
Durham E-Theses

Measurement for the management of software

maintenance

Cooper, Simon D.

How to cite:

Cooper, Simon D. (1993) Measurement for the management of software maintenance, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5676/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5676/
 http://etheses.dur.ac.uk/5676/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

School of Engineering and Computer Science
(Computer Science)

Measurement for the Management
of Software Maintenance

Simon D. Cooper

The copyright of this thesis rests with the author.

No quotation from it should be pubhshed without

his prior written consent and information derived

from it should be acknowledged.

Ph.D.
1993

- 2 J U L 1993

Abstract

Measurement for the Management of Software
Maintenance

Simon D. Cooper

This thesis addresses the problem of bringing maintenance, in a commercial

environment, under management control, and also increasing the profile of

maintenance in a corporate picture, bringing it onto a par with other

components of the business. This management control will help reduce costs

and also the time scales inherent in maintenance activity.

This objective is achieved by showing how the measurement of the products

and processes involved in maintenance activity, at a team level, increases the

visibility of the tasks being tackled. This increase in visibUity provides the

ability to impose control on the products and processes and provides the basis

for prediction and estimation of future states of a projects and the future

requirements of the team. This is the foundation of good management.

Measurement also provides an increase in visibility for higher management of

the company, forming a basis for communication within the corporate strategy,

allowing maintenance to be seen as it is, and furnished with the resources it

requires.

A method for the introduction of a measurement strategy, and collection

system, is presented, supported by the examination of a database of

maintenance information collected by a British Telecom research team, during a

commercial software maintenance exercise. A prototype system for the

collection of software change information is also presented, demonstrating the

application of the method, along with the results of its development and the

implications for both software maintenance management and the technical tasks

of implementing change.

Acknowledgements

Firstly I would like to thank my supervisor, Mr. M. Munro, for his help and

guidance throughout this project, and without whom none of this would have

been possible.

I would also like to express my thanks and appreciation for the many valuable

contributions from Mr. J. Foster at British Telecom Research Laboratories, and

all the members of his research group, RT3121.

Many people have contributed to this work through their discussion, support

and encouragement. My thanks to all those who have helped, especially Miss

R. Kenning and Mr. R. Freeman. My thanks also to all my friends, colleagues

and acquaintances who made ray time at Durham such an enjoyable experience.

Finally I would like to thank the Science and Engineering Research Council,

and British Telecom Research Laboratories who funded this project, and

British Telecom for providing the data on which part of this project is based.

IV

Copyright

The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent and information derived from it

should be acknowledged.

This work is dedicated to my wife, Karen

VI

Contents

1. Introduction 12

1.1. Software Maintenance 12

1.1.1. The Problems with Maintenance 13

1.1.2. Maintenance in the Corporate Strategy 15

1.1.3. A Model of Software Maintenance 17

1.1.3.1. The Maintenance Team 20

1.1.3.2. Maintenance Network 22

1.2. The Thesis Position 23

1.2.1. Management Through Measurement 24

1.2.2. Maintenance Research 25

1.2.3. The Goal/Question/Metric Paradigm 26

1.3. Criteria for Success 28

1.3.1. The Goal 29

1.4. Thesis Overview 30

2. Metrics and Measurement 32

2.1. Metrics 32

2.1.1. Definition of Metrics 32

2.1.2. Types of Metrics 33

2.1.3. Useful Software Metrics 37

2.2. Measurement of Metrics 37

2.3. Uses of Metrics Systems 39

2.3.1. Product Metrics 40

vu

2.3.1.1. System Description 40

2.3.1.2. System Comparison 41

2.3.1.3. System Specification 41

2.3.2. Process Metrics 42

2.3.2.1. Process Modeling 42

2.3.2.2. Progress Monitoring 43

2.3.3. Management 44

2.4. Metrics Applied to Maintenance 45

2.4.1. Monitoring 45

2.4.1.1. QuaUty 46

2.4.1.2. System Degradation 47

2.4.1.3. Progress 49

2.4.2. Prediction 50

2.4.3. Management of Maintenance 50

2.5. Metrics for Maintenance Management 52

2.5.1. Code Metrics 53

2.5.2. Configuration Metrics 53

2.5.3. Other Metrics 54

2.6. Summary 55

3. A Method for Developing a Measurement System 57

3.1. Data Collection 57

3.1.1. Why Collect Data? 58

3.1.2. Collecting Data 63

3.1.2.1. By experiment 63

3.1.2.2. After the event 64

3.1.2.3. During the project 65

3.1.2.4. Collection as a background task 66

vm

3.1.3. The Cost of Collecting Data 67

3.2. Data Analysis 70

3.2.1. Why Analyze Data? 70

3.2.2. Analyzing Data 71

3.2.2.1. Presentation 71

3.2.2.2. Abstraction 72

3.2.2.3. Translation 75

3.2.2.4. Prediction 76

3.2.2.5. Visibility 77

3.3. Development of a Measurement System 78

3.3.1. Requirements of System 78

3.3.2. Development Method 79

3.3.2.1. Phase 1 - Initial Data Set 79

3.3.2.2. Phase 2 - Collection Strategy 81

3.3.2.3. Phase 3 - Collection and Analysis 82

3.3.2.4. Phase 4 - Evolution 84

3.3.3. Summary 87

4. A Practical Application of the Method 89

4.1. British Telecom Project Data 89

4.1.1. The British Telecom Project 89

4.1.1.1. The UXD5B Project 90

4.1.1.2. The Change Procedure 91

4.1.2. The Maintenance Data 94

4.2. Application of the Method 96

4.2.1. Development of a Measurement System 96

4.2.1.1. Phase 1 - Initial Data Set 96

4.2.1.2. Phase 2 - Collection Strategy 98

IX

4.2.1.3. Phase 3 - Collection and Analysis 100

4.2.2. Evolution of the Measurement System 104

5. The SCIMM System 106

5.1. Introduction 106

5.2. The SCIMM System 107

5.2.1. System Overview 107

5.2.2. Data Collection 108

5.2.2.1. Change Request 110

5.2.2.2. Change Diagnosis 111

5.2.2.3. Changes Header 112

5.2.2.4. Change Details 113

5.2.2.5. Test Details 115

5.2.2.6. Quality Assurance and Feedback 116

5.2.3. Data Analysis 117

5.2.3.1. Change Information Retrieval 117

5.2.3.2. Reports 119

5.2.4. Maintenance Programmer Support 121

5.2.4.1. Change Cross-referencing 121

5.2.4.2. Change Search Criteria 123

5.3. Evolution of SCIMM 124

5.4. Summary 126

6. Evaluation and Conclusions 127

6.1. Comparison to Criteria for Success 127

6.2. Comparison to the Goal/Question/Metric Paradigm 129

6.3. Evaluation of the Method 131

6.3.1. Phase 1 - Initial Data Set 132

6.3.2. Phase 2 - Collection Strategy 133

6.3.3. Phase 3 - Collection and Analysis 134

6.3.4. Phase 4 - Evolution 135

6.4. Conclusions 136

7. Further Work 139

7.1. Measurement System Development Method 139

7.2. The SCIMM System 140

7.3. British Telecom Maintenance Data 142

7.4. Measurement for the Management of Software

Maintenance 143

A. SCIMM Data Collection 145

B. SCIMM Example Reports 150

References 153

Bibliography 163

XI

Chapter 1

Introduction

1.1. Software Maintenance

Software maintenance, as defined by the IEEE [IEEE84], is:

The modification of a software product, after delivery, to

improve performance or other attributes, or to adapt the

product to a new environment.

In other words, software maintenance includes all work done on a software

system after its delivery into its working environment

In keeping with this definition, maintenance activity can be divided into four

categories [SWANSON76, PRESSMAN87]:

• Perfective maintenance: the alteration of code so that it conforms

to a new specification. This normally involves the addition of

functionality.

• Adaptive maintenance: the alteration of code so that it runs in a

new or changed environment.

12

• Corrective maintenance: the alteration of code to remove errors.

That is, to make the software conform to its specification.

• Preventive maintenance: alteration of the code in an internal sense

only, i.e., no change in functionality. This is normally performed in

order to make future maintenance work easier and less cosdy

[WADE88].

The definitions above show that during most of the life-time of a software

system, which in many cases is 25 years or more, it is in the maintenance phase

of its life-cycle. Software maintenance is accepted as being the most costly

phase in the this life-cycle. It is quoted as accounting for between 50% and

80% of all software expenditure and effort [LEINTZ79, MORISSEY79] and

this is likely to be the case for the foreseeable future [SCHNEIDEWIND87].

With maintenance being such an important part of the Ufe-cycle, it is important

to find methods of reducing the cost of maintenance. This is perhaps more

important than finding new methods of developing software as existing

software is going to be with us for the near, if not the long-term, future

[SCHNEIDEWIND87].

1.1.1. The Problems with Maintenance

The high cost of software maintenance can be attributed to a number of factors,

an important one being the lack of close and effective management of the

maintenance process at the line management level. This is due in part to the

13

special difficulties of controlling maintenance activity [KAFURA87]. If the cost

of software maintenance is to be decreased and the quality improved, we must

impose stronger and more rigorous control over the whole process.

The general principles of management are well defined and understood,

allowing projects to be completed on time and within budget

[WINGROVE86], but there seems to be resistance to applying these principles

in the maintenance field.

Maintenance poses special problems to a manager [KAFURA87]. A more

diverse group of people, over a longer period of time, work on the software,

with fewer defined work standards or methods, than in any of the other phase

in the software life-cycle. A large proportion of this work consists of trying to

respond rapidly to change requests due to the direct impact on a customer, or

the business function of a customer, so the maintenance activity takes on a

responsive or 'fire fighting' role. This role causes the backlog of less urgent

requests to increase, and rules out any more controlled preventive maintenance

work with a view towards reducing problem areas.

The lack of control and the rapid response nature of the work allows the

natural degradation of the system due to the maintenance activity, described by

Belady [BELADY76], to go unhindered. The most noticeable symptom of this

degradation is an increase in system complexity. As the systems complexity

grows rapidly, so the ripple effect - the introduction of new errors, or adverse

changes, while making a required change - becomes a major problem,

increasing the workload and the backlog. In a study conducted by CoUofello

and Buck [COLLOFELL087] it was concluded that more than 50% of errors

were introduced by previous changes. The difficulty of 'fighting the fire while

14

feeding the flames' is apparent. The result, as the backlog builds and the error

rate increases, is that the system is 'maintained to death' [BROWN80].

Maintenance activity, because it is driven by the people actually using the

system, is invariably put under heavy time constraints. The result of this,

combined with the large amount of maintenance done in an uncontrolled way

generating more work, has lead, in many places to a maintenance backlog. This

is a queue of work waiting to be done, sometimes years old. This adds to the

pressure on the maintenance teams and escalates the problem.

Real management of the process is needed to bring maintenance under control

and allow for future planning and scheduUng. This would lead to more efficient

use of time and other resources, a reduction in the backlog of work and allow

for preventive maintenance, and, as an end result, reduce the cost of this most

expensive phase of the software life-cycle. It has been shown in other fields that

management control can achieve these objectives, it dierefore must be a

requirement for the software maintenance field.

1.1.2. Maintenance in the Corporate Strategy

One of the major problems faced by the maintenance community as a whole,

and particularly by managers of maintenance departments in large commercial

organizations, is the lack of recognition by senior management of software

maintenance as part of the corporate strategy. Maintenance is often regarded as

an unimportant sideline to software development [LIENTZ80], an annoying

waste of money, fixing problems caused by bad development.

15

This lack of recognition of the problems of software maintenance, and lack of

recognition of the benefits afforded by its effective application, introduces

major stumbling blocks in the path of management of the process and its

overall control.

The reasons behind these problems is a lack of effective communication

between the managers of the maintenance teams and the senior or corporate

level management responsible for running the business. This corporate level

management tend not to regard the organization's software portfolio as a

company asset, and fail to realise the cost of keeping this software asset in

working order, and keeping it in line with current business and practical

requirements. They do not realise because they cannot be told in a practical

way. A requirement therefore exists for maintenance teams and, more

particularly, their managers to talk the 'language of business' in order to

present their case effectively [COLTER88].

Software, in any large commercial environment, represents a significant

investment, and maintenance work is further investment that is required in

order to maintain the value of the software as a corporate asset. In these terms,

software maintenance has a cost, and it also has a benefit in the corporate

strategy. These costs, their projected values and their comparison is how a

company should view its maintenance component. This is the 'language of

business', a language that high level management can work with and expects.

Communication about maintenance in these terms is, however, not possible at

present. This is because the values required cannot be quantified. They cannot

be quantified because of a lack of understanding and knowledge about the

content of the values, and how to go about producing them. The best attempt

at producing these values is estimation (finger in the air?) by managers with

16

experience of the maintenance role within the specific environment The target,

however, must be to produce these figures on a routine and accurate basis. The

only answer is for measurement of the processes involved in order that the

underlying components and so the values themselves, can be generated

[COOPER89].

Measurement of a process (and the development of a measurement system),

increases the visibility and understanding of that process. This greater

understanding, and the increased visibility, combined with the experience of

managers, wil l allow the estimates of cost to become more accurate, their basis

to become more demonstrable and will allow the measurement to improve. The

end result is the ability to talk with confidence about the maintenance

environment and its role within a corporate strategy.

The greater visibility and understanding, along with the evidence to support it,

will provide the basis for demonstrating the part played by maintenance in the

corporate strategy. In this way the profile of maintenance as an important phase

in software development, and in the business, can be increased, and put on an

equal footing with other elements of the overall business strategy.

1.1.3. A Model of Software Maintenance

The processes involved in software maintenance and the organization of the

tasks are of crucial importance to the success of the activity. There is, however,

no accepted framework in which the processes of software maintenance and

the organization of the constituent tasks can be placed. This is a particular

problem when comparisons are to be made between different teams or

organizations. A uniform model is required onto which any maintenance team

17

can be mapped, allowing a generally applicable discussion and comparison to

take place. Such a model is presented here in preparation for discussions later

in this thesis.

A number of models of the maintenance process have been proposed. A general

discussion and comparison by Collofello can be found in [COLLOFELL086].

These models are generally directed at the technical aspects of performing a

maintenance task [BOEHM76, MARTIN83, PARIKH82, PATKAU83].

John Foster et al. [FOSTER89] presents a model based on observations of

actual maintenance teams rather than a theoretical starting point. Within this

model the technical and managerial issues can be presented and discussed from

a common stand point, applicable to any maintenance team. The model

addresses all aspects of maintenance. The model consists of seven levels, each

representing a different view point on the maintenance process, from the

corporate view, down to the technical level. The seven levels are:

• Asset Level: the software as a company asset. It considers the entire

set of software owned by the company and the overall costs and

paybacks associated with it.

• Portfolio Level: the set of software items owned and used by the

company. It concerns the set of products that support particular

business functions of the organization.

• Network Level: concerns the interactions between the levels of

resource applied to software products, in teams responsible for

more than one product.

18

• Product Level: one single software product. Concerns the overall

activity involved with a particular product.

• Team Level: a maintenance team. The processes related to a

maintenance team.

• Function Level: a function performed within a team.

• Topic Level: components of functions. Concerns individual actions

performed by members of the maintenance team.

The model represents a useful anchor point on which to base further

discussion and to allow discussion to be based on a common ground with

common reference points.

In the context of this thesis, we will particularly address the Team Level of this

model. This represents a level of abstraction away from the actual tasks

involved in making a change to the software source code and deals more with

the overall area of concern of a line maintenance manager. We are also

interested in the communication paths to the higher levels of the model,

representative of corporate level management.

19

1.1.3.1. The Maintenance Team

NEW FRONT REQUEST
REQUEST DESK STORE

1

NEW ^ SOLUTION CHANGE
RELEASE ' STORE STORE

Fig. 1 The maintenance team

Figure 1 is the conceptual model of a single team in the maintenance

organization. It is idealized in the sense that a real team may not exhibit all of

the features shown in the diagram, although in general, they are present in some

form.

The diagram represents objects, or duties in the maintenance team, with the

arrows representing the flow of information, which is related to the actual work

being done. This representation allows the model to be applied to maintenance

teams of any size, from a large many-man operation to a single maintainer

responsible for all stages in the model.

The larger rectangle in the diagram is the organizational boundary of the team,

outside which the team has no control. To the left are the customers,

generating requests to the team, and taking receipt of new releases of the

software or other products of the team, such as updated user instructions etc.

20

Requests are received by the front desk task. The front desk may be able to

offer an instant solution from previous work, in which case the solution is

released. These known solutions are stored in the solution store, which may be

documented knowledge or knowledge in the heads of members of the team.

This solution store is fed by all the activity of the team.

I f the front desk cannot offer a solution, the request is passed to the request

store where it is queued for further work. This is generally a prioritized list of

requests awaiting action. In the optimum case, this store will always be empty,

but in reaUty it exists in some form.

When a request gets to the head of the queue, work is done on the analysis of

the request, and the design of the change required. This designed change is then

stored in the change store. Designed changes remain in this store until a

decision is made to implement a subset of the available changes. At this time,

the changes are implemented and tested, and thus move from the change store

to the solution store, ready to be shipped to customers.

Two more important features are also represented. Firstly there is a feedback

loop from the solution store to the front desk if a problem is found during

implementation of a change. This starts a new iteration of the loop.

The second feature is the communication to the right of the diagram. I f a

change request is outside the scope of this team it may be passed on to another

team. The current team become the customer to another team. When the

change has been completed, the design returns from the client team into the

change store and continues round the loop.

21

In any particular maintenance team, as stated before, some of the features

described above will not be obvious. The features do, however, generally exist

in some form, whether it be one person doing all the tasks with the solution

store in his head and the request store in his in tray, or a large team with

carefully apportioned jobs. Even in an organization where changes are made

directly to the code, immediately on request, it can be represented as a fast

transition around the loop.

1.1.3.2. Maintenance Network

USER TECHNICAL
SUPPORT SUPPORT

MODULE A
SUPPORT

MODULE B
SUPPORT

Fig. 2 The maintenance network

Figure 2 shows a maintenance network (not related to the network level), in

which each box represents the outer box from the maintenance team diagram -

the maintenance team organizational boundary, and the Unes represent two way

customer/client communication. This represents a more complex, and generally

more normal, form of the Team Level of the model. It is rare for a single team

to be responsible for all maintenance activity in any but the smallest

environments. The diagram represents an example of the organization of a

22

maintenance department with two levels of user support before the change

requests are passed to the actual change process. In this case two bottom level

maintenance teams are present, each responsible for a different part of the

system.

In this way, any organization of maintenance effort can be represented in terms

of the teams and their communications.

1.2. The Thesis Position

Software maintenance, at present, suffers from a lack of effective line

management and from a poor image at the corporate level.

This thesis attempts to address the problem of bringing maintenance under

management control, and also increasing the profile of maintenance in a

corporate picture, bringing it onto a par with other components of the business.

This control will help reduce costs and also the time scales inherent in

maintenance activity.

Software maintenance is a very costly part of the software life-cycle. In fact, it

is now widely accepted as the most costly, and certainly lasts for the longest

time. This position will only get worse as hardware costs get lower, and

software development methods improve. In commercial environments, the

reduction of maintenance costs is assuming more and more importance, and to

this end, research in this area is desperately needed.

One of the reasons identified, for the high cost of maintenance, and the lack of

acceptance in the commercial world of the strategic importance of software

23

maintenance, is the lack of effective management of the maintenance process

and the teams involved in this work. This poor management leads to higher

costs and poor communication with higher management resulting in the

situation seen in many places.

In order to introduce more effective management into the maintenance arena,

measurement of the products and processes is required to increase the visibility

of these products and processes, to increase understanding and to provide a

basis of knowledge about software maintenance and allow communication of

that knowledge.

1.2.1. Management Through Measurement

The prime objective of this thesis is to show how the measurement of the

products and processes involved in maintenance activity, at a team level,

increases the visibiUty of the tasks being tackled. The increase in visibiUty leads

to greater understanding and provides the basis for imposing control on the

products and processes.

The increase in visibility, and the availabiUty of data about the products and

processes both in their current state, and historically, also provides the basis for

prediction and estimation of future states of the projects being undertaken and

the future requirements of the team. This prediction requires models, which

require observations to develop and validate.

Prediction and estimation are necessary ingredients for forward planning. The

ability to forward plan, the ability to see what is currently happening and the

ability to control produce an environment for good management

24

Measurement also provides the basis for communication with higher level

management of the company. The visibility that measurement produces is in a

form that can be understood by these people - figures, forecasts, targets and

progress - the language of busmess. In this way, measurement provides the

basis for communication within the corporate strategy, allowing maintenance to

be seen as it is and furnished with the resources it requires.

1.2.2. Maintenance Research

An important product of the measurement of the maintenance products and

processes is the opportunity provided for research.

In order to provide software maintenance research with a firm basis in the real

world, large quantities of real worid observations of the maintenance process

are required. This data will provide the basis for software maintenance model

creation and vaUdation, as well as calibration of models to particular

environments and working practices.

There is only a certain distance one can go in pure research without validating

ideas and showing them to be correct in real situations. Research results can

never be truly accepted unless they are shown, in a practical sense, to be true.

This is a lesson learned from research into most fields, but particularly the

sciences. Research into software maintenance is necessary if a true

understanding is to be formed, and it is truly to become a science. This science

evolution requires measurement of the products and processes involved.

25

1.2.3. The Goal/Question/Metric Paradigm

Rombach and Basili [ROMBACH87] present a method of developing a

measurement system based on a top-down schema.

The method involves the careful definition of goals to be fulfilled by the

measurement system. The goals are definitions of pieces of information

required at a management level. These goals are therefore, normally, fairly

abstracted from the products and processes of maintenance. An example is

'Examine the effectiveness of the maintenance effort.'.

The goals defined are broken down into sets of questions that provide the

information required to satisfy the goals. The questions are nearer to the

products and processes but still represent a level of abstraction. An example is

'Is the user satisfied with the function, performance, etc. ?'.

The questions themselves are then broken down into sets of measurable metrics

that provide the answers to the questions. In this way a system of measurement

is produced, that measures the products and processes involved and generates,

by means of answering questions, information that fulfills the goals defined.

These goals, being management defined, provide information to aid in the

management of maintenance.

This method has been shovm to be applicable, and to work, providing

management information from measurement. It has also been shown to be

useful [ROMBACH87].

The method does, however, have a number of shortfalls.

26

Firstly, the paradigm depends on the definition of a set of specific goals before

the method can be applied. This identification and definition of goals can be

time consuming and difficult, at the best of times, but is required to be accurate

and complete, as the rest of the method and the final measurement system

depends wholly upon it.

The process of breaking down goals into questions can also be a very difficult,

and often inaccurate job. This is particularly true when the goal is an abstract,

perhaps corporate goal, without any direct relation to the product or processes

in the maintenance environment. The next stage, that of production of metrics

from the questions, can again be complex and involved, and may not be

possible. The metrics produced, or required, may also not be measurable.

The application of this method, therefore, requires a substantial initial

investment in time and effort to define the metrics, sometimes with hmited

results, and also guaranteeing a long time lag between inception and the first

results from the system. It is also often true that the implementation of the

metric collection system developed is unworkable in the environment to which

it must be applied. This being primarily true because the system does not take

into account the working environment or current work practices.

Once a system of metrics has been defined, the measurement system must be

implemented. This now highlights another problem with the paradigm. Unless

careful attention has been paid in the early stages, a system of metrics must

now be collected that perhaps bear no relation to the procedures currently in

use and the available data set. In these cases, a large investment is again needed

to implement the system, including effort on the part of the maintenance teams,

who are already under time constraints.

27

The effectiveness of the measurement system, and its real value, only now can

be established. The most likely outcome, as with any new project, is that

changes are required. This, however, becomes another costly exercise. Any

change in goal may result in a large amount of rework effort, and a completely

new measurement requirement

With these shortfalls in mind, it must be remembered that the method has been

shovm to produce valuable and useful results once the measurement system is

implemented. It therefore provides a good basis for further work.

1.3. Criteria for Success

The basic premise of this thesis is that measurement of software maintenance

products and processes produces visibility and understanding, leading to better

management of the software maintenance environment at both line and

corporate level. This has been shown by a number of studies, including the

Goal/Question/Metric paradigm.

The hierarchy presented in the GoayQuestion/Metric paradigm of collection of

data providing answers to higher level questions is valid and useful. This thesis,

therefore, addresses the shortfalls of the Goal/Question/Paradigm by applying a

bottom-up design approach. This approach will help target the hierarchy,

overcome the overhead problems which are a major consideration in an

industrial environment, and provide for an evolution of the system to take

account of goal changes and gathered experience.

28

1.3.1. The Goal

The goal of this thesis is to present a method of introducing a measurement

system into an industrial software maintenance environment.

The purpose of the measurement system is to increase the visibiUty of both the

products and processes involved, leading to improved management control at

the line level, and greater ease of communication with corporate level

management.

The method must produce a system for both the collection and the use of

information about the products and processes, and provide for the evolution of

the system to reflect changes in the measurement requirements and the tailoring

of the system to better satisfy existing requirements, as knowledge and

understanding within the environment increase.

The method must also allow for certain basic necessities within an industrial

environment. The first is the need for as litde overhead, in both effort and cost,

as possible for the implementation of the system. Specifically, the amount of

effort required to develop and implement the initial system, and the amount of

impact the system has on the resources within the environment must be kept to

a minimum. The second is the need for immediate feedback of results from the

system in order that any impact that the system has can be justified

immediately, and the benefits and drawbacks can be assessed. These criteria are

of utmost importance in an industrial setting, but have not been addressed in

other work.

29

The thesis draws on the experience of the Goal/Question/Metric paradigm to

show the usefulness of collection of data, but provides a solution to the

shortfalls of that method.

1.4. Thesis Overview

This thesis begins with a description and analysis of measurement of software.

This includes the rational behind the need for software measurement and

metrics research and the advances that have been, and must be made. A large

amount of work has been done on the appUcation of metrics to program code,

however, very Uttle pubUshed work addresses the higher level problems of the

measurement for management of the software, and particularly software

maintenance. For this reason, the concept of configuration metrics is

introduced, being metrics abstracted away from the actual code of the system,

and more applicable to the management level.

In Chapter 3 there is a discussion of the problems associated with data

collection and analysis and the presentation of a method for developing a data

collection and analysis system in an industrial maintenance environment The

evolution of the measurement system is also addressed.

Chapter 4 introduces a British Telecom Research Laboratories project to

collect software maintenance data, and describes the appHcation of the method

presented in Chapter 3 to this maintenance project.

Chapter 5 discusses a prototype data collection and analysis system whose

design is based on the preceding discussions. This prototype system is specific

30

to the British Telecom environment, but has components that are generally

applicable.

Chapter 6 brings together the conclusions from the preceding chapters, and

evaluates these conclusions with respect to the Criteria for Success. Chapter 7

discusses the potential for further work based on what is contained here.

31

Chapter 2

Metrics and Measurement

2.1. Metrics

2.1.1. Definition of Metrics

A Software Metric is a quantitative measure of a certain feature, or collection

of features of the software in question or the processes that went into

producing the software [DEMARC082].

The Software consists of the programs and documentation, in all their

representations, which result from a software development and maintenance

process [INCE90].

These definitions mean that Software Metrics are quantitative measures derived

from, for example, the source code of a system, its design documents, system

documentation, quaUty control documents or error report documents. The

features of these documents that the metric measures can be anything that can

be quantified. It can be readily seen that the possible metric set from any

software is both varied and infinite.

32

The size and structure of this set of possible metrics leads naturally to the

notion of a Useful Software Metric being a member of the set of possible

metrics that communicates some information about the software which is of

use for our current requirements. The definition and measurement of these

metrics is, however, far from straight forward.

2.1.2. Types of Metrics

In general, software metrics are divided into two classes, product metrics and

process metrics:

• Product Metrics: These are measures that apply to the products of

the software development and maintenance processes. The products

include such tangible items as source code, requirements

documents, specifications documents, etc. Product metrics are

based on the finished product, that is, when the process concerned

has been completed, or can be estimated values based on the

incomplete product.

• Process Metrics: These are metrics that measure the processes

involved in the software development and maintenance. Examples

are the rate of document production or speed of error correction.

These metrics can only be produced while the process is on-going.

It may be noted that these are often derived from changes in

product metrics. For example, rate of document production is

produced from the relative size of the documentation at two distinct

times. Size of documentation is a product metric, as it is based on a

measure of the documentation, a product of the process. This shows

33

in general how closely related the two types of metric are. It is often

only feasible to measure processes by applying product metrics.

Metrics are values associated with certain features of the software. For a

metrics to be useful it must be well defined, and clear as to exactiy what feature

the metric characterises or to what process the metric relates and exactly what

that relation is. It must also be clear what factors effect the value of the metric.

These, in general, are very difficult conditions to satisfy, but are required if any

metrics theory is to have a firm foundation. Building on uncertainty can only

lead to increased uncertainty.

As stated above, a metric is a quantitative measure of the software.

Quantitative measures are those that define a position on a scale. Baird and

Noma [BAIRD78] divided possible measurement scales into four categories :

• Nominal scales: Measured items are classified into groups. Each

group has a unique and constant value for the measure, so there is

no ordering of the members of a single group with relation to each

other. Different groups may have an implicit ordering associated

with them, although this is not necessary and is usually intuitive

depending on the desired value for the measure. An example is

dividing cars into groups depending on their basic colour i.e. red,

blue, green, etc. Here there is no ordering of two blue cars, they are

just blue. The only ordering of groups may come from a desire to

have certain type of colour. For example, if a bright colour is

required, the red group may be better, or higher on the scale, than

the blue and green groups.

34

• Ordinal scales: Measured items are individually ranked. Each item

has a value associated with it. This value, and the requirements of

the observer impose and ordering on the items dependent on the

value. The gap between items, however, has no meaning. An

example is taking the first letter of the surnames of a group of

people. The letter is the value associated with each person, and the

ordering of these letter in the alphabet impose a ranking on the

values, and so the people, called alphabetic order. The fact that

there is a gap of, say, four letters between two people is , however,

irrelevant and meaningless.

• Interval scales: Measured items are individually ranked, and also

their relative separations are given on the scale. This type of scale

requires a unit of measurement to be defined. Examination results

presented as a grade from A to E are presented on an interval scale.

The unit is a grade. Individual results can, not only, be ordered on

the scale, B is better than D, but also we can say B is two better

than D where as A is only one better than B. Looking back at the

previous example of ordering alphabetically, although the same

relations can be quoted, the gap between people in the ordered Ust

is irrelevant and meaningless.

• Ratio scales: This type of scale is similar to the Interval scale, but a

zero is defined on the scale. This is an important addition. On this

type of scale, ratios of values have meaning. An example is the

length of pieces of string. The pieces of string can be ordered by

length, statements about the difference in lengths can be made

successfully and statements such as 'piece A is twice the length of

piece B' also have meaning. Notice that this is not the case with the

35

grades example above. It is also worth noticing that on a ratio scale

mathematics can be used in a meaningful way e.g. adding the

lengths of two pieces of string. The ratio scale is the minimum

requirement for this type of manipulation.

From these definitions it can be seen that a measure on a ratio scale is the most

flexible and useful. It not only is it the best defined scale, but it also allows

mathematical manipulation. This is the highest form of scale, the nominal scale

is the lowest. Most useful measures in common use are on a ratio scale, and

certainly most of the useful ones in the sciences.

A measure on any of the scales can be converted into an earher, less well

defined one by a simple function. For example, if we group pieces of string

whose lengths fall within certain bounds, into separate groups, they are now on

an ordinal scale. Measures cannot, however, be converted to a higher scale

without the collection of more information. Measures on different scales can

not be combined in any meaningful way, the only course is to convert the

measure on the higher scale to one on the lower scale. The result can only be

on the lower scale or a lower one.

A nominal scale is the least useful as it provides least information, and no

manipulation can be performed on the measures.

From the above discussion it can be seen that software metrics that are defined

on a ratio scale are going to be the most useful. However, a scale of this nature

is very difficult to define, and requires a very deep understanding of what is

being measured. A nominal scale metric, on the other hand, is relatively easy to

define, although usually its usefulness will be small.

36

2.1.3. Useful Software Metrics

A Useful Software Metric will be defined as a software metric that is defined

exactly, as outlined earUer, and is also defined on at least an interval scale. The

interval scale is chosen to allow some flexibility.

The definition above provides an important requirement for a useful software

metric, that we must have a defined unit of measure for the metric. The

remainder of this thesis wUl tend to concentrate on useful software metrics,

although it is recognized that metrics on lower scales are valid. It should be

borne in mind, that the aim of metrics research must be to find measures on

ratio scales. Most, if not all, of the other sciences are based on theories and

laws relating metrics on ratio scales. I f computer science, and metrics research

in particular, are ever going to exist on a par with other sciences this type must

become the basis.

2.2. Measurement of Metrics

The definition of a useful metric, as described above, requires a definition of

the feature to be measured along with the definition of a scale on which to

measure it. The next stage is to find a way of generating the measure from the

software.

The process of measuring a metric may be very straight forward if the metric

has a simple relationship to data that can be collected from the software. An

example may be a metric of the number of Unes in the source code files. This is

directly measurable in an obvious way. Metrics of this type we will call direct

37

metrics. Direct metrics are, however, only a small proportion of required

metrics. The larger proportion consist of metrics that cannot be simply and

direcdy measured from the software. These metrics, called indirect metrics,

require the measurement of various facets or characteristics of the software

that can be directiy measured. These measures are then combined, according to

certain rules, to produce a value for the indirect metric. It should be noted that

the constituent measurements of the indirect metrics are themselves direct

metrics.

This description leads to the notion of a hierarchy of metrics. The lowest level,

being the direct metrics, measured direcdy from the software. The higher levels

then represent combinations of the lower level metrics according to various

combination rules.

No new information is imported into the structure as we rise up the hierarchy,

only the representation of the information collected by the lowest level direct

metrics. This does not take into account possible 'intelligent' input into the

structure to derive new information. This is because we want to make the

derivation of information as objective as possible, as will be described later,

which excludes 'intuition' from the process. Specific rule-based inferencing can

still be regarded as base level information being combined into higher level

results.

Why does the base level information need to be combined into higher levels if

the base level contains all the information required? The answer is in the

representation of the information. The higher level metrics contain the

information in a more abstracted and usable form than the larger number of

lower level metrics. This leads to a new concept, that of a Useful Metric Set. A

useful metric set is the set of metrics that communicate the information

38

required about the software in a usable way. Depending on the requirements of

the measuring system, this may consist of a set taken from the lowest level

only, the direct metrics, or a set containing metrics from various levels. An

interesting aside is the comparison of levels of metrics with the users of those

metrics. A comparison can be drawn with a business structure where the lowest

level is more use to the technician, whereas higher levels apply more to

managers requiring more of an overview and less specific detail.

A further requirement for useful metric measurement is that it is both

repeatable and objective. Only in this way can it be ensured that the metric is a

true measure of the relevant feature. This will already be a feature of the metric

if the initial direct metrics and the rules for combination of metrics are well

defined. I f the measured metric exhibits all these features, it can be compared

to other values in the knowledge that the comparison has validity. In general,

this rigid definition of metrics wiU allow them to be automatically measured,

thus ensuring their objectivity and repeatability, and also reducing the overhead

in the measuring. In a usability sense, this can be put as an all encompassing

requirement for a usable metric - one that is both useful and automatically

derivable.

2.3. Uses of Metrics Systems

There are many ways in which metrics can help in all phases of software

development and maintenance. A lot of work has been published on the subject,

some of which is referenced below. A detailed overview of metrics research

can be found in [HARRISON84, COTE88, WAGUESPACK87].

39

The following discussion is based upon a comprehensive metric set. This set, if

it were available, would provide a useful metric for any item of information

required. This is obviously a target for metrics research and a future possibility.

2.3.1. Product Metrics

2.3.1.1. System Description

The comprehensive metrics set would describe the software completely. This

description would be both detailed and complete. It would contain measures of

software features normally only determinable by expert judgment, such as

'quality' and 'reliability', as well as the more accessible external features. The

description would allow meaningful communication about the system and the

passing of knowledge and information in an concise and objective way.

This ability to describe a unit concisely and objectively is the foundation of any

science. In physics, for example, there is a set of defined features for describing

an object, such as weight, velocity, size etc. The description provides not only

the basis for meaningful communication about the unit, but also for

understanding the unit. Understanding of an object or system can never come

if it cannot be described and documented quantitatively, in a concisely and

objective way [EPICTETUSOO].

The comprehensive metric set has not been defined. This set would be

enormous, to say the least, and therefore impossible to use. The important

point is that a subset of this comprehensive set, which contained enough

information about the software or part of the software for our needs at the

time, is possible, and this is the set that would be used.

40

2.3.1.2. System Comparison

Once the software system can be described objectively and in detail, using a

standard set of metrics, comparisons are possible of different software systems

by comparing the respective metric sets. This comparison is both objective and

repeatable among a number of software systems. By concentrating on those

metrics that are important in the current situation, software best suited to the

current environment can be identified, for example, if maintainabihty was more

important than size for two pieces of software performing the same job. This

decision is based on figures as opposed to a detailed analysis of the software by

an expert [INCE88].

2.3.1.3. System Specification

Using the comprehensive metric set, exact definitions of the properties required

from a new software system can be laid down, at the requirements stage of

development, as well as a definition of its functionality. The finished product

can be compared to the specification in an objective and impartial way, to

determine the suitability of a system. The comparison could even be part of the

procurement contract.

This comparison can also be performed on the software during its maintenance

lifetime to ensure the system continues to comply with the specification, and

does not degrade.

There are many opportunities to improve Quality Assurance

[COLLOFELL087], by extracting objective and analysable measures of a

software product, and comparing these with optimal, or required values. In this

41

way we go some way towards recognizing 'good software', by allowing

tangible criteria to be laid down for deciding what is good. These criteria will

vary from environment to environment, and from product to product, but the

criteria can be laid down based on knowledge and past experience.

Lasdy, by describing, exactiy, a system's features, by assigning values to the

features, decisions can be made about the relative importance of those features,

and the final product can be checked to ensure it reflects these priorities. The

metric set can give numeric measures of the relative importance of features to

provide targets for development and product assessment. Do we want the

software to be small or cheap or easy to understand and maintain?

2.3.2. Process Metrics

2.3.2.1. Process Modeling

I f models of software and software development could be generated, that is,

rules that govern the metric set of a piece of software and allow the evaluation

of new metrics and the prediction of future values of metrics, it would go a

long way to improving our understanding of software. As in all engineering

disciplines it is traditional to be able to predict, or estimate attributes of a

finished product from some initial data. This is a property a model has, but a

model can only be based on metrics and generate metrics as results.

I f models of software development were available, features of a software

product could be predicted while it was still being developed. Such things as

the cost, or how long it will take, how big will it be. At this stage the initial

values used for the development method can be altered or tuned, cheaply, to

42

attain the desired result at the end, without expensive backtracking as the

development reaches it's conclusion.

I f a system's important features can be described by a finite set of numerical

values, that systems description can easily be stored at various stages of the

development, giving an historic record of the development. This database can

then be called on in the future to compare with the state of a new system under

development, to help predict the behavior of the new system or method of

development. The database can also be analysed to find trends in the data that

may show shortcomings in (or advantages of) various development methods so

these features can be avoided (or enhanced) in the future. This forms the first

stage of model development.

The end result is the abiUty to mathematically analyse data produced, to

generate, for instance, optimal development configurations, and more

importantly, to generate targets for systems, and development methods, to

attain.

2.3.2.2. Progress Monitoring

The assessment of the current state of a software development or maintenance

project is a very difficult, and hap-hazard task at present, using only subjective

assessments. Generating a metric set for the current state of the project,

provides an objective way of increasing the visibility of the project, and allows

the monitoring of progress being made. In this way early indication can be

provided of a project going off target or using poor development methods.

43

The advantages of an automatically generated metric set provide the ability to

raise the visibility of the project state without crippling overheads and in a form

managers can understand, particularly managers of the business, not necessarily

knowledgeable about the project area. The visibility comes from reports

quoting meaningful figures and displaying graphical trends and forecasts - the

language of business.

2.3.3. Management

Increased visibility of the process, plus prediction of the future and comparison

to the current state accurately provides a basis for good management. The

process and so the product can be controlled [CARD87].

The ability to model a software project, at whatever stage of development and

produce targets for the project, and the ability to measure, exactiy, the actual

project's state, is the necessary basis for managing the project much more

closely than is at present possible [DRUCKER79]. Deviations of the

development from the required goals would be spotted much earlier in the

development, making corrective action easier to accompUsh and also cheaper

[ROOK86].

Project visibility is improved, and therefore there is greater accountability of

members of a team or of methods being employed. Metrics could help

Managers spot trouble areas, such as critical code, or areas in need of redesign,

and they would be given the ability to better judge the effects of corrective

action [HUFF86].

44

Managers would also be able to make decisions about priorities of features in a

system and to estimate the effects of concentrating on certain features at the

expense of others. Managers would be able to assess new production methods

or tools and help a manager answer critical questions such as:

• Is my DP department any good; is it doing its job properly?

2.4. Metrics Applied to Maintenance

With maintenance being such an important part of the software life-cycle, it is

important to find methods of reducing the cost of maintenance, perhaps more

important than finding new methods of developing software, as existing

software is going to be with us for the foreseeable future [COOPER89].

Al l the uses of metrics described in the previous section apply as much to the

maintenance phase of software development as any other phase

[HARRISON82], however, the use of metrics for managing maintenance is

particularly important. The following section expands on, and details, some

uses of a metrics system in the maintenance phase, and explains why such a

system is necessary for true maintenance management. More information can

be found in [ARNOLD86, BERNS84].

2.4.1. Monitoring

As described above, a major use of software product and process metrics is

that of monitoring the state of the product or process, and the change of state

with time. In other words, the monitoring of exactly what is happening. In the

maintenance field, this visibility is particularly important in three areas.

45

2.4.1.1. Quality

A large amount of software maintenance activity involves changes being made

to small areas of the source code, with very littie, or no design work being

done before hand. This, although it is undesirable, is often seen as the only way

to meet time constraints and complete all the required work in the time

allowed. This sort of maintenance activity is very difficult to monitor or

control.

Automated software metric measurement provides a method whereby such

work can be monitored [ARNOLD86]. A software metric system, applied to

the code being altered can provide a first line indication as to whether the

change being made is of adequate quahty or not. This indication can be used to

show up changes that are not adequate, and thus lead on to further review or

rework.

This monitoring implies two requirements for the metric system used. Firstiy

the system should be automated. This is necessary to comply with the time

pressures that are forcing the work to be done in this way. A system that

represents a significant overhead on the change process is counter productive,

as it would be far better to allow more time for the change to be made, and

expect adequate analysis and detailed designing to be done.

The second requirement is a definition of quality [KAPOSI87]. A defmition

must be available so the metric values collected can be compared to what is

acceptable in order that a conclusion can be reached. This is a subject in itself,

and reference should be made to the earlier discussions of software metrics.

46

Simple definitions can be constructed, however, but are based on the

environment and the work being done.

In this way, a metric system increases the visibility of the maintenance activity

being performed on a system, providing an indication of whether the work is of

a required standard, even for rush jobs, without implying a large overhead in

analysis of the change and comprehensive reviews.

2.4.1.2. System Degradation

A normal feature of maintenance work is the degradation of the system being

maintained, usually due to an increase in complexity and a reduction in

performance [YAU80]. This degradation is manifested by an increase in the

difficulty of working with the system, that is, of doing maintenance work.

Eventually the system must be replaced by a new system as maintenance

becomes too costly.

The reasons for the degradation are many, but include the facts that a larger

number of people work on the system [SCHNEIDEWIND87], over a longer

time than in any other phase of development and the time available is much

shorter. Thus a maintainer is only interested in a small part of the code - the

part to be fixed, or enhanced etc. This leads to a very narrow view of the

software as a whole and a poor design of a change in the global system picture

leading to unforeseen knock on effects and unplanned changes, accelerating the

decline of the system. A large number of changes consist of small patches

added to the code to implement a particular correction or enhancement. This

work could often better be achieved by redesigning a whole section of code,

but the time required is too great.

47

A metric system, providing a description of the software as a whole and in

parts, would allow the plotting of the degradation of the system as a whole and

its separate components and provide the necessary information for planning

preventive maintenance.

The metric set would also provide the information required for discovering

those methods that reduce system degradation, or keep it to a minimum. By

identifying various areas that cause increased system decay, such as ripple

effect, these factors can be combated and methods developed that reduce those

factors. The feedback from the metric system will show if these methods are

successful.

Not only does a metrics system providing a system whereby a manager has

much closer control over the maintenance work, he also has the ability to

assess the effects of the maintenance and therefore is given some criteria for

judging 'satisfactory' maintenance.

For very large systems, metrics could also provide a maintainer with a much

wider view of the system as a whole, so the effects of a proposed change could

be assessed and a change modified without the need for the raaintainer to spend

time and effort understanding the whole system or having to rely on the

knowledge of others.

The planning of preventive maintenance would be assisted by the ability to

identify 'bad areas of code, those parts where understanding and alteration will

be difficult. The metric system could also help identify unreliable parts, those

parts that are most likely to contain most errors and therefore require large

amounts of maintenance.

48

Once identified, these parts can be the target for redesign and rewriting to a

better standard, thus reducing the effort required in future maintenance. The

metrics could also provide information about what priority should be assigned

to the work — which redesigned parts would have the greatest beneficial effect,

and so should be tackled first

2.4.1.3. Progress

The metrics system allows us to monitor the state of the software system at any

particular time, and by examining its change in state over time we have a

picture of the time dependent features of the system.

Monitoring metrics over time also allows the monitoring of work being done,

such as the amount of work, and the time the work is taking. It also allows the

monitoring of how the work is done, and the effects this has on other features

of the process and product.

These are important factors. They provide an indication of the progress being

made, and the factors that influence that progress. They also provide another

major facet of the visibility of the product and the processes involved in

maintenance.

All the above features increase the visibility of the maintenance project,

allowing its detail and the global picture to be examined and represented in a

way comprehensible to managers and people not experts on the system being

maintained.

49

2.4.2. Prediction

The second major use of metrics derived from the current system, is as inputs

to models that will predict the future state of the system. This future state can

then be assessed in the same way as the current state in terms of its

acceptability and resource requirements.

A metrics system is an important prerequisite for this future prediction as it

provides a level of abstraction from the real state. This abstraction reduces the

amount of information that has to be worked with, and thus reduces the

necessary complexity of the model used for the prediction.

A level of subjectivity is also removed that would be present if a metrics system

was not used. This is particularly important if a number of possible scenarios

are to be investigated, and their outcomes compared. This can be a very

inaccurate procedure at the best of times, obviously dependent on the models

used, but at least we make some advance by removing a level of subjectivity.

This discussion assumes the presence of models that can describe the

maintenance process and the advancing state of the software system. These

models, themselves, can only come about if they are based on a metrics system

as described above.

2.4.3. Management of Maintenance

The control of maintenance through proper management of the processes

involved is a necessity if costs are to be controlled and efficiency maximized

[CHAPIN88].

50

As described above, given the ability to monitor the state of the current project,

and its change over time, and the ability to make some predictions about its

future state, we have the basis for management of system maintenance

[ROOK86].

A metrics system could help with the management of software maintenance in a

number of ways, particularly by making it easier to answer some of these

important questions:

• Maintain or Redesign? Is it worth trying to maintain this piece of

software, or is it better to scrap it and rewrite. Does the whole

system need rewriting, or is it necessary only to rewrite parts?

• Priorities? Which bits are most important, or will have the greatest

beneficial effect, and so should be done first? Which changes can we

postpone because they are not important, will take too long or are

being dealt with by another change or rewrite? How long are the

changes going to take, and what effects will the work have on the

system as a whole?

• How long is it gong to take to complete the current maintenance

work, and how much will it cost?

• Once this work is done, how much will it cost to continue to

support the product, and how long will it be before this cost

becomes excessive?

51

These are all examples of decisions a manager can make because he can clearly

see, and assess, the state of the system being maintained, and can make

educated predictions of what the future state, and resource requirements, will

be. From this information the manager can make decisions to affect the future

state and can monitor the progress of those decisions. Areas of the project that

are causing problems can be identified and corrected, and those areas that are

satisfactory can be expanded upon and learnt from [LIENTZ80].

This is management, and is the way forward for maintenance practice. The

requirement is, as has been shown, a metrics and measurement system that

provides the information required.

2.5. Metrics for Maintenance Management

Here, we introduce a new classification of software metrics. This classification

is based on the level of abstraction of the software to which the metric relates.

Three classification classes are defined:

• Code metrics.

• Configuration metrics.

• Others.

These are described below.

52

2.5.1. Code Metrics

Code metrics are related directly to the source code, or text, of the software in

question. The source code is the input to the collection algorithm and the

output is a measure of a feature of the source code of the system.

These metrics represent the base level of the metric hierarchy, and are in

general the direct metrics on which other metrics can be based. As they are,

they are useful only to those deaUng directly with the code, i.e., programmers

etc. They represent no abstraction from the actual tasks of doing maintenance.

These are, however, the base from which other metrics can be builL There are

infinite numbers of possible metrics that could be measured. This thesis does

not attempt to specify those that should be measured, but attempts to provide a

method whereby the requirements for a metric set can be specified. The

satisfying of this requirement, is dependent on the specific environment and

work practices.

2.5.2. Conflguration Metrics

These metrics refer to the software configuration, and represent a level of

abstraction from the source code of the system. The configuration of the

software is the collection of units that make up the system, along with their

relationships. The units are any parts that make up the system, for example,

modules, or code files.

This level of abstiaction is important for a number of reasons. Firstiy, it

removed the language dependent features that are common among code

metrics. Most languages divide a system into units of some form, thus

53

configuration metrics are applicable and general, whereas specific code metrics

would be required for each language on which they are used. An example of

such a configuration metric is number of errors per unit. This measure is

independent of language or system, as its basis is a unit, whatever that may be.

Configuration metrics also represent a move up the metric set hierarchy, away

form direct metrics and into the indirect, derived metrics. These two

abstractions reduce the amount of data involved in a system description. This is

especially important for line management. The manager is provided with

information that has far less granularity that with code metrics, and therefore is

easier to understand and use.

Research in this area of metrics is far less common. One of the major reasons

for this is that the metrics that will be useful depend on the requirements for the

metrics and the environment in which they are to be used. This is a major

problem, as it means that research into this area cannot easily be driven by

research interest alone, but must be driven by specific requirements of a user.

2.5.3. Other Metrics

The last classification, that of 'other', includes the rest of proposed metrics that

apply to higher levels of abstraction. These require the combination of other

metrics and the abstraction of information. Again, those that will be useful

depend on the requirements of the specific environment, and the feasibiUty of

data collection and analysis. These metrics will be specifically useful to

management, particularly higher management

54

2.6. Summary

Metrics research is an important area i f we are to generate a true understanding

of software, its development processes and those of maintenance

[SCHAEFER85]. Major advances have been made in the measurement of the

fundamental features of software, but there is still along way to go.

A large amount of work has been addressed at the measurement of features of

the code or other elements of the software at a low level. Most of this,

however, lacks a real statement of the reasons why the measurement of the

feature is important, and the detailed meaning of the metric value once it is

derived. This lack of context and specification of measures makes it very

difficult to fit them into an overall picture of measurement of the software and

the processes involved in its production.

The above discussion fits the research into this global picture of what is

required from metrics research. A particular area identified in which

measurement is a necessity is that of management. To bring a system, and the

processes acting on it, under proper control there must be the ability to monitor

what is going on, and predict what wUl happen in the future. For this,

measurement and metrication are a requirement. This is an area, however, that

has been lacking in the research to date.

Maintenance activity is, generally, an ad hoc process completed under heavy

time constraints and lacking control and planning. This therefore, is an area that

requires the application of measurement to allow it to be brought under

management contiol [CHAPIN88, ROMBACH89]. There is, however, a lack

of a practical approach that will allow a maintenance organization to introduce

a measurement system that will help manage and, therefore, control the

55

maintenance activity. This thesis presents such a method, with an example of

how it can be achieved.

Measurement is the only way to introduce proper control over all phases of the

software life-cycle, and the only way to gain true understanding of the products

and processes involved [GRADY87]. As such it is, therefore, and important

area for research and investment by all areas of the software industry and

academia.

56

Chapter 3

A Method for Developing a
Measurement System

This chapter presents a method for developing a data collection and analysis

system. This system is primarily aimed at helping the management of a

maintenance environment at the line level, but will be shown to have further

reaching implications. The resulting system is specific to the environment in

which it is developed, and therefore satisfies the requirements of that particular

environment. The method allows for minimum impact of the system

development and the system itself on the tasks being performed, while

maximizing its usefuhiess. The method also allows the measurement system to

evolve as the understanding of the environment increases and the requirements

for the system alter. This also allows benefits and costs, in terms of money and

effort, to be assessed and related decisions to be taken prior to major

commitments of these resources.

3.1. Data Collection

A measurement system has two basic stages. The first is the collection of raw

data from observations within the environment in question. The second is the

analysis and use of the data.

57

3.1.1. Why Collect Data?

Chapter 2 presents a detailed review of why data collection is necessary in any

environment if that environment is to be understood and controlled. There

follows a brief summary of those reasons which have relevance to the

maintenance management field.

• System and state description.

A set of relevant data allows the description of the system or

current state in an easy and objective form. The data set chosen

reflects the information required about the system or state, and

can exclude information that is not required. In this way the

description is both objective and concise, representing a level of

abstraction away from detailed or subjective system knowledge.

The description is easily recorded, communicated and

understood, provided the data set is understood. The change in

the description over time, represents the progress being made in

the domain of the data making up the set. In this way, it forms

the basis of a useful reporting function.

• Management

In order for maintenance to be brought under strict management

control the visibility of the products and processes involved has

to be increased to a level where managers can see what is going

on [CARD87]. This, in any but the most limited of cases,

requires measurement [KITCHENHAM84].

58

Measurement supplies the following tools to the maintenance

manager:

- Progress Reporting

The first stage of being able to manage a process, such

as software maintenance, is to be able to accurately

assess what the current state is, and how it is changing

[GRADY87a].

In general, there are two ways to achieve this visibility.

The first is by experience, that is, detailed knowledge of

what is going on from experience of doing the "hands-on'

job. This is a wide-spread method, but is time

consuming, generally inaccurate and very subjective.

The second is the measurement of the system and

environment as described above. This provides quicker,

objective readings of the situation in an abstracted way.

This is the route of real management

- Target Assessment

This is the next important stage of management for

which information is required. The current state is

known, but knowledge about the probable future states

is also required, so that planning and resource

management can take place.

59

This, at present, generally relies on experience. But this

experience is just a knowledge of past states and

progress, to be extrapolated to the future. I f Uiis

knowledge is 'woolly' and based on subjective and

perhaps inaccurate assessment of the situation, the

forecast is, at best, going to be 'woolly' and inaccurate.

Objective, accurate past experience, in a documented

form that can be reviewed and even graphed provides a

much better basis for the application of experienced

forecasting.

An enhancement of this process is the development of

models that encapsulate that experience in order to

predict future values. These models, however, can only

work on explicit, quantified data and produce the same

as results.

Communication

Another important weapon in the managers arsenal is the

abihty to communicate about his or her responsibility

area.

Once plans and resource requirements are formed, and

knowledge about the environment is collected, this must

be communicated and justified to those higher up the

corporate tree. Objective, abstracted data is the only

way toward tiiis end, and is therefore a requirement.

60

• Store of Experience

Data collected about a system or environment can be stored for

future reference.

A data set forms a reasonable experience store because it is an

abstracted representation of the system or environment

hopefully containing details of the important characteristics of

the system or environment without the needless ones. The data

set is also objective, therefore its meaning and terms of

reference are available in the future. Data that is subjective

could well lose relevance, as the terms of reference and

conditions of collection cannot be specified.

This store of experience is particularly important, as stated

before, for the prediction of the future.

• Post-Maintenance Analysis

This follows from the store of experience. Experience and

knowledge is enhanced by the retrospective review of events

and conditions. This gives insight into the related environment

and the factors that effect it. This will improve the abUity to

predict the future, as well as isolate those factors that have

negative influence and remove them, and those that have

positive influence in order to enhance them.

• Research

An important area if progress is to be made into the

understanding of the maintenance process. The progress that

can be made is limited, however, on a purely theoretical front,

61

without Unks and input from the real world. This is important on

two main fronts:

Validate models

Models and theories need validation if diey are to be

accepted and used. This requires the collection of data in

the real worid if the model or theory is going to

engender any confidence.

As Basili notes, actual data is required for validation of

models and also the generation of new models, and

without the collection of data not only are models

unprovable, they are also worthless [BASILI84].

Generation of models

Taking the experience of other sciences, it can generally

be seen that, excluding the occasional notable exception,

most progress of understanding happens by the careful

and pains-taking study of observations to generate the

theories and models that constitute the understanding of

the science. The progress by pure hypothesis is,

historically, limited.

This, therefore, suggests that if advances are to be made

in software science, it must be based on real

observations. This required measurement

62

Visibility

In summary, if software maintenance and its management are to

be improved, we must increase the visibility of the products and

processes involved. This requires measurement

3.1.2. Collecting Data

The need for collection of data has been established. The introduction of a data

collection strategy, however, poses some problems. The first is the method by

which data wiU be collected. A number of possible strategies exist. There

follows a discussion of these and a discussion of there general applicability.

3.1.2.1. By experiment

A collection method often supported is that of the carefully controlled

experiment. A test project is devised and a set of data to be collected is decided

upon. The project then goes ahead with the defined data being collected. Once

the project is fmished, the data is analyzed and conclusions drawn about the

usefulness of the data that has been collected. The data produced by such an

experiment is useful for designing collection systems for the future, and

provides part of a store of experience that can be referred back to. The

shortfalls of this type of experiment are, however, numerous.

Firstly, experiments of this type must normally be small so that the time

between inception and the results and conclusions is reasonable. In a normal

software engineering environment such small experiments are not

representative of the normal large scale work being carried out. Secondly, the

cost in time and effort of performing these experiments would normally be

63

prohibitive in a commercial environment where schedules are tight, and

resources are short. Thirdly, there is no feedback into the management cycle in

this sort of experiment. Shortfalls in, and the benefits of, the data collected can

be ascertained when the analysis is done, but, as this analysis is performed at

the end of the experiment, it is not useful for the management of the project

which must be an on going task. It is very difficult to decide what data would

have been useful had it been available at the time.

In general, this is a very useful strategy for initial validation of ideas, as it can

be conducted in a controlled way. It is, however, not of use to the industrial

environment, for the management of projects or for the real world validation of

ideas.

3.1.2.2. After the event

Data can be collected after the actual work has finished. This is done by such

techniques as interviewing participants and fiUing in forms and the analysis of

the finished product and the by-products of the exercise of interest. This is a

method often used to get a feel for what happened during the project.

A lot of information is lost or unobtainable using this method, and the reliability

of the data collected may well be suspect. Validation of collected data is

virtually impossible. In general it is only possible to get the snap-shot view of

the end of the project. This again, although it may be useful as a store of

experience and for research, does not provide any facilities to help

management.

64

What this method does provide is useful information about what data it might

be useful to collect in the future. It provides pointers to those facets that is

unnecessary to collect and those that may be useful. The tune spent on this

exercise after the work is completed is .however, difficult to justify in a

commercial environment, as the results may not be applicable in future work.

3.1.2.3. During the project

Data collection procedures can be incorporated into an actual project. A

method of data collection is devised, and a definitions of the data to be

collected. This is often in the form of collection forms, either paper or machine

based, tiiat must be filled in by the participants in the project.

This method has a number of advantages. The data being collected is relevant,

because it is being collected about a real project. The data is available as the

project progresses. This means it can be validated easily. The data can be

analysed before the end of the project giving the necessary feedback into the

data collection system, allowing the collection system to evolve into a form that

is most useful. The availabihty of the data allows feedback into the

management cycle, allowing problems to be seen and corrective action taken

etc., in fact the increase in visibility required for a project to be managed

correctly.

This, therefore, can generate a useful system of data collection for both

research and project management. The major problem with the system is the

overhead in the collection of the data, such as the filling in of forms. This is the

kind of operation that will be ignored if time pressures become too great or

resources get too scarce. I f the data set becomes incomplete, the information it

provides ceases to be useful so the system falls into disrepair.

65

3.1.2.4. Collection as a background task

This is in all senses the best method. Data is collected automatically as a

background task to the ordinary tasks in the project. This is becoming more

feasible with the advent of Integrated Support Environments and software tools

to support software engineering projects. The important feature is that a

machine based tool or system collects information about what is going on as it

is being used. The tool or system must therefore be seen to be useful, or even

indispensable [KITCHENHAM86], so that it is used.

This method incorporates the advantages of the previously defined methods.

The overhead of the data collection is negligible, as the system is being used to

help the tasks being performed, the data collection is automatic. The data

collected is vahd as it is collected automatically, and the data set remains

complete. This all relies on the system being used at all times and having access

to the information required. This can Umit the information available to the

collection system, but in general, if the system is designed carefully, it can have

access to all the required data.

It is worth noting that users of the system should in general be aware of what

data the system is collecting about them, not only does this lead to improved

work, but it can overcome problems produced if people think they are being

spied upon.

The second form of background collection, strongly linked to the above, is to

make the collection system part of the necessary working practices and

procedures in use in the environment in question. This means that instead of

66

being another task that has to be completed, such as, 'fill out a report after the

change has been finished and incorporated into the system', the data collection

task should be part of the one task, i.e., 'once the change has been completed it

is signed off by completing the report and returning it to change control'.

In this way, data collection cannot be avoided if time becomes too short, or

become incomplete because of laxity, because this would be indicated by a

complete breakdown of the working practices.

The conclusion from this discussion is that data collection should be a

background task wherever possible as this form of data collection proves the

most useful to the management of the environment, and also the least prone to

the problems symptomatic of other collection strategies. This collection process

should also be automatic wherever possible to enhance the monitoring potential

and minimize the scope for errors.

3.1.3. The Cost of Collecting Data

Data collection has a cost in time and effort and perhaps in systems to support

the collection. This cost has to be weighed against the benefits described above,

but are very difficult to quantify at the outset. A general requirement, therefore,

particularly in the industrial maintenance environment is to minimize this cost

overall, but more importantly, to minimize the initial investment that has to be

made before any results can be assessed, and also to spread the investment as

much as possible so cost/benefit decisions can be made from a position of

knowledge.

67

For these reasons it is important to understand where these costs come from,

so we can minimize, or avoid those costs.

Data collection requires planning an effort to achieve. The planning stage must

define what information is to be collected and devise a strategy for its

collection. The collection itself involves overheads on the processes that are

being measured, either in machine time and system costs for data that is to be

collected automatically, or people effort for the data that requires their input.

The optimum situation would allow the collection of all relevant data,

automatically, but this cannot be achieved without a cost. The initial investment

in planning, i.e., identifying the data to collect and its collection strategy, will

reduce the impact of the collection on the environment However, too much

planning effort contradicts our main requirement of low initial investment.

As described earlier, different types of data are apparent, with different costs

associated with them. This forms the basis of the method to be presented here,

and the identification of the different types forms the core of the planning

process. The data types are as follows:

• Available data: Certain data can be identified as essential to the

processes themselves. This data is collected as a matter of

procedure, in order for the procedures to function. Examples are,

requirement sheets that are dated as they are received, test result

documents, code walk-through results, etc. This kind of data may

be filed, or often destroyed, but forms a major source of information

about the processes involved. I f this data can be captured and

stored it can form the basis of a data collection system. This type of

68

data has almost no effort overhead, and very Utde cost associated

with i t

• Attainable data: The second type of data is data that can be

identified as useful, and which could be collected as routine with a

small change in procedure. The overhead here is the change in

procedure, and that has to be weighed against the value of the

information. Certain data, however, can be made available with very

httle effort. An example is, requiring that all documents are signed

and dated to provide information about who and when.

• Collateral data: Some information is available in an indirect form,

and requires a certain amount of effort or investment to retrieve.

Examples are, compile time for a changed module, modules

changed, or size of a new release. For this type of data, most of the

effort involved in its production has been completed already, as a

background task, it is just a matter of the fmal collection. Again,

however, a decision must be made about the relative value to cost,

although this can provide some of the most valuable information.

• Other: Certain data requires more overhead to collect, such as,

thought time spent to complete a change. A large amount of useful

data can be identified that falls into this category, however, it is

difficult to assess the cost/benefit relation, so care should be taken.

• Inaccurate data: This kind of data is data that is effected by the

collection process. It is important to recognize this kind of data as

it could lose its value by its collection. It is particularly

person/performance data that falls into this category. From a

69

management point of view, some collection could improve the

performance of the people involved, but it may also have

detrimental effects. People management issues are, however,

outside the scope of this thesis.

3.2. Data Analysis

Data analysis, as used here, is the process of taking the raw, collected data and

transforming it in various ways, combining it with other data and presenting it

in order to produce useful results.

3.2.1. Why Analyze Data?

Data analysis is required for a number of reasons including:

• Presenting data in a more easUy understandable or demonstrative

form, e.g., a graph of number of changes over time to show work

loads.

• Reducing the amount of data to be presented by combining multiple

data elements into a single result, e.g., taking a measure of the

number of changes to each module in a system and combining

them to produce a measure of the total number of changes to the

entire system - this is a simple, intuitive, combination exercise.

• Taking data elements that have meaning in the collection domain

and mapping them onto data elements that have meaning in the

domain in which they are to be presented, e.g. the mapping of the

70

total number of changes outstanding on a system onto the expected

man-effort required over the next month.

Applying models to the collected data in order to produce new data

such as expected values of measures, e.g., taking the total number

of changes implemented over the last year, and using the data to

predict the total number of changed expected next year, and so on

to the expected cost for next year.

3.2.2. Analyzing Data

Data analysis can be divided into a number of types, with varying complexities

and levels of knowledge and understanding required.

3.2.2.1. Presentation

Once the final values, or results have been derived it is necessary to present

these values. There are many ways of presenting a set of quantified values from

graphs to tables, etc. Data presentation is generally well understood,

particularly in the management area. The important requirement is that the data

is presented in a way in which it is useful to its audience.

This presentation is very important in the area of management. Not only must

the results be of use to the project manager in order to feed back into his

project, but they must also be of a form that can be communicated up the

hierarchy of management. These different audiences require different

presentation methods. In higher management the recipients of the results may

well not be technically knowledgeable in the area of software maintenance, so

the results produced, and their presentation method must be in the language of

71

business. A prime impUcation of this is not that the analysis must become highly

compUcated, but that, as the language of business is cost, cost projection and

summaries of trends, the results produced must be able to be presented in these

ways - summaries of trends and predictions of the future presented in sunple to

understand forms.

So, to produce a system where measurement is useful for the management of

software maintenance we must tailor our data analysis and presentation to the

goals and requirements of the audience.

3.2.2.2. Abstraction

The actual collection of data forms the first stage of abstraction from the

problem domain. This happens in two ways. Firstly, the representation of

features or characteristics of the software as measurements reduces the

quantity of information that must be assimilated - now a value instead of a part

or all of the code. Secondly, the representation as a measure reduces the

number of assumptions about the underlying knowledge of the problem area.

This is true because a value, with its associated scale, that is the units of

measure and the meaning of the measure, forms an intrinsically more

encapsulated representation of the feature or characteristic than the original

software. In other words, an understanding of the metric does not require a

detailed understanding of the software itself. In most cases, and unless a truly

complex metric has been chosen, this understanding of the metric is easier than

the understanding required of the software itself.

This abstraction of both quantity of data, and the knowledge base required for

its understanding are the base reason for the collection of metrics in the first

72

place. This is, however, only the first stage of abstraction. This first stage may

be enough for our purposes. I f it is not, further abstraction takes place by data

analysis.

Data analysis can provide data abstraction in a number of ways.

• Data Combination

The main method of data abstraction is the combination of

measures into single results. I f a single metric is a measure of a

certain feature of the software, the combination is a measure of

a group of features of the software. In this way the number of

measures that are required to describe a set of features of the

software is reduced.

This is a very useful method of producing a small set of data

that provides the information we require, however, great care

must be taken when adopting this procedure. The first problem

to be wary of is the increase in the domain knowledge required

as the metrics are combined. A metric combination of two

features represents those two features, so knowledge of the two

is required to understand the metric produced.

The second factor to bear in mind is that metrics, as scalar

representations of values, follow the laws of mathematics as

applies to numeric values. This is something that is often

forgotten by people developing metric based measurement

systems. The rule that is most often forgotten is that of the

combination of units of a measure. Two values with differing

units of measures that are combined by a mathematic operation

73

will produce a result having units that are a similar combination

of the units of the initial values. This is particularly important

when there exists a situation where the combination of units is

meaningless. In this case the result of the combination is also

meaningless. An example of this is the addition of the number of

lines of code in a system to the length of time it has taken to

write. The result has units of (number of Unes) plus (time) which

is meaningless.

It is, of course, not necessarily wrong to do this operation, as

long as its implications are understood. The basis of

measurement, here, is to measure defined things. That is, to

measure things that have defined units of measure, and whose

method of measurement is well understood. I f a combination

occurs, such as that above, that produces a meaningless unit of

measure, it now becomes a result with undefined units and a

theoretically undefined meaning. It is just a figure. I f this

happens, the meanings of the values and their combinations is

lost and therefore can produce a situation, very quickly, in

which all the results have no defined meaning. This is not a

recommended situation. In general, it is better to maintain the

meanings of variables and their definitions. For this reason the

observation of the rule of combination of units of measure is to

be recommended..

Data Transformation

Data transformation, the changing of data using transformation

rules, provides data abstraction by changing the knowledge base

required to understand the metric. An example is the

74

transformation of number of lines of code into cost of producing

the software, by whatever rules are accepted in the particular

environment. The knowledge base for the initial metric is that of

a programmer, in terms of what is meant by a tine of code, how

is it measured etc. The knowledge base of the second is that of

business - just the cost - no technical knowledge about

programming languages, etc. is required.

This method of abstraction of data usually happens in

conjunction with the combination of measures described above.

In fact it is very difficult to do one without the other. It is also

worth noting that the appHcation of one method may adversely

effect the other. The transformation of data into a more easily

understood form may necessitate the increase in the quantity of

data. The advantage and disadvantage of this process is

however something that varies with individual requirements and

environments and so cannot be discussed here.

3.2.2.3. Translation

This result of data analysis goes hand in hand with the previous section. Data

translation is the application of transformations or combinations in order to

change the meaning of the data. This does not necessarily involve abstraction of

data, just its representation in a new form.

This type of data analysis is important when the results of analysis must be used

by a variety of end users. Programmers need results specific to their domain,

that of programming and language specific information. Managers need more

75

technically independent information. This requires translation to the

management domain as well as being abstraction as described earUer. Higher

management need an even greater level of abstraction and an even more

technically independent representation.

Although the necessity and definition of these different result areas are not too

compUcated, the specific translation requirements can be difficult to define and

implement. It is in this area that research is needed to provide the methods for

this translation. Some steps along the way can however be made without too

much effort.

3.2.2.4. Prediction

Prediction based on measured values involves the application of models to the

measured data to produce predictions of future values. These future values can

be fed into the various translation and abstraction methods to produce

information about the expected state of the project or software at a point in the

future.

This production of expected values is at the heart of good management If

these expected values are unacceptable we can make changes now to avoid that

future, unacceptable state. We can also measure the current state against what

was expected, to discover i f we are on course, or if things are going wrong. We

can plan for the future, forecast budgets and resource requirements and ensure

the smooth running of the project. These basic principles are the cornerstone of

management and business.

76

It is this prediction that is particularly hard. The models required to provide

enough detail are normally complex and have a large number of variables. As

has been described before, these models can only be found if we start collecting

the information required and empirically looking for the models. In this way we

can expect to find the underlying models in our environment, and be able to do

the prediction we require.

There are, however, things we can do. The ability to predict values is heavily

dependent on experience and past values. The first stage is therefore to collect

this information and produce the results we require from it. From these past

values, extrapolation can produce future values to a certain level of accuracy.

This level of accuracy is often enough for management to do its job. The

conclusion from this is that the collection and analysis described earlier provide

the ammunition we need to provide estimates of future conditions. This

demonstrates the necessity for evolution of the collection and analysis process,

as we learn from experience. It also enforces the view that, at least initially,

these rules are going to be very environment specific, and require the

knowledge of those involved in the environment.

3.2.2.5. Visibility

The above sections lead on to this important conclusion. The analysis discussed

provides the visibiUty of product and process that a manager requires, in a form

the manager requires. In this way it can lead to better management

77

3.3. Development of a Measurement System

This section present a method for introducing a measurement system into a

maintenance environment, based on the preceding discussions.

3.3.1. Requirements of System

The measurement system produced by the method must satisfy a number of

requirements. These are:

• The measurement system is entirely dependent upon the

environment, and is therefore sensitive to specific environment

characteristics and motivations. The system, therefore, also satisfies

all the requirements for the system within the environment in which

it works.

• The measurement system is entirely applicable to the environment in

which it is developed. That is, the results are those that are required

in the environment, and the data collection is completely in harmony

with the processes of the environment.

• The system must be usable. That is, the data collection must not be

in conflict with processes in the environment, the data collected

must be complete and valid, and therefore collected during the

project it is measuring. The system should produce results that are

useful to the management role within the environment.

• The initial investment in planning and implementation must be small,

and the impact on the tasks in the environment must be minimal.

78

The system should be capable of evolving as requirements for the

system change and knowledge grows. This evolution potential will

also allow the initial implementation to be limited in impact, but the

potential system to be whatever is required as the benefits of

measurement are seen.

3.3.2. Development Method

The method is a four phase approach to system inception and implementation.

3.3.2.1. Phase 1 - Initial Data Set

Phase one is the definition of the initial set of data that will be collected.

The initial set should be seen only as a first guess at that data that will be

useful. The larger the set of data that is collected, the better. The more data

there is to work with, the greater the chances of finding an optimum set of

useful data quickly. This has to be weighed against the overheads in its

collection and analysis.

The types of data, as Usted above, available, attainable, collateral and other, are

the starting point for the definition of this initial set. The data in each of these

classes that is present within the environment, or would be liked, should be

identified. From this set, the relative costs of the data items can be assessed.

In order to keep overheads at a minimum, we are looking for an automated

method of data collection, and one that fits in to the working practices of our

79

environment This implies special interest in available, attainable and collateral

data within the environment A good initial set can be produced by looking at

the various tools and methods that are in common use during projects. The

information that these require, collect and produce can form a good starting

data set, with litUe overhead.

The set thus produced can be enhanced by looking at possible changes to

procedures, or the unplementation of procedures and the requirements for new

tools to help in the tasks involved in a project. These procedures and tools may

be worth investing in i f they have the joint advantages of assisting in the work

of the project, or reducing that work or other such advantage, along with

producing useful data about the project.

The set can further be enhanced with data that it is intuitively felt will provide

useful information. With data of this type it is important that the collection

method be considered in order that the overheads of producing the information

do not out weigh its benefits. This is an important point, at this stage we do not

know the benefits of the collected data so we cannot make inteUigent

cost/benefit decision. For this reason we must ensure that costs remain at a

minimum.

Special care must be taken to exclude data that cannot be validated, cannot be

collected accurately, or cannot represent the true situation.

In summary, the initial set of data is best defined from that data that is already

present, i.e. already collected although not used, in addition to any data that

can be collected by automated tools that either will not impose undue overhead

on the project, or the overhead can be laid off against other advantages. In

80

other words, the available data, with supplements from the attainable and

collateral data for which the cost of collection is not too high.

This set wiU change with time, so not too much effort should be spend in the

initial definition.

3.3.2.2. Phase 2 - Collection Strategy

Phase 2 is the definition of the method of data collection. Two important facets

have to be considered. Firstly, the source of the data, and how it is to be

collected into a single, usable repository. This will normally need to be machine

based to allow easy manipulation of the data.

As the initial set of data has probably been defined based on procedure

elements that already create data and on tools that support the project, the

initial stage of the collection method is also defined - the tools themselves and

the procedural elements. The collation of the data from, probably, a number of

sources into a single repository is more complicated.

The second, and connected consideration is the instigation of procedures to

ensure a complete set of data, or as complete as is practicable, is collected. It

is, in general, no use collecting a data set from a tool that is only occasionally

used by only a few members of a team and thus will not produce a

representative data sample. We must install procedures so that the collection

tools are used consistently and regularly. The same applies to procedural data.

We must also ensure that this data is faithfully entered into the repository of

information.

81

This validation requirement will generally require only small alterations to

procedures that should be in place already. It is good practice, and certainly the

first stage to decent control of a project to make sure working procedures are

in force. These procedures can be enhanced to make the use of the data

collection systems obligatory, and to install some form of validation at the time

of collection.

This phase has feedback to phase one, as the problem of overheads is

considered again. Any data collection that cannot easily be incorporated into

the working procedures, or cannot be validated without causing unacceptable

increases in the work overhead have to be reconsidered.

In summary, it has to be decided how the initial data set will be collected, and

install procedures to ensure the data collected is representative of the general

case, not just specific instances, and the data collected is true and vahd. This in

an important phase as all the results of the measurement system rely on these

assumptions.

3.3.2.3. Phase 3 - Collection and Analysis

The first stage of this phase is the collection of data, and beginning to populate

the repository. This begins as a test run for the data set and the data collection

strategy causing feedback to the previous two phases. At this stage, great care

should be taken to vaUdate the data collected in order to validate the strategy.

This is the foundation for the system, and problems here will be difficult to

rectify later.

82

The second stage is that of use of the data, i.e. analysis. We now need to define

a system of analysis that will help increase the visibility of the processes

involved, help to bring them under control and proper management, and

provide a method of presenting the results.

At this stage, very few analysis avenues are open, so the analysis should remain

simple, and therefore require minimal effort. More complicated analysis will

proceed from greater knowledge as the project progresses and greater insight

becomes available.

The first step in the application of data collected is its presentation. There are

many different ways of presenting data, and the choice of method and its use

has a great influence on the utility of the data, and the course the collection and

analysis will follow. The areas of appUcation of the data must be identified and

what use it is meant to be put to in order to decide on the method of

presentation.

The area of appUcation of particular interest is that of management One of the

objectives of the system is to be able to communicate the data to higher levels

of management. The only choice in this environment is to present the data in

the language of business. The language of business in this respect is summary

reports, and graphical presentation methods such as graphs and diagrams.

Another objective of our analysis is to drive the development of the collection

and analysis system. In this respect, the best method of trend analysis and the

identification of relationships is by human eye, and particularly with respect to

graphical representation of information. With these two arguments in mind, it is

an obvious first step to use graphical representation of data, and summary

reports.

83

This is the starting point of our analysis. The presentation of our collected data,

or summaries thereof, in a graphical way particularly with a time baseline. This

gives us information about flows in the system and so the processes going on,

and lets us identify problems with the flows. It also gives us a picture of how

things vary over a longer time scale, and using intelligence and intuition, the

ability to predict future values. This is the first stage of seeing what is going on,

managing what is going on, and predicting the future.

A use of the collected data that should not be overlooked, is the possible

benefit to the actual tasks involved in the environment. Data is the basis of

change control and configuration management and also represents the store of

experience described earUer. This store may have potential uses for the

technical people in the environment, so reducing the effort required on their

behalf, and offsetting the overheads imposed by the measurement system.

3.3.2.4. Phase 4 - Evolution

This phase is probably the most important, and, like maintenance in software

development, is never complete and encompasses the other three phases. In this

phase we alter the data set collected, the collection method and the analysis

applied as knowledge and experience increase and our requirements and

expectations change.

One of the obvious drivers of this evolution is the results of the analysis of the

data and the requirements for these results. There are other drivers also. There

must be a constant re-assessment of the position with regard to the data

collected and the method of its collection. This assessment must encompass

several areas. The first is the availability of data.

84

As the environment changes and the procedures used and the tools employed

to do the jobs change, the opportunity to collect data also changes. There must

be an ongoing assessment of what new data is available that can be added to

the collection set. This should also become a major consideration in the

adoption of new procedures or tools - what data will they provide?

The data currently collect must also be assessed. How useful is the data? What

use is made of the data? How much overhead is involved in its collection?

Using questions like these, data must be identified that should be removed from

the collection set, because it is to costly to collect, or is not of much use. This

is where the collection of a large data set to start with provides a pay back. At

this stage the data can be judged in terms of its benefit - that is, what use is

made of it, and how useful is it - and its cost - what effort is involved in its

collection, analysis (and storage). It is now possible to make cost/benefit

decision, which were not possible before. As an aside, the potential usefulness

of the data in the future must be taken into account, as both a store of

experience and a project history for research and analysis.

The collection method can also be the subject of scrutiny. Are the procedures

working? Is the data collected representative of the project in general? Is the

data collected valid? These questions and others must be asked, and corrective

action taken if necessary. We can also look at ways of applying the methods to

a wider area, for example, other projects, or other tasks.

All the time during this evolution we are returning to the previous phases to

ensure that the measurement system remains consistent.

85

In this way, the data collected and the method of collection are changed. The

data set starts targeting the useful areas of data collection, with surplus data

being removed from the set. The data set also increases to encompass new

areas so that a wider picture can be built up and a greater understanding and

better control are produced. The collection method is adapted to produce a

system whose benefits outweigh the cost, and whose results are useful and

correct. The data collection system migrates until we have a usable and useful

system allowing the instigation of proper control and accountabiUty.

The data analysis and presentation must also evolve as the knowledge about the

system and the requirements for the measurement system grow, and the set of

data collected evolves. This process of evolution of the data analysis is very

closely linked with the evolution of the data collection system. In fact it is the

evolution of the analysis that will drive the change in what data is collected.

The starting point is just a method of presenting the data we collect. This will

quickly, however, suggest new presentation methods and methods of both

combination and transformation of data to produce new results and methods of

presenting the data. This evolution of the analysis and presentation is primarily

driven by the inteUigence and knowledge gained of the managers that use the

data.

As the data is used, ideas will be generated as to new methods of presentation

and analysis that could be appUed. The methods of analysis and presentation

undergo a constant appraisal of their worth, simply by being used. Those that

are not useful, or do not provide useful information can be dropped from the

repertoire as new methods are produced to take their place.

86

At this stage we can focus on the model of the software maintenance process

that we chose to adopt. The Foster model, as described in chapter 1 defines the

tasks and process flows within a maintenance environment The tasks and

process flows can bow be seen as targets for quantifying and reporting on the

features the maintenance process. At this stage, reports on various of the

features should be possible from the data collected. This may require

combination and/or transformation of collected data, but some will be available.

There will, however, also be those parts that cannot be quantified. This brings

us back to the evolution of the data set collected.

The requirement to quantify features of the model that are not already possible,

will define, or suggest new information that should be collected. The

information can be defined based on the knowledge so far accrued about the

system being measured, and the data already collected. Again, this data

collection has to be weighed against the overheads of the collection, but

knowledge will also be being gained to help make decisions of this nature.

3.3.3. Summary

The data collection system and the analysis system will evolve form an initial

'guess' toward a system that is useful to managers and provides information to

higher levels. It is only by starting this data collection and analysis that its true

benefits can be perceived, and the path toward a truly useful system can be

mapped. A method has been presented here that will form a starting point for a

useful collection system, and one who's benefits will out way the costs.

No turn-key measurement system can be presented that will satisfy all

environments and conditions, but by the application of this method, a useful

87

and applicable system can be developed specifically attuned to the environment

concerned. But it is only by applying the method that its benefit can be

demonstrated.

88

Chapter 4

A Practical Application of the
Method

4.1. British Telecom Project Data

In order to provide a practical platform for the research contained here, British

Telecom Research Laboratories provided a database of information, about

maintenance tasks, that had been collected by a research team while

maintaining an on-line system for British Telecom. Although the data itself

cannot be reproduced here, for commercial reasons, it is used as the basis for

applying the measurement system development method to asses its practicality

and worth.

4.1.1. The British Telecom Project

British Telecom run a comprehensive research facility at Martlesham Heath,

Ipswich, England. At this facility there are research teams looking into every

aspect of British Telecom's business including many areas of software

development. One such team is actively researching the area of software

maintenance. The team have examined various aspects of software maintenance

over a period of more than 10 years.

89

The team has consisted of about 8 people on average, but the size has varied

over its Ufetime, with a reasonable turnover of personnel. To help in the study

of maintenance activities, the team took on the support of an on-line telephone

exchange control system, called the UXD5. Over a 9 year period, and two

major releases of the software, UXD5A and UXD5B, the team have been

responsible for all aspects of software maintenance from initial acceptance of a

change request to the release of new software versions. A number of other

parts of British Telecom acted as the 'customer', generating the requests for

change and accepting and distributing new releases.

For the duration of the project, which has now finished, the team undertook

research projects as well as the actual maintenance work. These projects were

based on the maintenance tasks being completed, and many involved the

collection of information about the jobs being done. As a result of this project,

a database of information was created about various aspects of the tasks

involved and the software system itself.

4.1.1.1. The UXD5B Project

The UXD5 is a self contained telephone exchange designed to serve remote

areas. It caters for up to six hundred Unes, and due to its location, is completely

automatic. The onboard code consists of a total of about 300,000 lines of

source code in languages including Assembler, PLM, CORAL 66 and

KINDRA. KINDRA is a British Telecom in-house language based on a

graphical representation of control flow.

The UXD5 has been through two major versions while under the control of the

maintenance team. The first, the UXD5A, was maintained over a period of

90

about three and a half years. It was during this project that a bug reporting

system was developed and adopted.

The second version, being both much larger and with greater functionality than

the previous version was the UXD5B. This was maintained over a period of

about five years. The bug reporting system was in place when this project

began, so a complete set of data about all changes made to the system has been

collected. This is the data that was made available to this research project. The

discussion that follows, therefore, refers specifically to the UXD5B data.

4.1.1.2. The Change Procedure

From its instigation, the UXD5B maintenance project had a rigorous change

procedure that was followed. This procedure changed slightly over the duration

of the project as knowledge was gained, but its major attributes remained the

same. This procedure, itself, was a research project. It was tried and tested

with a view to producing a standard procedure for all maintenance activity.

The change procedure conforms very closely to the Foster model of software

maintenance, and proceeded as follows.

Requests for both fixes to problems (bugs) and enhancements to the code were

generated from a 'customer' - another area of British Telecom. These requests

were based on both field testing of the supplied software, and actual field use

of the telephone exchange. These requests would be received by one of the

engineers in the team, who would record the details of the request and

acknowledge the receipt of the request to the 'customer'. The request would be

assigned a default priority, unless otherwise specified by the 'customer'.

91

The software system ran an independent, automatic exchange, designed to

service remote areas of the country. This meant that when a new version of the

software was released, it required to be installed at numerous remote sites

around the country. This was an expensive exercise. As a result, the changes

designed for the system were collected as they were produced, but were not

incorporated into the final system until it was considered cost effective to

produce a new release. At this stage many changes were implemented and a

new release produced and distributed.

In terms of priorities, this in general produced two categories. Those that could

wait for a new release, although the actual timing of a new release could be

influenced by the need for the changes that were waiting to be implemented,

and those that were critical and had to be implemented immediately. These

would be completed and a new release generated. The priority of the change

would therefore be primarily defined by the customer.

Once the request was received, and reached the front of any queue of waiting

requests, it would be assigned to an engineer for analysis. The assigned

engineer would then become responsible for that change, through to

completion. The first task of the engineer was to assess the request. I f the

request was a problem report, he would first attempt to reproduce the problem

on a test rig, with test software. The objective was to ascertain whether the

problem was a problem in the software, or was a hardware or other system

problem. The later cases would generate a reply to the 'customer' describing the

reasons why the request could not be acted on by this team. If the change was

a software problem, the engineer would estimate what the scope of the

corrective action was Ukely to be. In the case of an enhancement, the scope of

92

the required change would be assessed. Against this the benefits of the change

would decide whether the change went ahead or not.

Assuming the change was thought necessary, the engineer would design and

code the required change, using a copy of the software specially designated for

change testing. An important facet of this stage was that the design and the

code changes were fiilly documented - a fact referred to in more detail later.

The engineer would test the change on the test rig.

At this stage the changes would be reviewed by a Quality Review Panel to

ensure everything that should be taken into account had been, and to attempt to

remove any errors at this stage. The engineer would present his change to a

panel of his peers, describing the rational, as well as the actual code changes.

Any problems with the Quality Review would be dealt with by the engineer,

then the change would be resubmitted to the review.

Once the change had passed the review, the change would proceed to a library

of changes waiting to be implemented in a field release of the software.

When a number of changes had arrived in the library of changes, a decision

would be made to build a new release of the software. At this time, a selection

of changes was made from the library, not necessarily including aU the available

changes, and these would be implemented. The system would then go through

rigorous unit and system testing before being released. This stage could well

discover problems with the changes it implements. I f these problems were easy

to correct, the change would be made. If the problem was more complex, it

could well lead to the generation of a new request for change, and the initiation

of the whole cycle again.

93

This then was the procedure adopted by the maintenance team during this

project.

4.1.2. The Maintenance Data

During the project described above, paper based information was collected

about the task being requested and completed. An important feature of the

software change procedure described above, is the intrinsic need to capture

data about the maintenance tasks. This need is generated by the procedures

themselves, in order that the various stages can be completed.

When a request is generated, the details of that request must be recorded so

that a receipt can be generated, and also so the request can wait in a queue of

pending requests, i f one exists. This record of the request is the driver for the

change design and implementation, and also defines the objective of the change

for use in the review. The reasons that the change is required, and its 'customer'

generated priority, are also important in the final choice about which changes

are to be included in a new release.

This record of the request and its details, therefore, forms the first part of the

information set for this particular change.

Once an engineer has assessed the change request, and designed and produced

the required code changes, he has to present these to a review panel. This

presentation requires that the change design, and the reasoning behind the

decision to go ahead with the change, are recorded and available for the panel

to review. They must also be available for changes to be made if it is thought

necessary.

94

The record of the assessment and the design of the change is the next part of

the information set.

The code changes necessary to implement the change are not incorporated into

the system immediately, but are added to a library for later implementation.

This requires that the code changes are fully recorded and documented so work

does not have to be repeated when its becomes time to implement the change.

This library of required code changes forms the third part of the information

about the change, and the change procedure. I f changes to the design and

implementation are required by the review, new details must be produced, of

the new design or implementation. These new details are also added to the

information set

When it becomes time to produce a new release, and the changes are

implemented, the unit and system testing procedures produce either a new

system or new change requests. This forms the last part of the data set

necessary to drive the software change procedure.

The data described above is that data that must be produced in order for the

procedure to work. What happens to this data once a change has been

implemented is not important, it is just a by-product of the change procedure

adopted.

This data, in fact, was collected on a paper based, form system to drive the

procedure. It also became very detailed historic record of all the changes made

to the system. This data set was, in fact, filed for later use, and it is this set that

has been used to investigate the measurement system development method.

95

4.2. Application of the Method

The data provided by British Telecom is a historic record of the work

performed over the duration of the project. The re-enactment of a major

maintenance project is outside the scope and resource of this thesis, therefore

the data provided by British Telecom will act as a substitute.

The data can be used to theoretically re-create the project, and it is to this re

creation that the measurement system development method will be applied.

4.2.1. Development of a Measurement System

4.2.1.1. Phase 1 - Initial Data Set

The first phase is to define the initial data set for collection. The areas of

interest are the five data types defined in Chapter 3:

• Available data: That data that is already available as a by-product of

the processes already employed.

• Attainable data: That data that would be a by-product of the

processes use given a small change in procedures more strict

application of procedures.

• Collateral data: That data that is produced as a by-product of the

processes but is not actually collected.

96

• Other: Data perceived as being useful but which required effort and

expense to collect.

• Inaccurate data: Data that is inaccurate or impossible to collect

accurately.

As described above, the maintenance procedures adopted during the British

Telecom project produced a large amount of data as a by product (available

data). This data, collected on paper forms, includes such information as:

• A description of the change required.

• The system and version of the software that the change was

required for and the incoming priority.

• A reference to the initiating 'Customer'.

• The symptoms of the fault if it was a fault report, and a detailed

description of the required performance after the change.

• A record of the engineer assigned to a change.

• The date of receipt of the request.

• Diagnosis of problem or the change request.

• A description of what changes should be made, if this was thought

necessary.

97

• The date of the completion of analysis, change design and

implementation.

• A reference to the files that required changes to be made.

• The actual changes to be made to the files. This section was a text

entry that usually contained a copy of the statements to be changed,

and the new version of those statements.

This available data must form the basis of the initial collection set. This forms a

quite large set of data to collect, but we must also consider the other types of

data.

Collateral data is a useful source of information, but is not available here. It

will be considered later. The same is true of other data. Attainable data is also

an important consideration, but its consideration can be left until the evolution

phase.

This then forms the initial data set for the collection system. A full hst can be

found in Appendix A. It consists entirely of available data and so the overhead

of its collection is, so far, negligible.

4.2.1.2. Phase 2 - Collection Strategy

The collection strategy must be carefully considered based on the data to be

collected. The information is currently collected on paper forms by the engineer

concerned, and filed. This poses several problems.

98

The first is that the use that can be made of the information on paper is fairly

limited, without a large amount of expended effort. The second is that

validation of the data is very difficult. That is, ensuring documents are filled in

completely, and at the correct stage of the process and that the information

contained on them reflects reality.

Both of these problems can be solved by the implementation of a machine

based system for the data collection.

The system should be based on the set of forms currently completed, and

require the same data to be entered, i.e. the defined initial set of data. This data

is now electronically stored and so is easily retrievable. It can also be validated

at the time of entry by two means. The first is by requiring certain fields be

filled with appropriate data, and by filling others, such as dates, automatically.

This stops incomplete data being entered.

The second validation step is ensuring the correct procedure steps are

completed. That is, we can insist that a review takes place after the diagnosis of

the problem. The machine can enforce this procedure by requiring review

information before any further action can be taken.

This represents a sensible strategy for data collection. The overheads must also

be considered. The major source of overhead, during the maintenance process,

is very small. There are small procedural changes, but in general the process is

the same from the engineers point of view, the forms are just machine based

instead of paper based.

99

From an implementation point of view, the data entry system has to be

procured. This cost, however, is relatively small and can be justified for the

immediate benefit of more rigorous procedural control, as well as the potential

visibility gain.

4.2.1.3. Phase 3 - Collection and Analysis

The first stage of this phase consists of validating the data collection set and

strategy. The data set is self-validating in this case due to its source. It is

akeady produced and available.

The collection strategy is more difficult to validate from the current position of

historical data. A prototype system was designed to collect the information

required, and a validation exercise was carried out on the paper based data

during which time it was converted to electronic form. The prototype system

(SCIMM) is described in the next chapter.

The data captured on the forms displayed several shortcomings, for which there

was no remedy at this late stage. The major examples where data that was not

completed correctly on the forms and data that was obviously incorrect. Both

these factors have feedback into the collection system, specifying extra checks

that must be performed.

A specific example of incorrect data, was that of completion dates of the

various stages of the process. These dates, in some cases, were the same for all

stages, even on some large scale changes. This indicated that the forms had

been completed only after all the work had been done, thus, perhaps.

100

invalidating more of the data collected. This state of affairs, however, would be

rectified by the machine based collection system.

This procedure mirrors very closely the real implementation of this phase.

Problems and shortcomings are identified, and feed back to phase 1 and phase

2 to produce a workable data collection system.

The next stage of this phase is to collect and analyse data. This was

accomplished using the now machine readable form of the data collected by

British Telecom. The database now represents a long term use of the collection

system, although some validation is missing.

From the data collected we can begin the analysis stage. This analysis takes the

form of presentation of the data collected. Simple presentation techniques can

be used on subsets of the data to demonstrate the usefulness as a management

tool. Examples are given in the next chapter, and can been seen in Appendix B.

Here, the Foster model of maintenance is again considered as the guide to

useful information about the maintenance processes. A number of the features

of the Team Level can now be quantified:

• Frequency of incoming requests.

• Number of requests solved immediately.

• Number of requests rejected.

• Outstanding change requests by time.

101

• Outstanding change requests by assigned engineer.

• Numbers of changes awaiting a new release by time.

• Number of changes requiring rework.

• Time for each stage of a change.

These reports quantify facets of the model, but data can be presented to answer

more general activity questions:

• Total changes per module by time.

• Total new releases by time.

These reports demonstrate information that can be retrieved about the ongoing

project that would have been, at best, very difficult to ascertain previously. All

these reports, however, contain information to make the management and

control of the project easier and more complete. These reports also provide

information to describe and support the work of the team to higher

management level. All these reports, in addition, represent a simple display of

the data captured.

Of course, the possible reports to generate are endless. More examples can be

constructed easily. This is the stage at which evolution take over.

The last stage of this phase, however, should not be overlooked. That is the use

of the data for other tasks, apart from management.

102

The data represented here forms an experience store of previous changes to the

software, with their rational and associated problems. This data should, if made

available to the maintenance engineers in a useful way, provide a valuable tool

to help with the tasks of maintenance.

By providing a method of retrieval of the data, an engineer would have access

to the content and reasons behind similar changes to the one currentiy being

made. This should short-circuit a proportion of the necessary work, so

reducing the required effort. It would also allow previous problems

encountered to be avoided.

This technique has further ramifications. A proportion of changes made to a

software system introduce errors tiiemselves and so lead to further work. If the

original change that caused the problem can be identified and altered, instead of

introducing a new patch on a patch, this should reduce the overall complexity

increase and improve the life-time of the software. This also introduces

traceablility of changes into the measurement system - another useful item of

data.

The ability to trace similar changes has a further result - the identification of

duplicate change requests, or the collation of very similar outstanding request,

so they can be dealt with together, as opposed to with separate effort. This,

from a management point of view, improves the work scheduling and should

reduce work required.

103

4.2.2. Evolution of the Measurement System

Evolution has already begun. The previous section described a number of

reports that can be produced from the data available. Some may not be

particularly useful in the particular environment concerned, these can be

removed. Others can be envisaged that could give further useful information

about the environment, such as, numbers of change requests that are mipossible

to implement. Thus, the measurement system changes to incorporate these new

requirements.

Functional change requirements to the collection method have also been

identified. Those of allowing access to previous change data by maintenance

engineers. This requires the development of a data retrieval method that allows

specific changes and types of changes to be accessed. Such a change is

incorporated in the prototype described in the next chapter.

These are evolutionary changes defined by the practical collection of data done

so far. Evolution of the data set must also be addressed. The data collected

must be assessed in order to identify that data that is not useful, and to identify

data that would be useful. The cost of these changes must also be addressed.

An important flaw in the British Telecom data, that has been referred to before,

is the lack of accurate time stamp data. From a management point of view, the

time tasks take to complete is of utmost importance as future resourcing and

scheduling rely on this type of information. This can, therefore, be identified as

data that is lacking from our collection set, and should be included. The cost of

this data is relatively small, if we require that the collection system itself time-

stamps the data as it is entered.

104

Another piece of information that is important to the work scheduling process

is some information about the relative sizes of the solutions to change requests.

The actual changes required are already entered as part of the collection

system, but further information would be desirable. This requires an

examination of the work environment to find a source of this information that is

both accurate and easy to collect. Sources worth considering are compiler time

or output when compiling a change, or changes to the testing scheme that a

change necessitates.

These then are definition of steps for the evolution of the measurement system,

and will themselves generate further steps. At each stage, however, the current

system can be assessed with a view to its cost/benefit relation. As knowledge

about the environment grows and potential data sources and uses are identified,

the system will evolve.

105

Chapter 5

The SCIMM System

5.1. Introduction

The SCIMM (Software Change Information for Maintenance Management)

system [COOPER89] is the detailed prototype implementation of the results of

the initial application of the method, as described in Chapter 4.

SCIMM is a computer based system that stores information about requests for

changes and changes made to software systems, with a view to easy access and

retrieval of data, and the provision of analysis to allow managers to analyse this

information and use it as an aid in prediction, planning and scheduling of

maintenance activity, as well as for report generation and to raise the overall

visibility of the project they are managing.

The SCIMM system also provides facilities to help the maintenance

programmer with maintenance tasks on the software system in question.

The SCIMM prototype development was based on tiie principles, outiined

earlier, for the collection and analysis of data, and forms a practical example of

the application of those principles.

106

5.2. The S C I M M System

5.2.1. System Overview

SCIMM is a computer based system that stores information about requests for

changes and changes made to software systems. This data collection occurs at

every stage of the change process, from initial request to incorporation of the

change into a new release of the software. The data set to be collected was

based on the appUcation of phase 1 of the measurement system development

method, described earlier, to the British Telecom maintenance environment

This data collection requires that the SCEMM system be central to all the

activities of the mamtenance team, and is used at all stages. To ensure this,

SCIMM provides the basis for a comprehensive change control procedure,

following closely the procedures already in place in the environment in

question. The system provides functions that, ensure change procedures are

followed and changes are complete before being signed off, allow change

tracking from request to completion, allow quahty assurance procedures to be

carried out on the changes and provide a master store of the actual code

changes for later incorporation into documentation or releases.

In order to offset the overhead of time and effort required to use the system, as

well as providing the main objective of management visibility, the system also

provides information in a form useful to the maintenance programmer doing a

maintenance task.

The SCIMM system is designed, primarily, to demonstrate the apphcation of

the measurement system development method described in Chapter 3, and to

show how the method can satisfy the goals defined for the method.

107

5.2.2. Data Collection

The data capture method of the SCIMM system is based on a series of preset

forms that must be completed at various stages of the change process. Some of

the fields are filled automatically, and as the data collection system evolves, and

incorporates other tools, a greater proportion will be filled in this way.

The forms themselves define the method by which maintenance tasks will be

completed, and provides a first level of visibility of the tasks being undertaken.

This first level of visibUity coming from the presence or absence of the data.

The forms that have been completed define the current state of the change, and

once all the necessary forms for a change have been completed, the change can

be signed off as complete. The system stores information based on the

maintenance task, which is the effort required to respond to a single request for

change. The system also maintains a complete history of the change, including

feedback, and the reasons for the feedback.

In this way the SCIMM system captures the maximum amount of the available

information about the tasks being performed, and it wiU be shown how the

overheads involved can be offset.

Each maintenance task has five basic forms, each corresponding to the end of a

stage in the change process. These five basic forms are referenced by a task

header that is created when the change request is received. The task header

maintains information such as the state of the task, the engineers working on

the change, the expected time for the change, the actual time taken for the

various stages of the change, the curtent priority of the task and the result of

108

the task. A full list of the data elements captured by the SCIMM system can be

found in Appendix A.

R E Q U E S T

R E Q U E S T

Revision t 0f

T A S K
H E A D E R

ii

D I A G N O S I S

C H A N G E

C H A N G E S
H E A D E R

T E S T
D E T A I L S

, D I A G N O S I s | |

Revision I Jp̂

mmm^
C H A N G E S
H E A D E R

Revision I

C H A N G E S
D E T A I L S | §

Revision I |?

r i

i
T E S T

D E T A I L S
Revision 1

1

K E Y

- Quality Auurance Document

Information Storaf^e

Fig. 3 The SCIMM system database structure

109

5.2.2.1. Change Request

The first of the five forms is the change request form. This form corresponds to

the receipt of a request for a change to the software system. The request will

normally originate from outside the maintenance team, but may be generated by

a previous change, or from a planned maintenance schedule. This form is

completed by the front desk personnel, if such exists, or by an engineer if not.

The form records information such as a text description of the required and

current performance, contact names for originator and the priority of the

change from the originators point of view.

At this stage, a keyword description of the change request is also entered. This

keyword description consists of a list from a set of pre-defined keywords and

describes the change from the users perspective. The Ust contains information

about the requirements, effects and areas of influence of the change from a

users point of view, that is, the view of someone using the system. This

keyword description is designed to allow analysis of the request, based on the

users perspective of the problem. The keywords contain information about

which screens are affected by the change, which controls accessed by the user

are affected, and which parts of the display or otiier output of the system are

effected. An example may be the keyword 'DIALLING' which means the

change, or required change, effects the operation of the system while a dialling

operation is underway. This perspective is very important for analysis, and for

searching the database, as it is often only a users perspective that is available,

without effort being expended by a trained programmer or someone

knowledgeable about the system. This users perspective, therefore, provides a

fu-st line description of the change, and the keyword description allows analysis

and searches based on this perspective.

110

The receiver of the request, may, at this stage be able to provide a solution

immediately. This may come from the store of changes already completed, or

the change may not be possible, or actually required. In this case the change

can be written off as complete, with an appropriate result code stored in the

task header. The change would then require no more work and the remainder

of the forms would not be completed.

5.2.2.2. Change Diagnosis

The second of the five forms is the change diagnosis form. This form

corresponds to the completion of the analysis of the request, and its

impUcations, by a maintenance engineer. The method by which the change

request is allocated to an engineer, and how changes to be worked on are

chosen from any queue of requests awaiting work, are not dealt with here. A

system for priority ordering, and request selection could, however, be

incorporated into the system, corresponding to the system adopted by the

maintenance team.

The form records information including a text description of the cause of the

problem, or an analysis of the change required and a specification and design of

the required changes to the code. This form also includes a keyword

description of the change.

The keyword description, as on the request form, consists of keywords taken

from a predefmed set, that describe the change requirements from a system

perspective. This perspective provides the second stage of a description of the

change, allowing analysis and searches to be performed. The first stage being

the description from the user perspective. This forms a very effective way of

111

describing the change in a way that allow automatic analysis and searches on

change types. An example may be the keywords 'LONG DISTANCE' and

'CONNECT', which specify the change includes an effect upon die part of

code responsible for making a connection on a telephone exchange, and only

has an effect when the call being made is long distance. In the keyword

description definitions, the keyword 'LONG DISTANCE' might contain a

description of the factors that hold for a call to be long distance. From these

keywords we can now select all the changes that effect the connection of calls.

When this is combined with the user perspective, we can find, for example,

changes that effect the connection of calls, but only when generated by a user

dialling function.

As in the previous stage, the result of this analysis may be that no further work

is required, for reasons such as the problem is a hardware fault, or caused by

incorrect use of the system. I f this is the case, the appropriate result code is

stored in the task header, and no further work is required.

5.2.2.3. Changes Header

The tiiird form to be fiUed is the changes header form. This is created when the

actual changes to the system have been decided upon. This contains references

to the change details forms (see later) for this change. It also contains

information about the state of the software system at the time the change is

implemented.

In an ideal maintenance environment, the change, once designed, wiU be

incorporated and tested on a version of the software reserved for use by the

mainteriance team. The change will not actually be incorporated into a release

112

of the system until such time as a new release is decided upon. At this stage,

change specifications wiU be taken from a library of changes and incorporated

into a new base line of the system that wUl form the new release.

Based on this scenario, it is important that the actual state of the software at

the time the change is specified, is recorded. This is important in the case where

a piece of code, or specific functionality, is affected by a change, then a

subsequent change affects the same piece of code, or functionality. When the

second change is designed we must record whether the system being changed

includes the first change, or does not. In the case where it does include the first

change, at the time of creating a new release, the first change must be

implemented before the second for the resulting system to be correct. I f the

second change was defined on a system not including the first, then if both are

to be implemented, an analysis of their effects on each other must be

performed.

For these reasons, the change header records the baseline system to which the

change applies, along with any other changes that either must be made to the

baseline system before this one, or changes that are mutually exclusive with this

one.

5.2.2.4. Change Details

Multiple copies of this form may exist for each maintenance task. Each form

contains details of changes to only one unit of the system source. This unit may

be a module, a program or a file depending on how the system is defined. Each

form is referenced by the change header to relate these forms to the original

task.

113

This form contains details of the unit to be changed and the changes to be

made. It also contains a reference to a documentation file to be changed and

the changes to be made to the documentation.

Although not actually incorporated into the prototype, the aim is to store the

change as context sensitive editing commands. This form of storage would

allow the engineer to record the changes easily - by just doing the required

edits, or comparing the initial and final forms of the unit that had been changed.

This form would allow the database to be used to actually perform the edits,

and could be used to generate documentation about the change made, for

example, in a release notification. Performing these tasks straight from the

database store would ensure that there were no transcription errors introduced,

once the change had been specified. This would also help if problems were

encountered in the change, as the analysis could start at the change design, and

not have to examine the possibilities of errors introduced later.

The reference to a documentation change is very environment specific. The

SCIMM system is seen as providing a control framework in which the

maintenance tasks are performed. The system stores references to the new and

updated documentation related to this change ensuring these exist are are

current. The other important feature of the documentation reference, is to

allow quality assurance reviews to ensure that documentation has been

updated. In the SCIMM prototype, this reference consists of a record of the

documentation file changed and the changes made, as with the code.

114

5.2.2.5. Test Details

This is the fifth of the basic forms that record information about the change. It

corresponds to the stage where the change is incorporated into a new release of

the system. This, as described earlier, should ideally be a scheduled procedure,

incorporating multiple changes and involving a complete system test. It is,

however, equally applicable to the case where the change is incorporated into

the system immediately.

This form is created when the corresponding change is implemented in a release

system. This form is another example of an interface to other tools in the

maintainers suite. This form should interface with a rigorous system of unit and

system testing, and a full regression test system. In the prototype, however, it

stores various information about the test of the change. This information

includes, specification of the required regression test, results of the regression

test, specification of new tests required to verify the change request

requirements have been fulfilled, results of these new tests and a summary of

results and required future action.

The test specifications come from the change request details, and the change

design. The results show the comparison between expected and actual test

outcomes, and the action specifies the outcome of the tests. If all tests are

completed satisfactorily, the test details are recorded as passed, and the change

is marked complete in the task header, with a reference to the new release in

which it is incorporated.

I f the test results are not acceptable, a feed back loop is produced.

115

5.2.2.6. Quality Assurance and Feedback

The five main stages of the change are described above, but this is not the

whole story. Attached to each form is a quality assurance form. In the

prototype, these are simple forms that record the date the form was reviewed,

the reviewers and the action resulting.

The actual quality procedures, and at what stages they are performed are

dependent on the environment and on work practice. This is another example

of a possible interface to other tools during the evolution process. The use

made of the quaUty form is primarily to allow easy identification of those stages

that have not been reviewed, and to provide links to the feedback loops.

Feedback loops are the method by which work is redone. There are two major

causes for feedback, these are, unsatisfactory test results or actions generated

by a quality review. When feedback is required, work returns to a previous

stage of the change process, and new versions of the required forms are

generated, as work is redone. Once a form is completed, it is not allowed to be

edited, but a new version is created that stores the changed details. In this way,

a full history of the change, its rework and the reasons for the rework are

stored.

An example of feedback would be where a quality review on a diagnosis form

decides that the side effects of the proposed change have not fully been

explored. In this case the review result would be that diagnosis rework was

required. Once the work had been done, a new version (version 2) of the

diagnosis form would be created and submitted for review. Once passed, the

change would move on to the change details stage, etc.

116

I f a problem is found in the change testing, this may cause a feedback to any

stage. For example, it may be that a problem's cause was not correctly

diagnosed, therefore a new diagnosis stage will be required. It may be that an

actual code change is incorrect, in which case it is just a new change details

form that is required. Whatever the result, a new form is created and the

change process then proceeds from there.

The only form for which there is never a new version is the request form. This

form defines the task being performed. If the requirements for the change alter,

or testing highlights a new problem, a whole new task is created and queued. In

this way, a single task responds to a single request.

5.2.3. Data Analysis

The data analysis part of the SCIMM system provides simple methods of

accessing the data collected by the above scheme. The first important point to

note is that the data is stored as a connected network of forms relating to a

change, (see figure above), including any rework necessary, and so the

information about a change, and therefore the change process itself, is

completely traceable.

The information in the database can be accessed in two different forms.

5.2.3.1. Change Information Retrieval

The actual data collected about a specific change can be accessed. This access

can be achieved by specifying a particular change reference, or by specifying

various change criteria. These criteria can include:

117

• Change State: allows the selection of changes that are at a certain

stage in the change process, such as in testing, or waiting to be

implemented.

• Request Age: selection of changes based on the length of time the

request has been awaiting action.

• Request Keywords: allow the selection of changes based on the

users view of the software being maintained. For example, changes

dealing with a specific user screen or functions, such as performing

a dial operation on the exchange, can be retrieved. This type of

selection relies on the definition of the keywords entered in the

change request form.

• Diagnosis Keywords: allow selection of changes based on

programmers view of the software. For example, changes involving

requesting a long distance line connection on the exchange. This

selection relies on the defmition of the keywords entered in the

change diagnosis form.

• Unit Changes: selection of changes based on which units they

affect.

• Quality or Testing Results: selection of changes that have had

specific problems in quality reviews or at the testing stage.

118

In fact, searches can be made on almost any feature of the data entered in order

to access the data for that specific change. The change details can then be

printed as a report or the group of changes selected can be listed and

quantified.

5.2.3.2. Reports

SCIMM is primarily designed as a system to help the management of software

maintenance. This it does by providing visibility of the project to the project

manager. The main supporter of this visibility is the production of detailed and

summary reports about the data being captured.

The reports produced by SCIMM can be at various levels of detail, from

providing details of changes made to code, to high-level statistical summaries

of the project state. The reports are based on change selection as described

above. Changes fulfilling various change criteria can be selected, or all changes

on the database can be included.

The amount of information included for each change can vary from a simple

count of the number of changes, to a detailed description of all the fields

stored. As has been described earlier, the most important feature of this stage

of the data collection/analysis method is flexibility - the ability to analyse data in

whatever way is desired, and the ability to change the way in which the data is

analysed.

An example of the utility of the reports generated by SCIMM to the

maintenance manager is the total number of requests received. This report, if

produced at regular intervals, provides a history of the rate of request arrival.

119

This history can be examined to find time dependent patterns in the rate of

requests coming in. These patterns can then help predict future request

patterns, an allow forward planning.

Examples of reports produced by SCIMM are:

• Frequency of incoming requests;

• Total requests outstanding;

Requests outstanding by time outstanding;

Requests outstanding by engineer assigned;

Total changes being processed by engineer;

Average time for a request to be completed;

Total changes awaiting implementation;

Number of changes requiring rework;

• Time for each stage of a change;

Total changes per module by time;

Examples of some of these reports are shown in Appendix B.

120

The actual reports possible are unlimited. The specific ones useful to a

particular team must be decided on by that team. The important feature to note

is how die visibility of what is going on in the team and the project is

immediately raised, providing the ability to correct problems and generally

manage and control the processes involved.

5.2.4. Maintenance Programmer Support

The collection of data described above causes an overhead in time, effort and

resources allotted to the project. Maintenance programmers have to spent time

collating information and filling in forms. Machine resources are expended,

storing and manipulating the information and procedures must be incorporated

that ensure the validity of the information entered. These have effects on the

project, which have to be justified.

The preceding discussions present a strong case as to why this overhead is

justified, but in a commercial environment it is still difficult to quantify the

benefit to compare against the cost, in an often under-resourced field. For this

reason, SCIMM provides extra functionality to help the maintenance

programmers in their tasks, in order to reduce the overall effort required. Not

only does this offset the cost of the system, it would also help the system to be

accepted, and used to its fullest capacity.

5.2.4.1. Change Cross-referencing

The major feature that helps tiie maintenance programmer is the ability to

cross-reference changes stored on the system. The first stage of this is the

facility to search the database of changes, as with the analysis functions above,

121

to find changes that fulfill certain criteria. These criteria are generally searches

for changes with similar request keywords, or diagnosis keywords or which

affect a certain area of code.

This process of selecting certain changes has a number of advantages for the

maintenance programmer while working on a change. The first is the ability to

detect complete changes, or requests for change, that fulfill the requirements of

a new change request. In this way, repeated work can be avoided, and

customers with a change request that has already been dealt with can receive

the fix immediately.

The second advantage is the ability to detect similar changes made in the past.

These similar changes may well short circuit the analysis and design phases of

the change process, so speeding the process and reducing the effort required.

An example would be tax changes in a financial package. I f a programmer can

reference the changes made last time there was a tax change, the current task is

a simple recoding job, instead of the need for analysis of the code and change

design.

The maintenance programmer is also able to find changes in the change Ubrary

that may conflict with the change being designed. This is particularly important

where multiple versions of the system exist, or, in the case of British Telecom,

where a library of unimplemented changes exist. By identifying those changes

that may conflict, problems can be avoided, or documented, before

implementation is started.

The fourth use of the search criteria, is the identification of ripple effect ertors.

It has been shown that maintenance activity itself is responsible for a high

proportion of errors in a system. System degradation and decay is advanced by

122

maintenance tasks consisting of patches onto the original code, followed by the

implementation of further patches when the original fix fails to work. By

allowing searches for similar changes, and changes affecting the same area of

code, the global picture of what has been done to a piece of code can be learnt

with littie effort. There is also access to the original reasons the changes were

made. From this information, if a previous change introduced an error, the

original change can be corrected, instead of adding a new patch. I f a previous

change was not responsible, there is still the option to redesign the whole set of

changes to make them better and more compatible as a group. In this way,

system degradation is slowed and the maintenance effort is better directed and,

therefore, less wasteful.

A feature that was found to be useful was that of permanent stored links

between changes. These links could be put in place for a variety of reasons,

such as cause of problem and frx. The task of searching for changes and

manually assessing the results is then further shortened. The Unks also provide

documentation about the changes being implemented, and provide a further

facet of information about the processes involved.

5.2.4.2. Change Search Criteria

These searches are all based on the three features of a change stored for this

specific reason. These are:

• The keyword description of the request (users perspective):

provides the ability to distinguish changes to the outside, users view

of the software. This often defined an area of the program or a

123

functional block. It is all there is to go on at the early stages of a

change process.

• The keyword description of the diagnosis (system perspective):

distinguishes changes at the system, fimctional level of the software.

This defmes a functional unit of the code, the users perspective

provides information about the timing, or context of the use of the

functional unit

• The area of effect of the code changes: defined in terms of actual

code statements or units changed.

The searching algorithm can then be a simple pattern matching search, from a

set of required keywords or statements effected, to the keywords and area of

effect associated with each change in the database. These three features have

been shown to provide a useful, and easy to implement, searching method for

particular changes, or groups of changes fulfilling certain criteria. In general,

these search criteria are not exact, in other words, manual intervention is

required once the automatic selections have been made, to isolate the changes

that are of interest. This does, however, provide considerable help to both the

maintainer and the manager which is available in no other way.

5.3. Evolution of SCIMM

The ongoing method application requires the ability of the system to evolve.

This can be demonstrated by a number of examples.

124

The major implemented evolution step is that of the keyword search algorithm.

From the initial collection and analysis system, the usefulness of the collected

data to the maintenance programmer, as well as the maintenance manager, was

identified. This usefulness, however, depended on a system for accessing the

required data both easily and quickly.

To satisfy tiiis requirement, the keyword coding system of both the user view

and the system view was developed. This was added to the SCIMM prototype

and shown to satisfy the selection requirement. This also added an important

feature to the management use of the system by allowing certain types of

change to be isolated.

The second evolution step identified was an evolution of the data set collected.

A requirement of the management process is for information about time related

features, such as the average time for responses to requests, or total time spent

implementing changes. Accurate information of this type was not retrievable

from the initial set of data due to the lack of control over when forms were

filled and the dates entered on forms.

For these reasons, time information was added to the data set collected, and the

date information was specified more clearly as the 'date of form completion'.

This date could now be completed automatically. Although no actual data of

this type was available from the British Telecom data set, sample data shows

the usefulness of these new fields.

The evolution described above requires that the SCIMM system be

implemented using a flexible implementation strategy, for example, a 4GL

database management development system, so that data can be added and

removed, and analysis and reports can be easily developed and used.

125

5.4. Summary

SCIMM is a computer based system, designed using a flexible database

implementation system, that stores information about requests for changes and

changes made to software systems. This information is then presented in a form

to help the maintenance manager in his task of managing the project, and also

provides facilities to help the maintenance programmer, thus reducing the

effective overhead of the data collection.

The system demonstrates a method whereby a data collection and analysis

system can be incorporated into a maintenance environment without large

amounts of effort or expenditure. It also demonstrates how flexibility of the

data collection method, and the analysis performed can be included to allow

use to be made of the system immediately and without prior knowledge, and

how it can quickly produce useful results and still provide for evolution of the

method as knowledge, experience and requirements for the system grow.

126

Chapter 6

Evaluation and Conclusions

6.1. Comparison to Criteria for Success

The basic premise of this thesis is that measurement of software maintenance

products and processes produces visibility and understanding, leading to better

management of the software maintenance environment at both line and

corporate level. This has been shown by a number of studies, including the

GoayQuestion/Metric paradigm [ROMBACH87].

The hierarchy presented in the Goal/Question/Metric paradigm of collection of

data providing answers to higher level questions is vaUd and useful. This thesis,

therefore, addresses the shortfalls of the Goal/Question/Paradigm by applying a

bottom-up design approach. This approach will help target the hierarchy,

overcome the overhead problems which are a major consideration in an

industrial environment, and provide for an evolution of the system to take

account of goal changes and gathered experience.

This thesis presents a method whereby a measurement system can be developed

and introduced into a maintenance environment, and, once introduced, can

evolve to better meet the requirements for such a measurement system and to

allow for changes in those requirements as knowledge and experience grow in

127

that environment. The method produces a system that addresses both the

collection and use of data, in a way that is specifically tailored to the particular

environment and working practices in which it is to be used.

Previous examples of work in the maintenance field have demonstrated how the

measurement of the processes and products in a maintenance environment lead

to greater visibility and, therefore, greater potential for management control

[ROMBACH87, GRADY87, GRADY87a]. It also provides tiie required

starting point for communication with corporate level management. This result

is supported by the initial application of the method to the British Telecom

maintenance data. Using these results we can infer that the measurement

system developed as a result of the method presented here will also provide this

increased visibiUty and the potential for management control.

The basic requirements, identified for an industrial maintenance setting, for the

measurement system to have low initial investment levels and quick feedback

into the management cycle have been demonstrated with the British Telecom

example. The initial planning stage is kept to a minimum by simply requiring

the identification of the five different types of data available in the particular

environment and a decision about which data items will be collected. The initial

impact of the collection system can be minimised by concentrating on the

available data for the fu-st implementation. The feedback to the management

cycle and for communication to higher management depends, initially, on the

presentation of the collected data. Thus the feedback can be immediate, but is

still shown to be useful by the British Telecom examples presented previously

(see Chapter 4).

The method presented here produces a measurement system that is tailored

specifically to the environment in which it is to be used, and has all the benefits

128

of a measurement system produced from the Goal/Question/Metric paradigm,

without some of the significant drawbacks as identified earlier (see Chapter 1),

and expanded on below.

The work presented here, therefore, has been shown to satisfy all the criteria

for success identified in Chapter 1 and evaluated above.

6.2. Comparison to the Goal/Question/Metric
Paradigm

Two important results of the work on the Goal/Question/Metric paradigm are

important in this context, and can be applied to the work presented here. The

first is that measurement of the products and processes involved in the working

of a maintenance environment increases the visibility of that environment to

both line management and to higher level management. This increase in

visibility leads to improved potential for management of that environment

which, in turn, should lead to improved performance and reduced costs -

important targets in any industrial setting.

The method presented in Chapter 3 produces a system that collects data about

the products and processes in the particular environment to which it appUes,

thus leading to the improved visibility and, therefore, improved management

potential as described above.

The second result of the Goal/Question/Metric paradigm that can be applied

here is the applicability of a hierarchy of questions at different levels of

abstraction, each level being answered by the questions in the level below. The

bottom level of this hierarchy is the data that can be collected direcdy from the

129

environment. This structure is a valid interpretation of the use of data in most

environments and provides a structure for the use of measured data. The

method presented here supports this hierarchical structure during the analysis

phase, but addresses it from a bottom-up point of view, thus supplying a

number of advantages over the top-down approach of the

Goal/Question/Metric paradigm approach.

The major shortfalls of the Goal/Question/Metric paradigm include the initial

investment required for its application, and the lack of flexibility of the

structure as it is created from the top, down (see Chapter 1). This structure can

also be tenuous as it assumes an ordered hierarchy can be found from a defined

top level to a required measurement level. Finding this order is often

impossible. Once the bottom measurement level has been defined, it is rigid,

and therefore often impUes large overheads in the appUcation of the

measurement strategy, or even dramatic changes in working practices.

These shortfalls are addressed in the method presented here in two ways, firstly

by the use of a bottom-up development method and secondly by allowing,

explicitly, for the evolution of the measurement system.

The definition of the set of metrics, first, allows metrics to be chosen that fit

into the environment without causing excessive overheads in planning or

collection. This start point for the measurement system can, in many cases, be

hampered by a lack of knowledge or experience of what is to be measured and

how to go about it. The method presented here, by allowing a modest start,

provides a basis for knowledge and experience to be gained, without costly

mistakes and false starts.

130

Knowledge and experience is gained from the use of the data collected to

answer higher level, more abstract questions, and the subsequent evaluation of

these answers to identify pointless data, or areas where questions could be

better answered, or other questions could be answered by the collection of

further information. This also provides a platform for decisions about whether

the extra data is worth the collection effort it requires.

In this way, the collection set evolves, along with the analysis of the data to

generate the Goal/Question/Metric paradigm hierarchy, but always with a view

towards its cost and impact as well as its practicality and maintaining its

flexibility.

The bottom-up approach of measurement system development, along with the

explicit support for system evolution, provide the major original contribution of

the work presented here.

6.3. Evaluation of the Method

The method itself was applied to data collected by British Telecom during a

large scale maintenance project (see Chapter 4). From this initial apphcation, a

prototype system was developed for the automatic collection and analysis of

data (SCIMM, see Chapter 5) and the first stages of evolution were applied.

Although the data used was of an historical form, valuable insight into the

application of the method can be gained.

131

6.3.1. Phase 1 - Initial Data Set

The initial data set definition involves the identification of the five types of data

present in a maintenance environment (see Chapter 3). The data set chosen in

the British Telecom example consisted entirely of available data, that is, data

that is a byproduct of the maintenance procedures in force during the project.

This data set highlights immediately the advantages of this methods approach

to data collection. The overheads involved in the collection of the identified set

of data were negligible. This is evident from the fact that the data exists as a

byproduct of the project, without any further effort being expended in its

collection. It can be argued that, in fact, the data collection in a machine based

form would have been directly beneficial to the project.

The identification of the data set for the first phase of the method also proved

an easy task, when taken in the context of the environment to which it would

be applied. The available data was a readily identifiable set and provided a

good starting point for the measurement system. The data set used, however,

can be seen to be very dependent on the particular working environment

concerned. It proves a very difficult task to attempt to identify an optimum data

set, independently from the working environment in which it will be used. The

example of an initial data set from the British Telecom environment may

represent a significant change in working practice and effort in another

environment, even in the same field or company. This exempUfies the problems

of applying theoretic requirements for the data set from an early stage, instead

of the practical approach.

In an environment where the other types of data are present, such as attainable,

collateral and other, these must also be addressed, with a view to their

usefulness weighed against their cost to collect.

132

The identification of the initial data set was a straightforward task when based

on a knowledge of the environment and the working practices involved.

6.3.2. Phase 2 - Collection Strategy

The data collection and storage schema required more effort to define and

implement due to the requirement of making the system machine based. This

overhead in design and implementation was, however, easily reconcilable with

the benefits provided by the automatic system. These immediate benefits,

including instant vaUdation of data, easy correlation of the many parts of a

single request for change and the reduced clerical effort involved in storing the

information, are apparent even without any further use of the data.

The collection of data by the system was simulated by transcribing the paper

based data into machine based form. This collection emphasized a number of

aspects relevant to the measurement system. The first is the necessity for the

collection system to hold a central place in the working methods of the

environment. In the case of the British Telecom example, the collection system

follows the normal working scheme and the data entered on the system is

required for the change to progress toward completion. This is demonstrated

by the review process required at each stage of the change. The review requires

that the information about each stage be presented and thus must be entered in

the system. The review stage completion is required before the change

progresses to any new stage. It is also immediately apparent, using the data

access facilities, when the system is not being used correctly. In this way, the

collection system becomes part of the work scheme and is not just a peripheral

device to use i f there is time.

133

The second important requirement highlighted by the data collection is that of

validation of data as it is entered. In the British Telecom example, this should

be achieved by reviews of the data entered, however, the paper based data set

did reveal a number of deficiencies and irregularities. These problems with the

data lead to a general lack of confidence in that part of the data and so that part

of the data becomes useless. An example of this was the date information

entered on the forms. Some was missing and some was obviously incorrect.

This leads to a lack of confidence in the whole of the date information.

An example of accurate, and therefore, high confidence information was that of

the actual changes made to the code. These documented code changes where

actually used to make the changes to the live system, (again, back to a central

role in the work processes), so had to be complete and accurate. The result of

this is the requirement for all data to be validated, at the time it is current, in

order to maintain confidence in that data. This also becomes a driver for an

evolution cycle, as described later.

6.3.3. Phase 3 - Collection and Analysis

At this stage the measurement system can be assessed. From the example

reports shown earlier it is immediately obvious that the visibility of the project

has been raised in a way that was certainly not previously possible. Ammunition

is now available for the manager of the project to better control the project and

to manage the environment. In examination of the data and reports it can be

seen how the information can be used to increase control on the project. For

example, using queries to ensure progress is being made, work load is evenly

134

distributed and to examine resourcing levels and make rough estimates of

future resourcing requirements.

The sum total of the effort expended on implementing the system, and the

overheads incurred in its use can also be readily seen as very low. Thus we

have succeeded in the major goals of the method.

6.3.4. Phase 4 - Evolution

A number of areas for system enhancement were identified at an early stage.

Date information, that is, the dates of stage completion, was seen as an

important piece of information. This data would allow the tracking of time

taken for stages to be completed, as well as time dependent variables to be

monitored, such as the number of change requests over time. The overhead

cost for this information was very small as it could be collected automatically

by the system. This cost/benefit ratio allowed this change to the data set and

collection strategy.

This evolution of the system demonstrates clearly the ease with which ideas

about the data set can be evaluated and implemented without any large scale

planning or rework effort. This must be a requirement in any commercial

setting, allowing the system to remain usable and to become a useful

management tool.

This evolution is, however, driven very specifically by the environment in which

it is used and the knowledge and needs of those using the system. This

evolution has been shown to be a simple task, not controlled by theoretic

135

guidelines, but by practical, on the ground experience, knowledge and local

requirements.

The second evolution change in the system was brought about by the

realisation of how useful the collected data could be to the maintenance

programmers. This required a facility to select change data based on definable

criteria. A method for this type of selection has not been available before.

The selection criteria facility, based on user perspective and system perspective

keyword descriptions of the change, was developed to allow this selection. This

facility permits maintenance programmers to access similar or contradictory

changes. This reduces repeated work, reduces the degrading effect of ripple

effect changes, and reduces the work involved in certain changes. This facility

also proves useful to the maintenance manager for concentrating attention on

certain changes and groups of changes (see Chapter 5).

This facility, however, mainly shows how the potential usefulness of the data

collected to the tasks involved should not be overlooked.

6.4. Conclusions

A number of conclusions can be drawn from the preceding discussion.

Firstly, it has been shown that the method presented here allows a measurement

system to be developed and implemented in a commercial environment, without

undue cost in development effort or in overheads of use. The measurement

system developed is directly applicable to the environment in which it is to be

used, and incorporates the knowledge and requirements of those working in the

136

envu-onment, in fact it relies on these. The measurement system produced has

also been shown to be useful in the management of the environment, provided

reasonable data is collected and used.

The method also provides for the evolution of the system without further large

scale investment in planning or rework. This is an important feature of the

method, and along with its bottom-up approach, distinguishes this method from

others in the field. The measurement system can evolve to take account of

changes in the environment and the increase in knowledge about the system

that its use provides.

A major feature of the method is that it relies on the features of the specific

environment in which it is to work. The environment in this context includes all

the features of the appUcation area, from work practices, to peoples knowledge

and requirements, right through to the business rules of the company for which

the maintenance role is a part. For this reason, no specific guidelines have been

provided for the application of the various stages of the method, as the possible

environments are too diverse to allow meaningful classification within the

resource limits of this project. This diversity is characterised by the

identification of the five data types defined in Chapter 3. These are available,

attainable, collateral, other and inaccurate data. The identification of these five

groups and the related costs of their collection are specific to the environment

and form the important first step of the method. The appUcation of the method

within any specific environment has been shown in the case of the British

Telecom project to be both straightforward and useful.

With the above in mind, it is useful to examine the British Telecom example

further. The measurement system developed in this example case was shown to

quantify a large number of the variables in the Foster Model Team Level (see

137

Chapter 5). This model has been presented as being representative of a large

proportion of maintenance environments at the team level, and the

quantification of the variables in the model have been shown to be a useful

target for increased line management visibility and control and a basis for better

corporate level communication. This leads to the conclusion that the

measurement system and, therefore, the data set may have applicability to other

environments.

For these reasons, and bearing in mind the ultimate uniqueness of any

environment specific solution, the SCIMM system and the underlying data set

are presented as a guideline, or template, from which to start.

138

Chapter 7

Further Work

This Chapter outlines some of the areas in which further work can be done,

based on the contents of this thesis. Measurement is an important area of

software engineering, and in order that software maintenance be brought under

proper management control, more work in the fields of research, and practical

application, is required.

7.1. Measurement System Development Method

The method presented here, in Chapter 3, has been shown to be applicable, and

to produce useful results. This, however, is only a first stage.

The next stage must be to apply the method to a large commercial maintenance

environment with on-going maintenance projects, over a long period of time.

This sort of environment is important as it is the target of the method. Small

scale experiments contradict the reasons behind the method and can, therefore,

never produce useful results. This large scale application over a long time scale

is required to assess the long term affects of the evolution process and the

general commercial acceptability of the method and resulting measurement

system. This is, however, outside the resources of this project and is, therefore,

left to others.

139

Once the system has been applied in a number of environments, work can begin

in assessing general similarities and differences in the measurement systems and

environments. In this way, it may be possible to generate some general

guidelines for the appUcation of the method. This is only feasible with large

amounts of information.

7.2. The SCIMM System

The Software Change Information for Maintenance Management (SCIMM)

prototype was a system developed to demonstrate how data could be collected

in a maintenance environment, and used to the benefit of the management of

that environment. It also shows how the overheads involved in collecting data

could be minimised by bottom-up selection of the data to be collected, simple

analysis and by providing facilities to help the maintenance programmer based

on the data collected.

The system was specifically developed to satisfy the requirements of the

British Telecom environment, however, it has further reaching potential. The

system demonstrates how a measurement system can be implemented in a

central position in an environment, and provide useful facilities to both

management and programmer. The system has potential for further

development, to better implement these facilities. It also has the potential to

become the core of a complete change control system.

Work has to be done on the interface of the SCIMM system to other common

maintenance tools such as configuration management tools and documentation

tools. By showing this interface is possible, it demonstrates the feasibiUty of a

140

data collection system as the heart of an integrated tool set. This reduces the

importance of the overheads inherent in data collection and will make the idea

of a data collection and analysis system more attractive to real organisations.

It is only by persuading these organisations to collect data, that tiie data

required to advance research in these areas will be made available. Some ideas

of the interfaces that would be beneficial are to an Inverse Configuration

Management tool [KENNING90] and a redocumentation tool [FLETTON88,

FREEMAN90], both being developed at Durham.

As part of the system enhancement work, special interest should be placed on

the report generation and analysis functions of the SCIMM system. The

methodology described earlier proposes evolution of these functions to tailor a

collection and analysis tool to a particular environment. The direction this

evolution will take is dependent, very much, on the specific environment in

which the system is to be used. The SCIMM system, however, provides a base

for developing guide-lines as to the evolution by assessing its applicability to

other environments. Real examples are certainly necessary if the system is to

be adopted.

It is, realistically, the most effective way of introducing measurement into a

commercial setting, by showing a system that does the job and is effective.

The development of systems such as SCIMM is, therefore, an important step

toward providing better management of maintenance and also improving the

understanding of the fundamental concept of maintenance, and the processes

involved.

141

7.3. British Telecom Maintenance Data

The data provided by British Telecom is a significant contribution to the store

of data about software maintenance. The data is a very wide ranging set,

covering and entire maintenance project in a commercial environment, and as

such, is quite a rare commodity, not withstanding the deficiencies described

above.

In this thesis, the data has been used to demonstrate the utility and usefulness

of the measurement system development method. However, further analysis

could be performed on this data as it has the potential to make a great

contribution to knowledge about the software maintenance process itself.

The analysis of the data should progress in a number of areas. The first is that

analysis of the data itself from a research perspective. Data from real software

maintenance projects is a necessity i f accurate and useful models of the

processes involved in software maintenance are to be developed. This data is

very hard to come by as it takes a long time to collect and requires

commitment from a commercial organisation. The British Telecom data,

therefore, has great importance in the research field, and should form valuable

input into further software maintenance research, and maintenance model

development.

Another area worthy of work is the assessment of the network of connections

contained in the change information. As shown before, certain connections

exist between changes made to a system. These connections include those

between similar changes, and connections between fixes and the change that

introduced the problem, i.e. ripple effect changes. The network of connections

that can be built up from these base connections will give important

142

information about the nature of the system, the maintenance methods used and

maintenance itself This is therefore, another area of study.

The British Telecom data represents a valuable commodity in the maintenance

field and its potential uses should not be underestimated.

7.4. Measurement for the Management of Software
Maintenance

Only by measuring the products and processes involved in software

maintenance, and the tasks performed can maintenance be brought under true

management control. As has been shown, this measurement requires progress

on two, interdependent fronts.

The first is on the research front, to develop understanding of the maintenance

process, and identify models that describe the processes involved. This will

allow identification of the important facets of an environment that must be

measured, and also provide the analysis methods by which these measurements

can be turned into useful information about the current state of the project, and

the future states, allowing planning. This research requires real world data on

which to work, and to allow validation of its models.

The second front, therefore, is the commercial maintenance environment.

Systems for measurement have to be introduced now in order to collect the

data required by research. These data collection systems also provide the basis

for understanding the process in the commercial environment, and allow

immediate progress toward bringing the maintenance environment under

control.

143

Data must be coUected over a wide spectrum of environments, and a wide

spectrum of projects if a true picture of the maintenance process is to be

gained. This also creates direct and immediate benefits in those environments

and projects.

In this way we can head toward a real science of measurement of the

maintenance process and bring software maintenance onto an equal footing

with other commercial activities and also other areas of study. Only in this way

can true management be brought to software maintenance.

144

Appendix A

SCIMM Data Collection

There follows a list of all the data fields collected by the SCIMM system. This

data set is was produced by the application of phase 1 of the Meaurement

System Development Method to the British Telecom maintenance

environment..

Task Header

• Task identifier

• Current status of task

• Date of status

Customer raising the request

Staff the change is allocated to

145

Result of change if complete

Priority assigned when request received

Current priority

Expected time to complete

Actual time to complete

Date request received

Actual date completed

Date of change release

Change Request

• Keyword description of problem

• Text description of current performance

• Text description of required performance

146

Diagnosis

• Keyword description of diagnosis

• Text description of the causeof the problem,or an analysis of the

required change

• Specification and design of change required

• Testing requirements

• Completed by

• Completed date

• Time taken to complete

Change Header

• List of any changes that must be made before this one is

implemented

• The number of files that must be changed

• Completed by

• Completed date

• Time taken to complete

147

Change Details

(One of these forms is created for each file that must be changed.)

• File to be changed

• Documentation file to be changed

• Description of changes to the file

• Description of changes to the documentation

Completed by

Time taken to complete

Test Details

• Testing advice from by change designer

• Regression test advice from change designer

• Testing results

• Regression test results

• Results Summary and actions

148

Completed date

149

Appendix B

SCIMM Example Reports

Example 1
Requests Outstanding .. more than 3 Weeks

by Time

Outstanding more than 9 weeks

Ref: D e s c r i p t i o n Status Recieved Status Date

0101 T. Forge Ltd. Test 25/11/88 08/01/89
0107 Dept. 5342 Diagnosis 02/12/88 03/12/88

Outstanding more than 6 weeks

Ref: D e s c r i p t i o n Status Recieved Status Date

0111 SWC P l a s t i c s Review 27/12/88 01/01/89
0115 RPZ Ind. Diagnosis 29/12/88 29/12/88

Outstanding more than 3 weeks

Ref: D e s c r i p t i o n Status Recieved Status Date

0156 SDC Ltd. No Action 07/01/89
0158 Dept. 5342 Diagnosis 12/01/89 13/01/89
0161 I n t e r n a l Hold 12/01/89 16/01/89

150

Example 2
T o t a l s of Requests Outstanding

Outstanding more than 9 weeks

Engineer

ARC
SFN
Tot a l

Outstanding more than 6 weeks

Engineer
SFN
WRP
Tot a l

Outstanding more than 3 weeks

Engineer

DFH
To t a l

Outstanding less than 3 weeks

To t a l

by Time
by Engineer

No.

2
1

No,
1
1

No,

Engineer No.

ARC 4
WRP 4
DFH 2
RLG 2
SFN 1
Not A l l o c a t e d 8
T o t a l 21

T o t a l 28

151

Example 3
T o t a l s of F i l e Changes .. Program 2

6 Months

F i l e Changed No.

arc.mod 2
command.mod 10
commonOl.mod 3
common02.mod 16
common03.mod 4
comms.mod 12
compOl.mod 6
comp02.mod 23
comp03.mod 8
comp04.mod 16
compOS.mod 3
output01.mod 5
output02.mod 0
output03.mod 1
readdataOl.mod 0
readdata02.mod 1
scan.mod 18
user .mod 26_
Tot a l 158

152

References

[ALBRECHT79] A.J. Albrecht, "Measuring appUcation development

productivity", in Proceedings of the IBM Applications

Development Symposium, Monterey, California, 1979.

[/1RNOLD86] R.S. Arnold and D.A. Parker, "The dimensions of

healthy maintenance", 1986.

[BAIRD78] J.C. Baird and E. Noma, Fundementals of Scaling and

Psychophysics, John Wiley & Sons: New York, 1978.

[BASILI84] V.R. Basili and D.M. Weiss, "A methodology for

collecting valid software engineering data", IEEE

Transactions on Software Engineering, vol. SE-10, no.

6, pp. 728-738, 1984.

[BASILI85] V.R. Basili and R.W. Selby, "Calculation and use of an

environments characteristic software metric set", in

Proceedings of the 8th International Conference on

Software Engineering, pp. 386-391, 1985.

153

[BELADY76] L.A. Belady and M.M. Lehman, "A model of large

program development", IBM Systems Journal, vol. 15,

no. 3, pp. 225-252, 1976.

[BERNS84] G.M. Bems, "Assessing software maintainability".

Communications of the ACM, vol. 27, no. 1, pp. 134-

143, January 1984.

[BOEHM76] B.W. Boehm, "Software engineering", IEEE

Transactions on Computing, vol. 25, no. 12, pp. 1226-

1242, December 1976.

[BOEHM84] B.W. Boehm, "Software Engineering Economics", IEEE

Transactions on Software Engineering, vol. SE-10, no.

l ,pp. 4-21, January 1984.

[BROWN80] P. Brown, "Why does software die ?", Life-Cycle

Management, Infotech State of the Art Report, vol. 8,

no. 7, 1980.

[CARD87] D.N. Card, D.V. Cotnoir and C.E. Goorevich,

"Managing software maintenance cost and quality", in

Proceedings of the Conference on Software

Maintenance, Austin, Texas, pp. 145-152, 1987.

[CHAPIN88] N. Chapin, "Controlling the software maintenance

process", in Proceedings of the 6th International

Conference on Software Maintenance and Management,

pp. 131-149, 1988.

154

[COLLOFELL086] J.S. CoUofeUo, "An analysis of the technical information

necessary to perform effective software maintenance",

1986.

[COLLOFELL087] J.S. CoUofello and J.J. Buck, "Software quality

assurance for maintenance", IEEE Software, pp. 46-51,

September 1987.

[COLTER88] M. Colter, "The business of software maintenance", in

Second Software Maintenance Workshop Notes, Centre

for Software Maintenance, Durham, England,

September 1988.

[COOK87] C.R. Cook and M. Nanja, "Prototype software

complexity metrics tool", ACM Software Engineering

Notes, vol. 12, no. 2, pp. 58-60, July 1987.

[COOPER89] S.D. Cooper and M. Munro, "Software change

information for maintenance management", in

Proceedings of the Conference on Software

Maintenance, Miami, Florida, pp. 279-287, 1989.

[COTE88] V. Cote, P. Bourque, S. OUgny and N. Rivard,

"Software metrics: an overview of recent results". The

Journal of Systems and Software, vol. 8, no. 2, March

1988.

155

[DEMARC082] T. DeMarco, Controlling Software Projects, Yourdon

Press: New York, 1982.

[DRUCKER79] P.P. Drucker, Management, Pan Books: London, 1979.

[DUNSMORE84] H.E. Dunsmore, "Software metrics: an overview of an

evolving methodology". Information Processing &

Management, vol. 20, no. 1, pp. 183-192, 1984.

[EPICTETUSOO] Epictetus, "The discourses of Epictetus", circa 100 A.D.

[FENTON86] N.E. Fenton and R.W. Whitty, "Axiomatic approach to

software metrication through program decomposition".

The Computer Journal, vol. 24, no. 4, pp. 330-339,

August 1986.

[FLETTON88] N.T. Fletton and M. Munro, "Redocumenting software

systems using hypertext technology", in Proceedings of

the Conference on Software Maintenance, Pheonix,

Arizona, pp. 54-59, October 1988.

[FOSTER89] LR. Foster, A.E.P. Jolly and M.T. Norris, "An overview

of software maintenance", British Telecom Technology

Journal, vol. 7, no. 4, pp. 37-46, October 1989.

[FOSTER89a] J.R. Foster, "Priority control in software maintenance",

in Proceedings of 7th International Conference on

Software Engineering for Telecomunication Switching

Systems, July 1989.

156

[FREEMAN90] R.M. Freeman and M. Munro, "Xebra - a Xerox based

redocumentation aid", in Proceedings of the Software

Maintenance Association Conference, Vancouver, pp.

4.35-4.47,1990.

[GRADY87] R.B. Grady, "Measuring and managing software

maintenance", IEEE Software, pp. 35-45, September

1987.

[GRADY87a] R.B. Grady and D.L. Caswell, Software Metrics:

Esablishing a Company Wide Program, Prentice-Hall:

Englewood Cliffs, 1987.

[GUNN88] C. Gunn and D. Jolly, "Commercial software ~

development versus maintenance", in Second Software

Maintenance Workshop Notes, Centre for Software

Maintenance, Durham, England, September 1988.

[HALSTEAD77] M. Halstead, Elements of Software Science, Elsevier

North-Holland: New York, 1977.

[H/yiRISON82] W. Harrison, K. Magel, R. Kluczny and A. DeKock,

"Applying software complexity metrics to program

maintenance", IEEE Computer, vol. 15, no. 9, pp. 65-

79, 1982.

157

[HARRISON84] W. Harrison, "Software complexity metrics: a

bibliography and category index", SIGPLAN Notices,

vol. 19, no. 2, pp. 17-27, 1984.

[HUFF86] K.E. Huff, J.V. Sroka and D.D. Struble, "Quantitative

models for managing software development processes".

Software Engineering Journal, pp. 17-23, January 1986.

[IEEE84] IEEE Software engineering standards, IEEE, pp. 31-32,

1984.

[INCE88] D.C. Ince and S. Hekmatpour, "An approach to

automated software design based on product metrics",

Software Engineering Journal, pp. 53-56, March 1988.

[INCE90] D.C. Ince, "Software metrics: an introduction", in

Proceedings of the lEE Computing and Control

Division Colloquium on Software Metrics, January

1990.

[KAFURA87] D. Kafura and G.R. Reddy, "The use of software

complexity metrics in software maintenance", IEEE

Transactions on Software Engineering, vol. SE-13, no.

3, pp. 335-343, March 1987.

[KAPOSI87] A. Kaposi and B.A. Kitchenham, "The architecture of

system quality", Software Engineering Journal, pp. 2-8,

January 1987.

158

[KENNING90] R.J. Kenning and M. Munro, "Understanding the

configurations of operational systems", in Proceedings

of the Conference on Software Maintenance, San Diego,

California, pp. 20-27, November 1990.

[KITCHENHAM84] B.A. Kitchenham, "Program history records: a system of

software data collection and analysis", ICL Technical

Journal, pp. 103-114, May 1984.

[KITCHENH/^84a] B.A. Kitchenham and N.R. Taylor, "Software cost

models", ICL Technical Journal, vol. 4, no. 1, pp. 73-

102, May 1984.

[KITCHENH/^86] B.A. Kitchenham and J.A. McDermid, "Software

metrics and integrated project support environments",

Sofware Engineering Journal, pp. 58-64, January 1986.

[LIENTZ79] B.P. Lientz and E.B. Swanson, "Software maintenance:

a user/management tug-of-war". Data Management,

April 1979.

[LIENTZ80] B.P. Lientz and E.B. Swanson, Software Maintenance

Management, Addison-Wesley: Reading, MA, 1980.

[MARTIN83] J. Martin and C. McClure, Software Maintenance: The

Problem and Its Solutions, Prentice-Hall: London, 1983.

159

[MCCABE76] T. McCabe, "A complexity measure", IEEE

Transactions on Software Engineering, vol. SE-2, pp.

308-320, December 1976.

[MORISSEY79] J.H. Morissey and L.S.Y. Wu, "Software engineering:

an economic perspective", in Proceedings of the 4th

International Conference on Software Engineering,

Munich, Germany, pp. 17-19, September 1979.

[PARIKH82] G. Parikh, "Some tips, techniques, and guidelines for

program and system maintenance", in Techniques of

Program and System Maintenance, Winthrop

Publishers: Cambridge, MA, pp. 65-70, 1982.

[PATKAU83] B.H. Patkau, A Foundation For Software Maintenance,

PhD. Thesis, Department of Computer Science,

University of Toronto, December 1983.

[PRESSMAN87] R.S. Pressman, "A practitioners approach". Software

Engineering, 2nd Edition, 1987.

[ROMBACH87] H.D. Rombach and V.R. Basili, "Quantitative

assessment of maintenance: an industrial case study".

Proceedings of the Conference on Software

Maintenance, Austin, Texas, pp. 1134-144, September

1987.

160

[ROMBACH89] H.D. Rombach and B.T. Ulery, "Improving software

maintenance through measurement". Proceedings of the

IEEE, vol. 77, no. 4, pp. 581-595, April 1989.

[ROOK86] P. Rook, "Controlling software projects". Software

Engineering Journal, pp. 7-16, January 1986.

[RT312185] RT3121, , "Bug control system". Technical Report,

British Telecom Research Laboratories, 1985.

[SCHAEFER85] H. Schaefer, "Metrics for optimal maintenance

management", in Proceedings of the Conference on

Software Maintenance, pp. 114-119, 1985.

[SCHNEIDEWIND87] N.F. Schneidewind, "The state of software

maintenance", IEEE Transactions on Software

Engineering, vol. SE-13, no. 3, pp. 303-310, March

1987.

[SWANSON76] E.B. Swanson, "The dimensions of maintenance", in

Proceedings of the 2nd International Conference on

Software Engineering, San Francisco, CaUfomia, pp.

492-497, 1976.

[WADE88] S. Wade, "Preventive maintenance, the neglected

aspect", in Second Software Maintenance Workshop

Notes, Centre for Software Maintenance, Durham,

England, September 1988.

161

[WAGUESPACK87] L.J. Waguespack and S. Badlani, "Software complexity

assessment: an introduction and annotated bibliography",

ACM Software Engineering Notes, vol. 12, no. 4, pp.

52-71, October 1987.

[WINGROVE86] A. Wingrove, "The problems of managing software

projects". Software Engineering Journal, vol. 1, no. 1,

pp. 3-6, January 1986.

[YAU80] S.S. Yau and J.S. CoUofello, "Some stabiUty measures

for software maintenance", IEEE Transactions in

Software Engineering, vol. SE-6, no. 6, pp. 545-552,

November 1980.

[YAU85] S.S. Yau and J.S. CoUofello, "Design stability measures

for software maintenance", IEEE Transactions on

Software Engineering, vol. SE-11, pp. 849-856, 1985.

162

Bibliography

[ARNOLD83] R.S. Arnold, On the Generation and Use of

Quantitative Criteria for Assessing Software

Maintenance Quality, PhD. Thesis, Department of

Computer Science, University of Maryland, 1983.

[BASILI81] V.R. Basili, "Data collection, validation and analysis", in

Software Metrics: An Analysis and Evaluation (A.PerUs

et al. eds.), MIT Press:Cambridge, MA, 1981.

[BASILI83] V.R. Basili and D.H. Hutchens, "An empirical study of a

syntactic complexity flamUy", IEEE Transactions on

Software Engineering, vol. SE-9, no. 6, pp. 664-672,

1983.

[B0EHM81] B.W. Boehm, Software Engineering Economics,

Prentice-Hall: Englewood Cliffs, NJ, 1981.

[CALOW89] H. Calow, "The impact of managing maintenance: a case

study", in Third Software Maintenance Workshop Notes,

Centre for Software Maintenance, Durham, England,

September 1989.

163

[CANNING72] R.G. Canning, "That maintenance iceberg", EDP

Analyzer, vol. 10, no. 10, pp. 1-14, October 1972.

[CONTE86] S. Conte, H.E. Dunsmore and V.Y. Shen, Software

Engineering Metrics and Models, Benjamin Cummings:

Menlo Park, California, 1986.

[FENTON87] N.E. Fenton and A.A. Kaposi, "Metrics and software

structure". Centre for Software and System Engineering,

South Bank Polytechnic, 1987.

[FENTON90] N.E. Fenton, "Software metrics: theory, tools and

validation". Software Engineering Journal, pp. 65-78,

January 1990.

[FENT0N91] N.E.Fenton, Software Metrics, Chapman & HaU, 1991.

[GUIMARAES83] T. Guimaraes, "Managing application program

maintenance expenditures". Communications of the

ACM, vol. 26, no. 10, pp. 739-746, October 1983.

[LEACH90] R.J. Leach, "Software metrics and software

maintenance". Software Maintenance: Research and

Practice, vol. 2, no. 2, pp. 133-142, June 1990.

[MESCON88] M.H. Mescon, M. Albert and F. Khedouri,

Management, Harper & Row: New York.

164

[PETERS88] T. Peters, Thriving on Chaos: Handbook for a

Management Revolution, Macmillan: London, 1988.

[TURVER91] R.J. Turver, Metrication of the Reverse Engineering

Process, PhD. Thesis Proposal, Computer Science,

School of Engineering and Applied Science, University

of Durham, England, 1991.

[WARBURTON83] R.D. Warburton, "Managing and predicting the cost of

real-time software", IEEE Transactions on Software

Engineering, vol. SE-9, no. 5, pp. 562-569, 1983.

165

