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Abstract 

Many of today's complex systems require effective decision making 
within uncertain distributed environments. The central theme of the thesis 
considers the systematic analysis for the representation of decision making 
organisations. The basic concept of stochastic learning automata provides 
a framework for modelling decision making in complex systems. Models of 
interactive decision making are discussed, which result from interconnecting 
decision makers in both synchronous and sequential configurations. The 
concepts and viewpoints from learning theory and game theory are used to 
explain the behaviour of these structures. This work is then extended by 
presenting a quantitative framework based on Petri Net theory. This formalism 
provides a powerful means for capturing the information flow in the decision 
making process and demonstrating the explicit interactions between decision 
makers. Additionally, it is also used for the description and analysis of 
systems that are characterised as being concurrent, asynchronous, distributed, 
parallel and/ or stochastic activities. The thesis discusses the limitations of 
each modeUing framework. 

The thesis proposes an extension to the existing methodologies by 
presenting a new class of Petri Nets. This extension has resulted in a novel 
structure which has the additional feature of an embedded stochastic learning 
automata. An application of this approach to a realistic decision problem 
demonstrates the impact that the use of an artificial intelligence technique 
embedded within Petri Nets can have on the performance of decision models. 
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Chapter One 

Introduction 

1.1 Objectives 

This thesis considers the development of appropriate algorithmic tools 

for the systematic analysis of distributed decentralised decision systems. Such 

systems axe characterised by a high degree of complexity, a distribution of 

the decision making process among several 'agents', the need for reUable 

operations in the presence of multiple failures and the inevitable interactions 

of humans with computer-based decision support systems and decision aids. 

The analysis and development of such systems requires novel advances in the 

area of distributed decision making under uncertainty. It is essential to develop 

quantitative methodologies, theories and algorithms for the representation of 

such complex systems. Current research in this field is generating much 

interest and has been prompted by studies from related disciplines, such as 

computer science, control sciences, engineering and cognitive psychology, [ l | , 

[2], [3], [4], [5], [6], [7]. 

1.2 Overview of Thesis 

The thesis describes the progress and results obtained during a research 

programme to study distributed decision making systems. An example of 

such a system is the so called C^-I (Command, Control, Communications and 
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Intelligence) system. In essence, it is the process of information management: 

how to obtain, process and distribute information quickly and accurately 

from a network or other hierarchy of systems. Initial work involved an 

overview of the field of Distributed Artificial Intelligence (DAI), focussing on 

coordination techniques and highlighting an area of research to be addressed 

by the DAI community, [8], [9], [10]. An approach based on the stochastic 

learning automata is proposed to provide the basic conceptual framework for 

a model of decentralised decision making, [11], [12]. The thesis then describes 

topologies of synchronous and sequential models by the interconnection of 

automata in various configurations, [13], [14]. The theory of Petri Nets 

is then reviewed, [15], [16]. A discussion indicates the Umitations of each 

framework in the development of appropriate decision making models. To 

resolve these limitations, a new modelling technique is proposed by combining 

principles from stochastic learning automata and Petri net theory. The 

application of this new form of hybrid Petri Net model to a small-scale 

realistic problem is discussed. Original simulation results are presented and 

discussed. The thesis concludes by discussion of proposed future work. A 

brief discussion of each chapter is provided in the following subsections. 

1.2.1 Overview: Distributed Artificial Intelligence and 

Approaches to Coordination 

Chapter Two provides an overview of the field of DAI and highlights 

the importance of such systems. In addition, the chapter presents several 

approaches for effective coordination of nodes in a distributed network. The 
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survey reveals that there has been minimal DAI research in the collective 

learning process. Thus, the motivations for learning in DAI environments 

have also been addressed. 

1.2.2 Basic Stochzistic Automaton Model 

Chapter Three reviews the basic stochastic learning automata model. 

It describes how a single decision maker operates in a random environment 

and updates its strategy for choosing actions on the basis of the ehcited 

response. The mathematical description of the input and output sets of the 

automaton and the P-model environment are introduced. Several learning 

algorithms and also measures of performance including expediency, optimahty 

and €-optimality are defined. Stochastic learning automata are expected to 

provide the basic conceptual framework for future research on distributed 

decision systems. 

1.2.3 Multiple Automata and Decentralised 

Decision Making Models 

Chapter Four provides a detailed study of decentralised decision mak­

ing in unknown random environments using stochastic learning automata as 

the basic decision model. This chapter describes the analytical models for 

interactive decision making systems of increasing complexity and the relevant 

simulations. These interconnections consider both synchronous and sequential 

models. The concepts of stochastic learning theory and game theory are used 

to explain the results of extensive simulations. 
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1.2.4 Petri Net Theory 

Chapter Five considers the potential of Petri Nets for the represen­

tation of decision models. This chapter surveys the known results in this 

area and identifies the Petri Net formalism as a potentially efi"ective graphical 

and mathematical tool. Moreover, the thesis considers time-related models by 

examining stochastic timed nets. This chapter then discusses the Umitations 

of existing Petri Nets models needed for the elfective representation of decision 

models. 

1.2.5 Learning Petri Net Models 

Chapter Six presents a new class of Petri Nets, namely. Stochastic 

Learning Petri Nets (SLPN). This extension to Petri Net models introduces a 

new model which has the additional feature of an embedded stochastic learning 

automata. The hybrid combination was shown to overcome the limitations of 

existing Petri Net theory and stochastic learning automata used in isolation. 

This chapter discusses the potential benefits of a new modeUing technique 

by examining various forms of Learning Petri net models. The chapter also 

presents original simulation results for each model. 

1.2.6 Application to Distributed Decision Systems 

Chapter Seven considers the application of the new Stochastic Learn­

ing Petri Net (SLPN) model to a small-scale distributed decision problem. 

The basic model involves two decision modules interacting with a stochastic 

environment. This chapter describes simulation studies which demonstrate the 
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impact that the use of such a modelling tool can have on the performance 

of decision making organisations. 

1.2.7 Conclusions £ind Future Work 

Chapter Eight concludes the thesis by summarising the work that 

has been presented and also provides an insight to possible future areas of 

research. 

1.3 Conclusions and Summary 

This chapter has presented a brief introduction and overview of the 

contents of the thesis. I t has highHghted the key areas of research involved 

in a study of decentralised decision making in distributed environments. The 

stochastic learning automata approach has been identified as the fundamental 

framework for modelling decision making in complex systems. As the research 

progresses additional layers of sophistication are incorporated within the basic 

model. Thus, a novel contribution in this field of study has been provided 

for the representation of effective distributed decentralised decision making 

models. 
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Chapter Two 

Overview: Distributed Artificial Intelligence and Approaches to Coordination 

2.1 Introduction 

This chapter presents an overview of Distributed Artificial InteUigence 

(DAI), with special attention to coordination in Distributed Problem Solving 

(DPS) and Multi-Agent (MA) systems. The potential benefits in the appUca-

tion of such systems where information, resources or expertise are distributed, 

or where they are inherently distributed to improve speed, modularity or 

reliability of the system are considered. However, these potential benefits are 

not realised if the agents are uncoordinated. The major part of this chapter 

addresses what many consider to be the key research issue for DAI: how to 

coordinate the activities of a collection of semi-autonomous problem solvers. 

Several approaches for effective coordination of nodes in such systems have 

been reviewed. These include negotiation, organisational structuring, multi-

agent planning, metalevel information exchange, commitments/conventions and 

formal frameworks. 

The chapter does not aim to provide comprehensive coverage of the 

entire field of DAI, such reviews have been generated by Bond and Gasser, [8], 

and smaller collections have also been published by Huhns, [17] and Gasser, 

10]. Rather, the objective is to provide a brief review of coordination 

techniques in DAI systems. The survey also reveals a specific research 
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problem that the DAI community have yet to address. Bond and Gasser, [8], 

stated that there has been virtually no DAI research in collective learning 

processes. To date this gap in DAI research remains. This thesis presents a 

new perspective in studying collective learning processes in DAI. 

2.2 Overview of D A I 

DAI is concerned with the study and construction of semi-autonomous 

concurrent processing nodes, or agents which perform intelUgent operations 

by interacting with each other and their environments as a community. Each 

agent is responsible for maintaining a different perspective of the world 

model, and these agents communicate with each another. Consequently, this 

organisation has a more diverse perception of the world, is more robust and 

enables the strengths of several processing paradigms to be exploited. 

Research in DAI may be divided into two primary arenas; Distributed 

Problem Solving and Multi-Agent Systems. Research in the field of Distributed 

Problem (DPS) involves a study of how the work of solving a problem can be 

divided among a number of modules or 'nodes' so that they can work together 

to solve problems beyond their individual capabilities. Whilst, research in 

Multi-Agent (MA) systems is concerned with coordinating the knowledge, 

goals, skills of inteUigent agents so that they can jointly take actions or work 

together to solve problems. These agents may be working towards a single 

global goal or towards separate individual goals that interact in some way. 

Similar, to the DPS system, agents must share knowledge and problem solving 

capabilities, in addition they must reason about their local actions and the 
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actions of the other agents in the network. 

The work described in the thesis better fits the MA system sub-

area of DAI. The thesis presents an Artificial Intelhgence (AI) approach 

based on the stochastic learning automata which provides the conceptual 

framework for research on distributed decision making models. The study of 

stochastic learning automata as distributed 'agents' is considered to exhibit 

the characteristics of an MA system. This is particularly appUcable to the 

interconnections examined in Chapter Four. These interconnections consist of 

a multitude of automaton-environment pairs that interact to achieve specific 

goals. The agents are shown to operate together in an uncertain environment 

either in a cooperative or competitive manner and the game situation is 

represented by synchronous models. Similarly, sequential models are considered 

whereby, the agents operate on various levels with interaction between the 

different levels to seek optimal performance. However, the modeUing framework 

does not include the reasoning capabilities which are an essential feature of 

an MA system, instead, an inteUigence capabiUty permits the agents to adapt 

to changing environments. 

2.2.1 Rationales for D A I 

The following attributes summarise the potential benefits of using this 

type of environment: 

Parallelisation/ Concurrency : Faster problem solving by exploiting paral-

leUsm. No order is assumed in the invocation of agents in the network. 

They may be running in some arbitrary sequence on a single processor by a 

27 



multi-processing operating system, or may be running on physically separate 

processors. 

Communication : Agents communicate with one another using a message 

passing protocol. 

Modular Design/Naturalness : The principles of modular design and the 

abihty to structure problems into relatively self-contained processing modules 

leads to systems that are easier to build and maintain. The decomposition of 

large tasks into manageable subtasks which, in themselves, are well bounded 

but which when allowed to interact, are capable of creating a powerful model 

of the world. 

Robustness : A DAI system has both hardware and software robustness. If 

one or more agents becomes disabled through a hardware fault, the system 

will degrade gracefully. I f the system misbehaves, due to a problem with 

the software, the consequences will be contained: if the agent fails to adhere 

to the specified message passing protocol then it will not be listened to by 

the other agents; if it produces an error in reasoning then it is Ukely to be 

outvoted by the rest of the community of agents. 

2.2.2 Motivation for Learning in D A I Systems 

Learning denotes changes in the system that are adaptive in the sense 

that they enable agents to acquire knowledge with time and adapt their 

reasoning to improve their performance at specific tasks, more efficiently and 

effectively at the next stage. The abiUty to learn is an essential feature 

of any intelUgent system which has to operate in a changing environment. 
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However, this concept has been rarely discussed in the DAI Uterature, [8]. 

Research on learning in D A I systems should consider ways to improve the 

agent's knowledge and skiU to enable the whole DAI system to improve its 

performance as a result. 

The earliest attempt for incorporating any learning mechanisms in 

DAI systems was in the Multiple InteUigent Node Document Servers (MINDS) 

system, [18]. This system operates in the domain of intelUgent document 

retrieval. However, the concept of learning in this system was observed 

to be a localised activity without any cooperation between the agents to 

learn globaUy useful attributes. Shaw and Whinston,[l9], describe a method 

treating DAI systems as adaptive organisations with the abiUty to improve 

learning from past experience. The proposed method is composed of two 

processes: an extension of the Contract Net protocol (discussed in Section 

2.3.1) and using a genetic transformation process within agents to find a 

more efficient solution. The Contract Net framework is extended as foUows, 

tasks are awarded to the most appropriate bidders; the tasks are traded with 

hypothetical payments which is equivalent to the bid; this in turn affects the 

strengths of the agents involved which are updated accordingly. The concept 

of the bidding scheme as a feedback mechanism to rate each agent is used as 

the basis for learning and adaptation. The process of learning is performed 

by a genetic algorithm. This technique used the strengths as the indication 

of suitabUity to find desirable attributes of successful agents, and the weaker 

agents were eliminated by new agents inheriting the desirable characteristics. 

This process improved the overaU performance of the sytem. Shaw and 
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Whinston have shown the appUcation of this methodology to the scheduling 

of flexible manufacturing systems. Sian, [20], has developed a model for 

adaptation in MA systems that allow cooperative learning among autonomous 

agents. The symboHc approach to adaptation is based on exphcit interaction 

between agents for the purpose of learning useful information. Each agent 

may only be able to infer partial hypotheses by using local information and 

requires cooperation to produce a 'complete picture'. The interaction with 

the other agents provides a more consistent, accurate hypotheses and increases 

the level of confidence in the hypotheses. The model has been implemented 

in a system called Multi-Agent Learning Environment (MALE). 

The general model of DAI systems is one in which a collection 

of agents (distributed spatially, logically or temporally) are engaged in the 

performance of coordination of activities. In such complex systems which are 

organised in a hierarchical or decentralised manner, the agents must deal with 

large uncertainties regarding either the structure, parameters or the nature 

of external events. In particular, it is these external uncertainties that add 

to the difficulty of the control problem and their presence necessitates the 

use of learning schemes. It should be emphasised that decentralisation by its 

very nature introduces uncertainty into the system. The remote components 

of the same system can only have limited information about each other 

and the overall system. Hence, the decisions must be made by individual 

agents that have access only to partial information regarding the state of 

the overall system. However, this results in an inconsistency between local 

and global optimality. To deal with such systems effectively, it is essential 
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that the agents adapt to their environment by utiUsing a learning paradigm. 

This thesis has adopted a basic learning paradigm for the representation of 

decentralised decision making models. 

2.3 Approaches to Coordination 

The concept of coordination in DAI research has most often been 

described as the process of control decision making that guides the overaU 

behaviour and performance of a coUection of semi-autonomous problem solvers. 

The existing literature on DAI provides various definitions of this concept, 

namely, coordination may be referred to as the process of structuring decisions 

so as to maximise the overall effectiveness of a coUection of problem solving 

nodes. Alternatively, the outcomes of a coUection of control decisions may 

also be referred to as coordination, [21]. The coordination of the actions of 

a coUection of decentralised agents has been posited as a formidable problem 

of DAI research. At present there is a diverse range of techniques which can 

and do facilitate coordination in DAI systems. These mechanisms can be 

broadly divided into the foUowing categories: 

• Negotiation 

• Organisational Structuring 

• Multi-agent Planning 

• Metalevel Information Exchange 

• Committments/ Conventions 

• Formal Frameworks 
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Each of these approaches is examined in turn; a brief description about how it 

facilitates coordination behaviour is provided. The most relevant to the work 

in this thesis is the area of formal frameworks, which is discussed in Section 

2.3.6. Most coordination techniques have been motivated and evaluated in 

terms of an appHcation domain, often by building a simulator for the domain. 

These implementations are prototypes and simulations; to date, there have 

been only two MA systems which have been used in real-world applications, 

[22], [23], [24]. 

2.3.1 Negotiation 

Negotiation is a fundamental part of human cooperation, that allows 

people to resolve conflicts that could interfere with cooperative behaviour. 

The term 'negotiation' may be defined as 'the process of improving agreement 

(reducing inconsistency and uncertainty) on common viewpoints or plans 

through the structured exchange of relevant information', [25]. The following 

provides a more concise description of negotiation. 

Smith and Davis, [26], [27], developed the Contract-Net framework, 

which is one of the eaxUest and most influential research projects in cooperative 

DPS. This represents a framework that specifies communication and control 

in a distributed problem solver. The process of negotiation involves three 

important components: a two-way exchange of information between interested 

parties; an evaluation of the information by each party from their own 

perspective and a final agreement achieved by mutual selection. 

Conry and her colleagues, [28], describe a multistage negotiation 
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paradigm for planning in a distributed environment with decentralised control 

and limited inter-node communication. This process considers another use of 

a limited form of negotiation in task allocation. The multistage negotiation 

protocol is useful for cooperatively resolving resource allocation conflicts which 

arise in a distributed network of problem solvers. This framework may be 

viewed as a generalisation of the contract net protocol. The contract net 

was devised as a means for accomplishing task distribution among agents in 

a distributed problem solving system. Task distribution takes place through 

a negotiation process involving contractor task announcement followed by 

bids from competing subcontractors and finally announcement of awards. The 

multistage negotiation extends the basic contract net protocol to allow iterative 

negotiation during the bidding and awarding of tasks. 

2.3.2 Organisational Structuring 

An organisational structure is a network level coordination mechanism 

that can be implemented in a number of ways. In most DAI research, 

an organisational arrangement imposes guidelines about the distribution of 

specialisations among the collective agents. It provides a framework for 

activity and interaction through defined roles, behavioural expectations and 

authority relationships(eg control). The control relationship between the agents 

can be represented in terms of topologies such as hierachical, heterarchical, 

flat(lateral) structures. These organisations are responsible for designating the 

relative authority of the agents and for specifying the types of interactions that 

can occur. Organisational structures can be used as a high-level specification 
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of the distribution of problem solving capabilities among the community 

members, [29]. 

An organisational structure provides more general long-term infor­

mation about the relationships between agents. As stated previously, an 

organisation can be reviewed as a distribution of capabilities which is a pre­

cise way of dividing the problem space without having to go into depth about 

the particular problem subtrees. 

Organisational structures provide a control framework that increases 

the likelihood that agents operate as a coherent team by identifying the roles 

of each individual. Lesser and Corkill, [30], applied organisational structures 

to efficiently implement network coordination strategies. Their ideas have been 

implemented and evaluated in one of the most flexible simulation testbeds 

developed to date:the Distributed Vehicle Monitoring Testbed(DVMT). This 

simulates a spatially organised network of agents which perform distributed 

interpretation to track vehicles moving among them. By this process of 

coordination agents build a map of vehicle movement through an entire 

area. Lesser and Corkill suggest that each agent needs to decide on its own 

activities, based on the current local view of the problem being solved, but 

organisational knowledge should be applied about its problem solving role in 

the network and the roles of others to guide its decision so that it is a more 

effective participant in the network. This approach divides coordination into 

two concurrent activities: the construction and maintenance of a network 

wide organisational structure into precise activities using the local knowledge 

and control capabilities of each agent. 
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2.3.3 Multiagent Planning 

In a multiagent planning approach to cooperation, nodes (agents) form 

a multiagent plan that specifies all their future actions and interactions. The 

coordination of nodes through multiagent plans is different from organisational 

structuring and metalevel information exchange in terms of the level of detail 

to which it specifies every agents activities. In this case one or more nodes 

possess a plan that indicates exactly the actions and interactions each node 

will take for the duration of the network aictivity. Agents know apriori exactly 

what actions they will take, one or more nodes have information about each 

node's activities and what actions will occur, recognising and preventing the 

duplication of effort. Multiagent planning insists on detecting and avoids 

inconsistencies before they can occur. Finally, a multiagent plan dictates 

exactly what actions should be taken by each node and when the actions 

should be taken; which is unlike the guidelines imposed by an organisation 

structure. The approach requires more computation and communication 

resources than other approaches, since nodes are expected to share and 

process substantial amounts of information. 

There are two basic approaches to multiagent planning: centralised 

and distributed. Georgeff, [31] develops a multiagent planning approach where 

the plans of individual nodes are first formed which is collected by some central 

planning node. It is then analysed to identify potential interactions such as 

conflicts between the nodes over limited resources. This provides an efficient 

method of interaction, and safety analysis is then developed by central node 

to determine which potential interactions could lead to conflicts. The central 
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planning node next groups together sequences of unsafe situations to create 

critical regions. Finally, the idea is to insert communication commands 

into the plans so that nodes can synchronise activities and avoid harmful 

interaction, [32], [33]. Cammarata et. al., [34] also devised a centralised 

multiagent planning system for the air traffic control (ATC) domain. In this 

ATC application, each aircraft (agent) sends information about its intended 

actions to a coordinator. The coordinator is responsible for developing a plan 

which specifies all the agents' actions, including the actions to be taken to 

avoid harmful collisions. 

Whilst, with distributed multiagent planning, the plan is developed 

by several agents. Rosenschein and Genesereth, [35] studied a logic-based ap­

proach studying how agents with a common goal but different local information 

can exchange propositions to converge on identical plans. They developed 

strategies for convergence. These strategies were based on assumptions about 

the correctness and completeness of agents' information, whether additional 

information can cause a previously acceptable plan to be unacceptable and 

also what each agent knows about other agents' knowledge. Their results 

indicate that it is infeasible to expect sometimes unpredictable agents working 

in dynamic domains to always coordinate optimally, perhaps the best to be 

expected is that they will coordinate acceptably well and will tolerate any 

uncoordinated activity. 
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2.3.4 Met2devel Information Exchange 

The exchange of metalevel information is another way that the agents 

in a network can improve their coordination. Gasser, [36], describes metalevel 

information as the control level information about the current priorities and 

focus of a problem solver. This indicates the approximate regions of the 

search space on which agents focus their efforts. 

Durfee, [37], developed a metalevel information exchange to coordina­

tion, called Partial Global Planning. Their partial global planning approach 

presents a unified, flexible framework which brings together a range of distinct 

coordination techniques. The technique can be viewed as planning, but i t 

differs from traditional planning that rigidly dictates specific actions to be 

performed at specific times. The partial plans can change so fiuidly and 

adapt to changing information and environments. The plans are used to 

detail an agent's problem solving strategy, and its expectations. Each agent 

follows the specified strategies for as long as i t is feasible, and they have the 

capability to change strategies as problem solving progresses. 

This process of coordination involves sharing sufficient tentative plans. 

This enables at least one agent to establish a global view to recognise how 

changes to local plan could improve coordination among them. Any number of 

nodes can collect plan information from others; the coordination of the plans 

by specific nodes is dependent on the domain requirements and constraints. 

I t is not necessary for each node to have a global view in order to improve 

coordination. As agents collect plan information from various agents in the 

network, the partial knowledge about its global situation is combined to form 
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Partial Global Plans (PGPs). Agents maintain their own set of PGPs, which 

may be used independently or asynchronously to coordinate its activities. 

Agents use its models of itself and others to identify when nodes have PGPs 

whose objectives could be part of some larger network objective called Partial 

Global Goal and combines the related PGPs into a single, larger PGP to 

achieve i t . 

2.3.5 Committments/ Conventions 

Jennings, [38], presents a unifying coordination model which considers 

the notion of commitments and conventions as the foundation of coordination 

in MA systems. The term commitments are considered to be pledges to 

undertake a specified course of action, whilst conventions provide a means 

of monitoring commitments in changing circumstances. In the former case, 

agents can make pledges both about actions and beliefs. These behefs can 

relate to the future or the past. In addition, commitments provide a degree 

of predictabhty, so that agents can take the (future) activities of other 

agents into consideration when dealing with inter-agent dependencies, global 

constraints or resource utilisation constraints. In the latter case, conventions 

provide cooperating agents with the flexibihty they need to operate in dynamic 

environments. In such environments the external world may change, agents 

may receive new information which may constantly change their own beliefs. 

Thus, to operate successfully and intelligently, agents need a mechanism for 

assessing whether commitments are valid. Conventions provide this mechanism 

so that agents can reconsider its commitments and specify the appropriate 
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course of action to either retain, rectify or abandon the commitment. The 

proposed model is based upon the Centrality of Commitments and Conventions 

Hypothesis which states that: all coordination mechanisms can ultimately be 

reduced to (joint) commitments and their associated (social) conventions. 

2.3.6 Formal Frameworks 

This section focusses on formal models, using logic-based or gcime-

theoretical models. Some of this work has concentrated on how nodes form 

multiagent plans, including the work of Georgeff, and of Rosenschein and 

Genesereth, [39]. 

The formalisms developed for logic-based agents, that work alone 

must be extended in two ways. As a first extension these systems must be 

able to model and reason about the concurrent activities of multiple agents. 

The second requirement is that the agents must perform in situations where 

they have incomplete knowledge or limited computational resources. However, 

both modifications lead to a possibility of producing incorrect inferences which 

result in agents having inconsistent beliefs about the world. Thus, agents 

may never converge on shared, coordinated plans, [39 . 

Rosenschein and Genesereth, [35], [40], proposed another approach 

towards developing a formal theory for understanding the nature of cooperation 

among multiple agents. Their models were based on game theory techniques 

and have shown the utility of communication to resolve conflicts among agents 

having disparate goals. By using a game theoretic model, each agent attempts 

to choose an option to maximise its payoff, and since no combination of agents' 
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options can lead to maximal payoffs for them all, they must somehow select 

an option that results in acceptable payoffs given the circumstances. They 

studied how different assumptions about the rationality of the agents can lead 

to more or less effective choices. 

As stated previously, game theoretic issues provide a fundamental basis 

for the study of decentralised decision making. Wheeler and Narendra, [13], 

consider the basic multiple automata game interacting through an imcertain 

environment. At each stage the automaton selects an action, and this 

determines the distribution of the random process involved. I t should be 

noted that in contrast to the usual game-theoretic formulation, no player is 

aware of the other players, the actions selected by or the responses from the 

environment to the players. The research has involved synchronous models in 

which the time instants for automata actions and updates are synchronised, 

and sequential models which are asynchronous. These models can be analysed 

by game-theoretic concepts. A detailed discussion of this work is presented 

in Chapter Four. 

2.4 Conclusion and Summary 

This chapter has presented an overview of DAI and also focusses 

on the approaches for coordinating nodes in DAI systems. Based on this 

survey, it is evident that effective coordination is based on three essential 

factors. Firstly, it requires structure because without structure the nodes 

cannot interact in predictable ways. Secondly, it requires flexibility because 

nodes typically exist in dynamically changing environments where each node 
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might have incomplete, inaccurate, or obsolete information. Finally, effective 

coordination requires knowledge and reasoning capabilities to intelligently use 

the structure and flexibility. These factors also apply to the quantitative 

framework adopted in this thesis. The main features include structure and 

flexibility, which is illustrated by the different interconnections presented in 

Chapter Four. However, the limitations of the basic stochastic Iccirning 

automata for the representation of a generalised network have forced an 

extension to this modelling framework, which is discussed in Chapter Six. 

The final features, knowledge and reasoning is not a matter of coordination, i t 

enables agents to reason about the information and decision making in their 

problem solving activities. Although, the framework proposed in this thesis 

does not exhibit this characteristic, instead the model has an intelligence 

capability which enables agents to adapt to changing environments. 

The survey has also emphasised that there are certain gaps in DAI 

research that are worthy of further investigation. One such area that should be 

addressed is related to the benefits to be gained by implementing a collective 

learning process in DAI research. This thesis addresses this particular topic of 

research and provides a new insight to the virtually unexplored field of DAI. 

The thesis proposes a different perspective to collective learning in a DAI 

environment. I t will be described in the subsequent chapters how collectives 

of automata have been designed to function as a distributed, yet coordinated 

intelligent control system. These models utilise learning schemes to display 

intelligent behaviour in an uncertain environment, [12]. 
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Chapter Three 

Basic Stochastic Automaton Model 

3.1 Introduction 

The previous chapter has provided an overview of the field of DAI, 

identifying the key requirements for effective coordination and highhghting an 

area of research to be addressed by the DAI community. This chapter proposes 

the stochastic learning automata approach which provides a fundamental 

framework for a model of decision making under uncertainty, [41], [42]. The 

concept of learning is defined as any relatively permanent change in behaviour 

resulting from past experience. An extensive literature and a well established 

mathematical foundation now exists for models of learning systems. The 

learning system was first introduced to model the behaviour of biological 

systems [43]. At a later stage it was shown that such models can use a 

variety of learning schemes to display intelUgent behaviour under uncertainty, 

11], [12]. This early work and related research formed the basis for what 

has become known as the learning automaton approach. These automata 

effectively use past experience and interaction with a random environment to 

optimise their response to external factors. 

This chapter introduces the basic concept of stochastic learning au­

tomata, providing relevant definitions of stochastic automata and random 

environments. It discusses the properties of reinforcement schemes (or up-
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dating algorithms) which determine the performance of stochastic automata. 

These learning arrays will be combined with that of Petri nets in the later 

chapters, to model decision making systems. 

3.2 Stochastic Learning Automaton Model 

In general, a learning automaton may be defined as a simple model 

for decision making in an unknown random environment. Figure 3.1 shows 

the basic model. The stochastic automaton has a finite set of actions, and 

these actions form the inputs to the environment. Initially, the probability 

of selecting any of the available actions is equal. One action is selected at 

random, which interacts with a random environment. The environment re­

sponds to that action, and based on this response the action probabilities are 

sequentially updated. A new action is then selected according to the updated 

action probabilities, this procedure being repeated. Through this process of 

interaction with the environment, the automaton learns to choose asymptot­

ically with a high probability the optimal action, i f such an action exists. 

The components of the stochastic automaton model can be characterised as 

follows. 

3.2.1 Stochastic Automaton 

Figure 3.2 shows a stochastic automaton with its input and action set. 

A stochastic automaton is a sextuple (/3, (f), a, p, F, G) and the components 

can be defined as follows: 
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(i) The input set to the automaton (output from the environment), 

denoted /3(n) 

where k may be finite or infinite. 

(ii) The state of an automaton at any instant n, ^(n) 

<f> = {<f>i, h, • • •, <i>s) 

where s is finite. 

(iii) The output action set selected by the automaton (inputs to the 

environment, Q;(n) 

a = ( a i , a 2 , . . . , a^) 

where r is finite, and r < s. 

(iv) The state probability vector governing the choice of the state at 

each stage, denoted p(n) 

p{n) = {pi{n),p2{n),... ,p,{n)y 

where 

and 

Pi{n) = Pr{a{n) = a^) 

^ P i ( n ) = 1 Vn 
i=i 

thus, preserving the probabiUty measure. 

(v) The state transition function which relates the current state and 

input at stage n to the next state at stage n -|- 1. 
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F : <f>xl3 ^ (I) 

(vi) The output function G relates the state of the automaton to the 

resulting output action at stage, n 

G : <̂  ̂  a 

The functions F and G may be deterministic or stochastic mappings. If 

F and G are both deterministic, the automaton is denoted a 'deterministic 

automaton'. In this case the succeeding state (n-l-1) and output action are 

uniquely defined for a given current state and input. In contrast, i f there are 

only probabihties associated with each successive state and output actions, 

the automaton determines a 'stochastic automaton' in which F or G or both 

are stochastic functions. 

3.2.2 Environment 

The environment can be defined as a random process or medium in 

which the automaton itself operates. Figure 3.3 represents the environment 

which accepts output actions of the automaton as inputs and produces 

responses which are in turn fed back to the automaton. The environment 

is described by the triple (a, c,/?) where a = (a j , 0 :2 , . . . , Qr) are the input 

action set (input to the environment), the set c = (ci, C 2 , . . . , c )̂ represents 

the penalty probabilities and /3 is the output set (input to the automaton). 

The nature of the response output from the environment, determines 

three possible types of environment. The first type of environment which is 

considered is the P model, this consists of a binary environment which is 
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defined by a finite set of inputs a = ( a i , . . . , a^) (outputs from the automaton); 

a set of penalty probabilities associated with each action c = ( c i , . . . , Cf); and 

an output set = (0,1). The /3(n) = 0 at stage n denotes a favourable 

response (reward) and /3(n) = 1 an unfavourable response (penalty). The 

Ci(n) are called penalty probabilities and are defined as: 

a = Pr[^(n) = l /a(n) = a,] (3.1) 

Therefore Ci represents the probability of a penalty being output in response 

to the input ai, while the probability of a reward is (1 — c,). 

Other possible types of environments have included Q models (finite 

number of outputs) and S models (continuous outputs in range 0 to 1). 

In practice the choice of environmental models is obviously dictated by the 

particular application. 1i the penalty probabilities from the environment do 

not depend on stage number n, the environment is classified as stationary; 

otherwise the environment is non-stationary. 

3.2.3 Reinforcement 

The reinforcement scheme is a crucial factor in determining the per­

formance of the learning automaton. In general terms a reinforcement scheme 

can be represented by: 

p(n + l)=T[p(n),a(n),/3(n)] (3.2) 

where T is an operator (learning algorithm) that denotes the rule by which the 
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automaton updates the probability of selecting certain actions; a(n) represents 

the action of the automaton; (3(n) represents the input to the automaton 

from the environment at instant n, respectively. 

The manner in which p(n) is updated is governed by the learning 

algorithm T, [12]. Both linear and non-Unear forms of updating algorithms 

T have been considered. I f p(n-|-l) is a Unear function of the components of 

p(n), the reinforcement scheme is said to be linear, otherwise it is non-linear. 

The most widely used are the class of Unear algorithms which include linear 

reward/ penalty (LRP), hnear reward/ e penalty (LR^P) and Hnear reward/ 

inaction schemes (LRI) . For the LRP scheme if an automaton selects an 

action a, which results in success pi(n) is increased and all other Pj(n)(j ̂  i) 

are decreased. Similarly i f action aj produces a penalty response Pi(n) is 

decreased and all other Pj(n) are modified to preserve the probabihty measure. 

An L R I scheme ignores penalty responses from the environment and LR^P only 

involves small changes in pi(n) for penalty responses compared with changes 

based on success. 

3.2.4 Linear Reward/ Inaction Reinforcement Scheme 

This section considers one particular reinforcement scheme known as 

the Linear Reward/ Inaction or LRI method, since most simulations in the 

thesis have employed this particular learning scheme. This is due to the fact 

that L R I schemes are known to exhibit the abUity to converge to an optimal 

action, i f the optimal action exists, [12]. The behavioural properties of a 

variable structure LRP stochastic automaton can be analysed by the following 
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linear algorithm using various parameter values: 

For Q(n) = Qi and /3(n) = 0 (reward) 

Pi{n + 1) = p,(n) + a[l - p,(n) 

Pj{n - f 1) = (1 - a)pj{n) j ^ i 

For a(n) = and /5(n) = 1 (penalty) 

Pi{n+l) = {l-b)p,{n) 

b (3-3) 

where 0 < a < 1 and 0 < b < 1 are constants called reward and penalty 

parameters, respectively. Special cases of the algorithm result when 'a' and 

'b' take on certain values as stated above; also an LRJ scheme is produced if 

the penalty parameter b=0. 

Equation 3.3 which accomodates a binary environment and this may 

be modified to include a genercil environment. In this case /3(n) takes on 

values in the interval (0, 1), and the success probabilities di are replaced by 

success distributions, one associated with each action. The following algorithm 

presents the general environment case, for axi LRJ scheme when b=0: 

For a(n) = Qj 

Pi(n +1) = p^(n) + o/3(n)[l - pi(n) 

p^{n -h 1) = Pj{n) - a/3{n)p,{n) j ^ i (3.4) 

Note that this formulation may be reduced to equation 3.3 i f /3(n) is a binary 

environment. 
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These equations describe how the probabilities of selecting the appro­

priate actions are adjusted so that if successful, they are selected with greater 

probability, otherwise with less. Also note how the probability measure is 

preserved. 

3.2.5 Performance 

The basic operation carried out by a learning automaton is the 

updating of the action probabiUties on the basis of the responses from 

the environment. The convergence characteristics of learning automata are 

dependent on the properties of the algorithm used in the updating scheme. 

A useful measure for judging the performance of the learning automaton is 

the average penalty received. At a certain stage n, if the action is selected 

with probabiUty Pi(n), the expected penalty is: 

M(n) = E[/3(n)/p(n)] (3.5) 

Assuming a stationary environment and the actions are randomly selected 

with equal probabihty, the value of the average penalty MQ is given by: 

M, = + + (3.6) 
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Definition 1 

A learning automaton is said to be expedient if: 

Umn^ocE[M(n)] < Mo (3.7) 

When a learning automaton is expedient it only does better than one which 

chooses actions in a purely random manner. If the average peneilty is 

minimised by a proper selection of actions then the learning automaton is 

said to be optimal, where: 

Definition 2 

A learning automaton is called optimal if 

Hm„_ooE[M(n)] = minifq] (3.8) 

Although optimal performance is a desirable property it cannot always be 

achieved. In such a case one would aim for sub-optimal performance, defined 

as follows: 

Definition 3 

A learning automaton is called e — optimal if 

Um„^ocE[M(n)] = c„i„ + e (3.9) 

This property caji be obtained for any arbitrary e > 0 by a suitable choice of 

the parameters of the reinforcement scheme. In this case e — optimal imphes 

that the performance of the automaton can be made as close to the optimal 

as required. These properties are said to be conditional if the values hold 

only when penalty probabilities Ci satisfy certain restrictions, eg. that they 

should he in certain intervals. 
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3.3 Conclusion and Summary 

This chapter has introduced the basic model of a stochastic learning 

automata. It has defined the structure of the stochastic automaton, the 

nature of the random environment and norms for judging the behaviour of 

the automaton. These concepts are relevant in studying the behaviour of 

interactive decision makers. 

It will be shown in Chapter Four, that the stochastic learning automata 

approach will provide the fundamental framework for a model of decentralised 

decision making in C^-I environments. 
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Chapter Four 

Multiple Automata and Decentralised Decision Making Models 

4.1 Introduction 

The previous chapter considered models of a single decision maker (aa 

automaton) interacting with an uncertain environment. This discussion can 

now be extended to consider multiple decision makers and environment pairs 

in various interactive configurations. As such, the models are descriptive 

cind have the property of analytical tractability. It is shown that each 

interconnection gives rise to a corresponding automata game, which lead to 

very different game structures. In some cases, the game can be analysed 

directly using results from automata game theory in which the players are 

considered to be learning automata. However, in some models the game 

lacks a structure for which automata behaviour is not known. Two types of 

interactions are of particular interest. In the first case, several automata are 

operating together in an environment either in a competitive or cooperative 

manner and this game situation may be represented by synchronous models. 

The second case considers automata operating on various levels with interaction 

between different levels in a hierarchical structure. 

This chapter defines an automata game and analyses the behaviour of 

multiple automata in an abstract game played repeatedly. A major part of 

this chapter introduces models in which decision makers are not autonomous 
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and their decisions affect each other. It is shown that automata games 

have no prior knowledge of the game or number of players available and the 

players choose their strategies on-hne. Such interactive structures result from 

interconnecting many decision maker-environment pairs to produce synchronous 

and sequential models, [13], [14], [44], [45]. These models are discussed in 

detail and simulation results are provided for each interactive configuration. 

The analysis of such models is based on results from learning theory and 

game-theoretic issues, [46]. 

4.2 Automata Games 

An automata game, Figure 4.1, involves N automata (or players) Ai 

(i = 1,...,N) each with an action (strategy) set a' = a\,...,a]^ interacting 

repeatedly through a stationary random environment. Each automaton Aj 

selects an action according to its current probabiHty distribution, at time 

instant n. The joint action (or play) Q(n) = a = (a-^, a?2,. • . , a-^) determines 

the success probabilities for a binary environment or success distributions for 

a general environment. Note that a binary environment is assumed for the 

models studied, unless otherwise stated. The environment is stationary since 

the d'{a) are fixed over time. In the multiple automata case, each automaton 

has access only to its own response. It should be noted that in contrast to the 

usual game theoretic formulation, no player is aware of the other players, the 

actions selected by or any of the environment success probabihties {d^iii2...iN)-

Similar, to the single automaton environment model, the basic feature 

of an automata game is that at each instant the probabilities of choosing 
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actions are updated. The probabihty of an action is increased when the 

selected action results in a success and is decreased or left unchanged when 

it results in a failure. 

4.3 Interactive Decision Making Models 

As stated previously, this section introduces plausible models of de­

centralised decision making under uncertainty. It is considered that the 

stochastic learning automata approach, and interactive decision making in 

automata games will provide the fundamental framework for a model of de­

centralised decision making in complex systems. This approach constructs 

models which result from interconnecting many of the automaton-environment 

pairs in simple ways. In such systems, the decision makers (modelled as 

automata) update their actions using learning schemes on the basis of re­

sponses from many local environments, this gives rise to specific strategic 

games. Some games are easily analysed using results either known or derived 

from automata game theory, other interconnections lead to a structure for 

which automata behaviour is not currently known. The objective is to bmld 

models with both analytical tractability as well as providing realistic models. 

The models studied in this section express typical ways in which 

decision makers can interact, by considering both feedback and hierarchical 

structures. Particular emphasis has been given to feedback structures in the 

form of synchronous models. In such models, the actions of all automata 

occur simultaneously, as do the subsequent responses. A sequential model 

is also considered, where there are various levels of automata and there is 
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interaction between different levels. In such systems, one automaton acts at 

a time with the action chosen determining which automaton acts next. 

4.4 Synchronous Models 

These models represent ways in which decision makers interact. For 

such models, the time instants when the automata choose actions and update 

probabihties are synchronised. The concepts of game theory are used to 

analyse the convergence of the learning schemes. The relevant concepts of 

game theory have been provided in Appendix Two. Figure 4.2 and Figure 4.4 

show some simple examples of synchronous models. These basic structures 

can be modified to include examples in which the actions of the automata 

determine specific types of nonstationary environments and they are discussed 

in Section 4.7. A description of each model is presented in the following 

subsections. 

Simulation results are provided for each model in the subsequent 

sections. The results for all decision making models - synchronous and 

sequential are presented in the form of tables and graphs. It is assumed 

that all the feedback models use L R _ I algorithms of the form, Equation 3.3; 

unless otherwise stated. In all cases 'a' is the reward parameter; pi(n) and 

qi(n) (and ri(n) in the three player examples) are probabihties for selecting 

the first action Ai and A2 (and A3) , respectively. The game matrix uses 

reward probabihties to represent the game structure of each environment, in 

the case of synchronous models. The number of sample paths over which 

averages were taken, is related to 'm'. A single iteration computes one loop 
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at each stage 'n'. Expected values are denoted by, eg pi(n) = E[pi(n)]. The 

general structure of each simulation program is provided in Appendix One. 

4.5 Simple Feedback 

The most basic feedback arrangement shown in Figure 4.2 interconnects 

two automaton-environment pairs Ai - E i and A2 - E2. Each automaton Ai 

and A2 are assumed to have two actions interacting into their respective 

binary environments at each stage 'n'. The main feature exhibited by this 

model is that the response /3(n) from one automaton's environment is the 

input to the other automaton. 

The synchronous nature of the model can be viewed as a standard 

automata game which can be represented by the following game matrix. The 

notation impUes that an action aj is selected by automaton i; similarly, 

the environment success probabihties are given by (ij where i and j are the 

automaton and action indices, respectively. 

2 
2 

/ \ 
(4.1) 

The strategies of Ai and A2 correspond to the rows and columns, respectively 

of T . Each ordered pair of the game matrix represents the expectation of 

success (rewcird probabUity, since reward = 1 and penalty = 0) for Ai and 

A2 resulting from the corresponding strategy pair. It is evident from the 

game matrix that all four strategy pairs are equihbria. If d'̂  > dj (i = 1, 
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2), it is also true that (a j ,a f ) is the only Pareto optimal play. Note that 

irrespective of the action selected by A2, Ai's action is equally good and vice 

versa. 

4.5.1 Simulation - Simple Feedback 

Table 4.1a and Table 4.1b display the simulation results for two 

different initial probabihties and their corresponding learning curves are pro­

vided in Figure 4.3a and Figure 4.3b. It is evident from both simulations 

that, the action probabihties for automaton Ai and A2 fluctuate close to 

the initial probabihty value. This confirms that irrespective of the choice of 

initial probabihty all action probabihties remain close to their initial values, 

independently of the reward parameter and number of sample paths. Recall 

that in this model. Figure 4.2, the response from one automata's environment 

E l is the input to another automaton. Since direct feedback of responses into 

the original automaton does not occur, the action probabihties do not show 

convergence behaviour. This indicates that learning has not been performed. 

4.6 Weighted Feedback 

In Figure 4.4 each automaton receives responses from two environ­

ments, this results in a more involved game. For the N-automata case, the 

weighting factor Wi = ( w i i , W i 2 , . . . , W i N ) , E j ^ i Wjj = 1 is associated with each 

response output from Ei . This produces a normalised scalar input to each 

automaton Ai. In the weighted feedback model P*e (0, 1) is the response of 

environment Ei , while ^^(0) W i i , . . . , WiN, 1) is the normalised scalar input to 
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Ai. If the responses are weighted equally then the input is the number of suc­

cesses divided by the total number of responses, as in the multi-environment 

model for the single automaton. Zero weights imply feedback from only some 

environments. The effective environment success probabUities are defined as: 

<5hj.k = Pr(/3(n) = /3k/ai(n) = aj^, a2(n) = a? ) k = 1, 2 , . . . , K (4.2) 

where is the k'̂  element of the input set to each automaton. If equal 

weights are considered for Figure 4.4, then K=3 and the input set is (0, 0.5, 

1). The expected value of A '̂s input conditioned on the action choices is: 

Sj ,j3 t E[^(n)/ai(n) = aj^, a2(n) = aJ] = A ĵu^k (4.3) 
k=i 

Since S j j 2 is analogous to d j j 2 iii the automata game formulation; it can 

be used to construct an identical payoff game with the game matrix having 

elements sjjjj. These values represent the environment reward probabUities of 

E l and E2, as shown below: 

sn = E /3k̂ uk = ^[dl(l - dD + d?(l - d})] + did? = i (d l + dl) (4.4) 
k=i ^ ^ 

The common factor of | maybe omitted to provide the following identical 

payoff game matrix: 

"2 

1 
( \ 

(4.5) 
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Assuming that d\ > d̂  and df > dj, it follows that dj -|- df is the largest 

element of r and d̂  + is the smallest. It is apparent that (a}, af) is the 

only pure strategy equihbrium. However, r has even more structure. Each 

player has a dominant strategy a} and a^, which is better than any other 

strategy regardless of what the other player does. 

4.6.1 Simulation - Weighted Feedback 

The simulation result for the weighted feedback model is provided in 

Table 4.2, each automaton has three actions with the same initial probabihties 

and a different weighting on the two responses. Since, the automata receives 

responses from two environments, a normalised scalar input is received by each 

Ai. In this case, all action probabUities are updated by using the generalised 

version of Linear Reward/ Inaction algorithm, as stated in Equation 3.4. 

The results indicate that each automata's first strategy corresponds to the 

best action (which relates to the highest reward probability) la its loccd 

environment, then (aJ, a ^ , . . . , aj^) is the set of dominant strategies. As 

mentioned, the set of dominant strategies is denoted by (aj, a^) which is 

better than any other strategy regardless of what the other player does. This 

example shows that dominance holds for multiple automata in which the 

automaton Ai has ri actions. Figure 4.5 presents the graphical illustration 

for the tabulated results. 

4.7 Synchronous Models: Actions Determine Environment 

This section presents two types of interconnections as shown in Figure 
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4.6 and Figure 4.9. These interconnections are modifications of the basic 

structure in which the actions selected by the automaton determine specific 

types of nonstationary environments. 

4.8 Interconnection 1: A i Determines A 2 ' s Environment 

No Coordination 

The feedback configuration as shown in Figure 4.6, indicates that the actions 

selected by automaton Ai determines the stationary random environment Ef 

or El that is observed by A2, but the actions from A2 do not influence Ai. 

In this model there is no coordination of Ai and A2; automaton Ai receives 

responses from environment E i whilst A2 interacts with or E2, therefore 

the response received by each player is different at each time instant. The 

game structure can be represented by the following game matrix: 

^^OL\ di,dn d,,dn 

al \d2,d2i d2,d22j 

Clearly, Ai will converge to its best action independently of A2, while A2 

converges to its best action in the environment that Ai has determined. Note 

that it is possible that in optimising for itself Aj prevents A2 from receiving 

its optimal payoff. 

Coordination 

In contrast to the configuration mentioned above, each player (automata) 

receives the same input at each time instant. This represents a coordinated 

structure, such that the actions selected by automata A2 also determines 
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the environment. By coordination of Ai and A2 the game matrix may be 

modified to provide the sum of the payoffs as the input to each player. Thus 

the game matrix can be thought of as having the game structure: 

2 
2 

/ \ 
(4.7) di + dn di + di2 

^2 V ^̂2 + <̂ 2i d.2 + d22 J 

(omitting a factor of | ) . If this coordination T^, has a unique equihbrium 

then at least one player must have a dominant strategy. Thus, the automata 

will converge to the equihbrium with probabihty arbitrarily close to one. This 

may result in Ai selecting the action that was the worst without coordination. 

K A2 does not have a dominant strategy in T I , it is possible that may 

have two equihbria. 

4.8.1 Simulation - Interconnection 1 

In this model, the actions of the automata determine responses from 

the environment. The results in Table 4.3a - Table 4.3d consider a two-state 

automaton, without coordination between automata Ai and A2 ; and examine 

a model which involves coordination. A graphical representation of each table 

is also included in Figure 4.7a - Figure 4.7d, respectively. 

No Coordination 

Table 4.3a presents simulation results for interconnection 1 with one equihb­

rium. It can be seen that the strategy pair (a}, a^) is the unique equihbrium 

and Pareto optimal play. The results obtained confirm that the action prob-
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abUity for automata Ai converges to its best action independently of A2; and 

A2 receives optimal payoff and both automata converge to the equihbrium. 

However, this does not apply when two equihbria exist as shown in Table 

4.3b. In this case (a\, af ) is stUl the unique equUibrium but {al, al) is 

also Pareto optimal (joint maximum). Since Ai's best action does not imply 

that A2 receives its optimal payoff, then the convergence of A2 is slower in 

comparison to Ai . 

Coordination 

Table 4.3c and Table 4.3d present simulation results for Interconnection 1 

with coordination. The tables illustrate convergence behaviour when the 

game matrix T ^ , has a unique equilibrium and two equUibria. Note that each 

table uses the same environments as Table 4.3a and Table 4.3b; but the game 

structure is modified by r̂ *. In the unique equihbrium case, Table 4.3c, it can 

be seen that both automaton steadily converge to the equihbrium. However, 

in the two equihbrium case the action probabihties for each automaton are 

decreasing in value, showing that for specific initial conditions the drift is 

towards the global optimum. If however, the players have more than two 

actions, the point of equal initial probabUities may not have this property. 

The example in Table 4.4b suggests this for the three action case with 

coordination. 

Simulation resiilts are also included for the players having three actions 

each, shown in Table 4.4a and Table 4.4b; the corresponding learning curves 

are presented in Figure 4.8a and Figure 4.8b. 
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4.9 Interconnect ion 2: A i Determines G a m e for A2 and A3 

Figure 4.9, represents interaction of automata in which the actions 

selected by A i determine the environment E i or E2 (now a game) seen by 

A2 and A3. I n this case A i may be thought of as a coordinator without 

its own environment whose actions produce uncertain results. The objective 

of A i is to maximise the weighted sum of the payoff's to A2 and A3. The 

environments, E j , caji be expressed as follows: 

Ei = (4,di2) (4.8) 

the payoffs, M ' , to each player is given by 

M ^ = ^(diUdi^);M2 = dii^;M3=dg (4.9) 

where i , j and k are the actions of A i , A2 and A3, respectively. In general 

many equilibria can exist. Even in the identical payoff case: 

4 = 4 = 4 (4.10) 

i f 

d u > d̂ 2 > d?2 > d^i > dl2 > d^i > d^^ > dl^ (4.11) 

then dJi,d22>dj2 and d^i all correspond to equihbria. As mentioned for 

Interconnection 1, the theory is incomplete when there are many equilibria. 

4.9.1 S imulat ion - Interconnection 2: 

This simulation is based on Figure 4.9, the action selected by A i 

determines the same response for A2 and A3. To simulate this structure, 
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each response produced by environment (Ei ,E2) has an associated weighting 

factor. Each response (3^ are weighted equally - Wi = (wi i = 0.5, Wi2 = 0.5). 

Hence, a normalised scalar input /3^£(0,0.5,1) is received by automaton A i . 

I n this example A i , now uses the general environment L R I scheme for updating 

probabili ty vectors. The results for Table 4.5 are produced using the following 

equilibria and corresponding payoffs: 

( 1 , 1 , l ) ( d l i = 0.9); (1,2,2)(d^2 = 0.7); ( 2 , 1 , 2){dl^ = 0.5); (2, 2, l){dl, = 0.3) 

(4.12) 

This model shows that the automata converges to the largest equilibrium 

in the N-automata case i f each has two actions, starting w i t h equal action 

probabilities. From Table 4.5, i t can be seen that the rate of convergence for 

action probabilities corresponding to automaton A2 and A3 axe wi thin close 

approximation to each other, since both automata receive identical responses 

f rom the environment. A graphical representation is included in Figure 

4.10. I t is evident that the learning curves for the action probabilities which 

correspond to automaton A2 and A3 coincide wi th each other. In comparison 

there is a rapid convergence to uni ty for automaton A i action probabihty 

vector. 

4.10 Sequential Models 

The hierarchical structure stochastic automata system may represent 

many important realistic situations. I n such a case, collections of automata 

are organised to model the behaviour of a hierarchical learning system where 

learning proceeds at a number of distinct levels w i t h each level capable of 
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eUciting a response f rom the environment. This concept was introduced by 

Thathachar and Ramakrishnan, [47], [48]. They proposed a simple modifi­

cation of the absolutely expedient algorithm, which provided a reinforcement 

scheme for a hierarchical system of automata. This approach significantly re­

duced the high dimensionality problem associated w i t h a learning automaton. 

Further research efforts resolve this problem by considering a reorgaaisation 

scheme that uses e-optimal learning automata to heuristically select hierar­

chical structures w i t h minimal computation, [49]. The learning behaviours of 

the generalised sequential model operating in the multi-teacher environment 

were also considered, [50]. 

A sequential model is depicted in Figure 4.11, Figure 4.14 and Figure 

4.17. I n these models only one decision maker acts at any time, such that 

a sequence of decisions propagate down the tree structure and the bot tom 

level automata produces a response f rom the environment which is fed back 

to al l automata responsible for the selected path. I t is possible to analyse 

sequential models as networks of decision makers i n which control passes f rom 

node to node. The nodes in a sequential model can represent a synchronous 

model, so that a more general model can be produced which includes both 

types of structures. Three types of network structures are briefly described. 

The following sections also present computer simulation results for the 

sequential models. I n the simulation study, a three-level hierarchical system 

w i t h each automaton having two actions are examined. Such systems are 

in the fo rm of a tree structure and directed network. To simulate these 

structures, the penalty probabilities in the environment were selected f rom the 
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range [0.5, 0.95], except the unique minimum penalty probabihty which was 

set to 0.1. The L r j scheme was adopted to update action probabihties for 

the optimal path. Similar to the previous notation 'a' indicates the reward 

parameter; the tota l number of experiments is given by ' m ' and the expected 

values are denoted by, eg p i ( n ) = E[p i (n) ] . Two sets of simulations were 

performed for each tree structure, the results are produced in both table and 

graph format. 

4.11 Tree Structure 

A tree structure is a multilevel system of automata consisting of 

several levels, each comprising of many automata. There is a definite order in 

which the automata can act. Each action of an automaton at a certain level, 

selects automata at the next lower level. Figure 4.11 illustrates, automata 

arranged in three levels. The hierarchy consists of a single automata at 

the first level, two in the second level and four in the th i rd level. Each 

automaton has two actions. Considering the structure, AQ acts first, choosing 

either A i or A2, who then acts to select an automaton at the next lower 

level. The action selected at the lowest level, generates a response from a 

stationary random environment. The action probabihties on the selected path 

are updated on the basis of this response. 

4.11.1 S imulat ion - T r e e S tructure 

Table 4.6 provides the penalty probabihties of the environment which 

are used for each simulation. Note that the set of penalty probabihties are 
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different for each simulation. The location of the unique minimum penalty 

probabihty has been changed, whilst all other penalty probabihties remain 

unchanged. 

Consider the three level hierarchical system in Figure 4.12, the optimal 

path probabihty changes for Table 4.6 can be easily analysed. I t is shown 

that all action paths associated w i t h the unique minimum penalty probabihty 

converge close to unity. Considering the penalty probabihties in the Table 

4.6a observe that the opt imal path is 001. This notation impHes that path 

0 is selected by level 1 and level 2 automaton; and path 1 is selected by 

automaton in level 3. However, Table 4.6b selects an alternative route in 

determining the optimal path. In this case the action probabihties converge 

close to uni ty by selecting path 100; since the unique minimum penalty 

probabil i ty is associated w i t h this path. Graphs for each table are presented 

in Figure 4.13a and Figure 4.13b. 

4.12 D i r e c t e d Network 

I n comparison to the previous model, the network of Figure 4.14 also 

represents a three-level hierarchical system wi th two actions per automaton. 

I t also illustrates a case in which control always passes back to AQ at the 

end of each cycle. However, in this structure the automaton in the second 

level may select any automaton in the lower level. I t is possible to use many 

forms of updating schemes since local responses occur at different times for 

different levels. 

69 



4.12.1 S imulat ion — Direc ted Network 

Similarly, this presents computer simulation results for sequential model 

in the fo rm of a directed network. The results in Table 4.7 examine the 

learning behaviour of a directed network by adopting the same techniques as 

mentioned previously. 

Note that in the case of a directed network, the action path probabil­

ities may converge to the unique minimum by selecting alternative routes in 

the first and second level. Both results in Table 4.7 confirm that the optimal 

path associated wi th the unique minimum penalty probability converge close 

to unity. Figure 4.15, clearly indicates the different routes which may be 

selected in determining the optimal path for each case. For this network the 

number of times a partictilar path converges to the unique minimum was also 

evaluated. Thus, Table 4.7a converges to the unique minimum by selecting a 

combination of paths 001 and 101, in the ratio of 0.3:0.2 f rom a total of fifty 

experiments. I n Table 4.7b, the optimal path is determined by selecting a 

combination of paths 010 and 110 in a ratio of 0.5:0.5 f rom fifty experiments. 

The results in Table 4.7 are produced in the form of graphs, Figure 

4.16a and Figure 4.16b, respectively. 

4.13 Genercd Network 

I n contrast to the previous sequential models. Figure 4.17 illustrates 

a general network. I n this model an action sequence does not exist giving 

rise to a path through the network. I t is possible for any automata to select 

any other automata. I n the network as shown, each automaton has three 
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actions, which corresponds to the selection of one of the automata. The 

action selected generates a random response which may be received by one 

or many automata. 

I n such a network, certain issues need to be resolved; who receives 

what information and who is assigned to carry out which decisions. The 

general network exhibits the characteristics of a decentralised system, since the 

information may be collected f rom many sources, distributed to appropriate 

units i n the organisation for processing and then used by selected nodes to 

reach a suitable decision. A t this stage, the stochastic learning automaton 

approach was considered to be hmited in modelhng capability for arbitrary 

topologies of decision models. To resolve this l imitation, the potential of Petri 

Nets for modeUing complex systems are presented in the next chapter. 

4.14 Conc lus ion and S u m m a r y 

This chapter has shown how the stochastic learning automaton model 

may be considered as a basic framework for a model of decentralised decision 

making. I t has introduced models in which many automaton-environment pairs 

are interconnected in various ways to achieve desirable global performance, 

even though decisions are made on the basis of simple updating schemes. The 

models that have been studied, include synchronous and sequential models. 

The synchronous models represent feedback configurations in which 

the actions of eill decision makers are synchronised. Such models give rise 

to corresponding automata games, of particular interest is the interconnection 

of decision makers which lead to very different game structures. I t is 
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important to analyse how the corresponding game chcinges as interconnections 

are varied. I n some cases, concepts of learning theory and automata games 

may be used to analyse the behaviour of a particular model. Often, however 

the interconnections may be difficult to analyse, which indicates the necessity 

for further research. 

The learning behaviour of the hierarchical system of automata in 

the form of a tree structure and directed network has also been considered. 

Simulation results indicate a rapid convergence for the optimal path. Further 

research has shown that a modified algorithm for this structure is required 

when the number of actions is large. This chapter concludes by describing a 

general network which resembles a decentralised system. The basic conceptual 

framework based on the stochastic learning automaton approach is restricted 

in its modelling capabilities for the representation of such systems. The 

limitations i n the modelling technique is evident, since i t lacks structure, 

flexibility and the abili ty to demonstrate the explicit interactions between the 

various agents i n the network. These shortcomings have estabhshed the need 

for a more high-level modelling framework. A later Chapter Six presents 

novel work which incorporates stochastic learning automata as described in 

Chapter Three w i t h a graphical modelling concept based on Petri net theory 

to overcome these limitations. 
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E i = { . 6 , . l } , E2 = {.7, .2} 

r = 
.7,-6 .2, .6 
. 7 , . l . 2 , . l 

a = 0.01, m = 100 

n p l ( n ) q l ( n ) 

0 0.500000 0.500000 

100 0.497706 0.500284 

200 0.498057 0.500694 

300 0.499280 0.500533 

400 0.500284 0.499794 

500 0.500994 0.499016 

(a) A c t i o n Probabil i ty P r [0.5 

Table 4.1 - S imulat ion of Simple Feedback (Figure 4.2) 

synchronous Model i Simple Feedback 

S ass 
JO o 
(-

S 
5 a» 

5) as2 

pi (n) 
ql (n) 

- I - •+- •+- •+- •+-
100 ISO 200 2 U 300 » ) too iSO 

Nunber oF Iceraclons 

(a) A c t i o n Probabil i ty P r [0.5] 

F igure 4.3 - Average A c t i o n Probabil i ty vs Iterations : (Table 4.1a) 
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E i = { . 6 , . l } , E2 = {.7, .2} 

.7, .6 .2, .6 

. 7 , . l . 2 , . l 

a = 0.02, m = 200 

n p l ( n ) q l ( n ) 

0 0.800000 0.800000 

20 0.800580 0.800623 

40 0.799841 0.800518 

60 0.799606 0.800128 

80 0.799242 0.800030 

100 0.798685 0.800361 

(b) A c t i o n Probabi l i ty P r [0.8 

Table 4.1 - Simulat ion of Simple Feedback (Figure 4.2) 

Synchronous Model i Simple Feedback 

a o 
o. aw 
S 

- . pi (n) 
-e ql (n) 

•+-
a 30 to a «( 

Nuiber oF [ceratlons 

(b) Ac t ion Probabi l i ty P r [0.8] 

F igure 4.3 - Average Ac t ion Probabi l i ty vs Iterations : (Table 4.1b) 
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Weighted Feedback 

F igure 4.4 - Synchronous Models - T h e Bas ic Structure 
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E l = {.8, .5, .3} , E2 = {.9, .1, .7} 

w i = {.4, .6} , W2 = {.6, .4} 

/ .86 , .84 .38,-52 .74, .76\ 
T= .74, .66 .26, .34 .62, .58 

\ . 6 6 , .54 .18, .22 .54, . 4 6 / 

a = 0.04, m = 50 

n p l ( n ) p2(n) p3(n) q l ( n ) q2(n) q3(n) 

0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 

200 0.553642 0.178255 0.267103 0.519196 0.147588 0.332215 

400 0.750079 0.100287 0.148634 0.727566 0.076755 0.194679 

600 0.832411 0.067227 0.099362 0.812883 0.051300 0.134817 

800 0.873850 0.050505 0.074646 0.859174 0.038539 0.101287 

1000 0.898755 0.040454 0.059791 0.887000 0.030870 0.081131 

Table 4.2 - S imulat ion of Weighted Feedback (Figure 4.4) 

Synchronous Model i Weighted Feedback 

Q q3 (n) 

Number of I t e r a t i o n s 

Figure 4.5 - Average A c t i o n Probabil i ty vs Iterations : (Table 4.2) 

78 



(N 

(N <N 

m 

• 

Interconnection 1: A i Determines A2's Environment 

F igure 4.6 - Modif icat ion of Synchronous Models 
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£;i = { .8 , .6} , £:? = {.8, .4} 

^2' = {.1, .3} 

/ . 8 , . 8 .8, .4 
.6, .1 .6, .3 

a L = 0.04, m = 50 

n p l ( n ) q l ( n ) 

0 0.500000 0.500000 

120 0.628541 0.607027 

240 0.726216 0.703727 

360 0.789747 0.775936 

480 0.835037 0.825118 

600 0.865719 0.858582 

(a) N o Coordinat ion (One Equi l ibr ium) 

Table 4.3 - S imulat ion of Interconnection 1 (Figure 4.6) 

Interconnect ion I i No Coordinat ion (One Equi l ibr ium) 

H \ 1 1-

-H> pi (n) 
- B q l In) 

Nunber oF iceratIons 

(a) No Coordinat ion (One Equi l ibr ium) : (Table 4.3a) 

F igure 4.7 - Average Act ion Probabi l i ty vs Iterations 
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£ i = { .8 , .6} , El = {.3,.l} 

E', = {.!,.8} 

r = 
.8,-3 . 8 , . l 
.6,-1 .6, .8 

a = 0.03, m = 50 

n p l ( n ) q l (n ) 

0 0.500000 0.500000 

200 0.647297 0.399764 

400 0.750913 0.398302 

600 0.816202 0.453326 

800 0.859188 0.521408 

1000 0.886665 0.587276 

(b) No Coordinat ion ( T w o Equi l ibr ia ) 

Table 4.3 - S imulat ion of Interconnection 1 (Figure 4.6) 

Interconnection 1 i No Coord mat Ion (Two EquI l l b r i a ) 

-+- •+- -+- -+- •+- -+-
i a o 2 o a ] o a < o o s a o 6 0 o n o e o o n o i o ( i o 

Number oF Iterations 

(b) No Coordinat ion ( T w o Equi l ibr ia ) : (Table 4.3b) 

F igure 4.7 - Average Act ion Probabil i ty vs Iterations 
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^2' = { - l , - 3 } 

r = 
.8 .6 

.35 .45 

a = 0.04, m = 50 

n p l ( n ) q l (n ) 

0 0.500000 0.500000 

200 0.674407 0.555802 

400 0.786698 0.604913 

600 0.847590 0.664721 

800 0.883028 0.716545 

1000 0.905703 0.754938 

(c) Coordinat ion (One E q u i l i b r i u m ) 

Table 4.3 - Simulat ion of Interconnection 1 (Figure 4.6) 

Interconnect ion 1 i Coordination One Equi l ibr ium) 

Number oF Iterations 

(c) Coordinat ion (One Equi l ibr ium) : (Table 4.3c) 

F igure 4.7 - Average Act ion Probabi l i ty vs Iterations 
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E, = {.8,.Q}, El = {.Z,.l} 

Ei = {.!,.8} 

T -
.55 .45 
.35 .7 

a = 0.02, m = 50 

n p l ( n ) q l ( n ) 

0 0.500000 0.500000 

200 0.445904 0.398251 

400 0.371236 0.300475 

600 0.299128 0.227108 

800 0.239998 0.176754 

1000 0.195622 0.142509 

(d) Coordinat ion ( T w o Equi l ibr ia ) 

Table 4.3 - S imulat ion of Interconnection 1 (Figure 4.6) 

Interconnect ion 1 i Coordination (Two E q u I l l b r l a ) 

H 1 H -+-
100 200 300 « 0 SOO U O raO goo n o 1000 1100 120) 1300 ItOO ISOO 

Nunber of tceratlons 

(d) Coordinat ion ( T w o Equi l ibr ia ) : (Table 4.3d) 

F i g u r e 4.7 - Average Act ion Probabi l i ty vs Iterations 
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El = {.6, .1,-9} El = { . 9 , . l , . l } 

El = {.1, .9 , .9} 

El = {.1, .8 , .9} 

/ . 6 , . 9 . 6 , . l . 6 , . 1 \ 
. l , . l .1,.9 .1,.9 

V.5,.l .5, .8 .5, . 9 / 

a = 0.03, m = 50 

n p l ( n ) p2(n) p3(n) q l ( n ) q2(n) q3(n) 

0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 

200 0.509682 0.140095 0.349223 0.312386 0.311682 0.374938 

400 0.619705 0.075711 0.303584 0.441012 0.238897 0.319091 

600 0.686459 0.050711 0.261797 0.561464 0.182801 0.254735 

800 0.733834 0.038124 0.227042 0.648078 0.143385 0.207537 

1000 0.772299 0.030538 0.196163 0.705207 0.116538 0.177255 

(a) No Coordinat ion 

Table 4.4 - S imulat ion of Interconnection 1 : (Three Act ion Case) 

Interconnect ion 1 i (rhree Action Case) 

G qo (n) 

Number of I t e r a t i o n s 

(a) No Coordinat ion : (Table 4.4a) 

F igure 4.8 - Average Act ion Probabi l i ty vs Iterations 
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/ .75 .35 .35 
r* = .1 .5 .5 

V .3 .65 .7 

a = 0.02, ra = 50 

n p l ( n ) p2(n) p3(n) q l ( n ) q2(n) q3(n) 

0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 

360 0.314742 0.237620 0.446638 0.240913 0.359054 0.399033 

720 0.245473 0.172188 0.581339 0.179645 0.359128 0.460227 

1080 0.195852 0.124719 0.678429 0.145706 0.340993 0.512301 

1440 0.167442 0.095202 0.736356 0.128907 0.316816 0.553283 

1800 0.150007 0.076333 0.772660 0.119028 0.290459 0.589513 

(b) Coordinat ion 

Table 4.4 - Simulat ion of Interconnection 1 : (Three Act ion Case) 

Interconnect ion 1 i (Three Action Case) 

• q5 (n) 

Number of I t era t lone 

(b) Coordinat ion : (Table 4.4b) 

F igure 4.8 - Average Act ion Probabi l i ty vs Iterations 
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Interconnection 2: A i Determines G a m e for A2 and A3 

F igure 4.9 - Modif ication of Synchronous Models 
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E l = 
.9 .2 
.2 .7 

.1 .5 

.3 .1 

a = 0.01, m = 100 

n p l ( n ) q l ( n ) r l ( n ) 

0 0.500000 0.500000 0.500000 

300 0.714258 0.546181 0.546508 

600 0.823564 0.615667 0.616319 

900 0.878749 0.696609 0.697244 

1200 0.908693 0.759451 0.759969 

1500 0.926874 0.801021 0.801443 

Table 4.5 - S imulat ion of Interconnection 2 (Figure 4.9) 

Interconnect ion 2 i AI Game for A2 and A3 

r (n) 

Ol!0+^—I \ K H 1 ^ 
0 loo 2w 300 too s» «ao ?oo soo mo icoo lico 120) ixn iKD lan 

Nunber of Iterations 

Figure 4.10 - Average Act ion Probabil i ty vs Iterations : (Table 4.5) 
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Tree Structure 

F igure 4.11 - Sequential Models 



El = {.9, .1, .7, .6, .8, .85, .95, .75} 

a = 0.1, m = 50 

n p l ( n ) q l ( n ) r l ( n ) 

0 0.500000 0.500000 0.500000 

200 0.898385 0.855382 0.893066 

400 0.949192 0.927690 0.946533 

600 0.966128 0.951793 0.964355 

800 0.974596 0.968845 0.973266 

1000 0.979677 0.971076 0.978613 

onvergence P a t h To M i n i m u m 

Ei = = {.9, .8, .7, .6, .1, .85, .95, .75} 

a = 0.1, m = 50 

n p l ( n ) q l ( n ) r l ( n ) 

0 0.500000 0.500000 0.500000 

200 0.811304 0.862549 0.866206 

400 0.886884 0.923761 0.925468 

600 0.909790 0.944198 0.945247 

800 0.922343 0.954417 0.955137 

1000 0.929874 0.960548 0.961070 

(b) Convergence P a t h To M i n i m u m d211 

Table 4.6 - S imulat ion of Tree Structure (Figure 4.11) 
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A 0 
0 

A . 
0 

A n A 12 A 21 A 22 
0 A ' y \ "TY'VV 

Optimal Path (001) 

(a) O p t i m a l P a t h 001 

0 
A 0 

A , 

«7S 
A A n 

Optimal Path (100) 

A ^ 

A 21 A 22 
0 

Level 1 

Level 2 

Level 3 

Level 1 

Level 2 

Level 3 

(b) Opt imal P a t h 100 

F igure 4.12 - Tree Structure : Selected P a t h 
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Sequent le l Model i Tree S truc ture (001) 

•9 Leve I t I pt (n) 
•a Leve l 2 i ql (n) 
* L e v e l 3 i r l (n) 

Number of I t e r a t i o n s 

(b) O p t i m a l P a t h 001 (Table 4.6a) 

Sequent le l Model i Tree Structure (100) 

« Leve l I I p) (n) 
o Leve l 2 i ql (n) 
•A Leve l 3 • r l (n) 

Number of I t e r a t i o n s 

(a) O p t i m a l P a t h 100 (Table 4.6b) 

F igure 4.13 - O p t i m a l P a t h Probabi l i ty Changes 
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Directed Network 

F igure 4.14 - Sequential Models 
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El = {.95, .1,.9, .8} 

a = 0.1, m = 50 

n p l ( n ) q l ( n ) r l ( n ) s l (n ) t l ( n ) 

0 0.500000 0.500000 0.500000 0.500000 0.500000 

200 0.553064 0.446936 0.849155 0.805656 0.928465 

400 0.574791 0.425209 0.898792 0.853788 0.964233 

600 0.589425 0.410575 0.915343 0.869834 0.976155 

800 0.597068 0.402932 0.923619 0.877857 0.982116 

1000 0.601655 0.398345 0.928584 0.882671 0.985693 

(a) Convergence P a t h To M i n i m u m d212 

El = {.95, .9, .1, .8} 

a = 0.1, m = 50 

n p l ( n ) q l ( n ) r l ( n ) s l (n ) t l ( n ) 

0 0.500000 0.500000 0.500000 0.500000 0.500000 

200 0.474115 0.525885 0.796715 0.821705 0.917460 

400 0.474132 0.525868 0.827840 0.856285 0.958730 

600 0.476088 0.523912 0.838221 0.867813 0.972487 

800 0.477066 0.522934 0.843412 0.873576 0.979365 

1000 0.477653 0.522347 0.846526 0.877035 0.983492 

(b) Convergence P a t h To M i n i m u m d221 

Table 4.7 - S imulat ion of Directed Network (Figure 4.14) 
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A 0 
0 

0 

0 TV "TV 
Optimal Path (001: 101) 

(a) O p t i m a l P a t h 001:101 

A 0 
0 ''^1 1 

0 

0 

Optimal Path (010: 110) 

vv 

Level 1 

A „ 
1 0 ^12 1 

Level 2 

^21 A 22 Level 3 

Level 1 

A n 1̂  0 A i 2 1 
Level 2 

1̂  0 1 

^21 A22 Level 3 

(b) Opt imal P a t h 010:110 

F igure 4.15 - Directed Network : Selected P a t h 
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Sequent ia l Model i Directed Network (OOtilOl) 

Leve l 1 . pi (n) 

Leve l 1 . ql (n) 

L e v e l 2 . rt (n) 

Leve l 2 . s i (n) 

Leve l 3 I t1 (n) 

Number of I t e r a t i o n s 

(a) O p t i m a l P a t h 001:101 (Table 4.7a) 

Sequent ia l Model i D irec ted Network (OlOillO) 

L e v e l 1 I pi (n) 

L e v e l 1 . ql (n) 

L e v e l 2 • r1 (n) 

L e v e l 2 . s i (n) 

L e v e l 3 • 11 (n) 

Number of I t e r a t i o n s 

(b) O p t i m a l P a t h 010:110 (Table 4.7b) 

F igure 4.16 - Opt imal P a t h Probabi l i ty Changes 
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A , 

A . 
A . 

A 

G e n e r a l Network 

F igure 4.17 - Sequential Models 
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Chapter Five 

Petri Net Theory 

5.1 Introduction 

The previous chapters have provided a survey of the state of the art 

of distributed decision making systems, and outUned the degree of complexity 

involved in the development of such systems. In approaching this problem, the 

stochastic learning automata was adopted as a basic framework. Further, the 

discussion in Chapter Four includes an analysis of the collective behaviour of 

multiple learning automata in a game situation. Thus, several configurations 

are introduced and simulation results are included for models in which the 

actions of all decision makers are synchronised as well as sequential models. 

However, it was shown that such models lack structure and the abihty to 

describe expUcit interactions between decision makers. It was considered that 

such models were inadequate for the representation of complex systems which 

may involve concurrent, asynchronous, parallel or distributed activities. 

This chapter introduces a mathematical framework based on Petri 

net theory as a suitable basic model for representing and studying complex 

systems. Petri Nets (PN) models are a graphical and mathematical tool 

applicable to the analysis of a diverse range of systems. They have been 

proposed by many authors as a useful tool for describing and analysing the flow 

of information and control in systems that exhibit concurrent, asynchronous, 
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distributed, parallel, nondeterministic, and/ or stochastic activities, [15], [16], 

51], [52]. In the graphical representation, PNs can be considered as a 

visual communication aid in the form of flow charts, block diagrams, smd 

networks. In mathematical terms, many systems can be described numerically 

and the relations between certain features may be interpreted by equations 

or inequalities. The concept of Petri nets originated in the early work of 

C. A. Petri in his doctoral dissertation, submitted in 1962 to the faculty 

of Mathematics and Physics at the Technical University of Darmstadt, West 

Germany, [53]. 

This following section presents formal definitions for basic PN concepts. 

An introductory modelling example is provided, which illustrates the modelling 

capability of PNs within the context of this thesis. It also describes an analysis 

technique which may be used to study the behaviour of the system. Finally, 

the notion of time is also introduced by discussing stochastic nets, [54], [55]. 

5.2 Structure of a Petri Net 

The structure of standard Petri nets are composed of a set of places 

P {pi,P2, • • • iPn), a set of transitions T ( t i , 2̂) • • •, ^m) and to complete the 

definition, it is relevant to consider the relationship between the places and 

the transitions. The relationship is achieved by outlining a set of input and 

output functions. The input function I defines, for each transition t j , the set 

of input places for the transition I{tj). The output function 0 defines for 

each transition t j , the set of output places for the transition 0[tj). Figure 

5.1 shows the structure of a Petri net. 

98 



A formal definition of a Petri net structure represents a 3-tuple, PN = (P, 

T, F) as follows: 

P = {PuP2, • • • ,Pn) is a finite set of places; 

T = (ti, 2̂) • • •) ̂ m) is a finite set of transitions; 

I{tj) C {P xT) is the input function; (5.1) 

0{tj) C{T X P) is the output function; 

P Q iH^j) ^ ^i^j)) ^ ^ set of input and output functions; 

5.2.1 Petri Net Graphs 

The above Petri net structure maybe represented in the form of a 

directed, weighted, bipartite graph. In the graphical representation of Petri 

nets, places are drawn as circles and transitions as bars or boxes. The input 

and output functions are represented by directed arcs which are drawn as 

arrows, connecting the transitions to places and places to transitions. A 

place is an input to a transition if an arc exists from the place to the 

transition. A place is an output of a transition if an arc exists from the 

transition to the place. Since the arcs are directed, and labelled with their 

weights (nonnegative integer), PNs are referred to as directed, weighted graph. 

Labels for unity weight are usually omitted. Additionally, since the nodes 

can be partitioned into two sets (places and transitions) such that each arc 

is directed from an element of one set (place or transition) to an element of 

the other set (transition or place), it is known as a bipartite graph. Figure 

5.2 shows an example of a Petri net graph corresponding to the structure 

described above. The Petri net consists of five places and five transitions. 
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5.2.2 Petri Net Markings 

The dynamic feature of a PN is represented by tokens. A marking 

(state) assigns tokens to each place in a net. Tokens are graphically drawn 

as black dots, which reside in the circle nodes representing the places of the 

net. A Petri net with tokens is called a marked Petri net. The number rn,-

of tokens and its position in a net may change during execution, thus defining 

the state of a system. The PN state is usually called the Petri net marking, 

cind is denoted by the vector M = (mi , m 2 , . . . , m„). A marked Petri net is 

depicted in Figure 5.3. 

A formal definition of marked PN is thus the following 4-tuple, PN = (P, T, 

F, Mo) as follows: 

P = {pi,p2, •.. ,Pn) is a finite set of places; 

T = {ti,t2,. ..,tm) is a finite set of transitions; 
(5.2) 

F C (PxT) U {TxP) is a set of input and output functions; 

Mo = (moi, mo2,. • • , mo^) 

where moi denotes the number of tokens in place p, in the initial marking 

Mo. 

5.2.3 Execution Rule for Meirked Petri Nets 

The dynamic behaviour of a PN can be described by the execution 

of the net. The execution of a PN is controlled by the number and the 

distribution of tokens in the PN. A Petri net executes by firing transitions. 

The firing of a transition changes a state or marking of the PN to a new 
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marking according to the following transition enabhng and firing rule: 

(1) A transition t is said to be enabled if each input place contains at 

least one token. 

(2) A firing of an enabled transition removes one token from each of its 

input place, and then adds one token into each of its output places. 

(3) Each firing of a transition represents a change in the state of the 

net by modifying the distribution of tokens in a nets' place; thus 

producing a new marking. 

This results in a new marking M' where: 

(M{p) + 1 ifpeO{t), pil{t)-
M'ip) = I M{p) - 1 i f pel{t), piO{t); (5.3) 

[ M{p) otherwise 

Consider the dynamic behaviour of the marked Petri net in Figure 5.3. The 

initial marking is MQ = [10000], and by definition only transition ti is enabled 

in this marking. Thus ti is the only transition that can fire and change 

the state of the system. The result of firing ti is shown in Figure 5.3a, no 

tokens are present in pi while places p2 and p^ each contain a token; the 

marking now becomes M i = [01100]. In this case both transitions t2 and t^ 

are enabled and can fire independently {concurrently), since they do not share 

any input places. The firing of t2 enables transition t^, the firing of t^ puts 

a token in p^. On completing the firings of both trainsitions t2 and t^, a 

new marking is reached as shown in Figure 5.3b. This situation represents a 

conflict. Both transitions t^ and is are enabled. However, only one of these 

two transitions can fire and the firing of one transition disables the other. 
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In such a case, the decision as to which one fires is non deterministic. I f t^ 

fires the system returns to the initial marking. The ability to represent both 

concurrency and conflict makes PNs a very powerful modelhng tool. 

5.2.4 Modelling Examples 

Petri nets were designed for and are used mainly for modelling. Many 

systems can be modelled by a Petri net, including computer software, hardware 

or physical systems. In particular they may be used to model the flow of 

information or other resources within a system. This section outlines one 

of the basic concepts of PNs that are useful in modeUing. I t provides a 

description and a more realistic application of the individual components. 

Events and Conditions 

The simple Petri net view of a system focusses on two concepts; 

events and conditions. Events are actions which take place in the system. 

The occurrence of an event is controlled by the state of the system. The 

state of the system may be described by a set of conditions. A condition is 

a logical description of the state of the system, which may hold (true) or not 

hold (false). 

In modeUing using this concept, places represent conditions and, 

transitions in a PN represent events in a real system. A transition (an event) 

has a certain number of input and output places representing the pre-conditions 

and post-conditions, respectively. A marked PN then corresponds to a state 

of the system being modelled. The firing of a PN transition corresponds to 
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the occurrence of an event in the system. The occurrence of an event causes 

the system to move to a different state. Therefore, the successive firings of 

transitions (and the resulting changes in markings) in a PN represent the 

evolution of the system through different states. Some typical interpretation 

of transitions and their input and output places are shown in Table 5.1. 

5.2.5 Analysis of Petri Nets 

The major strength of PNs is in the modelling of systems. However 

modelling of systems is itself not useful. I t is necessary to analyse the modelled 

system. This analysis provides important insights into the behaviour of the 

system. There are several approaches in the analysis of PNs. The major 

analysis technique which has been used with PNs, in this project is based 

on the coverabihty (reachabihty) tree. This technique involves finding a finite 

representation for the reachabihty set of a PN. It consists of a tree whose nodes 

represent markings of the PN and whose arcs represent the possible changes 

in state resulting from the firing of transitions. The following presents the 

reachabihty property and a discussion of the appropriate analysis technique. 

Reachability 

The reachabihty set of a PN can be represented in the form of a tree structure, 

as discussed later. This concept is a fundamental basis for studying the 

dynamic properties of a system. The firing of an enabled transition changes 

the state (marking) of a system according to the transition firing rde. As 

execution of the firing rule proceeds, a sequence of firings will result in 
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a sequence of markings. Thus, a sequence of transitions {ti, t2,...) and 

a sequence of markings (MQ, M i , M 2 , . . . ) can be defined. By definition, a 

marking M„ is said to be reachable from a marking MQ if there exists a 

sequence of transition firings that transforms the PN state from MQ to M „ . 

A firing or occurrence sequence is denoted by 

(7 = MotiMit2M2... t„M„ (5.4) 

or simply 

a = tit2...tn (5.5) 

Hence, M„ is reachable from MQ by a and this may be written as follows: 

Mo [a > M„ (5.6) 

Thus, the set of all possible markings reachable from MQ in a net is denoted 

by R{Mo). 

T h e Coverability (Reachability) Tree 

Given a PN with an initial marking MQ, it is possible to obtain as many 

'new' markings as the number of enabled transitions. From each new marking, 

more new markings can be reached. I f this procedure is repeated many times, 

a tree representation of all the markings wiU be produced. The coverability 

tree consists of nodes which represent markings of the PN and whose arcs 

represent a transition firing, which transforms one marking to another. Note 

that i f the net is bounded, the coverability tree is called a reachability tree. 

Consider the example of the marked PN of Figure 5.3. The reacha-

bihty tree can be constructed by starting from the initial marking MQ and 
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considering the markings immediately reachable from this state. The initial 

marking is MQ = [10000], and transition t j is enabled. Since the entire 

reachabihty set is required, new nodes may be defined in the reachabihty tree 

for the (reachable) markings which result from firing of transition ti. An arc 

labelled by the transition fired leads from the initial marking to each of the 

new markings. Figure 5.4a shows all markings that are immediately reachable 

from the initial marking. Consider all markings that are reachable from 

these new markings. From M i = [01100], transitions t2 and t^ may be fired 

producing M2 = [00110] and M3 = [OlOOl]. These firings produce the tree of 

Figure 5.4b. The immediately reachable marking from M2 is now M i and 

M4 by firing transition t^ and ^3, respectively. In this case a new marking 

M4 = [00011] is created, and the old marking of M i is created. From M i 

the same operation could be repeated and this would obviously lead to an 

infinite structure. This process is repeated, producing new markings to add 

to the tree shown in Figure 5.4c and Figure 5.4d. 

By repeating this procedure over and over, every reachable marking 

will eventually be produced. However, the resulting reachability tree may be 

infinite. Every marking in the reachability set will be produced, and for any 

PN with an infinite reachabihty set, the corresponding tree would also be 

infinite. I t is important to note that if the tree is going to be useful, it is 

necessary to limit the tree to a finite size. Appendix Three provides relevant 

PN properties, details for the reduction to finite form and also the algorithm 

necessary to construct the reachability tree. 
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5.3 Time-Related Model 

The concept of time is not explicitly given in the standard Petri 

net model. Therefore with standard PNs it is possible to describe only the 

logical structure of systems and not their time evolution. As such, PNs did 

not convey information about the duration of each activity or on the way in 

which the transitions to be fired is actually selected from among these enabled 

in a marking. Many authors have extended PN models by introducing the 

notion of time, [54], [55], [56]. This section introduces time delays in a Petri 

net model. These time delays are specified probabiHstically and the model is 

known as a Stochastic Petri Net (SPN). 

5.3.1 Stochastic Petri Nets (SPN) 

A Stochastic Petri Net (SPN) is a Petri net where each transition is 

associated with an exponentially distributed random variable that expresses 

the delay from the enabhng to the firing of the transition, [54], [55], [56]. 

A formal definition of a Stochastic Petri net, is as follows: 

SPN = (P, T, A,Mo,A) (5.8) 

where (P, T, A, Mo) is the marked PN underlying the SPN; and A = 

(Ai, A 2 , . . . , \m) is the set of possibly marking-dependent firing rates associated 

with the Petri net transitions. 

In the case where several transitions are simultaneously enabled; the 

transition with which is associated the shortest delay will fire first. The SPN 

then reaches a new marking in which transitions that were already enabled 
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in the previous marking, but did not fire, may be still enabled. 

5.3.2 A n Example of a Stochastic Petri Net 

Consider the SPN shown in Figure 5.5, transition ti fires at a marking-

dependent rate equal to ami , where mi is the number of tokens in pi. The 

other transitions t2, is and t4 have (marking-independent) firing rates f3, 7 and 

6, respectively; these are indicated close to the corresponding transitions. The 

associated reachabihty tree is shown in Figure 5.6. The system operations can 

be precisely described by means of a graph that translates into a Markovian 

model useful for obtaining performance estimates, [54]. 

5.3.3 Generalised Stochastic Petri Net ( G S P N ) 

The limitation of SPNs is that the graphical representation of systems 

becomes more difficult as system size and complexity increase, [57]. Moreover, 

the number of states of the associated reachabihty tree rapidly multiphes as 

the dimensions of the graph increase. Thus, SPNs can be used to model only 

systems of limited size. 

The SPNs have been extended to a class of Generalised Stochastic 

Petri Nets (GSPN) to overcome these hmitations. The GSPNs are useful in 

modelhng system operations which comprise activities whose durations differ 

by orders of magnitude. I t is then permissible that the short activities can 

be processed immediately, whilst time is associated with the longer lasting 

activities. This approach is most appropriate, since the number of states of 

the associated reachability tree is reduced, hence reducing the complexity of 
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the model. 

GSPN models comprise two types of transitions, immediate transitions 

and timed transitions. Immediate transitions fire in zero time with priority 

over timed transitions. Timed transitions fire after a random, exponentially 

distributed enabhng time. In all figures, the convention used for drawing 

timed transitions is thick bars or box nodes, and immediate transitions as 

thin bars. 

A formal definition of a GSPN is thus, 

GSPN = (P, T, A,Mo, TT, W) (5.9) 

where (P, T, A, MQ) is the marked PN underlying the GSPN; TT is a priority 

function defined over the set of immediate transitions; W = {wi, W 2 , . . . , Wn) is 

an array whose entries correspond to the firing rates of the timed transitions 

(as in the case of SPN); the weights of immediate transitions. Similarly, 

the interpretation of the model is very similar to the case of SPN, with the 

additions resulting from the introduction of immediate transitions. 

In the case of a GSPN, a reduction of the reachability tree is 

possible by classifying markings into two types: vanishing and tangible 

markings. A marking is called vanishing marking if it enables (at least) 

one immediate transition. A vanishing marking is so named since no time 

is spent in this marking; as soon as such a marking is reached (one of) the 

immediate transitions fire in zero time. However, when a marking enables 

timed transitions, it is called tangible marking, and the behaviour is the same 

as in the case of SPNs. 
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Several transitions may be simultaneously enabled by a marking. 

The following rules may be apphed: if the set of enabled transitions H 

comprises only timed transitions, then the enabled transition fires ti (ieH) 

with probabihty as foUows 

Pr{t,} = (5.10) 

exactly as with SPNs. I f H consists of both immediate and timed transitions 

then only immediate transitions can fire. I f H comprises zero or more timed 

transitions and only one immediate transition, then this is the one that fires. 

However, i f H comprises several immediate transitions it is necessary to specify 

a probabihty density function on the set of enabled immediate transitions 

according to which transition is selected. This is called a random switch and 

the associated probabihty distribution is called a switching distribution. 

I t may also be noted that the reachability set of GSPN is significantly 

reduced in comparison to the associated PN, because the priority rules in­

troduced with immediate transitions do not allow some states to be reached. 

The reachabihty set of a SPN is identical to the set constructed for the 

associated PN. 

5.3.4 A n Example of Generalised Stochastic Petri Net 

Consider, an example of the GSPN shown in Figure 5.7; comprises 

of seven places and transitions. The three timed transitions ti, te and tj fire 

at fixed rates u, v and z respectively. The immediate transitions t^ and 

are enabled simultaneously if tokens are present in places pi and p j . Thus, 
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a switching distribution must be defined for each marking in which m2, 

and ms are greater than zero. I t is also necessary to define a switching 

distribution for the two conflicting immediate transitions, namely, t2 and ^3. 

These transitions are always enabled simultaneously, such that a switching 

distribution for each marking in which mz is greater than zero is required. 

For this particular structure, two random switches can be defined. Table 5.2a 

provides the switching distribution. 

Execution of G S P N 

By starting from the initial marking Mo[2001100] shown in Figure 5.7; the 

evolution of states results in a reachabihty tree as depicted in Figure 5.8. 

Clearly, transition ti fires after an exponentially distributed random time u, 

and this removes one token from place pi and placing one in p2- At this 

stage the immediate transitions i4 or t^ are enabled. The transition that 

fires is selected according to the switching distribution defined in Table 5.2a, 

in this case equal probabilities are assigned to the firing of each transition. 

Now, assume that t^ fires, this moves a token contained in place p2 and pi, 

and includes one in PQ. The enabled transitions are ti and t^, each of which 

can fire first with the following probabilities. 

^ ' ( ' • ' = ( ^ r f ^ ( " ^ ) 

I f ti fires first, a token moves from pi to p2, thus enabhng the immediate 

transition t^. Since is the only immediate transition that is enabled, this 
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fires at zero time by moving one token from p2 to pj and removing one token 

from This produces a new marking containing token in p^ and p?. The 

two timed transitions tg and t^ are now enabled. Transition t^ fires with 

probability 

PrM = (5.13) 

whilst transition tj fires with probability 

Pr{t.} = (5.14) 

Assume that t^ fires, so that one token moves from pe to pz, and a token is put 

in pi. Thus, the two immediate transitions t2 and tz are now simultaneously 

enabled; the transition that fires is selected according to switching distribution 

defined in Table 5.2a. Similarly, in this case equal probabihties are assigned 

to the firing of each transition, so that the token can move either to p^ or to 

Ps. Now transitions t i and t^ are enabled, and the PN evolution continues; 

thus developing the corresponding reachability tree, as shown in Figure 5.8. 

The reachabihty set of the GSPN example is provided in Table 5.2b. 

I t comprises 16 markings, whereas that of the associated PN comprises 33 

states. As stated previously the reachability set of a GSPN is a subset of the 

reachability set of the associated PN, due to the precedence rules introduced 

with immediate transitions which do not allow some states to be reached. 

Thus, it must be pointed out that the reachabihty set of a SPN is, instead, 

the same as for the associated PN. Furthermore, Table 5.2b illustrates that 

the reachabihty set of the GSPN may be divided into two disjoint subsets, 

111 



one of which consists of markings that enable timed transitions only, and also 

markings that enable immediate transitions. 

5.4 Conclusion and Summary 

This chapter has presented a brief review of knowledge in the field 

of PNs. I t has defined a high-level quantitative framework based on PN 

methodology, and introduced appropriate terminology although not all aspects 

in the field of PN theory have been discussed. The practical apphcations 

of such state-transition models have been considered by extending and/or 

modifying the basic model definitions to obtain more convenient modelling 

tools. In particular, the possibihty of representing in the model the time 

involved in system operations has been discussed by studying stochastic timed 

nets. 

A detailed description of the SPN has been presented. It is shown 

that SPNs are obtained by associating with each transition in a PN an 

exponentially distributed firing time. SPNs are a very useful tool for the 

analysis of computer systems since they allow the system operations to be 

precisely described by means of a graph and the model is useful for obtaining 

performance estimates. However, there are hmitations to the use of SPN, 

they can be used to model only systems of limited size. This is due to 

the complexity involved in the graphical representation of systems, and also 

there is a rapid increase in the number of states of the associated reachabihty 

tree as the dimensions of the graph increase. Thus, a Generalised SPN is 

introduced which contain two types of transitions: timed and immediate. I t 
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is shown that by considering GSPNs, the number of states of the associated 

reachability tree is reduced and also the solution complexity is reduced. 

To conclude, this chapter has identified the potential modelling ca­

pability of the Petri Net formalism. The framework is considered to be an 

effective graphical and mathematical tool. In particular, they provide a pow­

erful means for the description and analysis of sytems that are characterised as 

being concurrent, asynchronous, distributed, parallel, nondeterministic and/or 

stochastic. However, at this phase of the research programme it is evident 

that existing FN theory do not exhibit an inteUigence capabihty which is 

needed for the effective representation of decision models. The next chapter 

addresses the shortcomings of the FN methodology by introducing a new class 

of FNs, known as the Learning Petri Net Models. 
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N = (P, T , F ) 

P = iVv P2' Ps' P4' P5) 

T = (tp t̂ , I,) 

I(tl) 

I(t2) 

I(t4) 

I(t5) 

= Pi 

= P2 

= P3 

= P4 

= (P4' P5) 

0(tj) 

0(t2) 

0(t3) 

0(g 
0(t5) 

= (P2' P3) 

= P4 

= P5 

= P4 

= Pi 

Figure 5.1 - Petri Net Structure 

O Place 

Transition 

Figure 5.2 - Petri Net Graph 
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Place 

Transition 

Token 

Figure 5.3 - Marked Petri Net 
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(a) Transition ti Fires 

(b) Transition t2 : tj Fires 

Figure 5.3 - Marked Petri Net 
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M Q = [1 0 0 0 0 ] 

1 t 

T 
M 1 = [ 0 1 1 0 0] 

(a) First Step in Building Tree 

M Q = [1 0 0 0 0 ] 

I 
? 

M l = [ 0 1 1 0 0 ] 

M 2 = [0 0 1 1 0] M 3 = [0 1 0 0 1] 

(b) Second Step in Building Tree 

Figure 5.4 - Reachability Tree Construction of Marked PN (Figure 5.3) 
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M Q = [1 0 0 0 0 ] 

1 t 

T 
M J = [ 0 1 1 0 0 ] 

M 2 = [ 0 0 1 1 0 ] M 3 = [ 0 1 0 0 1 ] 

M j OLD [ 0 0 0 1 1] M 4 OLD 

(c) Third Step in Building Tree 

M Q = [1 0 0 0 0] 

1 t 

T 
M l = [ 0 1 1 0 0 ] 

M 2 = [ 0 0 1 1 0 ] M 3 = [0 1 0 0 1] 

M j O L D M 4 = [ 0 0 0 1 1] M 4 O L D 

M 3 O L D M Q O L D 

(d) Fourth Step in Building Tree 

Figure 5.4 - Reachability Tree Construction of Marked PN (Figure 5.3) 
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Figure 5.5 - Stochastic Petri Net (SPN) 

119 



M 

M 

M Q = [2 0 0 0] 

t 1 

M l = [ 1 1 0 0] 

M 2 = [0 2 0 0 ] 

M 4 = [ O i l 1] 

M 5 = [0 0 2 2] 

M 

M 3 = [ 1 0 1 1 ] 

M, 

M 

Figure 5.6 - Reachability Tree SPN 
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Figure 5.7 - Generalised Stochastic Petri Net (GSPN) 
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<;]M7= [1101 l ooT^ 
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10 

States - ( Mo M2 M3 Mg Mil M12 Mi5 M16) Tangible Marking 

Vanishing Marking Indicates Presence of Random Switch 

Figure 5.8 - GSPN Reachability Tree 
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INPUT PLACES TRANSITIONS OUTPUT PLACES 

Pre-conditions 
Input data 
Input Signal 
Resource needed 
Buffer 

Event 
Computation 
Signal Processor 
Task or Job 
Processor 

Post Conditions 
Output data 
Output signal 
Resource needed 
Buffer 

Table 5.1 - Interpretations of Transitions and Places 

Pr(t4) = ra4/ (m4+m5) 
Pr(t5) = m5/ (m4+m5) 

Pr(t2) = m5/(m4+m5) 
Pr(t3) = m4/ (m4+m5) 

Pr(t2) = Pr(t3) = 1/2 

if m4 = 0 and m5 = 0 

if m4 = m5 = 0 

Table 5.2a - Switching Probabilities of GSPN 

MARKINGS THAT 
ENABLE 

TIMED TRANSITIONS 
ml m2 m3 m4 m5 m6 m7 

MO 2 0 0 1 1 0 0 
Ml 1 0 0 0 1 1 0 
M3 1 0 0 1 0 0 1 
M8 0 0 0 0 0 1 1 
M i l 1 0 0 0 1 0 1 
M12 1 0 0 1 0 1 0 
M15 0 0 0 0 0 0 2 
M16 0 0 0 0 0 2 0 

MARKINGS THAT 
ENABLE 

IMMEDIATE TRANSITIONS 
ml m2 m3 m4 m5 m6 m7 

Ml 
M4 
M5 
M6 
M7 
M9 
MIO 
M13 
M14 

1 
0 
2 
0 
2 
1 
1 
0 
0 

1 
1 
0 
1 
0 
0 
0 
1 
1 

0 
0 
1 
0 
1 
1 
1 
0 
0 

1 
0 
0 
1 
1 
0 
0 
0 
1 

1 
1 
1 
0 
0 
0 
0 
1 
0 

0 
1 
0 
0 
0 
0 
1 
0 
1 

0 
0 
0 
1 
0 
1 
0 
1 
0 

Table 5.2b - Reachability Set of GSPN 
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Chapter Six 

Learning Petri Net Models 

6.1 Introduction 

This chapter draws together methods described in the previous chapters 

to form a novel extension of PNs by embedding a stochastic learning automata 

within PN models. In the discussion that follows the progressive stages of 

the development of a powerful modelling tool for C'̂ -I systems is provided. 

The decision making process can be modelled with a new type of hybrid PN, 

namely Stochastic Learning Petri Net (SLPNJ, [58], [59]. In such a manner 

for the first time an AI based decision making process is embedded within 

PNs. This hybrid PN structure enables models of arbitrary topology to be 

simulated, and the apphcation of this modelling tool is discussed in the next 

Chapter. 

6.2 Basic Stochastic Learning Petri Net (Basic SLPN) 

This section introduces a new class of PN, referred to as Basic 

Stochastic Learning Petri net (Basic SLPN) as depicted in Figure 6.1a. It 

has been formed by incorporating the concept of stochastic learning automata 

into a SPN model. Consider the model of the Basic SLPN in Figure 6.1a, 

and the corresponding reachability tree, as depicted in Figure 6.1b. It is 

clear from Figure 6.1a that the Basic SLPN provides structure to the original 
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stochastic learning automata by the additional concept of tokens in the net; 

thus describing precisely the interactions involved. 

A formal definition of the Basic SLPN structure is thus the following: 

Basics LP N = (P, T , A, MQ, /5, <i>, a,p, F, G) (6 .1) 

where {P,T,A,Mo) is the PN underlying the model; 4), a,p, F,G) is the 

stochastic learning automata underlying the Basic SLFN. In this representation 

Pr{ai} = Pr{ti} indicates the transition firing probabihties. 

The interpretation of the model is similar to the case of stochas­

tic learning automata with the additions resulting from the introduction of 

Stochastic Petri nets. 

6.2.1 Simulation Results: Basic SLPN 

The simulation results for a two-state Basic SLPN are provided in 

Table 6.1. Similar to the previous simulations an LRI updating scheme is used; 

the reward parameter and expected values are provided. The probabihties 

associated with the firing of each transition are equal; the initial value 

is equal to 0.5. Consider the results in Table 6.1 and the corresponding 

learning curve shown in Figure 6.2, it is evident that the transition associated 

with the unique maximum reward probabiUty converge close to unity. This 

highUghts the intelligence capabihty embedded within a Petri net model, and 

also a modification of the basic stochastic automaton model arises due to the 

disposition of tokens in the net, thus providing a graphical description to the 

model. 
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6.3 Stochastic Learning Petri Net (SLPN) 

This section discusses the various stages involved in the extension of 

SPN model to a new class of Petri nets, namely, Stochastic Learning Petri 

nets (SLPN) as depicted in Figure 6.3. Consider the model of the SPN, 

shown in Figure 5.5. By analysis of the reachabihty tree in Figure 5.6, it is 

evident that the SPN model may exhibit one of six different states, depending 

on the transition that fires. Several transitions may be simultaneously enabled 

by a particular marking. Assume that H is the set of enabled transitions, 

then a transition ti (leH) fires with probabihty: 

Pr{U} = (6.2) 

exactly as in case of SPNs, A is the firing rate associated with PN transitions. 

Thus, the different states of a SPN define probabihty ratios which correspond 

to the firing of each transition. In any state, the sum of the probabiUty 

ratios is always equal to unity. For example, consider state Mi = [1100]; the 

enabled transitions are ti, t2 and t^ and their respective firing probabihties 

may be defined as follows: 

^-{^i} = 7 - - ^ r T T (6-3) (a + /5 + 7) 

= (6.4) 

= (6.5) 
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Thus, 

Pr{ti} + Pr{t2} + Pritz} = 1 (6.6) 

6.3.1 Reachability Tree : Stochastic Automata Embedded 

In the tree representation, several transitions may be simultaneously 

enabled in any particular martdng. The concept of a stochastic automaton 

may be introduced to select probabihstically the transition that fires. A 

transition selected in a particular marking corresponds to an action selected 

by an automaton. The firing of the chosen transition determines the next 

state (marking) of the system, by modifying the token distribution. In the 

tree representation of the SPN, Figure 5.6, there exists both two-state and 

three-state automata. This is illustrated in Figure 6.4. Consider the following 

cases: 

Two-state Automaton 

It is clear that state M2[0200] and state MaflOll] in Figure 6.4 represent a 

two-state automaton as shown in Figure 6.5a. The SPN with marking Ma 

enables transitions t2 and is, since tokens are present in the input place (pa)-

Each transition has an equal initial probabihty of being selected. The firing 

of t2, determines the next state of SPN to be Mi, the firing of ^3, determines 

that the next state is M4. The firing probabihties for each transition are 

given as follows: 

Frit.) = (6.7) 
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Pr{H) = (6.8) 

Similarly, 

Pr{t2} + Pr{t3} = 1 (6.9) 

The concept of a two-state automaton also apphes to state M3 which has the 

possibihty of firing two transitions, ti and ^4; the firing of these transitions 

determines the next state to be M4 and MQ, respectively. 

Three-state Automaton 

Clearly, the states Mi and M4 correspond to a three-state automaton. By 

considering the marking M i , the case is illustrated in Figure 6.5b. It is shown 

that the transitions ti, t2 and t^ are enabled; each transition has an equal 

initial probabiUty of being selected. The possibihty of firing t i , determines 

that the next state is M2; the firing of 2̂ determiues that the next state of 

the SPN to be MQ; finally, if 3̂ is selected by the automaton then the state 

transfers to M3. 

A similar concept also apphes to state M4. In this case, the three-

state automaton has the possibility of selecting t2, t^ or t^ with equal initial 

probabiHties. The firing of transitions t2, t^ or t^ determines the next states 

as M3, M5 and M i , respectively. 

Transitions Fire Instantly 

Note that the transition firing probabihties in each state MQ and M5 are 

always equal to unity. Since in state MQ, the only transition that is enabled 
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is ti, 

Pr{ti} = ^ = 1 (6.10) 

Thus, it must fire with probability one. Similarly, in state M5 the only 

transition that is enabled is <4, 

Pr{U} = ^ = 1 (6.11) 

so it must also fire with probabiUty equal to unity. 

6.3.2 Hierarchical System of Automata 

The reachability tree may now be considered as a simple hierarchical 

system of automata; each state corresponding to an automaton. It may 

be noted that in a hierarchy each firing of a transition (action selected by 

automaton) has a unique path connecting it to the automaton (state) that 

has been selected previously, or to an automaton at the top level (state MQ). 

From the tree structure of Figure 6.4, it is possible to define nine unique 

paths which may be considered as sequence of states/ decisions, shown in 

Figure 6.6. To introduce the concept of an environment into this model, 

each sequence of states is associated with a reward probability, indicated by 

Ci values as illustrated in Figure 6.6. Such a system may be considered as 

a Stochastic Learning Petri Net (SLPN) model; this structure is shown in 

Figure 6.7. 
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6.3.3 Operation of S L P N 

The operation of this hierarchical learning system is as follows. At 

any instant the first level automaton, state MQ selects an action (fires ti). 

This activates an automaton in the second level which fires a transition 

from its current transition probabUity distribution. This in turn activates, 

automata in the next level and so on. However, if a particular sequence 

of decisions corresponding to a unique path has been reached; the sequence 

is fed into the environment. The environment in turn generates a reward/ 

punish signal as its reaction. The response of the environment is used to 

update the transition probabihties for the various levels of automata in the 

selected path. This process repeats until all the probabihties in one path 

converge close to unity (ie. path associated with unique maximum reward 

probabihty or unique minimum penalty probability) from the top level (MQ) 

to the lowest level (M5). 

Thus, the formal definition of a SLPN, is as follows: 

SLPN = (P, r , A, Mo, A, M,) (6.12) 

where {P, T, A, MQ, A) is the stochastic Petri net underlying the model; Mx 

indicates the presence of two/ three-state stochastic learning automata which 

consist of the components {(3, 4>, a,p, F, G). In this representation Pr{ai} = 

Pr{ti} indicates the transition firing probabiUties. 

Similarly, the interpretation of the model is identical to the case of 

stochastic learning automata with the additions resulting from the introduction 

of Stochastic Petri nets. 
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6.3.4 Simulation Results : SLPN 

This section presents computer simulation results for the SLPN model. 

The results are presented in the form of tables. In all cases the reward 

parameter is indicated; and Pr(i,j) denotes the transition firing probabihties, 

where i represents the state of the system and ; provides the notation for the 

transition that fires. For example, consider the notation for state Mi firing 

transition ^3; the transition firing probabihty may be represented by Pr(l,3). 

Expected values are denoted by the expression eg. Pr{i,j) = E[Pr{i,j)]. 

In the simulation study the hierarchical system in Figure 6.4 was exam­

ined. Such a tree representation was modified by introducing the stochastic 

learning automaton approach with the capability of selecting sequences of 

decisions, discussed previously. To simulate this SLPN, all of the reward 

probabihties in the environment were in the range [0.2 - 0.45] except the 

unique maximum reward probability which was set to 0.9. An LRJ updating 

scheme was used to update action probabilities for the selected path. 

Tables [6.2 - 6.10] provide the reward probabihties of the environment 

which are used for simulation. Note that in each case the unique maximum 

reward probability is associated with the selected sequence of decisions. Con­

sider Table 6.2, the maximum reward probability relates to sequence 0. This 

sequence corresponds to selecting the path: MO - Fr(0,1); Ml - Pr{l, 2); MO, 

repeatedly. Hence, the optimal path probabihty changes in Table 6.2 may be 

analysed. The SLPN in state MO always fires ti with probabihty unity; thus 

the transition probability in MO always remains constant. The firing of ti 

results in changing the next state to Ml. In state Ml, the transitions ti, t2 
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and is are enabled. However, the rapid convergence of Pr(l,2) in state Ml 

indicates that the optimal path converges to sequence 0, by the firing of t2. 

Table 6.3 illustrates the convergence to the unique maximum reward 

probabihty, such that sequence 1 is selected. This sequence represents the 

path MO - Pr{0,1); Ml - Pr{l, 1); M2 - Pr(2,2); Ml. In this case, transition 

probability vector in state MO is equal to unity; since ti must always fire with 

probabihty equal to one. Also the convergence of transition probabihty Pr(l,l) 

in the three-state automaton Ml; and Pr(2,2) in the two-state automaton 

M2 show that the optimal path selected is sequence 1, which has the unique 

maximum reward probabihty. 

Similarly, for Table [6.4 - 6.10]. It is observed that the transition 

probabihty vectors that converge close to unity, correspond to the sequence 

of decisions associated with the unique maximum reward probabihty. 

6.4 Generalised Stochastic Learning Petri Net (GSLPN) 

A similar approach is adopted for the development of GSLPN. By 

analysis of the reachabihty tree in Figure 5.8, the GSPN may exist in one 

of eighteen different states. These states provide a combination of immediate 

and timed transitions. However, for the development of a Generalised version 

of the Stochastic Learning Petri Net it is necessary to consider only timed 

transitions, since firing rates associated with immediate transitions are deter­

mined by switching distribution. Such that, if several timed transitions are 

simultaneously enabled in any tangible marking; and assuming that H is the 

132 



set of enabled transitions, then a transition ti (ieH) fires with probabihty 

Pr{ti} = (6.13) 

as stated previously, A is the firing rate associated with PN transitions. Thus, 

the different states relating to timed transitions of a GSPN define probabihty 

ratios which correspond to the firing of each transition. In any state, the sum 

of probabihty ratios is always equal to unity. Consider state M2 = [lOOOllO]; 

the enabled transitions are ti and tQ and their respective firing probabihties 

may be defined as follows: 

and 

Thus, 

Pr{ti} + PT{te} = 1 (6.16) 

For this model of a GSPN, the concept of a stochastic automaton has been 

introduced to control the firing of timed transitions on a probabilistic basis. 

The firing of the selected transition in a tangible marking determines that 

the next state (marking) of the system corresponds to a vanishing marking; 

thus enabling only immediate transitions. Such transitions are then controlled 

by the switching distribution technique. In the tree representation in Figure 

6.8, there exists only two-state automata for each tangible marking. Cle«irly, 

the tangible states M2, M3, Ms, Mu and M12 correspond to a two-state 

automata. 
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Two-state Automaton 

Consider, Figure 6.8, the tangible marking M2[1000110] enables transitions 

ti and tg, since tokens are present in the input places {pi, pe). Each 

transition can fire first with equal initial probabilities, firing probabihties for 

each transition given below. 

Pr{t,] = ^ (6.17) 

Similarly 

Pr{ti} + Pr{te} = 1 (6.19) 

The firing of ti, determines the next state of GSPN to be vanishing marking 

M4; the firing of t^, also determines that the next state is vanishing marking 

M5. The concept of two-state automaton also applies to each tcingible 

marking, namely, M3, Ms, Mn and M12. 

It must be pointed out that the transition firing probabihties in each 

tangible marking MQ; M15 and Mie is always equal to unity. Since in state 

Mo, the only transition that is enabled is ^i. 

Pr{ti} = - = 1 (6.20) 
u 

Thus, it must fire with probabihty one. Similarly, in state M15 and Mig the 

only transitions enabled are tj and t^, respectively. 

Pr{t,} = Pr{te} = 1 (6.21) 
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so it must also fire with probabiUty equal to unity. 

Hierarchical System of Automata - G S L P N 

Thus, from the reachabihty tree a simple hierarchical system of automata is 

developed; each tangible state corresponding to an automaton. Similar to the 

case of SLPN, in a hierarchy each action has a unique path connecting it to 

the automaton (state) that has been selected previously, or to an automaton 

at the top level (state MQ). By considering the tree structure of Figure 6.8, 

nine unique paths may be defined which are considered as sequence of states/ 

decisions, shown in Figure 6.9. To introduce the concept of an environment 

into this model, each sequence of states is associated with a reward probabihty. 

The operation of this hierarchical learning system is similar to the 

SLPN, with the addition of switching distributions associated with vanishing 

markings. If a vanishing marking is reached, the next state is determined 

by considering switching distributions (random switch), presented in Table 

5.2a. The firing of transitions according to a random switch alters the 

next state to a tangible marking, depending on the transition that fires. 

At any instant the first level automaton, state MQ, selects an action (fires 

ti). This activates an automaton in the second level which fires a transition 

from its current transition probability distribution. This in turn activates, 

automata in the next level and so on. However, if a particular sequence of 

decisions corresponding to a unique path has been reached; the environment 

in turn generates a reward/ punish signal as its reaction. The reaction of 

the environment is used to update the transition probabihties for the various 
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levels of automata in the selected path. This process repeats until all the 

probabihties in one path become close to unity from the top level (MQ) to 

the lowest level (Ms). Such a system may be considered as a Generalised 

Stochastic Learning Petri Net (GSLPN) model. 

6.4.1 Simulation Results : GSLPN 

This section presents computer simulation results for the GSLPN 

model. The results are presented in the form of tables; indicating reward 

parameter is equal to 0.1, also the reward probabihties associated with each 

sequence of states. The notation for Pr{i,j) remains the same as for SLPN, 

as indicated in Section 6.3.4. In the simulation study the hierarchical system 

was modified by introducing the stochastic learning automaton approach for 

each tangible marking. By considering each tangible state as an automaton, 

this provides the capabihty of selecting sequences of decisions, discussed 

previously. For the simulation of GSLPN, all of the reward probabihties in 

the environment were in the range [0.2 - 0.45] except the unique maximum 

reward probabihty which was set to 0.9. An LRJ updating scheme was used 

to update action probabihties for the selected path. 

Tables [6.11 - 6.19] provide the reward probabihties of the environment 

which are used for simulation. Note that in each case the unique maximum 

reward probabihty is associated with the selected sequence of decisions. 

From these resiilts it can be seen that the transition probabihty 

vectors of certain tangible states converge close to unity. In each case this 

convergence corresponds to the sequence associated with the unique maximum 
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reward probabihty. 

6.5 Conclusion and Summary 

This chapter has introduced a new class of hybrid Petri nets which 

have the additional feature of an embedded stochastic learning automata 

within Petri net models. By embedding the concept of stochastic learning 

automata in Petri nets the hybrid combination was shown to overcome the 

limitations of, existing Petri net theory and interconnected automata used in 

isolation. An extension of a standard PN, SPN and GSPN, have developed 

new hybrid models known as Basic Stochastic Learning Petri Net (Basic 

SLPN), Stochastic Learning Petri Net (SLPN) and Generalised Stochastic 

Learning Petri Net (GSLPN), respectively. In the case of a Basic SLPN it 

has been shown that the movement of tokens in the model provides structure 

to the stochastic learning automata described in Chapter Three. Whilst, the 

SLPN and GSLPN models have the ability to control the firing of transitions 

on a probabihstic basis; and enables convergence to a selected sequence of 

states/ decisions at each time instant. PreUminary simulation results are 

presented for each Learning Petri net model. The next chapter considers 

an apphcation of the SLPN model to a specific two node decision making 

organisation. 
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Reward/ Punish 

ENVIRONMENT 

Figure 6.1a - Basic Stochastic Learning Petri Net (Basic SLPN) 

M Q = [100] 

M l = [ 0 1 0 ] M 2 = [0 0 1] 

M Q O L D 

Figure 6.1b - Reachability Tree - Basic SLPN 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 

Ci 0.2 0.9 

n pl p2 

0 0.500000 0.500000 

200 0.185784 0.814216 

400 0.096207 0.903793 

600 0.064346 0.935654 

800 0.048341 0.951659 

1000 0.038721 0.961279 

Table 6.1 - Optimal Path : Basic SLPN 

MLPN I Path P r o b a b i l i t y Changes 

• IM M 1M m 
Number of I t e r a t i o n s 

Figure 6.2 - Optimal Path Probability Changes : Basic SLPN 
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M 

M 

Sequence i 
Ci 

M 2 = [0 2 0 0] 

^3 

M3 = [1011 ] 

M 5 = [0022] 

M 

0 

Q) C2 C6 

M 

C 7 

Fires Probability One (Instantly) 

Three-State Automaton 

Two-State Automaton 

Figure 6.4 - Reachability Tree : Embedded Stochastic Automata 
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M 2 = [0 2 0 0] 

(Pr{t2},Pr{t3}) 

M j = [1 1 0 0 ] 
M 4 = [0 1 1 1] 

(a) Two-State Automaton 

- J 1 0 0] NS: 

Kx\v(Pr{tl},Pr{t2},Pr{t3}) 

M Q = [2 0 0 0] M 2 = [0 2 0 0] M 3 = [ 1 0 1 1 ] 

(b) Three-State Automaton 

Figure 6.5 - Two/ Three-State Automaton 
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CQ : M Q • M l • M Q 

Cj : Mo M j • M' 

C 2 : M Q M-

M l 

M 0 

C 3 : M Q • M l • M 2 • M 4 • M -

C 4 •• Mo M M- M 4 • M I 

C 5 : Mo • M l • M ^ • M , ^M: 

: Mo • M l 

Cj : Mo • M l 

M^ 

M-

M 4 • M L 

MA • M - M^ 

Cg : Mo • M l • M 3 • M 4 ^M- M 3 

" ^8] Penalty Probabilities - Range[0.2-0.5] Unique Maximum = 0.9 

Mo - M 5 Sequence of States in Reachability Tree 

Figure 6.6 - Sequence of Decisions/ States 
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Figure 6.7 - Stochastic Learning Petri Net (SLPN) 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.9 0.35 0.45 0.2 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 0: 

MO - Pr(0,l); M l - Pr(l,2); MO; 

MO M l M2 

n Pr(0,l) Pr( l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.174549 0.724323 0.101128 0.496244 0.503756 

1200 1.000000 0.099875 0.849360 0.050765 0.470108 0.529892 

1800 1.000000 0.066647 0.899482 0.033871 0.460627 0.539373 

2400 1.000000 0.050013 0.924569 0.025418 0.455883 0.544117 

3000 1.000000 0.040027 0.939630 0.020343 0.453034 0.546966 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.518667 0.481333 0.277263 0.439687 0.283050 1.000000 

1200 0.519332 0.480668 0.250052 0.460671 0.289278 1.000000 

1800 0.519554 0.480446 0.240587 0.468098 0.291315 1.000000 

2400 0.519666 0.480334 0.235851 0.471814 0.292335 1.000000 

3000 0.519732 0.480268 0.233008 0.474045 0.292947 1.000000 

Table 6.2 - Optimal Path SLPN : Sequence 0 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.9 0.45 0.2 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 1: 

MO - Pr(0,l); M l - Pr(l, l); M2 - Pr(2,2); M l 

MO Ml M2 

n Pr(0,l) Pr(l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.550452 0.213781 0.235767 0.709502 0.290498 

1200 1.000000 0.728851 0.113456 0.157693 0.840304 0.159696 

1800 1.000000 0.818899 0.075722 0.105380 0.893398 0.106602 

2400 1.000000 0.864098 0.056823 0.079079 0.920004 0.079996 

3000 1.000000 0.891233 0.045477 0.063290 0.935977 0.064023 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.453162 0.546838 0.367937 0.324951 0.307112 1.000000 

1200 0.386330 0.613670 0.384717 0.330612 0.284671 1.000000 

1800 0.362558 0.637442 0.390320 0.332502 0.277178 1.000000 

2400 0.350662 0.649338 0.393123 0.333448 0.273429 1.000000 

3000 0.343521 0.656479 0.394806 0.334016 0.271178 1.000000 

Table 6.3 - Optimal Path SLPN : Sequence 1 
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Reward Pzirameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.45 0.9 0.2 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 2: 

MO - Pr(0,l); M l - Pr(l,3); M3 - Pr(3,4); MO; 

MO M l M2 

n Pr(0,l) Pr( l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.176031 0.124048 0.699921 0.481165 0.518835 

1200 1.000000 0.090713 0.067059 0.842229 0.481793 0.518207 

1800 1.000000 0.060535 0.044761 0.894704 0.482003 0.517997 

2400 1.000000 0.045426 0.033589 0.920984 0.482108 0.517892 

3000 1.000000 0.036356 0.026883 0.936761 0.482171 0.517829 

M3 M4 M5 

n Pr{3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.199988 0.800012 0.400115 0.285478 0.314407 1.000000 

1200 0.103941 0.896059 0.400705 0.273219 0.326076 1.000000 

1800 0.069366 0.930634 0.400902 0.269126 0.329972 1.000000 

2400 0.052053 0.947947 0.401001 0.267078 0.331921 1.000000 

3000 0.041660 0.958340 0.401060 0.265848 0.333092 1.000000 

Table 6.4 - Optimal Path SLPN : Sequence 2 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.9 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 3: 

MO - Pr(0,l); M l - Pr(l , l); M2 - Pr(2,3); M4 - Pr(4,2); M3 

MO M l M2 

n Pr(0,l) Pr( l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.553201 0.191477 0.255323 0.576526 0.423474 

1200 1.000000 0.691943 0.124194 0.183863 0.413566 0.586434 

1800 1.000000 0.792181 0.083418 0.124401 0.302268 0.697732 

2400 1.000000 0.844025 0.062604 0.093371 0.233046 0.766954 

3000 1.000000 0.875168 0.050104 0.074728 0.186623 0.813377 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.572875 0.427125 0.418042 0.274119 0.307839 1.000000 

1200 0.613918 0.386082 0.565688 0.198648 0.235663 1.000000 

1800 0.632179 0.367821 0.695293 0.134768 0.169939 1.000000 

2400 0.641316 0.358864 0.770897 0.101162 0.127941 1.000000 

3000 0.646802 0.353198 0.816636 0.080963 0.102400 1.000000 

Table 6.5 - Optimal Path SLPN : Sequence 3 
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Reward Pzirameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.9 0.2 0.3 0.4 0.4 

Convergence to Sequence 4: 

MO - Pr(0,l); M l - Pr(l, l); M2 - Pr(2,3); M4 - Pr(4,4); M l ; 

MO M l M2 

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.513904 0.313428 0.172667 0.468298 0.531702 

1200 1.000000 0.659712 0.236757 0.103531 0.329785 0.670215 

1800 1.000000 0.762728 0.167303 0.069970 0.226465 0.773535 

2400 1.000000 0.821845 0.125640 0.052514 0.170000 0.830000 

3000 1.000000 0.857416 0.100555 0.042029 0.136058 0.863942 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.462825 0.537175 0.226089 0.309543 0.464368 1.000000 

1200 0.452119 0.547881 0.133066 0.231743 0.635191 1.000000 

1800 0.444685 0.555315 0.089236 0.157893 0.752871 1.000000 

2400 0.440965 0.559035 0.066969 0.118515 0.814517 1.000000 

3000 0.438731 0.561269 0.053597 0.094852 0.851551 1.000000 

Table 6.6 - Optimal Path SLPN : Sequence 4 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.9 0.3 0.4 0.4 

Convergence to Sequence 5: 

MO - Pr(0,l); M l - Pr(l,3); M3 - Pr(3,l); M4 - Pr(4,2); M3; 

MO M l M2 

n Pr(0,l) Pr( l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.191899 0.222948 0.585153 0.500762 0.499238 

1200 1.000000 0.103439 0.122696 0.773865 0.490015 0.509985 

1800 1.000000 0.069090 0.081975 0.848935 0.486426 0.513574 

2400 1.000000 0.051847 0.061516 0.886637 0.484631 0.515369 

3000 1.000000 0.041495 0.049234 0.909272 0.483553 0.516447 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.674278 0.325722 0.501654 0.281078 0.217269 1.000000 

1200 0.815019 0.184981 0.686260 0.182217 0.131523 1.000000 

1800 0.875323 0.124677 0.787389 0.124113 0.088498 1.000000 

2400 0.906430 0.093570 0.840427 0.093156 0.066417 1.000000 

3000 0.925113 0.074887 0.872288 0.074556 0.053155 1.000000 

Table 6.7 - Optimal Path SLPN : Sequence 5 

150 



Reward Peirameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.9 0.4 0.4 

Convergence to Sequence 6: 

MO - Pr(0,l); M l - Pr(l,3); M3 - Pr(3,l); M4 - Pr(4,4); M l ; 

MO M l M2 

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.165438 0.290162 0.544400 0.522279 0.477721 

1200 1.000000 0.106961 0.168110 0.724929 0.529368 0.470632 

1800 1.000000 0.083200 0.112413 0.804387 0.557758 0.442242 

2400 1.000000 0.062654 0.084359 0.852986 0.573471 0.426529 

3000 1.000000 0.050147 0.067516 0.882338 0.582904 0.417096 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.693759 0.306241 0.206450 0.192350 0.601200 1.000000 

1200 0.821326 0.178674 0.133834 0.108875 0.757291 1.000000 

1800 0.880258 0.119742 0.092569 0.072814 0.834617 1.000000 

2400 0.910139 0.089861 0.069499 0.054643 0.875859 1.000000 

3000 0.928081 0.071919 0.055622 0.043732 0.900645 1.000000 

Table 6.8 - Optimal Path SLPN : Sequence 6 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.9 0.4 

Convergence to Sequence 7: 

MO - Pr(0,l); M l - Pr(l , l ) ; M2 - Pr(2,3); M4 - Pr(4,3); M3; 

MO M l M2 

n Pr(0,l) Pr(l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.531733 0.290461 0.177806 0.441565 0.558435 

1200 1.000000 0.640113 0.224555 0.135332 0.321635 0.678365 

1800 1.000000 0.740396 0.165010 0.094594 0.227745 0.772255 

2400 1.000000 0.804660 0.124269 0.071071 0.171196 0.828804 

3000 1.000000 0.843651 0.099467 0.056882 0.137020 0.862980 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.498625 0.501375 0.201754 0.586722 0.211524 1.000000 

1200 0.504372 0.495628 0.135323 0.736304 0.128373 1.000000 

1800 0.495079 0.504921 0.092126 0.821082 0.086792 1.000000 

2400 0.490428 0.509572 0.069171 0.865675 0.065154 1.000000 

3000 0.487636 0.512364 0.055361 0.892494 0.052145 1.000000 

Table 6.9 - Optimal Path SLPN : Sequence 7 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.4 0.9 

Convergence to Sequence 8: 

M0-Pr(0,l); Ml-Pr(l,3); M3-Pr(3,l); M4-Pr(4,3); M5-Pr(5,4); M3; 

MO Ml M2 

n Pr(0,l) Pr( l , l ) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3) 

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000 

600 1.000000 0.132012 0.212609 0.655378 0.508068 0.491932 

1200 1.000000 0.079786 0.113330 0.806884 0.513090 0.486910 

1800 1.000000 0.053482 0.075730 0.870788 0.515134 0.484866 

2400 1.000000 0.040139 0.056831 0.903029 0.516157 0.483843 

3000 1.000000 0.032125 0.045484 0.922391 0.516771 0.483229 

M3 M4 M5 

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr{5,4) 

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000 

600 0.741401 0.258599 0.205825 0.568628 0.225547 1.000000 

1200 0.848475 0.151525 0.123761 0.700174 0.176065 1.000000 

1800 0.897521 0.102479 0.083012 0.792916 0.124072 1.000000 

2400 0.923069 0.076931 0.062303 0.844451 0.093246 1.000000 

3000 0.938429 0.061571 0.049863 0.875505 0.074631 1.000000 

Table 6.10 - Optimal Path SLPN : Sequence 8 
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RewMd Peirameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.9 0.35 0.45 0.2 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 0: 

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,l); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.809068 0.190932 0.416901 0.583099 0.828256 0.171744 

1200 1.000000 0.900969 0.099031 0.448418 0.551582 0.910950 0.089050 

1800 1.000000 0.933867 0.066133 0.429936 0.570064 0.940533 0.059467 

2400 1.000000 0.950372 0.049628 0.400512 0.599488 0.955374 0.044626 

3000 1.000000 0.960281 0.039719 0.362137 0.637863 0.964284 0.035716 

M i l M12 M15 M16 

n P r ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.651463 0.348537 0.500000 0.500000 1.000000 1.000000 

1200 0.675787 0.324213 0.500000 0.500000 1.000000 1.000000 

1800 0.741825 0.258175 0.500000 0.500000 1.000000 1.000000 

2400 0.786258 0.213742 0.500000 0.500000 1.000000 1.000000 

3000 0.750739 0.249261 0.500000 0.500000 1.000000 1.000000 

Table 6.11 - Optimal Path G S L P N : Sequence 0 

156 



Reward Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.9 0.45 0.2 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 1: 

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,l); Ml l -P r ( l l , l ) ; 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.806212 0.193788 0.415502 0.584498 0.825711 0.174289 

1200 1.000000 0.894719 0.105281 0.291938 0.708062 0.905381 0.094619 

1800 1.000000 0.929572 0.070428 0.222273 0.777727 0.936706 0.063294 

2400 1.000000 0.947142 0.052858 0.173345 0.826655 0.952496 0.047504 

3000 1.000000 0.957696 0.042304 0.142028 0.857972 0.961981 0.038019 

M i l M12 M15 M16 

n P r ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.723412 0.276588 0.500000 0.500000 1.000000 1.000000 

1200 0.813575 0.186425 0.500000 0.500000 1.000000 1.000000 

1800 0.862112 0.137888 0.500000 0.500000 1.000000 1.000000 

2400 0.895455 0.104545 0.500000 0.500000 1.000000 1.000000 

3000 0.916280 0.083720 0.500000 0.500000 1.000000 1.000000 

Table 6.12 - Optimal Path GSLPN : Sequence 1 
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Reward Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.45 0.9 0.2 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 2: 

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,l); Mll-Pr(l l ,6); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.685376 0.314624 0.626392 0.373608 0.682899 0.317101 

1200 1.000000 0.818368 0.181632 0.642078 0.357922 0.791152 0.208848 

1800 1.000000 0.877747 0.122253 0.652813 0.347187 0.857948 0.142052 

2400 1.000000 0.908209 0.091791 0.711421 0.288579 0.893275 0.106725 

3000 1.000000 0.926535 0.073465 0.767056 0.232944 0.914579 0.085421 

M i l M12 M15 M16 

n Pr ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.361052 0.638948 0.453750 0.546250 1.000000 1.000000 

1200 0.267933 0.732067 0.451878 0.548122 1.000000 1.000000 

1800 0.186095 0.813905 0.451253 0.548747 1.000000 1.000000 

2400 0.140398 0.859602 0.450940 0.549060 1.000000 1.000000 

3000 0.112463 0.887537 0.450753 0.549247 1.000000 1.000000 

Table 6.13 - Optimal Path GSLPN : Sequence 2 
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Reward Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.9 0.3 0.2 0.3 0.4 0.4 

Convergence to Sequence 3: 

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,6); M12-Pr(12,l); Ml6-Pr(16,6); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.333333 0.333333 0.500000 0.500000 0.500000 

600 1.000000 0.532724 0.467276 0.593493 0.406507 0.372503 0.627497 

1200 1.000000 0.729578 0.270422 0.616164 0.383836 0.237406 0.762594 

1800 1.000000 0.818717 0.181283 0.622145 0.377855 0.160715 0.839285 

2400 1.000000 0.863946 0.136054 0.625138 0.374862 0.120647 0.879353 

3000 1.000000 0.891111 0.108889 0.626935 0.373065 0.096559 0.903441 

M i l M12 M15 M16 

n P r ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.505083 0.494917 0.570318 0.429682 1.000000 1.000000 

1200 0.527504 0.472496 0.657897 0.342103 1.000000 1.000000 

1800 0.534990 0.465010 0.763197 0.236803 1.000000 1.000000 

2400 0.538736 0.461264 0.822047 0.177953 1.000000 1.000000 

3000 0.540985 0.459015 0.857573 0.142427 1.000000 1.000000 

Table 6.14 - Optimal Path G S L P N : Sequence 3 
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Rewzird Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.9 0.2 0.3 0.4 0.4 

Convergence to Sequence 4: 

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,6); Ml2-Pr(12,6); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.669857 0.330143 0.384499 0.615501 0.291958 0.708042 

1200 1.000000 0.802920 0.197080 0.237181 0.762819 0.202816 0.797184 

1800 1.000000 0.866860 0.133140 0.162133 0.837867 0.149552 0.850448 

2400 1.000000 0.900061 0.099939 0.122416 0.149552 0.112473 0.887527 

3000 1.000000 0.920015 0.079985 0.098275 0.112473 0.090026 0.909974 

M i l M12 M15 M16 

n Pr ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr{16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.534500 0.465500 0.365006 0.634994 1.000000 1.000000 

1200 0.542237 0.457763 0.224533 0.775467 1.000000 1.000000 

1800 0.544820 0.455180 0.153759 0.846241 1.000000 1.000000 

2400 0.546113 0.453887 0.115533 0.884467 1.000000 1.000000 

3000 0.546889 0.453111 0.092473 0.907527 1.000000 1.000000 

Table 6.15 - Optimal Path GSLPN : Sequence 4 
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Reweurd Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.9 0.3 0.4 0.4 

Convergence to Sequence 5: 

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,6); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.722986 0.277014 0.392727 0.607273 0.207815 0.792185 

1200 1.000000 0.852646 0.147354 0.239746 0.760254 0.109153 0.890847 

1800 1.000000 0.901434 0.098566 0.183716 0.816284 0.072975 0.927025 

2400 1.000000 0.926033 0.073967 0.152900 0.847100 0.054763 0.945237 

3000 1.000000 0.940802 0.059198 0.127705 0.872295 0.043828 0.956172 

M i l M12 M15 M16 

n P r ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.500000 0.500000 0.412953 0.587047 1.000000 1.000000 

1200 0.500000 0.500000 0.339427 0.660573 1.000000 1.000000 

1800 0.500000 0.500000 0.333693 0.666307 1.000000 1.000000 

2400 0.500000 0.500000 0.365173 0.634827 1.000000 1.000000 

3000 0.500000 0.500000 0.383313 0.616687 1.000000 1.000000 

Table 6.16 - Optimal Path GSLPN : Sequence 5 
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Reward Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.9 0.4 0.4 

Convergence to Sequence 6: 

M0-Pr(0,l); M2-Pr(2,6); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.160091 0.839909 0.770198 0.229802 0.626082 0.373917 

1200 1.000000 0.080741 0.919259 0.875818 0.124182 0.630783 0.369217 

1800 1.000000 0.053873 0.946127 0.916763 0.083237 0.632353 0.367647 

2400 1.000000 0.040427 0.959573 0.937517 0.062483 0.633138 0.366862 

3000 1.000000 0.032355 0.967645 0.949991 0.050009 0.633610 0.366390 

M i l M12 M15 M16 

n Pr ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.543250 0.456750 0.500000 0.500000 1.000000 1.000000 

1200 0.546619 0.453381 0.500000 0.500000 1.000000 1.000000 

1800 0.547744 0.452256 0.500000 0.500000 1.000000 1.000000 

2400 0.548307 0.451693 0.500000 0.500000 1.000000 1.000000 

3000 0.548645 0.451355 0.500000 0.500000 1.000000 1.000000 

Table 6.17 - Optimal Path G S L P N : Sequence 6 
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Reward Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.9 0.4 

Convergence to Sequence 7: 

MO-Pr(0,l); M3-Pr(3,l); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.454252 0.545748 0.852835 0.147165 0.600395 0.399605 

1200 1.000000 0.628914 0.371086 0.922450 0.077550 0.756201 0.243799 

1800 1.000000 0.744904 0.255096 0.948114 0.051886 0.833994 0.166006 

2400 1.000000 0.807361 0.192639 0.961063 0.038937 0.874887 0.125113 

3000 1.000000 0.845674 0.154326 0.968837 0.031163 0.899801 0.100199 

M i l M12 M15 M16 

n P r ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.560640 0.439360 0.470833 0.529167 1.000000 1.000000 

1200 0.645307 0.354693 0.460434 0.539566 1.000000 1.000000 

1800 0.639664 0.360336 0.456962 0.543038 1.000000 1.000000 

2400 0.642014 0.357986 0.455224 0.544776 1.000000 1.000000 

3000 0.652169 0.347831 0.454181 0.545819 1.000000 1.000000 

Table 6.18 - Optimal Path GSLPN : Sequence 7 
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Reward Parameter = 0.1 

Reward Probability 

i 0 1 2 3 4 5 6 7 8 

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.4 0.9 

Convergence to Sequence 8: 

MO-Pr(0,l); M3-Pr(3,6); 

MO M2 M3 M8 

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6) 

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 

600 1.000000 0.454252 0.545748 0.1980865 0.809135 0.600395 0.399605 

1200 1.000000 0.628914 0.371086 0.098464 0.901536 0.756201 0.243799 

1800 1.000000 0.744904 0.255096 0.065804 0.934196 0.833994 0.166006 

2400 1.000000 0.807361 0.192639 0.049381 0.950619 0.874887 0.125113 

3000 1.000000 0.845674 0.154326 0.039521 0.960479 0.899801 0.100199 

M i l M12 M15 M16 

n P r ( l l , l ) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6) 

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000 

600 0.560640 0.439360 0.470833 0.529167 1.000000 1.000000 

1200 0.645307 0.354693 0.460434 0.539566 1.000000 1.000000 

1800 0.639664 0.360336 0.456952 0.543038 1.000000 1.000000 

2400 0.642014 0.357986 0.455224 0.544776 1.000000 1.000000 

3000 0.652169 0.347831 0.454181 0.545819 1.000000 1.000000 

Table 6.19 - Optimal Path GSLPN : Sequence 8 
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Chapter Seven 

Application to Distributed Decision Systems 

7.1 Introduction 

PNs have been extensively used in the representation and analysis of 

computing systems and processes. As stated previously, the PN formalism 

is suitable for representing dynamic processes, particularly when some of the 

events may occur concurrently. However, recently the use of PNs in the 

modeUing of decision making processes has been proposed, [60], [61]. In 

the case of modelling decision making organisations, the PN representation 

considers tokens as items of information or signals which wait to be processed 

in the places. These places are conditions which must be met before the 

information held in them can be processed. The transitions are events 

which execute processes; whereby a process is executed by the firing of 

a corresponding transition and the flow of tokens represent the flow of 

information in the process. Thus, PNs represent powerful modeUing tools 

for decision making organisations, since they describe in a precise manner 

the interactions among decision makers. Several authors have considered the 

apphcation of PNs in this field of study, [62], [63], [64], [65], [66]. 

In the discussion that follows a model of the interacting decision maJcer 

is presented. The basic model of the interacting decision maker consists of 

four stages. An appUcation of the hybrid SLPN modelUng tool to a specific 

165 



two node organisation is considered, [59], [67 . 

7.2 Model of the Decision Making Process 

A basic model of an interacting decision maker appropriate for the 

study of command and control organisations was introduced by Boettcher 

and Levis, [68]. Their four-stage model of the human Decision Maker (DM) 

permits detailed and expUcit interactions among organisation members. The 

decision maker receives an input x from his environment and undergoes a 

four-stage process, shown in Figure 7.1. The Situation Assessment (SA) and 

Response Selection (RS) stages are used to model the actual decision making 

process; while Information Fusion (IF) and Command Interpretation (CI) allow 

for interaction of the DM with other members of the organisation. 

Based on the above discussion, the input x received by the decision 

maker is processed in the SA stage, this stage operates upon x to produce 

an assessed situation z. The assessed situation z may be shared with the 

other members of the organisation; concurrently, the DM may receive the 

supplementary situation assessment z from other parts of the organisation. 

This information may in turn be combined in the IF stage to yield z. 

The fused assessed situation, z, is processed by one of the algorithms 

in the RS stage; since in the RS stage possible alternatives of action are 

evaluated and the output response may be communicated to other team 

members. The CI stage of the model allows z and the input v to influence 

the choice of this algorithm. A command input v from the rest of the 

organisation may be considered to be a command capable, for example, of 
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restricting options. The RS stage contains algorithms that produce output y 

in response to the situation assessment z and the command inputs. 

The internal structure of the four processing stages, is depicted in 

Figure 7.2 which include the SA, IF, CI and RS stages. Note that the SA 

stage consists of a set of V algorithms that are capable of producing some 

situation assessment z. The RS stage also contains a set of V algorithms 

which are required to produce the final decision response. 

7.2.1 Model of an Organisation with a Decision Aid 

This sub-section describes the integration of a decision aid within the 

decision module. The DM module may often be faced with metadecisions, ie. 

decisions about how to choose whether to use the information provided by 

an aid and how to use that information, [63]. For example, in conditions of 

uncertainty, the time constraint is an important factor. Thus, in an emergency 

situation a decision maker must reach a decision in the order of seconds, 

at most tens of seconds; because of this an interactive decision aid would 

not be feasible. On the other hand, the DM may access a decision support 

system or another form of aid to reach an accurate response. Hence, the 

aided DM must decide between the following three options, when confronted 

with a decision aid: 

(1) The user DM ignores (blocks) the information provided by the aid 

and assesses the situation as trained; 

(2) The user DM assesses the situation as trained and compares the result 
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with aid information choosing the worst case; 

(3) The user DM reUes solely on the aid information. 

Consider the structure as illustrated in Figure 7.3, each DM must decide how 

to choose among the alternatives for addressing the problem. This structure 

provides a convenient framework for the apphcation of the SLPN model which 

will be discussed at a later stage. 

7.3 Application : Smfdl-scede C^-I System 

This section discusses the application of a new class of Petri nets, 

namely, the Stochastic Learning Petri Nets (SLPN) as a powerful modelling 

tool for decision making organisations in C^-I systems. Figure 7.4 shows in 

block diagram form the first model proposed for study. The example consists 

of a two node organisation; decision module DMl and a decision module 

DM2. Each decision module receives signals from the environment and can 

respond to the environment. The DM module consists of three possible 

strategies, although the SA stage selects only a single strategy to process the 

information. As mentioned above the DM must decide between the following 

three options. 

Strategy SA,- : process information without using Decision Support System 

(DSS); 

Strategy I T i : select a response via an intelhgent terminal; 

Strategy MF,- : utihse the DSS. 

A PN representation for this two node organisation is depicted in Figure 
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7.5. In the simulation studies, the complexity of the model has been reduced 

by embedding only the concept of stochastic learning automata in the SA 

and RS stages for each decision module, excluding the concept of Petri nets, 

as depicted in Figure 7.6. Thus, the disposition of tokens in the node 

organisation are not considered. The operation of a single decision module 

DM1 interacting with a stationary random environment is considered. For 

each decision module, the corresponding SLPN structure and reachabihty tree 

is illustrated in Figure 7.7a and 7.7b, respectively. In this structure, the 

SLPN concept has been embedded in the SA and RS stages for each decision 

module. 

7.3.1 Performance of Single Decision Module 

As previously mentioned, to reduce the complexity of the model the 

concept of stochastic learning automata has been embedded in the SA and 

RS stages for each decision module. The decision node contains four learning 

automata interconnected in the form of a tree structure. The automata are 

arranged in two levels as shown in Figure 7.6. The hierarchy consists of a 

single automaton at the first level, and three automata in the second level. 

The first level automata, situation assessment SAl consists of three options 

which are selected with equal initial probabUity. At this stage, the selected 

option corresponds to processing information via three possible strategies, as 

mentioned in the previous sub-section (SAl, I T l , MFl). In the second level 

which corresponds to the response selection stage, there are two possible 

alternatives to be chosen with equal initial probabihty. Thus, from the top to 
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the lower level automata there exists six possible paths {pi,P2, • • • ,P6) which 

can be selected by DMl. This structure enables the single decision module 

to select the optimal strategy between six possible strategies. 

Considering the structure. Figure 7.6, SAl acts first choosing either 

RSll , RS12 or RS13. The action selected by the automaton in the lowest 

level (response selection RS stage), generates a response from the environment. 

The action probabiUties for the selected path are updated on the basis of 

this response. Thus the single decision module selects the optimal strategy 

which corresponds to the optimal path. 

7.3.2 Performance of Two Node Orgeinisation 

Similar to the previous case, this adopts an identical approach by 

embedding the stochastic learning automata in the SA and RS stages for 

each decision module, as depicted in Figure 7.8. Therefore, each decision 

module contains four learning automata interconnected in the form of a 

hierarchical system. For decision module DMl, the three options (SAi, IT i , 

MFi) are selected with equal initial probabiHty; similarly for decision module 

DM2 (SA2, IT2, MF2). Also each RS stage has two alternate possibilities 

which are selected with equal initial probabihty; thus producing six. possible 

paths for each DM. The strategies associated with decision module DMl 

and DM2 are (pi,P2, • • • P̂e) and (91,92, • • •, ̂ e) respectively. There are 36 

(6x6) possible combinations of decision strategies fed to the environment. 

Consider the structure in Figure 7.8, for each pair of strategies selected 

by the decision modules the environment responds stochastically to punish/ 
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reward the selection of a particular pair. One pair of decisions is optimum 

(ie. gives minimum punishment or maximum reward). 

7.4 Experimental Results 

This sub-section presents results based on a series of experiments 

which examine the performance of a single decision module and a two node 

organisation interacting with an uncertain environment. As stated previously, 

decision modules are in the form of a two level hierarchical system. To simulate 

these modules, the reward probabilities in the environment were selected from 

the range [0.2-0.5], except the unique maximum reward probabihty which 

was set to 0.9. An L^r scheme was adopted to update action probabihties 

for the selected path; in the case of the two node organisation, the action 

probabihties for the optimal strategy pair were updated. Simulations were 

performed, the results are presented in both table and graph format. For 

each experiment the reward parameter and reward probabihties are given; the 

expected values are denoted by a bar eg. pi(n) = E[pi(n) . 

Experiment 1 

The first experiment illustrates the operation of a single decision module 

interacting with a stationary random environment, as shown in Figure 7.6. 

For this experiment, the objective of a single decision module is such that 

the optimal strategy is selected from six possible paths. Figure 7.9 displays 

the route corresponding to the optimal path. 

The results are produced in Table 7.1 with their respective reward 
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parameter and reward probabiHties. It is evident that the optimal path is pi 

since the unique maximum reward probability is associated with this action 

path. Furthermore, the tabulated results show convergence close to unity for 

this particular path; the corresponding learning curve for the optimal path is 

shown in Figure 7.9a. 

The experiments [2-4] illustrate the learning performance of a two 

node organisation, as depicted in Figure 7.8. For these experiments, the 

main objective is such that both decision modules select the optimal pair of 

decision strategies from 36 (6x6) possible combinations of decision pairs input 

to the environment. Similar to the previous case, reward probabiHties in the 

range [0.2-0.5] are associated with paths {pi,P2, • • • and (91,52. • • •, ê) 

for decision modules DMl and DM2, respectively. However, in this case the 

unique maximum reward probabihty which is set to 0.9 exists for each decision 

module DMl and DM2. Thus, a single path from the set (pi,P2, • • • iPe) for 

DMl is associated with a unique maximum reward probabihty; and also a 

single path from the set (^i , 92, • • •, ̂ e) for DM2. The conditions for each 

experiment are varied by considering the selection of optimal strategy pairs; 

sudden switch of environmental conditions and by permitting communication 

between both decision modules at upper and lower levels. 

Experiment 2 

The simulation results in Table 7.2 examine the learning behaviour of a two 

node organisation. Note that in the case of a two node organisation, the 

action paths associated with the unique maximum reward probabihty converge 

172 



close to unity for each decision module DMl and DM2. The strategy pair 

selected is clearly indicated in Figure 7.10. 

Table 7.2 indicates the value of the reward parameter; the unique 

maximum reward probabihty to be employed by the environment eind the 

expected values denoting the convergence to optimal strategy pair. In this 

case the unique maximum reward probabihty is associated with path P4.q2 

for decision module DMl and DM2, respectively. The results confirm that 

the coordinated decision strategies selected by each decision module converges 

close to unity, this is illustrated in Figure 7.10a. Hence, the optimal pair of 

decisions selected by DMl and DM2 is P4.q2. 

Experiment 3 

The previous experiment 2 was repeated, with the additional concept of a 

sudden switch to a different environment. In this experiment, a change in 

the environment was considered by re-setting the unique maximum reward 

probability to select an alternate pair of decision strategies. For example, by 

a repeat of experiment 2, it can be seen that both decision modules converge 

close to unity by selecting the optimal pair of decision strategies. The sudden 

switch in the environment is achieved by changing over the unique maximum 

reward probabihty, such that cin alternate pair of decision strategies may be 

selected. For this particular experiment. Figure 7.11 indicates the route which 

may be selected by varying the conditions of the environment: before and 

after the switch. 

This behaviour is best illustrated by analysing the results in Table 
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7.3a - 7.3b]; all relevant parameter values are indicated. The simulation results 

show how fast the structure learns how to converge to the new optimal strategy 

pair. It is evident from Table 7.3a that both decision modules DMl and 

DM2 select the optimal strategy pair pi.qi; since convergence for this pair is 

close to unity. The learning curve showing convergence of strategy pair pi.qi 

is represented in Figure 7.12a. However, after introducing a sudden switch 

of the environment by re-locating the unique maximum reward probabihty 

indicated in Table 7.3b, similarly, the structure learns to select the optimal 

strategy pair shown in Figure 7.12c. In this case the coordinated decision 

strategy selected is pair ps.qi; the unique maximum reward probability is 

associated with this pair. Thus, Figure 7.12b shows a decrease in convergence 

for path p i selected by DMl and, a rapid increase in convergence close to 

unity for path pa.qi is depicted in Figure 7.12c. 

Experiment 4 

This final experiment gives an excellent illustration of speeding up the learning 

process by permitting communication between decision modules DMl and DM2 

(as indicated by dotted hues Figure 7.13). Note that in each of the following 

experiments an arbitrary value for the stepsize is considered. 

(a) First set of results in Table 7.4a permits communication between 

automata at the top level of the hierarchy for each decision module. To 

simulate this structure, both automata at the top level (SAl and SA2) 

exchange messages so that if each selects action one, then the reward parameter 

is incremented by stepsize 4. From Table 7.4a, it can be seen that the rate 
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of convergence for strategy pair pi.qi rapidly increases close to unity; since 

the unique maximum reward probabihty is associated with this strategy pair. 

(b) Second set of results in Table 7.4b enables communication between 

automata at the top and lower levels of the hierarchy for each decision 

module. In this case, in addition to automata at the top level (SAl cind 

SA2) exchanging messages; the lower level automata (RSll and RS21) also 

communicate. The same rule is apphed, that is, if both automata at the 

top and lower level select action one, the reward parameter is increased by 

stepsize 4. Similar to the previous case, the results in Table 7.4b show rapid 

convergence close to unity for both levels of automata. In comparison to the 

previous experiment, there is only a fractional increase in rate of convergence 

by permitting communication between automata at the upper and lower levels. 

(c) The third set of results in Table 7.4c illustrates communication 

between automata at both top and lower levels for each decision module. The 

same rule is apphed, which involves an increment of the reward parameter 

by stepsize 4, if both automaton select action one. However, in this case the 

location of the unique maximum reward probability has been changed while 

all other reward probabihties remain unchanged. It can be seen from Table 

7.4c that the unique maximum reward probability is associated with strategy 

pair P3.q3 as opposed to pi.qi in the previous experiment. The results do not 

display convergence behaviour for strategy pair ps.qa and locking on to the 

strategy pair pi.qi due to the increased stepsize via communication between 

automata at both levels. 

Figures [7.14a - 7.14c] present learning curves, which illustrate conver-
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gence behaviour for strategy pair pi.qi- In each case communication between 

automata is considered by employing an incremental value of the reward 

parameter by stepsize 4 (the approach described above); also the case without 

communication by using reward parameter 0.04. It may be observed that in 

the former case, the learning curve for strategy pair pi.qi rapidly converges 

close to unity, and both learning curves coincide with each other. 

7.10 Conclusion and Summary 

This chapter has shown the potential application of a new class of 

hybrid Petri Net (Stochastic Learning Petri Net) to the modelhng of a realistic 

small-scale distributed decision problem. Although a two node decision model 

has been described the basic concepts may be extended to more complex 

scenarios which involve an arbitrary number of nodes in pre-programmed 

topologies. 

In this chapter the potential modeUing capability of stochastic learning 

automata embedded within Petri Nets has been illustrated. The simulation 

studies have shown the capability of optimum distributed strategies in stochas­

tic environments both for steady-state and switched environments. Initial work 

has also shown the ability to model communication between adjacent layers 

for decision models connected in hierarchical layers and the use of confidence 

communication signals to provide adaptive step sizes to improve convergence 

rates. 
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Figure 7.1 - Four-stage Model of Interacting Decision Maker 
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Figure 7.2 - Petri Net Representation of Interacting Decision Maker 
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Figure 7.3 - Situation Assessment Module 

179 



ENVIRONMENT 

DECISION MODULE 

DM1 
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DM2 

Figure 7.4 - Block Diagram: Two Node Organisation Supported by D.S.S 
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Figure 7.5 - Petri Net: Two Node Organisation Supported by D.S.S 
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^ Decision Module DM 1 , 
•> ^ > ^ ^ > > ^ . . . . ^ ,,\^ 

Select Action Path 

C; C2 C3 C5 

Output Response 

Figure 7.6 - Topology for Simulation: Single Decision Module 
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Decision Module DM1 

Figure 7.7a - Petri Net Representation Decision Module D M l 

y\ v\ v\ 
J 0 

MQ OLD 

Corresponding States of Decision Module D M l 

M Q = [ 1 0 0 0 0 0 0 0 0 0] 

= [ 0 1 0 0 0 0 0 0 0 0 ] 

M 2 = [ 0 0 1 0 0 0 0 0 0 0 ] 

= [ 0 0 0 1 0 0 0 0 0 0 ] 

= [0 0 0 0 1 0 0 0 0 0] 

= [ 0 0 0 0 0 1 0 0 0 0 ] 

= [ 0 0 0 0 0 0 1 0 0 0 ] 

= [ 0 0 0 0 0 0 0 1 0 0 ] 

Mg = [ 0 0 0 0 0 0 0 0 1 0] 

= [ 0 0 0 0 0 0 0 0 0 1] 

Figure 7.7b - Reachability Tree for Decision Module D M l 
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Figure 7.8 - Topology for Simulation: Two Node Organisation 
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''"ecision Module DMl , 
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PI 
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P2 P3 P4 P5 P6 

Select Action Path 
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Output Response 

Figure 7.9 - Single Decision Module (Table 7.1) 
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Reward Parameter = 0.04 

Reward Probability 

i 0 1 2 3 4 5 

Ci 0.9 0.2 0.3 0.4 0.25 0.1 

Path Probability for Decision Module D M l : Optimal Path P i 

n p l p2 p3 p4 p5 p6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.609142 0.135953 0.080745 0.076972 0.048215 0.048873 

1200 0.792024 0.079875 0.040079 0.039205 0.024323 0.024394 

1800 0.858710 0.055856 0.026605 0.026250 0.016244 0.016234 

2400 0.893030 0.042869 0.019911 0.019730 0.012194 0.012165 

3000 0.913935 0.034764 0.015909 0.015805 0.009761 0.009727 

Table 7.1 - Simulation of Single Decision Module (Figure 7.9) 

< 
Single Dec is ion Module i Optimal Path PI 

ei s 
Z " 

2 " 
1 " Q. 

1 " 
1 " 
O 
a 
o 

< 

/ » . pl (n) 

Number of I t e r a t i o n s 

Figure 7.9a - Average Action Path Probability vs Iterations (Table 7.1) 
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Figure 7.10 - Two Node Organisation (Table 7.2) 
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iReward Parameter = O.od 

Reward Probability 

C42 = 0.9 

Path Probability for Decision Module D M l : Optimal Path P4 

n p l p2 p3 p4 p5 p6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.122752 0.124708 0.173771 0.345529 0.127226 0.106013 

1200 0.063909 0.065275 0.128113 0.624448 0.064294 0.053961 

1800 0.042560 0.043563 0.094769 0.740271 0.042815 0.036021 

2400 0.031903 0.032689 0.074587 0.801693 0.032094 0.027033 

3000 0.025514 0.026160 0.061355 0.839669 0.025667 0.021635 

Path Probability for Decision Module DM2: Optimal Path Q2 

n q i q2 q3 q4 q5 q6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.166504 0.457269 0.138586 0.130716 0.054399 0.052525 

1200 0.108945 0.694528 0.070578 0.070720 0.028651 0.026577 

1800 0.078552 0.790430 0.046577 0.047621 0.019225 0.017594 

2400 0.062235 0.840602 0.034755 0.035894 0.014465 0.013149 

3000 0.049974 0.871415 0.027718 0.028801 0.011595 0.010497 

Optimal Strategy Pair P4.Q2 

Table 7.2 - Simulation of Two Node Organisation (Figure 7.10) 

188 



Two Node Organisat ion i Optimal Strategy P a i r P4. 02 

0.9 

0.1 

^0.6 
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« q2 (n) 

- H 1— 
200 1,00 

— f — 
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H \ 1 1-
80O 1000 1200 

Number of [ t s ra t Ions 
1400 1600 1800 2000 

Figure 7.10a - Average Action Path Probability vs Iterations (Table 7.2) 
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ENVIRONMENT : OPTIMAL STRATEGY PAIR P3 Ol 

Figure 7.11 - Switch of Environment: Before and After Switch 
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[Reward Pareimeter = 0.04 

Reward Probability 

On = 0.9 

Path Probabihty for Decision Module D M l : Before Switch P l 

n p l p2 p3 p4 p5 p6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.434715 0.187078 0.128409 0.108408 0.065751 0.075637 

1200 0.656245 0.128620 0.081050 0.062218 0.032926 0.038940 

1800 0.762995 0.093581 0.054786 0.040727 0.021841 0.026070 

2400 0.819308 0.073124 0.041371 0.030263 0.016339 0.019594 

3000 0.854036 0.059909 0.033233 0.024075 0.013052 0.015695 

Path Probabihty for Decision Module DM2: Before Switch Ql 

n q i q2 q3 q4 q5 q6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.396374 0.150584 0.177897 0.165583 0.056801 0.052760 

1200 0.623670 0.113208 0.116604 0.091556 0.028705 0.026255 

1800 0.740127 0.084455 0.080160 0.058616 0.019184 0.017456 

2400 0.801726 0.061028 0.061028 0.043054 0.014406 0.013075 

3000 0.839764 0.054985 0.049259 0.034007 0.011533 0.010451 

(a) Before Switch : Optimal Strategy Pair P l . Q l 

Table 7.3 - Simulation of Two Node Organisation (Figure 7.11) 
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[Reward Parameter = 0.04 

Rew£ird Probability 

C31 = 0.9 

Path ProbabiUty for Decision Module D M l : After Switch P3 

n p l p2 p3 p4 p5 p6 

0 0.854036 0.059909 0.033233 0.024075 0.013052 0.015695 

600 0. 583030 0.033474 0.264141 0.102045 0.007646 0.009663 

1200 0.302103 0.018049 0.573407 0.097502 0.003883 0.005056 

1800 0.201256 0.012179 0.704976 0.075629 0.002574 0.003385 

2400 0.150887 0.009189 0.774746 0.060707 0.001925 0.002544 

3000 0.120683 0.007378 0.817884 0.050479 0.001537 0.002038 

Path Probabihty for Decision Module DM2: After Switch Q l 

n q l q2 q3 q4 q5 q6 

0 0.839764 0.054985 0.049259 0.034007 0.011533 0.010451 

600 0.900723 0.058943 0.020865 0.015002 0.002343 0.002123 

1200 0.946919 0.032772 0.010368 0.007705 0.001172 0.001062 

1800 0.964462 0.021999 0.006879 0.005169 0.000782 0.000708 

2400 0.973289 0.016556 0.005147 0.003889 0.000586 0.000531 

3000 0.978604 0.013272 0.004112 0.003117 0.000469 0.000425 

(b) After Switch : Optimal Strategy Pair P3.Q1 

Table 7.3 - Simulation of Two Node Organisation (Figure 7.11) 
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Surtch o f Environment i Before Switch P1.Q1 

«pl (n) 
c q l (n) 

Number o f I t e r a t i o n s 

(a) Before Switch P l . Q l (Table 7.3a) 

Switch o f Environment i A f t e r Switch PI 

Number o f I t e r a t i o n s 

Switch o f Environment i A f t e r Switch P3.01 

Number of I t e r a t i o n s 

(a) After Switch P I (Table 7.3b) (b) After Switch P3.Q1 (Table 7.3b) 

Figure 7.12 - Average Action Path Probability vs Iterations 
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Figure 7.13 - Communication Between Decision Modules 
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Reward Parameter = 0.04 

tlncrement Reward Probability = 0.16 

Reward Probability 

C n = 0.9 

Path ProbabiUty for Decision Module DMl: PI 

n pl p2 p3 p4 p5 p6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0. 838864 0.101717 0.014694 0.014704 0.015153 0.014867 

1200 0.917820 0.052470 0.007341 0.007359 0.007583 0.007427 

1800 0.944856 0.035337 0.004892 0.004907 0.005057 0.004950 

2400 0.958508 0.026637 0.003669 0.003681 0.003793 0.003712 

3000 0.966742 0.021374 0.002935 0.002945 0.003035 0.002969 

Path ProbabiUty for Decision Module DM2: Ql 

n ql q2 q3 q4 q5 q6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.900723 0.058943 0.020865 0.015002 0.002343 0.002123 

1200 0.946919 0.032772 0.010368 0.007705 0.001172 0.001062 

1800 0.964462 0.021999 0.006879 0.005169 0.000782 0.000708 

2400 0.973289 0.016556 0.005147 0.003889 0.000586 0.000531 

3000 0.978604 0.013272 0.004112 0.003117 0.000469 0.000425 

(a) Top Level Communication : ( S A l and SA2) 

Table 7.4 - Communication Between Automata (Figure 7.13) 
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Reward Parameter = 0.04 

tlncrement Reward Parameter = 0.16 

Reward Probability 

C i i = 0.9 

Path Probability for Decision Module DMl: P l 

n pl p2 p3 p4 p5 p6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0. 909035 0.039772 0.012995 0.013038 0.012565 0.012593 

1200 0.953980 0.020423 0.006498 0.006519 0.006284 0.006295 

1800 0.969201 0.013734 0.004332 0.004346 0.004190 0.004196 

2400 0.976856 0.010345 0.003249 0.003259 0.003143 0.003147 

3000 0.981463 0.008298 0.002599 0.002607 0.002514 0.002518 

Path ProbabiUty for Decision Module DM2: Ql 

n ql q2 q3 q4 q5 q6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.903764 0.042945 0.015087 0.015940 0.010836 0.011427 

1200 0.951277 0.022077 0.007532 0.007981 0.005418 0.005714 

1800 0.967384 0.014852 0.005019 0.005323 0.003612 0.003809 

2400 0.975487 0.011189 0.003763 0.003994 0.002709 0.002857 

3000 0.980365 0.008976 0.003010 0.003195 0.002167 0.002286 

(b) Top and Lower Level Communication: (SA1:SA2) (RS11:RS21) 

Table 7.4 - Communication Between Automata (Figure 7.13) 
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Re Weird Peirameter = 0.04 

Increment Reward Pareimeter = 0.1a 

Reward Probability 

C33 = 0.9 

Path Probability for Decision Module DM1: P3 

n pl p2 p3 p4 p5 p6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0. 802600 0.091126 0.029971 0.026251 0.027005 0.023046 

1200 0.898591 0.048272 0.014989 0.013121 0.013563 0.011463 

1800 0.931791 0.032783 0.009994 0.008747 0.009055 0.007629 

2400 0.948618 0.024813 0.007496 0.006560 0.006796 0.005717 

3000 0.958785 0.019959 0.005997 0.005248 0.005439 0.004571 

Path Probability for Decision Module DM2: Q3 

n ql q2 q3 q4 q5 q6 

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666 

600 0.798982 0.109165 0.024862 0.027623 0.019942 0.019426 

1200 0.896730 0.057343 0.012413 0.013830 0.009964 0.009720 

1800 0.930540 0.038842 0.008271 0.009224 0.006641 0.006481 

2400 0.947675 0.029361 0.006202 0.006919 0.004980 0.004861 

3000 0.958029 0.023599 0.004961 0.005536 0.003984 0.003889 

(c) Re-locate Unique Maximum: (SA1:SA2) (RS11:RS21) Communicate 

Table 7.4 - Communication Between Automata (Figure 7.13) 
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Upper Le v e l Communication 

«pl • No Communication 
A q l • No Communication 

-ap 1 I CommunIca 11 on 
-H-qt I Communication 

Number o f I t e r a t i o n s 

(a) Upper Level Path P l . Q l (Table 7.4a) 

Upper and Lower Level Communication 

p l I No Communication 
q t I No Communication 

Espl • Communication 
q l I Communication 

Number o f I t e r a t i o n s 

Upper and Lower Level Communication i P3.03 

No Communication 
No Communication 
CommunI cat I o n 
CommunI cat I o n 
CommunI cat I o n 
CommunI cat I o n 

Number of I t e r a t i o n s 

(b) Path P l . Q l (Table 7.4b) (c) Path P3.Q3 (Table 7.4c) 

Figure 7.14 - Average Action Path Probability vs Iterations 
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Chapter Eight 

Conclusion and Recommendations for Future Work 

8.1 Conclusion and Summeiry 

This thesis has described the various approaches in developing 

analytical models for decentralised decision making under uncertainty. It has 

been emphasised that the core problems are quite profound and have a bearing 

on many areas that are interesting to a diverse range of disciplines. There are 

many chcillenging problems which remain unsolved, and the appUcations for 

new results wiU be widespread. The purpose of this chapter is to summarise 

and conclude the work that has been completed during the course of this 

project. In particular, to focus on the contribution made during the research 

programme and to outline areas of research that appear promising for the 

future. 

The initial phase of research has provided an overview of the field 

of DAI and considered the importance of coordination in such systems. The 

thesis is not intended to provide a survey of the entire field of DAI, but 

rather it focusses on coordination techniques and the motivations for learning 

in DAI systems. The analysis of the work related to coordinating the problem 

solving of multiple agents has been regarded as the central problem of DAI 

research. The survey has highUghted that effective coordination in DAI 

systems requires three facets to be present: (i) structure within which agents 

can interact in predictable ways; (ii) flexibility so that nodes which exist in 
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dynamically changing environments can deal with incomplete, inaccurate or 

obsolete information; and (iii) the knowledge and reasoning capabilities to 

intelligently use the structure and flexibihty. The basic stochastic lecuming 

automaton framework deals with the first two points. In particular, the 

interactive decision making models discussed in Chapter Four, exhibit the 

features of structure and flexibiUty. These interconnections provide each 

model with varying levels of flexibiUty in their interactions towards agents 

and the changing environment. However, the discussion has concluded that 

the basic framework used in isolation is inadequate for the representation of 

a generalised network. It is necessary to extend the modelling framework, 

to overcome these limitations. This extension has been addressed in Chapter 

Six which proposes a hybrid model. The final feature is not a matter 

of coordination, rather it is the ability to reason about information eind 

predictions when making decisions about its local problem solving. The 

stochastic learning automaton does not have this characteristic. However, the 

model exhibits an inteUigence capability that use the structure and flexibihty 

in order to adapt to dynamically changing environments. 

The survey has also highUghted that there has been limited research 

dealing with learning in the DAI Uterature. The implementation of success­

ful learniag methods in DAI systems can have significant impacts on the 

development of distributed decision making models operating in uncertain 

environments. The thesis proposes learning in a multiagent setting which 

has been discussed in the context of an AI approach. This methodology is 

based on the stochastic learning automata which is considered to represent 
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a promising approach to providing a conceptual framework for modelling of 

decentralised decision making. 

Interactive Automata Model 

The previous chapters have addressed the problems of decentralisation 

and uncertainty. To formalise these ideas a promising framework based on 

the stochastic learning automaton model has been considered. In particular, 

the concept has been directed towards modelUng highly interactive situations 

which consider different methods of interconnection of individual decision 

makers. These models illustrate how decision makers interact with each other 

and update their decisions using known learning schemes. The behaviour 

of such models may be explained by using concepts from both stochastic 

learning theory and game theory. A detailed description has been presented 

by considering both synchronous and sequential models. For such structures it 

is important to know what kind of interconnections result in a desirable overall 

system performance. This can be acheived by analysing the corresponding 

game structure as interconnections are varied. Whilst such interconnections 

were appropriate for the representation of interactive models, these models 

are rather primitive. It is evident that a detailed investigation of the specific 

interconnections was needed before organisational structures can be designed 

that promote high quality decentraUsed decision making performance. The 

basic framework was not sufficient to illustrate the expUcit interaction between 

decision makers which capture information flow and time delays that are 

crucial in the modelling of systems. In addition these models were restricted 
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in modelling flexibility, since they could only be used to model systems that 

exhibit feedback and hierarchical configurations. It was necessary to propose 

a more convenient modelling tool to meet these specific requirements and this 

was accomplished in the next phase of research. 

Petri Net and Associated Models 

The thesis has defined a high-level mathematical framework based on 

Petri net methodology. This formalism has presented an abstract, formal graph 

model useful for representing systems which exhibit concurrent, asynchronous, 

distributed parallel and/ or stochastic activities. Several recent attempts have 

considered the potential of Petri nets in the modelling of decision making 

organisations, [60], [61]. In particular, their work was oriented towards the 

optimal design of organisations. This optimal design is based on the data flow 

formations which are used to model in a precise manner the various types of 

interactions between decision makers as well as interactions between decision 

aids and systems that support the organisation. Although such work may 

be necessary for the optimal design of organisations the thesis has considered 

that a focus on data flow formations alone is not sufficient to guarantee high 

levels of performance in a distributed decision making organisation. It was 

also essential to focus on the behaviour of an organisation that operates under 

uncertainty. This viewpoint introduced a new dimension to existing Petri net 

theory. The thesis proposed an extension to Petri nets and has developed a 

new class of modelling/design tools known as Learning Petri Net models. 

The extension to Petri nets was introduced by embedding the concept 
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of stochastic learning automata into the model. The intelligence capabiUty 

incorporated within different forms of Petri nets has greatly enhanced the 

modeUing power of Petri nets. Each variation in the modelUng technique has 

exhibited a data flow formation, a decision making process embedded within 

the structure and, various types of transitions associate with each model. 

Clearly, these learning Petri net structures highUght a powerful design tool 

for the effective representation of distributed decision problems. 

The thesis has shown how the use of a SLPN model enables dynamic 

decision making by controlUng the selection of decisions on a probabilistic 

basis. The model has also illustrated how information can be monitored at 

each time instant such that probabilistic outcomes of the decisions can be 

captured to achieve a desirable global performance. It may also be noted 

that all the proposed hybrid models alter in some way the firing rule of Petri 

nets, and make it so that the main part of net theory is no longer appUcable. 

These features have emphasised the increased complexity of the hybrid models 

in comparison to the standard Petri net model. 

The learning Petri net models are often constrained to a graphical 

representation and reachabiUty tree analysis. Many problems regarding the 

correct operation of these new models can be posed in terms of questions 

related to the reachabiUty of states in Petri nets. The reachabiUty problem 

may be studied by finding finite representations for reachability sets. However, 

to ensure the correct operation of modelUng systems many factors must be 

addressed. These characteristics may be stated in the form of assertions which 

includes maintaining integrity in concurrent activities, guarantee deadlock free 
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operation and system must be resihent to failures. Correctness models are 

used for two purposes: to provide descriptions of systems and to facUitate 

proofs about system assertions. In simple terms, correctness models attempt 

to prove some desired characteristics of systems. The issue of proving correct 

operation has received attention only relatively recently. There seems to be 

no model which is widely appUcable to the broad spectrum of correctness 

problems. The analysis of correctness used in many systems tend to be 

relatively informal, however in some cases mathematical models are used. 

Petri nets are considered to be ideal representatives of correctness models. 

The thesis has presented a classical analytical framework which have 

been developed largely within the framework of mathematics and game theory. 

These models use the available information (without recourse to experience) 

to make optimal judgements and decisions. In these models skiU/ experience 

levels are not reflected. The models are not appUcable in situations where 

a decision maker must use skiUs of sizing up a situation, detecting patterns, 

imagining how a course of action wiU be performed, anticipating undesirable 

consequences and so forth. The strongest disadvantage of analytical models 

is that they prevent decision makers from taking advantage of their skills in 

sizing up situations and planning courses of action. In addition such models 

do not work under time pressure because they take too long. However, when 

there is enough time, they require much work and lack flexibiUty for handling 

rapidly changing conditions. It may be emphasised that analytical decision 

making is more helpful when there is a conflict to be resolved, especially when 

conflict involves people with different concerns. The analytical frameworks 
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are usually a better strategy to be used when an optimal solution is required. 

Finally, analytical strategies necessary when the problem involves so much 

computational complexity that alternate strategies would be inadequate. Thus, 

an interesting exercise to overcome the Umitations that exist within analytical 

frameworks would involve an examination of the internal structure of decision 

modules. Additional characteristics could be embedded within each module 

to provide modelling flexibiUty in operational settings. 

Applicability of Models to Realistic Problems 

The application of the new modelling tool to a non-trivial example has 

been considered. This appUcation has demonstrated the modelUng power of 

Stochastic Learning Petri net (SLPN) tool. In particular, the design tool was 

used to iUustrate modelling flexibility and suitability to a realistic distributed 

decision problem. To demonstrate the versatiUty of the model different 

scenarios were contrived to observe the performance of the organisation. The 

basic model involved a two node organisation interacting with a stochastic 

environment. Each module communicated with a decision support system to 

learn the optimum strategy for interaction with the random environment. The 

scenario iUustrated the modeUing capabiUty of optimum distributed strategies 

in stochastic environments for both steady state and switched environments. 

The abUity to model communication between adjacent hierarchical layers 

and the abiUty to use confidence communication signals to provide adaptive 

stepsizes to improve convergence rates has been shown. The new results 

provided by each experiment have shown some trends that enable general 
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statements to be made about the behaviour of the organisation under varied 

circumstances. These models are well suited to represent more complex 

decision problems. In practice it is much more common that such orgainisations 

comprise a large number of decision modules connected in arbitrary topology. 

It may be noted that the Generalised Stochastic Learning Petri net 

(GSLPN) may also be considered for these appUcations. This approach 

requires more modelling eff'ort, but results in a much smaller reachabiUty set. 

It is thus desirable to consider a GSLPN appUcation whose complexity only 

depends on the combination of transitions. This can be done provided that 

a careful study of the application domain is considered. 

206 



8.2 Recommendations for Future Work 

During the course of this research project a modelUng tool for decen­

tralised distributed systems based on a hybrid approach has been proposed. 

The appUcation of this modelUng tool to a simple non-trivial example has been 

considered. These models are capable of dealing with realistic more complex 

decentralised decision problems. The next phase of research can be extended 

by using concepts which have originated from the research programme. 

8.2.1 Models (Byzantine Generals) 

To date the appUcation of the modelUng tool to a two node organisa­

tion has been considered. This may be extended to observe the performance 

of an arbitrary number of decision modules connected in a range of topological 

structures. However, an important component of such large, reconfigurable 

distributed structures is considered to be reliability. Intuitively, reUabiUty 

is a measure of how well a system can tolerate and recover from failures. 

ReUabUity has two aspects, a system is saiid to be reliable if its output or 

results are correct. Correctness is an important factor because the system is 

required to maintain consistency. The presence of failures may temporarily 

cause an iuconsistent state but the recovery algorithms should restore the 

system to a correct state. The second aspect of reUabiUty has to do with 

availabiUty. A reUable system should tolerate failures and should be able to 

continue operation even in a degraded state. The objective is to design a 

system that can sustain multiple failures and continue to process transactions 

promptly and correctly. 
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Analytical models may be used to study unreUable communication 

between decision modules. An unreUable decentralised system often requires a 

means by which independent decision modules can arrive at an exact mutual 

agreement of some kind. In the absence of faults, errors and failures reaching 

a satisfactory mutual agreement is usually an easy matter. However, in the 

presence of failed components a decision module can behave in an unpredictable 

manner; block information from being relayed, alter the information relayed 

through itself, incorrectly reroute the information and in the worst case 

it can send conflicting information to different parts of the system. The 

Byzantine Generals problem is proposed as an appropriate model in resolving 

this type of failure, [69], [70]. Appendix Four provides a description of the 

Byzantine Generals problem and several algorithms for dealing with conflicting, 

inconsistent information in a system. 

8.2.2 Modelling Hum£Ln Factor in C^I Systems 

Most studies of command and control have focussed on an organisation 

which is formed in order to perform a set of tasks that individuals cannot 

perform alone. The task to be performed by the organisations being considered 

consist of receiving signals or inputs from one or more sources, processing 

them and producing outputs which can be actions or signals. A single 

decision maker cannot perform these tasks alone because of the large amount 

of information processing required and because of the fast tempo of operations 

(eg. tactical situations). Such organisations have also neglected the ways in 

which decision makers diagnose problems, develop solutions and select options. 
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It is precisely these functions and the Hmitations of humans as information 

processors and problem solvers which constitutes a major problem in the 

development of realistic models of C^I. Thus, it is important to examine the 

ways in which human performance affects the functioning of C^I systems. 

The theory of human decision making involves an interdisciplinary 

body of knowledge. There exists contrasting schools of thought in this 

complex area. These include classical analytical theories, naturalistic theories 

and a class which reside somewhere in between these two opposing approaches 

to understanding and explaining decision making processes, [7], [71], [72], [73 . 

Figure 8.1 illustrates that there are certain factors which increase the decision 

makers tendency to use particular types of decision making strategies, [72]. 

8.2.3 Automatic Data Fusion 

The requirements for an automatic data fusion process are complex 

and diverse. A distributed data fusion system represents a good platform 

for integrating several complementary AI technologies. Such a system is 

capable of providing a robust, maintainable, concurrent processing environment. 

Additionally, the system would be potentially flexible enough to support the 

wide variety of processing capabilities which are necessary for the task of data 

fusion. 

The automation of data fusion is not a trivial task by any standards. 

The fusion process must be able to combine high processing throughput 

with human Hke processing faculties. A fusion system must deal with all 

situations including, drawing upon a wide range of knowledge and experience, 
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or alternatively a provision to learn from experience must be incorporated 

within the system. It should also exhibit a means for reasoning with 

information which can be uncertain and unreliable. In such cases, the 

technical complexity of an automated fusion system will depend upon the 

level of processing which is supported. The benefits to be gained from 

automating various levels of data fusion tasks are significant. These include: 

the automation of the mundane fusion tasks such as data association and 

classification; when the influx of reports are high, such systems are potentially 

capable of much higher processing throughput; a computerised system is less 

susceptible to errors, and is not fatigued by repetitive, menial tasks; capable of 

identifying hidden inferences and associations which are typically not identified 

through human level reasoning. 

A simplified model of the fusion process can be described in terms of 

two levels. The lower level procedures are mostly concerned with mechanistic 

calculations to determine the classification and state of an object. This involves 

the derivation of target position and identity, and hence the processing speed 

wUl usually be an important consideration. The higher level procedures are 

concerned with the derivation of threats, patterns of behaviour, and predictions 

of future intentions from the perceived situation. This level of processing 

is more abstract and involves sophisticated reasoning, and less mechanistic 

computation. A basic generic model of data fusion has been described by 

Waltz and Llinas, [74]. In addition, it is necessary to examine the potential 

technologies which could form the basis of a simple fusion system. In this 

context an area worthy of further investigation is the internal structure of the 
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four-stage decision making process, Figure 7.1. In particular, it is necessary to 

focus on the information fusion (IF) and command interpretation (CI) stages, 

to improve system performance and to achieve specified task objectives. 

8.2.4 Migration of Control 

The notion of control migration seems to intuitively reflect system 

behaviour. In a classical feedback loop, control refers to the result of processing 

the externally produced command statements of system requirements and 

analysing system behaviour in the presence of uncertainty. The migration of 

control refers to the movement of the control function through the information 

structure of the system. It is a feature that can be built into large scale 

systems, if an adequate structure for control can be established. In large scale 

organisations, control may migrate in an unpredictable manner away from the 

decision makers who have been assigned specific authority and responsibUity 

to subordinate members of the organisation. The changes in an organisations 

structure such as, access to decision support systems can change the sensitivity 

of performance measures to the actions of different decision makers. Moreover, 

the choice of strategies selected by each decision maker affects which one has 

the most impact on performance. 

The migration of control may be viewed from both positive and 

negative perspectives. From a positive viewpoint, it is desirable for control to 

migrate in the event of a failure of a decision making node. However, from 

a negative perspective control may migrate in an unforeseen or undesirable 

manner. Migration may occur away from nodes which belong to higher 
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echelons to the lower echelons. Research in migration of control is still in 

its primitive stages, and is continuing as part of an effort to understand the 

dynamics of organisations, [62], [75]. 
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Figure 8.1 - Factors Affect Use of Recognitional/ 

Analytical Decision Me ik ing Strategies 
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Appendix One 

Computer Simulation Structure 

A l . l Introduction 

This section outUnes the general structure of simulations, which il­

lustrate the performance of the interactive decision making models. An 

algorithm is included to show the basic stochastic model operating in an 

unknown random environment, and updating action probabihties using Linear 

Reward/ Inaction scheme. It is possible to modify this Stochastic Automa­

ton Algorithm based on the chart presented in Figure A l . l , to acquire the 

appropriate synchronous and sequential models. 

A 1.2 Structure of Simulation 

The general structure of a simulation is displayed in the form of a 

chart in Figure A l . l . The chart shows the main stages in the development 

of programs for synchronous models. This structure holds for various con­

figurations described in Chapter Three and Four, all simulations have been 

completed in the ' C programming language. 

A1.3 Stochastic Automaton Algorithm 

The algorithm was developed to obtain a closed-loop configuration for 

the basic stochastic automaton model. The specific steps for simulation of 

automaton-environment: 
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Procedures relevant for the Algorithm 

STEPl Input and Initialisation 

Set reward = 0.01 (Reward Parameter) 
Set punish = 0.0 (P*unish Parameter) 
Setdj = 0.6 (Penalty Probability for Selecting Action 1) 
Setd2 = 0.1 (Penalty Probability for Selecung Action 2) 
Set nexpts = 2 (Total number of experiments) 
Set itrial = 1000 (Total number of iterations/expt) 
Set ntrial = 200 (Average sample path) 
Set seedval 
srand48(seedval) (Initialise random number generator, range [0.0,1.0]) 

For k=0,.... (nexpts) 

Set probl = 05 
Set prob2 = (1.0-probl) 
Setp^ = 1 

SetOj = 1 
Set flag = 0 
Set sumpl = 0.0 
Set sump2 = 0.0 

fo r j=0 , ( i t r i a l ) 
for i=0 (nirial) 

/* Interconnect automata-environment to form closed loop configuration */ 
(i) Set = autolO (Call function autolQ) 

(ii) SetP^ =envirlO (Call function envirlQ) 
(iii) Evaluate action probabilities: probl, prob2; 

i f ( a i = l ) 

{Set probl= lri_probl20 (Call function h-i_probl20) 
Set prob2= lri_prob22()) (Call function h-i_prob220) 

else 
{Set prob2= hi_prob22() (Call function h-i_prob220) 
Set probl= lri_probl20) (Call function lri_probl20) 

/* Store probabilities in array to evaluate expected values */ 
Setprl[i][k] = probl 
Setpr2[i][k] =prob2 
Compute sump 1 +=pr 1 [i] [k] 
Compute sump2+=pr2[i][k] 

/* Reset flag */ 
if(flag=0) 
inimi=0 
Compute prb 1 [inum] [k]+=probl 
Compute prb2[iniun][k]+=prob2 
flag=l 
Compute i-H-
Compute j+=ntrial 
Compute inum++ 
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Compute prb 1 [inum] [k]=sump 1/j 
Compute prb2[inum] [k]=sump2^ 
Compute k-H-

STEP 3 Evaluate expected values 

Reset itrial= 5 
(i) For i=0,.... (itrial) 

Set sump 1=0.0 
Set sump2=0.0 

for j=0,.... (nexpts) 

Compute sump 1 +=prbl [i] [j] 
Compute sump2+=prb2[i]lj] 
Compute j-H-
Compute prbl[i]Ij]=sumpl^ 
Compute prb2[i][j]=sump2/^ 
Compute i-H-

STEP 4 OUTPUT 

For i=0 (itrial) 
Print i , prbl[i] [nexpts], prb2[i] [nexpts] 

(Results are tabulated, action probabilities (pi, p2) at each stage n) 

By considering the chart shown in Figure A l . l , this algorithm can 

be modified to implement the various synchronous models. Since synchronous 

models consider multiple automata-environment pairs then Step 2(i-iii) are 

composed of the relevant routines, autol, envirl, lri-probl2, lri-prob22, as 

depicted in Figure A1.2a - Figure A1.2d. Several routines may be intercon­

nected, to achieve the desired configuration for the synchronous and sequential 

models. 
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1. INPUT AND INiriALISATIGN 

Read in data and 
initialise 

variables and arrays 

2. INTERCONNECT AUTOMATA 
ENVIRONMENT TO FORM CLOSED 
LOOP CONHGURATION 

Total number of trials 

Total number of 
experiments 

3. EVALUATE EXPECTED VALUES 

4. RESULTS OF SIMULATION 

Tabulate results at each 
stage n: pi(n)=E[pl(n)] 

Figure A 1.1 - Overall Structure of Program 
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INT AUTO 1 (ACTION 1, PROBl) 

C PURPOSE 
INT AUTOl,DETERMINES THE ACTION SELECTED BY THE 
AUTOMATON 

C METHOD 
INT AUTOl,GENERATES RANDOM NUMBER AND COMPARES WITH 
CORRESPONDING ACTION PROBABILITY TO GENERATE THE NEXT ACTION 
SELECTED BY THE AUTOMATON. 

C HISTORY 
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF 

ENGINEERING AND COMPUTER SCIENCE.DURHAM, 
DHl 3LE. 

C ARGUMENT IN 
ACTION 1 INTEGER, ACTION SELECTED BY AUTOMATON 

PROB1 REAL,PROBABILITY OF THE ACTION SELECTED BY AUTOMATON 

C ARGUMENT OUT 
ACTIONl ON E X I T . CONTAINS THE NEXT ACTION SELECTED BY 

AUTOMATON 

INT A U T O K A C n O N l J ' R O B l ) . 

INTEGER ACTIONI 
R E A L PROBl,RAND 

GENERATE RANDOM NUMBER 
RAND = DRAND48( ) 
IF (RAND < = PROB 1) THEN 

SET A C n O N l = 1 
E L S E 

SET ACTIONl = 2 
RETURN (ACTIONl) 

(a) Routine A u t o l ( ) 

Figure A 1.2 - Programme Routines 
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INT ENVIRKACTION 1, PENALTYl , PENALTY2, RESPONSEl) 

C PURPOSE 
INT ENVni l , DETERMINES THE RESPONSE FROM THE ENVIRONMENT, THE 
RESPONSE1=0 CORRESPONDS TO PUNISH,RESP0NSE=1 CORRESPONDS TO A 
REWARD SIGNAL 

C METHOD 
INT ENVIRl,GENERATES RANDOM NUMBER AND EVALUATES THE 
RESPONSE FROM THE ENVIRONMENT 

C HISTORY 
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF 

ENGINEERING AND COMPUTER SCIENCE,DURHAM, 
DHl 3LE. 

C ARGUMENT IN 
A C n O N l INTEGER, ACTION SELECTED BY AUTOMATON 

PENALTYl REAL, PENALTY PROB ABrLITY CORRESPONDING TO AN 
ACnON(ACTIONl) SELECTED BY THE AUTOMATON 

PENALTY2 REAL, PENALTY PROBABILITY CORRESPONDING TO AN 
ACTI0N(ACTI0N2) SELECTED B Y AUTOMATON 

RESPONSEl INTEGER,RESPONSE PROVIDED BY THE ENVIRONMENT 

C ARGUMENT OUT 
RESPONSEl ON EXIT, PROVIDES THE RESPONSE FROM THE ENVIRONMENT 

REWARD/PUNISH SIGNAL 

INT ENVIR1(ACTI0N1,PENALTY1,PENALTY2JIESP0NSE1) 

INTEGER ACTIONIJIESPONSEI 
REAL PENALTY1,PENALTY2,RAND 

GENERATE RANDOM NUMBER 
RAND = DRAND48( ) 
IF (( ACTI0N1=1) AND (RAND <= PENALTYl)) THEN 
RESPONSEl = 1 
E L S E IF (( ACTI0N1=1) AND ( RAND > PENALTYl)) THEN 

RESPONSE1=0 
E L S E IF (( ACTI0N1=2) AND (RAND <= PENALTY2)) THEN 

RESP0NSE1=1 
E L S E 

RESPONSE1=0 
RETURN (REPONSEl) 

(b) Routine E n v i r l ( ) 

Figure A1.2 - Programme Routines 
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DOUBLE LRI_PROB12(TRLU.,ACTIONl,RESPONSEl,PROBl,PROB2,REWARD,PUNISH) 

CPURPOSE 
DOUBLE LRI_PR0B12, UPDATES THE ACTION PROBABILITY (PROBl) 
USING THE LRI SCHEME 

C METHOD 
DOUBLE LRI-PROB 12,GENERATES A RANDOM NUMBER TO DETERMINE 
THE UPDATED ACTION PROBABILITY B Y USING THE LRI LEARNING 
ALGORITHM 

C HISTORY 
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF 

ENGINEERING AND COMPUTER SCIENCE.DURHAM, 
DHl 3LE. 

C ARGUMENT IN 
TRIAL INTEGER, NUMBER OF ITERATIONS 
A C n O N l INTEGER, A C n O N SELECTED B Y AUTOMATON 
RESPONSEl INTEGER, RESPONSE FROM THE ENVIRONMENT 
PROB 1 REAL, ACTION PROBABILITY FOR ACTIONl 
PR0B2 REAL, ACTION PROBABILITY FOR ACTION2 
REWARD REAL, REWARD PARAMETER 
PUNISH REAL, PUNISH PARAMETER 

C ARGUMENT OUT 
PROB 1 ON EXIT , THE UPDATED ACTION PROBABILITY FOR ACTIONl 

DOUBLE LRI_PROB 12(TRIAL,ACTI0N1,RESP0NSE1 J'ROBl,PROB2JlEWARD,PUNISH) 

INTEGER ACTIONLRESPONSEI 
R E A L PROBl,PROB2,REWARD,PUNISH,RAND 

GENERATE RANDOM NUMBER 
RAND = DRAND48( ) 

I F ( T R I A L > 0 )THEN 
[IF (( RESPONSE = 1) AND (ACTIONI = 1)) THEN 

SET PROBl = PROB1+REWARD*(1.0-PROB1) 
E L S E IF ((RESP0NSE1=1) AND (ACT10N=2) THEN 

SET PROBl = (1.0-REWARD)* PROBl 
E L S E IF ((RESPONSE1=0) AND ((ACTI0N1=1) OR (ACTI0N1=2))) THEN 

SET PROB 1 = (1.0-PUNISH)* PROB 1] 
E L S E 

SET PROB 1 = PROBl 
RETURN(PR0B1) 

(c) Routine L r i - p r o b l 2 ( ) 

Figure A 1.2 - Programme Routines 
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DOUBLE LRI_PROB22(TRL\L,ACTIONl,RESPONSEl,PROBlJPROB2,REWARD,PUNISH) 

C PURPOSE 
DOUBLE LRI_PROB22, UPDATES THE ACTION PROBABILITY (PR0B2) 
USING THE LRI SCHEME 

C METHOD 
DOUBLE LRI-PROB22,GENERATES A RANDOM NUMBER TO DETERMINE 
THE UPDATED ACTION PROBABILITY BY USING THE LRI LEARNING 
ALGORITHM 

C HISTORY 
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF 

ENGINEERING AND COMPUTER SCIENCE,DURHAM, 
DHl 3LE. 

C ARGUMENT IN 
TRIAL INTEGER, NUMBER OF ITERATIONS 
ACTIONl INTEGER, ACTION SELECTED B Y AUTOMATON 
RESPONSEl INTEGER, RESPONSE FROM THE ENVIRONMENT 
PROB 1 REAL, ACTION PROBABILITY FOR ACTIONl 
PR0B2 REAL, ACTION PROBABILITY FOR ACTI0N2 
REWARD REAL, REWARD PARAMETER 
PUNISH REAL, PUNISH PARAMETER 

C ARGUMENT OUT 
PR0B2 ON E X I T , THE UPDATED ACTION PROBABILITY FOR ACTION 1 

DOUBLE LRI_PR0B12(TRIAL,ACTI0N1,RESP0NSE1J'R0B1J'R0B2,REWARD,PUNISH) 

INTEGER ACTIONIJIESPONSEI 
R E A L PR0B1,PR0B2,REWARDJ'UNISHJIAND 

GENERATE RANDOM NUMBER 
RAND = DRAND48( ) 

I F ( T R I A L > 0 )THEN 
UF ((RESPONSE = 1) AND (ACTION 1 = 2)) THEN 

SET PR0B2 = PROB2+REWARD*(1.0-PROB2) 
E L S E IF ((RESPONSEl=l) AND (ACTI0N=1) THEN 

SET PROB2 = (1.0-REWARD)* PR0B2 
E L S E IF ((RESPONSE1=0) AND ((ACTIONl=l) OR (ACTION 1=2))) THEN 

SET PR0B2 = (1.0-PUNISH)* PR0B2] 
E L S E 

SET PROB2 = PR0B2 
RETURN(PR0B2) 

(d) Routine Lri-prob22() 

Figure A 1.2 - Programme Routines 
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Appendix Two 

Game Theoretic Concept 

A2.1 Introduction 

This Appendix introduces some of the terminology of game theory, 

providing formal definitions and basic concepts, [45], [46], which are relevant 

to this thesis. The theory of games originated at the end of the Second 

World War, such a concept involved modeUing problems with two or more 

decision makers. To date this area of 'appUcable mathematics' has continued 

to be one of the most active branches of research and development. 

A2.2 What Is Game Theory? 

Game theory is a method for the study of decision making in situations 

of conflict. I t is a theoretical model that deals with human processes in 

which the individual decision maker is not in complete control of other 

decision makers entering into the environment. It describes conflicts of 

interest, cooperation or both between individuals, groups, formal or informal 

organisations or society. The theoretical models of such conflicts of interests 

between people or groups of people such as pohtical parties, government 

organisations, generals engaged in fighting an enemy, a player in a poker 

game may aU be viewed as a game situation. As such game theory consists 

of ways of analysing these problems. Game theory is a normative, not a 

descriptive theory. That is, it does not describe how actual people make 
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decisions in situations involving conflicts of interests; but rather i t discovers 

how certain rational players can be expected to make decisions in such 

situations. In simple terms, game theory is not a prescriptive way of how to 

play a game, but rather it is a set of ideas and techniques for analysing these 

mathematical models of conflict of interest. The problems in game theory are 

complex, since it involves decision makers with different goals or objectives. 

Each individual is in a situation in which there are many possible outcomes 

with different values to them. The individuals may have some control which 

influence the outcome, but they do not have complete control over others. An 

individual must consider how to achieve as much as is possible, taking into 

account that there are others with difierent goals from his own and whose 

actions have an effect on all. Thus, it is necessary to adjust plans not only 

to his own desires and abilities but also to the desires and abilities of others. 

In its strict game theoretic sense, a game has the following features: 

(i) Any game consists of more than one decision maker, called a player. 

A player in a game is an autonomous decision making unit. 

(ii) At specified instances, one or more players must make decisions by 

choosing among a specified set of alternatives. The selected decision 

determines the resulting situations of the game. Thus, a play of a 

game is a sequence of situations. 

(iii) Each situation in turn determines which of the players is to make 

the next decision (whose 'move ' it is) and the range of choices open 

to him. Note that certain specified situations define the end of the 
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particular play of the game. 

(iv) An outcome of the game may be defined as a situation in which a 

particular play of a game ends. At the end of each game each player 

receives a payoff eg. win, lose or draw. The payoff^s represent gains 

or losses. 

(v) A rational player is one who, having taken into account all the 

information available to him by the rules of the games, makes his 

choices in such a way as to maximise the actual or the statistically 

expected payoflF to accrue him in the outcome of the game. 

Note that each player has to mak;e decisions at some moves of the game. A 

strategy for a player can be defined generally as a plan of action containing 

instructions as to what to do in every contingency. Thus having selected a 

specific strategy it will enable him to adapt to situations that may arise, no 

matter what the outcomes of the chance events. Two types of strategies are 

of importance: a mixed strategy consists of performing a random experiment 

each time the game is played in order to choose which strategy to use that 

time. A strategy which does not involve this random experiment is called a 

pure strategy. 

I f the sum of the players' payoff" is zero no matter what strategy they 

use, the game is called zero-sum. In these games, the players are completely 

opposed to one another in that, what one wins the other loses. Games that 

do not exhibit this property are called non-zero-sum games. Moreover, a 

game with two players, where a gain of one player equals a loss to the other 
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is known as two-person zero-sum game. In such a game, the outcomes may 

be expressed in terms of the payoff to one player. 

A matrix is usually used to summarize the payoffs to the players 

whose strategies are given by the rows of the matrix. The definitions of a 

two-person zero-sum game may be considered by a coin-matching situation in 

which each of the players A and B selects a head (H) or a tail (T). I f the 

outcomes match (ie. H and H, or T and T) , player A wins 1.00 from B. 

Otherwise, A loses 1.00 to B. In this game each player has two strategies (H 

or T) . 

A2.3 Basic Definitions 

Many general properties such as strategy dominance, uniqueness of 

the equilibrium point, and Pareto-optimality have been considered as useful 

features of an optimal solution, [44], [45]. These properties are relevant to 

discussions in Chapter Four, and they are described as follows: 

Equilibrium Points 

In an N-person game strategy N-tuple is said to be an equilibrium point if 

no player has a positive reason for changing his or her strategy, assuming 

that no other player changes his strategy. The outcome (also called payoff) 

corresponding to this set of strategies is called an equilibrium outcome (payoff). 

Thus, an equilibrium outcome is one from which neither player can change his 

strategy without impairing his payoff, assuming that the other player sticks 

to his strategy. 
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Dominant Strategy 

A strategy dominates another when, independent of the action taken by the 

other players, the first strategy leads to an outcome as favourable as the 

second. 

Pareto Optimal 

In an N-person game, an outcome is said to be Pareto optimal if there is no 

other outcome in which all players simultaneously do better (receive larger 

payoff"). It is possible for a (2x2) game to have one, two , three or four 

Pareto optimal payoff's. 

Consider the following example of two-player games where each player 

has two strategies. Each game can be represented by a (2x2) matrix D whose 

elements are of the form { d } j , d f j ) , where d]j is the payoff" to player 1 and cifj 

the payoff" to player 2 when they play strategies i and j , respectively. The 

payoff" matrices of the three cases as follows: 

D, = (M (10,7) A / ( 5 , 5 ) (0,10) 
W0,0) ( 9 , 8 ) ; ^^=1(10,0) (1,1) 

((10,10) (0,5)X n _ f ( l , - l ) ( 2 , -2 )> 
V (5,0) ( 3 , 3 ) ; ^ ^ - 1 ( 3 , - 3 ) (0,0) ; 

Game Di, the strategy of the first player (row) and second strategy of the 

second player (column) are dominant, and (10, 7) is an equilibrium payoff. 
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I t is also Pareto optimal. Game £>2) (10, 10) and (3, 3) are both equilibrium 

payoffs, but only (10, 10) is Pareto optimal. Game Dz, both players have 

dominant strategies but the resulting outcome (1, 1) which is an equilibrium 

payoff, is not Pareto optimal (an instance of Prisoner's Dilemma). Game D^, 

a zero-sum game, the payoff (1, -1) corresponds to the first strategy of the 

two players is an equilibrium payoff and is called a saddle point. 
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Appendix Three 

Petri Net Concepts 

A3.1 Introduction 

This section introduces some of the basic Petri net properties ajid 

terms which are normally used in the analysis of Petri nets, [15], [16]. 

A3.2 Some Petri Net Properties 

Boundedness and Safe 

A Petri net is said to be k-bounded or simply bounded if the number of tokens 

in each place does not exceed a finite number k for any marking reachable 

from Mo, ie. the number of tokens in each place is < ^ for all markings in 

R(Mo). A Petri net is said to be safe i f the number of tokens in each place 

is < 1 for all markings in R(Mo). 

Boundedness is a very important practical property of Petri nets. For 

example places in a PN are used to represent buffers and registers for storing 

intermediate data. I f the net is bounded or safe, it is guaranteed that there 

will be no overflows in the buffers or registers no matter what firing sequence 

is taken. 
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Liveness 

The concept of Uveness is very significant in the modelUng of operating 

systems. Liveness is a property that ensures deadlock-free operation, such 

that a transition remains potentially fireable in all markings reachable from 

a given marking. 

A Petri net is said to be live (or equivalently MQ is said to be a 

live-marking for N ) if, no matter what marking has been reached from MQ, i t 

is possible to ultimately fire any transition of the net by progressing through 

some further firing sequence. This property is ideal for many systems, but 

i t is impractical and too costly to verify this property for large computer 

systems. Thus, a number of diff'erent levels of Uveness have been considered. 

A transition t in a Petri net is said to be: 

• Dead (LO-Live) i f t can never be fired in any firing sequence in 

i ( M o ) ; 

• Ll-Live (Potentially Fireable) i f / can be fired at least once in some 

firing sequence in i ( M o ) ; 

• L2-Live if, given any positive integer k, t can be fired at least k times 

in some firing sequence in L(Mo); 

• L3-Live i f t can appear infinitely, often in some firing sequence in 

i ( M o ) ; 

• L4-Live or Live i f t is Ll-Live for every marking M in R{Mo). 
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It is necessary to state precisely the definition being used, since each definition 

is quite different. 

A3.3 Reachability (Coverability) Tree Algorithm 

To reduce a tree to finite form, it is necessary to find a means of 

limiting the new markings {frontier nodes) introduced at each step. During 

the construction of the reachability tree it is possible to find dead markings, 

ie. markings in which no transition is enabled and these markings are known 

as terminal nodes. In addition the expansion of the tree is stopped when 

a class of markings are reached that have previously appeared and have 

been considered, as they represent duplicate (old) nodes. No successor of a 

duplicate node need be considered; all these successors will be produced from 

the first occurrence of the marking in the tree. A final means to reduce the 

tree is by using a special symbol uj which can be thought of as infinity. The 

reachability (coverability) tree may now be precisely stated as follows: 

Let a; be a symbol, such that: 

u ± n = u,uj > n and u > u 

Coverability (Reachability) Tree Algorithm 

The coverability tree for a PN is constructed by the algorithm presented in 

Figure A3.1. By adopting the procedure outlined in Figure A3.1 all frontier 

nodes which have not been processed by the algorithm are converted to 

terminal, duplicate or interior nodes. Once all nodes have been classified as 

terminal, duplicate or interior, the algorithm halts. The coverability tree is 
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an extremely useful tool for the analysis of PNs. The folloAving outlines some 

of the properties that can be studied: 

• A Petri net is bounded and thus R{Mo) is finite if and only i f u; does 

not appear in any node labels in the tree. 

• A Petri net is safe i f and only if only O's and I's appear in node labels 

in the tree. 

• A transition t is dead if and only i f it does not appear as an arc label 

in the tree. 
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STEP 1 Label the initial marking M as the root and tag it 'new' 

STEP 2 While 'new' marking exist do the following: 

(2.1) Select a new marking M 

(2.2) If M is identical to a marking on the path from the root M to M, 
then tag M to be 'OLD' and stop processing M (DUPLICATE NODE) 

(2.3) If no transitions are enabled at M, tag M 'DEAD END' (TERMINAL 
NODE) 

(2.4) While there exist enabled transitions at M, for every transition t 
enabled in M 

(2.4.1) Obtain the marking NT that results from firing t at M 

(2.4.2) If there exists a path from the root to M for which a 
marking M" exists such that M'>=M" for each place M for 
which a maridng M" is coverable, then replace M" by 0) 
for each p such that M'>M" 

(2.4.3) Introduce M* as a node, draw an arc label t from M to M' 
and tag M 'new' 

Figure A3 .1 - Coverabil i ty (Reachability) Tree Algor i thm 
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Appendix Four 

Models (Byzantine Generals) 

A4.1 Introduction 

Appendix Four is concerned with possible analytical models which 

may be used to study unreliable communication between decision modules. 

The Byzantine Generals problem, [69], [70], is proposed as an appropriate 

model in resolving this type of failure. The Oral Messages algorithm is 

presented, which is used to solve the Byzantine Generals problem for 3m-(-l 

or more generals in the presence of at most m traitors. The algorithm uses 

the majority function, to select the appropriate value. The Signed Messages 

algorithm has also been presented. Note that the unforgeable signed messages 

algorithm provides a solution to the Byzantine Generals problem for any 

number of generals and possible traitors. 

A4.2 Reliable Systems 

A method known to implement a reUable system is to use several 

different 'processors' to compute the same result, and perform a majority vote 

on their outputs to obtain a single result. The use of majority voting to 

achieve reliability is based on the assumption that all correctly functioning 

processors must produce the same output provided they use the same input 

value. In order for majority voting to yield a reliable system, the following 

Interactive Consistency conditions must be satisfied: 
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(1) All nonfaulty processors must use the same input value (so that they 

produce the same output). 

(2) I f the input unit is nonfaulty, then all nonfaulty processors use the 

value it provides as input (so that they produce the correct output). 

Therefore in terms of reliable systems, the fundamental problem is the agree­

ment on a piece of data based on the cooperation among several processors. 

Several solutions to this problem have been provided in relation to Byzantine 

Generals analogy rather than computer systems. 

A4.3 Byzsmtine Genereds Problem 

Any reliable system must be able to cope with the failure of one or 

more of its components, and also malfunctions that send conflicting information 

to different parts of the system. I t may be defined that a component 'fails' 

when it completely stops functioning, and the term 'malfunction' is related 

to a system if it continues to operate but performs one or more operations 

incorrectly. The Byzantine Generals approach resolves this type of failure, 

consider the following scenario; 

• Several divisions of the Byzcintine Army are camped outside an enemy 

city; 

• Each division is commanded by its own general; 

• The generals can only communicate by messenger; 

• After observing the enemy they must decide upon a common plan of 
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action; 

• Some of the generals may be traitors trying to prevent loyal generals 

from reaching agreement. 

The generals follow an algorithm satisfying certain conditions, whose objectives 

are to reach agreement and follow a reasonable plan of action. The Byzantine 

Generals problem is restricted to considering how a commanding general sends 

an order to his Ueutenants, such that the following conditions are fulfilled: 

Condition I C l - A l l loyaJ heutenants obey the same order. 

Condition IC2 - I f the commanding general is loyal, then every loyal 

Ueutenant obeys the order that he sends. 

These are examples of Interactive Consistency conditions. Note that if the 

commanding general is loycil, then I C l follows from IC2. However the 

commander need not necesseirily be loyal. For a clear representation of the 

relationship with reUable systems the following notions are used: 

The sender of messages in the Byzantine Generals notation is referred 

to as the commander, in terms of reUable systems it is considered as the 

transmitter, ie. the unit generating the input. A message that the commcinder 

sends carry its value. The commander sends its value to its lieutenants either 

directly or through other Ueutenants called relays. A lieutenant can be a 

commcinder, a receiving lieutenant or a relay according to its function in the 

network with respect to a given message. A Ueutenant is loyal if it transfers 

the messages i t has received without altering or eavesdropping on them; 
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delaying the forwarding, sending conflicting values. A loyal commander is a 

reliable lieutenant that sends the same value to all its receiving Heutenants. 

I t is assumed that a traitor is a heutenant/ relay or a commander that is 

not loyal. In simple terms, the analogy described can be considered in terms 

of reliable systems, as follows: 

Commander - represents the unit generating the input values, indi­

cating a transmitter. 

Lieutenants - represent the processors. 

Loyal - relates to nonfaulty (correctly functioning) processors, that 

is a reliable processor; this implies that a traitor is an unreliable 

processor. 

Therefore in terms of Byzantine Generals the fundamental problem is to find 

an algorithm to ensure that loyal generals reach agreement. The following 

sections present algorithms which ensure that loyal generals reach agreement 

and also guarantee interactive consistency conditions for (n,m) where n is the 

total number of generals of which it is known that m are traitors. 

A4.3.1 Impossibility Results 

This defines a formal model which states that, if the generals can send 

only oral messages, then no solution will work unless more than two-thirds 

of the generals are loyal. Impossibility Results deals with only three generals 

in the presence of a single traitor, and proves that it is impossible to assure 

interactive consistency for n < (3m -|- 1) with (m-|-l) rounds of information 

exchange. An oral message may be defined as follows: 
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An Oral Message - is one whose contents are completely under the control 

of the sender, so that a traitorous general can transmit any possible message. 

For simpUcity, it is assumed that the only possible decisions that can be 

taken by a commander are 'attack' or 'retreat'. Figure A4.1a illustrates the 

case in which the commander is loyal and sends an 'attack' order to both 

Lieutenants, but Lieutenant 2 is a traitor and he reports to Lieutenant 1 that 

he received a 'retreat' order. The receiving Lieutenant 1 has to consider two 

possibiUties: ie. the commander is loyal and Lieutenant 2 is a traitor; or 

the commander is a traitor and Lieutenant 2 is loyal. For condition IC2 to 

be satisfied Lieutenant 1 assumes that the commander is loyal and he must 

obey the order to 'attack', which shows that the first case is correct. 

Consider another scenario, Figure A4.1b, in which the commander is 

a traitor and sends an 'attack' order to Lieutenant 1 and a 'retreat' order 

to a Lieutenant 2. Similarly, Lieutenant 1 encounters the same problem as 

above; he does not know who the traitor is, and cannot teU what message 

the commander actually sent to Lieutenant 2. I f the traitor Ues consistently. 

Lieutenant 1 cannot distinguish between these situations. Therefore, whenever 

Lieutenant 1 receives an 'attack' order from the commander he must obey i t . 

By applying a similar argument in the case of Lieutenant 2; if he receives a 

'retreat' order from the commander , then he must obey it even if Lieutenant 

1 teUs him that the commander said 'attack'. Analysing Figure A4.1b -
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Lieutenant 1 : obeys 'attack' order; while 

Lieutenant 2 : obeys 'retreat' order 

Thereby violating condition I C l - all loyal Lieutenants obey the same order. 

This proves that no matter what decision the Ueutenants make, no solution 

exists for three generals that work in the presence of a single traitor, formal 

proof has been included in, [69]. 

A4.3.2 Solution with Oral Messages 

This provides a solution to the Byzantine Generals problem, that 

works for (3m-|-l) or more generals in the presence of at most m traitors. In 

this case an algorithm is presented that acquires an extension of oral messages 

definition, based on the following assumptions: 

Definition of Oral Messages 

( A l ) : Every message that is sent is delivered correctly. 

(A2) : The receiver of a message knows who sent it . 

(A3) : The absence of a message can be detected. 

Assumptions A l and A2 prevent a traitor from interfering with the commu­

nication between two generals. Since, for assumption A l a traitor cannot 

interfere with the messages that are sent; and in assumption A2 a traitor 

cannot confuse their interaction by introducing erroneous messages. Finally, 

assumption A3 stops a traitor who tries to prevent a decision being reached 

by simply not sending messages. 
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Each general executes some algorithm that involves sending messages 

to the other generals, it is assumed that a loyal general correctly executes 

his algorithm. The oral messages algorithm requires that each general be 

able to send messages directly to every other general. Note that a traitorous 

commander may decide not to send any order. In such a case, since the 

Ueutenants must obey some order, they require some default order to obey. 

Hence, RETREAT may be considered as this default order. The Oral Messages 

algorithm is provided in Appendix (A4.4). 

The Oral Messages algorithm OM(m) may be defined inductively for 

aU nonnegative integers m, by which the commander sends an order to his 

(n-1) Ueutenants. The procedure consists of an exchange of messages. In 

the OM(m) algorithm two phases of information exchange are required. For 

the first phase the Ueutenants exchange their private values. In the second 

round they exchange the results obtained in the first round. I f a traitor 

exists he may Ue consistently, or refuse to send messages. For simpUcity this 

algorithm is described in terms of the Ueutenants 'obtaining a value' rather 

than 'obeying an order'. 

Figure A4.2a iUustrates the messages received by Lieutenant 2 when 

the commander sends the value v to aU three Ueutenants and Lieutenant 3 

is a traitor, in this case m = 1, and n = 4. By applying the Oral Messages 

algorithm, the first phase of Oral Messages algorithm 0M(1), the commander 

sends the order t; to all three Ueutenants. In the second phase by using the 

trivial algorithm OM(0), Lieutenant 1 sends the value v to Lieutenant 2; also 

the traitorous Lieutenant 3 sends Lieutenant 2 some other value x. In the 
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final phase, the Oral Messages algorithm applies a Majority Function to the 

input values received by Lieutenant 2. Thus, Lieutenant 2 has vi = V2 = 

V3 = X so that he obtains the correct order majority v = majority(t/, v, x). 

Now consider the case when the commander is a traitor. Figure 

A4.2b shows the values received by the lieutenants if a traitorous commander 

sends three arbitrary values x, y and z to the lieutenants. Similarly, applying 

the Oral messages algorithm. The end result indicates that each lieutenant 

obtains the same value majority(a;, y, z) in the final step of Oral Messages 

algorithm, regardless of whether or not any of the three values x, y and z 

are equal. 

A4.3.3 Solution with Signed Messages 

This solution contradicts Impossibihty results, since it restricts the 

traitors ability to lie, by allowing the generals to send unforgeable signed 

messages. By introducing this restriction, the Byzantine Generals problem 

becomes easier to resolve. In addition to the assumptions A1-A3 the following 

may be included: 

Assumption (A4.a) : 

A loyal generals signature cannot be forged, and any alteration of the contents 

of his signed messages can be detected. 

Assumption (A4.b) : 

Anyone can verify the authenticity of a general's signature. 

In the signed messages algorithm, the commander signs the order that he 
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wants to send to each of his lieutenants. Each receiving Ueutenant then 

adds his signature to that order and sends i t to the other Ueutenants, who 

add their signatures and send it to others, and so on. The receiver of the 

forwarded order can determine the true value sent by the commander, as weU 

as the true identity of the sender. I t is necessary that all loyal Ueutenants 

receive exactly the same Ust of values, say vi,... ,Vg, or else they may obtain 

different values in the final step. The notation used in the algorithm is 

outUned as foUows, let Vi : 0 denote the value signed by General 0. Thus, 

vi : 0 : Li denotes the value Vi signed by General 0, and then that value 

vi : 0 signed by Lieutenant L,-. Let General 0 be the commander. 

Figure A4.3 depicts the case for three generals, when the commander 

is a traitor - Ulustrating Algorithm SM(1): In the first phase of signed 

messages, the commander is a traitor, sending an 'attack' order to Lieutenant 

1 and 'retreat' order to Lieutenant 2. For the second phase of signed messages: 

Both Ueutenants receive their orders, add their signature to that order and 

send it to each other. 

The algorithm guarantees agreement as defined by conditions I C l 

and IC2, even if there are very few loyal lieutenants. Observe here that 

unlike ImpossibiUty Results, the Ueutenants know the commander is a traitor 

because his signature appears on two different orders, and assumption A4 

states that only he could have generated those signatures. It is shown that 

with unforgeable signed messages the problem is solvable for any number of 

generals and possible traitors. 
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A4.4 Byzantine Generals Algorithm 

Oral Messages Algorithm 

Algorithm OM(0); m=0 

(1) The commander sends his value to every lieutenant. 

(2) Each Ueutenant uses the value he receives from the commander or 

uses the value RETREAT if he receives no value. 

Algorithm OM(m); m > 0 

(1) The commander sends his value to every lieutenant. 

(2) For each i, let Vi be the value Ueutenant i receives from the commander; 

or else be RETREAT if he receives no value. Lieutenant i acts as 

the commander in Algorithm OM(m-l) to send the value Vi to each 

of the (n-2) lieutenants. 

(3) For each i, and each j ^ i, let Vj be the value Lieutenant i received 

from Lieutenant j in step (2) (using Algorithm OM(m-l)) or else 

RETREAT if he received no such value. Lieutenant i uses the value 

majority{vi,...,Vn-i). 

Once exchange of information is completed, the algorithm assumes a function 

majority which is used by each Ueutenant for deciding what the value is, 

given a set of received values. The function must have the property that 

if a majority of the values Vi equal then majority{vi,... ^Vn-i) equals v. 

However, i f a majority value among the Vi does not exist, a default value 

such as RETREAT is used. 
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Signed Messages Algorithm 

Algorithm SM(m) 

InitiaUy Vi = 0. 

(1) The commander signs and sends his value to every Ueutenant. 

(2) For each i: 

(a) I f Lieutenant i receives a message of the form v : 0 from the 

commander at phase 0, and he has not yet received any order, then 

(i) he lets Vi equal v ; 

(u) he sends the message v : 0 : i to every other Ueutenant. 

(b) I f Lieutenant i receives a message of the form w : 0 : L i : . . . : L t at 

k, \ < k < m, Vi contains at most one value, v is not in the set Vi, 

and the signatures belong to the different Ueutenants, then: 

(i) he adds v io Vi; 

(n) \i k < m, then he sends the message v : Q : Li : ... : Lk : i io 

every Ueutenant other than Li,...,Lk. 

(3) For each z: 

When Lieutenant i will receive no more messages, at the end of phase 

m he obeys the order choice{Vi)-

For this particular algorithm (m+1) rounds of information exchange cire 

required. In summary in step (2) Ueutenant Li ignores any message containing 

an order v that is already in the set Vi, and accepts at most two different 

orders originated by the commander. In addition Ueutenant Li ignores any 

messages that do not have the correct form, followed by a string of different 

signatures. 
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Figure A4 .1 - Impossibil i ty Results 
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Figure A4.2 - Solution w i t h Ora l Messages 
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Figure A4.3 - Solution with Signed Messages - Commander a traitor 
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-MIS • APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES TO DECENTRALISED DECISION MAKING IN C^-

P- Mars O.F.Ahmed P. Edwards 

U n i v e r s i t y of Durham,UK University of Durham,UK B r i t i s h Aerospace, Warton, UK 

1. INTRODUCTION 

The a n a l y s i s and design ^of complex, 
survivable, and responsive C -MIS requires 
novel advances i n Che area of distributed 
d e cision making under uncertainty. I n 
p a r t i c u l a r , systems engineering tools are 
needed for describing, decomposing and 
analysing such systems which must meet very 
demanding performance, s u r v i v a b i l i t y and 
response s p e c i f i c a t i o n s . This paper i s a 
f i r s t step i n a research e f f o r t to develop the 
required t h e o r e t i c a l and algorithmic tool^ for 
the systematic a n a l y s i s and design of C -HIS 
systems. Such systems are characterised by a 
high degree of complexity. Key features are a 
d i s t r i b u t i o n of decision making processes 
amongst s e v e r a l decision making 'agents', the 
need for r e l i a b l e operation i n the presence of 
multiple f a i l u r e s , and ine v i t a b l e interaction 
of humans with computer based decision support 
systems, (1),(2).(3). 

Aj present a n a l y s i s and synthesis studies for 
C -MIS a r c h i t e c t u r e s tends to be performed in 
an ad-hoc manner. I t i s e s s e n t i a l to develop 
quantitative methodologies, theories and 
algorithms relevant to C -MIS architectures. 
T o t a l l y c e n t r a l i s e d h i e r a r c h i c a l structures 
although e f f i c i e n t i n resource a l l o c a t i o n are 
highly vulnerable and introduce unacceptable 
delays. At the other extreme autonomous 
systems involving minimal delays are 
i n e f f i c i e n t i n Che u t i l i s a t i o n of scarce 
resources. C l e a r l y the design compromise i s i n 
the use of d i s t r i b u t e d systems architectures 
combining d i s t r i b u t e d agents with 
communications c a p a b i l i t y . 

I n t h i s paper we consider the use of a 
s t o c h a s t i c learning automata approach for both 
the adaptive control and modelling of 
decentralised d e c i s i o n making i n C -MIS. 

2.BASIC THEORY 

An extensive l i t e r a t u r e and a well established 
mathematical foundartion now e x i s t s for 
s t o c h a s t i c learning automata. E a r l y work i n 
the concexc of mathematical psychology, (4), 
( 5 ) , ( 6 ) , ( 7 ) , was followed by major research 
e f f o r t s i n both Russia, ( 8 ) , and the USA, (9), 

.'(10). Hardware implementations and 
ap p l i c a t i o n s i n process control and 
communication networks has also been 
considered, (11). 

I n general, a learning automaton may be 
defined as an element which i n t e r a c t s with a 
random environment i n such a manner as to 

improve a s p e c i f i e d o v e r a l l performance by 
changing i t s ac t i o n p r o b a b i l i t i e s dependent on 
responses received from the environment. 
Figure 1 shows the basic model. An automaton 
i s a quintuple (^,^,a,F,G) where ^ - (0,1) i s 
the input set (output from the environment),^ 
- ^^l'^2'•••'^2^ ^ f i n i t e state, a 
'^'^X'^l ^T-'i output action set (inputs 
to the environment) ,F:\6X/3 —^> 6̂ i s a state 
t r a n s i t i o n mapping and G : ̂  > Q i s the 
output mapping. 

We r e s t r i c t our attention to variable 
structure automata described by the t r i p l e 
(^,T,a). Here T denotes the rule by which the 
automaton updates the probability of selecting 
c e r t a i n actions. At stage n assuming r 
actions each s e l e c t e d with probability p . ( n ) [ i 
- 1,...,r] we have: 

p(n + 1) - T[p(n),a(n).^(n)] (1) 

A binary random environment i s defined by a 
f i n i t e set of inputs Q - (a. a ] (outputs 
from the automaton), an output sei ̂  - [0,lj 
and a set of penalty p r o b a b i l i t i e s c 
[Cĵ ,C2 c ] . The output ^(n) - 0 at stage n 
i s c a l l e d a favourable response (success) and 
^(n) - 1 an unfavourable response ( f a i l u r e ) . 
The penalty p r o b a b i l i t i e s are defined as: 

Pr[;3(n) - l/a(n) - a. (2) 
Apart from binary environment models other 
possible environments have included Q models 
( f i n i t e number of outputs) and S models 
(continuous outputs i n range 0 to 1). In 
p r a c t i c e the choice of environmental models i s 
obviously dictated by the p a r t i c u l a r 
application. I f the penalty probabilities 
from the environment do not depend on stage 
number n, the environment i s c l a s s i f i e d as 
stationary; otherwise the environment i s 
non-stationary. Important convergence res u l t s 
have been proved for both types of 
environment, (12). 

The convergence c h a r a c t e r i s t i c s of learning 
automata are dependent on Che properties of 
the algorithm used i n the updating scheme. A 
performance measure that has been extensively 
used i s the updated penalty that the automaton 
receives from the environment defined as: 

M(n) - E(;3(n)/p(n)] (3) 

Assuming a stationary environment and an 
automata s e l e c t i n g actions with equal 
probability the average received probability 
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i s M where o 

(4) 

A learning automaton i s s a i d to be expedient 
i f : 

and opcimal i f : 

lini^_^j:[M(n)] - min.fc.] (6) 

Both l i n e a r and non-linear forms of updating 
algorithms T have been considered. The most 
widely used are the c l a s s of l i n e a r algorithms 
which include l i n e a r reward/penalty . 
l i n e a r reward/f penalty (L^^ ) , and l i n e a r 
.reward/inaction schemes (1^^;. For the 1^ 
scheme i f an automaton t r i e s an a c t i o n a. 
which r e s u l t s i n success p.(n) i s increased 
and a l l o t h e r p . ( n ) ( j - i ) are decreased. 
S i m i l a r l y i f action produces a penalty 
response p.(n) i s decreased and a l l other 
p.(n) modified to preserve the p r o b a b i l i t y 
measure. An scheme ignores penalty 
responses from the environment and 1.̂^ only 
involves small changes i n p.(n) compared with 
changes based on success. 

In practice for adaptive optimisation problems 
the Lj^ p scheme i s preferred. The retention 
of a small element of penalty avoids the 
p o s s i b i l i t y of locking on uniquely to one 
s p e c i f i c action. For r actions and a binary 
environemnt the learning algorithm for p i s 
described as follows: 

For a(n) - and ̂ (n) - 0 (reward) 

p.(n + 1) - p.(n) + a [ l - p.(n)] (7) 

Pj ( n + 1) - ( l - a ) p ^ ( n ) (8) 

"or o(n) - and ̂ (n) - 1 (penalty) 

p.(n + 1) - (1 - b)p.(n) (9) 

Pj(n+ 1) - + (1 - b)pj(n) (10) 

lere learning parameters a and b are both 
ri t h i n the range (0,1). I n the case of L. 

J b - 0. ^ Lutomata a b and for b 

o far we have considered models of a sin g l e 
lecision maker (an automaton) i n t e r a c t i n g with 
n uncertain environment. We now extend the 
I s c u s s i o n to consider multiple d e c i s i o n 
akers i n t e r a c t i n g with an uncertain 
nvironment. I t i s considered that such 
lodels w i l l provide a f i r s t b a s i s for 
leveloping a n a l y t i c a l models of C -MIS 
ystems. Of p a r t i c u l a r i n t e r e s t i s that the 
utstanding p r a c t i c a l a p p l i c a t i o n of learning 
utomata to date i s i n adaptive c o n t r o l of 
outing information i n c i r c u i t and packet 
witched networks. This i s a c l a s s i c example 
f decentralised control i n an uncertain 
nvironment, (13). 

3. DECENTRALISED CO^nrROL IN COMMUNICATION 
NETWORKS 

The next decade w i l l witness an increasing 
need for new and sophisticated methods for the 
optimal u t i l i s a t i o n of capacity in 
communication networks. The importance of the 
study of routing and flow control i s rapidly 
increasing. Future integrated services 
d i g i t a l networks w i l l incorporate a spectrum 
of t r a f f i c ranging from simple transaction 
measurements (100 b i t s ) to multimegabit 
messages associated with colour facsimile. 
The use of learning algorithms i s considered 
to represent a highly promising approach to 
the adaptive control of such complex systems. 
Recently advances have been made i n applying 
these p r i n c i p l e s to the problem of adaptive 
routing i n communication networks. Based on 
established theory, these applications show 
promise of p r a c t i c a l solutions to the complex 
problems of routing and flow control and 
provide incentive for further exploration of 
learning techniques. I n i t i a l research 
considered c i r c u i t switched networks 
(telephone networks) i n which learning 
algorithms at the network nodes update their 
s t r a t e g i e s for routing t r a f f i c on the basis of 
success or f a i l u r e i n completing c a l l s (14). 
(15). Recent research has focussed on 
packet-switched networks with learning 
automata schemes proposed for both v i r t u a l 
c a l l and datagram networks. Packets are 
routed by automata s e l e c t i n g suitable outgoing 
l i n k s , the delay experienced by a packet being 
fedback to update the future selection 
strategy (10-18). 

From a p r a c t i c a l standpoint, the si m p l i c i t y of 
the feedback as we l l as the updating schemes 
which exploit e x i s t i n g control mechanisms and 
protocols make the learning approach a 
p r a c t i c a l l y v i a b l e a l t e r n a t i v e for routing i n 
both c i r c u i t and packet-switched communication 
networks. 

Circuit-Swtiched Networks 

In a previous paper (14) simulation studies of 
telephone t r a f f i c routing i n simple networks 
was considered. S p e c i f i c a l l y i t was shown that 
a Linear Reward Inaction (L̂ ^̂  j ) automaton 
scheme, when used i n a simple network for c a l l 
routing, performs at l e a s t as well as the 
optimum Fixed Rule (FR) . The ^ and Linear 
Reward Penalty (Lj^.p) schemes were compared to 
FR. I t was concluded that both routing 
s t r a t e g i e s always perform as we l l as the 
optimum FR while i n simulations requiring 
mixed routing s t r a t e g i e s they give superior 
performance. An i n t e r n a l report (19) has 
investigated dynamic routing of f u l l y 
connected c i r c u i t switched networks. The 
routing p o l i c y used i s Least Busy Alternative 
(LBA) with Trunk Reservation (TR). I t was 
concluded that LBA with TR i s as good as FR 
yet with the advantage of f l e x i b i l i t y and 
spreading out of l o c a l overload. Subsequent 
research has compared LBA with random routing 
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(RL), fixed routing (FR) learning automata and 
a dynamic a l t e r n a t i v e routing strategy 
(DAR),(20), for a f i v e node f u l l y connected 
network (21). I t has been shovm that DAR and 
L_ ^ algorithms provide the bfest dynamic 
routing strategy but under conditions of 
network f a i l u r e (e.g. l i n k f a i l u r e ) the 
additional i n t e l l i g e n c e associated with the 
learning algorithms leads to s i g n i f i c a n t l y 
improved performance. 

Packet-Switched Networks 

Although adaptive or dynamic routing i n packet 
networks i s undoubtedly needed under network 
f a i l u r e conditions (e.g. l i n k or node f a i l u r e ) 
controversy e x i s t s on whether dynamic routing 
should be used under normal operating 
conditions. Recent work has shown that 
dynamic routing can i n f a c t reduce throughput 
or increase delay as the network load i s 
increased. Dynamic routing only improves 
network performance over an intermediate 
t r a f f i c range. This i s i n t u i t i v e l y obvious 
since as the network load increases l e s s spare 
capacity i s a v a i l a b l e . I t should be noted 
that t h i s possible increase throughput at 
moderate loads may of course defer the entry 
of the network into a high load condition. 
There i s c l e a r l y a need for adaptive control 
of the dynamic routing mechanism such that at 
high loads the routing strategy reverts to 
minimum resource routing ( i . e . f i x e d paths). 
In general a deterministic strategy i s the 
best for balanced t r a f f i c but a dynamic 
strategy i s e s s e n t i a l for unbalanced and 
chaotic conditions. 

The development of r e a l i s t i c a n a l y t i c a l models 
for dynamic routing i n packet networks i s 
notoriously d i f f i c u l t . The fundamental 
problem i s chat route s e l e c t i o n s are by 
d e f i n i t i o n state dependant which negates the 
mathematically convenient property of 
s e p a r a b i l i t y . Recent work has used the theory 
of s t o c h a s t i c learning automata to calculate 
mean routing p r o b a b i l i t i e s (22). These 
p r o b a b i l i t i e s may be used ais an approximation 
for l i n k loadings and thus a i d network 
dimensioning. 

In a c l a s s i c paper the optimal s t a t i c routing 
problem was formulated as a convex programming 
problem i n the space of routing variables 
(23). Necessary and s u f f i c i e n t conditions 
were determined for the problem solution. The 
basic r e s u l t i s that optimal s t a t i c routing i s 
obtained by an equalisation of the 
d i f f e r e n t i a l delays observed by a node on 
outgoing paths. Previous work has 
demonstrated that learning automata (type 
L ^ p ] reach a steady state condition such that 
delays (as opposed to d i f f e r e n t i a l delays) are 
equalised (17). 

Recently a decentralised non-linear technique 
has been described which permits a computation 
of the equilibrium solution for learning 
automata under steady state conditions. By 

appropriate modification the recursion can be 
used to compute the system optimal 
(equalisation of d i f f e r e n c i a l delays) routing 
pattern (24). This i s an important 
contribution which in addition to providing a 
cost e f f e c t i v e alternative to simulation 
provides a benchmark which may be used in 
comparison studies of adaptive routing 
schemes. I n addition, using a 10 node network 
previously studied by the present authors 
group no s i g n i f i c a n t difference i n delay 
performance was obtained between the automata 
and the optimal routing strategy. This 
important r e s u l t confirms previous conclusions 
that for p r a c t i c a l networks above a threshold 
of complexity the automata performance i s 
v i r t u a l l y optimal. For small (3 node) 
asymmetric networks the performance of the 
automata i s sub-optimal. There could be some 
averaging process involved such thac above a 
given l e v e l of system complexity equalisation 
of delays i s v i r t u a l l y equivalent to 
equalisation of d i f f e r e n t i a l delays. Clearly 
further research i s needed in th i s area but at 
thi s stage the v i a b i l i t y of the learning 
approach has been confirmed and for a general 
c l a s s of networks the automata provide close 
to an optimal strategy. 

4. MODELS OF DECEiTOlALISED DECISION .lAKING 

Game theoretic issues provide a fundamental 
basis for the study of decentralised decision 
processes. Figure 2 shows the basic multiple 
automata game. With N automata A . ( i - 1 N) 
i n t e r a c t i n g through a stationary environment. 
At each stage n the automata s e l e c t one of 
t h e i r actions and t h i s determines the 
d i s t r i b u t i o n of the random process involved. 
I t should be noted that in contrast Co che 
usual game-cheorecic formulation, no player i s 
aware of the other players, the actions 
selected by or the responses from the 
environment to other players. Extensive 
research has considered two-person zero sum 
games when the game matrix i s unknown. For 
the i d e n t i c a l payoff game optimal strategies 
are the same for the individuals and the 
group. I n th i s case important convergence 
properties have been proved, ( 9 ) , (.10), (25). 
However i n practice the merging of' individual 
and group r a t i o n a l i t y i s d i f f i c u l t . For the 
present work we seek models i n which decision 
makers are not autonomous and t h e i r decisions 
a f f e c t each other. I n t h i s area i n i t i a l work 
has involved synchronous models i n which the 
time instants for automata actions and updates 
are synchronised, and sequential models which 
are asynchronous. Some of the simple 
synchronised models can be analysed by game 
theoretic concepts, (26), (27). The 
sequential models are more r e a l i s t i c i n the 
p r a c t i c a l sense and the power of t h i s approach 
has been i l l u s t r a t e d by a demonstration of che 
optimal control of a Markov chain with unknown 
t r a n s i t i o n and reward p r o b a b i l i t i e s , (28). 

I t i s considered that the stochastic learning 
automata approach w i l l provide the fundamental 
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framework for a mgdel of decentralised 
decision making i n C -MIS. As Che research 
progresses additional layers of so p h i s t i c a t i o n 
can be incorporated within the basic model. 
I n i t i a l l y work ' has considered simple 
topologies of synchronous, sequential and 
hybrid (synchronous/sequencial) systems and 
future a n a l y t i c a l work w i l l be supported by 
simulations using a SUN-based i n t e r a c t i v e 
d i s t r i b u t e d decision model, (29). This 
simulator w i l l be modelled and have s u f f i c i e n t 
f l e x i b i l i t y to permit choices of topology, 
learning algorithms, l e v e l of communication 
r e l i a b i l i t y and s e l e c t i o n of environmental 
models. 

5. CONCLUSIONS 

This paper has considered the application of 
stochastic learning automata to the problems 
of adaptive^concrol and decentralised decision 
making i n C -MIS. The advantages of applying 
learning automata to e i t h e r c i r c u i t or 
packet-switched networks may be summarised as 
follows: 

( i ) Learning automata are based on simple 
p r i n c i p l e s and a w e l l established 
mathematical theory. 

( i i ) They are computationally a t t r a c t i v e , 
i . e . only simple arithmetic operations 
are involved. 

( i i i ) Automata can be used i n d i v i d u a l l y 
without being dependent on other 
automata. 

( i v ) They are c o s t - e f f e c t i v e since they 
require minimum a l t e r a t i o n to ex i s t i n g 
protocols. 

Although at an earl y stage the study of 
learning automata as d i s t r i b u t e d "agents" i n 
decentralised decision making i s considered to 
represent a promising approach to providing a 
conceptual framework for modelling decision 
making i n complex C -MIS. 
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A b s t r a c t 

A new class of Petri nets, namely, Siockastic Learning 
Petri nets are introduced as a powerful modelling tool 
for decision making organisations in complex systems. 
This extension to stochastic Petri nets has developed 
a model which has the additional feature of an em­
bedded stochastic learning automata. This novel idea 
provides an curtificicJ intelligence (AI ) based decision 
making process embedded wi th in Petri nets. A n ex­
ample application of this modelling tool is presented 
to demonstrate the impact that the use of an A I tech­
nique embedded within Petri nets can have on the 
performance of decision making organisations. 

1 I n t r o d u c t i o n 

This paper presents new developments in the 
study of distributed decision making in C^I (Com-
mand/Control/Communication/Intelligent) systems. 
The analysis and design of complex, survivable and 
responsive C^I systems requires novel advances in 
the area of distributed decision making under uncer­
tainty. I t is clear that the present largely qualitative 
design approaches adopted in C^I need to be replaced 
by a systematic quantitative design methodology, [1], 
[2]. 

The paper indicates the potential of an A I ap­
proach based on stochastic learning automata which 
provides a conceptual framework for modelling deci­
sion making in complex systems. A n extensive liter­
ature and well established mathematical foundation 
now exists for stochastic learning automata, [3], [4]. 
In general, a learning automaton may be defined as 
an element which interacts w i th a random environ­
ment in such a mcinner so as to improve a specified 
oversJl performance by changing its action probabil­
ities dependent on responses received from the envi­
ronment. However, this approach is limited in mod­
elling flexibility particularly for arbitrary topologies 
of decision models. I t is essential that additional lay­
ers of sophistication are incorporated within the ba­

sic model. Thus, a quantitative framework based on 
Petri net methodology (PN) is proposed, [5]. The PN 
formalism presents an abstract, formal graph model 
useful for representing dynamic processes. In partic­
ular they provide a powerful means for the descrip­
t ion and analysis of systems that are characterised as 
being concurrent, asynchronous, distributed and/or 
stochastic. Several authors have considered the use of 
PNs in the modelling on decision making processes, 
[6], [7], [8]. However, in such representations exist­
ing models do not exhibit the intelligence capability 
needed to provide effective decision models for C^I 
systems in stochastic environments. 

The purpose of this paper is to introduce appropri­
ate algorithmic tools for the systematic analysis and 
design of complex systems. Hence, a new class of PN 
2ire proposed and an application domain is consid­
ered. 

2 Stochast ic L e a r n i n g P e t r i Nets (SLPN) 

SLPNs are obtaiined by embedding the concept of 
stochastic learning automata into the model. A for­
mal definition of a SLPN is thus the following 

SLPN = iP,T,A,M,X,MT) (1) 

where {P,T,A,M,X) is the stochastic Petri net 
(SPN) underlying the model, [9]. The components 
may be described as: P = {pi,P2, • • • ,Pn), a fii^te 
set of places; T = ( i i , t 2 , • • • ,<m), a finite set of 
transitions; A C { P x T } U { T x P } , a set of in­
put /output functions; M = (171^,7712,..., m'„), a state 
(marking) of PN; A = ( A i , A j , . . . , A ^ ) , a set of firing 
rates associated wi th transitions. Mx indicates the 
presence of two/three state stochastic learning au­
tomata. A n automaton may be defined as a sextuple 
(/?, ^ , a , p , f , G ) where 0 = (0,1) is the input set to 
the automaton; r/^ = {ipi, V'2, • • •, i'n) is a finite state 
set; Of = (ai ,Qr2,••- .QTr) is the output set from the 
automaton and each auction is selected with probabil­
i ty p = {pi,P2, Pr); P : X a is a state transition 



mapping and G : ip —>• a is the output mapping. A 
P-model environment is characterised by a binary i n ­
put set to the automaton /? = (0,1), where j3 = 0 is 
known as a favourable response (success) and /? = 1 
an unfavourable response (failure). 

A t stage n, p(n + 1) = T\p{n),a{n), l3(n)], where 
T denotes the rule by which the automaton updates 
the probabili ty of selecting the actions. Both l in ­
ear and non-linear forms of the updating algorithm 
T have been considered. The most widely used are 
the class of linear algorithms which include linear re­
ward/penalty (LRP), linear reward/e penalty {Latp) 
and linear reward/inaction (LRJ), [4]. 

2 .1 M o d e l o f S L P N 

Consider the SPN model depicted in Figure 1. By 
auedysis of the reachability tree in Figure 2, i t is evi­
dent that the SPN model may exhibit one of six dif­
ferent states, depending on the transition that fires. 
Several transitions may be simultaneously enabled by 
a particular marking. Assume that H is the set of en­
abled transitions, then a transition ti {icH) fires with 
probability: 

(2) 

as stated previously, A is the firing rate associated 
wi th PN transitions. Thus, the different states of 
a SPN define probability ratios which correspond to 
the firing of each transition. In any state, the sum 
of probability ratios is always equal to unity. For ex­
ample, consider state M i = [1100]; the enabled tran­
sitions are ^ i , <2 and tz and their respective firing 
probabilities may be defined as follows: 

P r { f : } = 

P r { t 3 } = 

(a -f /? -f 7 ) 

(a - l -^ - l -7 ) 

(3) 

(4) 

(5) 

Thus, 

Pr{h} + PT{t2} + Pr{tz) = l (6) 
The concept of a stochastic automaton may be in ­

troduced to select probabilistically the transition that 
fires. A transition selected in a particular marking 
corresponds to an action selected by an automaton. 
The firing o f the chosen transition determines the 
next state (marking) of the system, by modifying the 
token distr ibution. In the tree representation of the 
SPN, Figure 2, there exists both two-state and three-
state automata. (Zkjnsider the following cases: 

Two-s ta te A u t o m a t o n I t is clear that state 
Af2[0200] and state M3[1011] represent a two-state 
automaton, as depicted in Figure 2. The SPN with 
marking M2 enables transitions and t^, since tokens 
are present in the input places (pj)- Each transition 
has an equal initial probability of being selected. The 
firing of t2, determines the next state of SPN to be 
Mo; the firing of is, determines that the next state 
is M4. The firing probabilities for each transition is 
given: 

M i 2 } = 7 : ^ , P r { t 3 } = ^ 
(/? + T)' (/3 + 7) (7) 

Similarly, 

Pr{u} + Pr{t3} = 1 (8) 

This concept also applies to state M3. 

Three-state A u t o m a t o n Clearly, the states M i 
and M4 correspond to a three-state automaton. I t is 
shown that the transitions ti, to and tz are enabled; 
each transition has an equal initial probability of be­
ing selected. The possibility of firing <i, determines 
the next state is M2; the firing of determines the 
next state of the SPN to be MQ ; finally, i f is se­
lected by the automaton then the state transfers to 
M3. A similar concept also applies to state M4. 

Note that the transition firing probabilities in each 
state Mo and M5 is always equal to unity. Since in 
state Mo, the only transition that is enabled is ti, 

P r { M = r = i (9) 

Thus, i t must fire with probability one. Similarly, 
in state M5 the only transition that is enabled is ^4. 
so i t must also fire with probability equal to unity. 

Hie ra rch ica l Sys tem o f A u t o m a t a The reacha­
bility tree may now be considered as a simple hierar­
chical system of automata; each slate corresponding 
to an automaton. I t may be noted that in a hierar­
chy each action has a unique path connecting i t to 
the automaton (state) that has been selected previ­
ously, or to an automaton at the top level (state Mo)-
From the tree structure of Figure 2, i t is possible to 
define nine unique paths which may be considered as 
sequence of states/ decisions. To introduce the con­
cept of an environment into this model, each sequence 
of states is associated with a reward probability-

The operation of this hierarchical learning system 
is as follows. A t any instant the first level automaton, 
state Mo selects an action (fires ^ i ) . This activates an 
automaton in the second level which fires a transition 



from its current transition probability distribution. 
This in turn activates, automata in the next level and 
so on. However, i f a particul«ur sequence of decisions 
corresponding to a unique path has been reached; the 
environment in turn generates a reward/ punish sig­
nal as its reaction. The reaction of the enviroimient 
is used to update the transition probabilities for the 
various levels of automata in the selected path. This 
process repeats unti l al l the probabilities in one path 
become close to unity from the top level (Mo) to the 
lowest level ( M 5 ) . Such a system may be considered 
as a SLPN model; structure is shown in Figure 3. 

3 S i m u l a t i o n Resul ts : S L P N 

This section presents a computer simulation result 
for the SLPN model. The reward parameter is indi­
cated; and P r ( i , j ) denote the transition firing proba­
bilities, where i represents the state of the system cind 
j provides the notation for the transition that fires. 
For example, consider the notation for state M j fir­
ing transition ^3; the transition firing probabOity is 
P r ( l , 3). Expected values are denoted by the expres­
sion Pr(i,j) = E[Pr(i, j)]. In the simulation study 
the hierarchical system in Figure 2 was examined. To 
simulate this SLPN, all of the reward probabilities in 
the environment were in the range [0.2 - 0.45] except 
the unique maximum reward probability which was 
set to 0.9. A n LRJ updating scheme was used to up­
date action probabilities for the selected path. 

Table 1 provides the reward probabilities of the en­
vironment which are used for simulation. Note that 
the unique maximum reward probability is associ­
ated wi th the selected sequence of decisions. Con­
sider Table 1 which illustrates the convergence to the 
unique maximum reward probability, such that se­
quence 1 is selected from the reachability tree. This 
sequence represents the path MO - P r ( 0 , 1 ) ; M 1 -
P r ( l , l ) ; A f 2 - P r ( 2 , 2 ) ; A f l . In this case, transition 
probability vector in state MO is equal to \mity; since 
ti must always fire wi th probability equal to one. Also 
the convergence of transition probability P r ( l , l ) in 
the three-state automaton M l ; and Pr (2 ,2) in two-
state automaton M 2 show that the optimal path se­
lected is sequence 1, which has the unique maximum 
reward probability. 

Similarly, the learning performance can be ob­
served for a l l sequence of states of the SLPN model. 
In each case the transition probability vectors that 
converge close to unity, correspond to the sequence 
of decisions associated wi th the unique maximum re-
wjird probability. 

4 A p p l i c a t i o n : Small-scale C ^ - I System 

The following sub-section presents the model of the 
interacting organisation member. An application of 
the SLPN to a specific two decision maker organisa­
tion is examined. A series of experiments are per­
formed to observe the learning behaviour of the or­
ganisation. 

4 .1 M o d e l o f t h e Decis ion M a k i n g Process 

A four stage model on the decision maker has been 
developed, [7], that permits the detailed and explicit 
specification of the interactions among organisation 
members. The internal structure of the four pro­
cessing stages, is depicted in Figure 4. This shows 
that a decision maker receives an input signal x, from 
its environment <ind undergoes a four stage process. 
The first and last of these stages, situation assess­
ment (SA) and response selection (RS), model the 
actual decision mziking process while information fu­
sion (IF) and command interpretation (CI) allow for 
interaction of the decision module (DM) with other 
members of the organisation. The SA stage consists 
of a set of i / algorithms that are capable of produc­
ing some situation assessment z. The RS stage also 
contains set of V algorithms which are required to 
produce the final decision response. This informa­
tion may in turn be combined in the IF stage to yield 
2. The fused assessed situation, z, is processed by 
one of the algorithms in the RS stage. The CI stage 
of the model allows 2 and the input v to influence the 
choice of this algorithm; v may be considered to be 
a command capable of restricting options. The RS 
stage contains algorithms that produce output y in 
response to the situation assessment z and the com­
mand inputs. 

4.2 T w o N o d e D i s t r i b u t e d Organisat ion 

Figure 5 shows in Petri net form the first model pro­
posed for study. The example consists of a two node 
organisation: a submarine decision module DM1 and 
a surface ship decision module DM2. Each D M re­
ceive signals from the environment and can respond 
to the environment. The D M module consists of three 
possible strategies, although the SA stage selects only 
a single strategy to process the information. For ex­
ample, the D M must decide between the following 
three options: 

S t r a t egy SA,- process information without using 
Decision Support System (DSS); 

S t r a t egy IT,- select a response via an intelligent ter-
mined; 



strategy MF.- utilise the DSS. 

4.3 Pe r fo rmance o f T w o N o d e Organ i sa t ion 

Figxire 6 demonstrates the application of the SLPN 
approach to examine the behaviour of the two node 
organisation. A n approach has been adopted by em­
bedding the concept of SLPN in the SA and RS stages 
for the decison module. Therefore each D M con-
teiins four leaming automata interconnected in the 
form of a tree structure. As illustrated in Figure 6 
the automata are arranged in two levels. The h i ­
erarchy consists of a single automaton at the first 
level, and three automata in the second level. For 
decision module D M 1 , the three options ( S A i , I T i , 
M F i ) cire selected wi th equal in i t ia l probability; sim­
ilarly for DM2 (SA2, IT2, M F j ) . Also each RS stage 
has two alternate possibilities which are selected wi th 
equal ini t ial probability; thus producing six possible 
paths for each D M . The strategies associated with de­
cision module D M 1 and D M 2 axe (pi,p2,... ,pe) and 
(9i)92)• • • j ^ e ) respectively. There are 36 (6x6) pos­
sible combinations of decision strategies fed to the 
environment. Considering this structure, Figure 6, 
for each pair of strategies selected by the decision 
modules the environment responds stochastically to 
punish/reweird the selection of a particular pair. One 
pair of decisions is optimum (ie. gives minimum pun­
ishment or maximum reward). 

4.4 E x p e r i m e n t a l Resul t s 

The following experiments [1-3] illustrate the learn­
ing performance of a two node organisation, as de­
picted in Figure 6. For these experiments, the main 
objective is such that both decision modules select 
the optimal pair of decision strategies from 36 (6x6) 
possible combinations of decision pairs input to the 
environment. As stated previously, decision mod­
ules are in the form of a two level hiereirchical sys­
tem. To simulate these modules, the reward proba­
bilities i n the range [0.2-0.5] are associated wi th paths 
{Pi,P2,---,P6) and (pl ,P2,--- ,36) for decision mod­
ules D M 1 and DM2, respectively. However, in this 
case the unique maiximum reward probability which 
is set to 0.9 exists for each D M 1 and DM2. Thus, a 
single path from the set (pi,p2,.. .,pe) for D M 1 is as-
sociatd with a unique maximum reward probability; 
and also a single path form the set (51,92, • • • > Pe) for 
DM2. A n LRJ scheme was adopted to update action 
probabilities for the optimal strategy pair were up­
dated. The conditions for each experiment are var­
ied by considering the selection of optimal strategy 
pairs; sudden switch of environmental conditions and 
by permitting communication between both decision 

modules at upper and lower levels. The reward pa­
rameter and reward probabilities are given; the ex­
pected values are denoted by p i = E[pi(n)] . 

E x p e r i m e n t 1 
The simulation results in Table 2 demonstrate the 

leaming behaviour of a two node organisation. The 
table indicates the value of the reward parameter; the 
unique maximum reward probability to be employed 
by the environment and the expected values denot­
ing the convergence to optimal strategy pair. In this 
case the unique maximum reward probability is asso­
ciated wi th path P4.92 for decision module DM1 and 
DM2, respectively. The results confirm that the coor­
dinated decision strategies selected by each decision 
module converges close to unity. Hence, the optimal 
pair of decisions selected by D M 1 and DM2 is P4.92-

E x p e r i m e n t 2 
The previous experiment 1 was repeated, with the 

additional concept of a sudden switch to a differ­
ent environment. By repeating experiment 2, i t can 
be seen that both decision modules converge close 
to tmity by selecting the optimal pair of decision 
strategies. The sudden switch in the environment is 
achieved by re-locating the imique maximum reward 
probability , such that an alternate pair of decision 
strategies may be selected. 

This behaviour is best illustrated by analysing the 
results in Table [3a - 3b]; till relevant parameter values 
cire indicated. The simulation results show how fast 
the stmcture learns convergence to the new optimal 
strategy pair. I t is evident from Table 3a that both 
decision modules DM1 and DM2 select the optimal 
strategy pair Pi.?i; and convergence for this pair is 
close to unity. However, after introducing a sudden 
switch of the environment the coordinated decision 
strategy pair ps.gi is selected. Thus, Table 3b shows 
a decrease in convergence for path p i selected by DM1 
and a rapid increase in convergence close to unity for 
strategy pair Ps.gi. 

E x p e r i m e n t 3 
This final experiment gives an excellent illustra­

tion of speeding up the leaming process by permitting 
communication between decision modules DM1 and 
DM2 (as indicated by dotted lines Figure 6). Note 
that in each of the following experiments an arbitrary 
value for the stepsize is considered. 

First set of results in Table 4a illustrates commu­
nication between automata at the top level of the 
hierarchy for each decision module. To simulate this 
structure, both automata at the top level (SAI and 
SA2) exchange messages such that i f each selects ac­
tion one, then the reward parameter is incremented 
by stepsize 4. From Table 4a, i t can be seen that the 
convergence rate for strategy peiir Pi.91 rapidly in-



creases close to unity; since the unique maximum re­
ward probability is associated with this strategy pair. 

Second set of results in Table 4b exemplifies com­
munication between automata at the top cind lower 
levels of the hierarchy for each decision module. The 
same rule is applied, that is, i f both automata at the 
top and lower level select action one, the reward pa­
rameter is increased by stepsize 4. Similar to the 
previous case, the results i n Table 4b show rapid con­
vergence close to unity for both levels of automata. In 
comparison to the previous experiment, there is only 
a fractional increase in convergence rate by permit­
ting communication between upper and lower levels 
automata. 

5 Conc lus ion 

This paper has defined a high-level quantitative 
framework based on Petri net methodology. I t has 
proposed a new class of Petri net modelling tool for 
an effective representation of decision models. This 
approach has enhanced the modelling power of Petri 
nets. The modelling technique has exhibited a data 
flow formation, and an A I decision making process 
embedded within the net. The application of the 
modelling tool to a non-trivijd example has been con­
sidered. This has illustrated the modelling flexibility 
and suitability to a realistic distributed decision prob­
lem. 
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Figure 5 - Two Node Organisaiion Siqjponed by DSS 
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0 1.00000 033333 0J33333 0333333 osooooo 0500000 
600 IjOOOOO 0.5504S2 0.213781 023S7S7 0.709502 02SO498 
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600 0>453162 0.546838 0J67937 0.324951 0307112 LOOOOOO 
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TaUe I - Opiinul Paih (Sequence 1) 

SEWAIS rAKAMEIBl - O M 

B pl P2 P3 T>4 p5 p6 
0 
600 
1200 
1800 
2400 
3O0O 

3J66666 
0J2Z7S2 
0X63909 
3X42560 
3X31903 
3X25514 

0.166666 
0.124708 
0X6S275 
0.043563 
0.032689 
0.026160 

0J66666 
0.173771 
0.128113 
0.094769 
0.074587 
0X61355 

0J66666 
034SS29 
0.624448 
0.740Z71 
0.801693 
0.839669 

0.166666 
0.127226 
0.064294 
0.042815 
0.032094 
0.025667 

0J66666 
0JO6O13 
0XS396I 
0X36021 
0X27033 
0X21635 

B ql o2 fl3 o4 05 06 
0 
600 
1200 
1800 
2400 
3000 

3J66666 
0.166504 
0.108945 
0X78SS2 
0.06Z235 
0X49974 

0J66666 
0457269 
0.694528 
0.790430 
0.»W6a2 
0^71415 

0J66666 
0J38S86 
0X70578 
0X46577 
0X34755 
0X27718 

0J66666 
0J3O716 
0X70720 
0X47621 
0X35894 
0X28801 

0J66666 
0X54399 
0X28651 
0X19225 
0X14465 
0X11595 

0J66666 
0X52525 
0X26577 
0X17594 
0X13149 
0X10497 

Table 2- Optimal S t i a t ^ Pair p4. q2 

SEWAtD r A M U B i m - o n 

lEWMtDnCBABILUr ĉ , -o 

B Pl B2 p3 P4 P5 p6 
0 
600 
1200 
1800 
2400 
3000 

3J66666 
0̂ 434715 
0.£562<5 
3.762995 
3.819308 
3.854036 

0.166666 
0.187078 
0.128620 
0.093581 
0.073124 
0X59909 

0.166666 
0.128409 
0.081050 
0.054786 
0.041371 
0.033233 

aj66666 
0J0S40S 
0X62218 
0X4O7Z7 
0X30263 
0X24075 

0.166666 
0X65751 
0.032926 
0.021841 
0.016339 
0X13052 

0J66666 
0X75637 
0X38940 
OX26O70 
0X19594 
0X15695 

B ol o2 03 o4 o5 o6 
0 
600 
1200 
18O0 
2400 
3000 

9J66666 
0396374 
0.623670 
D.7401Z7 
0.801726 
0J39764 

0.166666 
0.150584 
0.113208 
0X84455 
0X61028 
0.054985 

0.166666 
0.177897 
0.1166O4 
0.080160 
0X61028 
0.049259 

0J66666 
0J65S83 
0X91556 
0X58616 
0X43054 
0X34007 

0.166666 
0.056801 
0.028705 
0.019184 
0.014406 
0X11533 

0J66666 
0X52760 
0X26255 
0X17456 
0X13075 
0X10451 

Table 3a- Before Swiidi - pl.ql 

N \ \ \ \ \ \ \ \ g « ° « « < A , \ \ \ \ \ \ \ \ \ \ \ ] 
h k . I C ic.. j c , I C | C 1^ |c. | C , Ic, k . I c | c 1^ 

Hgure 6 - ISedsion Modules 

lEWAID F i O A U B i a - O t t 

B pl P2 P3 P * p5 P6 
0 
600 
1200 
1800 
2400 
3000 

3.854036 
0.583030 
0302103 
1201256 
9J50887 
DJ206S3 

0X59909 
0X33474 
0X18049 
0X12179 
0X09189 
0X07378 

0X33Z33 
0264141 
0J734O7 
0.704976 
0.774746 
0.817884 

0X24075 
0J02O45 
0X97502 
0X75629 
Oi)60707 
0X5O«79 

0X13052 
0X07646 
0X03883 
0X02574 
0X01925 
0X01537 

0X15695 
0X09663 
0X05056 
0X03385 
0X02544 
0X02038 

B Ol o2 o3 04 05 o6 
0 
600 
1200 
1800 
2400 
3000 

9.837764 
0.9OO723 
0.946919 
1.964462 
1.973289 
05786O4 

0X54985 
0X58983 
0X32772 
0X21999 
0X16556 
0X13272 

0X49259 
0X20865 
0X10368 
0X06879 
0X05147 
0X04112 

0X34007 
0X15002 
0X07705 
0X05169 
0X03889 
0X03117 

0X11533 
0X02343 
0X01172 
0X00782 
0X00586 
0X00469 

0X10451' 
0X02123 
0X01062 
0X00708 
oxoosn 
0X00425 

Table 3b- Afier Swudi - p3.q 1 
lEWAXD P A l A U E i a - a u 

KEWAKDRSS^SIUTr S, 

B pl P2 P3 P * p5 P6 
0 
600 
1200 
1800 
2400 
3000 

3J66666 
0.838864 
0.917820 
9.944856 
3.958508 
9.966742 

0J66666 
0J01717 
0X52470 
0X35337 
0X26637 
0X21374 

0J66666 
0X14694 
0X07341 
0X04892 
0X0360 
0X02935 

OJ66666 
0X14704 
0X07359 
0XM9a7 
0X03681 
0X02945 

0J66666 
0X15153 
0X07583 
0X05057 
0X03793 
0X02945 

0J66666 
0X14867 
0X07427 
0XO4950 
0X037U 
0X02969 

B ol 02 o3 o4 o5 0« 

0 
600 
1200 
1800 
2400 
3000 

U66666 
0JOO723 
0.946919 
D.964«62 
0.973289 
9.978604 

0J66666 
0X58943 
0X32772 
0X21999 
0X16556 
0X13232 

0J66666 
0X20865 
0X10368 
0X06879 
0X05147 
0X04112 

0.166666 
0.015002 
0.0077QS 
0.005169 
0X03889 
0.0O3117 

OJ66666 
0X02343 
0X01172 
0X00782 
0X00586 
0XOO<69 

0166666 

0X01062 
0X00708 
OX0O531 
0.000425 

Table 4a- Top Level Commnnication 

tSWiODRCBABUrr s, 

0 Pl P2 p3 p4 B5 p6 
0 
600 
1200 
1800 
2400 
3000 

3 J 66666 
0JO9O35 
0.953980 
1.969201 
1^76856 
3.981463 

0J66666 
0X39772 
0X20423 
0X13734 
0X10345 
0X08289 

0J66666 
0X12995 
0X06498 
0X04332 
0X03249 
0X02599 

0.166666 
0X13038 
0.006519 
0X04346 
0X03259 
0.002607 

0^66666 
0X12565 
0X062S4 
0X04190 
0X03143 
0X02514 

OJ66666 
0X12593 
0X06295 
0X04196 
0X03147 
0X02518 

B Ol o2 03 04 05 o6 
0 
600 
1200 
1800 
2400 
3000 

1.166666 
0.903764 
0551279 
9.967384 
9J7S487 
3.980365 

0J66666 
0X42945 
0X22077 
0X148S2 
0X11189 
0X08976 

0J66666 
0X20865 
0X10368 
0X06879 
0X05147 
0X04112 

0J66666 
0X15087 
0.007532 
0X05019 
0.003763 
0.003010 

0J66666 
0X10S36 
0X05418 
0X03612 
0X02709 
0X02167 

0J66666 
0X11427 
0X05714 
0X03809 
0.002857 
0.002286 

Table 4b- Topiower Level Communic aiion 


