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A b s t r a c t of Thes i s for P h . D . , 

" C h e m i c a l D y n a m i c s Us ing Wavepacket Methods." 

Abigai l J. Dobbyn, Durham University, September 1993. 

This thesis is concerned w i t h studying chemical dynamics using time-dependent quan

t u m mechanics and i n particular using the Fourier method. 

Various ways of implementing the Fourier method are described, both for calculations 

i n one dimension and for those in many dimensions. 

The Fourier method is then used to simulate time-resolved femtosecond and picosecond 

pump-probe experiments, which investigate the B state of the sodium trimer. The simu

lat ion is divided into three stages: the in i t i a l wavefunction is generated by modelling the 

effect of the pump laser pulse on the ground state wavefunction of the X state of the sodium 

trimer; the wavepacket now on the B state is propagated i n time; the observables are ex

tracted f r o m the time-dependent wavefunction. The calculations are carried out ini t ial ly 

i n two dimensions, corresponding to the bending and asymmetric stretch normal modes, 

and then i n three dimensions, i.e. including the symmetric stretch normal mode. 

The simulation of the time-resolved experiments produced physically plausible results. 

The correspondence w i t h the experimental results was only fair, but this could be mostly 

accounted for by the poor quality of the potential energy surfaces used. Thus, even the 

relatively simple model used to simulate the time-resolved experiments is useful to gain 

both a qualitative explanation of the results of these experiments and an insight into the 

dynamics of systems which are i n non-stationary states. 
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1: Introduction 

I n order to understand the mechanisms by which chemical reactions occur, i t is nec

essary to consider the motion of nuclei and electrons wi th in reacting species. This is the 

subject of chemical dynamics calculations. Chemical dynamics can be investigated using 

quantum mechanical methods i n a variety of ways. These methods can be crudely divided 

into time-independent methods, e.g. diagonalising the Hamiltonian matrix or solving the 

coupled channel equations, and time-dependent or wavepacket methods, which solve the 

time-dependent Schrodinger equation. 

The time-dependent Schrodinger equation (T.D.S.E.): 

can be solved by f inding the in i t i a l state of the system under consideration, i.e. the wave-

funct ion at zero t ime, and then propagating this i n time. 

Apart f r o m these quantum mechanical methods, classical trajectory calculations and 

semiclassical methods, which are also time-dependent, can be used. There is a variety of 

these time-dependent semiclassical methods or Gaussian wavepacket methods, e.g. those us

ing frozen Gaussians or thawed Gaussians [1]. One major advantage of the time-dependent 

quantum mechanical method over the semiclassical methods that have been developed so 

far is that potentials of arbitrary complexity can be treated. 

Chemical reactions have a beginning and an end that are separated in time. Thus 

they are a time-dependent phenomenon. I t would seem natural then to study chemical 

dynamics wi th in this framework. However, i t is only i n the recent past that time-dependent 

methods have become popular. This is mainly because of the large computational resources 

required for the calculations, as well as the diff iculty i n relating the results to spectroscopic 

observables. 

Early studies used an impl ic i t t ime propagator to numerically integrate the time-

dependent Schrodinger equation; the finite-difference method was used, which defines the 

wavefunction on a grid, to calculate the spatial derivatives in the Hamiltonian operator [2 . 

Later an explicit t ime propagator, using second-order differencing, was introduced [3]. This 

improved the scaling of the method f rom 0{N^) to 0{N), where N is the number of grid 

points used. The use of the finite-difFerencing algorithm, which has very poor convergence 

w i t h respect to grid size, meant that only qualitative results were produced. Other early 

attempts to study chemical dynamics problems in the time domain involved the expansion 
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of the in i t i a l state i n terms of the stationary state solutions, which can be propagated 
analytically [4 . 

I n 1983 KoslofF introduced the Fourier, or Pseudospectral, method [5]. I n this method 

the spatial derivatives i n the Hamiltonian operator are calculated by the use of forward 

and backward discrete Fourier transformations of the wavefunction. The wavefunction is 

defined on a gr id i n the same way as i n the finite-difference method. The Fourier method 

produces results of very high accuracy, due to the exponential convergence of the method 

w i t h respect to gr id size. The use of Fast Fourier Transforms makes this method extremely 

efficient, scaling as 0{N\o% N). Subsequently, the method has been enhanced even further, 

part icularly w i t h the introduction of a variety of new propagators [6 . 

Advances have also been made in methods to obtain observables f rom time-dependent 

calculations. I n 1978 Heller introduced a formtila for the total photodissociation cross 

section [7], which is simply related to the absorption spectrum. This stated that 'the total 

photodissociation cross section is given by a Fourier transform of the overlap between the 

propagated and unpropagated in i t i a l vibrational wavefunction times the transition dipole'. 

Later a strategy was introduced for calculating the partial cross sections [8]. This was done 

by projecting the propagated wavefunction, once i t had reached the asymptotic regions 

of configuration space, onto simple asymptotic outgoing states. This formalism has been 

extended to a variety of different applications in aU areas of chemical dynamics. More 

recently a new method for the calculation of partial cross sections has been developed [9 . 

This method analyses the propagating wavepacket at a particular cut i n configuration space 

and then uses the results of this analysis to form the partial cross sections. 

I t is not the intention here to give a complete review of the various physical problems 

to which time-dependent methods have been successfully appUed. Some of these include: 

photodissociation on a single two-dimensional potential energy surface, e.g. H2S [9] and 

I C N [10] (this study also explicit ly treats the absorption process); photodissociation on a 

single three-dimensional surface, e.g. O 3 [11]; predissociation on a single three-dimensional 

adiabatic surface, e.g. Van der Waals molecules [12]; predissociation in three dimensions 

using vibronically coupled surfaces, e.g. HCN"'' [13]; atom-molecule scattering, e.g. a model 

implementation for inelastic collisions [14]; reactive scattering, e.g. two-dimensional studies 

on H D - i - H H2 - f D [15] [16] as well as three-dimensional studies on F -|- H2 HF 4- H 

17] which use an extension to the theory derived for atom-molecule elastic scattering [18]; 

and gas-surface scattering, e.g. H2 f rom flat or corrugated surfaces [19] [20]. Some reviews 

exist, including one on time-dependent wavepacket calculations of molecular scattering f rom 

surfaces [21], and another on quanta! wavepacket calciilations of reactive scattering [22]. 

Recently there has been a thematic issue of Computer Physics Reports on time-dependent 
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methods for quantum dynamics [23]. What foUows, instead of a comprehensive review, is 

a brief discussion of some areas in which time-dependent methods show a large advantage 

over time-independent methods, so that their application is particularly useful. Also, some 

of the methods that have been introduced to extend the use of the Fourier method are 

included i n this discussion. 

Consider first those chemical reactions which are difficult to study with time-

independent methods because these methods are only used to solve two-point boundary 

value problems. Such chemical reactions include those which have multiple continua, i.e. 

those reactions whose f inal products consist of three or more fragments, making the con

struction of boundary conditions impossible, because of the practical difficulty in parti

t ioning the kinetic energy between the fragments. The time-dependent method allows a 

simple treatment of continua and of the rearrangement problem in reactive scattering, be

cause this method solves in i t i a l value, rather than two-point boundary value, problems. An 

example is the study of the dissociation dynamics of vibrationaUy excited Van der Waals 

clusters: I 2 X Y ^ I2 + X 4- Y ( X , Y = He,Ne) [24] and other similar systems [25]. How

ever for problems of this sort, i.e. double continuum processes, the wavefunction explores 

a large volume in configuration space, making exact quantum methods prohibitively ex

pensive to apply. A class of approximation methods has arisen which deals wi th this, and 

other computationally intractable problems. These are the time-dependent self-consistent 

field (T.D.S.C.F.) schemes [26]. I n this approximation the wavefunction is represented by 

a product of one-dimensional wavefunctions associated wi th each quantum mode (or di

mension). The wavefunction is then substituted into the T.D.S.E. and a set of coupled 

single-mode S.C.F. field equations is obtained. The potential for each mode in these equa

tions is the total potential for the system averaged over the other modes. This potential 

allows energy to be transferred between different modes, and is time-dependent. A variety 

of these schemes exist, including single-configuration T.D.S.C.F., configuration interaction 

T.D.S.C.F., and those which treat one or more of the modes semiclassically or classically. 

Now consider those chemical reactions which are difficult to study with time-

independent methods because the calculations wi th these methods are computationally 

too intensive. Obviously, this w i l l apply to very large problems, where many states or 

dimensions have to considered. The time-dependent method is useful here because i t can 

be in many cases computationally more efficient. This can come about in two ways. The 

first arises because a wavepacket can correspond to a wide range of energies, so that a 

single calculation can yield results for many energies. Thus the columns of the S-matrix 

corresponding to the states of interest, e.g. those most directly corresponding to the ex

periment, can be found f rom one calculation. A good example of this is the calculation 
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of part ial photodissociation cross sections for all photon energies by a single calculation. 

That a single calculation can provide all the information of interest about a system has 

been shown explici t ly for the calculation of the partial cross sections of H2S [9]. I t has 

also been shown for the calculation of the partial cross sections of reactive scattering, in 

particular for the reaction F 4- H2 H F -|- H [27 . 

The second reason why time-dependent calculations can be computationally more effi

cient is because the computational scaling laws can be favourable. For example, the compu

tational effort i n time-dependent methods scales as the number of grid points squared (N^), 

i n contrast to time-independent coupled channel methods in which the computational effort 

scales as the number of channels cubed (N^) [28]. These advantageous scaling laws have 

made the solution of several problems possible, e.g. the scattering of atoms and molecides 

f r o m surfaces, where very many dimensions must be considered for even the simplest study 

11][19][29]. The difficulties involved wi th generalising the Fourier method to coordinate 

systems other than Cartesian are avoided in these calculations since for these calculations a 

good coordinate system to use is Cartesian. Also, the periodic nature of the Fourier trans

form can be used to great advantage to match the surface unit cell. Calculations which 

aim to extend these studies further and to study the energy transfer between the surface 

and the incoming molecule have been carried out. These have to use some approximations 

in order that the computation is feasible. T.D.S.C.F. calculations have been used, where 

the surface and molecule motions are separated [21]. I n another related method, the sur

face is modelled using the stochastic generalised Langevin equation formalism. W i t h this 

method the surface is treated as heat bath, and is modelled using a chain of atoms coupled 

together w i t h harmonic forces [30] [31] [32] [33]. The parameters used to describe the chain 

are derived f rom considering autocorrelation functions and their relation to the spectral 

density of the sohd; the spectral density is often taken to the Debye model spectrum. In 

order to model a heat bath i t would be necessary to use an infinite chain of atoms. This is 

not computationally possible, so simple fictional damping and white noise terms are added 

to the equations of motion for the last atom in the chain [34]. The motion of the surface 

atoms is then solved classically. The motion of the surface atom or the ' top' atom in the 

chain is used as a parameter in the potential for the equations of motion of the molecule 

approaching the surface. 

As well as these computational advantages, the algorithms used in time-dependent 

methods are highly vectorisable, which is particularly important since modern computers 

gain their speed f rom parallel and vector type architectures [6] [35]. In particular, for mult i 

dimensional problems, many mutually independent Fourier transforms may be performed 
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i n parallel [36]. This has been demonstrated on both the S.I.M.D. and M . I . M . D . f type 

parallel processing computers. For machines wi th distributed memory, the implementation 

is not as obvious as in i t ia l ly appears, due to necessity of transposing the wavefunction 

which can involve a great deal of t ime consuming message passing [37]. For the S.I.M.D. 

architecture, i t has been shown that almost every step of the grid algorithms can be executed 

concurrently for each grid site, and for those steps which cannot excellent parallel schemes 

exist for their execution [38 . 

The numerical advantage gained by time-dependent calculations is particularly obvious 

when the 'events' of interest i n the system are fast, e.g. photodissociation which occurs via 

a direct mechanism, so that the T.D.S.E. has only to be propagated for relatively few, short 

timesteps. 

I t is clear then that the time-dependent method is important in studying chemical 

reactions because of certain advantages in the structure of the method, i.e. i t is an ini t ia l 

value problem wi th favourable scaling laws. Now consider the advantage that the time-

dependence gives to these calculations. First, the results, i.e. the wavefunction at a series 

of timesteps, can easily be interpreted to give direct insight into a reaction's mechanism. 

Secondly, problems w i t h an explicit time-dependence, i.e. a time-dependent Hamiltonian, 

can be treated straightforwardly. 

The study of photodissociation is a good example of a physical process where the re

sults of time-dependent calculations are particularly useful in understanding the reaction 

mechanism. The resiilts of time-dependent calculations, obtained recently for a series of 

molecules of the type RNO, have shown how much physical insight can be gained. These 

calculations are a systematic study of the dissociation of RNO molecules, using accurate ab-

initio potential energy surfaces. They have shown how the dissociation dynamics changes 

f rom being fast and direct in the case of F N 0 ( S 2 ) to slow, occurring by vibrational predis-

sociation, i n the case of C H 3 0 N 0 ( S i ) , depending on the topology of the potential energy 

surface [39]. In the first case, the wavepacket on the excited state moved quickly f rom the 

Franck-Condon region, where i t was ini t ia l ly promoted by a laser pulse, down a repidsive 

surface to fo rm the free fragments. In the second case, the wavepacket on the excited state 

was at least partially trapped by a well in the surface in the Franck-Condon region and 

only managed to escape after several periods of vibrational motion. 

The pictures of the wavefunction at a series of timesteps can lead to a variety of ways 

of describing the dynamics on the potential energy surface, and so help to substantiate 

general theories of unimolecular reactions. One description of the dynamics could be in 

f These are single instruction multiple data and multiple instruction multiple data architectures. 
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terms of energy flow through the bonds of a molecule, i.e. intramolecular redistribution of 
vibrational energy ( I .V .R . ) f r o m one mode, or bond, to the rest of the molecule. Consider 
the extensive study of the overtone excitation in CHX3 molecules (X = D, F, CI, Br, CF3). 
A n overtone of the CH bond stretching motion is excited and due to its coupling to the 
bending motion, i.e. Fermi resonance, energy is transferred f rom the stretch to the bend, 
and so to the rest of the molecule [39]. For the CHF3 molecule, to take one example, the 
transfer of this energy has been studied by following a wavepacket in two dimensions on 
an anharmonic potential energy surface [40]. For short times, less than 70 fs, there is a 
quasiperiodic motion in the stretch, but for later times the wavepacket spreads out over the 
whole of the space, and apart f rom some recurrence phenomena, the wavepacket remains 
delocalised. Studies of this type on the dynamics of unimolecular reactions can help to 
categorise the reaction in terms of R . R . K . M . or non-R.R.K.M. (e.g. Slater) like behaviour, 
i.e. whether or not the energy is almost instantaneously distributed to all bonds in the 
molecule. 

Another area of study, which is connected to theories of unimolecular reactions, is that 

of quantum chaos and the dynamics of a pair of coupled non-hnear oscillators. These have 

been studied in a time-dependent frame by examining the variation in the autocorrela

t ion funct ion of the wavefunction [41]. For example wavepacket dynamics on the Henon-

Heiles potential has been studied. I n this study, the phase space volume over which ini t ial 

wavepackets spread was taken to be a measure of chaos [42]. The study of quantum chaos 

is part icularly interesting because of the ease wi th which the results of time-dependent cal-

cidations can be compared to those f rom classical trajectory calculations, which can lead 

to a better understanding of quantum/classical correspondence, especially concerning the 

origin of classical chaos. 

The study of I .V .R . , R . R . K . M . and chaos can be seen to be closely related. I f I .V.R. is 

found to be fast, i.e. the rates can be described by R . R . K . M . theory and the wavefunction 

is quickly delocalised over all of the available phase space (and thus chaotic), then rate 

constants w i l l be found to depend only on the energy of the in i t ia l state, and not on any 

other detEiil of the state. 

Thus, the detailed understanding of chemical reaction mechanisms, which the results 

of time-dependent calculations can supply, gives rise to/dashes the hope of controlling the 

outcome of unimolecular reaction by exciting particular modes in specific ways [43]. An 

excellent example of this is the systematic study of the dynamics of photodissociation in 

H2O and then in H O D . This enabled a two-photon scheme, by which the branching ratio (H 

+ O D ) / ( D + OH) could be controlled, to be presented [44]. However, more general schemes 

have also been suggested. Consider a reaction which occurs on a ground electronic state, 
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and which has two possible asymptotic channels, corresponding to two different reaction 
products. I t has been shown that promoting a wavepacket to an excited state using a pump 
laser pulse, leaving i t to evolve for a specified time delay and then using a dump laser pulse 
to return the wavepacket to the ground state i n a particular configuration, or channel, cein 
influence product formation [45]. Thus i t is hoped that by optimising the parameters of the 
dump laser pulse, e.g. the field amplitude, laser carrier frequency, phase and pulse duration, 
i.e. laser shaping, as well as by optimising the length of the time delay between the pump 
and dump lasers, the progress of a reaction can be controlled. Variational schemes to 
optimise these parameters have been formulated [46]. Another scheme has been proposed 
47], which employs a series of ultrashort infrared laser pulses wi th analytical shapes, either 
Gaussian or sine squared. Each pulse selectively induces a vibrational transition. The whole 
series yields the desired sequence of transitions, f rom the ground state of the reactants via 
a transition state to a vibrationally excited product state. The final transition stabilises 
the products, f rom a vibrationally highly excited state to a lower level. In this scheme the 
molecule remains i n the ground electronic state throughout. This scheme has been used to 
show the possible control of the isomerisation of organic molecules, e.g. the semibullvalenes 
48]. I t has also been used to show isotopomer selective isomerisations and bond-fissions in 

organometallic compounds [49]. 

The detailed time-dependent study of the dynamics of chemical reactions is no longer 

only of theoretical interest. Experiments that study molecular reaction dynamics in real 

t ime have recently been introduced. Information about the detailed mechanism can be 

obtained, which cannot be inferred f rom the more usual study of the rovibrational distri

butions of the product fragments. This is in direct analogy to the fact that time-dependent 

calculations can give substantially more insight into mechanisms than time-independent 

calculations. I n these experiments the system is prepared in a particular state, by a pump 

laser pulse, or a combination of such pulses. The time evolution of the state is followed 

by a probe laser pulse, which produces either multiphoton ionisation or laser induced flu

orescence, so that the population on the excited state can be monitored. The experiment 

is repeated many times for different known time delays between the pump and probe laser 

pulses. Thus the results are the magnitude of a signal at various delay times. 

The first experiments of this type used picosecond lasers. These experiments have 

been used extensively to study I .V .R . and related phenomena in isolated large polyatomic 

molecules i n supersonic beams [50]. Some of these studies were of: quantum beats and 

coherence spectroscopy of, amongst others, anthracene, stilbene and pyrazine; laser induced 

isomerisation i n e.g. stilbene, going f rom the cis to the trans isomer, and hydrogen bonded 

systems, such as salicylate, where a hydrogen atom is transferred; lastly, I .V.R. was followed 
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explici t ly by selective chromophore excitation in suitable molecules, e.g. Anthracene-CH2-
C H 2 - C H 2 - A n i l i n e where the anthracene is excited and then fluorescence f rom the aniline is 
monitored. 

However experiments are now possible using femtosecond laser pulses. These pulses are 

shorter (10 — 100 femtoseconds) than even the fastest of vibrational motions or dissociation 

reactions, ensuring that all these motions can be resolved, and the dynamics is followed 

in real t ime [51]. The ultrashort laser pidses can be obtained by compressing the pulses 

produced by 'a coUiding-pulse mode-locked ring dye laser'. 

Experiments using femtosecond laser piilses were first introduced in the study of tran

sition states during direct dissociation reactions, e.g. i n the study of ICN* —» [I- • -CN]^* —> 

I - f CN [52]. In these experiments the fragments are followed in two ways [53]. In the first 

the probe laser is set at a frequency corresponding to the energy required to promote one of 

the completely separated fragments to an excited state ( i t is on-resonance). The fragment 

i n its excited state can then be detected, and i n the case of CN this is done by monitoring 

fluorescence f rom an excited electronic state. The signal at different time delays shows, 

after an in i t i a l lag, a steady rise which eventually levels off. This is equivalent to 'clocking' 

the reaction, and the t ime delay at which the signal is turned on gives a measure of the 

t ime to break the bond. I n the second case the probe laser is set at various frequencies 

corresponding to lower energies ( i t is off-resonance), so that the fragment wiU be excited 

while s t i l l interacting w i t h the other fragments. This signal shows a steady rise but later 

decreases. The rise and fa l l in the signal occurs as the fragment enters the region where the 

probe laser can promote i t to the excited state, but then at greater time delays leaves i t . 

Analysis of these signals gives information about the potential energy surface in the region 

of the transition state [54]. In the case of direct dissociation there are no oscillations or 

recurrences in the signals since the potential surfaces are purely repulsive. 

Since these early experiments the use of femtosecond laser pulses has been extended 

to the study of a variety of different systems, and a few examples follow. In reactions 

where more than one degree of freedom is involved, either vibrational or electronic, the 

adiabatic potential energy surface may not be purely repidsive and wells may exist leading 

to complex dissociation mechanisms, i.e. there are resonances. The dissociation of alkali 

halides, NaX* —> [Na- • -X]^* —> Na 4- X , ( X = I , B r ) , occurs by such a complex mechanism, 

due to the crossing of the ionic ground state and the covalent excited state [55]. The on and 

off-resonance time-delay signals have been measured, using laser induced fluorescence from 

the Na atom. The on-resonance signal was similar to that for direct dissociation initially, 

but instead of levelling off, the signal then increased in a series of progressively smaller 

steps. The off-resonance signal was again similar to that for direct dissociation initially, 
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but after the decrease, then proceeded to increase and decrease in a series of oscillations. 

The results confirmed the complex dissociation mechanism, i.e. that some of the molecules 

were being trapped in a well formed by the avoided crossing of the two adiabatic potential 

energy surfaces. Analysis of the results gave the time to traverse the weU, together wi th the 

probabil i ty of escaping f rom this weU, and hence the coupling between the two surfaces [56 . 

The dissociation of Hgl2 also takes place via a complex mechanism: IHgl* —y [IHgl]^^* —>• 

H g l + I . For this reaction, this occurs because i t is necessary to consider two coordinates, 

which are symmetrical, giving rise to a potential energy surface (P.E.S.) which has a saddle 

point. The results, although more complicated than for the alkali halides, show similar 

features [57]. The predissociation of a Rydberg state of C H 3 I , into CH3 and I , has also 

been studied. Here the probe pulse ionises the iodine fragment, thus the I"*" mass signed, 

as a funct ion of delay time, has been analysed to gain information about the crossing from 

the Rydberg bound state to the continuum [58 . 

I n systems w i t h bound potential energy surfaces, wavepacket motion can be viewed 

directly, e.g. for I2 [59]. In this experiment a pump laser prepares a coherent superposition 

of a few vibrational states. This gives rise to a wavepacket moving on the bound P.E.S. A 

probe laser is then used to excite the molecule to an upper fluorescent state. For a probe 

laser at a particular frequency the transition is only resonant when the molecule is in a 

certain configuration, or the wavepacket is i n a particular position on the P.E.S. Thus the 

time-delay signal is oscillatory wi th a period depending on the motion of the wavepacket 

and so on the details of the P.E.S., which can be obtained from these results. 

Bimolecular reactions are much more difficult to study experimentally due to the dif

ficulty of defining a zero of reaction time. This is because although the reactants can be 

prepared at a particular t ime by using ultrafast laser pulses i t is not possible to say how 

long i t takes for the reactants to 'meet', and so to have the opportunity to start to react. 

In order to surmount this problem ingenious experimental methods have been developed. 

These methods involve the formation of a Van der Waals cluster of the reagents. For exam

ple for the reaction H + C O 2 —> HO + CO, the complex H I - • -002 is formed in a supersonic 

beam. The H I is then dissociated by a femtosecond pump laser which establishes the zero of 

time. This is possible since the reactants are now so close that there is no time lapse before 

they meet. The reaction complex so formed can now be studied using the same methods 

as previously described [60]. Similiar studies have been carried out on the reaction Br -|-

I2 B r I -I - I , where the Van der Waals complex formed is HBr- • -12 [61 . 

The study of more complicated systems is now being attempted, e.g. surface chemistry, 

chemistry i n solution, hydrogen atom transfer and isomerisation reactions [62 . 

New techniques have been introduced to complement these experiments [51]. One 
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involves the use of phase-locked pulses, so that the two laser pulses used, separated by a 
t ime delay, have definite a phase relative to each other [63]. Therefore these experiments 
involve the preparation and quantum interference of two nuclear wavepackets. The result 
of this interference is detected by measuring the fluorescence f rom the excited state. Thus 
i t was demonstrated that by varying the relative phase of the two pulses and/or the time 
delay between them i t was possible, for I2, to control the prepared wavepacket on the 
excited potential energy surface. Another technique aims to obtain the time and frequency 
resolved response of a molecule, i n just one experiment, by monitoring the spectrum of the 
probe laser after i t has passed through the sample [64]. 

There has been a great deal of theoretical work done on modelling these ultrafast 

pump/probe experiments. The modeUing of these experiments involves finding methods 

to describe the effect of the laser pulses. The laser pulses have been described using first 

or second order perturbation theory [65], i.e. assuming a weak field Umit. This method of 

modelling the experiments has been used successfully for a variety of different systems, e.g. 

the dissociation of I C N [66] and of N a l [67]. Obviously the explicit t ime dependence of the 

problem makes the use of time-dependent methods imperative here. 

From the above i t can be seen that the time-dependent approach to studying chemical 

dynamics is a useful tool for studying reactions. Practical methods have been developed 

to solve the T.D.S.E., which have been used widely i n many applications. The approach 

has many advantages, perhaps the most important of which is the ability to see a reaction 

proceed i n t ime, particularly since the development of experiments which can do the same! 

This thesis is divided into seven chapters. The first chapter has been a short intro

duction to chemical dynamics using wavepacket methods, including the history and a brief 

survey of the applications of the wavepacket method, as well as a discussion of some rele

vant experiments. The second chapter gives an introduction to the Fourier method. The 

t h i r d chapter investigates some of the various ways of implementing the Fourier method. 

The four th chapter shows how this method Ccin be extended to problems wi th more than 

one dimension. The fifth and sixth chapters are a theoretical study of the wavepacket 

dynamics of the sodium trimer and include a comparison w i t h the results of femtosecond 

pump/probe experiments carried out by Gerber's group in Freiburg, and the picosecond 

experiments carried out by Woste's group i n Berlin. The final chapter is a summary and 

conclusion of the thesis. 
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2: The Method 

Solving the time-dependent Schrodinger equation can be divided into three parts. The 

first involves selecting an initial wavefunction; this is not always straightforward. The 

second or spatial part requires the Hamiltonian operator: 

^ = £ + ^ ' 
and its operation on ^, H^, to be calculated. The third or temporal part is the propagation 

of the wavefunction in time. 

In the Fourier method, both the first and the second stages of the solution of the 

T.D.S.E. rely on the discretisation of coordinate space. That is the wavefunction and the 

operators are represented on a regular grid, with sampling points Xj = {j — l)Ax. Although 

the use of a grid apparently implies no connection with basis set methods, this is in fact 

a pseudospectral method, in which an implicit basis is used. This implicit basis is used to 

represent the kinetic energy on the grid; i t is necessary because of the non-local nature of 

the kinetic energy operator. For a grid with TV points, the N implicit basis functions used 

are: 
r . , 1 , ( i V / 2 - l ) 7 r „ TT 

g,ix) ^ exp[z^x], k = - ' - ^ ^ ^ J ^ , • • • > 0, • • •, ̂ , (3) 

so that there is also a discretisation of momentum space. There is a great deal of erudite 

discussion in the literature about the representation of the wavefunction and the operators 

in such a discretised space [6], but it need only be of concern here in the most practical 

of ways. Consider first the representation of the wavefunction and the potential operator 

on a finite grid. In order that this grid can properly represent the wavefunction and the 

potential operator, i t must be ensured that the grid is large enough to include all the 

important parts of the potential and wavefunction. Consider next the representation of 

the kinetic energy operator by a finite number of implicit basis functions. Here in order 

that the kinetic energy operator can be properly represented, it must be ensured that the 

highest energy components of the wavefunction can be included. This will be discussed 

later. 

The third stage relies on discretisation in time. It will be seen later that this has 

implications for the stability and accuracy of the propagation methods. 

2.1 The Initial Wavefunction 

The T.D.S.E. is a first order differential equation. Hence the initial state, for a given 

potential energy surface, determines completely the subsequent time evolution. Thus, it is 

2: The Method 
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obviously important to determine this as accurately, and as suitably, as possible. 

The choice of the initiaJ wavefunction depends on the purpose of the calculation. Usu

ally, a Gaussian wavepacket can be used for the translatioucd degree of freedom. The width 

of the packet will determine the range of energies to be considered, the narrower the packet 

the wider the energy range. For example, in the simulation of a gas-surface collision, the 

width can be chosen to match the energy spread of the experimental supersonic beam. 

For vibrational and rotational dimensions, it is customary to choose an eigenstate of some 

zeroth-order problem as the initial state. The total initial wavefunction will then be a 

product of the terms for each of the dimensions [68 . 

However, various other ways of chosing the initial state have been used. For example, 

it has been found that, for certain applications, chosing an initial wavefunction which has 

the same symmetry as the Hamiltonian under consideration will enable states of particular 

symmetry to be isolated and so increase the accuracy of the solutions [36]. Another example 

is the study of the long-time decay of a particular metastable state. Here, it is obviously 

most appropriate to consider an initial state as similar to this metastable state as possible. 

An example of this is the study of the fragmentation of NeCl2 [12]. In this study, the 

lifetime of the cluster, for a particular vibrational level of the chlorine molecule, e.g. i ; = 9, 

is to be calculated. Thus, the initial state is chosen to be one of the stabilised eigenvectors 

of the Hamiltonian corresponding to this state. I t is interesting to note that in this case 

it is not necessary to have a highly accurate initial wavefunction, because although it is 

helpful to have an initial state near to the state being considered, it is still possible to 

obtcdn useful information when the state differs slightly. This is because the state being 

considered is metastable, i.e. it will be longer living than any other states which may be 

present in the initial state. Thus, if the initial transitory behaviour is ignored, and the 

wavepacket at later times analysed, a true picture of the dynamics will emerge, regardless 

of the exact nature of the initial state. 

2.2 The Spatial Part 

The Hamiltonian is partitioned into two parts, the potential part and the kinetic part: 

H = f + V. (4) 

The potential part of the Hamiltonian, which is calculated theoretically or by fitting of 

experimental measurements, is local in coordinate space, and therefore its operation is 

simply a multiplication of "^{xj) by V{xj) [6 . 
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2-3 The Fourier Method 

The kinetic part of the Hamiltonian cannot be calculated so simply because i t is a 

non-local operator in coordinate space [5]. The solution is then to transform the wave-

function into momentum space, in which the operator is local, and its operation is then a 

multiplication by the kinetic energy spectrum: 

where k is given by the relation p = hk. The transformation into (and out of) momentum 

space is achieved using a Fourier transformation [69]: 

(6) 

*(ifc)= r e-''''^{x)dx (7) 
J—oo 

* ( x ) = i - r e^'^rndk. (8) 
ZTT J — OO 

which means, 

So that, 

•*(*) 2n, 

To summarise, the kinetic energy operator is calculated by transforming the wavefunction to 

momentum space by a forward Fourier transformation, multiplying by T{k), and performing 

an inverse Fourier transformation back to coordinate space. 

This series of operations can be understood from a purely mathematical point of view. 

The kinetic energy operator requires the calculation of the second derivative of ^{x) with 

respect to x: 

Let < ^ as before, and 

Writing this out explicitly: 

which can be integrated by parts successively to give: 

*2(A=) - i - i k f m , (13) 
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provided *(a;) 0 as i —> ±00, which it must do in order to be square-integrable (a 
requirement for all wavefunctions). Therefore, 

and the calculation of T $ ( i ) becomes obvious. 

2.3. 1 The Discrete Fourier Transform 

All the above applies to continuous space, whilst the space to be considered in numerical 

calculations is discrete. This means that a discrete Fourier transformation must be used: 

« *(Ay), (15) 

which means, 
N-l 

*(ib,) « e-''=>"/^*(xOAx (16) 

n x i ) ^ ^ j : e ' ' ^ ' ' / ' ' ^ k j ) A k , (17) 
i=o 

where iV is the number of grid points, Aa; is the spacing between the points of the grid in 

coordinate space and AA: is the spacing in momentum space. 

Consider the position/momentum phase-space. It extends a distance NAx along the 

position axis and from —Pmax to Pmax along the momentum axis, so that the volume of the 

space is 2pinajc^Aa;. Phase space is divided up into cells each of volume h, i.e. SxSp = h 

70]. It can be shown that phase space can be accurately represented with as little as one 

point per unit volume [6]. Thus, since there are N points on the grid, the meiximum volume 

of phase space that can be represented is Nh. Equating these two volumes: 

Nh = 2pniaxiVAl, 

gives Pmajc equal to h/2Ax. Therefore kj^^jn equals ir/Ax, as p = hk, and the range of k is 

2-kIAx\ Ak is 2t:/[NAx). It can be seen that the discretisation of coordinate space leads 

to a maximum value for the kinetic energy that can be represented. 

Now consider this problem in a slightly different way. The implicit basis functions used 

are of the form exp[z/!i]. Obviously these are just combinations of sine and cosine functions. 

Thus the functions which are represented are of the form sinkx and cos Aix. Another way 

of writing these is as s.\ViTcnl{NAx) and cos Tcn/{NAx), where n is an integer. Thus k is 

equal to Trn/{NAx). In order to accurately represent simrn/{NAx), or cosTrn/{NAx), on 

a grid of N points, the maximum value that n can take is iV, i.e. N points are needed to 

represent N functions. Thus the maximum value that k can have, Â maxj is t^IAx. 
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The question then arises as to the accuracy of this approximation, i.e. using a phase 
space whose volume is bounded (this is a consequence of using a discretised space). One 
way to consider this is to think about the range of kinetic energies which have to be 
accommodated on the grid. Given a spacing in coordinate space of Aa; then the maximum 
kinetic energy that can be accommodated is ti^k^^/2m, where fcmax is given above. This 
means that the wavefunction must be bounded in momentum space or equivalently the 
Fourier transform of the wavefunction must be band limited, in order to ensure the accuracy 
of the approximation. 

What then is the consequence if the wavefunction is not bounded in momentum space? 

Consider the following sampling theorem. For any sampling interval At , there is a special 

frequency fc, called the Nyquist critical frequency, given by: 

f' = 2S- (̂ ») 

(In this case the phase space considered is energy/time, and E = hf.) I f the function g{t) 

is band-width limited to frequencies smaller in magnitude than fc, i.e. G{f) = 0 for all 

I / I > fc, then the function g{t) is completely determined by its sample g{ti). This would 

correspond to a wavefunction whose maximum kinetic energy was less than that allowed 

on the grid. However, i f the function is not band-width limited to less than the Nyquist 

critical frequency, then all of the power spectral density which Lies outside of the frequency 

range —/c < / < /c is spuriously moved into that range. This is called aliasing, and will 

obviously occur in the case under consideration if the kinetic energy of the wavefunction is 

too large to be accommodated on the grid [71]. 

I t is not always possible to know at the outset of a calculation what the maximum 

kinetic energy wiU be, so it is necessary to monitor the Fourier transform to ensure that 

it is small at the edges of the grid in momentum space. It is important to try to obtain 

an optimum grid spacing because this will minimise the computational effort, i.e. i t will 

minimise the number of grid points required, whilst stiU ensuring the accuracy of the Fourier 

transform. 

There is another problem with using the discrete Fourier transform. Consider a finite 

grid, Xj,j = 0,1,.. . ,{N — 1). When carrying out Fourier transforms, one tacitly assumes 

that vE'(i) is periodic, with xq and xn_i + Ax being the same point. This means that 

wavepackets can spuriously come out one end of the grid and enter the other end. I f the 

potential is very large at the edges, e.g. for a harmonic potential, then this will not be a 

problem since the wavefunction will be very small in this region. However, in this case it 

is then possible to get reflection at the boundaries, that is i f the potential is very large at 

xq, there may be reflection at x j v _ i . There are two ways to deal with this problem [72 . 
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First, use a large enough grid so that significant reflection does not occur within the time of 
the propagation; this wiU be computationally expensive. Secondly, an absorbing boundary 
can be used so that the outgoing amplitude is effectively destroyed before i t reaches the 
boundary; this will be discussed later. 

2.3. 2 The Fast Fourier Transform 

In practice, the discrete Fourier transform is carried out using a Fast Fourier Transform 

(F.F.T.) [71]. This is an algorithm which can be computed in 0{Nlog2 N) operations rather 

than 0{N^) which is required by the more traditional methods. The sequence used here 

is called a decimation-in-time or Cooley-Tukey F.F.T. algorithm [71]. It is the use of this 

algorithm which makes the Fourier Method, and so the time-dependent methods, viable. 

2.3. 3 Two-Dimensional Fourier Transforms 

A wavefunction which depends on more than one spatial variable, say two, has a many-

dimensional, say two-dimensional, Fourier transform: 

nk,,ky)= r r e-'^'''+'^y^^x,y)dxdy. (19) 
J — OO J - ( X 

The two-dimensional Fourier transform ^{kx,ky) can be viewed as two successive one-

dimensional transforms. The last equation can be written as: 

^k,,ky) = r e-^^y\r e-^^'^^x,y)dx\ dy. (20) 

Note that the term in brackets is simply the one-dimensional Fourier transform of 'if(x,y) 

with respect to x, that is, 

* ( f e . , y ) = r e - ' * ' ^* (x ,y ) ix . (21) 
J—oo 

Using this, equation (19) can be rewritten as: 

* ( ^ x , M = r e-''^y9{k.,y)dy. (22) 
J—oo 

Thus ^(Ax, ky) is the one-dimensional transform of ^(A;^, j / ) with respect to y. 

Now consider the discrete Fourier transform: 

nk.i,kyj)^Y:--''^'"^'' 
1=0 

E e-^'-^^-^^'n^^yi) 
p=0 

AxAy, (23) 

where N and M are the number of grid points in the x and y directions respectively. The 

term in brackets is a one-dimensional discrete Fourier transform of 9{xp,yi), and has to 
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be calculated M times, i.e. for each value of yi, to produce '9{kxi,yi), which in turn will be 
Fourier transformed N times, i.e. for each value of k^i, to produce ^{kxi,kyj). 

Hence, i t is clear that the two-dimensional Fourier transform can be interpreted as two 

successive transforms, and so the methods used to calculate the one-dimensional transforms 

can be extended for use with two-dimensional transforms. 

Similar results apply to the inverse Fourier transforms. Thus it is clear that the appli

cation of the Fourier method to two and more dimensions is quite straightforward. 

It can be seen that the algorithm for the two-dimensional discrete Fourier transform is 

highly parallelizable since the M Fourier transforms in the first stage are independent of 

each other, as are the N Fourier transforms in the second stage. 

2.4 The Temporal Part 

The time-dependent Schrodinger equation is: 

ih— = H^. (24) 

In the last section i t was seen how can be calculated using the Fourier method. This 

will now be used in the time-dependent Schrodinger equation to propagate the wavefunction 

in time. The solution of the T.D.S.E. can be written in the form: 

* ( 0 = f / ( i )* (0 ) = Texp 4 t Hdt' 
h Jo 

m , (25) 

where T is the time-ordering operator. 

The various methods for propagating the initial wavefunction can be divided into two 

groups [6]: 

1. The short-time propagators, which propagate the wavefunction using a series of short 

timesteps, and can be used for both time-dependent and time-independent Hamiltoni-

ans. This is equivalent to dividing U{t) into short segments: 

N-i 
U{t)= n U{{n+l)At,nAt), (26) 

n=0 

where At = t/N. I f these timesteps are short enough that the Hamiltonian does not 

change significantly in then the time ordering operator can effectively be ignored, 

even for time-dependent Hamiltonians. This is the first Magnus approximation [73]. In 

each short segment the time-evolution operator U{{n + l)At,n At) used is of the form: 

U{{n + l)At,nAt) ^ exp (27) 
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I f the time segments are so short, i.e. they are short compared to any time-dependence 
in the Hamiltonian, that the Hamiltonian does not change significantly in At then the 
time-evolution operator is simply: 

U{(n + l)At,nAt)^exp -^H{t)At 
h 

(28) 

This is the form of the propagation operator which will be used throughout the work 

which foUows. 

Alternatively, i f the timesteps are not short enough that the Hamiltonian does not 

change significantly in At, i.e. if the Hamiltonian is strongly time-dependent, it may be 

necessary to use the second Magnus approximation, where the time-evolution operator 

used is of the form: 

U{{n + l)At,nAt) 

(29) 

exp n JnAt 2h^ JnAt JnAt 

From this it becomes clear that in the first Magnus approximation it is the assertion 

that the commutator [H{t'), H{t")] is approximately zero which determines how short 

the timestep used must be. 

2. The global propagators use a polynomial expansion of U{t), where the form of the 

time-evolution operator is given by: 

* ( i ) = C/(0*(0) = exp *(0), (30) 

so that either, H is time-independent or, the time over which the propagator is used is 

very short compared to any time-dependence of the Hamiltonian, ensuring that the time-

ordering operator can be ignored, as for the short-time propagators discussed above. 

An expansion of the type: 

U{t)^j:p,P,{-iHt/h), (31) 

is used. These propagators divide into two groups, low-order and high-order polynomial 

approximations. Essentially, the first group use short timesteps and the second long 

timesteps. This implies that high-order polynomial approximations can only be used 

for time-independent Hamiltonians, (i.e. T can be omitted regardless of how long the 

timestep used in the propagation is), whilst the low-order approximations can be used 

for both time-dependent and independent Hamiltonians. 
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2.5 Global Propagators 

The question which must be addressed is: what is the optimal choice of polynomial 

expansion? The aim is to find the best form for the polynomials P}. used in the expansion 

of the time-evolution operator [74]. In general any function can be approximated using the 

Newtonian formulation of the interpolation polynomial [75]: 

F i x ) = j : a , l [ { x - x j ) , (32) 
k=0 j=0 

where ajt are the divided difference coefficients and Xj are the interpolation points. A 

similar expression can be given for the approximation of the time-evolution operator by an 

interpolation polynomial. This interpolation polynomial is a function of the Hamiltonicin 

operator: 

F (=^HAt) = Y,^kf[ i^HAt - x f l ) . (33) 

In this expansion, i f the interpolation points are chosen in the region where the eigenvalues 

lie, i.e. the Xj are the eigenvalues of —iHAtlh, then the convergence of the above expression 

will be greatly improved [74]. This can be proved by showing that this problem reduces 

to approximating the scalar function by the polynomial expansion, where A' belongs 

to the domain which includes all the eigenvalues of the operator —iHAt/h. This can be 

understood by recalling the definition of a function of an operator: 

e^bj = e^^hj (34) 

where B has the eigenvector 6̂  with eigenvalue hj. 

The error in an interpolation polynomial is given by: 

N 
E{x) = aN+i{x)J[{x-x^). (35) 

One method by which this error can be minimised takes no account of its relative magnitude 

in the interval, i.e. the error is minimised regardless of how important the error at x i is 

relative to the error at X2 . This can be done by choosing the interpolation points Xj such 

that Y[f=Q{x — Xj) is minimum for cirbitrary x in the interval. The Chebyshev polynomials 

have uniform magnitude across the interval, i.e. n ^ o ( ^ ~ ^ j ) ^ minimum. Hence if 

these polynomials are used E{x) is minimised. Thus, the Chebyshev polynomials are used 

in this expansion because they provide an approximation which is almost as good as the 

best approximation, or minimax polynomial, which has the smallest deviation from the 

true function. An important aspect of this minimisation is that the error is uniformly 

distributed over all the range of eigenvalues. 
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In solving the T.D.S.E. the time-evolution operator is applied to an initial wavefunction, 
*(0) . Thus it might be better to try to minimise the error in U(t)9{0) rather than in U{t). 

This error can be written as: 

N 

n 
j=0 

R = aN+i (Y^^O n (T^^* " ""•'O ^̂ ^̂  

Full minimisation of R is extremely complicated due to dependence of o^v+i on ^HAt. 

Thus only the minimisation of {^HAt — xjl)'9{0) is considered. It has been shown that 

the polynomials generated by the Lanczos recurrence scheme satisfy this condition [73 . 

Another method of minimising the error can be used which assumes a functional form 

for aN^i{^HAt) and then does a fuU minimisation of R [73]. For both these minimisa

tions of R, the error will not be uniform across the range of eigenvalues. This however 

may not be a disadvantage. This algorithm tailors the polynomial approximation to the 

particular wavefunction which is to be propagated. I t can be thought of as putting the 

interpolation points most densely in the areas of the domain where they are most needed, 

i.e. those corresponding to the eigenvalues of the predominant eigenvectors which make up 

the wavefunction. 

2.5. 1 The Chebyshev Propagator 

This propagator expands the time-evolution operator using the complex Chebyshev 

polynomials [76] [77]. These polynomials are a complex version of the Chebyshev polyno

mials and are defined as: 

M ^ ) =^ {i)''Tk{-iu;), u;e[-i,i], (37) 

and the are the Chebyshev polynomials and are defined as: 

Tk{x) = cos(Jfcarccos(a;)). (38) 

The (̂ jt are orthogonal on the imaginary interval [—i, i] with respect to the following inner 

product: 

^ 1 - |a;|2 

The Chebyshev polynomials can be calculated using the recurrence relation: 

Tk{x)^2xTk-iix) + Tk-2{x) (40) 

with 

To(x) = l , Ti(x) = x. (41) 
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A related recurrence exists for the complex Chebyshev polynomials. 

In order to use these polynomials the Hamiltonian must be scaled and shifted. This 

is necessary because the complex polynomials are only defined on the range [—i,i]. It was 

stated previously that an interpolation polynomial wiU have the best convergence when 

the interpolation points are in the region of the eigenvalues. Thus, it would be useful to 

scale and shift the Hamiltonian so that its eigenvalues fall in the range [—i,i] , i.e. in the 

region of the interpolation points. To do this the range of eigenvalues of —iHAt/k must 

be calculated. This can be done as foUows. The maximum kinetic energy that can be 

represented on the grid is h^k^g^j./2m where kmax is t t / A x . I f then Vmin and Vmax are 

the minimum and maximum of the potential represented on the grid, the range of the 

eigenvalues of i f is: 

(42) 
2m(Ax )2j ' 

so that the range of —iHAt/h is —iXAt/h. A normalised Hamiltonian can now be defined: 

where 

R = i ' - ^ ^ L (44) 
At { Vmax + - Vr, 

and 

G = AtVrmn. (45) 

Here h has not been explicitly included in the definition of HnoTm, equation (43), since as 

it is present in both the numerator and the denominator, it will cancel. Thus, 

exp -^HAt 
h 

= exp [-iHnormR/h\ exp [-i{R + G)/h], (46) 

and the term exp —iHtxoTznR/^ wiU be approximated using the Chebyshev expansion: 

N 

exp [-iH^otmR/h] ^ ^k{Rlh)<i>k{-iKoTm). (47) 

The coefficients ak{R/h) are now needed, 
-iHnoTiaR/^ <f>k{-iHnoTm) ak{R/h) = -i , „ ' d{-iHr,oTm) (48) 

norm I 

= cMR/h), (49) 
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where Cjt = 1 for A; = 0, = 2 for A: > 0, and J j t ( iE / f t ) are Bessel functions. Now 
substituting these coefficients into the Chebyshev expansion: 

TV 

exp [ - i^normi? /^] ~ E CJbJjfe(i2/^)<^it(-i^nopm)- (50) 
ife=0 

Hence the time-evolution operator can be approximated as: 

exp \-i{R + G)lh\ Y: cMR/h)M-iHnoru.). (51) 
A;=0 

exp -^HAt 
n 

This then requires the evaluation of R and G, and so Hj^om, which is then used in the 

recurrence relation (given above) to calculate the Chebyshev polynomials. In fact the 

calculation is actually of U{t)'^{0) so that the recurrence becomes: 

^fc(-iir,orm)*(0) = 2(-iir„orm)<^fc-l(-i^rnonn)*(0) + <^it-2(-i^rnorm)*(0) (52) 

with 

<^0(-i^fnorm)*(0) = * ( 0 ) , <^l ( - i^rnorm)*(0) = - i i r„orm*(0) . (53) 

The Bessel function coefficients, Jk{R/h), are calculated for A; = 0 and 1 using, depend

ing on the magnitude of R/h, either a polynomial expansion or rational functions of their 

argument R/h. For A; > 1 a recurrence relation upward on k from Jo and Ji is used, but 

will only remain stable whilst A; < R/h. For A; > R/h, Miller's algorithm is used [71]. This 

involves applying the recurrence downward from some arbitrary starting value and making 

use of the upward-unstable nature of the recurrence to put the value of the function onto 

the correct solution. Whilst this recurrence downward is carried out, the value of Jk{R/h), 

i.e. the required value of the A;th Bessel function, is saved. Once Jo is reached, Jk{R/h) is 

normalised with the sum accumulated along the way [71]. This normalisation is done using 

the following summation: 

1 = Jo{R/h) + 2h{R/h) + 2J^{R/h) + 2J^{R/h) -f • • • (54) 

The number of expansion terms, N, needed for convergence is determined by the size of 

R/h, or more precisely the size of the time-energy phase space. When A: > R/h the Bessel 

functions Jk(R/h) decay exponentially, so that the number of terms in the expansion, N, 

has only to be slightly larger than R/h. The amount by which iV exceeds R/h will determine 

how accurate the calculation wiU be. This means that, in a practical implementation, the 

number of expansion terms, N, can be chosen such that the accuracy of the summation is 

dominated by the accuracy of the computer. The total number of terms is usually taken 

to be aR/h where a = 1.3. 
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One drawback of the global evolution is that information about intermediate results is 
not obtained. There are two ways to remedy this, though for both it must be realised that 
the practical lower limit of the number of terms in the Chebyshev expansion is of the order 
of 40 [6]. The reason for this lower limit, or minimum number of terms, is that the extra 
terms above k — R/h which are needed to converge the sum begin to dominate, making 
the approximation inefficient. The two methods are then: 

1. In equation (51), consider that only the expansion coefficients are time dependent, 

i.e. Jk{R/h), since R/h depends on At. The Chebyshev polynomial operations, 

^fc(—ii?norm)'5'(0), which require most of the calculation effort, are time independent. 

This means that the expansion coefficients Jk{R/h) can be recalculated for many inter

mediate times. This method is probably the most accurate of the two, but the repeated 

calculation of the coefficients can be computational expensive, and the method is very 

unstable when an imaginary potential is introduced. This then is a high-order polyno

mial approximation, i.e. the total timestep which is propagated is very long requiring a 

large number of terms in the polynomial expansion. 

2. The other method is simply to spUt the propagation into smaller intervals, so that in 

some ways the propagator becomes like a short-time propagator though the timestep 

used has no limit. It is this method which is particularly sensitive to the lower limit of 

the number of terms in the Chebyshev expansion. This is because the extra computa

tional effort required to calculate the terms above aR/k becomes prohibitive when re

peated for many timesteps. This is a /otuer-order polynomial approximation. Whether 

or not it will actually be a low-order polynomial approximation, with which a time-

dependent Hamiltonian can be used, will depend on the particular problem and the 

shortest reasonable timestep that can be used without the calculation becoming too 

expensive. 

2.5. 2 The Short Iterative Lanczos (S.I.L.) 

This propagator expands the time-evolution operator using a basis of polynomials which 

are generated with the Lanczos recursion [6] [78]. This expansion is not done explicitly as 

for the Chebyshev propagator. However, a M dimensional Krylov basis set is constructed, 

using the Lanczos recurrence scheme. This is initialised using: 

go = *(0) 

Hqo = aoqo + /3ogi 

and the recurrence formula used is: 

(55) 

Hqj = /3j-iqj-i + aqj + /3jqj+i, (56) 
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where 

= {nlHlqj) (57) 

and 

/3,-_i = (9y_i|ir|g,-). (58) 

(/3j is obtained by the normalisation requirement {qj+i\qj.^.i) = 1.) Thus, the polynomials 

qj, which form an orthogonal basis, are constructed using this scheme. The matrix of the 

Hamiltonian operator is then formed using these polynomials. In this basis the Hamiltonian 

operator is tridiagonal and so its diagonalisation is relatively easy, i.e. it does not scale as 

0 ( M 3 ) : 

/ao /3o 0 0 \ 
/3o ai A 0 0 
0 A Q2 /32 0 ••• 0 
; ; ••. ••. ; ; o 
0 /3M-3 " M - 2 

V 0 0 /3M-2 " M - l / 

Hm = (59) 

The Hamiltonian matrix, Hm, is diagonalised in this basis to yield a set of eigenvalues and 

eigenvectors which describe the diagonal matrix. Dm, and the matrix of the eigenvectors, 

Z. These are then used in the propagation of the wavefunction. 

The propagation scheme is then: 

1. The Krylov basis is constructed; the matrix Hm formed, and then diagonalised. 

2. The wavefunction is transformed into the space described by the eigenvectors of the 

Hamiltonian, using the matrix Z. These eigenvectors wiU be simple combinations of 

the Krylov basis functions. 

3. The transformed wavefunction is then propagated using the diagonal time-evolution 

operator, exp(^DAf A<). Since the Hamiltonian is diagonal in the space described by 

its eigenvectors, the propagation is as simple as for any eigenfunction of a Hamiltonian. 

4. The propagated wavefunction is then back-transformed as a reverse of the second step. 

Thus, the time-evolution operator can be expressed as: 

U{At) = zUxp{—DMAt)Z, (60) 

so that the time-dependent wavefunction can be written as: 

_• M-i 
* ( A 0 = Z^expi—DMAt)Zqo = ^ uuqi, (61) 

from which it is clear that the time-evolution operator can be expressed as an expansion 

in the polynomials generated by the Lanczos recursion. 
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I t can be seen that at zero time the wavefunction is given by the zeroth-order vector in 
the Krylov basis set. As time evolves amplitude wiU be transferred to higher-order vectors. 
The error in this time-evolution propagator occurs because amplitude in the last vector 
qM-i cannot escape to the next vector qM, as the basis set has a limited size. This error 
is given by the expression [79]: 

error ( M - l ) ! 
(62) 

Thus the accuracy depends on the order of the expansion and the length of the time step. 

I f a calculation is required to a particular accuracy equation (62) can be used to decide on a 

suitable time step and size of the Krylov basis. Certain situations may minimise this error, 

e.g. when the initial wavefunction is an approximate eigenfunction of the Hamiltonian [80]. 

However, other errors do arise from the scheme used to obtain the orthogonal vectors. 

For this reason the method must have a limited size of basis set and so a Limited time step 

78]. Thus this propagator is the ShoH Iterative Lanczos. 

2.6 Short-Time Propagators 

Short-time propagators are conceptually much easier to understand than global prop

agators, since they do not rely on any complicated expansions of the time-evolution oper

ator. Also, i t is essential to use them in certain physical situations, where time-dependent 

Hamiltonians are used, e.g. motion in laser fields, motion under thermal agitation, or 

the T.D.S.C.F. (time-dependent self-consistent field) approximation. There are two main 

propagators. The Second-Order-Differencing Scheme (S.O.D.) [5][6], and The Split Time 

Propagator Scheme (Feit and Fleck) [36] [81 . 

2.6. 1 The Second-Order-Differencing Scheme (S.O.D.) 

For the S.O.D. scheme, the time-evolution operator is expanded in a Taylor series. 

However, this cannot be done without considering time reversal, since if it is ignored the 

expansion is not stable. Thus consider the symmetric relation: 

* ( f + At) - ^{t - At) = (exp [-iHAt/h] - exp [iHAt/h\) * ( i ) i (63) 

and then the expansion of the exponential terms in a Taylor series: 

* ( f + At) ^ ^{t - At) - 2iAtm{t)/h- (64) 

this is the second-order-differencing scheme. 
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This propagating scheme, however, is only stable for timesteps smaller than the stability 
l imit , A ^ j : 

A i . = (65) 
•C'max 

where £?max can be calculated in a similar way to R and G in equations (44) and (45), 

so that .Emax = (2i2 + G). This stability limit can be thought of as arising from the 

time-uncertainty principle, and obviously affects the way in which time is discretised. 

This scheme rigorously preserves both norm and energy, so that error accumulates in 

the phase: 

e . o . . ( ^ ^ (66) 

I t can be seen that the error is worse at higher eigenvalues, in contrast to the Chebyshev 

propagator which has its error evenly distributed across the range. Propagating N times, 

this error accumulates iV times. This means that the error can be minimised by choosing 

a smaller timestep and propagating for longer times. For example, i t is usual to choose a 

timestep five times smaller than the stability limit, and to propagate for 5N timesteps. In 

this way the error is reduced by a factor of 5/5^ = 1/25, (compared to the propagation 

at the longer timestep), emd allows longer times for propagation before errors in the phase 

become appreciable. I t is also possible to shift the energy by adding a constant to the 

Hamiltonian, so that the energy range for which there is minimum error can be chosen to 

coincide with the most appropriate energy range for the calculation being done. Another 

way to increase the accuracy of the calculation, without reducing the timestep, is to use 

a bounded potential. For example, at very small displacements a Morse potential will be 

very large, so that Atg will be very small. However, the wavefunction does not penetrate 

far into this region, so that i f the potential is cut-off at some value A t , will be increased, 

without affecting the wavefunction unduly. Besides improving the accuracy, the speed of 

the calculation can also be improved, since the number of timesteps can be reduced. 

Consider again the S.O.D. scheme; it can be seen to require the wavefunction at two 

previous timesteps. At the start of the propagation only the iiutial wavefunction is available. 

Thus the propagation of the first step is done using a second-order Runge-Kutta scheme, 

which only requires one previous value of the wavefunction [71]. This scheme is an extension 

of the Euler method, which estimates the next point on a curve simply as: 

yn+i « yn + ^ ^ d x . (67) 

In the second-order Runge-Cutta scheme, a trial point is considered: 

„(.„ + ii.)»=y, + M£2)^ , (68) 
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and then the required point is calculated using the derivative of the curve at this trial point 

dyjxn + ^dx) 
Vn+l ~ yn + 

Thus in the case of the time propagation: 

dx 
-dx. (69) 

where 

since 

* ( A 0 ^ *(0) - -H^iAt/2)At, 
h 

$ ( A f / 2 ) % *(0) - -H^{0)At/2, 

2.6. 2 The Split Time Propagating Scheme 

For this propagation scheme, the Hamiltonian is spht into its constituent parts: 

H = f + V, 

so that the time-evolution operator can be approximated as: 

(70) 

(71) 

(72) 

(73) 

-iHAt '-if At '-iVAt '-if At 
exp h exp 2h exp h exp 2h 

(74) 

Thus the time-evolution operator is symmetrically split in a way which can be shown be 

of second-order accuracy [81]. 

This propagator is intrinsically stable, so there is no restriction on the magnitude of 

the timestep on these grounds. However, i t has been suggested that if the timestep exceeds 

the stability l imit , At3 given above, the results become meaningless because the phase of 

the propagation operator is greater than 27r. However, i f only eigenstates below a certain 

energy bound are required, e.g. when bound states are of interest, i t is possible to choose a 

timestep governed by this bounded energy range, rather than considering the entire energy 

range supported on the grid. Thus in the example given, the time step would be chosen 

according to the binding energy. In this way the bound states would have the correct phase, 

whilst the continuum states would be out of phase. 

The errors which arise in the split time propagator are due to the fact that the operators 

f and V do not commute. Hence the error is given in terms of the commutators of these 

operators: 

error max 
.At^ 
16m 

V, V,P' —I 
At^ 

32m2 
P\V\\ lh\ (75) 
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where = 2mf. 

The norm of the wavefunction is rigorously preserved so that the error accumulates in 

both the phase and the energy of the wavefunction. As with the S.O.D., the errors are of 

0{At^). Again as with the S.O.D., the timestep can be reduced to reduce the error, and 

the degree to which this is done depends on the accuracy required. Also, the error is not 

distributed uniformly, and can be expected to be worst in the region of the most rapidly 

fluctuating potential. 

Consider now how this propagation is carried out. The right-hand side of equation (74) 

is equivalent to free-particle propagation over a half timestep. This free-particle propaga

tion is carried out by transforming the wavefunction into momentum space by a F.F.T. 

procedure and then multiplying each grid point by exp —i{kf/2m){At/2h) ; the wave-

function is then transformed back to coordinate space by an inverse F.F.T. procedure. The 

next term in equation (74) corresponds to a phase change from the action of the potential 

applied over the whole timestep. This phase change is carried out simply by multipljring 

the wavefunction by exp [—iVi{At/h)]. Finally the last term corresponds to an additional 

free-particle propagation over a half timestep. This propagation is carried out in the same 

way as the first. 

If the propagation is applied many times in sequence, which is likely because prop

agations of long time intervals are nearly always required, pairs of half-step free-particle 

propagations combine into ftill-step propagations. The computation thus proceeds as a 

succession of full-step propagations, applied in momentum space, alternating with phase 

changes of the wavefunction executed in coordinate space. The exceptions to this rule are 

the half timesteps applied at the beginning and end of the calculation, and at those inter

mediate times where the wavefunction is required, e.g. when studying the mechanism of a 

reaction not only the final wavefunction is of interest. 

2.7 Aside—The Calculation of Eigenvalues and Eigenfunctions 

The wavefunction at zero time can always be written as a combination of the eigen

functions, Ui, of the Hamiltonian, since the eigenfunctions will form a complete basis, so 

that: ^ 

* ( 0 ) - $ : a . U i , (76) 

and in general the time-dependent wavefunction can be written as: 

* ( 0 = i : a i e - - ^ - ' / ^ . , (77) 

where Ei is the eigenvalue corresponding to the eigenfunction ui. If the autocorrelation 
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function is formed: 

{ m \ m ) = ^:\o-^\'e-'^^'/\ (78) 

and then Fourier transformed, an energy spectrum is produced: 

AT 

P{E) = ^ \ai\H{E - E.). (79) 

This gives then the eigenvalues weighted by the coefficients joip [36]. I f the autocorrelation 

function does not die off significantly, so that the time for which the wavefunction is prop

agated, T, cannot be taken to be infinite, it may be necessary to use windowing functions 

[36] [71]. I f these are not used and the function is cut off in such a way that the function 

is no longer periodic then the spectrum produced by the Fourier transform will have many 

unphysical artifacts. 

The eigenfunctions can be found by considering the expansion of the wavefunction in 

two ways. The first method, which is only suitable to find the ground state, propagates the 

wavefunction in imaginary time. I t can be seen from equation (77) that ^(t) will converge 

to the ground state at a rate depending on the difference between the ground state energy 

and the other eigenvalues [74 . 

The second method, which in theory may be used to calculate all the eigenfunctions, 

involves taking the Fourier transform of * ( f ) : 

N 
9(1) ^ ^{E) = aiUiSiE - Ei) (80) 

so that at E equal to En, * (£ ' ) will be proportional to [36]. The above implies that 

T can be taken to be infinite and that there no overlapping resonances. If this is not 

the case the use of hneshaping techniques will be necessary in order to calculate all the 

eigenfunctions. For the resolution of eigenfunctions, which have eigenvalues separated by 

an amount AE (in atomic units), it is necessary to propagate the wavefunction ̂ {t) for a 

time T of at least ir/AE. 

2.8 Absorbing Boundaries 

As was hinted at earlier in this chapter, problems of wrap-around and reflection can 

arise at the edge of the grid. In essence these occur because a finite grid is used. Obviously, 

in real physical situations space is not bounded in this way, and so the problem can be 

thought of as trying to imitate infinite space. The mechanism by which the boundary effects 

occur is through the use of the F.F.T., which discretises both coordinate and momentum 

space with periodic boundary conditions. 
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The problem can be approached in two ways: either to use a very large grid; or somehow 
to achieve an absorbing boundary so that the outgoing amplitude is effectively destroyed 
before i t arrives at the boundary. The first of these two methods is simple, but computa
tionally expensive. The second is less straightforward, but more efficient. Again this can 
be done in two ways: 

1. At regular time intervals the wavefunction is damped down, from a point suitably far 

from the edge iZ^bs [12]- Thus a function of the following type: 

* ( i 2 ) ^ * ( i 2 ) , R < iZabs 

*(i2) *(i2)exp [-a{R-R,^,)'] , R > R,^,, ^^^^ 

is used. The parameters iZabs a^d a, can be edtered depending on the frequency with 

which the function is applied, for example, i f i t is applied after every timestep, rather 

than say every thousandth, a need only be quite small. 

2. An imaginary potential can be included in the Hamiltonian. The sign of this potential 

will be negative. The magnitude will be zero for R < iZabs- The introduction of an 

imaginary potential will have the same effect as the damping described above, but is 

carried out during every timestep, i.e. each time the Hamiltonian is used. The total 

potential of the system becomes: 

V{R) = Vo{R)-iViiR). (82) 

However, a CAREFUL choice of a time integration scheme is required to ensure nu

merical stability [72]. The reason for this warning is that most of the propagation 

schemes previously described are for Hamiltonians which are Hermitian, which will not 

be the case when an imaginary potential is included. This last point will be discussed 

in greater detail later. 

2.8. 1 Imaginary Potentials 

The question now arises as to the form and magnitude of the imaginary potential 

required. 

It has been suggested that the magnitude of the imaginary potential required can be 

estimated by the following relation [82]: 

hE^/{ARy/8^) < \VIB\ < (ARVs^E^/h, (83) 

where E is the translational energy of the system, AR is the length of the part of the 

grid which is being used as the absorbing boundary, m the mass of the system under 
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consideration and VJB is the magnitude of the potential at the very edge of the grid. The 
strengths of the inequalities in equation (83) have been investigated using the semiclassical 
J.W.K.B. approximation [83]. 

Two different forms of the potential have been suggested, linear [82] or with exponential 

terms [72]. For a linear imaginary potential one form which has been used is: 

[ 0 , otherwise. ^ ^ 

For an imaginary potential with exponential terms, one form which has been used is: 

Vj = \ cos^'[i^Z-J^y-\' ^-^^ ^ / ^ ^ (85) 
10, otherwise. 

i.e. inverse of a squared hyperbolic cosine. Another form is the inverse of a non-squaired 

hyperbolic cosine: 

10, otherwise. 
Here a is adjusted depending on the value of AR. 

Recently an investigation into the best form of the imaginary potential has been carried 

out, again using the semiclassical J.W.K.B. approximation. This recommended that a 

complex absorbing potential of the form V{x) = —iAexp{—B/x) be used. Also a scaled 

version of the Schrodinger equation was derived, ensuring that the optimised parameters 

obtained under particular conditions could be scaled, and so be suitable for use under 

different conditions [84] [85 . 

2.8. 2 Aside—The Interaction Picture 

Another completely different approach to the problems caused by the use of a finite grid 

is to use the interaction picture [86]. This picture is in between the Schrodinger picture 

and the Heisenberg picture. In the Schrodinger picture the dynamical variables or the 

operators are constant in time except for an explicit time dependence, but the state vector 

or wavefunction changes in time (this is the picture utilised here). In the Heisenberg picture 

the wavefunction is constant in time, but the operators change. The interaction picture, in 

which both the operators and the wavefunction have some time dependence, can be used 

so that the movement or spreading of the wavepacket in time is minimised, and the size of 

grid required is minimised too. The wavefunction will be given by: 

^l{t) = exp [iHot/h] <i!s{t), (87) 

where Ho is the kinetic part of the Hamiltonian, i.e. T. This implies the wavefunctions in 

the two different pictures are the same at time zero. The last equation can be rewritten as: 

* / ( 0 = exp [iHot/h] exp \-iHt/h] *s(0). (88) 
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The physical meaning of this is that is obtained by propagating the wavefunction 

from time zero to time t under the action of the ful l Hamiltonian, cind then propagating 

backwards to i = 0 under the action of the free Hamiltonian. Thus, the difference between 

^l{t) and ^5(4) at time t will be purely due to the dyncimical influence the system expe

riences from time zero through t. Therefore, the use of this picture eliminates effects such 

as spreading and oscillation. 

In the interaction picture the T.D.S.E. becomes: 

i f t ^ ^ - Hi^rn, (89) 

where 

Hj{t) = exp \iHot/h\ Vex-p l-iHot/hl , (90) 

and ^i{t) has been defined previously. 

For some calculations this may be very useful. For example, consider the calculation 

of the S matrix elements. The elements are independent of the picture and so there is 

no need to transform back to the Schrodinger picture to obtain the required information. 

Also, in general, in scattering calculations the interaction picture will be useful because 

there are large parts of the grid where the potential is very small, which this picture can 

treat efficiently. 

2.9 Summary 

In this chapter the Fourier method for studying one-dimensional problems has been 

introduced. The nature of the initial wavefunction to be used has been discussed. It has 

been shown how the Hamiltonian and its operation on the wavefunction can be calculated, 

and then used to propagate the wavefunction in time. Several different methods for the 

propagation of the T.D.S.E. have been described. Various types of absorbing boundaries 

have also been described. The use of these different propagation schemes, and different 

types of absorbing boundaries, will be investigated in the next chapter. 
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3: Topics Investigated 

There are many methods that can be used for propagating the T.D.S.E., and VEirious 

different forms of imaginary potentials that can be used to set up axi absorbing boundary. 

I t was felt that a systematic investigation of these was necessary to make informed decisions 

about which methods were suitable for the applications of interest in the present work. 

3.1 Propagating Schemes 

All the propagation schemes described in the previous chapter were investigated, with 

the exception of the Short Iterative Lanczos. Recently a comparison of different propagation 

schemes has been reported in the literature [78]; this is a thorough investigation into the 

accuracy, numerical efficiency and stability of all the propagation schemes described in 

Chapter 2. 

3.1. 1 Method 

In order to investigate the various propagators, a simple problem was set up whose so

lution was known analytically. The problem used was that of an eigenfunction propagating 

in a harmonic well. The solution was obtained using the propagators and then compared to 

the analytical solution. Atomic units are used throughout this chapter; these are described 

in Appendix A. 

A purely harmonic potential was used, 

V{x) = ifc(x - a)' (91) 

with values of the parameters, k and a, appropriate for the hydrogen molecule. The force 

constant k can be calculated from the frequency of vibration of the hydrogen molecule, 

v = {l/2Tr)\Jk/m; a is the equilibrium bond length of the hydrogen molecule. 

A variety of different initial wavefunctions was used, corresponding to the eigenfunctions 

of this potential. For n = 0, the initial wavefunction was a Gaussian centred at the 

equilibrium bond length of hydrogen: 

* - o ( ^ ' °) = ^ [ - " ' ( ^ - ' (92) 

where — mk/k^. The higher eigenfunctions were described by the product of this 

Gaussian with an Hermite polynomial, Hn{ax) (given in table 1), where n is the index of 

the energy level. 
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Table 1. Hermite polynomials. 

Ho{ax] = 1 

Hi{ax] = 2ax 

H2{0LX] = 4(aa;)2 - 2 

Hz{oLx) = 8(ax)3 - 12ax 

H^{ax] = 16(ax)^ -- 48(ax)2 + 12 

The error in the propagation was estimated by the deviation from the analytic solution: 

error(0 = J \ < l f , ^ ^ { x , t ) - ^,^{x,t)\^ dx, (93) 

where the analytical solutions, '^analj •̂re simply the initial wavefunctions multiplied by a 

phase factor: 

*anal,n(a;, t) = ^nix, 0) exp [-i{n + l/2)wt], (94) 

where w is the angular frequency of the hydrogen bond vibration. The S.O.D. and Cheby-

shev propagators can have their error estimated in this way. However, for the Feit/Fleck 

propagator error accumulates in both energy and phase so that this method is not com

pletely reliable [6 . 

As well as this error, the norm: 

norm(i) = J 9{x,ty9{x,t)dx (95) 

and the energy: 

enere rgy(0 = I <i>ix,tyH^{x,t)dx (96) 

were monitored. These should, of course, stay constant. Since, for the specific case of the 

harmonic oscillator, the eigenfunctions are invariant to the Feit/Fleck propagator, a good 

method to test the error is to follow the energy deviation from the initial value [6 . 

The computer time used for the calculations was recorded. 

A grid of 64 points was used in the calculation, with Ax = 0.031250 A, so that the grid 

ranged from x — 0.010 A to x = 2.01 A, with a = 0.74144 A. The total propagation time 

was T = 20r, where r is the period of vibration of H2 and is equal to the reciprocal of the 

vibrational frequency of H2. The timestep. At, was varied. To keep the total propagation 

time constant, the total number of propagation steps, NT, was varied accordingly. The 

ratio of the timestep used to the stability timestep defined in Chapter 2, was denoted by 

R (this is not the same R as was used in the discussion of the Chebyshev propagator): 

At 
R 

At. 
(97) 
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Thus, in order to vary the timestep, the calculations were carried out for different values 
of R. This is only relevant for the short-time propagators. 

In fact, the grid used here is not particularly efficient. The range of kinetic energy 

available on the grid is much larger than the range of potential energy. Whilst in certain 

situations this might be useful, in this case a harmonic oscillator is being considered, which 

is known to have equal amounts of average kinetic and potential energy. Thus, a grid which 

was better balanced would be more suitable in this case. However, this in no way affects 

the comparison of the different time propagators. 
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3.1. 2 Results 

The results for the computer time, the norm, the energy deviation, and the error are 

presented for each propagator. 

Time 

Consider the computer time taken to propagate the eigenstate n = 4 for a total prop

agation time of T with R — 0.21 on a Sun Sparcstation IPC workstation. The computer 

times for each propagator are shown in table 2. 

Table 2. Timings for the various propagation schemes. 

Propagation Scheme Time/s 

S.O.D. 1622.08 

Feit/Fleck 2010.15 

Chebyshev-stepping 254.55 

Chebyshev-global 3315.27 

Chebyshev-globalf 707.71 

t—No intermediate results obtained. 

First, i t is immediately obvious that the Chebyshev-stepping method is superior to 

the Chebyshev-global propagator i f intermediate results are required. It appears that the 

substantially longer times for the calculations using the Chebyshev-global propagator arise 

because of the limited RAM on the machine on which the calculations were carried out. 

The Chebyshev-global propagator requires that many functions be held in the memory. 

Another factor could be the necessity of calculating very many time-dependent coefficients, 

i.e. Bessel functions, for the global version of the Chebyshev propagator. 

Secondly, it can be seen that the short-time propagators are a great deal slower than 

the Chebyshev-stepping propagator for the value of R used. A small value of R was chosen 

since this gives comparable accuracy for the various propagators; a value any higher would 

have made the comparison meaningless. The reason for the disparity in propagation times 

becomes obvious when the number of calls to the Hamiltonian, iVc, is considered. For the 

S.O.D., as for all short-time propagators, the number of calls to the Hamiltonian is equal 

to the number of timesteps, NT- Thus, as i V j x At = T: 

Ncx At = T. (98) 

Now, At is restricted, due to the constraints of stability and accuracy, by the relation (in 

atomic units): 
1 

(99) AE' 
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since AE is equal to .Emax here, so that: 
R 

At = -

Thus 

A* = ^ . (100) 

T TAB , , =mm=^ 
For the Chebyshev scheme, the number of calls, NQ, is equal to the number of terms in the 

polynomial expansion: 
AE X T 

Nc 2 ^ 

where the value 1.3 refers to the factor by which the minimum number of terms in the expan

sion must be multiplied in order to obtain machine accuracy. (This discussion concerning 

the number of calls to the Hamiltonian does not change when the Chebyshev propagator 

is used in a stepping manner.) Therefore, the ratio of Nc for the two propagation schemes 

is: 

Ratio = (103) 

which in this case gives Ratio « 7.3, which compares well to a value of 6.3 (that is comparing 

S.O.D. and Chebyshev-stepping) obtained above. The discrepancy is probably due to the 

neglect of the time required for the calculation of the Bessel coefficients. 

Norm 

Analysis of the conservation of the norm revealed nothing interesting. 

The norm was conserved better for the short-time propagators than the global propa

gator because the former are unitary transformations, but the norm was still conserved to 

8 decimal places for the Chebyshev propagator. However, when R approaches 1 the S.O.D. 

propagator becomes unstable and the norm becomes extremely large. 

Error 

Now consider the error as defined above in equation (93). The results for the various 

propagators are shown in figures 1 —> 10. 

For the S.O.D. propagator the error may be clearly seen to increase with both R, i.e. 

At, and n, i.e. energy (figures 1 —> 2). 

Given the way error accumulates for the Feit/Fleck propagator, i.e. in both phase and 

energy, the results here for that propagator may be only of limited significance for use in 

comparison with the other propagators. However it can be seen that the error increases 

with R, i.e. A* (figures 3 ^ 6). 

For the Chebyshev propagators (figures 7 —> 10) the error does not depend on n as 

expected, in fact the error seems to decrease as n increases. The global propagator ap

pears to be more accurate than the stepping propagator. Since error accumulates for each 
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timestep, for the stepping propagator and all short-time propagators, the greater accuracy 
of the global propagator is expected. 

I t also can be clearly seen that for all except the lowest values of R and n, the Chebyshev 

propagator is the most accurate of all the propagation schemes. In any calculation of 

significance there will be a wide range of energies involved, thus it can be seen that in 

general the Chebyshev propagator will yield the most accurate results. 

Energy 

Energy was conserved better for the S.O.D. propagator than the Chebyshev propagator, 

while R was small, but the opposite was true as R approached 1. There was not a significant 

difference in the results at different values of n. For both, the deviations showed Httle need 

for concern. 

Table 3. The dependence of the error in the Feit/Fleck propagator on R and n. 

Initial energy = 0.0099861127453796 Ef,, n = 0 

R Deviation of energy/E^ 

0.21 -0.0000000000001960 

0.95 -0.0000000000000476 

1.14 -0.0000000000000425 

4.20 -0.0000000000000039 

8.40 -0.0000000000040607 

Initial energy = 0.049930563726905 E^, n = 2 

R Deviation of energy/Eh 

0.21 -0.000000000001075 

0.95 -0.000000000000241 

1.14 -0.000000000000195 

4.20 -0.000000000000007 

Initial energy = 0.089875014711377 , n = 4 

R Deviation of energy / E ^ 

0.21 -0.00000000003137 

0.95 -0.00000000000778 

1.14 -0.00000000000276 

3.80 -0.00000000061170 

7.60 -0.00000022168605 
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For the Feit/Fleck propagator the energy conservation deteriorated when R was very 
large, but appeared to be best for intermediate values of R (see table 3). For the Feit/Fleck 
propagator it is not necessary for R to be less than 1 in these calculations; this is in 
contrast to the requirements for the S.O.D. propagator. This is because a wavepacket with 
considerably less energy than the total available on the grid is being propagated. Thus, 
although the phase of higher energy wavepackets would become meaningless, the phase of 
the low energy wavepacket used in this calculation is not affected by such errors, until a 
particular limiting value of R is reached. 

The results are not those expected since the error, which is taken here to be the error 

in the energy, is for this method proportional to At^. Hence the error should increase with 

R. In fact i t appears as i f the error increases with the number of steps propagated, i.e. 

inversely proportional to R for a constant total propagation time. 

The dependence of the error on the energy, or n, has been reported to be linear in the 

quantum number n [6]. It is not completely clear in the work done in this chapter what 

the dependence is, though there is certainly a marked increase at n = 4, so maybe this is 

an indication of the error being proportional to the energy, although this is more likely due 

to the limiting value of R having been reached. It appears that using the conservation of 

energy as a measure of the error for this propagator is not particularly useful. 

The results obtained here for the performance of the various propagators are mostly those 

expected from a consideration of the properties of the propagators, which were discussed 

in the last chapter, as well as extensively in the literature [6]. At this stage it appears that, 

on the grounds of conservation of energy and accuracy the Chebyshev-stepping propagator 

is the 'best' for our purposes. 
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Fig. 1. Graphs of error against time for the second-order differencing propagator, for n = 0. 
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Fig . 2. Graphs of error against time for the second-order differencing propagator, for n = 4. 
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Fig . 3. Graphs of error against time for the Feit/Fleck propagator, for n = 0. 
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Fig . 5. Graphs of error against time for the Feit/Fleck propagator, for n = 3. 
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Fig . 6. Graphs of error against time for the Feit/Fleck propagator, for n = 4. 
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Fig . 7. Graphs of error against time for the Chebyshev stepping propagator, n = 0. 
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Fig . 10. Graphs of error against time for the Chebyshev global propagator, n = 4. 
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3.2 Imaginary Potentials 

The optimal magnitude and functional form of imaginary potentials, required for use 

as absorbing boundaries, were investigated. Also, the stability of the various propagators 

with non-Hermitian Hamiltonians was investigated. 

3.2. 1 Method 

In order to investigate the use of imaginary potentials a moving Gaussian was set up 

on a grid with a potential barrier. The motion of the wavepacket after contact with the 

barrier, as it approached the edge of the grid, was monitored. 

A square potential barrier was used. The barrier height was 2 x 10* cm~^ (9.13 x 10~^ 

E/i) and its width was five grid points on a grid of 64 points. The barrier started at grid 

point number 40. 

The initial wavefunction was a moving Gaussian, i.e. it was of the form: 

*(a;,0) = e - ' * ' e " ' ( ^ - » ) ' / 2 , (104) 

where a determines the initial position of the Gaussian (at approximately grid point 12) 

and a determines its width (the values for H 2 , given earlier in this chapter, were used for 

these two parameters). The wave vector k determines the speed with which the Gaussian 

moves. A value for k must be chosen which can be represented on a grid with the spacing 

Aa; = 0.0625 A; in this case a value of —10.5 a.u. was used. 

The transmitted probability of the wavepacket through the square potential barrier, or 

total flux, was obtained from the flux j{x,t) at a particiilar point x — xj [82]. The point 

Xf must be beyond the potential barrier, but not too near the boundary; in this case it is 

at grid point number 48. The flux is given by: 

1 / ( ] ^ * \ 

\ / X = Xf 

This flux was integrated over time to give the total flux. I f there is no absorbing potential 

at the boundary, then the total flux will initially increase as the wavepacket passes through 

the potential barrier, but will then decrease as the wavepacket is reflected back by the 

boundary. However, i f there is a suitable absorbing boundary then the total flux will reach 

a maximum value and will then remain constant. 

The magnitude of the imaginary potential required and the best functional form were 

investigated using the Feit/Fleck propagator which is stable for non-Hermitian Hamiltoni

ans. The magnitude of the potential was varied within the range: 

Vi < \VIB\ < V2, (106) 
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where Vi and V2 were defined in the last chapter in equation (83). The value for is 
given by: 

\ViB\ = Vi+Mv{V2-V^), (107) 

so that the parameter My is altered in order to vary the magnitude of the imaginary 

potential. Several different functional forms for the imaginary potential were investigated, 

e.g. with linear or with exponential terms. These were described in Chapter 2 in equations 

(84), (85) and (86). 

In these examples the absorbing potential was applied over approximately 10% of the 

grid so that i^absi from equations (84), (85) and (86), is at grid point number 58. The 

value of a in the exponential form of the imaginary potential was set to 1/2. The total 

propagation time was 20r, where r was defined earlier in this chapter; for the short-time 

propagators the value of R used was approximately 0.25. 

3.2. 2 Results 

The optimal magnitude and form of the imaginary potential 

The results of the calculations for the different magnitudes and forms of the imaginary 

potential are shown in figures 11 —> 12. 

It can be seen from these figures that the imaginary potential should be slightly above 

the bottom of the range, My ~ 0.03, to get ful l absorption. Even potentials well above the 

range do not cause significant reflection from the potential itself (see figures lid, 12d, 12h). 

There is very little difference between the various functional forms, that is the linear and the 

exponential (both the inverse squared and non-squared hyperbolic cosine forms), since they 

both appear to need the same magnitude of imaginary potential to be effective. (Note that 

in the figures, the potentials with the exponential terms are referred to as the exponential 

and the squared exponential for the inverse hyperbolic cosine and inverse squared hyperbolic 

cosine forms respectively.) 

It has been suggested by Child [83] that the strengths of the inequalities in equation 

(83) are such that My would need only to be very small to achieve complete absorption. 

This agrees well with the result obtained here. However, i t also implies that the value of 

My should perhaps have been varied by much smaller amounts to investigate properly the 

magnitude of imaginary potential required for full absorption. 

It has been reported by Neuhauser and Baer [82] that the linear form of the imaginary 

potential is more efficient than the other forms used here. It has also been reported [84 

85] that the form of the potential can be an extremely important factor in determining 

the efficiency of an absorbing potential. This is not what has been found here. The reason 

3; Topics Investigated 



54 

for this could be that the magnitude of the imaginary potential was varied too rapidly to 
see the effect that the form can have on the efficiency of absorption. 

The effect of an imaginary potential on the propagators 

Consider first the S.O.D. propagator (see figures 13a d). For very small values of 

My the propagation is stable but for for My > 0.02 this is no longer true. It was found 

that as the time of the propagation increased the instability worsened (see figure 13c). For 

the S.O.D., in general, i f the timestep is reduced, and the number of propagation steps 

increased to compensate, the error is reduced. Thus here the propagation was done with 

the timestep halved and NT doubled. The results were effectively the same. This means 

that the instability introduced by the imaginary potential is linear in the timestep, and in 

the number of timesteps. The above makes i t difficult to see how this propagator could be 

used effectively in real problems, when an imaginary potential is used. 

Now consider the Chebyshev propagator. (Note that the imaginary potential has to 

be included in the shifting and scaling necessary in the use of the Chebyshev propagation 

scheme.) First, consider this propagator when it is used in its truly global sense (see 

figures 14a, b). Effectively, the propagation is completely unstable. This is because the 

polynomial expansion in the Chebyshev polynomials is only stable while the imaginary 

part of the eigenvalues is kept very small. However, in a global calculation of this type the 

eigenvalues are continually becoming more and more complex in nature. Second, consider 

the Chebyshev stepping propagator (see figures 15a —> / ) . Even for quite large values of the 

imaginary potential the propagation is stable, though for M y very large the propagation 

scheme does break down (see figure 15e). This need not be of concern since the absorbing 

boundary is effective for quite small values of My- However, in this case if the timestep 

was doubled then the propagation became unstable for quite small values of My (see figure 

15/). There exists a complex relationship therefore between the length of each timestep 

and the amount of imaginary potential which can be allowed without causing instability. 

This relationship was investigated but no clear pattern was found. This probably is not 

of great concern since the effect is obvious when it does occur, and should not therefore 

produce uncertainties in the results of a propagation. 

There is very Little, i f any, warning in the literature about the instability of many of 

the propagators when an imaginary potential is included in the Hamiltonian. 
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Fig . 11. Graphs of total flux against time for the linear form of the absorbing potential over 

10% of the grid, using the Feit/Fleck propagator. 
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Fig. 12. Graphs of total flux against time for the exponential form of the absorbing potential 

over 10% of the grid, using the Feit/Fleck propagator. 
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Fig . 13. Graphs of total flux against time for the exponential form of the absorbing potential 

over 10% of the grid, using the S.O.D. propagator. 
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Fig . 15. Graphs of total flux against time for the exponential form of the absorbing potential 

over 10% of the grid, using the Chebyshev stepping propagator. 
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3.3 Conclusions 

The Fourier Method of studjdng time-dependent quantum mechanics has been investi

gated. The various propagators, i.e. the Chebyshev, S.O.D. and Feit/Fleck, have all been 

applied to a simple one-dimensional problem. I t was found that the Chebyshev propagator 

is the most accurate and efficient, especially when used as a stepping rather than a truly 

global propagator. However care is needed when using imaginary potentials, so that in 

some cases i t may be preferable to use the Feit/Fleck propagator. Although these tests 

were carried out in one dimension, the results apply to two or more dimensions. However, 

it is not always straightforward to use the Feit/Fleck propagator with the Fourier/Basis set 

method for solving multi-dimensional problems (see later), so that the stability advantage 

that this propagator shows for imaginary potentials cannot always be exploited. 
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4: M u l t i - D i m e n s i o n a l Problems 

In order to gain some insight into chemical processes i t is usually necessary to consider as 

many degrees of freedom as is computationally feasible. Thus i t is very important that any 

method of studying chemical dynamics can be extended easily to multi-dimensional prob

lems. This chapter is concerned with ways in which the one-dimensional Fourier method 

can be extended for use with multi-dimensional problems. 

4.1 A Simple Extension 

The simplest generalisation of the Fourier method to many dimensions uses a multi

dimensional regular grid and calculates the kinetic energy of the wavefunction using a 

multi-dimensional Fourier transform. 

In Cartesian coordinates the kinetic energy operator is separable: 

D _ t 2 .2 

where D is the total number of dimensions. Thus the kinetic pait of the Hamiltonian is 

simply the sum of the kinetic energy in each dimension [6]. In Chapter 2 it was seen that 

the kinetic energy is easily calculated with the use of Fourier transforms: 

2m 

When more than one dimension is to be considered in a calculation, the multi-dimensional 

Fourier transform is used, and the kinetic energy is again easily calculated: 

f 1 

dk. (109) 

2m nkz,ky) dkj^dky. (110) 

The use of multi-dimensional transforms was discussed previously and it was seen that their 

use is just a simple extension of the one-dimensional transform. 

However, the above only applies to Cartesian coordinates, in which regular grids are 

used. In other coordinate systems, such as polar or spherical coordinates, the effect of 

the kinetic energy operator is not as easily calculated. This is because the Laplacian is 

not simply in terms of the second derivatives of the functions, with respect to the various 

coordinates, but can be a combination of first and second derivatives. Other problems 

which present greater difficulties are the singularities which exist at certain points in space, 

and in some coordinate systems the non-periodic nature of particular coordinates, e.g. 6 in 

spherical coordinates. 
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The use of reduced wavefunctions can help in certain coordinate systems. In the case 
of polar coordinates the Laplacian can be simplified by using a modified wavefunction such 
that: 

nr,0) = ^ ^ , (111) 

so that the Laplacian, 

becomes equal to: 
dr^^ rdr^ rUe^' ^^^^^ 

1 d^ 1 d^ 

A wavefunction normalised with integration measure drdB, rather than rdrd9, is then 

consistent with the original wavefunction. Similarly in Jacobi coordinates it is usefid to 

use a modified wavefunction such that: 

^ ( i ? , r , g ) = ^ - ( ^ / ' ^ ^ (114) 

so that the radial momentum operators become Cartesian-like, and are given by —id/dr 

and —id/dR, and the wavefunction is normalised with integration measure sind dOdrdR 

12 . 

4.1. 1 A Test Case 

In order to investigate (and check) calculations carried out in more than one dimension, 

a test case very similar to the one-dimensional case was used. A two-dimensional harmonic 

oscillator with the parameters of the hydrogen molecule was used. The results are shown 

in figure 16, for the S.O.D. propagator. Although the error appears to be very small it 

must be noted that the propagation time was short because of the long times necessary to 

run the program, but it can be seen that the calculation is producing reasonably accurate 

results. 

4.2 Different Approaches 

Another very different approach to multi-dimensional problems is to consider the use 

of different transforms, i.e. the use of different implicit basis functions [6]. Consider the 

kinetic energy operator in spherical coordinates: 

P 
2m 2m 

I d .d 1 d . „d 1 d^ 
(115) 

7-2 dr sin Odd d9 sin^ 9 d(f>\ 

This can be divided into radial and angular parts. 

For the radial part of the Laplacian, i f a reduced wavefunction (similar to those de

scribed above) is used, the Bessel function Ji/2(A;r) is a solution, i.e. an eigenfunction 
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Fig . 16. Graph of error against time for S.O.D. propagator for a two-dimensional harmonic 

oscillator. 

with eigeuAralue —k^. This means that the wavefunction can be transformed, using the 

Fourier-Bessel (or Hankel) transform of order 1/2, into a space where the radial part of the 

Laplacian is now a local operator with the spectrum —k^. This is very similar to the one-

dimensional case using the Fourier transform. A fast Hankel transform hais been described 

by Bissebng and Kosloff [87]. For polar coordinates a similar method can be used for the 

radial part of the Laplacian; in this case the Bessel function of order 0 is a solution, so that 

a Hankel trcinsform of order 0 is used. The use of the Hcinkel transform can be extended to 

Hamiltonians with centrifugal terms, m/r^, by the use of a transform of order m, for polair 

coordinates, and m -I- 1/2, for spherical coordinates. 

For the <̂  variable the Fourier method is applicable, though care must be taken to avoid 

the singularity in sin 5 at 0 and TT by suitable choice of the grid points in the 6 variable [29 . 

For the 6 part of the Laplacian, i.e. the second term, the Legendre polynomials, 

P/(cos^), are eigenfunctions with eigenvalues /(/ -f 1). Thus, it has been suggested that a 

discrete variable representation with Gauss-Legendre quadrature points is appropriate, i.e. 

a Legendre transformation [11]. For Hamiltonians which have centrifugal terms, K^/sin^ 6, 

a basis of spherical harmonics, YiK{0,<f> = 0), could be used. Another way in which these 
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centrifugal terms have been treated is the use of a modified wavefunction such that [88]: 

^ = {sin9f^^. (116) 

Unfortunately there is no fast Legendre transform reported in the literature. This has led 

to a variety of other methods to treat this coordinate being used. In several [29] [88], the 

product is differentiated generating two terms, one in the first derivative of 9, the other 

in the second derivative. These derivatives are then calculated directly using the Fourier 

method. This has two disadvantages: first, four F.F.T. are required, forward and backwards 

for each derivative; secondly, the grid has to be artificially extended to include all 9 values 

from 0 to 27r (rather than T T ) . The reason for the latter is that in the Fourier method the 

coordinate is assumed to be periodic, and in this case the period of the coordinate is 27r. 

Recently a method which uses a fast cosine transform has been described which overcomes 

these two disadvantages [89]. 

4.3 Fourier Method/Bas i s Set Expansion 

The Fourier Method can be used in conjunction with a more standard basis set expan

sion. This is sometimes called the close coupled wavepacket (C.C.W.P.) method. Given 

the complications which can arise when non-Cartesian coordinates are used (see above), 

the extensive development of this hybrid method is not unexpected. In this method the 

time-dependent wavefunction is expanded in a basis set of functions in one or more of the 

coordinates. This wavefunction is substituted into the T.D.S.E. to derive a set of coupled 

equations. The solution of this set of coupled equations produces the time evolution of the 

coefficients in the expansion. The basis functions used are usually eigenfunctions of the 

part of the Hamiltonian which describes the particular coordinate. 

Obviously this method will be best suited to problems where there is only a weak 

coupling to the coordinate described by the basis set, ensuring that only a few functions 

are required to model the system accurately. An excellent example of this is given by the 

study of the dissociation of Van der Waals molecules, where a diatomic molecule is only 

weakly bound, by the very nature of such molecules, to another atom. An expansion in the 

coordinate which describes the interned motion of the diatomic molecule will only require 

a few functions, since this coordinate will be only very weakly coupled to the dissociation 

coordinate [12] [90] [91]. Gray and co-workers have done three-dimensional calculations 

on the fragmentation of halogen molecules weakly bound to rare gas atoms. In these 

calculations the wavefunction was expanded in functions which described the vibration and 

rotation of the halogen molecule within the complex, and the coupled channel equations 

were solved to obtain the evolution of a wavepacket in the dissociation coordinate. 
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Although computationally more expensive, the C.C.W.P. method has been found to 

work very successfully for problems which require very many expansion functions, rather 

than just a few, to model the system. The long-lived resonance states in molecule-surface 

scattering have been extensively studied by Mowrey and Kouri, with a rotational basis set as 

well as a basis set in the translational motion parallel to the surface [19] [20]. Atom-diatom 

scattering has been studied by this group using similar methods [14]. The photodissoci-

ation of very many different molecides has also been studied using this method, using an 

expansion in the functions which describe the angular momentum of one of the fragments 

[92 . 

In all of the above applications the major advantages of the Fourier method are retained. 

In particular, the motion in the key coordinate(s), i.e. the movement of the wavepacket, 

can still be easily visualised to obtain an insight into the reaction mechanism. 

4.3. 1 An Example Problem 

In order to investigate the use of this method a simple two-dimensional problem was 

studied, i.e. the fragmentation of a Van der Waals molecule. The expansion of the wave-

function using a specific basis set and the use of a particular Hamiltonian means that the 

set of coupled equations derived in the following are only relevant to the specific problem 

under consideration [12]. The Van der Waals fragmentation reaction to be studied is: 

XBC( i ; ) -> X + BC(t;') t ; ' = t; - 1, t; - 2 , . . . 

where v denotes some metastable initial state of the Van der Waals complex, in which the 

molecule BC is vibrationally excited, which fragments to form a rare gas atom, X, and a 

halogen molecule, BC, in vibrational state D'. 

I f the XBC system is constrained at a T-shaped geometry, so that the rotational motion 

is not included, the Hamiltonian is given by: 

^ = 0 + ^ + V'Bc(r) + F(I2,r) (117) 

where y, is the reduced mass of the whole cluster and m is the reduced mass of the BC 

molecule. The coordinates are defined so that R is the distance between X and the centre 

of mass of BC and T is the BC internuclear distance, i.e. Jacobi coordinates are used. As 

was suggested previously in this chapter, a modified definition of ^ is used (equation (114)) 

so that Pji and p^ have simple Cartesian forms. 

^(<) is expanded in a basis set as follows: 
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where the functions V;̂ / represent the EC vibrational states, and are solutions of: 

Inserting H and * into the T.D.S.E., left-multipling both sides by ^*„, and integrating 

over T leads to the coupled equations: 

dC i(R t) 
' d t = 2^^" '^^ '^^ ^ Er,>CAR,t) + J2{v"\V{R,r)\v')CAR,t). (120) 

This set of equations describes the evolution of the channel wavepackets C„/(i2, <), the 

appropriate weighted sum of which determines the ful l wavepacket *(<). Thus once the 

initial states for each channel, C^i{R, 0), are found the set of equations is used to propagate 

the channel wavepackets in time using the methods described in Chapter 2. The only 

unfamiliar aspect to this equation is the potential part which requires a sum over the 

matrix elements {v"\V{R,r)\v') for each channel. This is the essential part of any coupled 

channel method. The matrix elements can be calculated using a Gauss-like quadrature 

scheme [93] so that, 

{v"\V{R,r)\v') = Mrj)V{R,rj)Mrj)w^. (121) 

The abscissae, rj, are the zeroes of a high vibrational wavefunction for the potential curve 

concerned, and the weights, Wj, are defined so that integrals over low-order wavefunctions 

are evaluated exactly. 

For multi-channel problems, the Feit/Fleck or split propagator method becomes cum

bersome to use because of the need to diagonalise the potential at each grid point [6]. For 

the Chebyshev method, some thought is needed to decide the range of the eigenvalues, re

quired for the calculation of the number of terms in the polynomial expansion. The range 

of the eigenvalues must include a term for the vibrational energy, E^^. The maximum 

of the potential part, i.e. the matrix elements of the potential operator, is found from the 

spectral radius of the matrix; this is calculated by computing the sum of the moduli of the 

matrix elements in each row for each grid point and choosing the maximum [20]. 

The initial state 

The initial state used in the Van der Waals predissociation problem is a metastable 

state of the Hamiltonian given above (equation (117)). It can be thought of as the specific 

state under investigation, e.g. a particular vibrational state of the BC molecule in the 

Van der Waals complex, so that the decay of this particular state can be studied. These 

metastable states are not the true stationary states of the Hamiltonian since the energy 

regime of interest is in the continuum, and the true stationary states are scattering states. 

4: Multi-Dimensional Problems 



74 

The initial state, ^m, is expanded as follows: 

^miR,r) = J2a,nMr)Xn{R), (122) 
v,n 

where the functions tpvi''') were defined above and x„(I2) are effective Van der Waals stretch

ing eigenfunctions, and are given by the solutions of: 

Xn{R) = EnXn{R), (123) 

where Vji{R) is a suitably chosen potential, and in this case is V{R,re) where is the 

equilibrium value of r. This wavefunction, ^rn, and the Hamiltonian are substituted into 

the S.E. equation, = to give: 

E 
v,n I 

PR+^L + V^c{r) + ViR,r) (124) 
2/i 2m 

This is then left-multiplied on both sides by V'r'(^)Xn'(-S) and integrated over and r to 

give: 

E^vnii'.'Xn'l^ + ^ + VBc{r) + V {R, r)\i,,Xn) = E ,n'a,'n'S.^,'Sn,n'• (125) 
2/i 2m 

This can be expressed as: 

where 

K= {i^v'Xn'lHli'vXn), 

(126) 

(127) 

and 

= E,8,.,y^ + i^n^.'.,n'n + {i^v'Xn'\V{R,r) - VR{R)\i,,Xn)• (128) 

Hence in order to find a^n, and so the matrix ^ must be diagonalised. Therefore 

the matrix elements of the Hamiltonian must be calculated; in order to calculate these 

matrix elements i t is necessary to solve equations (119) and (123) to find and 

Xn- This just involves solving the one-dimensional S.E. and can be done using Cooley's 

method (Numerov integration) [94]. The matrix elements of the potential part involve a 

double integration; the integration over r is done using the Gauss-like quadrature described 

above, whilst the integration over R is done using the trapezium rule (the anharmonicity 

in this variable makes i t inappropriate to use the Gaussian quadrature scheme). 
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The potentials 

For the BC molecule potential, VficC^), a Morse function is used. For the interaction 

potential, V{R,r), a pairwise-additive function is used, i.e. two Morse functions are added 

together, one for X-C and one for X-B. A long-range attractive tail region may be included. 

Extracting observables from the wavepackets 

It is useful at this point to describe the experiment which the theory hopes to model. 

The cluster is prepared in a supersonic beam in the state \vx — — 0), where Vx is an 

effective vibrational quantum number for BC in the X electronic state and TIJ. denotes 

an effective Van der Waals stretching quantum number. A narrow-frequency band laser, 

with frequency uj, is applied to the system. This frequency corresponds to an electronic 

transition from the X state to an excited electronic state, B. In general the molecule BC 

in the electronically excited cluster wiU also be vibrationally excited so that is equal 

to V. The excited cluster, which has a resonance energy depending on v, then dissociates 

with a particular lifetime, into a certain product distribution of the halogen molecule; all 

of these variables can in principle be determined experimentally. 

These experimental observables, i.e. the resonance energy, the lifetime and the product 

distribution, have then to be extracted from the time-dependent wavefunction. The infor

mation of main interest here is the lifetime of the cluster, though the resonance energy a,nd 

the product distribution of the halogen molecule after fragmentation can also be obtained. 

The extraction of the observables from the time-dependent wavefunction can be done using 

either Fourier Analysis or the MUSIC frequency estimator [95]. The second method can 

yield more information given a shorter time of propagation because it assumes a certain 

model and then, given a data sample of limited duration, determines the best fit to this 

model. 

For the dissociation of many Van der Waals clusters, it can be assumed that only one 

resonance dominates the dynamics of the cluster and so the lifetime, r, can be inferred 

as the reciprocal of the slope of a plot of In |('l'(0)|'P(i))p against t. The autocorrelation 

function is easily calculated from the channel wavepackets as the sum of the squares of the 

autocorrelation functions of the packets; this is because the 'weighting' functions, ^p, are 

orthonormal. 

Test cases 

The C.C.W.P. method was used to investigate the fragmentation of both NeCl2 and 

Hel2. Figures 17 and 18 show the ln(>lc)) where Ac is the square modulus of the autocor

relation function, against time. 

Consider first the system NeCla. This problem has been studied in three dimensions 
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by Gray et al. [12]. In order to check that the calculations done in this work yield sensible 
results, these were compared to those obtained by Gray et al. As an aside i t is interesting to 
note some points in their implementation of the C.C.W.P. method, which were also utilised 
in this work: 

1. A bounded potential is used which enables the use of a longer timestep for the S.O.D. 

than would be allowed by the stability l imit , i f an unbounded potential was used. Figure 

17a, shows two graphs of the ln(j4c) against time, obtained for the two-dimensional 

calculations described earlier, one with a short timestep and the unaltered potential 

and the other with the longer timestep and the bounded potential. They look identical. 

2. The energies of the vibrational channels are taken relative to the initial channel, i.e. 

relative to the chosen vibrational state of the BC molecule in the excited cluster, or 

This shifts the region where minimum error occurs, hence improving the accuracy 

of the calculation. 

The figures 17a, fc suggest a lifetime of approximately 70 ps, (the vibrational period of 

CI2 is 0.245 ps). This is smaller than the three-dimensional value, given by Gray as 120 

ps. (Note the potential referred to as surface 2, with initial vibrational level v = 11, is 

being used). This is not the expected result, which is that the T-shaped molecule should 

be less likely to fall apart than the molecule free to rotate, but it does not give rise to great 

concern. 

Consider next the system Hel2. Again the results obtained in this work were compared 

to those reported in the literature in order to check the reliability of the calculations 

done here. Two-dimensional studies on Hel2 have been done which help to make the 

comparison of results more meaningful. One of these studies by Gray [96] uses a periodically 

forced oscillator model (P.F.O.) and the wavepacket method. Although this is only a one-

dimensional study, i t is suggested that 'the P.F.O. model is indeed typical of the original 

2D problem'. The graphs presented in the paper are of ln(Pj,) against t where P, is the 

survival probability. The definition of P,: 

Ps{t)-E\iXnmt))\', (129) 

n 

differs from the observable used in the present work, which is the square modulus of the 

autocorrelation function. However, in the calculations done in the present work, the mag

nitude of the wavefunction in the 7; — 1 and v — 2 channels is small compared to that in 

the V channel, so that the autocorrelation can be approximated by |(Cc(i2,0)jC„(iE, i ) ) | ; 

also the initial wavefunction corresponds almost exactly with n = 0 in the Van der Waals 

stretching mode. This implies that Cv{R,0) ~ Xo(-R), and so the autocorrelation function 

can be given by \{xo{R)\C^viR,i))\- I " the Gray paper the dominant contribution to P, is 
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thought to originate from PQ, i.e. from the wavefunction in the n = 0 mode. This implies 
that Ps{t) K |(xo|^(0)P- Given these analyses of the observables used in each of the calcu
lations, the observable used in the Gray work, i.e. Pa, can be seen to correspond reasonably 
well to the observable used in this work, i.e. the square modulus of the autocorrelation 
function. Figures 18a, 6 show two graphs for v = 20 and v = 30. They reproduce those 
shown in the Gray paper qmte well, although the slopes are too steep by approximately 
15%. 

4.4 Conclusions 

The extension of the Fourier method to multi-dimensional problems has been described. 

I t was seen that there are many different approaches possible, some of which are similar to 

the one-dimensional Fourier method, others of which are quite different. 

The C.C.W.P. method has been used to describe the fragmentation of Van der Waals 

molecules. I t was seen that the derivation of the set of coupled equations was straightfor

ward. The solution of the equations and the extraction of observables from the channel 

wavepackets was no more complicated than for the Fourier method. Thus it can be seen 

that this hybrid method of the Fourier method with a more standard basis set expansion 

provides a useful tool for multi-dimensional calculations. The two test cases described have 

been shown to produce results which are not at odds with those reported in the literature. 

Thus, there can be some confidence in the accuracy of the calculations done in this work. 
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Fig . 18. a). ln{Ac) against time, for the dissociation of Hel2 v = 20. b). ln{Ac) against 

time, for the dissociation of Hel2 v = 30. 
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5: The Sodium Trimer 

5.1 Introduction 

The equilibrium geometry of the sodium trimer is not, as might at first be thought, 

an equilateral triangle. In the ground electronic state, as well as in some of the excited 

electronic states, there is an unpaired electron in a degenerate electronic orbital. This leads 

to a Jahn-Teller (or pseudo-Jahn-Teller) distortion away from the equilateral geometry 

towards an isosceles triangle geometry. In many of the electronic states there is only a 

small barrier between the various acute and obtuse angled isosceles triangle geometries, 

and the molecule wiU change from one geometry to another with relative ease. This is 

sometimes called pseudorotation. 

The spectroscopy of Naa has received considerable attention over the past few years, 

both theoretically and experimentally. There are two main reasons for this interest. First, 

a study of small metal clusters is important because a knowledge of their basic properties, 

e.g. geometry, bond strength and reactivity, is an aid to understanding the nucleation and 

growth of small metal particles and eventually the build-up of the metallic state. Secondly, 

their optical, chemical and catalytic properties can be utilised in a variety of ways. 

The small number of vibrational modes makes the analysis of the nuclear dynamics 

interesting on theoretical grounds because studies can be detailed without becoming too 

cumbersome. In particular, there has been great interest in the sodium trimer because of 

the ability to study, in some detail, the changes in its structure and dynamics due to the 

approach or intersection of several Born-Oppenheimer potential surfaces. There is a grow

ing interest in this field, particularly with respect to the Jahn-Teller effect [97] and Berry's 

geometrical phase [98] in molecular systems. A recent review has summarised the theory 

related to the geometric phase, in a suitable form for molecular systems, and suggested pos

sible consequences which could be compared to experiments [99]. Recently, the results of 

several spectroscopic experiments have been analysed using the Jahn-TeUer effect, e.g. the 

resonant two-photon ionisation spectrum of triptycene [100] and the stimulated emission 

pumping spectrum of the methoxy radiccd [101 . 

Time-dependent experiments and calculations have been carried out on the Na2 sys

tem [102] [103]. These demonstrated the usefulness of the time-dependent approach in 

understanding vibrational wavepacket motion and also helped to identify the various ion

isation pathways present in the system. The present work extends these studies to the 

sodium trimer. The use of time-dependent methods to study the sodium trimer, both ex-
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perimentaUy and theoretically, is particularly interesting since it gives a direct insight into 
multi-dimensional wavepacket motion on a potential energy surface and leads to a greater 
understanding of the dynamical aspects of molecular multiphoton ionisation. 

5.1. 1 Background 

The spectroscopy of the sodium trimer has now been the subject of several investigations 

in which, with the help of molecular beams and lasers, individual vibronic levels have been 

resolved and analysed. Experiments have been carried out to investigate the electronically 

excited states as well as the ground state. 

The techniques 

A variety of spectroscopic techniques is available to study small metal clusters, includ

ing: two-photon ionisation; ion-depletion experiments; and stimulated emission pumping 

spectroscopy (S.E.P.). The analysis of hot bands in the results of the two-photon ionisation 

experiments can lead to information about the ground state. 

In both the two-photon and the ion-depletion experiments the Naa molecules, which 

are produced in a molecular beam, are excited electronically with a tunable laser wi. In 

the resonant two-photon ionisation scheme the excited molecules are ionised with a second 

laser u}2- The photoions formed are detected with a quadrupole mass spectrometer. In the 

depletion spectroscopy experiment, which is used for probing the Nas dissociative states, an 

ultraviolet laser directly ionises Nas molecules in the ground state and, by detecting the 

photoions, monitors the remaining population in the molecular beam. In this experiment 

whenever the laser wi is on resonance with an excited state the population of Naa molecules 

in the molecular beam decreases. Thus, there are fewer molecvdes which can be ionised by 

the ultraviolet laser wz, and so there is a depletion in the photoion signal. Hence spectral 

resonances are recorded as depletion in the signal. The lasers a>i and uz are applied 

simultaneously. 

S.E.P. is also a two-photon excitation process [104]. The first photon excites the molec

ule to an intermediate level of an electronically excited state, whose population is monitored 

in some way, e.g. by detecting undispersed side fluorescence. The second photon is then used 

to stimulate emission from the intermediate level. If there is a decrease in the population 

of the intermediate level then the second photon is on resonance. Thus the energy levels 

to which the molecule is transferred during the stimulated emission can be investigated 

by varying the frequency of the second photon. The two photons can be applied simulta

neously or sequentially. The S.E.P. experiment on Naa [105] [106] uses the ion-depletion 

technique to monitor the population of the intermediate level. The Nas molecules, pro

duced in a molecular-beam apparatus, are excited to an intermediate level of the C state by 
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a first laser uji. A second laser a;2 is then used to induce two competitive processes in the 
excited trimers: (1) direct photoionisation and (2) stimulated emission down to vibronic 
ground-state levels. The Na3' ion signal is detected using a quadrupole mass spectrometer, 
as a function of u;2- That is, the population of the intermediate level, which is proportional 
to the ion signal, is measured as a function of u;2. At resonance the second process is much 
more likely than the first, by a factor of 10^-10^, and so a dip will occur in the ion signal 
for each transition to a ground-state level. The C state is used as the intermediate state in 
this experiment because the vibronic levels of this state have been extensively studied, and 
an assignment of them exists, so that it is possible to identify the particular intermediate 
level used. 

The experiments 

The excitation spectrum of Naa has been systematically investigated from 700 to 330 

nm, both by two-photon ionisation (T.P.I.) experiments and by depletion experiments 

;i07][108]. 

Four band systems are observed: A, B, C and D. The B state, which is bound, is of 

interest here (see figure 43). Among the most important characteristics of the richly banded 

system are: first, a long progression composed of nearly equally spaced bands 128 

cm~^) appears to be spUt into doublets; secondly, a series of closely spaced bands feinning 

out from the doublet and increasing steadily in breadth accompanies each member of the 

main progression; thirdly, a much weaker pattern of levels accounting for all remaining 

bands fits to a harmonics series with u) % 137 cm~^. This spectrum has been explained in 

terms of the pseudorotational motion of the sodium trimer. 

The vibronic structure of the Naa ground state has been investigated both by stimu

lated emission pumping spectroscopy and by the analysis of hot bands in the two-photon 

ionisation spectra. 

The analysis of the hot bands is a straightforward extension to the two-photon ionisation 

experiment on the excited states [109]. The B system exhibits a clear hot-band structure. 

The hot band structure can be interpreted to give X state vibrational frequencies, which 

are for the symmetric stretch 139 c m ~ \ and for the bend/asymmetric stretch 50 cm~^ and 

87 cm~^. Similar results are obtained for the other states. 

In the S.E.P. experiment numerous resonances are observed in the spectrum in the 

150-1000 cm~^ range, which indicates that the molecule is particularly deformable. A 

strong and simple pattern found in the low-resolution spectrum can again be interpreted 

by the three zeroth-order normal frequencies (for the symmetric stretch 139 cm~\ and for 

the bend/asymmetric stretch 49 cm~^ and 87 cm"-^). 
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Time-resolved experiments 

The aim of the present work is to reproduce the results of time-resolved femtosecond 

pump-probe experiments on the Nas system, being carried out in Freiburg, as well as the 

results of similar experiments being carried out in Berlin using picosecond lasers. It is hoped 

that by doing so a ful l explanation, and thus a greater understanding, of the experimental 

results wiU be obtained. I t is also hoped that these calculations will give an insight into 

the dynamics of systems in non-stationary states. 

In the femtosecond experiment [110] [111] the Nas is prepared in its ground electronic 

state in a supersonic beam. The same laser is used for both the pump and the probe, which 

has a central frequency, ^central) equal to 620 nm (16129 cm"^). The time profile of the pulse 

is roughly Gaussian with a temporal full-width of approximately 70 fs. The spectral width 

of the laser pulse has been measured (figure 19); it is not the same as the value implied 

by its temporal width. The molecules in the beam are excited with the femtosecond laser 

pulse (the pump) to an electronically excited state, the B state, of Nas. The pump laser 

has only sufficient energy to populate the lowest 250 cm~^ of the B state. After a given 

interval of time the second femtosecond laser pulse (the probe) is used to ionise the Nas. 

There is only just enough energy in the probe pulse to ionise the Nas to Nag". The ions 

that are produced are then detected. This is done using time-of-flight spectroscopy, which 

determines the masses and released kinetic energy of the ionic fragments, as well as the 

energy distribution of the ejected electrons. The experiment is repeated for many different 

pump-probe delay times, i.e. the interval of time between the application of the pump and 

probe laser pulses, for up to a maximum of approximately 12 ps. This variation in the 

pump-probe delay time gives rise to a varying Naj" signal. The results show an ion signal 

that takes a few femtoseconds to appear and then oscillates, though not back to zero, with 

a principal period of 320 fs, corresponding to a wavenumber of 105 cm~^. The signal decays 

exponentially with a lifetime of approximately 2 ps. The Fourier transform of the ion signal 

shows peaks at 12(m), 19(m), 34(w), 50(m), 73(m), 105(vs), 90(s), 123(w) and 141.5(w) 

cm~^ and higher frequencies (w = weak, m = medium, s = strong, vs = very strong). 

At the same time the zero kinetic energy electrons which are ejected on ionisation are 

detected. The time-dependent signzJ is similar to that of the Na^, and the same frequencies 

are obtained in the Fourier transform. 

The pump laser pulse produces a wavepacket on the B state, which moves about the po

tential energy surface. When the probe laser pulse is applied, the position of the wavepacket 

on the B state will vary, i.e. the molecule wiU be in different molecular configurations, de

pending on the pump-probe delay time. The probability of the probe laser ionising the Nas 

depends on the position of the wavepacket on the potential surface. Thus, the oscillations in 
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the Nag" signal are due to the motion of the time-dependent wavefunction on the potential 
surfaces of the B and X electronic states of Nas. The X state frequencies occur because the 
pump laser can produce a wavepacket on the ground state by a 2-photon excitation via the 
B state, and the probe laser can ionise it by another 2-photon process. The contribution 
of the X state frequencies to the total ion signal becomes less significant at lower powers. 
This in principle allows the frequencies to be assigned to the two different states, though 
the procedure is experimentally difficult. 

The frequencies have tentatively been assigned as follows [111]: 12, 19 cm~^ are pseu

dorotation frequencies on the B state; 50 c m ~ \ an asymmetric stretch on the X state; 73 

c m ~ \ a bending frequency on the B state; 90 cm~\ a bending frequency on the A!" state; 

105 c m ~ \ a symmetric stretch on the B state; 141.5 cm~\ a symmetric stretch on the X 

state. 

ectrsi Intsnsity 

605 6jG 515 625 

Fig. 19. The spectral intensity of the laser pulse in the femtosecond experiment. The full line 

is the experimental measurement, and the dashed line shows the spectral intensity 

expected from Heisenberg's uncertainty principle for a laser pulse with a 70 fs 

temporal width. 

Transient two-photon ionisation experiments are also being carried out on the sodium 

trimer, using picosecond pump-probe techniques followed by mass-selective detection [112 
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[113] [114] [115]. Again, the same laser is used for both the pump and the probe, with 
a;central equal to 619.7 nm (16136 cm~^). The time profile of the pulse is roughly Gaussian 
with a temporal full-width of approximately 1.3 ps. The spectral width of the laser pulse 
has been measured and is found to have a value double that implied by its temporal 
width. When the first photon is resonant with some vibrational level of the B state, the 
time-dependence of the Na^ signal shows a distinct beat structure, with a 3 ps period of 
oscillation, corresponding to a wavenumber of 11 cm~^; the signal decays exponentially, 
with a decay time of about 6 ps. This experiment has been repeated with ^central equal to 
617 nm (16207 cm"^), 620 nm (16129 cm"^) and 625 nm (16000 cm-^), as well as other 
frequencies; the results are reported to be essentially the same. For non-resonant excitation 
photons no oscillation is observed. 

5.2 The Coordinates 

The complete nuclear permutation inversion group of the sodium trimer is Dzh,{M). I t is 

necessary to use the complete nuclear permutation inversion group due to the 'floppy' nature 

of the sodium trimer, which ensures that all nuclear permutations, P, and permutation-

inversions, P*, are feasible [116]. Dzh{M) is isomorphic to the Dzh point symmetry group. 

It is a straightforward matter to find the normal mode vibrations of this molecule using 

group theory. They are found to belong to the irreducible representations a'l and e' of the 

Dzh point symmetry group, and can be described as: 

/ I y/S \ f l V3 ' 
-« ! + I + 1 + I " (130) 

where Qx is the bending vibration and Xi,yi are the Cartesian coordinates of each atom i; 

(131) 
V 3 1 \ , / 1 

where Qy is the asymmetric stretch 

! « + - y X j - - V 2 + - - y ^ s - j W 

1 x/3 \ . / I v/3 
(132) 

where Qs is the symmetric stretch. Qx and Qy are the two components of the normal e'-type 

displacements. Qg is obviously the normal a'̂ -̂type displacement, but will not be considered 

at present, since the totally symmetric displacement, while affecting the potential, does not 

change its symmetry [117]. The definitions of Qx and Qy vary throughout the literature. 

This is evident in many ways. First, the symbols Qx and Qy can be reversed, so that Qy 

represents the bend and Qx represents the stretch, and secondly, Qx as defined here can be 

called an asymmetric stretch, and Qy a bend. In particular the assignment of frequencies 

as bends or asymmetric stretches must be considered carefully to ensure the correct mode, 

i.e. Qx or Qy, is chosen. 
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Q: Q x Q V 

F i g . 20. The normal mode vibrations of the sodium trimer. 

Consider now a Cartesian space in Qx and Qy. At the origin of this space the sodium 

trimer has an equilateral geometry. For a displacement in the positive direction the 

molecule will have an acute isosceles trizmgle geometry, whilst for a displacement in the 

negative Qx direction the molecule will have an obtuse isosceles triangle geometry. At 

other positions around the origin the molecule wiU be either em obtuse or acute isosceles 

triangle. The molecule can change from one obtuse isosceles triangle to another without 

going through the equilateral geometry, but through an acute isosceles geometry. This 

change in configuration looks at first to be a rotation of the molecule and is sometimes 

called a pseudorotation. 

The wavepacket calculations are initially carried out in two dimensions, which corre

spond to Qx and Qy. Qx and Qy can be expressed in terms of r jmd 0, where 

r^ = {Ql + Ql), i^^<i> = QylQ^ (133) 

The angle <̂  is often described as the pseudorotation coordinate. This is because as the 

origin of this space is circled following <j>, the molecule undergoes the pseudorotational 

motion. The calculation is performed using r and ^. 

Using these coordinates, i.e. polar coordinates, and introducing a reduced wavefunction 

such that: 

$(r, 4>) = 

the kinetic energy operator is: 

-h_ 
2m. 

2 r 
4r2 ^ dr^ ^ r2 d<i>^ 

(134) 

(135) 
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0 

Q 

Fig . 21. The pseudorotation of the sodium trimer. 

5.3 Potentials 

The theory used to describe the effect of Jeihn-Teller distortions on the potential energy 

surface of the ground state, and the excited states, of Nas has been discussed at length in the 

literature. However, a brief summary is necesseiry here in order to establish a consistent 

notation for both the ground state and the electronically excited states. The notation 

varies in the literature both in the symbols given to the various vibronic coupling constants 

and in the use of various definitions of the dimensionless constants that are extensively 

used as alternatives to the vibronic coupUng constcints. In the following, dimensionless 

constants wiU not be used and the connection between the constcints described here and 

the dimensionless alternatives used in some of the Literature will be discussed in Appendix 

C. The adiabatic theorem, the various coupling constants and the derivation of an adiabatic 

potential are discussed in Appendix B. 
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5.3. 1 The Ground State 

This state can be understood to be the result of E ^ e mixing of the components of a 

degenerate electronic state. That is the components of the electronic state of symmetry E 

are mixed by a vibration of symmetry e. 

Consider an E' electronic state in a molecule belonging to the Dzh symmetry group, 

e.g. the ground state of Nas. 

The two electronic wavefunctions of the E' term, at the equilateral geometry, are de

noted tpx ''Py > tbese are not functions of the nuclear coordinates, Q, but only of 

the electronic coordinates, q^. The potential, V{qe,Q), which describes the interaction be

tween the electrons and the nuclei, as well as the internuclear repulsion, is then expanded 

using a Taylor expansion about the equilateral geometry. Complex combinations of the 

normal modes (given above) and degenerate electronic components are now used such that 

Q+ = Qx+iQy = r e ' ^ Q' = Qx-iQy = r e - » ^ V+ = V - f + i ^ f , and = ^ ? - i ^ f • 

Then the following linear and quadratic vibronic coupling constants, which are matrix 

elements of the coefficients in the potential expansion, can be defined: 

dV 

Also, KE, a force constant, can be defined: 

GE = U ^ 
,dQ+dQ + 

(136) 

KE= (-
5 V 

+d\. (137) 
dQ+dQ-

The secular determinant, using a basis of the purely electronic wavefunctions, and 

is then (as a function of T and (f>): 

\KEr' - e 

thus the adiabatic potential is: 

\KET'' - e 
= 0, (138) 

e±{r,4>) = -KEr^±r F'E + FEGErcos{34>)+{^) 

.1/2 
(139) 

The lower surface is often described as a warped 'Mexican hat'; along the bottom of the 

trough of the 'Mexican hat' three wells occur, alternating regularly with three humps. The 

extremal points of the surface (ro,<^o) are: 

±FE nir 
90 = - ^ i n = 0 , 1 , . . . ,5, 

(140) 
KETi-irGE' 

the upper and lower signs corresponding to cases FE > 0 and FE < 0 respectively. If 

{FE X GE) > 0 then the points at which n = 1,3,5 are saddle points and the points at 
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which n = 0,2,4 are minima, whereas for (Pg XGE) < 0 these two types of extremal points 
are interchanged. The depth of the trough, relative to the point where the two electronic 
components are degenerate at r = 0, i.e. the Jahn-Teller stabilisation energy, is given by: 

and the (minimum) barrier height Eioc between the minima is: 

2E,\GE\ P | | g ^ | 
{KE + \GE\)~ {Kl-\GEn ^'''^ 

This barrier height EIQC is often described as the barrier to pseudorotation. 

The two wavefunctions, which are the eigenvectors of the secular equations, are: 

= ^(e ' (n/2)v,+ - e»(-"/2)v,-), (143) 

= 1 (e«(n/2V+ + e»(-"/2)v>-), (144) 

where 

P£;cos0+|Gi; | rcos(2<^)/2 ^ ^ 

An interesting point to notice in this equation is that f2 acts qualitatively like ^, when 

FE > \GE\r, but acts qualitatively like —2(̂  when FE < IGEIT. Thus, for the portion 

of space given by r < FE/\GE\, the electronic wavefunction has to do two circuits of 

parameter space (i.e. ^ = 0 ^ 47r) before it returns to its initial value, while if just one 

circuit is done the electronic wavefunction will change its sign. In order then that the total 

wavefunction be single valued on one circuit of parameter space, the nuclear wavefunction 

must also change its sign on doing a circuit of parameter space. This will give rise to 

fractional quantisation of the quantum numbers associated with the nuclear motion. This 

is sometimes referred to as the adiabatic sign-change theorem. This is a specicd case of 

Berry's geometrical phase which has been discussed extensively in connection with P ® e 

Jahn-Teller systems [118], and has been used to explain (though probably mistakenly, see 

below) the spectrum of the B state of the sodium trimer [108 . 

Generalised valence bond and configuration interaction calculations have been done 

that characterise the ground state (and the excited electronic states) of Nas [119]. For the 

ground state, the stabilisation energy is given as 669 cm~^, the localisation energy is 131 

cm~^ and the dimensionless coupling constants corresponding to GE and FE {g and K in 

the notation of ref. 119) are -0.108 and 3.72 respectively. The symmetric stretch frequency 

is 135 cm~^ and WQ is 86 c m ~ \ where is defined to be the vibrational frequency for 

the motion along the radial displacement coordinate. The minimum in the potential in the 
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radial direction, ro, is at —0.59 A (i.e. i t is an obtuse isosceles triangle) and the equilibrium 
value of the symmetric stretch displacement, QSQ, is 3.63 A. 

However, the fit to the absorption spectrum, to obtain the correct line intensities, yields 

different parameters for the ground-state surface to those given above [120]. The dimen

sionless coupling constants corresponding to GE and Pg are —0.076 and 5.456 respectively, 

and u)o is 87 cm"-'. This corresponds to a stabilisation energy of approximately 1400 cm~^ 

and a localisation energy of approximately 199 cm~^ The value of ro is approximately 

—0.74 A (i.e. it is an obtuse isosceles triangle). This is the potential surface used here. The 

value of QaQ is taken to be 3.63 A and the symmetric stretch frequency is taken to be 135 

cm~^, using the values from the above theoretical potential. 

An ab initio configuration-interaction study has been done on the potenticd energy 

surface of the ground state of Nas [121]- The most striking feature of the surface is its 

extreme flatness. The molecule can pseudorotate from the obtuse-triangle minimum to 

the saddle point with an energy expenditure of 2.1 kJmoP^ (175.4 cm~^); this is the 

localisation energy. The transformation from obtuse to acute via the equilateral form 

requires an activation energy of only 6.7 kJmol"^ (559.7 cm~^); this is the Jahn-Teller 

stabilisation energy. Even substantially larger excursions are relatively effortless. A linear 

symmetric conformation lies only 12.5 kJmol"^ (1044.2 cm~^) above the minimum. The 

normal mode frequencies calculated in the ab initio configuration-interaction study are: 

symmetric stretch 147 cm"-'; bending 84 cm~^; asymmetric stretch 89 cm"-'. The value of 

QsQ is given as 3.5 A. An analytic representation of this potential has been presented [122 . 

Despite some differences between the potential obtained from the fit to the experimental 

spectrum and those calculated theoretically, they all have the same general features, i.e. 

very flat with a conical intersection at the equilateral geometry. As well as this qualitative 

agreement, there is also some quantitative agreement, e.g. the frequency for the radial 

motion (or bending frequency at small distortions) compares weU in all the potentials. 

The ab-initio potential reproduces the barrier to pseudorotation quite well (175.4 cm~^ 

compared to the experimental value of 199 cm~^), though the potential obtained from the 

generalised -vidence bond calculations underestimates the value substantially (131 cm~^). 

Both the theoretical potentials underestimate the Jahn-Teller stabilisation energy. The 

values of Q^^ and of the symmetric stretch frequency given by the theoretical potentials 

agree quite well, so that it appears to be reasonable to use the -values obtained from the 

generalised valence bond calculations in the potential used here. 

The eigenstates and eigenvalues 

In order to understand the dynamics of a system it is often helpful to have some 
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The Potential for the X surface of Na_3 
In units of milli Hartrees 

2.0H 

1 

NGSTROMS 
Q X 

Fig . 22. Contour diagram of the potential of the ground state used in this work (1 mE/i 

« 219 cm-^). 

knowledge of the eigenstates and corresponding eigenvalues. 

Consider first the linear Jahn-Teller effect, where the quadratic coupling constant GE 

is zero, and there is no barrier to pseudorotation. The potential for the lower surface will 

be of the form: 

which can be expressed as 

V{r) = ^KET' - TFE, 

V{r)^-KE{r-rof-E,, 

(146) 

(147) 

where TQ is equal to FE/KE and Eg is equal to F^/2KE- This potential, which is harmonic 

about To, is radially symmetrical and obviously is not dependent on 4). 

Thus, the motion on the potential can be described by free 'rotations' along the trough 

together with radial vibrations to and fro across the trough [123]. The eigenfunctions can 

be approximated as a product of angular motion and radial motion: 

exp[ij(f>]NuHu[a{r - ro)]exp[-a(r - ro)^ 
v/27rr 

(148) 
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where j is a 'pseudorotational' quantum number for the angular motion and u is a vi-
brational quantum number for radial motion. The constant a is equal to mKE/Ji and 
Hu[a{r — To)] is a Hermite polynomial of order u, with normalisation constant N^. The 
quantum number j wiU be half integral due to the adiabatic phase change explained above. 
This approximate description of the eigenfunctions is valid at low energies when the molec
ule is assumed to have a constant moment of inertia, i.e. the rotations are at r fixed at 
ro-

Also, the energy levels can be described approximately by these two quantum numbers 

u and j: 

E^j = {u + l)u;l + Aj\ (149) 

where ^ is a pseudorotational constant, which can be given by: 

— o or -r^ — „ 

2mrl AE^ 

where CUE is the vibrational frequency of the degenerate modes, which is related to KE, 

and m is the reduced mass of the modes (in this case just the mass of a sodium atom). 

This description of the energy levels is for GE equal to zero. For small Gjj it will 

continue to be a good description, but as GE gets larger and the wells in the 'trough' 

become deeper, i t will no longer be even approximately correct. The quadratic coupling 

constant GE couples together the radial motion and the angular motion through terms 

in the potential. This means that the motion in the radial direction wiU depend on the 

angular motion. The extent to which this occurs can be measured by the circularity of the 

potential. The circularity of the potential describes how much the value of r, along the 

minimum energy path around the 'trough' of the P.E.S., varies with <f>. For the functional 

form of the potential described here, this will depend on the value of the quadratic coupling 

constant, which also determines the barrier to pseudorotation. A fundamental problem with 

the functional form used for the potential here may be the linking together of the circularity 

and the barrier to pseudorotation. 

2 The B Excited State 

The generalised valence bond and configuration interaction calculations that have been 

done on the excited electronic states of Nas indicate that the B state involves a complicated 

mixing between an electronic state with E' symmetry and an A[ state, in which coupling 

between the A[ and the E' state dominates the usual coupling between E' components 

119]. This has been supported both by an analysis of the vibrational spectrum [120] and 

by recent rotationally resolved experiments [124] [125]. 

5; T ie Sodium Trimer 

A = '-r^, (150) 



93 

Consider an E' electronic state, with corresponding wavefunctions at the equilateral 

geometry, tpf and tpy , at energy e /̂, close in energy to a A[ electronic state with cor

responding wavefunction at the equilateral geometry, - ^ ^ ' i , at energy ê /̂ , in a molecule 

belonging to D^h, symmetry group, e.g. the B state of Nas [119][120]. Again these elec

tronic wavefunctions are functions only of the electronic coordinates. As described above 

it is a straightforward matter to find the normal mode vibrations of this molecule using 

group theory; they are found to belong to the irreducible representations a[ cind e'. Only 

the e' vibrations will be considered at present since the a'^ vibration does not change the 

symmetry of the adiabatic potential. The secular determinant that must be solved, again 

using complex combinations of the normal modes and degenerate electronic components 

such that Q'^ = Q^. -\- iQy 

V-- = - i i p f , is then: 

^KEr^ + eE'-e 
F £ r e - ' ^ + (G£/2)r2e2'^ 

Pre'* + (//2)r2e-2>* 

re'*, Q- = Q^- iQy re -i4> , V+ = V ' f + ii'y', and 

F^re** -f (G£/2)r2e-2'* Pre"** + {f/2)r^e^^^ 
^KEr^ + eE'-e Pre** + (//2)r2e-2«* 

Pre-'*-f (//2)r2e2i* ^KAV'+ e^,-e 
= 0, (151) 

where FE and GE are the Linear and quadratic vibronic coupling constants within the E 

state, and P and / are the linear and quadratic vibronic coupling constants between the 

A[ and E' state. These coupling constants are again the matrix elements of the coefficients 

in the potential expansion. 

A number of approximations are now made in order to obtain a reasonably simple 

solution [119]. These are, first, that FE and GE are set equal to zero, implying that there 

is no interaction within the E state; secondly, that the force constants in the two states 

are the same, i.e. K — KE = KA\ and finally, that \PrlK\ ~ r^ |e£/ 

the case for large distortions. The adiabatic potential obtained is: 

eo = 

e '̂ I, which is 

(152) 

2P2 + 2P/ r cos(3< )̂ + ^ 
Vv2> 

1/2 

(153) 

The lowest surface e_ has three-fold symmetry using these approximations, with equivalent 

minima (— sign) and saddle points (-f sign) defined by: 

-cos(3(^o) = ± 1 , TQ^%/2PI{K±y/2\f\), (154) 

with 

E„ 
{K-y/2\f\y 

Eu 
2V2\f\P' 

(ir2 - 2 / 2 ) ' 
(155) 
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where Es is measured from ejs;/. An interesting point to notice here is the similarity in 
the expressions obtained above for two-state and three-state interactions, equations (139) 
and (153); with a change in definition / = GE and •s/2 P = FE the expressions become 
identical. 

The B state corresponds to the lowest of these three surfaces, i.e. e_. The eigenstates of 

this potential can be approximated in a similar way to that described for the X state. The 

energy levels of this potential can also be expressed in terms of two quantum numbers, u 

and j, using equation (149), provided that the quadratic coupling constant / is very small. 

However, in this case there is not a conical intersection at the origin so that the quantum 

number j is integral. Thus the assignment of the vibrational spectrum using half-integral 

j is not correct [108 . 

From the above mentioned generalised valence bond calciilations, the stabilisation en

ergy of the B state is given as 1073 cm~^, the localisation energy is 72 cm~^ and the 

dimensionless coupling constants corresponding to / and P are -0.035/v^ and 4.90/v^ 

respectively. The symmetric stretch frequency is 110 cm~^ and UQ is 86 cm~^. The value 

of ro is —0.66 A (i.e. i t is an obtuse isosceles triangle) and Qg^ is 3.99 A. 

However, the fit to the absorption spectrum again yields different parameters for this 

surface [120]. For this state the parameters are in fact quite different from those ob

tained from the generalised valence bond calculations, giving different values for the radial 

frequency and the barrier to pseudorotation. The dimensionless coupling constants corre

sponding to / and P are -0.0063/\/2 and 4.34/\/2 respectively, and UJQ is 127 cm"^ This 

corresponds to a stabilisation energy of 1196 cm~^ and a localisation energy of 15 cm~^ 

The value of ro is approximately —0.48 A (i.e. i t is an obtuse isosceles triangle). This is the 

potential surface that is used here. The value of Q^Q is taken to be 3.7 A, because there 

is relatively little excitation seen in this coordinate in the static spectroscopy, so that the 

equilibrium Vedue of this coordinate must be similar to that of the ground state (3.63 A) . 

The symmetric stretch frequency is taken to be 110 cm~\ using the value from the gener

alised valence bond calculations, since it appears to compare well with the value obtained 

from the femtosecond experiments. 

The B state has been found from the experimental excitation spectrum to be 625 nm 

(16000 cm~^) above the ground state, i.e. in T.P.I, experiments the origin of the 0 - 0 band 

for the B state is at 625 nm. 

5.3. 3 The Cation—Na^ 

The ground state of Nag" is not subject to Jahn-Teller distortions, because }ia.f has a 

doubly occupied fully bonding orbital ( la 'J , whereas the neutral species has an additional 
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The Potential for the B surface of Na_3 
In units of milli Hartrees 

ANGSTROMS 
Q X 

Fig . 2 3 . Contour diagram of the potential of the B excited state used in this work (1 mE î 

^ 219 cm-^). 

singly occupied antibonding orbital (le '); this also means that the bond energy of the 

cation is expected to be greater than that of the neutral trimer [126]. It has been suggested 

that the surface is very similar to that of the neutraJ species, apart from effects due to the 

conical intersection, i.e. it is very fiat [127] [128]. An ab-initio potential surface for Nag" has 

been calculated and presented in an analytical form [129]. On fitting to the anharmonic 

spectrum the normal frequencies were calculated to be: symmetric stretch vi = 142 cm~^; 

and doubly degenerate bend 1/2 = 101 cm~^. The value of Qs^ is calculated to be 3.443 A. 

The ionisation energy of Naa, found from experiments, is approximately 4 eV (32261 

cm -1 ) [130; • 

5.4 The Wavefunctions 

The ground-state vibrational wavefunction of Naa, which is used as the initial state in 

the wavepacket calculation, and the ground-state wavefunction of Nag", which is used in 

calculating the ion signed (see later), are calculated from their potentials [120] [129] using 

Tennyson's variational method [131]. The program TRIATOM [132] [133] is used with 
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The Potential for the X surface of Na_3^ 
In units of milli Harlrees 

ANGSTROMS 
Q X 

Fig . 24. Contour diagram of the ab-initio potential of the ground state of the ion (1 mE/i 

^ 219 cm- i ) . 

Jacobi, or scattering, coordinates for both systems. 

The wavefunctions are expressed as products of Legendre polynomials, (for 

J^^^ = 0), and Morse osciUator-like functions, Hn{r): 

(156) 

]mn 

where Hm and Hn are given by: 

Hn{r) = /3^/ ' iV„,exp(-iT/)y(°+i)/2L°(j ,) , (157) 

w i i th 

AD. 
y = Aexp[-/3{r-re)], where A = (3 ̂  We ( . and a = integer(A). 

(158) 

The parameters /x, re, uje and Dg can be associated with the reduced mass, the equilibrium 

bond length, the energy of the fundamental vibration and the dissociation energy of the 

bond. These parameters are optimised by minimising the energy of the ground state, using 
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a basis set which is a subset of the ful l set used for the calculation of the wavefunction. 
The values used in the present work are listed in table 4. is an associated Laguerre 
polynomial, with a normalisation constant Nna- In the systems under consideration, be
cause of the parameters used, the values of a are very large, making normalisation of these 
functions computationally intricate. 

Table 4. Optimised parameters for Naa and Nag" basis sets. 

coordinate /i/a.m.u. De/Eh We/Eh 

Na3,ri 22.98977 8.277 0.016081 0.0005566 

Na3,r2 22.98977 4.723 0.017705 0.0007180 

Na+, r i 22.98977 6.487 0.050770 0.0005214 

Na^,r2 22.98977 5.661 0.086270 0.0005081 

The coefficients, <i'„„i, are found using TRIATOM and then used in equation (156) to 

determine the appropriate wavefunction. 

The wavefunctions in both cases are found to be approximately Gaussian, centered at 

the equilibrium geometry of the molecule. Thus, the wavefunction of the X state of Naa 

was found to be approximately Gaussian at (g^ = -0.74 k,Qy = 0.0) with an energy of 

136.6 cm~^ above the bottom of the 'trough'. The wavefunction of the X state of Nag" was 

found to be approximately Gaussian at {Qx = 0.0, Qy = 0.0) with an energy of 150.4 cm~^ 

above the bottom of the well. 

5.5 The Simulation of the Experiments 

As stated previously, the time-dependent or wavepacket method is used to model the 

time-dependent experiments on the sodium trimer. This method can be divided into three 

distinct parts. First, the initial state must be defined. Secondly, the wavepacket must be 

propagated. Thirdly, the observables must be extracted. 

5.5. 1 The Preparation of the Initial State 

Before the pump laser is turned on the Naa is in its ground vibrational state in its 

ground electronic state. When the pump laser is turned on the Nas is promoted to various 

vibrational states in its B electronic state. Thus, the pump laser prepares the initial 

wavepacket on the B state which is to be propagated in time and then probed by a second 

laser pulse. 

Therefore, what is required is to model the effect of the pump laser and so the creation 

of the initial wavepacket on the B state from an initial wavepacket on the X state. To 
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The Ground State Wavefunction of Na3. 
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Fig . 25. Contour diagram of the ground-state wavefunction of Nas. 

describe the short pulse excitation process, i.e. the effect of the laser pulse, time-dependent 

first-order perturbation theory is used [134]. The wavefunction can be written as: 

* B ( i ) = i fuB{t - t')[fiBxE{t')]Ux{t')^x{0)dt', 
Jo 

(159) 

where ^x{0) is the initial wavefunction on the state, UB and Ux are the time evolution 

operators used to propagate the wavefunctions in time on the appropriate surfaces. Here, 

Ux{t') is simply e~^^^^ , where Ex is the energy of the ground vibronic state of the X 

state beneath the ground vibronic state of the B state ( —16000 cm~^), since ^x(O) is 

stationary, i.e. is an eigenfunction of the ground-state Hamiltoniaji. The transition dipole 

function, /XBJf > is approximated to a constant in the present work. The electric field due 

to the laser is of the form: 

E{t) = Eome-''^', (160) 

where EQ is the electric field vector and f{t) describes the temporal shape of the laser pulse, 

which has a Gaussian profile in this case, and u> is the central frequency of the pulse. 

In physical terms this can be considered in the following way. The laser pulse, although 

short, is not a 6 function of time. (If the laser pulse were a 6 function the wavepacket on the 
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The Ground State Wavefunction of Na3^. 
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Fig . 26. Contour diagram of the ground-state wavefunction of Nag". 

ground state would be moved vertically up onto the upper state since the complete certainty 

in the time of the pulse would lead to complete uncertainty in its energy, hence it would 

be equivalent to 'white light'.) Thus, the initial wavefunction will not be promoted to the 

excited state instantaneously. The part of the wavefunction which has not been promoted 

will evolve on its own surface (for a time equal to t'), until the time when it is promoted 

(at time equal to t'), after which it will evolve on the excited state potential surface (for 

a time equal to t — t'). What this means in terms of the actual wavepacket generated on 

the excited electronic state has been considered in detail in a series of papers by Williams 

and Imre [135] [136] [137]. They showed that each of the parts of the wavepacket promoted 

onto the excited state has a particular phase. Once on the excited state its phase will 

begin to vary depending on the energy which the wavepacket was given by the laser pulse 

(how much it is detuned from the zero of energy on the potential energy of the excited 

state) and the Hamiltonian of the state. Parts of the wavepacket which arrive subsequently 

will interfere with the wavepacket already on the excited state either constructively or 

destructively depending on how much the phase of the wavepacket on the excited state has 

changed from when ' i t arrived'. Williams and Imre showed that for certain laser pulses 
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the norm on the excited could initially increase, but then show a decrease, in the case of 
destructive interference occurring on the excited state. 

The calculation is carried out by discretising the time integral and then relating the 

wavefunction at time t + At to the wavefunction at t to give: 

* b ( < + AO = UB{At)<ifB{t) + iAtfit + At)e-<'^+^^^^'+^'^<ffx{0), (161) 

where t is measured from the beginning of the pump laser pulse. The At in equation (161) 

must be chosen to be small enough for the excitation process to be properly described. The 

calculations were repeated at shorter timesteps in order to check that the calculations were 

converged with respect to this At. 

5.5. 2 Propagation of the Wavepacket 

The time-dependent Schrodinger equation is used to propagate the wavefunction in 

time. There are several methods for propagating the initial wavefunction, which have been 

discussed previously. Here a global propagator carries out the propagation. This type of 

propagator uses a polynomial expansion of U{t), where the form of this operator is given 

by: 

* ( f ) = C/(<)*(0) = exp 

Thus an expansion of the type: 

-^Hdt 
n 

*(0). (162) 

N 
U{t)^Y,PkPki-iHAt/h), (163) 

Jfe=0 

is used, where P^ are complex Chebyshev polynomials. 

The potential used for the calculation (i.e. V) is that for the B excited state. The zero 

of energy is taken to be at the bottom of the 'trough', plus a constant which corresponded 

to an approximate zero point energy of the surface. This zero point energy is approximated 

using: 

Thus the zero of energy is the stabilisation energy, E^, less the approximate zero point 

energy, .^ZP, beneath the energy of the equilateral geometry. 

5.5. 3 Extracting the Observables 

The Na^ signal 

The quantity that is measured in the experiments is the Na3" signal. The Na3" is created 

by the probe laser promoting the wavepacket on the B state to the ground electronic state 

of the ion. 
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Therefore, what is required is to model the effect of the probe leiser and so the creation 
of a wavepacket on the ground ionic electronic state from the time-evolving wavepacket on 
the B state. The effect of the probe laser is modelled in a similar way to the effect of the 
pump laser. There is an added complication in this case, since the state formed is ionic [138]. 
The electron, which is ejected on formation of the Nag", can have a range of energies and 
a calculation must in principle be done corresponding to each of these energies. However, 
in the present work it is assumed that the kinetic energy of the departing electron is 
approximately zero. This can be done because the zero kinetic energy signal of the electron 
is very similar to that of the Nag" signal [111]. Thus the wavefunction on the potential 
energy surface of the ground state of the cation can be calculated, using the wavefunction 
on the B state, to be: 

^X+itD,t2 + At) =Ux+{At)^x+{iD,t2) 

+iAtf{t2 + At)e-^''('^+^')UB{tD + t2 + At)^B{tD = 0). ^^^^^ 

i£) is the time delay between the pump and probe lasers, i.e. the time between the centre 

of the pump and probe laser pulses. t2 is a measure of the time for which the probe laser 

has been on, i.e. a measure of the time for which the probe laser has created probability 

density on the X state of the ion, and is varied between —fmid and tj^^. The probe and 

the pump laser pulses are each assumed to be centred at a time of t^^ from the time when 

they are switched on. Thus, the calculation is done until the probe laser has died off to 

zero, at a time t2 = tmid, i-e. until the norm of the wavefunction on the X state of the ion 

becomes constant. The pump and probe laser are taken not to overlap temporally in this 

calculation, so that for values of in of less than 2 x ^niid no calculation is done. 

Again the transition dipole function for ionisation, fix+B^ is taken to be constant. Also 

f{t) is again taken to have a Gaussian profile. 

The Nag" signal is taken to be the norm of the wavefunction on the X state of the ion, 

i.e. 

S{tD) = (*x+(iD,imid)|*;r+(<D,^mid))- (165) 

Values of 5(f£)) are not obtained for t^ less than 2 x t^^^^, because of the requirement 

that the pump and probe laser pulses do not overlap. This function is Fourier transformed 

to give a spectrum which contains frequencies characteristic of the motion on the B state 

potential energy surface: 

5(u;) = r S(fz?)e2'^''"'^ dt = 2 » r S(tz))e''^*"'^ dt. (166) 
J-oo Jo 

The last equality arises because the frequency spectrum is always real. The magnitude of 

this function is used to represent the power density spectrum. 
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An approximate method 

To treat the probe laser exactly is computationally expensive, and can only be done 

for the femtosecond experiment. Therefore an attempt is made to approximate the ob

servable, the Na,f signal. An assumption is made that the only state of the ion which is 

populated by the probe laser pulse is the ground vibrational state. The justification of this 

assumption, for the femtosecond experiment, is that the energy available in the probe laser 

is restricted, so that only the ground state can be reached energetically. Thus the Nag" 

signal is thought of as the time-dependent square modulus of the overlap of the wavepacket 

with the wavefunction of the ground state of Na3'. 

The square modulus of the overlap function, A{tj)), is given by: 

A{tD) = \J J ^^x.+pr^BitD) dQ,dQy\' , (167) 

where ^(x"*") ground-state wavefunction of the ionised state, and the delay time, tj), 

is the time measured from the centre of the pump laser pulse. (Both the wavefunctions 

depend on the two coordinates.) Another assumption made is that +) can be considered 

to be essentially independent of time, i.e. at the same energy as the zero of the calculation, 

which implies that the ionisation potential of the B state is equal to the central frequency 

of the laser pulse. The Fourier transform of this overlap function (over a time from the end 

of the pump laser pulse to the end of the propagation) is used to give the power density 

spectrum. 

In the picosecond experiments where laser pulses with various different central frequen

cies are used it may be appropriate to overlap the wavepacket on the B state with different 

vibrational eigenfunctions of the ionic state. For these experiments, if the zero kinetic 

energy signal of the electron can also be assumed to be similar to the ion signal, the ap

proximation can be expected to work particularly well. (There is no experimental evidence 

to support this at present.) This is because the laser pulse has a very narrow energy spread 

and because vibrational levels in the ionic state are widely spaced. This implies that, if the 

departing electron has negligible kinetic energy, only one vibrational state of the ion will 

be populated. 

It is interesting to compare these results, i.e. those obtained using the overlap function 

and giving an approximate ion signal, to those which are obtained by the previous method, 

which treats explicitly the effect of the probe laser. Thus, for the femtosecond experiment 

the quality of this approximation can be judged, and a decision made on whether the 

approximation should be used with the picosecond experiments. The use of the modulus 

of the autocorrelation function has also been suggested as an approximate ion signal [115]. 

This was suggested because for the picosecond experiments the largest signal is obtained 
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at zero time delay, impljring that the best conditions for ionisation were described by the 

initial wavefunction. However, this proposition seems physically unreasonable. 

Other observables 

Besides the experimental signal and the pictures of the wavefunction at each timestep, 

some observables were calculated, in order to gain a better understanding of the chemical 

dynamics of this system. In particular the study of these can help to elucidate the coupling 

between the radial and angular motion. 

The norm and energy were calculated: 

norm (<) = j^B{tr^B{t)dT, (168) 

(169) 

where t is measured from the beginning of the pump laser pulse, and 

^ !^B{trH^B{t)dT 
^ S9B{ty9B{t)dr • 

I t was particularly interesting to note how the norm varied whilst the pump laser was still 

'on'. The normalisation is required since the norm of the B state changes whilst the pump 

laser pulse is still on. 

An attempt was made to calculate the energy in each mode, that is the energy in the 

radial mode and the energy in the angular mode, so that the transfer of energy between 

modes could be followed. This was done by splitting the Hamiltonian into radial-Hke and 

angular-like parts. This was not entirely straightforward since the potential is a complicated 

mixture of both coordinates. The Hamiltonian for the radial motion was approximated as: 

2m 

+ 
4r2 ^ dr2 

' 2 ^ 
P'r + ^ / ' r ^ -

1 f'r' I f ^ _ 2 f \ ^ 
2 p/ + 8 p»3 8 pii 

(170) 

where P' = y/2 P and / ' = y/2 / , and the Hamiltonian for the angular motion was approx

imated as: 

-h 2 r 

2m 

+ 

1 d' 
r2 d<̂ 2 

'2_3 '3_4 2 f ' r 
(171) 

The average values of r and cos <p were also calculated: 

J9B{tyr^B{t)dT 
{r{t)) = 

S9B{ty^B{t)dT' 
(172) 
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and 
^ ^ * B W W M ) ^ . (173) 

The autocorrelation function 

In Chapter 2 i t was shown how the autocorrelation function could be used to obtain 

information about the eigenvalues of a system. In the present work, the overlap between the 

wavefunction created on the B state at the end of the pump laser pulse, and propagating 

wavefunction was calculated: 

C{t) = (*5(2 X t^i)\9B{t)) (174) 

The Fourier transform of the autocorrelation function (over a time from the end of the 

pump laser pulse to the end of the propagation) contains information on the energies of the 

eigenstates of the surface that are present in the wavepacket. In the case of the femtosecond 

experiment, the pulse laser has a wide energy range, so that the wavepacket produced will 

be made up of many different eigenstates. Thus the frequency spectrum produced by 

the femtosecond calculation is nearly equivalent to the spectrum obtained from the time-

independent experiments on the B state of the sodium trimer. The energy levels should be 

identical, but the relative magnitudes of the peaks will differ. I f a laser pulse equivalent 

to 'white light' is used the spectrum obtained would correspond exactly to the absorption 

spectrum. In the case of the picosecond experiment, the pulse laser has a narrow energy 

range, so that the wavepacket produced will be made up of very few eigenstates. The 

frequency spectrum obtained from these calculations wiU be less useful to compare to the 

time-independent experiments, but wiU give information about the eigenstates that are 

present in the wavepacket. 

As mentioned above, that it has been suggested [115] that the 'autocorrelation function' 

be used to model the ion signal. This was because in the picosecond experiments the largest 

ion signal was found for zero delay time, i.e. the wavefunction at zero time delay described 

the best conditions for ionisation. Thus, the suggestion is that the ion signal be modelled 

by the function formed by the overlap of the wavefunction at zero delay time, i.e. at a time 

corresponding to the middle of the pump laser pulse, and the propagating wavefunction. 

Here, this is not the true autocorrelation function; it is just another overlap function, which 

wiU be called the zero time delay overlap function: 

\ / ( « £ ( < D ) I « B ( < I . ) ) 

Thus it has been suggested that the modulus of this function could be used to model the 

ion signal. 
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5.6 The Results 

Calculations were done to simulate both the femtosecond and the picosecond time-

dependent experiments. That is the calculations were done several times: once for a laser 

pulse of width 70 fs (F.W.H.M.), centred at a time of 120 fs, with central frequency, u), of 

16129 cm~^; once for a laser pulse of width 1.3 ps (F.W.H.M.), centred at a time of 2.4 

ps, with central frequency of 16136 cm~^, c ind then again with the same pulse width but 

with central frequencies of 16207 cm~^, 16129 cm~^ and 16000 cm~^; the calculations were 

also done assuming a laser pulse of 'white Ught', i.e. the initial wavefunction was moved 

vertically from the X state to the B state. 

5.6. 1 The Initial Wavefunction 

Several graphics programs have been written, utilising the Uniras and graPHIGS graph

ics subroutine libraries, to visualise the motion of the wavepackets in the (r, (f>) plane. The 

formation of the initial wavefunction on the B state from the wavefunction on the X state 

was followed by taking 'snapshots' of the wavefunction at intervals in time, while the pump 

laser pulse was 'on'. 

The simulations of the two time-resolved experiments, i.e. the femtosecond and the 

picosecond, produce very different initial wavefunctions. For both simulations at the be-

giniung of the pump laser pulse the wavepacket produced is very similar to the ground-state 

wavefunction on the X state. Initially, the molecule 'thinks' that the laser pulse is 'white 

light', i.e. the wavefunction on the ground state is moved vertically to the B state. However, 

as the laser pulse stays on, the wavepacket produced begins to show the characteristics of 

the frequency of the laser pulse, the true width of the laser piilse and the potential energy 

surface on which the wavepacket is evolving. This comes about as the different parts of 

the wavepacket, which 'arrived' at different times, interfere with each other to produce the 

'final' wavepacket. 

The pictures that demonstrate these results for the femtosecond experiment are shown 

in figure 27. The time in this figure is measured from the beginning of the pump laser 

pulse. 

In the femtosecond experiment, there is a fairly large energy spread in the laser pulse, 

approximately 300 cm~^, so that the wavepacket produced is a superposition of very many 

different eigenfunctions of the B state. Thus, the wavepacket produced in the simulation 

is expected to be in some ways similar to the wavepacket produced by vertical excitation. 

This means that the wavepacket will be radially excited as the positions of ro are different 

on the X and B surfaces (by approximately 0.27 A) . As suggested above, at the beginning 

of the pump laser pulse the wavepacket on the B state is very similar to the ground-state 

5: Tie Sodium Trimer 



106 

Table 5. Eigenfunctions present on the B surface in the picosecond experiment. 

Laser Wavelength Eigenfunctions Present 

625 nm « = 0 , j = 0,1,2 

620 nm u = l , i = 0,1,2 

619.7 nm u=l,j^0,l,2 

617 nm ii = l , j = 4 , 5 ^ = 0 , ^ = 8 

wavefunction on the X state. However, i t can be seen that by the middle of the laser pulse 

the wavepacket has moved substantially towards the equilibrium value of r, i.e. the ro for 

the B surface. By the end of the pulse the wavepacket has moved away from its equilibrium 

radial value towards the equilateral geometry. In doing so i t has 'hit ' the curved potential 

wall near the origin of the coordinate space and has spread out angularly, as well as moving 

towards slightly larger values of r. 

The pictures that demonstrate these results for the simulation of the picosecond exper

iments at different laser frequencies are shown in figures 28 —> 31. 

In the picosecond experiment there is very little energy spread around the central 

frequency of the pulse, approximately 15 cm~- .̂ Thus i t is expected that in this case the 

wavefunction produced in the simulation will almost be an eigenstate of the B state. As 

in the simulation of the femtosecond experiment the wavepacket produced initially is very 

similar to the ground-state wavefunction, i.e. there is a great deal of radial excitation. 

However, due to the very limited spread of frequency in the laser pulse, by the time the 

laser pulse has stopped there are a few eigenfunctions present, now \rith very little radial 

excitation. These eigenfunctions can be identified easily, both by their angular form and 

by a knowledge of the energy levels around the excitation frequency of the laser pulse 

120]. The eigenfunctions present on the B surface in the simulation of each picosecond 

experiment are listed in table 5. 

5.6. 2 The Propagating Wavefunction 

In the simulation of the femtosecond experiment, after the wavepacket has been created 

by the pump laser pulse, it starts to vibrate along the radial direction. This is expected 

since the equilibrium position in the radial direction on the B state differs from that on 

the X state. After a very short time (less than a hundred femtoseconds) the wavepacket 

starts to spread out. Then motion on the surface appears to become largely disorderly, with 

the wavefunction spreading out over the whole of the angular space, whilst still vibrating 

backwards and forwards across the 'trough'. 
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In the picosecond experiment, after the wavepacket has been created by the pump laser 
ptilse, i t moves very little. This is not unexpected since i t has already been stated that the 
wavefunction produced is almost an eigenstate. However, i t is not completely stationary 
and the motion appears to be the result of the beating of two or three eigenstates. This 
beating shows itself as a slow movement of the maximum of the wavefunction from one 
side of the potential energy surface to the other, i.e. the wavefunction moves around the 
'trough'. 

5.6. 3 The Observables 

5.6. 4 The Femtosecond Experiment 

The other observables 

The results of the calculation of the various observables are shown in figures 32. The 

norm of the wavefunction rises very rapidly during the pump laser pulse, and subsequently 

stays constant. The energy decreases during the pump laser pulse as the high energy 

components, present initially, interfere destructively and so disappear; after the pulse stops 

the energy stays constant. The energy in the radial mode decreases rapidly during the 

pulse, for the same reasons that the total energy decreases, i.e. the very highly excited 

components in the radial direction have died out. 

After the laser pulse has stopped there is a strong oscillation in the radial and angtdar 

energy (it is a little difficult to see the radial energy oscillation due to the scale, which 

includes the large variation while the laser pulse was on); by the time this oscillation has 

damped down energy has been transferred between the radial mode and the angular mode. 

Over the same time the amplitude of the radial motion is strongly damped and the average 

value of cos^ has approached zero, showing that the wavefunction has spread out. 

At first this large oscillation in the energies of the radial and angular modes seems a 

little surprising, as does the damping of the motion in the radial direction. However, the 

initial wavefunction is not separable, i.e. it cannot be written as a product of the functions 

in the radial mode and the functions in the angular mode. Therefore, even if there is no 

potential coupling (i.e. i f the quadratic coupling constant is set to zero), the motion of 

the wavepacket on the potential surface is not separable, so that there is a flow of energy 

between the two modes. Also, the wavepacket produced initially on the B state is displaced 

a certain amount from the equilibrium position in the radial direction. This displacement 

will not, however, be the amplitude of the radial motion on the B surface. The wavepacket 

which is promoted from the X state has a width associated with that surface. However, 

once on the B state the characteristics of the wavepacket, i.e. its width and amplitude, will 
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change until they ' f i t ' the potential on the B state. 

After this initial period the oscillation in the energy in the two modes becomes less 

pronounced; the average value of r oscillates about its equilibrium value, in a way indicative 

of wavepacket motion, and is only slightly damped; the average value of cos ̂  oscillates 

around an average value of zero, with a changing period of oscillation, impljring that the 

motion on the surface is disorderly. 

A short investigation into the initial strong damping of the radial motion 

Figures 33 35 show how the observables change, from a time after the laser pulse 

has finished, for the simulation of the femtosecond experiment, for the vertical excitation 

of the laser pulse from the X state to the B state, and lastly for the simulation of an altered 

femtosecond experiment with the temporal width of the laser pulse set to approximately 

41 fs (all with the quadratic coupling constant set to zero). 

For all three figures it can be seen that initially the wavepacket has a large displacement 

from the equilibrium in the radial direction. However, the wavepacket quickly chcinges, with 

the amplitude of the motion in the radial direction decreasing with each oscillation in the 

wavepacket. During this period there is also a large oscillation in the energies in the radial 

and angular modes. Eventually the wavepacket appears to reach an equilibrium situation, 

after which the amplitude of the motion in the radial direction remains fairly constant. 

The wavepackets created on the B state with the three different laser pulses, described 

above, differ from each other. The higher the energy of the laser pulse, or spectral width 

of the laser pulse, the more high states there are in the wavepacket, and the larger the 

initial displacement from the equilibrium position in the radial direction. However despite 

this, after this initial period when the wavepacket motion in the radial direction is damped, 

the amplitude of the oscillation in the radial direction does not give an indication of the 

energy in the radial mode. For example, in the case of the vertical excitation the eventual 

amplitude of the radial motion is low, although there is a greater energy in the radial mode 

compared to the other two cases. 

Now consider the effect of the potential coupling on this initial damping of the radial 

motion. Figures 36 and 37 show how the various observables change, from a time after the 

laser pulse has finished, for the femtosecond experiment with the dimensionless quadratic 

coupling constant set to —0.0063/\/2 (as used usually) and —0.01/\/2. Figure 33 shows 

the same information for the coupling constant set to zero. 

I t is interesting to note that increasing the magnitude of the quadratic coupling con

stant, which increases the barrier to angular motion, decreases the initial damping in the 

radial motion. The larger the magnitude of the quadratic coupling constant the larger the 
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amplitude of the motion in the radial motion after the fast initial damping. 

For larger times the increase in the magnitude of the quadratic coupling constant 

gives rise to an increased oscillation in the energies in the radial and angular modes. The 

amplitude of the motion in the radial direction is steadily damped (though not to the 

same extent as during the initial damping of the radial motion), the more so the larger the 

magnitude of the quadratic coupling constant. 

The 'Naf signal 

The Nag" signals calculated using both the exact and the approximate methods are 

shown in figures 38 and 39 for the femtosecond experiment, together with their Fourier 

transforms. Figure 40 shows the Fourier transform of the exact signal, the approximate 

signal and the modulus of the zero time delay overlap function. Both the ion signals have 

large peaks at 127 cm~^. There appear to be few other frequencies present in any of the 

spectra. The agreement between the exact method of calculating the ion signal and the 

approximate method appears to be good. The zero time delay overlap function shows more 

structure than the other signals. 

The large peak in the spectrum at 127 cm~^ is expected. The cation has an equi

lateral geometry, thus in order to be ionised the Nas must move towards the equilateral 

geometry. Therefore the frequency which corresponds to the motion to and fro across 

the 'trough', towards and away from the equilateral geometry, i.e. the radial frequency, is 

strongly represented in the ion signal. Given that the ground vibrational state of the ion is 

approximately a Gaussian centred at the origin it expected that the overlap will be largest 

when the wavepacket moves in towards the equilateral geometry. The average value of r 

shows a strong relation to the calculated ion signal. When the value of r is at its minimum, 

the ion signal is at its maximum and vice versa. That few other frequencies are present with 

any significant magnitude is not entirely unexpected. The time dependence of the total ion 

signal in pump-probe experiments has been investigated by Engel for a generalised system 

138], and it was stated that the ion signal may not necessarily yield much information 

about the molecular dynamics within an intermediate electronic state. In the simulation 

of the femtosecond experiment done here, the energy restriction in the probe laser ensured 

that some information, e.g. regarding the radial frequency, was obtained. However the 

energy spread associated with the laser pulse meant that the smaller frequencies, i.e. those 

corresponding to the pseudorotational motion, were not present in the ion signal. 

The autocorrelation function 

The autocorrelation function calculated for the femtosecond experiment is shown in 
figure 41 together with its Fourier transform. The energy levels correspond well with the 
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static spectroscopy. 

The autocorrelation function, calculated for the vertical excitation of the wavepacket 

from the X state to the B state, and its Fourier transform are shown in figure 42. Figure 43 

shows the experimental spectrum together with the Fourier transform of the autocorrelation 

function for vertical excitation. The energy levels of course again correspond well with the 

static spectroscopy, but in this case the intensities also show a fair correspondence with 

the experimental results. The potential used for the propagation, i.e. the B state, was 

obtained from a fit to the energy levels observed in the static spectroscopy [120]. Also, the 

potential used to describe the X state, and so consequently the ground-state wavefunction 

of the X state, was obtained from a fit to the intensities of the energy levels in the static 

spectroscopy [120]. Hence the good agreement of both the energy levels and the intensities 

is to be expected. 

5.6. 5 The Picosecond Experiments 

The other observables 

The results of the calculation of the various observables are shown in figures 44 47. 

The results for the three lowest excitation frequencies are similar. The norm rises gradually 

to a constant value over the time of the pump laser pulse. The energy rises rapidly initially, 

as the wavepacket produced on the B surface 'thinks' that it is being verticeiUy excited from 

the ground state. However, the destructive interference between the high energy parts of 

the wavepacket soon reduce the energy, which then remains constant. The energy in the 

radial and angular modes shows a similar reduction. After the laser pulse has finished 

there is a small oscillation in the angular energy, but the corresponding oscillation in the 

radial mode is too small to see. The average value of r shows a decrease while the laser 

pulse is still 'on' but then remains nearly constant, showing a very small oscillation. The 

average value of cos (f) oscillates slowly throughout the propagation; this oscillation appears 

to correlate with the small oscillation in r. This gradual variation in the value of ^ was 

noticed whilst discussing the propagating wavefunction and the slow movement of the 

wavefunction around the 'trough'. It can be seen that there is a small coupling between 

the radial and angular modes in these experiments. 

The results for the calculation at 16207 cm~^ show an interesting difference. The norm 

increases initially but some time after the middle of the pulse it decreases. The energy 

of the laser pulse above the zero-point energy of the B surface is large. This means that 

the phase of the 'wavepackets arriving' on the surface are changing rapidly with respect to 

those which are already on the surface. The different 'sets of wavepackets' will interfere 

with each other, and in this case because their phases are so different the interference will 
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be destructive so that the norm of the wavefunction on the surface wiU decrease. The 
variation in the observables after the laser pulse has finished is then similar to the other 
picosecond experiments. 

A short investigation into the radial and angular coupling 

I f the quadratic coupling is set to zero, the coupling between the radial and angular 

modes should disappear. This is the case for the picosecond experiments since the initial 

wavefunction is approximately separable, as only one vibrational state in the radial mode 

is excited (with the exception of the 16207 cm~^ picosecond experiment). Figures 48 —> 50 

show the change in the observables, from a time after the laser pulse has finished, for the 

16136 cm~^ picosecond experiment, with the dimensionless quadratic coupling constant set 

to 0.0, —0.0063/^/2 and —O.Ol/y/2. (The variation in the quadratic coupling constant will 

affect the energy levels slightly and the wavepacket produced wiU be a Uttle different. This 

makes it difficult to separate out completely the various different factors which alter the 

observables as the wavepacket propagates in time.) 

Figure 48 shows that the coupUng between the two modes does indeed disappear when 

the potential coupling in the Hamiltonian is removed, though the average value of cos^ 

still oscillates, with a large amplitude, as the angular modes present beat together. For 

non-zero values of the quadratic coupling constant the energy in the radial and angular 

modes oscillate. The average values of r and cos (f> also oscillate. 

An increased value of the magnitude of the quadratic coupling constant increases the 

amplitude of the oscillations in the energies of the radial and angular modes. It does not 

increase the amplitude of the oscillation in r, but this may be because the wavepacket 

formed is different. 

The Na^ signal 

The Nag" signal is only calculated using the approximate method for the picosecond 

experiment, due to difficulties involved in the computation of the exact Nag" signal; these 

difficulties were mainly to do with limitations of computer time and memory. These results 

are shown in figures 51 —> 54. 

For the simulation of all the picosecond experiments the overlap with the first excited 

vibrational state of the bend was used. At least for the simulation at 16000 cm~\ if not 

for those at the higher frequencies, it would be expected that the overlap with the ground 

vibrational state would be appropriate (on energetic grounds) to model the ion signal. 

However, it was found that the overlap with the ground vibrational state showed little, if 

any, structure. 

For the picosecond experiments the oscillation in the ion signal arises from the beating 
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together of the various pseudorotational modes. This beating gives rise to a time-dependent 
wavefunction which moves in an angular manner on the P.E.S., so that the wavefunction 
moves around the 'trough' of the potential. As the wavepacket moves around the trough, 
i.e. as the average value of cos(f> varies, i t will also move slightly into and away from the 
equilateral geometry, i.e. the average value of r will vary, depending on the circularity of 
the potential which is measure of the extent of the potential couphng. 

The B state potential used here is almost perfectly circular, i.e. the value of r around 

the trough is almost constant. This is a consequence of the fact that the barrier to pseu-

dorotation is thought to be low. Given that the potential is almost circular, the wavepacket 

as it moves around the trough wiU have an almost constant value of r, so that the overlap of 

this wavepacket with the ground vibrational state of the ion, which depends largely on the 

variation in the radial displacement, Avill be almost constant. Thus, in order to compensate 

for the potential, which is thought to be 'too' circular, the overlap is formed with the first 

excited vibrational state of the bend, which is not angularly symmetrical as is the ground 

vibrational state. 

The results for the lowest frequency (16000 cm~^) show an oscillation with a period of 

approximately 2.6 ps. The results for the calculations at 16129 cm~^ and 16136 cm~^ show 

an oscillation with a period of approximately 2.1 ps. The ion signal for these simulations 

grows steadily from zero delay time, and then oscillates without any decay. These signals 

arise from the beating together of the j — 0,1, and 2 pseudorotational levels. These energy 

levels will give beat frequencies of approximately: 3.5 c m ~ \ corresponding to a period of 

9.5 ps; 12.6 cm~^, corresponding to a period of 2.6 ps; and lastly, 16.1 cm~\ corresponding 

to a period of 2.1 ps. The second of these frequencies appears to be dominant in the results 

for the calculation at 16000 c m ~ \ whilst the last of these beat frequencies appears to be 

dominant in the signal for the calculations at 16129 cm~^ and 16136 cm~^. The results 

for the calculation at 16207 cm~^ show a small oscillation with a period of approximately 

1.0 ps. The ion signal at this frequency is largest soon after zero delay time, but after 

the initial decay the signal does not steadily decrease. This signal arises from the beating 

together of the u = l,j = 4,5 and v, = 0,j = 8 pseudorotational levels. The u = l,j = 5 

and the u = l,j = A levels differ in energy by approximately 32 cm~\ which corresponds 

to a period of 1.0 ps. The u — 0,j = 8 level is approximately 8 cm~^ above the u = 1, j = 4 

level; this frequency corresponds to a period of 4.1 ps. This period is not seen in the overlap 

function. 

The autocorrelation function and the zero time delay overlap function 

Figures 55 —> 58 show the zero time delay overlap function and the Fourier transform 
of the autocorrelation function for the picosecond calculations. The modulus of the zero 
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time delay overlap function shows all the beating frequencies described above, though as 
for the overlap function some frequencies are dominant. The value of the function is largest 
soon after zero delay time, but shows no steady decay at greater times. 

The Fourier transform of the autocorrelation function confirms that the energy levels 

that were identified in the initial wavefunction are in fact those present in the propagating 

wavefunction. 

5.7 Conclusions 

The static spectroscopy was successfully modelled using the potential of the B state 

and initial wavefunction of the X state. Thus, there can be a certain amount of confidence 

in these. 

The initial wavepacket created by the femtosecond laser pulse is made up of many states, 

which are excited both in the radial mode and in the angular mode. This wavepacket has 

a large amplitude motion in the radial direction. The angular motion appears to be mostly 

disorderly. The oscillation of the wavepacket in the radial direction gives rise to an ion 

signal which oscillates with the frequency of the radial motion. 

The initial wavepacket created by the picosecond laser pulse is made up of very few 

states, which are excited in the angidar mode, but are in one particular radial state. The 

angular states present interfere with, each other to produce a wavefunction which moves 

angularly. The small coupling of the angular and radial modes, through the quadratic 

coupling constant, means that as the wavepacket moves angularly it moves radially as well. 

This small radial motion gives rise to an ion signal which oscillates with the beat frequencies 

of the angular modes. 

The approximate method of calculating the ion signal for the femtosecond simulations 

appears to give satisfactory agreement with the exact method of calculation. This means 

that for the picosecond experiments the calculation of the ion signal can be carried out using 

this approximation. However, it may be more appropriate for a variety of reasons to use 

vibrational states, other than the ground state, to form the overlap function. In fact, for the 

picosecond experiments the modulus of the zero time delay overlap function shows slightly 

better agreement with the experiment than the square modulus of the overlap function. 

A useful implication of the success of the approximate method is that the calculations 

can be extended to three dimensions, i.e. including the symmetric stretch. In the three 

dimensional calculations, it would not be possible to calculate the exact ion signal with the 

present computational resources, so that it is necessary to have some approximate method 

to calculate the ion signal. 

The calculation using the femtosecond laser pulse shows poor agreement with the ex-
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perimental results. The experimental spectrum shows a small peak at 123 cm~^ which 
possibly corresponds with the radial frequency of 127 cm~^. Superficially, the poor agree
ment can be attributed to the dominance of the results by the symmetric stretch frequency. 
However, the static spectroscopy appears to show very little, i f any, excitation in the sym
metric stretch frequency. This makes the results of the femtosecond experiment rather 
difficult to understand. 

The picosecond experiments at 625, 620, and 619.7 nm show some agreement with the 

experimental results. The oscillations though are not with a time period of 3 ps but of 

approximately 2 ps. The results at 617 nm show less similarity to the reported experimental 

results. The ion signal oscillates with a long time period of approximately 4 ps, which can 

be compared to the experimental value of 3 ps, but there is also a short time period in the 

oscillation of approximately 1 ps, which has no corresponding value in the experimental ion 

signal. However, i t is possible that on a better potential surface the energy gap between the 

u = 0,j = 8 and the u — l,j = A levels could widen slightly so that the beating between 

these two levels could yield the required frequency. The u = 0,j — 8 level is not resolved 

in the static spectroscopy, so i t is not possible to gain information about its true energy 

from the stationary spectrum. 

It is not expected that the calculation in three dimensions will greatly alter the results 

of the picosecond calculations at 625 nm; however with a symmetric stretch frequency of 

110 c m ~ \ extra energy levels in the regions excited by the laser pulses at 620, 619.7 and 

617 nm may effect the results of the calculations. 
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The Creation of a wavepacket on the B state fs expt. 
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Fig. 27. 'Snapshots' of the wavefunction evolving in time during the femtosecond experi

ment. 
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The Creation of a wavepacket on the B state 16000 cm-1 ps expt. 
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Fig . 28. 'Snapshots' of the wavefunction evolving in time during the 16000 cm~^ picosecond 

experiment. 

5; T ie Sodium Trimer 



117 
The Creation of a wavepacket on the B state 16129 cm-1 ps expt. 
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Fig . 29. 'Snapshots' of the wavefunction evolving in time during the 16129 cm~^ picosecond 

experiment. 
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The Creation of a wavepacket on the B state 16136 cm-1 ps expt. 
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Fig . 30. 'Snapshots' of the wavefunction evolving in time during the 16136 cm~^ picosecond 

experiment. 
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Fig . 31. 'Snapshots'of the wavefunction evolving in time during the 16207 cm" picosecond 

experiment. 
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Results for fs expt. 
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Fig . 32. Graphs showing the variation of the observables over the entire propagation time 

for the femtosecond experiment. 
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Results for fs expt., f=0.0 
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Fig . 33. Graphs showing the variation of the observables over the time after the pump laser 

pxilse has finished for the fs expt., with the quadratic coupling constant set to zero. 

5: T ie Sodium Tnmer 



122 
Results for vertical excitation, f=0.0. 
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Fig . 34. Graphs showing the variation of the observables over the propagation time for the 

vertical excitation, with the quadratic coupling constant set to zero. 
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Results for altered fs expt., f'=0.0 
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F i g . 35. Graphs showing the variation of the observables over the time after the pump laser 

pulse has finished for the altered fs expt., with / set to zero. 
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Results for fs expt. 
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F i g . 36. Graphs showing the variation of the observables over the time after the pump laser 

pulse has finished for the fs expt., with / set to -0.0063/v^. 
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Results for fs expt., f=-0.01 
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F i g . 37. Graphs showing the variation of the observables over the time after the laser pulse 

has finished for the fs expt., with / set to —0.01/\/2. 
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Results for fs expt. 

Na_3+ signal, together with its Transform. 
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F i g . 38. Graphs showing the Na^ signal as a function of delay time and its Fourier transform 

for the femtosecond experiment. 
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Results for fs expt. 

Approx. Na_3+ signal, together with its Transform. 
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F i g . 39. Graphs showing the approximate Naj" signal as a function of and its Fourier 

transform for the femtosecond experiment. 
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Results for fs expt. 
Transform of Approx. Na_3+ signal. 
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F i g . 40. Graphs showing the Fourier transform of the exact and approximate Naj" signal 

and the modulus of the zero time delay overlap fn. for the fs expt. 
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Results for fs expt. 

Transform of Autocorrelation function, showing energy levels. 
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F i g . 41. Graphs showing the autocorrelation function and its Fourier transform for the fem

tosecond experiment. 
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Results for vertical excitation. 

Transform of Autocorrelation function, showing energy levels. 
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F i g . 42. Graphs showing the autocorrelation function and its Fourier transform for vertical 

excitation. 
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Results for vertical excitation. 
Transform of Autocorrelation function, showing energy levels. 
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F i g . 43. Graphs showing the experimental spectrum and the Fourier transform of the auto

correlation function for vertical excitation. 
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Results for 16000 cm-1 ps expt. 
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F i g . 44. Graphs showing the variation of the observables over the entire propagation time 

for the 16000 cm~^ picosecond experiment. 
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Results for 16129 cm-1 ps expt. 
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F i g . 45. Graphs showing the variation of the observables over the entire propagation time 

for the 16129 cm~^ picosecond experiment. 
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Results for 16136 cm-1 ps expt. 
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F i g . 46. Graphs showing the variation of the observables over the entire propagation time 

for the 16136 cm~^ picosecond experiment. 
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Results for 16207 cm-1 ps expt. 
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F i g . 47. Graphs showing the variation of the observables over the entire propagation time 

for the 16207 cm~^ picosecond experiment. 
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Results for 16136 cm-1 ps expt., f=0.0 
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F i g . 48. Graphs showing the variation of the observables over the time after the laser has 

finished for the 16136 cm~^ ps expt., with / set to zero. 
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Results for 16136 cm-1 ps expt. 
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F i g . 49. Graphs showing the variation of the observables over the time after the laser has 

finished for the 16136 cm~^ picosecond experiment. 
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Results for 16136 cm-1 ps expt., f'=-0.01 
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F i g . 50. Graphs showing the variation of the observables over the time after the laser has 

finished for the 16136 cm~-^ ps expt., with / set to O.Ql/-\/2. 
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Results for 16000 cm-1 ps expt. 

Approx. Na_3+ signal, together with its Transform. 
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Results for 16129 cm-1 ps expt. 
Approx. Na_3+ signal, together with its Transform. 
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Results for 16136 cm-1 ps expt. 

Approx. Na_3+ signal, together with its Transform. 
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Results for 16207 cm-1 ps expt. 
Approx. Na_3+ signal, together with its Transform. 
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Results for 16000 cm-1 ps expt. 

Transform of Autocorrelation function, showing energy levels. 
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Results for 16129 cm-1 ps expt. 
Transform of Autocorrelation function, showing energy levels. 
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Results for 16136 cm-1 ps expt. 
Transform of Autocorrelation function, showing energy levels. 

145 

1.75-10'-^ 

1.5-10' 

O 
P 1.25-10'-| 

^ 1.0-10--I 

O 7.5-10'-| 

5.0-10'H 

§ 2.5-10'-

0.0-10- I I I I I I I I I ' ' 
no' 2-10' 0-10-

I I I I 
3-10' 

M l ' 
4-10' 

• T - T T -
5-10' 

I I I I I 
6-10' 

FEMTOSECONDS 
T]ME 

" I I I I I I ' 
n o ' 8*10' 

I ' 
9-10' no' 

no" 

9-10" H 

u 8-10 H 

d 7-io"H 

^ 6-10 --I 

O 5-10' - | 
a: 
2 4-10"-I 
z 
S. 3-10"-I 

2-10 H 

n o H 

0-10-

152 
' I I I M I I I I I I I I I I I I I I I I I I 11 I I I I I I I I M I I I Mf I I I T ) I I M I I I I I I I n I I I I I I I M I I I I M I | T 

153 1 54 1 55 1 56 157 158 159 160 161 162 163 164- 165 166 167 168 

•10'M-1 

WAVENUNSER 

F i g . 57. Graphs showing the zero time delay overlap fn . over t j ) and the Fourier transform 

of the autocorrelation f n . for the 16136 cm~-^ ps expt. 

5: T i e Sodium Trimer 



Results for 16207 cm-1 ps expt. 
Transform of Autocorrelation function, showing energy levels. 
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6: Three Dimensions 

The previous chapter is concerned wi th two-dimensional calculations on the sodium 

trimer, i.e. the effect of the symmetric stretch has not been taken into account. This mode 

is usually considered to be less important because i t is of a'̂  symmetry, so that distortion in 

this coordinate does not change the symmetry of the potential. However, there is evidence 

that the coupling between the symmetric stretch and the other two vibrational modes may 

be significant [117][119 . 

The question of interest for the femtosecond experiments, which calculations i n three 

dimensions can address, is concerned w i t h the very strong intensity of the symmetric stretch 

frequency compared to the pseudorotational-radial frequency in the experimental spectrum 

of the ion signal. The dominance of the results by this frequency implies that the molec

ule is highly excited in the symmetric stretch coordinate. This means that there is a 

wavepacket on the B state which moves towards and away f rom the equilibrium geometry 

of the symmetric stretch coordinate for the ion {Qa^ — 3.443 A ) , wi th a high cunpUtude 

motion. However, the static spectroscopy shows l i t t l e , i f any, excitation in the symmetric 

stretch coordinate. This impUes that the wavepacket produced on the three dimensional B 

state surface would not be highly excited in the symmetric stretch coordinate, and that the 

ion signal would not be dominated by the symmetric stretch frequency. I n the last chapter 

i t was seen that the wavepacket produced on the B state surface was highly excited in the 

radial direction, i.e. i t moved backwards and forwards across the ' trough' wi th a high am

plitude motion. Thus, i t would be expected that the ion signal would reflect this strongly 

varying radial displacement, i.e. the results would be dominated by the radial frequency. 

For the picosecond experiments the questions of interest are: first, whether the extra 

energy levels due to the symmetric stretch frequency wiU be populated to any extent and 

so affect the beating frequencies seen in the ion signal; cind secondly, whether a coupling of 

the {Qzi Qy) and the Qa vibrational modes can explain the rapid decay i n the ion signal. 

The Hamiltonian i n three dimensions is: 

H = 
2m [4r2 ^ ir"^ ^ r2 ^.j^zj • 2m iQ\ 'rV{T,4>,Qa). (176) 

In the following, when the radial direction is mentioned, this refers to the radial mode 

m the pseudorotational space and does not refer to the symmetric stretch mode. 
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6.1 T h e P o t e n t i a l — 7 ( r , g , ) 

The three-dimensional potential is divided into two terms: 

F ( r , <p, Q,) = VQ,{Q,) + Vc{r, <f>, Q . ) . (177) 

The first term VQ, ( ^ , ) only depends on the coordinate, and the second term Vc{r, (f>, Q,) 

couples together all three coordinates. A n harmonic potential is used for VQ^(Q,): 

where AQs is the distortion i n the symmetric stretch coordinate away from its equilibrium 

position (when there is no coupling), Qg^. The force constant, KQ^, is derived f rom the 

symmetric stretch frequency, LJQ^ : 

KQ, = {27r)WQ^m, (179) 

(the reduced mass of the mode is in this case the mass of a sodium atom). 

Now the potential which couples all three vibrational coordinates, Vc{r,<f),Qg), must 

be introduced. A form for this potential has been suggested by Meiswinkel and Koppel 

117i; this potential takes into account the influence of the totally symmetric mode on the 

E ® e Jahn-Teller effect. Here, an impl ic i t extension of this potential is used, to describe 

the influence of the total ly symmetric mode on the pseudo-Jcihn-Teller effect, (as for the B 

state of the sodium trimer, described previously). The potential can be expressed in the 

following fo rm: 

2{P 4- 6 A Q , ) ' + 2 / ( P + bAQ,)r cos(3^i) - f ( J ^ 

2 1/2 

, (180) 

where P, K and / have been defined previously ( in Chapter 5) and b represents the bilinear 

coupling constant involving both vibrational modes (e' and a'^). Vc{T,<f>,Qg) is taken to be 

V-{r,<^,Qt). Comparing this potential to that defined previously, equation (153), i t can 

be seen to be analogous except that the linear coupling constant P is replaced by the term 

P -r bAQg. I t is assumed that the bilinear coupling constant is of comparable magnitude 

to the normal quadratic coupUng constant [117 . 

The positions of the minima and saddle points depend on the signs of the coupling 

constants in a similar way to that described in the last chapter; thus, the surface is char

acterised by the following extremal points (ro, <?>o, ^ Q s , o)' 

-cos(30o) = ± 1 . ro = 7= , (181) 
^"^^ • {K-2{byKQ,)±V2\f\y ^ ^ 
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and 

^ ' ^ " • » - ( x - 2 ( i ^ / i r , . ) ± v f | / l ) ' " ' 2 ' 

where A Q , , ̂  is the amount by which the position of the minimum and saddle points in the 

symmetric stretch coordinate are shifted f rom the equilibrium position when there is no 

coupling {Qao)- The Jahn-Teller stabilisation energy and the localisation energy are given 

by: 

p2 2\/2\f\P^ 

^' ^ {K-2{byKQ,)-V2\f\y ^ [{K-2{h^lKQ,)Y-2P\ ^^^^^ 

6.2 T h e Simulat ion of the E x p e r i m e n t in T h r e e Dimensions 

The inclusion of the th i rd dimension, i.e. the symmetric stretch, can be achieved by 

the use of the coupled channel method, which was discussed in Chapter 4, or by a simple 

extension of the methods used i n the two-dimensional case. I n either case the simulation 

of the experiments was carried out i n the same way, i.e. the pump laser produces the 

in i t ia l wavepacket on the B state, this is propagated i n time, and then the observables are 

extracted f r o m the time-dependent wavefunction. 

The simulation of the experiment using the f u l l three dimensional calculations, i.e. 

rather than using the coupled channel method, was achieved by taking advantage of the 

impl ic i t parallelism in the problem. This was described earlier ( in Chapter 2) w.r.t . the 

multi-dimensional Fourier transforms, and the fact that these transforms can be calculated 

in several independent stages. 

6.2. 1 C o u p l e d C h a n n e l M e t h o d 

This method involves an expansion of the wavefunction in a suitable basis set, and 

is essentially exact provided sufficient basis functions cire used. The wavefunction is then 

substituted into the T.D.S.E. to produce a set of coupled differential equations. 

In this case the wavefunction is expanded in a basis set as follows: 

* B ( 0 = E V ' ( B y ) ( r , < ^ , t ) X r ' ( i ? * ) . (184) 
v' 

where the functions x{Qa) represent the Qa vibrational states, and are solutions of: 

^ ^'^'^^'^ ^"^^'^ " E.XviQs). (185) 

A.S stated above a harmonic potential is used for V Q , ( Q j ) so that is equal to huq^v, 

and Xv{Qa) are harmonic oscillator functions. As for the two-dimensional calculations, the 
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zero-point energy is subtracted f rom the potential, thus the value of does not include a 
hAujQj2 term. 

Inserting H and * s into the T.D.S.E., lef t -mult iplying both sides by x*// and integrat

ing over Qg gives: 

9rp{B,v"){r, (f>^t) _-h} 

dt ~ 2m 
1 1 

47-2 ' dr2 ' rU(l>2 

f ^r"V'(B,r")( '- . ^ . i) + E ( ^ " l ^ ( ^ <P> Qs)\^')i'(B,v'){r, <j>, t). 

V{B,v")ir, 4>,t) 

(186) 

The only difference between this equation and those propagated previously is the potenticd, 

which requires a sum over matr ix elements {v"\V{r, <f>, Qg)\v') for each chamnel. Once these 

matr ix elements are calculated, the same method as described in Chapter 5 can be used to 

propagate the wavefunction in time. 

6.2. 2 T h e I n i t i a l Wavefunct ion for the Coupled C h a n n e l M e t h o d 

The f i i l l three dimensional in i t i a l packet on the ground state can be expanded in the 

basis given above; the coefficients w i l l be the in i t ia l packets in each channel: 

^x{r, 4>, Qs) = E 4>)xv{Q,). (187) 
tl 

Thus, the f u l l three dimensional packet on the ground state, $ ; f ( r , ^ , Q, ) , obtained from 

T R I A T O M , as was described in Chapter 5, is projected onto the basis functions to produce 

the in i t i a l packet in each channel: 

^^X,v){''^4>)={v\<ilx{r,^,Qg)). (188) 

The pump laser is treated as before, using first-order time-dependent perturbation theory, 

so that ^ B ( 0 produced f r o m the in i t i a l packet on the ground state. However, in this 

case the pump laser is exciting the in i t i a l packet to severed different 'channels', each with 

energy E,,^ and a different wavepacket is formed in each 'channel'. 

6.2. 3 T h e Observables 

T h e N a ^ signal 

The calculation of the Nag" signal was not done by explicit inclusion of the probe laser. 

This is because the f u l l treatment of the probe Iciser would have been extremely computa

tionally intensive. Thus the Na^ signal was calculated in the approximate way described 

in the previous chapter, i.e. using the square modulus of the overlap of the time-dependent 

wavefunction wi th the ground-state wavefunction of the ion. For the picosecond experi

ments the NaJ signal was calculated using the overlap of the time-dependent wavefunction 
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wi th another wavefunction of the ion, i.e. the wavefunction for first excited vibrational state 

of the bend. The reasons for this were discussed in Chapter 5. The zero time delay overlap 

funct ion was also used to model the ion signal. 

O t h e r observables 

The norm and energy were calculated. The energy in each mode was calculated ap

proximately. The Hamiltonian used for the radial motion was: 

.2 r . ^2 

~2^ 
1 

4r2 ' dr2 

K,2 1 / ' V 1 •'3»4 

2(P' + b'AQg) ' 8 ( P ' + 6 'AQ , )3 8 ( P ' + 6 'A^, )2 

(189) 

where P' = V2 P, f = y/2 f and b' = y/2b. The Hamiltonian for the angular motion was 

approximated as: 

2771 r2d(^2 

'3(^' •'2_3 / '2r 
- / ' ^ ^ - ^ ? ) + F 7 B r ^ ^ c o s ^ ( 3 ^ ) + ~ %{P' + b'AQg) l (2cos - ) 

8 [P' + VAQg) 

(190) 

These are very similar to those used in the last chapter, equations (170) and (171), except 

that P' is now replaced by {P' + b'AQg) (apart f rom the second term in the potential part 

of HT). The Hamiltonian used to describe the motion in the Qg coordinate is: 

Ho. = 
2m 

d2 

dQl\ 
(191) 

The average values of r , ( f ) and AQg were also calculated, as well as the autocorrelation 

function and the zero t ime delay overlap function. 

6.3 T h e Calculat ions 

As in the Icist chapter, the calculations were done to simulate both the femtosecond and 

the picosecond experiments, so that the calculations were done several times with different 

parameters for the laser pulses, which were given in the last chapter. The calculations were 

also done assuming the laser pulse was 'white l ight ' . 

3.3. 1 T h e Femtosecond E x p e r i m e n t 

I n order to t r y to resolve the apparent paradox concerning the intensity of the sjrmmetric 

stretch frequency in the results of the femtosecond experiments, various parameters of the 

three-dimensional potential of the B state, and of the femtosecond laser pulse, were altered 
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to investigate their effect on the time-dependence of the ion signal. The calculations at the 
various different parameters were also carried out wi th a 'white l ight ' laser pulse in order 
to investigate their effect on the static spectroscopy. The parameters which were varied 
were: 

1. The position of the min imum in the symmetric stretch coordinate, Qa^ (wi th the bilinear 

coupling constant b set to zero). I t is expected that i f the value of Qa^ differed greatly 

between the X and B states, there would be a great deal of excitation in the Qa mode, 

and the wavepacket would oscillate along this coordinate giving rise to em ion signal 

dominated by this frequency. However, i t is also expected that i f the value of Qao 

differed greatly between the X and B states, the static spectroscopy would show many 

lines corresponding to the symmetric stretch mode. The calculations were carried out 

for values of Qa^ of 3.7 A, 3.8 A and 3.9 A. These calculations were done simply to 

confirm the apparent contradiction between the resiilts of the femtosecond experiments 

and the static spectroscopy. 

2. The value of the biUnear coupling constant b. The calculation was done using a dimen-

sionless bilinear coupUng constant, corresponding to b, equal to 0.012/v^, 0.048/-\/2, 

0.086/v^, 0.1/V2 and 1.5/y/2. The value of Qa^, the equilibrium position of the sym

metric stretch coordinate when there is no coupling, was set to 3.7 A. Again the effects 

on the time-dependence of the ion signal and the static spectroscopy were monitored. 

3. The temporal wid th of the femtosecond laser pulse (wi th Qg^ set to 3.7 A, and b set 

to zero). The spectral wid th of the laser pulse is not particularly well described using 

a laser pulse w i t h a temporal wid th of 70 fs. This is because, as was seen in the 

last chapter, the spectral wid th of the laser pulse is not completely determined by its 

temporal w id th (see figure 19). Thus, in order to model the spectral width of the laser 

pulse, the temporal wid th was decreased to approximately 41 fs. A laser pulse wi th 

this tempered wid th has a spectral wid th of approximately 500 cm~^. I t was seen in 

the last chapter that the narrower the pump laser pulse that was used, the stronger the 

in i t ia l damping of the amplitude of the radial motion. Obviously, i f the radial motion 

is in i t ia l ly strongly damped then the ion signal w i l l show less dependence on the radial 

frequency and the symmetric stretch frequency w i l l appear stronger. 

5.3. 2 T h e Picosecond E x p e r i m e n t s 

For the picosecond experiments, the calculations were carried out ini t ial ly for 6 equal 

to zero ( w i t h Qa^ set to 3.7 A ) , to investigate the effect of the introduction of extra energy 

levels, and then w i t h different values of b, to investigate the effect of the couphng between 

the symmetric stretch mode and the other two modes. The calctdation was done using 
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a dimensionless bilinear coupling constant, corresponding to b, equal to 0.012/\/2 cind 

OM8/V2. 

6.4 T h e Resu l t s 

6.4. 1 T h e Femtosecond E x p e r i m e n t 

T h e effect of the variat ion of Qg^ 

As expected an increase i n Qg^ away f rom the value on the X surface (3.63 A) , produced 

much larger oscillations i n Qg. This can be seen in figures 59 and 60, which show the 

calculated observables over the propagation time for Qg^ equal to 3.7 A and 3.9 A. I t 

can also be seen f rom these figures that the zero coupling between the symmetric stretch 

and the other modes gives rise to a motion which is completely separable, i.e. there is 

no change in the energy in the Qg mode, and the observables for the radial and angular 

modes are similar to those for the two-dimensional calculation. Figures 61 and 62 show 

the ion signal and its Fourier transform for the different values of Qg^. I t can be seen that 

as QgQ increases, the intensity of the peak in the Fourier transform at 110 cm~^, which 

corresponds to the symmetric stretch frequency, increases compared to the intensity of the 

peak at 127 cm"^, which corresponds to the radial frequency. Other frequencies observed 

in the spectra, w i t h varying intensities, are: 17 cm~^, which corresponds to a beating 

frequency between the radial motion (127 cm~^) and the sjrmmetric stretch (110 cm~^); 

34 c m ~ \ which corresponds to a beating frequency between the first overtone of the radial 

frequency (254 cm~-^) cmd the first overtone of the symmetric stretch (220 cm~^); 93 c m ~ \ 

which corresponds to a beating frequency between the radial motion (127 cm~^) and the 

first overtone of the symmetric stretch frequency (220 cm~^); 144 c m ~ \ which corresponds 

to a beating frequency between the first overtone of the radial frequency (254 cm~^) and 

the symmetric frequency (110 cm"^); 220 c m ~ \ which corresponds to the first overtone of 

the symmetric stretch; and 254 cm~^, which corresponds to the first overtone of the radial 

frequency. 

The experimental spectrum, of the Fourier transform of the ion signal, shows frequencies 

at 12(m), 19(m), 34(w), 50(m), 73(m), 105(vs), 90(s), 123(w) and 141.5(w). I t seems 

then that increasing Qg^ produces an ion signal which shows a fair correspondence the 

experimental results. 

However, the results of the calculations for the vertical excitation of the laser pulse 

(figures 63 and 64), i.e. those which correspond -with the static spectroscopy, show that 

as QgQ increases, the intensity of the peaks in the energy spectrum which correspond to 

the symmetric stretch frequency also increase (note that the resolution of these spectra 
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are lower than for the two-dimensional Ccise since the propagation was done for half the 
length of t ime) . This does not correspond well w i th the results obtained for the static 
spectroscopy, which show l i t t l e , i f any, excitation in the symmetric stretch. 

Thus, i t appears that the value of Qg^ for the B state must indeed be similar to that 

for the X state. Therefore, other parameters must be investigated i f an ion signal, which 

corresponds well w i t h the experimental one, is to be obtained. 

T h e effect of the variat ion of b 

Figures 65 and 66 show the observables calculated over the propagation time, for two 

values of b {0.012/y/2 and 0.086 /v /2). I t can be seen that increasing b shifts the position of 

the equil ibrium position on the B surface, away f rom Qg^, by an amount AQa^ (see equation 

(182)), which increases as b increases. This shift in the minimum on the surface gives rise 

to a motion in the symmetric stretch w i t h a different amplitude than for the b = 0.0 case. 

As well as this shift i n the equil ibrium and change in the amplitude of the motion, the 

oscillation i n Qa can now be seen to depend not only on the symmetric stretch frequency, 

but also on the radial frequency. The reason for this is, of course, that the eigenstates of 

the potential are no longer separable into those depending on Qg only, and those depending 

on r and <f) only. Thus the vibrational modes in Qg w i l l now be weakly dependent on r and 

(f). Also the vibrational modes in r (which are also weakly depend on (f)) w i l l now be weakly 

dependent on Qg. This can be seen f rom the figures: the motion in r is now also dependent 

on the symmetric stretch frequency. As well as the effect on the oscillation in each mode, 

i t can be seen that energy is exchanged between these modes. Thus energy is transferred 

f rom the radial mode, which was in i t ia l ly highly excited, to the symmetric stretch mode, 

which in i t i a l ly has only a small amount of excitation. 

The question then is how this coupling effects the ion signal. Figures 67 emd 68 show 

the ion signal and its Fourier transform for the two values of b. I t can be seen that as b 

is increased the relative intensity of the symmetric stretch frequency increases a htt le, but 

also that the spectrum becomes much more 'irregular', i.e. there are very many peeiks in 

the spectrum. Since the increase in b changes the oscillation in Qg and also makes the 

motion in r depend on this frequency, the increase in the intensity of the symmetric stretch 

frequency is not unexpected. However, the motion on the surface is much more compUcated 

giving rise to a signal wi th many different frequency components. 

Figures 69 and 70 show the corresponding results for the vertical excitation, i.e. the 

static spectroscopy, for the two values of b. The lines in the spectra are expected to become 

broader as i increases, because the energies of the various zeroth-order eigenstates (i.e. those 

corresponding to the completely uncoupled potential) wi l l be broadened, ais the states mix 
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together. (The experimental spectrum does show some width to each peak, but this is 
mostly likely explained by the lack of rotational resolution.) However, there is not much 
evidence for this broadening in the spectra of the simulated static spectroscopy, though the 
energy levels corresponding to the excited symmetric stretch states seem to be less distinct. 

Thus, although increasing b does in some way increase the correspondence of the ion 

signal to the experimental one, the other factor associated with this increase is not totally 

acceptable, i.e. the irregularity in the spectrum of the ion signal. 

The effect of the variation of the temporal width 

Figure 71 shows the observables Ccilculated over the propagation time (for the femtosec

ond experiment with the narrower laser pulse); compared to figure 59 (for the femtosecond 

experiment) the amplitude of the radial motion ccin be seen to be smaller. Also the cim-

plitude of the motion in the symmetric stretch is slightly larger. Figure 72 shows the 

approximate ion signal (for the femtosecond experiment with the narrower laser pulse). 

Compared to figure 61 (for the femtosecond experiment) the symmetric stretch frequency 

has increased its intensity relative to the radial frequency. Thus, an explanation for the 

poor agreement of the calculations done here with the experimental results could be the 

inadequate modelling of the pump laser pulse by a single Gaussian whose spectral width is 

determined only by its temporal width. 

Correlation with the results of Gerber's experiments 

The Freiburg experiments produced a time-dependent Na3" signal, together with the 

Fourier transform of this, which gave a spectrum containing frequencies characteristic of 

motion on the B surface. As stated previously, the spectrum contains many frequencies 

including the symmetric stretch frequency (105 cm~^) and the radial frequency (123 cm~^). 

The intensity of the symmetric stretch frequency is much stronger than that of the radial 

frequency. 

The results obtained here also show a symmetric stretch frequency (110 cm~^) and a 

radial frequency (127 cm~^). The frequencies appear to agree well. The other frequencies 

in the experimented spectrum may arise from the beating together of these two frequencies 

and their overtones. However, in order that the results obtained for the static spectroscopy 

continued to agree well with the experimental results, parameters for the potential were 

used that gave the intensity of the symmetric stretch frequency to be much less than the 

radial frequency. In order to obtain a better agreement with the experimental results, it 

was necessary to use a laser pulse which had a larger spectral width than that implied by 

the experimental temporal width. 

Even at best, the correlation with the experimental residts cannot be expected to 
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be very good because there have been many approximations involved in obtaining the 
calculated results. Some of these are: 

1. The quality of the potential surfaces used, particularly the approximate treatment of 

the coupUng of the {Q^, Qy) and the vibrational modes. 

2. The approximate method by which the Na^ signal for the three-dimensional calculations 

was obtained. Uncertainty concerning the ionisation potential of the sodium trimer 

makes the assessment of the reliability of this assumption difficult. 

3. The modelling of the laser pulse by one pulse with a Gaussian time profile, whose 

spectral width is determined by its temporal width. 

4. The neglect of the coupling between the B and X states. The X state should be in

cluded in the time-dependent part of the calculation because the pump can produce a 

wavepacket in the X state by two-photon excitation via the B state, and the probe can 

ionise it via another two-photon process. 

6.4. 2 The Picosecond Experiments 

The effect on the beating frequencies 

The Fourier transform of the autocorrelation function for all the picosecond experiments 

showed that the same energy levels were populated as in the two-dimensional calculations, 

with small differences in the relative intensities. The ion signals (approximated using both 

the overlap function and the zero time delay overlap function) obtained for the picosecond 

experiments showed no difference to those obtained in the two-dimensional calculations, 

except that the ion signal for the 16207 cm~^ picosecond experiment had a larger amplitude 

of oscillation. Therefore, the extra energy levels (corresponding to the symmetric stretch 

mode) are not populated and consequently there is no effect on the beating frequencies 

seen in the ion signal. For the 16000, 16129 and 16136 cm~^ experiments this is possibly 

because the spectral width of the laser pulse is not great enough to excite the lowest excited 

symmetric stretch level at 16110 cm~^ For the 16207 cm~^ picosecond experiment, it 

seems likely that the laser pulse would be able to excite the energy level at 16220 cm~^ 

(the second excited state of the symmetric stretch). However, this is very close in energy 

to the u = 1, J = 5 energy level so that the beat frequencies would change little, making 

the effect of this excitation difficult to see, unless the excitation was very large, which is 

unlikely since it has already been noted that the equilibrium position of the symmetric 

stretch mode on the B surface is very similar to that on the X surface. 

The effect of the variation of b 

Figure 73 shows the variation in the observables calculated over the propagation time 
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for the 16207 cm~^ picosecond experiment. It can be seen that the radial and angular modes 
have been coupled to the symmetric stretch mode. There is now a small amplitude motion 
in the symmetric stretch, and there is a flow of energy between all three modes. Figure 74 
shows the ion signeds obtained for the simulation of the 16207 cm~^ picosecond experiments 
for h set to 0.048/-\/2. The ion signal now contains a faster oscillation corresponding to 
the symmetric stretch frequency. The picosecond experiments at other frequencies showed 
similar behaviour. 

The introduction of the coupling between the symmetric stretch and the other two 

modes did not produce a decaying ion signal for any of the picosecond experiments. 

Correlation with the results of Woste's experiments 

The inclusion of the symmetric stretch frequency has not improved the correlation of 

the calculated results to the experimental results. As was discussed at the end of Chapter 

5, the picosecond experiments at 625, 620, and 619.7 nm show some agreement with the 

experimental results. The oscillations though are not with a time period of 3 ps but of 

2 ps. The results at 617 nm show less similarity to the experimental results. The ion 

signal oscillates with a long time period of approximately 4 ps, which can be compared 

to the experimental value of 3 ps, but there is also a short time period in the oscillation 

of approximately 1 ps, which has no corresponding value in the experimental ion signal. 

None of the ion signals obtained for the picosecond experiments show the fast decay that 

is found in the experimental results. 

As for the femtosecond experiments, it is not expected that the correlation between the 

results obtained here and the experimental results will be very good. Some of the reasons 

for this poor comparison are the same as for the femtosecond experiment. However, there 

are some other reasons in the case of the picosecond experiments: 

1. The quality of the potential surfaces used. In particular the linking together of the 

barrier to pseudorotation and the circularity of the potenticd, through the quadratic 

coupling constant, ensuring that, because the barrier to pseudorotation is thought to 

be small, the potential is almost circular. 

2. Uncertainity over the spectral width of the laser pulse. The laser pulse is said to have a 

spectral width double that implied by its temporal width. It is thought that this may 

be due to imperfect mode locking in the dye laser. This may affect the particular levels 

excited by the laser pulse, and so the frequency with which they beat together. 

3. The accuracy with which the excitation energy between the X state and the B state 

is known, which due to the narrow spectrcd width of the laser pulse becomes very 

important. I f the B state is placed at an energy which is sHghtly incorrect this may 
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cause the laser pulse to be off resonance, which will cleeirly have a large effect on the 
results. There is only a small uncertainty in this excitation energy: a value of 16000 
cm~-̂  is used here, whilst the most reliable experiments report a value of 15996 cm~^ 
1108]. I t is possible that this 4 cm~^ difference may be significant for a laser pulse with 
a spectral width of 15 cm"-', as used for the picosecond experiments. 

6.5 Conclusions 

The initial wavepacket that is created by the femtosecond laser pulse is, as in the two-

dimensional calculations, made up of many states, which are excited in the radial, angular 

and symmetric stretch modes. This wavepacket has a large amplitude motion in the radial 

direction, and a small amplitude motion in the symmetric stretch coordinate. However, 

this is at odds with the experimental femtosecond results which imply that the wavepacket 

has a small amplitude motion in the radial direction aind a large zimplitude motion in 

the symmetric stretch. In order to create a similar wavepacket in the simulation of the 

experiment, a better model of the laser pulse will have to be developed, which allows the 

spectral width of the pulse to be determined independently of its temporal width. 

The picosecond experiments can be simulated in two dimensions. The inclusion of the 

extra dimension adds no extra insight into the results of these experiments. As in the two-

dimensional calculations, the oscillating ion signal arises because of the beating together 

of various pseudorotational modes. In order to gain more than the qualitative idea of the 

experiments given here, it will be necessary to obtain a potential which correctly describes 

both the energy levels of the pseudorotational modes and the coupling between the radial 

and angular modes. 
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Results for fs expt. Q_sO=3.7A, b=0.0 
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Fig. 59. Graphs showing the variation of the observables over the entire propagation time 

for the femtosecond experiment, with b = 0.0, Qa^ = 3.7 A. 
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Results for is expt. Q_sO=3.9A, b=0.0 
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Fig . 60. Graphs showing the variation of the observables over the entire propagation time 

for the femtosecond experiment, with b = 0.0, Qg^ = 3.9 A. 
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Results for fs expt. Q_sO=3.7A, b=0.0 
Approx. Na_3-f- signal, together with its Transform. 
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Fig . 61. Graphs showing the approximate 'Na.'^ signal and its Fourier transform for the fem

tosecond experiment, with b = 0.0, Qa^ = 3.7 A. 
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Results for fs expt. Q_sO=3.9A, b=0.0 
Approx. Na_3-f- signal, together with its Transform. 
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Fig . 62. Graphs showing the approximate Na.f signal and its Fourier transform for the fem

tosecond experiment, with b = 0.0, Q^^ = 3.9 A. 
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Results for vertical excitation Q_sO=3.7A, b=0.0. 
Transform of Autocorrelation function, showing energy levels. 
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Fig . 63. Graphs showing the autocorrelation function and its Fourier transform for vertical 

excitation, with b = 0.0, Q^^ = 3.7 A. 

6: Three Dimensions 



Results for vertical excitation Q_sO=3.9A, b=0.0 
Transform of Autocorrelation function, showing energy levels. 
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Fig . 64. Graphs showing the autocorrelation function and its Fourier transform for vertical 

excitation, with b = 0.0, Qsq = 3.9 A. 
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Results for fs expt. Q_sO=3.7A, b=0.012 
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Fig . 65. Graphs showing the variation of the observables over the entire propagation time 

for the femtosecond experiment, with b = 0.012/\/2, Q^^ = 3.7 A. 
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Results for fs expt. Q_sO=3.7A, b'=0.086 
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Fig . 66. Graphs showing the variation of the observables over the entire propagation time 

for the femtosecond experiment, with b = 0.086/y/2,QgQ = 3.7 A. 
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Results for fs expt. Q_sO=3.7A, b=0.012 
Approx. Na_3-t- signal, together with its Transform. 
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Fig . 67. Graphs showing the approximate Naj" signal and its Fourier transform for the fem

tosecond experiment, with b = 0.012/\/2, Q«o = 3.7 A. 
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Results for fs expt. Q_sO=3.7A, b'=0.086 
Approx. Na_3-i- signal, together with its Transform. 
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Fig . 68. Graphs showing the approximate Na^ signal and its Fourier transform for the fem

tosecond experiment, with b = 0.086/-v/2, = 3.7 A. 
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Results for vertical excitation Q_sO=3.7A, b'=0.012. 
Transform of Autocorrelation function, showing energy levels. 
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Fig. 69. Graphs showing the autocorrelation function and its Fourier transform for vertical 

excitation, with b = 0.012/y/2,Qao = 3.7 A. 
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Results for vertical excitation Q_sO=3.7A, b'=0.086. 

Transform of Autocorrelation function, showing energy levels. 
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Fig. 70. Graphs showing the autocorrelation function and its Fourier transform for vertical 

excitation, with b = 0.086/^2,^^0 = 3.7 A. 
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Results for altered fs expt. Q_sO=3.7A, b=0.0 
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Fig . 71 . Graphs showing the variation of the observables over the entire propagation time 

for the altered femtosecond experiment, with b = 0.0, Qg^ = 3.7 A. 
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Results for altered fs expt. Q_sO=3.7A, b=0.0 
Approx. Na_3+ signal, together with its Transform. 
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Fig . 72. Graphs showing the approximate Na^ signal and its Fourier transform for the al

tered femtosecond experiment, with b = 0.0, Qt^ = 3.7 A. 
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Results for 16207 cm-1 ps expt. Q_sO=3.7A, b'=0.048 
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Fig . 73. Graphs showing the variation of the obser-vables over the entire propagation time 

for the 16207 cm~^ picosecond experiment, with b = 0M8/V2, Qt^ = 3.7 A. 
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Results for16207 cm-1 ps expt. Q_sO=3.7A, b=0.048 
Approx. Na_3+ signal, together with its Transform. 
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F ig . 74. Graphs showing the approximate Na.f signal and its Fourier transform for the 16207 

cm~^ picosecond experiment, with b = 0.048/v^, Q̂ o = 3.7 A. 
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7: Summary and Conclusions 

This thesis is concerned with studying chemical dynamics using time-dependent quan

tum mechanics and in particular using the Fourier method. The advantages of studying 

chemical reactions in the time domain were discussed in Chapter 1. 

In Chapter 2, the Fourier method for studying one-dimensional problems was intro

duced. The nature of the initial wavefunction to be used was discussed. It was shown how 

the Hamiltonian and its operation on the wavefunction can be calculated, and then used 

to propagate the wavefunction in time. Several different methods for the propagation of 

the T.D.S.E. were described. Various types of absorbing boundaries were also described. 

In Chapter 3, some of the various propagators that were introduced in Chapter 2 were 

investigated, as was the use of imaginary potentials. It was found that the Chebyshev 

propagator was the most accurate and efficient, especially when used cis a stepping rather 

than a truly global propagator. However care is needed when using imaginary potentials, 

since the Chebyshev propagator can become unstable with non-Hermitian Hamiltonians, 

so that in some cases this may meike i t preferable to use the Feit/Fleck propagator. 

In Chapter 4, the extension of the Fourier method to multi-dimensional problems was 

described. It was seen that there are many different approaches possible, some of which 

were similar to the one-dimensional Fourier method, others of which were quite different. 

The coupled channel wavepacket method was used to describe the fragmentation of Van 

der Waals molecules. It was seen that the deri-vation of the set of coupled equations was 

straightforward. The solution of the equations and the extraction of observables from 

the channel wavepackets was no more complicated than for the Fourier method. Thus it 

was seen that this hybrid method of the Fourier method with a more standard basis set 

expansion can provide a useful tool for multi-dimensional calculations. The two test cases 

described were shown to produce results which were not at odds with those reported in the 

literature. Thus, there could be some confidence in the accuracy of the calculations done. 

In Chapter 5, two-dimensional calculations were carried out to simulate time-resolved 

femtosecond and picosecond two-photon ionisation experiments on the sodium trimer. In 

Chapter 6, the corresponding three-dimensional calculations were carried out, i.e. the sym

metric stretch mode was included in the calculations. The simulation of these experiments 

was di-vided into three parts: 

1. The creation of the initial wavefunction on the B state from the ground-state wave-

function of Naa- This was done by modeUing the effect of the pump laser pulse using 
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first-order time-dependent perturbation theory. 

2. The propagation of the wavefunction in time using the Chebyshev propagator. 

3. The extraction of observables from the time-dependent wavefunction. One of the most 

important observables was the Nag" signal, which was measured in the time-resolved 

experiments. This was modelled in three different ways: 

1. The first was almost exact, i.e. i t modelled the effect of the probe laser pulse us

ing first-order time-dependent perturbation theory. This first method made the 

assumption that the electrons ejected during ionisation had no kinetic energy. 

2. The second method was approximate. I t modelled the ion signal as the overlap of 

the time-dependent wavefunction with the ground-state vibrational wavefunction of 

the ion. The second method assumed that there was only just enough energy in the 

probe laser pulse to ionise the molecule. 

3. The third method was also approximate. This method modelled the ion signal as 

the overlap of the time-dependent wavefunction with the wavefunction which was 

present on the B state half way through the pump laser pulse. The third method 

assumed that the wavefunction present on the B state half way through the pump 

laser pulse gave the best conditions for ionisation. 

The simulation of the time-resolved experiments produced physically plausible results. 

The correspondence with the experimental results was only fair, but this could be mostly 

accounted for by the poor quality of the potential energy surfaces used. Thus, even the 

relatively simple model used here to simulate the time-resolved experiments is useful to 

gain both a qualitative explanation of the results of these experiments and an insight into 

the dynamics of systems which are in non-stationary states. 

As well as simulating the time-resolved experiments the static spectroscopy was also 

modelled by using a laser pulse equivalent to 'white light', which moved the wavefunction 

on the X state vertically to the B state. This simulation of the static spectroscopy was fairly 

successfully. Thus, there could be a certain amount of confidence in both the potential of 

the B state and initial wavefunction of the X state, which were used in the calculations. 

In the two-dimensional calculations, the initial wavepacket created by the femtosecond 

laser pulse was made up of many states, which were excited both in the radial mode and in 

the angular mode. This wavepacket had a large amplitude motion in the radial direction. 

The angular motion followed no easily discernible pattern. The oscillation of the wavepacket 

in the radial direction gave rise to an ion signal which oscillated with the frequency of the 

radial motion. In the three-dimensional calculations, the initial wavepacket was similar to 

that created in the two-dimensional calculations, but the wavepacket now contained states 
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which were excited in the symmetric stretch mode. Thus the wavepacket also oscillated 
in the symmetric stretch coordinate. The oscillation of the wavepacket in both the radial 
and symmetric stretch coordinates gave rise to an ion signal which oscillated with both 
the frequency of the radial motion and of the symmetric stretch, as well as with the beat 
frequencies between the two. 

In the two-dimensional calculations, the initial wavepacket created by the picosecond 

laser pulse was made up of very few states, which were excited in the angular mode, but 

were in only one radial state. The angular states present interfered with each other to 

produce a wavefunction which moved angularly. The smcdl coupling of the angular and 

radial modes, through the quadratic coupling constant, meant that as the wavepacket 

moved angularly it moved radially as well. This small radial motion gave rise to an ion 

signal which oscillated with the beat frequencies between the angular modes. In the three-

dimensional calculations, the initial wavepacket was almost identical to that created in the 

two-dimensional calculations. 

For the two-dimensional simulation of the femtosecond experiment, the second method 

of calculating the ion signal, which was approximate, appeared to give satisfactory agree

ment with the first method of calculation, which was almost exact. This meant that for 

the picosecond experiments the calculation of the ion signal could be carried out using this 

approximation. However, it proved more appropriate for a variety of reasons to use vibra

tional states, other than the ground state, to form the overlap function. In fact, for the 

simulation of the picosecond experiments, the third method of calculating the ion signal 

showed slightly better agreement -with the experiment than the second method. A useful 

implication of the success of the approximate methods was that the calculations could be 

extended to three dimensions, i.e. including the symmetric stretch. 

The two-dimensional simulations of the femtosecond experiment showed poor agree

ment with the experimental results. Superficially, the poor agreement could be attributed 

to the dominance of the results by the symmetric stretch frequency. The three-dimensional 

simulations showed some agreement with the experimental results, with the "values of the 

frequencies observed in the calculated spectrum being similar to those in the experimental 

spectrum. However, the very high intensity of the symmetric stretch frequency relative to 

the radial frequency was difficult to explain. In order to produce a simulated spectrum 

•which is dominated by the symmetric stretch frequency, a better model of the laser pulse 

will have to be developed, which allows the spectral width of the pulse to be determined 

independently of its temporal width. 

The picosecond experiments at 625, 620, and 619.7 nm showed some agreement with 

the experimental results. The results at 617 nm showed less similarity to the reported 
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experimental results. The calculated ion signzds oscillated with frequencies which were 
similar to those found in the experimental results, but no steady decay of the ion signal 
was seen. The inclusion of the extra dimension added no extra insight into the results of 
the picosecond experiments; in particular, i t did not lead to an ion signal which showed a 
fast decay. In order to gain more than the qualitative idea of the experiments given here, 
it would be necessary to obtain a potential which correctly describes both the energy levels 
and the coupling between the radial and angular modes. 

There is much work that can be done in the future to improve the simulation of these 

time-resolved experiments. In particular, a great deal of work can be done to improve the 

modelling of the laser pulses, so that both the temporal width and spectral width of the 

experimental pulses can be reproduced. It is hoped that in the future better potential 

surfaces will be available so that any uncertainty regarding the ground-state wavefunction 

of Naa, the energy levels of the B state and the coupling between the modes in the B state 

wiU be removed. I t is also hoped that as more powerful computers become available it will 

be possible to: first, calculate the ion signal exactly by the explicit treatment of the probe 

laser pulse for all the simiilations, i.e. for the picosecond and femtosecond experiments in 

both two or three dimensions; and secondly, include the coupling between the X and B 

states. 
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Appendix A: Atomic Units 

This is a system of units which is natural on the atomic scale. The units are defined in 

the following way: 

me — I 

e = 1 

^ = 1 

47reo = 1-

(192) 

The unit of energy is the Hartree, E^,, and its value is: 

Eh = S4 ~ 4.359 X 10-^^J. 

The unit of distance is the Bohr radius, OQ: 

ao = « 5.29 X 10-^^m. 

(193) 

The unit of time is: 

r = -— w 2.4 X 10""s. 

(194) 

(195) 

1̂ 01 

Thus, to convert to atomic units from S.I. units is quite straight forward. For example 

to convert a force constant: 
1-21 

(196) 

(197) 

(198) 

To convert a distance: 

To convert a time: 

ao 

ts.i. 

To convert a reduced mass: 

" 1 • Trig • 1 • 
2/i a.u. Trip 2/i a.m.u. 

(199) 

etc. 

Other useful conversions are: 

leV = 8065.47/iccm~^ 

and 

wavenumber (cm ^) x hc/Ek energy in Hartrees(^J/i). 
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Appendix B: Theoretical Background 

One of the most important assumptions involved in trying to solve the SchrSdinger 

equation is the separation of the nuclear and electronic motions. This is justified by the 

large differences in the masses of the electron and nucleons. What follows is an investigation 

into some of the consequences of the breakdown of this assumption, and ways in which the 

theory can be extended to take some account of the deficiences of this assumption [139]. 

Adiabatic theorem 

The separation of the nuclear and electronic motions mentioned above is called the 

Adiabatic Theorem. 

The Hamiltonian can be di-vided into three pcirts: 

H = Hr + HQ + V{r,Q) (200) 

where r and Q are the electronic and -vibrational coordinates respectively. Hr is the elec

tronic component of the Hamiltonian, including the kinetic energy of the electrons and the 

interelectronic electrostatic interaction, HQ is the kinetic energy of the nuclei, and V{r, Q) 

is the energy of interaction between the electrons and nuclei and the intemuclear repul

sion. The potential can be expressed in a Taylor series about some chosen origin, the point 

Qa = QaO = 0: 

V{r,Q) = Vir,0) + j:{ — ] g . + . J ] — _ Q,Qp + ... (201) 

I f the first term of this expansion is regarded as the potential energy of the electrons in the 

field of fixed nuclei, the electronic peirt of the Schrodinger equation can be solved: 

Hr^V{r,0)-e[]Mr) = 0, (202) 

and a set of energies eĵ  and wavefunctions < îfe(r) can be obtained for the given nuclear 

configuration corresponding to the point QaO-

In order to solve the fuU Schrodinger equation, and to see how these electronic wavefunc

tions vary under nuclear displacements, the wavefunction is expanded in these electronic 

wavefunctions: 
nr,Q) = Y:Xkmk{r), (203) 

k 

and then substituted into the Schrodinger equation, which is left multiplied by ^Jii(r) and 

integrated over r to give: 

HQ + e,iQ) - E] xkiQ) + E WUQ)Xm{Q) = 0 (204) 
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where W(r, Q) = V{T, Q) - V{r, 0) and efc(Q) = ê̂^ -f Wjfei((5), and is a first order approxima
tion to the adiabatic potential in the absence of electronic degeneracy or pseudodegeneracy. 
If ^fcm(^) is set to zero, then the wavefunction is simply sepeirable, '^{r, Q) = Xit(Q)^it(^)-
This is called the simple adiabatic or Bom-Oppenheimer approximation. Here i t is of in
terest to consider the effect on the wavefunction if some terms in Wkm{Q) aje included in 
equation (204). In order to Limit the complexity of the problem, only harmonic terms in 
W{T, Q) wiU be included. W{r, Q) can then be written in terms of normal mode coordi
nates, ^r.^-

^ ( dV \ 1 ^ / d'^V \ 

Vibronic coupling constants 

Consider the first term in the expansion of W(r, Q) in equation (205). The matrix 

elements of the coefficients of QY^, ^g^^ , are the constants of vibronic coupling or 

linear coupling constants. They measure the coupling between the electronic structure and 

nuclear displacements, i.e. the measure of the influence of the nuclear displacements on the 

electronic distribution and conversely the effect of the changes in the electronic structure 

upon nuclear dynamics. This constant is then (for non-degenerate states): 

Fl-^'= U m { r ) { ^ ] Mr) dr. (206) 

From group theory it can be seen that Fj,™ * wiU only be non-zero i f Tm ® Tk € T. I f 

Tjc, r,7i or both are degenerate electronic states then a set of linear vibronic constants will 

exist appropriate to all the components 7̂  and 'jj. of the two representations r,n aĴ d Tk-

(Note—This set can be calculated easily i f one takes into account the fact that the matrix 

elements within a degenerate term differ solely in numerical coefficients, their values being 

known.) 

The diagonal constcint of the linear coupling F^"^ = F^"" has the sense of the force 

with which the electrons in state Tm affect the nuclei in the direction of symmetrised 

displacement Q^.. For non-degenerate states F^"^ will be zero, except for F = in 

which case the electrons can distort the nuclear configuration only in the direction of the 

totally symmetric displacements, and the symmetry of the system does not change. If 

r,7i is a degenerate electronic state then F^"" may be non-zero for f / 1̂. In this case 

f may not be totally symmetric, and under the influence of the electrons the nuclear 

configuration undergoes appropriate distortions which are not totally symmetric. This is 

sometimes known as the Jahn-TeUer effect. 
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Now consider the second term in equation (205). In order to investigate this, further 

group-theoretical transformations are introduced. The tensor convolution of the coefiicients 

of this term: _ ^ ^ 
(207) 

is introduced, which means the linear combination of second deri-vatives, -with respect to the 

QT^I and <5r,2 coordinates, transform according to the component j of representation f G 

Fi 0 r 2 . Similarly, the appropriate tensor convolution for the coordinates is {Qpi ^QrzJr , ' 

so the second term in equation (205) becomes: 

Consider now the matrix elements of the coefficients of this term. For a degenerate 

state there will be a set appropriate to the lines fm and fk of the two representations Tm 

and Tk and their combinations. 

The totally symmetric part of the diagonal matrix elements of these second deri-va

tives (i.e. second term in equation (205)), form the curvature of the adiabatic potential 

or the force constants (in the equilibrium position). The remaining terms and the non-

diagonal matrix elements contain the quadratic -vibronic constants, *, which must be 

distinguished from the force constants. 

Consider the diagonal matrix element, K^p_ "^ = K^^_. As for the linear coupling 

constants, for the diagonal matrix element is to be non zero then the representation T G 

Tm Tjt can oidy be totally symmetric for nondegenerate states, i.e. f = i 4 i , while for 

degenerate states f can be both totally symmetric and nontotzilly symmetric. 

These non-symmetric quadratic vibronic constants influence the potential functions 

of the nuclei. However, in this case the potential function is even, since these -vibronic 

constants cire the coefficients of, crudely, Q^; hence the instability that arises is dynamic, 

rather than static (as for the Jahn-Teller effect), and is called the Renner-TeUer effect. 

Adiabatic potentials 

From the above i t can be seen that i f information on the stable configuration, the 

dynamics, and energy spectra of molecules with degenerate electronic states is required, 

then more consideration must be given to their adiabatic potential surfaces, (beyond the 

simple adiabatic approximation described initially). 

This involves sol-ving the electronic part of the Schrodinger equation, including the 

terms in the potential, V{r, Q), which vary with the internuclear displacement, i.e. W{r, Q). 

To do this: 
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• First separate out the totally symmetric part of the diagonal matrix elements of the 
vibronic interactions, which give rise to the force constants KY, since these terms do 
not change the symmetry of the system; 

• Secondly, choose the initial configuration of the system at the point ^r., = 0, where 

the adiabatic potential without vibronic interactions has a minimum; 

• Thirdly, assume that only linear and quadratic vibronic constants need be included, i.e. 

proper anharmonicity may be neglected. 

This will give an adiabaiic potential, for a degenerate electronic state, well separated 

from other states, i.e. where there is no pseudo-degeneracy: 

^kiQr, ) = \ E KrQl + 4{QT, ), k = 0,l,...,f (209) 

where / is the degree of degeneracy of the electronic state and eHQif) are the roots of the 

secular determinant: 

= 0, 7m,7m = l , 2 , . . . , / (210) 

in which, unlike in equation (205), the diagonal matrix elements ^.^^.^m 

totally symmetric part of the quadratic terms used in the force constant formation, and 

are simply combinations of the linear and quadratic vibronic force constants. 
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Appendix C: Dimensionless Constants and Displacements 

AU the force constants, coupling constants and coordinates used in the equations to describe 

the potentials of the sodium trimer have been expressed in the literature, and are used in this 

work, in dimensionless form [119]. Consider the coordinates and the vibronic coupling constants 

described in Chapter 5. A dimensionless radial displacement is used such that: 

= 4 ^ , (211) 

It is possible to find KE from UJQ [140] (wo is the radial vibrational frequency on the lower 

adiabatic surface): 
KE = (27r)2a;|m (212) 

anc 
UE = 

hence, 

Also, 

- \GE 

KE 

(213) 

(214) 
1-\GE 

u ; ^ = u ; £ x 3 y ^ l ^ , (215) 

where u;^ is the vibrational frequency of the motion perpendiculcir to the radial. The vibronic 

coupling constants can be expressed similarly in dimensionless form: 

«- = i ^- = ̂ - '̂''̂  
If the displacement and vibronic coupHng constants are used in their dimensionless forms, then 

the potential is measured in multiples ofhwQ. Similar expressions are used to find dimensionless 

constants for P and / , which are often quoted as P x and / x y/2. With the inclusion of 

the symmetric stretch, dimensionless and h are also used: 

Ql = 9 ^ (217) 

and 
6 = , ^ . (218) 

In other parts of the Literature, other dimensioiJess constants are used [117] [120], such that 

the potential is measured in multiples oi huiE- The definitions of the dimensionless displace

ments and coupUng constants are then altered to take account of this. Thus, the dimensionless 

coupling constants of Cocchini and co-workers [119] differ from the dimensionless coupling con

stants of Meiswinkel and Koppel [117] [120 . 
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Appendix F: Conferences and Seminars Attended 

The following information is included in compliance wi th the requirements of the Board 

of Studies i n Chemistry. 

Conferences At tended 

1. Annual conference of the High Resolution Spectroscopy Group wi th C.C.P.6, 'Wide 

amplitude motions: experiment and theory.' University college London, 16-18 December 

1990. 

2. 'Chemical Dynamics in the Time Domain' , organised by C.C.P.6 and M.B.D.G. Oxford 

University, 21-22 March 1991. 

3. C.C.P.6 workshop on parallel computing. Durham University, 17 December 1991. 

4. Annual conference of the High Resolution Spectroscopy Group wi th The Spectroscopy 

Group of the Inst i tute of Physics, 'Novel Spectroscopic Techniques for High Resolution 

Spectroscopy.' Heriot Watt University, 18-20 December 1991. 

5. Europecin Meeting on Photons, Beams and Chemical Dynamics. University of Paris X I 

at Orsay, 8-10 July 1992. Poster presented: 'Chemical Dynamics Using Wavepacket 

Methods.' 

6. Physics Computing 1992, 4th International Conference on Computationcd Physics. 

Prague, 24-28 August 1992. 

7. M O L E C I X , N in th European Conference on Dynamics of Molecular Collisions. Prague, 

30 August-4 September 1992. Poster presented: 'Time-dependent Calculations and 

Experiments on the Sodium Trimer. ' 

8. M . B . D . G . Spring Meeting. University of Birmingham, 22nd A p r i l 1993. 

9. 4th Annual Informal Northern Universities Chemical Physics Meeting, 15th July 1993. 

Paper presented: 'Wavepacket Calculations on the Sodium Trimer. ' 
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Seminars At tended 

D u r h a m and Newcast le Theore t i ca l Atomic and Molecular Physics Group 

1. November 5th, 1990 Dr. G. Ba l in t -Kur t i , Bristol University, 'Time dependent Quan

t u m Dynamics of Molecular Photodissociation and Reactive Scattering' 

2. November 21st, 1990 Dr. J. F. McCann, Durham University, 'Photodissociation of 

Diatomic Molecules by Intense Lasers' 

3. December 10th, 1990 Dr. K . Janda, University of Pittsburgh, 'Structure and dynam

ics of a series of noble-gas-chlorine Van der Waals complexes' 

4. December 10th, 1990 Dr. Z. Bacic, New York University, 'Calculating vibration-

rotation energy levels for floppy molecules' 

5. November 5th, 1991 Dr. A. Dalgarno, Harvard, 'Molecules i n the Universe' 

6. March 18th, 1992 Dr. J. Tennyson, University College, London, 'Rovibrational States 

of Hg" - Chaos, Jupiter and the Universe' 

7. February 17th, 1993 Dr. C. Leach, Southampton University, 'How close is close 

enough? The impact parameter dependence of a chemical reaction' 

The following pages contain lists of the seminars in the chemistry depeirtment f rom 1990-

1993. Those marked wi th an asterisk were attended. 

Appendix F: Conferences and Seminars Attended 



REVISED v-ERSION 

l^NIVERSir/ OF DURHAM 

Board of Studies i n Chemistry 

COLLOOUIA. LECTURES .̂ND SEMINARS GIVEN 3Y INVITED SPEAKERS 
IST AUGUST 1990 TO 31ST JULY 1991 

ALDER. Dr. 3.J. (Lawrence Livermore Labs., C a l i f o r n i a ) 
Hydrogen i n a l l i t s Glory 

BELL^, Prof. T. (SUNY, Stoney Brook, U.S.A.) 
Functional .Molecular A r c h i t e c t u r e and .Molecular 
Recognition 

30CHMANN', Dr. M. ( U n i v e r s i t y of East Anglia) 
Synthesis, Reactions and C a t a l y t i c A c t i v i t y of 
Cationic Titanium A l k y l s 

BRIMBLE. Dr. M.A.'(Massey U n i v e r s i t y , New Zealand) 
Synthetic Studies Towards the A n t i b i o t i c 
Griseusin-A 

BROOKHART, Prof. M.S. ( U n i v e r s i t y of N. Carolina) 
O l e f i n Polymerizations, Oligomerizations and 
Dimerizations Using E l e c t r o p h i l i c Late T r a n s i t i o n 
Metal Catalysts 

BROWN, Dr. J. (Oxford U n i v e r s i t y ) 
Can Chemistry Provide Catalysts Superior to Enzymes? 

BUSHBY", Dr. R. (Leeds U n i v e r s i t y ) 
B i r a d i c a l s and Organic Magnets 

COWLEY, Prof. A.H. ( U n i v e r s i t y of Texas) 
New Organometallic Routes to E l e c t r o n i c M a t e r i a l s 

CROUT, Prof. D. (Warwick U n i v e r s i t y ) 
Enzymes i n Organic Synthesis 

DOBSON • , Dr. CM. (Oxford U n i v e r s i t y ) 
NMR Studies of Dynamics i n .Molecular Crystals 

GERRARD', Dr. D. ( B r i t i s h Petroleum) 
Raman Spectroscopy f o r I n d u s t r i a l Analysis 

HUDLICKY, Prof. T. ( V i r g i n i a Polytechnic I n s t i t u t e ) 
B i o c a t a i y s i s and Svmmetry Based Approaches to the 
E f f i c i e n t Synthesis of Complex Natural Products 

JACKSON', Dr. R. (Newcastle U n i v e r s i t y ) 
New Synthetic Methods: a-Amino Acids and Small 
Rings 

KOCOVSKY"^, Dr. P. (Uppsala U n i v e r s i t y ) 
Stereo-Controlled Reactions Mediated by T r a n s i t i o n 
and Non-Transition Metals 

15th January, 1991 

14th November, 1990 

24th October, 1990 

29th July, 1991 

20th June, 1991 

28th February, 1991 

6th February, 1991 

13th December, 1990 

29th November, 1990 

6th March, 1991 

7th November, 1990 

25th A p r i l , 1991 

31st October, 1990 

6th November, 1990 
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LACEY, Dr. D. ( H u i i U n i v e r s i t y ) 
L i q u i d Crystals 

LOGAN, Dr. N. (Nottingnam 'Jniversity) 
Rocket Propellants 

MACDONALD. Dr. W.A. ( I C I Wilton) 
Ma t e r i a l s f o r the Space Age 

KARKAM, Dr. J. ( I C I Pharmaceuticals) 
DNA F i n g e r p r i n t i n g 

PETTY, Dr. M.C. (Durham u n i v e r s i t y j 
Molecular Ele c t r o n i c s 

PRINGLE•, Dr. ?.G. ( B r i s t o l U n i v e r s i t y ) 
Metal Complexes w i t h Functionalised Phosphines 

PRITCHMD. Prof. J. (Queen Mary & Westfield College, 
London U n i v e r s i t y ) 
Copper Surfaces and Catalysts 

SADLER, Dr. P.J. (Birkbeck College London) 
Design of Inorganic Drugs: Precious .Metals, 
Hypertension + HIV 

SARRE. Dr. P. (Nottingham U n i v e r s i t y ) 
Comet Chemistry 

31st January, 1991 

1st .November, 1990 

11th October, 1990 

7th March, 1991 

14th February, 1991 

5th December, 1990 

21st November, 1990 

24th January, 1991 

17th January, 1991 

SCHROCK, Prof.R.R. (Massachusetts I n s t i t u t e of Technology) 24th .April, 1991 
M i ^ l - I i g a n d M u l t i p l e Bonds and Metathesis I n i t i a t o r s 

SCOTT, Dr. S.iC. (Laeds U n i v e r s i t y ) 
Clocks, O s c i l l a t i o n s and Chaos 

SHAW , Prof. B.L. (Leeds U n i v e r s i t y ) 
Syntheses w i t h Coordinated, Unsaturated Phosphine 
Ligands 

SINN". Prof. E. ( H u l l U n i v e r s i t y ) 
Coupling of L i t t l e Electrons i n Big Molecules. 
I m p l i c a t i o n s f o r the A c t i v e Sites of (Metalloproteins 
and other) Macromolecules 

4. 

SOULEN'. Prof. R. (South Western U n i v e r s i t y , Texas) 
Preparation and Reactions of Bicycloalkenes 

^ WHITAKEB~. Dr. B.J. (Leeds U n i v e r s i t y ) 
Two-Dimensional V e l o c i t y Imaging of State-Selected 
Reaction Products 

Sth November, 1990 

20th February, 1991 

30th January, 1991 

26th October, 1990 

2Sth November, 1990 

I n v i t e d s p e c i f i c a l l y f o r the postgraduate t r a i n i n g programme. 



UNIVERSITY OF DURHAM 

Board of Studies in Chemistry 

COLLOOmA. LECTURES AND SEMINARS FROM INVITED SPEAKERS 

1991 - 1992 f August 1 - July 31) 

1991 

October 17 

October 31 

November 6 

^ November 7 

November 13 

November 20 

November 28 

December 4 

December 5 

^ December 11 

Dr. J..A.. Saithouse, University of Manchester 
Son et Lumiere - a demonstration lecture 

Dr. R. Keeiey. Metropolitan Police Forensic Science 
Modern forensic science 

Prof. B.F.G. Johnson'. Edinburgh University 
Cluster-surface analogies 

Dr. .A..R. Butler, St. .Andrews University 
Traditional Chinese herbal drugs: a different way of treating disease 

Prof. D. Gam'", St. .Andrews University 
The chemistry of PLP-dependent enzymes 

Dr. R. -More O'Ferrall', University College, Dublin 
Some acid-cataiysed rearrangements in organic chemistry 

Prof. I .M. Ward, IRC m Polymer Science, University of Leeds 
The SCI lecture: the science and technology of orientated polymers 

Prof. R. Grigg', Leeds University 
Palladium-catalysed cyciisation and ion-capture processes 

Prof. .A.L. Smith, ex Unilever 
Soap, detergents and black puddings 

Dr. W.D. Cooper^, Shell Research 
Colloid science: theory and practice 

1992 

January 22 

January 29 

Dr. K.D.M. Harris"'", St. .Andrews University 
Understanding the properties of solid inclusion compounds 

Dr. .A. Holmes"'. Cambridge University 
Cycloaddition reactions in the servnce of the synthesis of piperidine and 
indolizidine natural products 



January 30 

February 12 

^ February 13 

February 19 

^ February 20 

February 25 

February 26 

March 5 

March 11 

March 12 

March 18 

April 

Mav 

'7 ( 

13 

Dr. M. Anderson, Sittingbourne Research Centre, Shell Research 
Recent Advances in the Safe and Selective Chemical Control of Insect 
Pests 

Prof. D.E. Fenion", Sheffield University 
Polynuclear complexes of molecular clefts as models for copper biosites 

Dr. J. Saunders. Glaxo Group Research Limited 
Molecular Modelling in Drug Discovery 

Prof. E.J. Thomas L Manchester University 
Applications of organostannanes to organic synthesis 

Prof. E.Vogel, University of Cologne 
The Musgrave Lecture Porphyrins: Molecules of Interdisciplinary 
Interest 

Prof. J.F. Nixon, University of Sussex 
The Tilden Lecture Phosphaalkynes; new building blocks in inorganic 
and organometallic chemistry 

Prof. M.L. Hitchman^, Strathclyde Umversity 
Chemical vapour deposition 

Dr. N.C. Billingham, University of Sussex 
Degradable Plastics - Myth or Magic? 

Dr. S.E. Thomas^. Imperial College 
Recent advances in organoiron chemistry 

Dr. R.A. Hann. ICI Imagedata 
Electronic Photography - An Image of the Future 

Dr. H. Maskill ' , Newcastle University 
Concerted or stepwise fragmentation in a deamination-type reaction 

Prof. D.M. Knight. Philosophy Department, University of Durham 
Interpreting experiments: the beginning of electrochemistry 

Dr. J-C Gehret. Ciba Geigy, Basel 
Some aspects of industrial agrochemical research 

t Invited specially for the postgraduate training programme. 



L-NIVERSITY OF DURHAM 

Board of Studies in Oiemistrv 

C O L L O O U I A . LECTURES AND SEMINARS FROM INVITED SPEAKERS 

1992- 1993 (August I -July 31) 

1992 

October 15 Dr M. Glazer k Dr. S. Tariing, Oxford Universm- & Birbeck College, London 
It Pavs to be British! - The Chemist s Role as an Expert Witness in Patent 
Litigation 

October 20 Dr. H. E . Bryndza, Du Pont Central Research 
Synthesis, Reactions and Thermochemistry of Metal (Alkyl) Cyanide Complexes 
and Their Impact on Olefin Hydrocvanation Catalysis 

October 22 Prof. A. Da\nes, University College London 
The Ingold-Alberi Lecmre The Beha\aour of Hydrogen as a Pseudometal 

October 28 Dr. J. K . Cockcroft, University of Durham 
Recent Developments m Powder Diffraction 

October 29 Dr. J. Emsley, Impenai College, London 
The Shocking Histor.' of Phosphorus 

November 4 Dr. T. P. Kee. University of Leeds 
Synthesis and Co-ordination Chemistry of Silylated Phosphites 

November 5 Dr. C. J. Ludman, University of Durham 
Explosions, A Demonstration Lecture 

November 11 Prof. D. Robins, Glasgow University 
Pyrrolizidine .Alkaloids : Biological Activity, Biosynthesis and Benefits 

November 12 Prof. M. R. Truter, University College, London 
Luck and Logic in Host - Guest Chemistiy 

November 18 Dr. R. Nix, Queen Man,- CoUege, London 
-7^ Charactensation of Heterogeneous Catalysts 

November 25 Prof. Y. Vallee. University of Caen 
Reactive Thiocarbonyi Compounds 

.November 25 Prof. L . D. Quin, University of Massachusetts, Amherst 
Fragmentation of Phosphorous Heterocycles as a Route to Phosphoryl Sp>ecies 
with Uncommon Bonding 

November 26 Dr. D. Humber. Glaxo. Greenford 
AIDS - The Development of a Novel Series of Inhibitors of HIV 

December 2 Prof. A. F. Hegarty, University College, Dublin 
Highly Reactive Enols Stabilised by Steric Protection 

December 2 Dr. R. A. Aitken, University of St. Andrews 
The Versatile Cvcloaddition Chemistiy of BU3P.CS2 

December 3 Prof. P. Edwards, Birmingham University 
The SCI Lecture - What is Metal? 

December 9 Dr. A. N. Burcess, ICI Runcorn 
The Stnictijre of Periluonnated lonomer Membranes 
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1993 

^ January 20 

January 21 

January 27 

January 28 

February 3 

February 10 

March 10 

March 11 

March i : 

March 24 

,; Mav 13 

Mav 21 

June 1 

June 2 

June" 

Dr. D. C. Clary, University of Cambridge 
Energy Flow in Chemical Reactions 

Prof. L. Hall, Cambridge 
NMR - Window to the Human Body 

Dr. W. Kerr, Universitv of Strathdyde 
Development of the Pauson-Khand Annulation Reaction : Organocobalt Mediated 
Synthesis of Natural and Unnatural Products 

Prof. J. Mann, University of Reading 
Murder, Magic and Medicine 

Prof. S. M. Roberts, University of Exeter 
Enzymes in Organic Synthesis 

Dr. D. Gillies. University of Surrey 
NMR and Moiecuiar Motion in Solution 

February 11 Prof. S. Knox, Bristol University 
The Tilden Lechire Organic Chemistry at Polvnuclear Metal Centres 

February 17 Dr. R. W. Kemmitt, Universitv of Leicester 
Oxatrimethylenemethane Metal Complexes 

February 18 Dr. I. Fraser, ICI Wilton 
Reactive Processing of Composite Materials 

February 22 Prof. D. M. Grant, University of Utah 
Single Crystals, Molecular Structure, and Chemical-Shift Anisotropy 

February 24 Prof. C J. M. Stirling, University of Sheffield 
Chennistry on the fHat-Reactivity of Ordered Systems 

Dr. P. K. Baker. University College of North Wales, Bangor 
'Chemistry of Highly Versatile 7-Coordinate Complexes' 

Dr. R. A. Y. Jones, University of East Anglia 
The Chemistr.- of Wine .Making 

Dr. R. J. K. Taylor, University of East Anglia 
Adventures in Natural Product Synthesis 

Prof. I. O. Sutherland, University of Liverpool 
Chromogenic Reagents for Cations 

Prof. J. A. Popie, Carnegie-Mellon University, Pittsburgh, USA 
The Bo}js-Ri2hir,an Lecture Applications of Molecular Orbital Theor\' 

Prof. L. Weber, Universit\' of Bielefeld 
Metallo-phospha Alkenes as Synthons in Organometallic Chemistry 

Prof. J. P. Konopelski. University of California, Santa Cruz 
Synthetic Adventures with Enantiomericaily Pure Acetals 

Prof. F. Ciardelli, Universit\' of Pisa 
Chiral Discrimination in the Stereospecific PoKmerisation of .Alpha Olefins 

Prof. R. S. Stein. University of Massachusetts 
Scattering Studies of Cr\-stalline and Liquid Cr\-stalline PoKmers 
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June 16 Prof. A. K. Covington, University of iNewcastle 
Use of Ion Selective Electrodes as Detectors in Ion Chromatography 

June 17 Prof. O. F. Nielsen, H. C. 0rsted Institute, University of Copenhagen 
Low-Frequency IR - and Raman Studies of Hydrogen Bonded Liquids 
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