
Durham E-Theses

Study of decentralised decision models in distributed

environments

Ahmed, Quamar F.

How to cite:

Ahmed, Quamar F. (1994) Study of decentralised decision models in distributed environments, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5674/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5674/
 http://etheses.dur.ac.uk/5674/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

S T U D Y OF D E C E N T R A L I S E D DECISION MODELS

IN D I S T R I B U T E D ENVIRONMENTS

QUAMAR F AHMED

Doctor of Philosophy

U N I V E R S I T Y OF DURHAM

SCHOOL OF E N G I N E E R I N G AND C O M P U T E R S C I E N C E

The copyright of this thesis rests with the author.

No quotation from it should be pubhshed without

his prior written consent and information derived

from it should be acknowledged.

September 1994

A Thesis submitted in partieil fulfillment of the requirements

of the Council of the University of Durham for the Degree of

Doctor of Philosophy (Ph.D.)

2 S JU^ 1995

S T U D Y OF D E C E N T R A L I S E D DECISION MODELS
IN D I S T R I B U T E D ENVIRONMENTS

Quamar F Ahmed
University of Durham

School of Engineering and Computer Science

Abstract

Many of today's complex systems require effective decision making
within uncertain distributed environments. The central theme of the thesis
considers the systematic analysis for the representation of decision making
organisations. The basic concept of stochastic learning automata provides
a framework for modelling decision making in complex systems. Models of
interactive decision making are discussed, which result from interconnecting
decision makers in both synchronous and sequential configurations. The
concepts and viewpoints from learning theory and game theory are used to
explain the behaviour of these structures. This work is then extended by
presenting a quantitative framework based on Petri Net theory. This formalism
provides a powerful means for capturing the information flow in the decision
making process and demonstrating the explicit interactions between decision
makers. Additionally, it is also used for the description and analysis of
systems that are characterised as being concurrent, asynchronous, distributed,
parallel and/ or stochastic activities. The thesis discusses the limitations of
each modeUing framework.

The thesis proposes an extension to the existing methodologies by
presenting a new class of Petri Nets. This extension has resulted in a novel
structure which has the additional feature of an embedded stochastic learning
automata. An application of this approach to a realistic decision problem
demonstrates the impact that the use of an artificial intelligence technique
embedded within Petri Nets can have on the performance of decision models.

Acknowledgements

I w o u l d l ike t o t h a n k m y supervisor, Professor P h i l Mars , for his

guidance, s u p p o r t and encouragement d u r i n g the course of th i s pro jec t .

T h e research p r o j e c t was sponsored by B r i t i s h Aerospace Pic (B A e) ,

Lancashi re . I a m very g r a t e f u l t o M r s J u d i t h Dodds and M r T o m M o r r i s of

B A e , f o r t h e i r invaluable discussions i n th i s f i e ld of s tudy, and the i r enthusiasm

i n p r o m o t i n g and s u p p o r t i n g the p ro j ec t .

T h a n k s are also due t o the Defence Research Agency (D R A) , Ken t ,

f o r a l l o w i n g the use of t h e i r fac i l i t ies and the u n d e r t a k i n g of various projects

i n t he f i e l d o f C o m m a n d , C o n t r o l , Communica t i ons and Intell igence (C"^-!)

systems w h i c h has c o n t r i b u t e d t o a be t te r unde r s t and ing of th is study.

F i n a l l y , I w o u l d also l ike t o t h a n k m y colleagues, f r iends and f a m i l y

f o r t h e i r discussions and suppor t .

Declaration

I hereby declare that this thesis is a record of work undertaken by

myself, that it has not been the subject of any previous application for a

degree, and that all sources of information have been duly acknowledged.

Copyright

The copyright of this thesis rests with the author. No quotation from

it should be published without her written consent and information derived

from it should be acknowledged.

Dedication

To My Parents

Table of Contents

Abstract 2

Acknowledgements 3

Table of Contents 6

List of Figures 12

List of Tables 17

Chapter 1 Introduction 20

1.1 Objectives 20

1.2 Overview of Thesis 20

1.2.1 Overview: Distributed Artificial Intelligence and

Approaches to Coordination 21

1.2.2 Basic Stochastic Automaton Model 22

1.2.3 Multiple Automata and Decentralised

Decision Making Models 22

1.2.4 Petri Net Theory 23

1.2.5 Learning Petri Net Models 23

1.2.6 Application to Distributed Decision Systems 23

1.2.7 Conclusions and Recommendations for Future Work .. 24

1.3 Conclusion and Summary 24

6

Chapter 2 Overview: Distributed Artificial Intelligence and

Approaches to Coordination 25

2.1 Introduction 25

2.2 Overview of Distributed Artificial Intelligence (DAI) 26

2.2.1 Rationales for DAI 27

2.2.2 Motivations for Learning in DAI Systems 28

2.3 Approaches to Coordination 31

2.3.1 Negotiation 32

2.3.2 Organisational Structuring 33

2.3.3 Multiagent Planning 35

2.3.4 Metalevel Information Exchange 37

2.3.5 Committments/ Conventions 38

2.3.5 Formal Frameworks 39

2.4 Conclusion and Summary 40

Chapter 3 Basic Stochastic Automaton Model 42

3.1 Introduction 42

3.2 Stochastic Learning Automaton Model 43

3.2.1 Stochastic Automaton 43

3.2.2 Environment 45

3.2.3 Reinforcement 46

3.2.4 Linear Reward/ Inaction Reinforcement Scheme 47

3.2.5 Performance 49

3.3 Conclusion and Summary 50

7

Chapter 4 Multiple Automata and Decentralised Decision Making

Models 54

4.1 Introduction 54

4.2 Automata Games 55

4.3 Interactive Decision Making Models 56

4.4 Synchronous Models 57

4.5 Simple Feedback 58

4.5.1 Simulation - Simple Feedback 59

4.6 Weighted Feedback 59

4.6.1 Simulation - Weighted Feedback 61

4.7 Synchronous Models : Actions Determine Environment 61

4.8 Interconnection 1 : Ai Determines yla's Environment 62

4.8.1 Simulation - Interconnection 1 63

4.9 Interconnection 2 : Ai Determines Game for A2 and A3 64

4.9.1 Simulation - Interconnection 2 65

4.10 Sequential Models 66

4.11 Tree Structure 68

4.11.1 Simulation - Tree Structure 68

4.12 Directed Network 69

4.12.1 Simulation - Directed Network 70

4.13 General Network 70

4.14 Conclusion and Summary 71

Chapter 5 Petri Net Theory 97

5.1 Introduction 97

5.2 Structure of a Petri Net 98

5.2.1 Petri Net Graphs 99

5.2.2 Petri Net Markings 100

5.2.3 Execution Rule for Marked Petri Nets 100

5.2.4 Modelling Examples 102

5.2.5 Analysis of Petri Nets 103

5.3 Time-Related Models 106

5.3.1 Stochastic Petri Nets (SPN) 106

5.3.2 An Example of Stochastic Petri Net 107

5.3.3 GeneraUsed Stochastic Petri Nets (GSPN) 107

5.3.4 An Example of Generalised Stochastic Petri Net 109

5.4 Conclusion and Summary 112

Chapter 6 Learning Petri Net Models 124

6.1 Introduction 124

6.2 Basic Stochastic Learning Petri Net (Basic SLPN) 124

6.2.1 Simulation Results : Basic SLPN 125

6.3 Stochastic Learning Petri Net (SLPN) 126

6.3.1 Reachability Tree : Stochastic Automata Embedded 127

6.3.2 Hierarchical System of Automata 129

6.3.3 Operation of SLPN 130

6.3.4 Simulation Results : SLPN 131

6.4 Generalised Stochastic Learning Petri Net (GSLPN) 132

9

6.4.1 Simulation Results : GSLPN 136

6.5 Conclusion and Summary 137

Chapter 7 Application to Distributed Decision Systems 165

7.1 Introduction 165

7.2 Model of the Decision Making Process 166

7.2.1 Model of an Organisation with a Decision Aid 167

7.3 Application : Small-scale C^-I System 168

7.3.1 Performance of Single Decision Module 169

7.3.2 Performance of Two Node Organisation 170

7.4 Experimental Results 171

7.5 Conclusion and Summary 176

Chapter 8 Conclusions and Recommendations for Future Work 199

8.1 Conclusions and Summary 199

8.2 Recommendation for Future Work 207

8.2.1 Models (Byzantine Generals) 207

8.2.2 Modelling Human Factor in C^-I Systems 208

8.2.3 Automatic Data Fusion 209

8.2.4 Migration of Control 211

References 214

Appendix 1 Computer Simulation Structure 221

10

A 1.1 Introduction 221

A1.2 Structure of Simulation 221

A1.3 Stochastic Automaton Algorithm 221

Appendix 2 Game Theoretic Concept 229

A2.1 Introduction 229

A2.2 What Is Game Theory? 229

A2.3 Basic Definitions 232

Appendix 3 Petri Net Concepts 235

A3.1 Introduction 235

A3.2 Some Petri Net Properties 235

A3.3 Reachability (Coverability) Tree Algorithm 237

Appendix 4 Models (Byzantine Generals) 240

A4.1 Introduction 240

A4.2 ReUable Systems 240

A4.3 Byzantine Generals Problem 241

A4.3.1 Impossibility Results 243

A4.3.2 Solution with Oral Messages 245

A4.3.3 Solution with Signed Messages 247

A4.4 Byzantine Generals Algorithm 249

Appendix 5 Publications 254

11

List of Figures

Figure 3.1 Stochastic Learning Automaton Model 52

Figure 3.2 Stochastic Automaton 53

Figure 3.3 Environment 53

Figure 4.1 Automata Game Schematic 73

Figure 4,2 Synchronous Models - The Basic Structure 74

Simple Feedback 74

Figure 4.3 Average Action Probability vs Iterations : (Table 4.1a) 75

(a) Action Probability Pr [0.5] 75

Figure 4.3 Average Action Probability vs Iterations : (Table 4.1b) 76

(b) Action Probability Pr [0.8] 76

Figure 4.4 Synchronous Models - The Basic Structure 77

Weighted Feedback 77

Figure 4.5 Average Action Probability vs Iterations : (Table 4.2) . 78

Figure 4.6 Modification of Synchronous Models 79

Interconnection 1 : Ai Determines A2's Environment .. 79

Figure 4.7 Average Action Probability vs Iterations 80

(a) No Coordination (One Equilibrium) : (Table 4.3a) . 80

(b) No Coordination (Two EquUibria) : (Table 4.3b) .. 81

(c) Coordination (One EquiUbrium) : (Table 4.3c) 82

(d) Coordination (Two Equilibria) : (Table 4.3d) 83

Figure 4.8 Average Action Probability vs Iterations 84

(a) No Coordination : (Table 4.4a) 84

12

(b) Coordination : (Table 4.4b) 85

Figure 4.9 Modification of Synchronous Models 86

Interconnection 2 : A i Determines Game for A2 and A3 86

Figure 4.10 Average Action Probabihty vs Iterations : (Table 4.5) . 87

Figure 4.11 Sequential Models 88

Tree Structure 88

Figure 4.12 Tree Structure : Selected Path 90

(a) Optimal Path 001 90

(b) Optimal Path 100 90

Figure 4.13 Optimal Path Probability Changes 91

(a) Optimal Path 001 : (Table 4.6a) 91

(b) Optimal Path 100 : (Table 4.6b) 91

Figure 4.14 Sequential Models 92

Directed Network 92

Figure 4.15 Directed Network : Selected Path 94

(a) Optimal Path 001:101 94

(b) Optimal Path 010:110 94

Figure 4.16 Optimal Path Probability Changes 95

(a) Optimal Path 001:101 : (Table 4.7a) 95

(b) Optimal Path 010:110 : (Table 4.7b) 95

Figure 4.17 Sequential Models 96

General Network 96

Figure 5.1 Petri Net Structure 114

Figure 5.2 Petri Net Graph 114

13

Figure 5.3 Marked Petri Net 115

(a) Transiton ti Fires 116

(b) Transiton t2 : h Fires 116

Figure 5.4 Reachabihty Tree Construction of Marked PN (Figure 5.3) 117

(a) First Step in Building Tree 117

(b) Second Step in Building Tree 117

(c) Third Step in Building Tree 118

(d) Fourth Step in Building Tree 118

Figure 5.5 Stochastic Petri Net (SPN) 119

Figure 5.6 Reachabihty Tree SPN 120

Figure 5.7 Generalised Stochastic Petri Net (GSPN) 121

Figure 5.8 GSPN Reachability Tree 122

Figure 6.1a Basic Stochastic Learning Petri Net (Basic SLPN) 138

Figure 6.1b Reachability Tree - Basic SLPN 138

Figure 6.2 Optimal Path Probability Changes : Basic SLPN 139

Figure 6.3 Structure of SLPN 140

Figure 6.4 Reachability Tree: Embedded Stochastic Automata — 141

Figure 6.5 Two/Three-State Automaton 142

(a) Two-State Automaton 142

(b) Three-State Automaton 142

Figure 6.6 Sequence of Decision/ States 143

Figure 6.7 Stochastic Learning Petri Net (SLPN) 144

Figure 6.8 GSPN Reachability Tree: Embedded Stochastic Automata 154

Figure 6.9 GSPN : Sequence of Decisions/ States 155

14

Figure 7.1 Four-Stage Model of Interacting Decision Maker 177

Figure 7.2 Petri Net Representation of Interacting Decision Maker 178

Figure 7.3 Situation Assessment Module 179

Figure 7.4 Block Diagram: Two Node Organisation Supported

by D.S.S 180

Figure 7.5 Petri Net: Two Node Organisation Supported by D.S.S. 181

Figure 7.6 Topology for Simulation: Single Decision Module 182

Figure 7.7a Petri Net Representation Decision Module DMl 183

Figure 7.7b Reachability Tree for Decision Module DMl 183

Figure 7.8 Topology for Simulation: Two Node Organisation 184

Figure 7.9 Single Decision Module (Table 7.1) 185

Figure 7.9a Average Action Probability vs Iterations : (Table 7.1) 186

Figure 7.10 Two Node Organisation (Table 7.2) 187

Figure 7.10aAverage Action Probability vs Iterations : (Table 7.10) 189

Figure 7.11 Switch of Environment: Before and After Switch 190

Figure 7.12 Average Action Probability vs Iterations 193

(a) Before Switch Pl.Ql (Table 7.3a) 193

(b) After Switch PI (Table 7.3b) 193

(c) After Switch P3.Q1 (Table 7.3b) 193

Figure 7.13 Communication Between Decision Modules 194

Figure 7.14 Average Action ProbabUity vs Iterations 198

(a) Upper Level Path Pl.Ql (Table 7.4a) 198

(b) Path Pl.Ql (Table 7.4b) 198

(c) Path P3.Q3 (Table 7.4b) 198

15

Figure 8.1 Factors Affecting the Use of Recognitional/

Analytical Decision Making Strategy 213

Figure A l . l Overall Structure of Program 224

Figure A 1.2 Programme Routines 225

(a) Routine Autol() 225

(b) Routine Envirl() 226

(c) Routine Lri-probl2() 227

(d) Routine Lri-prob22() 228

Figure A3.1 Coverability (Reachability) Tree Algorithm 239

Figure A4.1 Impossibility Results 251

(a) Lieutenant 2 a traitor 251

(b) Commander a traitor 251

Figure A4.2 Solution with Oral Messages 252

(a) Lieutenant 3 a traitor 252

(b) Commander a traitor 252

Figure A4.3 Solution with Signed Messages: Commander a traitor . 253

16

List of Tables

Table 4.1 Simulation of Simple Feedback (Figure 4.2) 75

(a) Action Probability Pr [0.5] 75

Table 4.1 Simulation of Simple Feedback (Figure 4.2) 76

(b) Action Probability Pr [0.8] 76

Table 4.2 Simulation of Weighted Feedback (Figure 4.4) 78

Table 4.3 Simulation of Interconnection 1 (Figure 4.6) 80

(a) No Coordination (One Equilibrium) 80

(b) No Coordination (Two Equilibria) 81

(c) Coordination (One Equilibrium) 82

(d) Coordination (Two Equilibria) 83

Table 4.4 Simulation of Interconnection 1 : (Three Action Case) . 84

(a) No Coordination 84

(b) Coordination 85

Table 4.5 Simulation of Interconnection 2 (Figure 4.9) 87

Table 4.6 Simulation of Tree Structure (Figure 4.11) 89

(a) Convergence Path To Minimum d l l 2 89

(b) Convergence Path To Minimum d211 89

Table 4.7 Simulation of Directed Network (Figure 4.14) 93

(a) Convergence Path To Minimum d212 93

(b) Convergence Path To Minimum d221 93

Table 5.1 Interpretations of Transitions and Places 123

Table 5.2a Switching ProbabUities of GSPN 123

17

Table 5.2b Reachability Set of GSPN 123

Table 6.1 Optimal Path : Basic SLPN 139

Table 6.2 Optimal Path SLPN : Sequence 0 145

Table 6.3 Optimal Path SLPN : Sequence 1 146

Table 6.4 Optimal Path SLPN : Sequence 2 147

Table 6.5 Optimal Path SLPN : Sequence 3 148

Table 6.6 Optimal Path SLPN : Sequence 4 149

Table 6.7 Optimal Path SLPN : Sequence 5 150

Table 6.8 Optimal Path SLPN : Sequence 6 151

Table 6.9 Optimal Path SLPN : Sequence 7 152

Table 6.10 Optimal Path SLPN : Sequence 8 153

Table 6.11 Optimal Path GSLPN : Sequence 0 156

Table 6.12 Optimal Path GSLPN : Sequence 1 157

Table 6.13 Optimal Path GSLPN : Sequence 2 158

Table 6.14 Optimal Path GSLPN : Sequence 3 159

Table 6.15 Optimal Path GSLPN : Sequence 4 160

Table 6.16 Optimal Path GSLPN : Sequence 5 161

Table 6.17 Optimal Path GSLPN : Sequence 6 162

Table 6.18 Optimal Path GSLPN : Sequence 7 163

Table 6.19 Optimal Path GSLPN : Sequence 8 164

Table 7.1 Simulation of Single Decision Module (Figure 7.9) 186

Table 7.2 Simulation of Two Node Organisation (Figure 7.10) . . . 188

Optimal Strategy Pair P4.Q2 188

Table 7.3 Simulation of Two Node Organisation (Figure 7.11) . . . 191

18

(a) Before Switch : Optimal Strategy Pair P l . Q l 191

(b) After Switch : Optimal Strategy Pair P3.Q1 192

Table 7.4 Communication Between Automata (Figure 7.13) 195

(a) Top Level Communication : (SAl and SA2) 195

(b) Top and Lower Level Communication :

(SA1:SA2) (RS11:RS21) 196

(c) Re-locate Unique Maximum: (SA1:SA2)(RS11:RS21)

Communicate 197

19

Chapter One

Introduction

1.1 Objectives

This thesis considers the development of appropriate algorithmic tools

for the systematic analysis of distributed decentralised decision systems. Such

systems axe characterised by a high degree of complexity, a distribution of

the decision making process among several 'agents', the need for reUable

operations in the presence of multiple failures and the inevitable interactions

of humans with computer-based decision support systems and decision aids.

The analysis and development of such systems requires novel advances in the

area of distributed decision making under uncertainty. It is essential to develop

quantitative methodologies, theories and algorithms for the representation of

such complex systems. Current research in this field is generating much

interest and has been prompted by studies from related disciplines, such as

computer science, control sciences, engineering and cognitive psychology, [l | ,

[2], [3], [4], [5], [6], [7].

1.2 Overview of Thesis

The thesis describes the progress and results obtained during a research

programme to study distributed decision making systems. An example of

such a system is the so called C^-I (Command, Control, Communications and

20

Intelligence) system. In essence, it is the process of information management:

how to obtain, process and distribute information quickly and accurately

from a network or other hierarchy of systems. Initial work involved an

overview of the field of Distributed Artificial Intelligence (DAI), focussing on

coordination techniques and highlighting an area of research to be addressed

by the DAI community, [8], [9], [10]. An approach based on the stochastic

learning automata is proposed to provide the basic conceptual framework for

a model of decentralised decision making, [11], [12]. The thesis then describes

topologies of synchronous and sequential models by the interconnection of

automata in various configurations, [13], [14]. The theory of Petri Nets

is then reviewed, [15], [16]. A discussion indicates the Umitations of each

framework in the development of appropriate decision making models. To

resolve these limitations, a new modelling technique is proposed by combining

principles from stochastic learning automata and Petri net theory. The

application of this new form of hybrid Petri Net model to a small-scale

realistic problem is discussed. Original simulation results are presented and

discussed. The thesis concludes by discussion of proposed future work. A

brief discussion of each chapter is provided in the following subsections.

1.2.1 Overview: Distributed Artificial Intelligence and

Approaches to Coordination

Chapter Two provides an overview of the field of DAI and highlights

the importance of such systems. In addition, the chapter presents several

approaches for effective coordination of nodes in a distributed network. The

21

survey reveals that there has been minimal DAI research in the collective

learning process. Thus, the motivations for learning in DAI environments

have also been addressed.

1.2.2 Basic Stochzistic Automaton Model

Chapter Three reviews the basic stochastic learning automata model.

It describes how a single decision maker operates in a random environment

and updates its strategy for choosing actions on the basis of the ehcited

response. The mathematical description of the input and output sets of the

automaton and the P-model environment are introduced. Several learning

algorithms and also measures of performance including expediency, optimahty

and €-optimality are defined. Stochastic learning automata are expected to

provide the basic conceptual framework for future research on distributed

decision systems.

1.2.3 Multiple Automata and Decentralised

Decision Making Models

Chapter Four provides a detailed study of decentralised decision mak­

ing in unknown random environments using stochastic learning automata as

the basic decision model. This chapter describes the analytical models for

interactive decision making systems of increasing complexity and the relevant

simulations. These interconnections consider both synchronous and sequential

models. The concepts of stochastic learning theory and game theory are used

to explain the results of extensive simulations.

22

1.2.4 Petri Net Theory

Chapter Five considers the potential of Petri Nets for the represen­

tation of decision models. This chapter surveys the known results in this

area and identifies the Petri Net formalism as a potentially efi"ective graphical

and mathematical tool. Moreover, the thesis considers time-related models by

examining stochastic timed nets. This chapter then discusses the Umitations

of existing Petri Nets models needed for the elfective representation of decision

models.

1.2.5 Learning Petri Net Models

Chapter Six presents a new class of Petri Nets, namely. Stochastic

Learning Petri Nets (SLPN). This extension to Petri Net models introduces a

new model which has the additional feature of an embedded stochastic learning

automata. The hybrid combination was shown to overcome the limitations of

existing Petri Net theory and stochastic learning automata used in isolation.

This chapter discusses the potential benefits of a new modeUing technique

by examining various forms of Learning Petri net models. The chapter also

presents original simulation results for each model.

1.2.6 Application to Distributed Decision Systems

Chapter Seven considers the application of the new Stochastic Learn­

ing Petri Net (SLPN) model to a small-scale distributed decision problem.

The basic model involves two decision modules interacting with a stochastic

environment. This chapter describes simulation studies which demonstrate the

23

impact that the use of such a modelling tool can have on the performance

of decision making organisations.

1.2.7 Conclusions £ind Future Work

Chapter Eight concludes the thesis by summarising the work that

has been presented and also provides an insight to possible future areas of

research.

1.3 Conclusions and Summary

This chapter has presented a brief introduction and overview of the

contents of the thesis. I t has highHghted the key areas of research involved

in a study of decentralised decision making in distributed environments. The

stochastic learning automata approach has been identified as the fundamental

framework for modelling decision making in complex systems. As the research

progresses additional layers of sophistication are incorporated within the basic

model. Thus, a novel contribution in this field of study has been provided

for the representation of effective distributed decentralised decision making

models.

24

Chapter Two

Overview: Distributed Artificial Intelligence and Approaches to Coordination

2.1 Introduction

This chapter presents an overview of Distributed Artificial InteUigence

(DAI), with special attention to coordination in Distributed Problem Solving

(DPS) and Multi-Agent (MA) systems. The potential benefits in the appUca-

tion of such systems where information, resources or expertise are distributed,

or where they are inherently distributed to improve speed, modularity or

reliability of the system are considered. However, these potential benefits are

not realised if the agents are uncoordinated. The major part of this chapter

addresses what many consider to be the key research issue for DAI: how to

coordinate the activities of a collection of semi-autonomous problem solvers.

Several approaches for effective coordination of nodes in such systems have

been reviewed. These include negotiation, organisational structuring, multi-

agent planning, metalevel information exchange, commitments/conventions and

formal frameworks.

The chapter does not aim to provide comprehensive coverage of the

entire field of DAI, such reviews have been generated by Bond and Gasser, [8],

and smaller collections have also been published by Huhns, [17] and Gasser,

10]. Rather, the objective is to provide a brief review of coordination

techniques in DAI systems. The survey also reveals a specific research

25

problem that the DAI community have yet to address. Bond and Gasser, [8],

stated that there has been virtually no DAI research in collective learning

processes. To date this gap in DAI research remains. This thesis presents a

new perspective in studying collective learning processes in DAI.

2.2 Overview of D A I

DAI is concerned with the study and construction of semi-autonomous

concurrent processing nodes, or agents which perform intelUgent operations

by interacting with each other and their environments as a community. Each

agent is responsible for maintaining a different perspective of the world

model, and these agents communicate with each another. Consequently, this

organisation has a more diverse perception of the world, is more robust and

enables the strengths of several processing paradigms to be exploited.

Research in DAI may be divided into two primary arenas; Distributed

Problem Solving and Multi-Agent Systems. Research in the field of Distributed

Problem (DPS) involves a study of how the work of solving a problem can be

divided among a number of modules or 'nodes' so that they can work together

to solve problems beyond their individual capabilities. Whilst, research in

Multi-Agent (MA) systems is concerned with coordinating the knowledge,

goals, skills of inteUigent agents so that they can jointly take actions or work

together to solve problems. These agents may be working towards a single

global goal or towards separate individual goals that interact in some way.

Similar, to the DPS system, agents must share knowledge and problem solving

capabilities, in addition they must reason about their local actions and the

26

actions of the other agents in the network.

The work described in the thesis better fits the MA system sub-

area of DAI. The thesis presents an Artificial Intelhgence (AI) approach

based on the stochastic learning automata which provides the conceptual

framework for research on distributed decision making models. The study of

stochastic learning automata as distributed 'agents' is considered to exhibit

the characteristics of an MA system. This is particularly appUcable to the

interconnections examined in Chapter Four. These interconnections consist of

a multitude of automaton-environment pairs that interact to achieve specific

goals. The agents are shown to operate together in an uncertain environment

either in a cooperative or competitive manner and the game situation is

represented by synchronous models. Similarly, sequential models are considered

whereby, the agents operate on various levels with interaction between the

different levels to seek optimal performance. However, the modeUing framework

does not include the reasoning capabilities which are an essential feature of

an MA system, instead, an inteUigence capabiUty permits the agents to adapt

to changing environments.

2.2.1 Rationales for D A I

The following attributes summarise the potential benefits of using this

type of environment:

Parallelisation/ Concurrency : Faster problem solving by exploiting paral-

leUsm. No order is assumed in the invocation of agents in the network.

They may be running in some arbitrary sequence on a single processor by a

27

multi-processing operating system, or may be running on physically separate

processors.

Communication : Agents communicate with one another using a message

passing protocol.

Modular Design/Naturalness : The principles of modular design and the

abihty to structure problems into relatively self-contained processing modules

leads to systems that are easier to build and maintain. The decomposition of

large tasks into manageable subtasks which, in themselves, are well bounded

but which when allowed to interact, are capable of creating a powerful model

of the world.

Robustness : A DAI system has both hardware and software robustness. If

one or more agents becomes disabled through a hardware fault, the system

will degrade gracefully. I f the system misbehaves, due to a problem with

the software, the consequences will be contained: if the agent fails to adhere

to the specified message passing protocol then it will not be listened to by

the other agents; if it produces an error in reasoning then it is Ukely to be

outvoted by the rest of the community of agents.

2.2.2 Motivation for Learning in D A I Systems

Learning denotes changes in the system that are adaptive in the sense

that they enable agents to acquire knowledge with time and adapt their

reasoning to improve their performance at specific tasks, more efficiently and

effectively at the next stage. The abiUty to learn is an essential feature

of any intelUgent system which has to operate in a changing environment.

28

However, this concept has been rarely discussed in the DAI Uterature, [8].

Research on learning in D A I systems should consider ways to improve the

agent's knowledge and skiU to enable the whole DAI system to improve its

performance as a result.

The earliest attempt for incorporating any learning mechanisms in

DAI systems was in the Multiple InteUigent Node Document Servers (MINDS)

system, [18]. This system operates in the domain of intelUgent document

retrieval. However, the concept of learning in this system was observed

to be a localised activity without any cooperation between the agents to

learn globaUy useful attributes. Shaw and Whinston,[l9], describe a method

treating DAI systems as adaptive organisations with the abiUty to improve

learning from past experience. The proposed method is composed of two

processes: an extension of the Contract Net protocol (discussed in Section

2.3.1) and using a genetic transformation process within agents to find a

more efficient solution. The Contract Net framework is extended as foUows,

tasks are awarded to the most appropriate bidders; the tasks are traded with

hypothetical payments which is equivalent to the bid; this in turn affects the

strengths of the agents involved which are updated accordingly. The concept

of the bidding scheme as a feedback mechanism to rate each agent is used as

the basis for learning and adaptation. The process of learning is performed

by a genetic algorithm. This technique used the strengths as the indication

of suitabUity to find desirable attributes of successful agents, and the weaker

agents were eliminated by new agents inheriting the desirable characteristics.

This process improved the overaU performance of the sytem. Shaw and

29

Whinston have shown the appUcation of this methodology to the scheduling

of flexible manufacturing systems. Sian, [20], has developed a model for

adaptation in MA systems that allow cooperative learning among autonomous

agents. The symboHc approach to adaptation is based on exphcit interaction

between agents for the purpose of learning useful information. Each agent

may only be able to infer partial hypotheses by using local information and

requires cooperation to produce a 'complete picture'. The interaction with

the other agents provides a more consistent, accurate hypotheses and increases

the level of confidence in the hypotheses. The model has been implemented

in a system called Multi-Agent Learning Environment (MALE).

The general model of DAI systems is one in which a collection

of agents (distributed spatially, logically or temporally) are engaged in the

performance of coordination of activities. In such complex systems which are

organised in a hierarchical or decentralised manner, the agents must deal with

large uncertainties regarding either the structure, parameters or the nature

of external events. In particular, it is these external uncertainties that add

to the difficulty of the control problem and their presence necessitates the

use of learning schemes. It should be emphasised that decentralisation by its

very nature introduces uncertainty into the system. The remote components

of the same system can only have limited information about each other

and the overall system. Hence, the decisions must be made by individual

agents that have access only to partial information regarding the state of

the overall system. However, this results in an inconsistency between local

and global optimality. To deal with such systems effectively, it is essential

30

that the agents adapt to their environment by utiUsing a learning paradigm.

This thesis has adopted a basic learning paradigm for the representation of

decentralised decision making models.

2.3 Approaches to Coordination

The concept of coordination in DAI research has most often been

described as the process of control decision making that guides the overaU

behaviour and performance of a coUection of semi-autonomous problem solvers.

The existing literature on DAI provides various definitions of this concept,

namely, coordination may be referred to as the process of structuring decisions

so as to maximise the overall effectiveness of a coUection of problem solving

nodes. Alternatively, the outcomes of a coUection of control decisions may

also be referred to as coordination, [21]. The coordination of the actions of

a coUection of decentralised agents has been posited as a formidable problem

of DAI research. At present there is a diverse range of techniques which can

and do facilitate coordination in DAI systems. These mechanisms can be

broadly divided into the foUowing categories:

• Negotiation

• Organisational Structuring

• Multi-agent Planning

• Metalevel Information Exchange

• Committments/ Conventions

• Formal Frameworks

31

Each of these approaches is examined in turn; a brief description about how it

facilitates coordination behaviour is provided. The most relevant to the work

in this thesis is the area of formal frameworks, which is discussed in Section

2.3.6. Most coordination techniques have been motivated and evaluated in

terms of an appHcation domain, often by building a simulator for the domain.

These implementations are prototypes and simulations; to date, there have

been only two MA systems which have been used in real-world applications,

[22], [23], [24].

2.3.1 Negotiation

Negotiation is a fundamental part of human cooperation, that allows

people to resolve conflicts that could interfere with cooperative behaviour.

The term 'negotiation' may be defined as 'the process of improving agreement

(reducing inconsistency and uncertainty) on common viewpoints or plans

through the structured exchange of relevant information', [25]. The following

provides a more concise description of negotiation.

Smith and Davis, [26], [27], developed the Contract-Net framework,

which is one of the eaxUest and most influential research projects in cooperative

DPS. This represents a framework that specifies communication and control

in a distributed problem solver. The process of negotiation involves three

important components: a two-way exchange of information between interested

parties; an evaluation of the information by each party from their own

perspective and a final agreement achieved by mutual selection.

Conry and her colleagues, [28], describe a multistage negotiation

32

paradigm for planning in a distributed environment with decentralised control

and limited inter-node communication. This process considers another use of

a limited form of negotiation in task allocation. The multistage negotiation

protocol is useful for cooperatively resolving resource allocation conflicts which

arise in a distributed network of problem solvers. This framework may be

viewed as a generalisation of the contract net protocol. The contract net

was devised as a means for accomplishing task distribution among agents in

a distributed problem solving system. Task distribution takes place through

a negotiation process involving contractor task announcement followed by

bids from competing subcontractors and finally announcement of awards. The

multistage negotiation extends the basic contract net protocol to allow iterative

negotiation during the bidding and awarding of tasks.

2.3.2 Organisational Structuring

An organisational structure is a network level coordination mechanism

that can be implemented in a number of ways. In most DAI research,

an organisational arrangement imposes guidelines about the distribution of

specialisations among the collective agents. It provides a framework for

activity and interaction through defined roles, behavioural expectations and

authority relationships(eg control). The control relationship between the agents

can be represented in terms of topologies such as hierachical, heterarchical,

flat(lateral) structures. These organisations are responsible for designating the

relative authority of the agents and for specifying the types of interactions that

can occur. Organisational structures can be used as a high-level specification

33

of the distribution of problem solving capabilities among the community

members, [29].

An organisational structure provides more general long-term infor­

mation about the relationships between agents. As stated previously, an

organisation can be reviewed as a distribution of capabilities which is a pre­

cise way of dividing the problem space without having to go into depth about

the particular problem subtrees.

Organisational structures provide a control framework that increases

the likelihood that agents operate as a coherent team by identifying the roles

of each individual. Lesser and Corkill, [30], applied organisational structures

to efficiently implement network coordination strategies. Their ideas have been

implemented and evaluated in one of the most flexible simulation testbeds

developed to date:the Distributed Vehicle Monitoring Testbed(DVMT). This

simulates a spatially organised network of agents which perform distributed

interpretation to track vehicles moving among them. By this process of

coordination agents build a map of vehicle movement through an entire

area. Lesser and Corkill suggest that each agent needs to decide on its own

activities, based on the current local view of the problem being solved, but

organisational knowledge should be applied about its problem solving role in

the network and the roles of others to guide its decision so that it is a more

effective participant in the network. This approach divides coordination into

two concurrent activities: the construction and maintenance of a network

wide organisational structure into precise activities using the local knowledge

and control capabilities of each agent.

34

2.3.3 Multiagent Planning

In a multiagent planning approach to cooperation, nodes (agents) form

a multiagent plan that specifies all their future actions and interactions. The

coordination of nodes through multiagent plans is different from organisational

structuring and metalevel information exchange in terms of the level of detail

to which it specifies every agents activities. In this case one or more nodes

possess a plan that indicates exactly the actions and interactions each node

will take for the duration of the network aictivity. Agents know apriori exactly

what actions they will take, one or more nodes have information about each

node's activities and what actions will occur, recognising and preventing the

duplication of effort. Multiagent planning insists on detecting and avoids

inconsistencies before they can occur. Finally, a multiagent plan dictates

exactly what actions should be taken by each node and when the actions

should be taken; which is unlike the guidelines imposed by an organisation

structure. The approach requires more computation and communication

resources than other approaches, since nodes are expected to share and

process substantial amounts of information.

There are two basic approaches to multiagent planning: centralised

and distributed. Georgeff, [31] develops a multiagent planning approach where

the plans of individual nodes are first formed which is collected by some central

planning node. It is then analysed to identify potential interactions such as

conflicts between the nodes over limited resources. This provides an efficient

method of interaction, and safety analysis is then developed by central node

to determine which potential interactions could lead to conflicts. The central

35

planning node next groups together sequences of unsafe situations to create

critical regions. Finally, the idea is to insert communication commands

into the plans so that nodes can synchronise activities and avoid harmful

interaction, [32], [33]. Cammarata et. al., [34] also devised a centralised

multiagent planning system for the air traffic control (ATC) domain. In this

ATC application, each aircraft (agent) sends information about its intended

actions to a coordinator. The coordinator is responsible for developing a plan

which specifies all the agents' actions, including the actions to be taken to

avoid harmful collisions.

Whilst, with distributed multiagent planning, the plan is developed

by several agents. Rosenschein and Genesereth, [35] studied a logic-based ap­

proach studying how agents with a common goal but different local information

can exchange propositions to converge on identical plans. They developed

strategies for convergence. These strategies were based on assumptions about

the correctness and completeness of agents' information, whether additional

information can cause a previously acceptable plan to be unacceptable and

also what each agent knows about other agents' knowledge. Their results

indicate that it is infeasible to expect sometimes unpredictable agents working

in dynamic domains to always coordinate optimally, perhaps the best to be

expected is that they will coordinate acceptably well and will tolerate any

uncoordinated activity.

36

2.3.4 Met2devel Information Exchange

The exchange of metalevel information is another way that the agents

in a network can improve their coordination. Gasser, [36], describes metalevel

information as the control level information about the current priorities and

focus of a problem solver. This indicates the approximate regions of the

search space on which agents focus their efforts.

Durfee, [37], developed a metalevel information exchange to coordina­

tion, called Partial Global Planning. Their partial global planning approach

presents a unified, flexible framework which brings together a range of distinct

coordination techniques. The technique can be viewed as planning, but i t

differs from traditional planning that rigidly dictates specific actions to be

performed at specific times. The partial plans can change so fiuidly and

adapt to changing information and environments. The plans are used to

detail an agent's problem solving strategy, and its expectations. Each agent

follows the specified strategies for as long as i t is feasible, and they have the

capability to change strategies as problem solving progresses.

This process of coordination involves sharing sufficient tentative plans.

This enables at least one agent to establish a global view to recognise how

changes to local plan could improve coordination among them. Any number of

nodes can collect plan information from others; the coordination of the plans

by specific nodes is dependent on the domain requirements and constraints.

I t is not necessary for each node to have a global view in order to improve

coordination. As agents collect plan information from various agents in the

network, the partial knowledge about its global situation is combined to form

37

Partial Global Plans (PGPs). Agents maintain their own set of PGPs, which

may be used independently or asynchronously to coordinate its activities.

Agents use its models of itself and others to identify when nodes have PGPs

whose objectives could be part of some larger network objective called Partial

Global Goal and combines the related PGPs into a single, larger PGP to

achieve i t .

2.3.5 Committments/ Conventions

Jennings, [38], presents a unifying coordination model which considers

the notion of commitments and conventions as the foundation of coordination

in MA systems. The term commitments are considered to be pledges to

undertake a specified course of action, whilst conventions provide a means

of monitoring commitments in changing circumstances. In the former case,

agents can make pledges both about actions and beliefs. These behefs can

relate to the future or the past. In addition, commitments provide a degree

of predictabhty, so that agents can take the (future) activities of other

agents into consideration when dealing with inter-agent dependencies, global

constraints or resource utilisation constraints. In the latter case, conventions

provide cooperating agents with the flexibihty they need to operate in dynamic

environments. In such environments the external world may change, agents

may receive new information which may constantly change their own beliefs.

Thus, to operate successfully and intelligently, agents need a mechanism for

assessing whether commitments are valid. Conventions provide this mechanism

so that agents can reconsider its commitments and specify the appropriate

38

course of action to either retain, rectify or abandon the commitment. The

proposed model is based upon the Centrality of Commitments and Conventions

Hypothesis which states that: all coordination mechanisms can ultimately be

reduced to (joint) commitments and their associated (social) conventions.

2.3.6 Formal Frameworks

This section focusses on formal models, using logic-based or gcime-

theoretical models. Some of this work has concentrated on how nodes form

multiagent plans, including the work of Georgeff, and of Rosenschein and

Genesereth, [39].

The formalisms developed for logic-based agents, that work alone

must be extended in two ways. As a first extension these systems must be

able to model and reason about the concurrent activities of multiple agents.

The second requirement is that the agents must perform in situations where

they have incomplete knowledge or limited computational resources. However,

both modifications lead to a possibility of producing incorrect inferences which

result in agents having inconsistent beliefs about the world. Thus, agents

may never converge on shared, coordinated plans, [39 .

Rosenschein and Genesereth, [35], [40], proposed another approach

towards developing a formal theory for understanding the nature of cooperation

among multiple agents. Their models were based on game theory techniques

and have shown the utility of communication to resolve conflicts among agents

having disparate goals. By using a game theoretic model, each agent attempts

to choose an option to maximise its payoff, and since no combination of agents'

39

options can lead to maximal payoffs for them all, they must somehow select

an option that results in acceptable payoffs given the circumstances. They

studied how different assumptions about the rationality of the agents can lead

to more or less effective choices.

As stated previously, game theoretic issues provide a fundamental basis

for the study of decentralised decision making. Wheeler and Narendra, [13],

consider the basic multiple automata game interacting through an imcertain

environment. At each stage the automaton selects an action, and this

determines the distribution of the random process involved. I t should be

noted that in contrast to the usual game-theoretic formulation, no player is

aware of the other players, the actions selected by or the responses from the

environment to the players. The research has involved synchronous models in

which the time instants for automata actions and updates are synchronised,

and sequential models which are asynchronous. These models can be analysed

by game-theoretic concepts. A detailed discussion of this work is presented

in Chapter Four.

2.4 Conclusion and Summary

This chapter has presented an overview of DAI and also focusses

on the approaches for coordinating nodes in DAI systems. Based on this

survey, it is evident that effective coordination is based on three essential

factors. Firstly, it requires structure because without structure the nodes

cannot interact in predictable ways. Secondly, it requires flexibility because

nodes typically exist in dynamically changing environments where each node

40

might have incomplete, inaccurate, or obsolete information. Finally, effective

coordination requires knowledge and reasoning capabilities to intelligently use

the structure and flexibility. These factors also apply to the quantitative

framework adopted in this thesis. The main features include structure and

flexibility, which is illustrated by the different interconnections presented in

Chapter Four. However, the limitations of the basic stochastic Iccirning

automata for the representation of a generalised network have forced an

extension to this modelling framework, which is discussed in Chapter Six.

The final features, knowledge and reasoning is not a matter of coordination, i t

enables agents to reason about the information and decision making in their

problem solving activities. Although, the framework proposed in this thesis

does not exhibit this characteristic, instead the model has an intelligence

capability which enables agents to adapt to changing environments.

The survey has also emphasised that there are certain gaps in DAI

research that are worthy of further investigation. One such area that should be

addressed is related to the benefits to be gained by implementing a collective

learning process in DAI research. This thesis addresses this particular topic of

research and provides a new insight to the virtually unexplored field of DAI.

The thesis proposes a different perspective to collective learning in a DAI

environment. I t will be described in the subsequent chapters how collectives

of automata have been designed to function as a distributed, yet coordinated

intelligent control system. These models utilise learning schemes to display

intelligent behaviour in an uncertain environment, [12].

41

Chapter Three

Basic Stochastic Automaton Model

3.1 Introduction

The previous chapter has provided an overview of the field of DAI,

identifying the key requirements for effective coordination and highhghting an

area of research to be addressed by the DAI community. This chapter proposes

the stochastic learning automata approach which provides a fundamental

framework for a model of decision making under uncertainty, [41], [42]. The

concept of learning is defined as any relatively permanent change in behaviour

resulting from past experience. An extensive literature and a well established

mathematical foundation now exists for models of learning systems. The

learning system was first introduced to model the behaviour of biological

systems [43]. At a later stage it was shown that such models can use a

variety of learning schemes to display intelUgent behaviour under uncertainty,

11], [12]. This early work and related research formed the basis for what

has become known as the learning automaton approach. These automata

effectively use past experience and interaction with a random environment to

optimise their response to external factors.

This chapter introduces the basic concept of stochastic learning au­

tomata, providing relevant definitions of stochastic automata and random

environments. It discusses the properties of reinforcement schemes (or up-

42

dating algorithms) which determine the performance of stochastic automata.

These learning arrays will be combined with that of Petri nets in the later

chapters, to model decision making systems.

3.2 Stochastic Learning Automaton Model

In general, a learning automaton may be defined as a simple model

for decision making in an unknown random environment. Figure 3.1 shows

the basic model. The stochastic automaton has a finite set of actions, and

these actions form the inputs to the environment. Initially, the probability

of selecting any of the available actions is equal. One action is selected at

random, which interacts with a random environment. The environment re­

sponds to that action, and based on this response the action probabilities are

sequentially updated. A new action is then selected according to the updated

action probabilities, this procedure being repeated. Through this process of

interaction with the environment, the automaton learns to choose asymptot­

ically with a high probability the optimal action, i f such an action exists.

The components of the stochastic automaton model can be characterised as

follows.

3.2.1 Stochastic Automaton

Figure 3.2 shows a stochastic automaton with its input and action set.

A stochastic automaton is a sextuple (/3, (f), a, p, F, G) and the components

can be defined as follows:

43

(i) The input set to the automaton (output from the environment),

denoted /3(n)

where k may be finite or infinite.

(ii) The state of an automaton at any instant n, ^(n)

<f> = {<f>i, h, • • •, <i>s)

where s is finite.

(iii) The output action set selected by the automaton (inputs to the

environment, Q;(n)

a = (a i , a 2 , . . . , a^)

where r is finite, and r < s.

(iv) The state probability vector governing the choice of the state at

each stage, denoted p(n)

p{n) = {pi{n),p2{n),... ,p,{n)y

where

and

Pi{n) = Pr{a{n) = a^)

^ P i (n) = 1 Vn
i=i

thus, preserving the probabiUty measure.

(v) The state transition function which relates the current state and

input at stage n to the next state at stage n -|- 1.

44

F : <f>xl3 ^ (I)

(vi) The output function G relates the state of the automaton to the

resulting output action at stage, n

G : <̂ ̂ a

The functions F and G may be deterministic or stochastic mappings. If

F and G are both deterministic, the automaton is denoted a 'deterministic

automaton'. In this case the succeeding state (n-l-1) and output action are

uniquely defined for a given current state and input. In contrast, i f there are

only probabihties associated with each successive state and output actions,

the automaton determines a 'stochastic automaton' in which F or G or both

are stochastic functions.

3.2.2 Environment

The environment can be defined as a random process or medium in

which the automaton itself operates. Figure 3.3 represents the environment

which accepts output actions of the automaton as inputs and produces

responses which are in turn fed back to the automaton. The environment

is described by the triple (a, c,/?) where a = (a j , 0 :2 , . . . , Qr) are the input

action set (input to the environment), the set c = (ci, C 2 , . . . , c)̂ represents

the penalty probabilities and /3 is the output set (input to the automaton).

The nature of the response output from the environment, determines

three possible types of environment. The first type of environment which is

considered is the P model, this consists of a binary environment which is

45

defined by a finite set of inputs a = (a i , . . . , a^) (outputs from the automaton);

a set of penalty probabilities associated with each action c = (c i , . . . , Cf); and

an output set = (0,1). The /3(n) = 0 at stage n denotes a favourable

response (reward) and /3(n) = 1 an unfavourable response (penalty). The

Ci(n) are called penalty probabilities and are defined as:

a = Pr[^(n) = l /a(n) = a,] (3.1)

Therefore Ci represents the probability of a penalty being output in response

to the input ai, while the probability of a reward is (1 — c,).

Other possible types of environments have included Q models (finite

number of outputs) and S models (continuous outputs in range 0 to 1).

In practice the choice of environmental models is obviously dictated by the

particular application. 1i the penalty probabilities from the environment do

not depend on stage number n, the environment is classified as stationary;

otherwise the environment is non-stationary.

3.2.3 Reinforcement

The reinforcement scheme is a crucial factor in determining the per­

formance of the learning automaton. In general terms a reinforcement scheme

can be represented by:

p(n + l)=T[p(n),a(n),/3(n)] (3.2)

where T is an operator (learning algorithm) that denotes the rule by which the

46

automaton updates the probability of selecting certain actions; a(n) represents

the action of the automaton; (3(n) represents the input to the automaton

from the environment at instant n, respectively.

The manner in which p(n) is updated is governed by the learning

algorithm T, [12]. Both linear and non-Unear forms of updating algorithms

T have been considered. I f p(n-|-l) is a Unear function of the components of

p(n), the reinforcement scheme is said to be linear, otherwise it is non-linear.

The most widely used are the class of Unear algorithms which include linear

reward/ penalty (LRP), hnear reward/ e penalty (LR^P) and Hnear reward/

inaction schemes (LRI) . For the LRP scheme if an automaton selects an

action a, which results in success pi(n) is increased and all other Pj(n)(j ̂ i)

are decreased. Similarly i f action aj produces a penalty response Pi(n) is

decreased and all other Pj(n) are modified to preserve the probabihty measure.

An L R I scheme ignores penalty responses from the environment and LR^P only

involves small changes in pi(n) for penalty responses compared with changes

based on success.

3.2.4 Linear Reward/ Inaction Reinforcement Scheme

This section considers one particular reinforcement scheme known as

the Linear Reward/ Inaction or LRI method, since most simulations in the

thesis have employed this particular learning scheme. This is due to the fact

that L R I schemes are known to exhibit the abUity to converge to an optimal

action, i f the optimal action exists, [12]. The behavioural properties of a

variable structure LRP stochastic automaton can be analysed by the following

47

linear algorithm using various parameter values:

For Q(n) = Qi and /3(n) = 0 (reward)

Pi{n + 1) = p,(n) + a[l - p,(n)

Pj{n - f 1) = (1 - a)pj{n) j ^ i

For a(n) = and /5(n) = 1 (penalty)

Pi{n+l) = {l-b)p,{n)

b (3-3)

where 0 < a < 1 and 0 < b < 1 are constants called reward and penalty

parameters, respectively. Special cases of the algorithm result when 'a' and

'b' take on certain values as stated above; also an LRJ scheme is produced if

the penalty parameter b=0.

Equation 3.3 which accomodates a binary environment and this may

be modified to include a genercil environment. In this case /3(n) takes on

values in the interval (0, 1), and the success probabilities di are replaced by

success distributions, one associated with each action. The following algorithm

presents the general environment case, for axi LRJ scheme when b=0:

For a(n) = Qj

Pi(n +1) = p^(n) + o/3(n)[l - pi(n)

p^{n -h 1) = Pj{n) - a/3{n)p,{n) j ^ i (3.4)

Note that this formulation may be reduced to equation 3.3 i f /3(n) is a binary

environment.

48

These equations describe how the probabilities of selecting the appro­

priate actions are adjusted so that if successful, they are selected with greater

probability, otherwise with less. Also note how the probability measure is

preserved.

3.2.5 Performance

The basic operation carried out by a learning automaton is the

updating of the action probabiUties on the basis of the responses from

the environment. The convergence characteristics of learning automata are

dependent on the properties of the algorithm used in the updating scheme.

A useful measure for judging the performance of the learning automaton is

the average penalty received. At a certain stage n, if the action is selected

with probabiUty Pi(n), the expected penalty is:

M(n) = E[/3(n)/p(n)] (3.5)

Assuming a stationary environment and the actions are randomly selected

with equal probabihty, the value of the average penalty MQ is given by:

M, = + + (3.6)

49

Definition 1

A learning automaton is said to be expedient if:

Umn^ocE[M(n)] < Mo (3.7)

When a learning automaton is expedient it only does better than one which

chooses actions in a purely random manner. If the average peneilty is

minimised by a proper selection of actions then the learning automaton is

said to be optimal, where:

Definition 2

A learning automaton is called optimal if

Hm„_ooE[M(n)] = minifq] (3.8)

Although optimal performance is a desirable property it cannot always be

achieved. In such a case one would aim for sub-optimal performance, defined

as follows:

Definition 3

A learning automaton is called e — optimal if

Um„^ocE[M(n)] = c„i„ + e (3.9)

This property caji be obtained for any arbitrary e > 0 by a suitable choice of

the parameters of the reinforcement scheme. In this case e — optimal imphes

that the performance of the automaton can be made as close to the optimal

as required. These properties are said to be conditional if the values hold

only when penalty probabilities Ci satisfy certain restrictions, eg. that they

should he in certain intervals.

50

3.3 Conclusion and Summary

This chapter has introduced the basic model of a stochastic learning

automata. It has defined the structure of the stochastic automaton, the

nature of the random environment and norms for judging the behaviour of

the automaton. These concepts are relevant in studying the behaviour of

interactive decision makers.

It will be shown in Chapter Four, that the stochastic learning automata

approach will provide the fundamental framework for a model of decentralised

decision making in C^-I environments.

51

SI

4-»
r — 1

s

o
f H

• 1—(

> u

C O .

Figure 3.1 - Stochastic Learning Automaton Model

Stochastic a £ a
• Response (Input) Automaton a £ a
• •

[P(n), ,P(n)] Action (Output)

{p, (l) , a , p , F , G }

Figure 3.2 - Stochastic Automaton

Action (Input) Environment pep-
a £ a [q , , c j

Response (Output)

Figure 3.3 - Environment

53

Chapter Four

Multiple Automata and Decentralised Decision Making Models

4.1 Introduction

The previous chapter considered models of a single decision maker (aa

automaton) interacting with an uncertain environment. This discussion can

now be extended to consider multiple decision makers and environment pairs

in various interactive configurations. As such, the models are descriptive

cind have the property of analytical tractability. It is shown that each

interconnection gives rise to a corresponding automata game, which lead to

very different game structures. In some cases, the game can be analysed

directly using results from automata game theory in which the players are

considered to be learning automata. However, in some models the game

lacks a structure for which automata behaviour is not known. Two types of

interactions are of particular interest. In the first case, several automata are

operating together in an environment either in a competitive or cooperative

manner and this game situation may be represented by synchronous models.

The second case considers automata operating on various levels with interaction

between different levels in a hierarchical structure.

This chapter defines an automata game and analyses the behaviour of

multiple automata in an abstract game played repeatedly. A major part of

this chapter introduces models in which decision makers are not autonomous

54

and their decisions affect each other. It is shown that automata games

have no prior knowledge of the game or number of players available and the

players choose their strategies on-hne. Such interactive structures result from

interconnecting many decision maker-environment pairs to produce synchronous

and sequential models, [13], [14], [44], [45]. These models are discussed in

detail and simulation results are provided for each interactive configuration.

The analysis of such models is based on results from learning theory and

game-theoretic issues, [46].

4.2 Automata Games

An automata game, Figure 4.1, involves N automata (or players) Ai

(i = 1,...,N) each with an action (strategy) set a' = a\,...,a]^ interacting

repeatedly through a stationary random environment. Each automaton Aj

selects an action according to its current probabiHty distribution, at time

instant n. The joint action (or play) Q(n) = a = (a-^, a?2,. • . , a-^) determines

the success probabilities for a binary environment or success distributions for

a general environment. Note that a binary environment is assumed for the

models studied, unless otherwise stated. The environment is stationary since

the d'{a) are fixed over time. In the multiple automata case, each automaton

has access only to its own response. It should be noted that in contrast to the

usual game theoretic formulation, no player is aware of the other players, the

actions selected by or any of the environment success probabihties {d^iii2...iN)-

Similar, to the single automaton environment model, the basic feature

of an automata game is that at each instant the probabilities of choosing

55

actions are updated. The probabihty of an action is increased when the

selected action results in a success and is decreased or left unchanged when

it results in a failure.

4.3 Interactive Decision Making Models

As stated previously, this section introduces plausible models of de­

centralised decision making under uncertainty. It is considered that the

stochastic learning automata approach, and interactive decision making in

automata games will provide the fundamental framework for a model of de­

centralised decision making in complex systems. This approach constructs

models which result from interconnecting many of the automaton-environment

pairs in simple ways. In such systems, the decision makers (modelled as

automata) update their actions using learning schemes on the basis of re­

sponses from many local environments, this gives rise to specific strategic

games. Some games are easily analysed using results either known or derived

from automata game theory, other interconnections lead to a structure for

which automata behaviour is not currently known. The objective is to bmld

models with both analytical tractability as well as providing realistic models.

The models studied in this section express typical ways in which

decision makers can interact, by considering both feedback and hierarchical

structures. Particular emphasis has been given to feedback structures in the

form of synchronous models. In such models, the actions of all automata

occur simultaneously, as do the subsequent responses. A sequential model

is also considered, where there are various levels of automata and there is

56

interaction between different levels. In such systems, one automaton acts at

a time with the action chosen determining which automaton acts next.

4.4 Synchronous Models

These models represent ways in which decision makers interact. For

such models, the time instants when the automata choose actions and update

probabihties are synchronised. The concepts of game theory are used to

analyse the convergence of the learning schemes. The relevant concepts of

game theory have been provided in Appendix Two. Figure 4.2 and Figure 4.4

show some simple examples of synchronous models. These basic structures

can be modified to include examples in which the actions of the automata

determine specific types of nonstationary environments and they are discussed

in Section 4.7. A description of each model is presented in the following

subsections.

Simulation results are provided for each model in the subsequent

sections. The results for all decision making models - synchronous and

sequential are presented in the form of tables and graphs. It is assumed

that all the feedback models use L R _ I algorithms of the form, Equation 3.3;

unless otherwise stated. In all cases 'a' is the reward parameter; pi(n) and

qi(n) (and ri(n) in the three player examples) are probabihties for selecting

the first action Ai and A2 (and A3) , respectively. The game matrix uses

reward probabihties to represent the game structure of each environment, in

the case of synchronous models. The number of sample paths over which

averages were taken, is related to 'm'. A single iteration computes one loop

57

at each stage 'n'. Expected values are denoted by, eg pi(n) = E[pi(n)]. The

general structure of each simulation program is provided in Appendix One.

4.5 Simple Feedback

The most basic feedback arrangement shown in Figure 4.2 interconnects

two automaton-environment pairs Ai - E i and A2 - E2. Each automaton Ai

and A2 are assumed to have two actions interacting into their respective

binary environments at each stage 'n'. The main feature exhibited by this

model is that the response /3(n) from one automaton's environment is the

input to the other automaton.

The synchronous nature of the model can be viewed as a standard

automata game which can be represented by the following game matrix. The

notation impUes that an action aj is selected by automaton i; similarly,

the environment success probabihties are given by (ij where i and j are the

automaton and action indices, respectively.

2
2

/ \
(4.1)

The strategies of Ai and A2 correspond to the rows and columns, respectively

of T . Each ordered pair of the game matrix represents the expectation of

success (rewcird probabUity, since reward = 1 and penalty = 0) for Ai and

A2 resulting from the corresponding strategy pair. It is evident from the

game matrix that all four strategy pairs are equihbria. If d'̂ > dj (i = 1,

58

2), it is also true that (a j ,a f) is the only Pareto optimal play. Note that

irrespective of the action selected by A2, Ai's action is equally good and vice

versa.

4.5.1 Simulation - Simple Feedback

Table 4.1a and Table 4.1b display the simulation results for two

different initial probabihties and their corresponding learning curves are pro­

vided in Figure 4.3a and Figure 4.3b. It is evident from both simulations

that, the action probabihties for automaton Ai and A2 fluctuate close to

the initial probabihty value. This confirms that irrespective of the choice of

initial probabihty all action probabihties remain close to their initial values,

independently of the reward parameter and number of sample paths. Recall

that in this model. Figure 4.2, the response from one automata's environment

E l is the input to another automaton. Since direct feedback of responses into

the original automaton does not occur, the action probabihties do not show

convergence behaviour. This indicates that learning has not been performed.

4.6 Weighted Feedback

In Figure 4.4 each automaton receives responses from two environ­

ments, this results in a more involved game. For the N-automata case, the

weighting factor Wi = (w i i , W i 2 , . . . , W i N) , E j ^ i Wjj = 1 is associated with each

response output from Ei . This produces a normalised scalar input to each

automaton Ai. In the weighted feedback model P*e (0, 1) is the response of

environment Ei , while ^^(0) W i i , . . . , WiN, 1) is the normalised scalar input to

59

Ai. If the responses are weighted equally then the input is the number of suc­

cesses divided by the total number of responses, as in the multi-environment

model for the single automaton. Zero weights imply feedback from only some

environments. The effective environment success probabUities are defined as:

<5hj.k = Pr(/3(n) = /3k/ai(n) = aj^, a2(n) = a?) k = 1, 2 , . . . , K (4.2)

where is the k'̂ element of the input set to each automaton. If equal

weights are considered for Figure 4.4, then K=3 and the input set is (0, 0.5,

1). The expected value of A '̂s input conditioned on the action choices is:

Sj ,j3 t E[^(n)/ai(n) = aj^, a2(n) = aJ] = A ĵu^k (4.3)
k=i

Since S j j 2 is analogous to d j j 2 iii the automata game formulation; it can

be used to construct an identical payoff game with the game matrix having

elements sjjjj. These values represent the environment reward probabUities of

E l and E2, as shown below:

sn = E /3k̂ uk = ^[dl(l - dD + d?(l - d})] + did? = i (d l + dl) (4.4)
k=i ^ ^

The common factor of | maybe omitted to provide the following identical

payoff game matrix:

"2

1
(\

(4.5)

60

Assuming that d\ > d̂ and df > dj, it follows that dj -|- df is the largest

element of r and d̂ + is the smallest. It is apparent that (a}, af) is the

only pure strategy equihbrium. However, r has even more structure. Each

player has a dominant strategy a} and a^, which is better than any other

strategy regardless of what the other player does.

4.6.1 Simulation - Weighted Feedback

The simulation result for the weighted feedback model is provided in

Table 4.2, each automaton has three actions with the same initial probabihties

and a different weighting on the two responses. Since, the automata receives

responses from two environments, a normalised scalar input is received by each

Ai. In this case, all action probabUities are updated by using the generalised

version of Linear Reward/ Inaction algorithm, as stated in Equation 3.4.

The results indicate that each automata's first strategy corresponds to the

best action (which relates to the highest reward probability) la its loccd

environment, then (aJ, a ^ , . . . , aj^) is the set of dominant strategies. As

mentioned, the set of dominant strategies is denoted by (aj, a^) which is

better than any other strategy regardless of what the other player does. This

example shows that dominance holds for multiple automata in which the

automaton Ai has ri actions. Figure 4.5 presents the graphical illustration

for the tabulated results.

4.7 Synchronous Models: Actions Determine Environment

This section presents two types of interconnections as shown in Figure

61

4.6 and Figure 4.9. These interconnections are modifications of the basic

structure in which the actions selected by the automaton determine specific

types of nonstationary environments.

4.8 Interconnection 1: A i Determines A 2 ' s Environment

No Coordination

The feedback configuration as shown in Figure 4.6, indicates that the actions

selected by automaton Ai determines the stationary random environment Ef

or El that is observed by A2, but the actions from A2 do not influence Ai.

In this model there is no coordination of Ai and A2; automaton Ai receives

responses from environment E i whilst A2 interacts with or E2, therefore

the response received by each player is different at each time instant. The

game structure can be represented by the following game matrix:

^^OL\ di,dn d,,dn

al \d2,d2i d2,d22j

Clearly, Ai will converge to its best action independently of A2, while A2

converges to its best action in the environment that Ai has determined. Note

that it is possible that in optimising for itself Aj prevents A2 from receiving

its optimal payoff.

Coordination

In contrast to the configuration mentioned above, each player (automata)

receives the same input at each time instant. This represents a coordinated

structure, such that the actions selected by automata A2 also determines

62

the environment. By coordination of Ai and A2 the game matrix may be

modified to provide the sum of the payoffs as the input to each player. Thus

the game matrix can be thought of as having the game structure:

2
2

/ \
(4.7) di + dn di + di2

^2 V ^̂2 + <̂ 2i d.2 + d22 J

(omitting a factor of |) . If this coordination T^, has a unique equihbrium

then at least one player must have a dominant strategy. Thus, the automata

will converge to the equihbrium with probabihty arbitrarily close to one. This

may result in Ai selecting the action that was the worst without coordination.

K A2 does not have a dominant strategy in T I , it is possible that may

have two equihbria.

4.8.1 Simulation - Interconnection 1

In this model, the actions of the automata determine responses from

the environment. The results in Table 4.3a - Table 4.3d consider a two-state

automaton, without coordination between automata Ai and A2 ; and examine

a model which involves coordination. A graphical representation of each table

is also included in Figure 4.7a - Figure 4.7d, respectively.

No Coordination

Table 4.3a presents simulation results for interconnection 1 with one equihb­

rium. It can be seen that the strategy pair (a}, a^) is the unique equihbrium

and Pareto optimal play. The results obtained confirm that the action prob-

63

abUity for automata Ai converges to its best action independently of A2; and

A2 receives optimal payoff and both automata converge to the equihbrium.

However, this does not apply when two equihbria exist as shown in Table

4.3b. In this case (a\, af) is stUl the unique equUibrium but {al, al) is

also Pareto optimal (joint maximum). Since Ai's best action does not imply

that A2 receives its optimal payoff, then the convergence of A2 is slower in

comparison to Ai .

Coordination

Table 4.3c and Table 4.3d present simulation results for Interconnection 1

with coordination. The tables illustrate convergence behaviour when the

game matrix T ^ , has a unique equilibrium and two equUibria. Note that each

table uses the same environments as Table 4.3a and Table 4.3b; but the game

structure is modified by r̂ *. In the unique equihbrium case, Table 4.3c, it can

be seen that both automaton steadily converge to the equihbrium. However,

in the two equihbrium case the action probabihties for each automaton are

decreasing in value, showing that for specific initial conditions the drift is

towards the global optimum. If however, the players have more than two

actions, the point of equal initial probabUities may not have this property.

The example in Table 4.4b suggests this for the three action case with

coordination.

Simulation resiilts are also included for the players having three actions

each, shown in Table 4.4a and Table 4.4b; the corresponding learning curves

are presented in Figure 4.8a and Figure 4.8b.

64

4.9 Interconnect ion 2: A i Determines G a m e for A2 and A3

Figure 4.9, represents interaction of automata in which the actions

selected by A i determine the environment E i or E2 (now a game) seen by

A2 and A3. I n this case A i may be thought of as a coordinator without

its own environment whose actions produce uncertain results. The objective

of A i is to maximise the weighted sum of the payoff's to A2 and A3. The

environments, E j , caji be expressed as follows:

Ei = (4,di2) (4.8)

the payoffs, M ' , to each player is given by

M ^ = ^(diUdi^);M2 = dii^;M3=dg (4.9)

where i , j and k are the actions of A i , A2 and A3, respectively. In general

many equilibria can exist. Even in the identical payoff case:

4 = 4 = 4 (4.10)

i f

d u > d̂ 2 > d?2 > d^i > dl2 > d^i > d^^ > dl^ (4.11)

then dJi,d22>dj2 and d^i all correspond to equihbria. As mentioned for

Interconnection 1, the theory is incomplete when there are many equilibria.

4.9.1 S imulat ion - Interconnection 2:

This simulation is based on Figure 4.9, the action selected by A i

determines the same response for A2 and A3. To simulate this structure,

65

each response produced by environment (Ei ,E2) has an associated weighting

factor. Each response (3^ are weighted equally - Wi = (wi i = 0.5, Wi2 = 0.5).

Hence, a normalised scalar input /3^£(0,0.5,1) is received by automaton A i .

I n this example A i , now uses the general environment L R I scheme for updating

probabili ty vectors. The results for Table 4.5 are produced using the following

equilibria and corresponding payoffs:

(1 , 1 , l) (d l i = 0.9); (1,2,2)(d^2 = 0.7); (2 , 1 , 2){dl^ = 0.5); (2, 2, l){dl, = 0.3)

(4.12)

This model shows that the automata converges to the largest equilibrium

in the N-automata case i f each has two actions, starting w i t h equal action

probabilities. From Table 4.5, i t can be seen that the rate of convergence for

action probabilities corresponding to automaton A2 and A3 axe wi thin close

approximation to each other, since both automata receive identical responses

f rom the environment. A graphical representation is included in Figure

4.10. I t is evident that the learning curves for the action probabilities which

correspond to automaton A2 and A3 coincide wi th each other. In comparison

there is a rapid convergence to uni ty for automaton A i action probabihty

vector.

4.10 Sequential Models

The hierarchical structure stochastic automata system may represent

many important realistic situations. I n such a case, collections of automata

are organised to model the behaviour of a hierarchical learning system where

learning proceeds at a number of distinct levels w i t h each level capable of

66

eUciting a response f rom the environment. This concept was introduced by

Thathachar and Ramakrishnan, [47], [48]. They proposed a simple modifi­

cation of the absolutely expedient algorithm, which provided a reinforcement

scheme for a hierarchical system of automata. This approach significantly re­

duced the high dimensionality problem associated w i t h a learning automaton.

Further research efforts resolve this problem by considering a reorgaaisation

scheme that uses e-optimal learning automata to heuristically select hierar­

chical structures w i t h minimal computation, [49]. The learning behaviours of

the generalised sequential model operating in the multi-teacher environment

were also considered, [50].

A sequential model is depicted in Figure 4.11, Figure 4.14 and Figure

4.17. I n these models only one decision maker acts at any time, such that

a sequence of decisions propagate down the tree structure and the bot tom

level automata produces a response f rom the environment which is fed back

to al l automata responsible for the selected path. I t is possible to analyse

sequential models as networks of decision makers i n which control passes f rom

node to node. The nodes in a sequential model can represent a synchronous

model, so that a more general model can be produced which includes both

types of structures. Three types of network structures are briefly described.

The following sections also present computer simulation results for the

sequential models. I n the simulation study, a three-level hierarchical system

w i t h each automaton having two actions are examined. Such systems are

in the fo rm of a tree structure and directed network. To simulate these

structures, the penalty probabilities in the environment were selected f rom the

67

range [0.5, 0.95], except the unique minimum penalty probabihty which was

set to 0.1. The L r j scheme was adopted to update action probabihties for

the optimal path. Similar to the previous notation 'a' indicates the reward

parameter; the tota l number of experiments is given by ' m ' and the expected

values are denoted by, eg p i (n) = E[p i (n)] . Two sets of simulations were

performed for each tree structure, the results are produced in both table and

graph format.

4.11 Tree Structure

A tree structure is a multilevel system of automata consisting of

several levels, each comprising of many automata. There is a definite order in

which the automata can act. Each action of an automaton at a certain level,

selects automata at the next lower level. Figure 4.11 illustrates, automata

arranged in three levels. The hierarchy consists of a single automata at

the first level, two in the second level and four in the th i rd level. Each

automaton has two actions. Considering the structure, AQ acts first, choosing

either A i or A2, who then acts to select an automaton at the next lower

level. The action selected at the lowest level, generates a response from a

stationary random environment. The action probabihties on the selected path

are updated on the basis of this response.

4.11.1 S imulat ion - T r e e S tructure

Table 4.6 provides the penalty probabihties of the environment which

are used for each simulation. Note that the set of penalty probabihties are

68

different for each simulation. The location of the unique minimum penalty

probabihty has been changed, whilst all other penalty probabihties remain

unchanged.

Consider the three level hierarchical system in Figure 4.12, the optimal

path probabihty changes for Table 4.6 can be easily analysed. I t is shown

that all action paths associated w i t h the unique minimum penalty probabihty

converge close to unity. Considering the penalty probabihties in the Table

4.6a observe that the opt imal path is 001. This notation impHes that path

0 is selected by level 1 and level 2 automaton; and path 1 is selected by

automaton in level 3. However, Table 4.6b selects an alternative route in

determining the optimal path. In this case the action probabihties converge

close to uni ty by selecting path 100; since the unique minimum penalty

probabil i ty is associated w i t h this path. Graphs for each table are presented

in Figure 4.13a and Figure 4.13b.

4.12 D i r e c t e d Network

I n comparison to the previous model, the network of Figure 4.14 also

represents a three-level hierarchical system wi th two actions per automaton.

I t also illustrates a case in which control always passes back to AQ at the

end of each cycle. However, in this structure the automaton in the second

level may select any automaton in the lower level. I t is possible to use many

forms of updating schemes since local responses occur at different times for

different levels.

69

4.12.1 S imulat ion — Direc ted Network

Similarly, this presents computer simulation results for sequential model

in the fo rm of a directed network. The results in Table 4.7 examine the

learning behaviour of a directed network by adopting the same techniques as

mentioned previously.

Note that in the case of a directed network, the action path probabil­

ities may converge to the unique minimum by selecting alternative routes in

the first and second level. Both results in Table 4.7 confirm that the optimal

path associated wi th the unique minimum penalty probability converge close

to unity. Figure 4.15, clearly indicates the different routes which may be

selected in determining the optimal path for each case. For this network the

number of times a partictilar path converges to the unique minimum was also

evaluated. Thus, Table 4.7a converges to the unique minimum by selecting a

combination of paths 001 and 101, in the ratio of 0.3:0.2 f rom a total of fifty

experiments. I n Table 4.7b, the optimal path is determined by selecting a

combination of paths 010 and 110 in a ratio of 0.5:0.5 f rom fifty experiments.

The results in Table 4.7 are produced in the form of graphs, Figure

4.16a and Figure 4.16b, respectively.

4.13 Genercd Network

I n contrast to the previous sequential models. Figure 4.17 illustrates

a general network. I n this model an action sequence does not exist giving

rise to a path through the network. I t is possible for any automata to select

any other automata. I n the network as shown, each automaton has three

70

actions, which corresponds to the selection of one of the automata. The

action selected generates a random response which may be received by one

or many automata.

I n such a network, certain issues need to be resolved; who receives

what information and who is assigned to carry out which decisions. The

general network exhibits the characteristics of a decentralised system, since the

information may be collected f rom many sources, distributed to appropriate

units i n the organisation for processing and then used by selected nodes to

reach a suitable decision. A t this stage, the stochastic learning automaton

approach was considered to be hmited in modelhng capability for arbitrary

topologies of decision models. To resolve this l imitation, the potential of Petri

Nets for modeUing complex systems are presented in the next chapter.

4.14 Conc lus ion and S u m m a r y

This chapter has shown how the stochastic learning automaton model

may be considered as a basic framework for a model of decentralised decision

making. I t has introduced models in which many automaton-environment pairs

are interconnected in various ways to achieve desirable global performance,

even though decisions are made on the basis of simple updating schemes. The

models that have been studied, include synchronous and sequential models.

The synchronous models represent feedback configurations in which

the actions of eill decision makers are synchronised. Such models give rise

to corresponding automata games, of particular interest is the interconnection

of decision makers which lead to very different game structures. I t is

71

important to analyse how the corresponding game chcinges as interconnections

are varied. I n some cases, concepts of learning theory and automata games

may be used to analyse the behaviour of a particular model. Often, however

the interconnections may be difficult to analyse, which indicates the necessity

for further research.

The learning behaviour of the hierarchical system of automata in

the form of a tree structure and directed network has also been considered.

Simulation results indicate a rapid convergence for the optimal path. Further

research has shown that a modified algorithm for this structure is required

when the number of actions is large. This chapter concludes by describing a

general network which resembles a decentralised system. The basic conceptual

framework based on the stochastic learning automaton approach is restricted

in its modelling capabilities for the representation of such systems. The

limitations i n the modelling technique is evident, since i t lacks structure,

flexibility and the abili ty to demonstrate the explicit interactions between the

various agents i n the network. These shortcomings have estabhshed the need

for a more high-level modelling framework. A later Chapter Six presents

novel work which incorporates stochastic learning automata as described in

Chapter Three w i t h a graphical modelling concept based on Petri net theory

to overcome these limitations.

72

3

•

C O .

SI
CO

<

F i g u r e 4 .1 - A u t o m a t a G a m e Schemat ic

73

r—(

CO.

II

CM

w

i i

<

CO.
II
I I

T—(

r—1

w

" a

<
i i

Simple Feedback

F i g u r e 4.2 - Synchronous M o d e l s - T h e Basic S t r u c t u r e

74

E i = { . 6 , . l } , E2 = {.7, .2}

r =
.7,-6 .2, .6
. 7 , . l . 2 , . l

a = 0.01, m = 100

n p l (n) q l (n)

0 0.500000 0.500000

100 0.497706 0.500284

200 0.498057 0.500694

300 0.499280 0.500533

400 0.500284 0.499794

500 0.500994 0.499016

(a) A c t i o n Probabil i ty P r [0.5

Table 4.1 - S imulat ion of Simple Feedback (Figure 4.2)

synchronous Model i Simple Feedback

S ass
JO o
(-

S
5 a»

5) as2

pi (n)
ql (n)

- I - •+- •+- •+- •+-
100 ISO 200 2 U 300 ») too iSO

Nunber oF Iceraclons

(a) A c t i o n Probabil i ty P r [0.5]

F igure 4.3 - Average A c t i o n Probabil i ty vs Iterations : (Table 4.1a)

75

E i = { . 6 , . l } , E2 = {.7, .2}

.7, .6 .2, .6

. 7 , . l . 2 , . l

a = 0.02, m = 200

n p l (n) q l (n)

0 0.800000 0.800000

20 0.800580 0.800623

40 0.799841 0.800518

60 0.799606 0.800128

80 0.799242 0.800030

100 0.798685 0.800361

(b) A c t i o n Probabi l i ty P r [0.8

Table 4.1 - Simulat ion of Simple Feedback (Figure 4.2)

Synchronous Model i Simple Feedback

a o
o. aw
S

- . pi (n)
-e ql (n)

•+-
a 30 to a «(

Nuiber oF [ceratlons

(b) Ac t ion Probabi l i ty P r [0.8]

F igure 4.3 - Average Ac t ion Probabi l i ty vs Iterations : (Table 4.1b)

76

Weighted Feedback

F igure 4.4 - Synchronous Models - T h e Bas ic Structure

77

E l = {.8, .5, .3} , E2 = {.9, .1, .7}

w i = {.4, .6} , W2 = {.6, .4}

/ .86 , .84 .38,-52 .74, .76\
T= .74, .66 .26, .34 .62, .58

\ . 6 6 , .54 .18, .22 .54, . 4 6 /

a = 0.04, m = 50

n p l (n) p2(n) p3(n) q l (n) q2(n) q3(n)

0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

200 0.553642 0.178255 0.267103 0.519196 0.147588 0.332215

400 0.750079 0.100287 0.148634 0.727566 0.076755 0.194679

600 0.832411 0.067227 0.099362 0.812883 0.051300 0.134817

800 0.873850 0.050505 0.074646 0.859174 0.038539 0.101287

1000 0.898755 0.040454 0.059791 0.887000 0.030870 0.081131

Table 4.2 - S imulat ion of Weighted Feedback (Figure 4.4)

Synchronous Model i Weighted Feedback

Q q3 (n)

Number of I t e r a t i o n s

Figure 4.5 - Average A c t i o n Probabil i ty vs Iterations : (Table 4.2)

78

(N

(N <N

m

•

Interconnection 1: A i Determines A2's Environment

F igure 4.6 - Modif icat ion of Synchronous Models

79

£;i = { .8 , .6} , £:? = {.8, .4}

^2' = {.1, .3}

/ . 8 , . 8 .8, .4
.6, .1 .6, .3

a L = 0.04, m = 50

n p l (n) q l (n)

0 0.500000 0.500000

120 0.628541 0.607027

240 0.726216 0.703727

360 0.789747 0.775936

480 0.835037 0.825118

600 0.865719 0.858582

(a) N o Coordinat ion (One Equi l ibr ium)

Table 4.3 - S imulat ion of Interconnection 1 (Figure 4.6)

Interconnect ion I i No Coordinat ion (One Equi l ibr ium)

H \ 1 1-

-H> pi (n)
- B q l In)

Nunber oF iceratIons

(a) No Coordinat ion (One Equi l ibr ium) : (Table 4.3a)

F igure 4.7 - Average Act ion Probabi l i ty vs Iterations

80

£ i = { .8 , .6} , El = {.3,.l}

E', = {.!,.8}

r =
.8,-3 . 8 , . l
.6,-1 .6, .8

a = 0.03, m = 50

n p l (n) q l (n)

0 0.500000 0.500000

200 0.647297 0.399764

400 0.750913 0.398302

600 0.816202 0.453326

800 0.859188 0.521408

1000 0.886665 0.587276

(b) No Coordinat ion (T w o Equi l ibr ia)

Table 4.3 - S imulat ion of Interconnection 1 (Figure 4.6)

Interconnection 1 i No Coord mat Ion (Two EquI l l b r i a)

-+- •+- -+- -+- •+- -+-
i a o 2 o a] o a < o o s a o 6 0 o n o e o o n o i o (i o

Number oF Iterations

(b) No Coordinat ion (T w o Equi l ibr ia) : (Table 4.3b)

F igure 4.7 - Average Act ion Probabil i ty vs Iterations

81

^2' = { - l , - 3 }

r =
.8 .6

.35 .45

a = 0.04, m = 50

n p l (n) q l (n)

0 0.500000 0.500000

200 0.674407 0.555802

400 0.786698 0.604913

600 0.847590 0.664721

800 0.883028 0.716545

1000 0.905703 0.754938

(c) Coordinat ion (One E q u i l i b r i u m)

Table 4.3 - Simulat ion of Interconnection 1 (Figure 4.6)

Interconnect ion 1 i Coordination One Equi l ibr ium)

Number oF Iterations

(c) Coordinat ion (One Equi l ibr ium) : (Table 4.3c)

F igure 4.7 - Average Act ion Probabi l i ty vs Iterations

82

E, = {.8,.Q}, El = {.Z,.l}

Ei = {.!,.8}

T -
.55 .45
.35 .7

a = 0.02, m = 50

n p l (n) q l (n)

0 0.500000 0.500000

200 0.445904 0.398251

400 0.371236 0.300475

600 0.299128 0.227108

800 0.239998 0.176754

1000 0.195622 0.142509

(d) Coordinat ion (T w o Equi l ibr ia)

Table 4.3 - S imulat ion of Interconnection 1 (Figure 4.6)

Interconnect ion 1 i Coordination (Two E q u I l l b r l a)

H 1 H -+-
100 200 300 « 0 SOO U O raO goo n o 1000 1100 120) 1300 ItOO ISOO

Nunber of tceratlons

(d) Coordinat ion (T w o Equi l ibr ia) : (Table 4.3d)

F i g u r e 4.7 - Average Act ion Probabi l i ty vs Iterations

83

El = {.6, .1,-9} El = { . 9 , . l , . l }

El = {.1, .9 , .9}

El = {.1, .8 , .9}

/ . 6 , . 9 . 6 , . l . 6 , . 1 \
. l , . l .1,.9 .1,.9

V.5,.l .5, .8 .5, . 9 /

a = 0.03, m = 50

n p l (n) p2(n) p3(n) q l (n) q2(n) q3(n)

0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

200 0.509682 0.140095 0.349223 0.312386 0.311682 0.374938

400 0.619705 0.075711 0.303584 0.441012 0.238897 0.319091

600 0.686459 0.050711 0.261797 0.561464 0.182801 0.254735

800 0.733834 0.038124 0.227042 0.648078 0.143385 0.207537

1000 0.772299 0.030538 0.196163 0.705207 0.116538 0.177255

(a) No Coordinat ion

Table 4.4 - S imulat ion of Interconnection 1 : (Three Act ion Case)

Interconnect ion 1 i (rhree Action Case)

G qo (n)

Number of I t e r a t i o n s

(a) No Coordinat ion : (Table 4.4a)

F igure 4.8 - Average Act ion Probabi l i ty vs Iterations

84

/ .75 .35 .35
r* = .1 .5 .5

V .3 .65 .7

a = 0.02, ra = 50

n p l (n) p2(n) p3(n) q l (n) q2(n) q3(n)

0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

360 0.314742 0.237620 0.446638 0.240913 0.359054 0.399033

720 0.245473 0.172188 0.581339 0.179645 0.359128 0.460227

1080 0.195852 0.124719 0.678429 0.145706 0.340993 0.512301

1440 0.167442 0.095202 0.736356 0.128907 0.316816 0.553283

1800 0.150007 0.076333 0.772660 0.119028 0.290459 0.589513

(b) Coordinat ion

Table 4.4 - Simulat ion of Interconnection 1 : (Three Act ion Case)

Interconnect ion 1 i (Three Action Case)

• q5 (n)

Number of I t era t lone

(b) Coordinat ion : (Table 4.4b)

F igure 4.8 - Average Act ion Probabi l i ty vs Iterations

85

Interconnection 2: A i Determines G a m e for A2 and A3

F igure 4.9 - Modif ication of Synchronous Models

86

E l =
.9 .2
.2 .7

.1 .5

.3 .1

a = 0.01, m = 100

n p l (n) q l (n) r l (n)

0 0.500000 0.500000 0.500000

300 0.714258 0.546181 0.546508

600 0.823564 0.615667 0.616319

900 0.878749 0.696609 0.697244

1200 0.908693 0.759451 0.759969

1500 0.926874 0.801021 0.801443

Table 4.5 - S imulat ion of Interconnection 2 (Figure 4.9)

Interconnect ion 2 i AI Game for A2 and A3

r (n)

Ol!0+^—I \ K H 1 ^
0 loo 2w 300 too s» «ao ?oo soo mo icoo lico 120) ixn iKD lan

Nunber of Iterations

Figure 4.10 - Average Act ion Probabil i ty vs Iterations : (Table 4.5)

87

Tree Structure

F igure 4.11 - Sequential Models

El = {.9, .1, .7, .6, .8, .85, .95, .75}

a = 0.1, m = 50

n p l (n) q l (n) r l (n)

0 0.500000 0.500000 0.500000

200 0.898385 0.855382 0.893066

400 0.949192 0.927690 0.946533

600 0.966128 0.951793 0.964355

800 0.974596 0.968845 0.973266

1000 0.979677 0.971076 0.978613

onvergence P a t h To M i n i m u m

Ei = = {.9, .8, .7, .6, .1, .85, .95, .75}

a = 0.1, m = 50

n p l (n) q l (n) r l (n)

0 0.500000 0.500000 0.500000

200 0.811304 0.862549 0.866206

400 0.886884 0.923761 0.925468

600 0.909790 0.944198 0.945247

800 0.922343 0.954417 0.955137

1000 0.929874 0.960548 0.961070

(b) Convergence P a t h To M i n i m u m d211

Table 4.6 - S imulat ion of Tree Structure (Figure 4.11)

89

A 0
0

A .
0

A n A 12 A 21 A 22
0 A ' y \ "TY'VV

Optimal Path (001)

(a) O p t i m a l P a t h 001

0
A 0

A ,

«7S
A A n

Optimal Path (100)

A ^

A 21 A 22
0

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

(b) Opt imal P a t h 100

F igure 4.12 - Tree Structure : Selected P a t h

90

Sequent le l Model i Tree S truc ture (001)

•9 Leve I t I pt (n)
•a Leve l 2 i ql (n)
* L e v e l 3 i r l (n)

Number of I t e r a t i o n s

(b) O p t i m a l P a t h 001 (Table 4.6a)

Sequent le l Model i Tree Structure (100)

« Leve l I I p) (n)
o Leve l 2 i ql (n)
•A Leve l 3 • r l (n)

Number of I t e r a t i o n s

(a) O p t i m a l P a t h 100 (Table 4.6b)

F igure 4.13 - O p t i m a l P a t h Probabi l i ty Changes

91

Directed Network

F igure 4.14 - Sequential Models

92

El = {.95, .1,.9, .8}

a = 0.1, m = 50

n p l (n) q l (n) r l (n) s l (n) t l (n)

0 0.500000 0.500000 0.500000 0.500000 0.500000

200 0.553064 0.446936 0.849155 0.805656 0.928465

400 0.574791 0.425209 0.898792 0.853788 0.964233

600 0.589425 0.410575 0.915343 0.869834 0.976155

800 0.597068 0.402932 0.923619 0.877857 0.982116

1000 0.601655 0.398345 0.928584 0.882671 0.985693

(a) Convergence P a t h To M i n i m u m d212

El = {.95, .9, .1, .8}

a = 0.1, m = 50

n p l (n) q l (n) r l (n) s l (n) t l (n)

0 0.500000 0.500000 0.500000 0.500000 0.500000

200 0.474115 0.525885 0.796715 0.821705 0.917460

400 0.474132 0.525868 0.827840 0.856285 0.958730

600 0.476088 0.523912 0.838221 0.867813 0.972487

800 0.477066 0.522934 0.843412 0.873576 0.979365

1000 0.477653 0.522347 0.846526 0.877035 0.983492

(b) Convergence P a t h To M i n i m u m d221

Table 4.7 - S imulat ion of Directed Network (Figure 4.14)

93

A 0
0

0

0 TV "TV
Optimal Path (001: 101)

(a) O p t i m a l P a t h 001:101

A 0
0 ''^1 1

0

0

Optimal Path (010: 110)

vv

Level 1

A „
1 0 ^12 1

Level 2

^21 A 22 Level 3

Level 1

A n 1̂ 0 A i 2 1
Level 2

1̂ 0 1

^21 A22 Level 3

(b) Opt imal P a t h 010:110

F igure 4.15 - Directed Network : Selected P a t h

94

Sequent ia l Model i Directed Network (OOtilOl)

Leve l 1 . pi (n)

Leve l 1 . ql (n)

L e v e l 2 . rt (n)

Leve l 2 . s i (n)

Leve l 3 I t1 (n)

Number of I t e r a t i o n s

(a) O p t i m a l P a t h 001:101 (Table 4.7a)

Sequent ia l Model i D irec ted Network (OlOillO)

L e v e l 1 I pi (n)

L e v e l 1 . ql (n)

L e v e l 2 • r1 (n)

L e v e l 2 . s i (n)

L e v e l 3 • 11 (n)

Number of I t e r a t i o n s

(b) O p t i m a l P a t h 010:110 (Table 4.7b)

F igure 4.16 - Opt imal P a t h Probabi l i ty Changes

95

A ,

A .
A .

A

G e n e r a l Network

F igure 4.17 - Sequential Models

96

Chapter Five

Petri Net Theory

5.1 Introduction

The previous chapters have provided a survey of the state of the art

of distributed decision making systems, and outUned the degree of complexity

involved in the development of such systems. In approaching this problem, the

stochastic learning automata was adopted as a basic framework. Further, the

discussion in Chapter Four includes an analysis of the collective behaviour of

multiple learning automata in a game situation. Thus, several configurations

are introduced and simulation results are included for models in which the

actions of all decision makers are synchronised as well as sequential models.

However, it was shown that such models lack structure and the abihty to

describe expUcit interactions between decision makers. It was considered that

such models were inadequate for the representation of complex systems which

may involve concurrent, asynchronous, parallel or distributed activities.

This chapter introduces a mathematical framework based on Petri

net theory as a suitable basic model for representing and studying complex

systems. Petri Nets (PN) models are a graphical and mathematical tool

applicable to the analysis of a diverse range of systems. They have been

proposed by many authors as a useful tool for describing and analysing the flow

of information and control in systems that exhibit concurrent, asynchronous,

97

distributed, parallel, nondeterministic, and/ or stochastic activities, [15], [16],

51], [52]. In the graphical representation, PNs can be considered as a

visual communication aid in the form of flow charts, block diagrams, smd

networks. In mathematical terms, many systems can be described numerically

and the relations between certain features may be interpreted by equations

or inequalities. The concept of Petri nets originated in the early work of

C. A. Petri in his doctoral dissertation, submitted in 1962 to the faculty

of Mathematics and Physics at the Technical University of Darmstadt, West

Germany, [53].

This following section presents formal definitions for basic PN concepts.

An introductory modelling example is provided, which illustrates the modelling

capability of PNs within the context of this thesis. It also describes an analysis

technique which may be used to study the behaviour of the system. Finally,

the notion of time is also introduced by discussing stochastic nets, [54], [55].

5.2 Structure of a Petri Net

The structure of standard Petri nets are composed of a set of places

P {pi,P2, • • • iPn), a set of transitions T (t i , 2̂) • • •, ^m) and to complete the

definition, it is relevant to consider the relationship between the places and

the transitions. The relationship is achieved by outlining a set of input and

output functions. The input function I defines, for each transition t j , the set

of input places for the transition I{tj). The output function 0 defines for

each transition t j , the set of output places for the transition 0[tj). Figure

5.1 shows the structure of a Petri net.

98

A formal definition of a Petri net structure represents a 3-tuple, PN = (P,

T, F) as follows:

P = {PuP2, • • • ,Pn) is a finite set of places;

T = (ti, 2̂) • • •) ̂ m) is a finite set of transitions;

I{tj) C {P xT) is the input function; (5.1)

0{tj) C{T X P) is the output function;

P Q iH^j) ^ ^i^j)) ^ ^ set of input and output functions;

5.2.1 Petri Net Graphs

The above Petri net structure maybe represented in the form of a

directed, weighted, bipartite graph. In the graphical representation of Petri

nets, places are drawn as circles and transitions as bars or boxes. The input

and output functions are represented by directed arcs which are drawn as

arrows, connecting the transitions to places and places to transitions. A

place is an input to a transition if an arc exists from the place to the

transition. A place is an output of a transition if an arc exists from the

transition to the place. Since the arcs are directed, and labelled with their

weights (nonnegative integer), PNs are referred to as directed, weighted graph.

Labels for unity weight are usually omitted. Additionally, since the nodes

can be partitioned into two sets (places and transitions) such that each arc

is directed from an element of one set (place or transition) to an element of

the other set (transition or place), it is known as a bipartite graph. Figure

5.2 shows an example of a Petri net graph corresponding to the structure

described above. The Petri net consists of five places and five transitions.

99

5.2.2 Petri Net Markings

The dynamic feature of a PN is represented by tokens. A marking

(state) assigns tokens to each place in a net. Tokens are graphically drawn

as black dots, which reside in the circle nodes representing the places of the

net. A Petri net with tokens is called a marked Petri net. The number rn,-

of tokens and its position in a net may change during execution, thus defining

the state of a system. The PN state is usually called the Petri net marking,

cind is denoted by the vector M = (mi , m 2 , . . . , m„). A marked Petri net is

depicted in Figure 5.3.

A formal definition of marked PN is thus the following 4-tuple, PN = (P, T,

F, Mo) as follows:

P = {pi,p2, •.. ,Pn) is a finite set of places;

T = {ti,t2,. ..,tm) is a finite set of transitions;
(5.2)

F C (PxT) U {TxP) is a set of input and output functions;

Mo = (moi, mo2,. • • , mo^)

where moi denotes the number of tokens in place p, in the initial marking

Mo.

5.2.3 Execution Rule for Meirked Petri Nets

The dynamic behaviour of a PN can be described by the execution

of the net. The execution of a PN is controlled by the number and the

distribution of tokens in the PN. A Petri net executes by firing transitions.

The firing of a transition changes a state or marking of the PN to a new

100

marking according to the following transition enabhng and firing rule:

(1) A transition t is said to be enabled if each input place contains at

least one token.

(2) A firing of an enabled transition removes one token from each of its

input place, and then adds one token into each of its output places.

(3) Each firing of a transition represents a change in the state of the

net by modifying the distribution of tokens in a nets' place; thus

producing a new marking.

This results in a new marking M' where:

(M{p) + 1 ifpeO{t), pil{t)-
M'ip) = I M{p) - 1 i f pel{t), piO{t); (5.3)

[M{p) otherwise

Consider the dynamic behaviour of the marked Petri net in Figure 5.3. The

initial marking is MQ = [10000], and by definition only transition ti is enabled

in this marking. Thus ti is the only transition that can fire and change

the state of the system. The result of firing ti is shown in Figure 5.3a, no

tokens are present in pi while places p2 and p^ each contain a token; the

marking now becomes M i = [01100]. In this case both transitions t2 and t^

are enabled and can fire independently {concurrently), since they do not share

any input places. The firing of t2 enables transition t^, the firing of t^ puts

a token in p^. On completing the firings of both trainsitions t2 and t^, a

new marking is reached as shown in Figure 5.3b. This situation represents a

conflict. Both transitions t^ and is are enabled. However, only one of these

two transitions can fire and the firing of one transition disables the other.

101

In such a case, the decision as to which one fires is non deterministic. I f t^

fires the system returns to the initial marking. The ability to represent both

concurrency and conflict makes PNs a very powerful modelhng tool.

5.2.4 Modelling Examples

Petri nets were designed for and are used mainly for modelling. Many

systems can be modelled by a Petri net, including computer software, hardware

or physical systems. In particular they may be used to model the flow of

information or other resources within a system. This section outlines one

of the basic concepts of PNs that are useful in modeUing. I t provides a

description and a more realistic application of the individual components.

Events and Conditions

The simple Petri net view of a system focusses on two concepts;

events and conditions. Events are actions which take place in the system.

The occurrence of an event is controlled by the state of the system. The

state of the system may be described by a set of conditions. A condition is

a logical description of the state of the system, which may hold (true) or not

hold (false).

In modeUing using this concept, places represent conditions and,

transitions in a PN represent events in a real system. A transition (an event)

has a certain number of input and output places representing the pre-conditions

and post-conditions, respectively. A marked PN then corresponds to a state

of the system being modelled. The firing of a PN transition corresponds to

102

the occurrence of an event in the system. The occurrence of an event causes

the system to move to a different state. Therefore, the successive firings of

transitions (and the resulting changes in markings) in a PN represent the

evolution of the system through different states. Some typical interpretation

of transitions and their input and output places are shown in Table 5.1.

5.2.5 Analysis of Petri Nets

The major strength of PNs is in the modelling of systems. However

modelling of systems is itself not useful. I t is necessary to analyse the modelled

system. This analysis provides important insights into the behaviour of the

system. There are several approaches in the analysis of PNs. The major

analysis technique which has been used with PNs, in this project is based

on the coverabihty (reachabihty) tree. This technique involves finding a finite

representation for the reachabihty set of a PN. It consists of a tree whose nodes

represent markings of the PN and whose arcs represent the possible changes

in state resulting from the firing of transitions. The following presents the

reachabihty property and a discussion of the appropriate analysis technique.

Reachability

The reachabihty set of a PN can be represented in the form of a tree structure,

as discussed later. This concept is a fundamental basis for studying the

dynamic properties of a system. The firing of an enabled transition changes

the state (marking) of a system according to the transition firing rde. As

execution of the firing rule proceeds, a sequence of firings will result in

103

a sequence of markings. Thus, a sequence of transitions {ti, t2,...) and

a sequence of markings (MQ, M i , M 2 , . . .) can be defined. By definition, a

marking M„ is said to be reachable from a marking MQ if there exists a

sequence of transition firings that transforms the PN state from MQ to M „ .

A firing or occurrence sequence is denoted by

(7 = MotiMit2M2... t„M„ (5.4)

or simply

a = tit2...tn (5.5)

Hence, M„ is reachable from MQ by a and this may be written as follows:

Mo [a > M„ (5.6)

Thus, the set of all possible markings reachable from MQ in a net is denoted

by R{Mo).

T h e Coverability (Reachability) Tree

Given a PN with an initial marking MQ, it is possible to obtain as many

'new' markings as the number of enabled transitions. From each new marking,

more new markings can be reached. I f this procedure is repeated many times,

a tree representation of all the markings wiU be produced. The coverability

tree consists of nodes which represent markings of the PN and whose arcs

represent a transition firing, which transforms one marking to another. Note

that i f the net is bounded, the coverability tree is called a reachability tree.

Consider the example of the marked PN of Figure 5.3. The reacha-

bihty tree can be constructed by starting from the initial marking MQ and

104

considering the markings immediately reachable from this state. The initial

marking is MQ = [10000], and transition t j is enabled. Since the entire

reachabihty set is required, new nodes may be defined in the reachabihty tree

for the (reachable) markings which result from firing of transition ti. An arc

labelled by the transition fired leads from the initial marking to each of the

new markings. Figure 5.4a shows all markings that are immediately reachable

from the initial marking. Consider all markings that are reachable from

these new markings. From M i = [01100], transitions t2 and t^ may be fired

producing M2 = [00110] and M3 = [OlOOl]. These firings produce the tree of

Figure 5.4b. The immediately reachable marking from M2 is now M i and

M4 by firing transition t^ and ^3, respectively. In this case a new marking

M4 = [00011] is created, and the old marking of M i is created. From M i

the same operation could be repeated and this would obviously lead to an

infinite structure. This process is repeated, producing new markings to add

to the tree shown in Figure 5.4c and Figure 5.4d.

By repeating this procedure over and over, every reachable marking

will eventually be produced. However, the resulting reachability tree may be

infinite. Every marking in the reachability set will be produced, and for any

PN with an infinite reachabihty set, the corresponding tree would also be

infinite. I t is important to note that if the tree is going to be useful, it is

necessary to limit the tree to a finite size. Appendix Three provides relevant

PN properties, details for the reduction to finite form and also the algorithm

necessary to construct the reachability tree.

105

5.3 Time-Related Model

The concept of time is not explicitly given in the standard Petri

net model. Therefore with standard PNs it is possible to describe only the

logical structure of systems and not their time evolution. As such, PNs did

not convey information about the duration of each activity or on the way in

which the transitions to be fired is actually selected from among these enabled

in a marking. Many authors have extended PN models by introducing the

notion of time, [54], [55], [56]. This section introduces time delays in a Petri

net model. These time delays are specified probabiHstically and the model is

known as a Stochastic Petri Net (SPN).

5.3.1 Stochastic Petri Nets (SPN)

A Stochastic Petri Net (SPN) is a Petri net where each transition is

associated with an exponentially distributed random variable that expresses

the delay from the enabhng to the firing of the transition, [54], [55], [56].

A formal definition of a Stochastic Petri net, is as follows:

SPN = (P, T, A,Mo,A) (5.8)

where (P, T, A, Mo) is the marked PN underlying the SPN; and A =

(Ai, A 2 , . . . , \m) is the set of possibly marking-dependent firing rates associated

with the Petri net transitions.

In the case where several transitions are simultaneously enabled; the

transition with which is associated the shortest delay will fire first. The SPN

then reaches a new marking in which transitions that were already enabled

106

in the previous marking, but did not fire, may be still enabled.

5.3.2 A n Example of a Stochastic Petri Net

Consider the SPN shown in Figure 5.5, transition ti fires at a marking-

dependent rate equal to ami , where mi is the number of tokens in pi. The

other transitions t2, is and t4 have (marking-independent) firing rates f3, 7 and

6, respectively; these are indicated close to the corresponding transitions. The

associated reachabihty tree is shown in Figure 5.6. The system operations can

be precisely described by means of a graph that translates into a Markovian

model useful for obtaining performance estimates, [54].

5.3.3 Generalised Stochastic Petri Net (G S P N)

The limitation of SPNs is that the graphical representation of systems

becomes more difficult as system size and complexity increase, [57]. Moreover,

the number of states of the associated reachabihty tree rapidly multiphes as

the dimensions of the graph increase. Thus, SPNs can be used to model only

systems of limited size.

The SPNs have been extended to a class of Generalised Stochastic

Petri Nets (GSPN) to overcome these hmitations. The GSPNs are useful in

modelhng system operations which comprise activities whose durations differ

by orders of magnitude. I t is then permissible that the short activities can

be processed immediately, whilst time is associated with the longer lasting

activities. This approach is most appropriate, since the number of states of

the associated reachability tree is reduced, hence reducing the complexity of

107

the model.

GSPN models comprise two types of transitions, immediate transitions

and timed transitions. Immediate transitions fire in zero time with priority

over timed transitions. Timed transitions fire after a random, exponentially

distributed enabhng time. In all figures, the convention used for drawing

timed transitions is thick bars or box nodes, and immediate transitions as

thin bars.

A formal definition of a GSPN is thus,

GSPN = (P, T, A,Mo, TT, W) (5.9)

where (P, T, A, MQ) is the marked PN underlying the GSPN; TT is a priority

function defined over the set of immediate transitions; W = {wi, W 2 , . . . , Wn) is

an array whose entries correspond to the firing rates of the timed transitions

(as in the case of SPN); the weights of immediate transitions. Similarly,

the interpretation of the model is very similar to the case of SPN, with the

additions resulting from the introduction of immediate transitions.

In the case of a GSPN, a reduction of the reachability tree is

possible by classifying markings into two types: vanishing and tangible

markings. A marking is called vanishing marking if it enables (at least)

one immediate transition. A vanishing marking is so named since no time

is spent in this marking; as soon as such a marking is reached (one of) the

immediate transitions fire in zero time. However, when a marking enables

timed transitions, it is called tangible marking, and the behaviour is the same

as in the case of SPNs.

108

Several transitions may be simultaneously enabled by a marking.

The following rules may be apphed: if the set of enabled transitions H

comprises only timed transitions, then the enabled transition fires ti (ieH)

with probabihty as foUows

Pr{t,} = (5.10)

exactly as with SPNs. I f H consists of both immediate and timed transitions

then only immediate transitions can fire. I f H comprises zero or more timed

transitions and only one immediate transition, then this is the one that fires.

However, i f H comprises several immediate transitions it is necessary to specify

a probabihty density function on the set of enabled immediate transitions

according to which transition is selected. This is called a random switch and

the associated probabihty distribution is called a switching distribution.

I t may also be noted that the reachability set of GSPN is significantly

reduced in comparison to the associated PN, because the priority rules in­

troduced with immediate transitions do not allow some states to be reached.

The reachabihty set of a SPN is identical to the set constructed for the

associated PN.

5.3.4 A n Example of Generalised Stochastic Petri Net

Consider, an example of the GSPN shown in Figure 5.7; comprises

of seven places and transitions. The three timed transitions ti, te and tj fire

at fixed rates u, v and z respectively. The immediate transitions t^ and

are enabled simultaneously if tokens are present in places pi and p j . Thus,

109

a switching distribution must be defined for each marking in which m2,

and ms are greater than zero. I t is also necessary to define a switching

distribution for the two conflicting immediate transitions, namely, t2 and ^3.

These transitions are always enabled simultaneously, such that a switching

distribution for each marking in which mz is greater than zero is required.

For this particular structure, two random switches can be defined. Table 5.2a

provides the switching distribution.

Execution of G S P N

By starting from the initial marking Mo[2001100] shown in Figure 5.7; the

evolution of states results in a reachabihty tree as depicted in Figure 5.8.

Clearly, transition ti fires after an exponentially distributed random time u,

and this removes one token from place pi and placing one in p2- At this

stage the immediate transitions i4 or t^ are enabled. The transition that

fires is selected according to the switching distribution defined in Table 5.2a,

in this case equal probabilities are assigned to the firing of each transition.

Now, assume that t^ fires, this moves a token contained in place p2 and pi,

and includes one in PQ. The enabled transitions are ti and t^, each of which

can fire first with the following probabilities.

^ ' (' • ' = (^ r f ^ (" ^)

I f ti fires first, a token moves from pi to p2, thus enabhng the immediate

transition t^. Since is the only immediate transition that is enabled, this

110

fires at zero time by moving one token from p2 to pj and removing one token

from This produces a new marking containing token in p^ and p?. The

two timed transitions tg and t^ are now enabled. Transition t^ fires with

probability

PrM = (5.13)

whilst transition tj fires with probability

Pr{t.} = (5.14)

Assume that t^ fires, so that one token moves from pe to pz, and a token is put

in pi. Thus, the two immediate transitions t2 and tz are now simultaneously

enabled; the transition that fires is selected according to switching distribution

defined in Table 5.2a. Similarly, in this case equal probabihties are assigned

to the firing of each transition, so that the token can move either to p^ or to

Ps. Now transitions t i and t^ are enabled, and the PN evolution continues;

thus developing the corresponding reachability tree, as shown in Figure 5.8.

The reachabihty set of the GSPN example is provided in Table 5.2b.

I t comprises 16 markings, whereas that of the associated PN comprises 33

states. As stated previously the reachability set of a GSPN is a subset of the

reachability set of the associated PN, due to the precedence rules introduced

with immediate transitions which do not allow some states to be reached.

Thus, it must be pointed out that the reachabihty set of a SPN is, instead,

the same as for the associated PN. Furthermore, Table 5.2b illustrates that

the reachabihty set of the GSPN may be divided into two disjoint subsets,

111

one of which consists of markings that enable timed transitions only, and also

markings that enable immediate transitions.

5.4 Conclusion and Summary

This chapter has presented a brief review of knowledge in the field

of PNs. I t has defined a high-level quantitative framework based on PN

methodology, and introduced appropriate terminology although not all aspects

in the field of PN theory have been discussed. The practical apphcations

of such state-transition models have been considered by extending and/or

modifying the basic model definitions to obtain more convenient modelling

tools. In particular, the possibihty of representing in the model the time

involved in system operations has been discussed by studying stochastic timed

nets.

A detailed description of the SPN has been presented. It is shown

that SPNs are obtained by associating with each transition in a PN an

exponentially distributed firing time. SPNs are a very useful tool for the

analysis of computer systems since they allow the system operations to be

precisely described by means of a graph and the model is useful for obtaining

performance estimates. However, there are hmitations to the use of SPN,

they can be used to model only systems of limited size. This is due to

the complexity involved in the graphical representation of systems, and also

there is a rapid increase in the number of states of the associated reachabihty

tree as the dimensions of the graph increase. Thus, a Generalised SPN is

introduced which contain two types of transitions: timed and immediate. I t

112

is shown that by considering GSPNs, the number of states of the associated

reachability tree is reduced and also the solution complexity is reduced.

To conclude, this chapter has identified the potential modelling ca­

pability of the Petri Net formalism. The framework is considered to be an

effective graphical and mathematical tool. In particular, they provide a pow­

erful means for the description and analysis of sytems that are characterised as

being concurrent, asynchronous, distributed, parallel, nondeterministic and/or

stochastic. However, at this phase of the research programme it is evident

that existing FN theory do not exhibit an inteUigence capabihty which is

needed for the effective representation of decision models. The next chapter

addresses the shortcomings of the FN methodology by introducing a new class

of FNs, known as the Learning Petri Net Models.

113

N = (P, T , F)

P = iVv P2' Ps' P4' P5)

T = (tp t̂ , I,)

I(tl)

I(t2)

I(t4)

I(t5)

= Pi

= P2

= P3

= P4

= (P4' P5)

0(tj)

0(t2)

0(t3)

0(g
0(t5)

= (P2' P3)

= P4

= P5

= P4

= Pi

Figure 5.1 - Petri Net Structure

O Place

Transition

Figure 5.2 - Petri Net Graph

114

Place

Transition

Token

Figure 5.3 - Marked Petri Net

115

(a) Transition ti Fires

(b) Transition t2 : tj Fires

Figure 5.3 - Marked Petri Net

lie

M Q = [1 0 0 0 0]

1 t

T
M 1 = [0 1 1 0 0]

(a) First Step in Building Tree

M Q = [1 0 0 0 0]

I
?

M l = [0 1 1 0 0]

M 2 = [0 0 1 1 0] M 3 = [0 1 0 0 1]

(b) Second Step in Building Tree

Figure 5.4 - Reachability Tree Construction of Marked PN (Figure 5.3)

117

M Q = [1 0 0 0 0]

1 t

T
M J = [0 1 1 0 0]

M 2 = [0 0 1 1 0] M 3 = [0 1 0 0 1]

M j OLD [0 0 0 1 1] M 4 OLD

(c) Third Step in Building Tree

M Q = [1 0 0 0 0]

1 t

T
M l = [0 1 1 0 0]

M 2 = [0 0 1 1 0] M 3 = [0 1 0 0 1]

M j O L D M 4 = [0 0 0 1 1] M 4 O L D

M 3 O L D M Q O L D

(d) Fourth Step in Building Tree

Figure 5.4 - Reachability Tree Construction of Marked PN (Figure 5.3)

118

Figure 5.5 - Stochastic Petri Net (SPN)

119

M

M

M Q = [2 0 0 0]

t 1

M l = [1 1 0 0]

M 2 = [0 2 0 0]

M 4 = [O i l 1]

M 5 = [0 0 2 2]

M

M 3 = [1 0 1 1]

M,

M

Figure 5.6 - Reachability Tree SPN

120

Figure 5.7 - Generalised Stochastic Petri Net (GSPN)

121

Mo =[200 1 1 00]

] '

<;]M7= [1101 l ooT^

M2 =[10001 10] M3 = [100 1 001]

C ^ M ^ [0 1 0 0 1 1 0] ^ (CmY= [2 0 1 0 lOoT^ CM7 = [0 1 0 1 O^uT^ C^V =[201 iToO]^

'5 U~2 [u
T V I ir

Mg = [000001 1]

1

CM^_]MI 01 oooTr^ < ; [M ^ [lo iooTo]^

t

M3 Mil =[10001 01] Mi2= [1001010] M2

C m ^ ^ [O l O O l o T r ^ ^ 5 C M ^ M o 7 o T o T o r >

Mi5= [000 0002]

I

Mr

Mi6= [000 0020]

M.

M,

10

States - (Mo M2 M3 Mg Mil M12 Mi5 M16) Tangible Marking

Vanishing Marking Indicates Presence of Random Switch

Figure 5.8 - GSPN Reachability Tree

122

INPUT PLACES TRANSITIONS OUTPUT PLACES

Pre-conditions
Input data
Input Signal
Resource needed
Buffer

Event
Computation
Signal Processor
Task or Job
Processor

Post Conditions
Output data
Output signal
Resource needed
Buffer

Table 5.1 - Interpretations of Transitions and Places

Pr(t4) = ra4/ (m4+m5)
Pr(t5) = m5/ (m4+m5)

Pr(t2) = m5/(m4+m5)
Pr(t3) = m4/ (m4+m5)

Pr(t2) = Pr(t3) = 1/2

if m4 = 0 and m5 = 0

if m4 = m5 = 0

Table 5.2a - Switching Probabilities of GSPN

MARKINGS THAT
ENABLE

TIMED TRANSITIONS
ml m2 m3 m4 m5 m6 m7

MO 2 0 0 1 1 0 0
Ml 1 0 0 0 1 1 0
M3 1 0 0 1 0 0 1
M8 0 0 0 0 0 1 1
M i l 1 0 0 0 1 0 1
M12 1 0 0 1 0 1 0
M15 0 0 0 0 0 0 2
M16 0 0 0 0 0 2 0

MARKINGS THAT
ENABLE

IMMEDIATE TRANSITIONS
ml m2 m3 m4 m5 m6 m7

Ml
M4
M5
M6
M7
M9
MIO
M13
M14

1
0
2
0
2
1
1
0
0

1
1
0
1
0
0
0
1
1

0
0
1
0
1
1
1
0
0

1
0
0
1
1
0
0
0
1

1
1
1
0
0
0
0
1
0

0
1
0
0
0
0
1
0
1

0
0
0
1
0
1
0
1
0

Table 5.2b - Reachability Set of GSPN

123

Chapter Six

Learning Petri Net Models

6.1 Introduction

This chapter draws together methods described in the previous chapters

to form a novel extension of PNs by embedding a stochastic learning automata

within PN models. In the discussion that follows the progressive stages of

the development of a powerful modelling tool for C'̂ -I systems is provided.

The decision making process can be modelled with a new type of hybrid PN,

namely Stochastic Learning Petri Net (SLPNJ, [58], [59]. In such a manner

for the first time an AI based decision making process is embedded within

PNs. This hybrid PN structure enables models of arbitrary topology to be

simulated, and the apphcation of this modelling tool is discussed in the next

Chapter.

6.2 Basic Stochastic Learning Petri Net (Basic SLPN)

This section introduces a new class of PN, referred to as Basic

Stochastic Learning Petri net (Basic SLPN) as depicted in Figure 6.1a. It

has been formed by incorporating the concept of stochastic learning automata

into a SPN model. Consider the model of the Basic SLPN in Figure 6.1a,

and the corresponding reachability tree, as depicted in Figure 6.1b. It is

clear from Figure 6.1a that the Basic SLPN provides structure to the original

124

stochastic learning automata by the additional concept of tokens in the net;

thus describing precisely the interactions involved.

A formal definition of the Basic SLPN structure is thus the following:

Basics LP N = (P, T , A, MQ, /5, <i>, a,p, F, G) (6 .1)

where {P,T,A,Mo) is the PN underlying the model; 4), a,p, F,G) is the

stochastic learning automata underlying the Basic SLFN. In this representation

Pr{ai} = Pr{ti} indicates the transition firing probabihties.

The interpretation of the model is similar to the case of stochas­

tic learning automata with the additions resulting from the introduction of

Stochastic Petri nets.

6.2.1 Simulation Results: Basic SLPN

The simulation results for a two-state Basic SLPN are provided in

Table 6.1. Similar to the previous simulations an LRI updating scheme is used;

the reward parameter and expected values are provided. The probabihties

associated with the firing of each transition are equal; the initial value

is equal to 0.5. Consider the results in Table 6.1 and the corresponding

learning curve shown in Figure 6.2, it is evident that the transition associated

with the unique maximum reward probabiUty converge close to unity. This

highUghts the intelligence capabihty embedded within a Petri net model, and

also a modification of the basic stochastic automaton model arises due to the

disposition of tokens in the net, thus providing a graphical description to the

model.

125

6.3 Stochastic Learning Petri Net (SLPN)

This section discusses the various stages involved in the extension of

SPN model to a new class of Petri nets, namely, Stochastic Learning Petri

nets (SLPN) as depicted in Figure 6.3. Consider the model of the SPN,

shown in Figure 5.5. By analysis of the reachabihty tree in Figure 5.6, it is

evident that the SPN model may exhibit one of six different states, depending

on the transition that fires. Several transitions may be simultaneously enabled

by a particular marking. Assume that H is the set of enabled transitions,

then a transition ti (leH) fires with probabihty:

Pr{U} = (6.2)

exactly as in case of SPNs, A is the firing rate associated with PN transitions.

Thus, the different states of a SPN define probabihty ratios which correspond

to the firing of each transition. In any state, the sum of the probabiUty

ratios is always equal to unity. For example, consider state Mi = [1100]; the

enabled transitions are ti, t2 and t^ and their respective firing probabihties

may be defined as follows:

^-{^i} = 7 - - ^ r T T (6-3) (a + /5 + 7)

= (6.4)

= (6.5)

126

Thus,

Pr{ti} + Pr{t2} + Pritz} = 1 (6.6)

6.3.1 Reachability Tree : Stochastic Automata Embedded

In the tree representation, several transitions may be simultaneously

enabled in any particular martdng. The concept of a stochastic automaton

may be introduced to select probabihstically the transition that fires. A

transition selected in a particular marking corresponds to an action selected

by an automaton. The firing of the chosen transition determines the next

state (marking) of the system, by modifying the token distribution. In the

tree representation of the SPN, Figure 5.6, there exists both two-state and

three-state automata. This is illustrated in Figure 6.4. Consider the following

cases:

Two-state Automaton

It is clear that state M2[0200] and state MaflOll] in Figure 6.4 represent a

two-state automaton as shown in Figure 6.5a. The SPN with marking Ma

enables transitions t2 and is, since tokens are present in the input place (pa)-

Each transition has an equal initial probabihty of being selected. The firing

of t2, determines the next state of SPN to be Mi, the firing of ^3, determines

that the next state is M4. The firing probabihties for each transition are

given as follows:

Frit.) = (6.7)

127

Pr{H) = (6.8)

Similarly,

Pr{t2} + Pr{t3} = 1 (6.9)

The concept of a two-state automaton also apphes to state M3 which has the

possibihty of firing two transitions, ti and ^4; the firing of these transitions

determines the next state to be M4 and MQ, respectively.

Three-state Automaton

Clearly, the states Mi and M4 correspond to a three-state automaton. By

considering the marking M i , the case is illustrated in Figure 6.5b. It is shown

that the transitions ti, t2 and t^ are enabled; each transition has an equal

initial probabiUty of being selected. The possibihty of firing t i , determines

that the next state is M2; the firing of 2̂ determiues that the next state of

the SPN to be MQ; finally, if 3̂ is selected by the automaton then the state

transfers to M3.

A similar concept also apphes to state M4. In this case, the three-

state automaton has the possibility of selecting t2, t^ or t^ with equal initial

probabiHties. The firing of transitions t2, t^ or t^ determines the next states

as M3, M5 and M i , respectively.

Transitions Fire Instantly

Note that the transition firing probabihties in each state MQ and M5 are

always equal to unity. Since in state MQ, the only transition that is enabled

128

is ti,

Pr{ti} = ^ = 1 (6.10)

Thus, it must fire with probability one. Similarly, in state M5 the only

transition that is enabled is <4,

Pr{U} = ^ = 1 (6.11)

so it must also fire with probabiUty equal to unity.

6.3.2 Hierarchical System of Automata

The reachability tree may now be considered as a simple hierarchical

system of automata; each state corresponding to an automaton. It may

be noted that in a hierarchy each firing of a transition (action selected by

automaton) has a unique path connecting it to the automaton (state) that

has been selected previously, or to an automaton at the top level (state MQ).

From the tree structure of Figure 6.4, it is possible to define nine unique

paths which may be considered as sequence of states/ decisions, shown in

Figure 6.6. To introduce the concept of an environment into this model,

each sequence of states is associated with a reward probability, indicated by

Ci values as illustrated in Figure 6.6. Such a system may be considered as

a Stochastic Learning Petri Net (SLPN) model; this structure is shown in

Figure 6.7.

129

6.3.3 Operation of S L P N

The operation of this hierarchical learning system is as follows. At

any instant the first level automaton, state MQ selects an action (fires ti).

This activates an automaton in the second level which fires a transition

from its current transition probabUity distribution. This in turn activates,

automata in the next level and so on. However, if a particular sequence

of decisions corresponding to a unique path has been reached; the sequence

is fed into the environment. The environment in turn generates a reward/

punish signal as its reaction. The response of the environment is used to

update the transition probabihties for the various levels of automata in the

selected path. This process repeats until all the probabihties in one path

converge close to unity (ie. path associated with unique maximum reward

probabihty or unique minimum penalty probability) from the top level (MQ)

to the lowest level (M5).

Thus, the formal definition of a SLPN, is as follows:

SLPN = (P, r , A, Mo, A, M,) (6.12)

where {P, T, A, MQ, A) is the stochastic Petri net underlying the model; Mx

indicates the presence of two/ three-state stochastic learning automata which

consist of the components {(3, 4>, a,p, F, G). In this representation Pr{ai} =

Pr{ti} indicates the transition firing probabiUties.

Similarly, the interpretation of the model is identical to the case of

stochastic learning automata with the additions resulting from the introduction

of Stochastic Petri nets.

130

6.3.4 Simulation Results : SLPN

This section presents computer simulation results for the SLPN model.

The results are presented in the form of tables. In all cases the reward

parameter is indicated; and Pr(i,j) denotes the transition firing probabihties,

where i represents the state of the system and ; provides the notation for the

transition that fires. For example, consider the notation for state Mi firing

transition ^3; the transition firing probabihty may be represented by Pr(l,3).

Expected values are denoted by the expression eg. Pr{i,j) = E[Pr{i,j)].

In the simulation study the hierarchical system in Figure 6.4 was exam­

ined. Such a tree representation was modified by introducing the stochastic

learning automaton approach with the capability of selecting sequences of

decisions, discussed previously. To simulate this SLPN, all of the reward

probabihties in the environment were in the range [0.2 - 0.45] except the

unique maximum reward probability which was set to 0.9. An LRJ updating

scheme was used to update action probabilities for the selected path.

Tables [6.2 - 6.10] provide the reward probabihties of the environment

which are used for simulation. Note that in each case the unique maximum

reward probability is associated with the selected sequence of decisions. Con­

sider Table 6.2, the maximum reward probability relates to sequence 0. This

sequence corresponds to selecting the path: MO - Fr(0,1); Ml - Pr{l, 2); MO,

repeatedly. Hence, the optimal path probabihty changes in Table 6.2 may be

analysed. The SLPN in state MO always fires ti with probabihty unity; thus

the transition probability in MO always remains constant. The firing of ti

results in changing the next state to Ml. In state Ml, the transitions ti, t2

131

and is are enabled. However, the rapid convergence of Pr(l,2) in state Ml

indicates that the optimal path converges to sequence 0, by the firing of t2.

Table 6.3 illustrates the convergence to the unique maximum reward

probabihty, such that sequence 1 is selected. This sequence represents the

path MO - Pr{0,1); Ml - Pr{l, 1); M2 - Pr(2,2); Ml. In this case, transition

probability vector in state MO is equal to unity; since ti must always fire with

probabihty equal to one. Also the convergence of transition probabihty Pr(l,l)

in the three-state automaton Ml; and Pr(2,2) in the two-state automaton

M2 show that the optimal path selected is sequence 1, which has the unique

maximum reward probabihty.

Similarly, for Table [6.4 - 6.10]. It is observed that the transition

probabihty vectors that converge close to unity, correspond to the sequence

of decisions associated with the unique maximum reward probabihty.

6.4 Generalised Stochastic Learning Petri Net (GSLPN)

A similar approach is adopted for the development of GSLPN. By

analysis of the reachabihty tree in Figure 5.8, the GSPN may exist in one

of eighteen different states. These states provide a combination of immediate

and timed transitions. However, for the development of a Generalised version

of the Stochastic Learning Petri Net it is necessary to consider only timed

transitions, since firing rates associated with immediate transitions are deter­

mined by switching distribution. Such that, if several timed transitions are

simultaneously enabled in any tangible marking; and assuming that H is the

132

set of enabled transitions, then a transition ti (ieH) fires with probabihty

Pr{ti} = (6.13)

as stated previously, A is the firing rate associated with PN transitions. Thus,

the different states relating to timed transitions of a GSPN define probabihty

ratios which correspond to the firing of each transition. In any state, the sum

of probabihty ratios is always equal to unity. Consider state M2 = [lOOOllO];

the enabled transitions are ti and tQ and their respective firing probabihties

may be defined as follows:

and

Thus,

Pr{ti} + PT{te} = 1 (6.16)

For this model of a GSPN, the concept of a stochastic automaton has been

introduced to control the firing of timed transitions on a probabilistic basis.

The firing of the selected transition in a tangible marking determines that

the next state (marking) of the system corresponds to a vanishing marking;

thus enabling only immediate transitions. Such transitions are then controlled

by the switching distribution technique. In the tree representation in Figure

6.8, there exists only two-state automata for each tangible marking. Cle«irly,

the tangible states M2, M3, Ms, Mu and M12 correspond to a two-state

automata.

133

Two-state Automaton

Consider, Figure 6.8, the tangible marking M2[1000110] enables transitions

ti and tg, since tokens are present in the input places {pi, pe). Each

transition can fire first with equal initial probabilities, firing probabihties for

each transition given below.

Pr{t,] = ^ (6.17)

Similarly

Pr{ti} + Pr{te} = 1 (6.19)

The firing of ti, determines the next state of GSPN to be vanishing marking

M4; the firing of t^, also determines that the next state is vanishing marking

M5. The concept of two-state automaton also applies to each tcingible

marking, namely, M3, Ms, Mn and M12.

It must be pointed out that the transition firing probabihties in each

tangible marking MQ; M15 and Mie is always equal to unity. Since in state

Mo, the only transition that is enabled is ^i.

Pr{ti} = - = 1 (6.20)
u

Thus, it must fire with probabihty one. Similarly, in state M15 and Mig the

only transitions enabled are tj and t^, respectively.

Pr{t,} = Pr{te} = 1 (6.21)

134

so it must also fire with probabiUty equal to unity.

Hierarchical System of Automata - G S L P N

Thus, from the reachabihty tree a simple hierarchical system of automata is

developed; each tangible state corresponding to an automaton. Similar to the

case of SLPN, in a hierarchy each action has a unique path connecting it to

the automaton (state) that has been selected previously, or to an automaton

at the top level (state MQ). By considering the tree structure of Figure 6.8,

nine unique paths may be defined which are considered as sequence of states/

decisions, shown in Figure 6.9. To introduce the concept of an environment

into this model, each sequence of states is associated with a reward probabihty.

The operation of this hierarchical learning system is similar to the

SLPN, with the addition of switching distributions associated with vanishing

markings. If a vanishing marking is reached, the next state is determined

by considering switching distributions (random switch), presented in Table

5.2a. The firing of transitions according to a random switch alters the

next state to a tangible marking, depending on the transition that fires.

At any instant the first level automaton, state MQ, selects an action (fires

ti). This activates an automaton in the second level which fires a transition

from its current transition probability distribution. This in turn activates,

automata in the next level and so on. However, if a particular sequence of

decisions corresponding to a unique path has been reached; the environment

in turn generates a reward/ punish signal as its reaction. The reaction of

the environment is used to update the transition probabihties for the various

135

levels of automata in the selected path. This process repeats until all the

probabihties in one path become close to unity from the top level (MQ) to

the lowest level (Ms). Such a system may be considered as a Generalised

Stochastic Learning Petri Net (GSLPN) model.

6.4.1 Simulation Results : GSLPN

This section presents computer simulation results for the GSLPN

model. The results are presented in the form of tables; indicating reward

parameter is equal to 0.1, also the reward probabihties associated with each

sequence of states. The notation for Pr{i,j) remains the same as for SLPN,

as indicated in Section 6.3.4. In the simulation study the hierarchical system

was modified by introducing the stochastic learning automaton approach for

each tangible marking. By considering each tangible state as an automaton,

this provides the capabihty of selecting sequences of decisions, discussed

previously. For the simulation of GSLPN, all of the reward probabihties in

the environment were in the range [0.2 - 0.45] except the unique maximum

reward probabihty which was set to 0.9. An LRJ updating scheme was used

to update action probabihties for the selected path.

Tables [6.11 - 6.19] provide the reward probabihties of the environment

which are used for simulation. Note that in each case the unique maximum

reward probabihty is associated with the selected sequence of decisions.

From these resiilts it can be seen that the transition probabihty

vectors of certain tangible states converge close to unity. In each case this

convergence corresponds to the sequence associated with the unique maximum

136

reward probabihty.

6.5 Conclusion and Summary

This chapter has introduced a new class of hybrid Petri nets which

have the additional feature of an embedded stochastic learning automata

within Petri net models. By embedding the concept of stochastic learning

automata in Petri nets the hybrid combination was shown to overcome the

limitations of, existing Petri net theory and interconnected automata used in

isolation. An extension of a standard PN, SPN and GSPN, have developed

new hybrid models known as Basic Stochastic Learning Petri Net (Basic

SLPN), Stochastic Learning Petri Net (SLPN) and Generalised Stochastic

Learning Petri Net (GSLPN), respectively. In the case of a Basic SLPN it

has been shown that the movement of tokens in the model provides structure

to the stochastic learning automata described in Chapter Three. Whilst, the

SLPN and GSLPN models have the ability to control the firing of transitions

on a probabihstic basis; and enables convergence to a selected sequence of

states/ decisions at each time instant. PreUminary simulation results are

presented for each Learning Petri net model. The next chapter considers

an apphcation of the SLPN model to a specific two node decision making

organisation.

137

Reward/ Punish

ENVIRONMENT

Figure 6.1a - Basic Stochastic Learning Petri Net (Basic SLPN)

M Q = [100]

M l = [0 1 0] M 2 = [0 0 1]

M Q O L D

Figure 6.1b - Reachability Tree - Basic SLPN

138

Reward Parameter = 0.04

Reward Probability

i 0 1

Ci 0.2 0.9

n pl p2

0 0.500000 0.500000

200 0.185784 0.814216

400 0.096207 0.903793

600 0.064346 0.935654

800 0.048341 0.951659

1000 0.038721 0.961279

Table 6.1 - Optimal Path : Basic SLPN

MLPN I Path P r o b a b i l i t y Changes

• IM M 1M m
Number of I t e r a t i o n s

Figure 6.2 - Optimal Path Probability Changes : Basic SLPN

139

on
O •—____ C
c V3 o (U D
3 o C T "o
U CO

CO Q
ch

ic
a

te
m

m
at

a

a 00 o o >^ 4—»

H
ie

i CO 3

H
ie

i

<

be
dd

ed

o

:h
ab

il
Tr

ee

be
dd

ed

ch
as

t
to

m
al

Re
a(

S
W o

•4—»

CO

A
u

J 3 <U
CS 0)

(L>
0̂

CO

O B
a>
3
<u

CO

o c <u
3
C T
(U

CO

Figure 6.3 - Structure of SLPN

140

M

M

Sequence i
Ci

M 2 = [0 2 0 0]

^3

M3 = [1011]

M 5 = [0022]

M

0

Q) C2 C6

M

C 7

Fires Probability One (Instantly)

Three-State Automaton

Two-State Automaton

Figure 6.4 - Reachability Tree : Embedded Stochastic Automata

141

M 2 = [0 2 0 0]

(Pr{t2},Pr{t3})

M j = [1 1 0 0]
M 4 = [0 1 1 1]

(a) Two-State Automaton

- J 1 0 0] NS:

Kx\v(Pr{tl},Pr{t2},Pr{t3})

M Q = [2 0 0 0] M 2 = [0 2 0 0] M 3 = [1 0 1 1]

(b) Three-State Automaton

Figure 6.5 - Two/ Three-State Automaton

142

CQ : M Q • M l • M Q

Cj : Mo M j • M'

C 2 : M Q M-

M l

M 0

C 3 : M Q • M l • M 2 • M 4 • M -

C 4 •• Mo M M- M 4 • M I

C 5 : Mo • M l • M ^ • M , ^M:

: Mo • M l

Cj : Mo • M l

M^

M-

M 4 • M L

MA • M - M^

Cg : Mo • M l • M 3 • M 4 ^M- M 3

" ^8] Penalty Probabilities - Range[0.2-0.5] Unique Maximum = 0.9

Mo - M 5 Sequence of States in Reachability Tree

Figure 6.6 - Sequence of Decisions/ States

143

(zi £ 2
S E 1
o hi
- J ^ CO ^ <

Figure 6.7 - Stochastic Learning Petri Net (SLPN)

144

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.9 0.35 0.45 0.2 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 0:

MO - Pr(0,l); M l - Pr(l,2); MO;

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.174549 0.724323 0.101128 0.496244 0.503756

1200 1.000000 0.099875 0.849360 0.050765 0.470108 0.529892

1800 1.000000 0.066647 0.899482 0.033871 0.460627 0.539373

2400 1.000000 0.050013 0.924569 0.025418 0.455883 0.544117

3000 1.000000 0.040027 0.939630 0.020343 0.453034 0.546966

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.518667 0.481333 0.277263 0.439687 0.283050 1.000000

1200 0.519332 0.480668 0.250052 0.460671 0.289278 1.000000

1800 0.519554 0.480446 0.240587 0.468098 0.291315 1.000000

2400 0.519666 0.480334 0.235851 0.471814 0.292335 1.000000

3000 0.519732 0.480268 0.233008 0.474045 0.292947 1.000000

Table 6.2 - Optimal Path SLPN : Sequence 0

145

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.9 0.45 0.2 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 1:

MO - Pr(0,l); M l - Pr(l, l); M2 - Pr(2,2); M l

MO Ml M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.550452 0.213781 0.235767 0.709502 0.290498

1200 1.000000 0.728851 0.113456 0.157693 0.840304 0.159696

1800 1.000000 0.818899 0.075722 0.105380 0.893398 0.106602

2400 1.000000 0.864098 0.056823 0.079079 0.920004 0.079996

3000 1.000000 0.891233 0.045477 0.063290 0.935977 0.064023

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.453162 0.546838 0.367937 0.324951 0.307112 1.000000

1200 0.386330 0.613670 0.384717 0.330612 0.284671 1.000000

1800 0.362558 0.637442 0.390320 0.332502 0.277178 1.000000

2400 0.350662 0.649338 0.393123 0.333448 0.273429 1.000000

3000 0.343521 0.656479 0.394806 0.334016 0.271178 1.000000

Table 6.3 - Optimal Path SLPN : Sequence 1

146

Reward Pzirameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.45 0.9 0.2 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 2:

MO - Pr(0,l); M l - Pr(l,3); M3 - Pr(3,4); MO;

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.176031 0.124048 0.699921 0.481165 0.518835

1200 1.000000 0.090713 0.067059 0.842229 0.481793 0.518207

1800 1.000000 0.060535 0.044761 0.894704 0.482003 0.517997

2400 1.000000 0.045426 0.033589 0.920984 0.482108 0.517892

3000 1.000000 0.036356 0.026883 0.936761 0.482171 0.517829

M3 M4 M5

n Pr{3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.199988 0.800012 0.400115 0.285478 0.314407 1.000000

1200 0.103941 0.896059 0.400705 0.273219 0.326076 1.000000

1800 0.069366 0.930634 0.400902 0.269126 0.329972 1.000000

2400 0.052053 0.947947 0.401001 0.267078 0.331921 1.000000

3000 0.041660 0.958340 0.401060 0.265848 0.333092 1.000000

Table 6.4 - Optimal Path SLPN : Sequence 2

147

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.9 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 3:

MO - Pr(0,l); M l - Pr(l , l); M2 - Pr(2,3); M4 - Pr(4,2); M3

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.553201 0.191477 0.255323 0.576526 0.423474

1200 1.000000 0.691943 0.124194 0.183863 0.413566 0.586434

1800 1.000000 0.792181 0.083418 0.124401 0.302268 0.697732

2400 1.000000 0.844025 0.062604 0.093371 0.233046 0.766954

3000 1.000000 0.875168 0.050104 0.074728 0.186623 0.813377

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.572875 0.427125 0.418042 0.274119 0.307839 1.000000

1200 0.613918 0.386082 0.565688 0.198648 0.235663 1.000000

1800 0.632179 0.367821 0.695293 0.134768 0.169939 1.000000

2400 0.641316 0.358864 0.770897 0.101162 0.127941 1.000000

3000 0.646802 0.353198 0.816636 0.080963 0.102400 1.000000

Table 6.5 - Optimal Path SLPN : Sequence 3

148

Reward Pzirameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.9 0.2 0.3 0.4 0.4

Convergence to Sequence 4:

MO - Pr(0,l); M l - Pr(l, l); M2 - Pr(2,3); M4 - Pr(4,4); M l ;

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.513904 0.313428 0.172667 0.468298 0.531702

1200 1.000000 0.659712 0.236757 0.103531 0.329785 0.670215

1800 1.000000 0.762728 0.167303 0.069970 0.226465 0.773535

2400 1.000000 0.821845 0.125640 0.052514 0.170000 0.830000

3000 1.000000 0.857416 0.100555 0.042029 0.136058 0.863942

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.462825 0.537175 0.226089 0.309543 0.464368 1.000000

1200 0.452119 0.547881 0.133066 0.231743 0.635191 1.000000

1800 0.444685 0.555315 0.089236 0.157893 0.752871 1.000000

2400 0.440965 0.559035 0.066969 0.118515 0.814517 1.000000

3000 0.438731 0.561269 0.053597 0.094852 0.851551 1.000000

Table 6.6 - Optimal Path SLPN : Sequence 4

149

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.9 0.3 0.4 0.4

Convergence to Sequence 5:

MO - Pr(0,l); M l - Pr(l,3); M3 - Pr(3,l); M4 - Pr(4,2); M3;

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.191899 0.222948 0.585153 0.500762 0.499238

1200 1.000000 0.103439 0.122696 0.773865 0.490015 0.509985

1800 1.000000 0.069090 0.081975 0.848935 0.486426 0.513574

2400 1.000000 0.051847 0.061516 0.886637 0.484631 0.515369

3000 1.000000 0.041495 0.049234 0.909272 0.483553 0.516447

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.674278 0.325722 0.501654 0.281078 0.217269 1.000000

1200 0.815019 0.184981 0.686260 0.182217 0.131523 1.000000

1800 0.875323 0.124677 0.787389 0.124113 0.088498 1.000000

2400 0.906430 0.093570 0.840427 0.093156 0.066417 1.000000

3000 0.925113 0.074887 0.872288 0.074556 0.053155 1.000000

Table 6.7 - Optimal Path SLPN : Sequence 5

150

Reward Peirameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.9 0.4 0.4

Convergence to Sequence 6:

MO - Pr(0,l); M l - Pr(l,3); M3 - Pr(3,l); M4 - Pr(4,4); M l ;

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.165438 0.290162 0.544400 0.522279 0.477721

1200 1.000000 0.106961 0.168110 0.724929 0.529368 0.470632

1800 1.000000 0.083200 0.112413 0.804387 0.557758 0.442242

2400 1.000000 0.062654 0.084359 0.852986 0.573471 0.426529

3000 1.000000 0.050147 0.067516 0.882338 0.582904 0.417096

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.693759 0.306241 0.206450 0.192350 0.601200 1.000000

1200 0.821326 0.178674 0.133834 0.108875 0.757291 1.000000

1800 0.880258 0.119742 0.092569 0.072814 0.834617 1.000000

2400 0.910139 0.089861 0.069499 0.054643 0.875859 1.000000

3000 0.928081 0.071919 0.055622 0.043732 0.900645 1.000000

Table 6.8 - Optimal Path SLPN : Sequence 6

151

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.9 0.4

Convergence to Sequence 7:

MO - Pr(0,l); M l - Pr(l , l) ; M2 - Pr(2,3); M4 - Pr(4,3); M3;

MO M l M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.531733 0.290461 0.177806 0.441565 0.558435

1200 1.000000 0.640113 0.224555 0.135332 0.321635 0.678365

1800 1.000000 0.740396 0.165010 0.094594 0.227745 0.772255

2400 1.000000 0.804660 0.124269 0.071071 0.171196 0.828804

3000 1.000000 0.843651 0.099467 0.056882 0.137020 0.862980

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr(5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.498625 0.501375 0.201754 0.586722 0.211524 1.000000

1200 0.504372 0.495628 0.135323 0.736304 0.128373 1.000000

1800 0.495079 0.504921 0.092126 0.821082 0.086792 1.000000

2400 0.490428 0.509572 0.069171 0.865675 0.065154 1.000000

3000 0.487636 0.512364 0.055361 0.892494 0.052145 1.000000

Table 6.9 - Optimal Path SLPN : Sequence 7

152

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.4 0.9

Convergence to Sequence 8:

M0-Pr(0,l); Ml-Pr(l,3); M3-Pr(3,l); M4-Pr(4,3); M5-Pr(5,4); M3;

MO Ml M2

n Pr(0,l) Pr(l , l) Pr(l,2) Pr(l,3) Pr(2,2) Pr(2,3)

0 1.000000 0.333333 0.333333 0.333333 0.500000 0.500000

600 1.000000 0.132012 0.212609 0.655378 0.508068 0.491932

1200 1.000000 0.079786 0.113330 0.806884 0.513090 0.486910

1800 1.000000 0.053482 0.075730 0.870788 0.515134 0.484866

2400 1.000000 0.040139 0.056831 0.903029 0.516157 0.483843

3000 1.000000 0.032125 0.045484 0.922391 0.516771 0.483229

M3 M4 M5

n Pr(3,l) Pr(3,4) Pr(4,2) Pr(4,3) Pr(4,4) Pr{5,4)

0 0.500000 0.500000 0.333333 0.333333 0.333333 1.000000

600 0.741401 0.258599 0.205825 0.568628 0.225547 1.000000

1200 0.848475 0.151525 0.123761 0.700174 0.176065 1.000000

1800 0.897521 0.102479 0.083012 0.792916 0.124072 1.000000

2400 0.923069 0.076931 0.062303 0.844451 0.093246 1.000000

3000 0.938429 0.061571 0.049863 0.875505 0.074631 1.000000

Table 6.10 - Optimal Path SLPN : Sequence 8

153

>Mo'̂ = pool iVo) \

r

1 0 1 looT^

^M2s = 1H) 0 0 1 ^m ^ \M.3v= [100 1 0 0 1] >

' 5

VMg;̂ =̂ [0 0 0 oVl̂ l]" \̂

C ^ 7 = [010 0 i T ^ ^
^ [0101 OOjT^ C ^ j ^ [2 0 l l 0 0 ^

t,
1'

CM2_ = [I 0 1 0 ooTr^ CMJO = [loiooT^^

A w n i s i [S M h ^ A o o T ^ ^ ^ M2

< : : M I 3 = [0 1 0 0 7 ^ M 5 ^ . f o i O l o T ^

' 5
r

\ M i 5 = '[oVo0002]'S

r

k M i 6 - (P P 0 Q 0 A q >

M 10

c
^^^^N^^^^^'^N Tangible Marking Indicates Presence of Two-State Automaton

Vanishing Marking Indicates Presence of Random Switch

Figure 6.8 - GSPN Reachability Tree : Embedded Stochastic Automata

154

CO

o

OS

•

o 2

W

O

I I I

A

o o 2

00 ^ OO 00 00

s ? :s 2 s
I t t t t t

^ T l -

" - ^ ^
t t t t

o

o

t t t t t .
(S <^ tS (N» c

s s s S S 2
t t t t
^ ^ ^ ^

•

o

Of

00

4

o

o
•

• ik

• i

o

Figure 6.9 - GSPN : Sequence of Decisions/ States

155

RewMd Peirameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.9 0.35 0.45 0.2 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 0:

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,l);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.809068 0.190932 0.416901 0.583099 0.828256 0.171744

1200 1.000000 0.900969 0.099031 0.448418 0.551582 0.910950 0.089050

1800 1.000000 0.933867 0.066133 0.429936 0.570064 0.940533 0.059467

2400 1.000000 0.950372 0.049628 0.400512 0.599488 0.955374 0.044626

3000 1.000000 0.960281 0.039719 0.362137 0.637863 0.964284 0.035716

M i l M12 M15 M16

n P r (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.651463 0.348537 0.500000 0.500000 1.000000 1.000000

1200 0.675787 0.324213 0.500000 0.500000 1.000000 1.000000

1800 0.741825 0.258175 0.500000 0.500000 1.000000 1.000000

2400 0.786258 0.213742 0.500000 0.500000 1.000000 1.000000

3000 0.750739 0.249261 0.500000 0.500000 1.000000 1.000000

Table 6.11 - Optimal Path G S L P N : Sequence 0

156

Reward Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.9 0.45 0.2 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 1:

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,l); Ml l -P r (l l , l) ;

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.806212 0.193788 0.415502 0.584498 0.825711 0.174289

1200 1.000000 0.894719 0.105281 0.291938 0.708062 0.905381 0.094619

1800 1.000000 0.929572 0.070428 0.222273 0.777727 0.936706 0.063294

2400 1.000000 0.947142 0.052858 0.173345 0.826655 0.952496 0.047504

3000 1.000000 0.957696 0.042304 0.142028 0.857972 0.961981 0.038019

M i l M12 M15 M16

n P r (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.723412 0.276588 0.500000 0.500000 1.000000 1.000000

1200 0.813575 0.186425 0.500000 0.500000 1.000000 1.000000

1800 0.862112 0.137888 0.500000 0.500000 1.000000 1.000000

2400 0.895455 0.104545 0.500000 0.500000 1.000000 1.000000

3000 0.916280 0.083720 0.500000 0.500000 1.000000 1.000000

Table 6.12 - Optimal Path GSLPN : Sequence 1

157

Reward Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.45 0.9 0.2 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 2:

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,l); Mll-Pr(l l ,6);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.685376 0.314624 0.626392 0.373608 0.682899 0.317101

1200 1.000000 0.818368 0.181632 0.642078 0.357922 0.791152 0.208848

1800 1.000000 0.877747 0.122253 0.652813 0.347187 0.857948 0.142052

2400 1.000000 0.908209 0.091791 0.711421 0.288579 0.893275 0.106725

3000 1.000000 0.926535 0.073465 0.767056 0.232944 0.914579 0.085421

M i l M12 M15 M16

n Pr (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.361052 0.638948 0.453750 0.546250 1.000000 1.000000

1200 0.267933 0.732067 0.451878 0.548122 1.000000 1.000000

1800 0.186095 0.813905 0.451253 0.548747 1.000000 1.000000

2400 0.140398 0.859602 0.450940 0.549060 1.000000 1.000000

3000 0.112463 0.887537 0.450753 0.549247 1.000000 1.000000

Table 6.13 - Optimal Path GSLPN : Sequence 2

158

Reward Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.9 0.3 0.2 0.3 0.4 0.4

Convergence to Sequence 3:

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,6); M12-Pr(12,l); Ml6-Pr(16,6);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.333333 0.333333 0.500000 0.500000 0.500000

600 1.000000 0.532724 0.467276 0.593493 0.406507 0.372503 0.627497

1200 1.000000 0.729578 0.270422 0.616164 0.383836 0.237406 0.762594

1800 1.000000 0.818717 0.181283 0.622145 0.377855 0.160715 0.839285

2400 1.000000 0.863946 0.136054 0.625138 0.374862 0.120647 0.879353

3000 1.000000 0.891111 0.108889 0.626935 0.373065 0.096559 0.903441

M i l M12 M15 M16

n P r (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.505083 0.494917 0.570318 0.429682 1.000000 1.000000

1200 0.527504 0.472496 0.657897 0.342103 1.000000 1.000000

1800 0.534990 0.465010 0.763197 0.236803 1.000000 1.000000

2400 0.538736 0.461264 0.822047 0.177953 1.000000 1.000000

3000 0.540985 0.459015 0.857573 0.142427 1.000000 1.000000

Table 6.14 - Optimal Path G S L P N : Sequence 3

159

Rewzird Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.9 0.2 0.3 0.4 0.4

Convergence to Sequence 4:

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,6); Ml2-Pr(12,6);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.669857 0.330143 0.384499 0.615501 0.291958 0.708042

1200 1.000000 0.802920 0.197080 0.237181 0.762819 0.202816 0.797184

1800 1.000000 0.866860 0.133140 0.162133 0.837867 0.149552 0.850448

2400 1.000000 0.900061 0.099939 0.122416 0.149552 0.112473 0.887527

3000 1.000000 0.920015 0.079985 0.098275 0.112473 0.090026 0.909974

M i l M12 M15 M16

n Pr (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr{16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.534500 0.465500 0.365006 0.634994 1.000000 1.000000

1200 0.542237 0.457763 0.224533 0.775467 1.000000 1.000000

1800 0.544820 0.455180 0.153759 0.846241 1.000000 1.000000

2400 0.546113 0.453887 0.115533 0.884467 1.000000 1.000000

3000 0.546889 0.453111 0.092473 0.907527 1.000000 1.000000

Table 6.15 - Optimal Path GSLPN : Sequence 4

160

Reweurd Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.9 0.3 0.4 0.4

Convergence to Sequence 5:

MO-Pr(0,l); M2-Pr(2,l); M8-Pr(8,6);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.722986 0.277014 0.392727 0.607273 0.207815 0.792185

1200 1.000000 0.852646 0.147354 0.239746 0.760254 0.109153 0.890847

1800 1.000000 0.901434 0.098566 0.183716 0.816284 0.072975 0.927025

2400 1.000000 0.926033 0.073967 0.152900 0.847100 0.054763 0.945237

3000 1.000000 0.940802 0.059198 0.127705 0.872295 0.043828 0.956172

M i l M12 M15 M16

n P r (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.500000 0.500000 0.412953 0.587047 1.000000 1.000000

1200 0.500000 0.500000 0.339427 0.660573 1.000000 1.000000

1800 0.500000 0.500000 0.333693 0.666307 1.000000 1.000000

2400 0.500000 0.500000 0.365173 0.634827 1.000000 1.000000

3000 0.500000 0.500000 0.383313 0.616687 1.000000 1.000000

Table 6.16 - Optimal Path GSLPN : Sequence 5

161

Reward Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.9 0.4 0.4

Convergence to Sequence 6:

M0-Pr(0,l); M2-Pr(2,6);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.160091 0.839909 0.770198 0.229802 0.626082 0.373917

1200 1.000000 0.080741 0.919259 0.875818 0.124182 0.630783 0.369217

1800 1.000000 0.053873 0.946127 0.916763 0.083237 0.632353 0.367647

2400 1.000000 0.040427 0.959573 0.937517 0.062483 0.633138 0.366862

3000 1.000000 0.032355 0.967645 0.949991 0.050009 0.633610 0.366390

M i l M12 M15 M16

n Pr (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.543250 0.456750 0.500000 0.500000 1.000000 1.000000

1200 0.546619 0.453381 0.500000 0.500000 1.000000 1.000000

1800 0.547744 0.452256 0.500000 0.500000 1.000000 1.000000

2400 0.548307 0.451693 0.500000 0.500000 1.000000 1.000000

3000 0.548645 0.451355 0.500000 0.500000 1.000000 1.000000

Table 6.17 - Optimal Path G S L P N : Sequence 6

162

Reward Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.9 0.4

Convergence to Sequence 7:

MO-Pr(0,l); M3-Pr(3,l);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.454252 0.545748 0.852835 0.147165 0.600395 0.399605

1200 1.000000 0.628914 0.371086 0.922450 0.077550 0.756201 0.243799

1800 1.000000 0.744904 0.255096 0.948114 0.051886 0.833994 0.166006

2400 1.000000 0.807361 0.192639 0.961063 0.038937 0.874887 0.125113

3000 1.000000 0.845674 0.154326 0.968837 0.031163 0.899801 0.100199

M i l M12 M15 M16

n P r (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.560640 0.439360 0.470833 0.529167 1.000000 1.000000

1200 0.645307 0.354693 0.460434 0.539566 1.000000 1.000000

1800 0.639664 0.360336 0.456962 0.543038 1.000000 1.000000

2400 0.642014 0.357986 0.455224 0.544776 1.000000 1.000000

3000 0.652169 0.347831 0.454181 0.545819 1.000000 1.000000

Table 6.18 - Optimal Path GSLPN : Sequence 7

163

Reward Parameter = 0.1

Reward Probability

i 0 1 2 3 4 5 6 7 8

Ci 0.35 0.2 0.45 0.3 0.2 0.3 0.4 0.4 0.9

Convergence to Sequence 8:

MO-Pr(0,l); M3-Pr(3,6);

MO M2 M3 M8

n Pr(0,l) Pr(2,l) Pr(2,6) Pr(3,l) Pr(3,6) Pr(8,l) Pr(8,6)

0 1.000000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

600 1.000000 0.454252 0.545748 0.1980865 0.809135 0.600395 0.399605

1200 1.000000 0.628914 0.371086 0.098464 0.901536 0.756201 0.243799

1800 1.000000 0.744904 0.255096 0.065804 0.934196 0.833994 0.166006

2400 1.000000 0.807361 0.192639 0.049381 0.950619 0.874887 0.125113

3000 1.000000 0.845674 0.154326 0.039521 0.960479 0.899801 0.100199

M i l M12 M15 M16

n P r (l l , l) Pr(ll,6) Pr(12,l) Pr(12,6) Pr(15,7) Pr(16,6)

0 0.500000 0.500000 0.500000 0.500000 1.000000 1.000000

600 0.560640 0.439360 0.470833 0.529167 1.000000 1.000000

1200 0.645307 0.354693 0.460434 0.539566 1.000000 1.000000

1800 0.639664 0.360336 0.456952 0.543038 1.000000 1.000000

2400 0.642014 0.357986 0.455224 0.544776 1.000000 1.000000

3000 0.652169 0.347831 0.454181 0.545819 1.000000 1.000000

Table 6.19 - Optimal Path GSLPN : Sequence 8

164

Chapter Seven

Application to Distributed Decision Systems

7.1 Introduction

PNs have been extensively used in the representation and analysis of

computing systems and processes. As stated previously, the PN formalism

is suitable for representing dynamic processes, particularly when some of the

events may occur concurrently. However, recently the use of PNs in the

modeUing of decision making processes has been proposed, [60], [61]. In

the case of modelling decision making organisations, the PN representation

considers tokens as items of information or signals which wait to be processed

in the places. These places are conditions which must be met before the

information held in them can be processed. The transitions are events

which execute processes; whereby a process is executed by the firing of

a corresponding transition and the flow of tokens represent the flow of

information in the process. Thus, PNs represent powerful modeUing tools

for decision making organisations, since they describe in a precise manner

the interactions among decision makers. Several authors have considered the

apphcation of PNs in this field of study, [62], [63], [64], [65], [66].

In the discussion that follows a model of the interacting decision maJcer

is presented. The basic model of the interacting decision maker consists of

four stages. An appUcation of the hybrid SLPN modelUng tool to a specific

165

two node organisation is considered, [59], [67 .

7.2 Model of the Decision Making Process

A basic model of an interacting decision maker appropriate for the

study of command and control organisations was introduced by Boettcher

and Levis, [68]. Their four-stage model of the human Decision Maker (DM)

permits detailed and expUcit interactions among organisation members. The

decision maker receives an input x from his environment and undergoes a

four-stage process, shown in Figure 7.1. The Situation Assessment (SA) and

Response Selection (RS) stages are used to model the actual decision making

process; while Information Fusion (IF) and Command Interpretation (CI) allow

for interaction of the DM with other members of the organisation.

Based on the above discussion, the input x received by the decision

maker is processed in the SA stage, this stage operates upon x to produce

an assessed situation z. The assessed situation z may be shared with the

other members of the organisation; concurrently, the DM may receive the

supplementary situation assessment z from other parts of the organisation.

This information may in turn be combined in the IF stage to yield z.

The fused assessed situation, z, is processed by one of the algorithms

in the RS stage; since in the RS stage possible alternatives of action are

evaluated and the output response may be communicated to other team

members. The CI stage of the model allows z and the input v to influence

the choice of this algorithm. A command input v from the rest of the

organisation may be considered to be a command capable, for example, of

166

restricting options. The RS stage contains algorithms that produce output y

in response to the situation assessment z and the command inputs.

The internal structure of the four processing stages, is depicted in

Figure 7.2 which include the SA, IF, CI and RS stages. Note that the SA

stage consists of a set of V algorithms that are capable of producing some

situation assessment z. The RS stage also contains a set of V algorithms

which are required to produce the final decision response.

7.2.1 Model of an Organisation with a Decision Aid

This sub-section describes the integration of a decision aid within the

decision module. The DM module may often be faced with metadecisions, ie.

decisions about how to choose whether to use the information provided by

an aid and how to use that information, [63]. For example, in conditions of

uncertainty, the time constraint is an important factor. Thus, in an emergency

situation a decision maker must reach a decision in the order of seconds,

at most tens of seconds; because of this an interactive decision aid would

not be feasible. On the other hand, the DM may access a decision support

system or another form of aid to reach an accurate response. Hence, the

aided DM must decide between the following three options, when confronted

with a decision aid:

(1) The user DM ignores (blocks) the information provided by the aid

and assesses the situation as trained;

(2) The user DM assesses the situation as trained and compares the result

167

with aid information choosing the worst case;

(3) The user DM reUes solely on the aid information.

Consider the structure as illustrated in Figure 7.3, each DM must decide how

to choose among the alternatives for addressing the problem. This structure

provides a convenient framework for the apphcation of the SLPN model which

will be discussed at a later stage.

7.3 Application : Smfdl-scede C^-I System

This section discusses the application of a new class of Petri nets,

namely, the Stochastic Learning Petri Nets (SLPN) as a powerful modelling

tool for decision making organisations in C^-I systems. Figure 7.4 shows in

block diagram form the first model proposed for study. The example consists

of a two node organisation; decision module DMl and a decision module

DM2. Each decision module receives signals from the environment and can

respond to the environment. The DM module consists of three possible

strategies, although the SA stage selects only a single strategy to process the

information. As mentioned above the DM must decide between the following

three options.

Strategy SA,- : process information without using Decision Support System

(DSS);

Strategy I T i : select a response via an intelhgent terminal;

Strategy MF,- : utihse the DSS.

A PN representation for this two node organisation is depicted in Figure

168

7.5. In the simulation studies, the complexity of the model has been reduced

by embedding only the concept of stochastic learning automata in the SA

and RS stages for each decision module, excluding the concept of Petri nets,

as depicted in Figure 7.6. Thus, the disposition of tokens in the node

organisation are not considered. The operation of a single decision module

DM1 interacting with a stationary random environment is considered. For

each decision module, the corresponding SLPN structure and reachabihty tree

is illustrated in Figure 7.7a and 7.7b, respectively. In this structure, the

SLPN concept has been embedded in the SA and RS stages for each decision

module.

7.3.1 Performance of Single Decision Module

As previously mentioned, to reduce the complexity of the model the

concept of stochastic learning automata has been embedded in the SA and

RS stages for each decision module. The decision node contains four learning

automata interconnected in the form of a tree structure. The automata are

arranged in two levels as shown in Figure 7.6. The hierarchy consists of a

single automaton at the first level, and three automata in the second level.

The first level automata, situation assessment SAl consists of three options

which are selected with equal initial probabUity. At this stage, the selected

option corresponds to processing information via three possible strategies, as

mentioned in the previous sub-section (SAl, I T l , MFl). In the second level

which corresponds to the response selection stage, there are two possible

alternatives to be chosen with equal initial probabihty. Thus, from the top to

169

the lower level automata there exists six possible paths {pi,P2, • • • ,P6) which

can be selected by DMl. This structure enables the single decision module

to select the optimal strategy between six possible strategies.

Considering the structure. Figure 7.6, SAl acts first choosing either

RSll , RS12 or RS13. The action selected by the automaton in the lowest

level (response selection RS stage), generates a response from the environment.

The action probabiUties for the selected path are updated on the basis of

this response. Thus the single decision module selects the optimal strategy

which corresponds to the optimal path.

7.3.2 Performance of Two Node Orgeinisation

Similar to the previous case, this adopts an identical approach by

embedding the stochastic learning automata in the SA and RS stages for

each decision module, as depicted in Figure 7.8. Therefore, each decision

module contains four learning automata interconnected in the form of a

hierarchical system. For decision module DMl, the three options (SAi, IT i ,

MFi) are selected with equal initial probabiHty; similarly for decision module

DM2 (SA2, IT2, MF2). Also each RS stage has two alternate possibilities

which are selected with equal initial probabihty; thus producing six. possible

paths for each DM. The strategies associated with decision module DMl

and DM2 are (pi,P2, • • • P̂e) and (91,92, • • •, ̂ e) respectively. There are 36

(6x6) possible combinations of decision strategies fed to the environment.

Consider the structure in Figure 7.8, for each pair of strategies selected

by the decision modules the environment responds stochastically to punish/

170

reward the selection of a particular pair. One pair of decisions is optimum

(ie. gives minimum punishment or maximum reward).

7.4 Experimental Results

This sub-section presents results based on a series of experiments

which examine the performance of a single decision module and a two node

organisation interacting with an uncertain environment. As stated previously,

decision modules are in the form of a two level hierarchical system. To simulate

these modules, the reward probabilities in the environment were selected from

the range [0.2-0.5], except the unique maximum reward probabihty which

was set to 0.9. An L^r scheme was adopted to update action probabihties

for the selected path; in the case of the two node organisation, the action

probabihties for the optimal strategy pair were updated. Simulations were

performed, the results are presented in both table and graph format. For

each experiment the reward parameter and reward probabihties are given; the

expected values are denoted by a bar eg. pi(n) = E[pi(n) .

Experiment 1

The first experiment illustrates the operation of a single decision module

interacting with a stationary random environment, as shown in Figure 7.6.

For this experiment, the objective of a single decision module is such that

the optimal strategy is selected from six possible paths. Figure 7.9 displays

the route corresponding to the optimal path.

The results are produced in Table 7.1 with their respective reward

171

parameter and reward probabiHties. It is evident that the optimal path is pi

since the unique maximum reward probability is associated with this action

path. Furthermore, the tabulated results show convergence close to unity for

this particular path; the corresponding learning curve for the optimal path is

shown in Figure 7.9a.

The experiments [2-4] illustrate the learning performance of a two

node organisation, as depicted in Figure 7.8. For these experiments, the

main objective is such that both decision modules select the optimal pair of

decision strategies from 36 (6x6) possible combinations of decision pairs input

to the environment. Similar to the previous case, reward probabiHties in the

range [0.2-0.5] are associated with paths {pi,P2, • • • and (91,52. • • •, ê)

for decision modules DMl and DM2, respectively. However, in this case the

unique maximum reward probabihty which is set to 0.9 exists for each decision

module DMl and DM2. Thus, a single path from the set (pi,P2, • • • iPe) for

DMl is associated with a unique maximum reward probabihty; and also a

single path from the set (^i , 92, • • •, ̂ e) for DM2. The conditions for each

experiment are varied by considering the selection of optimal strategy pairs;

sudden switch of environmental conditions and by permitting communication

between both decision modules at upper and lower levels.

Experiment 2

The simulation results in Table 7.2 examine the learning behaviour of a two

node organisation. Note that in the case of a two node organisation, the

action paths associated with the unique maximum reward probabihty converge

172

close to unity for each decision module DMl and DM2. The strategy pair

selected is clearly indicated in Figure 7.10.

Table 7.2 indicates the value of the reward parameter; the unique

maximum reward probabihty to be employed by the environment eind the

expected values denoting the convergence to optimal strategy pair. In this

case the unique maximum reward probabihty is associated with path P4.q2

for decision module DMl and DM2, respectively. The results confirm that

the coordinated decision strategies selected by each decision module converges

close to unity, this is illustrated in Figure 7.10a. Hence, the optimal pair of

decisions selected by DMl and DM2 is P4.q2.

Experiment 3

The previous experiment 2 was repeated, with the additional concept of a

sudden switch to a different environment. In this experiment, a change in

the environment was considered by re-setting the unique maximum reward

probability to select an alternate pair of decision strategies. For example, by

a repeat of experiment 2, it can be seen that both decision modules converge

close to unity by selecting the optimal pair of decision strategies. The sudden

switch in the environment is achieved by changing over the unique maximum

reward probabihty, such that cin alternate pair of decision strategies may be

selected. For this particular experiment. Figure 7.11 indicates the route which

may be selected by varying the conditions of the environment: before and

after the switch.

This behaviour is best illustrated by analysing the results in Table

173

7.3a - 7.3b]; all relevant parameter values are indicated. The simulation results

show how fast the structure learns how to converge to the new optimal strategy

pair. It is evident from Table 7.3a that both decision modules DMl and

DM2 select the optimal strategy pair pi.qi; since convergence for this pair is

close to unity. The learning curve showing convergence of strategy pair pi.qi

is represented in Figure 7.12a. However, after introducing a sudden switch

of the environment by re-locating the unique maximum reward probabihty

indicated in Table 7.3b, similarly, the structure learns to select the optimal

strategy pair shown in Figure 7.12c. In this case the coordinated decision

strategy selected is pair ps.qi; the unique maximum reward probability is

associated with this pair. Thus, Figure 7.12b shows a decrease in convergence

for path p i selected by DMl and, a rapid increase in convergence close to

unity for path pa.qi is depicted in Figure 7.12c.

Experiment 4

This final experiment gives an excellent illustration of speeding up the learning

process by permitting communication between decision modules DMl and DM2

(as indicated by dotted hues Figure 7.13). Note that in each of the following

experiments an arbitrary value for the stepsize is considered.

(a) First set of results in Table 7.4a permits communication between

automata at the top level of the hierarchy for each decision module. To

simulate this structure, both automata at the top level (SAl and SA2)

exchange messages so that if each selects action one, then the reward parameter

is incremented by stepsize 4. From Table 7.4a, it can be seen that the rate

174

of convergence for strategy pair pi.qi rapidly increases close to unity; since

the unique maximum reward probabihty is associated with this strategy pair.

(b) Second set of results in Table 7.4b enables communication between

automata at the top and lower levels of the hierarchy for each decision

module. In this case, in addition to automata at the top level (SAl cind

SA2) exchanging messages; the lower level automata (RSll and RS21) also

communicate. The same rule is apphed, that is, if both automata at the

top and lower level select action one, the reward parameter is increased by

stepsize 4. Similar to the previous case, the results in Table 7.4b show rapid

convergence close to unity for both levels of automata. In comparison to the

previous experiment, there is only a fractional increase in rate of convergence

by permitting communication between automata at the upper and lower levels.

(c) The third set of results in Table 7.4c illustrates communication

between automata at both top and lower levels for each decision module. The

same rule is apphed, which involves an increment of the reward parameter

by stepsize 4, if both automaton select action one. However, in this case the

location of the unique maximum reward probability has been changed while

all other reward probabihties remain unchanged. It can be seen from Table

7.4c that the unique maximum reward probability is associated with strategy

pair P3.q3 as opposed to pi.qi in the previous experiment. The results do not

display convergence behaviour for strategy pair ps.qa and locking on to the

strategy pair pi.qi due to the increased stepsize via communication between

automata at both levels.

Figures [7.14a - 7.14c] present learning curves, which illustrate conver-

175

gence behaviour for strategy pair pi.qi- In each case communication between

automata is considered by employing an incremental value of the reward

parameter by stepsize 4 (the approach described above); also the case without

communication by using reward parameter 0.04. It may be observed that in

the former case, the learning curve for strategy pair pi.qi rapidly converges

close to unity, and both learning curves coincide with each other.

7.10 Conclusion and Summary

This chapter has shown the potential application of a new class of

hybrid Petri Net (Stochastic Learning Petri Net) to the modelhng of a realistic

small-scale distributed decision problem. Although a two node decision model

has been described the basic concepts may be extended to more complex

scenarios which involve an arbitrary number of nodes in pre-programmed

topologies.

In this chapter the potential modeUing capability of stochastic learning

automata embedded within Petri Nets has been illustrated. The simulation

studies have shown the capability of optimum distributed strategies in stochas­

tic environments both for steady-state and switched environments. Initial work

has also shown the ability to model communication between adjacent layers

for decision models connected in hierarchical layers and the use of confidence

communication signals to provide adaptive step sizes to improve convergence

rates.

176

Figure 7.1 - Four-stage Model of Interacting Decision Maker

177

o
o

o

9
Figure 7.2 - Petri Net Representation of Interacting Decision Maker

178

o

Q 0

O 9
o

9
Figure 7.3 - Situation Assessment Module

179

ENVIRONMENT

DECISION MODULE

DM1

DECISION MODULE

DM2

Figure 7.4 - Block Diagram: Two Node Organisation Supported by D.S.S

180

Figure 7.5 - Petri Net: Two Node Organisation Supported by D.S.S

181

^ Decision Module DM 1 ,
•> ^ > ^ ^ > > ^ ^ ,,\^

Select Action Path

C; C2 C3 C5

Output Response

Figure 7.6 - Topology for Simulation: Single Decision Module

182

Decision Module DM1

Figure 7.7a - Petri Net Representation Decision Module D M l

y\ v\ v\
J 0

MQ OLD

Corresponding States of Decision Module D M l

M Q = [1 0 0 0 0 0 0 0 0 0]

= [0 1 0 0 0 0 0 0 0 0]

M 2 = [0 0 1 0 0 0 0 0 0 0]

= [0 0 0 1 0 0 0 0 0 0]

= [0 0 0 0 1 0 0 0 0 0]

= [0 0 0 0 0 1 0 0 0 0]

= [0 0 0 0 0 0 1 0 0 0]

= [0 0 0 0 0 0 0 1 0 0]

Mg = [0 0 0 0 0 0 0 0 1 0]

= [0 0 0 0 0 0 0 0 0 1]

Figure 7.7b - Reachability Tree for Decision Module D M l

183

<
/ / / / / / / /

in

5

< CO

<:

fa
CO
c o
CO
o u
Q -a u +-<
c
o o U
o
13
CO

Figure 7.8 - Topology for Simulation: Two Node Organisation

184

''"ecision Module DMl ,
^ ^ ^ ^ ^ - — -I 'I - -I - > i

PI

VV c \ V

P2 P3 P4 P5 P6

Select Action Path

^'E^A^bN^S?I:^:$

C; 0.9 0.2 0.3 0.4 0.25 0.1

Output Response

Figure 7.9 - Single Decision Module (Table 7.1)

185

Reward Parameter = 0.04

Reward Probability

i 0 1 2 3 4 5

Ci 0.9 0.2 0.3 0.4 0.25 0.1

Path Probability for Decision Module D M l : Optimal Path P i

n p l p2 p3 p4 p5 p6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.609142 0.135953 0.080745 0.076972 0.048215 0.048873

1200 0.792024 0.079875 0.040079 0.039205 0.024323 0.024394

1800 0.858710 0.055856 0.026605 0.026250 0.016244 0.016234

2400 0.893030 0.042869 0.019911 0.019730 0.012194 0.012165

3000 0.913935 0.034764 0.015909 0.015805 0.009761 0.009727

Table 7.1 - Simulation of Single Decision Module (Figure 7.9)

<
Single Dec is ion Module i Optimal Path PI

ei s
Z "

2 "
1 " Q.

1 "
1 "
O
a
o

<

/ » . pl (n)

Number of I t e r a t i o n s

Figure 7.9a - Average Action Path Probability vs Iterations (Table 7.1)

186

/ CO / ^ c o < / CO / •
^ c o <

/ i
/ C O ^
/ i
/ C O ^

s
CO

c
o
Q
U

C

o
U
o

_u 13
CO

)S ^ 1

10^ U^'

m cn I

^ ' SI

. C N

• C N

CO
. C N

CN

\0 VO

IT) >n

2: 3
10 Q7

CN I 0\
d

cr cr

Figure 7.10 - Two Node Organisation (Table 7.2)

187

iReward Parameter = O.od

Reward Probability

C42 = 0.9

Path Probability for Decision Module D M l : Optimal Path P4

n p l p2 p3 p4 p5 p6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.122752 0.124708 0.173771 0.345529 0.127226 0.106013

1200 0.063909 0.065275 0.128113 0.624448 0.064294 0.053961

1800 0.042560 0.043563 0.094769 0.740271 0.042815 0.036021

2400 0.031903 0.032689 0.074587 0.801693 0.032094 0.027033

3000 0.025514 0.026160 0.061355 0.839669 0.025667 0.021635

Path Probability for Decision Module DM2: Optimal Path Q2

n q i q2 q3 q4 q5 q6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.166504 0.457269 0.138586 0.130716 0.054399 0.052525

1200 0.108945 0.694528 0.070578 0.070720 0.028651 0.026577

1800 0.078552 0.790430 0.046577 0.047621 0.019225 0.017594

2400 0.062235 0.840602 0.034755 0.035894 0.014465 0.013149

3000 0.049974 0.871415 0.027718 0.028801 0.011595 0.010497

Optimal Strategy Pair P4.Q2

Table 7.2 - Simulation of Two Node Organisation (Figure 7.10)

188

Two Node Organisat ion i Optimal Strategy P a i r P4. 02

0.9

0.1

^0.6

p4(n)

« q2 (n)

- H 1—
200 1,00

— f —
600

H \ 1 1-
80O 1000 1200

Number of [t s ra t Ions
1400 1600 1800 2000

Figure 7.10a - Average Action Path Probability vs Iterations (Table 7.2)

189

^s^^^^Decision Module D M l ^ ^ ^ ^

vRSll- l tRS12< "RS13N

7\ A A
Pl P2 P3 P4 P5 P6

^^^^Decision Module DM2 ^ j ^ ^ i ^

5SA2^

>RS2i:J te2N
K ^ ^ ^ V

1 iXW^X \ JRS23\

A A A
Ql Q2 Q3 Q4 Q5 Q6

^ ^ W ^ O N ^ f f i O T ^ r O F ^ ^

^s^^^^ecision Module D M l \s:<:v^

[:RSI2 \ bRSu:

A A A
Pl P2 P3 P4 P5 P6

j^v^Decision Module DM2

$SA2\ |

^RS21 s ^RS22^ :RS23<

A A A
Q l Q2 Q3 Q4 Q5 Q6

ENVIRONMENT : OPTIMAL STRATEGY PAIR P3 Ol

Figure 7.11 - Switch of Environment: Before and After Switch

190

[Reward Pareimeter = 0.04

Reward Probability

On = 0.9

Path Probabihty for Decision Module D M l : Before Switch P l

n p l p2 p3 p4 p5 p6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.434715 0.187078 0.128409 0.108408 0.065751 0.075637

1200 0.656245 0.128620 0.081050 0.062218 0.032926 0.038940

1800 0.762995 0.093581 0.054786 0.040727 0.021841 0.026070

2400 0.819308 0.073124 0.041371 0.030263 0.016339 0.019594

3000 0.854036 0.059909 0.033233 0.024075 0.013052 0.015695

Path Probabihty for Decision Module DM2: Before Switch Ql

n q i q2 q3 q4 q5 q6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.396374 0.150584 0.177897 0.165583 0.056801 0.052760

1200 0.623670 0.113208 0.116604 0.091556 0.028705 0.026255

1800 0.740127 0.084455 0.080160 0.058616 0.019184 0.017456

2400 0.801726 0.061028 0.061028 0.043054 0.014406 0.013075

3000 0.839764 0.054985 0.049259 0.034007 0.011533 0.010451

(a) Before Switch : Optimal Strategy Pair P l . Q l

Table 7.3 - Simulation of Two Node Organisation (Figure 7.11)

191

[Reward Parameter = 0.04

Rew£ird Probability

C31 = 0.9

Path ProbabiUty for Decision Module D M l : After Switch P3

n p l p2 p3 p4 p5 p6

0 0.854036 0.059909 0.033233 0.024075 0.013052 0.015695

600 0. 583030 0.033474 0.264141 0.102045 0.007646 0.009663

1200 0.302103 0.018049 0.573407 0.097502 0.003883 0.005056

1800 0.201256 0.012179 0.704976 0.075629 0.002574 0.003385

2400 0.150887 0.009189 0.774746 0.060707 0.001925 0.002544

3000 0.120683 0.007378 0.817884 0.050479 0.001537 0.002038

Path Probabihty for Decision Module DM2: After Switch Q l

n q l q2 q3 q4 q5 q6

0 0.839764 0.054985 0.049259 0.034007 0.011533 0.010451

600 0.900723 0.058943 0.020865 0.015002 0.002343 0.002123

1200 0.946919 0.032772 0.010368 0.007705 0.001172 0.001062

1800 0.964462 0.021999 0.006879 0.005169 0.000782 0.000708

2400 0.973289 0.016556 0.005147 0.003889 0.000586 0.000531

3000 0.978604 0.013272 0.004112 0.003117 0.000469 0.000425

(b) After Switch : Optimal Strategy Pair P3.Q1

Table 7.3 - Simulation of Two Node Organisation (Figure 7.11)

192

Surtch o f Environment i Before Switch P1.Q1

«pl (n)
c q l (n)

Number o f I t e r a t i o n s

(a) Before Switch P l . Q l (Table 7.3a)

Switch o f Environment i A f t e r Switch PI

Number o f I t e r a t i o n s

Switch o f Environment i A f t e r Switch P3.01

Number of I t e r a t i o n s

(a) After Switch P I (Table 7.3b) (b) After Switch P3.Q1 (Table 7.3b)

Figure 7.12 - Average Action Path Probability vs Iterations

193

/ (N O K
/ (N /

/ C O /

^ ^ ^ ^

/ (N /

/ C O /

^ ^ ^ ^

V7^

V / / /

in

5

<
<:

too

s
CO
c o
O
(D

Q
u
c

-H o o
u
o

CO

Figure 7.13 - Communication Between Decision Modules

194

Reward Parameter = 0.04

tlncrement Reward Probability = 0.16

Reward Probability

C n = 0.9

Path ProbabiUty for Decision Module DMl: PI

n pl p2 p3 p4 p5 p6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0. 838864 0.101717 0.014694 0.014704 0.015153 0.014867

1200 0.917820 0.052470 0.007341 0.007359 0.007583 0.007427

1800 0.944856 0.035337 0.004892 0.004907 0.005057 0.004950

2400 0.958508 0.026637 0.003669 0.003681 0.003793 0.003712

3000 0.966742 0.021374 0.002935 0.002945 0.003035 0.002969

Path ProbabiUty for Decision Module DM2: Ql

n ql q2 q3 q4 q5 q6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.900723 0.058943 0.020865 0.015002 0.002343 0.002123

1200 0.946919 0.032772 0.010368 0.007705 0.001172 0.001062

1800 0.964462 0.021999 0.006879 0.005169 0.000782 0.000708

2400 0.973289 0.016556 0.005147 0.003889 0.000586 0.000531

3000 0.978604 0.013272 0.004112 0.003117 0.000469 0.000425

(a) Top Level Communication : (S A l and SA2)

Table 7.4 - Communication Between Automata (Figure 7.13)

195

Reward Parameter = 0.04

tlncrement Reward Parameter = 0.16

Reward Probability

C i i = 0.9

Path Probability for Decision Module DMl: P l

n pl p2 p3 p4 p5 p6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0. 909035 0.039772 0.012995 0.013038 0.012565 0.012593

1200 0.953980 0.020423 0.006498 0.006519 0.006284 0.006295

1800 0.969201 0.013734 0.004332 0.004346 0.004190 0.004196

2400 0.976856 0.010345 0.003249 0.003259 0.003143 0.003147

3000 0.981463 0.008298 0.002599 0.002607 0.002514 0.002518

Path ProbabiUty for Decision Module DM2: Ql

n ql q2 q3 q4 q5 q6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.903764 0.042945 0.015087 0.015940 0.010836 0.011427

1200 0.951277 0.022077 0.007532 0.007981 0.005418 0.005714

1800 0.967384 0.014852 0.005019 0.005323 0.003612 0.003809

2400 0.975487 0.011189 0.003763 0.003994 0.002709 0.002857

3000 0.980365 0.008976 0.003010 0.003195 0.002167 0.002286

(b) Top and Lower Level Communication: (SA1:SA2) (RS11:RS21)

Table 7.4 - Communication Between Automata (Figure 7.13)

196

Re Weird Peirameter = 0.04

Increment Reward Pareimeter = 0.1a

Reward Probability

C33 = 0.9

Path Probability for Decision Module DM1: P3

n pl p2 p3 p4 p5 p6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0. 802600 0.091126 0.029971 0.026251 0.027005 0.023046

1200 0.898591 0.048272 0.014989 0.013121 0.013563 0.011463

1800 0.931791 0.032783 0.009994 0.008747 0.009055 0.007629

2400 0.948618 0.024813 0.007496 0.006560 0.006796 0.005717

3000 0.958785 0.019959 0.005997 0.005248 0.005439 0.004571

Path Probability for Decision Module DM2: Q3

n ql q2 q3 q4 q5 q6

0 0.166666 0.166666 0.166666 0.166666 0.166666 0.166666

600 0.798982 0.109165 0.024862 0.027623 0.019942 0.019426

1200 0.896730 0.057343 0.012413 0.013830 0.009964 0.009720

1800 0.930540 0.038842 0.008271 0.009224 0.006641 0.006481

2400 0.947675 0.029361 0.006202 0.006919 0.004980 0.004861

3000 0.958029 0.023599 0.004961 0.005536 0.003984 0.003889

(c) Re-locate Unique Maximum: (SA1:SA2) (RS11:RS21) Communicate

Table 7.4 - Communication Between Automata (Figure 7.13)

197

Upper Le v e l Communication

«pl • No Communication
A q l • No Communication

-ap 1 I CommunIca 11 on
-H-qt I Communication

Number o f I t e r a t i o n s

(a) Upper Level Path P l . Q l (Table 7.4a)

Upper and Lower Level Communication

p l I No Communication
q t I No Communication

Espl • Communication
q l I Communication

Number o f I t e r a t i o n s

Upper and Lower Level Communication i P3.03

No Communication
No Communication
CommunI cat I o n
CommunI cat I o n
CommunI cat I o n
CommunI cat I o n

Number of I t e r a t i o n s

(b) Path P l . Q l (Table 7.4b) (c) Path P3.Q3 (Table 7.4c)

Figure 7.14 - Average Action Path Probability vs Iterations

198

Chapter Eight

Conclusion and Recommendations for Future Work

8.1 Conclusion and Summeiry

This thesis has described the various approaches in developing

analytical models for decentralised decision making under uncertainty. It has

been emphasised that the core problems are quite profound and have a bearing

on many areas that are interesting to a diverse range of disciplines. There are

many chcillenging problems which remain unsolved, and the appUcations for

new results wiU be widespread. The purpose of this chapter is to summarise

and conclude the work that has been completed during the course of this

project. In particular, to focus on the contribution made during the research

programme and to outline areas of research that appear promising for the

future.

The initial phase of research has provided an overview of the field

of DAI and considered the importance of coordination in such systems. The

thesis is not intended to provide a survey of the entire field of DAI, but

rather it focusses on coordination techniques and the motivations for learning

in DAI systems. The analysis of the work related to coordinating the problem

solving of multiple agents has been regarded as the central problem of DAI

research. The survey has highUghted that effective coordination in DAI

systems requires three facets to be present: (i) structure within which agents

can interact in predictable ways; (ii) flexibility so that nodes which exist in

199

dynamically changing environments can deal with incomplete, inaccurate or

obsolete information; and (iii) the knowledge and reasoning capabilities to

intelligently use the structure and flexibihty. The basic stochastic lecuming

automaton framework deals with the first two points. In particular, the

interactive decision making models discussed in Chapter Four, exhibit the

features of structure and flexibiUty. These interconnections provide each

model with varying levels of flexibiUty in their interactions towards agents

and the changing environment. However, the discussion has concluded that

the basic framework used in isolation is inadequate for the representation of

a generalised network. It is necessary to extend the modelling framework,

to overcome these limitations. This extension has been addressed in Chapter

Six which proposes a hybrid model. The final feature is not a matter

of coordination, rather it is the ability to reason about information eind

predictions when making decisions about its local problem solving. The

stochastic learning automaton does not have this characteristic. However, the

model exhibits an inteUigence capability that use the structure and flexibihty

in order to adapt to dynamically changing environments.

The survey has also highUghted that there has been limited research

dealing with learning in the DAI Uterature. The implementation of success­

ful learniag methods in DAI systems can have significant impacts on the

development of distributed decision making models operating in uncertain

environments. The thesis proposes learning in a multiagent setting which

has been discussed in the context of an AI approach. This methodology is

based on the stochastic learning automata which is considered to represent

200

a promising approach to providing a conceptual framework for modelling of

decentralised decision making.

Interactive Automata Model

The previous chapters have addressed the problems of decentralisation

and uncertainty. To formalise these ideas a promising framework based on

the stochastic learning automaton model has been considered. In particular,

the concept has been directed towards modelUng highly interactive situations

which consider different methods of interconnection of individual decision

makers. These models illustrate how decision makers interact with each other

and update their decisions using known learning schemes. The behaviour

of such models may be explained by using concepts from both stochastic

learning theory and game theory. A detailed description has been presented

by considering both synchronous and sequential models. For such structures it

is important to know what kind of interconnections result in a desirable overall

system performance. This can be acheived by analysing the corresponding

game structure as interconnections are varied. Whilst such interconnections

were appropriate for the representation of interactive models, these models

are rather primitive. It is evident that a detailed investigation of the specific

interconnections was needed before organisational structures can be designed

that promote high quality decentraUsed decision making performance. The

basic framework was not sufficient to illustrate the expUcit interaction between

decision makers which capture information flow and time delays that are

crucial in the modelling of systems. In addition these models were restricted

201

in modelling flexibility, since they could only be used to model systems that

exhibit feedback and hierarchical configurations. It was necessary to propose

a more convenient modelling tool to meet these specific requirements and this

was accomplished in the next phase of research.

Petri Net and Associated Models

The thesis has defined a high-level mathematical framework based on

Petri net methodology. This formalism has presented an abstract, formal graph

model useful for representing systems which exhibit concurrent, asynchronous,

distributed parallel and/ or stochastic activities. Several recent attempts have

considered the potential of Petri nets in the modelling of decision making

organisations, [60], [61]. In particular, their work was oriented towards the

optimal design of organisations. This optimal design is based on the data flow

formations which are used to model in a precise manner the various types of

interactions between decision makers as well as interactions between decision

aids and systems that support the organisation. Although such work may

be necessary for the optimal design of organisations the thesis has considered

that a focus on data flow formations alone is not sufficient to guarantee high

levels of performance in a distributed decision making organisation. It was

also essential to focus on the behaviour of an organisation that operates under

uncertainty. This viewpoint introduced a new dimension to existing Petri net

theory. The thesis proposed an extension to Petri nets and has developed a

new class of modelling/design tools known as Learning Petri Net models.

The extension to Petri nets was introduced by embedding the concept

202

of stochastic learning automata into the model. The intelligence capabiUty

incorporated within different forms of Petri nets has greatly enhanced the

modeUing power of Petri nets. Each variation in the modelUng technique has

exhibited a data flow formation, a decision making process embedded within

the structure and, various types of transitions associate with each model.

Clearly, these learning Petri net structures highUght a powerful design tool

for the effective representation of distributed decision problems.

The thesis has shown how the use of a SLPN model enables dynamic

decision making by controlUng the selection of decisions on a probabilistic

basis. The model has also illustrated how information can be monitored at

each time instant such that probabilistic outcomes of the decisions can be

captured to achieve a desirable global performance. It may also be noted

that all the proposed hybrid models alter in some way the firing rule of Petri

nets, and make it so that the main part of net theory is no longer appUcable.

These features have emphasised the increased complexity of the hybrid models

in comparison to the standard Petri net model.

The learning Petri net models are often constrained to a graphical

representation and reachabiUty tree analysis. Many problems regarding the

correct operation of these new models can be posed in terms of questions

related to the reachabiUty of states in Petri nets. The reachabiUty problem

may be studied by finding finite representations for reachability sets. However,

to ensure the correct operation of modelUng systems many factors must be

addressed. These characteristics may be stated in the form of assertions which

includes maintaining integrity in concurrent activities, guarantee deadlock free

203

operation and system must be resihent to failures. Correctness models are

used for two purposes: to provide descriptions of systems and to facUitate

proofs about system assertions. In simple terms, correctness models attempt

to prove some desired characteristics of systems. The issue of proving correct

operation has received attention only relatively recently. There seems to be

no model which is widely appUcable to the broad spectrum of correctness

problems. The analysis of correctness used in many systems tend to be

relatively informal, however in some cases mathematical models are used.

Petri nets are considered to be ideal representatives of correctness models.

The thesis has presented a classical analytical framework which have

been developed largely within the framework of mathematics and game theory.

These models use the available information (without recourse to experience)

to make optimal judgements and decisions. In these models skiU/ experience

levels are not reflected. The models are not appUcable in situations where

a decision maker must use skiUs of sizing up a situation, detecting patterns,

imagining how a course of action wiU be performed, anticipating undesirable

consequences and so forth. The strongest disadvantage of analytical models

is that they prevent decision makers from taking advantage of their skills in

sizing up situations and planning courses of action. In addition such models

do not work under time pressure because they take too long. However, when

there is enough time, they require much work and lack flexibiUty for handling

rapidly changing conditions. It may be emphasised that analytical decision

making is more helpful when there is a conflict to be resolved, especially when

conflict involves people with different concerns. The analytical frameworks

204

are usually a better strategy to be used when an optimal solution is required.

Finally, analytical strategies necessary when the problem involves so much

computational complexity that alternate strategies would be inadequate. Thus,

an interesting exercise to overcome the Umitations that exist within analytical

frameworks would involve an examination of the internal structure of decision

modules. Additional characteristics could be embedded within each module

to provide modelling flexibiUty in operational settings.

Applicability of Models to Realistic Problems

The application of the new modelling tool to a non-trivial example has

been considered. This appUcation has demonstrated the modelUng power of

Stochastic Learning Petri net (SLPN) tool. In particular, the design tool was

used to iUustrate modelling flexibility and suitability to a realistic distributed

decision problem. To demonstrate the versatiUty of the model different

scenarios were contrived to observe the performance of the organisation. The

basic model involved a two node organisation interacting with a stochastic

environment. Each module communicated with a decision support system to

learn the optimum strategy for interaction with the random environment. The

scenario iUustrated the modeUing capabiUty of optimum distributed strategies

in stochastic environments for both steady state and switched environments.

The abUity to model communication between adjacent hierarchical layers

and the abiUty to use confidence communication signals to provide adaptive

stepsizes to improve convergence rates has been shown. The new results

provided by each experiment have shown some trends that enable general

205

statements to be made about the behaviour of the organisation under varied

circumstances. These models are well suited to represent more complex

decision problems. In practice it is much more common that such orgainisations

comprise a large number of decision modules connected in arbitrary topology.

It may be noted that the Generalised Stochastic Learning Petri net

(GSLPN) may also be considered for these appUcations. This approach

requires more modelling eff'ort, but results in a much smaller reachabiUty set.

It is thus desirable to consider a GSLPN appUcation whose complexity only

depends on the combination of transitions. This can be done provided that

a careful study of the application domain is considered.

206

8.2 Recommendations for Future Work

During the course of this research project a modelUng tool for decen­

tralised distributed systems based on a hybrid approach has been proposed.

The appUcation of this modelUng tool to a simple non-trivial example has been

considered. These models are capable of dealing with realistic more complex

decentralised decision problems. The next phase of research can be extended

by using concepts which have originated from the research programme.

8.2.1 Models (Byzantine Generals)

To date the appUcation of the modelUng tool to a two node organisa­

tion has been considered. This may be extended to observe the performance

of an arbitrary number of decision modules connected in a range of topological

structures. However, an important component of such large, reconfigurable

distributed structures is considered to be reliability. Intuitively, reUabiUty

is a measure of how well a system can tolerate and recover from failures.

ReUabUity has two aspects, a system is saiid to be reliable if its output or

results are correct. Correctness is an important factor because the system is

required to maintain consistency. The presence of failures may temporarily

cause an iuconsistent state but the recovery algorithms should restore the

system to a correct state. The second aspect of reUabiUty has to do with

availabiUty. A reUable system should tolerate failures and should be able to

continue operation even in a degraded state. The objective is to design a

system that can sustain multiple failures and continue to process transactions

promptly and correctly.

207

Analytical models may be used to study unreUable communication

between decision modules. An unreUable decentralised system often requires a

means by which independent decision modules can arrive at an exact mutual

agreement of some kind. In the absence of faults, errors and failures reaching

a satisfactory mutual agreement is usually an easy matter. However, in the

presence of failed components a decision module can behave in an unpredictable

manner; block information from being relayed, alter the information relayed

through itself, incorrectly reroute the information and in the worst case

it can send conflicting information to different parts of the system. The

Byzantine Generals problem is proposed as an appropriate model in resolving

this type of failure, [69], [70]. Appendix Four provides a description of the

Byzantine Generals problem and several algorithms for dealing with conflicting,

inconsistent information in a system.

8.2.2 Modelling Hum£Ln Factor in C^I Systems

Most studies of command and control have focussed on an organisation

which is formed in order to perform a set of tasks that individuals cannot

perform alone. The task to be performed by the organisations being considered

consist of receiving signals or inputs from one or more sources, processing

them and producing outputs which can be actions or signals. A single

decision maker cannot perform these tasks alone because of the large amount

of information processing required and because of the fast tempo of operations

(eg. tactical situations). Such organisations have also neglected the ways in

which decision makers diagnose problems, develop solutions and select options.

208

It is precisely these functions and the Hmitations of humans as information

processors and problem solvers which constitutes a major problem in the

development of realistic models of C^I. Thus, it is important to examine the

ways in which human performance affects the functioning of C^I systems.

The theory of human decision making involves an interdisciplinary

body of knowledge. There exists contrasting schools of thought in this

complex area. These include classical analytical theories, naturalistic theories

and a class which reside somewhere in between these two opposing approaches

to understanding and explaining decision making processes, [7], [71], [72], [73 .

Figure 8.1 illustrates that there are certain factors which increase the decision

makers tendency to use particular types of decision making strategies, [72].

8.2.3 Automatic Data Fusion

The requirements for an automatic data fusion process are complex

and diverse. A distributed data fusion system represents a good platform

for integrating several complementary AI technologies. Such a system is

capable of providing a robust, maintainable, concurrent processing environment.

Additionally, the system would be potentially flexible enough to support the

wide variety of processing capabilities which are necessary for the task of data

fusion.

The automation of data fusion is not a trivial task by any standards.

The fusion process must be able to combine high processing throughput

with human Hke processing faculties. A fusion system must deal with all

situations including, drawing upon a wide range of knowledge and experience,

209

or alternatively a provision to learn from experience must be incorporated

within the system. It should also exhibit a means for reasoning with

information which can be uncertain and unreliable. In such cases, the

technical complexity of an automated fusion system will depend upon the

level of processing which is supported. The benefits to be gained from

automating various levels of data fusion tasks are significant. These include:

the automation of the mundane fusion tasks such as data association and

classification; when the influx of reports are high, such systems are potentially

capable of much higher processing throughput; a computerised system is less

susceptible to errors, and is not fatigued by repetitive, menial tasks; capable of

identifying hidden inferences and associations which are typically not identified

through human level reasoning.

A simplified model of the fusion process can be described in terms of

two levels. The lower level procedures are mostly concerned with mechanistic

calculations to determine the classification and state of an object. This involves

the derivation of target position and identity, and hence the processing speed

wUl usually be an important consideration. The higher level procedures are

concerned with the derivation of threats, patterns of behaviour, and predictions

of future intentions from the perceived situation. This level of processing

is more abstract and involves sophisticated reasoning, and less mechanistic

computation. A basic generic model of data fusion has been described by

Waltz and Llinas, [74]. In addition, it is necessary to examine the potential

technologies which could form the basis of a simple fusion system. In this

context an area worthy of further investigation is the internal structure of the

210

four-stage decision making process, Figure 7.1. In particular, it is necessary to

focus on the information fusion (IF) and command interpretation (CI) stages,

to improve system performance and to achieve specified task objectives.

8.2.4 Migration of Control

The notion of control migration seems to intuitively reflect system

behaviour. In a classical feedback loop, control refers to the result of processing

the externally produced command statements of system requirements and

analysing system behaviour in the presence of uncertainty. The migration of

control refers to the movement of the control function through the information

structure of the system. It is a feature that can be built into large scale

systems, if an adequate structure for control can be established. In large scale

organisations, control may migrate in an unpredictable manner away from the

decision makers who have been assigned specific authority and responsibUity

to subordinate members of the organisation. The changes in an organisations

structure such as, access to decision support systems can change the sensitivity

of performance measures to the actions of different decision makers. Moreover,

the choice of strategies selected by each decision maker affects which one has

the most impact on performance.

The migration of control may be viewed from both positive and

negative perspectives. From a positive viewpoint, it is desirable for control to

migrate in the event of a failure of a decision making node. However, from

a negative perspective control may migrate in an unforeseen or undesirable

manner. Migration may occur away from nodes which belong to higher

211

echelons to the lower echelons. Research in migration of control is still in

its primitive stages, and is continuing as part of an effort to understand the

dynamics of organisations, [62], [75].

212

Figure 8.1 - Factors Affect Use of Recognitional/

Analytical Decision Me ik ing Strategies

213

References

[1] Athans, M.:
'Commauid and control theory: A challenge to control science',
IEEE Trans, on Automatic Control, 1987, AC-32, No. 4, pp. 286-293.

[2] Andriole, S. J., and Halpin, S. M.:
'Information technology for command and control',
IEEE Trans. Syst. Man and Cybem., 1986, SMC-16, No. 6, pp. 762-765.

[3] Stephanou, H. E., and Sage, A. P.:
'Perspectives on imperfect information processing',
IEEE Trans. Syst. Man and Cybem., 1987, SMC-17, No. 5, pp. 780-798.

[4] Ahmed, Q. F.:
'Decentralised Decision Making in - 1 systems',
Int. Res. Report, Univ. of Durham, 1988.

[5] Sage, A. P.:
'Information systems engineering for distributed decision making',
IEEE Trans. Syst. Man and Cybem., Nov.-Dec. 1987, Vol. SMC-17, No. 6,
pp. 920-936.

[6] Kleinrock, L.:
'Distributed systems',
Comm. of the ACM, Nov. 1985, Vol. 28, No. 11, pp. 1200-1213.

[7] Klein, G. A., Orasanu, J.,Calderwood, R., and Zsambok, C. E.:
'Decision Making in Action: Models and Methods',
New Jersey: Ablex Publishing Corporation, 1993

[8] Bond, A. H., and Gasser, L.:
'Readings in Distributed Artificial Intelligence',
Morgan Kaufmann Publishers, Inc., PO Box 50490, Palo Alto, CA 94403, 1988.
ISBN 0-934613-63-X

[9] Barr, A. H., Cohen, P. R., and Feigenbaum, E. A.:
'The Handbook of Artificial Intelligence ; Volume IV',
Addison-Wesley Publishing Company. Inc., 1989.
ISBN 0-201-51819-8

[10] Avouris, N. M., and Gasser, L.:
'Distributed Artificial Intelligence: Theory and Preixis',
Computer and Information Science, Vol. 5
Kluwer Academic Publishers, Inc., PO Box 17, 3300 AA Dordecht, The Nether­
lands, 1992.
ISBN 0-7923-1585-5

[11] Narendra, K. S., and Thathachar, M. A. L.:
'Learning automata - a survey',
IEEE Trans. Syst. Man and Cybem., 1974. SMC-4, pp. 323-334.

[12] Narendra, K. S., and Thathachar, M. A. L.:
'Learning Automata - An Introduction',
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.
ISBN 0-13-485558-2

214

[13] Wheeler, R. M., and Narendra, K. S.:
'Learning models for decentralised decision making',
Automatica, 1985, Vol. 21, No. 4, pp. 479-484.

[14] Wheeler, R. M.:
'Decentralised learning in games and finite Markov Chains',
Ph.D. Thesis, Dept. of Elect. Eng., Yale Univ., 1985.

[15] Peterson, J. L.:
'Petri Net Theory and the Modelling of Systems',
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.
ISBN 0-13-661983-5

[16] Murata, T.:
'Petri Nets: Properties, Anedysis and Applications',
Proc. IEEE, April 1989, Vol. 77, No. 4, pp. 541-580.

[17] Gasser, L. and Huhns, M.:
'Distributed Artificial Intelligence: Vol.II',
Pitman Publishing, London, 1989.
ISBN 0268-7526

[18] Huhns, M. N.m Mukhopadhyay, U., Stephens, L. M., and Bonnel, R.D.:
'DAI for document retrieval: The MINDS project',
in Distributed Artificial Intelligence, Pitman, London, 1987, pp.249-284.

[19] Shaw, M., and Whinston, A.:
'Leciming and adaptation in DAI systems',
in Distributed Artificid Intelligence : Vol 2, Pitman, London, 1989, pp.413-429.

[20] Sian, S. S.:
'Adaptation based on cooperative learning in Multi-Agent systems',
in Decentralised A. I . : Vol 2, Elsevier Science Publishers, B.V, 1991, pp.257-272.

[21] Gasser, L.:
'Approaches to Coordination',
in Distributed Artificial Intelligence: Theory and Praxis,
Computer and Information Science, Vol. 5
Kluwer Academic Publishers, Inc., PO Box 17, 3300 AA Dordecht, The Nether­
lands, 1992, pp. 31-51.

[22] Jennings, N.:
'The ARCHON system cind its applications',
Proc. Int. Working Con/, on Cooperative Knowledge Based Systems, University
of Keele, Keele, 1994.

[23] Jennings, N.:
'Cooperation in Industrial Multi-Agent Systems',
World Scientific Publishing Co. Pte. Ltd, 1994.
ISBN 981-02-1652-1

[24] Sugawara, N.:
'A cooperative LAN diagnostic and observation expert system',
Proc. International Con/, on Computers, Communications, ScottsdcJe, AZ, 1990.

[25] Barr, A. H., Cohen, P. R., and Feigenbaum, E. A.:
'Cooperative distributed problem solving',
in The Handbook of Artificial Intelligence ; Volume IV,

215

Addison-Wesley Publishing Company, Inc., 1989, pp.85-147.
ISBN 0-201-51819-8

[26] Smith, R. G.:
'The Contract Net protocol: High level communication and control in distributed
problem solver',
IEEE Trans, on Computers, 1980, Vol. C-29, No. 12, pp. 1104-1113.

[27] Smith, R. G., and Davis, R.:
'Negotiation as a metaphor for distributed problem solving',
in Readings in Distributed Artificicil Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 333-357.
ISBN 0-934613-63-X

[28] Conry, S. E., Meyer, R. A., and Lesser, V. R.:
'Multistage negotiation in distributed planning',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 367-385.
ISBN 0-934613-63-X

[29] Durfee, E. H., Lesser, V. R., and Corkill, D. D.:
'Trends in cooperative distributed problem solving',
IEEE Trans. Knowledge and Data Engineering, 1989, Vol. 1, No. 1, pp.63-83.

[30] Lesser, V. R., and Corkill, D. D.:
'The distributed vehicle monitoring testbed: a tool for investigating distributed
problem solving networks',
AI Magazine, 1983, pp. 15-33.

[31] Georgeff, M.:
'Communication amd interaction in multiagent plamning',
in Rccidings in Distributed Artificicil Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 200-205.
ISBN 0-934613-63-X

[32] Georgeff, M.:
'A theory of action for multiagent planning',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 205-210.
ISBN 0-934613-63-X

[33] Georgeff, M.:
'The representation of events in multiagent domains',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 210-216.
ISBN 0-934613-63-X

[34] Cammarata, S., McArthur, D., and Steeb, R.:
'Strategies for cooperation in distributed problem solving',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 102-106.
ISBN 0-934613-63-X

[35] Rosenchein, J. S., and Genesereth, M. R.:
'Deals among rational agents',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 227-235.
ISBN 0-934613-63-X

216

[36] Gasser, L.:
'An Overview of DAI' ,
in Distributed Artificial Intelligence: Theory and Praxis,
Computer and Information Science, Vol. 5
Kluwer Academic Publishers, Inc., PO Box 17, The Netheriands, 1992, pp. 9-30.

[37] Durfee, E. H., and Lesser, V. R.:
'Using partial global plans to coordinate distributed problem solvers',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988. pp. 285-294.
ISBN 0-934613-63-X

[38] Jennings, N.:
'Commitments and conventions: the foundation of coordination in multi-agent
systems',
The Knowledge Engineering Review, 1994, Vol. 8, No. 3, pp.223-250.

[39] Rosenchein, J. S., and Genesereth, M. R.:
'Communication and cooperation among logic-based agents',
in Readings in Distributed Artificicd Intelligence,
Morgan Kaufmann Publishers, Inc., 1988. pp. 1104-1113.
ISBN 0-934613-63-X

[40] Rosenchein, J. S.:
'Synchronisation of multiagent plans',
in Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc., 1988, pp. 187-192.
ISBN 0-934613-63-X

[41] Mars, P., Ahmed, Q. P., and Edwards, P.:
'Applications of artificial intelligence techniques to decentralised
decision-making in C^ - MIS'
lEE Third Int. Con/, on Command, Control, Communications and
Management Information Systems, May 1989, pp.78-83.

[42] Ahmed, Q. F.:
'New Approaches (Stochastic Learning Automata)',
in 'Decentralised Decision Making in C^ — I systems'.
Int. Res. Report, Univ. of Durham, Oct. 1988, pp.72-77.

[43] Tsetlin, M. L.:
'Automaton Theory and Modelling of Biological Systems',
Academic Press, 1973.

[44] Narendra, K. S., and Thathachar, M. A. L.:
'Interconnected automata and games',
in, Lccirning Automata - An Introduction, Prentice Hall, Englewood Cliffs, New
Jersey, 1989, pp. 281-357.

[45] Ahmed, Q. F.:
'Decentralised Decision Making Models',
Int. Res. Report, Univ. of Durham, Aug. 1989.

[46] Thomas, L. C:
'Games, Theory and Applications',
Ellis Horwood Limited, 1986.
ISBN 0-7458-0142-0

217

[47] Ramakrishnan, K. R.:
'Hierarchiced systems and cooperative games of learning systems',
Ph.D Thesis, Indian Institute of Science, Bangalore, India, 1982.

[48] Thathachar, M. A. L., and Ramakrishnan, K. R.:
'A hierarchical system of lecirning automata',
IEEE Trans. Syst. Man and Cybem., Mar. 1981, Vol. SMC-11,
pp. 236-241.

[49] Mitchell, B. T., and Kountais, D. I . :
'A reorganisation scheme for a hierarchical system of learning automata',
IEEE Trans. Syst. Man and Cybem., Mar. 1984, Vol. SMC-14, No. 2, pp.
328-334.

[50] Baba, N.:
'Learning behaviours of hierarchical structure stochastic automata operating in a
genercd multitejicher environment',
IEEE Trans. Syst. Man and Cybem., July/ Aug. 1985, Vol. SMC-15, pp.
585-587.

[51] Peterson, J.:
'Petri Nets',
Computing Surveys, Sept. 1977, Vol. 9, No. 3, pp. 223-252.

[52] Agerwala, T.:
'Putting Petri Nets to Work',
Computer, Dec. 1989, Vol. 12, No.l2, pp. 85-94.

[53] Petri, C. A.:
'Communication with Automata',
Ph.D dissertation. Tech. Rep. RADC-TR-65-377, Rome Air Development Center,
Rome, NY, 1966

[54] Marsan, M. A., Balbo, G., and Conte, G.:
'Stochastic Petri Nets',
in Performance Models of Multiprocessor Systems
Cambridge, MA: The MIT Press, 1987. pp. 73-95.
ISBN 0-262-01093-3

[55] Pagnoni, A.:
'Stochastic nets and performance evaluation',
LNCS, Systems, 1977, pp. 460-478.

[56] Molloy, M. K.:
'Performance analysis using stochastic Petri nets',
IEEE Trans. Computers, Sept. 1982, Vol. C31, No. 31, pp. 93-97.

[57] Marsan, M. J., Conte, G., and Balbo, G.:
'A clciss of generalised stochastic Petri nets for the performajice evaluation of
multiprocessor systems',
ACM Trans, on Comp. Syst., May 1984, Vol. 2, No. 2, pp. 93-122.

[58] Ahmed, Q. F.:
'Stochastic Learning Petri Nets',
Int. Res. Report, Univ. of Durham, Mar. 1990.

218

[59] Ahmed, Q. F., and Mars, P.:
'Application of stochastic learning Petri Nets to small-scale distributed decision
making orgsmisations',
IMA Int. Con/, on Control: Modelling, Computation, Information, Sept. 1992.

[60] Levis, A. H.:
'Information processing and decisionmaking organisations :
a mathematical description',
Large Scale Systems, 1984, 7, pp. 151-167.

[61] Tabak, D., and Levis, A. H.:
'Petri net representation of decision models',
IEEE Trans. Syst. Man, Cybem., Nov.-Dec. 1985, vol. SMC-15, No. 6, pp.
812-818.

[62] Skulsky, S. L., and Levis, A. H.:
'Migration of control in distributed intelligence systems',
Proc. IEEE International Symposium on Intelligent Control 1989,

[63] Weingaertner, S. T., and Levis, A. H.:
'Analysis of decison aiding in submarine emergency decisionmaking',
Automatica, 1989, vol. 25, No. 3, pp. 349-358.

[64] Demael, J. J., and Levis, A. H.:
'On generating variable structure architectures for decision making systems',
Information and Decision Technologies, 1994, Vol. 19, pp.233-255.

[65] Perdu, D. M., and Levis, A. H.:
'Petri Net model for evaluation of expert systems in organisations',
Automatica, 1991, Vol. 27, No. 2, pp. 225-237.

[66] Levis, A. H.:
'A Coloured Petri Net model of intelligent nodes',
in Robotics and Flexible Manufacturing Systems, 1992, J. C. Gentina and S. G.
Tzafestas, Eds., Elsevier Science Publishers B. V., The Netheriands.

[67] Ahmed, Q. F.:
'Application of Stochastic Learning Petri Nets to C^I Systems',
Int. Res. Report, Univ. of Durham, Jan. 1991.

[68] Boettcher and Levis, A.:
'Modelling the interacting decision maker with bounded rationality',
IEEE Trans. Syst. Man and Cybem., May-June 1982, Vol. SMC-12, No. 3, pp.
334-345.

[69] Bhargava, B. K.:
'The Byzemtine Generals',
in 'Concurrency Control and Reliability in Distributed Systems',
Van Nostrand Reinhold Company Inc., 1987, pp. 348-369.
ISBN 0-442-21148-1

[70] Ahmed, Q. F.:
'Models (Byzantine Generals)', in 'Decentralised Decision Making in C^ - 1 Sys­
tems',
Int. Res. Report, Univ. of Durham, Oct. 1988, pp.52-71.

219

[71] Klein, G. A., and Zsambok, C. E.:
'Models of skilled decision making',
Proc. Human Factors Society 35th Annual Meeting, 1991, pp. 1363-1366.

[72] Klein, G. A.:
'Strategies of decision making',
Military Review, May 1989, pp. 56-64.

[73] Wohl, J. A.:
'Force management decision requirements for air force tactical commcind and con­
trol',
IEEE Trans. Syst. Man and Cybem., 1981, Vol. SMC-11,
pp. 618-639.

[74] Waltz, E., and LUnas, J.:
'Multisensor Data Fusion',
Artech House, Inc., Norwood, MA, 1990.
ISBN 0-89006-277-3

[75] Kahne, S.:
'Control Migration: A chciracteristic of Ĉ systems',
IEEE Control Systems Magazine, Feb. 1983, Vol. 3, No. 1, pp. 15-19.

220

Appendix One

Computer Simulation Structure

A l . l Introduction

This section outUnes the general structure of simulations, which il­

lustrate the performance of the interactive decision making models. An

algorithm is included to show the basic stochastic model operating in an

unknown random environment, and updating action probabihties using Linear

Reward/ Inaction scheme. It is possible to modify this Stochastic Automa­

ton Algorithm based on the chart presented in Figure A l . l , to acquire the

appropriate synchronous and sequential models.

A 1.2 Structure of Simulation

The general structure of a simulation is displayed in the form of a

chart in Figure A l . l . The chart shows the main stages in the development

of programs for synchronous models. This structure holds for various con­

figurations described in Chapter Three and Four, all simulations have been

completed in the ' C programming language.

A1.3 Stochastic Automaton Algorithm

The algorithm was developed to obtain a closed-loop configuration for

the basic stochastic automaton model. The specific steps for simulation of

automaton-environment:

221

Procedures relevant for the Algorithm

STEPl Input and Initialisation

Set reward = 0.01 (Reward Parameter)
Set punish = 0.0 (P*unish Parameter)
Setdj = 0.6 (Penalty Probability for Selecting Action 1)
Setd2 = 0.1 (Penalty Probability for Selecung Action 2)
Set nexpts = 2 (Total number of experiments)
Set itrial = 1000 (Total number of iterations/expt)
Set ntrial = 200 (Average sample path)
Set seedval
srand48(seedval) (Initialise random number generator, range [0.0,1.0])

For k=0,.... (nexpts)

Set probl = 05
Set prob2 = (1.0-probl)
Setp^ = 1

SetOj = 1
Set flag = 0
Set sumpl = 0.0
Set sump2 = 0.0

fo r j=0 , (i t r i a l)
for i=0 (nirial)

/* Interconnect automata-environment to form closed loop configuration */
(i) Set = autolO (Call function autolQ)

(ii) SetP^ =envirlO (Call function envirlQ)
(iii) Evaluate action probabilities: probl, prob2;

i f (a i = l)

{Set probl= lri_probl20 (Call function h-i_probl20)
Set prob2= lri_prob22()) (Call function h-i_prob220)

else
{Set prob2= hi_prob22() (Call function h-i_prob220)
Set probl= lri_probl20) (Call function lri_probl20)

/* Store probabilities in array to evaluate expected values */
Setprl[i][k] = probl
Setpr2[i][k] =prob2
Compute sump 1 +=pr 1 [i] [k]
Compute sump2+=pr2[i][k]

/* Reset flag */
if(flag=0)
inimi=0
Compute prb 1 [inum] [k]+=probl
Compute prb2[iniun][k]+=prob2
flag=l
Compute i-H-
Compute j+=ntrial
Compute inum++

222

Compute prb 1 [inum] [k]=sump 1/j
Compute prb2[inum] [k]=sump2^
Compute k-H-

STEP 3 Evaluate expected values

Reset itrial= 5
(i) For i=0,.... (itrial)

Set sump 1=0.0
Set sump2=0.0

for j=0,.... (nexpts)

Compute sump 1 +=prbl [i] [j]
Compute sump2+=prb2[i]lj]
Compute j-H-
Compute prbl[i]Ij]=sumpl^
Compute prb2[i][j]=sump2/^
Compute i-H-

STEP 4 OUTPUT

For i=0 (itrial)
Print i , prbl[i] [nexpts], prb2[i] [nexpts]

(Results are tabulated, action probabilities (pi, p2) at each stage n)

By considering the chart shown in Figure A l . l , this algorithm can

be modified to implement the various synchronous models. Since synchronous

models consider multiple automata-environment pairs then Step 2(i-iii) are

composed of the relevant routines, autol, envirl, lri-probl2, lri-prob22, as

depicted in Figure A1.2a - Figure A1.2d. Several routines may be intercon­

nected, to achieve the desired configuration for the synchronous and sequential

models.

223

1. INPUT AND INiriALISATIGN

Read in data and
initialise

variables and arrays

2. INTERCONNECT AUTOMATA
ENVIRONMENT TO FORM CLOSED
LOOP CONHGURATION

Total number of trials

Total number of
experiments

3. EVALUATE EXPECTED VALUES

4. RESULTS OF SIMULATION

Tabulate results at each
stage n: pi(n)=E[pl(n)]

Figure A 1.1 - Overall Structure of Program

224

INT AUTO 1 (ACTION 1, PROBl)

C PURPOSE
INT AUTOl,DETERMINES THE ACTION SELECTED BY THE
AUTOMATON

C METHOD
INT AUTOl,GENERATES RANDOM NUMBER AND COMPARES WITH
CORRESPONDING ACTION PROBABILITY TO GENERATE THE NEXT ACTION
SELECTED BY THE AUTOMATON.

C HISTORY
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF

ENGINEERING AND COMPUTER SCIENCE.DURHAM,
DHl 3LE.

C ARGUMENT IN
ACTION 1 INTEGER, ACTION SELECTED BY AUTOMATON

PROB1 REAL,PROBABILITY OF THE ACTION SELECTED BY AUTOMATON

C ARGUMENT OUT
ACTIONl ON E X I T . CONTAINS THE NEXT ACTION SELECTED BY

AUTOMATON

INT A U T O K A C n O N l J ' R O B l) .

INTEGER ACTIONI
R E A L PROBl,RAND

GENERATE RANDOM NUMBER
RAND = DRAND48()
IF (RAND < = PROB 1) THEN

SET A C n O N l = 1
E L S E

SET ACTIONl = 2
RETURN (ACTIONl)

(a) Routine A u t o l ()

Figure A 1.2 - Programme Routines

225

INT ENVIRKACTION 1, PENALTYl , PENALTY2, RESPONSEl)

C PURPOSE
INT ENVni l , DETERMINES THE RESPONSE FROM THE ENVIRONMENT, THE
RESPONSE1=0 CORRESPONDS TO PUNISH,RESP0NSE=1 CORRESPONDS TO A
REWARD SIGNAL

C METHOD
INT ENVIRl,GENERATES RANDOM NUMBER AND EVALUATES THE
RESPONSE FROM THE ENVIRONMENT

C HISTORY
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF

ENGINEERING AND COMPUTER SCIENCE,DURHAM,
DHl 3LE.

C ARGUMENT IN
A C n O N l INTEGER, ACTION SELECTED BY AUTOMATON

PENALTYl REAL, PENALTY PROB ABrLITY CORRESPONDING TO AN
ACnON(ACTIONl) SELECTED BY THE AUTOMATON

PENALTY2 REAL, PENALTY PROBABILITY CORRESPONDING TO AN
ACTI0N(ACTI0N2) SELECTED B Y AUTOMATON

RESPONSEl INTEGER,RESPONSE PROVIDED BY THE ENVIRONMENT

C ARGUMENT OUT
RESPONSEl ON EXIT, PROVIDES THE RESPONSE FROM THE ENVIRONMENT

REWARD/PUNISH SIGNAL

INT ENVIR1(ACTI0N1,PENALTY1,PENALTY2JIESP0NSE1)

INTEGER ACTIONIJIESPONSEI
REAL PENALTY1,PENALTY2,RAND

GENERATE RANDOM NUMBER
RAND = DRAND48()
IF ((ACTI0N1=1) AND (RAND <= PENALTYl)) THEN
RESPONSEl = 1
E L S E IF ((ACTI0N1=1) AND (RAND > PENALTYl)) THEN

RESPONSE1=0
E L S E IF ((ACTI0N1=2) AND (RAND <= PENALTY2)) THEN

RESP0NSE1=1
E L S E

RESPONSE1=0
RETURN (REPONSEl)

(b) Routine E n v i r l ()

Figure A1.2 - Programme Routines

22G

DOUBLE LRI_PROB12(TRLU.,ACTIONl,RESPONSEl,PROBl,PROB2,REWARD,PUNISH)

CPURPOSE
DOUBLE LRI_PR0B12, UPDATES THE ACTION PROBABILITY (PROBl)
USING THE LRI SCHEME

C METHOD
DOUBLE LRI-PROB 12,GENERATES A RANDOM NUMBER TO DETERMINE
THE UPDATED ACTION PROBABILITY B Y USING THE LRI LEARNING
ALGORITHM

C HISTORY
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF

ENGINEERING AND COMPUTER SCIENCE.DURHAM,
DHl 3LE.

C ARGUMENT IN
TRIAL INTEGER, NUMBER OF ITERATIONS
A C n O N l INTEGER, A C n O N SELECTED B Y AUTOMATON
RESPONSEl INTEGER, RESPONSE FROM THE ENVIRONMENT
PROB 1 REAL, ACTION PROBABILITY FOR ACTIONl
PR0B2 REAL, ACTION PROBABILITY FOR ACTION2
REWARD REAL, REWARD PARAMETER
PUNISH REAL, PUNISH PARAMETER

C ARGUMENT OUT
PROB 1 ON EXIT , THE UPDATED ACTION PROBABILITY FOR ACTIONl

DOUBLE LRI_PROB 12(TRIAL,ACTI0N1,RESP0NSE1 J'ROBl,PROB2JlEWARD,PUNISH)

INTEGER ACTIONLRESPONSEI
R E A L PROBl,PROB2,REWARD,PUNISH,RAND

GENERATE RANDOM NUMBER
RAND = DRAND48()

I F (T R I A L > 0)THEN
[IF ((RESPONSE = 1) AND (ACTIONI = 1)) THEN

SET PROBl = PROB1+REWARD*(1.0-PROB1)
E L S E IF ((RESP0NSE1=1) AND (ACT10N=2) THEN

SET PROBl = (1.0-REWARD)* PROBl
E L S E IF ((RESPONSE1=0) AND ((ACTI0N1=1) OR (ACTI0N1=2))) THEN

SET PROB 1 = (1.0-PUNISH)* PROB 1]
E L S E

SET PROB 1 = PROBl
RETURN(PR0B1)

(c) Routine L r i - p r o b l 2 ()

Figure A 1.2 - Programme Routines

227

DOUBLE LRI_PROB22(TRL\L,ACTIONl,RESPONSEl,PROBlJPROB2,REWARD,PUNISH)

C PURPOSE
DOUBLE LRI_PROB22, UPDATES THE ACTION PROBABILITY (PR0B2)
USING THE LRI SCHEME

C METHOD
DOUBLE LRI-PROB22,GENERATES A RANDOM NUMBER TO DETERMINE
THE UPDATED ACTION PROBABILITY BY USING THE LRI LEARNING
ALGORITHM

C HISTORY
COPYRIGHT (C) 1994 : Q.F.AHMED. UNIVERSITY OF DURHAM, SCHOOL OF

ENGINEERING AND COMPUTER SCIENCE,DURHAM,
DHl 3LE.

C ARGUMENT IN
TRIAL INTEGER, NUMBER OF ITERATIONS
ACTIONl INTEGER, ACTION SELECTED B Y AUTOMATON
RESPONSEl INTEGER, RESPONSE FROM THE ENVIRONMENT
PROB 1 REAL, ACTION PROBABILITY FOR ACTIONl
PR0B2 REAL, ACTION PROBABILITY FOR ACTI0N2
REWARD REAL, REWARD PARAMETER
PUNISH REAL, PUNISH PARAMETER

C ARGUMENT OUT
PR0B2 ON E X I T , THE UPDATED ACTION PROBABILITY FOR ACTION 1

DOUBLE LRI_PR0B12(TRIAL,ACTI0N1,RESP0NSE1J'R0B1J'R0B2,REWARD,PUNISH)

INTEGER ACTIONIJIESPONSEI
R E A L PR0B1,PR0B2,REWARDJ'UNISHJIAND

GENERATE RANDOM NUMBER
RAND = DRAND48()

I F (T R I A L > 0)THEN
UF ((RESPONSE = 1) AND (ACTION 1 = 2)) THEN

SET PR0B2 = PROB2+REWARD*(1.0-PROB2)
E L S E IF ((RESPONSEl=l) AND (ACTI0N=1) THEN

SET PROB2 = (1.0-REWARD)* PR0B2
E L S E IF ((RESPONSE1=0) AND ((ACTIONl=l) OR (ACTION 1=2))) THEN

SET PR0B2 = (1.0-PUNISH)* PR0B2]
E L S E

SET PROB2 = PR0B2
RETURN(PR0B2)

(d) Routine Lri-prob22()

Figure A 1.2 - Programme Routines

228

Appendix Two

Game Theoretic Concept

A2.1 Introduction

This Appendix introduces some of the terminology of game theory,

providing formal definitions and basic concepts, [45], [46], which are relevant

to this thesis. The theory of games originated at the end of the Second

World War, such a concept involved modeUing problems with two or more

decision makers. To date this area of 'appUcable mathematics' has continued

to be one of the most active branches of research and development.

A2.2 What Is Game Theory?

Game theory is a method for the study of decision making in situations

of conflict. I t is a theoretical model that deals with human processes in

which the individual decision maker is not in complete control of other

decision makers entering into the environment. It describes conflicts of

interest, cooperation or both between individuals, groups, formal or informal

organisations or society. The theoretical models of such conflicts of interests

between people or groups of people such as pohtical parties, government

organisations, generals engaged in fighting an enemy, a player in a poker

game may aU be viewed as a game situation. As such game theory consists

of ways of analysing these problems. Game theory is a normative, not a

descriptive theory. That is, it does not describe how actual people make

229

decisions in situations involving conflicts of interests; but rather i t discovers

how certain rational players can be expected to make decisions in such

situations. In simple terms, game theory is not a prescriptive way of how to

play a game, but rather it is a set of ideas and techniques for analysing these

mathematical models of conflict of interest. The problems in game theory are

complex, since it involves decision makers with different goals or objectives.

Each individual is in a situation in which there are many possible outcomes

with different values to them. The individuals may have some control which

influence the outcome, but they do not have complete control over others. An

individual must consider how to achieve as much as is possible, taking into

account that there are others with difierent goals from his own and whose

actions have an effect on all. Thus, it is necessary to adjust plans not only

to his own desires and abilities but also to the desires and abilities of others.

In its strict game theoretic sense, a game has the following features:

(i) Any game consists of more than one decision maker, called a player.

A player in a game is an autonomous decision making unit.

(ii) At specified instances, one or more players must make decisions by

choosing among a specified set of alternatives. The selected decision

determines the resulting situations of the game. Thus, a play of a

game is a sequence of situations.

(iii) Each situation in turn determines which of the players is to make

the next decision (whose 'move ' it is) and the range of choices open

to him. Note that certain specified situations define the end of the

230

particular play of the game.

(iv) An outcome of the game may be defined as a situation in which a

particular play of a game ends. At the end of each game each player

receives a payoff eg. win, lose or draw. The payoff^s represent gains

or losses.

(v) A rational player is one who, having taken into account all the

information available to him by the rules of the games, makes his

choices in such a way as to maximise the actual or the statistically

expected payoflF to accrue him in the outcome of the game.

Note that each player has to mak;e decisions at some moves of the game. A

strategy for a player can be defined generally as a plan of action containing

instructions as to what to do in every contingency. Thus having selected a

specific strategy it will enable him to adapt to situations that may arise, no

matter what the outcomes of the chance events. Two types of strategies are

of importance: a mixed strategy consists of performing a random experiment

each time the game is played in order to choose which strategy to use that

time. A strategy which does not involve this random experiment is called a

pure strategy.

I f the sum of the players' payoff" is zero no matter what strategy they

use, the game is called zero-sum. In these games, the players are completely

opposed to one another in that, what one wins the other loses. Games that

do not exhibit this property are called non-zero-sum games. Moreover, a

game with two players, where a gain of one player equals a loss to the other

231

is known as two-person zero-sum game. In such a game, the outcomes may

be expressed in terms of the payoff to one player.

A matrix is usually used to summarize the payoffs to the players

whose strategies are given by the rows of the matrix. The definitions of a

two-person zero-sum game may be considered by a coin-matching situation in

which each of the players A and B selects a head (H) or a tail (T). I f the

outcomes match (ie. H and H, or T and T) , player A wins 1.00 from B.

Otherwise, A loses 1.00 to B. In this game each player has two strategies (H

or T) .

A2.3 Basic Definitions

Many general properties such as strategy dominance, uniqueness of

the equilibrium point, and Pareto-optimality have been considered as useful

features of an optimal solution, [44], [45]. These properties are relevant to

discussions in Chapter Four, and they are described as follows:

Equilibrium Points

In an N-person game strategy N-tuple is said to be an equilibrium point if

no player has a positive reason for changing his or her strategy, assuming

that no other player changes his strategy. The outcome (also called payoff)

corresponding to this set of strategies is called an equilibrium outcome (payoff).

Thus, an equilibrium outcome is one from which neither player can change his

strategy without impairing his payoff, assuming that the other player sticks

to his strategy.

232

Dominant Strategy

A strategy dominates another when, independent of the action taken by the

other players, the first strategy leads to an outcome as favourable as the

second.

Pareto Optimal

In an N-person game, an outcome is said to be Pareto optimal if there is no

other outcome in which all players simultaneously do better (receive larger

payoff"). It is possible for a (2x2) game to have one, two , three or four

Pareto optimal payoff's.

Consider the following example of two-player games where each player

has two strategies. Each game can be represented by a (2x2) matrix D whose

elements are of the form { d } j , d f j) , where d]j is the payoff" to player 1 and cifj

the payoff" to player 2 when they play strategies i and j , respectively. The

payoff" matrices of the three cases as follows:

D, = (M (10,7) A / (5 , 5) (0,10)
W0,0) (9 , 8) ; ^^=1(10,0) (1,1)

((10,10) (0,5)X n _ f (l , - l) (2 , -2)>
V (5,0) (3 , 3) ; ^ ^ - 1 (3 , - 3) (0,0) ;

Game Di, the strategy of the first player (row) and second strategy of the

second player (column) are dominant, and (10, 7) is an equilibrium payoff.

233

I t is also Pareto optimal. Game £>2) (10, 10) and (3, 3) are both equilibrium

payoffs, but only (10, 10) is Pareto optimal. Game Dz, both players have

dominant strategies but the resulting outcome (1, 1) which is an equilibrium

payoff, is not Pareto optimal (an instance of Prisoner's Dilemma). Game D^,

a zero-sum game, the payoff (1, -1) corresponds to the first strategy of the

two players is an equilibrium payoff and is called a saddle point.

234

Appendix Three

Petri Net Concepts

A3.1 Introduction

This section introduces some of the basic Petri net properties ajid

terms which are normally used in the analysis of Petri nets, [15], [16].

A3.2 Some Petri Net Properties

Boundedness and Safe

A Petri net is said to be k-bounded or simply bounded if the number of tokens

in each place does not exceed a finite number k for any marking reachable

from Mo, ie. the number of tokens in each place is < ^ for all markings in

R(Mo). A Petri net is said to be safe i f the number of tokens in each place

is < 1 for all markings in R(Mo).

Boundedness is a very important practical property of Petri nets. For

example places in a PN are used to represent buffers and registers for storing

intermediate data. I f the net is bounded or safe, it is guaranteed that there

will be no overflows in the buffers or registers no matter what firing sequence

is taken.

235

Liveness

The concept of Uveness is very significant in the modelUng of operating

systems. Liveness is a property that ensures deadlock-free operation, such

that a transition remains potentially fireable in all markings reachable from

a given marking.

A Petri net is said to be live (or equivalently MQ is said to be a

live-marking for N) if, no matter what marking has been reached from MQ, i t

is possible to ultimately fire any transition of the net by progressing through

some further firing sequence. This property is ideal for many systems, but

i t is impractical and too costly to verify this property for large computer

systems. Thus, a number of diff'erent levels of Uveness have been considered.

A transition t in a Petri net is said to be:

• Dead (LO-Live) i f t can never be fired in any firing sequence in

i (M o) ;

• Ll-Live (Potentially Fireable) i f / can be fired at least once in some

firing sequence in i (M o) ;

• L2-Live if, given any positive integer k, t can be fired at least k times

in some firing sequence in L(Mo);

• L3-Live i f t can appear infinitely, often in some firing sequence in

i (M o) ;

• L4-Live or Live i f t is Ll-Live for every marking M in R{Mo).

236

It is necessary to state precisely the definition being used, since each definition

is quite different.

A3.3 Reachability (Coverability) Tree Algorithm

To reduce a tree to finite form, it is necessary to find a means of

limiting the new markings {frontier nodes) introduced at each step. During

the construction of the reachability tree it is possible to find dead markings,

ie. markings in which no transition is enabled and these markings are known

as terminal nodes. In addition the expansion of the tree is stopped when

a class of markings are reached that have previously appeared and have

been considered, as they represent duplicate (old) nodes. No successor of a

duplicate node need be considered; all these successors will be produced from

the first occurrence of the marking in the tree. A final means to reduce the

tree is by using a special symbol uj which can be thought of as infinity. The

reachability (coverability) tree may now be precisely stated as follows:

Let a; be a symbol, such that:

u ± n = u,uj > n and u > u

Coverability (Reachability) Tree Algorithm

The coverability tree for a PN is constructed by the algorithm presented in

Figure A3.1. By adopting the procedure outlined in Figure A3.1 all frontier

nodes which have not been processed by the algorithm are converted to

terminal, duplicate or interior nodes. Once all nodes have been classified as

terminal, duplicate or interior, the algorithm halts. The coverability tree is

237

an extremely useful tool for the analysis of PNs. The folloAving outlines some

of the properties that can be studied:

• A Petri net is bounded and thus R{Mo) is finite if and only i f u; does

not appear in any node labels in the tree.

• A Petri net is safe i f and only if only O's and I's appear in node labels

in the tree.

• A transition t is dead if and only i f it does not appear as an arc label

in the tree.

238

STEP 1 Label the initial marking M as the root and tag it 'new'

STEP 2 While 'new' marking exist do the following:

(2.1) Select a new marking M

(2.2) If M is identical to a marking on the path from the root M to M,
then tag M to be 'OLD' and stop processing M (DUPLICATE NODE)

(2.3) If no transitions are enabled at M, tag M 'DEAD END' (TERMINAL
NODE)

(2.4) While there exist enabled transitions at M, for every transition t
enabled in M

(2.4.1) Obtain the marking NT that results from firing t at M

(2.4.2) If there exists a path from the root to M for which a
marking M" exists such that M'>=M" for each place M for
which a maridng M" is coverable, then replace M" by 0)
for each p such that M'>M"

(2.4.3) Introduce M* as a node, draw an arc label t from M to M'
and tag M 'new'

Figure A3 .1 - Coverabil i ty (Reachability) Tree Algor i thm

239

Appendix Four

Models (Byzantine Generals)

A4.1 Introduction

Appendix Four is concerned with possible analytical models which

may be used to study unreliable communication between decision modules.

The Byzantine Generals problem, [69], [70], is proposed as an appropriate

model in resolving this type of failure. The Oral Messages algorithm is

presented, which is used to solve the Byzantine Generals problem for 3m-(-l

or more generals in the presence of at most m traitors. The algorithm uses

the majority function, to select the appropriate value. The Signed Messages

algorithm has also been presented. Note that the unforgeable signed messages

algorithm provides a solution to the Byzantine Generals problem for any

number of generals and possible traitors.

A4.2 Reliable Systems

A method known to implement a reUable system is to use several

different 'processors' to compute the same result, and perform a majority vote

on their outputs to obtain a single result. The use of majority voting to

achieve reliability is based on the assumption that all correctly functioning

processors must produce the same output provided they use the same input

value. In order for majority voting to yield a reliable system, the following

Interactive Consistency conditions must be satisfied:

240

(1) All nonfaulty processors must use the same input value (so that they

produce the same output).

(2) I f the input unit is nonfaulty, then all nonfaulty processors use the

value it provides as input (so that they produce the correct output).

Therefore in terms of reliable systems, the fundamental problem is the agree­

ment on a piece of data based on the cooperation among several processors.

Several solutions to this problem have been provided in relation to Byzantine

Generals analogy rather than computer systems.

A4.3 Byzsmtine Genereds Problem

Any reliable system must be able to cope with the failure of one or

more of its components, and also malfunctions that send conflicting information

to different parts of the system. I t may be defined that a component 'fails'

when it completely stops functioning, and the term 'malfunction' is related

to a system if it continues to operate but performs one or more operations

incorrectly. The Byzantine Generals approach resolves this type of failure,

consider the following scenario;

• Several divisions of the Byzcintine Army are camped outside an enemy

city;

• Each division is commanded by its own general;

• The generals can only communicate by messenger;

• After observing the enemy they must decide upon a common plan of

241

action;

• Some of the generals may be traitors trying to prevent loyal generals

from reaching agreement.

The generals follow an algorithm satisfying certain conditions, whose objectives

are to reach agreement and follow a reasonable plan of action. The Byzantine

Generals problem is restricted to considering how a commanding general sends

an order to his Ueutenants, such that the following conditions are fulfilled:

Condition I C l - A l l loyaJ heutenants obey the same order.

Condition IC2 - I f the commanding general is loyal, then every loyal

Ueutenant obeys the order that he sends.

These are examples of Interactive Consistency conditions. Note that if the

commanding general is loycil, then I C l follows from IC2. However the

commander need not necesseirily be loyal. For a clear representation of the

relationship with reUable systems the following notions are used:

The sender of messages in the Byzantine Generals notation is referred

to as the commander, in terms of reUable systems it is considered as the

transmitter, ie. the unit generating the input. A message that the commcinder

sends carry its value. The commander sends its value to its lieutenants either

directly or through other Ueutenants called relays. A lieutenant can be a

commcinder, a receiving lieutenant or a relay according to its function in the

network with respect to a given message. A Ueutenant is loyal if it transfers

the messages i t has received without altering or eavesdropping on them;

242

delaying the forwarding, sending conflicting values. A loyal commander is a

reliable lieutenant that sends the same value to all its receiving Heutenants.

I t is assumed that a traitor is a heutenant/ relay or a commander that is

not loyal. In simple terms, the analogy described can be considered in terms

of reliable systems, as follows:

Commander - represents the unit generating the input values, indi­

cating a transmitter.

Lieutenants - represent the processors.

Loyal - relates to nonfaulty (correctly functioning) processors, that

is a reliable processor; this implies that a traitor is an unreliable

processor.

Therefore in terms of Byzantine Generals the fundamental problem is to find

an algorithm to ensure that loyal generals reach agreement. The following

sections present algorithms which ensure that loyal generals reach agreement

and also guarantee interactive consistency conditions for (n,m) where n is the

total number of generals of which it is known that m are traitors.

A4.3.1 Impossibility Results

This defines a formal model which states that, if the generals can send

only oral messages, then no solution will work unless more than two-thirds

of the generals are loyal. Impossibility Results deals with only three generals

in the presence of a single traitor, and proves that it is impossible to assure

interactive consistency for n < (3m -|- 1) with (m-|-l) rounds of information

exchange. An oral message may be defined as follows:

243

An Oral Message - is one whose contents are completely under the control

of the sender, so that a traitorous general can transmit any possible message.

For simpUcity, it is assumed that the only possible decisions that can be

taken by a commander are 'attack' or 'retreat'. Figure A4.1a illustrates the

case in which the commander is loyal and sends an 'attack' order to both

Lieutenants, but Lieutenant 2 is a traitor and he reports to Lieutenant 1 that

he received a 'retreat' order. The receiving Lieutenant 1 has to consider two

possibiUties: ie. the commander is loyal and Lieutenant 2 is a traitor; or

the commander is a traitor and Lieutenant 2 is loyal. For condition IC2 to

be satisfied Lieutenant 1 assumes that the commander is loyal and he must

obey the order to 'attack', which shows that the first case is correct.

Consider another scenario, Figure A4.1b, in which the commander is

a traitor and sends an 'attack' order to Lieutenant 1 and a 'retreat' order

to a Lieutenant 2. Similarly, Lieutenant 1 encounters the same problem as

above; he does not know who the traitor is, and cannot teU what message

the commander actually sent to Lieutenant 2. I f the traitor Ues consistently.

Lieutenant 1 cannot distinguish between these situations. Therefore, whenever

Lieutenant 1 receives an 'attack' order from the commander he must obey i t .

By applying a similar argument in the case of Lieutenant 2; if he receives a

'retreat' order from the commander , then he must obey it even if Lieutenant

1 teUs him that the commander said 'attack'. Analysing Figure A4.1b -

244

Lieutenant 1 : obeys 'attack' order; while

Lieutenant 2 : obeys 'retreat' order

Thereby violating condition I C l - all loyal Lieutenants obey the same order.

This proves that no matter what decision the Ueutenants make, no solution

exists for three generals that work in the presence of a single traitor, formal

proof has been included in, [69].

A4.3.2 Solution with Oral Messages

This provides a solution to the Byzantine Generals problem, that

works for (3m-|-l) or more generals in the presence of at most m traitors. In

this case an algorithm is presented that acquires an extension of oral messages

definition, based on the following assumptions:

Definition of Oral Messages

(A l) : Every message that is sent is delivered correctly.

(A2) : The receiver of a message knows who sent it .

(A3) : The absence of a message can be detected.

Assumptions A l and A2 prevent a traitor from interfering with the commu­

nication between two generals. Since, for assumption A l a traitor cannot

interfere with the messages that are sent; and in assumption A2 a traitor

cannot confuse their interaction by introducing erroneous messages. Finally,

assumption A3 stops a traitor who tries to prevent a decision being reached

by simply not sending messages.

245

Each general executes some algorithm that involves sending messages

to the other generals, it is assumed that a loyal general correctly executes

his algorithm. The oral messages algorithm requires that each general be

able to send messages directly to every other general. Note that a traitorous

commander may decide not to send any order. In such a case, since the

Ueutenants must obey some order, they require some default order to obey.

Hence, RETREAT may be considered as this default order. The Oral Messages

algorithm is provided in Appendix (A4.4).

The Oral Messages algorithm OM(m) may be defined inductively for

aU nonnegative integers m, by which the commander sends an order to his

(n-1) Ueutenants. The procedure consists of an exchange of messages. In

the OM(m) algorithm two phases of information exchange are required. For

the first phase the Ueutenants exchange their private values. In the second

round they exchange the results obtained in the first round. I f a traitor

exists he may Ue consistently, or refuse to send messages. For simpUcity this

algorithm is described in terms of the Ueutenants 'obtaining a value' rather

than 'obeying an order'.

Figure A4.2a iUustrates the messages received by Lieutenant 2 when

the commander sends the value v to aU three Ueutenants and Lieutenant 3

is a traitor, in this case m = 1, and n = 4. By applying the Oral Messages

algorithm, the first phase of Oral Messages algorithm 0M(1), the commander

sends the order t; to all three Ueutenants. In the second phase by using the

trivial algorithm OM(0), Lieutenant 1 sends the value v to Lieutenant 2; also

the traitorous Lieutenant 3 sends Lieutenant 2 some other value x. In the

246

final phase, the Oral Messages algorithm applies a Majority Function to the

input values received by Lieutenant 2. Thus, Lieutenant 2 has vi = V2 =

V3 = X so that he obtains the correct order majority v = majority(t/, v, x).

Now consider the case when the commander is a traitor. Figure

A4.2b shows the values received by the lieutenants if a traitorous commander

sends three arbitrary values x, y and z to the lieutenants. Similarly, applying

the Oral messages algorithm. The end result indicates that each lieutenant

obtains the same value majority(a;, y, z) in the final step of Oral Messages

algorithm, regardless of whether or not any of the three values x, y and z

are equal.

A4.3.3 Solution with Signed Messages

This solution contradicts Impossibihty results, since it restricts the

traitors ability to lie, by allowing the generals to send unforgeable signed

messages. By introducing this restriction, the Byzantine Generals problem

becomes easier to resolve. In addition to the assumptions A1-A3 the following

may be included:

Assumption (A4.a) :

A loyal generals signature cannot be forged, and any alteration of the contents

of his signed messages can be detected.

Assumption (A4.b) :

Anyone can verify the authenticity of a general's signature.

In the signed messages algorithm, the commander signs the order that he

247

wants to send to each of his lieutenants. Each receiving Ueutenant then

adds his signature to that order and sends i t to the other Ueutenants, who

add their signatures and send it to others, and so on. The receiver of the

forwarded order can determine the true value sent by the commander, as weU

as the true identity of the sender. I t is necessary that all loyal Ueutenants

receive exactly the same Ust of values, say vi,... ,Vg, or else they may obtain

different values in the final step. The notation used in the algorithm is

outUned as foUows, let Vi : 0 denote the value signed by General 0. Thus,

vi : 0 : Li denotes the value Vi signed by General 0, and then that value

vi : 0 signed by Lieutenant L,-. Let General 0 be the commander.

Figure A4.3 depicts the case for three generals, when the commander

is a traitor - Ulustrating Algorithm SM(1): In the first phase of signed

messages, the commander is a traitor, sending an 'attack' order to Lieutenant

1 and 'retreat' order to Lieutenant 2. For the second phase of signed messages:

Both Ueutenants receive their orders, add their signature to that order and

send it to each other.

The algorithm guarantees agreement as defined by conditions I C l

and IC2, even if there are very few loyal lieutenants. Observe here that

unlike ImpossibiUty Results, the Ueutenants know the commander is a traitor

because his signature appears on two different orders, and assumption A4

states that only he could have generated those signatures. It is shown that

with unforgeable signed messages the problem is solvable for any number of

generals and possible traitors.

248

A4.4 Byzantine Generals Algorithm

Oral Messages Algorithm

Algorithm OM(0); m=0

(1) The commander sends his value to every lieutenant.

(2) Each Ueutenant uses the value he receives from the commander or

uses the value RETREAT if he receives no value.

Algorithm OM(m); m > 0

(1) The commander sends his value to every lieutenant.

(2) For each i, let Vi be the value Ueutenant i receives from the commander;

or else be RETREAT if he receives no value. Lieutenant i acts as

the commander in Algorithm OM(m-l) to send the value Vi to each

of the (n-2) lieutenants.

(3) For each i, and each j ^ i, let Vj be the value Lieutenant i received

from Lieutenant j in step (2) (using Algorithm OM(m-l)) or else

RETREAT if he received no such value. Lieutenant i uses the value

majority{vi,...,Vn-i).

Once exchange of information is completed, the algorithm assumes a function

majority which is used by each Ueutenant for deciding what the value is,

given a set of received values. The function must have the property that

if a majority of the values Vi equal then majority{vi,... ^Vn-i) equals v.

However, i f a majority value among the Vi does not exist, a default value

such as RETREAT is used.

249

Signed Messages Algorithm

Algorithm SM(m)

InitiaUy Vi = 0.

(1) The commander signs and sends his value to every Ueutenant.

(2) For each i:

(a) I f Lieutenant i receives a message of the form v : 0 from the

commander at phase 0, and he has not yet received any order, then

(i) he lets Vi equal v ;

(u) he sends the message v : 0 : i to every other Ueutenant.

(b) I f Lieutenant i receives a message of the form w : 0 : L i : . . . : L t at

k, \ < k < m, Vi contains at most one value, v is not in the set Vi,

and the signatures belong to the different Ueutenants, then:

(i) he adds v io Vi;

(n) \i k < m, then he sends the message v : Q : Li : ... : Lk : i io

every Ueutenant other than Li,...,Lk.

(3) For each z:

When Lieutenant i will receive no more messages, at the end of phase

m he obeys the order choice{Vi)-

For this particular algorithm (m+1) rounds of information exchange cire

required. In summary in step (2) Ueutenant Li ignores any message containing

an order v that is already in the set Vi, and accepts at most two different

orders originated by the commander. In addition Ueutenant Li ignores any

messages that do not have the correct form, followed by a string of different

signatures.

250

Commander

Attack Attack

Retreat
Lieutenant

©
Lieutenant

©

(a) Lieutenant 2 a t ra i to r

Attack

Lieutenant l*^

©

Commander

Retreat

Retreat

Lieutenant

©

(b) Commander a t ra i tor

Figure A4 .1 - Impossibil i ty Results

251

Commander

Lieutenant

©
Lieutenant

©
Lieutenant

©

(a) Lieutenant 3 a trciitor

Commander

Lieutenant

©
Lieutenant Lieutenant

(b) Commander a trzutor

Figure A4.2 - Solution w i t h Ora l Messages

252

Attack: 0

Commander

Lieutenant

©

Attack : 0 : 1

Retreat: 0 : 2

Retreat: 0

Lieutenant

©

Figure A4.3 - Solution with Signed Messages - Commander a traitor

253

Appendix Five

Publications

A P P L I C A T I O N S O F A R T I F I C I A L I N T E L L I G E N C E T E C H N I Q U E S

T O D E C E N T R A L I S E D D E C I S I O N M A K I N G I N C^-MIS

R Mars, Q. F. Ahmed and R Edwards

l E E Third International Conference on Command,

Control, Communications and Management Information Systems

Bournemouth, UK., 2nd-4th May 1989

A P P L I C A T I O N O F S T O C H A S T I C L E A R N I N G P E T R I N E T S

T O S M A L L - S C A L E

D I S T R I B U T E D D E C I S I O N M A K I N G O R G A N I S A T I O N S

Q. F . Ahmed and R Mars

IMA Sixth International Conference on Control:

ModelUng, Computation, Information

Manchester, UK., 2nd-4th September 1992

254

78

-MIS • APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES TO DECENTRALISED DECISION MAKING IN C^-

P- Mars O.F.Ahmed P. Edwards

U n i v e r s i t y of Durham,UK University of Durham,UK B r i t i s h Aerospace, Warton, UK

1. INTRODUCTION

The a n a l y s i s and design ^of complex,
survivable, and responsive C -MIS requires
novel advances i n Che area of distributed
d e cision making under uncertainty. I n
p a r t i c u l a r , systems engineering tools are
needed for describing, decomposing and
analysing such systems which must meet very
demanding performance, s u r v i v a b i l i t y and
response s p e c i f i c a t i o n s . This paper i s a
f i r s t step i n a research e f f o r t to develop the
required t h e o r e t i c a l and algorithmic tool^ for
the systematic a n a l y s i s and design of C -HIS
systems. Such systems are characterised by a
high degree of complexity. Key features are a
d i s t r i b u t i o n of decision making processes
amongst s e v e r a l decision making 'agents', the
need for r e l i a b l e operation i n the presence of
multiple f a i l u r e s , and ine v i t a b l e interaction
of humans with computer based decision support
systems, (1),(2).(3).

Aj present a n a l y s i s and synthesis studies for
C -MIS a r c h i t e c t u r e s tends to be performed in
an ad-hoc manner. I t i s e s s e n t i a l to develop
quantitative methodologies, theories and
algorithms relevant to C -MIS architectures.
T o t a l l y c e n t r a l i s e d h i e r a r c h i c a l structures
although e f f i c i e n t i n resource a l l o c a t i o n are
highly vulnerable and introduce unacceptable
delays. At the other extreme autonomous
systems involving minimal delays are
i n e f f i c i e n t i n Che u t i l i s a t i o n of scarce
resources. C l e a r l y the design compromise i s i n
the use of d i s t r i b u t e d systems architectures
combining d i s t r i b u t e d agents with
communications c a p a b i l i t y .

I n t h i s paper we consider the use of a
s t o c h a s t i c learning automata approach for both
the adaptive control and modelling of
decentralised d e c i s i o n making i n C -MIS.

2.BASIC THEORY

An extensive l i t e r a t u r e and a well established
mathematical foundartion now e x i s t s for
s t o c h a s t i c learning automata. E a r l y work i n
the concexc of mathematical psychology, (4),
(5) , (6) , (7) , was followed by major research
e f f o r t s i n both Russia, (8) , and the USA, (9),

.'(10). Hardware implementations and
ap p l i c a t i o n s i n process control and
communication networks has also been
considered, (11).

I n general, a learning automaton may be
defined as an element which i n t e r a c t s with a
random environment i n such a manner as to

improve a s p e c i f i e d o v e r a l l performance by
changing i t s ac t i o n p r o b a b i l i t i e s dependent on
responses received from the environment.
Figure 1 shows the basic model. An automaton
i s a quintuple (^,^,a,F,G) where ^ - (0,1) i s
the input set (output from the environment),^
- ^^l'^2'•••'^2^ ^ f i n i t e state, a
'^'^X'^l ^T-'i output action set (inputs
to the environment) ,F:\6X/3 —^> 6̂ i s a state
t r a n s i t i o n mapping and G : ̂ > Q i s the
output mapping.

We r e s t r i c t our attention to variable
structure automata described by the t r i p l e
(^,T,a). Here T denotes the rule by which the
automaton updates the probability of selecting
c e r t a i n actions. At stage n assuming r
actions each s e l e c t e d with probability p . (n) [i
- 1,...,r] we have:

p(n + 1) - T[p(n),a(n).^(n)] (1)

A binary random environment i s defined by a
f i n i t e set of inputs Q - (a. a] (outputs
from the automaton), an output sei ̂ - [0,lj
and a set of penalty p r o b a b i l i t i e s c
[Cĵ ,C2 c] . The output ^(n) - 0 at stage n
i s c a l l e d a favourable response (success) and
^(n) - 1 an unfavourable response (f a i l u r e) .
The penalty p r o b a b i l i t i e s are defined as:

Pr[;3(n) - l/a(n) - a. (2)
Apart from binary environment models other
possible environments have included Q models
(f i n i t e number of outputs) and S models
(continuous outputs i n range 0 to 1). In
p r a c t i c e the choice of environmental models i s
obviously dictated by the p a r t i c u l a r
application. I f the penalty probabilities
from the environment do not depend on stage
number n, the environment i s c l a s s i f i e d as
stationary; otherwise the environment i s
non-stationary. Important convergence res u l t s
have been proved for both types of
environment, (12).

The convergence c h a r a c t e r i s t i c s of learning
automata are dependent on Che properties of
the algorithm used i n the updating scheme. A
performance measure that has been extensively
used i s the updated penalty that the automaton
receives from the environment defined as:

M(n) - E(;3(n)/p(n)] (3)

Assuming a stationary environment and an
automata s e l e c t i n g actions with equal
probability the average received probability

79

i s M where o

(4)

A learning automaton i s s a i d to be expedient
i f :

and opcimal i f :

lini^_^j:[M(n)] - min.fc.] (6)

Both l i n e a r and non-linear forms of updating
algorithms T have been considered. The most
widely used are the c l a s s of l i n e a r algorithms
which include l i n e a r reward/penalty .
l i n e a r reward/f penalty (L^^) , and l i n e a r
.reward/inaction schemes (1^^;. For the 1^
scheme i f an automaton t r i e s an a c t i o n a.
which r e s u l t s i n success p.(n) i s increased
and a l l o t h e r p . (n) (j - i) are decreased.
S i m i l a r l y i f action produces a penalty
response p.(n) i s decreased and a l l other
p.(n) modified to preserve the p r o b a b i l i t y
measure. An scheme ignores penalty
responses from the environment and 1.̂^ only
involves small changes i n p.(n) compared with
changes based on success.

In practice for adaptive optimisation problems
the Lj^ p scheme i s preferred. The retention
of a small element of penalty avoids the
p o s s i b i l i t y of locking on uniquely to one
s p e c i f i c action. For r actions and a binary
environemnt the learning algorithm for p i s
described as follows:

For a(n) - and ̂ (n) - 0 (reward)

p.(n + 1) - p.(n) + a [l - p.(n)] (7)

Pj (n + 1) - (l - a) p ^ (n) (8)

"or o(n) - and ̂ (n) - 1 (penalty)

p.(n + 1) - (1 - b)p.(n) (9)

Pj(n+ 1) - + (1 - b)pj(n) (10)

lere learning parameters a and b are both
ri t h i n the range (0,1). I n the case of L.

J b - 0. ^ Lutomata a b and for b

o far we have considered models of a sin g l e
lecision maker (an automaton) i n t e r a c t i n g with
n uncertain environment. We now extend the
I s c u s s i o n to consider multiple d e c i s i o n
akers i n t e r a c t i n g with an uncertain
nvironment. I t i s considered that such
lodels w i l l provide a f i r s t b a s i s for
leveloping a n a l y t i c a l models of C -MIS
ystems. Of p a r t i c u l a r i n t e r e s t i s that the
utstanding p r a c t i c a l a p p l i c a t i o n of learning
utomata to date i s i n adaptive c o n t r o l of
outing information i n c i r c u i t and packet
witched networks. This i s a c l a s s i c example
f decentralised control i n an uncertain
nvironment, (13).

3. DECENTRALISED CO^nrROL IN COMMUNICATION
NETWORKS

The next decade w i l l witness an increasing
need for new and sophisticated methods for the
optimal u t i l i s a t i o n of capacity in
communication networks. The importance of the
study of routing and flow control i s rapidly
increasing. Future integrated services
d i g i t a l networks w i l l incorporate a spectrum
of t r a f f i c ranging from simple transaction
measurements (100 b i t s) to multimegabit
messages associated with colour facsimile.
The use of learning algorithms i s considered
to represent a highly promising approach to
the adaptive control of such complex systems.
Recently advances have been made i n applying
these p r i n c i p l e s to the problem of adaptive
routing i n communication networks. Based on
established theory, these applications show
promise of p r a c t i c a l solutions to the complex
problems of routing and flow control and
provide incentive for further exploration of
learning techniques. I n i t i a l research
considered c i r c u i t switched networks
(telephone networks) i n which learning
algorithms at the network nodes update their
s t r a t e g i e s for routing t r a f f i c on the basis of
success or f a i l u r e i n completing c a l l s (14).
(15). Recent research has focussed on
packet-switched networks with learning
automata schemes proposed for both v i r t u a l
c a l l and datagram networks. Packets are
routed by automata s e l e c t i n g suitable outgoing
l i n k s , the delay experienced by a packet being
fedback to update the future selection
strategy (10-18).

From a p r a c t i c a l standpoint, the si m p l i c i t y of
the feedback as we l l as the updating schemes
which exploit e x i s t i n g control mechanisms and
protocols make the learning approach a
p r a c t i c a l l y v i a b l e a l t e r n a t i v e for routing i n
both c i r c u i t and packet-switched communication
networks.

Circuit-Swtiched Networks

In a previous paper (14) simulation studies of
telephone t r a f f i c routing i n simple networks
was considered. S p e c i f i c a l l y i t was shown that
a Linear Reward Inaction (L̂ ^̂ j) automaton
scheme, when used i n a simple network for c a l l
routing, performs at l e a s t as well as the
optimum Fixed Rule (FR) . The ^ and Linear
Reward Penalty (Lj^.p) schemes were compared to
FR. I t was concluded that both routing
s t r a t e g i e s always perform as we l l as the
optimum FR while i n simulations requiring
mixed routing s t r a t e g i e s they give superior
performance. An i n t e r n a l report (19) has
investigated dynamic routing of f u l l y
connected c i r c u i t switched networks. The
routing p o l i c y used i s Least Busy Alternative
(LBA) with Trunk Reservation (TR). I t was
concluded that LBA with TR i s as good as FR
yet with the advantage of f l e x i b i l i t y and
spreading out of l o c a l overload. Subsequent
research has compared LBA with random routing

80

(RL), fixed routing (FR) learning automata and
a dynamic a l t e r n a t i v e routing strategy
(DAR),(20), for a f i v e node f u l l y connected
network (21). I t has been shovm that DAR and
L_ ^ algorithms provide the bfest dynamic
routing strategy but under conditions of
network f a i l u r e (e.g. l i n k f a i l u r e) the
additional i n t e l l i g e n c e associated with the
learning algorithms leads to s i g n i f i c a n t l y
improved performance.

Packet-Switched Networks

Although adaptive or dynamic routing i n packet
networks i s undoubtedly needed under network
f a i l u r e conditions (e.g. l i n k or node f a i l u r e)
controversy e x i s t s on whether dynamic routing
should be used under normal operating
conditions. Recent work has shown that
dynamic routing can i n f a c t reduce throughput
or increase delay as the network load i s
increased. Dynamic routing only improves
network performance over an intermediate
t r a f f i c range. This i s i n t u i t i v e l y obvious
since as the network load increases l e s s spare
capacity i s a v a i l a b l e . I t should be noted
that t h i s possible increase throughput at
moderate loads may of course defer the entry
of the network into a high load condition.
There i s c l e a r l y a need for adaptive control
of the dynamic routing mechanism such that at
high loads the routing strategy reverts to
minimum resource routing (i . e . f i x e d paths).
In general a deterministic strategy i s the
best for balanced t r a f f i c but a dynamic
strategy i s e s s e n t i a l for unbalanced and
chaotic conditions.

The development of r e a l i s t i c a n a l y t i c a l models
for dynamic routing i n packet networks i s
notoriously d i f f i c u l t . The fundamental
problem i s chat route s e l e c t i o n s are by
d e f i n i t i o n state dependant which negates the
mathematically convenient property of
s e p a r a b i l i t y . Recent work has used the theory
of s t o c h a s t i c learning automata to calculate
mean routing p r o b a b i l i t i e s (22). These
p r o b a b i l i t i e s may be used ais an approximation
for l i n k loadings and thus a i d network
dimensioning.

In a c l a s s i c paper the optimal s t a t i c routing
problem was formulated as a convex programming
problem i n the space of routing variables
(23). Necessary and s u f f i c i e n t conditions
were determined for the problem solution. The
basic r e s u l t i s that optimal s t a t i c routing i s
obtained by an equalisation of the
d i f f e r e n t i a l delays observed by a node on
outgoing paths. Previous work has
demonstrated that learning automata (type
L ^ p] reach a steady state condition such that
delays (as opposed to d i f f e r e n t i a l delays) are
equalised (17).

Recently a decentralised non-linear technique
has been described which permits a computation
of the equilibrium solution for learning
automata under steady state conditions. By

appropriate modification the recursion can be
used to compute the system optimal
(equalisation of d i f f e r e n c i a l delays) routing
pattern (24). This i s an important
contribution which in addition to providing a
cost e f f e c t i v e alternative to simulation
provides a benchmark which may be used in
comparison studies of adaptive routing
schemes. I n addition, using a 10 node network
previously studied by the present authors
group no s i g n i f i c a n t difference i n delay
performance was obtained between the automata
and the optimal routing strategy. This
important r e s u l t confirms previous conclusions
that for p r a c t i c a l networks above a threshold
of complexity the automata performance i s
v i r t u a l l y optimal. For small (3 node)
asymmetric networks the performance of the
automata i s sub-optimal. There could be some
averaging process involved such thac above a
given l e v e l of system complexity equalisation
of delays i s v i r t u a l l y equivalent to
equalisation of d i f f e r e n t i a l delays. Clearly
further research i s needed in th i s area but at
thi s stage the v i a b i l i t y of the learning
approach has been confirmed and for a general
c l a s s of networks the automata provide close
to an optimal strategy.

4. MODELS OF DECEiTOlALISED DECISION .lAKING

Game theoretic issues provide a fundamental
basis for the study of decentralised decision
processes. Figure 2 shows the basic multiple
automata game. With N automata A . (i - 1 N)
i n t e r a c t i n g through a stationary environment.
At each stage n the automata s e l e c t one of
t h e i r actions and t h i s determines the
d i s t r i b u t i o n of the random process involved.
I t should be noted that in contrast Co che
usual game-cheorecic formulation, no player i s
aware of the other players, the actions
selected by or the responses from the
environment to other players. Extensive
research has considered two-person zero sum
games when the game matrix i s unknown. For
the i d e n t i c a l payoff game optimal strategies
are the same for the individuals and the
group. I n th i s case important convergence
properties have been proved, (9) , (.10), (25).
However i n practice the merging of' individual
and group r a t i o n a l i t y i s d i f f i c u l t . For the
present work we seek models i n which decision
makers are not autonomous and t h e i r decisions
a f f e c t each other. I n t h i s area i n i t i a l work
has involved synchronous models i n which the
time instants for automata actions and updates
are synchronised, and sequential models which
are asynchronous. Some of the simple
synchronised models can be analysed by game
theoretic concepts, (26), (27). The
sequential models are more r e a l i s t i c i n the
p r a c t i c a l sense and the power of t h i s approach
has been i l l u s t r a t e d by a demonstration of che
optimal control of a Markov chain with unknown
t r a n s i t i o n and reward p r o b a b i l i t i e s , (28).

I t i s considered that the stochastic learning
automata approach w i l l provide the fundamental

81

framework for a mgdel of decentralised
decision making i n C -MIS. As Che research
progresses additional layers of so p h i s t i c a t i o n
can be incorporated within the basic model.
I n i t i a l l y work ' has considered simple
topologies of synchronous, sequential and
hybrid (synchronous/sequencial) systems and
future a n a l y t i c a l work w i l l be supported by
simulations using a SUN-based i n t e r a c t i v e
d i s t r i b u t e d decision model, (29). This
simulator w i l l be modelled and have s u f f i c i e n t
f l e x i b i l i t y to permit choices of topology,
learning algorithms, l e v e l of communication
r e l i a b i l i t y and s e l e c t i o n of environmental
models.

5. CONCLUSIONS

This paper has considered the application of
stochastic learning automata to the problems
of adaptive^concrol and decentralised decision
making i n C -MIS. The advantages of applying
learning automata to e i t h e r c i r c u i t or
packet-switched networks may be summarised as
follows:

(i) Learning automata are based on simple
p r i n c i p l e s and a w e l l established
mathematical theory.

(i i) They are computationally a t t r a c t i v e ,
i . e . only simple arithmetic operations
are involved.

(i i i) Automata can be used i n d i v i d u a l l y
without being dependent on other
automata.

(i v) They are c o s t - e f f e c t i v e since they
require minimum a l t e r a t i o n to ex i s t i n g
protocols.

Although at an earl y stage the study of
learning automata as d i s t r i b u t e d "agents" i n
decentralised decision making i s considered to
represent a promising approach to providing a
conceptual framework for modelling decision
making i n complex C -MIS.

6. REFERENCES

1. Athans, M., 1987, "Command and control
theory: A challenge to control science",
IEEE Trans.on Automatic Control, AC-32,
No.4, 286-293.

2. Andriole, S.J., and Halpin, S.M., 1986,
"Information technology for command and
control", IEEE Trans.Syst.Man and
Cybem. , SMC-16, No.6, 752-765.

3. Stephenson, H.E., and Sage, A.P., 1987,
"Perspectives on imperfect information
processing", IEEE Trans.Syst.Man and
Cybem., SMC-17, No.5, 780-798.

4.

6.

10.

Bush, R.R., and Mosteller, F. , 1958,
"Stochastic models for learning", John
Wiley.

Atkinson, R.C., Bower, G.H., and
Crothers, E.J., 1985, "An introduction to
mathematical learning theory", John
Viley.

l o s i f e s c u , M., and Theodorescu, R. , 1969,
"Random processes and learning",
Springer.

Norman, M.F., 1972, "Markov processes and
learning models". Academic Press.

T s e t l i n , M.L., 1973, "Automaton theory
and modelling of biological systems",
1973, Academic Press.

Narendra, K.S., and Thathachar, M.A.L.,
1974, "Learning automata - a survey",
IEEE Trans.Syst.Man and Cybem, SMC-4,
323-334.

Narendra, K.S., 1977,
learning automata",
I n f . S c i . , Vol.1,No.2.

"Special volume on
J . Cybem and

11. Mars, P., and Poppelbaum, W.J., 1981,
"Stochastic and deterministic averaging
processors", l E E Research Monograph,
Peter Peregrinus.

12. Srikantakumar, P.R., and Narendra, K.S.,
1982, "A learning model for routing i n
telephone networks", SIAM.J.Control and
Optimiz.

13. Mars, P., and Narendra, K.S., 1987,
"Routing flow control and leaming2
algorithms", l E E F i r s t Int.Conf. on
Telecom Networks", 78-83.

14. Narendra, K.S., and Mars, P.. 1983, "The
use of le a m i n g algorithms i n telephone
t r a f f i c routing - a methodology",
Automacica, 19, 5, 495-502.

15. Narendra, K.S., and Mars. P., 1981, "A
study of telephone t r a f f i c routing using
leaming algorithms", IEEE Conf. on
Comm., Denver, Colorado.

16. C h r y s t a l l , M.S., and Mars, P., 1982,
"Simulation study of switched c i r c u i t
communication networks using leaming
automata routing". Trans.IMACS, XXIV,
281-287.

17. Mars, P., and C h r y s t a l l , M.S., 1981,
"Adaptive routing i n computer
communications networks", Proc.IEEE
Int.Telecommunications Conf., New
Orleans, A3.2.1-A3.2.7.

82

18. Mars, P., Narendra. K.S., and C h r y s t a l l ,
M.S., 1983. "Leaming automata control of
computer communication networks". Proc.of
3rd Yale Workshop on Applications of
Adaptive Systems Theory. 114-119.

19. Ng, W.Y., 1985, "Dynamic routing i n
ci r c u i t - s w i t c h e d networks", Cambridge
Univ.(Dept. of Pure Maths and S t a t i s t i c s)
P r o j e c t Report.

a e a k

EnviTOnment
[Cv-Cr]

Automaton
[Pl(n),...,Pr(n)]

20. K e l l y , F.B., 1985, "Blocking
p r o b a b i l i t i e s i n large c i r c u i t - s w i t c h e d
networks". Adv.Appl.Probability 18.

Figure 1 . - StochuCic Learning Automaton Model

21. Eshragh. N., 1986, "Simulation studies of
telephone t r a f f i c routing". I n t e r n a l
Research Report, School of Eng. and
Applied Science, Univ. of Durham. 22.
Whitehead, M.J., 1983, "An a n a l y t i c a l
model of a c l a s s of adaptive v i r t u a l c a l l
routing procedures, BTTJ, 1, 2, 28-36.

23. Gallager, R.G., 1977, "A minimum delay2
routing algorithm using d i s t r i b u t e d
computation", IEEE Trans.on Comm.,
COM-25,1.

24. Mason, L.G., 1985, "Equilibrium flows,
routing patterns and algorithms for
store-and-forwad networks", J.Large Scale
Systems, 8.

Environment

/3 (̂n)

Figure -• - Automata Game Schematic

25. Narendra, K.S., and Wheeler, R.M., 1983,
"An N-player sequential s t o c h a s t i c game
with i d e n t i c a l payoffs", IEEE
Trans.Syst.Man and Cybern., SMC-13,
No.1154.

26. Wheeler, R.M., and Narendra,
K.S., 1985, "Leaming models for
dece n t r a l i s e d decision making",
Automation. Vol.21, No.4, 479-484.

27. Wheeler, R.M., 1985.
le a m i n g i n games and
Chains", Ph.D.Thesis,
Elect.Eng., Yale Univ.

"Decentralised
f i n i t e Markov

Dept. of

28. Wheeler, R.M.., and Narendra, K.S., 1986,
"Decentralised l e a m i n g i n f i n i t e Markov
Chains", IEEE Trans.Aut.Control, AC-31.
No.6, 519-526.

29. Ahmed. Q.F.. 1988. "Decentralised
decision making i n C - I Systems.
Int.Res.Report. Univ. of Durham.

A p p l i c a t i o n o f Stochast ic L e a r n i n g P e t r i Ne t s t o Small-Scale
D i s t r i b u t e d Dec i s ion M a k i n g Organisa t ions

Q F Ahmed and P Mars
School of Engineering and Computer Science

University of Durham
South Road

Durham

A b s t r a c t

A new class of Petri nets, namely, Siockastic Learning
Petri nets are introduced as a powerful modelling tool
for decision making organisations in complex systems.
This extension to stochastic Petri nets has developed
a model which has the additional feature of an em­
bedded stochastic learning automata. This novel idea
provides an curtificicJ intelligence (AI) based decision
making process embedded wi th in Petri nets. A n ex­
ample application of this modelling tool is presented
to demonstrate the impact that the use of an A I tech­
nique embedded within Petri nets can have on the
performance of decision making organisations.

1 I n t r o d u c t i o n

This paper presents new developments in the
study of distributed decision making in C^I (Com-
mand/Control/Communication/Intelligent) systems.
The analysis and design of complex, survivable and
responsive C^I systems requires novel advances in
the area of distributed decision making under uncer­
tainty. I t is clear that the present largely qualitative
design approaches adopted in C^I need to be replaced
by a systematic quantitative design methodology, [1],
[2].

The paper indicates the potential of an A I ap­
proach based on stochastic learning automata which
provides a conceptual framework for modelling deci­
sion making in complex systems. A n extensive liter­
ature and well established mathematical foundation
now exists for stochastic learning automata, [3], [4].
In general, a learning automaton may be defined as
an element which interacts w i th a random environ­
ment in such a mcinner so as to improve a specified
oversJl performance by changing its action probabil­
ities dependent on responses received from the envi­
ronment. However, this approach is limited in mod­
elling flexibility particularly for arbitrary topologies
of decision models. I t is essential that additional lay­
ers of sophistication are incorporated within the ba­

sic model. Thus, a quantitative framework based on
Petri net methodology (PN) is proposed, [5]. The PN
formalism presents an abstract, formal graph model
useful for representing dynamic processes. In partic­
ular they provide a powerful means for the descrip­
t ion and analysis of systems that are characterised as
being concurrent, asynchronous, distributed and/or
stochastic. Several authors have considered the use of
PNs in the modelling on decision making processes,
[6], [7], [8]. However, in such representations exist­
ing models do not exhibit the intelligence capability
needed to provide effective decision models for C^I
systems in stochastic environments.

The purpose of this paper is to introduce appropri­
ate algorithmic tools for the systematic analysis and
design of complex systems. Hence, a new class of PN
2ire proposed and an application domain is consid­
ered.

2 Stochast ic L e a r n i n g P e t r i Nets (SLPN)

SLPNs are obtaiined by embedding the concept of
stochastic learning automata into the model. A for­
mal definition of a SLPN is thus the following

SLPN = iP,T,A,M,X,MT) (1)

where {P,T,A,M,X) is the stochastic Petri net
(SPN) underlying the model, [9]. The components
may be described as: P = {pi,P2, • • • ,Pn), a fii^te
set of places; T = (i i , t 2 , • • • ,<m), a finite set of
transitions; A C { P x T } U { T x P } , a set of in­
put /output functions; M = (171^,7712,..., m'„), a state
(marking) of PN; A = (A i , A j , . . . , A ^) , a set of firing
rates associated wi th transitions. Mx indicates the
presence of two/three state stochastic learning au­
tomata. A n automaton may be defined as a sextuple
(/?, ^ , a , p , f , G) where 0 = (0,1) is the input set to
the automaton; r/^ = {ipi, V'2, • • •, i'n) is a finite state
set; Of = (ai ,Qr2,••- .QTr) is the output set from the
automaton and each auction is selected with probabil­
i ty p = {pi,P2, Pr); P : X a is a state transition

mapping and G : ip —>• a is the output mapping. A
P-model environment is characterised by a binary i n ­
put set to the automaton /? = (0,1), where j3 = 0 is
known as a favourable response (success) and /? = 1
an unfavourable response (failure).

A t stage n, p(n + 1) = T\p{n),a{n), l3(n)], where
T denotes the rule by which the automaton updates
the probabili ty of selecting the actions. Both l in ­
ear and non-linear forms of the updating algorithm
T have been considered. The most widely used are
the class of linear algorithms which include linear re­
ward/penalty (LRP), linear reward/e penalty {Latp)
and linear reward/inaction (LRJ), [4].

2 .1 M o d e l o f S L P N

Consider the SPN model depicted in Figure 1. By
auedysis of the reachability tree in Figure 2, i t is evi­
dent that the SPN model may exhibit one of six dif­
ferent states, depending on the transition that fires.
Several transitions may be simultaneously enabled by
a particular marking. Assume that H is the set of en­
abled transitions, then a transition ti {icH) fires with
probability:

(2)

as stated previously, A is the firing rate associated
wi th PN transitions. Thus, the different states of
a SPN define probability ratios which correspond to
the firing of each transition. In any state, the sum
of probability ratios is always equal to unity. For ex­
ample, consider state M i = [1100]; the enabled tran­
sitions are ^ i , <2 and tz and their respective firing
probabilities may be defined as follows:

P r { f : } =

P r { t 3 } =

(a -f /? -f 7)

(a - l -^ - l -7)

(3)

(4)

(5)

Thus,

Pr{h} + PT{t2} + Pr{tz) = l (6)
The concept of a stochastic automaton may be in ­

troduced to select probabilistically the transition that
fires. A transition selected in a particular marking
corresponds to an action selected by an automaton.
The firing o f the chosen transition determines the
next state (marking) of the system, by modifying the
token distr ibution. In the tree representation of the
SPN, Figure 2, there exists both two-state and three-
state automata. (Zkjnsider the following cases:

Two-s ta te A u t o m a t o n I t is clear that state
Af2[0200] and state M3[1011] represent a two-state
automaton, as depicted in Figure 2. The SPN with
marking M2 enables transitions and t^, since tokens
are present in the input places (pj)- Each transition
has an equal initial probability of being selected. The
firing of t2, determines the next state of SPN to be
Mo; the firing of is, determines that the next state
is M4. The firing probabilities for each transition is
given:

M i 2 } = 7 : ^ , P r { t 3 } = ^
(/? + T)' (/3 + 7) (7)

Similarly,

Pr{u} + Pr{t3} = 1 (8)

This concept also applies to state M3.

Three-state A u t o m a t o n Clearly, the states M i
and M4 correspond to a three-state automaton. I t is
shown that the transitions ti, to and tz are enabled;
each transition has an equal initial probability of be­
ing selected. The possibility of firing <i, determines
the next state is M2; the firing of determines the
next state of the SPN to be MQ ; finally, i f is se­
lected by the automaton then the state transfers to
M3. A similar concept also applies to state M4.

Note that the transition firing probabilities in each
state Mo and M5 is always equal to unity. Since in
state Mo, the only transition that is enabled is ti,

P r { M = r = i (9)

Thus, i t must fire with probability one. Similarly,
in state M5 the only transition that is enabled is ^4.
so i t must also fire with probability equal to unity.

Hie ra rch ica l Sys tem o f A u t o m a t a The reacha­
bility tree may now be considered as a simple hierar­
chical system of automata; each slate corresponding
to an automaton. I t may be noted that in a hierar­
chy each action has a unique path connecting i t to
the automaton (state) that has been selected previ­
ously, or to an automaton at the top level (state Mo)-
From the tree structure of Figure 2, i t is possible to
define nine unique paths which may be considered as
sequence of states/ decisions. To introduce the con­
cept of an environment into this model, each sequence
of states is associated with a reward probability-

The operation of this hierarchical learning system
is as follows. A t any instant the first level automaton,
state Mo selects an action (fires ^ i) . This activates an
automaton in the second level which fires a transition

from its current transition probability distribution.
This in turn activates, automata in the next level and
so on. However, i f a particul«ur sequence of decisions
corresponding to a unique path has been reached; the
environment in turn generates a reward/ punish sig­
nal as its reaction. The reaction of the enviroimient
is used to update the transition probabilities for the
various levels of automata in the selected path. This
process repeats unti l al l the probabilities in one path
become close to unity from the top level (Mo) to the
lowest level (M 5) . Such a system may be considered
as a SLPN model; structure is shown in Figure 3.

3 S i m u l a t i o n Resul ts : S L P N

This section presents a computer simulation result
for the SLPN model. The reward parameter is indi­
cated; and P r (i , j) denote the transition firing proba­
bilities, where i represents the state of the system cind
j provides the notation for the transition that fires.
For example, consider the notation for state M j fir­
ing transition ^3; the transition firing probabOity is
P r (l , 3). Expected values are denoted by the expres­
sion Pr(i,j) = E[Pr(i, j)]. In the simulation study
the hierarchical system in Figure 2 was examined. To
simulate this SLPN, all of the reward probabilities in
the environment were in the range [0.2 - 0.45] except
the unique maximum reward probability which was
set to 0.9. A n LRJ updating scheme was used to up­
date action probabilities for the selected path.

Table 1 provides the reward probabilities of the en­
vironment which are used for simulation. Note that
the unique maximum reward probability is associ­
ated wi th the selected sequence of decisions. Con­
sider Table 1 which illustrates the convergence to the
unique maximum reward probability, such that se­
quence 1 is selected from the reachability tree. This
sequence represents the path MO - P r (0 , 1) ; M 1 -
P r (l , l) ; A f 2 - P r (2 , 2) ; A f l . In this case, transition
probability vector in state MO is equal to \mity; since
ti must always fire wi th probability equal to one. Also
the convergence of transition probability P r (l , l) in
the three-state automaton M l ; and Pr (2 ,2) in two-
state automaton M 2 show that the optimal path se­
lected is sequence 1, which has the unique maximum
reward probability.

Similarly, the learning performance can be ob­
served for a l l sequence of states of the SLPN model.
In each case the transition probability vectors that
converge close to unity, correspond to the sequence
of decisions associated wi th the unique maximum re-
wjird probability.

4 A p p l i c a t i o n : Small-scale C ^ - I System

The following sub-section presents the model of the
interacting organisation member. An application of
the SLPN to a specific two decision maker organisa­
tion is examined. A series of experiments are per­
formed to observe the learning behaviour of the or­
ganisation.

4 .1 M o d e l o f t h e Decis ion M a k i n g Process

A four stage model on the decision maker has been
developed, [7], that permits the detailed and explicit
specification of the interactions among organisation
members. The internal structure of the four pro­
cessing stages, is depicted in Figure 4. This shows
that a decision maker receives an input signal x, from
its environment <ind undergoes a four stage process.
The first and last of these stages, situation assess­
ment (SA) and response selection (RS), model the
actual decision mziking process while information fu­
sion (IF) and command interpretation (CI) allow for
interaction of the decision module (DM) with other
members of the organisation. The SA stage consists
of a set of i / algorithms that are capable of produc­
ing some situation assessment z. The RS stage also
contains set of V algorithms which are required to
produce the final decision response. This informa­
tion may in turn be combined in the IF stage to yield
2. The fused assessed situation, z, is processed by
one of the algorithms in the RS stage. The CI stage
of the model allows 2 and the input v to influence the
choice of this algorithm; v may be considered to be
a command capable of restricting options. The RS
stage contains algorithms that produce output y in
response to the situation assessment z and the com­
mand inputs.

4.2 T w o N o d e D i s t r i b u t e d Organisat ion

Figure 5 shows in Petri net form the first model pro­
posed for study. The example consists of a two node
organisation: a submarine decision module DM1 and
a surface ship decision module DM2. Each D M re­
ceive signals from the environment and can respond
to the environment. The D M module consists of three
possible strategies, although the SA stage selects only
a single strategy to process the information. For ex­
ample, the D M must decide between the following
three options:

S t r a t egy SA,- process information without using
Decision Support System (DSS);

S t r a t egy IT,- select a response via an intelligent ter-
mined;

strategy MF.- utilise the DSS.

4.3 Pe r fo rmance o f T w o N o d e Organ i sa t ion

Figxire 6 demonstrates the application of the SLPN
approach to examine the behaviour of the two node
organisation. A n approach has been adopted by em­
bedding the concept of SLPN in the SA and RS stages
for the decison module. Therefore each D M con-
teiins four leaming automata interconnected in the
form of a tree structure. As illustrated in Figure 6
the automata are arranged in two levels. The h i ­
erarchy consists of a single automaton at the first
level, and three automata in the second level. For
decision module D M 1 , the three options (S A i , I T i ,
M F i) cire selected wi th equal in i t ia l probability; sim­
ilarly for DM2 (SA2, IT2, M F j) . Also each RS stage
has two alternate possibilities which are selected wi th
equal ini t ial probability; thus producing six possible
paths for each D M . The strategies associated with de­
cision module D M 1 and D M 2 axe (pi,p2,... ,pe) and
(9i)92)• • • j ^ e) respectively. There are 36 (6x6) pos­
sible combinations of decision strategies fed to the
environment. Considering this structure, Figure 6,
for each pair of strategies selected by the decision
modules the environment responds stochastically to
punish/reweird the selection of a particular pair. One
pair of decisions is optimum (ie. gives minimum pun­
ishment or maximum reward).

4.4 E x p e r i m e n t a l Resul t s

The following experiments [1-3] illustrate the learn­
ing performance of a two node organisation, as de­
picted in Figure 6. For these experiments, the main
objective is such that both decision modules select
the optimal pair of decision strategies from 36 (6x6)
possible combinations of decision pairs input to the
environment. As stated previously, decision mod­
ules are in the form of a two level hiereirchical sys­
tem. To simulate these modules, the reward proba­
bilities i n the range [0.2-0.5] are associated wi th paths
{Pi,P2,---,P6) and (pl ,P2,--- ,36) for decision mod­
ules D M 1 and DM2, respectively. However, in this
case the unique maiximum reward probability which
is set to 0.9 exists for each D M 1 and DM2. Thus, a
single path from the set (pi,p2,.. .,pe) for D M 1 is as-
sociatd with a unique maximum reward probability;
and also a single path form the set (51,92, • • • > Pe) for
DM2. A n LRJ scheme was adopted to update action
probabilities for the optimal strategy pair were up­
dated. The conditions for each experiment are var­
ied by considering the selection of optimal strategy
pairs; sudden switch of environmental conditions and
by permitting communication between both decision

modules at upper and lower levels. The reward pa­
rameter and reward probabilities are given; the ex­
pected values are denoted by p i = E[pi(n)] .

E x p e r i m e n t 1
The simulation results in Table 2 demonstrate the

leaming behaviour of a two node organisation. The
table indicates the value of the reward parameter; the
unique maximum reward probability to be employed
by the environment and the expected values denot­
ing the convergence to optimal strategy pair. In this
case the unique maximum reward probability is asso­
ciated wi th path P4.92 for decision module DM1 and
DM2, respectively. The results confirm that the coor­
dinated decision strategies selected by each decision
module converges close to unity. Hence, the optimal
pair of decisions selected by D M 1 and DM2 is P4.92-

E x p e r i m e n t 2
The previous experiment 1 was repeated, with the

additional concept of a sudden switch to a differ­
ent environment. By repeating experiment 2, i t can
be seen that both decision modules converge close
to tmity by selecting the optimal pair of decision
strategies. The sudden switch in the environment is
achieved by re-locating the imique maximum reward
probability , such that an alternate pair of decision
strategies may be selected.

This behaviour is best illustrated by analysing the
results in Table [3a - 3b]; till relevant parameter values
cire indicated. The simulation results show how fast
the stmcture learns convergence to the new optimal
strategy pair. I t is evident from Table 3a that both
decision modules DM1 and DM2 select the optimal
strategy pair Pi.?i; and convergence for this pair is
close to unity. However, after introducing a sudden
switch of the environment the coordinated decision
strategy pair ps.gi is selected. Thus, Table 3b shows
a decrease in convergence for path p i selected by DM1
and a rapid increase in convergence close to unity for
strategy pair Ps.gi.

E x p e r i m e n t 3
This final experiment gives an excellent illustra­

tion of speeding up the leaming process by permitting
communication between decision modules DM1 and
DM2 (as indicated by dotted lines Figure 6). Note
that in each of the following experiments an arbitrary
value for the stepsize is considered.

First set of results in Table 4a illustrates commu­
nication between automata at the top level of the
hierarchy for each decision module. To simulate this
structure, both automata at the top level (SAI and
SA2) exchange messages such that i f each selects ac­
tion one, then the reward parameter is incremented
by stepsize 4. From Table 4a, i t can be seen that the
convergence rate for strategy peiir Pi.91 rapidly in-

creases close to unity; since the unique maximum re­
ward probability is associated with this strategy pair.

Second set of results in Table 4b exemplifies com­
munication between automata at the top cind lower
levels of the hierarchy for each decision module. The
same rule is applied, that is, i f both automata at the
top and lower level select action one, the reward pa­
rameter is increased by stepsize 4. Similar to the
previous case, the results i n Table 4b show rapid con­
vergence close to unity for both levels of automata. In
comparison to the previous experiment, there is only
a fractional increase in convergence rate by permit­
ting communication between upper and lower levels
automata.

5 Conc lus ion

This paper has defined a high-level quantitative
framework based on Petri net methodology. I t has
proposed a new class of Petri net modelling tool for
an effective representation of decision models. This
approach has enhanced the modelling power of Petri
nets. The modelling technique has exhibited a data
flow formation, and an A I decision making process
embedded within the net. The application of the
modelling tool to a non-trivijd example has been con­
sidered. This has illustrated the modelling flexibility
and suitability to a realistic distributed decision prob­
lem.

References

[1] M . Athans. Command and control theory: A chal­
lenge to control science. IEEE Trans. Aui. Con­
trol, AC-32(4):286-293, 1987.

[2] A . P. Sage. Information systems engineering for
distributed decision making. IEEE Trans, on Sys­
tems, Man and Cybernetics, SMC-17(6):920-936,
Nov.-Dec. 1987.

[3] K . S. Neirendra and M . A . L . Thathachar. Learn­
ing automata — a survey. IEEE Trans, on Sys­
tems, Man and Cybernetics, 4(4):323-334, July
1974.

[4] K . S. Narendra. Learning Automata - An Intro­
duction. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1989.

[5] J. L . Peterson. Petri Net Theory and the Mod­
elling of Systems. Englewood Chfis, NJ: Prentice-
Hall, Inc., 1981.

[6] D. Tabak and A . H. Levis. Petri net representa­
tion of decision models. IEEE Trans, on Systevis,

Man and Cybernetics, SMC-15(6):812-818, Nov.-
Dec. 1985.

[7] A . H . Levis. Information processing and decision
making organisations: a mathematical descrip­
tion. Large Scale Systems, 7:151-167, Nov.-Dec.
1984.

[8] S. L . Skulsky and A . H . Levis. Migration of
control in distributed intelligence systems. Proc.
IEEE Int. Symposium on Intelligent Control,
pages 74-81, Sept. 1989.

[9] G. Marsan M . A. , Balbo and G. Conte. Perfor­
mance Models of Multiprocessor Systems. Cam­
bridge, M A : The M I T Press, 1987.

• I " H I I

• 1 a ' * f ' . IT l i
<4 4 1 C 1 C« tor 1 Q

Figure 1 - Stodiastic Petri Net Fignrc 2 - Reachability Tree
m-^B

Tlii tmmii — * ' o 111 1—ii
-

N« A o o n a

Figure 3 - Stodiastic Learning Petri Net (SLPN)
Q

» / \ « I ^ » ^ ' • n ' o 'I '

Figure 4- PN Model of Interacting Decision Maker

Figure 5 - Two Node Organisaiion Siqjponed by DSS

r WAKOPRCMA n r i Y
i 0 > 3 3 « 9 t 1 %
<: u s M 045 02 03 0 2 03 04 04

S PrfOJ) W U) w i a frOX) P>a3)
0 1.00000 033333 0J33333 0333333 osooooo 0500000
600 IjOOOOO 0.5504S2 0.213781 023S7S7 0.709502 02SO498
1200 liWOOO 0.728851 0J13456 0057693 0.840304 0J59696
1800 1.00000 0J818899 0:075722 0J0S380 0893398 0J066a2
2400 liXXWO 0.864098 0.056823 0J779079 OJ20004 0.079996
3000 1.00000 0J91233 0i)45477 0.063290 0535977 0M4023

n PiO.4) Pi<42) Pi(433 W , 4) W5.4)
0 OJOOOO 0.500000 0J33333 0.333333 0333333
600 0>453162 0.546838 0J67937 0.324951 0307112 LOOOOOO
1200 0J86330 0£13S70 0J84717 0384717 0284671 1X00000
1800 QJfi255S 0.637442 0390320 0390320 0^77178 1X00000
2400 0J50662 0.649338 0J93123 0393123 0273429 1.000000
3000 0J43521 0.656479 0J948O6 0394806 0271178 1X00000

TaUe I - Opiinul Paih (Sequence 1)

SEWAIS rAKAMEIBl - O M

B pl P2 P3 T>4 p5 p6
0
600
1200
1800
2400
3O0O

3J66666
0J2Z7S2
0X63909
3X42560
3X31903
3X25514

0.166666
0.124708
0X6S275
0.043563
0.032689
0.026160

0J66666
0.173771
0.128113
0.094769
0.074587
0X61355

0J66666
034SS29
0.624448
0.740Z71
0.801693
0.839669

0.166666
0.127226
0.064294
0.042815
0.032094
0.025667

0J66666
0JO6O13
0XS396I
0X36021
0X27033
0X21635

B ql o2 fl3 o4 05 06
0
600
1200
1800
2400
3000

3J66666
0.166504
0.108945
0X78SS2
0.06Z235
0X49974

0J66666
0457269
0.694528
0.790430
0.»W6a2
0^71415

0J66666
0J38S86
0X70578
0X46577
0X34755
0X27718

0J66666
0J3O716
0X70720
0X47621
0X35894
0X28801

0J66666
0X54399
0X28651
0X19225
0X14465
0X11595

0J66666
0X52525
0X26577
0X17594
0X13149
0X10497

Table 2- Optimal S t i a t ^ Pair p4. q2

SEWAtD r A M U B i m - o n

lEWMtDnCBABILUr ĉ , -o

B Pl B2 p3 P4 P5 p6
0
600
1200
1800
2400
3000

3J66666
0̂ 434715
0.£562<5
3.762995
3.819308
3.854036

0.166666
0.187078
0.128620
0.093581
0.073124
0X59909

0.166666
0.128409
0.081050
0.054786
0.041371
0.033233

aj66666
0J0S40S
0X62218
0X4O7Z7
0X30263
0X24075

0.166666
0X65751
0.032926
0.021841
0.016339
0X13052

0J66666
0X75637
0X38940
OX26O70
0X19594
0X15695

B ol o2 03 o4 o5 o6
0
600
1200
18O0
2400
3000

9J66666
0396374
0.623670
D.7401Z7
0.801726
0J39764

0.166666
0.150584
0.113208
0X84455
0X61028
0.054985

0.166666
0.177897
0.1166O4
0.080160
0X61028
0.049259

0J66666
0J65S83
0X91556
0X58616
0X43054
0X34007

0.166666
0.056801
0.028705
0.019184
0.014406
0X11533

0J66666
0X52760
0X26255
0X17456
0X13075
0X10451

Table 3a- Before Swiidi - pl.ql

N \ \ \ \ \ \ \ \ g « ° « « < A , \ \ \ \ \ \ \ \ \ \ \]
h k . I C ic.. j c , I C | C 1^ |c. | C , Ic, k . I c | c 1^

Hgure 6 - ISedsion Modules

lEWAID F i O A U B i a - O t t

B pl P2 P3 P * p5 P6
0
600
1200
1800
2400
3000

3.854036
0.583030
0302103
1201256
9J50887
DJ206S3

0X59909
0X33474
0X18049
0X12179
0X09189
0X07378

0X33Z33
0264141
0J734O7
0.704976
0.774746
0.817884

0X24075
0J02O45
0X97502
0X75629
Oi)60707
0X5O«79

0X13052
0X07646
0X03883
0X02574
0X01925
0X01537

0X15695
0X09663
0X05056
0X03385
0X02544
0X02038

B Ol o2 o3 04 05 o6
0
600
1200
1800
2400
3000

9.837764
0.9OO723
0.946919
1.964462
1.973289
05786O4

0X54985
0X58983
0X32772
0X21999
0X16556
0X13272

0X49259
0X20865
0X10368
0X06879
0X05147
0X04112

0X34007
0X15002
0X07705
0X05169
0X03889
0X03117

0X11533
0X02343
0X01172
0X00782
0X00586
0X00469

0X10451'
0X02123
0X01062
0X00708
oxoosn
0X00425

Table 3b- Afier Swudi - p3.q 1
lEWAXD P A l A U E i a - a u

KEWAKDRSS^SIUTr S,

B pl P2 P3 P * p5 P6
0
600
1200
1800
2400
3000

3J66666
0.838864
0.917820
9.944856
3.958508
9.966742

0J66666
0J01717
0X52470
0X35337
0X26637
0X21374

0J66666
0X14694
0X07341
0X04892
0X0360
0X02935

OJ66666
0X14704
0X07359
0XM9a7
0X03681
0X02945

0J66666
0X15153
0X07583
0X05057
0X03793
0X02945

0J66666
0X14867
0X07427
0XO4950
0X037U
0X02969

B ol 02 o3 o4 o5 0«

0
600
1200
1800
2400
3000

U66666
0JOO723
0.946919
D.964«62
0.973289
9.978604

0J66666
0X58943
0X32772
0X21999
0X16556
0X13232

0J66666
0X20865
0X10368
0X06879
0X05147
0X04112

0.166666
0.015002
0.0077QS
0.005169
0X03889
0.0O3117

OJ66666
0X02343
0X01172
0X00782
0X00586
0XOO<69

0166666

0X01062
0X00708
OX0O531
0.000425

Table 4a- Top Level Commnnication

tSWiODRCBABUrr s,

0 Pl P2 p3 p4 B5 p6
0
600
1200
1800
2400
3000

3 J 66666
0JO9O35
0.953980
1.969201
1^76856
3.981463

0J66666
0X39772
0X20423
0X13734
0X10345
0X08289

0J66666
0X12995
0X06498
0X04332
0X03249
0X02599

0.166666
0X13038
0.006519
0X04346
0X03259
0.002607

0^66666
0X12565
0X062S4
0X04190
0X03143
0X02514

OJ66666
0X12593
0X06295
0X04196
0X03147
0X02518

B Ol o2 03 04 05 o6
0
600
1200
1800
2400
3000

1.166666
0.903764
0551279
9.967384
9J7S487
3.980365

0J66666
0X42945
0X22077
0X148S2
0X11189
0X08976

0J66666
0X20865
0X10368
0X06879
0X05147
0X04112

0J66666
0X15087
0.007532
0X05019
0.003763
0.003010

0J66666
0X10S36
0X05418
0X03612
0X02709
0X02167

0J66666
0X11427
0X05714
0X03809
0.002857
0.002286

Table 4b- Topiower Level Communic aiion

