.3). The dextral shear couple associated with these kinematic 

changes implies that anti-clockwise block rotation about a vertical axis occurred. 

Estimates for the amount of rotation based on detailed mesoscopic and macroscopic 

structural relationships consistently indicate an anti-clockwise rotation of the 

Candeeiros block relative to its thrust transport direction of up to 25-30°. Similar 

detailed structural studies within the Monsanto thrust zone reveal an 18° anti

clockwise rotation of early formed structures has occurred. The relative values of the 

amount of rotation between the Amiais de Baixo thrust and the Monsanto thrust 

suggests that the Amiais de Baixo thrust zone formed first and underwent 7-12° of 
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anti-clockwise block rotation before the initiation of the Monsanto thrust. Another 18° 

rotation occurred after the initiation of the Monsanto thrust zone to produce the 

observed structural relationships within the two fault zones. 

The anti-clockwise rotation of the Candeeiros block caused the northwest 

comer of the block to impinge on the S. dos Candeeiros fault producing a localised 

region of shortening that is reflected in the structures present in the large quarry 

overlooking Porto de M6s. At the southwestern end of the Mendiga fault extensional 

faulting dominates, suggesting that this comer of the block has 'pulled' away from the 

S. dos Candeeiros fault (Figure 3.40.4). The consistent southerly direction of thrust 

transport along the Amiais de Baixo and Monsanto thrust zones during their evolution 

suggests that the anti-clockwise rotation was superimposed upon the general southerly 

extrusion of the Candeeiros block. 

3.8.1 Model for the rotation of the Candeeiros fault block 

As shown earlier in this chapter, transpressional strains occur at a late stage within the 

Candeeiros fault system. The S. dos Candeeiros fault is presumed to have initiated as a 

sinistral strike-slip fault which underwent a progressive change in strain regime from 

sinistral simple shear to sinistral transpressive shear. Likewise, transpressive strain 

occurred at a late stage along the Alcanede and Alvados/Minde faults, with the dextral 

component of shear associated with anti-clockwise rotation of the Candeeiros block. It 

seems quite probable that the transpressive strains within the fault system were coeval, 

which therefore suggests that the introduction of a component of shortening across the 

deformation zone was fundamental in the completion of the fault boundaries to the 

Candeeiros block and its anti-clockwise rotation. The role of transpression and 

transtension in the distribution of deformation was discussed by McKenzie & Jackson 

( 1986), who state that for distributed continental deformation (block formation and 

rotation) to occur, a component of shortening or extension across the deformation zone 

must exist, otherwise the simple shear is likely to be taken up by a simple strike-slip 

system. The 'pinned' block model proposed by McKenzie & Jackson (1986) to explain 

block rotations and distributed continental deformation possesses some important 

structural and kinematic characteristics that are seen along the boundaries of the 

Candeeiros block, the most important being the necessity for a component of 

shortening or extension across the deformation zone. The model also predicts that the 

cross faults will be antithetic and possess a component of fault normal strain that is 

complimentary to that occurring across the main deformation zone, in the case of the 

Candeeiros region, this would be a component of shortening. However, the pinned 

model is based on the blocks remaining rigid with only the instantaneous motion 

occurring along the cross faults, which prevents finite block rotations. It was noted 
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that in reality the blocks undergo minor amounts of internal defonnation to 

accommodate finite motion along the fault block boundaries. This internal defonnation 

is quite evident along the Alvados/Minde and Alcanede faults where a considerable 

amount of shortening has occurred locally across the fault zones. Therefore, the 

evolution and style of deformation within the Candeeiros region appears to mimic that 

predicted by the 'pinned' model of McKenzie and Jackson ( 1986). 

During the early phase of Cenozoic deformation the regional shortening 

direction, which probably equates to the region~dl, was oriented roughly north-south 

(Dewey et al., 1989; and Ribeiro et al., 1988). The relative orientation of the regional 

01 to the S. dos Candeeiros fault zone during this period suggests that a simple shear 

strain reactivated the fault zone. The presence of the Jurassic aged Alvados/Minde 

fault zone was exploited as a synthetic splay fault, otherwise the strain would probably 

have concentrated along a narrow zone of deformation. The regional 01 across the 

Lusitanian basin rotated from its roughly north/south orientation to a 

northwest/southeast position during the late Tortonian (9Ma, Dewey et al., 1989), 

introducing a component of shortening across the deformation zone due to the 

increased angle between the regional 01 and the S. dos Candeeiros fault zone. As the 

development and rotation of the Candeeiros block appears to be linked with 

transpressional strains, it is suggested that transpression and block rotation occurred at 

the end of the Tortonian, and continued possibly into the Quaternary, as suggested by 

the neotectonic nature of several of the faults in the Candeeiros region. 

The presence of a rotated block raises an important subsidiary question, that of 

decollements, as the block must be allowed to rotate on some sub-horizontal surface of 

detachment. In many areas of southern California these surfaces are low angle 

extensional detachment faults (Luyendyk, 1991 ), or low angled thrusts emanating from 

flower structures. However, large rheological contrasts between rigid and incompetent 

layers can behave equally well as detachment horizons (Horns., 1991 ). In the Lusitanian 

basin, the Jurassic carbonate sequence sits above a base Jurassic Hettangian age 

evaporite sequence that is found basin wide. This layer appears to be the best candidate 

for an intraformational decollement horizon, allowing the Candeeiros block to 'float' on 

a well-lubricated surface. The role of this evaporite horizon, and its influence on basin 

tectonics will be discussed in chapter six, and partially in chapter five. 
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Structure and kinematics of the Serra de Montejunto 
range 

14.1 Introduction 

The Serra de Montejunto range forms a NE-SW trending range of mountains between 

Cereal in the northeast and Torres Vedras in the southwest. At 666 metres, the summit 

of Montejunto represents the highest elevation in southern Portugal. The Torres 

Vedras-Montejunto anticline, hereafter referred to as the Montejunto anticline, 

dominates the structure of the range. This anticlinal structure initiated during the 

Toarcian (Early Jurassic) as a salt pillow structure that probably formed over a Triassic 

fault scarp (Leinfelder and Wilson, 1989). As with other halokinetic structures in the 

Lusitanian basin, the salt extrusion has followed the trends of the major faults: in this 

case the west southwest trending Torres Vedras fault. Therefore, main structural 

architecture of the Montejunto region was established as early as the Oxfordian to 

Kimmeridgian with the formation of the Pragan~a, Cereal, and Montejunto faults. 

These faults delineated the sub-basins of the Estremadura trough, and were, therefore, 

major basin features. The first manifestation of the Pragan~a fault, during the Middle 

Jurassic, is suggested by the presence of large synsedimentary slides, and repeated, 

sudden episodes of subsidence recorded within the sediments. Continued activity along 

the Pragan~a fault during the late Oxfordian is recorded by a submarine scarp 

(Montenat et al. 1988). During the middle to late Kimmeridgian, halokinesis and fault 

activity progressively decreased leading to the burial of the fault scarp and halokinetic 

structures by a regressive sequence of littoral carbonates and terrigenous deposits. 

The major structural development of the Montejunto area occurred during the 

Miocene to Recent tectonic inversion event (Ellis et al. 1990). The basic structure of 

the Serra de Montejunto range is a crude anticline which has been extensively faulted. 

The core of the structure is formed by Middle Jurassic carbonates that coincide with 

the summit of Montejunto. At this point the anticline is highly asymmetric, with 

vertical to overturned bedding in the southern limb, and a gentle to moderate 

northwesterly dipping northern limb. The central area immediately to the west of the 

Montejunto summit is intricately faulted and folded, and roughly coincides with the 
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axis of the Montejunto anticline. Along the southern and northern external zones of the 

structure spectacular fault scarps are present in .association with steep to sub-vertical 

bedding of the hanging walls. (Figure 4.1 ). ( M o.p 4-) 

Exposure is good within the areas of Bathonian and Oxfordian aged carbonate 

outcrops, which form the areas of highest relief. These Middle to Upper Jurassic 

carbonates preserve excellent kinematic indicators and incremental strain features. For 

these reasons the structural and kinematic analysis was concentrated within the 

immediate vicinity of the summit of Montejunto, therefore, affording an excellent 

opportunity to document the detailed kinematics of a flower structure, and hence the 

Miocene to Recent inversion tectonics of the region. 

~ Lower Cretaceous 

[illillj Kimmeridgian 

@Oxfordian 

~Bathonian 

fagure 4.1 Generalised geological map of the Montejunto massif and the Espigao plateau. S.M.T., 
Serra de Montejunto thrust; P.F., Pragan~ fault; R.F.F., Rocha Forte fault . .M • .M indicate upper, and 
lower hinge of monocline, respectively. More detail is available in Map 4 in the back of this thesis. 
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4.2 Structural domains of the Montejunto anticline 

The Montejunto anticline is a general name for the structure that forms the long, 

narrow, structurally complex region of Jurassic aged carbonates and terrigenous 

sediments, uplifted along a restraining bend in what is believed to be the southern 

manifestation of the S. dos Candeeiros fault. The main fault trace swings from 022° 

near Cereal (the Cereal fault), to 080° immediately south of the Montejunto summit 

(the Montejunto fault system), with uplift occurring on the northwestern side of the 

fault system (figure 4.1). The structural style of the Montejunto range reflects the 

change in orientation of the main boundary fault system. The region adjacent to the 

NNE-SSW Cereal fault is structurally simple with Oxfordian platform carbonates 

juxtaposed against the Miocene to the southeast, and partially thrusted onto Early 

Cretaceous sediments in the northwest. This region forms a plateau between 250-400 

metres high which will be referred to as the &pigao plateau. In contrast to the &pigao 

plateau the Montejunto massif is structurally complex. It is dissected by numerous 

faults of a dominant ENE orientation which are associated with large scale folds. The 

massif displays the oldest rocks in the region (Middle Jurassic, Bathonian and 

Callovian aged limestones), whose outcrop coincides with the highest point in the 

Montejunto range, indicating that the maximum amount of uplift occurred at the bend 

in the main fault system. 

4.2.1 The Espigao plateau 

The &pigao plateau is a fault bounded block 3.5km wide, by 6 km long, with a 250-

400 metre elevation. It is tectonically bounded on three sides by the NNE striking 

Cereal fault to the east, the Pragan'ia and Arieiro faults to the southwest, and the 

Rocha Forte thrust and monocline to the northwest. The northern margin of the 

plateau is marked by an Early Cretaceous (Albian-Aptian) unconformity. 

The structural geometry of the plateau is dominated by a gentle to moderate 

northwesterly dip, with a mean bedding orientation of 068/26°NW (figure 4.2). 

However, the regional dip and strike becomes modified adjacent to the tectonic 

boundaries. The dip increases toward the Rocha Forte fault, where it varies between 

sub-vertical and 56°, being steepest at the southwest termination of the fault. The 

regional strike of the plateaux swings from NE-SW to a N-S orientation adjacent to 

the Pragan'ia fault, with a gentle easterly plunging anticline developed adjacent to the 

Arieiro fault 

4.2.1.1 The Rocha Forte fault 

The NE-SW trending Rocha Forte fault forms a prominent scarp running northeast, 

from the northern end of the Pragan~a fault, to the village of Rocha Forte. The 
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footwall and hanging wall strata display steep to sub-vertical bedding within the 

immediate vicinity of the fault plane, however, as the direction of dip does not differ 

from the regional dip they do not form footwall synclines and hanging wall anticlines, 

senso stricto. The Rocha Forte fault thrusts Oxfordian carbonates of the Montejunto 

formation, over Early Cretaceous terrigenous sediments at its southwestern end, but 

the throw dies off to the northeast, where the thrust carries lower Oxfordian over 

upper Oxfordian carbonates. The fault cannot be traced beyond the village of Rocha 

Forte where it appears to transform into a monoclinal structure that gradually swings 

from NE-SW to anE-W strike (figure 4.1). 

Fault geometry and kinematics 

The fault zone is spectacularly exposed in a large quarry face near Rocha Forte village 

(grid ref. 20'60" 12'58")". The main fault plane is oriented 056/54°SE, with slickenside 

striations indicating a thrust transport direction toward 005°. The thrust truncates the 

moderate to sub-vertical bedding of the footwall, and the moderately inclined bedding 

of the hanging wall. The fault zone is asymmetric, with numerous incipient and small 

displacement (<10cm) faults forming an anastomosing array of low angle oblique 

shears in the hanging wall to the main fault plane. These secondary faults form two sets 

that have low oblique clockwise (+ve), and anti-clockwise (-ve) angles to the main 

fault, ( +ve and -ve terminology used in the same sense as Chester and Logan, 1987; 

see figure 4.3). The faults of the +ve fault set are predominantly long (up to 20 metres 

in length) with a mean angle to the main fault of +15°, and comprise 60% of the total 

fault population. The -ve fault set commonly form short, interconnecting splays 

between the +ve set, and possess a mean angle to the main fault of -8°. These faults 

sets resemble extensional Riedel shears, and contractional P-shears, respectively, in 

both geometry, and relative abundance (Naylor et al. 1986). 

Footwall ripout structures are present immediately beneath the main fault 

plane, where they occur are asymmetric fault bounded 'scallop' shaped lenses (figure 

4.3). The tapered ends of the these structures consist of a contractional P-type ramp 

formed at a low angle to the main Rocha Forte fault, and a trailing extensional R-type 

shear at a higher angle to the fault plane. These footwall ripouts are very similar to the 

side wall ripouts described by Swanson (1989), and hence by association, suggest that 

transient variations in the coefficient of friction occurred along the main fault plane. 

The asymmetry of these structures allows them to be used as kinematic indicators, that 

together with the secondary fault geometries, confirm that the Rocha Forte fault has 

undergone thrust motion. 

• Within the Montejunto region all grid references are prefixed by 09°(long.) and 39°(lat.). 
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N 

Figure 4.2 Contoured equal area stereonet of poles to bedding from the Espigao plateau. Mean 
bedding orientation 068/26°NW. Solid circles represent flexural slip slickenlines on bedding planes. 
Contour intervals 3.8, 5, 10, 13%. 
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Figure 4.3 Tracing taken from a photo-mosaic of the Rocha Forte fault, displaying the asymmetric 
development of secondary faults. (Insert) A rose-diagram of secondary fault orientations dispersed 
about the main fault plane. View looking towards the southwest 
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Antithetic backthrusts are present within the footwall, where they are seen 

propagating out of moderately dipping bedding planes into the steep to sub-vertical 

beds that lie immediately beneath the fault plane. These faults are effectively cutting 

down sequence, producing contractional faults with extensional stratigraphic throws. 

Backthrusts are also present within the hanging wall, where they exploit the bedding 

planes. However, due to the result of flexural shear between the beds it is difficult to 

distinguish the former from the latter. Unambiguous proof of bedding parallel thrusting 

can be seen where a single bedding unit has undergone layer parallel shortening via 

thrust duplexing. By area balancing the duplex, it can be shown that 58% shortening 

has occurred along the structure (figure 4.4). 

1 Restored duplex f :----------------.J 
lo 

Figure 4.4 Duplexed bed (top), highlighted by stipple in fig.4.3. (Below) area balanced restoration of 
the bedding unit, indicating 58% shortening along the duplex. 

Small scale kinematic indicators and fault rocks 

A sample of fault rock w.o.s, taken from the footwall of the main Rocha Forte fault, and 

was cut parallel to the fault plane striations, and polished to allow the fault rock 

textures to be observed (plate 4.1 ). Fault rock formation extends to greater than 7cm 

from the fault plane (the maximum thickness of the sample), and possesses three zones 

of differing fault rock type. These zones show a gradual increase in cataclastic 

deformation from the external to internal zones. 

The external zone consists of a poorly formed cohesive fault breccia, that 

gradually transforms into a well developed breccia. This in tum grades into a pale 

cream cataclasite zone (Ramsay & Huber's classification 1987), 2-3cm thick, with 

rounded to angular clasts up to 5mm in length. The clast size reduces with proximity to 

the fault plane. The boundary between the breccia and cataclasite is well pronounced, 

and is offset by numerous secondary faults that are marked by visible offsets and 

narrow zones of pale fault gouge. The dominant fault set has a mean +ve 44 ° oblique 

angle to the mean fault, the subordinate set forms a +ve 85° angle, that together form a 
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conjugate pair. The asymmetry of the shears, and obliquity of their acute bisectrix, 

indicates that they formed in response to fault plane shear and not layer parallel 

extension or contraction, hence they represent R and R' shears. However, these shears 

have formed at higher angles than normally observed, suggesting that a localised 

component of shortening may have been present across the immediate wall rocks. Late 

tensile 'T fractures (Petit 1987) are present within the immediate vicinity of the fault 

plane cutting the cataclasite. They taper down from the fault plane with a listric 

geometry and form a high +ve angle with fault plane. 

Plate 4.1 Polished slab cut perpendicular to the Rocha Forte fault plane and parallel to the 
slickenlines. The boundary between the cream cataclasite and fault breccia is clearly seeu. The overlay 
'picks' the main micro fractures which form a conjugate Riedel and Antiriedel fault set Note late 
extension 'T' fractures adjacent to the fault plane. 

Lying along the fault plane, and immediately above the specimen collected, is a 

1.5cm thick red clay gouge possessing an oblique flattening fabric. The gouge contains 

clasts of veined and fractured micrite up to 5mm in length, that are aligned parallel to 

the fabric. This oblique flattening fabric is consistent with the 'T fractures, and 

secondary shears, indicating a reverse sense of shear along the Rocha Forte fault 

The thrust transport direction derived from the slickenlines on the fault plane is 

not coaxial with the folding and flexural slip lineations within the hanging wall, 

suggesting that it may represent a late change in thrust transport direction from NW to 

NNE. 
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4.2.1.2 The Pragan~a fault 

The Pragancsa fault is marked by a large scarp, which represents a palaeo-fault scarp 

from the Upper Jurassic (Montenat et al. 1988), that has since been reactivated during 

the Miocene and possibly the Recent. The fault runs due north from the eastern end of 

the Tojeira fault, to the western termination of the Rocha Forte fault (figure 4.1 ). The 

Pragancsa fault juxtaposes Oxfordian limestones to the east, against upper Oxfordian 

limestones and Kimmeridgian clastics on the western side. 

No exposure of the main fault plane was observed, although numerous 

secondary faults were encountered along the fault trace. Deformation related to 

movement along the Pragancsa fault seems to be distributed over a wide area, as broad 

parallel fault zones are present up to 200 metres east of the fault scarp. These 

secondary faults appear as prominent, planar fractures, displaying movement striae. 

Brecciation was only seen where the faulting was particularly intense, suggesting that 

the amount of displacement along individual faults is small. The relative lack of 

disruption of the adjacent bedding also suggests that displacements are small. The 

faults form a dip bimodal, north-south striking set, the mean of which is 177/81 °E. The 

associated slickenlines are almost exclusively strike-slip, and plunge slightly about the 

horizontal, displaying a consistent sinistral shear sense. The mean orientation of these 

slickenlines is 03°/356 (figure 4.5). The sinistral sense of motion along the Pragancsa 

fault agrees with the expected relative motion, based on the need for an 

accommodation structure to allow thrusting to occur along the Rocha Forte fault. 

Therefore, the Pragancsa fault zone behaved as a transfer fault between the two 

northern thrust zones of the northern margin of the Montejunto anticline. 

+ 

Figure 4.5 Contoured equal area stereonets of Qeft) poles to fault planes, mean 177/81 oE; (right) 
Slickenlines on fault surfaces, mean 03°/356. Contour intervals at 4, 10, 14, 17%. 
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4.2.1.3 The Cereal fault 

The Cereal fault can be traced from Montejunto, in the southwest, 16.5 km northeast 

to Alvaris, where its trace becomes uncertain within the Lower to Middle Miocene 

Alcoentre formation. The fault lies directly along strike from the southern end of the S. 

dos Candeeiros fault trace, at Rio Maior, and is believed to be related to this fault 

system. 

The fault produces an obvious scarp where the competent Oxfordian 

carbonates are juxtaposed against Oligocene and Miocene aged terrigenous sediments. 

At the northern end of the Cereal fault, a strong linear topographic expression is 

present to the east of the village of Cereal. According to the Servi~os Geol6gicos De 

Portugal 1:50,000 geological map of Bombarral, the fault trace near Cereal is offset by 

several late oblique sinistral faults. However, the southern trace of the fault is relatively 

planar where the competent Oxfordian limestones are present in the northwestern 

sidewall. 

Fault geometry and kinematics 

The Cereal fault is exposed along a length of 1km between San Salvador and the 

intersection of the fault with the N1 road to Cereal village. In general, the fault is 

marked by a thick zone of calcite mineralisation up to 5 metres in thickness. 

Differential weathering of this material reveals that the mineralised zone is made up of 

multiply fractured calcite clasts contained within a later calcite matrix, which is in tum 

cross cut by late extensional veining. Mesoscopic faults along the zone possess a NNE

SSW strike, and dip steeply to the northwest, displaying strike-slip movement. 

Slickolite striae and accretionary calcite steps along these faults indicate they have a 

sinistral sense of motion. 

The main fault plane is superbly exposed near its intersection with the N1, 

where the fault plane forms a 10-15 metre high scarp (plate 4.2)" . The fault surface is 

extremely planar with an orientation of 016/80°NW, and is commonly covered by 

colluvium deposits. Where clean surfaces are present sinistral slickolite lineations are 

found possessing a 15° northerly pitch, indicating a small component of reverse motion 

is present. The fault plane is dominated by a sub-vertical lineation produced by the 

intersection of extensional veins and pressure solution cleavage with the plane. The 

lineation anastomoses around fault zone clasts to produce a fault stylobreccia. The 

sub-vertical nature of these structures is again suggestive of strike-slip motion. 

Synthetic, low angle, oblique, anti-clockwise faults are present, which probably 

represent Riedel fractures (plate 4.3) 

• Plate 4.2 does not exist 
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Plate 4.4 Polished slab of fault rock from the Cereal fault plane. Clast size decreases toward the fault 
plane (towards the left), where red cataclasite is present. Note the oblique, low angle, spaced pressure .... 
solution cleavage (marked with an arrow), sense of obliquity suggests sinistral shear. 

Plate 4.5 Photomicrograph of calcite clast with an asymmetric development of gouge tails, contained 

within a cataclasite matrix. Resemblance of this clast to a o -porphyroclasts suggests sinistral shear. 
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contacts, and short constant amplitude sutures within the cataclasite (plate 4.4). 

A thin section reveals that the clasts within the cataclasite and breccia have 

been multiply fractured. The clasts are predominantly blocky calcite, commonly 

containing highly angular clasts of micrite wallrock, which are occasionally totally 

desegregated, but are more commonly restorable to their pre-fractured state. This 

suggests that the wallrock was pervasively fractured by narrow extensional veins 

preceding their brecciation and inclusion in the fault gouge. Within the gouge an 

equant clast of calcite has developed asymmetric tails of dark brown, presumably clay 

rich gouge, forming a structure similar to the a-structure of Passchier and Simpson 

(1986), see plate 4.5. 

Taken together, the: slickenside lineations, Riedel faults, overprinting solution 

cleavage, and a-structure, consistently indicate a sinistral sense of shear along the 

Cereal fault, therefore, further suggesting a relationship between it and the sinistral S. 

dos Candeeiros fault. 

4.2.1.4 Arieiro anticline 

The Arieiro anticline forms an open fold, lying to the immediate north of the Main 

Arieiro fault trace, beneath the summit of Serra de Montejunto. The fold axial trace 

trends east-west, parallel to the fault strike, and possesses an easterly plunge of -20-

250. Close to tight, coaxial parasitic folds are found on the southern limb, within the 

immediate 50m of the Main Arieiro fault. 

4.2.2 The Main Montejunto massif 

The Montejunto massif is a fault bounded region of complex structure that displays the 

oldest rocks within the Montejunto range. The massif has a general asymmetric 

antiformal geometry, the southern limb of which is short and steep relative to the 

northern limb, making the structure southerly verging. However, this gross 

generalisation is complicated by the presence of faulting within the hinge zone of the 

antiform (the Arieiro fault system), and along the external margins of the massif, the 

Tojeira fault to the north, and the more complex Montejunto fault system to the south. 

These external faults form a downward convergent pair, that appear to coalesce at 

depth along a steep basement fault (see section 5.3). Structural traverses across the 

antiform show that the degree of asymmetry increases from east to west (see figure 

4.6a & b). 
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4.2.2.1 The Northern limb 

The following subsection describes the structure of the northern limb of the 

Montejunto antiform around the villages of Tojeira and Pereiro, from the Tojeira fault 

in the north, to the Arieiro fault system in the south. 

1--------F- Cleao------1 I .,..,ofoult Zone I 

·······-..... 

\ 
' 

~._ __________ ~ \. 

0~------------------------------~ 

Figure 4.6 a) Asymmetric nature of the Montejunto 
massif, with a long, shallow, northern limb, relative 
to the short steep southern limb. b) The more 
easterly section through the massif reveals a more 
symmetrical profile. Location of section lines shown 
in diagram to the right. Scale vertical = horizontal. 
Bath., Bathonian; Cal., Callovian; Ox., Oxfordian; 
Kim., Kimmeridgian. 

4.2.2.1.1 Tojeira fault 

The northern boundary of the Montejunto massif is marked by the Tojeira fault, which 

emplaces Upper Jurassic Oxfordian and Kimmeridgian aged carbonates and 

siliciclastics of the Montejunto and Abadia formations, respectively, onto Portlandian 

aged red terrigenous sediments (the Lourinha fin.). The fault trace is marked by a 

pronounced scarp where competent Oxfordian limestones are juxtaposed against 

younger, poorly cemented, sandstones. The adjacent hanging wall bedding is steeply 

inclined to overturned along the length of the fault. Together, the fold limb vergence~ 

and stratigraphic throw along the fault, indicates a northerly direction of thrust 

transport. 
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4.2.2.1.2 Folding 

In general, the northern limb possesses a low to moderate angle dip towards the north, 

and a roughly east-west strike. The fold limb is dissected by a fault trending 150°, the 

trace of which, runs between the villages of Pereira and Tojeira. The fault appears to 

compartmentalise the deformation, with generally steeper bedding present on the 

Pereira side of the fault (southwestern side), relative to the Tojeira side (northeastern 

side), the result of which, is an apparent dextral offset along the fault. 

The bedding within the northern limb commonly displays monoclinal flexures, 

the hinges of which are parallel to strike, and give way to well developed folds 

adjacent to the Tojeira and Arieiro fault zones. As mentioned earlier, the hanging wall 

of the Tojeira thrust displays steep to overturned bedding, which forms a simple 

hanging wall anticline. Adjacent to the Arieiro fault system the folds generally define 

asymmetric antiformal polyclines or box folds, that verge to the south. A n~iagram of 

total bedding reveals a general fold axis oriented 11 o /256, which corresponds closely 

with measured parasitic fold axes (figure 4. 7). These parasitic folds complicate the 

geometry of the box fold adjacent to the Northern Arieiro fault, to the northeast of the 

compartment fault. The folds vary in style from symmetrical gentle to open folds 

between the axial planes of the box fold, to close asymmetric folds that possess straight 

limbs and sharp hinge zones. The hinges of these close to tight folds display an intense 

anastomosing pressure solution cleavage, that becomes more regularly spaced away 

from the hinge. Several of the parasitic structures seen are related to thrust or reverse 

faulting, suggesting that thrust tip folding and breach thrusts play an important role in 

the modification of the polyclines. Such structures are present to the immediate east of 

Moinho do ceu (grid ref. 04'18" 10'89"), where a northward vergent thrust fault has 

produced locally overturned footwall bedding. The thrust can be followed west along 

its trace to its lateral tip, where an unbreached overturned fold is present. Similar fault

fold relationships are present to the west of Moinho do ceu, and along the hairpin 

bends of the Vila Verde dos Francos to Montejunto road (see figure 4.8) 

Cleavage commonly manifests itself as well spaced, pressure solution stylolites 

within the limestones, and a planar, penetrative cleavage within the thin interbedded 

marls and mudstones, that together form the Montejunto formation. Oeavage is 

difficult to see within the Kimmeridgian as the poorly lithified sandstones are not prone 

to cleavage formation, and the marls are very badly weathered. Where clean exposures 

of the Kimmeridgian marls are seen a planar, penetrative cleavage is present. The 

cleavage is axial planar to the folding within the northern limb, generally forming a 

convergent cleavage fan, with southerly dipping cleavage planes in the 
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Figure 4.7 Equal area stereonet of data from the northern limb of the Montejunto massif. Crosses • 
poles to bedding; Open circles - poles to cleavage; Squares - parasitic fold hinges, Solid circles • 
lineations on bedding surfaces; Solid triangle - 1t-pole (fold axis) to bedding girdle, calculated fold 

axis- 11°/256. See text for details. 
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Figure 4.8 Breached fold with rotated bedding parallel thrusts in the hanging wall anticline. Road cut 
along the hair-pin bend of the Vila Verde dos Francos to Montejunto road. 
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north, adjacent to the Tojeira thrust, and northerly dipping cleavage in the south, 

adjacent to the Arieiro fault zone. However, this general geometric distribution has 

been modified to the east of Moinho do ceu, where localised southerly dipping 

cleavage has formed in relation to the northward verging thrust fault mentioned earlier. 

There is no discrete line along which cleavage vergence switches from north to south, 

instead there is a zone of overlap where cleavage verges both north and south (figure 

4.6 & 4.9). No relative chronology between the cleavage was observed within this 

zone. 

The cleavage fan is presumably related to the opposing directions of tectonic 

transport and fold vergence that are present along the Tojeira and Arieiro fault wnes, 

as opposed to cleavage fans that are formed in single folds, due to flexural shear or 

tangential longitudinal strains. The zone of variable cleavage orientation may be due to 

transient variations in the dominant incremental strain fields related to deformation at 

the northern and southern margins of the region, or to a gradual switch in deformation 

from one zone to another. Without the relative chronology of the cleavage in this zone, 

neither hypothesis can be validated. 

Figure 4.9 Generalised map of the northern limb of the Montejunto anticline revealing the spatial 
distribution of cleavage orientation. Localised development of northerly vergent cleavage near Moinho 
do Ceu due to thrust fault. Contours in metres. 
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Thrust faults 

Chapter 4 

Thrust faults are common throughout the Tojeira and Pereira region. The faults form 

two discrete sets based on their geometry and kinematics; 1) a NE-SW striking set, 

and 2) a NW -SE striking set. 

1) The NE-SW striking set form a dip bimodal, conjugate set (figure 4.10a), 

displaying a mean slickenline lineation vector of 10°/160. 

2) The NW -SE striking set form a more symmetric dip bimodal, conjugate set, with a 

mean thrust transport direction of 12°/020 (figure 4.10b). 
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Figure 4.10 Equal area stereonets of a) slickenlines on NE-SW striking thrust planes (top), mean 
lineation 10°/160; and poles to the fault planes (lower diagram). b) slickenlines on later NW-SE 
striking thrust planes (top), mean lineation 12°/020; and poles to the late thrust planes (lower 
diagram). 

These distinct fault sets are found throughout the northern limb, although 

generally, only one set is present in an exposure. However, the two fault sets are found 

coexisting within the same exposure along the road cut east of the monument at Cruz 

da Salve Rainha, overlooking the village of Praganc;a (Grid Ref. 03'57" 11'17") The 

fault sets possess a consistent relative chronology, with the NE-SW striking faults 

forming as thrust flats along the bedding planes, that are commonly rotated into an 

apparent extensional orientation. These faults are offset by NW-SE thrusts that cut up 

section forming forelimb thrusts, which display associated lateral splays, and oblique 
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ramps. Most of these faults have small displacements, and display little or no wallrock 

deformation. However, to the southeast of _the monument, along the road to 

Montejunto, is a complex thrust structure that has been interpreted as a backthrusted 

hanging wall anticline, that formed along a prominent forelimb thrust. The thick fault 

zone, and the complex associated structure, suggests that this thrust zone has 

witnessed a much greater amount of displacement relative to the discrete planar thrusts 

(figure 4.11). The majority of early thrusts found near Cruz da Salve Rainha, represent 

prefold thrust flats exploiting bedding planes, which become rotated during progressive 

fold formation and are superseded by the development of the larger, more complex 

thrust zone illustrated below. 

Bedding parallel 

duplex 
\ 

Th'""'~ t 
:,~i~~f:'" 

----------------~-- \ 
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10 metres Late back thrust 
Hanging wall anticline 

Incipient backthrust 

Figure 4.11 (Above) Sketch of the structure exposed in 
the road cut SE of the monument at Cruz da Salve 
Rainha. (Left) Proposed structural evolution of the road 
cutting: 1) formation of hanging wall anticline above a 
ramp/flat thrust plane, 2) late backthrust truncates the 
hanging wall. 

The spatial and chronological relationships of these two fault sets suggest that 

the NE-SW oriented set formed first. The approximately orthogonal relationship 

between the mean thrust transport direction of this early thrust set, and the mean fold 

axis of the northern limb of the Montejunto anticline suggests they are 

penecontemporaneous. This progressive north-northwest vergent thrust deformation 

became superimposed by the late NW -SE striking thrust set, suggesting a significant 

change in the deformation style. 
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Strike-slip faults and slickolites 

Both dextral and sinistral faults, and slickolites, are seen in the region. They form an 

unusually high mean conjugate angle of 104°, however, conjugate fault sets were not 

seen in the same exposure. Using the mean orientations of the dextral and sinistral fault 

sets, the direction of maximum shortening can be determined (see figure 4.12a), the 

orientation of which is 30°/177. Conjugate strike-slip faults with large conjugate 

angles, although rare, have been described by Marshak et al. (1982) who proposed 

several reasons for their formation: (1) The faults initiated with a smaller conjugate 

angle, but became rotated during shortening, therefore, increasing the observed angle; 

(2) pressure solution processes may permit the initiation of orthogonal fault sets; and 

(3) the faults may in fact be reactivated joints. 

(1) Cloos (1955) and Duby (1980) demonstrated experimentally that conjugate 

shear planes initiate with a dihedral angle of 55°-60°, and that with continued 

shortening, the sinistral faults rotate clockwise, and the dextral faults rotate anti

clockwise, therefore, increasing the apparent dihedral angle. However, the magnitude 

of displacement along the observed faults, and related country rock shortening, 

appears to be too small to allow significant rotation of the faults. 

(2) Rutter and Mainprice (1978) suggest that pressure solution slip follows a 

linear viscous flow, where the strain rate is proportional to the shear stress along the 

sliding plane. As shear stress is at its maximum on planes oriented at 45° to cr1, 

solution shears, or slickolites are likely to form most rapidly along this orientation 

(Marshak et al. 1982). Although the data base is small, slickolites appear to form at 

similar angles to faults displaying precipitated calcite steps, suggesting that the 

geometry of these faults may also be controlled by pressure solution slip process~ 

(figure 4.12b) 
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Figure 4.12 Equal area stereonets showing: a) Reconstruction of the shortening axis for the mean 
sinistral and dextral faults recorded in the northern limb. b) Cyclographic projection of sinistral and 
dextral fault planes, with respective slickenlines (dots, arrows show shear sense). Dashed cyclographic 
traces represent slickolite planes. 
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(3) It is important not to rule out the role of pre-existing fractures such as 

joints and veins, as it takes less work to cause slip along pre-existing fractures, than to 

initiate new faults. 

Jointing and veining within the region forms a relatively random scatter without 

an obvious correlation between the faults and joints. Marshak et al. (ibid.) discuss the 

effects of the superimposition of a compressive stress system upon randomly oriented 

pre-existing planes, and concluded that such a system was unlikely to produce the 

observed orthogonal relationship. 

The observed geometries of the fault sets appear to be compatible with a 

pressure solution slip mechanism having a major influence on their formation. This ~ 

further suggested by the presence of an orthogonal, conjugate set of slickolites in the 

unjointed, homogeneous micrites at Penas de Prado quarry, along the southeastern 

edge of the Candeeiros block (see section 3.6.1.3). 

4.2.2.2 Arieiro fault zone 

The Arieiro fault zone separates the northern and southern limbs of the Montejunto 

massif. The Main Arieiro fault (MAF) can be traced from the Cereal fault, near Born 

Santo, due west for approximately 2.4km, to the hairpin bend southeast of the tiny 

village of Arieiro. Here a confluence of splay faults is present, with the Main Arieiro 

fault continuing along its trace which gradually bends to a WSW-ENE strike. Two 

main splays originate from the Main Arieiro fault, a southerly splay, which rejoins with 

the main fault 2.5km further west along its strike, and a northerly splay, that likewise 

rejoins the main fault approximately 3km west of the original confluence. These faults 

will be referred to as the Southern Arieiro fault (SAF), and the Northern Arieiro fault 

(NAF), respectively. The Southern Arieiro fault in tum gives rise to three NE-SW 

oriented splays (see figure 4.13). 

4.2.2.2.1 Main Arieiro fault 

The Main Arieiro fault is marked by an obvious scarp that forms the topographic spine 

of the Montejunto massif. Exposure along the scarp is good, but it is generally poor 

along its base to the north of the fault trace. Therefore, the apparent asymmetry of 

structures mapped along the fault zone is a product of this poor northerly exposure. 

Geometry and kinematics 

The fault zone is seen at two exposures along the fault trace, the best of which is a 

road cutting near Arieiro village (grid ref. 03'39" 10'78" or 9512 3790 in fig.4.13). 

Numerous fault planes were observed, the predominant orientation of which strike 
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Figure 4.13 Structural map of the Arieiro fault system. Brick ornament= Bathonian, horizontal lines 
= Callovian, of the Candeeiros fm.; unornamented = Oxfordian, Montejunto fm.; stippled = 
Kimmeridgian, Abadia fm. 
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ENE-WSW, and dip steeply to the SSE, therefore, suggesting that the Main Arieiro 

fault has a similar orientation. The fault surfaces are commonly coated with 

overlapping accretionary calcite steps that display a complex kinematic style, with 

equal proportions of strike-slip, and reverse-slip slickenlines on fault planes of the 

same orientation (figure 4.14). The strike-slip lineations have a consistent pitch to the 

east of less than 10°, possibly indicating a minor component of extension along the 

fault plane. The reverse lineations are found on faults of the same orientation as those 

that display sinistral slickenlines, and in one instance, reverse movement is present on 

the footwall contact of a fault zone, that in tum, displays sinistral motion along its 

hanging wall contact. The reverse slickenlines have a mean pitch of 70° to the SW, 

indicating a slight component of sinistral motion is present. The lineations form two 

distinct sets with no intermediate oblique lineations between them. No relative age 

relationships were seen between the two slickenline sets, suggesting that their 

formation may possibly be contemporaneous. If this is so, it suggests that the changes 

in the fault motion from strike-slip to reverse movement occurred abruptly, and may 

have flipped between the two. 

Figure 4.14 Equal area stereonet of mesoscale faults and slickenlines from the Main Arieiro fault 
zone. Note orthogonal lineations on several of the steep ENE-WSW faults. S, sinistral movement; R, 
reverse movement. 

Folding 

Folding adjacent to the fault trace displays two geometric relationships: (1) fold axes 

parallel to the fault trace, and (2) oblique en echelon folds. 
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(1) Folding parallel to the fault trace is present on a variety of scales, from the 

mesoscopic scale to regional folds (e.g. the Arieiro anticline section 4.2.1.4). 

Mesoscale folds form close to tight, southward verging, folds immediately adjacent to 

the fault trace. 

(2) Several clockwise oblique folds are present along the trace of the fault. These folds 

possess a mean fold axis oriented 03°/275, and a harmonic mean interlimb angle of 

79°. A plot of the mean fold axis to fault angle (8') of 23°, against the mean interlimb 

angle, indicates a simple transpressive relationship (figure 4.15). The orientation of 

bedding between the Main Arieiro fault, and Northern Arieiro fault, is generally strike 

parallel to the fault trace, but localised oblique clockwise folds are present along a road 

cut south of Moinho do ceu. 

The dominant folds and flexures adjacent to the Main Arieiro fault are fault 

parallel, and probably related to a contraction strain. However, the en echelon folds 

and strike-slip slickenlines indicate that late sinistral motion has occurred along the 

Main Arieiro fault. They also suggest that this sinistral motion was transpressional. 
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Figure 4.15 Fold appression graph for en echelon folds adjacent to the Main Arieiro fault. Dashed 
line separates fields of transpressive deformation paths from simple shear deformation paths, solid 
line separates simple shear from transtensional deformation paths. Solid dot represents the plot of 
mean axial plane/fold axis angle against mean interlimb angle, suggesting a simple transpressive 
strain path. (Graph modified from Little, 1992) 

4.2.2.2.2 Northern Arieiro fault 

The Northern Arieiro fault is exposed along two road cuttings, at grid ref. 04'10" 

10'76", and 04'88" 10'60". The fault is marked by a zone of calcite mineralisation 

displaying slickensides oriented 096/69°N, adjacent to the zone of fault confluence, 
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and 057/82°NW, at the western end of the study area. Slickenlines along the fault 

planes indicate a dominantly sinistral sense of motion, with a component of extensional 

movement present at the southwestern end of the fault trace (figure 4.16a). This 

extensional component may be due to the change in fault orientation, effectively 

producing a releasing bend geometry. As mentioned in section 4.2.2.1, and above, the 

folding present on either side of the Northern Arieiro fault is sub-parallel to the fault 

trace, no oblique folds were observed. 

N N 

Figure 4.16 Equal area stereonets of: a) Main fault plane exposures of the Northern Arieiro fault 
(NAF) revealing the 'porpoise nature' of the slickenlines, probably due to the change in fault 
orientation. b) Mesoscale faults from the Southern Arieiro fault zone (SAF). 

4.2.2.2.3 Southern Arieiro fault 

The Southern Arieiro fault zone is poorly exposed along its length, and is commonly 

marked by a thick zone of calcite mineralisation that displays various textures. The 

calcite often possesses a druzy fill texture, displaying multiple phases of extension and 

mineralisation. These infilling textures become deformed by discrete zones of 

deformation that produce fault breccias consisting entirely of calcite clasts. The clasts 

are abraided and subrounded, up to 8mm in length, with occasional large euhedral 

crystals present. These clasts appear to be supported by a matrix of small (>2mm) 

angular clasts. Discrete fractures parallel to, and approximately 21 o clockwise oblique 

to the fault trace, are present. Slight sinistral offsets of euhedral crystals are seen along 

some fault parallel fractures, suggesting that the oblique fracture set may correspond to 

Riedel shears. 

Elsewhere, the zone of deformation is up to 10 metres wide, with discrete, well 

developed, fault zones approximately 6cm thick. The external surface of one of these 

individual fault zones has pronounced calcite accretionary steps displaying sinistral 

motion. The fault rock itself is formed of a protocataclasite, formed dominantly of 
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angular clasts of calcite varying from 8mm to micr~copic in size. The matrix to these 

clasts is a dark fault gouge, with localised dolomite cements developed. Very few 

limestone clasts are present within the protocataclasite, suggesting that the protolith 

was a calcite mineralised zone. A well developed pressure solution cleavage, 

clockwise-oblique to the fault plane has resulted in penetrative suture contacts between 

the large clasts. This has also modified the smaller clasts by the removal of carbonate 

material in solution to produce a general elongation of the clasts parallel to the 

cleavage (plate 4.6). Several of the large calcite clasts have kinked and offset twin 

planes which give conflicting senses of shear. This is probably because the individual 

clasts have become rotated during the cataclastic process. 

Mesoscopic deformation styles and textures similar to the above are common 

along the fault trace, although the rocks containing these features are poorly exposed 

along the western end of the fault. 

Plate 4.6 Protocataclasite displaying a preferred orientation of elongate clasts due to the removal of 
CaC03 in solution along a well developed pressure solution cleavage (marked by arrows). Evidence of 
suturing between larger clasts is common. 

Fault geometry and kinematics 

The fault zone has a dominant trend of approximately 075°, but its direction of dip is 

somewhat uncertain. As the fault zone appears to be characterised by calcite 
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mineralisation, a measurement of the undeformed composite veining along the fault 

trace may give an indication of the fault zone dip. However, the calcite veining does 

not display a constant orientation changing from a southerly dip, east of the confluence 

between the Southern Arieiro fault and a NE-SW oriented splay fault, to a northerly 

dip west of this confluence. To complicate the issue, the few minor fault planes 

observed display variable directions of dip along the length of the major fault trace 

(figure 4.16b). This latter fact may not be important as second order splays in strike

slip fault zones commonly display variable dip directions (Tchelenko, 1972; and Naylor 

et al., 1986). It appears that the Southern Arieiro fault may change its direction of dip 

at the point of confluence with the splay, which shares a southeasterly dip with the 

eastern end of the Southern Arieiro fault. Therefore, it appears that the Southern 

Arieiro fault may be segmented. 

The kinematics of the Southern Arieiro fault zone display a consistent sinistral 

sense of shear, as derived from the following structures: accretionary calcite steps 

along fault planes; an oblique, clockwise, pressure solution cleavage within the fault 

zone; short offsets of fault zone clasts; oblique extensional veining similar to T criteria 

tensile fractures of Petit (1987); and synthetic antitaxial veins. The slickenlines 

observed along the fault planes have a westerly pitch which increase towards the 

western end, indicating that a component of reverse motion is present along the eastern 

segment, and a minor component extensional motion along the western segment. The 

stratigraphic throw and structural geometry associated with the western segment 

suggests a net reverse motion, therefore, this minor extensional component may post

date an early contractional displacement. 

4.2.2.2.4 Southern fault splays 

As mentioned earlier, three main fault splays initiate from the Southern Arieiro fault. 

These comprise two parallel NE-SW striking faults that terminate at their 

southwestern ends against a NNE trending splay, which marks the boundary of the 

studied area (see figure 4.13). Deformation within the area delineated by the fault 

splays has a complex structural geometry and kinematic style. The northerly splay, 

along with the NNE trending splay, define a fault block adjacent to the Southern 

Arieiro fault. This block possesses a fold pair, with a syncline in the footwall of the 

Southern Arieiro fault suggesting the fault had a component of reverse movement, and 

an asymmetric anticline present in the footwall of the northern fault splay, which 

possesses a reverse sense of motion (figure 4.17). The southern limb of the anticline 

dips steeply to the south, displaying a tight, Z geometry, parasitic fold. The geometry, 

and spatial relationship of the anticline to the adjacent splay fault, suggests that the two 

are not genetically linked via fault tip fold processes. Instead their geometry is 
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reminiscent of deformation against a pre-existing buttress, suggesting that the northern 

splay may possibly be the site of a previous structure. The orientation of bedding on 

either side of this fault have perpendicular strikes, with localised coaxial deformation 

overprinting the bedding orientations adjacent to the fault. This structural difference 

also appears to be non compatible with deformation of an initially homogeneous rock 

body, further suggesting that the northern splay represents the site of an older 

structure. 
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Figure 4.17 Structural cross section through the Northern and Southern Splay faults. Location of 
section is shown in the inset. 

The region between the two parallel splay faults is relatively undeformed, 

possessing a dominant southwesterly dip, which as mentioned above, strikes 

perpendicular to the structures in the northern block. However, the orientation of 

bedding becomes modified against the fault zones, with bedding locally dipping 

towards the faults. This is most dramatically seen against the southern splay, where 

steep drag folding is present. 

An extensional fault zone is present immediately south of the northerly splay, which ~ 

marked by an extensive zone of calcite mineralisation. The calcite veining forms a zone 

between 1.25 and 1.5 metres wide, displaying several discrete zones of differing calcite 

textures. The centre of the zone possesses a medial trail of wallrock clasts, bordered 

on either side by rosettes of druzy calcite that have nucleated on isolated clasts of wall 

rock, and are presumably related to hydraulic fracturing. The edges of the zone are 

marked by thick, planar, veins displaying druzy fill textures (plate 4.9). These textures 

indicate a change in the style of extensional mechanisms, from initial hydraulic 

fracturing and brecciation of the original rock, to late planar extensional veining, 

resulting in the formation of a druzy fabric, indicating growth into a fluid filled cavity. 

The surfaces of the planar veins display dip-slip slickenlines. Due to the 
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Plate 4.8 Sinistral transtensional fault zone. Sigmoidal calcite crystal growth records the changing 
incremental strain (see below). Note catacl$tic deformation has removed approximately half of the 
calcite mineralisation. Length of hammer shaft, 35cm. 
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Figure 4.18 Plot of maximum incremental longitudinal strain (ei) against the orientation of crystal 
growth for the sigmoidal calcite growth in plate 4.8. Dashed line represents a smoothed curve for the 
evolution of~· The consistent plot of the data to the left of the pure extension direction indicates that 
the mineralisation has been subjected to a component of sinistral shear throughout its extensional 
phase. 
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obvious extensional nature of the zone, and the lack of overprinting contractional 

structures, the movement sense along the slickensides is presumed to be a normal, 

making the zone a late extensional fault 

The southern fault splay is marked by a dominantly extensional fault zone, 

which does not display a change in the strike of the bedding on either side. However, 

the fault does coincide with a change from a simple structural geometry to more 

complex fault and fold relationships to the south. The fault is marked by a wide zone of 

calcite mineralisation between 20-32cm thick. Near its northeastern end the fault zone 

displays a thick syntaxial calcite vein exhibiting sigmoidal crystal growth. These curved 

patterns show how the incremental longitudinal strains changed during progressive 

deformation. Figure 4.18 shows the change in the maximum principal incremental 

strain ( ei) against the orientation of the crystals. The deformation path clearly shows 

that the vein was effected by varying degrees of sinistral motion relative to extension, 

and that throughout its formation,it has displayed transtensional motion. The values of 

b I and I used in the calculation of ei were based on half the width of the sigmoidal 

vein, as the northwestern half of the vein has been removed by later faulting. This late 

cataclastic period of faulting was possibly sinistral as small scale sinistral fractures 

offset the sigmoidal calcite crystals (plate 4.8). 

The fault zone is also exposed along a mountain track (grid ref. 04'58" 10'25"), 

where extensional drag folding is seen (plate 4.10). The fault zone displays a 15-20cm 

druzy filled calcite vein, but the presence of a sigmoidal geometry could not be 

ascertained as the view afforded of the fault was in profile only. A cataclastic zone up 

to 5cm thick is present along the footwall of the fault zone. The fault rock is composed 

of a narrow zone, (<lcm), of cataclasite immediately adjacent to the fault plane, 

containing predominantly micrite, and some calcite clasts, up to 2mm in length. The 

asymmetries of several of these clasts suggest a sinistral component of motion was 

present within the fault zone. The remainder of the fault rock consists of a 

hydraulically fractured protocataclasite, with clasts of protocataclasite displaying a 

druzy calcite mineral precipitation along their edges. The calcite veining is 

predominantly parallel to the fault plane, and is commonly separated by thin zones of 

fault gouge. No unambiguous shear sense evidence is present for a dip-slip component 

of movement. As the thick druzy texture vein is not fractured and included within the 

cataclastic zone, it must represent late extension on what was possibly an original 

sinistral fault 

From the discussions presented above, it is clear that the southern splay fault 

has a varying style of deformation, from early strike-slip to late extension I 
transtension, with a consistent component of sinistral motion throughout its discernible 

history. Similar late extensional, and transtensional structures are 
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Plate 4.9 Thick extensional veining displaying varying styles of mineralisation, see text for details. 
uns cap (50mm) for scale. 

Plate 4.10 View looking NE at the Southern Splay fault, drag folding indicates an extensional sense 
of motion. Note thick zone of calcite mineralisation. Hammer for scale (shaft 35cm). 
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abundant throughout the Montejunto massif (see section 4.3). 

4.2.2.3 Southern limb of the Montejunto massif 

The southern limb of the Montejunto massif is located to the south of the Arieiro fault, 

and includes the area defined by the splay faults, described above. A complete study of 

the southern limb was prohibited by the presence of a large military installation on the 

summit of Montejunto. However, transects were conducted through the western and 

eastern ends of the structure, with along-strike observations between the transects 

possible below the 'line of sight' of the airbase. 

4.2.2.3.1 Folding 

In general, the southern limb consists of dominantly E-W striking bedding that 

steepens towards the south where it becomes locally overturned adjacent to the main 

faults (Cereal and Serra de Montejunto faults). However, the bedding orientation ~ 

rotated to a NE-SW strike adjacent to the Cereal fault at the eastern edge of the 

massif. The hinge zone of the Montejunto anticline can be traced over a short distance, 

to the south of the Montejunto airforce-base, where it is truncated by the Arieiro fault 

(figure 4.13). The hinge is seen to plunge to the west, which is confirmed by a :n

diagram analysis of total bedding data which predicts the fold axis orientation to be 

17°/268 (figure 4.19). 

Figure 4.19 Equal area stereonet of poles to bedding (dots) and poles to cleavage (open squares). ~
diagram analysis indicates a fold axis orientation 17°/268 (solid triangle). 

A5 with the northern limb, the southern limb possesses parasitic monoclines, 

the fold limb vergence of which, are consistent with the position of the regional fold 

hinge. These parasitic folds are developed on a variety of scales, from rare centimetre 
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scale folds, to flexures possessing limbs tens and hundreds of metres in length (see 

figure 4.6b ). The dominance of monoclinal folds is virtually complete except for a 

single parasitic fold pair displaying an easterly plunging fold axis, and northerly fold 

vergence (plate 4.13). 

Plate 4.11 Looking NE towards a parasitic fold pair on the southern limb of the Montejunto anticline. 
Fold verges up the topographic slope, toward the regional anticlinal fold axis. Single track dirt-road in 
the foreground for scale. 

Internal structures 

In the following section internal structures are classified as those structures that occur 

within the bedding units, such as: extensional veining, jointing, and cleavage. For this 

study the extensional veins will be classified using the same nomenclature as that 

proposed for describing joint sets. 

Extensional veining - Syntaxial calcite extensional veins are common within the 

southern limb. Although a thorough survey of the vein relationships was not 

conducted, the reconnaissance sampling of their orientations reveals an orthogonal set 

of dip bimodal veins (figure 4.20a). They form a roughly NNE-SSW striking set of 

cross veins or ac veins, based on the terminology of Cloos (1922)' and Sander (1926, 
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1930)" respectively ("in Ramsay & Huber, 1987), and anE-W set of longitudinal veins 

or be veins. As expected the be veins display the widest scatter of poles on the 

stereonet, as their orientation is perpendicular to bedding. A set of wide extensional 

veins (>10cm) are present parallel to the ac veins, but they may not be associated with 

the large scale folding, as is otherwise inferred by their parallelism with the ac veins 

(see section 4.3). 
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Figure 4.20 a)Equal area stereonet of poles to extensional veins from the southern limb of the 
Montejunto anticline. Boundaries are generalised to highlight the major vein sets. b) Equal area 
stereo net of poles to joint planes. Joints dominantly form oblique to the fold axis, and the fold profile 
plane. 

Longitudinal or be veins are dominant within the sub-vertical bedding of the 

lower southern limb, with concentrations of outer arc extensional veins and joints in 

the hinges of the monoclinal flexures. These outer arc structures are obviously related 

to tangential longitudinal strains, hence their intersection with bedding surfaces (V /So 

lineation) produce a lineation equivalent to a bedding/cleavage intersection lineation. 

However, their usefulness as a method of predicting the fold axis orientation is 

dependent on the vein being produced by neutral surface folding, which due to 

exposure restrictions, is often not possible to determine. Therefore, very few V/So 

lineation data were recorded. Those that were measured give a relatively ambiguous 

result, but when supplemented with the observed fold axis of a parasitic fold pair, they 

suggest that a localised easterly plunge occurs within the regional structure around the 

Penha da Cruz area (grid ref. 03'00"{)9'97"). 

Joints-Jointing is crudely distributed into two sets, an ae set of cross joints, and an 

oblique set of abO joints (figure 4.20b ). 

Cleavage- In general, cleavage is not observable on weathered surfaces. However, 

where fresh surfaces are available a widely spaced stylolitic cleavage is present within 

the limestones, with a more obvious narrowly spaced planar cleavage occurring in the 
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marly horizons. The poles to the cleavage planes consistently plot clockwise of the 

mean fold profile plane (figure 4.19), possibly suggesting a sinistral non-coaxial 

relationship, however, the small data set necessitates caution in this interpretation. 

External structures 
For the purposes of this section external structures will be structural elements 

developed along the bedding planes, but does not include intersections of other planar 

structures. 

The bedding planes are commonly weathered and reveal very little detail, but along 

fresher exposures slickenlines are seen fonning two distinct sets. The most dominant 

set consists of westerly plunging sinistral slickenlines (plate 4.12), the 

Plate 4.12 Minor sinistral strike-slip reactivation (via crack-seal mechanism) of a steep bedding plane 
along the southern limb of the Montejunto anticline. 
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second set consists of reverse slickenlines. The latter plot along the fold profile plane 

suggesting they are related to flexural slip. Evidently, the sinistral lineations can not be 

related to flexural fold processes, and, therefore, must represent fault reactivation of 

the bedding surfaces. The relative amount of sinistral displacement along these bedding 

planes, based on the amount of cataclastic deformation, was probably very small, as no 

brecciation or gouge is present. 

These late strike-slip movements suggest that the steep beds within the 

southern limb have undergone temporal kinematic partitioning. This scenario describes 

the change from contractional deformation, and its associated dip-slip flexural slip, to a 

later, separate period of sinistral reactivation. This change in kinematic style is 

probably due to the production of sub-vertical bedding by the progressive folding of 

the southern limb, which provides a favourably oriented anisotropy that can be 

exploited by synthetic shears from the southern end of the Cereal fault. 

4.2.2.3.2 The Serra de Montejunto thrust 

The large scale geometry of the southern limb is dominated by a roughly east-west 

oriented, southerly vergent thrust fault, the Serra de Montejunto thrust. The thrust has 

produced a region of steep to overturned bedding, forming a truncated overturned 

footwall syncline. The thrust can be traced westwards from the Cereal fault, through 

the Oxfordian carbonate sequence, where it becomes offset by the southern splay fault 

(figure 4.13). Structural cross-sections by Guery (1984), imply that the thrust affects 

locally deposited Quaternary age deposits, that in tum, lie unconformably upon the 

Kimmeridgian marls and clastics at the eastern end of the thrust trace. However, no 

such relationship was observed during this study. 

No exposure of the thrust zone was observed in the east, but it may be traced 

by the structural geometry and stratigraphic relationships of the footwall and hanging 

wall rocks. In contrast, the thrust zone is well exposed along a mountain track to the 

north of Ramada, where the track follows a topographic spur, allowing three traverses 

through the thrust zone. These traverses reveal approximately 500 metres of along

strike geometry, which changes quite significantly from west to east. 

Western traverse - The basic geometry of the thrust is quite simple, consisting of a 

hanging wall anticline thrusted over a truncated overturned footwall syncline (figure 

4.21 ). However, the geometry of the hanging wall has been modified by steep reverse 

backlimb faults, that possess a component of sinistral slip. The main fault zone has a 

moderate dip of 50° to the north, and is located immediately above the normal limb of 

a tight footwall anticline (plate 4.13). The zone is approximately 1.5 metres thick, and 

is dominated by large fault bounded blocks that represent fault reactivated bedding 
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Plate 4.13 Tight anticlinal fold hinge found immediately beneath the Serra de Montejunto thrust 
plane along the western traverse. The thrust zone is highlighted by arrows. Compass/clinometer 
(lOcm) for scale. View looking ea<>t 

Plate 4.14 Exposure of the Serra de Montejunto thrust zone along the eastern traverse. View looking 
east. 30 litre rucsac for scale. 
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Eastern traverse - The mountain track appears to follow the exposure of the thrust 

zone, suggesting that the angle of dip has reduced significantly. The hanging wall 

displays steep to sub-vertical southerly dipping bedding, that has been juxtaposed onto 

low angle footwall bedding. The thrust plane dips to the north at a lower angle than the 

fold axial plane, resulting in the thrust plane cutting the steep backlimb of the footwall 

syncline at successively lower levels to produce the observed structural geometry 

(figure 4.21). The narrow exposures of the thrust plane in the track give a tantalising 

glimpse of the complex fault geometries within the zone, with several footwall ramp 

structures and possible thrust duplexes present. The fault zone is well exposed where it 

ramps up through the mountain track (grid ref. 05'19" 10'12"), displaying a 50° 

northerly dip. At this point the hanging wall possesses sub-vertical bedding, separated 

from low angle footwall bedding by a 40cm thick zone of brecciation, that is internally 

structured into an upper and lower zone. The upper part is formed by roughly 

rhomboidal shaped clasts, up to 3cm in length. The lower zone consists of large, fault 

bounded, sigmoidal-shaped clasts up to 15cm in length, forming a thrust duplex (plate 

4.14). From the large scale relationships seen along the eastern traverse, the S. de 

Montejunto thrust fault can be classified as a forelimb thrust. 

The changes in structural geometry along the strike of the thrust zone indicates 

that a fundamental change in the geometry of the thrust plane has occurred. The planar 

50° northerly dipping backlimb thrust in the west, translates into a ramp/flat geometry 

forelimb thrust in the east. It is proposed that the change from one geometry to the 

other is achieved via an oblique ramp (see figure 4.21). 

Geometry and Kinematics of Mesoscale faulting 

Mesoscale faulting measured along the Serra de Montejunto thrust forms a conjugate 

set of reverse faults, the mean intersection of which plunges at 34°(2.64. Reverse sense 

slickenlines along these secondary faults have mean vector azimuth of 184°, indicating 

that the faults have an oblique sense of slip (figure 4.22). The intersection lineation of a 

conjugate set of faults on a dip-slip thrust plane would be expected to be sub

horizontal and parallel to strike, but as clearly seen, the intersection lineation has a 

definite plunge which has been interpreted to be the result of an oblique ramp with a 

northwesterly direction of dip as shown in figure 4.21. The presence of consistent 

oblique motion on these faults is further evidence to support the possible oblique 

geometry of the main thrust plane between the two traverses. 

Faulting outside of the Serra de Montejunto thrust zone is dominated by moderate to 

low angle, ESE striking backthrusts, the mean thrust transport azimuth of which is 

031 o (figure 4.23). This transport direction is orthogonal to the local strike of the 
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Figure 4.22 Equal area stereonets of (left) secondary thrust faults and slickenlines from the Serra de 
Montejunto thrust. The fault planes form two sets, which have a mean ~ intersection of 34°(264. 
(Right) poles to fault planes highlighting strong bimodal nature of the fault population. Mean thrust 
transport lineation 184 °. 

Figure 4.23 Equal area stereonet of backthrust fault planes and lineations (dots) from the southern 
limb of the Montejunto anticline. Mean thrust transport direction of which is 031°. 

steep hanging wall forelimb, suggesting that the faulting maybe the result of localised 

strain within the fold limb. However, this transport direction is oblique to the main fold 

axis, which appears to be related toN-S motion along the S. de Montejunto thrust. 

Observations of strike-slip faulting from the main thrust zone, and the forelimb, 

reveal two sets of faults: a sinistral set oriented 040°, and a dextral set oriented 120-

1400. Together they form a conjugate angle of approximately 90° the bisectrix of 

which has a north-south orientation (figure 4.24). The significance of orthogonal 

conjugate fault sets is discussed in section 4.2.2.1 (Faulting). In this instance, the 

strike-slip faults are commonly parallel to strong anisotropies. Sinistral faulting ~ 
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commonly parallel to oblique thrusts within the Serra de Montejunto thrust zone, while 

dextral faults are commonly bedding parallel within the steep forelimb. Therefore, it is 

probable that the orthogonal conjugate angle is a result of pre-existing structures. 

The coincidence of the strike-slip conjugate bisectrix to the transport direction 

along the Serra de Montejunto thrust, suggests they are coeval and are related to 

north-south contraction. Folding along the southern margin of the Montejunto 

anticline, therefore, appears to be related to tip fold processes. Continued coaxial 

shortening after the development of the fold limb is suggested by the conjugate strike

slip faults that exploit the steep bedding. 

Reactivated 
bedding planes 

Figure 4.24 Equal area stereonets of (left) conjugate strike-slip fault planes, and slickenlines from the 
southern limb of the Montejunto anticline, D, Dextral; S, Sinistral. Note anomalous late bedding plane 
reactivation. (Right) Mean conjugate fault planes, solid circle represents the reconstructed Z-axis for 
the conjugate set. 

Footwall geometry 

Along the western end of the Serra de Montejunto thrust,a well exposed overfold 

syncline is present in the footwall (figure 4.6a). At the eastern end of the thrust trace 

the footwall is composed of poorly exposed Kimmeridgian marls and clastics of the 

Abadia formation, therefore, the structure is poorly constrained. However, steep zones 

within the Kimmeridgian sequence are marked by resistant sandstone units that are 

differentially weather to form prominent topographic features, as seen to the north of 

Carvalhos (grid ref. 03'3211 09'61 11
). Exposure of the resistant Kimmeridgian units is 

lost after this steep zone possibly because the bedding becomes sub-horizontal, hence, 

no prominent units are exposed. This interpretation is backed-up by the work of Guery 

202 



Chapter 4 

(1984), who indicates that the steep bedding flattens out before becoming overturned 

against the thrust plane (figure 4.gb). 

4.3 Late extensional veining and faulting within the Espigao plateau and 

Montejunto massif 

Both the Espigao plateau and the Main Montejunto massif are dissected by thick 

extensional calcite veins, that display a very consistent orientation across the area, the 

mean orientation of which is 029n7°NW (figure 4.25). The veins are distinguished by 

their sheer thickness (between lOcm and up to 20 metres), and their planar geometry. 

The veins display a variety of textures that are generally dependant on the vein 

thickness. Veins up to 60cm thick display dominantly single fill druzy textures, the 

mineral growth of which, is occasionally oblique to the vein walls indicating a 

component of sinistral motion. The wider mineralised zones up to 20 metres thick have 

a composite nature. They are occasionally composed of multiple druzy fill events1 with 

individual veins up to 30cm thick, but they more commonly display zones of different 

calcite textures, such as: rosette druzy calcite textures around clasts of brecciated wall 

rock, and medial trails of wall rock probably formed by a crack-seal mechanism. 

Multiply fractured and sealed veins are present displaying clasts of wall rock, and 

earlier generations of calcite fills, cemented by later calcite precipitation, indicating that 

hydraulic brecciation has occurred. 

Figure 4.25 a) Equal area stereonet of poles to thick extensional veins from the montejunto massif 
(open circle = mean vein orientation 029{77°). b) Contoured poles to thin extensional veins from the 
Montejunto massif. Mean extension direction of 127°. Contour intervals: 2, 4, 6%. 

It is clear from the discussion of the southern splay fault, earlier (section 

4.2.2.2.4), that a component of sinistral motion was present during the formation of 

the calcite mineralisation, and was also present post mineralisation. This kinematic 
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style is not uncommon within the area, although these veins generally have a higher 

angle of strike relative to the pure extensional veins which strike at 030°. These thick 

veins and mineralised zones appear to be very late structures in the formation of the 

Montejunto region, as they cross cut most of the structure within the Montejunto 

massif, e.g. the southern splay fault which offsets the Serra de Montejunto thrust. 

4.4 Strain orientations within the Montejunto anticline 

The orientation of the principal strain axes within the Montejunto and Espigao region 

were calculated from the observation of en echelon tension gash arrays, and to a much 

lesser extent, late extensional veins (see methodology below). Due to the very late 

nature of the extension veining within the massif, the latter method provides a 

constraint on the late incremental strain occurring across the Montejunto range, where 

as, the data derived from the vein arrays has to be scrutinised carefully before it can be 

considered to represent the true incremental regional strain. 

Plate 4.15 Well developed en echelon sigmoidal tension gash array dissected by a late faul t. 
Montejunto massif. 

4.4.1 Methodology 

En echelon vein arrays - Many authors have attempted to describe conjugate vein 

arrays in terms of stress orientations, however, it has to be remembered that the 
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geometry of a vein in an array is a record of strain (Beach, 1975). Therefore, in this 

section principal strain axes will be employed where commonly stress axes are inferred. 

The arrays are of a primary en echelon vein type, that do not display pressure solution 

effects, and possess a low conjugate angle. Highly sheared examples have developed 

late shears through them (plate 4.15), therefore, the vein arrays fall into classification 

2b of Beach (1975). 

Calculation of principal strain axes from single and conjugate arrays- To calculate 

the strain axes orientations, the array and incremental vein orientations were measured. 

In the case of conjugate arrays, the principal shortening direction was taken as being 

the bisector of the conjugate set (Rothery, 1988), and the construction of the X and Y 

axes followed a similar technique used by Hobbs et al. (1976) for the construction of 

stress axes from conjugate faults. To construct the strain axes for single arrays a 

modified version of the method proposed by both Hobbs et al. (1976), and Ramsay & 

Huber (1987), for single faults was used. With only a single vein array, the 8 angle 

used in the construction is based on observed 8 angles from conjugate sets. However, 

the 8 angles observed vary relative to the angle (b), the angle between the vein and the 

array orientation ( cp ), hence, the 8 angle used during the construction is relative to the 

bangle (Appendix 1). The low conjugate angles observed indicate that the arrays have 

a component of extension across the zone of shear, perpendicular to the direction of 

principal shortening (Beach, 1976, Ramsay & Huber, 1987 pg.629, and Rothery, 

1988). Although the results derived are based on the incremental geometries of the 

vein arrays, they may not necessarily represent the incremental strain ellipse, as passive 

rotation may have occurred due to folding, i.e prefold strains, which may, therefore, 

have an important bearing on the interpretation of the structural evolution. 

Azimuth of principal extension - Where thin irregular extensional veins are seen the 

direction of opening can be deduced by matching irregularities on either side of the 

vein. This provides the azimuth of extension, but not the X-axis, as the measured 

direction is not a vector. The extension direction can also be estimated from the mean 

orientation of other extensional structures, such as the thick veining, and the regional 

extensional veining (figure 4.25a & b). As these structures are believed to be late 

extensional veins, the orientation derived provides an approximate direction for the late 

incremental X-axis. 

4.4.2 Strain distribution and orientation 

The orientations of the principal strain axes derived from the en echelon vein arrays 

describe a complex spatial distribution (figure 4.26). Three types of strain were 
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interpreted from the derived data: 1) Strains that exploit rock anisotropy, 2) Localised 

strain, or strains that are complimentary to local kinematics, and 3) regional strains, 

that are relatively consistent over a large area, and coincide with known regional 

deformation. 

1) Rock anisotropies, such as bedding in the case of the Montejunto region, 

may become exploited by shear to produce anomalously oriented vein arrays. 

Therefore, construction of the principal strain axes to such arrays also display an 

anomalous orientation, e.g. locality 600 (figure 4.26). Hence, the direct correlation 

between the principal strain axes and the principal stress axes, o1, o2, and o3, is not 

always valid. 

2) Localised strains are found along the Main Arierio, and Northern Arieiro 

faults, at localities: 150, 151, and 173. They display differing relationships to the 

structural geometry of the fault zones. The conjugate array at locality 173 is coaxial 

with the en echelon folding adjacent to the Main Arieiro fault, where as, the arrays 

observed at localities 150 & 151, in the northern wall of the Northern Arieiro fault are 

superimposed over fault parallel folds. This indicates a change in the localised strain 

due to the superimposition of sinistral shear along the Arieiro fault system. 

3) Regional strains have been interpreted as strain systems that display a 

relatively consistent orientation of maximum principal strain axes over a large area, and 

can be related to regional structural styles or stress systems. In the Montejunto massif, 

the most consistent spatially distributed strain system possesses a roughly NW -SE 

oriented Z-axis, which is probably related to the Tortonian to Recent regional stress 

system across the Lusitanian basin (Ribeiro et al., 1988; and Dewey et al., 1989, see 

section 2.2). The orientation of these regional Z-axes display a general northerly 

plunge in the northern limb, and a southerly plunge in the southern limb of the 

Montejunto anticline. This relatively consistent distribution of shortening directions 

between the northern and southern limbs possibly suggests that the vein array 

populations have been tectonically rotated, probably by the steepening and tightening 

of the limbs of the developing Montejunto anticline. This observation has important 

consequences for the tectonic evolution of the Montejunto region, as it suggests that 

the large scale folding of the Montejunto anticline continued at least into the Tortonian 

(later than 9 Ma). 

206 



Chapter 4 

!Localised Sinistral Shear Strain! 

.. --·---... I 
·-- I 

-----· I ••• '· •... I 

I 
I 

I 

Figure 4.26 Strain distribution within the Montejunto massif derived from conjugate and singular en 
echelon vein arrays. Conjugate vein arrays are represented by equal area stereonets, black segments -
con+r=t•o•.c.l regimes, white segments - extensional regimes, the boundaries to these regimes are 
marked by the conjugate shear planes. White dots mark the constructed principal shortening direction 
(z-axis), numbers refer to map localities during data collection. See text for details. 

The late extensional veins discussed earlier (see section 4.3), represent late 

dilational strains, which commonly approximate to incremental strains. In calculating 

the extension direction from the vein orientations it has been assumed that they have 

opened by pure extension, as the component of obliquity observed along a small 

minority of the veins is relatively minor. This assumption appears to be valid as the 

observed direction of vein opening, measured by matching up irregularities in the 

opposing vein walls, lies within the range of mean extension directions derived from 

the vein orientations. Together, the three sources of data produce a harmonic mean 

extension direction of 123.5°, see table 4.1. This extension direction implies that a late 

ESE-WNW oriented dilati\Jnal incremental strain was superimposed over the regional 

NW -SE contractional strain. 
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Data source Extension direction 

Late thick extensional veins n=16 119° 

Mean small extensional veins n=89 127° 
Extension direction from matching 125° (Harmonic mean) 
irregular walled veins n=5 

Mean 123.5° (Harmonic) 

Table 4.1 

4.5 Structural and Kinematic evolution of the Serra de Montejunto region 

As with the S. dos Candeeiros region, the basic structural geometry of the Serra de 

Montejunto range was probably defined as early as the Late Triassic, with the presence 

of a fault scarp that resulted in the accumulation of Hettangian evaporites. In tum, the 

formation of a salt pillow above this buried Triassic scarp during the Toarcian, initiated 

an area of localised uplift and flexure on the site of the present day Montejunto 

anticline. However, the detailed architecture of the present day structure was not 

established until the Oxfordian to Kimmeridgian with the formation of the Pragan~a, 

Montejunto and Cereal faults. These faults delineate the sub-basins of the &tremadura 

trough, and are the main structural expressions of the Atlantic rifting event in the 

Montejunto-Torres Vedras region. 

Clearly, from the discussions presented in this chapter, the main period of 

structural formation in the Montejunto region occurred after the Mesozoic rifting event 

by a complex interaction of compression, transpression, and dilation, all of which were 

superimposed upon a pre-existing structural framework. This complex structural 

history appears to be divisible into two phases of differing tectonic style, that together 

form a single progressive deformation event. Due to the absence of absolute age 

constraints on the deformation sequence, the chronology of these events can only be 

resolved relative to local structures, and known, well constrained, regional events. 

4.5.1 Initial phase of North-South shortening 

Initial reactivation of the Mesozoic structures probably began during the Lower to 

Middle Miocene, when a north-south oriented regional shortening direction, probably 

approximate to o 1, was superimposed across the Lusitanian basin. The result of this 

stress system was contraction across the roughly east-west structural orientation of the 

Montejunto region, and the development of a narrow zone of fold and thrust 

formation. The Montejunto anticline appears to have initiated by the reactivation of an 

originally extensional fault (see section 5.3), forming the Serra de Montejunto thrust 

which forms the southern boundary of the main massif. The slickenlines along this fault 
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indicate a due south direction of thrust transport. Oearly, from the tip folding 

associated with this southern boundary thrust, the development of the Montejunto 

anticline was at an advanced stage during this initial phase of deformation. 

The evolution of the northern thrust zone relative to the southern is less clear. 

The continuity of geometry, and fold style, between the limbs within the main 

Montejunto massif, suggests that the formation of the northern and southern thrust 

zones were contemporaneous. However, early prefold thrust faults within the Tojeira 

thrust zone possess a NNW thrust transport direction, which are superseded by a late 

set of NNE verging thrusts. Between the Early and Late Miocene there is a 

documented rotation in the regional 01 from N-S to NW-SE, therefore, the observed 

discrepancy in thrust transport directions between the two thrust zones maybe due to a 

sequential development of the thrusts from north to south, during this period of 

regional stress rotation. The evolution of the northern thrust front is further 

complicated by the presence of the Late Jurassic Pragancsa fault, which acted as a 

sinistral transfer fault between the Tojeira and Rocha Forte thrust faults. The NE-SW 

structural orientation of the Rocha Forte thrust zone suggests that it may have formed 

later than the Tojeira thrust, in response to a more NW-SE oriented regional 

compressive stress (see below). The parallel relationship between the Montejunto fold 

axis and parasitic folds, and the Arieiro fault system, especially the Northern Arieiro 

and Main Arieiro faults, suggest that the hinge zone of the developing Montejunto 

anticline became dissected by steep reverse faults during this early deformation phase. 

By comparing the geometry and kinematics of the northern and southern boundaries of 

the Montejunto massif it appears the main structural geometry of the Montejunto 

anticline was probably present by the Middle Miocene, with thrust and fold 

development initiated along the southern, Serra de Montejunto thrust, followed by the 

formation of the northern Tojeira thrust. The absence of NNW oriented slickenlines 

along the Serra de Montejunto thrust suggests that motion along this fault ceased 

before the regional stress rotated, with continued shortening occurring along the 

Tojeira thrust zone. These thrusts form a downward convergent fault system, that 

bound the Montejunto anticline to producing a large 'pop-up' structure (figure 4.27/1 

and 4.27 /2). During this period of dominant N-S shortening, the NNE oriented Cereal 

fault probably acted as a passive sinistral accommodation structure, or lateral ramp. 

4.5.2 Late sinistral transpression 

The kinematic and strain history of the Montejunto anticline became further 

complicated by the progressive superimposition of a deformation event possessing 
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Figure 4.27 Schematic structural and kinematic evolution of the Montejunto massif.l) Pre-Miocene 
structural architecture of the Montejunto region. 2) Initial Middle Miocene reactivation of the 
Montejunto region in relation to a superimposed N-S regional shortening, or o1 direction. 3) Late 

Miocene rotation in the regional shortening/o1 direction. 4) Introduction of sinistral transpression 
across the Montejunto massif as a result of synthetic ~ motion along the Cereal fault (I'ortonian 
to Recent). 
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a strong component of sinistral motion. This dramatic switch in kinematic style was 

probably related to the rotation of the regional_o1, from N-S to NW-SE, by the Late 

Miocene (fortonian). The direct result of this regional stress system is recorded as 

conjugate sets of vein arrays, analysis of_ which, suggest that the tightening of the 

Montejunto anticline continued into the Tortonian, probably contemporaneous with 

sinistral deformation. The orientation of the Tortonian to Recent maximum principal 

stress direction to the NNE oriented Cereal fault suggests that like the similarly 

oriented S. dos Candeeiros fault, it had, and still has a transpressive nature. This 

change to a transpressive style probably resulted in the Cereal fault becoming an active 

structure which influenced the adjacent deformation occurring in the Montejunto 

anticline. Therefore, the Montejunto anticline has behaved as a major restraining bend 

in the sinistral transpressive Serra de Montejunto-Candeeiros (SMC) fault system since 

the Tortonian. This intuitively suggests that the Montejunto anticline become a late 

transpressive structure, as observed in many such examples of restraining bends along 

the San Andreas fault e.g. the Mecca, Indio, and Durmid Hills (Sylvester, 1991). 

Indeed, the ENE-WSW oriented faults of the Montejunto anticline do display synthetic 

reactivation from the sinistral Cereal fault, with the central Arieiro fault system 

accommodating most of the sinistral displacement within the Montejunto massif. The 

presence of oblique clockwise en echelon folds along the Main Arieiro fault indicates 

that it must have accommodated the majority of the sinistral motion relative to other 

faults in the system, which do not display such a broad area of sinistral deformation. A 

comparison of the 8' angles of these folds to their interlimb angles, indicate that the 

sinistral displacement along the Main Arieiro fault was a simple transpressive one. 

Further east along the Main Arieiro fault, abrupt lineation switches between sinistral 

and reverse slip were observed. Lineation switching can theoretically occur in a 

transpressive zone where the angle between the displacement vector and the normal to 

the deformation zone (angle A), is equal to or varies slightly about the critical angle of 

axially symmetric transpression (ASTP) of 70.5° (McCoss, 1986). This model predicts 

the orientations of the incremental strains associated with axially symmetric 

transpression, therefore, this theory and the validity of the interpretation of the 

lineation switching, can be tested by comparing the predicted incremental strains with 

the observed data. Figure 4.28 shows the McCoss construction of the incremental 

strain axes for the Arieiro fault zone, using the theoretical ASTP angle A= 70.5°. This 

graphical construction predicts a maximum incremental extension direction trending 

120-300°, and an orthogonal minimum extension direction of 030-210°. A comparison 

of the observed field data reveals a very good fit for the maximum extension direction, 

as derived from late extensional veins. The thick late veins have an almost exact fit 

with the predicted extension direction. The poorest fit was derived from the small scale 

211 



Chapter 4 

extensional veins, which is probably due to the inclusion of vein data associated with 

localised strains. The mean of all this data produces an extensional direction that 

almost lies within the limits of measuring accuracy, therefore, fitting very well with the 

model's predictions. Isolated small scale distributed thrusts throughout the massif 

commonly display approximately NNE-SSW transport directions suggesting that they 

are related to this transpressive incremental strain, indeed, the Rocha Forte thrust has a 

late NNE oriented transport direction superimposed over a NE-SW structural grain 

possibly indicating that this transpressive strain locally post-dates NW -SE contraction, 

which formed as the direct result of the reorientation of the regional compressive stress 

during the Tortonian. The thrust relationships observed at Cruz da Salve Rainha 

confirm that the NNE verging thrusts postdate thrusts with a NNW transport direction. 

Therefore, it appears that the model of a late-superimposed sinistral transpressional 

incremental strain is substantiated by the available field data. On a more detailed scale 

the localised strain distribution appears to respond directly to the local anisotropy: with 

local lineation switching occurring where the angle (A) approximates to the critical 

ASTP angle; dominant sinistral simple transpression occurring where angle (A) is 

slightly greater than 70.5°, corresponding to a decrease in the angle of strike along the 

Arieiro fault; and in areas with no obvious suitable planes of weakness, the structures 

form parallel to the regional incremental strain. Minor amounts of bedding plane 

reactivation occurs along the southern sub-vertical limb where synthetic splays from 

the Cereal fault exploit the anisotropy formed by the regional folding . 
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Figure 4.28 McCoss construction for the Main Arieiro fault. Angle A = 70.SO (ASTP), based on the 
presence of fault lineation switching. The construction predicts incremental extension and shortening 
directions of 120°, and 030°, respectively. See the above text for details. 
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The latest stage of deformation appears to be the formation of the thick 

extensional veins I faults (e.g. the Southern Splay fault). In general, these extensional 

structures are related to the transpressive incremental strain which has induced a minor 

amount of clockwise, oblique directed extension, relative to the structural axis of the 

Montejunto anticline. This important distinction between tectonic and gravity driven 

extension, suggests that extensional collapse of the uplifted structure has, so far, not 

occurred. 

In summary, this late transpressive phase probably initiated the Rocha Forte 

thrust due to NW-SE directed compression. The transpressive nature of the once 

passive Cereal fault induced sinistral transpressive reactivation along the Arieiro fault 

system, which displays simple and complex transpressive kinematics. The 

superimposition of this transpressive strain also resulted in the reactivation of the 

northern thrust zone, producing NNE directed thrusting. No late reactivation was seen 

along the Serra de Montejunto thrust zone suggesting that it remained inactive, 

therefore, this late deformation stage has a strong asymmetric nature (figure 4.27/3 and 

4.27/4). 

The geometry of the Montejunto structure at depth (see chapter 5.3) has been 

interpreted to display several downward convergent contractional faults, that coalesce 

along a steep single fault zone (Hutton & Gawthorpe, T.S.G. 1988 unpub. abst.). This 

interpretation is reminiscent of the flower structures or 'palm-tree' structures observed 

in seismic section by Harding & Lowell, (1979); Bally, (1983); and Harding, (1985). 

Therefore, the Montejunto anticline displays a three dimensional geometry and tectonic 

deformation style consistent with it being a flower structure, formed within a major 

restraining bend (figure 4.29). 
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Figure 4.29 Three dimensional structural fence diagram of the Montejunto massif. Stippled planes 
represent extrapolated fault planes between structural sections. 
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CHAPTERS 

Neotectonics of the Lusitanian Basin 

ls.l Introduction 

A study of the neotectonic map of Portugal (Cabral and Ribeiro, 1988) reveals a 

dominance of NNE-SSW and NE-SW oriented neotectonic faults that are operative in 

a regional maximum compressive stress field oriented NNW -SSE across the Algarve 

region in the south, swinging to a NW -SE orientation across the Lusitanian Basin, and 

finally assuming a WNW-ESE orientation to the west of Portugal (figure 5.1). These 

neotectonic structures have been identified predominantly by geomorphology, 

airphotograph analysis, and detailed geological maps and mapping. Objective 

identification of neotectonic faults in the Lusitanian Basin is rare due to the limited 

knowledge of Quaternary geology, however, faults affecting Plio-Quaternary deposits 

have been described (Cabral et al., 1984; Cabral, 1989; and Dias & Cabral, 1989). The 

dominant mode of neotectonic activity is a regional uplift, which becomes greater 

toward the north of Portugal where total Quaternary uplift averages 400 to 500 metres 

(Cabral, 1989). The presence of both historical and instrumental seismicity within the 

Portuguese region reveals that tectonic activity is continuing, with both interplate and 

intraplate events measured (Fonseca and Long, 1989a, 1989b). 

The link between seismicity and observable geological structures at the surface, 

has commonly not been attempted due to the absence of focal mechanism data, and 

uncertainty with regards to the exact epicentre location, this being especially true for 

onshore Portugal (Moriera, 1985). However, the seismotectonics of the southern 

Portuguese region was addressed in the Estremadura trough by the inception of the 

RESTE project 1987-88 (The Temporary Seismic Stations Network of Estremadura). 

The results of this work in the Lower Tagus Basin (Fonseca et al., 1988; and Fonseca 

& Long, 1989a, 1989b) will be summarised in the following chapter, with an additional 

interpretation offered for the Lusitanian Basin sensu stricto, based on a re-evaluation 

of published seismicity and geological constraints on the style of deformation derived 

from the S. dos Candeeiros fault system. 

I 5.2 Neotectonic surface structures 

Neotectonic structures with demonstrative Quaternary deformation are present within 

onshore Portugal. Unfortunately for this study, however, these structures are located in 
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the northeast of the country, within the Central Iberian Zone (see figure 5.1). Cabral 

(1989) demonstrates the sinistral Quaternary nature of the NNE oriented Manteigas

Bragan<;a fault zone, with its associated pull-apart basins (e.g. the Vilari<;a Basin), and 

pressure ridges, that together represent a reactivated basement shear zone. 

Geomorphological features such as the apparent offset of the Douro river, combined 

with indirect geological evidence, suggest a 1km sinistral displacement during the 

Quaternary. Estimates of slip rate during this time vary between 0.2-0.5mm-Yr, 

indicating moderate to moderately high degrees of fault activity (Slemmons, 1982). In 

addition to the geomorphological and geological expression of the Manteigas

Bragan<;a fault zone, there is relatively important historical and instrumental seismicity, 

with shallow (3.1km) focal depth events recorded (INMG, 1983). The Ponsul fault 

(Dias and Cabral, 1989) presently forms a low angle, ENE striking, Quaternary aged 

thrust fault, whose segments range from 10 to 30km in length. The fault again 

represents a reactivated Hercynian basement sinistral strike-slip fault, however it 

presently displays distinct compressive episodes dated possibly from as early as the 

Upper Miocene. Computer aided reconstruction of the principal maximum compressive 

stress axes for striated fault sets located along the Ponsul thrust indicate a dominant 

sub-horizontal NW -SE orientation, which is consistent with both the kinematics of the 

structures described above, and the present predicted stress orientations operative 

across Portugal (Cabral and Ribeiro, 1988). 

A study of the Neotectonic map of Portugal (ibid.) reveals several major 

neotectonic, and 'possibly' neotectonic, faults and structures within the Lusitanian 

Basin. The NNE oriented S. dos Candeeiros fault is indicated to be a neotectonic 

sinistral strike-slip fault, with the adjacent Alvados/Minde fault system also suggested 

to be neotectonic in nature, and possessing a dextral sense of motion. These 

interpretations agree with the most recent kinematic system described in chapter 3, 

indicating that the S. dos Candeeiros fault system has probably been active in its 

present tectonic style since the middle Late Miocene. The neotectonic nature of the 

Alvados fault is implied by the obvious geomorphological features associated with 

localised restraining bends along its length (see plate 3.3, p.93). The southeastern 

thrust zones, which bound the Candeeiros and Aire blocks, are marked as 'possible' 

neotectonic thrusts. This uncertainty possibly arises due to the disagreement between 

the observed thrust transport direction and the present day maximum compressive 

stress field, but as discussed in section 3.8, the intimate tectonic and structural 

relationship between the bounding faults of the Candeeiros and Aire blocks, and the 

main S. dos Candeeiros fault zone implies a contemporaneous, and hence, neotectonic 

nature for this thrust zone. At the southern end of the S. dos Candeeiros fault zone, 

Quaternary activity is proposed for the Cereal, Rocha Forte, Pragan<;a, and Tojeira 
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Figure 5.1 Neotectonic map of Portugal, displaying the main faults. Solid line - Certain neotectonic 
fault, Dashed line - Possible neotectonic fault. Inset A: Lusitanian B~in neotectonics, AMF, Alvados 
1 Minde fault; SCF, S. dos Candeeiros fault; RFF, Rocha Forte fault; CF, Cereal fault; PF, Pragan~ 
fault; TF, Tojeira fault. Inset B Neotectonic stress field across Portugal. (Re-drafted from Cabral & 

Ribeiro, 1988). 
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faults. This is in agreement with the observations of chapter 4, where the afore 

mentioned faults display the latest interrelated movements. However, these observed 

late stage movements disagree with some of the motions proposed by Cabral and 

Ribeiro (1988). The Cereal fault clearly displays sinistral strike-slip movement 

indicators, as opposed to the simple reverse slip of Cabral and Ribeiro (op. cit.), 

whereas the Pragan<;a fault, shown as a dextral fault which is continuous across the 

Montejunto massif, is in fact a sinistral transfer fault between the northern thrust zones. 

No evidence was found in the southern limb of the massif for the existence of the 

Pragan<;a fault, as implied (this thesis). South of Serra de Montejunto, neotectonic 

displacements are inferred to be relayed to the Vila Franca de Xira fault via a NNW

SSE trending fault. Cabral and Ribeiro (ibid.) suggest reverse slip motion for the NNE 

oriented Vila Franca fault, whereas Fonseca and Long (1989b) suggest a component of 

sinistral motion is present. Apart from the eastern boundary of the inverted zone the 

most significant onshore neotectonic structure is the Caldas de Rainha salt ridge, which 

is undergoing active diapirism. Figure 5.2 represents a modified neotectonic map of the 

central Lusitanian Basin, to include the kinematic information derived from this study. 

Figure 5.2 Modified neotectonic map of the Lusitanian Basin. Modifications based on observations of 
last movement indicators, and the interpretations of Fonseca & Long, (1989a,b). CF, Cereal fault; 
SCFZ, S. dos Candeeiros fault zone; LTVF, Lower Tagus Valley fault; CB, Candeeiros Block; N, 
Nazare; PM, Porto de M6s. (Modified from cabral & Ribeiro, 1988). 
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5.3 Geometry of Serra dos Candeeiros fault system at depth 

The sub-surface structure and geometry of the inverted region of the Lusitanian Basin, 

and the S. dos Candeeiros fault system in particular, bas been addressed by Hutton and 

Gawthorpe (1988), who interpreted selected seismic reflection profiles and well data 

supplied by the Gabinete de Exploracsao e Petr6leo, Lisbon (GPEP). Three seismic 

reflection profiles oriented perpendicular to the structural grain of the basin, and 

crossing the main fault system, were interpreted (figures 5.3a-c). 

3§k 

Figure 5.3 Location map of the seismic profiles shown in figures 5.4a-c. (Cross ornamentation 
indicates exposure of evaporites). 

At the northern end of the fault system a WNW -ESE trending seismic line is 

located crossing the Caldas de Rainha salt ridge and the northern segment of the S. dos 

Candeeiros fault system (figure 5.4a). The interpretation identifies two sub-vertical 

zones, which due to their diffuse reflection characteristics, and upward 
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deflection of the adjacent continuous reflection horizons, plus a surface correlation 

with exposures of evaporites, have been labelled diapiric salt ridges. These diapirs root 

in the Hettangian aged Dagorda evaporite formation, the top of which has been picked 

at 2secs (TWIT) depth, shallowing to approximately lsec ·towards the east, in the 

direction of the S. dos Candeeiros fault, near Leiria. Within the Lusitanian Basin fill 

sequence there is an obvious truncation and thinning of reflection horizons (which 

correlate with the Upper Jurassic), towards the Caldas de Rainha salt ridge, suggesting 

Upper Jurassic aged halokinesis along this diapir. The refection characteristics within 

the northern S. dos Candeeiros fault zone suggest the presence of significant amounts 

of evaporite. However, near surface offsets of reflection horizons have been picked 

suggesting the presence of discrete faults. Due to the poor imagining of structures 

beneath the Dagorda formation it is uncertain if the faults cut through the evaporites, 

and it is in fact suggested that the faults sole into the sub-horizontal evaporite horizon. 

Further south, near the town of Porto de M6s, a similar structural style is 

apparent (figure 5.4b ). Again the profile runs partly through the Caldas de Rainha salt 

ridge and across the S. dos Candeeiros fault zone. The top of the Dagorda formation 

has been picked at 1.5 sees (TWIT) in the centre of the Alcobac;a-Bombarral sub

basin, and is seen to shallow toward the salt ridges of S. dos Candeeiros and Caldas de 

Rainha, where the onlapping relationship of the Upper Jurassic sequence again testifies 

to the syn-halokinetic nature of this sequence. The S. dos Candeeiros fault zone images 

as a steep, northwesterly dipping salt ridge, the bounding faults of which appear to 

shallow with depth, eventually running along the top of the Dagorda formation. 

Reflectors in the immediate hanging wall of this fault zone display a subtle change in 

dip direction from west to east, forming an apparent antiformal structure, which 

corresponds to a similar geometry mapped in the surface structure. The contact 

between both the S. dos Candeeiros, and Caldas de Rainha salt ridges, and the 

Lusitanian Basin sequence appears to coalesce at a steep structure within the Dagorda 

formation, interpreted by Hutton and Gawthorpe (ibid.) to a fault, possibly implying 

the presence of a basement structure. 

The overall interpretation of the structure and geometry of figure 5.4b is very 

similar to the hypothetical cross section of this region constructed by Zbyszewski 

(1959), which together, suggest that the Alcobac;a-Bombarral sub-basin may be 

behaving as a crustal flake (Oxburgh, 1972), or 'tile', detaching along a basin-wide 

evaporite decollement horizon. 

Figure 5.4c is a seismic reflection profile across the Montejunto range, running 

NNW-SSE through the village of Vila Verde dos Francos. The anticlinal nature of the 

structure is immediately obvious from the unpicked section. However, 
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Figure 5.4c Seismic profile C - C' across the Montejunto massif. See text for details. 
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the structure is complicated by the presence of several SSE dipping faults that appear 

to splay off a major NW dipping fault which steepens at depth to the sub-vertica~ 

where it is interpreted to offset the basement. The main fault possesses a net 

extensional throw at basement depths (2 secs/IWTI) even though the overall 

structure, as interpreted, is obviously a contractional structure. This implies that the 

structure represents the reactivation and modification of a cover to basement 

extensional fault, which is probably the Late Jurassic, Montejunto fault of Montenet et 

al., (1988). A thinning of the Late Jurassic sediments over the Montejunto structure 

suggests halokinetic movement and the formation of a salt pillow (Wilson, 1988). This 

early period of diapiric activity is evidenced in figure 5.4c by the top of the Montejunto 

formation which forms an on-lap surface for the following formations. The general 

structure of this seismic profile is reminiscent of the flower structures observed in 

seismic profile by Wilcox et al., (1973). The consistency of the Hutton and Gawthorpe 

(1988) geometric interpretation with Wilson (1988), plus the detailed strain and 

kinematic data presented in chapter 4, indicates that a transpressional flower structure 

satisfactorily explains the structure of the Montejunto range. 

5.4 Intraplate seismicity within the Lusitanian and Lower Tagus Basins 

The most compelling evidence for neotectonic activity in the Portuguese region is the 

presence of historical and instrumental seismicity, which has historically resulted in 

important damage and casualties. Some of the largest earthquakes to affect the 

Portuguese region were interplate shocks generated at the Gorringe Bank area, on the 

Azores-Gibraltar fracture zone, examples of which include the 1356, 1755 and 

28Feb1969 (ML=7.3) events. Instrumental seismicity from this region appears to occur 

predominantly within the 20 to 30km depth range (Moreira, 1985). 

In addition to the interplate seismicity, there are also important intraplate 

events, such as the 1909 (ML =6. 7) shock which destroyed Benavente ( 40km northeast 

of Lisbon), plus a similar magnitude event (ML=7.0) which occurred in the same area 

in 1531. Destructive events also affected Setubal (ML=7.2) 1858, the monasteries of 

Alcabafia 1528, and Batalha in 1716, and 1890 (Moreira, 1984). However, most of the 

instrumental intraplate earthquakes located on mainland Portugal have small to 

moderate magnitudes, with uncertainty surrounding their focal depths, and exact 

epicentre location (Cabral, 1989). The RESTE project was initiated in April 1987 to 

study intraplate seismicity associated with the lower Tagus river valley, and the 

Estremadura region. The survey obtained good focal mechanism and hypocentre 

locations for 10 relatively small earthquakes, between 1.1 and 3.8 (MJ, (Fonseca and 

Long, 1989b). The epicentre locations produced by this survey were relatively accurate 
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(within 2km), with calculated hypocentres varying between 8.2-23km, indicating that 

seismic activity extends through the entire upper crust. 

The pattern of historical and instrumental intraplate seismicity within the 

Lusitanian and Estremadura Basins shows a relatively diffuse dispersion of earthquake 

epicentres along 3 main trends: A NE-SW trend following the boundary between the 

Lusitanian an~ Monte Real Basins, north of l..eiria (the Nazare, Seia-Lousa faults), 

which appears to extend to the Vilaric;a region in the northeast of Portugal; the second 

seismic lineament runs along a NNE orientation up the lower Tagus river valley from 

Setubal, south of Lisbon; and the third seismic lineament forms a sub-parallel NNE 

trending zone, which appears to be associated with the eastern margin of the inverted 

Mesozoic zone, becoming very disperse~ to the immediate north of Lisbon (figure 5.5a). 

A contoured diagram of the spatial intensity of earthquake epicentres reveals a 

dominance of activity along the third seismic lineament (figure 5.5b), which appears to 

converge with the Lower Tagus Valley Fault in the Lisbon region. Where the Nazare, 

and Lower Tagus Valley faults intersect the continental shelf, pronounced submarine 

canyons of parallel trend are seen. This relationship is also seen in the south of 

Portugal where the seismically active Messejana fault can be traced off-shore by a well 

developed canyon. Focal mechanisms for this fault suggest reverse movement with a 

component of sinistral motion (Moreira, 1985). 

5.4.1 The Nazare - Vilari~ lineament 

The Vilaric;a (Cabral, 1989) and the Seia-Lousa (Moreira, 1985) faults display 

Quaternary aged sinistral motion, and are believed to connect to the Nazare fault 

which displays dominantly Neogene movement, and is aligned along the off-shore 

submarine canyon. Epicentre locations along this trend indicate the fault is still active, 

with a dextral strike-slip sense of motion inferred from the focal mechanism solution 

for the 26Dec1962 earthquake. However, as mentioned the Vilaric;a and Seia-Lousa 

faults are presently sinistral, therefore, suggesting that the seismotectonics of the 

Nazare-Vilaric;a lineament are segmented, with dextral motion occurring west of the 

boundary fault between the Central Iberian zone and the Ossa-Morena zone, and 

sinistral dominated displacement to the east. This difference in slip sense appears to be 

a direct result of the change in orientation of the regional compressive stress between 

off-shore, and northeast Portugal, as intimated by Moreira (1985). 

5.4.2 The Lower Tagus Valley lineament 

The Lower Tagus Valley fault is the most significant seismically active fault in central 

Portugal, as it has been responsible for several important earthquakes such as 
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Figure 5.5 a)Map of western Portugal displaying epicentre locations for instrumental seismicity. Data 
derived from Moreira (1985) and Fonseca & Long, (1989a). Bathymetric contours for the Nazare, and 
Lisbon submarine canyons, contour interval 50m. LTVF, Lower Tagus Valley fault. Thin dashed lines 
represent major surfaces faults within the Lusit.anian Basin. b) Contoured map of earthquake 
epicentres for the Lusitanian, and Estremadura Basins. 
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the 1531 and 1909 events (intensity IX, Moreira, 1979). The linear dispersal of 

epicentres associated with this fault zone define a NE to NNE trending array, for 

which no geological surface evidence is present. However, the proposed trend of the 

fault is along strike from the Cascais or Lisbon submarine valley, located immediately 

off-shore Cape Espiche (see figure 5.5). The association between the above facts has 

been proposed by Arthaud and Matte (1975) to represent a concealed basement faulL 

Detailed seismological data produced by the RESTE project (Fonseca and Long, 

1989a; 1989b) provides the first direct evidence for the existence of a NE-SW fault 

along the Lower Tagus Valley lineament These observations are further collaborated 

by the identification, on seismic reflection profile, of a NNE-SSW strike-slip I 
transpressional fault along strike from the Lisbon submarine canyon, which displays 

dominantly middle to late Miocene motion with evidence of later reactivation 

(Mauffret et al., 1989). 

The RESTE data for the Lower Tagus Valley reveals a complex arrangement 

of focal mechanisms, with reversals in the polarity of the vertical movements along the 

strike of the fault, plus one event, that of 26Jan1988, for which a strike-slip focal 

mechanism was derived. Fonseca and Long (1989a, b) have interpreted these events to 

belong to a single strike-slip fault zone trending NE-SW. The 26Jan1988, and the 

22May1988 (ML =3.8) events, the latter located to the west of the Vila Franca fault, 

have NNE-SSW oriented nodal planes which have been interpreted to represent 

sinistral strike-slip. These events, together with hypocentres depths varying between 

8.2 and 23km, suggest that the Lower Tagus Valley Fault is a concealed, sinistral, 

basement strike-slip fault (ibid.). 

Fonseca and Long (1989b) speculate that the surface faults of the Lower Tagus 

Valley, namely, the Vila Franca, Alcochete, and Arrabida faults, represent the surface 

expression of this basement fault which cuts up into the Hettangian evaporite horizon, 

which lies along the basement I cover interface and acts as a sub-horizontal 

decollement surface. The displacement associated with the basement fault explores the 

decollement horizon becoming laterally transferred to pre-existing cover faults, in this 

case, the Vila Franca-Arrabida fault system (Fonseca, 1989). 

5.4.3 Seismicity associated with the Lusitanian Basin 

The distribution of earthquake epicentres associated with the outcrop of inverted 

Mesozoic Lusitanian Basin sediments is rather diff,uSi: especially within the immediate 

north and northwest of Lisbon. However, a general NNE to NE trend to the epicentre 

locations is present, especially above a line 39° north of the equator (see figure 5.5). 

This NE-SW trend becomes more obvious when the 22May1988 focal mechanism 

(Fonseca and Long, 1989a) is included in the data set. The focal mechanism solution 
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presents two sub-vertical nodal planes, a NW -SE oriented dextral plane, and a NNE

SSW oriented sinistral plane. The latter solution lies sub-parallel to the inferred Lower 

Tagus Valley fault, and along an obvious alignment of epicentres, therefore the sinistral 

interpretation of this event is more consistent with the lineaments identified both 

onshore and off-shore, as well as the general structural grain of the basin. Fonseca and 

Long (1989b) suggest this event may represent a concealed basement strike-slip fault 

parallel to the Lower Tagus lineament, as no surface expression of the fault is present. 

In addition to this interpretation, Curtis (1991) proposed that the general linear 

distribution of epicentres represents the trend of a significant basement fault, of which 

the 22May1988 event is part. The trend of this proposed basement fault does not 

coincide with surface structures within the Lusitanian Basin. However, it does roughly 

coincide with the general trend of the eastern limit of Miocene to Recent inversion 

within the basin. It is therefore suggested that motion is transferred laterally between 

the basement and cover sequences by the exploitation of the Hettangian evaporites as a 

decollement surface, linking sinistral basement deformation with sinistral displacement 

along the S. dos Candeeiros fault system (ibid.), (see discussion in chapter 6). Unlike 

the Lower Tagus Valley, Messejana, and Nazare faults, no submarine canyon or similar 

topographic expression exists on the continental margin along strike from this 

proposed basement fault, implying that it does not extend off-shore and that it may link 

with the Lower Tagus Valley fault within the Lisbon region. This may possibly account 

for the diffuse seismic activity in this region. 

Additional seismicity, recorded on the west coast of the Lusitanian Basin, is 

possibly a manifestion of active diapirism occurring along the Caldas de Rainha salt 

ridge. 

5.5 Summary: Neotectonics of the Lusitanian Basin 

The Portuguese mainland and continental margin is undergoing important neotectonic 

activity, as testified by intraplate seismicity and Quaternary deformation. Both the 

observed surface deformation, and the instrumental seismicity appear to be driven by a 

predominantly NW -SE oriented regional compressive stress (Cabral and Ribeiro, 

1988). 

Surface faulting 

The Lusitanian Basin, and mainland Portugal in general, is dominated by NNE-SSW 

sinistral strike-slip faults, and to a lesser extent by NE-SW to ENE-WSW 

compressional and transpressional structures. The preponderance of sinistral strike-slip 

structures suggests that the western margin of Portugal represents a region of 

distributed simple/transpressional shear. The compressive structures generally 
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represent restraining bends along, or compressive terminations to, the sinistral faults. 

Estimates for slip rates along the NNE trending Vilari~ fault vary between 0.2-0.5 

mm-Yr, fitting well with the observed levels of seismicity (Cabral, 1989). 

Seismic reflection profiles across the S. dos Candeeiros fault system suggest 

that the faulting observed along the Candeeiros salt ridge detaches along the Dagorda 

evaporites, which act as a regional decollement horizon. This implies that the Mesozoic 

sedimentary sequence of the Lusitanian Basin may be behaving as a number of thin 

(between 2-1.5 sees. TWTI), fault bounded tectonic flakes or tiles, separated from the 

basement by the Dagorda evaporite sequence. 

Instrumental seismicity 

Epicentre distributions, hypocentre depths, and focal mechanisms for the Estremadura 

and Tagus Basin region, suggest that a concealed sinistral basement strike-slip fault, 

trending NE or NNE, runs beneath the lower Tagus river valley (Fonseca & Long, 

1988a,b). This interpretation is justified by the Mauffret et al., (1989) who observed 

the off-shore extension of this fault, and interpreted it as a strike-slip fault. The lack of 

surficial evidence for this fault within the Tagus valley suggests that its displacement 

must become detached along a decollement horizon and transferred laterally before 

reaching the surface, possible via the Vila Franca-Arrabida fault system. Again the 

obvious candidate for the decollement is the Dagorda evaporite sequence, as suggested 

by Fonseca and Long (1988b). 

A second parallel, albeit less well defined, linear distribution of epicentres is 

associated with the eastern margin of the Lusitanian Basin. The focal mechanism 

interpretation of the 22May88 earthquake, located along this linear trend, indicates 

sinistral strike-slip motion along a sub-vertical fault plane. It is suggested that this 

linear array of earthquake epicentres represents a sinistral strike-slip basement fault. 

The location and trend of surface faults are non-coincident with the proposed basement 

fault, again suggesting the possibility of displacement decoupling between the 

basement and cover faults. 

Neotectonic style 

Both basement and surficial faults appear to be dominated by sinistral strike-slip 

deformation, indicating that the active deformation of the Lusitanian Basin is probably 

basement driven. However, the disparity in the spatial distribution of the basement and 

cover faults suggests that displacement decoupling is occurring, possibly along the 

Dagorda evaporite horizon, resulting in a lateral transfer of strike-slip motion between 

the basement and cover. 
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The relationship of the neotectonics of the Lusitanian Basin, to the evolution of 

basin tectonics during the entire Alpine deformation event, will be discussed in the 

following chapter. 
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CHAPTER6· 

The Serra de Montejunto-Candeeiros fault system: Its 
evolution and implications 

'The view is often expressed by geophysicists that the structures in the continental 

crust are so complex that they cannot be used to determine plate motions .... Our aim is 

to show that, contrary to the pessimistic view of geophysicists, structures in rocks, 

.... can give a clear indication of plate motions. " 

(Shackleton and Ries, 1984) 

6.1 Serra de Montejunto-Candeeiros fault system 

The S. de Montejunto-Candeeiros fault system consists of two structurally complex 

regions, the Candeeiros fault block (east of Porto de M6s), and the Montejunto massif 

(northeast of Torres Vedras), which are linked by the north-northeast oriented Serra 

dos Candeeiros, and Cereal faults. As discussed in chapters 3 and 4, the S. de 

Montejunto-Candeeiros fault system displays virtually the full range of structures 

associated with strike-slip dominated systems: sub-horizontal slickenlines along the 

master faults, asymmetric development of en-echelon secondary faults, en-echelon 

folding, pull-apart basins, pressure ridges, rapid reversals of slip sense on faults, 

localised regions in compression and extension, block rotations, and flower structures. 

The quality of exposure and the detailed preservation of superimposed strains 

found along the S. de Montejunto-Candeeiros fault system, provide an unique 

opportunity to examine the detailed structural and kinematic evolution of a strike-slip 

fault system, and its response to a changing regional stress system. 

6.1.1 Fault system evolution 

The fault system displays distinctly different tectonic styles at its northern and 

southern ends (chapter 3 and 4, respectively). However, the tectonics of both these 

regions display two distinct stages in their structural and kinematic evolution; firstly, an 

initial phase of deformation associated with N-S compression, and secondly, a late 

period of NNW-SSE/NW-SE oriented regional compression. As described in chapters 

3 and 4, this seemingly minor change in the regional compressive stress system had a 

profound influence on the deformation style. 
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6.1.1.1 Middle Miocene initialisation of the fault system 

The basic geometries of the Serra dos Candeeiros fault, the Candeeiros fault block, and 

the Montejunto massif were inherited from the North Atlantic extensional tectonics 

which dominated western Iberia from the ~eo.rltest .. Jurassic to Early Cretaceous 

times. During the Middle Miocene,N-S directed compression affected the Lusitanian 

Basin, the chronology of which is constrained stratigraphically in the Arrabida region 

(Choffat, 1908). As demonstrated by the Formosinho anticline, thrusting began during 

the late Burdigalian (-16Ma). This southerly vergent deformation front is believed to 

have migrated northwards (Ribeiro et al., 1990), and therefore, the age of thrust 

initiation within the S. de Montejunto-Candeeiros fault system may be slightly later 

than 16Ma. This deformation event can be correlated in the Montejunto region with 

early southward directed thrusting along the Serra de Montejunto thrust, 

contemporaneous with the large scale folding of the Montejunto massif about an east

west axis. This north-south oriented shortening was accommodated by the Cereal fault 

(believed to be the southern manifestation of the Serra dos Candeeiros fault), which 

acted as a sinistral lateral ramp or transfer fault. In the north of the fault system, 

reduced shear resistance along the Serra dos Candeeiros fault zone, caused by the 

presence of a salt ridge, suggests that this segment of the S. dos Candeeiros-Cercal 

master fault was also reactivated as an accommodation structure to east-west striking 

contractional structures. Late Jurassic age NW-SE trending extensional faults, located 

to the east of the S. dos Candeeiros fault (the Alvados, and Minde faults), display an 

initial sinistral strike-slip reactivation, with associated pull-apart basin formation (the 

Alvados pull-apart), suggesting that the pair of faults behaved as synthetic splay faults 

to the main S. dos Candeeiros fault. 

Continued deformation about this north-south compression direction probably 

led to the dissection of the Montejunto anticline by fold axis parallel, reverse faults (the 

Arieiro fault system). In the Candeeiros region, continued north-south shortening 

resulted in the initiation of thrusting along the southeastern boundary of what is today 

the Candeeiros fault block. The detailed strain history within the hanging wall of the 

Amiais de Baixo thrust sheet suggests that this thrusting was southerly vergent (see 

figure 6.1a) 

6.1.1.2 Late transpressional structures 

The change from simple, southerly directed thrusting, and associated NNE oriented 

transfer faults, to more complex fault systems dominated by transpressional structures 

varies between the study areas. In the northern Candeeiros region, the change in 
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Figure 6.1 Schematic diagram illustrating the structural and kinematic evolution of the Serra de 
Montejunto- Candeeiros fault system a) Initial reactivation of the fault system in the Middle Miocene, 
b) Late Tortonian to Recent. 
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tectonic style appears to be quite abrupt, with the initiation of anti~lockwise rotation 

of the Candeeiros block presumably coeval with sinistral transpressional strains along 

the S. dos Candeeiros fault zone. The anti~lockwise rotation was superimposed upon 

continued southerly extrusion of the block, as evidenced by the rotation and 

overprinting of early compressional structures by late southerly verging thrusts and 

associated structures. Rotation of the block resulted in a reversal of slip sense along 

the block bounding cross faults, (namely the Alvados/Minde fault system, and the 

Alcanede fault zone), therefore inverting the Alvados pull-apart basin to produce a 

pressure ridge. These dextral cross faults also display a component of transpression. 

The geometry and kinematic style of the master fault, and the faults accommodating 

the rotation, fit well with the predictions of McKenzie and Jackson's (1986) pinned 

block model. This model suggests that non-plane strain is required to induce block 

rotations, hence for a transpression dominated system, the angle between the relative 

movement vector, or the regional compressive stress and the fault walls, must be 

greater than 45°. Therefore, the transformation to a block rotation appears to be the 

product of a change in the regional stress system relative to the S. dos Candeeiros 

fault, i.e. an effective rotation of stress from its Middle Miocene north-south trend to a 

northwest-southeast orientation (figure 6.1b. 

In contrast to the sudden change in tectonic style in the Candeeiros region, the 

Montejunto massif displays a gradational change from a simple fold thrust system to a 

transpression dominated structure. This progressive transformation in tectonic style 

was achieved via a switch in the location of thrusting from the southern to northern 

side of the massif. These northern thrusts are distinct in that they possess a NE-SW 

structural grain and a NNW direction of thrust transport. Shortening directions across 

the massif, derived from conjugate tension gash arrays, commonly display a similar 

shortening direction (i.e. NNW -SSE) suggesting both sets of structures are related to a 

regional stress of like orientation. 

The ~ verging thrusts are reactivated and offset by a later set of NNE 

verging thrusts. Contemporaneous with this final change in the direction of thrust 

transport, is the sinistral transpressive reactivation of the Arieiro fault system. 

Modelling of this transpressive strain indicates that it is responsible for the late NNE 

directed thrusting along the northern margin (see figure 6.lb). The introduction of 

sinistral transpression to the Montejunto massif occurred when the CercaVS.dos 

Candeeiros fault changed from its initial role as a passive accommodation structure to 

the fold and thrust system of the Montejunto massif, to an active transpressive fault 

that exerted a controlling influence upon the latter deformation events within the 

adjacent massif. This interpretation of the increasing importance of sinistral 

transpression is consistent with the observed early deformation sequence, which 
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displays a transition of the shortening direction across the Montejunto massif from N-S 

toward NW -SE; the orientation of a compressive stress necessary to induce sinistral 

transpression along the NNE Serra dos Candeeiros-Cercal fault. 

Clearly, as discussed in the conclusions of chapters 3 and 4, and in the brief 

synopsis of the fault system evolution above, both the Candeeiros and Montejunto 

regions display a structural and kinematic history consistent with progressive 

deformation occurring within a crustal shortening regime which rotated from a north

south to a northwest-southeast orientation. The fact that the tectonic interpretations of 

two distinctly different fault systems, separated by up to 45km, independently predict 

the same deformation system, suggests that the directions of tectonic shortening 

resolved from this study are likely to be representative of regional tectonic events (this 

chapter). 

6.1.2 Estimates for the Miocene to Recent displacement along the S. dos 

Candeeiros-Cercal fault zone 

Estimates for the amount of sinistral displacement along the S. dos Candeeiros-Cercal 

fault zone, are hampered by a lack of identifiable structures that cut across the fault 

zone. However, at Porto de M6s, the S. dos Candeeiros fault changes orientation, 

forming a releasing bend (Servi~s Geol6gicos De Portugal, 1:50,000 map). 

Associated with this releasing bend is a rhomb-shaped exposure of Dagorda 

evaporites, contained between the fault walls. The known kinematics of the fault 

system suggests that this rhomb-shaped structure may be a simple pull-apart basin, 

filled by the halokinetic migration of salt from the Candeeiros salt ridge found along 

the strike of the fault. 

An attempt to restore this fault bend, suggests that the fault walls were 

probably never an exact fit, possibly due to localised salt diapirism. However, 

restorations of the fault bend allowing for slight to moderate amounts of fault wall 

overlap, indicate sinistral displacements of 1.25 to 2.5 km (figure 6.2). The irregular 

nature of the eastern fault wall results in localised overlap in the restoration. This 

irregularity of the fault walls maybe the result of post-salt ridge deformation. A test of 

the validity of this estimate is the Vilaric;a fault in northeast Portugal. This north

northeast oriented, sinistral, neotectonic fault has calculated slip rates for the 

Quaternary, of 0.2 to 0.5mm-Yr. By extrapolating these slip rates to the known 

duration of sinistral motion along the S. dos Candeeiros fault, i.e. Middle Miocene to 

Recent (15Myrs), predicted displacements of 3 to 7.5 km can be derived. 

Such comparisons between the strain rate of different fault systems ~ 

admittedly crude. However, the lower range of the slip rates derived from the Vilaric;a 

fault (0.2mm-YT), presents a comparable figure to the displacement estimates for the 
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Serra dos Candeeiros-Cercal fault zone, suggesting that these estimates represent 

realistic figures. 

Figure 6.2 Restoration of the releasing bend at Porto de M6s with varying degrees of fault wall 
overlap. 

6.2 Relationship between fault system kinematics and the relative plate 

motions of Africa-Europe 

Since the advent of plate tectonics the aim of many structural and tectonic studies has 

been to directly relate geological observations to plate motion vectors. This has mainly 

been attempted by regarding destructive plate boundaries as crustal scale shear zones 

whose geometry involves extension in or close to the direction of shear, producing 

mineral stretching lineations (Ramsay and Graham, 1970). When these stretching 

lineations are regionally consistent, and occur in zones of high strain, they have been 

equated with the direction of plate motion {Shackleton and Ries, 1984). Such a 

relationship appears to hold for regions of 'head-on' collision, after allowing for, and 

removing the affects of later deformation, as demonstrated for the Himalaya-southern 

Tibet suture (ibid.). However, a cautionary note should be sounded for regions of 

transpressive or oblique convergence, where increasing finite strain can result in 

temporal strain partitioning, and a switch in the stretching lineation from transverse to 

boundary parallel (Harland, 1971; Sanderson & Marchini, 1984; and McCoss, 1986). 
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In such partitioned deformation regimes direct correlation between the stretching 

lineation and plate motion could lead to erroneous and complex variations in the 

reconstructed plate motions. 

In cases such as the Himalaya-southern Tibet region (Shackleton and Ries, 

1984), and that of the Dent Blanche nappe of southwest Switzerland (Baird and 

Dewey, 1986), the validity of such a plate motion/stretching lineation relationships 

have been tested by comparisons with plate motion histories determined independently 

from finite difference magnetic anomaly fitting in adjacent oceans. In both instances the 

relationship appears to fit well with actual plate motions derived independently. 

However, such attempts to relate various macro and micro-stress indicators to plate 

motions, are heavily dependent on which plate vector model they are tied to (Dewey et 

al., 1986). 

Intraplate deformation zones do not possess crustal scale shear zones 

displaying large displacements, and vital mineral stretching lineation data. However, 

this need not prevent the accurate identification of relative plate motions~ although it 

does require a different approach. In zones of complex upper crustal deformation, such 

as strike-slip and transpression zones, localised strains can, and do, overprint and 

obscure regional strains. In the Candeeiros and Montejunto regions of the Lusitanian 

Basin, thrust directions are commonly determined by a complex interaction of the 

adjacent fault system, and the applied external stress (e.g. late NNE directed motion 

along the Tojeira, and Rocha Forte thrusts, in the Montejunto region, and the southerly 

vergent Amiais de Baixo thrust along the edge of the rotating Candeeiros block, see 

sections 4.5 and 3.8 respectively). Therefore, these thrust directions cannot be 

considered in isolation when reconstructing relative plate motions. However, where 

neotectonic thrust faults are found as single entities, (e.g. the Ponsul fault) the NW-SE 

slip direction (Dias and Cabral, 1989) equates to the relative plate motion vectors of 

Africa-Europe during the last 9Ma (Smith, 1971; Livermore & Smith, 1986; and 

Dewey et al., 1989). 

~mentioned above (section 6.1), structural and kinematic analysis of the fault 

system as a whole, reveals two tectonically distinct regions of distributed deformation. 

In both cases, the structural and kinematic evolution is consistent with their 

development in a deformation field, within which the axis of maximum shortening 

rotates from a north-south, to a northwest-southeast orientation. The identification of 

a progressively changing axis of maximum shortening, common to two tectonically 

different areas, over a distance of approximately 50km, indicates that these changes in 

the orientation are occurring on a regional scale, and are probably due to changes in 

the relative plate motion vector of Africa with respect to Europe. 
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To test if the reconstructed regional shortening axis, and Africa-Europe plate 

motions coincide, an age constraint must be placed on the deformation occurring along 

the Serra de Montejunto-Candeeiros fault system. As mentioned in the beginning of 

this chapter, north-south directed thrusting initiated in the Arrabida region during the 

Middle Miocene, indicating that deformation related to north-south compression 

within the S. de Montejunto-Candeeiros fault system is likely to be coeval with this 

event. However, the onset of transpressive motion within the S. de Montejunto

Candeeiros fault system, cannot· be relatively dated with similar confidence. Indirect 

evidence exists for this event in the stratigraphy of the lower Tagus Basin Miocene 

sequence near Lisbon, where a depositional hiatus occurs during late Tortonian and 

Messinian times (Ribeiro et al., 1979). This may place an age constraint on the 

inversion event which occurred possibly as a direct result of the onset of transpression 

within the basin. 

A comparison of the plate motions predicted from structural and stratigraphic 

data within the Lusitanian Basin with the published plate motion paths of Smith 

(1971 ), Dewey et al., (1973), and Livermore & Smith (1986), reveals a good general 

fit, with late northwesterly directed convergence predicted by most models. The most 

recent plate motion model of Dewey et al., (1989), provides a much smoother 

reconstruction of African plate motion, and displays a striking similarity with the plate 

motions predicted from the S. de Montejunto-Candeeiros fault system (figure 6.3). A 

slight discrepancy exists between the predicted convergence directions of Dewey et al., 

(1989) and those observed in the Lusitanian Basin for the Middle to Late Miocene 

aged motion (north-northeast, as opposed to north-south, respectively). 

JURA FOLDING 

HELVETIC 

THRUSTING 

Figure 6.3 Correlation chart between the relative plate motion of Africa w.r.t. Europe, and various 
tectonic events in the Lusitanian Basin of Ponugal (stippled), and for comparison, the European Alps. 
Modified from Dewey et al., (1989). 
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Significantly, however, the model displays a definite change from dominantly 

northward directed convergence, to northwestward convergence at 9Ma (middle 

Tortonian). This strong correlation between the change in relative convergence 

directions predicted from geologic observations, and the plate vector reconstruction of 

Dewey et al., (1989), further strengthens the indirect stratigraphic evidence, which 

constrains the timing of transpressive deformation along the S. de Montejunto

Candeeiros fault system. 

6.3 Tectonic Style of the Lusitanian Basin 

6.3.1 Previous interpretations 

Interpretations of the Alpine (Miocene to Recent) tectonics of the Lusitanian Basin, 

vary between a thrust dominated, to a strike-slip dominated system (Ribeiro et al., 

1988, 1990; and Fonseca & Long, 1989a,b, respectively). The dominant deformation 

style within the basin is not the only contentious point. The extent of basement 

involvement in Meso-Cenozoic cover deformation, raises the issue of thin-skinned 

verses basement driven deformation. 

Ribeiro et al., (1988, 1990) present a review of the Alpine evolution of the 

Lusitanian Basin, in which the north-northeast trending faults " .. behave as lateral 

ramps and transfer zones for the Alpine thrusts .. " which have an approximately east

west orientation. The emphasis of this interpretation is placed on the controlling 

influence of the thrust faults, and the passive role of the sinistral strike-slip structures. 

In addition, some confusion seems to surround the role of the basement in the 

deformation of the cover sequence. Thin-skinned deformation has been invoked with a 

decollement suggested along the Hettangian evaporite horizon which separates the 

Hercynian basement and Meso-Cenozoic cover sequence; the Arrabida region quoted 

as the best example of this style. However, based on balanced cross-sections of low 

amplitude folds within the cover sequence of the basin, a decollement at 10:!:2km is 

proposed to separate the low-grade metamorphic Palaeozoic rocks from the underlying 

Precambrian basement, therefore, implying that thick-skinned tectonics were operative. 

Little mention is made of the detailed Quaternary tectonics within the basin, even 

though the change in the regional compressive stress is acknowledged. However, a 

change from a passive continental margin to an active margin is proposed by Ribeiro et 

al., (1988), due to a proposed northward propagating incipient subduction zone. 

Fonseca and Long (1989a,b) proposed a neotectonic model for the Lusitanian 

and Lower Tagus Basins, based on seismotectonic analysis. The proposed model is 

dominated by strike-slip deformation along major north-northeast oriented basement 

faults. Deformation within the basement is suggested to decouple from the Meso

Cenozoic cover sequence along the Hettangian aged evaporites. It is suggested that 
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this decollement facilitates the transfer of basement fault displacements to nearby, pre

existing cover faults. Hence, the cover deformation is being driven by basement 

structures. Two suggestions have been offered to explain the driving mechanism of this 

zone of distributed strike-slip: 1) that strike-slip along NNE trending faults might 

occur as part of a lateral block movement to the west, accommodating crustal 

convergence to the south, and 2) that the strike-slip faults may be splay faults that run 

off-shore to the dextral, Azores-Gibraltar fracture zone. It was noted that both models 

may explain the distributed strike-slip seismicity observed, but if considered separately 

they would lead to a prediction of opposite senses of slip along the faults. 

6.3.2 Revised tectonic model for the Lusitanian Basin 

As described earlier in this chapter (section 6.1), the dominant deformation style within 

the Lusitanian Basin changed from a thrust system, to a sinistral transpressional 

system. The S. de Montejunto-Candeeiros fault system preserves the detail of this 

transformation in tectonic style, therefore, allowing the model of Ribeiro et al., (1988, 

1990) to be modified. 

In general, the author agrees with the kinematic interpretation of Ribeiro et al., 

(1990), but only for the initial period of Alpine deformation, following which the 

change in tectonic style, clearly documented by structural observations and the relative 

plate motion path of Dewey et al., (1989), must be incorporated. Thus, the post

Burdigalian thrusting event caused localised structural inversion along compressional 

structures, such as the Montejunto anticline, and the Arrabida region. Ribeiro at al. 

(1990), suggest that the basin deformed via thin-skinned thrust tectonics, although 

strike-slip motion along north-northeast structures appears to have played a significant 

role (Mauffret et al., 1989). The presence of the evaporites between the basement and 

cover sequence serves as an efficient decollement surface, likely to decouple the 

basement and cover deformation, and for this reason any attempt to relate low 

amplitude folds to decollement surfaces within the basement seems unrealistic. Seismic 

reflection profiles across the Montejunto massif indicate that basement faults have been 

reactivated to form continuous basement/cover structures of Miocene age. This 

suggests that regional thin-skinned deformation was locally influenced by basement 

structures. 

The duration of this deformation style was short lived. In middle Tortonian 

times (9Ma) the relative motion of Africa-Europe changed, inducing transpressional 

tectonics along the S. de Montejunto-Candeeiros fault system. This oblique 

convergence direction persisted to the present, suggesting that, in terms of duration, 

transpression was the dominant deformation style within the Lusitanian Basin. 

However, off-shore seismic reflection profiles suggest that peak deformation occurred 
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during the Middle to Late Miocene, tailing off to its present level (Mauffret et al., 

1989). 

6.3.3 Neotectonic model for the Lusitanian Basin 

Seismotectonic studies of the Lower Tagus, and Lusitanian Basins, suggest that the 

basement is undergoing sinistral strike-slip displacement along north-northeast trending 

faults. The lack of surface expression for the Lower Tagus Fault, and for a possible 

parallel structure, located further to the east, indicates that basement deformation is 

again decoupled from that of the cover. However, the main neotectonic surface 

structures within the Lusitanian Basin, although spatially non-coincident with the 

proposed basement faults, display the same sense of motion. Fonseca and Long 

(1989b) resolved the problem of no associated surficial deformation above the Lower 

Tagus Fault by suggesting that displacement associated with this fault becomes 

transferred along the sub-horizontal evaporite sequence to the pre-existing cover faults 

of the Lower Tagus Valley: the Vila Franca-Amlbida fault system. A similar scenario is 

proposed for the Serra dos Candeeiros fault and associated structures (Curtis, 1991). 

The Serra dos Candeeiros fault is considered to be neotectonic (Cabral and Ribeiro, 

1988), although no seismicity has been recorded along it. However, an important linear 

array of earthquake epicentres lies to the immediate east of the fault trace, which have 

been interpreted to represent a concealed sinistral basement fault (see 5.4.3). It is 

suggested that displacement associated with this proposed sinistral basement fault, is 

prevented from propagating directly to the surface by the thick Dagorda evaporite 

horizon. Instead, it seems likely that the displacement associated with this basement 

fault explores the decollement horizon, seeking out weak, pre-existing structures. The 

Serra dos Candeeiros fault represents an easily exploitable structure due to the 

presence of a salt wall along the fault zone. Thus, due to the reduced shear stress along 

the Serra dos Candeeiros fault, displacement is transferred laterally by as much as 20 

km. This decoupled deformation style is further suggested by the presence of the 

Candeeiros block, which is rotating about a vertical axis. A5 discussed in section 1.1.6 

crustal flakes or slabs must detach along some decollement in order to facilitate the 

rotation, and as suggested by Brown (1928) and demonstrated by Terres and Sylvester 

(1981), these decollements are commonly along weak horizons or mechanical 

variations in the underlying lithologies. In the case of the Lusitanian Basin,it is logical 

to assume that the detachment surface is the Dagorda evaporites. Therefore, the 

evaporites appear to be providing an efficient regional detachment on a scale of at least 

20x20 km, suggesting a similar decollement is likely to occur on a basin wide scale. 

It appears that the Lusitanian Basin is deforming neither due to thin-skinned, 

nor thick-skinned tectonics. Instead, an intermediate model of decoupled cover and 
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basement deformation is preferred, at least for Quaternary deformation. This 

distinction is made because the deformation within the cover sequence is clearly related 

to basement deformation, although not directly by single continuous structures. 

Instead, the cover and basement deform in the same tectonic style, albeit detached 

along the evaporite horizon. Whether or not the cover and basement are deforming 

independently is debatable. The lack of instrumental seismicity along the Serra dos 

Candeeiros fault, and associated faults, possibly suggests that the Dagorda evaporite 

sequence may provide an all too efficient decollement, resulting in complete cover 

independence from the basement. However, the effects of the Candeeiros salt wall 

along the fault zone may facilitate aseismic creep which, coupled with the low strain 

·rate estimates for Quaternary faults in Portugal, may have gone undetected. 

As the NW-SE convergence direction between Mrica-Europe has remained 

stable since its initiation during the late Tortonian, it seems reasonable to assume that 

the present tectonic style reflects the tectonic style of the basin since the late 

Tortonian, that is: decoupled basement and cover sinistral transpression. It is most 

probable that the main inversion of the Lusitanian Basin occurred during this period of 

sinistral transpression. Apart from the observed structural data, and seismotectonic 

interpretations which suggest a post-Tortonian basement driven, transpressional event, 

two further lines of evidence suggest that basin inversion was transpressional in nature: 

1) The narrow, elongate zone of inversion, is typical of the uplift associated with 

transpressional fault systems (Sylvester, 1988), and 2) A positive magnetic anomaly 

coincides with the outcrop of inverted Mesozoic sediments, between the Montejunto 

Range and the Nazare fault (Miranda et al., 1988), indicating that basement uplift may 

have occurred in association with the narrow zone of inversion (figure 6.4). Basement 

uplift related to north-south compression would be expected to be associated with 

localised east-west oriented structures, as structures of this orientation form a small 

proportion of the basin structure. The termination of the positive magnetic anomaly at 

the Montejunto massif, possibly suggests that inversion tectonics to the south of this 

structure may not include basement, and therefore, the deformation may be thin

skinned. The presence of a transpressively reactivated basement fault beneath the 

Montejunto massif, provides a suitable structure across which differential basement 

behaviour could take place. 

It appears, therefore, that the inversion of the Lusitanian Basin was related to 

sinistral transpressive motion along two (from neotectonic evidence), and possibly 

more concealed basement faults. Uplift of the western side of this basement fault 

system, accounts for the narrow region of inversion. 
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Figure 6.4 Magnetic anomaly map of Portugal. Dashed line represents the eastern limit of Lusitanian 
Basin inversion, positive anomalies are shaded. Re-drafted from Miranda et al., (1988). 

6.3.4 Summary: Alpine evolution of Lusitanian Basin Tectonics 

The earlier (Langhian to late Tortonian) Alpine deformation of the Lusitanian Basin 

sedimentary sequence, appears to have occurred by thin-skinned thrust tectonics, in 

response to a dominantly north-south oriented compressive system. The regional 

decollement facilitating the detachment of the cover sequence was probably located 

within the Dagorda evaporites. 

The change in relative plate motion between Africa-Europe from north-south 

to northwest-southeast, near the end of the Tortonian, probably induced thick-skinned 

transpressional deformation along NNE oriented basement faults. However, the cover 

deformation was most likely decoupled from the underlying basement by the thick 

Hettangian age Dagorda evaporites. Transpressive movement along the Lower Tagus 

fault, and possibly a more important parallel fault lying beneath the edge of the 

inversion zone, resulted in a component of upthrow to the west causing the uplift and 

inversion of a narrow region of the Lusitanian Basin. Wilson et al., (1990) suggest that 
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the Miocene inversion event is responsible for up to 1000 metres of uplift, with greater 

values probable, where locally intense transpression or compression has taken place 

(i.e. the Montejunto massif, and Serra D'Aire, respectively). Neotectonic, and 

seismological studies suggest that the same deformation style is continuing. The 

disparity in the location of basement and cover faults of the same kinematic style 

suggest that transpressive motion along the steep basement fault/s is transferred 

westward along the basement/cover evaporite decollement, to the steep S. dos 

Candeeiros/Cercal faults, and associated structures within the cover sequence (figure 

6.5). The Lusitanian Basin is therefore displaying a tectonic style that has been 

increasingly recognised in southern California, with regional decollements, and lateral 

offsets of major strike-slip faults (Webb & Kanamori, 1985; Dewey et al., 1986; 

Nicholson et al., 1986; Hudnut et al., 1989; and Petersen et al., 1991). 
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Dagorda evaporite 
horizon 

Figure 6.5 Exploded block diagram displaying the proposed horizontal transfer of strike-slip motion 
from basement to cover faults, within the Lusitanian Basin. Red - basement; Purple - Dagorda 
evaporites; Blue- Mesozoic sequence; Mustard- Oligo-Miocene sequence. 
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!Appendix 1 

Reconstruction of Principal strain axes from en echelon vein arrays 

The determination of the orientation of principal incremental strain axes X, Y, and Z 

from tension gash arrays was conducted from both conjugate, and single vein arrays~ 

The data collection procedure, and methodology of which is described below: 

Data collection 

Whenever possible, two sets of measurements were recorded for each vein array. 1) 

the orientation (strike/dip) of the vein array, denoted cp, and 2) the incremental 

orientation (strike/dip) of the individual vein. 

Where vein arrays displayed sigmoidal shaped extensional veins, the orientation of the 

external tip of the veins was recorded as it represents the incremental orientation of the 

vein (figure 1a). 

Construction Methodology 

Conjugate arrays - Where conjugate vein arrays where encountered, the methodology 

of Ramsay & Huber (1987) and Hobbs et al., (1976), for determining the principal 

stress axes of conjugate faults, was employed. Strain axes can be substituted for stress 

in this method because the vein arrays record the incremental strain direction, which 

approximates to the principal stress axes. 

The conjugate vein array orientations were plotted as cyclographic traces on an equal 

area stereonet, the intersection of which represents the Y axis. The Z axis lies in a plane 

perpendicular to theY axis, and bisects the angle 8 (figure 1b). The X axis lies mutually 

perpendicular to the constructed Y and Z axes, therefore, it is located at the pole to the 

plane containing the Y and Z. 

Single arrays - When only one vein array was observed, a different construction 

method was employed. The method is a modification of Ramsay and Huber's (1987) 

method for determining stress axis for a single fault plane. 

1) The array orientation and incremental vein orientations are plotted as 

cyclographic traces on an equal area stereonet, the intersection of lineation (vt) of 

which is parallel to the intersection of the theoretical conjugate pair, and therefore, 

represents the Yaxis (figure 1c). 

2) A plane can be constructed perpendicular to the derived Y axis, which will 

contain the Z and X axes. 

3) The Z axis will lie at an angle 8/2 away from the trace of the measured vein 

array orientation. The angle 8 can be estimated from observed conjugate vein arrays 

within the same lithology. However, the value of 8 varies by as much as 20° depending 
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B 

on the value of o, the angle between the array orientation cp and the individual vein. 

However, the vein arrays display a direct relationship between the angles 8 and o. 
Therefore, the value of 8 used in the construction depends on o, and are based on the 

observed end-member variation in 8 w.r.t. o in the field. (figure lc) 

4) The X axis can be constructed in the same way as in the method for conjugate 

arrays. 

A 

----

Figure 1 a) Definitions of 8, cp, and b. b) Construction of strain axes from conjugate arrays. c) 
Construction of strain axes for single vein arrays. 

267 



MAP 1 
THE STRUCTURE AND KINEMATICS OF THE 

ABRA-AMIAS DE BAIXO THRUSl- ZONE 
-------.------~------~------.----~--~------~------·~·----~------~~-----·~--------------.-------~~---1516 1518 1520 522 524 512 514 

MOSi i::IROS 
64 

•••• 
:········ OLIGOCENE : ..... . 
• • • •• • 

UPPE~ CA~AC~OUS ~~:~:nian 
Volc::aniclactics 

LOWER CREiAC~OUS I APf!An 
/Aibran 

• PORTLANDIAN 

bill KIMMERIDGIAN 

OXFORDIAN 

rr:s:::g I BATHONIAN 
b::::::r::::J / AALENIAN 

514 

Poles to Bedding • o 

Pressure Solution Cleavage .a. 

Lineations a o 

Poles to Thrust Sllckolltes • 

Open symfiols l)ost date structures 
represented by closed symbols 

Bedding data from Mosteiros/Aicanede 
monocline-fault zone~ ---~ 

,./ •. ~. 

to monocline Axis, Indicating 

bedding exploitation. 

/ 

// 
Fold axis parallel 
to fault zone 

N 

I 
' 

SliCk@nltnes on !eddtng !'lAnes .. 

'-..., 
' ' 

Pressure Solution Cleavage • 
Poles to Bedding n 

/~, 
/ ! ' 

/ I ' 
/ I ' 

... I ' 
: ' I 

GENERALISED FAULT SETS 

' ... 
6 

... 

' 

OT 
OT 0 6 

• ,DT 

' 

' 
• ' ' 

6 t:.!J.e 

"' o+ 

'l. 

' 

' ' ' ' ' "" . 
' • 

• 

' • 

' ' ' 
' 

•' 
' •' . 
' 

' 

' 
' ' ' ' " ' 6 

' ,. 
' • 

' ' 
• 

' 

N Summary of structures from 
Penas de Prado quarry, 

south of Abra 
AMIAIS DE BAIXO 

+ 

• + . . + 
+ 

+ + • 
- + 

+ - . + 

+ 
•• t • .;:fl-++ + 

Sinistral reactivation 
of bedding planes 

+ 
+ ++ 

+ + 
+ + 

~OT + 

+ 

+ 

OT 

520 

0 

.a. Slickenl•nes on Bedding Planes 
• Pressur~ Solution Cleavage 

+ Poles tc • Bedding 

1km 

!522 

FOLD AXIS 

@ 

+ NON AXIAL PLANAR CLEAVAGE 

Bedding and cleavage 
NW of Relvinhas 

Strike parallel sinistral 

oHiqug I!HJltiflQ ggmmgn 

Fault data from thrust zone 
NW of Relvinhas 

Faulting from hanging wall thrust sheet south of 
A bra 

+ 

4366 

43 4 

Bedding with Dip ~6 Cleavage 

Overturned bedding 

Synclinal axial trace with plunge 

Anticlinal axial trace 

Overturned syncline 

Monocline hinge (open Upper hinge) 
(ciosed Lower hinge) 

Fault 

Thrust fault 

Lithology boundary 

• + 
+ 
+ 
+ 

. •• + + 

• + 
+ 

.. + 
+ + 

+ + + 
+ 

+ + 
•• + 

+ 
+ 

+ 
++ ++ 

+ 
; .. + + .. 

+ + 

+ + 

+ 
+ 

+ 

FOLD AXIS 

@ 

+ 

+ 
+ 

+ 



A PRINCIPA~ STRAIN AXES DERIVED FROM 

CONJUGATE ENt;CHELON TENSION GASH 

• 

• 
• 

• 

lz AXISI 

IY AXIS! 

• 

• 

• 
• 

ARRAYS 

• 

• • 

• 

• • 
• 

+ 

• • • 
• 

• 

• 

• 

FAULT PLANES AND MOVEMENT VECTORS 

FOR THRUST SHE;ET S.W OF MONSANTO 

F 

CIRCULAR HISTOGRAM OF 

SLICKENLINJ; (MOVt:Mt:NT VECTOR) 

AZIMUTHS 

MEAN AZIMUTH 194° 

A1 

A2 

A3 

• 

• 

• 

F1 F2 

B 
+ • • 

' + 

+ ' 

• 

• + 

• 

.SIEXT 

!BEDDING! 

• 

1 82 

c 

N 

• 

• 

FOLD AXIS PARALLEL EXTENSION 

EXTENSIONA 
VEINS 

+ • 

+ 

OBLIQUE VEINING 

~ . 
• 

N 

MAP 2 

STRUCTURE AND KINEMATICS OF7 THE . 

MONSANTO THRUST ZONE 

MMVFZ - Minde/Moitas Venda Fault Zone 

UT- Monsanto Thrust 

CIRCULAI'I HISTOGRAM OF SLICK~NLINE 

(MOVEMENT VECTOR) AZIMUTHS 

MEAN AZIMUTH 1&]0 

E 
FAULT PLANES AND MOVEMENT VECTORS 

FROM LOCALITY 79 

N 

01 

02 

-------

0 

D 
FAULT PLANES AND 

MOVEMENT VECTORS 

FROM NE END OF 

THRUST SHEET 

CIRCULAR HISTOGRAM 

OF SLICKENLINE 

(MOVEMENT VECTOR) 

AZIMUTHS 

MEAN AZitv1UTl ~ 176° 



MAP AREA 

All Stereonet! plotted on a. Lambert et1ual Ares Net 

Great cltclea tepre88nt mesoscopic fault!\ within 

the hanging ft trtru t sheet 

LEGEND 

Bedding 
Overturned Bedding 

~ Cleavage 
.. 

..... -·· ··-·/ Lithology boundary 

__..-- Thrust Fault 

~ Reverse Fault 
~--- Fault with sense 
~ of motion 
~ Synclinal Trace 

__tq- Anticlinal Trace 

KEY 

~~~~; ~~~l(f{l ~tla~ 
Upper ~ · . 

Jurassic gg Oxford1an 

Mid d Bathonian 
Jurassic !R 9ajocian 

Lower' 
Jurassic 

N 

THE STRUCTURE AND KINEMATICS OF THE SERRA D'AIRE THRUST Z MAP 3 

AxiQI Planar 
Cleavage 

N Fold Axis 

• 
• • -1{ 

• • • • 
• • • • 

+ 
+ 

• + 
+ • 

• + 

+ + 
+ + 

+ 
+ + 

+ 

+ • . . 
Bedding/vein 

:----- Intersection Lineation 

• 
• 

/ .... 
•• 

•• •••• 

OT 
+ 

N 

15 z / 

•• •• 
•• •• •• 

~ ... ·· • ... ·· \ 
% 

/ 

//A'_ 
/ 30 

•• 
_../ , .. , 

528 

•• •• 

\ 
\ 
) 
I 

530 

0 

/ 

+ 

1 

Scale 

"' 
""' ;e.... """ 

A """ AIRE 668m "'-.. 

/ 
/ 

;;r 

)2( 

0 • 0 

5 32 

® 

2km 

-

.. . . . . . . . . 
• 0 • 

0 0 

• 0 0 

GOUCHA LARGA 

A 
........_ 547m 

................... 
-~-- ............... 

-20--

' 
. 
• • • • • • • • • • 

......... 

0 0 0 

0 ° 

• : . 0 • 0 • 

)' ... . 
• 0 • 

. . . . 
0 •• 

0 • 

0 • 

0 • 

N 

0 0 

© 

0 . • . . . . . . . . . . 
• • 0 

0 • 

• 0 . . 
. . . . . . . . . . 

• • 0 • 

. . . . . . . . . . . . . 
••• •• 0 0 • 

. . . . . 
• 0 0 

• • • 0 • • 

• 0 

• 0 0 

· ·. ·: ·. :_: ·: ·. :(:) :Aiqueidao 
• .. .. ... • • • • • • • • 0 • • • • 

• 0. • 
0 0 . . . . 

0 • 

0 0 

0 
0 

• • • 0 

0 0 

0 0 0 

• • • 0. 

0 
0 

0 • 

. . . . . . . . ' 
0 0 0 

.... 

::·:_ ::\\\\.:. \::·6\~edrogao 
• • ·.: 0 • • •• • • 0 • • •• : 

0 0 

0 0 0 

0 0 

0 0 
0 0 

0 0 

N 

N 

4378 + 

4376 

@ 

+ 

N 

Data from exposure of main thrust 

Frequency = Length Rose diagram of 

thrust/reverse lineation azimuths . 

Mean lineation azimuth 328° 

Mean thrust transport direction 148° 



4337 

4336 

MAP4 

- ~--~' 
---%---

1 Structural symbols I 

_._ Bedding (dip & strike) 

-J- Overturned bedding 

.»-- Cleavage 

_._ Thrust fault 

- - Strike-slip fault 

..,....4- Anticline} 
with plunge 

.-%-Syncline 

4 92 

STRUCTURAL MAP OF THE 

MONTEJUNTO MASSIF 

NAF - Northern Arieiro Fault 

SAF - Southern Arieiro Fault 

Monocline 

4 93 

I Stratigraphy I 

Ill 
II ----. --------

Miocene 

} 
Abadia 

Kimmeridgian Formation 

Oxfordian ~ 
J 

Callovian 

Monte junto 
Formation 

~ Bathonian 

Candeeiros 
Formation 

4 94 

43 

4 

MONTEJUNTO 

4 95 4 96 4 97 


