W Durham
University

AR

Durham E-Theses

Study of decentralised decision models in distributed
environments

Ahmed, Quamar F.

How to cite:

Ahmed, Quamar F. (1994) Study of decentralised decision models in distributed environments, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5674/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5674/
 http://etheses.dur.ac.uk/5674/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

STUDY OF DECENTRALISED DECISION MODELS

IN DISTRIBUTED ENVIRONMENTS

QUAMAR F AHMED

Doctor of Philosophy

UNIVERSITY OF DURHAM

SCHOOL OF ENGINEERING AND COMPUTER SCIENCE

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

September 1994

A Thesis submitted in partial fulfillment of the requirements
of the Council of the University of Durham for the Degree of

Doctor of Philosophy (Ph.D.)

STUDY OF DECENTRALISED DECISION MODELS
IN DISTRIBUTED ENVIRONMENTS

Quamar F Ahmed
University of Durham
School of Engineering and Computer Science

Abstract

Many of today’s complex systems require effective decision making
within uncertain distributed environments. The central theme of the thesis
considers the systematic analysis for the representation of decision making
organisations. The basic concept of stochastic learning automata provides
a framework for modelling decision making in complex systems. Models of
interactive decision making are discussed, which result from interconnecting
decision makers in both synchronous and sequential configurations. The
concepts and viewpoints from learning theory and game theory are used to
explain the behaviour of these structures. This work is then extended by
presenting a quantitative framework based on Petri Net theory. This formalism
provides a powerful means for capturing the information flow in the decision
making process and demonstrating the explicit interactions between decision
makers. Additionally, it is also used for the description and analysis of
systems that are characterised as being concurrent, asynchronous, distributed,
parallel and/ or stochastic activities. The thesis discusses the limitations of
each modelling framework.

The thesis proposes an extension to the existing methodologies by
presenting a new class of Petri Nets. This extension has resulted in a novel
structure which has the additional feature of an embedded stochastic learning
automata. An application of this approach to a realistic decision problem
demonstrates the impact that the use of an artificial intelligence technique
embedded within Petri Nets can have on the performance of decision models.

Acknowledgements

I would like to thank my supervisor, Professor Phil Mars, for his
guidance, support and encouragement during the course of this project.

The research project was sponsored by British Aerospace Plc (BAe),
Lancashire. 1 am very grateful to Mrs Judith Dodds and Mr Tom Morris of
BAe, for their invaluable discussions in this field of étudy, and their enthusiasm
in promoting and supporting the project.

Thanks are also due to the Defence Research Agency (DRA), Kent,
for allowing the use of their facilities and the undertaking of various projects
in the field of Command, Control, Communications and Intelligence (C3-I)
systems which has contributed to a better understanding of this study.

Finglly, I would also like to thank my colleagues, friends and family

for their discussions and suppoft.

Declaration

I hereby declare that this thesis is a record of work undertaken by
myself, that it has not been the subject of any previous application for a

degree, and that all sources of information have been duly acknowledged.

Copyright

The copyright of this thesis rests with the author. No quotation from
it should be published without her written consent and information derived

from it should be acknowledged.

Dedication

To My Parents

Table of Contents

ADSEract ... e 2
Acknowledgements 3
Table of Contentsciiiiiiiiiiiiii i, 6
List of Figures ...t 12
List of Tables ... i 17
Chapter 1 Introduction i, 20
1.1 Objectives ..ot e 20
1.2 Overview of Thesisot 20

1.2.1 Overview: Distributed Artificial Intelligence and

Approaches to Coordination 21
1.2.2 Basic Stochastic Automaton Model 22

1.2.3 Multiple Automata and Decentralised

Decision Making Models 22
1.2.4 Petri Net Theorycooiiiiiii i, 23
1.2.5 Learning Petri Net Models 23
1.2.6 Application to Distributed Decision Systems 23

1.2.7 Conclusions and Recommendations for Future Work .. 24

1.3 Conclusion and Summarycoiiiiiiiiiiiiiiiii, 24

Chapter 2 Overview: Distributed Artificial Intelligence and

Approaches to Coordinationl 25
2.1 Introductionociiiiiiii 25
2.2 Overview of Distributed Artificial Intelligence (DAI) 26
2.2.1 Rationales for DAI i, 27
2.2.2 Motivations for Learning in DAI Systems............... 28
2.3 Approaches to Coordinationcoeiiiiiiiiiiiiiiina.... 31
2.3.1 Negotiationoiiiiiiiiiiiiii i 32
2.3.2 Organisational Structuringc.ccviiiiinan... 33
2.3.3 Multiagent Planningl 35
2.3.4 Metalevel Information Exchange 37
2.3.5 Committments/ Conventions 38
2.3.5 Formal FrameworksooiiiiiiiiiiaL 39
2.4 Conclusion and Summarycoiiiiiiiiiiiniiiiniannn.n. 40
Chapter 3 Basic Stochastic Automaton Model 42
3.1 Introductionciuiieiiii 42
3.2 Stochastic Learning Automaton Model 43
3.2.1 Stochastic Automatonol 43
3.2.2 EDVITODMENt . ..eovivittniiititint ittt 45
3.2.3 Reinforcement il 46
3.2.4 Linear Reward/ Inaction Reinforcement Scheme 47
3.25 Performance ..., 49
3.3 Conclusion and Summaryccooiiiiiiiniiniiiiiiannnn. 50

Chapter 4 Multiple Automata and Decentralised Decision Making

Models ... 54
4.1 Introduction eiiniii e e 54
4.2 Automata Games i 55
4.3 Interactive Decision Making Models 56
4.4 Synchronous Models ... 57
4.5 Simple Feedbackoooiiiiiii 58

4.5.1 Simulation - Simple Feedback 59
4.6 Weighted Feedback il 59

4.6.1 Simulation — Weighted Feedback 61
4.7 Synchronous Models : Actions Determine Environment 61
4.8 Interconnection 1 : A; Determines Aj’s Environment 62

4.8.1 Simulation — Interconnection 1 63
4.9 Interconnection 2 : A; Determines Game for A, and A; 64

4.9.1 Simulation — Interconnection 2l 65
4.10 Sequential Models 66
411 Tree StIUCLUTE ...vinriei et ety 68

4.11.1 Simulation — Tree Structureocoin... 68
4.12 Directed Networkot P 69

4.12.1 Simulation — Directed Network 70
4.13 General Network ...t 70
4.14 Conclusion and Summaryc.coeiiiiiiiiiiiiiiiiiii 71
Chapter 5 Petri Net Theory ..., 97

5.1 Introduction ..o e 97
5.2 Structure of a Petri Net i, 98
52.1 Petri Net Graphs, 99
5.2.2 Petri Net Markingsc.coiiiiiiiii.L, 100
5.2.3 Execution Rule for Marked Petri Nets 100
5.2.4 Modelling Examplesc..coiiiiiiiiiiL, 102
5.2.5 Analysis of Petri Netscciiiiiiiiiit, 103
5.3 Time-Related Modelscooiiiiiiiiii, 106
5.3.1 Stochastic Petri Nets (SPN) 106
5.3.2 An Example of Stochastic Petri Net 107
5.3.3 Generalised Stochastic Petri Nets (GSPN) 107
5.3.4 An Example of Generalised Stochastic Petri Net 109
5.4 Conclusion and Summarycoiiiiiiiiiiiiiiiiiiaan... 112
Chapter 6 Learning Petri Net Models 124
6.1 Introduction ...t 124
6.2 Basic Stochastic Learning Petri Net (Basic SLPN) 124
6.2.1 Simulation Results : Basic SLPN 125
6.3 Stochastic Learning Petri Net (SLPN) 126
6.3.1 Reachability Tree : Stochastic Automata Embedded . 127
6.3.2 Hierarchical System of Automata 129
6.3.3 Operation of SLPN i 130
6.3.4 Simulation Results : SLPN 131
6.4 Generalised Stochastic Learning Petri Net (GSLPN) 132

9

6.4.1 Simulation Results : GSLPN, 136

6.5 Conclusion and Summaryccoiiuiiiiiiiiiiiiiiiiiie 137
Chapter 7 Application to Distributed Decision Systems 165
7.1 Introduction ..oviviriie e 165
7.2 Model of the Decision Making Process 166

7.2.1 Model of an Organisation with a Decision Aid 167
7.3 Application : Small-scale C3-I System 168

7.3.1 Performance of Single Decision Module 169

7.3.2 Performance of Two Node Organisation 170
7.4 Experimental Results ... 171
7.5 Conclusion and SUMIMATY . ..vvvvrrenneiionnrnreieneeaananennns 176

Chapter 8 Conclusions and Recommendations for Future Work 199

8.1 Conclusions and SUIMMATY . ..vvvereininiiimennernraianananans 199
8.2 Recommendation for Future Workl 207
8.2.1 Models (Byzantine Generals)c...ooo. 207
8.2.2 Modelling Human Factor in C3®-I Systems 208
8.2.3 Automatic Data Fusionl 209
8.2.4 Migration of Controlo 211
Referencesooiiniiiit it 214
Appendix 1 Computer Simulation Structure 221

10

ALl INtroOdUCLION oo oeete e et e et e e e e e e e 221

Al.2 Structure of Simulation i, 221
A1.3 Stochastic Automaton Algorithm 221
Appendix 2 Game Theoretic Concept 229
A2.1 Introduction ..o 229
A2.2 What Is Game Theory?oiiiiiiiiiiiiiiii 229
A2.3 Basic Defimitionscoiiiiiiiiiiii 232
Appendix 3 Petri Net Concepts SRR 235
A3.1 Introductiono.iiiiiiiii 235
A3.2 Some Petri Net Propertiesccoiiiiiiiiiiiiiiiiiiin., 235
A3.3 Reachability (Coverability) Tree Algorithm 237
Appendix 4 Models (Byzantine Generals) 240
A4.1 Introductioncoeiiiiiii i 240
A4.2 Reliable Systemsccciiiiiiiiiiiii 240
A4.3 Byzantine Generals Probleml 241

A4.3.1 Impossibility Resultso 243

A4.3.2 Solution with Oral Messages 245

A4.3.3 Solution with Signed Messages 247
A4.4 Byzantine Generals Algorithmo 249
Appendix 5 Publications e, 254

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

List of Figures

Stochastic Learning Automaton Model
Stochastic Automatonc.ioiiiiiiiiiiiiiiiia
Environmentcuiiiiiiii e
Automata Game Schematicciiial.
Synchronous Models - The Basic Structure

Simple Feedback i

Average Action Probability vs Iterations : (Table 4.1a)

(a) Action Probability Pr [0.5]

Average Action Probability vs Iterations : (Table 4.1b)

(b)Action Probability Pr [0.8]

Synchronous Models - The Basic Structure

Weighted Feedback U T U R S U UU NPT

Average Action Probability vs Iterations : (Table 4.2)

Modification of Synchronous Models

Interconnection 1 : A; Determines A;’s Environment

Average Action Probability vs Iterations

(a) No Coordination (One Equilibrium) : (Table 4.3a)

(b) No Coordination (Two Equilibria) : (Table 4.3b)

(c) Coordination (One Equilibrium) : (Table 4.3c)
(d) Coordination (Two Equilibria) : (Table 4.3d)
Average Action Probability vs Iterations

(a) No Coordination : (Table 4.4a)

12

75

75

76

76

7

7

78

79

79

30

80

81

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

5.1

5.2

(b) Coordination : (Table 4.4b) 85

Modiﬁqation of Synchronous Models 86
Interconnection 2 : A; Determines Game for A; and A; 86
Average Action Probability vs Iterations : (Table 4.5) . 87
Sequential Models ...l 88
Tree Structurecooeviiiiniiiiiiiiiiininin.n. 88
Tree Structure : Selected Path 90
(a) Optimal Path 001iii.... 90
(b) Optimal Path 100coooiiiiin.... 90
Optimal Path Probability Changes 91
(a) Optimal Path 001 : (Table 4.6a) 91
(b) Optimal Path 100 : (Table 4.6b) 91
Sequential Models 92
Directed Networkc..oiiiiiiiiiiiiiiiiiiiinn, 92
Directed Network : Selected Path 94
(a) Optimal Path 001:101iiiiii... 94
(b) Optimal Path 010:110ooiiiiiiiiiinn. 94
Optimal Path Probability Changes 95
(a) Optimal Path 001:101 : (Table 4.7a) 95
(b) Optimal Path 010:110 : (Table 4.7b) 95
Sequential Models o 96
General Networkcoiiiiiiiiiiiiiiiiiiiiiinnns 96
Petri Net Structurec..cooiiiiiiiiiiiiinin... 114
Petri Net Graph ... 114

Figure 5.3 Marked Petri Netoiiiiiiiiii 115

(a) Tranmsiton t; Fires ... 116
(b) Transiton ¢, : ¢3 Fires 116
Figure 5.4 Reachability Tree Construction of Marked PN (Figure 5.3) 117
(a) First Step in Building Tree 117
(b) Second Step in Building Tree 117
(c) Third Step in Building Tree 118
(d) Fourth Step in Building Tree 118
Figure 5.5 Stochastic Petri Net (SPN)l 119'
Figure 5.6 Reachability Tree SPN ..., 120
Figure 5.7 Generalised Stochastic Petri Net (GSPN) 121
Figure 5.8 GSPN Reachability Treeccooiian.. 122
Figure 6.1a Basic Stochastic Learning Petri Net (Basic SLPN) 138
Figure 6.1b Reachability Tree - Basic SLPN 138
Figure 6.2 Optimal Path Probability Changes : Basic SLPN 139
Figure 6.3 Structure of SLPN ... 140
Figure 6.4 Reachability Tree: Embedded Stochastic Automata 141
Figure 6.5 Two/Three-State Automaton 142
(a) Two-State Automatoncooiiieiiinnn. 142
(b) Three-State AULOMALON vveevneeeeeeeeeeenenn 142
Figure 6.6 Sequence of Decision/ States 143
Figure 6.7 Stochastic Learning Petri Net (SLPN) 144
Figure 6.8 GSPN Reachability Tree: Embedded Stochastic Automata 154
Figure 6.9 GSPN : Sequence of Decisions/ States 155

14

Figure 7.1 Four-Stage Model of Interacting Decision Maker 177
Figure 7.2 Petri Net Representation of Interacting Decision Maker 178
Figure 7.3 Situation Assessment Module 179

Figure 7.4 Block Diagram: Two Node Organisation Supported

Figure 7.5 Petri Net: Two Node Organisation Supported by D.S.S. 181

Figure 7.6 Topology for Simulation: Single Decision Module 182
Figure 7.7a Petri Net Representation Decision Module DM1 183
Figure 7.7b Reachability Tree for Decision Module DM1 183
Figure 7.8 Topology for Simulation: Two Node Organisat‘ion 184
Figure 7.9 Single Decision Module (Table 7.1) 185

Figure 7.9a Average Action Probability vs Iterations : (Table 7.1) 186
Figure 7.10 Two Node Organisation (Table 7.2) 187

Figure 7.10aAverage Action Probability vs Iterations : (Table 7.10) 189

Figure 7.11 Switch of Environment: Before and After Switch 190
Figure 7.12 Average Action Probability vs Iterations 193
(a) Before Switch P1.Q1 (Table 7.3a) 193
(b) After Switch P1 (Table 7.3b) 193
(c) After Switch P3.Q1 (Table 7.3b) 193
Figure 7.13 Communication Between Decision Modules 194
Figure 7.14 Average Action Probability vs Iterations 198
(a) Upper Level Path P1.Q1 (Table 7.4a) 198
(b) Path P1.Q1 (Table 7.4b)cc.iiii.... 198
(c) Path P3.Q3 (Table 7.4b)ol 198

15

Figure 8.1 Factors Affecting the Use of Recognitional/

Analytical Decision Making Strategy
Figure A1l.1 Overall Structure of Program
Figure A1.2 Programme Routinescooo....
(a) Routine Autol()c..oiiiiiiiiiiiiiiiiiii
(b) Routine Envirl() e
(c) Routine Lri-probl2() ...,
(d) Routine Lri-prob22()ccooiiiiiiiiin...
Figure A3.1 Coverability (Reachability) Tree Algorithm
Figure A4.1Impossibility Results
(a) Lieutenant 2 a traitor
(b) Commander a traitorc..oiiioeal..
Figure A4.2 Solution with Oral Messages
(a) Lieutenant 3 a traitorc..ceiiinn...

(b) Commander a traitore.

Figure A4.3 Solution with Signed Messages: Commander a traitor

16

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

4.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

List of Tables

Simulation of Simple Feedback (Figure 4.2)
(a) Action Probability Pr [0.5]
Simulation of Simple Feedback (Figure 4.2)
(b) Action Probability Pr [0.8]L.
Simulation of Weighted Feedback (Figure 4.4)
Simulation of Interconnection 1 (Figure 4.6)
(a) No Coordination (One Equilibrium)
(b) No Coordination (Two Equilibria)
(c) Coordination (One Equilibrium)
(d) Coordination (Two Equilibria)
Simulation of Interconnection 1 : (Three Action Case)

(a) No Coordinationccooiiiiiiiiiiiiiiiit,
(b) Coordinationcooiiiiiiiiiiiiiiiiiiia.
Simulation of Interconnection 2 (Figure 4.9)
Simulation of Tree Structure (Figure 4.11)
(a) Convergence Path To Minimum d112
(b) Convergence Path To Minimum d211
Simulation of Directed Network (Figure 4.14)
(a) Convergence Path To Minimum d212
(b) Convergence Path To Minimum d221

Interpretations of Transitions and Places

5.2a Switching Probabilities of GSPN

17

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table

5.2b

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

7.1

7.2

7.3

Reachability Set of GSPNc..iiiiil.L. 123

Optimal Path : Basic SLPN 139
Optimal Path SLPN : Sequence 0 145
Optimal Path SLPN : Sequence 1 e 146
Optimal Path SLPN : Sequence 2 147
Optimal Path SLPN : Sequence 3 ~..................... 148
Optimal Path SLPN : Sequence 4 ST 149
Optimal Path SLPN : Sequence 5 150
Optimal Path SLPN : Sequence 6 151
Optimal Path SLPN : Sequence 7 152
Optimal Path SLPN : Sequence 8 153
Optimal Path GSLPN : Sequence 0 156
Optimal Path GSLPN : Sequence 1 157
Optimal Path GSLPN : Sequence 2 158
Optimal Path GSLPN : Sequence 3 159
Optimal Path GSLPN : Sequence 4 160
Optimal Path GSLPN : Sequence 5 161
Optimal Path GSLPN : Sequence 6 162
Optimal Path GSLPN : Sequence 7 163
Optimal Path GSLPN : Sequence 8 164
Simulation of Single Decision Module (Figure 7.9) 186
Simulation of Two Node Organisation (Figure 7.10) ... 188
Optimal Strategy Pair P4.Q2 188
Simulation of Two Node Organisation (Figure 7.11) ... 191

18

Table 7.4

(a) Before Switch : Optimal Strategy Pair P1.Q1 191

(b) After Switch : Optimal Strategy Pair P3.Q1 192
Communication Between Automata (Figure 7.13) 195
(a) Top Level Communication : (SAl and SA2) 195

(b) Top and Lower Level Communication :
(SAL:SA2) (RSILIRS21) ..ioiiiiiiiiiiiiiiiii s 196

(c) Re-locate Unique Maximum: (SA1:SA2)(RS11:RS21)

COMMUNICATE et ettt ettt e e e e e e e e ea e 197

19

Chapter One

Introduction

1.1 Objectives

This thesis considers the development of appropriate algorithmic tools
for the systematic analysis of distributed decentralised decision systems. Such
systems are characterised by a high degree of complexity, a distribution of
the decision making process among several ‘agents’, the need for reliable
operations in the presence of multiple failures and the inevitable interactions
of humans with computer-based decision support systems and decision aids.
The analysis and development of such systems requires novel advances in the
area of distributed decision making under uncertainty. It is essential to develop
quantitative methodologies, theories and algorithms for the representation of
such complex systems. Current research in this field is generating much
interest and has been prompted by studies from related disciplines, such as

computer science, control sciences, engineering and cognitive psychology, 1],

[2], (3], 141, [8], (6], 7).

1.2 Overview of Thesis
The thesis describes the progress and results obtained during a research
programme to study distributed decision making systems. An example of

such a system is the so called C*-I (Command, Control, Communications and

20

Intelligence) system. In essence, it is the process of information management:
how to obtain, process and distribute information quickly and accurately
from a network or other hierarchy of systems. Initial work involved an
overview of the field of Distributed Artificial Intelligence (DAI), focussing on
coordination teéhniques and highlighting an area of research to be addressed
by the DAI community, [8], [9], [10]. An approach based on the stochastic
learning automata is proposed to provide the basic conceptual framework for
a model of decentralised decision making, [11], [12]. The thesis then describes
topologies of synchronous and sequential models by the interconnection of
automata in various configurations, [13], [14]. The theory of Petri Nets
is then reviewed, [15], [16]. A discussion indicates the limitations of each
framework in the development of appropriate decision making models. To
resolve these limitations, a new modelling technique is proposed by combining
principles from stochastic learning automata and Petri net theory. The
application of this new form of hybrid Petri Net model to a small-scale
realistic problem is discussed. Original simulation results are presented and
discussed. The thesis concludes by discussion of proposed future work. A

brief discussion of each chapter is provided in the following subsections.

1.2.1 Overview: Distributed Artificial Intelligence and
Approaches to Coordination
Chapter Two provides an overview of the field of DAI and highlights
the importance of such systems. In addition, the chapter presents several

approaches for effective coordination of nodes in a distributed network. The

21

survey reveals that there has been minimal DAI research in the collective

learning process. Thus, the motivations for learning in DAI environments

have also been addressed.

1.2.2 Basic Stochastic Automaton Model

Chapter Three reviews the basic stochastic learning automata model.
It describes how a single decision maker operates in a random environment
and updates its strategy for choosing actions on the basis of the elicited
response. The mathematical description of the input and output sets of the
automaton and the P-model environment are introduced. Several learning
algorithms and also measures of performance including expediency, optimality
and ¢-optimality are defined. Stochastic learning automata are expected to

provide the basic conceptual framework for future research on distributed

decision systems.

1.2.3 Multiple Automata and Decentralised

Decision Making Models

Chapter Four provides a detailed study of decentralised decision mak-
ing in unknown random environments using stochastic learning automata as
the basic decision model. This chapter describes the analytical models for
interactive decision making systems of increasing complexity and the relevant
simulations. These interconnections consider both synchronous and sequential
models. The concepts of stochastic learning theory and game theory are used

to explain the results of extensive simulations.

22

1.24 Petri Net Theory

Chapter Five considers the potential of Petri Nets for the represen-
tation of decision models. This chapter surveys the known results in this
area and identifies the Petri Net formalism as a potentially effective graphical
and mathematical tool. Moreover, the thesis considers time-related models by
examining stochastic timed nets. This chapter then discusses the limitations

of existing Petri Nets models needed for the effective representation of decision

models.

1.2.5 Learning Petri Net Models

Chapter Six presents a new class of Petri Nets, namely, Stochastic
Learning Petri Nets (SLPN). This extension to Petri Net models introduces a
new model which has the additional feature of an embedded stochastic learning
automata. The hybrid combination was shown to overcome the limitations of
existing Petri Net theory and stochastic learning automata used in isolation.
This chapter discusses the potential benefits of a new modelling technique
by examining various forms of Learning Petri net models. The chapter also

presents original simulation results for each model.

1.2.6 Application to Distributed Decision Systems

Chapter Seven considers the application of the new Stochastic Learn-
ing Petri Net (SLPN) model to a small-scale distributed decision problem.
The basic model involves two decision modules interacting with a stochastic

environment. This chapter describes simulation studies which demonstrate the

23

impact that the use of such a modelling tool can have on the performance

of decision making organisations.

1.2.7 Conclusions and Future Work
Chapter Eight concludes the thesis by summarising the work that
has been presented and also provides an insight to possible future areas of

research.

1.3 Conclusions and Summary

This chapter has presented a brief introduction and overview of the
contents of the thesis. It has highlighted the key areas of research involved
in a study of decentralised decision making in distributed environments. The
stochastic learning automata approach has been identified as the fundamental
framework for modelling decision making in complex systems. As the research
progresses additional layers of sophistication are incorporated within the basic
model. Thus, a novel contribution in this field of study has been provided

for the representation of effective distributed decentralised decision making

models.

24

Chapter Two

Overview: Distributed Artificial Intelligence and Approaches to Coordination

2.1 Introduction

This chapter presents an overview of Distributed Artificial Intelligence
(DAI), with special attention to coordination in Distributed Problem Solving
(DPS) and Multi-Agent (MA) systems. The potential benefits in the applica-
tion of such systems where information, resources or expertise are distributed,
or where they are inherently distributed to improve speed, modularity or
reliability of the system are considered. However, these potential benefits are
not realised if the agents are uncoordinated. The major part of this chapter
addresses what many consider to be the key research issue for DAI: how to
coordinate the activities of a collection of semi-autonomous problem solvers.
Several approaches for effective coordination of nodes in such systems have
been reviewed. These include negotiation, organisational structuring, multi-
agent planning, metalevel information exchange, commitments/conventions and
formal frameworks.

The chapter does not aim to provide comprehensive coverage of the
entire field of DAI, such reviews have been generated by Bond and Gasser, [8],
and smaller collections have also been published by Huhns, [17] and Gasser,
[10] Rather, the objective is to provide a brief review of coordination

techniques in DAI systems. The survey also reveals a specific research

25

problem that the DAI community have yet to address. Bond and Gasser, (8],
stated that there has been virtually no DAI research in collective learning
processes. To date this gap in DAI research remains. This thesis presents a

new perspective in studying collective learning processes in DAI

2.2 Overview of DAI

DAI is concerned with the study and construction of semi-autonomous
concurrent processing nodes, or agents which perform intelligent operations
by interacting with each other and their environments as a community. Each
agent is responsible for maintaining a different perspective of the world
model, and these agents communicate with each another. Consequently, this
organisation has a more diverse perception of the world, is more robust and
enables the strengths of several processing paradigms to be exploited.

Research in DAI may be divided into two primary arenas; Distributed
Problem Solving and Multi-Agent Systems. Research in the field of Distributed
Problem (DPS) involves a study of how the work of solving a problem can be
divided among a number of modules or ‘nodes’ so that they can work together
to solve problems beyond their individual capabilities. Whilst, research in
Multi-Agent (MA) systems is concerned with coordinating the knowledge,
goals, skills of intelligent agents so that they can jointly take actions or work
together to solve problems. These agents may be working towards a single
global goal or towards separate individual goals that interact in some way.
Similar, to the DPS system, agents must share knowledge and problem solving

capabilities, in addition they must reason about their local actions and the

26

actions of the other agents in the network.

The work described in the thesis better fits the MA system sub-
area of DAL The thesis presents an Artificial Intelligence (AI) approach
based on the stochastic learning automata which provides the conceptual
framework for research on distributed decision making models. The study of
si;,ochastic learning automata as distributed ‘agents’ is considered to exhibit
the characteristics of an MA system. This is particularly applicable to the
interconnections examined in Chapter Four. These interconnections consist of
a multitude of automaton-environment pairs that interact to achieve specific
goals. The agents are shown to operate together in an uncertain environment
either in a cooperative or competitive manner and the game situation is
represented by synchronous models. Similarly, sequential models are considered
whereby, the agents operate on various levels with interaction between the
different levels to seek optimal performance. However, the modelling framework
does not include the reasoning capabilities which are an essential feature of
an MA system, instead, an intelligence capability permits the agents to adapt

to changing environments.

2.2.1 Rationales for DAI

The following attributes summarise the potential benefits of using this
type of environment:
Parallelisation/ Concurrency : Faster problem solving by exploiting paral-
lelism. No order is assumed in the invocation of agents in the network.

They may be running in some arbitrary sequence on a single processor by a

27

multi-processing operating system, or may be running on physically separate
Processors.

Communication : Agents communicate with one another using a message
passing protocol.

Modular Design/Naturalness : The principles of modular design and the
ability to structure problems into relatively self-contained processing modules
leads to systems that are easier to build and maintain. The decomposition of
large tasks into manageable subtasks which, in themselves, are well bounded
but which when allowed to interact, are capable of creating a powerful model
of the world.

Robustness : A DAI system has both hardware and software robustness. If
one or more agents becomes disabled through a hardware fault, the system
will degrade gracefully. If the system misbehaves, due to a problem with
the software, the consequences will be contained: if the agent fails to adhere
to the specified message passing protocol then it will not be listened to by
the other agents; if it produces an error in reasoning then it is likely to be

outvoted by the rest of the community of agents.

2.2.2 Motivation for Learning in DAI Systems

Learning denotes changes in the system that are adaptive in the sense
that they enable agents to acquire knowledge with time and adapt their
reasoning to improve their performance at specific tasks, more efficiently and
effectively at the next stage. The ability to learn is an essential feature

of any intelligent system which has to operate in a changing environment.

28

However, this concept has been rarely discussed in the DAI literature, [8].
Research on learning in DAI systems should consider ways to improve the

agent’s knowledge and skill to enable the whole DAI system to improve its

performance as a result.

The earliest attempt for incorporating any learning mechanisms in
DAI systems was in the Multiple Intelligent Node Document Servers (MINDS)
system, [18]. This system operates in the domain of intelligent document
retrieval. However, the concept of learning in this system was observed
to be a localised activity without any cooperation between the agents to
learn globally useful attributes. Shaw and Whinston,[19], describe a method
treating DAI systems as adaptive organisations with the ability to improve
learning from past experience. The proposed method is composed of two
processes: an extension of the Contract Net protocol (discussed in Section
2.3.1) and using a genetic transformation process within agents to find a
more efﬁcient solution. The Contract Net framework is extended as follows,
tasks are awarded to the most appropriate bidders; the tasks are traded with
hypothetical payments which is equivalent to the bid; this in turn affects the
strengths of the agents involved which are updated accordingly. The concept
of the bidding scheme as a feedback mechanism to rate each agent is used as
the basis for learning and adaptation. The process of learning is performed
by a genetic algorithm. This technique used the strengths as the indication
of suitability to find desirable attributes of successful agents, and the weaker

agents were eliminated by new agents inheriting the desirable characteristics.

This process improved the overall performance of the sytem. Shaw and

29

Whinston have shown the application of this methodology to the scheduling
of flexible manufacturing systems. Sian, [20], has developed a model for
adaptation in MA systems that allow cooperative learning among autonomous
agents. The symbolic approach to adaptation is based on explicit interaction
between agents for the purpose of learning ﬁseful information. Each agent
may onl& be able to infer éartial hypotheses by using local information and
requires cooperation to produce a ‘complete picture’. The interaction with
the other agents provides a more consistent, accurate hypotheses and increases
the level of confidence in the hypotheses. The model has been implemented

in a system called Multi-Agent Learning Environment (MALE).

The general model of DAI systems is one in which a collection
of agents (distributed spatially, logically or temporally) are engaged in the
performance of coordination of activities. In such complex systems which are
organised in a hierarchical or decentralised manner, the agents must deal with
large uncertainties regarding either the structure, parameters or the nature
of external events. In particular, it is these external uncertainties that add
to the difficulty of the control problem and their presence necessitates the
use of learning schemes. It should be emphasised that decentralisation by its
very nature introduces uncertainty into the system. The remote components
of the same system can only have limited information about each other
and the overall system. Hence, the decisions must be made by individual
agents that have access only to partial information regarding .the state of

the overall system. However, this results in an inconsistency between local

and global optimality. To deal with such systems effectively, it is essential

30

that the agents adapt to their environment by utilising a learning paradigm.
This thesis has adopted a basic learning paradigm for the representation of

decentralised decision making models.

2.3 Approaches to Coordination

The concept of coordination in DAI research‘ has most often been
described as the process of control decision making that guides the overall
behaviour and performance of a collection of semi-autonomous problem solvers.
The existing literature on DAI provides various definitions of this concept,
namely, coordination may be referred to as the process of structuring decisions
so as to maximise the overall effectiveness of a collection of problem solving
nodes. Alternatively, the outcomes of a collection of control decisions may
also be referred to as coordination, [21]. The coordination of the actions of
a collection of decentralised agents has been posited as a formidable problem
of DAI research. At present there is a diverse range of techniques which can
and do facilitate coordination in DAI systems. These mechanisms can be

broadly divided into the following categories:

Negotiation

Organisational Structuring
o Multi-agent Planning

Metalevel Information Exchange

Committments/ Conventions

Formal Frameworks

31

Each of these approaches is examined in turn; a brief description about how it
facilitates coordination behaviour is provided. The most relevant to the work
in this thesis is the area of formal frameworks, which is discussed in Section
2.3.6. Most coordination techniques have been motivated and evaluated in
terms of an application domain, often by building a simulator for the domain.
These implementations are prototypes and simulations; to date, there have

been only two MA systems which have been used in real-world applications,

[22], [23], [24].

2.3.1 Negotiation

Negotiation is a fundamental part of human cooperation, that allows
people to resolve conflicts that could interfere with cooperative behaviour.
The term ‘negotiation’ may be defined as ‘the process of improving agreement
(reducing inconsistency and uncertainty) on common viewpoints or plans
through the structured exchange of relevant information’, [25]. The following
provides a more concise description of negotiation.

Smith and Davis, [26], [27], developed the Contract-Net framework,
which is one of the earliest and most influential research projects in cooperative
DPS. This represents a framework that specifies communication and control
in a distributed problem solver. The process of negotiation involves three
important components: a two-way exchange of information between interested
parties; an evaluation of the information by each party from their own
perspective and a final agreement achieved by mutual selection.

Conry and her colleagues, [28], describe a multistage negotiation

32

paradigm for planning in a distributed environment with decentralised control
and limited inter-node communication. This process considers another use of
a limited form of negotiation in task allocation. The multistage negotiation
protocol is useful for cooperatively resolving reséurce allocation conflicts which
arise in ‘a distributed network of problem solvers. This framework may be
viewed as a generalisation of the contract net protocol. The contract net
was devised as a means for accomplishing task distribution among agents in
a distributed problem solving system. Task distribution takes place through
a negotiation process involving contractor task announcement followed by
bids from competing subcontractors and finally announcement of awards. The
multistage negotiation extends the basic contract net protocol to allow iterative

negotiation during the bidding and awarding of tasks.

2.3.2 Organisational Structuring

An organisational structure is a network level coordination mechanism
that can be implemented in a number of ways. In most DAI research,
an organisational arrangement imposes guidelines about the distribution of
specialisations among the collective agents. It provides a framework for
activity and interaction through defined roles, behavioural expectations and
authority relationships(eg control). The control relationship between the agents
can be represented in terms of topologies such as hierachical, heterarchical,
flat(lateral) structures. These organisations are responsible for designating the
relative authority of the agents and for specifying the types of interactions that

can occur. Organisational structures can be used as a high-level specification

33

of the distribution of problem solving capabilities among the community
members, [29)].

An organisational structure provides more general long-term infor-
mation about the relationships between agents. As stated previously, an
organisation can be reviewed as a distribution of capabilities which is a pre-
cise way of dividing the problem space without having to go into depth about
the particular problem subtrees.

Organisational structures provide a control framework that increases
the likelihood that agents operate as a coherent team by identifying the roles
of each individual. Lesser and Corkill, [30], applied organisational structures
to efficiently implement network coordination strategies. Their ideas have been
implemented and evaluated in one of the most flexible simulation testbeds
developed to date:the Distributed Vehicle Monitoring Testbed(DVMT). This
simulates a spatially organised network of agents which perform distributed
interpretation to track vehicles moving among them. By this process of
coordination agents builld a map of vehicle movement through an entire
area. Lesser and Corkill suggest that each agent needs to decide on its own
activities, based on the current local view of the problem being solved, but
organisational knowledge should be applied about its problem solving role in
the network and the roles of others to guide its decision so that it is a more
effective participant in the network. This approach divides coordination into
two concurrent activities: the construction and maintenance of a network

wide organisational structure into precise activities using the local knowledge

and control capabilities of each agent.

34

2.3.3 Multiagent Planning

In a multiagent. planning approach to cooperation, nodes (agents) form
a multiagent plan that specifies all their future actions and interactions. The
coordination of nodes through multiagent plans is different from organisational
structuring and metalevel information exchange in terms of the level of detail
to which it specifies every agents activities. In this case one or more nodes
possess a plan that indicates exactly the actions and interactions each node
will take for the duration of the network activity. Agents know aprior: exa,c;cly
what actions they will take, one or more nodes have information about each
node’s activities and what actions will occur, recognising and preventing the
duplication of effort. Multiagent planning insists on detecting and avoids
inconsistencies before they can occur. Finally, a multiagent plan dictates
exactly §vhat actions . should be taken by each node and when the actions
should be taken; which is unlike the guidelines imposed by an organisation
structure. The approach requires more computation and communication
resources than other approaches, since nodes are expected to share and
process substantial amounts of information.

There are two basic approaches to multiagent planning: centralised
and distributed. Georgeff, [31] develops a multiagent planning approach where
the plans of individual nodes are first formed which is collected by some central
planning node. It is then analysed to identify potential interactions such as
conflicts between the nodes over limited resources. This provides an efficient
method of interaction, and safety analysis is then developed by central node

to determine which potential interactions could lead to conflicts. The central

35

planning node next groups togethef sequences of unsafe situations to create
critical regions. Finally, the idea is to insert communication commands
into the plans so that nodes can synchronise activities and avoid harmful
interaction, [32], [33]. Cammarata et. al, [34] also devised a centralised
multiagent planning system for the air traffic control (ATC) domain. In this
ATC application, each aircraft (agent) sends information about its intended
actions to a coordinator. The coordinator is responsible for developing a plan
which specifies all the agents’ actioms, including the actions to be taken to
avoid harmful collisions.

Whilst, with distributed multiagent planning, the plan is developed
by several agents. Rosenschein and Genesereth, [35] studied a logic-based ap-
proach studying how agents with a common goal but different local information
can exchange propositions to converge on identical plans. They developed
strategies for convergence. These strategies were based on assumptions about
the correctness and completeness of agénts’ information, whether additional
information can cause a previously acceptable plan to be unacceptable and
also what each agent knows about other agents’ knowledge. Their results
indicate that it is infeasible to expect sometimes unpredictable agents working
in dynamic domains to always coordinate optimally, perhaps the best to be

expected is that they will coordinate acceptably well and will tolerate any

uncoordinated activity.

36

2.34 Metalevel Information Exchange

The exchange of metalevel information is another way that the agents
in a network can improve their coordination. Gasser, [36], describes metalevel
information as the control level information about the current priorities and
focus of a problem solver. This indicates the approximate regions of the
search space on which agents focus their efforts.

Durfee, [37], developed a metalevel information exchange to coordina-
tion, called Partial Global Planning. Their partial global planning approach
presents a unified, flexible framework which brings together a range of distinct
coordination techniques. The technique can be viewed as planning, but it
differs from traditional planning that rigidly dictates specific actions to be
performed at specific fimes. The partial plans can change so fluidly and
adapt to changing information and environments. The plans are used to
detail an agent’s problem solving strategy, and its expectations. Each agent
follows the specified strategies for as long as it is feasible, and they have the
capability to change strategies as problem solving progresses.

This process of coordination involves sharing sufficient tentative plans.
This enables at least one agent to establish a global view to recognise how
changes to local plan could improve coordination among them. Any number of
nodes can collect plan information from others; the coordination of the plans
by speciﬁc nodes is dependent on the domain requirements and constraints.
It is not necessary for each node to have a global view in order to improve
coordination. As agents collect plan information from various agents in the

network, the partial knowledge about its global situation is combined to form

37

Partial Global Plans (PGPs). Agents maintain their own set of PGPs, which
may be used independently or asynchronously to coordinate its activities.
Agents use its models of itself and others to identify when nodes have PGPs
whose objectives could be part of some larger network objective called Partial

Global Goal and combines the related PGPs into a single, larger PGP to

achieve it.

2.3.5 Committments/ Conventions

Jennings, [38], presents a unifying coordination model which considers
the notion of commitments and conventions as the foundation of coordination
in MA systems. The term commitments are considered to be pledges to
undertake a specified course of action, whilst conventions provide a means
of monitoring commitments in changing circumstances. In the former case,
agents can make pledges both about actions and beliefs. These beliefs can
relate to the future or the past. In addition, commitments provide a degree
of predictablity, so that agents can take the (future) activities of other
agents into comsideration when dealing with inter-agent dependencies, global
constraints or resource utilisation constraints. In the latter case, conventions
provide cooperating agents with the flexibility they need to operate in dynamic
environments. In such environments the external world may change, agents
may receive new information which may constantly change their own beliefs.
Thus, to operate successfully and intelligently, agents need a mechanism for

assessing whether commitments are valid. Conventions provide this mechanism

so that agents can reconsider its commitments and specify the appropriate

38

course of action to either retain, rectify or abandon the commitment. The
proposed model is based upon the Centrality of Commitments and Conventions
Hypothesis which states that: all coordination mechanisms can - ultimately be

reduced to (joint) commitments and their associated (social) conventions.

2.3.6 Formal Frameworks

This section focusses on formal models, using logic-based or game-
- theoretical models. Some of this work has concentrated on how nodes form
multiagent plans, including the work of Georgeff, and of Rosenschein and
Genesereth, [39].

The formalisms developed for logic-based agents, that work alone
must be extended in two ways. As a first extension these systems must be
able to model and reason about the concurrent activities of multiple agents.
The second requirement is that the agents must perform in situations where
they have incomplete knowledge or limited computational resources. However,
both modifications lead to a possibility of producing incorrect inferences which
result in agents having inconsistent beliefs about the world. Thus, agents
may never converge on shared, coordinated plans, [39].

Rosenschein and Genesereth, [35], [40], proposed another approach
towards developing a formal theory for understanding the nature of cooperation
among multiple agents. Their models were based on game theory techniques
- and have shown the utility of communication to resolve conflicts among agents
having disparate goals. By using a game theoretic model, each agent attempts

to choose an option to maximise its payoff, and since no combination of agents’

39

options can lead to maximal payoffs for them all, they must somehow select
an option that results in acceptable payoffs given the circumstances. They
studied how different assumptions about the rationality of the agents can lead
to more or less effective choices.

As stated previously, game theoretic issues provide a fundamental basis
for the study of decentralised decision making. Wheeler and Narendra, [13],
consider the basic multiple automata game interacting through an uncertain
environment. At each stage the automaton selects an action, and this
determines the distribution of the random process involved. It should be
noted that in contrast to the usual game-theoreﬁc formulation, no player is
aware of the other players, the actions selected by or the responses from the
environment to the players. The research has involved synchronous models in
which the time instants for automata actions and updates are synchronised,
and sequential models which are asynchronous. These models can be analysed
by game-theoretic concepts. A detailed discussion of this work is presented

in Chapter Four.

2.4 Conclusion and Summary

This chapter has presented an overview of DAI and also focusses
on the approaches for coordinating nodes in DAI systems. Based on this
survey, it is evident that effective coordination is based on three essential
factors. Firstly, it requires structure because without struct'ure the nodes
cannot interact in predictable ways. Secondly, it requires flexibility because

nodes typically exist in dynamically changing environments where each node

40

might have incomplete, inaccurate, or obsolete information. Finally, effective
coordination requires knowledge and reasoning capabilities to intelligently use
the structure and flexibility. These factors also apply to the quantitative
framework adopted in this thesis. The main features include structure and
flexibility, which is illustrated by the different interconnections presented in
Chapter Four. However, the limitations of the basic stochastic learning
automata for the representation of a generalised network have forced an
extensioﬁ to this modelling framework, which is discussed in Chapter Six.
The final features, knowledge and reasoning is not a matter of coordination, it
enables agents to reason about the information and decision making in their
problem solving activities. Although, the framework proposed in this thesis
does not exhibit this characteristic, instead the model has an intelligence
capability which enables agents to adapt to changing environments.

The survey has also emphasised that there are certain gaps in DAI
research that are worthy of further investigation. One such area that should be
addressed is related to the benefits to be gained by implementing a collective
learning process in DAI research. This thesis addresses this particular topic of
research and provides a new insight to the virtually unexplored field of DAI
The thesis proposes a different perspective to collective learning in a DAI
environment. It will be described in the subsequent chapters how collectives
.of automata have been designed to function as a distributed, yet coordinated
‘intelligent control system. These models utilise learning schemes to display

intelligent behaviour in an uncertain environment, [12].

41

Chapter Three

Basic Stochastic Automaton Model

3.1 Introduction

The previous chapter has provided an overview of the field of DAI,
identifying the key requirements for effective coordination and highlighting an
area of research to be addressed by the DAI community. This chapter proposes
the stochastic learning automata approach which provides a fundamental
framework for a model of decision making under uncertainty, [41], [42]. The
concept of learning is defined as any relatively permanent change in behaviour
resulting from past experience. An extensive literature and a well established
mathematical foundation now exists for models of learning systems. The
learning system was first introduced to model the behaviour of biological
systems [43]. At a later stage it was shown that such models can use a
variety of learning schemes to display intelligent behaviour under uncertainty,
[11], [12]. This early work and related research formed the basis for what
has become known as the learning automaton approach. These automata
effectively use past experience and interaction with a random environment to
optimise their response to external factors.

This chapter introduces the basic concept of stochastic learning au-
tomata, providing relevant definitions of stochastic automata and random

environments. It discusses the properties of reinforcement schemes (or up-

42

dating algorithms) which determine the performance of stochastic automata.
These learning arrays will be combined with that of Petri nets in the later

chapters, to model decision making systems.

3.2 Stochastic Learning Automaton Model

In general, a learning automaton may be defined as a simple model
for decision making in an unknown random environment, Figure 3.1 shows
the basic model. The stochastic automaton has a finite set of actions, and
these actions form the inputs to the environment. Initially, the probability
of selecting any of the available actions is equal. One action is selected at
random, which interacts with a random environment. The environment re-
sponds to that action, and based on this response the action probabilities are
sequentially updated. A new action is then selected according to the updated
action probabilities, this procedure being repeated. Through this process of
interaction with the environment, the automaton learns to choose asymptot-
ically with a high probability the optimal action, if such an action exists.

The components of the stochastic automaton model can be characterised as

follows.

3.2.1 Stochastic Automaton

Figure 3.2 shows a stochastic automaton with its input and action set.
A stochastic automaton is a sextuple (8, ¢,a,p,F,G) and the components

can be defined as follows:

43

(i) The input set to the automaton (output from the environment),
denoted fB(n)

IB = (131,1327'“’,31:)

where k may be finite or infinite.

(i) The state of an automaton at any instant n, ¢(n)

¢=(¢1)¢2a'--)¢3)

where s is finite.

(i) The output action set selected by the automaton (inputs to the
environment, a(n)
a=(aj,ag,...,0)

where r is finite, and r < s.

(iv) The state probability vector governing the choice of the state at
each stage, denoted p(n)
p(n) = (p1(n), p2(n), .. ., ps(n))f
where
pi(n) = Pr(a(n) = ;)

and

dYop(n)=1 Vn
i=1

thus, preserving the probability measure.
(v) The state transition function which relates the current state and

input at stage n to the next state at stage n + 1.

44

F:¢xf— ¢

(vi) The output function G relates the state of the automaton to the

resulting output action at stage, n

G:¢g—a

The functions F and G may be deterministic or stochastic mappings. If
F and G are both deterministic, the automaton is denoted a ‘deterministic
automaton’. In this case the succeeding state (n+1) and output action are
uniquely defined for a given current state and input. In contrast, if there are
only probabilities associated with each successive state and output actions,

the automaton determines a ‘stochastic automaton’ in which F or G or both

are stochastic functions.

3.2.2 Environment

The environment can be defined as a random process or medium in
which the automaton itself operates. Figure 3.3 represents the environment
which accepts output actions of the automaton as inputs and produces
responses which are in turn fed back to the automaton. The environment
is described by the triple (a,c,3) where a = (aj, as,...,a,) are the input
action set (input to the environment), the set ¢ = (c1,¢o,...,¢,) represents
the penalty probabilities and § is the output set (input to the automaton).

The nature of the response output from the environment, determines
three possible types of environment. The first type of environment which is

considered is the P model, this consists of a binary environment which is

45

defined by a finite set of inputs @ = (ay, ..., a,) (outputs from the automaton);
a set of penalty probabilities associated with each action ¢ = (c,...,¢,); and
an output set G(n) = (0,1). The B(n) =0 at stage n denotes a favourable
response (reward) and fG(n) =1 an unfavoﬁrable response (penalty). The

ci(n) are called penalty probabilities and are defined as:

¢ = Pr[B(n) = 1/a(n) = a] (3.1)

Therefore c; represents the probability of a penalty being output in response
to the input «;, while the probability of a reward is (1 — ¢;).

Other possible types of environments have included Q models (finite
number of outputs) and S models (continuous outputs in range 0 to 1).
In practice the choice of environmental models is obviously dictated by the
particular application. If the penalty probabilities from the environment do
not depend on stage number n, the environment is classified as stationary;

otherwise the environment is non-stationary.

3.2.3 Reinforcement
The reinforcement scheme is a crucial factor in determining the per-

formance of the learning automaton. In general terms a reinforcement scheme

can be represented by:

p(n +1) = T[p(n), a(n), 5(n)] (32)

where T is an operator (learning algorithm) that denotes the rule by which the

46

automaton updates the probability of selecting certain actions; a(n) represents
the action of the automaton; B(n) represents the input to the automaton
from the environment at instant n, respectively.

The manner in which p(n) is updated is governed by the learning
algorithm T, [12]. Both linear and non-linear forms of updating algorithms
T have been considered. If p(n+1) is a linear function of the components of
p(n), the reinforcement scheme is said to be linear, otherwise it is non-linear.
The most widely used are t.he class of linear algorithms which include linear
reward/ penalty (Lrp), linear reward/ e penalty (Lgp) and linear reward/
inaction schemes (Lg;). For the Lgp scheme if an automaton selects an
action o; which results in success pi(n) is increased and all other p;(n)(j # i)
are decreased. Similarly if action «; produces a penalty response pi(n) is
decreased and all other p;j(n) are modified to preserve the probability measure.
An Lg; scheme ignores penalty responses from the environment and Lg.p only
involves small changes in p;(n) for penalty responses compared with changes

based on success.

3.24 Linear Reward/ Inaction Reinforcemént Scheme

This section considers one particular reinforcement scheme known as
the Linea,r-Rewa.rd/ Inaction or Lg; method, since most simulations in the
thesis have employed this particular learning scheme. This is due to the fact
that Lg; schemes are known to exhibit the ability to converge to an optimal
action, if the optimal action exists, [12]. The behavioural properties of a

variable structure Lrp stochastic automaton can be analysed by the following

47

linear algorithm using various parameter values:

For a(n) = a; and B(n) = 0 (reward)
pi(n+1) = pi(n) + a[l — pi(n)]

pi(n+1)=(1-a)pj(n) j#i

For a(n) = a; and fB(n) = 1 (penalty)

pi(n +1) = (1 - b)pi(n)
‘ (3.3)
+ (1 = b)p;(n)

R

where 0 <a<1 and 0<b <1 are constants called reward and penalty
parameters, respectively. Special cases of the algorithm result when ‘a’ and
‘b’ take on certain values as stated above; also an Lp; scheme is produced if

the penalty parameter b=0.

Equation 3.3 which accomodates a binary environment and this may
be modified to include a general environment. In this case ((n) takes on
values in the interval (0, 1), and the success probabilities d; are replaced by
success distributions, one associated with each action. The following algorithm

presents the general environment case, for an Lp; scheme when b=0:

For a(n) = ¢;

pi(n + 1) = pi(n) + aB(n)[1 - pi(n)]

pi(n+1) = pj(n) — aB(n)p;(n) j#i (3.4)

Note that this formulation may be reduced to equation 3.3 if B(n) is a binary

environment.

48

These equations describe how the probabilities of selecting the appro-
priate actions are adjusted so that if successful, they are selected with greater

probability, otherwise with less. Also note how the probability measure is

preserved.

3.2.5 Performance

The basic operation carried out by a learning automaton is the
updating of the action probabilities on the basis of the responses from
the environment. The convergence characteristics of learning automata are
depéndent on the properties of the algorithm used in the updating scheme.
A useful measure for judging the performance of the learning automaton is

the average penalty received. At a certain stage n, if the action a; is selected

with probability p;(n), the expected penalty is:

M(n) = E[5(n)/p(n)] (35)

Assuming a stationary environment and the actions are randomly selected

with equal probability, the value of the average penalty M, is given by:

agtct...+¢) (3.6)
- .

M0=(

49

Definition 1
A learning automaton is said to be ezpedient if:

lim,E[M(n)] < M, (3.7)
When a learning automaton is expedient it only does better than one which
chooses actions in a purely random manner. If the average penalty is
minimised by a proper selection of actions then the learning automaton is

said to be optimal, where:

Definition 2
A learning automaton is called optimal if

lim, . E[M(n)] = min;[g] (3.8)
Although optimal performance is a desirable property it cannot always be
achieved. In such a case one would aim for sub-optimal performance, defined

as follows:

Definition 3
A learning automaton is called ¢ — optimal if
lim, o E[M(n)] = Cmin + € (3.9)

This property can be obtained for any arbitrary € > 0 by a suitable choice of
the parameters of the reinforcément scheme. In this case € — optimal implies
that the performance of the automaton can be made as close to the optimal
as required. These properties are said to be conditional if the values hold
only when penalty probabilities c; satisfy certain restrictions, eg. that they

should lie in certain intervals.

50

3.3 Conclusion and Summary

This chapter has introduced the basic model of a stochastic learning
automata. It has defined the structure of the stochastic automaton, the
nature of the random environment and norms for judging the behaviour of
the automaton. These concepts are relev'a.nt in studying the behaviour of

interactive decision makers.

It will be shown in Chapter Four, that the stochastic learning automata

approach will provide the fundamental framework for a model of decentralised

decision making in C3-1 environments.

51

JUSWIUOIIAUF

030

[(@)'d™* () ql

uojpwoINy
OIISBYD01S

93¢

Figure 3.1 — Stochastic Learning Automaton Model

Response (Input)

—»

Be B

Stochastic

Action (Input)

>
o EQ

EQ
Automaton Nt .
[Pl (n) . ,P (n)] Action (Output)
r
{B, ¢, o.p,F,G }
Figure 3.2 - Stochastic Automaton
Environment Bef
[C - ’ Cr] Response (Output)

Figure 3.3 ~ Environment

53

Chapter Four

Multiple Automata and Decentralised Decision Making Models

4.1 Introduction

The previous chapter considered models of a single decision maker (an
automaton) interacting with an uncertain environment. This discussion can
now be extended to consider multiple decision makers and environment pairs
in various interactive configurations. As such, the models are descriptive
and have the property of analytical tractability. It is shown that each
interconnection gives rise to a corresponding automata game, which lead to
very different game structures. In some cases, the game can be analysed
directly using results from automata game theory in which the players are
considered to be learning automata. However, in some models the game
lacks a structure for which automata behaviour is not known. Two types of
interactions are of particular interest. In the first case, several automata are
operating together in an environment either in a competitive or cooperative
manner and this game situation may be represented by synchronous models.
The second case considers automata operating on various levels with interaction
between different levels in a hierarchical structure.

This chapter defines an automata game and analyses the behaviour of
multiple automata in an abstract game played repeatedly. A major part of

this chapter introduces models in which decision makers are not autonomous

54

and their decisions affect each other. It is shown that automata games
have no prior knowledge of the game or number of players available a.nd the
players choose their strategies on-line. Such interactive structures result from
interconnecting many decision maker-environment pairs to produce synchronous
and sequential models, [13], [-14], [44], [45]. These models are discussed in
detail and simulation results are provided for each interactive configuration.
The analysis of such models is based on results from learning theory and

game-theoretic issues, [46].

4.2 Automata Games

An automata game, Figure 4.1, involves N automata (or players) A;
(i=1,..,N) each with an action (strategy) set o' = aj,...,al; interacting
repeatedly through a stationary random environment. Each automaton A;
selects an action according to its current probability distribution, at time
instant n. The joint action (or play) a(n) = a = (al}, 03, ..., o)) determines
the success probabilities for a binary environment or success distributions for
a general environment. Note that a binary environment is assumed for the
models studied, unless otherwise stated. The environment is stationary since
the d'(a) are fixed over time. In the multiple automata case, each automaton
has access only to its own response. It should be noted that in contrast to the
usual game theoretic formulation, no player is aware of the other players, the
actions selected by or any of the environment success probabilities (diy;5 ;x)-

Similar, to the single automaton environment model, the basic feature

of an automata game is that at each instant the probabilities of choosing

55

actions are updated. The probability of an action is increased when the
selected action results in a success and is decreased or left unchanged when

it results in a failure.

4.3 Interactive Decision Making Models

As stated previously, this section introduces plausible models of de-
centralised decision making under uncertainty. It is considered that the
stochastic learning automata approach, and interactive decision making in
automata games will provide the fundamental framework for a model of de-
centralised decision making in complex systems. This approach constructs
models which result from interconnecting many of the automaton-environment
pairs in simple ways. In such systems, the decision makers (modelled as
automata) update their actions using learning schemes on the basis of re-
sponses from many local environments, this gives rise to specific strategic
games. Some games are easily analysed using results -either known or derived
from automata game theory, other interconnections lead to a structure for
which automata behaviour is not currently known. The objective is t.o build
models with both analytical tractability as well as providing realistic models.

The models studied in this section express typical ways in which
decision makers can interact, by considering both feedback and hierarchical
structures. Particular emphasis has been given to feedback structures in the
form of synchronous models. In such models, the actions of all automata
occur simultaneously, as do the subsequent responses. A sequential model

is also considered, where there are various levels of automata and there is

56

interaction between different levels. In such systems, one automaton acts at

a time with the action chosen determining which automaton acts next.

4.4 Synchronous Models

These models represent ways in which decision makers interact. For
such models, the time instants when the automata choose actions and update
probabilities are synchronised. The concepts of game theory are used to
analyse the convergence of the learning schemes. The relevant concepts of
game theory have been provided in Appendix Two. Figure 4.2 and Figure 4.4
show some simple examples of synchronous models. These basic structures
can be modified to include examples in which the actions of the automata
determine specific types of nonstationary environments and they are discussed
in Section 4.7. A description of each model is presented in the following
subsections.

Simulation results are provided for each model in the subsequent
secbtions. The results for all decision making models - synchronous and
sequential are presented in the form of tables and graphs. It is assumed
that all the feedback models use Ly.; algorithms of the form, Equation 3.3;
unless otherwise stated. In all cases ‘a’ is the reward parameter; p;(n) and
qi(n) (and ry(n) in the three player examples) are probabilities for selecting
the first action A; and A, (and Agj), respectively. The game matrix uses
reward probabilities to represent the game structure of each environment, in
the case of synchronous models. The number of sample paths over which

averages were taken, is related to ‘m’. A single iteration computes one loop

57

at each stage ‘n’. Expected values are denoted by, eg pi(n) = E[pi(n)]. The

general structure of each simulation program is provided in Appendix One.

4.5 Simple Feedback

The most basic feedback arrangement shown in Figure 4.2 interconnects
two automaton-environment pairs A; — E; and A; — E,. Each automaton A,
and A, are assumed to have two actions interacting into their respective
binary environments at each stage ‘n’. The main feature exhibited by this
model is that the response (B(n) from one automaton’s environment is the
input to the other automaton.

The synchronous nature of the model can be viewed as a standard
automata game which can be represented by the following game matrix. The
notation aj- implies that an action o; is selected by automaton ¢ similarly,
the environment success probabilities are given. by d; where ¢ and j are the

automaton and action indices, respectively.

of o
T = a% d?’d% d%?d}. (41)

o \di,dy d},d}

The strategies of A; and A, correspond to the rows and columns, respectively
of 7. Each ordered pair of the game matrix represents the expectation of
success (reward probability, since reward = 1 and penalty = 0) for A; and
A, resulting from the corresponding strategy pair. It is evident from the

game matrix that all four strategy pairs are equilibria. If di > d} (i = 1,

58

2), it is also true that (aj, o) is the only Pareto optimal play. Note that
irrespective of the action selected by As, A;’s action is equally good and vice

Versa.

451 Simulation - Simple Feedback

Table 4.1a and Table 4.1b display the simulation results for two
different initial probabilities and their corresponding learning curves are pro-
vided in Figure 4.3a and Figure 4.3b. It is evident from both simulations
that, the action probabilities for automaton A; and A, fluctuate close to
the initial probability value. This confirms that irrespective of the choice of
initial probability all action probabilities remain close to their initial values,
independently of the reward parameter and number of sample paths. Recall
that in this model, Figure 4.2, the response from one automata’s environment
E; is the input to another automaton. Since direct feedback of responses into
the original automaton does not occur, the action probabilities do not show

convergence behaviour. This indicates that learning has not been performed.

4.6 Weighted Feedback

In Figure 4.4 each automaton receives responses from two environ-
ments, this results in a more involved game. For the N-automata case, the
weighting factor w; = (Wi1, Wiz, - . - , Win), ZJN=1 wi; = 1 is associated with each
response output ﬁom E;. This produces a normalised scalar input to each
automaton A;. In the weighted feedback model Bie (0, 1) is the response of

environment E;, while £;6(0,wi, ..., Wiy, 1) is the normalised scalar input to

99

A;. If the responses are weighted equally then the input is the number of suc-
cesses divided by the total number of responses, as in the multi-environment
model for the single automaton. Zero weights imply feedback from only some

environments. The effective environment success probabilities are defined as:

Sk 2 Pr(B(n) = Bifar(n) = al,az(n) = @?) k=1,2,....K (42)

where (3 is the k** element of the input set to each automaton. If equal
weights are considered for Figure 4.4, then K=3 and the input set is (0, 0.5,

1). The expected value of A;’s input conditioned on the action choices is:

3
sii2 = E[B(n)/aa(n) = o}, 0a(n) = of)] = z Bebisink (4.3)

Since sjj, is analogous to djj, in the automata game formulation; it can
be used to construct an identical payoff game with the game matrix having

elements s;;,. These values represent the environment reward probabilities of

E; and E;, as shown below:

3 1 1
su = B = '2'[di(1 —d?) +d}(1 - dp)] +did} = ‘2’(di +d7) (44)
k=1

The common factor of % maybe omitted to provide the following identical

payoff game matrix:

of o3
1 1 1
T = al d21 + dl dg + dl (45)

.Assuming that d! > d} and d? > d2, it follows that d} + d? is the largest
element of 7 and d} + d is the smallest. It is apparent that (al, o?) is the
only pure strategy equilibrium. However, 7 has even more structure. Each
player has a dominant strategy a! and o?, which is better than any other

strategy regardless of what the other player does.

4.6.1 Simulation — Weighted Feedback

The simulation result for the weighted feedback model is provided in
Table 4.2, each automaton has three actions with the same initial probabilities
and a different weightiﬁg on the two responses. Since, the automata receives
responses from two environments, a normalised scalar input is received by each
A;. In this case, all action probabilities are updated by using the generalised
version of Linear Reward/ Inaction algorithm, as stated in Equation 3.4.
The results indicate that each automata’s first strategy corresponds to the
best action (which relates to the highest reward probability) in its local
environment, then (al,o?,...,al’) is the set of dominant strategies. As
mentioned, the set of dominant strategies is denoted by (oi,?) which is
better than any other strategy regardless of what the other player does. This
example shows that dominance holds for multiple automata in which the
automaton A; has r; actions. Figure 4.5 presents the graphical illustration

for the tabulated results.

4.7 Synchronous Models: Actions Determine Environment

This section presents two types of interconnections as shown in Figure

61

4.6 and Figure 4.9. These interconnections are modifications of the basic
structure in which the actions selected by the automaton determine specific

types of nonstationary environments.

4.8 Interconnection 1: A; Determines A;’s Environment

No Coordination

The feedback configuration as shown in Figure 4.6, indicates that the actions
selected by automafon A; determines the stationary random environment E?
or E2 that is observed by A;, but the actions from A; do not influence A;.
In this model there is no coordination of A; and Aj,; automaton A; receives
responses from environment E; whilst A, interacts with E? or EZ, therefore
the response received by each player is different at each time instant. The
game structure can be represented by the following game matrix:

a? a2
af | di,du di,di (4.6)

a% dg,dg da,d2

Clearly, A; will converge to its best action independently of A;, while A,
converges to its best action in the environment that A; has determined. Note
that it is possible that in optimising for itself A; prevents A; from receiving

its optimal payoff.

Coordination

In contrast to the configuration mentioned above, each player (automata)
receives the same input at each time instant. This represents a coordinated

structure, such that the actions selected by automata A; also determines

62

the environment. By coordination of A; and A, the game matrix may be
modified to provide the sum of the payoffs as the input to each player. Thus

the game matrix 7{ can be thought of as having the game structure:

a? a?
= ol [di+dy dy +dyg (4.7)

at \dy +day dp +dp

(omitting a factor of 7). If this coordination 77, has a unique équi]jbrium
then at least one player must have a dominant strategy. Thus, the automata
will converge to the equilibrium with probability arbitrarily close to one. This
may result in A; selecting the action that was the worst without coordination.
If A, does not have a dominant strategy in 7y, it is possible that 7y may

have two equilibria.

4.8.1 Simulation - Interconnection 1

In this model, the actions of the automata determine responses from
the environment. The results in Table 4.3a — Table 4.3d consider a two-state
automaton, without coordination between automata A; and A, ; and examine
a model which involves coordination. A graphical i‘epresentation of each table

is also included in Figure 4.7a - Figure 4.7d, respectively.

No Coordination
Table 4.3a presents simulation results for interconnection 1 with one equilib-
rium. It can be seen that the strategy pair (al, a?) is the unique equilibrium

and Pareto optimal play. The results obtained confirm that the action prob-

63

ability for automata A; converges to its best action independently of Ay; and
A, receives optimal payoff and both automata converge to the equilibrium.
However, this does not apply when two equilibria exist as shown in Table
4.3b. In this case (aj, o?) is still the unique equilibrium but (a?, of) is
also Pareto optimal (joint maximum). Since A;’s best action does not imply
that A, receives its optimal payoff, then the convergence of A, is slower in

comparison to A;.

Coordination

Table 4.3c and Table 4.3d present simulation results for Interconnection 1
with coordination. The tables illustrate convergence behaviour when the
game matrix 77, has a unique equilibrium and two equilibria. Note that each
table uses the same environments as Table 4.3a and Table 4.3b; but the game
structure is modified by 77. In the unique equilibrium case, Table 4.3c, it can
be seen that both automaton steadily converge to the equilibrium. However,
in the two equilibrium case the action probabilities for each automaton are
decreasing in value, showing that for specific initial conditions the drift is
towards the global optimum. If however, the players have more than two
- actions, the point of equal initial probabilities may not have this property.
The example in Table 4.4b suggests this for the three action case with

coordination.

Simulation results are also included for the players having three actions
each, shown in Table 4.4a and Table 4.4b; the corresponding learning curves

are presented in Figure 4.8a and Figure 4.8b.

64

4.9 Interconnection 2: A; Determines Game for A, and Aj
Figure 4.9, represents interaction of automata in which the actions
selected by A; determine the environment E, or E; (now a game) seen by
A; and A3. In this case A; may be thought of as a coordinator without
its own environment whose actions produce uncertain results. The objective
of A; is to maximise the weighted sum of the payoffs to A, and A;. The

environments, E;, can be expressed as follows:

E; = (dj, dif) (4.8)

j
the payoffs, M, to each player is given by

1 i i i i
M! = E(djlli + djﬁ); M2 = di’ M? = d_]i (49)

J

where 1, J and k are the actions of A;, A, and Aj, respectively. In general

many equilibria can exist. Even in the identical payoff case:

dij = d =dj} (4.10)

j 3

if
dy > dg > df > df; > dpp 2 dy > df; 2 d, (4.11)
then di;,d},,d%, and d3, all correspond to equilibria. As mentioned for

Interconnection 1, the theory is incomplete when there are many equilibria.

4.9.1 Simulation — Interconnection 2:
This simulation is based on Figure 4.9, the action selected by A;

determines the same response for A, and A;. To simulate this structure,

65

each response produced by environment (E;,E;) has an associated weighting
factor. Each response 4%, 3% are weighted equally - w; = (w;; = 0.5, wjp = 0.5).
Hence, a normalised scalar input (3%¢(0,0.5,1) is received by automaton A;.
In this example A;, now uses the general environment Lg; scheme for updating
probability vectors. The results for Table 4.5 are produced using the following
equilibria and corresponding payoffs:
(1,1,1)(d]; = 0.9);(1,2,2)(d3, = 0.7); (2, 1, 2)(d?, = 0.5); (2,2, 1)(d3, = 0.3)
(4.12)
This model shows that the automata converges to the largest equilibrium
in the N-automata case if each has two actions, starting with equal action
probabilities. From Table 4.5, it can be seen that the rate of convergence for
action probabilities corresponding to automaton A, and A3 are within close
approximation to each other, since both automata receive identical responses
from the environment. A graphical representation is included in Figure
4.10. It is evident that the learning curves for the action probabilities which
correspond to automaton A; and Ajz coincide with each other. In comparison

there is 'a rapid convergence to unity for automaton A; action probébility

vector.

4.10 Sequential Models

The hierarchical structure stochastic automata system may represent
many important realistic situations. In such a case, collections of automata
are organised to model the behaviour of a hierarchical learning system where

learning proceeds at a number of distinct levels with each level capable of

66

eliciting a response from the environment. This concept was introduced by
Thathachar and Ramakrishnan, [47], [48]. They proposed a simple modifi-
cation of the absolutely expedient algorithm, which provided a reinforcement
scheme for a hierarchical system of automata. This approach significantly re-
duced the high dimensionality problem associated with a learning automaton.
Further research efforts resolve this problem by considering a reorganisation
scheme that uses e-optimal learning automata to heuristically select hierar-
chical structures with minimal computation, [49]. The learning behaviours of
the generalised sequential model operating in the multi-teacher environment
were also considered, [50].

A sequential model is depicted in Figure 4.11, Figure 4.14 and Figure
4.17. In these models only one decision maker acts at any time, such that
a sequence of decisions propagate down the tree structure and the bottom
level automata produces a response from the environment which is fed back
to all automata responsible for the selected path. It is possible to analyse
sequential models as networks of decision makers in which control passes from
node to node. The nodes in a sequential modd can represent a synchronous
model, so that a more general model can be produced which includes both
types of structures. Three types of network structures are briefly described.

The following sections also present computer simulation results for the
sequential models. In the simulation study, a three-level hierarchical system
with each automaton having two actions are examined. Such systems are
in the form of a tree structure and directed network. To simulate these

structures, the penalty probabilities in the environment were selected from the

67

range [0.5, 0.95], except the unique minimum penalty probability which was
set to 0.1. The Lg; scheme waé adopted to update action probabilities for
the optimal path. Similar to the previous notation ‘a’ indicates the reward
parameter; the total number of experiments is given by ‘m’ and the expected
values are denoted by, eg pi(n) = E[pi(n)]. Two sets of simulations were
performed for each tree structure, the results are produced in both table and

graph format.

4.11 Tree Structure

A tree structure is a multilevel system of automata consisting of
several levels, each comprising of many automata. There is a definite order in
which the automata can act. Each action of an automaton at a certain level,
selects automata at the next lower level. Figure 4.11 illustrates, automata
arranged in three levels. The hierarchy consists of a single automata at
the first level, two in the second level and four in the third level. Each
automaton has two actions. Considering the structure, Ay acts first, choosing
either A; or Ay, who then acts to select an automaton at the next lower
level. The action selected at the lowest level, generates a response from a
stationary random environment. The action probabilities on the selected path

are updated on the basis of this response.

4.11.1 Simulation — Tree Structure
Table 4.6 provides the penalty probabilities of the environment which

are used for each simulation. Note that the set of penalty probabilities are

68

different for each simulation. The location of the unique minimum penalty

probability has been changed, whilst all other peﬁa.lty probabilities remain

unchanged.

Consider the three level hierarchical system in Figure 4.12, the optimal
path probability changes for Table 4.6 can be easily analysed. It is shown
that all action paths associated with the unique minimum penalty probability
converge close to unity. Considering the penalty probabilities in the Table
4.6a observe that the optimal path is 001. This notation implies that path
0 is selected by level 1 and level 2 automaton; and path 1 is selected by
automaton in level 3. However, Table 4.6b selects an alternative route in
determining the optimal path. In this case the action probabilities converge
close to unity by selecting path 100; since the unique minimum penalty
probability is associated with this path. Graphs for each table are presented

in Figure 4.13a and Figure 4.13b.

4.12 Directed Network

In comparison to the previous model, the network of Figure 4.14 also
represents a three-level hierarchical system with tv.vo actions per automaton.
It also illustrates a case in which control always passes back to Ay at the
end of each cycle. However, in this structure the automaton in the second
level may select any automaton in the lower level. It is possible to use many

forms of updating schemes since local responses occur at different times for

different levels.

69

4.12.1 Simulation — Directed Network

Similarly, this presents computer simulation results for sequential model
in the form of a directed network. The results in Table 4.7 examine the
learning behaviour of a directed network by adopting the same techniques as
mentioned previously.

Note that in the case of a directed network, the action path probabil-
ities may converge to the unique minimum by selecting alternative routes in
the first and second level. Both results in Table 4.7 confirm that the optimal
path associated with the unique minimum penalty probability converge close
to unity. Figure 4.15, clearly indicates the different routes which may be
selected in determining the optimal path for each case. For this network the
number of times a particular paih converges to the unique minimum was also
evaluated. Thus, Table 4.7a converges to the unique minimum by selecting a
combination of paths 001 and 101, in the ratio of 0.3:0.2 from a total of fifty
experiments. In Table 4.7b, the optimal path is determined by selecting a
combination of paihs 010 and 110 in a ratio of 0.5:0.5 from fifty experiments.

The results in Table 4.7 are produced in thé form of graphs, Figure

4.16a and Figure 4.16b, respectively.

4.13 General Network

In contrast to the previous sequential models, Figure 4.17 illustrates
a general network. In this model an action sequence does not exist giving
rise to a path through the network. It is possible for any automata to select

any other automata. In the network as shown, each automaton has three

70

actions, which corresponds to the selection of one of the automata. The
action selected generates a random response which may be received by one
or many automata.

In such a network, certain issues need to be resolved; who receives
what information and who is assigned to carry out which decisions. The
general network exhibits the characteristics of a decentralised system, since the
information may be collected from many sources, distributed to appropriate
units in the organisation for processing and then used by selected nodes to.
reach a suitable decision. At this stage, the stochastic learning automaton
approach was considered to be limited in modelling capability for arbitrary
topologies of decision models. To resolve this limitation, the potential of Petri

Nets for modelling complex systems are presented in the next chapter.

4.14 Conclusion and Summary

This chapter has shown how the stochastic learning automaton model
may be considered as a basic framework for a model of decentralised decision
making. It has introduced models in which many automaton—environment pairs
are interconnected in various ways to achieve desirable global performance,
even though decisions are made on the basis of simple updating schemes. The
models that have been studied, include synchronous and sequential models.

The synchronous models represent feedback configurations in which
the actions of all decision makers are synchronised. Such models give rise
to corresponding automata games, of particular interest is the interconnection

of decision makers which lead to very different game structures. It is

71

important to analyse how the corresponding game changes as interconnections
are varied. In some cases, concepts- of learning theory and automata games
may be used to analyse the behaviour of a particular model. Often, however
the interconnections may be difficult to analyse, which indicates the necessity
for further research.

The learning behaviour of the hierarchical system of automata in
the form of a tree structure and directed network has also been considered.
Simulation results indicate a rapid convergence for the optimal path. Further
research has shown that a modified algorithm for this structure is required
when the number of actions is large. This chapter concludes by describing a
general network which resembles a decentralised system. The basic conceptual
framework based on the stochastic learning automaton approach is restricted
in its modelling capabilities for the representation of such systems. The
limitations in the modelling technique is evident, since it lacks structure,
flexibility and the ability to demonstrate the explicit interactions between the
various agents in the network. These shortcomings have established the need
for a more high-level modelling framework. A later Chapter Six presents
novel work which incorporates stochastic learning automata as described in
Chapter Three with a graphical modelling concept based on Petri net theory

to overcome these limitations.

72

W d

(w ¢

_HZ~| ||||||| N~ ,Hm
I

Pl

JUSUWIUOITAUY

Figure 4.1 — Automata Game Schematic

73

8

=

—

|
<
1

Simple Feedback
Figure 4.2 — Synchronous Models - The Basic Structure

T4

E, = {61}, Ex={7.2}

a=001,m=100

n pl(n) ql{n)

0
100
200
300
400
500

0.500000 | 0.500000
0.497706 | 0.500284
0.498057 | 0.500694
0.499280 | 0.500533
0.500284 | 0.499794

0.500994 | 0.499016

(a) Action Probability Pr [0.5]

Table 4.1 — Simulation of Simple Feedback (Figure 4.2)

Synchronous Model s Simple Feedback
0
awl e iR
o————a gl
asad
[RN
[]
2
- 0%+t
vt
9 as{
)
o
o
o asd
E [R
-
» aw
g +
C
S
< osit
o a o - -
awd
o + $ + + + + + + +
0 s 100 10 2200 230 50 F0 M0 40 S0
Number of [terations

(a) Action Probability Pr [0.5]

Figure 4.3 - Average Action Probability vs Iterations :

75

(Table 4.1a)

a=0.02, m= 200
n | pl(n) | ql(n)
0 |0.800000 | 0.800000
20 | 0.800580 { 0.800623
7,.6 .2,.6) 40 [0.799841 | 0.800518
Tl 60 |0.799606 | 0.800128
80 |0.799242 | 0.800030
100 { 0.798685 | 0.800361

(b) Action Probability Pr [0.8]

Table 4.1 — Simulation of Simple Feedback (Figure 4.2)

Synchronous Model « Simple Feedback

ar
oy r—n plin)
o———a ql
a4
ans
0864
[8§23
ase s
o84

o824

Average Action Probsbilities

a8t 4+

o080 ¥ A

ars

o7 + t + + + + + +
] 10 2 3 L]] n 0 %0 100

Number of [terations

(b) Action Probability Pr [0.8]
Figure 4.3 — Average Action Probability vs Iterations : (Table 4.1b)

76

'“é%
Weighted Feedback

Figure 4.4 — Synchronous Models - The Basic Structure

7

T =

E1 = {8, .5, 3},

E2 - {9, .1, 7}

wy = {4,.6}, wo={6,.4}

.86,
74,
.66,

.84
.66
.54

38, .52
26, .34
18,.22

74, .76
.62, .58
54, .46

a = 0.04, m = 50

pl(n)

p2(n)

p3(n)

ql(n)

q2(n)

q3(n)

200
400
600
800
1000

0.333333
0.553642
0.750079
0.832411
0.873850
0.898755

0.333333
0.178255
0.100287
0.067227
0.050505
0.040454

0.333333
0.267103
0.148634
0.099362
0.074646
0.059791

0.333333
0.519196
0.727566
0.812883
0.859174
0.887000

0.333333
0.147588
0.076755
0.051300
0.038539

0.030870

0.333333
0.332215
0.194679
0.134817
0.101287
0.081131

Table 4.2 - Simulation of Weighted Feedback (Figure 4.4)

Synchronous Model « Weighted Feedback

aed
ar.
[¥*S

»——u pl (n)
s———a p2in)
+———+ p3(n)
g g—a gl (n)
——2e q21(n)
[X23 o——a q3(n)

(3

Average Action Probabilities

Number of [terations

Figure 4.5 — Average Action Probability vs Iterations : (Table 4.2)

78

B2

2
2

E

2
1’

L g

o2

>

<

T

Interconnection 1: A; Determines A,’s Environment

Figure 4.6 — Modification of Synchronous Models

79

a =004, m = 50
n | pl{n) | ql(n)
0 |0.500000 | 0.500000
120 { 0.628541 | 0.607027
2 513 :8’-4> 240 | 0.726216 | 0.703727
360 | 0.789747 | 0.775936
480 | 0.835037 | 0.825118
600 | 0.865719 | 0.858582

E, = {8,6}, EI=/{8,.4}
EZ =1{1,.3}

(a) No Coordination (One Equilibrium)

Table 4.3 — Simulation of Interconnection 1 (Figure 4.6)

Interconnection 1 s No Coordination (One Equilibrium
1.00
a4 —n pl)
o——¢ qllw
and
3 ant
-
>
S x4
3
P
°
(5
a arst
3
9 ant
o
¢ aest
]
>
<
0s4
0S54
a0 ot

+ + + + + + t u +
o S0 100 150 20 =0 X0 350 “0 450 500 550 600

" Nunber of [terations

(a) No Coordination (One Equilibrium) : (Table 4.3a)
Figure 4.7 — Average Action Probability vs Iterations

80

E, ={8,6}, E}=1{3 .1}
Ef ={1,.8}

a=0.03 m=50

n

pl(n)

ql(n)

0
200
400
600
800

1000

0.500000
0.647297
0.750913
0.816202
0.859188
0.886665

0.500000
0.399764
0.398302
0.453326
0.521408
0.587276

(b) No Coordination (Two Equilibria)

Table 4.3 — Simulation of Interconnection 1 (Figure 4.6)

Interconnectton | 1+ No Coordination (Two Equilibria)

=

Average Actlon Probabllitles

a3+

0.2

Nunber of [terations

(b) No Coordination (Two Equilibria) : (Table 4.3b)
Figure 4.7 — Average Action Probability vs Iterations

81

a =004, m = 50

n | pl(n) | ql(n)

0 |0.500000 | 0.500000

200 {0.674407 | 0.555802

. (8 .6) 400 |0.786698 | 0.604913
35 .45

600 |0.847590 | 0.664721

800 |0.883028 | 0.716545

1000 | 0.905703 | 0.754938

E, ={8,.6}, E}={8,.4}
E2 ={1,.3}

(c) Coordination (One Equilibrium)

Table 4.3 — Simulation of Interconnection 1 (Figure 4.6)

Interconnection 1 «+ Coordination (Bne Equtltbrtum
1.00
orsd — pl ()
o———a qlin
arnd
3 amsi
-
=
_§ 0604
)
0
[
a arsi
5 an.
9 ang
B
¢ Q&5+
1
>
<
a4
ass4
s

t t + t + + + + + t +
0 S0 100 150 200 =0 300 350 400 450 500 550 600

Number of [terations

(c) Coordination (One Equilibrium) : (Table 4.3c)
Figure 4.7 — Average Action Probability vs Iterations

82

a=0.02 m=50

E: = {8,.6}, E}={3.1} n | pl{n) | ql(n)
B2 = {1,.8) 0 {0.500000 | 0.500000

200 | 0.445904 | 0.398251
55 45
. o | 400 [0.37 .
; (.35 7) 0.371236 | 0.300475
600 | 0.299128 | 0.227108
800 | 0.239998 | 0.176754
1000 | 0.195622 | 0.142509

(d) Coordination (Two Equilibria)

Table 4.3 — Simulation of Interconnection 1 (Figure 4.6)

Interconnection 1 « Coordination (Two Equitibria)

060

a5+ »——1u plin
¢———a ql(n)

.50 4

0+

0404

& 354+

Q 30 4

[¥~ 3

0204

Average Actlon Probabilities

1S4

0104

o054

.00 + + + + + t + + + +—t + + +
0 100 200 300 400 S0 600 700 600 F00 1000 1100 1200 1300 1400 1500

Nunber of [terations

(d) Coordination (Two Equilibria) : (Table 4.3d)
Figure 4.7 — Average Action Probability vs Iterations

83

E, = {6,.1,.9} E? =1{9,.1,.1}
E? ={1,.9,.9}
E? ={1,.8,.9}
6,.9 .6,.1 .6,.1
r=1.1,1 .1,9 .1,9
5.1 5.8 5.9
a=0.03,m=350
n | pi(n) | p2(n) | p3(n) | qi(n) | q2(n) | q3(n)
0 (0.333333]0.3333330.3333330.333333 {0.333333 | 0.333333
200 |0.509682 | 0.140095 | 0.349223 | 0.312386 | 0.311682 | 0.374938
400 |0.619705{0.075711 | 0.303584 | 0.441012 | 0.238897 | 0.319091
600 |0.686459 | 0.050711 | 0.261797 | 0.561464 | 0.182801 | 0.254735
800 |0.733834 | 0.038124 | 0.227042 | 0.648078 | 0.143385 | 0.207537
1000 | 0.772299 | 0.030538 | 0.196163 | 0.705207 | 0.116538 | 0.177255
(a) No Coordination
Table 4.4 — Simulation of Interconnection 1 : (Three Action Case)

Interconnection 1 1 (Three Action Case)

——u pl (n)
st a———a p2(n)
+———1 p31{n)
a——=a ql (n)
——— q2(n)
vt @——=a q3(n)

(Y3

g

Average Action Probabilities

4
-

. L E] - - L] - ~ - - -

Number of Iterations

(a) No Coordination : (Table 4.4a)
Figure 4.8 — Average Action Probability vs Iterations

84

7_#

75 .35

d .
3 .65

.35
)
T

a=0.02, m=50

pl(n)

p2(n)

p3(n)

ql(n)

q2(n)

q3(n)

360
720
1080
1440
1800

0.333333
0.314742
0.245473
0.195852
0.167442
0.150007

0.333333
0.237620
0.172188
0.124719
0.095202
0.076333

0.333333
0.446638
0.581339
0.678429
0.736356
0.772660

0.333333
0.240913
0.179645
0.145706
0.128907
0.119028

0.333333
0.359054
0.359128
0.340993
0.316816
0.290459

0.333333
0.399033
0.460227
0.512301
0.553283
0.589513

(b) Coordination

Table 4.4 — Simulation of Interconnection 1 : (Three Action Case)

Interconnection 1 :+ (Three Action Case)

#——x pl (n)
a—a p2(n)
— p3(n)
s——a ql (n)
——e q2(n)
vt g———a q3 (n)

asd

e

s

.ad

Average Action Probabilities

Number of Iterations

(b) Coordination : (Table 4.4b)
Figure 4.8 — Average Action Probability vs Iterations

85

Interconnection 2: A, Determines Game for A, and A,
Figure 4.9 — Modification of Synchronous Models

86

Table

a = 0.01, m =100

pl(n)

ql(n)

ri(n)

300
600
900
1200

1500

0.500000
0.714258
0.823564
0.878749
0.908693
0.926874

0.500000
0.546181
0.615667
0.696609
0.759451
0.801021

0.500000
0.546508
0.616319
0.697244
0.759969
0.801443

Interconnection 2 + Al Game for A2 and A3

094

0.90 4

0954

0004

ars4

Q704

0654

Avarage Action Probebilities

[X8

0S54

W ——
o—e
——

pl (v
ql (R
r1

0.50
[

t + + + + u + + + + +—t +
100 200 300 400 SO0 400 700 800 900 1000 1500 1200 1300 1400 1500

Nunber of [terations

Figure 4.10 — Average Action Probability vs Iterations :

87

4.5 — Simulation of Interconnection 2 (Figure 4.9)

(Table 4.5)

Tree Structure

Figure 4.11 — Sequential Models

88

Ei = {9,.1,.7, .6, 8, .85,.95, .75}

a=01m=50

pl(n)

q1(n)

ri(n)

200
400
600
800
1000

0.500000
0.898385
0.949192
0.966128
0.974596
0.979677

0.500000
0.855382
0.927690
0.951793
0.968845
0.971076

0.500000
0.893066
0.946533
0.964355
0.973266
0.978613

(a) Convergence Path To Minimum

Ei = {9, 8,.7,.6,.1,.85,.95,.75}

di12

a=0.1m=350

pl(n)

ql(n)

ri(n)

200
400
600
800
1000

0.500000
0.811304
0.886884
0.909790
0.922343
0.929874

0.500000
0.862549
0.923761
0.944198
0.954417
0.960548

0.500000
0.866206
0.925468
0.945247
0.955137
0.961070

(b) Convergence Path To Minimum d211

Table 4.6 — Simulation of Tree Structure (Figure 4.11)

39

0 .-

All

A

0/ 10/

--+ Optimal Path (001)

{ R

(a) Optimal Path 001

Ao
L/1
A, A,
0 1 0 . \i
Ag | |A

NN

-~ Optimal Path (100)

Figure 4.12 - Tree Structure :

0 .,-'\‘10

(b) Optimal Path 100

90

/\

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

Selected Path

Sequential Model : Tree Structure (001)

and

and

=i

ams

amd

and

Avereage Action Probabilities

[V #——x Level 1 1 ptin)
o———a Loevel 2 1+ qi (n)
.nd a—a Lovel 3 ¢+ rl(n)

Number of [terations

(b) Optimal Path 001 (Table 4.6a)

Sequential Model 1 Tree Structure (100)

(3 -3

[T 23

amd

Average Action Probabilities
§

[) w——w Lovel | :+ pin)
o——=o Level 2 1 gl (n)
wnd 4———a Loevel 3 : rl(n)

Number of [terations

(a) Optimal Path 100 (Table 4.6b)
Figure 4.13 — Optimal Path Probability Changes

91

Directed Network

Figure 4.14 - Sequential Models

92

Ey = {.95,.1,.9, .8}

a=0.1m=50
n pl(n) ql(n) rl(n) s1(n) t1(n)
0 [0.500000 {0.500000 0.500000. 0.500000 { 0.500000

200 |0.553064 { 0.446936 | 0.849155 | 0.805656 | 0.928465

400 |0.574791 | 0.425209 | 0.898792 | 0.853788 [0.964233

600 |0.589425 {0.410575 | 0.915343 | 0.869834 | 0.976155

800 |0.597068 |0.402932 | 0.923619 [0.877857 | 0.982116

1000 | 0.601655 | 0.398345 | 0.928584 | 0.882671 | 0.985693

(a) Convergence Path To Minimum d212
Ey = {95,.9,.1,.8}
a=0.1,m=50

n | pl(n) ql(n) rl(n) sl(n) t1(n)

0 {0.500000 { 0.500000 { 0.500000 | 0.500000 | 0.500000
200 [0.474115{0.525885 | 0.796715 | 0.821705 | 0.917460
400 10.474132 | 0.525868 | 0.827840 | 0.856285 | 0.958730
600 |0.476088 | 0.523912 | 0.838221 | 0.867813 | 0.972487
800 }0.477066 | 0.522934 | 0.843412 | 0.873576 | 0.979365
1000 [0.477653 |{ 0.522347 | 0.846526 | 0.877035 | 0.983492

(b) Convergence Path To Minimum d221

Table 4.7 - Simulation of Directed Network (Figure 4.14)

93

-~- Optimal Path (001: 101)

(a) Optimal Path 001:101

o7\

- -~ Optimal Path (010: 110)

Figure 4.15 — Directed Network :

94

(b) Optimal Path 010:110

Selected

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

Path

Sequential Model s+ Directed Network (001:101)

&

(L 23

[23

Level 1

a— Llevel 1 1+ gl (n)
“ane

wl 4t Lovel 2 s ri(n)

#————=a Level 2 1 sl (n)

o———o Loevel 3

Average Action Probabilities

(73

X 24

Number of Iterations

(a) Optimal Path 001:101 (Table 4.7a)

Sequential Model :+ Directed Network (010:110)

w———x Lovel !
a—— s lovel 1 4 gl (n) ¢
+——t Lovel 2 : rl(n) ¢
o———a Lovel 2 1 sl (N} ¢
o——o Level 3+ tl(n}

Averege Actlon Probabilities

Number of [terations

(b) Optimal Path 010:110 (Table 4.7b)
Figure 4.16 — Optimal Path Probability Changes

95

General Network
Figure 4.17 — Sequential Models

96

Chapter Five

Petri Net Theory

5.1 Introduction

The previous chapters have provided a survey of the state of the art
of distributed decision making systems, and outlined the degree of complexity
involved in the development of such systems. In approaching this problem, the
stochastic learning automata was adopted as a basic framework. Further, the
discussion in Chapter Four includes an analysis of the collective behaviour of
multiple learning automata in a game situation. Thus, several configurations
are introduced and simulation results are included for models in which the
actions of all decision makers are synchronised as well as sequential models.
However, it was shown that such models lack structure and the ability to
describe explicit interactions between decision makers. It was considered that
such models were inadequate for the representation of complex systems which
may involve concurrent, asynchronous, parallel or distributed activities.

This chapter introduces a mathematical framework based on Petri
net theory as a suitable basic model for representing and studying complex
systems. Petri Nets (PN) models are a graphical and mathematical tool
applicable to the analysis of a diverse range éf systems. They have ‘been
proposed by many authors as a useful tool for describing and analysing the flow

of information and control in systems that exhibit concurrent, asynchronous,

97

distributed, parallel, nondeterministic, and/ or stochastic activities, [15], [16],
[51], [52]. In the graphical representation, PNs can be considered as a
visual communication aid in the form of flow charts, block diagrams, and
networks. In mathematical terms, many systems can be described numerically
and the relations between certain features may be interpreted by equations
or inequalities. The concept of Petri nets originated in the early work of
C. A. Petri in his doctoral dissertation, submitted in 1962 to the faculty
of Mathematics and Physics at the Technical University of Darmstadt, West
Germany, [53).

This following section presents formal definitions for basic PN concepts.
An introductory modelling example is provided, which illustrates the modelling
capability of PNs within the context of this thesis. It also describes an analysis
technique which may be used to study the behaviour of the system. Finally,

the notion of time is also introduced by discussing stochastic nets, [54], [55].

5.2 Structure of a Petri Net

The structure of standard Petri nets are composed of a set of places
P (p1,p2,---,Pn), @ set of transitions T (t1,t2,... ,tm) and to complete the
definition, it is relevant to consider the relationship between the places and
the transitions. The relationship is achieved by outlining a set of input and
output functions. The input function I defines, for each transition t;, the set
of input places for the tranmsition I(t;). The output function O defines for
each transition t;, the set of output places for the transition O(t;). Figure

5.1 shows the structure of a Petri net.

98

A formal definition of a Petri net structure represents a 3-tuple, PN = (P,

T, F) as follows:

P = (p1,p2,...,Pn) is a finite set of places;

T = (t1,t2,-.-,tm) is a finite set of transitions;

I(t;) C (P x T) is the input function; (5.1)
O(t;) C (T x P) is the output function;

F C (I(t;) U O(t;)) is a set of input and output functions;

5.2.1 Petri Net Graphs

The above Petri net structure maybe represented in the form of a
directed, weighted, bipartite graph. In the graphical representation of Petri
nets, places are drawn as circles and transitions as bars or boxes. The input
and output functions are represented by directed arcs which are drawn as
arrows, connecting the transitions to places and places to transitions. A
place is an input to a tranmsition if an arc exists from the place to the
transition. A place is an output of a transition if an arc exists from the
transition to the place. Since the arcs are directed, and labelled with their
weights (nonnegative integer), PNs are referred to as directed, weighted graph.
Labels for unity weight are usually omitted. Additionally, since the nodes
can be partitioned into two sets (places and transitions) such that each arc
is directed from an element of one set (place or transition) to an element of
the other set (transition or place), it is known as a bipartite graph. Figure
5.2 shows an example of a Petri net graph corresponding to the structure

described above. The Petri net consists of five places and five transitions.

99

5.2.2 Petri Net Markings

The dynamic feature of a PN is represented by tokens. A marking
(state) assigns tokens to each place in a net. Tokens are graphically drawn
as black dots, which reside in the circle nodes representing the places of the
net. A Petri net with tokens is called a marked Petr: net. The number m;
of tokens and its position in a net may change during execution, thus defining
the state of a system. The PN state is usually called the Petri net marking,

and is denoted by the vector M = (my, m2,...,m,). A marked Petri net is

depicted in Figure 5.3.

A formal definition of marked PN is thus the following 4-tuple, PN = (P, T,

F, M) as follows: -

P = (p1,p2,...,Pn) 1is a finite set of places;

T = (t1,t2,...,tm) Is a finite set of transitions;
(5.2)
F C (PzT)U (TzP) is a set of input and output functions;

My = (mo1, mog, - - .y Mon)

where mg; denotes the number of tokens in place p; in the initial marking

M,.

5.2.3 Execution Rule for Marked Petri Nets

The dynamic behaviour of a PN can be described by the execution
of the net. The execution of a PN is controlled by the number and the
distribution of tokens in the PN. A Petri net executes by firing transitions.

The firing of a transition changes a state or marking of the PN to a new

100

marking according to the following transition enabling and firing rule:

(1) A transition ¢ is said to be enabled if each input place contains at
least one token.

(2) A firing of an enabled transition removes one token from each of its
input place, and then adds one token into each of its output places.

(3) Each firing of a transition represents a change in the state of the
net by modifying the distribution of tokens in a nets’ place; thus

producing a new marking.

This results in a new marking M’ where:

M(p)+1 if peO(t), peI(t);
M'(p) =4 M(p) -1 if pel(t), pdO(t); (5.3)
M(p) otherwise
Consider the dynamic behaviourA of the marked Petri net in Figure 5.3. The
initial marking is My = [10000], and by definition only transition t; is enabled
in this marking. Thus ¢; is the only transition that can fire and change
the state of the system. The result of firing ¢; is shown in Figure 5.3a, no
tokens are present in p; while places p, and p; each contain a token; the
marking now becomes M; = [01100]. In this case both transitions t; and t3
are enabled and can fire independently (concurrently), since they do not share
any input places. The firing of ¢, enables transition t,; the firing of ¢3 puts
a token in ps. On completing the firings of both transitions ¢, and i3, a
new marking is reached as shown in Figure 5.3b. This situation represents a

conflict. Both transitions t4 and t; are enabled. However, only one of these

two transitions can fire and the firing of one transition disables the other.

101

In such a case, the decision as to which one fires is non deterministic. If 5
fires the system returns to the initial marking. The ability to represent both

concurrency and conflict makes PNs a very powerful modelling tool.

5.2.4 Modelling Examples

Petri net§ were designed for and are used mainly for modelling. Many
systems can be modelled by a Petri net, including computer software, hardware
or physical systems. In particular they may be used to model the flow of
information or other resources within a system. This section outlines one
of the basic concepts of PNs that are useful in modelling. It provides a

description and a more realistic application of the individual components.

Events and Conditions

The simple Petri net view of a system focusses on two concepts;
events and conditions. Fuvents are actions which take place in the system.
The occurrence of an event is controlled by the state of the system. The
state of the system may be described by a set of conditions. A condition is
a logical description of the state of the system, which may hold (true) or not
hold (false).

In modelling using this concept, places represent conditions and,
transitions in a PN represent events in a real system. A transition (an event)
has a certain number of input and output places representing the pre-conditions
and post-conditions, respectively. A marked PN then corresponds to a state

of the system being modelled. The firing of a PN transition corresponds to

102

the occurrence of an event in the system. The occurrence of an event causes
the system to move to a different state. Therefore, the successive firings of
transitions (and the resulting changes in markings) in a PN represent the
evolution of the system through different states. Some typical interpretation

of transitions and their input and output places are shown in Table 5.1.

5.2.5 Analysis of Petri Nets

The major strength of PNs is in the modelling of systems. However
modelling of systems is itself not useful. It is necessary to analyse the modelled
system. This analysis provides important insights into the behaviour of the
system. There are several approaches in the analysis of PNs. The major
analysis technique which has been used with PNs, in this project is based
on the coverability (reachability) tree. This technique involves finding a finite
representation for the reachability set of a PN. It consists of a tree whose nodes
represent markings of the PN and whose arcs represent the possible changes
in state resulting from the firing of transitions. The following presents the

reachability property and a discussion of the appropriate analysis technique.

Reachability

The reachability set of a PN can be represented in the form of a tree structure,
as discussed later. This concept is a fundamental basis for studying the
dynamic properties of a system. The firing of an enabled transition changes
the state (marking) of a system according to the transition firing rule. As

execution of the firing rule proceeds, a sequence of firings will result in

103

a sequence of markings. Thus, a sequence of tramsitions (¢,t,...) and
a sequence of markings (Mo, My, Ms,...) can be defined. By definition, a
marking M, is said to be reachable from a marking M, if there exists a

sequence of transition firings that transforms the PN state from M, to M,.

A firing or occurrence sequence is denoted by

g = MOthltZMZ e tnM.n (54)

or simply

o =1tlity...1, (55)
Hence, M, is reachable from M, by ¢ and this may be written as follows:
Mo[O' > M, (56)

Thus, the set of all possible markings reachable from Mj in a net is denoted

by R(Mj).

The Coverability (Reachability) Tree
Given a PN with an initial marking M, it is possible to obtain as many
‘new’ markings as the number of enabled transitions. From each new marking,
more new markings can be reached. If this procedure is repeated many times,
a tree representation of all the markings will be produced. The coverability
tree consists of nodes which represent markings of the PN and whose arcs
represent a transition firing, which transforms one marking to another. Note
that if the net is bounded, the coverability tree is called a reachability tree.
Consider the example of the marked PN of Figure 5.3. The reacha-

bility tree can be constructed by starting from the initial marking M, and

104

considering the markings immediately reachable from this state. The initial
marking is M, = [10000], and transition ¢, is enabled. Since the entire
reachability set is required, new nodes may be defined in the reachability tree
for the (reachable) markings which result from firing of transition ¢;. An arc
labelled by the transition fired leads from the initial marking to each of the
new markings, Figure 5.4a shows all markings that are immediately reachable
from the initial marking. Consider all markings that are reachable from
these new markings. From M; = [01100], transitions ¢, and ¢3 may be fired
producing M, = [00110] and M; = [01001]. These firings produce the tree of
Figure 5.4b. The immediately reachable marking from M; is now M; and
M, by firing transition t; and t3, respectively. In this case a new marking
M, = [00011] is created, and the old marking of M; is created. From M,
the same operation could be repeated and this would obviously lead to an
infinite structure. This process is repeated, producing new markings to add

to the tree shown in Figure 5.4c and Figure 5.4d.

By repeating this procedure over and over, every reachable marking
will eventually be produced. However, the resulting reachability tree may be
infinite. Every marking in the reachability set will be produced, and for any
PN with an infinite reachability set, th;a corresponding tree would also be
infinite. It is important to note that if the tree is going to be useful, it is
necessary to limit the tree to a finite size. Appendix Three provides relevant

PN properties, details for the reduction to finite form and also the algorithm

necessary to construct the reachability tree.

105

5.3 Time-Related Model

The concept of time is not explicitly given in the standard Petri
net model. Therefore with standard PNs it is possible to describe only the
logical structure of systems and not their time evolution. As such, PNs did
not convey information about the duration of each activity or on the way in
which the transitions to be fired is actually selected from among these enabled
in a marking. Many authors have extended PN models by introducing the
notion of time, [54], [55], [56]. This section introduces time delays in a Petri
net model. These time delays are specified probabilistically and the model is

known as a Stochastic Petri Net (SPN).

5.3.1 Stochastic Petri Nets (SPN)
A Stochastic Petri Net (SPN) is a Petri net where each transition is
associated with an exponentially distributed random variable that expresses

the delay from the enabling to the firing of the tramsition, [54], [55], [56].

A formal definition of a S‘tochastic Petri net, is as follows:
SPN = (P, T, A,My, A) (5.8)

where (P, T, A, M;) is the marked PN underlying the SPN; and A =

(A1, Az, .. ., Am) is the set of possibly marking-dependent firing rates associated
with the Petri net transitions.

In the case where several transitions are simultaneously enabled; the
transition with which is associated the shortest delay will fire first. The SPN

then reaches a new marking in which transitions that were already enabled

106

in the previous marking, but did not fire, may be still enabled.

5.3.2 An Example of a Stochastic Petri Net

Consider the SPN shown in Figure 5.5, transition t; fires at a marking-
dependent rate equal to am,;, where m, is the number of tokens in p;. The
other transitions t;, t3 and t4 have (marking-independent) firing rates 3, v and
6, respectively; these are indicated close to the corresponding transitions. The
associated reachability tree is shown in Figure 5.6. The system operations can
be precisely described by means of a graph that translates into a Markovian

model useful for obtaining performance estimates, [54].

5.3.3 Generalised Stochastic Petri Net (GSPN)

The Limitation of SPNs is that the graphical representation of systems
becomes more difficult as system size and complexity increase, [57]. Moreover,
the number of states of the associated reachability tree rapidly multiplies as
the dimensions of the graph increase. Thus, SPNs can be used to model only
systems of limited size.

The SPNs have been extended to a class of Generalised Stochastic
Petri Nets (GSPN) to overcome these limitations. The GSPNs are useful in
modelling system operations which comprise activities whose durations differ
by orders of magnitude. It is then permissible that the short activities can
be processed immediately, whilst time is associated with the longer lasting
activities. This approach is most appropriate, since the number of states of

the associated reachability tree is reduced, hence reducing the complexity of

107

the model.

GSPN models comprise two types of transitions, immediate transitions
and timed transitions. Immediate transitions fire in zero time with priority
over timed transitions. Timed transitions fire after a random, exponentially
distributed enabling time. In all figures, the convention used for drawing

timed transitions is thick bars or box nodes, and immediate transitions as

thin bars.

A formal definition of a GSPN is thus,
GSPN = (P, T, A,M,, 7, W) (5.9)

where (P, T, A, M) is the marked PN underlying the GSPN; 7 is a priority
function defined over the set of immediate transitions; W = (w;,ws, ..., wy) is
an array whose entries correspond to the firing rates of the timed transitions
(as in the case of SPN); the weights of immediate transitions. Similarly,
the interpretation of the model is very similar to the case of SPN, with the
additions resulting from the introduction of immediate transitions.

In the case of a GSPN, a reduction of the reachability tree is
possible by classifying markings into two types: vanishing and tangible
markings. A marking is called vanishing marking if it enables (at least)
one immediate transition. A vanishing marking is so named since no time
is spent in this marking; as soon as such a marking is reached (one of) the
immediate transitions fire in zero time. However, when a marking enables

timed transitions, it is called tangible marking, and the behaviour is the same

as in the case of SPNs.

108

Several transitions may be simultaneously enabled by a marking.
The following rules may be applied: if the set of enabled tramsitions H

comprises only timed transitions, then the enabled transition fires ¢; (ieH)

with probability as follows

A

—_Zk T (5.10)

Pr{t;} =
exactly as with SPNs. If H consists of both immediate and timed transitions
then only immediate transitions can fire. If H comprises zero or more timed
transitions and only one immediate transition, then this is the one that fires.
However, if H comprises several immediate transitions it is necessary to specify
a probability density function on the set of enabled immediate transitions
according to which transition is selected. This is called a random switch and
the associated probability distribution is called a switching distribution.

It may also be noted that the reachability set of GSPN is significantly
reduced in comparison to the associated PN, because the priority rules in-
troduced with immediate transitions do not allow some states to be reached.

The reachability set of a SPN is identical to the set constructed for the

associated PN.

534 An Example of Generalised Stochastic Petri Net

Consider, an example of the GSPN shown in Figure 5.7; comprises
of seven places and transitions. The three timed transitions t,, t¢ and t7 fire
at fixed rates u, v and z respectively. The immediate transitions ¢4 and ts

are enabled simultaneously if tokens are present in places p; and ps. Thus,

109

a switching distribution must be defined for each marking in which m,, my
and ms are greater than zero. It is also necessary to define a switching
distribution for the two conflicting immediate transitions, namely, t; and t3.
These transitions are always enabled simultaneously, such that a switching
distribution for each marking in WhiChvm;; is greater than zero is required.
For this particular structure, two random switches can be defined, Table 5.2a

provides the switching distribution.

Execution of GSPN

By starting from the initial marking M;[2001100] shown in Figure 5.7; the
evolution of states results in a reachability tree as depicted in Figure 5.8.
Clearly, transition t; fires after an exponentially distributed random time u,
and this removes one token from place p; and placing one in p,. At this
stage the immediate transitions ¢4 or t; are enabled. The transition that
fires is selected according to the switching distribﬁtion defined in Table 5.2a,
in this case equal probabilities are assigned to the firing of each transition.
Now, assume that t; fires, this moves a token contained in place p, and py,
and includes one in pg. The enabled transitions are t; and tg, each of which

can fire first with the following probabilities.

u

Prin} = ooy (5.11)
Prits} = oy (5.12)

If ¢, fires first, a token moves from p; to p, thus enabling the immediate

transition ts. Since t5 is the only immediate transition that is enabled, this

110

fires at zero time by moving one token from p; to p; and removing one token
from ps. This produces a new marking containing token in ps and p;. The

two timed tranmsitions t¢ and t; are now enabled. Transition ¢ fires with

probability
v
Pr{ts} =) (5.13)
whilst transition t; fires with probability
z
Pr{t:} = ot 2) (5.14)

Assume that ¢ fires, so that one token moves from pg to ps;, and a token is put
in p;. Thus, the two immediate transitions ¢; and ¢3 are now simultaneously
enabled; the transition that fires is selected according to switching distribution
defined in Table 5.2a. Similarly, in this case equal probabilities are assigned
to the firing of each transition, so that the token can move either to ps or to
ps. Now transitions t; and t; are enabled, and the PN evolution continues;
thus developing the corresponding reachability tree, as shown in Figure 5.8.

The reachability set of the GSPN example is provided in Table 5.2b.
It comprises 16 markings, whereas that of the associated PN comprises 33
states. As stated previously the reachability set of a GSPN is a subset of the
reachability set of the associated PN, due to the precedence rules introduced
with immediate transitions which do not allow some states to be reached.
Thus, it must be pointed out that the reachability set of a SPN is, instead,
the same as for the associated PN. Furthermore, Table 5.2b illustrates that

the reachability set of the GSPN may be divided into two disjoint subsets,

111

one of which consists of markings that enable timed transitions only, and also

markings that enable immediate transitions.

5.4 Conclusion and Summary

This chapter has presented a brief review of knowledge in the field
of PNs. It has defined a high-level quantitative framework based on PN
methodology, and introduced appropriate terminology although not all aspects
in the field of PN theory have been discussed. The practical applications
of such state-transition models have been considered by extending and/or
modifying the basic model definitions to obtain more convenient modelling
tools. In particular, the possibility of representing in the model the time
involved in system operations has been discussed by studying stochastic timed
nets.

A detailed description of the SPN has been presented. It is shown
that SPNs are obtained by associating with each transition in a PN an
exponentially distributed firing time. SPNs are a very useful tool for the
analysis of computer systems since they allow the system operations to be
precisely described by means of a graph and the model is useful for obtaining
performance estimates. However, there are limitations to the use of SPN,
they can be used to model only systems of limited size. This is due to
the complexity involved in the graphical representation of systems, and also
there is a rapid increase in the number of states of the associated reachability
tree as the dimensions of the graph increase. Thus, a Generalised SPN is

introduced which contain two types of transitions: timed and immediate. It

112

is shown that by considering GSPNs, the number of states of the associated
reachability tree is reduced and also the solution complexity is reduced.

To conclude, this chapter has identified the potential modelling ca-
pability of the Petri Net formalism. The framework is considered to be an
effective graphical and mathematical tool. In particular, they provide a pow-
erful means for the description and analysis of sytems that are characterised as
being concurrent, asynchronous, distributed, parallel, nondeterministic and/or
stochastic. However, at this phase of the research programme it is evident
that existing PN theory do not exhibit an intelligence capability which is
needed for the effective representation of decision models. The next chapter
addresses the shortcomings of the PN methodology by introducing a new class

of PNs, known as the Learning Petri Net Models.

113

N = (P, T,F)

P = (pla p29 p3, p4, ps)

= (), b, t, Uy ts)
I(t) = P, o,) = (D,)
() =, Ot,) = p,
) = py O(ty) = py
I(t4) = Dy O(t4) = p,
I(t,) = (P, Ps) O(ts) = p,

Figure 5.1 — Petri Net Structure

O Place

e T'ransition

Figure 5.2 — Petri Net Graph

114

Place

Transition

' Token

ty —

Figure 5.3 - Marked Petri Net

115

——

Y

T

t

——

t
Q"‘*\
ts

(a) Transition t; Fires

T‘z

®)"

(b) Transition t, : t3 Fires

Figure 5.3 — Marked Petri Net

116

Mg =[10000]

[

M; =[01100]

(a) First Step in Building Tree

My =[(10000]
ty

M; =[01100]

t/ w

M, =[00110] M3 =[01001]

(b) Second Step in Building Tree
Figure 5.4 — Reachability Tree Construction of Marked PN (Figure 5.3)

117

Mg =[10000]

[

M; =[01100]

N

M, =[00110) My =[01001]
PR, N\
Ml OLD M4=[00011] M4 OLD

(c) Third Step in Building Tree

Mg =[10000]

it

M| =[01100]

N

M2=[00110] M3=[01001]
v\ ¢
MIO M4-[(m\O:l] M4 OLD
M M0 OLD

(d) Fourth Step in Building Tree

Figure 5.4 — Reachability Tree Construction of Marked PN (Figure 5.3)

118

Figure 5.5 — Stochastic Petri Net (SPN)

119

Mg = [2000]

M| =
)
Mo M, =[0200] My =[1011]
t
2 K] ty ty
M, My, =[0111] M
0
t
M
3 Mg =[0022] M,
b
M3y

Figure 5.6 — Reachability Tree SPN

120

Figure 5.7 — Generalised Stochastic Petri Net (GSPN)

121

Mg =[2001100]

M;=[1101100]

My4=100101010]

tg

Mi5= (0000002} Mig= [0000020]
g g
Mg Mo

States - (Mg M M; MgM1; M3 M5 Myg) Tangible Marking

© Vanishing Marking Indicates Presence of Random Switch

Figure 5.8 — GSPN Reachability Tree

122

INPUT PLACES

Pre-conditions
Input data

Input Signal
Resource needed
Buffer

Table 5.1 — Interpretations of Transitions and Places

Pr(ty) = m4/ (m4+m5)
Pr(t5) = m5/ (m4+m5)

Pr(ty) = m5/ (m4+mS5)
Pr(t3) = m4/ (m4+m5)

Pr(tp) = Prt3) = 112

TRANSITIONS

Event
Computation
Signal Processor
Task or Job
Processor

if md=0andm5=0

OUTPUT PLACES

Post Conditions

Output data
Output signal

Resource needed

Buffer

if méd=m5=0

Table 5.2a -~ Switching Probabilities of GSPN

MARKINGS THAT
ENABLE
TIMED TRANSITIONS

B

MO
M1
M3
M8
Mi11
M12
M15
M16

OOt =t Ot = N

MARKINGS THAT
ENABLE
IMMEDIATE TRANSITIONS
ml

M1 1
M4 0
M5 2
M6 0
M7 2
M9 1
M10 1
Mi13 0
M14 0

COOCOOoOOO E)

5

=, O OO = O et

=]
w

COOOOOOO

g
e}

CO e~ O —~O0OO0

8
Y

OO OO m O —

g
>

HFOOO M OO =

&

OO O~O O —

&,

O=m OO OO it

Table 5.2b — Reachability Set of GSPN

123

3
o

NO O —O —o

3
o

—_ O~ OO0 —~O

g
3

ONO -~ —OO

=]
<

OO O~ OoOO

Chapter Six

Learning Petri Net Models

6.1 Introduction

This chapter draws together methods described in the previous chapters
to form a novel extension of PNs by embedding a stochastic learning automata
within PN models. In the discussion that follows the progressive stages of
the development of a powerful modelling tool for C3-I systems is provided.
The decision making process can be modelled with a new type of hybrid PN,
namely Stochastic Learning Petri Net (SLPN), [58], [59]. In such a manner
for the first time an Al based decision making process is embedded within
PNs. This hybrid PN structure enables models of arbitrary topology to be

simulated, and the application of this modelling tool is discussed in the next

Chapter.

6.2 Basic Stochastic Learning Petri Net (Basic SLPN)

This section introduces a new class of PN, referred to as Basic
Stochastic Learning Petri net (Basic SLPN) as depicted in Figure 6.1a. It
has been formed by incorporating the concept of stochastic learning automata
into a SPN model. Consider the model of the Basic SLPN in Figure 6.1a,
and the corresponding reachability tree, as depicted in Figure 6.1b. It is

clear from Figure 6.1a that the Basic SLPN provides structure to the original

124

stochastic learning automata by the additional concept of tokens in the net;

thus describing precisely the interactions involved.

A formal definition of the Basic SLPN structure is thus the following:
BasicSLPN = (Pa T) A) Mo,ﬁ, ¢7 a, p, F’ G) (61)

where (P,T, A, Mp) is the PN underlying the model; (8, ¢, a,p, F,G) is the
stochastic learning automata underlying the Basic SLPN. In this representation
Pr{a;} = Pr{t;} indicates the transition firing probabilities.

The interpretation of the model is similar to the case of stochas-

tic learning automata with the additions resulting from the introduction of

Stochastic Petri nets.

6.2.1 Simulation Results: Basic SLPN

The simulation results for a two-state Basic SLPN are provided in
Table 6.1. Similar to the previous simulations an Lr; updating scheme is used;
the reward parameter and expected values are provided. The probabilities
associated with the firing of each transition are equal; the initial value
is equal to 0.5. Consider the results in Table 6.1 and the corresponding
learning curve shown in Figure 6.2, it is evident that the transition associated
with the unique maximum reward probability converge close to unity. This
highlights the intelligence capability embedded within a Petri net model, and
also a modification of the basic stochastic automaton model arises due to the

disposition of tokens in the net, thus providing a graphical description to the

model.

125

6.3 Stochastic Learning Petri Net (SLPN)

This section discusses the various stages involved in the extension of
SPN model to a new class of Petri nets, namely, Stochastic Learning Petri
nets (SLPN) as depicted in Figure 6.3. Consider the model of the SPN,
shown in Figure 5.5. By analysis of the reachability tree in Figure 5.6, it is -
evident that the SPN model may exhibit one of six different states, depending
on the transition that fires. Several transitions may be simultaneously enabled
by a particular marking. Assume that H is the set of enabled transitions,

then a transition t; (ieH) fires with probability:

A

DokeH Ak (6.2)

P’l"{t,‘} =

exactly as in case of SPNs, A is the firing rate associated with PN transitions.
Thus, the different states of a SPN define probability ratios which correspond
to the firing of each tramsition. In any state, the sum of the probability
ratios is always equal to unity. For example, consider state M; = [1100]; the

enabled transitions are t;, t; and t3 and their respective firing probabilities

may be defined as follows:

Prit,} = CEYEe) (6.3)
_ B

Prity} = CEY) (6.4)
_ Y

P’I‘{tg} = ‘—"—(a T 5 n 7) (65)

126

Thus,

Pr{ti} + Pr{ts} + Pr{ts} =1 (6.6)

6.3.1 Reachability Tree : Stochastic Automata Embedded

In the tree representation, several transitions may be simultaneously
enabled in any particular marking. The concept of a stochastic automaton
may be introduced to select probabilistically the transition that fires. A
transition selected in a particular marking corresponds to an action selected
by an automaton. The firing of the chosen transition determines the next
state (marking) of the system, by modifying the token distribution. In the
tree representation of the SPN, Figure 5.6, there exists both two-state and

three-state automata. This is illustrated in Figure 6.4. Consider the following

cases:

Two-state Automaton

It is clear that state M[0200] and state Mj3[1011] in Figure 6.4 represent a
two-state automaton as shown in Figure 6.5a. The SPN with marking M,
enables transitions t, and t3, since tokens are present in the input place (p;).
Each transition has an equal initial probability of being selected. The firing
of t,, determines the next state of SPN to be M;; the firing of ¢3, determines

that the next state is My. The firing probabilities for each transition are

given as follows:

Prity} = =P (6.7)

Pri} = 1 5 (6.8)

Similarly,

Pr{ty} + Pr{ts} =1 (6.9)

The concept of a two-state automaton also applies to state M3 which has the
possibility of firing two transitions, ¢; and t; the firing of these transitions

determines the next state to be My and Mg, respectively.

Three-state Automaton
Clearly, the states M; and M, correspond to a three-state automaton. By
considering the marking M;, the case is illustrated in Figure 6.5b. It is shown
that the transitions t;, t; and t3 are ena.bled; each transition has an equal
initial probability of being selected. The possibility of firing t;, determines
that the next state is Mp; the firing of ¢t determines that the next state of
the SPN to be Mj; finally, if ¢3 is selected by the automaton then the state
transfers to Msj.

A similar concept also applies to state My. In this case, the three-
state automaton has the possibility of selecting t,, t3 or t4 with equal initial
probabilities. The firing of transitions t;, t3 or t; determines the next states

as M3z, Ms and M;, respectively.

Transitions Fire Instantly
Note that the transition firing probabilities in each state My and M; are

always equal to unity. Since in state M, the only transition that is enabled

128

1s t]_,

Prit,} = g =1 (6.10)

Thus, it must fire with probability one. Similarly, in state M;s the only

transition that is enabled is t4,

Pr{ts} = -z- =1 (6.11)

so it must also fire with probability equal to unity.

6.3.2 Hierarchical System of Automata

The reachability tree may now be considered as a simple hierarchical
system of automata; each state corresponding to an automaton. It may
be noted that in a hierarchy each firing of a transition (action selected by
automaton) has a unique path connecting it to the automaton (state) that
has been selected previously, or to an automaton at the top level (state My).
From the tree structure of Figure 6.4, it is possible to define nine unique
paths which may be considered as sequence of states/ decisions, shown in
Figure 6.6. To introduce the concept of an environment into this model,
each sequence of states is associated with a reward probability, indicated by
¢; values as illustrated in Figure 6.6. Such a system may be considered as

a Stochastic Learning Petri Net (SLPN) model; this structure is shown in

Figure 6.7.

129

6.3.3 Operation of SLPN

- The operation of this hierarchical learning system is as follows. At
any instant the first level automaton, state M, selects an action (fires t;).
This activates an automaton in the second level which fires a transition
from its current transition probability distribution. This in turn activates,
automata in the next level and so on. However, if a particular sequence
of decisions corresponding to a unique path has been reached; the sequence
is fed into the environment. The environment in turn generates a reward/
punish signal as its reaction. The response of the environment is used to
update the transition probabilities for the various levels of automata in the
selected path. This process repeats until all the probabilities in one path
converge close to unity (ie. path associated with unique maximum reward
probability or unique minimum penalty probability) from the top level (M)
to the lowest level (Ms).

Thus, the formal definition of a SLPN, is as follows:
SLPN = (P, T, A, My, A\, M) (6.12)

where (P,T, A, My, \) is the stochastic Petri net underlying the model; M,
indicates the presence of two/ three-state stochastic learning automata which
consist of the components (8,9, a,p, F,G). In this representation Pr{a;} =
Pr{t;} indicates the transition firing probabilities.

Similarly, the interpretation of the model is identical to the case of

stochastic learning automata with the additions resulting from the introduction

of Stochastic Petri nets.

130

6.3.4 Simulation Results : SLPN

This section pi'esents computer simulation results for the SLPN model.
The results are presented in the form of tables. In all cases the reward
parameter is indicated; and Pr(i,j) denotes the transition firing probabilities,
where 7 represents the state of the system and j provides the notation for the
transition that fires. For example, consider the notation for state M; firing
transition t3; the transition firing probability may be represented by Pr(1,3).
Expected values are denoted by the expression eg. Pr(i,j) = E[Pr(3,j)).

In the simulation study the hierarchical system in Figure 6.4 was exam-
ined. Such a tree representation was modified by introducing the stochastic
learning automaton approach with the capability of selecting sequences of
decisions, discussed previously. To simulate this SLPN, all of the reward
probabilities in the environment were in the range [0.2 - 0.45] except the
unique maximum reward probability which was set to 0.9. An Lg; updating
scheme was used to update action probabilities for the selected path.

Tables [6.2 - 6.10] provide the reward probabilities of the environment
which are used for simulation. Note that in each case the unique maximum
reward probability is associated with the selected sequence of decisions. Con-
sider Table 6.2, the maximum reward probability relates to sequence 0. This
sequence corresponds to selecting the path: M0— Pr(0,1); M1— Pr(1,2); MO,
repeatedly. Hence, the optimal path probability changes in Table 6.2 may be
analysed. The SLPN in state MO always fires t; with probability unity; thus
the transition probability in MO always remains constant. The firing of ¢,

results in changing the next state to M1. In state M1, the transitions t;, t2

131

and t; are enabled. However, the rapid convergence of Pr(1,2) in state M1

indicates that the optimal path converges to sequence 0, by the firing of %,.

Table 6.3 illustrates the convergence to the unique maximum reward
probability, such that sequence 1 is selected. This sequence represents the
path MO0 — Pr(0,1); M1 - Pr(1,1); M2— Pr(2,2); M1. In this case, transition
probability vector in state M0 is equal to unity; since ¢; must always fire with
probability equal to one. Also the convergence of transition probability Pr(1,1)
in the three-state automaton M1; and Pr(2,2) in the two-state automaton
M2 show that the optimal path selected is sequence 1, which has the unique

maximum reward probability.

Similarly, for Table [6.4 - 6.10]. It is observed that the transition

probability vectors that converge close to unity, correspond to the sequence

of decisions associated with the unique maximum reward probability.

6.4 Generalised Stochastic Learning Petri Net (GSLPN)

A similar approach is adopted for the development of GSLPN. By
analysis of the reachability tree in Figure 5.8, the GSPN may exist in one
of eighteen different states. These states provide a combination of immediate
and timed transitions. However, for the development of a Generalised version
of the Stochastic Learning Petri Net it is necessary to consider only timed
transitions, since firing rates associated with immediate transitions are deter-
mined by switching distribution. Such that, if several timed transitions are

simultaneously enabled in any tangible marking; and assuming that H is the

132

set of enabled transitions, then a transition t; (ieH) fires with probability

A
EkeH }‘k

P?"{t]_} = (613)

as stated previously, A is the firing rate associated with PN transitions. Thus,
the different states relating to timed transitions of a GSPN define probability
ratios which correspond to the firing of each transition. In any state, the sum
of probability ratios is always equal to unity. Consider state M, = [1000110];
the enabled transitions are t; and t¢ and their respective firing probabilities

may be defined as follows:

Pr{t,} = (Wt 0) (6.14)
and
Pr{ts} = (£ 0) (6.15)
Thus,.
Pr{ti} + Pr{ts} =1 (6.16)

For this model of a GSPN, the concept of a stochastic automaton has been
introduced to control the firing of timed transitions on a probabilistic basis.
The firing of the selected transition in a tangible marking determines that
the next state (marking) of the system corresponds to a vanishing marking;
thus enabling only immediate transitions. Such transitions are then controlled
by the switching distribution technique. In the tree representation in Figure
6.8, there exists only two-state automata for each tangible marking. Clearly,

the tangible states Ma, M3, Mg, My and Mi, correspond to a two-state

automata.

133

Two-state Automaton

Consider, Figure 6.8, the tangible marking M,[1000110] enables transitions
t; and tg, since tokems are present in the input places (pi, ps). Each
transition can fire first with equal initial probabilities, firing probabilities for

each transition given below.

P”“}z(u+v) (6.17)
PT{tg} = m (618)

Similarly
Pr{t} + Pr{ts} =1 (6.19)

The firing of t;, determines the next state of GSPN to be vanishing marking
My; the firing of tg, also determines that the next state is vanishing marking
Ms. The concept of two-state automaton also applies to each tangible
marking, namely, M3, Mg, M;; and M.

It must be pointed out that the transition firing probabilities in each
tangible marking Mp; M5 and Mie is always equal to unity. Since in state

M,, the only transition that is enabled is ¢;.

Prity=-=1 (6.20)

el

Thus, it must fire with probability one. Similarly, in state M5 and Me the

only transitions enabled are t; and tg, respectively.

Prit;} = Prits} =1 (6.21)

134

so it must also fire with probability equal to unity.

Hierarchical System of Automata — GSLPN

Thus, from the reachability tree a simple hierarchical system of automata is
developed; each tangible state corresponding to an automaton. Similar to the
case of SLPN, in a hierarchy each action has a unique path connecting it to
the automaton (state) that has been selected previously, or to an automaton
at the top level (state Mj;). By considering the tree structure of Figure 6.8,
nine unique paths may be defined which are considered as sequence of states/
decisions, shown in Figure 6.9. To introduce the concept of an environment

into this model, each sequence of states is associated with a reward probability.

The operation of this hierarchical learning system is similar to the
SLPN, with the addition of switching distributions associated with vanishing
markings. If a vanishing marking is reached, the next state is determined
by considering switching distributions (random switch), presented in Table
5.2a. The firing of transitions according to a random switch alters the
next state to a tangible marking, depending on the transition that fires.
At any instant the first level automaton, state My, selects an action (fires
t1). This activates an automaton in the second level which fires a transition
from its ’current transition probability distribution. This in turn activates,
automata in the next level and so on. However, if a particular sequence of
decisions corresponding to a unique path has been reached; the environment
in turn génerates a reward/ punish signal as its reaction. The reaction of

the environment is used to update the transition probabilities for the various

135

levels of automata in the selected path. This process repeats until all the
probabilities in one path become close to unity from the top level (M) to

the lowest level (Mj5). Such a system may be considered as a Generalised

Stochastic Learning Petri Net (GSLPN) model.

6.4.1 Simulation Results : GSLPN

This section presents computer simulation results for the GSLPN
model. The results are presented in the form of tables; indicating reward
parameter is equal to 0.1, also the reward probabilities associated with each
sequence of states. The notation for Pr(7,j) remains the same as for SLPN,
as indicated in Section 6.3.4. In the simulation study the hierarchical system
was modified by introducing the stochastic learning automaton approach for
each tangible marking. By considering each tangible state as an automaton,
this provides the capability of selecting sequences of decisions, discussed
previously. For the simulation of GSLPN, all of the reward probabilities in
the environment were in the range [0.2 - 0.45] except the unique maximum
reward probability which was set to 0.9. An Lgp; updating scheme was used
to update action probabilities for the selected path.

Tables [6.11 - 6.19] provide the reward probabilities of the environment
which are used for simulation. Note that in each case the unique maximum
reward probability is associated with the selected sequence of decisions.

From these results it can be seen that the transition probability
vectors of certain tangible states converge close to unity. In each case this

convergence corresponds to the sequence associated with the unique maximum

136

reward probability.

6.5 Conclusion and Summary

This chapter has introduced a new class of hybrid Petri nets which
have the additional feature of an embedded stochastic learning automata
within Petri net models. By embedding the concept of stochastic learning
automata in Petri nets the hybrid combination was shown to overcome the
limitations of, existing Petri net theory and interconnected automata used in
isolation. An extension of a standard PN, SPN and GSPN, have developed
new hybrid models known as Basic Stochastic Learning Petri Net (Basic
SLPN), Stochastic Learning Petri Net (SLPN) and Generalised Stochastic
Learning Petri Net (GSLPN), respectively. In the case of a Basic SLPN it
has been shown that the movement of tokens in the model provides structure
to the stochastic learning automata described in Chapter Three. Whilst, the
SLPN and GSLPN models have the ability to control the firing of transitions
on a probabilistic basis; and enables convergence to a selected sequence of
states/ decisions at each time instant. Preliminary simulation results are
presented for each Learning Petri net model. The next chapter considers

an application of the SLPN model to a specific two node decision making

organisation.

137

Pr{t,}
p1
———— >
Pr{t, }
Reward/ Punish
10)
ENVIRONMENT

@«

Figure 6.1a — Basic Stochastic Learning Petri Net (Basic SLPN)

Mg = [100]

/\

M, =1010] My =[001]

\/

M OLD

Figure 6.1b — Reachability Tree - Basic SLPN

138

Table 6.1 — Optimal Path :

Reward Parameter = 0.04

Reward Probability

110 1
Ci]0.2 0.9

n pl p2

0 | 0.500000 | 0.500000
200 | 0.185784 | 0.814216
400 | 0.096207 | 0.903793
600 | 0.064346 | 0.935654
800 | 0.048341 | 0.951659
1000 | 0.038721 | 0.961279

Basic SLPN

Average Action Probabilities

MLPN : Path Probability Changes

+ + + + + + + —tp——t

(L. 23

“n4

and

[Y 25

cad

[73

+ + + LR — + + +
. " » - " w “ »~ - L] L]

Number of [terations

Figure 6.2

Optimal Path Probability Changes :

139

Basic SLPN

>
u 9ouanbag
JUSWUOIIAUS]
[2ousnbag
d/d
SUOISLOa(] elewomny elewony o
\mm:.ﬁm jo o1SeYI0Ig o
30 washg pappaquig s, oy
souonbag | [[EPMUOTRISIH 921, fimqeyoeay Ul -
Anniqeyoeay HSBI01S

10N L3 Jururea onseyoorg

Figure 6.3 — Structure of SLPN

140

M, = [0200]

Mj = [1011]

o

A \ \\\\\\\ ~
NRIM2= 0111 N

Sequence i 0

S5

6

7

8

Cj Q

G

G

Cs

G

G

G

>

,O,rEOE

Figure 6.4 — Reachability Tree : Embedded Stochastic Automata

Fires Probability One (Instantly)

Three-State Automaton

Two-State Automaton

141

My

My = [0200]
(Pr{t2}, Pr(13))

M1=[110AO] My=1[0111]
(a) Two-State Automaton
Ry
\\\\ ={110 0] \\
\\\\\\\\\\\
}, Pr{t2}, Pr{t3})
\\\\\\\\\\\\\\\\\
‘2 L1 '3
Mg =12000] M, =1[0200] Mg =[1011]

(b) Three-State Automaton
Figure 6.5 — Two/ Three-State Automaton

142

COI MO—>M1__>MO

N~

Cp @ Mp—> M) —> M, —> M,

G Myg—> M} —> My, > My

\ -

G+ M= M) —> M) —> My —>M;

Cp o Mo =" M;—> My —> M, —>y

\ -

Cg Mo—>M1—>M3—>M4—>M3 .
v

6 Mo ™" M;—> M3 —> M —
\ ‘_/

G Mg—> M —> M, TP MM — M,

Cg - Mg—> M} —> M; TP MM ——> M,

SN— -

[Co - Cg] Penalty Probabilities - Range[0.2-0.5] Unique Maximum = 0.9

Mg - Mgy Sequence of States in Reachability Tree

Figure 6.6 — Sequence of Decisions/ States

143

elRwIoINy
Surlures
o11Seyd01S

(1}d

JUSWIUOIIAUT

8 bas ¢—

0 bas €—

19N
0o
ONSRYI01S

Figure 6.7 — Stochastic Learning Petri Net (SLPN)

144

Reward Parameter = 0.04

Reward Probability

i| 0 1 2 3 1 4|5 |6 |T7]|8
Ci|09]035]045(02}03[02]|03([04])04

Convergence to Sequence 0:

MO - Pr(0,1); M1 - Pr(1,2); MO;

MO M1 M2

n Pr(0,1) | Pr(1,1) | Pr(1,2) | Pr(1,3) | Pr(2,2) | Pr(2,3)

0 1.000000 | 0.333333 | 0.333333 | 0.333333 | 0.500000 | 0.500000
600 | 1.000000 | 0.174549 | 0.724323 | 0.101128 { 0.496244 | 0.503756
1200 | 1.000000 { 0.099875 | 0.849360 | 0.050765 | 0.470108 | 0.529892
1800 | 1.000000 | 0.066647 | 0.899482 | 0.033871 | 0.460627 | 0.539373
2400 | 1.000000 | 0.050013 | 0.924569 | 0.025418 | 0.455883 | 0.544117
3000 | 1.000000 | 0.040027 | 0.939630 | 0.020343 | 0.453034 | 0.546966

M3 M4 M5

n Pr(3,1) | Pr(3,4) | Pr(4,2) | Pr(4,3) | Pr(4,4) | Pr(54)

0 0.500000 | 0.500000 | 0.333333 | 0.333333 | 0.333333 | 1.000000
600 | 0.518667 | 0.481333 | 0.277263 | 0.439687 | 0.283050 { 1.000000
1200 | 0.519332 | 0.480668 | 0.250052 | 0.460671 | 0.289278 | 1.000000
1800 | 0.519554 | 0.480446 | 0.240587 | 0.468098 | 0.291315 | 1.000000
2400 | 0.519666 | 0.480334 | 0.235851 | 0.471814 | 0.292335 | 1.000000
3000 | 0.519732 | 0.480268 | 0.233008 | 0.474045 | 0.292947 | 1.000000

Table 6.2 — Optimal Path SLPN : Sequence 0

145

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4) 6 7 8
0.3

Ci{0351091(045](0.2 0210310404

Convergence to Sequence 1:

MO - Pr(0,1); M1 - Pr(1,1); M2 - Pr(2,2); M1

MO

M1

M2

Pr(0,1)

Pr(1,1)

Pr(1,2)

Pr(1,3)

Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.333333
0.550452
0.728851
0.818899
0.864098
0.891233

0.333333
0.213781
0.113456
0.075722
0.056823
0.045477

0.333333
0.235767
0.157693
0.105380
0.079079
0.063290

0.500000
0.709502
0.840304
0.893398
0.920004
0.935977

0.500000
0.290498
0.159696
0.106602
0.079996
0.064023

M3

M4

M5

Pr(3,1)

Pr(3,4)

Pr(4,2)

Pr(4,3)

Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000
0.453162
0.386330
0.362558
0.350662
0.343521

0.500000
0.546838
0.613670
0.637442
0.649338
0.656479

0.333333
0.367937
0.384717
0.390320
0.393123
0.394806

0.333333
0.324951
0.330612
0.332502
0.333448

0.334016

0.333333
0.307112
0.284671
0.277178
0.273429
0.271178

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.3 — Optimal Path SLPN : Sequence 1

146

Reward Parameter = 0.04

Reward Probability

i

0 1 2

3

4

5 | 6

Ci

0.35 | 0.45] 0.9

0.2

0.3

02]03

0404

Convergence to Sequence 2:

MO - Pr(0,1); M1 - Pr(1,3); M3 - Pr(3,4); MO;

MO

M1

M2

Pr(0,1) | Pr(1,1)

Pr(1,2)

Pr(1,3)

Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000 | 0.333333
1.000000 | 0.176031
1.000000 | 0.090713
1.000000 | 0.060535
1.000000 | 0.045426
1.000000 | 0.036356

0.333333
0.124048
0.067059
0.044761
0.033589
0.026883

0.333333
0.699921
0.842229
0.894704
0.920984
0.936761

0.500000
0.481165
0.A481793
0.482003
0.482108
0.482171

0.500000
0.518835
0.518207
0.517997
0.517892
0.517829

M3

M4

Ms

Pr(3,1) | Pr(3,4)

Pr(4,2)

Pr(4,3)

Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000 | 0.500000
0.199988 | 0.800012
0.103941 | 0.896059
0.069366 | 0.930634
0.052053 | 0.947947
0.041660 { 0.958340

0.333333
0.400115
0.400705
0.400902
0.401001
0.401060

0.333333
0.285478
0.273219
0.269126
0.267078
0.265848

0.333333
0.314407
0.326076
0.329972
0.331921
0.333092

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.4 — Optimal Path

147

SLPN : Sequence 2

Reward Parameter = 0.04

Reward Probability

1 0

3

4)

Ci | 0.35

0.2

0.45

0.9

0.3

0.2

0.3

0.4

0.4

Convergence to Sequence 3:

MO - Pr(0,1); M1 - Pr(1,1); M2 - Pr(2,3); M4 - Pr(4,2); M3

Mo

M1

M2

Pr(0,1)

Pr(1,1)

Pr(1,2)

Pr(1,3)

Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.333333
0.553201
0.691943
0.792181
0.844025
0.875168

0.333333
0.191477
0.124194
0.083418
0.062604
0.050104

0.333333
0.255323
0.183863
0.124401
0.093371
0.074728

0.500000
0.576526
0.413566
0.302268
0.233046
0.186623

0.500000
0.423474
0.586434
0.697732
0.766954
0.813377

M3

M4

M5

Pr(3,1)

Pr(3,4)

Pr(4,2)

Pr(4,3)

Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000
0.572875
0.613918
0.632179
0.641316
0.646802

0.500000
0.427125
0.386082
0.367821
0.358864
0.353198

0.333333
0.418042
0.565688
0.695293
0.770897
0.816636

0.333333
0.274119
0.198648
0.134768
0.101162
0.080963

0.333333
0.307839
0.235663
0.169939
0.127941
0.102400

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.5 — Optimal Path SLPN : Sequence 3

148

Reward Parameter = 0.04

Reward Probability

i 0

1

2

3

4)

Ci

0.35

0.2

0.45

0.3

0.9

0.2

0.3

04

0.4

Convergence to Sequence 4:

MO - Pr(0,1); M1 - Pr(1,1); M2 - Pr(2,3); M4 - Pr(4,4); M1;

Mo

M1

M2

Pr(0,1)

Pr(1,1)

Pr(1,2)

Pr(1,3)

Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.333333
0.513904
0.659712
0.762728
0.821845
0.857416

0.333333
0.313428
0.236757
0.167303
0.125640
0.100555

0.333333
0.172667
0.103531
0.069970
0.052514
0.042029

0.500000
0.468298
0.329785
0.226465
0.170000
0.136058

0.500000
0.531702
0.670215
0.773535
0.830000
0.863942

M3

M4

M5

Pr(3,1)

Pr(3,4)

Pr(4,2)

Pr(4,3)

Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000
0.462825
0.452119
0.444685
0.440965
0.438731

0.500000
0.837175
0.547881
0.555315
0.559035

0.561269

0.333333
0.226089
0.133066
0.089236
0.066969
0.053597

0.333333
0.309543
0.231743
0.157893
0.118515
0.004852

0.333333
0.464368
0.635191
0.752871
0.814517
0.851551

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.6 — Optimal Path SLPN : Sequence 4

149

Reward Parameter = 0.04

Reward Probability

i 0

1

3

4 | 5

Ci|0.35

0.2

0.45

0.3

0.2

0.9

0.3

04

0.4

Convergence to Sequence 5:

MO - Pr(0,1); M1 - Pr(1,3); M3 - Pr(3,1); M4 - Pr(4,2); M3;

MO

M1

M2

Pr(0,1)

Pr(1,1)

Pr(1,2)

Pr(1,3)

Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.333333
0.191899

0.103439

0.069090
0.051847
0.041495

0.333333
0.222948
0.122696
0.081975
0.061516
0.049234

0.333333
0.585153
0.773865
0.848935
0.886637
0.909272

0.500000
0.500762
0.490015
0.486426
0.484631
0.483553

0.500000
0.499238
0.509985
0.513574
0.515369
0.516447

M3

M4

M5

Pr(3,1)

Pr(3,4)

Pr(4,2)

Pr(4,3)

Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000
0.674278
0.815019
0.875323
0.906430
0.925113

0.500000
0.325722
0.184981
0.124677
0.093570
0.074887

0.333333
0.501654
0.686260
0.787389
0.840427
0.872288

0.333333
0.281078
0.182217
0.124113
0.093156
0.074556

0.333333
0.217269
0.131523
0.088498
0.066417
0.053155

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.7 — Optimal Path SLPN : Sequence 5

150

Reward Parameter = 0.04

Reward Probability

1 0

1|2 3|45 |6]|7]s8

Ci|0.35

02}045(03]02]03109]|0.4]04

Convergence to Sequence 6:

MO - Pr(0,1); M1 - Pr(1,3); M3 - Pr(3,1); M4 - Pr(4,4); M1,

Mo

M1 M2

Pr(0,1)

Pr(1,1) | Pr(1,2) | Pr(1,3) | Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.333333 | 0.333333 | 0.333333 | 0.500000
0.165438 | 0.290162 | 0.544400 | 0.522279
0.106961 | 0.168110 | 0.724929 | 0.529368
0.083200 | 0.112413 | 0.804387 | 0.557758
0.062654 | 0.084359 | 0.852986 | 0.573471
0.050147 | 0.067516 | 0.882338 | 0.582904

0.500000
0.477721
0.470632
0.442242
0.426529
0.417096

M3

M4

M5

Pr(3,1)

Pr(3,4) | Pr(4,2) | Pr(4,3) | Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000
0.693759
0.821326
0.880258
0.910139
0.928081

0.500000 | 0.333333 | 0.333333 | 0.333333
0.306241 | 0.206450 | 0.192350 | 0.601200
0.178674 | 0.133834 | 0.108875 | 0.757291
0.119742 | 0.092569 | 0.072814 | 0.834617
0.089861 | 0.069499 | 0.054643 | 0.875859
0.071919 | 0.055622 | 0.043732 | 0.900645

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.8 — Optimal Path SLPN : Sequence 6

151

Reward Parameter = 0.04

Reward Probability

1 0

1

3

4 1 5

Ci|0.35

0.2

0.45

0.3

0.2

0.3

0.4

0.9

0.4

Convergence to Sequence T:

MO - Pr(0,1); M1 - Pr(1,1); M2 - Pr(2,3); M4 - Pr(4,3); M3;

MO

M1

M2

Pr(0,1)

Pr(1,1)

Pr(1,2)

Pr(1,3)

Pr(2,2)

Pr(2,3)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.333333
0.531733
0.640113
0.740396
0.804660
0.843651

0.333333
0.290461
0.224555
0.165010
0.124269
0.099467

0.333333
0.177806
0.135332
0.094594
0.071071
0.056882

0.500000
0.441565
0.321635
0.227745
0.171196
0.137020

0.500000
0.558435
0.678365
0.772255
0.828804
0.862980

M3

M4

M5

Pr(3,1)

Pr(3,4)

Pr(4,2)

Pr(4,3)

Pr(4,4)

Pr(5,4)

600
1200
1800
2400
3000

0.500000
0.498625
0.504372
0.495079
0.490428
0.487636

0.500000
0.501375
0.495628
0.504921
0.509572
0.512364

0.333333
0.201754
0.135323
0.092126
0.069171
0.055361

0.333333
0.586722
0.736304
0.821082
0.865675
0.892494

0.333333
0.211524
0.128373
0.086792
0.065154
0.052145

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.9 — Optimal Path SLPN : Sequence 7

152

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 14|56 |7]|8

Ci|035|02(045}03[02(03|04(041]0.9

Convergence to Sequence 8:

MO0-Pr(0,1); M1-Pr(1,3); M3-Pr(3,1); M4-Pr(4,3); M5-Pr(5,4); M3;

MO M1 M2

n Pr(0,1) | Pr(1,1) | Pr(1,2) | Pr(1,3) | Pr(2,2) | Pr(2,3)

0 1.000000 | 0.333333 | 0.333333 | 0.333333 | 0.500000 | 0.500000
600 | 1.000000 | 0.132012 | 0.212609 | 0.655378 | 0.508068 | 0.491932
1200 | 1.000000 | 0.079786 | 0.113330 | 0.806884 | 0.513090 | 0.486910
1800 | 1.000000 | 0.053482 | 0.075730 | 0.870788 | 0.515134 | 0.484866
2400 | 1.000000 | 0.040139 | 0.056831 | 0.903029 | 0.516157 | 0.483843
3000 | 1.000000 { 0.032125 | 0.045484 | 0.922391 | 0.516771 | 0.483229

M3 M4 M5

n Pr(3,1) | Pr(3,4) | Pr(4,2) | Pr(4,3) | Pr(4,4) | Pr(54)

0 0.500000 | 0.500000 | 0.333333 | 0.333333 | 0.333333 | 1.000000
600 | 0.741401 | 0.258599 | 0.2056825 | 0.568628 | 0.225547 | 1.000000
1200 | 0.848475 | 0.151525 | 0.123761 | 0.700174 | 0.176065 | 1.000000
1800 | 0.897521 | 0.102479 | 0.083012 | 0.792916 | 0.124072 | 1.000000
2400 | 0.923069 | 0.076931 | 0.062303 | 0.844451 | 0.093246 | 1.000000
3000 | 0.938429 | 0.061571 | 0.049863 | 0.875505 | 0.074631 | 1.000000

Table 6.10 — Optimal Path SLPN : Sequence 8

153

AP SR u
h{lo\f {2001100]

AN SN NN NN NN

L
M| =[1101100]

[4 t5

AR Ny
M = [1000110]
S N N N AN

30= (1001001]

AL NN

t

6
M, =[2011000]
ty

SANNANRNNSN

AR YS YRR R ay
M15=.[0000002] Mi6= (00000201 N
t 7 t 6
M
9 Mo

\\\\\\\\\\ Tangible Marking Indicates Presence of Two-State Automaton
Q Vanishing Marking Indicates Presence of Random Switch

Figure 6.8 — GSPN Reachability Tree : Embedded Stochastic Automata

154

- TN

INe— Ne— N e— N — Oy -

BNet— IN+— N e— TN Oy .

ol e

INt— SNt— TN e— TN — Oy :

— T

‘Net— I +— BN e— ' Ne— N e— N —— O :

Sequence of Decisions/ States
155

Figure 6.9 — GSPN :

Reward Parameter = 0.1

Reward Probability

i

0 1

2

3 4

5

Ci

0.910.35

0.45

02103

0.2

0.3

0.4

0.4

Convergence to Sequence 0:

MO0-Pr(0,1); M2-Pr(2,1); M8-Pr(8,1);

Mo

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.809068
0.900969
0.933867
0.950372
0.960281

0.500000
0.190932
0.099031
0.066133
0.049628
0.039719

0.500000
0.416901
0.448418
0.429936
0.400512
0.362137

0.500000
0.583099
0.551582
0.570064
0.599488
0.637863

0.500000
0.828256
0.910950
0.940533
0.955374
0.964284

0.500000
0.171744
0.089050
0.059467
0.044626
0.035716

M11

M12

Mi5

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.651463
0.675787
0.741825
0.786258

0.750739

0.500000
0.348537
0.324213
0.258175
0.213742
0.249261

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.11 — Optimal Path

156

GSLPN

: Sequence 0

Reward Parameter = 0.1

Reward Probability

i

0

1

2

3 | 4

5

Ci

0.35

0.9

0.45

02103

0.2

0.3

0.4

0.4

Convergence to Sequence 1:

MO-Pr(0,1); M2-Pr(2,1); M8-Pr(8,1); M11-Pr(11,1);

MO

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.806212
0.894719
0.929572
0.947142
0.957696

0.500000
0.193788
0.105281
0.070428
0.052858
0.042304

0.500000
0.415502
0.291938
0.222273
0.173345
0.142028

0.500000
0.584498
0.708062
0.777727
0.826655
0.857972

0.500000
0.825711
0.905381
0.936706
0.952496
0.961981

0.500000
0.174289
0.094619
0.063294
0.047504
0.038019

M11

M12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.723412
0.813575
0.862112
0.895455
0.916280

0.500000
0.276588
0.186425
0.137888
0.104545
0.083720

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.12 — Optimal Path

157

GSLPN :

Sequence 1

Reward Parameter = 0.1

Reward Probability

0 1

2 | 3

4 5

Ci

0.35

0.45

0902

03102

0.3

0.4

0.4

Convergence to Sequence 2:

MO0-Pr(0,1); M2-Pr(2,1); M8-Pr(8,1); M11-Pr(11,6);

Mo

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.685376

0.818368
0.877747
0.908209
0.926535

0.500000
0.314624
0.181632
0.122253
0.091791
0.073465

0.500000
0.626392
0.642078
0.652813
0.711421
0.767056

0.500000
0.373608
0.357922
0.347187
0.288579
0.232944

0.500000
0.682899
0.791152
0.857948
0.893275
0.914579

0.500000
0.317101
0.208848
0.142052
0.106725
0.085421

M11

M12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.361052
0.267933
0.186095
0.140398
0.112463

0.500000
0.638948
0.732067
0.813905
0.859602
0.887537

0.500000
0.453750
0.451878
0.451253
0.450940
0.450753

0.500000
0.546250
0.548122
0.548747
0.549060
0.549247

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.13 — Optimal Path

158

GSLPN

: Sequence 2

Reward Parameter = 0.1

Reward Probability

i

0 1

2

3 | 4

5

Ci

0.35]0.2

0.45

09103

0.2

0.3

0.4

0.4

Convergence to Sequence 3:

MO0-Pr(0,1); M2-Pr(2,1); M8-Pr(8,6); M12-Pr(12,1); M16-Pr(16,6);

Mo

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.532724
0.729578
0.818717
0.863946
0.891111

0.333333
0.467276
0.270422
0.181283
0.136054
0.108889

0.333333
0.593493
0.616164
0.622145
0.625138
0.626935

0.500000
0.406507
0.383836
0.377855
0.374862
0.373065

0.500000
0.372503
0.237406
0.160715
0.120647
0.096559

0.500000
0.627497
0.762594
0.839285
0.879353
0.903441

M11

M12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.505083
0.527504
0.534990
0.538736
0.540985

0.500000
0.494917
0.472496
0.465010
0.461264
0.459015

0.500000
0.570318
0.657897
0.763197
0.822047
0.857573

0.500000
0.429682
0.342103
0.236803
0.177953
0.142427

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.14 — Optimal Path

159

GSLPN

: Sequence 3

Reward Parameter = 0.1

Reward Probability

i

0

1

2

3 4

5

Ci

0.35

0.2

0.45

03109

0.2

0.3

0.4

0.4

Convergence to Sequence 4:

MO0-Pr(0,1); M2-Pr(2,1); M8-Pr(8,6); M12-Pr(12,6);

Mo

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.669857
0.802920
0.866860
0.900061
0.920015

0.500000
0.330143
0.197080
0.133140
0.099939
0.079985

0.500000
0.384499
0.237181
0.162133
0.122416
0.098275

0.500000
0.615501
0.762819
0.837867
0.149552
0.112473

0.500000
0.291958
0.202816
0.149552
0.112473
0.090026

0.500000
0.708042
0.797184
0.850448
0.887527
0.909974

M11

M12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.534500
0.542237
0.544820
0.546113

0.546889

0.500000
0.465500
0.457763
0.455180
0.453887
0.453111

0.500000
0.365006
0.224533
0.153759
0.115533
0.092473

0.500000
0.634994
0.775467
0.846241
0.884467
0.907527

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.15 — Optimal Path

160

GSLPN

: Sequence 4

Reward Parameter = 0.1

Reward Probability

i

0 1

2

3 4

Ci

0.2

0.35

0.45

0.3 0.2

0.9

0.3]04

0.4

Convergence to Sequence 5:

MO0-Pr(0,1); M2-Pr(2,1); M8-Pr(8,6);

MO

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.722986
0.852646
0.901434
0.926033
0.940802

0.500000
0.277014
0.147354
0.098566
0.073967
0.059198

0.500000
0.392727
0.239746
0.183716
0.152900
0.127705

0.500000
0.607273
0.760254
0.816284
0.847100
0.872295

0.500000
0.207815
0.109153
0.072975
0.054763
0.043828

0.500000
0.792185
0.890847
0.927025
0.945237
0.956172

M11

Mi2

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.500000
0.500000
0.500000
0.500000
0.560000

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

0.500000
0.412953
0.339427
0.333693
0.365173
0.383313

0.500000
0.587047
0.660573
0.666307
0.634827
0.616687

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.16 — Optimal Path

161

GSLPN

: Sequence 5

Reward Parameter = 0.1

Reward Probability

1

0 1

2

3 4

5

Ci

0.35 | 0.2

0.45

0302

0.3

0.9

0.4

0.4

Convergence to Sequence 6:

MO0-Pr(0,1); M2-Pr(2,6);

Mo

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000

0.500000
0.160091
0.080741
0.053873

0.500000
0.839909
0.919259
0.946127

0.500000
0.770198
0.875818
0.916763

0.500000
0.229802
0.124182
0.083237

0.500000
0.626082
0.630783
0.632353

0.500000
0.373917
0.369217
0.367647

1.000000
1.000000

0.040427
0.032355

0.959573
0.967645

0.937517
0.949991

0.062483
0.050009

0.633138
0.633610

M11

Mi12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

P1(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.543250
0.546619
0.547744
0.548307
0.548645

0.500000
0.456750
0.453381
0.452256
0.451693
0.451355

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

0.500000
0.500000
0.500000
0.500000
0.500000
0.500000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.17 — Optimal Path GSLPN

162

: Sequence 6

0.366862
0.366390

Reward Parameter = 0.1

Reward Probability

i

0

1

2

3 | 4

5

Ci

0.35

0.2

0.45

03102

0.3

0.4

0.9

0.4

Convergence to Sequence T7:

MO-Pr(0,1); M3-Pr(3,1);

MO

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.454252
0.628914
0.744904
0.807361
0.845674

0.500000
0.545748
0.371086
0.255096
0.192639
0.154326

0.500000
0.852835
0.922450
0.948114
0.961063
0.968837

0.500000
0.147165
0.077550
0.051886
0.038937
0.031163

0.500000
0.600395
0.756201
0.833994
0.874887
0.899801

0.500000
0.399605
0.243799
0.166006
0.125113
0.100199

M11

M12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.560640
0.645307
0.639664
0.642014
0.652169

0.500000
0.439360
0.354693
0.360336
0.357986
0.347831

0.500000
0.470833
0.460434
0.456962
0.455224
0.454181

0.500000
0.529167
0.539566
0.543038
0.544776
0.545819

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.18 — Optimal Path GSLPN

163

: Sequence 7

Reward Parameter = 0.1

Reward Probability

i

0

1 2

3|1 4] 5

Ci

0.35

0.2 1045

0310203

04104

0.9

Convergence to Sequence 8:

MO0-Pr(0,1); M3-Pr(3,6);

Mo

M2

M3

M8

Pr(0,1)

Pr(2,1)

Pr(2,6)

Pr(3,1)

Pr(3,6)

Pr(8,1)

Pr(8,6)

600
1200
1800
2400
3000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

0.500000
0.454252
0.628914
0.744904
0.807361
0.845674

0.500000
0.545748
0.371086
0.255096
0.192639
0.154326

0.500000
0.1980865
0.098464
0.065804
0.049381
0.039521

0.500000
0.809135
0.901536
0.934196
0.950619
0.960479

0.500000
0.600395
0.756201
0.833994
0.874887
0.899801

0.500000
0.399605
0.243799
0.166006
0.125113
0.100199

M11

M12

M15

M16

Pr(11,1)

Pr(11,6)

Pr(12,1)

Pr(12,6)

Pr(15,7)

Pr(16,6)

600
1200
1800
2400
3000

0.500000
0.560640
0.645307
0.639664
0.642014
0.652169

0.500000
0.439360
0.354693
0.360336
0.357986
0.347831

0.500000
0.470833
0.460434
0.456952
0.455224
0.454181

0.500000
0.529167
0.539566
0.543038
0.544776
0.545819

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Table 6.19 — Optimal Path GSLPN

164

: Sequence 8

Chapter Seven

Application to Distributed Decision Systems

71 Introduction

PNs have been extensively used in the representation and analysis of
computing systems and processes. As stated previously, the PN formalism
is suitable for representing dynamic processes, particularly when some of the
events may occur concurrently. However, recently the use of PNs in the
modelling of decision making processes has been proposed, [60], [61]. In
the case of modelling decision making organisations, the PN representation
considers tokens as items of information or signals which wait to be processed
in the places. These places are conditions which must be met before the
information held in them can be processed. The transitions are events
which execute processes; whereby a process is executed by the firing of
a corresponding transition and the flow of tokens represent the flow of
information in the process. Thus, PNs represent powerful modelling tools
for decision making organisations, since they describe in a precise manner
the interactions among decision makers. Several authors have considered the
application of PNs in this field of study, [62], [63], [64], [65], [66].

In the discussion that follows a model of the interacting decision maker
is presented. The basic model of the interacting decision maker consists of

four stages. An application of the hybrid SLPN modelling tool to a specific

165

two node organisation is considered, [59], [67].

7.2 Model of the Decision Making Process

A basic model of an interacting decision maker appropriate for the
study of command and control organisations was introduced by Boettcher
and Levis, [68]. Their four-stage model of the human Decision Maker (DM)
permits detailed and explicit interactions among organisation members. The
decision maker receives an input z from his environment and undergoes a
four-stage process, shown in Figure 7.1. The Situation Assessment (SA) and
Response Selection (RS) stages are used to model the actual decision making
process; while Information Fusion (IF) and Command Interpretation (CI) allow
for interaction of the DM with other members of the organisation.

Based on the above discussion, the input z received by the decision
maker is processed in the SA stage, this stage operates upon z to produce
an assessed situation z. The assessed situation z may be shared with the
other members of the organisation; concurrently, the DM may receive the
supplementary situation assessment £ from other parts of the organisation.
This information may in turn be combined in the IF stage to yield z.

The fused assessed situation, Z, is processed by one of the algorithms
in the RS stage; since in the RS stage possible alternatives of action are
evaluated and the output response may be communicated to other team
members. The CI stage of the model allows z and the input ¢ to influence
the choice of this algorithm. A command input ¢ from the rest of the

organisation may be considered to be a command capable, for example, of

166

restricting options. The RS stage contains algorithms that produce output y
in response to the situation assessment Z and the command inputs.

The internal structure of the four processing stages, is depicted in
Figure 7.2 which include the SA, IF, CI and RS stages. Note that the SA
stage consists of a set of U algorithms that are capable of producing some
situation assessment z. The RS stage also contains a set of V algorithms

which are required to produce the final decision response.

7.2.1 Model of an Organisation with a Decision Aid

This sub-section describes the integration of a decision aid within the
decision module. The DM module may often be faced with metadecisions, ie.
decisions about how to choose whether to use the information provided by
an aid and how to use that information, [63]. For example, in conditions of
uncertainty, the time constraint is an important factor. Thus, in an emergency
situation a decision maker must reach a decision in the order of seconds,
at most tens of seconds; because of this an interactive decision aid would
not be feasible. On the other hand, the DM may access a decision support
system or another form of aid to reach an accurate response. Hence, the
aided DM must decide between the following three options, when confronted

with a decision aid:

(1) The user DM ignores (blocks) the information provided by the aid

and assesses the situation as trained;

(2) The user DM assesses the situation as trained and compares the result

167

with aid information choosing the worst case;

(3) The user DM relies solely on the aid information.

Consider the structure as illustrated in Figure 7.3, each DM must decide how
to choose among the alternatives for addressing the problem. This structure

provides a convenient framework for the application of the SLPN model which

will be discussed at a later stage.

7.3 Application : Small-scale C3-1 System

This section discusses the application of a new class of Petri nets,
namely, the Stochastic Learning Petri Nets (SLPN) as a powerful modelling
tool for decision making organisations in C3-I systems. Figure 7.4 shows in
block diagram form the first model proposed for study. The example consists
of a two node organisation; decision module DM1 and a decision module
DM2. Each decision module receives signals from the environment and can
respond to the environment. The DM module consists of three possible
strategies, although the SA stage selects only a single strategy to process the

information. As mentioned above the DM must decide between the following

three options.

Strategy SA; : process information without using Decision Support System
(DSS);
Strategy IT; : select a response via an intelligent terminal;

Strategy MF; : utilise the DSS.

A PN representation for this two node organisation is depicted in Figure

168

7.5. In the simulation studies, the complexity of the model has been reduced
by embedding only the concept of stochastic learning automata in the SA
and RS stages for each decision module, excluding the concept of Petri nets,
as depicted in Figure 7.6. Thus, the disposition of tokens in the node
organisation are not considered. The operation of a single decision module
DM1 interacting with a stationary random environment is considered. For
each decision module, the corresponding SLPN structure and reachability tree
is illustrated in Figure 7.7a and 7.7b, respectively. In this structure, the

SLPN concept has been embedded in the SA and RS stages for each decision

module.

7.3.1 Performance of Single Decision Module

As previously mentioned, to reduce the complexity of the model the
concept of stochastic learning automata has been embedded in the SA and
RS stages for each decision module. The decision node contains four learning
automata interconnected in the form of a tree structure. The automata are
arranged in two levels as shown in Figure 7.6. The hierarchy consists of a
single automaton at the first level, and three automata in the second level.
The first level automata, situation assessment SA1l consists of three options
which are selected with equal initial probability. At this stage, the selected
option corresponds to processing information via three possible strategies, as
mentioned in the previous sub-section (SA1l, IT1, MF1). In the second level
which corresponds to the response selection stage, there are two possible

alternatives to be chosen with equal initial probability. Thus, from the top to

169

the lower level automata there exists six possible paths (pi,po,...,ps) which
can be selected by DM1. This structure enables the single decision module
to select the optimal strategy between six possible strategies.

Considering the structure, Figure 7.6, SA1 acts first choosing either
RS11, RS12 or RS13. The action selected by the automaton in the lowest
level (response selection RS stage), generates a response from the environment.
The action probabilities for the selected path are updated on the basis of
this response. Thus the single decision module selects the optimal strategy

which corresponds to the optimal path.

7.3.2 Performance of Two Node Organisation

Similar to the previous case, this adopts an identical approach by
embedding the stochastic learning automata in the SA and RS stages for
each decision module, as depicted in Figure 7.8. Therefore, each decision
module contains four learning automata interconnected in the form of a
hierarchical system. For decision module DMI, the three options (SA;, ITj,
MF,) are selected with equal initial probability; similarly for decision module
DM2 (SAp, IT,, MF;). Also each RS stage has two alternate possibilities
which are selected with equal initial probability; thus producing six possible
paths for each DM. The strategies associated with decision module DM1
and DM2 are (p1,p2,...,ps) and (gi1,92,-..,gs) respectively. There are 36
(6x6) possible combinations of decision strategies fed to the environment.
Consider the structure in Figure 7.8, for each pair of strategies selected

by the decision modules the environment responds stochastically to punish/

170

reward the selection of a particular pair. One pair of decisions is optimum

(ie. gives minimum punishment or maximum reward).

7.4 Experimental Results

This sub-section presents results based on a series of experiments
which examine the performance of a single decision module and a two node
organisation interacting with an uncertain environment. As stated previously,
decision modules are in the form of a two level hierarchical system. To simulate
these modules, the reward probabilities in the environment were selected from
the range [0.2-0.5], except the unique maximum reward probability which
was set to 0.9. An Lg; scheme was adopted to update action probabilities
for the selected path; in the case of the two node organisation, the action
probabilities for the optimal strategy pair were updated. Simulations were
performed, the results are presented in both table and graph format. For
each experiment the reward parameter and reward probabilities are given; the

expected values are denoted by a bar eg. pi(n) = Elpi(n)].

Experiment 1

The first experiment illustrates the operation of a single decision module
interacting with a stationary random environment, as shown in Figure 7.6.
For this experiment, the objective of a single decision module is such that
the optimal strategy is selected from six possible paths. Figure 7.9 displays

the route corresponding to the optimal path.

The results are produced in Table 7.1 with their respective reward

171

parameter and reward probabilities. It is evident that the optimal path is p;
since the unique maximum reward probability is associated with this action
path. Furthermore, the tabulated results show convergence close to unity for
this particular path; the corresponding learning curve for the optimal path is

shown in Figure 7.9a.

The experiments [2-4] illustrate the learning performance of a two
node organisation, as depicted in Figure 7.8. For these experiments, the
main objective is such that both decision modules select the optimal pair of
decision strategies from 36 (6x6) possible combinations of decision pairs input
to the environment. Similar to the previous case, reward probabilities in the
range [0.2-0.5] are associated with paths (py,p2,...,ps) and (q1,g2,-..,4s)
for decision modules DM1 and DM2, respectively. However, in this case the
unique maximum reward probability which is set to 0.9 exists for each decision
module DM1 and DM2. Thus, a single path from the set (py,ps,...,ps) for
DM1 is associated with a unique maximum reward probability; and also a
single path from the set (g1,¢2,...,9¢) for DM2. The conditions for each
experiment are varied by copsidering the selection of optimal strategy pairs;
sudden switch of environmental conditions and by permitting communication

between both decision modules at upper and lower levels.

Experiment 2

The simulation results in Table 7.2 examine the learning behaviour of a two
node organisation. Note that in the case of a two node organisation, the

action paths associated with the unique maximum reward probability converge

172

close to unity for each decision module DM1 and DM2. The strategy pair

selected is clearly indicated in Figure 7.10.

Table 7.2 indicates the value of the reward parameter; the unique
maximum reward probability to be employed by the environment and the
expected values denoting the convergence to optimal strategy pair. In this
case‘ the unique maximum reward probability is associated with path p4.qo
for decision module DM1 and DM2, respectively. The results confirm that
the coordinated decision strategies selected by each decision module converges
close to unity, this is illustrated in Figure 7.10a. Hence, the optimal pair of

decisions selected by DM1 and DM2 is p4.qs.

Experiment 3

The previous experiment 2 was repeated, with the additional concept of a
sudden switch to a different environment. In this experiment, a change in
the environment was considered by re-setting the unique maximum reward
probability to select an alternate pair of decision strategies. For example, by
a repeat of experiment 2, it can be seen that both decision modules converge
close to unity by selecting the optimal pair of decision strategies. The sudden
switch in the environment is achieved by changing over the unique maximum
reward probability, such that an alternate pair of decision strategies may be
selected. For this particular experiment, Figure 7.11 indicates the route which

may be selected by varying the conditions of the environment: before and
after the switch.

This behaviour is best illustrated by analysing the results in Table

173

[7.3a - 7.3b]; all relevant parameter values are indicated. The simulation results
show how fast the structure learns how to converge to the new optimal strategy
pair. It is evident from Table 7.3a that both decision modules DM1 and
DM2 select the optimal strategy pair p;.q;; since convergence for this pair is
close to unity. The learning curve showing convergence of strategy pair p;.q;
is represented in Figure 7.12a. However, after introducing a sudden switch
of the environment by re-locating the unique maximum reward probability
indicated in Table 7.3b, similarly, the structure learns to select the optimal
strategy pair shown in Figure 7.12c. In this case the coordinated decision
strategy selected is pair ps.q;; the unique maximum reward probability is
associated with this pair. Thus, Figure 7.12b shows a decrease in convergence
for path pl selected by DM1 and, a rapid increase in convergence close to

unity for path p;.q; is depicted in Figure 7.12c.

Experiment 4

This final experiment gives an excellent illustration of speeding up the learning
process by permitting communication between decision modules DM1 and DM2
(as indicated by dotted lines Figure 7.13). Note that in each of the following

experiments an arbitrary value for the stepsize is considered.

(a) First set of results in Table 7.4a permits communication between
automata at the top level of the hierarchy for each decision module. To
simulate this structure, both automata at the top level (SA1 and SA2)
exchange messages so that if each selects action one, then the reward parameter

is incremented by stepsize 4. From Table 7.4a, it can be seen that the rate

174

of convergence for strategy pair p;.q; rapidly increases close to unity; since
the unique maximum reward probability is associated with this strategy pair.

(b) Second set of results in Table 7.4b enables communication between
automata at the top and lower levels of the hierarchy for each decision
module. In this case, in addition to automata at the top level (SA1l and
SA2) exchanging messages; the lower level automata (RS11 and RS21) also
communicate. The same rule is applied, that is, if both automata at the
top and. lower level select action one, the reward parameter is increased by
stepsize 4. Similar to the previous case, the results in Table 7.4b show rapid
convergence close to unity for both levels of automata. In comparison to the
previous experiment, there is only a fractional increase in rate of convergence
by permitting communication between automata at the upper and lower levels.

(c) The third set of results in Table 7.4c illustrates communication
between automata at both top and lower levels for each decision module. The
same rule is applied, which involves an increment of the reward parameter
by stepsize 4, if both automaton select action one. However, in this case the
location of the unique maximum reward probability has been changed while
all other reward probabilities remain unchanged. It can be seen from Table
7.4c that the unique maximum reward probability is associated with strategy
pair p3.q3 as opposed to p;.q; in the previous experiment. The results do not
display convergence behaviour for strategy pair p;.qs and locking on to the
strategy pair p;.q; due to the increased stepsize via communication between
automata at both levels.

Figures [7.14a - 7.14c] present learning curves, which illustrate conver-

175

gence behaviour for strategy pair p;.q;. In each case communication between
automata is considered by employing an incremental value of the reward
parameter by stepsize 4 (the approach described above); also the case without
communication by using reward parameter 0.04. It may be observed that in
the former case, the learning curve for strategy pair p;.q; rapidly converges

close to unity, and both learning curves coincide with each other.

7.10 Conclusion and Summary

This chapter has shown the potential application of a new class of
hybrid Petri Net (Stochastic Learning Petri Net) to the modelling of a realistic
small-scale distributed decision problem. Although a two node decision model
has been described the basic concepts may be extended to more complex
scenarios which involve an arbitrary number of nodes in pre-programmed
topologies.

In this chapter the potential modelling capability of stochastic learning
automata embedded within Petri Nets has been illustrated. The simulation
studies have shown the capability of optimum distributed strategies in stochas-
tic environments both for steady-state and switched environments. Initial work
has also shown the ability to model communication between adjacent layers
for decision models connected in hierarchical layers and the use of confidence
communication signals to provide adaptive step sizes to improve convergence

rates.

176

RS

v
>

\
CI

z
]

—»{ IF

SA

DM1
—»

Figure 7.1 — Four-stage Model of Interacting Decision Maker

177

Figure 7.2 — Petri Net Representation of Interacting Decision Maker

178

i
'
)
]
]
[]
]

R A AR A A I R A i I R o = Ui

e i R T O L T S U

papreun

i I R I i T T A . T

papteun \AY

Figure 7.3 — Situation Assessment Module

179

DECISION MODULE

DM1

ENVIRONMENT [—

DECISION MODULE

DM2

Figure 7.4 — Block Diagram: Two Node Organisation Supported by D.S.S

ss—‘s“‘—--~‘-‘--—--—---“----“---s—~-----“_‘

...

Figure 7.5 -~ Petri Net: Two Node Organisation Supported by D.S.S

181

NNNNDecision Moduie BMT TN

MY Dy
RS12 NRS13

\\\ Q\\\\\% x\\\\\\s

P1 P2 P3 P4 P5 P6

Select Action Path

2 3

GlG 16 GG 66

Y v

Output Response

v v

Figure 7.6 — Topology for Simulation: Single Decision Module

182

ANEHRERERIANN

Figure 7.7a — Petri Net Representation Decision Module DM1

‘//V\\
/\ /\ /\

M, OLD

Corresponding States of Decision Module DM1 :

MO=[1000000000] M5=[0000010000]
Ml ={0100000000] M6=[0000001000]
M2=[0010000000] M7=[OOOOOOOIOO]
M3=[0001000000] M8=[0000000010]
M4=[0000100000] M9=[0000000001]

Figure 7.7b — Reachability Tree for Decision Module DM1

183

o&u m&u ¥9 m&u

) N&u _oU owv mMu vmu

MMV NMU —MU OJU

@U XU

mwu

iy | Ity .:U

vmu

mmu Nﬁv —mu

HI'S

D[D] "] B D 15H] B el Bl RO RN RIS I
AN

A331eDg UOISTOO(Y Pa1BUIPIOO)) 193]S

90 SO 0 €0 0 10

NN SONNNN

NEXARN N 72SY
AN /44444/

QNN

/N<m

///0/

NN 2 aimpop w522 NN

9d Sd

¢IS
RN

vd td

(4 Id

SONNNN

TISUY
N

»

ONNNAN]

//ﬁ VSN

AN

RN

LISy

NN v armpopy ot NN

Figure 7.8 — Topology for Simulation: Two Node Organisation
184

NNNNecision Moduie D7 TR

NN
\\f&i\\

.

.
-
.
.

.
-

\\\Q\ NN |
NRS11 512 NRS13
\\\;\\\\ \\\\\\\ \\\\\\Q

L]
N

P1 P2 P3 P4 PS5 P6

Select Action Path

3 4
Cil 09 02 [03 | 04 | 025 0.1

Output Response

v v

Figure 7.9 - Single Decision Module (Table 7.1)

185

Reward Parameter = 0.04

Reward Probability

10

1 2

3 4

Ci {09

02103

041025

0.1

Path Probability for Decision Module DM1I:

Optimal Path P1

n

pl

p2

p3

pd

po

pb

0
600
1200
1800
2400
3000

0.166666
0.609142
0.792024
0.858710
0.893030
0.913935

0.166666
0.135953
0.079875
0.055856
0.042869
0.034764

0.166666
0.080745
0.040079
0.026605
0.019911
0.015909

0.166666
0.076972
0.039205
0.026250
0.019730
0.015805

0.166666
0.048215
0.024323
0.016244
0.012194
0.009761

0.166666
0.048873
0.024394
0.016234
0.012165
0.009727

Table 7.1 - Simulation of Single Decision Module (Figure 7.9)

Figure 7.9a - Average Action Path Probability vs Iterations (Table 7.1)

Single Dectsion Module s Optimal Path P1

: oz

Average Action Probabilities

——x pl (n) ¢

Number of I[terations

186

o&u

m&u ku m&u QNV ~0U omu DU

mmv Nmu —mu

9% 60| 17y

mwu ku mﬁu

5

mﬁu
A

Nﬁv EU

oﬁu mmu 14 —U

Y

DL DD B | D[15[B G |y D Fo| | 1H]h

A391e1g UOISA(pajeurpIoo)) 109[9S

90 SO 10 €0 20 10
////// NNNNSS ///.//
N E£ZSUN ZeSAN RNizs
NANNNYS SO /077/
/7//A.
N<m/
NN
NN 2N 21Mpoy UOISIANNNNN

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

od Sd va.m £¢d d Id

bn
//.”// //////

cISYH N CIS N 1S

NN SOV SNONNNY
AN //
N

NN AT SmPoR B0

Figure 7.10 — Two Node Organisation (Table 7.2)

187

Path Probability for Decision Module DM1:

eward Parameter = 0.04

Reward Probability

Cs = 0.9

Optimal Path P4

pl

p2

p3

p4

po

pb

600
1200
1800
2400
3000

0.166666
0.122752
0.063909
0.042560
0.031903
0.025514

0.166666
0.124708
0.065275
0.043563
0.032689
0.026160

0.166666
0.173771
0.128113
0.094769
0.074587
0.061355

0.166666
0.345529
0.624448
0.740271
0.801693
0.839669

0.166666
0.127226
0.064294
0.042815
0.032094
0.025667

0.166666
0.106013
0.053961
0.036021
0.027033
0.021635

Path Probability for Decision Module DM2:

Optimal Path Q2

ql

q2

q3

q4

qo

q6

600
1200
1800
2400
3000

0.166666
0.166504
0.108945
0.078552
0.062235
0.049974

0.166666
0.457269
0.694528
0.790430
0.840602
0.871415

0.166666
0.138586
0.070578
0.046577
0.034755
0.027718

0.166666
0.130716
0.070720
0.047621
0.035894
0.028801

0.166666
0.054399
0.028651
0.019225
0.014465
0.011595

0.166666
0.052525
0.026577
0.017594
0.013149
0.010497

Optimal Strategy Pair P4.Q2

Table 7.2 - Simulation of Two Node Organisation (Figure 7.10)

188

Two Node Organisation 1 Optimal Strategy Pair P4. 02

4 I i L 1 ‘ 4
1.0 $ } | } ' ' ;

0.9 4

0.8 4

o =] o
wv o ~
1 1 N
T) }

Average Action Probabilities

e
»
L

0.3 4

0.2 4

0.1 4 3 3 : : s

T T T L] L} T]
800 1000 1200 1400
Number of [terations

2000

Figure 7.10a — Average Action Path Probability

189

vs Iterations (Table 7.2)

\\\Decision Module DM1 NI A\ Decision Module DM2

\\\\\\\\\\\\\\

SATN NSA2
\§\L\ k}\\
s\."‘ i Nl X
NN NN NN N NN NN
S11 RS12 NRS21Y RRS22 RS23
s X
Pl P2 P3 P4 PS5 pé Q1 Q@2 Q3 Q4 Q5 Q6

\\\ \\
\\ENVIRONMENT . OPTIMAL STRATEGY PAIR PI.QI\\\
N NN

AALA AR R R R

\\WDecision Module DMI_ Y [NNBecsion Module DMZ N
= R

DONNANN

~ \‘\\; AR Y |
NRS21Y FRS22 RS23

R N . . N . .Y

PI P2 P3 P4 P5 P Ql Q2 Q3 Q4 Q5 Q6

\\ \
\ ENVIRONMENT : OPTIMAL STRATEGY PAIR P3.Q1\\
N\ A1 E LA EREE R

Figure 7.11 - Switch of Environment: Before and After Switch

190

Path Probability for Decision Module DM1:

IReward Parameter = 0.04

Reward Probability

Cu = 09

Before Switch P1

pl

p2

p3

p4

pPd

pb

600
1200
1800
2400
3000

0.166666
0.434715
0.656245
0.762995
0.819308
0.854036

0.166666
0.187078
0.128620
0.093581
0.073124
0.059909

0.166666
0.128409
0.081050
0.054786
0.041371
0.033233

0.166666
0.108408
0.062218
0.040727
0.030263
0.024075

0.166666
0.065751
0.032926

0.021841

0.016339
0.013052

0.166666
0.075637
0.038940
0.026070
0.019594
0.015695

Path Probability for Decision Module DM2:

Before Switch Q1

ql

q2

q3

q4

qd

q6

600
1200
1800
2400
3000

0.166666
0.396374
0.623670
0.740127
0.801726
0.839764

0.166666
0.150584
0.113208
0.084455
0.061028
0.054985

0.166666
0.177897
0.116604
0.080160
0.061028
0.049259

0.166666
0.165583
0.091556
0.058616
0.043054
0.034007

0.166666
0.056801
0.028705
0.019184
0.014406
0.011533

0.166666
0.052760
0.026255
0.017456
0.013075
0.010451

(a) Before Switch : Optimal Strategy Pair P1.Q1

Table 7.3 - Simulation of Two Node Organisation (Figure 7.11)

191

Reward Parameter = 0.04

Reward Probability

C31 = 0.9

Path Probability for Decision Module DM1: After Switch P3

n pl p2 p3 p4 p5 pb

0 | 0.854036 | 0.059909 | 0.033233 | 0.024075 | 0.013052 | 0.015695
600 | 0. 583030 | 0.033474 | 0.264141 | 0.102045 | 0.007646 | 0.009663
1200 | 0.302103 | 0.018049 | 0.573407 | 0.097502 | 0.003883 | 0.005056
1800 | 0.201256 | 0.012179 | 0.704976 | 0.075629 | 0.002574 | 0.003385
2400 | 0.150887 | 0.009189 | 0.774746 | 0.060707 | 0.001925 | 0.002544
3000 | 0.120683 | 0.007378 | 0.817884 | 0.050479 | 0.001537 | 0.002038

Path Probability for Decision Module DM2: After Switch Q1

ql

q2

q3

q4

qd

qb

600
1200
1800
2400
3000

0.839764
0.900723
0.946919
0.964462
0.973289
0.978604

0.054985
0.058943
0.032772
0.021999
0.016556
0.013272

0.049259
0.020865
0.010368
0.006879
0.005147
0.004112

0.034007
0.015002
0.007705
0.005169
0.003889
0.003117

0.011533
0.002343
0.001172
0.000782
0.000586
0.000469

0.010451
0.002123
0.001062
0.000708
0.000531
0.000425

(b) After Switch : Optimal Strategy Pair P3.Q1

Table 7.3 - Simulation of Two Node Organisation (Figure 7.11)

192

Switch of Environment : Before Switch Pi.Q!

Q2

ar.

as.

(Y

Average Action Probabilities

x——pl (n)
g—-aql (n)

Number of Iterations

(a) Before Switch P1.Q1 (Table 7.3a)

Average Action Probabilities

Switch of Environment : After Switch Pl
al —=xpl (n)
a4

Number of [terations

Switch of Environment : After Switch P3. 0!

.,’/a/"'——'

(Y S

ary
..
ayd
[3

w—p3(n)
o—aql (n)

Average Actton Probabilities

a3

Number of Iterations

(a) After Switch P1 (Table 7.3b)

(b) After Switch P3.Q1 (Table 7.3Db)

Figure 7.12 — Average Action Path Probability vs Iterations

193

oo.u mo.U voU moru N@U _oU om.u mmu

yS.

) mmu NmU EU

Vﬁv mﬁv Nﬁv EU

o—U

el B B B KR IR RS D] o]) | 1HL
AN

A39180G UOISIOA(T PaIRUIPIOD)) 199[0G

///////
AN | N CTSUN
NN AN

NN
/N% N T T A N

///0/

9d

Sd vd ¢d U Id

NN i ooy w02 Y

ONNN
R N
SN

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Figure 7.13 — Communication Between Decision Modules

AXTHARHITHRITTHETETERTTTTERTTSY
9INPOJA UOISIO /////
T 3TTPOIN HOSIAN

194

Reward Parameter = 0.04

Increment Reward Probability = 0.16

Reward Probability

Cu = 0.

9

Path Probability for Decision Module DM1: P1

n pl P2 p3 p4 pd p6

0 0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666
600 | 0. 838864 | 0.101717 | 0.014694 | 0.014704 | 0.015153 | 0.014867
1200 | 0.917820 | 0.052470 | 0.007341 | 0.007359 | 0.007583 | 0.007427
1800 | 0.944856 | 0.035337 | 0.004892 | 0.004907 | 0.005057 | 0.004950
2400 | 0.958508 | 0.026637 | 0.003669 | 0.003681 | 0.003793 | 0.003712
3000 | 0.966742 | 0.021374 | 0.002935 | 0.002945 | 0.003035 | 0.002969

Path Probability for Decision Module DM2: Q1

n ql q2 q3 q4 qd q6

0 |0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666
600 | 0.900723 | 0.058943 | 0.020865 | 0.015002 | 0.002343 | 0.002123
1200 | 0.946919 | 0.032772 | 0.010368 | 0.007705 | 0.001172 | 0.001062
1800 | 0.964462 | 0.021999 | 0.006879 { 0.005169 | 0.000782 | 0.000708
2400 | 0.973289 | 0.016556 | 0.005147 | 0.003889 | 0.000586 | 0.000531
3000 | 0.978604 | 0.013272 | 0.004112 0.003117 0.000469 | 0.000425

(a) Top Level Communication :

(SA1 and SA2)

Table 7.4 — Communication Between Automata (Figure 7.13)

195

Reward Parameter = 0.04

Increment Reward Parameter = 0.16}

Reward Probability

Cn=0

9

Path Probability for Decision Module DM1: P1

n pl p2 p3 p4 po p6

0 0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666
600 | 0. 909035 | 0.039772 | 0.012995 | 0.013038 | 0.012565 | 0.012593
1200 | 0.953980 | 0.020423 | 0.006498 | 0.006519 | 0.006284 | 0.006295
1800 | 0.969201 | 0.013734 '0.004332 0.004346 | 0.004190 | 0.004196
2400 | 0.976856 | 0.010345 | 0.003249 | 0.003259 | 0.003143 | 0.003147
3000 | 0.981463 | 0.008298 | 0.002599 | 0.002607 | 0.002514 | 0.002518

Path Probability for Decision Module DM2: Q1

n ql q2 q3 q4 q5 q6

0 |[0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666 | 0.166666
600 | 0.903764 | 0.042945 | 0.015087 | 0.015940 | 0.010836 | 0.011427
1200 | 0.951277 | 0.022077 | 0.007532 | 0.007981 | 0.005418 | 0.005714
1800 | 0.967384 | 0.014852 | 0.005019 | 0.005323 | 0.003612 | 0.003809
2400 | 0.975487 | 0.011189 | 0.003763 | 0.003994 | 0.002709 | 0.002857
3000 | 0.980365 | 0.008976 | 0.003010 | 0.003195 | 0.002167 | 0.002286

(b) Top and Lower Level Communication: (SA1:SA2) (RS11:RS21)

Table 7.4 — Communication Between Automata (Figure 7.13)

196

Reward Parameter = 0.04

.Increment Reward Parameter

0.16]

Reward Probability

Cs3 =0

9

Path Probability for Decision Module DM1: P3

pl

p2

p3

p4

pd

pb

600
1200
1800
2400
3000

0.166666
0. 802600
0.898591
0.931791
0.948618
0.958785

0.166666
0.091126
0.048272
0.032783
0.024813
0.019959

0.166666
0.029971
0.014989
0.009994
0.007496
0.005997

0.166666
0.026251
0.013121
0.008747
0.006560
0.005248

0.166666
0.027005
0.013563
0.009055
0.006796
0.005439

0.166666
0.023046
0.011463
0.007629
0.005717
0.004571

Path Probability for Decision Module DM2:

Q3

ql

q2

q3

q4

qd

q6

600
1200
1800
2400
3000

0.166666
0.798982
0.896730
0.930540
0.947675
0.958029

0.166666
0.109165
0.057343
0.038842
0.029361
0.023599

0.166666
0.024862
0.012413
0.008271
0.006202
0.004961

0.166666
0.027623
0.013830
0.009224
0.006919
0.005536

0.166666
0.019942
0.009964
0.006641
0.004980
0.003984

0.166666
0.019426
0.009720
0.006481
0.004861
0.003889

(c) Re-locate Unique Maximum: (SA1:SA2) (RS11:RS21) Communicate

Table 7.4 — Communication Between Automata (Figure 7.13)

197

Upper Level Communication

(123

(Y2 3

Average Action Probabilities

No Communication

——xpl
. &——-aql s No Communicatton
e&——apl 1 Communication
. +——1tql s Communication
q
(1)
. -» - - - - o L] L] - -

Number of [terations

(a)

Average Action Probabilities

Upper and Lower Level Communication . P1,01

..

ar

[11

[

»——xpl s No Communication
(X33 &——aql « No Communication
s8——apl + Communication
“ +——+ql s Communtcation
... - - - - - L] - - - e

Number of Iterations

(b) Path P1.Q1 (Table 7.4b)

Upper Level Path P1.Q1 (Table 7.4a)

Upper and Lower Level Communication s P3.03

a4

[

No Communicat!on
No Communication
Communtication

]
asd s
1
+ Communication
]
]

Aversge Actlon Probabilities

Communicatton
Communication

Number of [terations

(c) Path P3.Q3 (Table 7.4c)

Figure 7.14 — Average Action Path Probability vs Iterations

198

Chapter Eight

Conclusion and Recommendations for Future Work

8.1 Conclusion and Summary

This thesis has described the various approaches in developing
analytical models for decentralised decision making under uncertainty. It has
been emphasised that the core problems are quite profound and have a bearing
on many areas that are interesting to a diverse range of disciplines. There are
many challenging problems which remain unsolved, and the applications for
new results will be widespread. The purpose of this chapter is to summarise
and conclude the work that has been completed during the course of this
project. In particular, to focus on the contribution made during the research
programme and to outline areas of research that appear promising for the
future.

The initial phase of research has provided an overview of the field
of DAI and considered the importance of coordination in such systems. The
thesis is not intended to provide a survey of the entire field of DAI, but
rather it focusses on coordination techniques and the motivations for learning
in DAI systems. The analysis of the work related to coordinating the problem
solving of multiple agents has been regarded as the central problem of DAI
research. The survey has highlighted that effective coordination in DAI
systems requires three facets to be present: (i) structure within which agents

can interact in predictable ways; (ii) flezibility so that nodes which exist in

199

dynamically changing environments can deal with incomplete, inaccurate or
obsolete information; and (iii) the knowledge and reasoning capabilities to
intelligently use the structure and flexibility. The basic stochastic learning
automaton framework deals with the first two points. In particular, the
interactive decision making models discussed in Chapter Four, exhibit the
features of structure and flexibility. These interconnections provide each
model with varying levels of flexibility in their interactions towards agents
and the changing environment. However, the discussion has concluded that
the basic framework used in isolation is inadequate for the representation of
a generalised network. It is necessary to extend the modelling framework,
to overcome these limitations. This extension has been addressed in Chapter
Six which proposes a hybrid model. The final feature is not a matter
of coordination, rather it is the ability to reason about information and
predictions when making decisions about its local problem solving. The
stochastic learning automaton does not have this characteristic. However, the
model exhibits an intelligence capability that use the structure and flexibility

in order to adapt to dynamically changing environments.

The survey has also highlighted that there has been limited research
dealing with learning in the DAI literature. The implementation of success-
ful learning methods in DAI systems can have significant impacts on the
development of distributed decision making models operating in uncertain
environments. The thesis proposes learning in a multiagent setting which
has been discussed in the context of an AI approach. This methodology is

based on the stochastic learning automata which is considered to represent

200

a promising approach to providing a conceptual framework for modelling of

decentralised decision making.

Interactive Automata Model

The previous chapters have addressed the problems of decentralisation
and uncertainty. To formalise these ideas a promising framework based on
the stochastic learning automaton model has been considered. In particular,
the concept has been directed towards modelling highly interactive situations
which consider different methods of intercbnnection of individual decision
makers. These models illustrate how decision makers interact with each other
and update their decisions using known lear_n'mg schemes. The behaviour
of such models may be explained by using concepts from both stochastic
learning theory and game theory. A detailed description has been presented
by considering both synchronous and sequential models. For such structures it
is important to know what kind of interconnections result in a desirable overall
system performance. This can be acheived by analysing the corresponding
game structure as interconnections are varied. Whilst such interconnections
were appropriate for the representation of interactive models, these models
are rather primitive. It is evident that a detailed investigation of the specific
interconnections was needed before organisational structures can be designed
that promote high quality decentralised decision making performance. The
basic framework was not sufficient to illustrate the explicit interaction between
decision makers which capture information flow and time delays that are

crucial in the modelling of systems. In addition these models were restricted

201

in modelling flexibility, since they could only be used to model systems that
exhibit feedback and hierarchical configurations. It was necessary to propose
a more convenient modelling tool to meet these specific requirements and this

was accomplished in the next phase of research.

Petri Net and Associated Models

The thesis has defined a high-level mathematical framework based on
Petri net methodology. This formalism has presented an abstract, formal graph
model useful for representing systems which exhibit concurrent, asynchronous,
distributed parallel and/ or stochastic activities. Several recent attempts have
considered the potential of Petri nets in the modelling of decision making
organisations, [60], [61]. In particular, their work was oriented towards the
optimal design of organisations. This optimal design is based on the data flow
formations which are used to model in a precise manner the various types of
interactions between decision makers as well as interactions between decision
aids and systems that support the organisation. Although such work may
be necessary for the optimal design of organisations the thesis has considered
that a focus on data flow formations alone is not sufficient to guarantee high
levels of performance in a distributed decision making organisation. It was
also essential to focus on the behaviour of an organisation that operates under
uncertainty. This viewpoint introduced a new dimension to existing Petri net
theory. The thesis proposed an extension to Petri nets and has developed a

new class of modelling/design tools known as Learning Petri Net models.

The extension to Petri nets was introduced by embedding the concept

202

of stochastic learning automata into the model. The intelligence capability
incorporated within different forms of Petri nets has greatly enhanced the
modelling power of Petri nets. Each variation in the modelling technique has
exhibited a data flow formation, a decision making process embedded within
the structure and, various types of transitions associate with each model.
Clearly, these learning Petri net structures highlight a powerful design tool
for the effective representation of distributed decision problems.

The thesis has shown how the use of a SLPN model enables dynamic
decision making by controlling the selection of decisions on a probabilistic
basis. The model has also illustrated how information can be monitored at
each time instant such that probabilistic outcomes of the decisions can be
captured to achieve a desirable global performance. It may also be noted
that all the proposed hybrid models alter in some way the firing rule of Petri
nets, and make it so that the main part of net theory is no longer applicable.
These features have emphasised the increased complexity of the hybrid models
in comparison to the standard Petri net model.

The learning Petri net models are often constrained to a graphical
representation and reachability tree analysis. Many problems regarding the
correct operation of these new models can be posed in terms of questions
related to the reachability of states in Petri nets. The reachability problem
may be studied by finding finite representations for reachability sets. However,
to ensure the correct operation of modelling systems many factors must be
addressed. These characteristics may be stated in the form of assertions which

includes maintaining integrity in concurrent activities, guarantee deadlock free

203

operation and system must be resilient to failures. Correctness models are
used for two purposes: to provide descriptions of systems and to facilitate
proofs about system assertions. In simple terms, correctness models attempt
to prove some desired characteristics of systems. The issue of proving correct
operation has received attention only relatively recently. There seems to be
no model which is widely applicable to the broad spectrum of correctness
problems. The analysis of correctness used in many systems tend to be
relatively informal, however in some cases mathematical models are used.

Petri nets are considered to be ideal representatives of correctness models.

The thesis has presented a classical analytical framework which have
been developed largely within the framework of mathematics and game theory.
These models use the available information (without recourse to experience)
to make optimal judgements and decisions. In these models skill/ experience
levels are not reflected. The models are not applicable in situations where
a decision maker must use skills of sizing up a situation, detecting patterns,
imagining how a course of action will be performed, anticipating undesirable
consequences and so forth. The strongest disadvantage of analytical models
is that they prevent decision makers from taking advantage of their skills in
sizing up situations and planning courses of action. In addition such models
do not work under time pressure because they take too long. However, when
there is enough time, they require much work and lack flexibility for handling
rapidly changing conditions. It may be emphasised that analytical decision
making is more helpful when there is a conflict to be resolved, especially when

conflict involves people with different concerns. The analytical frameworks

204

are usually a better strategy to be used when an optimal solution is required.
Finally, analytical strategies necessary when the problem involves so much
computational complexity that alternate strategies would be inadequate. Thus,
an interesting exercise to overcome the limitations that exist within analytical
frameworks would involve an examination of the internal structure of decision

modules. Additional characteristics could be embedded within each module

to provide modelling flexibility in operational settings.

Applicability of Models to Realistic Problems

The application of the new modelling tool to a non-trivial example has
been considered. This application has demonstrated the modelling power of
Stochastic Learning Petri net (SLPN) tool. In particular, the design tool was
used to illustrate modelling flexibility and suitability to a realistic distributed
decision problem. To demonstrate the versatility of the model different
scenarios were contrived to observe the performance of the organisation. The
basic model involved a two node organisation interacting with a stochastic
environment. Each module communicated with a decision support system to
learn the optimum strategy for interaction with the random environment. The
scenario illustrated the modelling capability of optimum distributed strategies
in stochastic environments for both steady state and switched environments.
The ability to model communication between adjacent hierarchical layers
and the ability to use confidence communication signals to provide adaptive
stepsizes to improve convergence rates has been shown. The new results

provided by each experiment have shown some trends that enable general

205

statements to be made about the behaviour of the organisation under varied
circumstances. These models are well suited to represent more complex
decision problems. In practice it is much more common that such organisations
comprise a large number of decision modules connected in arbitrary topology.

It may be noted that the Generalised Stochastic Learning Petri net
(GSLPN) may also be considered for these applications. This approach
requires more modelling effort, but results in a much smaller reachability set.
It is thus desirable to consider a GSLPN application whose complexity only
depends on the combination of transitions. This can be done provided that

a careful study of the application domain is considered.

206

8.2 Recommendations for Future Work

During the course of this research project a modelling tool for decen-
tralised distributed systems based on a hybrid approach has been proposed.
The application of this modelling tool to a simple non-trivial example has been
considered. These models are capable of dealing with realistic more complex
decentralised decision problems. The next phase of research can be extended

by using concepts which have originated from the research programme.

8.2.1 Models (Byzantine Generals)

To date the application of the modelling tool to a two node organisa-
tion has been considered. This may be extended to observe the performance
of an arbitrary number of decision modules connected in a range of topological
structures. However, an important component of such large, reconfigurable
distributed structures is considered to be reliability. Intuitively, reliability
is a measure of how well a system can tolerate and recover from failures.
Reliability has two aspects, a system is said to be reliable if its output or
results are correct. Correctness is an important factor because the system is
required to maintain consistency. The presence of failures may temporarily
cause an inconsistent state but the recovery algorithms should restore the
system to a correct state. The second aspect of reliability has to do with
availability. A reliable system should tolerate failures and should be able to
continue operation even in a degraded state. The objective is to design a

system that can sustain multiple failures and continue to process transactions

promptly and correctly.

207

Analytical models may be used to study unreliable communication
between decision modules. An unreliable decentralised system often requires a
means by which independent decision modules can arrive at an exact mutual
agreement of some kind. In the absence of faults, errors and failures reaching
a satisfactory mutual agreement is usually an easy matter. However, in the
presence of failed components a decision module can behave in an unpredictable
manner; block information from being relayed, alter the information relayed
through itself, incorrectly reroute the information and in the worst case
it can send conflicting information to different parts of the system. The
Byzantine Generals problem is proposed as an appropriate model in resolving
this type of failure, [69], [70]. Appendix Four provides a description of the
Byzantine Generals problem and several algorithms for dealing with conflicting,

inconsistent information in a system.

8.2.2 Modelling Human Factor in C3I Systems

Most studies of command and control have focussed on an organisation
which is formed in order to perform a set of tasks that individuals cannot
perform alone. The task to be performed by the organisations being considered
consist of receiving signals or inputs from one or more sources, processing
them and producing outputs which can be actions or signals. A single
decision maker cannot perform these tasks alone because of the large amount
of information processing required and because of the fast tempo of operations
(eg. tactical situations). Such organisations have also neglected the ways in

which decision makers diagnose problems, develop solutions and select options.

208

It is precisely these functions and the limitations of humans as information
processors and problem solvers which constitutes a major problem in the
development of realistic models of C3I. Thus, it is impofta,nt to examine the
ways in which human performance affects the functioning of C3I systems.
The theory of human decision making involves an interdisciplinary
body of knowledge. There exists contrasting schools of thought in this
complex area. These include classical analytical theories, naturalistic theories
and a class which reside somewhere in between these two opposing approaches
to understanding and explaining decision making processes, [7}, {71], [72], [73].
Figure 8.1 illustrates that there are certain factors which increase the decision

makers tendency to use particular types of decision making strategies, [72].

8.2.3 Automatic Data Fusion

The requirements for an automatic data fusion process are complex
and diverse. A distributed data fusion system represents a good platform
for integrating several complementary AI technologies. Such a system is
capable of providing a robust, maintainable, concurrent processing environment.
Additionally, the system would be potentially flexible enough to support the
wide variety of processing capabilities which are necessary for the task of data
fusion.

The automation of data fusion is not a trivial task by any standards.
The fusion process must be able to combine high processing throughput
with human like processing faculties. A fusion system must deal with all

situations including, drawing upon a wide range of knowledge and experience,

209

or alternatively a provision to learn from experience must be incorporated
within the system. It should also exhibit a means for reasoning with
information which can be uncertain and unreliable. In such cases, the
technical complexity of an automated fusion system will depend upon the
level of processing which is supported. The benefits to be gained from
automating various levels of data fusion tasks are significant. These include:
the automation of the mundane fusion tasks such as data association and
classification; when the influx of reports are high, such systems are potentially
capable of much higher processing throughput; a computerised system is less
susceptible to errors, and is not fatigued by repetitive, menial tasks; capable of
identifying hidden inferences and associations which are typically not identified

through human level reasoning.

A simplified model of the fusion process can be described in terms of
two levels. The lower level procedures are mostly concerned with mechanistic
calculations to determine the classification and state of an object. This involves
the derivation of target position and identity, and hence the processing speed
will usually be an important consideration. The higher level procedures are
concerned with the derivation of threats, patterns of behaviour, and predictions
of future intentions from the perceived situation. This level of processing
is more abstract and involves sophisticated reasoning, and less mechanistic
computation. A basic generic model of data fusion has been described by
Waltz and Llinas, [74]. In addition, it is necessary to examine the potential
technologies which could form the basis of a simple fusion system. In this

context an area worthy of further investigation is the internal structure of the

210

four-stage decision making process, Figure 7.1. In particular, it is necessary to
focus on the information fusion (IF) and command interpretation (CI) stages,

to improve system performance and to achieve specified task objectives.

8.2.4 Migration of Control

The notion of control migration seems to intuitively reflect system
behaviour. In a classical feedback loop, control refers to the result of processing
the externally produced command statements of system requirements and
analysing system behaviour in the presence of uncertainty. The migration of
control refers to the movement of the control function through the information
structure of the system. It is a feature that can be built into large scale
systems, if an adequate structure for control can be established. In large scale
organisations, control may migrate in an unpredicfable manner away from the
decision makers who have been assigned specific authority and responsibility
to subordinate members of the organisation. The changes in an organisations
structure such as, access to decision support systems can change the sensitivity
of performance measures to the actions of different decision makers. Moreover,
the choice of strategies selected by each decision maker affects which one has
the most impact on performance.

The migration of control may be viewed from both positive and
negative perspectives. From a positive viewpoint, it is desirable for control to
migrate in the event of a failure of a decision making node. However, from
a negative perspective control may migrate in an unforeseen or undesirable

manner. Migration may occur away from nodes which belong to higher

211

echelons to the lower echelons. Research in migration of control is still in
its primitive stages, and is continuing as part of an effort to understand the

dynamics of organisations, [62], [75].

212

9eudosddeur are sa13s)ens
Toyo 1eyy Lixs(dwoos [euoneinduios yonw os saajoaur
wa[qoid uaym [njasn Lreinonted £3a1ens [esni[euy

ALIXATdNOD TVNOILV.LNAINOD

SWIadU09 JUIIIYJIP
ua apdoad saafoaur 1o1juos J1 Aje1oadsa - poajosal aq
01 191[Ju0d SI 213Y) UdYM [njasn atow £3ajens [eonkjeuy

NOILNTOSHY LOI'INOD

suondo sAnewa)e jo 19s e wory uondo
1s2q 211 unedionue JoJ yuerrodun £[readss - pannbar st
uonnjos rewndo ue usym pasn aq o) A3ajens [eonkeuy

NOIYILIYD .NOILVSINWILJO,

suonipuod euswuonaua Jutdueys £prder Suifeuew
10§ Aypiqrxayy oe| Sunfew uoIsIop [EINATeUY

SINIAT DINVNAU NON

passasaid aq 01
uois1oap 10J swm adure annbair sassaooid eonk[eue
A13uaf uaym pasn Furyeur uotsioap eonhEuy

JANSSTAd ANIL TVINININ

saouanadxa 93015u05 Jursn woay SW(s1uaasid “oensqe
are ejep uaym [nJasn £3ajens Furyeur uoisidap [eonA[euy

Vivd Lovilsav

SUONIPuoo [2A0uU FUNUOLYU0D S (] pue aseq ousuradxas
aienbapeut Yiim saotaou 10§ [njasn K3ajens [eondeuy

TAATTAINANIAIXA XDV'1
%

A3a1eng uney uoisa EanA[euy 250 0 Kouapus], s 9sealdu] ey, suontpuoy)
A3a1eng 3urfepy uotstoa reuontudossy asn 0 Aouapua], SN aseamdu] Y], SUOIIPUO))
[9PO yoeqg utistxg ey, satouatorjaQg o

Lyxadwon
Jeuopeindwo)
Jo aaxdaq

— — ey -

uoynjosay
PIBuc)
Jo Lypiqyssog

pauielqo
uoynjog
JoadAy

SIuaA{ Jo Ielg
PPON

paAfoau]
Joyoef durg],
J3pjsuo)

uopeuLIojuUy
Bujssassy
Jo poyleN

£ixardwoo reuoneinduros Lue proae pue suondo aqqisnerd

Ajuo a1e1au9d S pasuauadxa - su1adu0d Juenodun
210w IO U0JJd pue dwn saes ued yoeordde jeuoniudoooy

ALIXATJIWOD ON

SIOI[JUOD [IOUOIIX O) WNIYJIP S I - 108
01 pastod st N 1eY) 21nsus ues £3ojens jeuonuoosay

NOLLNTOSAY LOI'TINOD ON

Ppaloafes st uoroe [eordA) ysow 1xau ay)
uay) ‘a[qiseayut st uondo siq Jt - uondo 151y AqeNIOM
® Sunoofes uo s:enuaouos L3sjens reuoniugoosy

NOIMALIYD . ONIDIASILVS,

SUOIMIPUOS [RJUSWUONAUS UT 2Fueys onmeudp o1 1depe
Apises ues sai3aens 8unyewr uoistoap [euonufoosy

SINIAT OINVNAQ

amssaid aumm
auranxa 1apun Sunesado s pasustiadxs Jo uonensn((r
Ju[[20x2 ue sapiroid Sureur uorstoop [euontugooay

JIANSSTAd ANLL

IISSISSE UONEMIS UO SNO0J sy - Jefjyure)
se uonenyis e umEmooﬁ (o] 8:2,_&5 1oy [[e asn SINCT
EEB Eatom:: »muﬁbm Suryeur uoistoap [euonudooay

TIARAT AONIIYAIXE

ADALVILS

— — — — —— o — — e e wm— e emm emm s e eam e - e e w— e’

Figure 8.1 ~ Factors Affect Use of Recognitional/

Analytical Decision Making Strategies

213

References

1] Athans, M.:
‘Command and control theory: A challenge to control science’,
- IEEE Trans. on Automatic Control, 1987, AC-32, No. 4, pp. 286-293.

[2] Andriole, S. J., and Halpin, S. M.:
‘Information technology for command and control’,
IEEE Trans. Syst. Man and Cybern., 1986, SMC-16, No. 6, pp. 762-765.

[3] Stephanou, H. E., and Sage, A. P.
‘Perspectives on imperfect information processing’,

IEEE Trans. Syst. Man and Cybern., 1987, SMC-17, No. 5, pp. 780-798.

(4] Ahmed, Q. F.:
‘Decentralised Decision Making in C® ~1I systems’,
Int. Res. Report, Univ. of Durham, 1988.

[5] Sage, A. P.:
‘Information systems engineering for distributed decision making’,
IEEE Trans. Syst. Man and Cybern., Nov.-Dec. 1987, Vol. SMC-17, No. 6,

pp. 920-936.

6] - Kleinrock, L.:
‘Distributed systems’,
Comm. of the ACM, Nov. 1985, Vol. 28, No. 11, pp. 1200-1213.

[7] Klein, G. A., Orasanu, J.,Calderwood, R., and Zsambok, C. E.:
‘Decision Making in Action: Models and Methods’,
New Jersey: Ablex Publishing Corporation, 1993

(8] Bond, A. H., and Gasser, L.:
‘Readings in Distributed Artificial Intelligence’,
Morgan Kaufmann Publishers, Inc., PO Box 50490, Palo Alto, CA 94403, 1988.
ISBN 0-934613-63-X

[9] Barr, A. H., Cohen, P. R., and Feigenbaum, E. A.:
“The Handbook of Artificial Intelligence ; Volume IV’
Addison-Wesley Publishing Company, Inc., 1989.
ISBN 0-201-51819-8

[10] Avouris, N. M., and Gasser, L.:
‘Distributed Artificial Intelligence: Theory and Praxis’,

Computer and Information Science, Vol. 5
Kluwer Academic Publishers, Inc., PO Box 17, 3300 AA Dordecht, The Nether-

lands, 1992.
ISBN 0-7923-1585-5

[11] Narendra, K. S., and Thathachar, M. A. L.:
‘Learning automata — a survey’,
IEEE Trans. Syst. Man and Cybern., 1974, SMC-4, pp. 323-334.

[12] Narendra, K. S., and Thathachar, M. A. L.:
‘Learning Automata — An Introduction’,
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.
ISBN 0-13-485558-2

214

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Wheeler, R. M., and Narendra, K. S.:
‘Learning models for decentralised decision making’,
Automatica, 1985, Vol. 21, No. 4, pp. 479-484.

Wheeler, R. M.:
‘Decentralised learning in games and finite Markov Chains’,

Ph.D. Thesis, Dept. of Elect. Eng., Yale Univ., 1985.

Peterson, J. L.:

‘Petri Net Theory and the Modelling of Systems’,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.
ISBN 0-13-661983-5

Murata, T.:
‘Petri Nets: Properties, Analysis and Applications’,
Proc. IEEE, April 1989, Vol. 77, No. 4, pp. 541-580.

Gasser, L. and Huhns, M.:

‘Distributed Artificial Intelligence: Vol.ID’,
Pitman Publishing, London, 1989.

ISBN 0268-7526

Huhns, M. N.m Mukhopadhyay, U.. Stephens, L. M., and Bonnel, R.D.:
‘DAI for document retrieval: The MINDS project’,
in Distributed Artificial Intelligence, Pitman, London, 1987, pp.249-284.

Shaw, M., and Whinston, A.:
‘Learning and adaptation in DAI systems’,
in Distributed Artificial Intelligence : Vol 2, Pitman, London, 1989, pp.413-429.

Sian, S. S.:
‘Adaptation based on cooperative learning in Multi-Agent systems’,
in Decentralised A. L. : Vol 2, Elsevier Science Publishers, B.V, 1991, pp.257-272.

Gasser, L.:

‘Approaches to Coordination’,

in Distributed Artificial Intelligence: Theory and Praxis,

Computer and Information Science, Vol. 5

Kluwer Academic Publishers, Inc., PO Box 17, 3300 AA Dordecht, The Nether-

lands, 1992, pp. 31-51.

Jennings, N.:
‘The ARCHON system and its applications’,
Proc. Int. Working Conf. on Cooperative Knowledge Based Systems, University

of Keele, Keele, 1994.

Jennings, N.:

‘Cooperation in Industrial Multi-Agent Systems’,
World Scientific Publishing Co. Pte. Ltd, 1994.
ISBN 981-02-1652-1

Sugawara, N.:
‘A cooperative LAN diagnostic and observation expert system’,
Proc. International Conf. on Computers, Communications, Scottsdale, AZ, 1990.

Barr, A. H., Cohen, P. R., and Feigenbaum, E. A.:
‘Cooperative distributed problem solving’,
in The Handbook of Artificial Intelligence ; Volume IV,

215

Addison-Wesley Publishing Company, Inc., 1989, pp.85-147.
ISBN 0-201-51819-8

[26] Smith, R. G.:
‘The Contract Net protocol: High level communication and control in distributed
problem solver’,
IEEE Trans. on Computers, 1980, Vol. C-29, No. 12, pp. 1104-1113.

[27] Smith, R. G., and Davis, R.:
‘Negotiation as a metaphor for distributed problem solving’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 333-357.
ISBN 0-934613-63-X

[28] Conry, S. E., Meyer, R. A., and Lesser, V. R.:
‘Multistage negotiation in distributed planning’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 367-385.
ISBN 0-934613-63-X

[29] Durfee, E. H., Lesser, V. R., and Corkill, D. D.:
“Trends in cooperative distributed problem solving’,
IEEE Trans. Knowledge and Data Engineering, 1989, Vol. 1, No. 1, pp.63-83.

[30] Lesser, V. R., and Corkill, D. D.:
‘The distributed vehicle monitoring testbed: a tool for investigating distributed
problem solving networks’,
Al Magazine, 1983, pp. 15-33.

[31] Georgeff, M.:
‘Communication and interaction in multiagent planning’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 200-205.
ISBN 0-934613-63-X

(32] Georgeff, M.:
‘A theory of action for multiagent planning’,
in Readings in Distributed Artificial Inteiligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 205-210.
ISBN 0-934613-63-X

[33] Georgeff, M.:
“The representation of events in multiagent domains’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 210-216.
ISBN 0-934613-63-X

[34] Cammarata, S., McArthur, D., and Steeb, R.:
‘Strategies for cooperation in distributed problem solving’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 102-106.
ISBN 0-934613-63-X

[35] Rosenchein, J. S., and Genesereth, M. R.:
‘Deals among rational agents’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 227-235.
ISBN 0-934613-63-X

216

[36] Gasser, L.:
‘An Overview of DATI’,
in Distributed Artificial Intelligence: Theory and Praxis,
Computer and Information Science, Vol. 5
Kluwer Academic Publishers, Inc., PO Box 17, The Netherlands, 1992, pp. 9-30.

[37] Durfee, E. H., and Lesser, V. R.:
‘Using partial global plans to coordinate distributed problem solvers’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 285-294.
ISBN 0-934613-63-X

[38] Jennings, N.:
‘Commitments and conventions: the foundation of coordination in multi-agent
systems’,
The Knowledge Engineering Review, 1994, Vol. 8, No. 3, pp.223-250.

[39] Rosenchein, J. S., and Genesereth, M. R.:
‘Communication and cooperation among logic-based agents’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 1104-1113.
ISBN 0-934613-63-X

[40] Rosenchein, J. S.:
‘Synchronisation of multiagent plans’,
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 187-192.
ISBN 0-934613-63-X

[41] Mars, P., Ahmed, Q. F., and Edwards, P.:
‘Applications of artificial intelligence techniques to decentralised
decision-making in C® - MIS’
IEE Third Int. Conf. on Command, Control, Communications and
Management Information Systems, May 1989, pp.78-83.

[42] Ahmed, Q. F.:
‘New Approaches (Stochastic Learning Automata)’,
in ‘Decentralised Decision Making in C® —1I systems’,
Int. Res. Report, Univ. of Durham, Oct. 1988, pp.72-77.

[43] Tsetlin, M. L.:
‘Automaton Theory and Modelling of Biological Systems’,
Academic Press, 1973.

[44] Narendra, K. S., and Thathachar, M. A. L.:
‘Interconnected automata and games’,
in, Learning Automata - An Introduction, Prentice Hall, Englewood Cliffs, New

Jersey, 1989, pp. 281-357.

[45] Ahmed, Q. F.:
‘Decentralised Decision Making Models’,
Int. Res. Report, Univ. of Durham, Aug. 1989.

[46] Thomas, L. C.:
‘Games, Theory and Applications’,
Ellis Horwood Limited, 1986.
ISBN 0-7458-0142-0

217

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

(55)

[56]

[57]

[58]

Ramakrishnan, K. R.:
‘Hierarchical systems and cooperative games of learning systems’,
Ph.D Thesis, Indian Institute of Science, Bangalore, India, 1982.

Thathachar, M. A. L., and Ramakrishnan, K. R.:

‘A hierarchical system of learning automata’,

IEEE Trans. Syst. Man and Cybern., Mar. 1981, Vol. SMC-11,
pp. 236-241.

Mitchell, B. T., and Kountais, D. I:
‘A reorganisation scheme for a hierarchical system of learning automata’,
IEEE Trans. Syst. Man and Cybern., Mar. 1984, Vol. SMC-14, No. 2, pp.

328-334.

Baba, N.:

‘Learning behaviours of hierarchical structure stochastic automata operating in a
general multiteacher environment’,

IEEE Trans. Syst. Man and Cybern., July/ Aug. 1985, Vol. SMC-15, pp.

585-587.

Peterson, J.:
‘Petri Nets’,
Computing Surveys, Sept. 1977, Vol. 9, No. 3, pp. 223-252.

Agerwala, T.:
‘Putting Petri Nets to Work’,
Computer, Dec. 1989, Vol. 12, No.12, pp. 85-94.

Petri, C. A.:
‘Communication with Automata’,
Ph.D dissertation, Tech. Rep. RADC-TR-65-377, Rome Air Development Center,

Rome, NY, 1966

Marsan, M. A., Balbo, G., and Conte, G.:
‘Stochastic Petri Nets’,

in Performance Models of Multiprocessor Systems
Cambridge, MA: The MIT Press, 1987, pp. 73-95.
ISBN 0-262-01093-3

Pagnoni, A.:
‘Stochastic nets and performance evaluation’,
LNCS, Systems, 1977, pp. 460-478.

Molloy, M. K.:
‘Performance analysis using stochastic Petri nets’,
IEEE Trans. Computers, Sept. 1982, Vol. C31, No. 31, pp. 93-97.

Marsan, M. J., Conte, G., and Balbo, G.:
‘A class of generalised stochastic Petri nets for the performance evaluation of

multiprocessor systems’,
ACM Trans. on Comp. Syst., May 1984, Vol. 2, No. 2, pp. 93-122.

Ahmed, Q. F.:
‘Stochastic Learning Petri Nets’,
Int. Res. Report, Univ. of Durham, Mar. 1990.

218

[59]

(60]

[61]

[62]

(63}

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Ahmed, Q. F., and Mars, P.:
‘Application of stochastic learning Petri Nets to small-scale distributed decision

making organisations’,
IMA Int. Conf. on Control: Modelling, Computation, Information, Sept. 1992.

Levis, A. H.:

‘Information processing and decisionmaking organisations :
a mathematical description’,

Large Scale Systems, 1984, 7, pp. 151-167.

Tabak, D., and Levis, A. H.:
‘Petri net representation of decision models’,
IEEE Trans. Syst. Man, Cybern., Nov.-Dec. 1985, vol. SMC-15, No. 6, pp.

812-818.

Skulsky, S. L., and Levis, A. H.:
‘Migration of control in distributed intelligence systems’,
Proc. IEEE International Symposium on Intelligent Control 1989,

Weingaertner, S. T., and Levis, A. H.:
‘Analysis of decison aiding in submarine emergency decisionmaking’,

Automatica, 1989, vol. 25, No. 3, pp. 349-358.

Demael, J. J., and Levis, A. H.:
‘On generating variable structure architectures for decision making systems’,
Information and Decision Technologies, 1994, Vol. 19, pp.233-255.

Perdu, D. M., and Levis, A. H.:
‘Petri Net model for evaluation of expert systems in organisations’,
Automatica, 1991, Vol. 27, No. 2, pp. 225-237.

Levis, A. H.:

‘A Coloured Petri Net model of intelligent nodes’,

in Robotics and Flezible Manufacturing Systems, 1992, J. C. Gentina and S. G.
Tzafestas, Eds., Elsevier Science Publishers B. V., The Netherlands.

Abhmed, Q. F.:
‘Application of Stochastic Learning Petri Nets to C*I Systems’,
Int. Res. Report, Univ. of Durham, Jan. 1991.

Boettcher and Levis, A.:
‘Modelling the interacting decision maker with bounded rationality’,
IEEE Trans. Syst. Man and Cybern., May-June 1982, Vol. SMC-12, No. 3, pp.

334-345.

Bhargava, B. K.:

‘The Byzantine Generals’,

in ‘Concurrency Control and Reliability in Distributed Systems’,
Van Nostrand Reinhold Company Inc., 1987, pp. 348-369.
ISBN 0-442-21148-1

Ahmed, Q. F.:
‘Models (Byzantine Generals)’, in ‘Decentralised Decision Making in C* —I Sys-

tems’,
Int. Res. Report, Univ. of Durham, Oct. 1988, pp.52-71.

219

[71] Klein, G. A., and Zsambok, C. E.:
‘Models of skilled decision making’,
Proc. Human Factors Society 35th Annual Meeting, 1991, pp. 1363-1366.

[72] Klein, G. A.:
‘Strategies of decision making’,
Military Review, May 1989, pp. 56-64.

[73] Wohl, J. A.:
‘Force management decision requirements for air force tactical command and con-
trol’,
IEEE Trans. Syst. Man and Cybern., 1981, Vol. SMC-11,
pp. 618-639.

[74] Waltz, E., and Llinas, J.:
‘Multisensor Data Fusion’,
Artech House, Inc., Norwood, MA, 1990.
ISBN 0-89006-277-3

[75] Kahne, S.:

‘Control Migration: A characteristic of C* systems’,
IEEE Control Systems Magazine, Feb. 1983, Vol. 3, No. 1, pp. 15-19.

220

Appendix One

Computer Simulation Structure

Al.l Introduction

This section outlines the general structure of simulations, which il-
lustrate the performance of the interactive decision making models. An
algorithm is included to show the basic stochastic model operating in an
unknown random environment, and updating action probabilities using Linear
Reward/ Inaction scheme. It is possible to modify this Stochastic Automa-
ton Algorithm based on the chart presented in Figure Al.1, to acquire the

appropriate synchronous and sequential models.

Al1.2 Structure of Simulation

The general structure of a simulation is displayed in the form of a
chart in Figure Al.1. The chart shows the main stages in the development
of programs for synchronous models. This structure holds for various con-

figurations described in Chapter Three and Four, all simulations have been

completed in the ‘C’ programming language.

Al.3 Stochastic Automaton Algorithm
The algorithm was developed to obtain a closed-loop configuration for
the basic stochastic automaton model. The specific steps for simulation of

automaton-environment:

221

Procedures relevant for the Algorithm

STEP1 Input and Initialisation

Set reward =0.01
Set punish =0.0

Set d; =06
Set d2 =0.1
Set nexpts =2
Set itrial = 1000
Set ntrial =200
Set seedval
srand48(seedval)

STEP 2 For k=0, ..., (nexpts)

Set probl =05

Set prob2 = (1.0-probl)
Set Bl =1

Set flag =0

Set sumpl =00
Setsump2 =0.0

for j=0, ..., (itrial)
for i=0, ..., (ntrial)
/* Interconnect automata-environment to form closed loop configuration */

B

(Reward Parameter)
(Punish Parameter)
(Penalty Probability for Selecting Action 1)

(Penalty Probability for Selecting Action 2)

(Total number of experiments)
(Total number of iterations/expt)
(Average sample path)

(Initialise random number generator, range [0.0, 1.0])

(i) Set oy =autol() (Call function auto1())
(ii) Set 61 =envirlQ) (Call function envirl())
(iii) Evaluate action probabilities: probl, prob2;

else

{Set probl=Iri_probl2()
Set prob2= Iri_prob22()]

{Set prob2= Iri_prob22()
Set probl=Iri_prob12()}

(Calt function Iri_prob12())
(Call function Iri_prob22())

(Call function Iri_prob22())
(Call function Iri_prob12())

/* Store probabilities in array to evaluate expected values */
Set pri[il[k] = probl
Setpr2(ij(k] =prob2
Compute sump1+=pri[i][k]
Compute sump2+=pr2[i][k]

/* Reset flag */
if (flag=0)
inum=0
Compute prb1[inum][k]+=probl
Compute prb2([inum][k]+=prob2
flag=1
Compute i++
Compute j+=ntrial
Compute inum++

222

Compute prb1[inum]k]=sumpi/j
Compute prb2[inum][k]=sump2/j
Compute k++

STEP 3 Evaluate expected values

Reset itrial= 5
(i) For i=0, ..., (itrial)

Set sump1=0.0
Set sump2=0.0

for j=0, ..., (nexpts)

Compute sump1+=prb1[i](j]
Compute sump2+=prb2[il[j]
Compute j++
Compute prbl[i]{j}=sumpl/j
Compute prb2[il[jl=sump2/j
Compute i++

STEP 4 OUTPUT

For i=0, ..., (itrial)
Print i, prb1[i][nexpts], prb2[i]l[nexpts]

(Results are tabulated, action probabilities (pt, p2) at each stage n)

By considering the chart shown in Figure Al.1l, this algorithm can
be modified to implement the various synchronous models. Since synchronous
models consider multiple automata-environment pairs then Step 2(i-iii) are
composed of the relevant routines, autol, envirl, lri-probl2, Iri-prob22, as
depicted in Figure Al.2a - Figure Al.2d. Several routines may be intercon-
nected, to achieve the desired configuration for the synchronous and sequential

models.

223

1. INPUT AND INITIALISATION

Read in data and
initialise
variables and arrays

2. INTERCONNECT AUTOMATA-
ENVIRONMENT TO FORM CLOSED
LOOP CONFIGURATION

Total number of trials

Total number of
experiments

3. EVALUATE EXPECTED VALUES

4. RESULTS OF SIMULATION

Tabulate results at each
stage n: pl(n)=E[p1(n)]

Figure A1l.1 - Overall Structure of Program

224

INT AUTO1(ACTION1, PROB1)

C PURPOSE
INT AUTO1,DETERMINES THE ACTION SELECTED BY THE
AUTOMATON

C METHOD
INT AUTO1,GENERATES RANDOM NUMBER AND COMPARES WITH
CORRESPONDING ACTION PROBABILITY TO GENERATE THE NEXT ACTION
SELECTED BY THE AUTOMATON.

CHISTORY
COPYRIGHT (C) 1994: Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF
ENGINEERING AND COMPUTER SCIENCE,DURHAM,
DH1 3LE.

C ARGUMENT IN
ACTION1 INTEGER, ACTION SELECTED BY AUTOMATON

PROB1 REAL,PROBABILITY OF THE ACTION SELECTED BY AUTOMATON

C ARGUMENT OUT
ACTION1 ON EXIT, CONTAINS THE NEXT ACTION SELECTED BY

AUTOMATON

INT AUTO1(ACTION1,PROB1).

INTEGER ACTIONI1
REAL PROB1,RAND

GENERATE RANDOM NUMBER
RAND = DRAND48()
IF (RAND < =PROB1) THEN
SET ACTION1 =1
ELSE
SET ACTION1 =2
RETURN (ACTION1)

(a) Routine Autol()
Figure Al.2 - Programme Routines

225

INT ENVIRI(ACTION1, PENALTY1, PENALTY2, RESPONSE1)

C PURPOSE
INT ENVIR1, DETERMINES THE RESPONSE FROM THE ENVIRONMENT, THE
RESPONSE1=0 CORRESPONDS TO PUNISH,RESPONSE=1 CORRESPONDS TO A
REWARD SIGNAL

C METHOD
INT ENVIR1,GENERATES RANDOM NUMBER AND EVALUATES THE
RESPONSE FROM THE ENVIRONMENT

CHISTORY
COPYRIGHT (C) 1994: Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF
ENGINEERING AND COMPUTER SCIENCE,DURHAM ,
DHI1 3LE.

C ARGUMENT IN
ACTION1 INTEGER, ACTION SELECTED BY AUTOMATON

PENALTY1 REAL, PENALTY PROBABILITY CORRESPONDING TO AN
ACTION(ACTION1) SELECTED BY THE AUTOMATON

PENALTY2 REAL, PENALTY PROBABILITY CORRESPONDING TO AN
ACTION(ACTION2) SELECTED BY AUTOMATON

RESPONSE1 INTEGER,RESPONSE PROVIDED BY THE ENVIRONMENT
C ARGUMENT OUT

RESPONSE! ON EXIT, PROVIDES THE RESPONSE FROM THE ENVIRONMENT
REWARD/PUNISH SIGNAL

INT ENVIRI(ACTIONI,PENALTY1,PENALTY2,RESPONSEI)

INTEGER ACTION1,RESPONSEI
REAL PENALTY1,PENALTY2RAND

GENERATE RANDOM NUMBER

RAND = DRAND48()

IF ((ACTION1=1) AND (RAND <= PENALTY1)) THEN

RESPONSE1 =1

ELSE IF ((ACTION1=1) AND (RAND > PENALTY1)) THEN
RESPONSE1=0

ELSE IF ((ACTION1=2) AND (RAND <= PENALTY2)) THEN
RESPONSE1=1

ELSE
RESPONSE1=0

RETURN (REPONSEL1)

(b) Routine Envirl()
Figure Al1.2 - Programme Routines

226

DOUBLE LRI_PROBI12(TRIAL,ACTION1,RESPONSE1,PROB1,PROB2,REWARD,PUNISH)

C PURPOSE
DOUBLE LRI_PROB12, UPDATES THE ACTION PROBABILITY (PROB1)
USING THE LRI SCHEME

C METHOD
DOUBLE LRI-PROB12,GENERATES A RANDOM NUMBER TO DETERMINE
THE UPDATED ACTION PROBABILITY BY USING THE LRI LEARNING
ALGORITHM

CHISTORY
COPYRIGHT (C) 1994 : Q. F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF
ENGINEERING AND COMPUTER SCIENCE,DURHAM ,

DH1 3LE.

C ARGUMENT IN
TRIAL INTEGER, NUMBER OF ITERATIONS
ACTION1 INTEGER, ACTION SELECTED BY AUTOMATON
RESPONSE1 INTEGER, RESPONSE FROM THE ENVIRONMENT
PROB1 REAL, ACTION PROBABILITY FOR ACTION1
PROB2 REAL, ACTION PROBABILITY FOR ACTION2
REWARD REAL, REWARD PARAMETER
PUNISH REAL, PUNISH PARAMETER

C ARGUMENT OUT
PROB1 ON EXIT , THE UPDATED ACTION PROBABILITY FOR ACTION1

DOUBLE LRI_PROBI12(TRIAL,ACTION1,RESPONSE],PROB1,PROB2,REWARD,PUNISH)

INTEGER ACTION1,RESPONSEL1
REAL PROB1,PROB2,REWARD,PUNISH,RAND

GENERATE RANDOM NUMBER
RAND = DRANDA48()
IF (TRIAL >0) THEN

(IF ((RESPONSE = 1) AND (ACTION1 = 1)) THEN
SET PROB1 = PROB1+REWARD*(1.0-PROB1)

ELSE IF ((RESPONSE1=1) AND (ACTION=2) THEN
SET PROBI1 = (1.0-REWARD)* PROB1

ELSE IF ((RESPONSE1=0) AND ((ACTION1=1) OR (ACTION1=2))) THEN
SET PROBI1 = (1.0-PUNISH)* PROB1]

ELSE

SET PROB1 = PROB1
RETURN(PROBI1)

(c) Routine Lri-prob12()
Figure Al.2 — Programme Routines

227

DOUBLE LRI_PROB22(TRIAL,ACTION1,RESPONSE1,PROB1,PROB2, REWARD,PUNISH)

C PURPOSE
DOUBLE LRI_PROB22, UPDATES THE ACTION PROBABILITY (PROB2)
USING THE LRI SCHEME

C METHOD
DOUBLE LRI-PROB22,GENERATES A RANDOM NUMBER TO DETERMINE
THE UPDATED ACTION PROBABILITY BY USING THE LRI LEARNING
ALGORITHM

CHISTORY
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF
ENGINEERING AND COMPUTER SCIENCE,DURHAM ,

DH1 3LE.

C ARGUMENT IN
TRIAL INTEGER, NUMBER OF ITERATIONS
ACTION1 INTEGER, ACTION SELECTED BY AUTOMATON
RESPONSE1 INTEGER, RESPONSE FROM THE ENVIRONMENT
PROB1 REAL, ACTION PROBABILITY FOR ACTION1
PROB2 REAL, ACTION PROBABILITY FOR ACTION2
REWARD REAL, REWARD PARAMETER
PUNISH REAL, PUNISH PARAMETER

C ARGUMENT OUT
PROB2 ON EXIT , THE UPDATED ACTION PROBABILITY FOR ACTION1

DOUBLE LRI_PROBI12(TRIAL,ACTION1,RESPONSE],PROB1,PROB2,REWARD,PUNISH)

INTEGER ACTION1,RESPONSEL1
REAL PROB1,PROB2,REWARD,PUNISH,RAND

GENERATE RANDOM NUMBER
RAND = DRAND4$()
IF (TRIAL >0) THEN
(IF ((RESPONSE = 1) AND (ACTION1 = 2)) THEN
SET PROB2 = PROB2+REWARD*(1.0-PROB2)
ELSE IF ((RESPONSE1=1) AND (ACTION=1) THEN
SET PROB2 = (1.0-REWARD)* PROB2
ELSE IF ((RESPONSE1=0) AND ((ACTION1=1) OR (ACTION1=2))) THEN
SET PROB2 = (1.0-PUNISH)* PROB2]
ELSE
SET PROB2 = PROB2
RETURN(PROB2)

(d) Routine Lri-prob22()
Figure Al.2 — Programme Routines

228

Appendix Two

Game Theoretic Concept

A2.1 Introduction

This Appendix introduces some of the terminology of game theory,
providing formal definitions and basic concepts, [45], [46], which are relevant
to this thesis. The theory of games originated at the end of the Second
World War, such a concept involved modelling problems with two or more
decision makers. To date this area of ‘applicable mathematics’ has continued

to be one of the most active branches of research and development.

A22 What Is Game Theory?

Game theory is a method for the study of decision making in situations
of conflict. It is a theoretical model that deals with human processes in
which the individual decision maker is not in complete control of other
decision makers entering into the environment. It describes conflicts of
interest, cooperation or both between individuals, groups, formal or informal
organisations or society. The theoretical models of such conflicts of interests
between people or groups of people such as political parties, government
organisations, generals engaged in fighting an enemy, a player in a poker
game may all be viewed as a game situation. As such game theory consists
of ways of analysing these problems. Game theory is a normative, not a

descriptive theory. That is, it does not describe how actual people make

229

decisions in situations involving conflicts of interests; but rather it discovers
how certain rational players can be expected to make decisions in such
situations. In simple terms, game theory is not a prescriptive way of how to
play a game, but rather it is a set of ideas and techniques for analysing these
mathematical models of conflict of interest. The problems in game theory are
complex, since it involves decision makers with different goals or objectives.
Each individual is in a situation in which there are many possible outcomes
with different values to them. The individuals may have some control which
influence the outcome, but they do not have complete control over others. An
individual must consider how to achieve as much as is possible, taking into
account that there are others with different goals from his own and whose
actions have an effect on all. Thus, it is necessary to adjust plans not only

to his own desires and abilities but also to the desires and abilities of others.

In its strict game theoretic sense, a game has the following features:

(i) Any game consists of more than one decision maker, called a player.

A player in a game is an autonomous decision making unit.

(i) At specified instances, one or more players must make decisions by
choosing among a specified set of alternatives. The selected decision
determines the resulting situations of the game. Thus, a play of a

game is a sequence of situations.

(i) Bach situation in turn determines which of the players is to make
the next decision (whose ‘move ’ it is) and the range of choices open

to him. Note that certain specified situations define the end of the

230

particular play of the game.

(iv) An outcome of the game may be defined as a situation in which a
particular play of a game ends. At-; the end of each game each player
receives a payoff eg. win, lose or draw. The payoffs represent gains

or losses.

(v) A rational player is one who, having taken into account all the
information available to him by the rules of the games, makes his
choices in such a way as to maximise the actual or the statistically

expected payoff to accrue him in the outcome of the game.

Note that each player has to make decisions at some moves of the game. A
strategy for a player can be defined generally as a plan of action containing
instructions as to what to do in every contingency. Thus having selected a
specific strategy it will enable him to adapt to situations that may arise, no
matter what the outcomes of the chance events. Two types of strategies are
of importance: a mized strategy consists of performing a random experiment
each time the game is played in order to choose which strategy to use that
time. A strategy which does not involve this random experiment is called a
pure strategy.

If the sum of the players’ payoff is zero no matter what strategy they
use, the game is called zero-sum. In these games, the players are completely
opposed to one another in that, what one wins the other loses. Games that
do not exhibit this property are called non-zero-sum games. Moreover, a

game with two players, where a gain of one player equals a loss to the other

231

is known as two-person zero-sum game. In such a game, the outcomes may

be expressed in terms of the payoff to one player.

A matrix is usually used to summarize the payoffs to the players
whose strategies are given by the rows of the matrix. The definitions of a
two-person zero-sum game may be considered by a coin-matching situation in
which each of the players A and B selects a head (H) or a tail (T). If the
outcomes match (ie. H and H, or T and T), player A wins 1.00 from B.

Otherwise, A loses 1.00 to B. In this game each player has two strategies (H

or T).

A2.3 Basic Definitions

Many general properties such as strategy dominance, uniqueness of
the equilibrium point, and Pareto-optimality have been considered as useful
features of an optimal solution, [44], [45]. These properties are relevant to

discussions in Chapter Four, and they are described as follows:

Equilibrium Points

In an N-person game strategy N-tuple is said to be an equilibrium point if
no player has a positive reason for changing his or her strategy, assuming
that no other player changes his strategy. The outcome (also called payoff)
corresponding to this set of strategies is called an equilibrium outcome (payoff).
Thus, an equilibrium outcome is one from which neither player can change his
strategy without impairing his payoff, assuming that the other player sticks

to his strategy.

232

Dominant Strategy

A strategy dominates another when, independent of the action taken by the
other players, the first strategy leads to an outcome as favourable as the

second.

Pareto Optimal

In an N-person game, an outcome is said to be Pareto optimal if there is no
other outcome in which all players simultaneously do better (receive larger
payoff). It is possible for a (2x2) game to have one, two , three or four

Pareto optimal payofs.

Consider the following example of two-player games where each player
has two strategies. Each game can be represented by a (2x2) matrix D whose
elements are of the form (d};, df;), where d; is the payoff to player 1 and &

the payoff to player 2 when they play strategies i and j, respectively. The

payoff matrices of the three cases as follows:

0,0) (10,7) 5,5) (0,10
0,0) Ds = (((10, 0)) ((1,1))>

)= o)

Game D,, the strategy of the first player (row) and second strategy of the

second player (column) are dominant, and (10, 7) is an equilibrium payoff.

233

It is also Pareto optimal. Game D, (10, 10) and (3, 3) are both equilibrium
payoffs, but only (10, 10) is Pareto optimal. Game Dj;, both players have
dominant strategies but the resulting outcome (1, 1) which is an equilibrium
payoff, is not Pareto optimal (an instance of Prisoner’s Dilemma). Game Dy,
a zero-sum game, the payoff (1, -1) corresponds to the first strategy of the

two players is an equilibrium payoff and is called a saddle point.

234

Appendix Three

Petri Net Concepts

A3.1 Introduction
This section introduces some of the basic Petri net properties and

terms which are normally used in the analysis of Petri nets, [15], [16].

A3.2 Some Petri Net Properties

Boundedness and Safe

A Petri net is said to be k-bounded or simply bounded if the number of tokens
in each place does not exceed a finite number £ for any marking reachable
from My, ie. the number of tokens in each place is < k for all markings in
R(Mg). A Petri net is said to be safe if the number of tokens in each place
is <1 for all markings in R(Mj).

Boundedness is a very important practical property of Petri nets. For
example places in a PN are used to represent buffers and registers for storing
intermediate data. If the net is bounded or safe, it is guaranteed that there
will be no overflows in the buffers or registers no matter what firing sequence

1s taken.

235

Liveness

The concept of liveness is very significant in the modelling of operating
systems. Liveness is a property that ensures deadlock-free operation, such
that a transition remains potentially fireable in all markings reachable from
a given marking.

A Petri net is said to be live (or equivalently M, is said to be a
live-marking for N) if, no matter what marking has been reached from M, it
is possible to ultimately fire any transition of the net by progressing through
some further firing sequence. This property is ideal for many systems, but
it is impractical and too costly to verify this property for large computer
systems. Thus, ::J. number of different levels of liveness have been considered.

A transition t in a Petri net is said to be:

o Dead (LO-Live) if t can never be fired in any firing sequence in
L(Mo);

o Ll-Live (Potentially Fireable) if ¢ can be fired at least once in some
firing sequence in L(M));

e L2-Live if, given any positive integer k, t can be fired at least k times
in some firing sequence in L(Mp);

o L3-Live if ¢t can appear infinitely, often in some firing sequence in
L(Mo);

o L4-Live or Live if ¢t is Ll-Live for every marking M in R(M,).

236

It is necessary to state precisely the definition being used, since each definition

1s quite different.

A3.3 Reachability (Coverability) Tree Algorithm

To reduce a tree to finite form, it is necessary to find a means of
limiting the new markings (frontier nodes) introduced at each step. During
the construction of the reachability tree it is possible to find dead markings,
le. markings in which no transition is enabled and these markings are known
as terminal nodes. In addition the expansion of the tree is stopped when
a class of markings are reached that have previously appeared and have
been considered, as they represent duplicate (old) nodes. No successor of a
duplicate node need be considered; all these successors will be produced from
the first occurrence of the marking in the tree. A final means to reduce the
tree is by using a special symbol w which can be thought of as infinity. The

reachability (coverability) tree may now be precisely stated as follows:

Let w be a symbol, such that:

wtn=w,w>nand w > w

Coverability (Reachability) Tree Algorithm

The coverability tree for a PN is constructed by the algorithm presented in
Figure A3.1. By adopting the procedure outlined in Figure A3.1 all frontier
nodes which have not been processed by the algorithm are converted to
terminal, duplicate or interior nodes. Once all nodes have been classified as

terminal, duplicate or interior, the algorithm halts. The coverability tree is

237

an extremely useful tool for the analysis of PNs. The following outlines some

of the properties that can be studied:

o A Petri net is bounded and thus R(M;) is finite if and only if w does
not appear in any node labels in the tree.

o A Petri net is safe if and only if only 0’s and 1’s appear in node labels

in the tree.

o A transition t is dead if and only if it does not appear as an arc label

in the tree.

238

STEP 1
STEP 2
2.1)
2.2)

(2.3)

(24)

Label the initial marking M as the root and tag it 'new’
While 'new' marking exist do the following:
Select a new marking M

If M is identical to a marking on the path from the root M to M,
then tag M to be 'OLD' and stop processing M (DUPLICATE NODE)

If no transitions are enabled at M, tag M 'DEAD END' (TERMINAL
NODE)

While there exist enabled transitions at M, for every transition t
enabled in M

(2.4.1) Obtain the marking M’ that results from firing t at M

2.4.2) If there exists a path from the root to M for which a
marking M" exists such that M'>=M" for each place M for

which a marking M" is coverable, then replace M by @
for each p such that M'>M"

(2.4.3) Introduce M’ as a node, draw an arc label t from M to M'
and tag M ‘new'

Figure A3.1 - Coverability (Reachability) Tree Algorithm

239

Appendix Four

Models (Byzantine -Generals)

A4.1 Introduction

Appendix Four is concerned with possible analytical models which
may be used to study unreliable communication between decision modules.
The Byzantine Generals probleni, [69], [70], is proposed as an appropriate
model in resolving this type of failure. The Oral Messages algorithm is
presented, which is used to solve the Byzantine Generals problem for 3m+1
or more generals in the presence of at most m traitors. The algorithm uses
the majority function, to select the appropriate value. The Signed Messages
algorithm has also been presented. Note that the unforgeable signed messages
algorithm provides a solution to the Byzantine Generals problem for any

number of generals and possible traitors.

A42 Reliable Systems

A method known to implement a reliable system is to use several
different ‘processors’ to compute the same result, and perform a majority vote
on their outpﬁts to obtain a single result. The use of majority voting to
achieve reliability is based on the assumption that all correctly functioning
processors must produce the same output provided they use the same input
value. In order for majority voting to yield a reliable system, the following

Interactive Consistency conditions must be satisfied:

240

(1) All nonfaulty processors must use the same input value (so that they

produce the same output).

(2) If the input unit is nonfaulty, then all nonfaulty processors use the

value it provides as input (so that they produce the correct output).

Therefore in terms of reliable systems, the fundamental problem is the agree-
ment on a piece of data based on the cooperation among several processors.
Several solutions to this problem have been provided in relation to Byzantine

Generals analogy rather than computer systems.

A4.3 Byzantine Generals Problem

Any reliable system must be able to cope with the failure of one or
more of its components, and also malfunctions that send conflicting information
to different parts of the system. It may be defined that a component ‘fails’
when it completely stops functioning, and the term ‘malfunction’ is related
to a system if it continues to operate but performs one or more operations
incorrectly. The Byzantine Generals approach resolves this type of failure,

consider the following scenario:

e Several divisions of the Byzantine Army are camped outside an enemy
city;

e Each division is commanded by its own general;

e The generals can only communicate by messenger;

e After observing the enemy they must decide upon a common plan of

241

action;
e Some of the generals may be traitors trying to prevent loyal generals

from reaching agreement.

The generals follow an algorithm satisfying certain conditions, whose objectives
are to reach agreement and follow a reasonable plan of action. The Byzantine
Generals problem is restricted to considering how a commanding general sends

an order to his lieutenants, such that the following conditions are fulfilled:

Condition IC1 - All loyal lieutenants obey the same order.

Condition IC2 — If the commanding general is loyal, then every loyal

lieutenant obeys the order that he sends.

These are examples of Interactive Consistency conditions. Note that if the
commanding general is loyal, then IC1 follows from IC2. However the
commander need not necessarily be loyal. For a clear representation of the

relationship with reliable systems the following notions are used:

The sender of messages in the Byzantine Generals notation is referred
to as the commander; in terms of reliable systems it is considered as the
transmitter, ie. the unit generating the input. A message that the commander
sends carry its value. The commander sends its value to its lieutenants either
directly or through other lieutenants called relays. A lieutenant can be a
commander, a receiving lieutenant or a relay according to its function in the
network with respect to a given message. A lieutenant is loyal if it transfers

the messages it has received without altering or eavesdropping on them;

242

delaying the forwarding, sending conflicting values. A loyal commander is a
reliable lieutenant that sends the same value to all its receiving lieutenants.
It is assumed that a traitor is a lieutenant/ relay or a commander that is
not loyal: In simple terms, the analogy described can be considered in terms
of reliable systems, as follows:
Commander — represents the unit generating the input values, indi-
cating a transmitter.
Lieutenants — represent the processors.
Loyal - relates to nonfaulty (correctly functioning) processors, that
is a reliable processor; this implies that a traitor is an unreliable
Processor.
Therefore in terms of Byzantine Generals the fundamental problem is to find
an algorithm to ensure that loyal generals reach agreement. The following
sections present algorithms which ensure that loyal generals reach agreement
and also guarantee interactive consistency conditions for (n,m) where n is the

total number of generals of which it is known that m are traitors.

A4.3.1 Impossibility Results

This defines a formal model which states that, if the generals can send
only oral messages, then no solution will work unless more than two—thirds
of the generals are loyal. Impossibility Results deals with only three generals
in the presence of a single traitor, and proves that it is impossible to assure
interactive consistency for n < (3m + 1) with (m+1) rounds of information

exchange. An oral message may be defined as follows:

243

An Oral Message — is one whose contents are completely under the control

of the sender, so that a traitorous general can transmit any possible message.

For simplicity, it is assumed that the only possible decisions that can be
taken by a commander are ‘attack’ or ‘retreat’. Figure A4.1a illustrates the
case in which the commander is loyal and sends an ‘attack’ order to both
Lieutenants, but Lieutenant 2 is a traitor and he reports to Lieutenant 1 that
he received a ‘retreat’ order. The receiving Lieutenant 1 has to comsider two
possibilities: ie. the commander is loyal and Lieutenant 2 is a traitor; or
the commander is a traitor and Lieutenant 2 is. loyal. For condition IC2 to
be satisfied Lieutenant 1 assumes that the commander is loyal and he must
obey the order to ‘attack’, which shows that the first case is correct.
Consider another scenario, Figure A4.1b, in which the commander is
a traitor and sends an ‘attack’ order to Lieutenant 1 and a ‘retreat’ order
to a Lieutenant 2. Similarly, Lieutenant 1 encounters the same problem as
above; he does not know who the traitor is, and cannot tell what message
the commander actually sent to Lieutenant 2. If the traitor lies consistently,
Lieutenant 1 cannot distinguish between these situations. Therefore, whenever
Lieutenant 1 receives an ‘attack’ order from the commander he must obey it.
By applying a similar argument in the case of Lieutenant 2; if he receives a
‘retreat’ order from the commander , then he must obey it even if Lieutenant

1 tells him that the commander said ‘attack’. Analysing Figure A4.1b -

244

Lieutenant 1 : obeys ‘attack’ order; while
Lieutenant 2 : obeys ‘retreat’ order

Thereby violating condition IC1 — all loyal Lieutenants obey the same order.
This proves that no matter what decision the lieutenants make, no solution
exists for three generals that work in the presence of a single traitor, formal

proof has been included in, [69].

A4.3.2 Solution with Oral Messages

This provides a solution to the Byzantine Generals problem, that
works for (3m+1) or more generals in the presence of at most m traitors. In
this case an algorithm is presented that acquires an extension of oral messages

definition, based on the following assumptions:

Definition of Oral Messages

(A1) : Every message that is sent is delivered correctly.
(A2) : The receiver of a message knows who sent it.

(A3) : The absence of a message can be detected.

Assumptions Al and A2 prevent a traitor from interfering with the commu-
nication between two generals. Since, for assumption Al a traitor cannot
interfere with the messages that are sent; and in assumption A2 a traitor
cannot confuse their interaction by introducing erroneous messages. Finally,

assumption A3 stops a traitor who tries to prevent a decision being reached

by simply not sending messages.

245

Each general executes some algorithm that involves sending messages
to the other genmerals, it is assumed that a loyal general correctly executes
his algorithm. The oral messages algorithm requires that each general be
able to send messages directly to every other general. Note that a traitorous
commander may decide not to send any order. In such a case, since the
lieutenants must obey some order, they require some default order to obey.
Hence, RETREAT may be considered as this default order. The Oral Messages
algorithm is provided in Appendix (A4.4).

The Oral Messages algorithm OM(m) may be defined inductively for
all nonnegative integers m, by which the commander sends an order to his
(n-1) lieutenants. The procedure consists of an exchange of messages. In
the OM(m) algorithm two phases of information exchange are required. For
the first phase the lieutenants exchange their private values. In the second
round they exchange the results obtained in the first round. If a traitor
exists he may lie consistently, or refuse to send messages. For simplicity this
algorithm is described in terms of the lieutenants ‘obtaining a value’ rather
than ‘obeying an order’.

Figure A4.2a illustrates the messages received by Lieutenant 2 when
the commander sends the value v to all three lieutenants and Lieutenant 3
1s a traitor, in this case m = 1, and n = 4. By applying the Oral Messages
algorithm, the first phase of Oral Messages algorithm OM(1), the commander
sends the order v to all three lieutenants. In the second phase by using the
trivial algorithm OM(0), Lieutenant 1 sends the value v to Lieutenant 2; also

the traitorous Lieutenant 3 sends Lieutenant 2 some other value z. In the

246

final phase, the Oral Messages algorithm applies a Majority Function to the
input values received by Lieutenant 2. Thus, Lieutenant 2 has v; = v, = v,

v3 = ¢ so that he obtains the correct order majority v = majority(v, v, z).

Now consider the case when the commander is a traitor. Figure
A4.2b shows the values received by the lieutenants if a traitorous commander
sends three arbitrary values z, y and z to the lieutenants. Similarly, applying
the Oral messages algorithm. The end result indicates that each lieutenant
obtains the same value majority(z, y, 2z) in the final step of Oral Messages
algorithm, regardless of whether or not any of the three values z, y and 2

are equal.

A4.3.3 Solution with Signed Messages

This solution contradicts Impossibility results, since it restricts the
traitors ability to lie, by allowing the generals to send unforgeable signed
messages. By introducing this restriction, the Byzantine Generals problem
becomes easier to resolve. In addition to the assumptions A1-A3 the following
may be included:
Assumption (A4.a) :
A loyal generals signature cannot be forged, and any alteration of the contents
of his signed messages can be detected.
Assumption (A4.b) :

Anyone can verify the authenticity of a general’s signature.

In the signed messages algorithm, the commander signs the order that he

247

wants to send to each of his lieutenants. Each receiving lieutenant then
adds his signature to that order and sends it to the othe_:r lieutenants, who
add their signatures and send it to others, and so on. The receiver of the
forwarded order can determine the true value sent by the commander, as well
as the true identity of the sender. It is necessary that all loyal lieutenants
.receive exactly the same list of values, say‘ V1,...,Vg, OF else they may obtain
different values in the final step. The notation used in the algorithm is
outlined as follows, let v; : 0 denote the value signed by Genmeral 0. Thus,
vy : 0 : L; denotes the value v; signed by General 0, and then that value

vy : 0 signed by Lieutenant L;. Let General 0 be the commander.

Figure A4.3 depicts the case for three generals, when the commander
is a traitor - illustrating Algorithm SM(1): In the first phase of signed
messages, the commander is a traitor, sending an ‘attack’ order to Lieutenant
1 and ‘retreat’ order to Lieutenant 2. For the second phase of signed messages:

Both lieutenants receive their orders, add their signature to that order and

send it to each other.

The algorithm guarantees agreement as defined by conditions IC1
and IC2, even if there are very few loyal lieutenants. Observe here that
unlike Impossibility Results, the lieutenants know the commander is a traitor
because his signature appears on two different orders, and assumption A4
states that only he could have generated those signatures. It is shown that

with unforgeable signed messages the problem is solvable for any number of

generals and possible traitors.

248

A4.4 Byzantine Generals Algorithm

Oral Messages Algorithm

Algorithm OM(0); m=0

(1) The commander sends his value to every lieutenant.

(2) Each lieutenant uses the value he receives from the commander or
uses the value RETREAT if he receives no value.

Algorithm OM(m); m > 0

(1) The commander sends his value to every lieutenant.

(2) For each ¢ let v; be the value lieutenant 7 receives from the commander;
or else be RETREAT if he receives no value. Lieutenant 7 acts as
the commander in Algorithm OM(m~1) to send the value v; to each
of the (n-2) lieutenants.

(3) For each i, and each j # ¢, let v; be the value Lieutenant i received
from Lieutenant j in step (2) (using Algorithm OM(m-1)) or else

RETREAT if he received no such value. Lieutenant ¢ uses the value

majority(vy, - . . , Un-1)-

Once exchange of information is completed, the algorithm assumes a function
majority which is used by each lieutenant for deciding what the value is,
given a set of received values. The function must have the property that
if a majority of the values v; equal v, then majority(vy,...,vn—1) equals w.
However, if a majority value among the v; does not exist, a default value

such as RETREAT is used.

249

S»igned Messages Algorithm

| Algorithm SM(m)

Initially V; = 0.

(1) The commander signs and sends his value to every lieutenant.

(2) For each

(a) If Lieutenant ¢ receives a message of the form v : 0 from the
commander at phase 0, and he has not yet received any order, then
(1) he lets V; equal v ;

(ii) he sends the message v : 0 : ¢ to every other lieutenant.

(b) If Lieutenant ¢ receives a message of the form v:0:L;:...: Ly at
k, 1 <k <m, V, contains at most one value, v is not in the set V;,
and the signatures belong to the different lieutenants, then:

(i) he adds v to Vj;
(i) if k¥ < m, then he sends the message v : 0: L;:...: Ly : i to

every lieutenant other than L,,..., L;.

(3) For each @

When Lieutenant ¢ will receive no more messages, at the end of phase
m he obeys the order choice(V;).

For this particular algorithm (m+1) rounds of information exchange are

required. In summary in step (2) lieutenant L; ignores any message containing

an order v that is already in the set V;, and accepts at most two different
orders originated by the commander. In addition lieutenant L; ignores any
messages that do not have the correct form, followed by a string of different

signatures.

250

Commander

Attack

Retreat

Lieutenant Lieutenant

(a) Lieutenant 2 a traitor

Commander

Retreat

Lieutenant < Lieutenant

(b) Commander a traitor
Figure A4.1 — Impossibility Results

251

\Y% A" \'%

Lieutenant

®

Lieutenant

®

(a) Lieutenant 3 a traitor

Commander

X y4
X
Lieute@nant Lieutenant
Y

®

Lieutenant

®

(b) Commander a traitor

Figure A4.2 - Solution with Oral Messages

252

Commander

Attack : O Retreat : 0

Attack: 0:1

) >
Lieutenant Lieutenant

Retreat : 0: 2

Figure A4.3 — Solution with Signed Messages — Commander a traitor

253

Appendix Five

Publications

APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES
TO DECENTRALISED DECISION MAKING IN C3-MIS
P. Mars, Q. F. Ahmed and P. Edwards
IEE Third International Conference on Command,

Control, Communications and Management Information Systems

Bournemouth, UK., 2nd-4th May 1989

APPLICATION OF STOCHASTIC LEARNING PETRI NETS
TO SMALL-SCALE
DISTRIBUTED DECISION MAKING ORGANISATIONS
Q. F. Ahmed and P. Mars
IMA Sixth International Conference on Control:

Modelling, Computation, Information

Manchester, UK., 2nd-4th September 1992

254

ac/cace

.

.

78

APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES TO DECENTRALISED DECISION MAKING IN C3-MIS

P. Mars Q.F.Ahmed

University of Durham,UK

1. INTRODUCTION

The analysis and design ,of complex,
survivable, and responsive C”-MIS requires
novel advances in the area of distributed
decision making under uncertainty. In
particular, systems engineering tools are
needed for describing, decomposing and
analysing such systems which must meet very
demanding performance, survivability and
response specifications. This paper is a

first step in a research effort to develop the
required theoretical and algorithmic tools for
the systematic analysis and design of C~-MIS
systems. Such systems are characterised by a
high degree of complexity. Key features are a
distribution of decision making processes
amongst several decision making ’agents’, the
need for reliable operation in the presence of
multiple failures, and inevitable interaction
of humans with computer based decision support

systems, (1),(2),(3).
Ar present analysis and synthesis studies for
C”-MIS architectures tends to be performed in

It is essential to develop
theories and

an ad-hoc¢ manner.

quantictative methodologies,
algorithms relevant to C”-MIS architectures.
Totally centralised hierarchical structures

alcthough efficient in resource allocation are
highly wvulnerable and introduce unacceptable
delays. At cthe other extreme autonomous
systems invelving minimal delays are
inefficient in the wutilisation of scarce
resources. Clearly the design compromise is in
architectures

the use of distributed systems
combining distributed agents with
communications capability.

In rthis paper we consider the use of a
stochastic learning automata approach for both
the adaptive control and mo elling of

decentralised decision making in C”-MIS.

2.BASIC THEQRY

An extensive literature and a well established

mathematical foundation now exists for
stochastic learning automata. Early work in
the context of mathematical psychology, (4),
(3), (8), (7), was followed by major research
efforts in both Russia, (8), and the UsaA, (9),
(10). Hardware implementations and
applications in process control and
communication networks has also been
considered, (11).

In general, a learning automaton may be
defined as an element which inreracts with a
random enviromnment in such a manner as to

F
University of Durham, UK

" The

P. Edwards

British Aerospace, Warton, UK

improve a specified overall performance by
changing its action probabilities dependent on
responses received from the environment,
Figure 1 shows the basic model. An automaton
is a quintuple (8,%,a,F,G) where B = (0,1) is
the input set (output from the environment),y
= ($3.%4,..-,%,) is a finice state, a@ =
172 2 : .
(al,a ».-.,a_) “the output action set (inputs
to :ﬁe environment) ,F:¥X8 —> ¢ is a state
transition mapping and G : p -—> a the
output mapping.

is

restrict our attention to variable
structure automata described by the triple
(8,T,a). Here T denotes the rule by which the
automaton updates the probability of selecting
certain actions. At stage n assuming r
actions each selected with probability p. (n)[i
= 1,...,r] we have: .

Ve

P(n + 1) = T{p(n),a(n),B(n)]

A binary random environment is defined by a
finite set of inputs e = [a,,...,c] (outputs
from the automaton), an ou%put sef B~ [0,1]
and a set of penalty probabilities ¢ -
[cl,c y+-.,¢_]. The output f(n) = 0 at stage n
is ca%led a %avourable response (success) and
B(n) =1 an unfavourable response (failure).
The penalty probabilities are defined as:

c; = Pr{f(n) = l/a(n) = ai]
from binary environment models other
environments have included Q models
(finite number of outputs) and S models
(continuous outputs in range 0 to 1). In
practice the choice of environmental models is
obviously dictated by the particular
application. If the penalty probabilities
from the environment do not depend on stage
number n, the environment is classified as
stationary; otherwise the environment is
non-stationary. Important convergence results
have been proved for both types of
environment, (12).

Apart
possible

convergence characteristics of learning
automata are dependent on the properties of
the algorithm used in the updating scheme. 4
performance measure that has been extensively
used is the updated penalty that the automaton
receives from the environment defined as-:

M(n) = E(B(n)/p(M)). v, (3)
Assuming a stationary environment and an
automata selecting actions with equal

probability the average received probabilicy

is Mo where

Mo - (cl + <, +...+Cc)/ 4)
A learning automaton is said to be expedient
if:

1imn_>¢F[M(n)]< Mo (S)
and optimal if:

limn_>cF[M(n)] - mini[ci] (6)

Both linear and non-linear forms of updating
algorithms T have been considered. The most
widely used are the class of linear algorithms
which include 1linear reward/penalrty (lkf)'
}inear reward/¢ penalcy (LR), and linear
_.reward/inaction schemes (For the
scheme if an automaton tries an action &,
which results in success pi(n) is 1increase
and all other p.(n)(j = 1) are decreased.
Similarly if action «., produces a penalcy
response p.(n) is decreased and all other
pP.(n) modified to preserve the probabilicy
measure. An Lg scheme ignores penalty
responses from the environment and only
involves small changes in pi(n) compareg with
changes based on success.

In practice for adaptive optimisation problems
the scheme 1is preferred. The retention
of & small element of penalty avoids the
possibility of locking on uniquely to one
specific action. For r actions and a binary
environemnt the learning algorithm for LR is
- P
described as follows:

Tor a(n) = a; and 8(n) = 0 (reward)

pi(n+ 1) =p.(n) +all-p (m]...... (7

Pj(a+ 1) = (L-a)p,(m).ooni (8)
“or a(n) = @, and A(n) = 1 (penalty)

Py + 1) = (1 -b)p()eennnnn.... (9)

pj(at+ 1) = r?l (- DRy (10)

both

Ire

lere learning parameters a and b are
7ithin the range (0,1). In the case of
utomata a = b and for LRI b =0.

o far we have considered models of a single
ecision maker (an automaton) interacting with

n uncertain environment. We now extend the
iscussion to consider multiple decision
akers interacting wich an uncertain
nvironment. It 1is considered that such
odels will provide a first basis . for
eveloping analytical models of CB-MIS
ystems, Of particular interest is that the

utstanding practical application of learning
utomata to date is in adaptive control of
outing informatien in circuit and packet
7itched networks. This is a classic example
f decentralised control in an uncertain
 vironment, (13).

79

3. DECENTRALISED CONTROL IN COMMUNICATION

NETWORKS
The next decade will witness an increasing
need for new and sophisticated methods for the
optimal utilisation of capacity in
communication networks. The importance of the

study of routing and flow control is rapidly
increasing. Future integrated services
digital networks will incorporate a spectrum
of ctraffic ranging from simple transaction
measurements (100 bits) to multimegabit
messages associated with colour facsimile.
The wuse of learning algorithms is considered
to represent a highly promising approach to
the adaptive control of such complex systems.
Recently advances have been made in applying
these principles to the problem of adaptive
routing in communication networks. Based on

established theory, these applications show
promise of practical solutions to the complex
problems of routing and flow control and
provide incentive for further exploration of
learning techniques. Inicial research
considered circuit switched networks
(telephone networks) in which learning
algorithms at the network nodes update their

strategies for routing traffic on the basis of
or failure in completing calls (14),

success
(15). Recent research has focussed on
packet-switched networks with learning
automata schemes proposed for both wvirtual
call and datagram networks. Packets are

routed by automata selecting suitable outgoing
links, the delay experienced by a packet being
fedback to wupdate the future selection
strategy (10-18).

From a practical standpoint, the simplicity of
the feedback as well as the updating schemes
which exploit existing control mechanisms and
protocols make the 1learning approach a
practically viable alternative for routing in
both circuit and packet-switched communication
networks.,

Circuit-Swtiched Networks

In a previous paper (1l4) simulation studies of
telephone traffic routing in simple networks
was considered. Specifically it was shown that
a Linear Reward Inaction () automaton
scheme, when used in a simple netiork for call
routing, performs at least as well as the
optimum Fixed Rule (FR). The and Linear
Reward Penalty (E) schemes weré compared to

FR. It was concluded that both routing
strategies always perform as . well as the
optimum FR while in simulations requiring
mixed routing strategies they give superior
performance. An internal report (19) has
investigated dynamic routing of fully
connected circuit switched networks. The

routing policy used is Least Busy Alternative
(LBA) with Trunk Reservation (TR). It was
concluded that LBA with TR is as good as FR
yet with the advantage of flexibility and
spreading out of local overload. Subsequent
research has compared LBA with random routing

(RL), fixed routing (FR). learning automata and
a dynamic alternative rTouting strategy
(DAR), (20), for a five node £fully connected
network (21). It has been shown that DAR and
algorithms provide the best dynamic
roﬁ%ing strategy but under conditions of
network failure (e.g. link failure) the
additional intelligence associated with the
learning algorithms leads to significantly
improved performance.

Packet-Switched Networks

Although adaptive or dynamic routing in packet
networks 1is undoubtedly needed under mnetwork
failure conditions (e.g. link or node failure)
controversy exists on whether dynamic routing
should be used under normal operating
conditions. Recent work has shown that
dynamic routing can in fact reduce throughput
or increase delay as the network 1load is
increased. Dynamic routing only improves
network performance over an intermediate
traffic range. This is intuitively obvious
since as the network load increases less spare
capacity 1is available. It should be noted
that this possible increase throughput at
moderate loads may of course defer the entry
of the network into a high load condition.
There is clearly a need for adaptive control
of the dynamic routing mechanism such that at
high 1loads the routing strategy reverts to
ninimum resource routing (i.e.fixed paths).

In general a deterministic strategy is the
best for balanced traffic but a dynamic
strategy is essential for wunbalanced and

chaotic conditions.

The development of realistic analytical models
for dymamic routing in packet networks is
notoriously difficulc. The fundamental
problem 1is that route selections are by
definition state dependant which negates the
mathematically convenient property of
separability. Recent work has used the theory
of stochastic learning automata to calculate
mean routing probabilities (22). These

probabilities may be used as an approximation
network

for 1link 1loadings and thus aid
dimensioning.
In a classic paper the optimal static routing

problem was formulated as a convex programming
problem in the space of routing variables
(23). Necessary and sufficient conditions
were determined for the problem solution. The
basic result is that optimal static routing is
obtained by an equalisation of the
differential delays observed by a node on
outgoing paths. Previous work has
demonstrated that learning automata [type

_p] reach a steady state condition such that
delays (as opposed to differential delays) are
equalised (17).

Recently a decentralised non-linear technique
has been described which permits a computation
of the equilibrium solution for learning
automata under steady state conditions. By

80

appropriate modification the recursion can be
used to compute the system optimal
(equalisation of differential delays) routing
pattern (24). This is an important
contribution which in addition to providing a
simulation

cost effective alternative to
provides a benchmark which may be used in
comparison studies of adaptive routing
schemes. 1In addition, using a 10 node network
previously studied by the present authors
group no significant difference in delay
performance was obtained between the automata
This

and the optimal routing strategy.
important result confirms previous conclusions
that for practical networks above a threshold
of complexity the automata performance is
virtually optimal. For small (3 node)
asymmetric mnetworks the performance of the
automata i1s sub-optimal. There could be some
averaging process involved such that above a
given level of system complexity equalisation
of delays is wvirtually equivalent to
equalisation of differential delays. Clearly
further research is needed in this area but at
this stage the viability of the learning
approach has been confirmed and for a general
class of networks the automata provide close
to an optimal strategy.

4. MODELS QOF DECENTRALISED DECISION MAKING

Game theoretic issues provide a fundamental
basis for the study of decentralised decision
processes. Figure 2 shows the basic multiple
automata game. With N automata A, (i -~ 1,...,N)
interacting through a stationary environment.
At each stage n the automata select one of
their actions and cthis determines the
distribution of the random process involved.
It should be noted that in contrast to the
usual game-theoretic formulation, no player is
aware of the other players, the actions
selected by or cthe responses from the
environment to other players. Extensive
research has considered two-person zero sum
games when the game matrix is unknown. For
the identical payoff game optimal strategies
are the same for the individuals and the
group. In this case important convergence
properties have been proved, (9), (10), (25).
However in practice the merging of individual
and group rationality is difficulr. For the
present work we seek models in which decision
makers are not autonomous and their decisions
affect each other. In this area initial work
has involved synchronous models in which the
time instants for automata actions and updates
are synchronised, and sequential models which
are asynchromous. Some of the simple
synchronised models can be analysed by game
theoretic concepts, (26), (27). The
sequential models are more realistic in the
practical sense and the power of this approach
has been illustrated by a demonstration of the
optimal control of a Markov chain with unknown
transition and reward probabilities, (28).

It is considered that the stochastic learning
automata approach will provide the fundamental

framework for a mgdel of decentralised
decision making in C™-MIS. As the research
progresses additional layers of sophistication
can be incorporated within the basic model.
Initially work = has considered simple
topologies of synchronous, sequential and
hybrid (synchronous/sequencial) systems and
future analytical work will be supported by
simulations wusing a SUN-based interactive
distributed decision model, (29). This
simulator will be modelled and have sufficient

flexibility to permit choices of topology,
learning algorithms, 1level of communication
reliability and selection of environmental
models.

5. CONCLUSIONS

This paper has considered the application of
stochastic learning automata to the problems
of adaptive.control and decentralised decision
making in C™-MIS. The advantages of applying
learning automata to either circuit or
packet-switched networks may be summarised as

follows:

(1) Learning automata are based on simple

principles and a well established
mathematical theory.

(ii) They are computationally attractive,
i.e. only simple arithmetic operations
are involved.

(iii) Automata can be used individually
without Dbeing dependent on other
automata.

(iv) They are cost-effective since they
require minimum alteration to existing
protocols.

Although at an early stage the study of
learning automata as distributed "agents" in
decentralised decision making is considered to
represent a promising approach to providing a
conceptual framework for modelling decision
making in complex C™-MIS.

6. REFERENCES

1. Athans, X., 1987, "Command and control
theory: A challenge to control science”,

IEEE Trans.on Automatic Comntrol, AC-32,
No.4, 286-293.
2. Andriole, S.J., and Halpin, S.M., 1986,

"Information technology for command and
control”, IEEE Trans.Syst.Man and
Cybern., SMC-16, No.6, 762-765.

3. Stephenson, H.E., and Sage, A.P., 1987,
"Perspectives on imperfect information
processing”, IEEE Trans.Syst.Man and

Cyberm., SMC-17, No.5, 780-798,

81

10.

11.

12.

13.

14,

15.

16.

17.

Bush, R.R., and Mosteller, F., 1958,
"Stochastic models for learning”, John
Wiley.

Atkinson, R.C., Bower, G.H., and

Crothers, E.J., 1985, "An inctroduction to

mathematical learning theory", John
Viley.

Iosifescu, M., and Theodorescu, R., 1969,
"Random processes and learning”,
Springer.

Norman, M.F., 1972, "Markov processes and
learning models”, Academic Press.

"Automaton theory
systems”,

Tsetlin, M.L., 1973,
and modelling of biological
1973, Academic Press.

Narendra, K.S., and Thathachar, M.A.L.,
1974, r"learning automata - a survey”,
IEEE Trans.Syst.Man and Cyberm, SMC-4,

323-334.

Narendra, K.S., 1977, "Special volume on
learning automata”, J.Cybern and
Inf.Sci., Vol.1,No.2.

Mars, P., and Poppelbaum, W.J., 1981,
"Stochastic and deterministic averaging
processors”, IEE Research Monograph,
Peter Peregrinus.

Srikantakumar, P.R., and Narendra, K.S.,

1982, "A learning model for routing in
telephone networks”, SIAM.J.Control and
Optimiz.

Mars, P., and Narendra, K.S., 1987,
"Routing flow control and learning?
algorithms", IEE First 1Int.Conf. on
Telecom Networks™, 78-83.

Narendra, K.S., and Mars, P., 1983, "The

of learning algorithms in telephone

use
traffic routing - a2 methodology”,
Automatica, 19, 5, 495-502.

Narendra, K.S., and Mars, P., 1981, *ra

study of telephone traffic routing using

learning algorithms”, IEEE Conf. on
Comm., Denver, Colorado.
Chrystall, M.S., and Mars, P., 1982,
"Simulation study of switched circuit
communication mnetworks using learning
automata routing”, Trans.IMACS, XXIV,
281-287.

?
Mars, P., and Chrystall, M.S., 1981,
"Adaptive routing in computer
communications networks”, Proc.IEEE
Int.Telecommunications Conf., New

Orleans, A3.2.1-A3.2.7.

18.

19.

20.

21.

23.

24,

25.

26.

27.

28.

29.

Mars, P., Narendra, K.S., and Chrystall,
M.S., 1983, "Learning automata control of
computer communication networks”, Proc.of
3rd Yale Workshop on Applications of
Adaptive Systems Theory, 114-419.

Ng, W.Y., 1985, "Dynamic routing in
circuit-switched networks”, Cambridge
Univ.(Dept. of Pure Maths and Statistics)

Project Report.

Kelly, F.B., 198s, "Blocking
probabilities in large circuit-switched
networks”, Adv.Appl.Probabilicy 18.

Eshragh, N., 1986, "Simulation studies of
telephone traffic routing”, Internal
Research Report, School of Eng. and
Applied Science, Univ. of Durham. 22.
Whitehead, M.J., 1983, "An analytical
model of a class of adaptive virtual call
routing procedures, BTTJ, 1, 2, 28-36.

Gallager, R.G., 1977, "A minimum delay2
routing algorithm wusing distributed
computation”, IEEE Trans.on Comm.,
CoM-25,1.

Mason, L.G., 1985, "Equilibrium flows,
routing patterns and algorithms for
store-and-forwad networks", J.Large Scale
Systems, 8.

Narendra, K.S., and Wheeler, R.M., 1983,
"An N-player sequential stochastic game

with identical payoffs~, IEEE
Trans.Syst.Man and Cybern., SMC-13,
No.1ll154.

Wheeler, R.M., and Narendra,
K.S., 1985, "Learning models for
decentralised decision making”,

Automation, Vol.21, No.4, 479-484.

Wheeler, R.M., 1985, "Decentralised
learning in games and finite Markov
Chains", Ph.D.Thesis, Dept. of

Elect.Eng., Yale Univ.

Wheeler, R.M.., and Narendra, K.S., 1986,
"Decentralised learning in finite Markov
Chains”, IEEE Trans.Aut.Control, AC-31,
No.6, 519-526.

Ahmed, Q.F., 1988, "Decentralised
decision making in c’-1 Systems,
Int.Res.Report, Univ. of Durham.

82

Environment
[C]""'Cr]
aea ﬁ‘ﬁ
Automaton
[Py(n),...Pr(n)]
Figure 1.- Stochastic Learning Automaton Model
a'{n)e&(n) .4
Aq
Environment
[@j = iq.mee iN]
Ny e N N
AN
Figure 2. - A ta Game Sct tic

Application of Stochastic Learning Petri Nets to Small-Scale
Distributed Decision Making Organisations

Q F Abmed and P Mars
School of Engineering and Computer Science
University of Durham
South Road
Durham

Abstract

A new class of Petri nets, namely, Stockastic Learning
Petri nets are introduced as a powerful modelling tool
for decision making organisations in complex systems.
This extension to stochastic Petri nets has developed
a model which has the additional feature of an em-
bedded stochastic learning automata. This novel idea
provides an artificial intelligence (AI) based decision
making process embedded within Petri nets. An ex-
ample application of this modelling tool is presented
to demonstrate the impact that the use of an Al tech-
nique embedded within Petri nets can have on the
performance of decision making organisations.

1 Introduction

This paper presents new developments in the
study of distributed decision making in C3[(Com-
mand/Control/Communication/Intelligent) systems.
The analysis and design of complex, survivable and
responsive C3I systems requires novel advances in
the area of distributed decision making under uncer-
tainty. It is clear that the present largely qualitative
design approaches adopted in C3I need to be replaced’
by a systematic quantitative design methodology, [1],
2}

The paper indicates the potential of an Al ap-
proach based on stochastic learning automata which
provides a conceptual framework for modelling deci-
sion making in complex systems. An extensive liter-
ature and well established mathematical foundation
now exists for stochastic learning automata, [3], (4].
In general, a learning automaton may be defined as
an element which interacts with a random environ-
ment in such a manner so as to improve a specified
overall performance by changing its action probabil-
ities dependent on responses received from the envi-
ronment. However, this approach is limited in mod-
elling flexibility particularly for arbitrary topologies
of decision models. It is essential that additional lay-
ers of sophistication are incorporated within the ba-

sic model. Thus, a quantitative framework based on
Petri net methodology (PN) is proposed, [5]. The PN
formalism presents an abstract, formal graph model
useful for representing dynamic processes. In partic-
ular they provide a powerful means for the descrip-
tion and analysis of systems that are characterised as
being concurrent, asynchronous, distributed and/or
stochastic. Several authors have considered the use of
PNs in the modelling on decision making processes,
(6], [7], [8]. However, in such representations exist-
ing models do not exhibit the intelligence capability
needed to provide effective decision models for C3I
systems in stochastic environments.

The purpose of this paper is to introduce appropri-
ate algorithmic tools for the systematic analysis and
design of complex systems. Hence, a new class of PN
are proposed and an application domain is consid-
ered. '

2 Stochastic Learning Petri Nets (SLPN)

SLPNs are obtained by embedding the concept of
stochastic learning automata into the model. A for-
mal definition of a SLPN is thus the following:

SLPN = (P,T,A, M, M) 1)

where (P,T,A, M, }) is the stochastic Petri net
(SPN) underlying the model, [9]. The components
may be described as: P = (p1,p2,...,Pa), 3 finite
set of places; T = (t;,%a,...,tm), 2 finite set of
transitions; A C {P x T} U {T x P}, a set of in-
put/output functions; M = (m},m5,..., m/), astate
(marking) of PN; A = (A1, A2,...,Am), a set of firing
rates associated with transitions. M. indicates the
presence of two/three state stochastic learning au-
tornata. An automaton may be defined as a sextuple
(8,%,a,p,F,G) where § = (0,1) is the input set to
the automaton; ¥ = (¥1,%2,...,¥a) is a finite state
set; @ = (@1, a2,...,a,) is the output set from the
automaton and each action is selected with probabil-
ity p={(p1,P2,---,0r); F : ¥ X @ is a state transition

mapping and G : ¥ — « is the output mapping. A
P-model environment is characterised by a binary in-
put set to the automaton § = (0,1), where 8 =0 is
known as a favourable response (success) and § =1
an unfavourable response (failure).

At stage n, p(n + 1) = T[p(n), a(n), B(n)], where
T denotes the rule by which the automaton updates
the probability of selecting the actions. Both lin-
ear and non-linear forms of the updating algorithm
T have been considered. The most widely used are
the class of linear algorithms which include linear re-
ward/penalty (Lrp), linear reward/¢ penalty (Lrep)
and linear reward/inaction (Lrr), [4]-

2.1 Model of SLPN

Consider the SPN model depicted in Figure 1. By
analysis of the reachability tree in Figure 2, it is evi-
dent that the SPN model may exhibit one of six dif-
ferent states, depending on the transition that fires.
Several transitions may be simultaneously enabled by
a particular marking. Assume that H is the set of en-
abled transitions, then a transition t; (ieH) fires with
probability:

A
=_— 2
ZkeH /\k ()

as stated previously, A is the firing rate associated
with PN transitions. Thus, the different states of
a SPN define probability ratios which correspond to
the firing of each transition. In any state, the sum
of probability ratios is always equal to unity. For ex-
ample, consider state M; = [1100]; the enabled tran-
sitions are t;, t2 and f3 and their respective firing
probabilities may be defined as follows:

Prit;}= CEY D) (3)

Pr{t,—} =

B
(a+B8+7) *)
-)
(a+B+7)

Pr{tz} =

Pr{ta} =
Thus,

Pr{tl} + Pr{tz} + Pr{ts} =1 (6)
The concept of a stochastic automaton may be in-
troduced to select probabilistically the transition that
fires. A transition selected in a particular marking
corresponds to an action selected by an automaton.
The firing of the chosen transition determines the
next state (marking) of the system, by modifying the
token distribution. In the tree representation of the
SPN, Figure 2, there exists both two-state and three-
state automata. Consider the following cases:

Two-state Automaton It is clear that state
M,[0200] and state M3{1011] represent a two-state
automaton, as depicted in Figure 2. The SPN with
marking M, enables transitions ¢ and t3, since tokens
are present in the input places (p2). Each transition
bas an equal initial probability of being selected. The
firing of 2, determines the next state of SPN to be
My; the firing of t3, determines that the next state
is M4. The firing probabilities for each transition is
given:

Prits} = —2— Prit:} =

-
B+7) B+7) @

Similarly,

Pr{ta} + Pr{ts} =1 (®)
This concept also applies to state M3.

Three-state Automaton Clearly, the states M,
and M, correspond to a three-state automaton. It is
shown that the transitions ¢;, ¢» and t3 are enabled;
each transition has an equal initial probability of be-
ing selected. The possibility of firing ¢;, determines
the next state is Ma; the firing of t» determines the
next state of the SPN to be Mjy; finally, if t3 is se-
lected by the automaton then the state transfers to
Ms3. A similar concept also applies to state My.
Note that the transition firing probabilities in each
state My and M is always equal to unity. Since in
state Mj, the only transition that is enabled is t),

Prit;} = -Z- =1 9

Thus, it must fire with probability one. Similarly,
in state Ms the only transition that is enabled is 24,
so it must also fire with probability equal to unity.

Hierarchical System of Automata The reacha-
bility tree may now be considered as a simple hierar-
chical system of automata; each state corresponding
to an automaton. It may be noted that in a hierar-
chy each action has a unique path connecting it to
the automaton (state) that has been selected previ-
ously, or to an automaton at the top level (state Mp)-
From the tree structure of Figure 2, it is possible to
define nine unique paths which may be considered as
sequence of states/ decisions. To introduce the con-
cept of an environment into this model, each sequence
of states is associated with a reward probability.
The operation of this hierarchical learning system
is as follows. At any instant the first level automaton,
state My selects an action (fires ¢;). This activates 3
automaton in the second level which fires a transition

from its current transition probability distribution.
This in turn activates, automata in the next level and
so on. However, if a particular sequence of decisions
corresponding to a unique path has been reached; the
environment in turn generates a reward,/ punish sig-
nal as its reaction. The reaction of the environment
is used to update the transition probabilities for the
various levels of automata in the selected path. This
process repeats until all the probabilities in one path
become close to unity from the top level (Mp) to the
lowest level (Ms). Such a system may be considered
as a SLPN model; structure is shown in Figure 3.

3 Simulation Results : SLPN

This section presents a computer simulation result
for the SLPN model. The reward parameter is indi-
cated; and Pr(?, j) denote the transition firing proba-
bilities, where i represents the state of the system and
J provides the notation for the transition that fires.
For example, consider the notation for state Af; fir-
ing transition t3; the transition firing probability is
Pr(1,3). Expected values are denoted by the expres-
sion Pr(i, j) = E[Pr(i,j)]. In the simulation study
the hierarchical system in Figure 2 was examined. To
simulate this SLPN, all of the reward probabilities in
the environment were in the range [0.2 - 0.45] except
the unique maximum reward probability which was
set to 0.9. An Lgs updating scheme was used to up-
date action probabilities for the selected path.

Table 1 provides the reward probabilities of the en-
vironment which are used for simulation. Note that
the unique maximum reward probability is associ-
ated with the selected sequence of decisions. Con-
sider Table 1 which illustrates the convergence to the
unique maximum reward probability, such that se-
quence 1 is selected from the reachability tree. This
sequence represents the path M0 — Pr(0,1); M1 —
Pr(1,1); M2 — Pr(2,2); M1. In this case, transition
probability vector in state MO is equal to unity; since
t; must always fire with probability equal to one. Also
the convergence of transition probability Pr(1,1) in
the three-state automaton M1; and Pr(2,2) in two-
state automaton M2 show that the optimal path se-
lected is sequence 1, which has the unique maximum
reward probability.

Similarly, the learning performance can be ob-
served for all sequence of states of the SLPN model.
In each case the transition probability vectors that
converge close to unity, correspond to the sequence
of decisions associated with the unique maximum re-
ward probability.

4 Application : Small-scale C3-I System

The following sub-section presents the model of the
interacting organisation member. An application of
the SLPN to a specific two decision maker organisa-
tion is examined. A series of experiments are per-
formed to observe the learning behaviour of the or-
ganisation.

4.1 Model of the Decision Making Process

A four stage model on the decision maker has been
developed, {7], that permits the detailed and explicit
specification of the interactions among organisation
members. The internal structure of the four pro-
cessing stages, is depicted in Figure 4. This shows
that a decision maker receives an input signal z, from
its environment and undergoes a four stage process.
The first and last of these stages, situation assess-
ment (SA) and response selection (RS), model the
actual decision making process while information fu-
sion (IF) and command interpretation (CI) allow for
interaction of the decision module (DM) with other
members of the organisation. The SA stage consists
of a set of U algorithms that are capable of produc-
ing some situation assessment z. The RS stage also
contains set of V algorithms which are required to
produce the final decision response. This informa-
tion may in turn be combined in the IF stage to yield
z. The fused assessed situation, Z, is processed by
one of the algorithms in the RS stage. The CI stage
of the model allows z and the input ¢ to influence the
choice of this algorithm; ¥ may be considered to be
a command capable of restricting options. The RS
stage contains algorithms that produce output y in
response to the situation assessment Z and the com-
mand inputs.

4.2 Two Node Distributed Organisation

Figure 5 shows in Petri net form the first model pro-
posed for study. The example consists of a two node
organisation: a submarine decision module DM1 and
a surface ship decision module DM2. Each DM re-
ceive signals from the environment and can respond
to the environment. The DM module consists of three
possible strategies, although the SA stage selects only
a single strategy to process the information. For ex-
ample, the DM must decide between the following
three options:

Strategy SA; process information without using
Decision Support System (DSS);

Strategy IT; select a response via an intelligent ter-
minal;

Strategy MF; utilise the DSS.

4.3 Performance of Two Node Organisation

Figure 6 demonstrates the application of the SLPN
approach to examine the behaviour of the two node
organisation. An approach has been adopted by em-
bedding the concept of SLPN in the SA and RS stages
for the decison module. Therefore each DM con-
tains four learning automata interconnected in the
form of a tree structure. As illustrated in Figure 6
the automata are arranged in two levels. The hi-
erarchy consists of a single automaton at the first
level, and three automata in the second level. For
decision module DM1, the three options (SA;, IT;,
MF,) are selected with equal initial probability; sim-
ilarly for DM2 (SA, IT;, MF,). Also each RS stage
has two alternate possibilities which are selected with
equal initial probability; thus producing six possible
paths for each DM. The strategies associated with de-
cision module DM1 and DM2 are (p;, p2, ..., ps) and
(91,92, - - -,q6) respectively. There are 36 (6x6) pos-
sible combinations of decision strategies fed to the
environment. Considering this structure, Figure 6,
for each pair of strategies selected by the decision
modules the environment responds stochastically to
punish/reward the selection of a particular pair. One
pair of decisions is optimum (ie. gives minimum pun-
ishment or maximum reward).

4.4 Experimental Results

The following experiments [1-3] illustrate the learn-
ing performance of a two node organisation, as de-
picted in Figure 6. For these experiments, the main
objective is such that both decision modules select
the optimal pair of decision strategies from 36 (6x6)
possible combinations of decision pairs input to the
environment. As stated previously, decision mod-
ules are in the form of a two level hierarchical sys-
tem. To simulate these modules, the reward proba-
bilities in the range [0.2-0.5] are associated with paths
(71,p2,--.,p6) and (pl,pa,...,qs) for decision mod-
ules DM1 and DM2, respectively. However, in this
case the unique maximum reward probability which
is set to 0.9 exists for each DM1 and DM2. Thus, a
single path from the set (p1, p2, . .., ps) for DM1 is as-
sociatd with a unique maximum reward probability;
and also a single path form the set (g;,¢2, ..., ps) for
DM2. An Lp; scheme was adopted to update action
probabilities for the optimal strategy pair were up-
dated. The conditions for each experiment are var-
ied by considering the selection of optimal strategy
pairs; sudden switch of environmental conditions and
by permitting communication between both decision

modules at upper and lower levels. The reward pa-
rameter and reward probabilities are given; the ex-
pected values are denoted by p; = E[p;(n)].

Experiment 1

The simulation results in Table 2 demonstrate the
learning behaviour of a two node organisation. The
table indicates the value of the reward parameter; the
unique maximum reward probability to be employed
by the environment and the expected values denot-
ing the convergence to optimal strategy pair. In this
case the unique maximum reward probability is asso-
ciated with path p4.¢> for decision module DM1 and
DM2, respectively. The results confirm that the coor-
dinated decision strategies selected by each decision
module converges close to unity. Hence, the optimal
pair of decisions selected by DM1 and DM2 is p,.¢s.

Experiment 2

The previous experiment 1 was repeated, with the
additional concept of a sudden switch to a differ-
ent environment. By repeating experiment 2, it can
be seen that both decision modules converge close
to unity by selecting the optimal pair of decision
strategies. The sudden switch in the environment is
achieved by re-locating the unique maximum reward
probability , such that an alternate pair of decision
strategies may be selected.

This behaviour is best illustrated by analysing the
results in Table [3a - 3b}; all relevant parameter values
are indicated. The simulation results show how fast
the structure learns convergence to the new optimal
strategy pair. It is evident from Table 3a that both
decision modules DM1 and DM2 select the optimal
strategy pair p;.qi; and convergence for this pair is
close to unity. However, after introducing a sudden
switch of the environment the coordinated decision
strategy pair ps.q; is selected. Thus, Table 3b shows
a decrease in convergence for path pl selected by DM1
and a rapid increase in convergence close to unity for
strategy pair ps.q;. ¢

Experiment 3

This final experiment gives an excellent illustra-
tion of speeding up the learning process by permitting
communication between decision modules DM1 and
DM2 (as indicated by dotted lines Figure 6). Note
that in each of the following experiments an arbitrary
value for the stepsize is considered.

First set of results in Table 4a illustrates commu-
nication between automata at the top level of the
hierarchy for each decision module. To simulate this
structure, both automata at the top level (SA1 and
SA2) exchange messages such that if each selects ac-
tion one, then the reward parameter is incremented
by stepsize 4. From Table 4a, it can be seen that the
convergence rate for strategy pair p;.q; rapidly in-

creases close to unity; since the unique maximum re-
ward probability is associated with this strategy pair.

Second set of results in Table 4b exemplifies com-
munication between automata at the top and lower
levels of the hierarchy for each decision module. The
same rule is applied, that is, if both automata at the
top and lower level select action one, the reward pa-
rameter is increased by stepsize 4. Similar to the
previous case, the results in Table 4b show rapid con-
vergence close to unity for both levels of automata. In
comparison to the previous experiment, there is only
a fractional increase in convergence rate by permit-
ting communication between upper and lower levels
automata.

5 Conclusion

This paper has defined a high-level quantitative
framework based on Petri net methodology. It has
proposed a new class of Petri net modelling tool for
an effective representation of decision models. This
approach has enhanced the modelling power of Petri
nets. The modelling technique has exhibited a data
flow formation, and an Al decision making process
embedded within the net. The application of the
modelling tool to a non-trivial example has been con-
sidered. This has illustrated the modelling flexibility
and suitability to a realistic distributed decision prob-

lem.

References

[1] M. Athans. Command and control theory: A chal-
lenge to control science. IEEE Trans. Aut. Con-

trol, AC-32(4):286-293, 1987.

[2] A. P. Sage. Information systems engineering for
distributed decision making. JEEE Trans. on Sys-
tems, Man and Cybernetics, SMC-17(6):920-936,

Nov.-Dec. 1987.

[3] K. S. Narendra and M. A. L. Thathachar. Learn-
ing automata — a survey. JEEE Trans. on Sys-
tems, Man and Cybernetics, 4(4):323-334, July

1974.

[4] K. S. Narendra. Learning Automata - An Intro-
duction. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1989.

[5] J. L. Peterson. Petri Net Theory and the Mod-
elling of Systems. Englewood Cliffs, NJ: Prentice-

Hall, Inc., 1981.

[6] D. Tabak and A. H. Levis. Petri net representa-
tion of decision models. IEEE Trans. on Systems,

Man and Cybernetics, SMC-15(6):812-818, Nov.-
Dec. 1985.

[7] A. H. Levis. Information processing and decision
making organisations: a mathematical descrip-
tion. Large Scale Systems, 7:151-167, Nov.-Dec.

1984.

[8] S. L. Skulsky and A. H. Levis. Migration of
control in distributed intelligence systems. Proc.
JIEEE Int. Symposium on Intelligent Control,
pages 74-81, Sept. 1989.

[9] G. Marsan M. A., Balbo and G. Conte. Perfor-
mance Models of Multiprocessor Systems. Cam-
bridge, MA: The MIT Press, 1987.

e
- Ers .

P’

oy

"A
4y

DEVIROMNMEINT
Powmeent 1o 10 13 13 s |3 fe i1
< __lalajalalsisisiaia

o Fires Probebity Ocos Gasxacly)
m Tires-Sus Asetnes
[teosom

Figure 2 - Reachability Tree

Figure 1 - Stochastic Perri Net

bt s0q 0

Sochasic [t Q Suxtwatic
Pari e Larag
Ne . Eoveonmen Pt Axceea

ety 8 —q

Prit}

Figure 3 - Stochastic Learning Petri Net (SLPN)

Figure 4- PN Model of Interacting Decision Maker

I-‘xgure 5 - Two Node Organisation Supported bvy Dss

REWARD PARAMETER =Q.04

Shoshs osler o e eohe o

NN\, "\ Ducaion Modwle DMT N\ N\

SNREETTTANNN

Pr(0.1)

P(1])

Pr(12)

Pr(1.3)

P22) | P23)

1.00000

0333333
0550452
0.728351
0318899
0364058
0891233

0333333
0213781
0313456
0.075712
0.056823
0.045477

0333333
0235767
0.157693
0.105380
6.079079
0.063290

0500000 | 0.500000
0.709502 | 0290458
0840304 | 0159696
0393398 | 0206602
0520004 | 0.079996
0935977 | 0.064023

Pr3.4)

Pr42)

Pri43)

Pag) | P38 |

1200 0386330
1800 10362558
2400 {0.350662
3000 |0.343521

0500000
0546338
0613670
0637442
0649338

0.656479

0333333
0367937
0384717
0390320
0393123

0.394306

0333313
0.324951
0384717
0.390320
0393123
0394806

0333333 | 1.000000

0277178 | 1.000000
0273429 | 1.000000
0271178 | 1.000000

Table 1 - Optimal Path (Sequence 1)

REWARD PARAMETER = 0.04

REWARD FROBABLITY G =09

n pl

P2

p3

P

PS _p6

0 0166666
600 0122752
1200 (0.063909
1800 .042560
2400 031903
3000 p.L2SS14

0.166666
0.124708
0.065275
0.043563
0.022639
0.026160

0.166666
0.1737T711
0.128113
0.094769
0.074587
0.061355

0166666
0345529
0.624443
0.740271
0801693
0339669

0.166666 | 0166666
0.127226 | 0306013
0.064294 | 0.053961
0.042815 | 0.036021
0.032094 | 0027033
0.025667 | 0.021635

] gl

a2

q3

od

a5 gé

0 pa66866
600 0166504
1200 [0.108945
1800 078552
2400 062235
3000 0.049974

0.166666
0457265
0694528
0.790430
0.840602

0387415

0.166666
0.138586
0.070573
0.046577
0.034755

0.027N38

0.166666
0.130716
0.070720
0.047621
0.0358%4
0.028801

0.266666 | 0166666
0.054399 | 0052525
0028651 | 0.026577
0.019225 | 0017554
0014465 | 0.013149
0011595 | 0.010497

Table 2- Optimal Strategy Pair p4. g2

REWARD PARAMETER =0.0¢

XEWARD FRCBARILITY G, =09

3

5 6

0 pasessss

1200 10.656245
1800 p.762995
2400 |0.819308
3000 [0.854036

0.166666
0.187078
0.128620
0.093581
0.073124
0.059909

0.166666
0.128409
0.081050
0.054786
0.041371
0.033233

0.108408
0.062218
0.040727
0.030263
0.024075

0.166666 | 0.166666
0.065751 | 0.075637
0.032926 | 0.038940
0.021841 | 0.026070
0.016339 | 0019554
0.013052 { 0.015695

ql

q2

a3

od

eS a6

0 p.166666
600 0396374
1200 10.623670
1800 1.740127
2400 [0.801726
3000 0839764

0.166666
0.150584
0.113208
0.084455
0.061028

0.054985

0.166666
0.177857
0.116604
0.030160
0.061028
0.045259

0.166666
0165583
0.091556
0.058616
0.043054
0.034007

0.166666 | 0.166666
0.056801 { 0.052760
0.028705 | 0026255
0.019184 | 0.017456
0.014406 | 0.013075
0.011533 § 0.010451

Table 3a- Before Switch - pl.ql

<
Slnlelalelals o o le]
Sloulo i [®]G 1S fou Calcals]

NANNNN
Cou

w |So

Figure 6 - Decision Modules

KEWARD PARAMETER = 0.0¢

REWARD ROBARLITY G, =09

P2 _p3 pé

0055909 10.033233 | 0.02407S
0.033474 10264141 | 0102045
0.018049 |0.573407 | 0.097SC2
0012179 10.704976 | 0075629
0.009189 |0.774746 | 0.060707
0.007378 [0317834 | 0.050479

0.013082
0.007646

0.002574
0.001925
0.001537

0.015695

0.005056
0.003335

0.002033

a2 a3 o

q5

P335764

946919

973289
.978604

0.054985 |0.049259 10034007
0.058983 | 0.020865 | 0.015002
0022772 10010368 | 0.007705
0021999 0006379 | 0.005160
0.016556 |0.005147 | 0.003339

0013772 }0.004112 |0.003117

0011533
0.002343
0.001172
0.000782
0.000536
0.00045%

0.010451
0.002123
0.001062
0.000702
0.000531
0.000425

Table 3b- After Switch - p3.q1

EEWAXD PARAMETER = 0.04

INCREMENT = ¢4 X 8.00)

REWARD PREOBARILITY C" -a9

_pl

P2 B pd

B

D.166666
0.833364

.917820
.944856
958508
966742

0.166666 |0366666 |0.166666
0101717 10014694 {0.014704
0.052470 |0.007341 | 0.007353
0.035337]0.0048%2 | 0.004507
0.026637 |0.003669 | 0.003631
0.021374 |0.002935 | 0.002945

0165666
0.015153
0.007583
0.005057
0.003793
0.002945

0166666
0.014867
0.007427
0.004950
0003712

al

a2 a3 od

qs

D.166666

2400 p.973289
3000 b.9786504

.900723
.946919
9644682

0166666 |0.166666 |0.166666
0.058%43 10020865 [0.015002
0032772 |0.010368 |0.007705
0021999 |0.006879 |0.005169
0016556 |0.005147 | 0.003889

0013272 |0.004112 {0.003117

0.166556
0.002343
0001172
0.000782
0.000586

0.000469

0166666

0.001062

0.000531
0.000425

Table 4a- Top Level Communication

XEWARD PARAMETER = 0.0¢

INCEEMENT = (4 X (Q.0¢))

REWAKD PRCBAXIITY G =09

2l

= B =

3000

0166666

1200 [0.953580

965201
976856
.981463

0166666 |0.166666 |0.165666
0.039772 10.012995 |0.013038
0020423 |0.006458 | 0.006519
0013734 10.004332 |0.004345
0.010345 [0.003249 | 0.003259
0.008289 |0.002599 | 0.002607

0.166666
0.012565

0.004190
0.003143
0.002514

0.165666
0012593

0.004196
0.003147
0.002518

ql

82 a3 ;3

g5

§°b

1300
2400
3000

P.166666
0.903764

1200 {0.951279

967384
975487
.980365

0.166666 |0.166656 | 0.166666
0.042945 j0.020865 | 0.015087
0022077 |0.010368 | 0.007532
0.014352 |0.006379 |0.005019
0.011189 {0.005147 | 0.003763
0.008976 |0.004112 | 0.003010

0.166666
0.010836
0.005418
0.003612
0.002709
0.002167

Table 4b- Top:Lower Level Communic ation

