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Abstract 
This thesis is concerned with the investigation of highly condensed, 

highly viscous siUcate systems by means of NMR methods (mainly 29si-NMR 
investigations). The work focused on sihcate solutions containing colloidal 
particles in sol and gel form with the interest of the work centred on the 
systems near the sol/gel-transition. Quantitative information about the 
behaviour of sihcate species in these sihcate systems is presented and some 
information about tiie role of protons and sodium cations in the sihcate 
solutions is provided The structure of the colloidal material existing in these 
highly condensed silicate systems is investigated along with the behaviour of 
colloidal particles in several situations such as decreasing alkalinity or 
changing Si02-concentration. Additionally an idea of the range of particle 
sizes in the colloidal material in highly-condensed silicate solutions has been 
obtained. The dynamics of the sihcate systems were studied in terms of 
rotational mobihty as well as dififiisive motion. Exchange processes between 
sihcate species were monitored using 2D-exchange spectroscopy. An 
investigation of the influence of additives, in particular surfactants, on highly 
condensed sihcate systems was carried out by adding representative surfactants 
of the categories cationic, anionic and non-ionic. 

Memorandum 
The research presented in this thesis has been carried out at the 

Department of Chemistry, University of Durham, between October 1991 and 
March 1994. It is the original work of the author imless stated otherwise. 

Some prelunmary work on this topic was imdertaken for the 
Diplomarbeit at the Technical University of Braunschweig, the experimental 
work being carried out at the University of Durham under the supervision of 
Prof. R.K. Harris. Although this provided valuable basic information and 
training, none of the detailed results are used in the present thesis except 
where specifically stated otherwise. 

The copyright of this thesis rests with the author. No quotation from 
it may be published without her prior written consent, and information 
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1. INTRODUCTION 

Aim of the work 
and the industrial importance of siHcate solutions 

This thesis is concerned with the investigation of highly condensed, 

highly viscous silicate systems by means of NMR methods (mainly 29si-NMR 

investigations). The work focused on silicate solutions containing colloidal 

particles which are of considerable technological importance. 

Soluble silicates are among the most widely used inorganic chemicals. 

They have properties not shared by other alkaline salts. Sihcates are often 

preferred to other alkalis as soda ash because of their corrosion inhibition 

properties and detergent attributes 1. Additionally to this their production can 

be done at relatively low cost. Sodium silicate is used in far greater quantities 

than siHcates based on other alkali metals. The range of appUcations falls into 

the main categories - detergent, adhesive and chemical. Sodium and potassium 

silicates are practically the only inorganic materials used as adhesives because 

of their reasonably rapid set and high strength which also qualifies them for the 

production of paper products, particularly tubes and drums. They are suitable 

for use in the treatment of potable and industrial waters as very efficient 

coagulation aids and corrosion preventers in the water distribution systemŝ . 

Coatings based on soluble silicates are used for various purposes such as the 

sealing of porous surfaces, heat insulation, the binding of loose fibres^ and the 

formulation of certain paints^^ .̂ Another important application of silicates is 

as a binder for water-resistant compositions of siliceous cement, which can be 

used as a filter medium^, for sand in foundry operations providing a longer 

period for shaping without increasing the set-time^ and as binders for organic. 
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inorganic and mineral fibres in products such as paper̂ . Most silicate 
applications require the material in the form of an aqueous solution. 

Several investigations have been carried out on a variety of sihcate 

solutions in the past using methods based on physical propertiesl^'l 1, chemical 

reactionsl2,13^ diffiaction and scattering techniquesl^'l^, microscopic 

methods 1^ and other spectroscopic methods than N M R I ^ . The first pubhshed 

29si-NMR spectrum of a silicate solution can be attributed to Marsmaim^ .̂ 

Amongst all these analytical techniques N M R methods can provide a wealth of 

information without interfering with the structuring in the sihcate. 

The NMR investigations carried out so far, however, mainly focused 

on silicate solutions with a low degree of condensation and without colloidal 

particlesl^'20 Because of several experimental difficulties highly condensed, 

highly viscous silicate solutions have not been intensively investigated so far in 

spite of their extreme importance and usefulness. These investigations are the 

first ones considering the importance of the quantitative aspect in the NMR-

analysis of highly condensed siUcate systems and providing a method for the 

quantification in silicate systems. In this work substantial valuable 

quantitative information about the behaviour of sihcate units in sihcate systems 

with colloidal particles is presented and some information about the role of the 

protons and sodium cations in the sihcate solutions is provided. 

Silicate systems on both sides of the sol/gel-transition were considered, 

with the interest of the work centred on the systems (sols and gels) near the 

transition. The work was mainly focused on the investigation of sodium 

silicate systems. Nevertheless some valuable new information was obtained on 

the behaviour of potassium silicate systems. 

The main aspects under which the silicate solutions were studied are 

the structure of the colloidal material existing in these highly condensed silicate 

systems and the behaviour of colloidal particles in several situations such as 

decreasing alkalinity or changing Si02-concentration. The dynamics of the 
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silicate systems were investigated in terms of rotational mobility, vdiich 
provided a deeper understanding of the relaxation times as well as diffusive 
motion. Although self-diffusion measurements are routine for protons and 
fluorine in one-component systems^l, the use of field gradients in the 
measurement of silicon self-diffusion in highly condensed multicomponent 
systems is imique. Exchange between silicate units was monitored using ID-
exchange spectroscopy and for the first time quahtative as well as quantitative 
information about the exchange of highly condensed silicate units was 
obtained. 

Almost any process or product that involves the interaction of a solid 

and a liquid phase (e.g. in colloidal systems) will be affected by surfactant 

adsorption. Therefore this area represents a major segment of the technological 

application of silicates. One of the very early uses of viscous silicate solutions 

is in detergent systems in combination with surfactants and/or soaps in 

detergent systems. This is clearly due to their soapy feel, wtdch combined with 

a lower alkalinity than that of caustic soda, make them good builders for 

detergents'̂ . Their role in today's detergents is a combination of several effects, 

so they are proposed to assist in the deflocculation of soil and prevention of its 

redeposition and they help structure the spray-dried soap-powder. Fabric 

washing powder, for instant, can contain up to 15wt% sodiimi silicate in a 

range of Si02:Na20-ratios5. 

An important part of this work is concerned with the influence of 

surfactants on silicate systems. There is some information available on the 

interaction of surfactants with the surface of suspended sohd sihca22-24 on 

the effect of the surfactant on silicate systems near the sol/gel-tiansition no 

information was available beforehand. Representative surfactants of the 

categories cationic, anionic and non-ionic were added to silicate systems, and 
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novel information was obtained on the "reaction" of highly condensed silicates 
on the surfactant addition. 
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2. THEORY 
A NMR-theory 
1. General theory 
1.1 Resonance condition 

Nuclear magnetic resonance spectroscopy can only be applied to nuclei 

with a non-zero nuclear spin . The nuclear spin is characterised by the angular 

momentum quantum mmiber I . In most cases the magnetic moment jaj is 

parallel to the vector describing the nuclear spin of a nucleus. However, in the 

case of 29si they are antiparallel. The magnetic moment is characterised by the 

magnetogyric ratio, y, which is a constant specific for each isotope 1. 

= y * h * [ l { l +1)]"^ [1] 

Under the influence of a strong magnetic field BQ the spin-axis of a 

nucleus with I # 0 vsdll orient at an angle to the field BQ with a quantization of 

energy taking place, the orientation giving rise to 21+1 energy-levels. The 

energy E of these energy-levels relative to the energy at zero-field is: 

E - y^h"^ Bq* rrij [2] 

where mj is the magnetic quantum number, which can adopt numbers between 

1,1-1,1-2 ,1-3 ....and ....-1+3 , -1+2 , - I + l , - I [3] 

For nuclei with 1=1/2 (e.g. protons, silicon) this results in two m-values 

(m=+l/2andm=-l/2). 

The radiation-induced ti-ansitions are generally restiicted to: 
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A ni j = ± 1 [4] 
There is a constant interval between neighbouring energy-levels. 

A E = y* h*^ [5] 

Nuclear magnetic resonance is the phenomenon observed i f an external 

oscillating magnetic field B j with the correct polarisation is applied, which 

fulfils a special frequency condition. This condition, widely known as 

resonance, implies that the frequency at which B j is oscillating is equal to VQ, 

which is the Larmor frequency of an observed nucleus in BQ, and that B j has 

the same direction of rotation as the precessing nuclear dipoles .̂ In this case 

the nucleus absorbs energy from the Bj-field and is promoted to an excited 

state. This absorption of energy is measured in NMR-spectroscopy. 

/z*2 7rVo = A E = y*^*Bj ) 

V„ = * [6] 
2 71 

[7] 

This equation, conmionly called the Larmor equation, describes the 

basic phenomenon of nuclear magnetic resonance 1=2,3 
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2. Classical picture 
2.1 Rotating frame of reference 

I f a magnetic field B j , which rotates with the Larmor frequency of the 

observed nucleus, is applied perpendicular to the static magnetic field B Q along 

the x-direction, the nuclear moments interact with the magnetic vector of this 

electromagnetic irradiation. The result is that their equilibrium is disturbed and 

the overall magnetisation is not parallel to the Bo-field any more. 

In all cases of the macroscopic magnetisation being in equilibriimi or 

being perturbed, the Larmor frequency is superimposed on all movements of 

the spins in the static field. Since in a fixed co-ordinate system movements of 

Mq are very difficult to describe, a rotating co-ordinate system is used which 

rotates with the same frequency as Bj^ . 

The angle of the perturbation caused by electromagnetic irradiation 

with the frequency vo (Bj) is dependant on the pulse duration xp, Bj and y. 

1 p p j 

3. Relaxation 
3.1 General theory 

The quantum mechanical view of the NMR experiment is based on 

time-dependent perturbation theory, where the energy of a nuclear spin state is 

a function of two perturbations^. The larger of the two results from the 

influence of the external field B Q . When the sample is placed in a magnetic 

field, there are transitions from states of high energy to states of lower energy. 

These transitions are governed by the longitudinal relaxation time, Tl . The 

smaller of the two perturbations is time dependent. It results from the rf field 

B } , which causes transitions from lower to upper states within an energy 
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manifold. These are governed by the transverse relaxation time, T2. The 
energy states are illustrated in Figure 2-1. 

Figure 2-1 

EN E R G Y 

upper manifold 

lower manifold 

The longitudinal relaxation time T l , also referred to as the spin-lattice 

relaxation time, describes the change of nuclear magnetisation in a direction 

parallel to that of the static field, BQ. In other words Tl characterises the rate 

at which thermal equilibrixmi between spin-states is restored following the 

absorption of energy fi"om a radio frequency signal or following the exposure to 

a static magnetic field. 

The transverse relaxation time T2, also referred to as the spin-spin 

relaxation time, characterises the process of precessing nuclear spins gradually 

losing their phase coherence, which means an entropy increase for the system .̂ 

Chemical exchange processes in the system cause loss of phase coherence and 

thus affect T25. 

In the solution state there are rapid and random motions which include 

rotational tumbling of individual molecules, relative translational motion and 

migrations of atoms or groups from one molecule to another. (Vibrations are 

usually too rapid to make effective relaxation pathways.) These motions 
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considerably reduce the coupling between nuclear spins so that the spins can be 
considered as individual systems coupled to the lattice. By "lattice" usually the 
translational or rotational degrees of freedom of the molecules in which the 
nuclei are located are meant. The energy transfer for the relaxation process can 
occur i f the coupling vectors are functions of time. It is the differences 
between these functions over intervals of time T that determine the correlation 
function^. The longer these intervals are the less correlation is foimd. The 
correlation time expresses the duration of a correlation between configurations 
of a molecule at two different times. It is a characteristic value which is shorter 
the faster the motions are. The correlation function is frequently considered 
to decay exponentially in the time domain '̂̂  illustrated in Figure 2-2. 

G ( T ) = G(0)e-(t / t) [9] 

The Fourier transformation of the correlation function yields a function 

in the frequency domain. The resulting spectrum of frequencies is known as 

the spectral density J(co) '̂4,6 

J(«>) = T T f e r [101 
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Figure 2-2 

Figure 2-3 

n 

The spectral density can be represented as a fimction of x at constant oo as 

illustrated above in Figure 2-3 or as a fimction of the frequency co at constant x 

as shown in Figure 2-4 below. 

Figure 2-4 
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The point at half intensity characterises the inverse correlation time 1/x. 
In both plots it can easily be seen that at a working field of Bo and a working 
frequency of coo the spectral density J(a)), vAach can be described as the 
frequency distribution of the components of the motionaUy induced local 
fluctuating field, is a maximum at the point wdiere T=1/(0O '̂̂ . Both the spin-
lattice and the spin-spin relaxation time are dependent on the spectral density. 
Only in the case of the spin-lattice relaxation time does a correlation time x 
equal to coo cause most effective relaxation and give rise to a maximal 
relaxation rate .̂ The behaviour of the spin-lattice and the spin-spin relaxation 
time as a fimction of increasing correlation time x (decreasing mobility) and the 
operating field B Q is illustrated in Figure 2 - 5 . The functions reflect the 
dependency on x and are independent of the distance separating the nuclei. It 
has to be noted that in the region v^ere x 2 » 1/(0q^ not only the spin-lattice 
relaxation time but also the spin-spin relaxation time show a field-
dependencŷ ^̂ O 

Figure 2 - 5 shows the dependency of spin-lattice and spin-spin relaxation times 

on the correlation time and the spectrometer operating frequency assuming a 

single type of isotropic motion (and no sudden variation at phase changes). 

Figure 2-5 ^ (tp,) Ti (ui^) 

o 

X 
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The lifetimes of spin states are generally influenced by fluctuations in 
the local magnetic field. In relaxation via dipole-dipole interactions, for 
instance, each spin experiences a fluctuating magnetic field which is produced 
by neighbouring spins and induces transitions among its levels. There are 
several other mechanisms causing relaxation of a spin, which are 
discussed in section 4.2. 

The possible transitions between the various eigenstates of an AX spin 

system are given by their mixing under the influence of the local fields, and the 

transition rates W are obtained by solving the Schroedinger equation with the 

perturbation Hamiltonian '̂̂ (t), which represents a randomly varying interaction 

with average value zero fluctuating in the interval t. 

In quantum mechanical terms the dipole-dipole interaction between 

two spins I and S can be written aŝ  : 

p(q) are random functions of the relative positions of two spins, and the 

specfral density describes all their time variations during an interval t-H 

A(q) are operators acting on the spin variables 

If the correlation time for the random change of Kl(t) is very short, i.e. much 

shorter than the Larmor period, all spectral densities J((oX-(oA), J(coX+(oA) 

and J(coA) become independent of co and equal to J(0)5. This is the condition 

of extreme narrowing^,^ 

In the Tl-process (z magnetisation) spin states can only exchange 

energy with components in x- and y-direction. The T2-process (y 

magnetisation) can only be influenced by spin states with gradient components 

in X- and z-direction. The influencing of spin states by the z-component of a 
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fluctuating field is an adiabatic process described by the term J(0), which only 
occurs in the characterisation of the T2-process '̂̂ . 

At the Tl-minimum the molecules undergo motion which is equal to 

the period of Larmor precession, and the correlation time x equals l/coo. In 

systems with molecules undergoing motion which is slow compared with the 

period of Larmor precession, the transverse relaxation time T2 is considerably 

shorter than Tl^ ,^ . 

3.2 Spin-lattice relaxation and its mechanisms 
There are several mechanisms, all of which are dependent on molecular 

parameters which can contribute to the local fluctuating field, i.e. the gradient 

causing transitions and thus relaxation. All these relaxation interactions are 

modulated by molecular rotation or translation. The tiansition probabilities 

between levels i and j must be summed over all possible mechanisms to give 

the total transition probability ̂ '4. 

w . , = y w!" m 
j [12] 

m 
Similarly, the sum of relaxation rates due to the single contributions of 

mechanisms yields the overall relaxation rate measured in the NMR-

experiment. 

1 1 1 1 1 1 
= + + + + r i o i 

Tl T I Q Tl,e T l ^ T l , ^ Tl^o ^^'J 
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Relaxation by electric quadrupole interactions: 

1 3tz\21 + 3) 

Tlo 1 0 f ( 2 I - l ) 2_2 1+COo T 
[14] 

I > 1/2 

X is the nuclear quadrupole coupling constant 

x] is the asymmetry parameter measuring the deviation of the electronic 

environment (electric field gradient) of the nucleus from axial symmetry 

The term x/(l+aiQ^T^) can be replaced by x i f the extreme narrowing condition 

coo^t2«l is fulfilled. Relaxation by electric quadrupole interactions can be 

described as an indirect energy transfer as it is not a strictly magnetic 

mechanism but rather involves an electric interaction between the nuclear 

electric quadrupole moment and electric field gradients arising from the 

surrounding electrons. The quadrupolar energy is modulated via electric field 

gradients. I f this occurs at the transition frequency, spin-lattice relaxation is 

caused. Rapid isotropic molecular tumbling averages the quadrupolar 

interactions, which are affected by the direction of the electric field gradient. 

Any sites of tetrahedral, octahedral, cubic or spherical symmetry have a zero 

field gradient and are thus not affected by quadrupolar relsKation^'^'^. 

Relaxation by scalar coupling to spin X of quantum number S: 

;=f- = ̂ ^'(JAx)'S(S + l) 1 
1 + (COA-O)X)^(^?)^ 

[15] 

Jy\X is the coupling constant 

Zi is the inverse of the rate at which Ĵ x is modulated 

Relaxation by scalar coupling can frequentiy be disregarded. The 29si 

spins in natural abundance silicates are too dilute to give rise to ^^Si-^^Si 
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couplings. No 29si. l j j coupling can be observed (Chapter 3-2). Scalar 

relaxation occurs when one partner of a strongly coupled pair is in chemical 

exchange at a rate comparable to (co^-cox)- The more the frequency at which 

JAX is modulated (proton exchange frequency) differs from (COA-(OX)' the 

sfronger the coupling between the AX spins has to be for scalar relaxation to be 

operative. The scalar coupling between Si and H spins has to be in the range of 

MHz for relaxation by scalar coupling to contribute to the overall relaxation 

rate. These requirements for strong coupling combined with fast exchange are 

very rarely observed in heteronuclear systems and only then i f the 

gyromagnetic ratios of the two nuclei are very similar^,^! fact the coupling 

constants for two-bond couplings between silicon and protons are typically of 

the order of 1 to 13Hzl.32,33^ the larger couplings (2j(Si-H) = 9 to 13Hz) 

occurring with the silicon carrying strongly electronegative ligands^^. These 

couplings are far too small to cause any contribution of scalar relaxation to the 

relaxation rate, which can thus be disregarded for the silicates under 

investigation. 

Relaxation via unpaired electrons of spin S: 

^oylyXs(s+i) 
Tl 120ji'r 2,6 

3T. 

1 + CO?TJ 
+ -

7T. 
l + COgT̂  + 

^̂ ŷ â Ŝ(S + l ) 
2471^ 1 + CÔ T̂  

Xg is the electron spin relaxation time 

Relaxation via unpaired electrons occurs via a dipolar relaxation 

mechanism or a scalar relaxation mechanism^ both of which are very effective 

as the magnetogyric ratio y of the electron is 658 times as large as the y of the 

proton^. The relaxation via paramagnetics is often referred to as outer-sphere 

relaxation! 1. There are two major terms, the first one describing the dipole-

dipole contribution, the second one depends upon a^, the nuclear electron 
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hyperfine coupling constant which characterises the contact interaction^. 
Modulation of the interactions with impaired electrons can occur by exchange 
of the electron between different molecules or by spin-lattice relaxation of the 
electron itself^. 

Relaxation by nuclear shielding anisotropy: 

1 _^,ylBlAG' 

TlsA 3071 1-hCOoT 
2 - r [17] 

Acj is the shielding anisotropy of the relevant molecule which can be 

modulated by molecular motion thus providing a local fluctuating magnetic 

field. Equation 17 describes the case of an axially symmetric molecule 1'4. 

3.3 Relaxation via dipole-dipole interactions 
Relaxation via dipole-dipole interactions is the most important 

mechanism in the relaxation of silicon in viscous silicate systems. The 

polarisations of the spins I and S are coupled so that the fluctuating field 

produced by spin I acts on spin S and induces energy transitions 12. Dipolar 

relaxation can be divided into intramolecular dipolar relaxation and 

intermolecular dipolar relaxation^,^. These two mechanisms can be 

distinguished by dilution studies (e.g. dilution with D2O) as long as it is 

assured that there is no viscosity change in the system which would change the 

correlation time and thus T l . In the case of intramoleciilar dipolar relaxation 

the Tl-value will not be affected whereas in the case of intermolecular dipolar 

relaxation the Tl-value will be affected. 
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3.3.1 Intramolecular dipolar interaction : 

In the interior of a molecule the intramolecular dipolar relaxation of 

spins arises from the rotation of the molecule, the variation in the distance 

between the spins due to vibrations being negligible^. 

The equations below are for a given pair of spin-1/2 spins A and X : 

1 
= W0 + 2W1A + W2 

T I A 

WO = —(27rR)^J(G)x-coA) r n - i 
20 

W l A = ^ ( 2 7 c R ) ' j ( a ) A ) ^̂ '̂ ^̂  

W2 = —(27rR)'J((ox + ©A) ^̂ ^̂  
10^ 

j (co) = ^ V r - = ^1 2 2 t̂ ^̂  
(l + cOoV) (l + 4 7 r V ' c ) 

The equations below are for the case of intramolecular A-X interaction3,5,10 : 

^ = ̂ (27cR)^ [ J(cox - coA) + 3 J(CQA) + 6 J((ox+oA)] C2.̂ 1 

Yl ^ l ^ ^ ^ ^ ' ' ^ ^ ' ^ l + (a)x-coA)^x^ ^ 1 + COAV ^ l + (cox + coA)S^ ^ ^^^^ 

1 1 -i^(27cR)^ [4J(0) + J(o)x - coA) + 3 J(coA) + 6 J(o)x) + 6 J(cox + coA)] C25] 
T2 40 

— =—x(27cR)'[4+ 5 ^ + ^-TT+-—^-TT+T-T-r-—^] [^^1 
T2 20 1+(COX-COA)'T^ 1+COAV I+WX^T' 1+(COA+COX)'T' 
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R is the dipolar coupling constant and is proportional to r^X"^-
In cases of interest in tiiis thesis t/^ is the Si-H distance. 

( ^ ) T A V x ( f ) ' ' 
An 2n 

R 2 = 5.703 * 1 0 ^ r ^ x " ' t^^^ 

3.3.2 Intennolecular dipolar interaction: 

For the intermolecular interactions the relative translation of molecules 

must be considered as in this case the vector coimecting the nuclei A and X 

becomes time dependent*'̂ . 

1 _ ^^o 'N^y^^y^ ^̂ ^̂  
Tldd (inter) 120Da7r' 

D mutual translational self-diffusion coefficient of the molecules 

containing A and X 

a distance of closest nuclear approach 

concentration of spins X per unit volume 
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4. Solid state NMR 
4.1 General theory 

There are two factors determining the appearance of the NMR-

spectrum for nuclei with spin 1/2 in solids. 

Dipolar interactions 

The direct coupling interaction or dipolar coupling interaction depends 

on the angle Qp^ between the field-vector of B Q and the vector connecting the 

nuclei i and j . It is characterised by the average over all magnetic dipoles with 

an orientation in the magnetic field. Therefore it is usually averaged to zero in 

solutions (rare exceptions are molecules which even in solution are partially 

oriented in the field) and only occurs in aiusotropic systemsl^. In the solid 

state the molecules (i.e. the nuclei) are usually fixed. Thus dipolar interactions 

cannot be averaged to zero. A heteronuclear A X two-spin system in a crystal 

with only one possible orientation for r̂ \x one 9 A X ^ dipolar 

splitting^: 

(-^)YATx(|^)rAx"'(3cos2e-l) po] 

Isolated two-spin systems, which are in microcrystalline assemblies, 

show a variety of orientations for the angle 9. Therefore, instead of a doublet a 

characteristic splitting pattern is observed called the powder pattern^ 

(Figure 2-6). 
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Figure 2-6 

1 ' ' ' ' 

1 
1 1 1 

9»a 

However there are only very few solids containing isolated two-spin 

systems. For the majority of solids there are long-distance interactions which 

cause a considerable broadening of the lines observed in the NMR-

spectrum2»3. 

Shielding anisotropy 

Shielding anisotropics are dependent on the orientation of the solid in 

the magnetic field. The shielding constant is a typical tensor with major 

contributions for the orientations characterised by the principal axes in a fixed 

molecule. The only case when the shielding is independent of the orientation is 

in the case of cubic local symmetry. The shielding constant a^z, observed in 

its dependency of 0j, is described by^: 

1 ^ 
^zz =criso + - Z ( ^ ^ ^ s 2 ^ j - l ) a j j 

j=l 
ojy = principal component of the shielding 
CTiso = isotropic value of the shielding 
0j = angle between principle axis and field 

[31] 
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4.2 MAS (magic-angle spinning) 
Dipolar coupling as well as shielding anisotropy can cause a substantial 

broadening of the lines in the NMR spectrum. 

If the sample rotates with an angle of 54.70, called the magic angle, in 

the magnetic field both dipolar interactions and shielding anisotropy can be 

eliminated2,3 

( 3 c o s ^ ( 5 4 . 7 ° ) - l ) = 0 [32] 

The rotation frequency, however, determines the degree of ehmination 

of the two effects. The fi-equency of rotation needed to eliminate the shielding 

anisotropy has to exceed the value of the shielding anisotropy in Hz. The rate 

of rotation required to eliminate the dipolar interactions must be bigger than the 

dipolar interaction in Hz. Frequently the frequency of rotation that can be 

achieved suffices to fiilfil the first condition but not the second condition. The 

remaining effect of heteronuclear dipolar coupling can be eliminated by high-

power proton decouplinĝ . 

4.3 CP (Cross-polarisation) 
By using the method of cross-polarisation a problem can be solved which 

occurs with the acquisition of solid-state NMR spectra. Spin-lattice relaxation 

times in solids can be extremely long. Thus the accumulation of spectra 

requires a long time. The procedure of cross-polarisation transfers 

magnetisation from the ^H-spins to the ^^Si spins using the pulse-sequence 

given in figure 2-7: 
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Figure 2-7 

QQO 1H spin-lock 

decoupling 

contact 
time ct acquisition time 

1 H-channel 

29Si-channel 

The first step is a 90O-pulse in the x-direction in the proton channel. 

This is followed by a spin-lock of the proton-magnetisation in the y-direction 

of the rotating fi-ame and the simultaneous switching on of the radio fi-equency 

in the 29si channel. The amphtude of the radio frequency field Bjsi is chosen 

in order to match the amplitude of the Bijj-field according to the Hartmann-

Hahn conditionl'̂ . 

Y I H B I H y 29Si-^29Si [33] 

This condition implies that proton- and silicon nuclei precess at equal 

rates so that a rapid transfer of magnetisation (i.e. spin-energy) can take place. 

The pulse-sequence includes high-power decoupling of the protons during the 

acquisition of the FDD. In comparison to the magnetisation of the 29si.spins in 

equilibrimn, the magnetisation of the 29si-spins after the energy transfer 

according to the Hartmann-Hahn condition is a factor of YĤ 'YSi stronger. 

Another considerable advantage of this sequence is that the time required to get 

back to equilibrium after the thermal contact with the iH-spin-system is 5*T1H 

instead of 5*T1 Si 15. 
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2. THEORY 
B Application of NMR to characterise 

silicate solutions 

1. Nomenclature 
1.1 Nomenclature of Silicon Sites 

In this work the commonly used Q^̂ y-notation, according to 

Engelhardt, is adopted in order to describe the structure of building units in 

silicate solutions and silicate gels^^'l^'l^ (figure 2-8). A silicon atom bonded 

to four oxygen atoms is represented by Q. The superscript n denotes the 

number of other Q-units attached to the Si04-tetrahedron, i.e. the connectivity. 

The subscript y is the number of units of same coimectivity in a silicate anion. 

Figure 2-8 
O- O- O- O- OSi 

-OSiO- -OSi OSi -OSi OSi SiOSi OSi SiOSi OSi 
O- O- OSi OSi OSi 

QO Q l Q2 Q3 Q4 

Monomer End group Middle group Branching Cross-linking 
group group 

1.2 Nomenclature of silicate solutions 
The nomenclature which is commonly used to characterise industrial 

silicate solutions is adopted here. The concentration of silica is reported in 

terms of weight percent fimied silica (see chapter 3-4.1.1) per total weight of 

the solution (wt% Si02). The composition of the silicate solution with respect 

to Si02 and M 2 O (M=alkali metal) is reported in molar ratio of Si02 to M 2 O 

(Rm-value). Values from cited literature are calculated into these units when 

possible. 



Chapter 2 Theory page 26 

2. NMR of silicate solutions 
Silicate solutions have been analysed with a range of different 

methods!̂ "26. The advantage of the NMR method in contrast to chemical 

methods is that information can be obtained without affecting the speciation in 

the silicate solution. The advantage of the NMR method in contrast to other 

spectroscopic methods is that it is extremely versatile and just by varying the 

sequence and duration of pulses a wealth of information can be obtained. 

2.1 Chemical shifts of structural units 
The first published 29si-NMR spectrum of a silicate solution was 

acquired in 1973 by Marsmann̂ .̂ 

In the 29si.]sjMR silicate spectra five separable subdivisions of 

chemical shift regions can be observed̂ .̂ On the high-frequency side of the 

NMR spectrum, at about -70 ppm from the signal of TMS, the resonance of the 

monomeric silicate anion is found. The more condensed the silicate unit is the 

lower is the frequency at which its signal is found. This occurs because the 

shielding of the silicon atom in the silicate unit increases with increasing degree 

of polymerisation. Figure 2-9 shows the regions where the main silicate 

resonances are found on the NMR scalê .̂ The resonances of the main silicate 

structural units are approximately lOppm apart! ̂ '29 
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Figure 2-9 

ppm 

The resonances of Q^silicon sites in small rings (Q^y) are shifted to 

higher frequency compared to the corresponding Q°-silicon sites which do not 

form rings^S. This is due to the longer Si-0 bonds and smaller Si-O-Si bond 

angles foimd in ring structures causing less-efficient Si-0 a- and 7t-orbital 

overlapping and hence decreasing the shielding29. An apparent increase of 

linewidth with increasing coimectivity of the silicon site makes it impossible to 

deduce any information on individual silicate anions for highly condensed 

solutions as the observed resonances involve overlapping of resonance lines of 

similar Si-envirorunents in different species 1̂ . 

structural unit number of different possible arrangements 

QO 

Ql 

Q2 

Q3 

Q4 

4 

10 

20 

35 

statistical combinations 
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3. Experimental 

1. NMR-spectrometers 
The experiments were carried out on six different NMR-spectrometers, 

three of which are solid-state machines. 

Tl-experiments were carried out on a BRUKER AC250 spectrometer 

with an operating field of 5.9 Tesla, a BRUKER AMX500 machine working at 

a field of 11.7 Tesla (both located in Durham) and a VARIAN VXR600 

machine operating at 14.1 Tesla (located in Edinburgh). All these machines are 

solution-state spectrometers. 

The majority of 29si silicate spectra were recorded on the BRUKER 

AMX500. Additionally, for a considerable number of ^^Si-spectra a VARL\N 

VXR300 operating at a field of 7.5 Tesla or a BRUKER CXP200 instrument 

operating at 4.7 Tesla were used. The latter two instruments are solid-state 

spectrometers with MAS probes. Spectra acquired on the VARLW VXR300 

were referenced to external Tetrakis-trimethylsilyl methane (5=0.0ppm), 

whereas on the BRUKER CXP200 external silicon-gum (5=22.06ppm) was 

used for referencing. 

Proton and sodium spectra were recorded using the BRUKER CXP200, 

both static and with MAS. 

Proton T2 as well as ^^Si, ^H and 23]t<ra diffiision-constant 

measurements were carried out on a BRUKER MSL300 spectrometer working 

at a field of 7.5 Tesla (located at UNILEVER RESEARCH, Port Sunlight). 

For all solution-state measurements 10mm tubes have been used with 

Teflon inserts to prevent interaction of the silicate solution witii tiie glass of the 

tube. 
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2. Pulse sequences 
2.1 Single pulse 

For the acquisition of most of the solution-state spectra the technique 

of inverse gated decoupling has been used. The pulse sequence is given in 

figure 3-1. 

Figure 3-1 

recycle delay 

90 

29Si channel 

F I D -

1H channel 

This technique assures that fiill ^^Si{llti} decoupling is applied 

without affecting the intensities of the resonances by the NOE-factor. This is 

achieved by gating the decoupler with the transmitter and receiver, and 

switching it off during the relaxation delay 1. However, care has to be taken 

that the recycle delay is at least 10 times as large as the acqmsition timê . In 

the systems investigated the acquisition times are about a factor of 100 shorter 

than the longest relaxation time. Therefore a recycle delay of 5*T1 is 

appropriate to eliminate any effects of the NOE on the signal intensities and to 

ensure that relative intensities within a given spectrum are accurate. 

The acquisition time was chosen to be about 1.5 times as long as the 

length of the FID. All spectra were zero-filled3 so that the number of 
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transformed points was twice or four times as large as the mmiber of acquired 
data points. 

The D 2 O signal served as a field/frequency lock. For silicate solution-

state spectra no suitable internal reference which is not interacting with the 

silicate structures could be found. The monomer provides a more convenient 

than accurate reference as its chemical shift is dependent on the composition of 

the silicate system and is especially varying with the pH'*'̂ '̂ . Thus an external 

reference has to be taken, which was HMDSO (hexamethyldisiloxane), with 

5=6.53ppm. 

A basehne correction was carried out for every spectrum prior to the 

integration of the signals. The errors in the speciation percentages, derived 

from the integrated intensities, are likely to be in the region of 5-10% of the 

reported values. Intensity data (integrals) are averages from three to four 

measurements. 

2.2 T l 
The spin-lattice relaxation times in the silicate solutions were measured 

by the inversion-recovery method̂ . The pulse-sequence is shown in figure 3-2: 

Figure 3-2: 

- T D - 1 8 0 ° X - vd - 9 0 ' ' X - F E D -
L J N S 

Tj) is the relaxation delay (5 times as long as the longest Tl), the 

180Ox-pulse inverts the magnetisation, and vd is the variable delay-time apphed 

before the 90̂ ^ observe pulse, after which the FID is acquired. 

The majority of Tl-measurements were carried out on the BRUKER 

AMX500. Measurements of all 29si specti-a on solution-state spectrometers 

show a backgroimd signal from glass inserts in the probe and the glass of the 
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sample-tube (see section 3.1). This background signal was subtracted by hand 
for every single spectrum in an inversion-recovery sequence before calculating 
the Tl-values. For this purpose a Tl-experiment with a blank has to be carried 
out under the same conditions as the silicate Tl-measurement. Errors on the 
values of Tl are estimated to be in the region of 8-9%. 

2.3 T2 
T2-values have been measured with a pulse program for a Hahn-echo 

as well as with a custom-written CPMG-sequence. The Hahn-echo pulse 

sequence 1̂  shown in figure 3-3 should be used only in the case of systems with 

no chemical exchange, since the intensities of resonances in the spectra with 

long variable delays may be decreased not only by T2-effects but by exchange. 

Figure 3-3 

- T D - 9 0 ° X - (vd )„ -180°y - ( vd )„ - F I D 
NS "'̂ •'•'•'•̂  

In the case of chemical exchange, the CPMG-sequencel̂  shown in 

figure 3-4 is of advantage as the value of the delay stays constant and only the 

number of 180Oy-pulses is increased. 

Figure 3-4 

- T D - 90\ - (vd - ISO '̂y - vd)n - E D 
NS "=̂ '̂ '̂ ' 

It was found that when the Hahn-echo experiment was used, deviations 

in the logarithmic fit occur which are typical for chemical exchange between 

silicate units (see chapter 6-4.1). Thus for measurements of the T2-values the 

CPMG-sequence was employed. 
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2.4 Exchange spectroscopy (EXSY) 
The effect of gradual collapse and subsequent exchange narrowing of 

resonant lines separated by the interval 2A about a centre fi-equency COQ takes 

place when the exchange rate cogx increases beyond (HQX^A = 1. 

In systems where the exchange at room temperature is not fast enough 

to produce the phenomenon of collapsing lines and the temperature cannot be 

drastically increased to produce faster exchange, the exchange between 

different structures can be monitored by means of 2D-exchange spectra^. In 

these experiments it is necessary to not only carefully estimate the required 

mixing time but also the relaxation rate, since the longitudinal relaxation 

components which exchange relax at the same time. In extremely simple 

systems the constant of exchange can be calculated from the ratio of cross-peak 

and diagonal peak intensities. In more comphcated systems where several 

exchange mechanisms or whole exchange networks exist it becomes necessary 

to run a series of 2D exchange spectra with varying mixing time. This in effect 

represents a change from a 2D to a 3D experiment9. 

The following pulse-sequence was used: 

Figure 3-5 

[Td - 90", - tl - 90% - tM - 90% - FID I N S 

The first 90Ox-pulse creates the transverse magnetisation, with the 

magnetisation vectors belonging to the silicon groups rotating with different 

frequencies in the x',y'-plane. During the evolution period characterised by tj 

these magnetisations travel different angles. The second 90Ox-pulse selects the 

y'-components of the precessing magnetisations and rotates them into the 

direction of the z-axis. The non-equivalent groups of spins are partially 
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exchanged and take with them their respective z-magnetisation components. 
Magnetisation transfer by this mechanism requires a period of time referred to 
as the mixing time, t^, which has to be selected so that the maximum amount 
of exchange takes place. The mixing time for the maximum exchange is 
comparable to the reciprocal rate of exchange. After the exchange a third 
90Ox-pulse rotates the z-axis components into the x',y'-plane for detection. 
Diagonal peaks identify individual groups, whereas cross-peaks indicate the 
exchange process which during the mixing time has transferred magnetisation 
of frequency coi to a frequency co2̂ '̂ - Chemical exchange that is detected by 
2D-exchange spectroscopy is not in the fast exchange region and an upper limit 
can be determined taking the chemical shift differences into account. The 
lower region of the exchange rate is hmited by longitudinal relaxation. If the 
exchange is much slower than 1/Tl the frequency-labelled z-magnetisation will 
disappear before the magnetisation exchange. For exchange at rate k between 
equally populated sites the optimum mixing time is 0.5/k for k in the region of 
1/Tl and 1.5/k for k in the region of lO/Tl^. 

2.5 INADEQUATE 
2D INADEQUATE specti-a show the 29si-29si couplings. They 

identify two coupled nuclei not by their coupling constant but by the frequency 

of their double-quantum coherencel'3,9 ^j .^^ ^ natural abundance silicate this 

experiment would take an unreasonably long time. Thus this experiment was 

performed with a silicate solution enriched in 29si. The 2D INADEQUATE 

experiments in the present work were carried out with a conventional sequence 

shown in figure 3-6, where the value of d4 is chosen to maximise the 

connectivities for a particular J-coupling valuê '32 xhis sequence works in 

four major steps. During the preparation time double-quantum coherence is 

created, which is allowed to evolve during an incremented delay, vd, during the 

evolution period. After this the result is converted into observable 
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magnetisation by a mixing pulse. The last step is the acquisition of the FID. A 
double fourier transformation is carried out on the resulting set of FTDs. The 
delay, d4, for weakly coupled spins is given as 

2 n + 1 d 4 = 
4 J A X 

in order to maximimi coherence transfer. Usually the value of n is chosen to be 

zero33. Typical values for the scalar coupling between silicon in siloxy 

systems are 2J(Si-0-Si) of 1 to 1.5 Hz35. Therefore the value of the fixed 

delay d4 is chosen to be 20ms in order to get optimum double quantum 

coherence. This matches the value for d4 which was chosen as found by Fyfe 

et al. for optimum double-quantum coherence34. 

Figure 3-6 

- 9 0 ° - d 4 - 1 8 0 % y - d 4 - 9 0 ' ' - v d - 1 2 0 ° - FID 
d X - y X J N S 

d4 = (4J)-1 = 20 ms 

2.6 Self-difiEusion constant measurement 
The attenuation of the spin-echo which arises from diffusive dephasing 

under the influence of a steady gradient can be used to determine molecular 

self-diffusion. The gradient is applied in the form of rectangular pulses inserted 

in the dephasing and rephasing parts of the echo sequence and gated off during 

r.f pulse transmission and signal detection. 

The pulsed-gradient spin-echo sequence (PGSE) which was first used 

by Stejskal and Tanner 12,13,14 gjven in figure 3-7 below 
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Figure 3-7 
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delay2: 

A: 

G : 

is the pulse gradient duration which is the parameter varied for 

each experiment 

is the delay which has to be varied accordingly to 5 so that A 

stays constant 

5 = A - delay2 [i] 
remains constant (50ms or 25ms) 

is the gradient strength which stays fixed during the experiment 

and is measured in arbitrary imits 

The measurement of the self-diffusion coeflBcient by PGSE NMR is 

limited by the loss of phase coherence due to transverse relaxation. The 

spacing between the 90Ox and the 180Oy-pulse is limited by the T2-process, 

which in turn limits the field-gradient pulse duration 5 so that in the case of 

short T2-values and slow self-diffusion the classical PGSE cannot be 

applicable!̂ . 

A method of avoiding this problem is to store the transverse 

magnetisation existing at some point of time tl for later recall to see how far 

the molecules have moved. This is done by applying a single 90< -̂pulse a time 

tl after the first 90Ox-pulse, which has the effect of rotating the y-component of 
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the magnetisation into longitudinal polarisation where only Tl-relaxation will 

occur. Any x-magnetisation will be unaffected by the second pulse so that part 

of the transverse magnetisation is lost during this storage. The magnetisation is 

recalled after a time t2 using another 90Ox-pulse, which leads to an echo a time 

tl after the pulse. This echo, which occurs at an interval after the third pulse 

equal to that between the first two 90Ox-pulses, has been named by Hahn the 

stimulated echô .̂ He showed that the relaxation attenuation of this echo has a 

Tl-dependence during the interval between the second and the third pulse 

which is not a problem, however, in the experiments described in this thesis. 

The pulse sequence for such a stimulated echo is shown in figure 3-8. 

Figure 3-8 

centre of echo 

In the presence of a steady gradient GQ the expressions for the 

stimulated echo show a dependency on the delay between the 90O-pulse and the 

start of the first gradient and on the delay between the end of the second 

gradient pulse and the centre of the echoic. Therefore the equations for the 

two types of P F G sequences are different due to the term GQ. This however is 

only of importance in poorly-shimmed systems whereas in modem well-
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constructed systems any residual gradients are eliminated and terms involving 

Go can be neglected. 

The general expression for the attenuation of the spin-echo amplitude 

with time, taking into account the T2-relaxation and the self-diffusion under the 

influence of a magnetic field gradient, is for the normal and the stimulated 

echo^'12,15; 

A = A exp [2] 

X : is the radio-frequency pulse separation (90° - x -180°) 

D ; is the self-diffusion coefficient 

The contributions to the signal attenuation fi-om the T2-process and the 

diffusion process can be isolated by recording the spin-echo sequence with and 

without applying a pulsed field-gradient (PFG). Taking the ratio of these two 

experiments for every field-gradient pulse gives: 

PFG (off) 

A'= exp 

The achieved attenuation A' is measured against a reference of known 

D for every sample while keeping the PFG-current constant. Since a silicon 

reference cannot be used because of the low sensitivity of 29si, water was 

chosen as the reference. 

A semilogarithmic plot of A' versus 52(A-5/3) yields a slope, S, which 

can be correlated to the slope of the water diffiision experiment imder equal 

conditions and the known diffusion constant of water! 9. 
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D sample sample 

reference reference 
[5] 

Dreference = D^ater = 2.3*10-5cm2s-l at 270C 20 

Al l self-diffusion experiments were carried out on a Bruker MSL300 

equipped with a custom-built probehead containing anti-Helmholz coils for 

applying linear field gradients (no residual gradients GQ) in the Bo-direction. 

3. Background 
3.1 Background subtraction 

All 29si silicate spectra recorded on a solution-state machine show a 

backgroimd signal from the glass of the NMR tube and of glass inserts in the 

probe, the latter contributing 79% of the background signal. 

Figure 3-9 illustrates where glass in a typical solution-state probe is located. 

Figure 3-9 

ceramic top 

inner insert glass tube 

decoupler coil 
receiver coil 

outer insert glass tube 
insert Dewar 

ceramic bottom 

Therefore the method of background subtraction, which has already 

been successfully used21,22^ vvas employed (Fig. 3-10 illustrates its 

effectiveness). This method implies the acquisition of the FID of a blank with 



Chapter 3 Experimental page 41 

the same pH as the relevant sample with every spectrum and its subtraction 
from the FID of the sihcate. This means that the time involved to obtain a 29si 
NMR spectrum is doubled. Additionally there is a (2)1/2 increase in the noise 
of the spectrum after subtraction of the backgroimd. 

In these investigations it was proved that the method of background 

subtraction can be used with sufficient accuracy22 by a comparison of 

subtracted spectra recorded on a solution-state instrument with spectra recorded 

using the VXR300 spectrometer with a Doty probe which does not contain 

glass. 29si NMR spectra acquired on both spectrometers are shown in figure 

3-11. The deviation between these spectra over all structural units is 4.5%. 

This is negligible i f it is considered that the general error in speciation 

percentages is likely to be in the region of 5-10%. 
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Figure 3-10 
29si NMR-spectra of a sodium silicate solution with 30wt% Si02 and Rm=2.6 
a) with background 
b) with background subtraction 
c) 29si NMR-spectrum of probe and tube background 
a) to c) acquired on the Bruker AMX500 with 160 transients, acquisition time 0.06s, 
spectral width 200ppm, relaxation delay 80s 

C) 

-80 -90 n— 
-100 

" T -
-110 

" T -
-120 
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-130 
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Figure 3-11 
29si NMR-spectra of a sodiimi silicate solution with 30wt% Si02 and Rm=2.6 
a) with background subtraction (acquired on a solution-state machine) 
b) without background (acquired on a solid-state machine) 
a) acquired on the Bniker AMX500 with 160 transients, acquisition time 0.06s, 
spectral width 200ppm, relaxation delay 80s 
b) acquired on the Varian VXR300 with 1060 transients, acquisition time 0.06s, 
spectral width 300ppm, relaxation delay 80s 

a ) 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ) I I M I I I I I I I I I ' I I 

-70 -80 -3C -100 -110 PPM 
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3.2 A pulse sequence to eliminate the background 
in T l - and T2-experiments 

A pulse-sequence was foimd v ^ c h eliminates the 29-Si background 

from the probe and the sample tube by making use of their short T2 and the fact 

that they are not in the homogeneous region of the field. In a single-pulse 

spectrum this was achieved by using an extra 180-degree pulse which is 90-

degree phase-shifted with respect to the other pulses. Figure 3-13 illustrates the 

success of this method. 

Figure 3-12 

[ T D - 90^X - d2 - I S O ^ y -62 - F I D ] NS 

The results, of course, are influenced by the T2-decay of the signals so this 

cannot be the method of choice for acquiring single-pulse spectra. 

The minimum d2-delay which can be used for effective elimination of the 

background is 9ms. 
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Figure 3-13 
29si NMR-spectra of a sodium silicate solution with 30wt% Si02 and Rm=2.6 
a) with a single pulse sequence (section 2.1) 
b) with background-elimination using the sequence given in figure 3-12 
a) and b) acquired on the Bruker AMX500 with 160 transients, acquisition time 
0.06s, spectral width 200ppm, relaxation delay 80s 

b) 

— I — 
-70 -90 -90 -100 -110 
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T1 -measurements with inversion recovery 

In Tl-experiments the method of applying an extra 180Oy-pulse which 

is 90O phase-shifted with respect to the 180® and 90^ pulses can be 

successfiilly employed to eliminate the background for every vd-delay as 

illustrated in figure 3-14. The sequence shown in figure 3-15 can only be 

successfijlly used i f the 29si T2-values are long enough to provide sufficient 

signal intensity for the Tl-experiment. The attenuation of the signal due to the 

T2-decay during d2 is the same for all vd-values. 

Figure 3-15 

[ T D - ISO^x - vd - 90^x - 62 - ISO^y - d2 - H D ] NS 

Table 3-1 
Tl-values, given in s, for a: 
sodium silicate solution 30wt%SiO2, Rm=2.6 + lauiylether 

without with manual with "echo" 

background- background- background-

subtraction subtraction elimination 

QO 4.0 7.0 7.2 

Qi 5.2 8.2 8.5 

Q2cyc 4.3 8.0 8.2 

Q2 6.5 8.9 8.6 

Q3 7.6 9.5 9.8 

Q4 15.2 14.4 13.7 

d2=10ms 
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Table 3-1 shows that the calculation of spin-lattice relaxation times from the 
spectra in an inversion-recovery sequence without background subtraction is 
not accurate compared to those obtained with background elimination. It 
demonstrates that the method of manual background subtraction described in 
section 2.2 can be used with sufficient accuracy. However the method of 
background-elunination is the method of choice as it is much less time 
consuming than a manual subtraction of the glass background. Values of T l 
are estimated to be accurate to ca. 8 %. 



Chapter 3 Experimental page 48 

Figure 3-14 
29si Tl-measurement 
for a sodium silicate solution with 25wt% Si02 and Rm=4.0 
on the Varian VXR600 with background elimination : 
relaxation delay 100s, acquisition time 0.05s, 16 transients, d2=llms 

155" 

G 

3 

-cL/5 
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T2-measurements 

In T2-experiments carried out with the Hahn-echo sequence the delay 

d2 of 10ms is added to each vd-value. Therefore this way of eliminating the 

background only works i f the respective T2-values are sufficiently long. I f the 

T2-values are very short, the signal will be fiilly attenuated within a time of the 

order of 10ms. In the calculation of the T2-value this extra d2 added to the vd-

value can be ignored as it is the same for all spectra in the Hahn-echo sequence 

and the resulting extra attenuation in the signal is identical for every change in 

the vd-value. 

Figure 3-16 

[ T D - 90^x - d2 - vd - 180^y - vd - d2 - F I D ] N S 

Table 3-2 
T2-values, given in s, for a sodium silicate solution : 
32wt%Si02, Rm=2.0 

with background-

subtraction 

with background-

elimination d2=10ms 

QO 0.23 0.34 

Qi 0.13 0.23 

Q2cyc 0.12 0.18 

Q2 0.09 0.18 

Q3 0.07 0.13 

Q4 - -

Table 3-2 compares the spin-spin relaxation times calculated from 29si spectra 

in the echo sequence with backgroimd elimination with those obtained with 

manual background-subtraction. 
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3.3 The silicon-free probe 
In January 1993 the specially-built silicon-fi-ee 10mm probe (built by 

Bruker) arrived and went into use. This probe's outstanding feature is that 29-

Si spectra can be acquired without any background signal fi^om glass inserts in 

the probe. This renders the application of the method of background-

subtraction unnecessary and thus makes the acquisition of silicate spectra a 

more precise and less time-consuming process. 

The maximum resolution for this probe, established for TMS in CDCI3 

is good : linewidth at half height of 0.4Hz on Si-29. 

A special sample set-up (demonstrated in figure 3-17) had to be used to 

completely ehminate the silicon background as otherwise the backgroimd of the 

sample tube would still remain. Every sample was measured in an insert made 

of Teflon FEPR which was placed in a NMR glass tube. This sample-tube was 

cut off at the bottom so that only the Teflon-insert with the silicate solution was 

in-between the coils. 

Figure 3-17 

7 

stopper of PTFE-insert 

PTFE-insert held in position by parafilm 

spinner 

cut to fit 10mm glass sample tube 

silicate sample 
NMR-coils 

The quantitative comparison of signal intensities for the silicon-free 

probe (narrowband probe) and a 10mm broadband probe used for Si-29 
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acquisitions previously show that the signals are slightly more intense for the 

narrowband probe (see tables 3-3 and 3-4 below). The structural distributions 

of all spectra recorded on the Bruker AMX500 with the 10mm broadband probe 

were double-checked using the silicon-free probe. 

Table 3-3 

intensity 10mm broadband probe silicon-free probe 

9.1 10.0 

Table 3-4 
Intensities in arbitrary units of the silicate signals for a 
sodium silicate solution with 25.5 wt% Si02 and Rm=3.8 : 

intensity 10mm broadband probe silicon-free probe 

QO 0.20 C-65%) 0.31 

QI 2.11 (-92%) 2.29 

Q2 10.27 (-87%) 11.81 

Q3 24.85 (-91%) 27.17 

Q4 9.45 (-90%) 10.46 

4. Silicate systems 
4.1 Natural abundance silicate solutions (sols) 
4.1.1 Preparation 

All silicate solutions have been prepared by dissolving fimied siHca 

(from the hydrolysis of distilled SiCl4) in caustic soda solution at 70 to SO^C. 

The time for the dissolution of all the sihca can be up to 6 weeks. The 

equilibrium in the distribution of structures is established after approximately 

10 weeks (see section 4.1.2). 
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To assure maximvmi purity of the silicate samples sodiimi hydroxide 

pellets of high purity (AristaR-grade NaOH from BDH), distilled water and 

fumed silica were taken for the preparations. Fumed silica is obtained from the 

hydrolysis of distilled sihcon tetrachloride with distilled water so that the 

content in impurities is kept to a minimum. 

Great care has been taken to avoid contamination with atmospheric 

carbon dioxide (which would cause a decrease in the pH of the solution) and 

oxygen (which could act as a paramagnetic) as well as impurities which could 

possibly leak out of glass containers i f in contact with the solution. Thus 

samples were prepared, stored and handled imder a N2-atinosphere using high-

quality alkali-resistant polyethylene and polypropylene bottles. 

To keep errors in the preparation to a minimum, sodium hydroxide 

solutions used for the preparation of silicate solutions were titrated with I M 

HCl to establish the accurate concentrations. The water content of the fumed 

silica was investigated by heating to lOO^C under shght vacuum for 12 hrs and 

weighing and was determined to be 1.4%. This was considered in the sample 

preparation. 

4.1.2 Equilibration 

The complete dissolution of the silica at elevated temperature (70OC to 

SO^C) takes up to 1 week in the case of a moderately alkaline silicate solution 

(32wt% Si02 and Rm=2.0) whereas it takes up to 10 weeks at temperatures of 

70OC to 80OC in the case of the lowest alkalinity (highest Km) which can be 

produced (25wt% Si02 and Rm=4.0). Nevertheless the distribution of 

structural units in the former solution changes at room temperature with time 

until after a period of 8 weeks it stays stable (see chapter 5.1.2) whereas the 

speciation of the latter solution at room temperature does not change with time 

after complete dissolution of the silica. Therefore it can be concluded that the 
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equilibration of sodiimi silicate solutions takes up to 8 to 10 weeks in the case 
of any silicate system. 

4.2 Natural abundance silicate gels 
4.2.1 Preparation 

For the preparation of sodium silicate gels of a certain Rm the silicate 

solutions with the corresponding Rm were taken initially. These were heated to 

SO^C to 90OC in a water bath or an oven. The heated sihcate solution was 

taken out of the water bath ( or oven) and water in the form of water vapour 

was displaced using a stream of nitrogen gas over the solution. When the 

solution had reached room temperature the above procedure was repeated i f the 

silicate was still fluid until it had reached the gel point so that actually the gel 

point was approached in very small steps. The new Si02 concentration was 

determined through weighing using the water loss to obtain the increase in the 

Si02 concentration. 

4.3 Silicate solution enriched in29si 
4.3.1 Preparation 

The natural abundance of the isotope 29si in silicon is 4.7%. For all 

experiments but especially for 2D-experiments it is of great advantage i f the 

percentage of the isotope 29si can be increased. 

97.29 mg of 29si02 enriched in 29si to the 95.65 %-level were 

available. A representative siUcate solution with a high degree of condensation 

(Rm=4.0) was prepared using exactly the same method described in 

section 4.1.1 of this chapter. However the difficulty with the silicate solution 

enriched in 29si is that the amount of silicate solution obtained from 97.29 mg 

of enriched silica is very small and the transfer from any container into the 

sample tube would cause an insupportable loss of sample. Thus the silicate 
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solution in this case was prepared directiy in the 10 mm Teflon FEP-insert used 
for the NMR investigations. 

The actual Si02-concentration was determined by employing the 

method of quantification23 described in chaper 4. It was determined to be 

25wt% Si02. 

The distribution of structural units (see table 3-5 below) shows less Q4-

units than were foimd in a sodium silicate solution of 24.3 wt% Si02 Rm=4.0 

made with fumed silica. It has been reported that different sources of silica can 

be of paramount influence on the properties of the siUcate sample^. Clearly 

fumed silica has undergone a different procedure from that of the silica 

enriched in ^^Si, which is assumed to be the reason for the difference in 

structuring. 

As shown in table 3-6 the Tl-values for the enriched silicate solution 

are shorter than the Tl-values of a corresponding non-enriched siUcate solution. 

This reinforces the conclusion that the source of the sihca enriched in 29si is in 

fact different from that of the fimied silica. 

The intensity of a spectrum of the silicate solution made with the 29si-

enriched silica is in principle 20-times higher than the intensity of a 

corresponding silicate solution with natural-abundance sihca for the same 

number of transients. Alternatively, the same signal-to-noise can be achieved 

in a time which is a factor of 400 lower for the enriched sample. 
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Table 3-5 
Distribution of structural units: 

structural unit 29si-enriched 

25 wt% Si02 Rni=4.0 

/% 

non-enriched 

25 wt% Si02 Rm=4.0 

/% 

QO 0.2 0.7 

Q l 2.8 3.3 

Q2cyc 0.0 0.0 

Q2 25.9 21.4 

Q3 55.5 52.3 

Q4 15.6 22.3 

Table 3-6 
Tl-values: 

structural unit 29si-enriched 

25 wt%SiO2Rin=4.0 

/% 

non-enriched 

25 wt%SiO2Rm=4.0 

/% 

00 5.2 8.4 

Q l 5.8 8.8 

Q2 6.0 8.5 

Q3 7.0 10.2 

Q4 12.1 18.5 

4.3.2 Recovery of silica enriched in 29si 

It is essential to recover as much enriched silica as possible from the 

silicate solutions. This is done by adding HCl to the point where the pH of the 

instability region is reached and silica precipitates out of the silicate solution, 

which is then evaporated to dryness. The residue which consists of NaCl and 
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silica is then put onto an extremely fine filter paper and water is passed over the 
silica salt mixture in order to wash the salt out (solubility of silica in cold water 
0.1*10-3g/l at 250C; solubility of NaCl in cold water 35.7g/l at 250C24). The 
powder remaining on the filter paper is dried in an oven at IIQOC for 24 hours 
and stored in a plastic container. The procedure is repeated on the washings to 
increase the yield. Afterwards the filter papers are placed in an oven and dried 
at 250OC for 2 days to recover any silica still on the filter paper. 

5. Doping with paramagnetics 
The addition of paramagnetics should effectively suppress the negative 

NOE for dipolar Si-H interactions, and 29si Tl-relaxation times should be 

shortened25. The effect of the paramagnetic is, however, subject to its 

solubility in the medium, and to the viscosity of the solution according to 

studies made by Levy et al^^. Furthermore, it was found that not all 

paramagnetic metal ions are efficient relaxation agents. For instance Ni^^ , 

Co2+ and Fe2+ ions do not significally shorten relaxation times^^. O2 

dissolved in the solution is reported to shorten relaxation times via its 

paramagnetic properties in some cases whereas in others it has no effect27,28 

Not in all cases are the T2 relaxation times affected in the same way as T l 

relaxation times, as Cr3"^-ions cause considerable shortening of Tl-values 

without noticeably affecting the linewidth whereas Mn^^-ions cause substantial 

line broadening^S. The majority of paramagnetics affect the relaxation times 

via electron-nuclear dipole-dipole interactions^^. For some paramagnetics like 

Mn2+-ions, however, there is an additional contribution of scalar coupling 

between nuclear spins and election spins^^. 

The Tl-relaxation times of ^^Si in highly viscous silicate solutions can 

be as long as almost 30 seconds, which makes the investigations fairly time-
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consuming. Thus several representative silicate solutions have been doped with 

various paramagnetic metal ions, which have been added to the point of 

saturation, in order to investigate their effect on the 29si spin-lattice relaxation 

times. I f not otherwise mentioned, the paramagnetic metal ions were left for at 

least 3 days to equilibrate with the silicate solutions before the T l 

measurements. The concentrations of the dissolved paramagnetics were 

determined by atomic adsorption spectroscopy. 

Further information on the paramagnetic ions used is presented in table 3-7 

below. 

Table 3-7 
Paramagnetics used: 

ion nuclear spin I spin state free electrons salt 

Cu2+ 1/2 3d9 1(1) CuS04 

Cr3+ 3/2 3d3 3(3) CrC13 

Ni2+ 1 3d8 2(2) NiS04 

Gd3+ 7/2 4f7 7 Gd(dpm)3 

Fe3+ 2 3d5 1(5) FeC13 

Fe2+ 2 3d6 0(4) FeS04 

If a high-spin state and a low-spin form exist the number of unpaired electrons 

high-spin state is given in brackets. 

This doping with Cr3+ Cu2+ Ni2+ Fe2+ Fe3+ and Gd3+ ions does 

not exert any noticeable effect on the distribution of the structural building 

units in the silicate solutions, which stays constant within the experimental 5%-

error limits. Moreover there is no perceptible effect on the hnewidth of the QO-

resonance (which is the only resonance caused by a single structure) or on the 

chemical shifts. 
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Amongst the paramagnetic cations, Fê "*" ions exert the biggest effect 
on the shortening of T l , achieving an average shortening of 75%, and Cu^"^ 
ions, although dissolved in higher concenfrations than Fê "*" ions, only cause the 
second biggest shortening of Tl-values in a silicate solution (tables 3-9, 3-11 
and 3-12). The effect of Fe2+ and Ni2+ ions on the decrease in T l relaxation 
times is negligibly small and Gd̂ "*" ions exert no effect at all (tables 3-8 and 
3-12). Cr3+ ions, although dissolved to a higher extent than any of the other 
paramagnetics, only cause a small decrease in the ^^Si Tl-values (tables 3-8 
and 3-12). The saturation of a silicate solution with oxygen did not cause any 
change in the ^^Si T l values (table 3-8). The paramagnetic metal ion can 
adsorb on the SiOH-groups of the surface of the particles in the silicate 
solution^ ̂ . The specific adsorption of metal ions on the silica surface can be 
related to the tendency of the metal atom to form covalent bonds which 
decreases in the order^ 1 ; 

Al3+ > Fe3+ > Cr3+ > Co2+ > Cu2+ > Ca2+ > K+ > Na+ 

Out of the parmagnetic ions used in these studies Fe3+ ions are by far 

the most effective relaxation agents. They cause a considerable shortening of 

Tl-values even in concentrations which are lower than for the other 

paramagnetic metal ions. Generally the amount of disolved paramagnetic 

increases with decreasing alkalinity of the silicate solution. The decrease in 

spin-lattice relaxation times caused by any paramagnetic is the smaller the more 

condensed the structural unit is. The paramagnetic is more effective in 

shortening the Tl-values in diluted silicate solutions than in the concentrated 

ones (table 3-10). This is simply because the amount of parmagnetic dissolved 

in diluted silicate solutions increases with decreasing Si02 concentiation 

(tables 3-8 and 3-12). Another result was that the effect of the salt in the 

silicate solutions is dependent on the time it is given to dissolve. It was found 
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that after three days the effect of the paramagnetic on the T l values was fully 

established (table 3-9). 

Table 3-8 
T l values in seconds for sodium silicate solutions 

structural 

unit 

not 

doped 

+ Fe3+ 

3ppm 

+ Cr3+ 

160ppm 

+ 02 

saturated 

QO 2.4 0.3 2.3 2.3 

Ql 3.0 0.6 2.8 2.9 

Q2cyc 3.0 0.8 2.9 3.1 

Q2 3.9 0.9 3.2 4.0 

Q3 4.9 1.5 4.1 5.0 

Q4 - - - -

Table 3-9 
T l values for sodiiun silicate solutions : 

structural without salt with FeC13 with CuC12 with CuC12 

unit (3ppm) (6ppm) (30ppm) 

left 3hrs left 3 days 

QO 2.4 0.3(13%) 2.2(92%) 1.1(46%) 

Ql 3.0 0.6(20%) 2.7(90%) 1.0(33%) 

Q2cyc 3.0 0.8(27%) 2.8(93%) 1.4(47%) 

Q2/Q3cyc 3.85 0.9(23%) 3.0(78%) 1.5(39%) 

Q3 4.9 1.5(31%) 4.0(82%) 1.8(37%) 

Q4 - - - -
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Table 3-10 
T l values for sodiiun siUcate solutions 

structural unit without salt with FeC13 

(38ppm) 

QO 5.2 0.1(2%) 

Ql 4.8 0.14(3%) 

Q2cyc 4.3 0.3(7%) 

Q2/Q3cyc 4.7 0.35(7%) 

Q3 5.5 1.0(18%) 

Q4 _ _ 

Table 3-11 
T l values for sodium silicate solutions : 
30wt%SiO7 ; Rm=2.95 

structural unit without salt with FeC13 

ClOppm) 

QO 4.0 1.4(35%) 

Q l 4.8 3.3(69%) 

Q2cyc 5.1 4.0(78%) 

Q2/Q3cyc 5.3 4.2 (79%) 

Q3 7.3 6.4(88%) 

Q4 14.7 13.4(91%) 
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Table 3-12 
T l values for sodiimi silicate solutions : 

structural 

unit 

not 

doped 

+ Fe2+ 

8ppm 

+ Cu2+ 

37ppm 

+ Cr3+ 

190ppm 

+ Ni2+ 

Ippm 

+ Gd3+ 

4ppm 

QO 8.4 1.0 5.5 7.0 8.4 7.3 

Qi 8.8 1.6 5.7 7.3 8.9 7.6 

Q2cyc _ _ _ _ _ _ 

Q2 8.5 1.5 6.8 7.2 8.9 7.0 

Q3 10.2 2.3 9.1 9.0 10.0 9.9 

Q4 18.5 6.0 16.5 14.7 19.0 15.8 

6. Non-NMR analytical techniques 

All equipment mentioned in this section is located at Unilever Research, Port 

Sunlight. 

6.1 Optical microscopy 
Optical microscopy has been carried out with an Olympus BH-2 

instrument equipped with a Linkam TP 91 temperature control imit. The 

observation of silicate systems under the microscope has to be fast, since it is 

not possible to work under C02-fi'ee conditions. Lenses with a range of 

magnifications were used and in some cases a polarising lens was used for the 

observation of liquid crystalline phases. The microscopic pictures were 

monitored with a Panasonic WV-CM 140 Video Monitor, and photos of the 

picture shown on the monitor were taken using a Sony Video Graphic Printer 

VP-850. 
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6.2 Transmission electron microscopy (TEM) 
There are several experimental techniques used in TEM. In the 

experiments described in this thesis copper grids supported by a carbon film 

were used as sample carriers. The instrument used is a JEOL JEM-200 CX 

electron microscope equipped with a camera control display vmit of the type 

1570 Agar. It works at a vacuum of lO'^bar. I f the sample was put onto the 

grid and immediately placed in the vacuum to prevent changes of the silicate 

solution (25.5wt% Si02 and Rm=3.8 with surfactant) occurring in the 

atmosphere, the film on the grid was very thick but allowed the resolution of 

agglomerated particles on the edges. The dilution of the sample with a factor 

1/10 and immediate shock-freezing at hquid nitrogen temperature, with 

observation of the sample in the instrument in the frozen state, allowed 

agglomerated particles on the film to be seen. 

6.3 Rheology 
Two different types of experiments have been carried out. Experiments 

with varied temperature and constant stress to measure phase transitions as a 

fimction of temperature were carried out using a 40-cone and a stress of 4774 

N/m2 in the temperature range -lO^C to +80OC. The shear rate is adjusted 

throughout the experiment according to the increased temperature to keep a 

constant stress. Experiments with varied stress at a constant temperature of 

250c to measure flow behaviour used a 40-cone. The instrument adjusts the 

shear rate according to the changed stress at a constant temperature. 

6.4 Differential Scanning Calorimetry (DSC) 
For these experiments a Perkin-Elmer DSC-instrument with a 7 Series 

Thermal Analysis System was used. The temperature range investigated was 

-6OOC to +IOOOC with a step size of 50C per minute. 
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The literature value for the enthalpy needed for the melting of ice, AHj^ (H20) 

is 319.73 J/g. 

The experimental value for AHjn (H20) is 321.83 J/g. 

For the calculations the latter value for AHm (H20) is taken. 

6.5 Water activity measurements 
The water activity was measured in % with a 3-channel Novasina AW-

centre which detects the aw-value (0-1) of the htmiidity of the air layer between 

the sensing head and the sample with an electionic humidity sensor. The 

equilibration of the sample with the air layer takes approximately 2 hours. All 

three channels are calibrated with special samples on winch the aw-values are 

set. 

For the measurement of water activities of the silicate samples it was 

established that the H20/D20-ratio does not affect the result (see table 3-13). 

Solutions of NaCl satijrated in H20, 50% H2O/50% D20 and D20 were 

measured: 

Table 3-13 

aw-value 

100% H20 75.1% 

50% H2O/50% D20 75.9% 

100% D20 73.9% 
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4. THE QUANTITATIVE ASPECT 

1. Introduction to the problem 
A very important aspect in the N M R investigations of viscous, highly-

condensed silicate solutions is ensuring that every silicon atom in the solution 

is represented in the N M R spectrum. It has been stated that silicon atoms 

located in colloidal particles cannot be detected by solution-state N M R I 

because there could be siUcon atoms, especially in the core of colloidal 

particles, having long spin-lattice relaxation times which would make detection 

difiScult. Moreover, such nuclei may give rise to extiemely broad lines for 

reasons of short T2 or shift dispersion, so that signals may be unduly affected 

by the spectrometer dead time^. The investigated sihcate solutions do contain 

varying amoimts of Q4-units3 (in some silicate solutions up to 25%, see chapter 

5-1.2), the existence of the Q4-unit being evidence for the existence of colloidal 

particles4,5. Thus the investigation of colloidal particles plays a dominant role 

in the silicate solutions studied, and it is vital to check i f their silicon atoms are 

represented in the N M R spectrum. The quantitative determination of the 

amount of nuclei between the coils is not straightforward and has not been 

tackled in the literature so far. A new procedure was worked out for the present 

studies in which physical approaches had to be taken into account^. 

2. Theory 
The quantification procedure is complicated by two major factors. The 

magnitude of the detected N M R signal is influenced by the flip-angle of the 

pulse and the coupling of the spins on the receive side^. The flip-angle 

depends on the duration of the pulse and the sfrength of the r f magnetic field. 

The latter in turn depends on the coupling between the spectiometer and the 
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spins on the transmit side2,6. The transmit and receive coupling are 
complementary, so that cases which lead to spins experiencing a high magnetic 
field also lead to large received signals in the spectrometer. The coupling is not 
imiform in space, since spins at the extreme of the NMR coil are not as well-
coupled as those in the centre^. There is also a potential variation in an annular 
sense, spins near the centre of the coil being coupled differently to those at the 
periphery. The extent of this effect is influenced by the nature of the sample. 

Al l samples affect the characteristics of the NMR coil by virtue of their 

relative permittivity and dielectric loss factor^. These describe the extent to 

which the electric charge distribution can be polarised by a magnetic field and 

exert an influence on both the inductance of the coil and its Q factor. 

We can thus deduce the equation for the observed intensity of a NMR 

signal I , at a given pulse angle. 

I o c s * S * N L I 3 
f 

I = K * s * S * N [2.1 
f 

The proportionality constant, K, involves factors such as y, BQ, T and 

gain settings on the spectrometer which stay constant for any sample^. N 

denotes the number of nuclei detected by the coil and is expressed in terms of 

wt% Si02. Sf is a shape factor which characterises the first effect described 

above, ff this were the only effect, replacement of the sample by one of known 

concentration with the same shape would suffice, s can be described as a 

tuiung factor representing the second effect, ff this were the only effect to be 

considered we could use a two-compartment sample holder with known 

volume ratio. 
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Both effects complicating the quantification can be cancelled out i f an 
experimental set-up is used which connects the results of two individual 
experiments. The first experiment gives the integrated intensities for a silicate 
standard solution containing no colloidal particles and a non-silicate reference 
which is in a coaxial sealed capillary inside the NMR tube. The second 
experiment yields the integrals for the silicate solution of interest and the same 
reference in the same insert as used for experiment 1. In these investigations 
HMDSO is used as a reference. 

The equations for the resulting two sets of two integrals are as follows: 

Experiment 1: 

Î ^Wso= K * 8 i *Sf ( insert)* wt%SiHMDso 

l^'^BMDSO = K * 8 i *Sf (tube)* Wt%Si3,3^dard ^ 

Experiment 2: 

I * ' ' = K*s, *S,(insert)*wf/,SiH^,o ^ ^ ̂  

Connecting these equations in the form of taking the ratios 

^ ^ H - M [ T ] 
4 ] [ 6 ] 

yields an equation for the amount of Si in a silicate solution detected by the 

coils which is not dependent on K, s and Sf any more. 



Chapter 4 The Quantitative Aspect page 70 

It can easily be solved with the accessible data^. 

T(1) ^T(2) 
^ HMDSO ^ silicate *wt%Si^^,, 

wt%Si,„^ 
HMDSO -*• standard [8] 

3. Practice 
To check the reliability and apphcability of equation [8], two different 

standards were investigated, both soditmi silicate solutions contairdng no 

colloidal particlesl^'l 1. These standards were : 

1) 0.1wt%SiO2 ,Rm=1.6 

2) 20.0wt% Si02 , Rm=0.7 

When these standards are measured against each other, the correct 

values for the silicon contents were obtained. Thus there is proof that by using 

this quantification method the usually qualitative NMR measurement can be 

turned into a quantitative experiment. 

The next step was the investigation of two relevant sodiiun silicate 

solutions with a high degree of condensation, both showing considerable 

amounts of Q4-uruts. Since the existence of Q4-imits can be taken as an 

indication that colloidal particles are formed in the silicate system ,̂̂ ^ it can be 

concluded that both silicate solutions contain colloidal particles. In silicate 

solutions with ratios in the range of those used here particles of sizes in the 

low-size range of colloidal particles were foimd by Iler5'12,13 
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Experimental values for the total silica concentration have been 
obtained using the set of experiments described before and solving equation [8] 
with the measured data. They represent the amount of Si nuclei detected by the 
coils. 

30wt% SiO? . Rm=3.4 

Theoretical : 14.03wt% Si 

Experimental: 14.0 +/- 0.46 wt% Si 

(average of two experiments) 

25wt% SiOo , Rm=4.0 

Theoretical : 11.69wt%Si 

Experimental: 11.6 +/- 0.64 wt% Si 

(average of three experiments) 

These results show that, within experimental error, every silicon atom 

in the silicate solutions can be detected by the coils and is thus represented in 

the NMR spectrum no matter whether it is located in colloidal particles or in 

much smaller imits-^. 
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5. COLLOIDAL PARTICLES 
AND STRUCTURING 
OF SILICATE SYSTEMS 

1. Structures 
1.1. Structure assignment for a silicate solution 

with Rm=2.0 
Individual structures have been assigned by Harris and Knight for 

potassium silicate solutions which were enriched in ^^Si. The techniques of 

29si-{29si} homonuclear decouplingl'2 and two-dimensional ^^Si 

homonuclear correlation spectroscopy (COSY)^'4'21 have been employed 

The chemical shifts of the Si atoms forming the structures that were identified 

are listed in table 5-1. The chemical shift values reported here are referenced 

to the QO resonance. 

A remarkably well-resolved 29si spectrum of a sodium silicate solution with 

32wt% Si02 and Rm=2.0 was obtained which allowed the assignment of 

individual resonances to individual structures'^. The spectrum is shown in 

figure 5-1. A similar resolution could not be obtained in any of the higher 

molar ratios as the overlapping of signals makes it impossible to resolve 

individual lines. In the comparison of reported chemical shifts care has to be 

taken as chemical shift values are dependent on the Rm-value and the Si02 

concentration!'^. Thus for the assignment of resonances by using reported 

chemical shifts for comparison all chemical shifts were referred to the QO-

resonance (the chemical shifts in the table are absolute values). The structures 

found in this silicate solution are listed in table 5-2^5. 
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Table 5-1 
Chemical shifts in a sodium silicate solution with 0.6/1.5 M Si02 and Rm=2.0 
referenced to the QO resonance and the structures they are assigned tol~^'21 

• denotes the silicon atoms assigned to the resonance 
Oxygen atoms are generally omitted 

0 . 0 Q ° . IC 5. 

• 
- S. OG ^ . II. . ifc j - p , 

Q Q - , 8 . 1 1 ^ 

" ^ • 5 - q"" ^ - 2 1 . 4 3 

3 

ib. 6 Q 

a •0 



Chapter 5 Colloidal Particles and Structuring of Silicate Systems page 75 

Figure 5-1 
29si NMR spectrum of a sodium silicate solution 
with 32wt% Si02 and Rm=2.0 
chemical shifts referenced to HMDSO (external), acquired on the AMX500 
relaxation delay 30s, 500 transients, acquisition time 0.2 s 

ppa -80 
— I — 
-90 n— 

-100 -110 
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Table 5-2 
Chemical shifts in a sodium silicate solution with 32wt% Si02 and Rm=2.0 
referenced to HMDSO (external) and the structures they are assigned to 
according to assignments in figure 5-1 

• denotes the silicon atoms assigned to the resonance 
Oxygen atoms are generally omitted 

- ?K SG ( O . o j 

- ^.21 (-1.G5) a' U 

- 5 1 . sK-'=l.q5-) Q2. QS^ 

( -^5- .&l(- i^.o5) ^ ) 

-81.02 Q"-

- ^ ? . m ( -15 .S5 ) l ; ^ ' ' 

-5€. (- [(a.^^^ 

4 2 ( - 1 1 . ^ ^ ^ 
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According to this assignment the structures occurring in this solution 

are fairly small and limited in size. There are no large, extended units, for 

instance chains containing Q2-units. Thus the process which takes place when 

the pH decreases (Rm increases) is not a simple polymerisation. It is rather a 

random condensation of small units to bigger entities than a growth of chains. 

1.2 Effect of decreasing NaOH-content 
(increasing Rm-value) 

The distribution of structural units in silicate solutions is strongly 

influenced by the ratio of Si02 to Na20, the Rm-value. An increase in the 

Rm-value means a decrease in the alkalinity of the silicate system. 

In these investigations silicate solutions were prepared by dissolving 

fvuned sUica in sodium hydroxide solution. The procedure used is described in 

detail in chapter 3-4.1.1. The different Rm-values were produced by varying 

the NaOH content in the systems. It should be noted that the silicate systems 

with 30wt% Si02 and Rm > 3.8 are past the sol/gel-transition (see section 2). 

Typical 29si-spectra of sodium sihcate solutions are shown in figure 5-2. 

Al l spectra consist of six major regions which are assigned to structural 

units according to previous assignments^l^^^ ^he chemical shift range 5 = -

70.5 to -72.0 ppm the monomer resonance is found At 5 = -78.8 to -80.8 ppm 

peaks assgned to the Ql end-group are found. The resonance at 6 = -80.9 to -

82.0 ppm is characteristic for the cyclic trimer (Q23). In the chemical shift 

range 6 = -87.0 to -89.6 ppm peaks arising from Q2 middle-groups and cyclic 

Q3-units are found, the cyclic Q3-units resonating at the high-field side of this 

region. The peaks belonging to silicon atoms in Q3-units, which can form 

branching groups and surface units in colloidal particles resonate in the region 



Chapter 5 Colloidal Particles and Structuring of Silicate Systems page 78 

5 = -95.0 to -98.5 ppm. Silicon atoms in Q4 cross-linking groups, found in the 
core of colloidal particles resonate at 5 = -105.0 to -109.0 ppm. 

The general tendency in the structural distribution at high 

Si02-concentrations ([Si02] = 30wt%) with increasing Rm-value is presented 

in figure 5-3 and table 5-3. 

Table 5-3 

2.0 2.4 2.6 3.0 3.4 3.8 4.0 

QO 1.2 0.8 0.7 0.9 0.8 0.0 0.0 

Qi 127 8.6 6.7 5.7 5.5 3.0 24 

Q2cyc 3.7 23 1.5 1.0 0.0 0.0 0.0 

Q2 47.7 38.8 36.5 29.8 26.1 24.3 21.8 

Q3 34.7 44.8 47.2 48.5 50.0 51.5 520 

Q4 0.0 4.7 7.4 14.1 17.6 21.2 23.8 

Figure 5-3 
Distribution of structural units with increasing Rm-value 

Structures with Rm 

2.5 3 3.5 

Rm (Si02:Na20) 

QO 

QI 

-* Q2cyc 

^ Q2 

Q3 

n:^ 0 4 
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In agreement with previous results on silicate solutions with much 

lower Si02-concentrationsl^'ll, a general trend in the speciation can be 

observed with decreasing alkalinity (increasing Rm). The fraction of Si atoms 

in Q0-, Q1-, Q2cyc- and Q2-units decreases whereas the fraction of Si-atoms in 

Q3- and Q4-muts increases. Thus the relative number of Si atoms in more 

branched enviroimients increases with increasing Rm, indicating the formation 

of larger more complex silicate structures. The begiiming of the formation of 

Q4-units, which occurs at Rm-values bigger than 2.0 at high Si02-

concentrations, is regarded as the start of the formation of colloidal particles^. 

From the distribution of structural units with increasing Rm-value 

shown in figure 5-3 an equation was derived describing the Rm-value in terms 

of the ratio of Q4-uiuts to the other structural units. This enables us to 

calculate the respective Rm-value of a silicate system of known Si02-content 

(cSi02 = 30 wt%) but imknown alkalinity from the 29si NMR-spectrum. 

Rm = 6*v=^ ^ +2-0 [1] 
^ Q 0 + Ql + Q2cyc + Q2 + Q3 ^ ^ 

The limit of precipitation of siHca in silicate solutions has been 

investigated by trying to produce silicate solutions with Rm-values bigger than 

4.0 and using the method of quantification described in chapter 4 to investigate 

the amount of silica dissolved (see chapter 7). It is found to be Rm=4.0. This 

agrees with previous results reported in the literature^'^ where the Rm=4.0 was 

assumed to be the precipitation boundary for Si02 and thus the highest ratio at 

which silicate solutions are stable. 

Two processes are involved in systems containing coUoidal particles. 

The formation of new colloidal particles and the growth of existing colloidal 
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particles. Colloidal particles have Q4-units in the core and Q3-units on their 
surface. From the graphs in figure 5-3 conclusions can be drawn about the 
growth-mechanisms in silicate solutions with decreasing alkaline content. The 
relatively large increase in the amount of Q3-units compared with the growth of 
Q4-units from Rm=2.0 to Rm=2.5 suggests that in this regime the formation of 
new colloidal particles dominates. From Rin=2.5 onwards to Rm=4.0 the 
relatively small increase in the amount of Q3-units compared with that of the 
Q4-units suggests that the growth of existing colloidal particles is the 
dominating process. 

The Q3/Q4-ratio versus the Rm-value was plotted for a constant Si02-

concentration of 30wt% Si02 (figure 5-4). In the plot a change in the slope can 

be seen at a molar ratio of Si02 to Na20 around 3.0. This is even obvious in 

the semi-logarithmic plot of the Rm-value versus the Q3/Q4-ratio (figure 5-5). 

This is illustrating the fact that from a molar ratio of around 3.0 and a Q3/Q4-

ratio of around 3 the growth of colloidal particles dominates over the new-

formation of colloidal particles. The very slowly decreasing tail of the graph 

also indicates that there is a limiting particle size (a limiting Q3/Q4-ratio). 

Experimental findings fiirthermore show a limiting Q4-content which is 

around 25% for a silicate on either side of the sol/gel-transition where no 

precipitation has occurred. 

The rate of particle growth depends on the distribution of particle 

sizes 13 which is assumed to be Gaussian. The growth occurs with smaller 

particles dissolving and adding silica to larger ones till the difference in the 

solubility of the smaller particles is negligible compared to the solubility of the 

larger particles. 
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Table 5-4 

page 81 

Rm 2.4 2.6 2.95 3.4 3.8 4.0 

Q3/Q4 9.5 6.4 3.4 28 24 22 

log Q3/Q4 0.98 0.81 0.53 0.45 0.38 0.34 

Figure 5-4 
Q3/Q4 versus Rm: 

2 . 4 2 . 6 2 . 9 6 3 . 4 3 .8 

Figure 5-5 
log Q3/Q4 versus Rm: 

2 . 9 6 
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Figure 5-2 
^^Si NMR-spectra of sodium silicate solutions 
a) 32wt% Si02 andRm=2.0, 

acquisition time 0.2s, relaxation delay 30s, transients 500 
b) 3 0wt% Si02 and Rm=3.0 

acqusition time 0.04s, relaxation delay 80s, tiansients 80 
c) 25wt% Si02 and Rin=4.0 

acqusition time 0.02s, relaxation delay 100s, transients 100 

I I I I I I I I I 
p p i -70 

I I I I I I 1 I I I r I I I I I 1 

-90 
I • • 

-100 -110 -60 
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1.3 Dilution of the silicate solutions 
Most studies so far involved relatively dilute silicate solutions^'1^ and 

highly concentrated silicate systems have received less attention. Compared to 

the effect of the Rm-value the distribution of Si-units is less influenced by the 

Si02-concentrationl 1. 

1.3.1 Study on time-dependent dilution 
The dilution of a sodium silicate solution containing colloidal particles 

has been studied as a fimction of time in order to find how long it takes for the 

structural units to establish the new equilibrium. Furthermore it might be 

possible to see i f any Q3-units equilibrate faster than others by plotting the 

amount of Q3-units against the time and checking i f there is more than one 

contribution to this time-dependency. Assuming that the colloidal particles 

equilibrate more slowly than small particles this would be a method of 

distinguishing between Q3-units in colloidal particles and Q3-imits in small 

molecules. 

A sodium silicate solution with 25.5wt% Si02 and Rm=3.8 was diluted 

1:1 to give 12.3wt% Si02. 29si-spectra have been recorded in step sizes of 66 

minutes after the addition of the appropriate amount of water to the silicate 

solution. 

The results are presented in table 5-5 and figure 5-6. It can be seen 

that during the experiment there were no Q3- or Q4-units which equilibrated 

faster. This as well as the observation that the slope of the Q3-graph is about 

the same as the (negative) slope of the Q4-graph indicates that most of the Q3-

units are on the outer or inner surface of colloidal particles. 
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Table 5-5 
Dilution of a sodium silicate solution with 25.5wt% Si02 and Rm=3.8 to 
12.3wt% Si02 
29si spectra were recorded on the AMX500 with background subfraction 
recycle delay 150s, acquisition time 0.04s, 40 transients in step sizes of 66 
minutes after the addition of the appropriate amoimt of water to the silicate 
solution 
Values are for the distribution of the structural units in % of the respective unit 

time/min QO Q l Q2 Q3 Q4 

66 1.0 5.0 21.4 50.8 21.8 

132 0.9 4.0 23.2 52.3 19.6 

198 0.5 5.0 25.3 52.9 16.4 

264 0.9 4.0 23.9 52.9 18.2 

330 1.0 5.8 23.6 51.6 17.9 

396 0.9 3.5 25.0 55.5 15.1 

462 0.6 5.4 27.4 52.0 14.6 

528 0.9 4.6 24.7 54.4 15.4 

594 0.9 4.8 25.3 54.4 14.6 

660 0.8 4.0 25.5 55.3 14.4 

726 0.8 3.8 25.7 55.6 14.1 

8 weeks 0.5 2.5 26.0 58.7 12.3 
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Figure 5-6 
Dilution of a sodium silicate solution witii 25.5wt% Si02 and Rm=3.8 to 
12.3wt% Si02 
Plot of amoimt of structural unit versus time after dilution 
29si spectra were recorded on the AMX500 with background subtraction 
recycle delay 150s, acquisition time 0.04s, 40 transients in step sizes of 66 
minutes after the addition of tiie appropriate amount of water to the silicate 
solution 

200 400 600 

time after dilution /min 

800 

1.3.2 Dilution of a high-ratio sodium silicate solution 
Iler reported that the dilution of a concentrated silicate solution by a 

factor of 10 almost instantly released more monomer into the solutionis. A 

representative silicate solution with a high degree of condensation containing 

colloidal material was diluted to a factor of 1/5 of its initial concentration to 

investigate the effect of dilution on the structuring in a siticate containing 

colloidal matter. The effect of dilution is shown in table 5-6. 

From the increasing amount of Q3 imits, in parallel with the decreasing 

amount of Q4-iuiits, when the solution is diluted by half it can be concluded 

that the size of the colloidal particles in the silicate solution is decreasing. 

Upon further dilution to a fifth of the Si02 content of the stock solution a 

decrease in the total amoimt of colloidal material takes place which goes along 
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with a general depolymerisation of all structures, shown in the drastically 

increased amoimt of Ql-units at the expense of Q2, Q3 and Q4 units. 

Surprisingly the amoimt of monomer in the silicate does not drastically 

increase. 

Table 5-6 
Distribution of structural units in a sodiimi silicate solution with Rm=3.8 
under the influence of dilution: 

structural unit 25.5wt% Si02 

Rm=3.8 

12.0wt% Si02 

Rm=3.8 

5.0wt% Si02 

Rm=3.8 

QO 0.9 0.5 1.8 

Ql 4.7 25 37.3 

Q2cyc 0.0 0.0 0.0 

Q2 23.2 26.0 17.0 

Q3 51.5 58.7 35.3 

Q4 19.7 123 8.6 

1.3.3 Redilution of a silicate past the sol/gel-transition 

The reversibility of the passing of the transition from a sol to a gel 

gives important information about the ability of silicate systems to readapt to 

changing conditions in both directions. A sodium silicate system past the 

sol/gel-transition (see section 5-2) of Rm=4.0 and 30wt% Si02 (which has 

been prepared by concentrating up a silicate solution of 25wt% Si02) has been 

rediluted to 23wt% Si02. It gives the expected structural distribution i f given 

enough time to get to equilibriimi (at least 6 weeks). This shows that even i f 

physical properties like the viscosity change drastically in a gel, the system is 
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able to readapt i f the composition is changed. This abihty to readapt to the sol 
state proves the great flexibility of silicate systems. 

Table 5-7 
Distribution of structural units in a sodiimi silicate solution with 23wt% Si02 

structural imit 30wt% Si02 

Rm=4.0 

23wt% Si02 Rm=4.0 

rediluted from 30R4 

QO 0.6 0.4 

Ql 1.9 1.8 

Q2cyc 0.0 0.0 

Q2 27.0 22.3 

Q3 39.6 56.3 

Q4 30.9 19.2 

1.4 Ageing of silicate solutions 
The CO2 in the atmosphere has a profotmd effect on the constitution of 

sodium silicate solutions especially in cases with a high sodium content (high 

pH). The CO2 works in the way that sodium hydroxide is taken out of the 

silicate solution in the form of sodiimi bicarbonate. 

NaOH + C02 ^ NaHCOs 

This artificially decreases the alkalinity of the sihcate and therefore has 

the same effect as an increase in the Rm-value. I f it is assured that no water-

loss occurs during the exposure to CO2 the change in the silicate system can 

thus be described in terms of the Rm-value calculated with equation [1]. 

Two sodium silicate solutions were exposed to CO2 atmosphere for a 

period of 14 and 28 weeks. Under the influence of the ageing-process both 

silicate solutions passed the sol/gel-transition. In C02-atmosphere the ageing 
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is increasing the Rm-value of a silicate solution with Rm=2.0 to Rm=2.3 and 

the Rm-value of a sodium silicate solution with 25wt% Si02 and Rm=4.0 

which was aged in the atmosphere for 7 months to Rm=4.3 (table 5-8 and 5-9). 

The distribution of structural units in the latter sihcate system indicates the 

formation of larger particles than are usually formed in solutions with Rm=4.0 

without the influence of CO2 (see section 1.2). The decreasing Q3/Q4-ratio is 

a good indication for this. 

Table 5-8 

structural unit non-aged aged in C02-atm 

for 14 weeks 

QO 1.2 0.0 

Qi 12.7 4.2 

Q2cyc 3.7 1.0 

Q2/Q3cyc 47.7 51.0 

Q3 34.7 40.1 

Q4 0.0 3.7 

Table 5-9 

structural imit 25wt% Si02 Rm=4.0 

not aged 

25wt% Si02 Rm=4.0 

aged 7 months in CO2 atm. 

QO 0.7 0.2 

Qi 3.3 3.5 

Q2cyc 0.0 0.0 

Q2 21.4 20.6 

Q3 52.3 48.7 

Q4 22.3 27.0 
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1.5 Temperature-influence on silicate structures 
In the literatm-e the influence of increased temperature on the linewidth 

of the silicate resonances has been discussed24,25 whereas no attention was 

drawn to the effect of increased temperatre on the structuring in silicate 

solutions, which is studied in this section. 

The time that a representative sihcate solution takes to adjust to high 

temperature as well as the time the system takes to readjust to room 

temperature is studied. The temperature was not raised above 85^0. All 

investigations at increased temperature have been carried out in closed vessels 

where no loss of water can occur. 

It was found that an increase in temperature generally causes a general 

depolymerisation of the silicate system -which is manifested in the decrease in 

the amount of Q3- and Q4-imits parallel to an increase in the amount of the less 

condensed units (table 5-10, 5-11 and 5-14). Thus not only the viscosity is 

decreased and the mobility of the silicate particles is increased but the 

structuring of the system is changed This is caused by a shifting of the 

exchange equilibriimi between the structural units, which is discussed in detail 

in chapter 6-4, towards the structures with a lower degree of condensation. 

room temperature 

Q3 Q4 

Q2 Q3 

increased temperature 
Q3 ^ Q4 

Q2 ^ Q3 

The new equilibriimi between the structures at increased temperature only takes 

a period of 12 to 16 minutes to establish. However, the re-establishment of the 
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room-temperature equihbrium for the distribution of structural units after the 
heating of a silicate solution takes a much longer time (approximately 6 weeks). 
The results are presented in table 5-12 to 5-14. 

The constant for the rate of exchange increases by a factor of more 

than 10 when the temperature is increased from 250C to just 45^0. Thus it can 

be explained that during the heating process the structures adapt the new 

equilibrium of species much more quickly then during the cooling process. 

Nevertheless, the heating is reversible with respect to the structuring which 

shows that there are no irreversible physical changes taking place in the silicate 

system such as would be due to the loss of water. 

Table 5-10 
Distribution of structural units in a 
sodium silicate so [ution with 30wt% Si02 and Rm=2.6 

structural unit T=300K T=329K 

QO 0.75 1.0 

Q l 6.7 7.0 

Q2cyc 1.5 1.3 

Q2/Q3cyc 36.45 37.6 

Q3 47.2 46.8 

Q4 7.4 6.3 
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Table 5-11 
Distribution of structural imits in a 
sodium silicate ge I with 33wt% Si02 and Rm=3.4 

structural unit T=300K T=329K 

QO 0.0 1.0 

Q l 5.6 6.1 

Q2cyc 0.0 0.0 

Q2/Q3cyc 25.6 29.1 

Q3 50.2 49.4 

Q4 18.3 14.4 

Table 5-12 
Distribution of structural units in a 
sodium silicate solution with 25wt% Si02 and Rm=4.0 (enriched in 29si) 
under the influence of heat as a fimction of time 

time at 

850C/min 

QO Ql Q2 Q3 Q4 

0 0.2 2.8 25.9 55.5 15.6 

4 0.0 3.7 31.6 50.3 14.4 

8 0.0 3.9 32.3 50.5 13.3 

12 0.0 4.7 32.4 50.0 12.9 

16 0.0 4.8 32.3 50.3 12.6 
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Table 5-13 
Distribution of structural imits in a 
sodium silicate solution with 25wt% Si02 and Rm=4.0 (enriched in ^^Si), 
the coohng process as a fimction of time after switching the heater off 
(at the time of 0 min the silicate is still a t 850C) 

time/min QO QI Q2 Q3 Q4 

0 0.0 4.8 32.3 50.3 12.6 

8 1.0 4.0 28.5 53.2 13.3 

16 0.4 3.9 25.6 56.5 13.6 

24 0.2 2.6 26.8 56.6 13.8 

56 0.3 3.3 26.3 57.0 13.1 

88 0.5 4.2 24.6 57.3 13.4 

280 0.5 3.7 26.9 55.0 14.0 

536 (9hrs) 0.5 3.7 27.3 54.4 13.5 

Table 5-14 
Distribution of structural imits in a 
sodium siUcate solution with 25wt% Si02 and Rm=4.0 (enriched in 29si) 
under the influence of heat 

QO QI Q2 Q3 Q4 

at 250C 0.2 2.8 25.9 55.5 15.6 

at 60OC 0.3 4.3 30.6 52.1 12.7 

at 850C 0.0 4.8 32.3 50.3 12.6 

2 weeks after 

heating to 850C 

0.1 3.7 27.8 54.6 13.8 

6 weeks after 

heating to 85^0 

0.2 3.1 25.6 55.3 15.8 
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2. The sol/gel-transition in silicate systems 
It is important to distinguish between the process of gelation, where 

colloidal particles join into chains and thereafter three-dimensional continuous 

networks, and the process of precipitation, where forces are present causing the 

colloidal particles to coagulate and form aggregates 1 '̂23 the case of 

gelation taking place, the Si02 concentration of the structure formed does not 

exceed the Si02 concentration of the sol, whereas in the case of precipitation 

the aggregates formed contain a higher Si02-concentration than the original 

sol. Coagulants (causing precipitation) can be substantial amounts of salts, 

small amounts of water-miscible organic liquids, polymers or surfactants. In 

this chapter only the gelation process is investigated. This gelation goes via the 

formation of colloidal particles. The preparation of the silicate gels from 

silicate solutions is described in detail in chapter 3-4.2. 

The sol/gel-transition is defined in this work as the point where the 

silicate solution is not easily fluid any more at room temperature though it is 

still fluid at 60OC. The siUcate goes into a highly viscous state where it shows 

the property of very slow flow, i.e. it flows with a velocity of approximately 

lOcm/hr to 2cni/hr. 

The viscosity of the siUcate system shows a dramatic jump after the 

sol/gel-transition is passed as demonsfrated in figure 5-7 (table 5-15 and 5-16). 
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Figure 5-7 
Viscosity of sodium silicate sols and gels 
The sols have the composition : 32wt% Si02 and Rm=2.0 

25wt% Si02 and Rm=4.0 
The gels have the composition : 39wt% Si02 and Rm=2.0 

29wt% Si02 and Rm=4.0 
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A clear change in the decline of the water activity of the silicate systems with 

increasing Si02 concentration was observed when the transition fi-om a sol to a 

gel was passed (figure 5-8 and table 5-17 and 5-18). 

Figure 5-8 
Water activity of sodiiun sihcates with Rm=2.0 and Rm=4.0 
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Along with the results from water activity measurements go results from DSC 
meastu-ements (differential scanning calorimetry). These show an increase in 
the amount of water in the pore area (table 5-19) which means that the amoimt 
of colloidal material increases. 

A clear transition from sol to gel can be seen in the T l values as illustrated in 

figure 5-9 (table 5-20 to 5-23). When the Si02 concentration is increased the 

spin-lattice relaxation times pass a minimimi exactly when the silicate solution 

is not fluid at room temperature any more. 

The investigation of various molar ratios at increasing Si02 

concentration shows that the sol/gel-fransition, which is a constant physical 

parameter for each silicate system at a fixed molar ratio, is shifted to lower 

Si02 concentrations the higher the Rm-value. 

The measurements show that the silicate solutions investigated are on 

the border of the sol/gel-transition and very near to the minimum in Tl-values. 
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Figure 5-9 
T l relaxation times in dependency of the Si02 concentration and the Rm-value 
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Table 5-15 

25wt% Si02 32wt% Si02 39wt% Si02 

viscosity/poise 0.3 7.1 4406.0 

Table 5-16 
Viscosity of a sodium silicate system with Rm=4.0 

25wt% Si02 29wt% Si02 

viscosity/poise 0.9 18463.0 

Table 5-17 

Si02 concentration / wt% water activity / % 
16 98.7 

20 96.7 

23 95.0 

27 94.7 

30 90.0 

33 86.5 

37 78.2 

39 77.3 

Table 5-18 
Water activity of a sodium silicate system with R 

Si02 concentration/wt% water activity/% 
14 100.0 

20 98.2 

25 98.0 

27.5 95.0 

29 93.1 
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Table 5-19 

silicate water in pore area 

in % of total water 

Rm=2.0 

25wt% Si02 0.0 

32wt% Si02 0.0 

37wt% Si02 12.3 

Rm=3.4 

30wt% Si02 10.0 

33wt% Si02 15.6 

Rm=4.0 

25wt% Si02 16.8 

28wt% Si02 21.9 

Table 5-20 
Tl-values 
sodium silicate solution with Rm=2.0 

structural 

unit 

32wt% 

Si02 

34wt% 

Si02 

37wt% 

Si02 

39wt% 

Si02 

QO 5.6 2.4 1.2 3.7 

QI 5.2 2.96 2.3 7.7 

Q2cyc 5.0 3.0 2.4 8.2 

Q2/Q3cyc 5.3 3.85 3.5 12.7 

Q3 5.8 4.9 4.15 16.8 

Q4 - - - -



Chapter 5 Colloidal Particles and Structuring of Sihcate Systems page 99 

Table 5-21 
Tl-values in s in a sodium silicate solution with Rm=3.4 

structural unit 25wt% Si02 30wt% Si02 33wt% Si02 

QO 6.2 4.7 7.9 

Q l 8.2 6.9 8.1 

Q2cyc _ _ _ 

Q2/Q3cyc 8.3 7.5 8.6 

Q3 9.4 50.0 10.1 

Q4 19.2 18.8 22.0 

Table 5-22 
Tl-values in s in a sodium silicate solution with Rm=3.8 

structural unit 25.5wt%Si02 30wt% Si02 

QO 6.8 _ 

Ql 8.5 8.1 

Q2cyc _ 

Q2/Q3cyc 8.6 8.3 

Q3 9.8 10.5 

Q4 18.1 19.9 

Table 5-23 
Tl-values in s in a sodiimi silicate solution with Rm=4.0 

structural imit 20wt% Si02 25wt% Si02 28wt% Si02 30wt% Si02 

QO 9.3 8.4 7.8 8.5 

Ql 9.5 8.8 8.2 9.1 

Q2cyc _ _ 

Q2/Q3cyc 8.9 8.5 8.7 9.8 

Q3 10.8 10.2 10.5 11.8 

Q4 19.8 18.5 21.4 23.3 
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The distribution of structural units does not show any obvious jumps 

when the sol/gel-transition is passed. It is characterised by a slight increase in 

the amount of Q4 units at the expense of the other structural units as illustrated 

in figure 5-10 and 5-11 (table 5-24 to 5-27). 

Figure 5-10 
Distribution of structural units with increasing Si02 concentration 
The point where the sol/gel-transition is passed is marked with an asterisk 
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Figure 5-11 
Distribution of structural units with increasing Si02 concentration 
The point where the sol/gel-transition is passed is marked with an asterisk 

S tructure s with S iO 2 - c o n c . a t R m =4.0 

6 0 

5 0 + 

4 0 

3 0 4 

2 0 

1 0 + 

0 

2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 

S iO 2 - c o n c . / w t % 



Chapter 5 Colloidal Particles and Structuring of Sihcate Systems page 101 

The self-diffusion coefficient for protons, which was measured using 
the PFG technique described in detail in chapter 3-2.6 and chapter 6-3, does 
not change very much when the fransition from a sol to a gel is passed 
(table 5-28). This shows that the majority of the water molecules experiences a 
small restriction of their diffusive mobihty in the gel. 

The mobility of the sodium cations in a representative silicate is 

measured in terms of the spin-spin-relaxation time (measured with the CPMG 

sequence). Table 5-28 shows that the T2-value for sodium is decreased by a 

factor of about 2 in the gel. Therefore the mobility of the sodiimi cations in the 

gel is smaller than in the sol. 

Considering all the experimental findings conclusions can be drawn 

about the formation of the gel and its nature. Considering that the colloidal 

particles do not have a hard-core structure (see chapter 6) only some of the Q3-

units have to condense to Q4-units to cause a "lock-up" of the whole structure. 

This would make movements of the particles which have been condensed to a 

sort of inflexible "net" impossible. The "lock-up" of the whole structure is 

made clearly visible by viscosity measurements. These show that the viscosity 

of a silicate in the gel state is about 1600 times as big as the viscosity of a 

silicate in the sol state. The fact that the diffusional mobihty of the protons is 

only little restricted in the gel compared to the sol suggests that the structure of 

the gel is not compact. The gel structure contains holes and pores just like the 

colloidal material in the sols and could therefore be described as an extended 

sol structure where silicate networks are interlinked to build largely extended 

networks. 
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Table 5-24 
Distribution of structural units in a sodium sihcate solution with Rm=2.0 

structural unit 32 wt% Si02 37 wt% Si02 39 wt% Si02 

QO 1.1 0.7 0.8 

QI 12.3 12.3 11.1 

Q2cyc 2.1 3.5 3.5 

Q2/Q3cyc 50.1 46.4 45.1 

Q3 34.4 35.6 36.7 

Q4 0.0 0.6 2.8 

Table 5-25 
Distribution of structural imits in a sodium silicate solution with Rm=3.4 

structural unit 25wt% Si02 30wt% Si02 33wt% Si02 

QO 1.5 0.8 0.0 

QI 5.0 5.5 5.6 

Q2cyc 0.0 0.0 0.0 

Q2/Q3cyc 25.5 26.1 25.6 

Q3 55.8 50.0 50.2 

Q4 12.2 17.6 18.3 

Table 5-26 
Distribution of structural units in a sodixmi siUcate solution with Rm=3.8 

structural imit 25.5wt% Si02 30wt% Si02 

QO 0.9 0.0 

QI 4.7 3.0 

Q2cyc 0.0 0.0 

Q2/Q3cyc 23.2 24.3 

Q3 51.5 51.5 

Q4 19.7 21.2 
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Table 5-27 
Distribution of structural units in a sodium silicate solution with Rni=4.0 

structural 

unit 

20wt% 

Si07. 

25wt% 

SiO, 

28wt% 

Si09. 

30wt% 

Si07 

Qo 0.8 0.7 0.6 0.2 

Q i 2.8 3.3 3.0 2.4 

Q2cyc 0.0 0.0 0.0 0.0 

Q2/Q3cyc 23.5 21.4 20.8 21.8 

Q3 55.2 52.3 52.0 51.7 

Q4 17.7 22.3 23.6 23.9 

Table 5-28 
Self-diffusion coefficient measured with the normal echo PFG pulse sequence 
(developed by Stejskal and Taimerl2) of protons, 
T2-value measured with the CPMG sequence of sodium, 

i H 

Dself/cm^s-l 

23]Va 

T2/ms 

25wt% SiO^ (sol) 7.5 E-6 2.2 

28wt% Si02 (gel) 5.1 E-6 1.2 

3. Potassium silicate solutions 
It has been found that the dissolution rate of silica in caustic solution 

increases in the order : 

LiOH ~ CsOH < RbOH ~ NaOH < K 0 H 1 4 

This is due to two contrary effects governing the dissolution rate, the strength 

of the hydration shell and the strength of the cation adsorption on the silica 

surface. Contradicting results have been fotmd regarding the dependency of the 
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structuring in the silicates on the cation, some claiming that in spite of the 

profound effect of the cation on the sihca dissolution rate there is no effect on 

the distribution of species 14,16,19 Qnd others claiming that there is an effect of 

the cation on the silicate anion distribution 1 '̂22 or the degree of 

polymerisation of the systemic. 

In these studies potassium silicate solutions do not show significant 

differences in the distribution of structural units compared to sodium silicate 

solutions of the same composition as shown in table 5-29 to 5-31. Therefore it 

can be concluded that such a change of cation does not exert an effect on the 

development of structures in the siUcate systems. There are no direct Si-0-

cation bonds in the investigated silicate solutions. The cation exists in the 

silicate system in the hydrated form which is in the case of sodium and 

potassiimi, with six water molecules bound octahedrally in the hydration shell. 

The amount of water in the hydration shell of the cation increases with 

decreasing cation radius as well as the adsorption on the silica surface 1^. 

Nevertheless the size of the potassium ion would allow more water molecules 

in a second hydration shell. 

In these investigations an important observation was made concerning 

the influence of a change of cation from sodiimi to potassium on the sol/gel-

transition. Two potassium silicate solutions of the composition 30wt% Si02 

and Rm=3.4 and 23wt% Si02 with Rm=4.0 have passed the sol/gel-transition 

and are behaving like gels whereas the corresponding sodium sihcate solutions 

are still on the sol-side of the sol/gel-transition. In figure 5-12 (table 5-32 to 

5-34) the difference in the mobility of the silicate units between the two silicate 

systems with different cations can clearly be seen. 
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Figure 5-12 
Mobility of silicate imits in terms of the rotational correlation time in s 
(for calculation see chapter 6-2.2) 
SOSI sodium silicate with 30wt% Si02 and Rm==3.4 
POSI potassium sihcate with 30wt% Si02 and Rm=3.4 
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2E -09 
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02 
P O S I 
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The transition from sol to gel at fixed Rm is at lower Si02 

concentrations for potassium silicate solutions compared to sodium sihcate 

solutions. This could be caused by the larger size of potassium ions compared 

to sodium ions which would allow an enlarged second hydration shell and thus 

take more water molecules out of the silicate system than sodium does. 

Another explanation is that the larger potassium ion shows a higher selectivity 

to ion-pairing with larger siUcate anions than the sodium ions. Thus the 

mobility of the larger units is more restricted by silicate-cation-sihcate pairing 

(see section 6) in potassium silicate solutions than in sodium siUcate solutions. 

The fact that the structural distribution of these potassium silicates past 

the sol/gel-transition does not differ very much in Q3 and Q4 content from the 

sodium silicates which still are sols supports the theory that there is a 'lock-up' 

of the overall structure for which only a few more Q2 and Q3 units have to 

condense (see section 2). 
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Table 5-29 
Distribution of structural xmits in silicate solutions with 
30 wt% Si02 and [ Rm=2.6 

structural unit sodium 

silicate 

potassium 

silicate 

QO 0.75 0.4 

Ql 6.7 6.0 

Q2cyc 1.5 0.8 

Q2/Q3cyc 36.45 35.1 

Q3 47.2 50.4 

Q4 7.4 7.3 

Table 5-30 
Distribution of structural imits in silicate solutions 
30 wt% SiO? and Rm=3.4 

structural unit sodium 

silicate 

potassium 

silicate 

QO 0.8 0.0 

Ql 5.5 4.2 

Q2cyc 0.0 0.0 

Q2/Q3cyc 26.1 24.7 

Q3 50.0 52.0 

Q4 17.6 18.1 
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Table 5-31 
Distribution of structural units in silicate solutions with 

structural imit sodium 

silicate 

potassium 

silicate 

QO 0.7 0.1 

Ql 3.3 4.0 

Q2cyc 0.0 0.0 

Q2/Q3cyc 21.4 22.0 

Q3 52.3 51.1 

Q4 22.3 22.8 

Table 5-32 

structural unit 500MHz 600MHz TlfiOO/Tl^OO 

QO 4.7 5.0 1.06 

Ql 6.9 7.3 1.06 

Q2cyc _ _ . 

Q2 7.5 8.1 1.08 

Q3 9.8 11.9 1.21 

Q4 18.8 23.4 1.24 
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Table 5-33 
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Tl-values in s in a potassium silicate gel with 30wt% Si02 anc lRm=3.4 

structural imit 500MHz 600MHz T I 6 O O / T I 5 O O 

QO 6.1 6.6 1.09 

Q l 7.4 8.1 1.09 

Q2cyc _ _ _ 

Q2 10.6 11.7 1.11 

Q3 11.9 14.8 1.24 

Q4 18.6 23.8 1.28 

Table 5-34 

structural unit sodium silicate sol'ii potassium silicate sol'n 

QO 1.5E-10S 2.2E-10S 

Ql 1.5E-10S 2.2E-10S 

Q2cyc _ _ 

Q2 1.8E-10S 2.5E-10S 

Q3 1.4E-9S 1.7E-9S 

Q4 1.7E-9S 2.0E-9S 

4. Si-Si couplings 
Si-Si couplings have been obtained for natural abundance zeoUte 

sti^ctiu-es using the method of 2D-INADEQUATE26 and 29si/29si C0SY27. 

The 3-D lattice coimectivities for these highly crystalUne and highly 

symmetrical materials were obtained with great accuracy. 

In confrast to the zeolites investigated by Fyfe et.al.26,27^ highly 

viscous silicate systems such as the ones investigated in this thesis contain 
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material of no higher order formed by random condensation of siUcate units 

(see section 6). This complicates the determination of the connectivities in 

such a silicate solution. In order to obtain 2D-INADEQUATE data in a 

reasonable time a silicate solution containing 25wt% Si02 with Rm=4.0, which 

is enriched in ̂ ^Si, is used as a representative silicate solution. 

The connectivities observed in the 2D-INADEQUATE spectrum are 

Usted in table 5-35. The 2D-riSrADEQUATE spectrum is shown in figure 5-13. 

Since typical values for the scalar coupling between silicon in siloxy systems 

are 2j(Si-0-Si) of 10 to 15 Hz33, the value of the fixed delay d4 is chosen to 

be 20ms in order to get optimum double quantum coherence. 

Table 5-35 
Si-Si cormectivities in a sodiimi silicate solution with 25wt% Si02 and Rm=4.0 

QO Q l Q2 Q3 Q4 

QO 

Q l 7 

Q2 ? X 

Q3 X X 

Q4 X 

In the 2D-INADEQUATE spectrum couplings between the Q4- and the 

Q3-units along with couplings between the Q3- and Q2-units are found. The 

intensity of the double quantum coherence for the Q2-units is very low. Thus it 

can not be excluded that the Q2- and Ql-units are connected and give rise to 

29si_29si couplings although they are not resolved in the 2D-INfADEQUATE 

spectrum due to the very low intensity of their double quantum coherence. 
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Figure 5-13 
2D-INADEQUATE of a sodium silicate solution with 
25wt% Si02 and Rm=4.0 enriched in 29si 
relaxation delay 60s, fixed delay 20ms, ti-ansients 32, dummy ti-ansients 4, 
acquisition time 0.03 s, specfral width 89ppm, 128 experiments 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
-90 -100 -110 -120 

TT 
ppm -70 -80 
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5. The nature of the particle surface 
The 29si spin-lattice relaxation times for silicate systems containing 

the aqueous solvent in different H2O/D2O ratios can give information about 

the nature of the uncondensed silicate bonds. I f the Tl-values for silicates with 

different H2O/D2O ratios are identical, it can be concluded that protonated 

hydroxyl groups prevail in the silicate units. I f , however, the Tl-values differ 

there is a certain amount of deprotonation of the siloxane groups. 

The spin-lattice relaxation times of representative sihcate solutions 

containing 100% H2O, 50% H2O/50% D2O and 2% H20/98% D2O were 

measured by inversion recovery. The results presented in table 5-36 to 5-38 

show that the silicate solution with the largest difference in T l values is the one 

with the highest alkalinity (Rm=2.0). The silicate solutions with a higher 

degree of condensation (lower alkalinity) only show slight differences in the 

Tl-values of the less condensed structural units, QO and Ql unit, whereas the 

Tl-values for the Q2, Q3, and Q4 units remain unchanged within the limit of 

errors. 

It can be concluded that the higher the alkalinity of the silicate solution, the 

more deprotonated surface groups are foimd. The structural units with low 

coimectivity, QO and Q l , are far more sensitive to deprotonation than the 

structural units with higher connectivity. Generally the difference in Tl-values 

with increasing D2O content is fairly small, even in the silicate with the highest 

alkalinity (Rm=2.0), considered that the error in the experimental Tl-values 

can be up to 10%. Therefore the degree of deprotonation of surface groups is 

generally small and is negligible in silicate solutions with Rm-values 

bigger than 2.6. 

It can be concluded that the surface acts as a potential proton donor. 

The proton exchange mechanism is enhanced by the presence of a structured 

network of adsorbed species (a monolayer), in which the molecules are 

interconnected, for instance by hydrogen bonds. The rate limiting process is 
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the back-donation to the surface sites and there is no direct correlation between 
the pKa of the surface and the rate of proton transfer^^ Proton jump 
frequencies in completely homogeneous liquids are generally in the region of 
1012 s-1. They are smaller when a solid donor and an adsorbed acceptor are 
involved^'*. 

hydrated cation - H2O rate of proton tiansfer = 10^0 s-1 

Aerogel - NH3 rate of proton tiansfer = 5 * 10^ s" 1 

Xerogel - CH3 OH rate of proton transfer = 3 * 10^ s" 1 

Table 5-36 
Tl-values in s in sodium silicate solutions with 32wt% Si02 and Rm=2.0 

with 100% H2O with 98% D2O 

QO 2.5 3.7 

Ql 3.0 4.0 

Q2cyc 3.1 4.2 

Q2 3.9 5.0 

Q3 5.0 5.9 

Q4 _ _ 

Table 5-37 
Tl-values in s in sodimn silicate solutions with 30wt% Si02 and Rm=2.6 

with 100% H2O with 50% H2O with 98% D2O 

QO 3.2 3.8 4.6 

Q l 3.4 3.9 4.8 

Q2cyc 3.4 3.7 4.0 

Q2 4.5 4.9 4.7 

Q3 6.9 6.5 7.0 

Q4 12.4 12.1 12.0 
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Table 5-38 

with 100% H2O witii 50% H2O with 98% D2O 

QO 5.6 6.3 7.8 

Q l 7.4 8.1 8.4 

Q2cyc _ _ 

Q2 8.4 8.3 8.9 

Q3 10.0 10.5 9.9 

Q4 20.4 19.9 20.2 

6. Model for colloidal particles 
A model for the structure of colloidal particles has been obtained on 

the basis of the measurements described in this chapter, particularly DSC 

measurements, investigations of the sol/gel-transition and 29si T l values. 

Colloidal silicate particles are the result of random condensation of 

silicate building units. Thus a network such as the one illustrated in figure 5-14 

containing holes ('pores') in which water molecules can be tiapped is formed as 

opposed to a 'hard-core' structure which would be the result of an ordered 

condensation. 

Figure 5-14 
The structure of a colloidal particle 
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DSC measurements (table 5-19) show the existence of pore water in 
silicate systems in wiiich Q4 units are found and which thus contain colloidal 
material^. Pore water can only be found in structures which can accommodate 
water molecules such as three-dimensional networks with channels or pores of 
a minimum size. In the DSC measurements the pore water is distinguished 
from free water by its low fi-eezing point (-250C as opposed to O^C). Studies 
of the sol/gel-transition (see section 2) show that in silicate solutions extended 
networks exist which only have to extend a little fiirther to cause a lock-up of 
the structure to a gel. The 29si spin-lattice relaxation times of the Q4-units are 
generally about a factor of 2 larger than the 29si spin-lattice relaxation times of 
the Q3-imits. This suggests that tiiere must be protons in the reach of the Si 
atoms which would be impossible i f colloidal particles had a hard-core 
structure. Protons can only contribute to the relaxation of the Si atoms in Q4 
imits i f there are water molecules located in pores of the network. The fact that 
the diffusion constant of protons vmdergoes no major change -when the 
transition fi-om a sol to a gel is passed (table 5-28) indicates that the pores or 
channels in the silicate networks must be large enough to allow diffusive 
motion of the water molecules. 

In the low molar ratios of Si02 to Na20 there is a larger amount of 

deprotonated hydroxyl groups (SiO" bonds) on the particle surfaces than in 

high molar ratios (see section 5), the charge on the surface preventing fiirther 

condensation to larger units. 

SiOH + OH- ) SiO- + H20 
ff the surface sites of the colloidal particles are negatively charged, 

hydrated sodium ions are adsorbed near the ionised sites to form a neutral 

complex. Via these hydrated sodium ions co-ordination links between charged 

particles as shown in figure 5-15 can be formed. 
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Figure 5-15 

H Q - S i 

The higher the molar ratio is, the higher is the degree of condensation 

of the system and the more hydroxyl groups on the particle surfaces and in the 

pores of the network are in the protonated state (SiOH bonds). In fact spin-

lattice relaxation measurements for sihcate solutions with Rm-values from 2.6 

up to 3.8 witii varying H20-contents of 100 % H2O, 50 % H2O/ 50% D2O and 

95 % D2O show (section 5) that the Tl-values of the higher condensed 

structural units (Q2, Q3 and Q4 imits) are independent of the proton-content of 

the solvent. Thus the hydroxyl groups on the surface of the colloidal particles 

are fiilly protonated. There is evidence gained from viscosity measurements 

that on fully protonated surfaces a monolayer of water molecules, which is 

fairly immobilised, is adsorbed on the uncharged surface28. On these surfaces 

the hydrated sodium ions are not directiy adsorbed The water layer on the 

surface can be more strongly adsorbed on GH-groups in geminal positions on 

Si ( Si(0H)2 ) than on isolated OH-groups (SiOH)29. Even on sihca surfaces, 

which are considered to be fiiUy dehydrated, a substantial munber of residual 

OH sites is foimd on the surface part of wiiich are in geminal position^O. 

Silicate sols contain colloidal material with the above-mentioned pore-

structure, which is dissolved and stabilised in the systems. Sihcate gels contain 

a network of colloidal material interlinked by condensation. The size of the 

colloidal material in these gels is undefined since it is rather a porous network 

than discrete particles with pore structure. There is a profound difference 
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between colloidal and undissolved silica. Colloidal silica is dissolved and the 
silicate system is homogeneous, whereas undissolved silica sinks to the bottom 
of the system as a precipitate and the system is inhomogeneous. This 
distinction is of particular importance (chapter 7). 
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6. Mobility 

1. Rheology measurements 
Viscosity measurements at constant shear rate and constant stress give 

an idea about the fluid behaviour of the sample, whereas viscosity 

measurements at varied stress are used to investigate the flow behaviour. I f the 

viscosity is independent of the stress, the system shows Newtonian behaviour, 

which is typical for liquids. I f the viscosity decreases with increasing stress 

non-Newtonian behaviour is present, which is typical for complex, 

highly-interlinked systems. 

Al l experiments have to be carried out in the atmosphere due to the 

set-up of the instrument. Therefore the duration of the individual experiments 

is limited, since the samples change owing to evaporation of water and the 

influence of CO2. Rheology experiments at varied stress are carried out in 

such a way that the instrument adjusts the shear rate according to changed 

stress. Al l experiments are carried out at constant temperature (25^C). 

The results of viscosity measurements at constant stress are presented 

in table 6-1 below. 

Table 6-1 
Viscosity of sodiimi silicate systems measured at constant stress 

sample viscosity / Pa s 

25wt% Si02 and Rni=2.0 (sol) 0.03 

32wt% Si02 and Rm=2.0 (sol) 0.71 

39wt% Si07 and Rm=2.0 (gel) 440.6 

25wt% Si02 and Rm=4.0 (sol) 0.09 

29wt% Si02 and Rm=4.0 (gel) 1846.3 

The viscosity of sodium silicates with identical Si02 concentrations 

increases with increasing Rm-value. This shows that the rigidity of a sihcate 
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system is directly related to the degree of condensation, which is higher for 

higher Rm-values. At constant Rm-value the viscosity increases with 

increasing Si02 concentration, with a very drastic change in viscosity when the 

transition from a sol to a gel is passed. 

As illustrated in figure 6-1 the sihcate sols (silicate solutions) all show 

Newtonian behaviour, whereas for the silicate gels non-Newtonian behaviour is 

found at high stress, but the decrease in viscosity with increasing stress levels 

off at a shear rate of ~ 1 s"l. The change in flow behaviour from a sol to a gel 

shows that the structuring in the latter is more rigid, along with a far greater 

degree of interlinking than in the former. 

Figure 6-1 
Viscosity in Pa s as a ftmction of the shear rate, illustrating the flow behaviour 
of sodium silicate solutions 
[25R4 = 25wt% Si02 and Rm=4.0 (sol) 
32R2 = 32wt% Si02 and Rm=2.0 (sol) 
39R2 = 39wt% Si02 and Rm=2.0 (gel) 
29R4 = 29wt% Si02 and Rm=4.0 (gel)] 
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2. 29si mobility 
2.1 Mobility model 

2.1.1 High or low motion side of Tl-minimum 

There are several experimental results supporting the statement that the 

correlation times of the species in the silicate solutions investigated in this 

thesis, which are on the border of the sol/gel-transition, are not within the 

extreme narrowing region. The condition for extreme narrowing is that the 

spectral density terms J(coX-coA), J(coX+a)A) and J(a)A) (discussed in detail in 

chapter 2-3.1) are equal (A = ̂ ^Si, X = 1H). This is the case for correlation 

times not longer than 1*10"10 seconds for 500 MHz (taking the average error 

in Tl-values of ~8% into consideration) (see table 6-2). The minimum of T l is 

atxc =l/coo = 1.6*10-9 s. 

Table 6-2 
Calculation of J((oX-o)A), J(coX+(oA) and J(coA) as a function of xc 
(the signs of wA and wX are positive since v = j/Itz B )̂ 

TC/S J(G)X-G)A) Jfcox+coA) 

5E-12 9.998E-12 9.997E-12 9.999E-12 

IE-11 1.999E-11 1.997E-11 1.999E-11 

5E-11 9.845E-11 9.66E-11 9.991E-11 

BE-11 1.538E-10 1.468E-10 1.59E-10 

lE-10 1.882E-10 1.754E-10 1.992E-10 

4E-10 3.98E-10 2.47E-10 7.53E-10 

8E-10 3.18E-10 1.61E-10 1.28E-9 

lE-9 2.74E-10 1.33E-10 1.44E-9 

8E-9 3.96E-11 1.78E-11 6.16E-10 

lE-8 3.17E-11 1.43E-11 5.0E-10 
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The experimental observations leading to the conclusion that the 
correlation times of highly condensed silicate systems are not within the region 
where the extreme narrowing condition is fulfilled are discussed in the 
following paragraphs. 

Temperature influence: 

The Tl-values decrease with increasing temperature which is only the 

case for solutions on the low-motion side of the Tl-minimimi (tables 6-3 to 

6-5). To make sure that no water evaporates the temperature cannot be raised 

above approximately SS^C . The effect of increased temperature on the 

structural distribution is a decrease in the amount of highly condensed units 

(Q3 and Q4) parallel to an increase in the amount of units with a low degree of 

condensation (see chapter 5-1.5). This depolymerization of structures makes 

them even more mobile than the increased movement caused by the raised 

temperature alone does. I f the correlation times of the silicate species were 

located on the low-motion side of the Tl-minimum the T l should decrease, 

whereas i f they were foimd on the fast-motion side the Tl-values would 

increase with increasing temperature (increasing mobility). The silicate 

solution with 25wt% Si02 and Rm=4.0 is supposed to be nearer the T l -

minimum than the other solutions as the same temperature increase as for all 

other silicate solutions causes a comparatively smaller decrease in the T l -

values. 
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Table 6-3 

structural unit T=300K T=329K 

QO 4.6 3.6 

Qi 5.8 4.3 

Q2cyc 5.0 3.8 

Q2/Q3cyc 5.6 4.8 

Q3 7.0 5.6 

Q4 12.65 10.6 

Table 6-4 
Tl-values in s for a sodium siUcate solution with 25wt% 

structural unit T=300K T=329K 

QO 7.3 6.8 

Ql 7.6 7.0 

Q2cyc _ 

Q2/Q3cyc 8.1 7.4 

Q3 9.1 8.0 

Q4 17.8 16.4 

Table 6-5 
Tl-values in s for a sodium silicate gel with 33wt% SiO;; 

structural unit T=300K T=329K 

QO 7.9 5.9 

Q l 8.1 6.1 

Q2cyc _ 

Q2/Q3cyc 8.6 6.9 

Q3 10.1 7.9 

Q4 22.0 16.4 
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Spin-spin relaxation times: 

The T2-values are much shorter than the Tl-values (figure 6-2) which 

generally is a characteristic for systems where T2Q )O2»1 . In this case, 

however, it has to be considered that chemical exchange takes place between 

the Si-units (see section 4 of this chapter). This causes the magnetisation to fan 

out more quickly once it is in the xy-plane so that T2 is shortened by the 

exchange!^. 

Figure 6-2 
Comparison of T l - and T2-values in s for sodium silicate solutions : 

Q 2 / Q 3 c y c 

Q 2 c y c 

T1 T2 T1 T2 
32wt% 32wt% 25wt% 25wt% 
S i 0 2 S i 0 2 S i 0 2 S i 0 2 

Bo-dependence of spin-lattice relaxation times : 

The Tl-values are field-dependent and though the difference in T l -

values at different fields is not very big it is clear and consistent in all the 

measurements (tables 6-6 to 6-9). It can thus be concluded that the correlation 

time of the Si-units in the silicate solutions is not very far from the minimum in 

Tl-values where TC= l/coo. 
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Tables 6-6 to 6-9 
Tl-values at different field-strengths (proton resonance frequencies) 

Table 6-6 
Tl-values in s for a sodium silicate solution with 30wt% Si02 and Rm=2.6 

structural unit 250MHz 500MHz 

QO 4.1 3.8 

Q l 4.5 3.9 

Q2cyc _ 3.7 

Q2/Q3cyc 4.0 4.9 

Q3 5.4 6.5 

Q4 8.3 12.1 

Table 6-7 
Tl-values in s for a sodium silicate solution with 25wt% Si02 and 

structural unit 250MHz 500MHz 600MHz 

QO _ 8.4 8.6 

Q l 6.8 8.8 8.9 

Q2cyc _ _ _ 

Q2/Q3cyc 7.6 8.5 9.9 

Q3 8.7 10.2 12.2 

Q4 12.8 18.5 23.2 

Table 6-8 
Tl-values in s for a sodium silicate gel with 33-wt% Si02 and Rm= 

structural imit 250MHz 500MHz 

QO _ 7.9 

Q l 5.5 8.1 

Q2cyc _ _ 

Q2/Q3cyc 6.1 8.6 

Q3 7.9 10.1 

Q4 10.9 22.0 
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Table 6-9 

structural unit 500MHz 600MHz 

QO 8.5 

QI 9.1 10.5 

Q2cyc _ _ 

Q2/Q3cyc 9.8 10.4 

Q3 11.8 15.2 

Q4 23.3 31.6 

2.1.2 Relaxation mechanism for 29si nuclei 

The general requirement for spin-lattice relaxation is a magnetic 

interaction fluctuating at the resonance frequency. The relevant mechanisms, 

which can provide the appropriate conditions, are discussed in chapter 2-3.2. 

The mechanisms for spin-lattice relaxation in silicate solutions have only been 

dealt with in a fairly speculative way so far!'2,27 using sihcates with lower 

degrees of condensation than found in these studies. Different conclusions 

were drawn in the past, one assuming relaxation of ^^Si to be dominated by 

silicon-sodium interactions 1, others confradicting this theory by assuming 

paramagnetics to be responsible for ^^Si relaxation^^ and others suggesting 

that proton exchange between ionised and non-ionised surface units could be 

the major relaxation mechanism^'^S jhe mechanism for spin-lattice 

relaxation dominating in highly condensed silicate systems is of great interest, 

since it not only provides information about the major magnetic interaction but 

also opens the possibility to determine rotational correlation times, making use 

of the field-dependency of Tl-values characteristic for systems that are not in 

the extieme narrowing region. Correlation times in turn will give us an idea 

about the mobility in highly condensed silicates. 
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To investigate the relaxation mechanism, spin-lattice relaxation times 
were obtained for soditmi and potassitmi silicates of the same composition. As 
shown in table 6-10 to 6-12, the 29si Tl-values of sodium silicate solutions do 
not differ greatly from the 29si Tl-values of potassium silicate solutions of the 
same composition. 

This experimental observation reveals that relaxation via silicon-

soditmi interactions, assumed to be operative in silicate solutions with relatively 

low Si02 concentrations (3 to 13wt% Si02) by Kinrade and Swaddlel, can be 

excluded as the dominant mechanism. The sodiimi and potassiimi ions are 

most likely located in a hydration shell which prevents a close contact between 

them and the silicon atoms in SiO" - and/or SiOH-bonds. The charge density 

for the sodium ion is bigger than for the potassium ion so that the hydration 

shell of sodium ions is even stronger than the hydration shell of potassium and 

direct contact between Si-0 bonds and Na'̂ '-ions is impossible. Relaxation via 

scalar coupling initiated by strong scalar silicon-proton coupling combined with 

fast proton-proton exchange33,34,35 or extremely fast proton relaxation can be 

disregarded"*'^'^. For further details the reader is referred to chapter 2-4.2 and 

5-5). 

Thus it can be concluded that dipolar relaxation with protons governs 

the relaxation of the silicon atoms. Long-range dipolar interactions over more 

than one bond, usually negligible for 13c nuclei, can contribute significantly to 

the relaxation of 29si nuclei3. This dipolar Si-H relaxation can be 

intramolecular or intermolecular. Which mechanism prevails, can be found by 

dilution studies, discussed in detail in chapter 5-5. The silicate systems can not 

be simply be diluted with D2O, since this would affect the viscosity. Therefore 

a silicate solution of equal composition was prepared using 95% D2O. 

Generally Tl-relaxation times in silicates containing colloidal material are not 

affected by the change in D20-content, and it can be concluded that the surface 

groups are predominantiy Si-OH groups. Thus intermolecular relaxation with 

protons governs the relaxation rate of silicon. 
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Tables 6-10 to 6-12 
Comparison of Tl-values in s for sodixmi and potassium silicates 

Table 6-10 
Tl-values in s for silicate solutions with 30 vyt% Si02 and Rm=2.6 

structural unit sodium 

silicate 

potassium 

silicate 

QO 3.8 _ 

QI 3.9 3.8 

Q2cyc 3.7 _ 

Q2/Q3cyc 4.9 6.2 

Q3 6.5 6.8 

Q4 12.1 11.6 

Table 6-11 
Tl-values in s for silicate solutions with 30 wt% { 

structural miit sodium 

silicate 

potassium 

silicate 

QO 4.7 -

QI 6.9 7.3 

Q2cyc _ _ 

Q2/Q3cyc 7.5 9.9 

Q3 9.8 10.0 

Q4 17.4 17.1 
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Table 6-12 

structural unit sodium 

silicate 

potassium 

silicate 

QO 8.4 _ 

Q i 8.8 9.2 

Q2cyc _ _ 

Q2/Q3cyc 8.5 9.5 

Q3 10.2 10.8 
Q4 18.5 19.1 

2.2 Correlation times 
From the findings reported in the previous section two conclusions can 

be drawn which are the basis of the mobility model and the calculation of the 

correlation times of Si-units in highly viscous sihcate solutions. First the 

investigated silicate solutions are not within the extreme narrowing region of 

Tl-values, and second the relaxation of the Si-atoms is dominated by 

intermolecular dipolar interactions with protons. The correlation time describes 

the amount of rotational physical movement in the silicate systems. It 

expresses the duration of a correlation between two configurations of a nuclear 

environment at two different times and therefore is an important parameter 

describing the motions in a silicate system^'26 

The correlation time xc can be calculated from Tl-values at different 

fields (see tables 6-6 to 6-9) by taking ratios. The expression for spin-lattice 

relaxation times, which are not in the extreme narrowing region, is a fimction 

of T at a constant rAX-distance as all other variables are known constants. I f 

the exact values for the rAX-distances are not known the most accurate method 

of calculating T from the experiment is to take the ratio of Tl-values at different 
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fields. The following equations^'^, which are discussed in more detail in 

chapter 2-3.3, are needed for the calculation of the correlation times: 

1 
T 1 A 

W 0 + 2 W 1 A + W 2 c n 

W 0 = ^ - ( 2 TiR)^ J (cox - c o A ) 

W 1 A = —{2%R)^ J ( ( o A ) 
40 

W 2 = — ( 2 7 t R ) ^ J(cox + ( o A ) 

J(a) ) = 
2 T C 2 T C 

(1 + (0 ^ T C ' ) (1 + 4 7t ^ V ^ X C ^ ) 

Yl ~ YO^^^""^^'h + (cox-coA)^^ 1 + coA^^ 1 + (cox + (dA)^^ ^ ^ 

R is the dipolar coupling constant and is proportional to rAX" 

rAX is the Si-H-distance 

( ^ ) Y A y x ( ^ ) 
47t 271 

- 2 
[ r A X ]^ C71 

R ^ = 5. 703 * 10 '^^ * rAX -6 

The ratios of Tl-values at different fields are taken to give equations 

[9] to [11]. 
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T 1(500) 
Tl(250) 

1 
• + -

U + TCM . 579E18J l l + TC^9.87E16j [1 + T C ^ 3.55E18 J 
1 

r + i r 
l + TC^6.3165E18j [ l + TC^3.9478E17j [ l + TCM.4212E19 J 

Tl(600) 
Tl(250) 

1 
+ 

1+ TcM.579E18 J [1 + TC^9.87E16 J [ 1 + xc^ 3.55E18 
+ 

1 
< 

.1 + TC^9.126E18 1 + T C ^ 5.609E17 

[10] 

TC^2.042E19 

• • + < • + • 

Tl(600) l l + TC^6.3165E18j [ 1 + T C ^ 3.9478E17 J [ l + T C ^ 1.4212E19 

T l (500)= f 1 I f 3 I f 6 
. l + Tc2 9.126E18j l l + Tc2 5.609E17j 11 + xc^ 2.042E19 

.1 

A BASIC program was used to calculate the rotational correlation time 

xc as a function of varying Tl(fieldl)/Tl(field2)-ratios. The results are 

presented in figure 6-3 below. The point where it can be stated that the 

correlation time begins to be field dependent is very much dependent on the 

accuracy of the experimentally determined spin-lattice relaxation times. With 

an average error in Tl-values of about 8% (see chapter 3-2.2)22^ the correlation 

time, where a difference in Tl-values begins to be relevant and can not be 

caused by errors in the measurements, is assumed to be xc=l*10"l^s. 
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Figure 6-3 
Rotational correlation time TC as a fimction of the Tl(fieldl)/Tl(field2)-ratio : 

10 

V 

0 

A 71 {600)/T1 (500) 

i T1(600)/T1{250) 

^ T1(500)/T1(250) 

1 
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i D ^ correlation time/s 

Rotational correlation times were calculated from Tl-ratios for two sodium 

silicate solutions containing 30wt% Si02 with Rm=2.6 and 25wt% Si02 with 

Rm=4.0 and for two sodium silicate gels, one of them corresponding to the 

latter solution containing 30wt% Si02 and Rm=4.0. The results are presented 

in tables 6-13 to 6-15. 

In the interpretation of these results it has to be bom in mind that the 

deviation of tiie calculated coixelation times from the average value will be the 

higher the shorter the correlation times are (the smaller the ratio of Tl-values at 

different fields is). Thus the errors will be the smaller the nearer the calculated 

TC to the correlation time at or past the minimum of Tl-values is. This means 

that rotational correlation times are the more reliable the more condensed the 

stiiictural units are and the higher the degree of condensation of the silicate 

system is. The correlation times of the species in the two investigated silicate 

solutions are neither in the region of exfreme motional narrowing nor are they 

past the minimum of Tl-values, the point wiiere xc = coo'l, characterising the 

region of slow motion. It can be concluded that they are in the region of the 
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Tl-rninimum, i.e. in a transitional region towards the slow motion region where 

xc > (oo"l. The lower the alkalinity of the sihcate solution is (the higher the 

Rm-value), the slower are the correlation times. The tendency of the 

correlation times in these solutions is shown in figure 6-3. The xc-values for 

the sodiimi silicate solution containing 25wt% Si02 and Rm=4.0 in this figure 

have been obtained by taking the average value in the range of correlation times 

quoted in table 6-15. 

Figure 6-3 
Correlation times of two silicate solutions : 

1.20&09 

1.00E-03 
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6.00E-10 
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2.00E-10 
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A general increase is found in the values of the correlation times when 

going from lower to higher condensed structural units. This might seem odd, 

since in colloidal particles we find Q3-units on the surface and Q4-units in the 

bulk so that the mobility of both should be the same. It has to be taken into 

accoimt, however, that the calculated correlation times are an average over all 

existing colloidal particles in the silicate solution. Thus the conclusion can be 

drawn that there is a distribution of different particle sizes in the solution. 

Thus the average mobility of Q3-units is expected to be higher than for Q4-

units, as Q3-units are represented to a higher degree in smaller particles witii 

higher mobility whereas Q4-units are found to a high percentage in large, 

less-mobile particles. 
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In figiue 6-5 the correlation times for a sihcate gel with Rm = 4.0 

(containing 30wt% Si02) are compared with the corresponding silicate solution 

with Rm=4.0 (containing 25wt% Si02). 

Figure 6-5 
Correlation times in s for a silicate sol and sihcate gel 
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30R4 
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It is clearly evident that from the point where the sol/gel-tiansition is passed a 

steep increase in the Si-correlation times is observed. This is due to a severe 

loss of mobility of the silicate units when during fiuther condensation a 

network is formed. The ratio of correlation times for Q3- and Q4-units stays 

constant at a factor of ~2 for silicate systems on both sides of the sol/gel-

transition. Like in sodium silicate solutions, the silicate species in sodium 

silicate gels are the less mobile the lower the alkalinity (the higher the Rm-

value) is (tables 6-16 and 6-17). 
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Table 6-13 
Correlation times in s for Tl-values at two different fields for a 
soditmi silicate solution containing 30wt% Si02 with Rm=2.6 : 

QO 

Ql 

Q2 

Q3 

Q4 

TKSOO) 
Tl(250) 

1.1 

1.23 

1.2 

1.46 

xc 

1.3E-10 

2.1E-10 

2.0E-10 

4.0E-10 

Table 6-14 
Correlation times in s for Tl-values at three different fields for a 
sodiimi silicate solution with 25wt% Si02 and Rm=4.0 

Tlf600) TlfSOO) Tir600) 
Tirsoo) TC Tiasoi TC Tlf250) TC 

QO 1.02 l.OE-10 - - - -

Q l 1.01 l.OE-10 1.29 2.5E-10 1.3 2.0E-10 

Q2/Q3cyc 1.16 l.OE-9 1.12 1.4E-10 1.3 2.0E-10 

Q3 1.2 1.3E-9 1.17 1.8E-10 1.4 2.4E-10 

Q4 1.25 1.8E-9 1.45 3.7E-10 1.81 6.8E-10 

Table 6-15 
Average correlation time in the range of correlation times for the structural 
imits in a sodium silicate solution with 25wt% Si02 and Rm=4.0: 

structural unit TC/S 

QO 

Q l 

Q2/Q3cyc 

Q3 

Q4 

lE-10 

2E-10 

6E-10 

7E-10 

llE-10 
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Table 6-16 

Correlation times for Tl-values at two different fields for a 
sodivun silicate gel with 33wt% Si02 and Rni=3.4 

Tl(500) 

TU250) Tc / s 

QO 

Ql 1.47 4.0E-10 

Q2/Q3cyc 1.41 3.5E-10 

Q3 1.28 2.4E-10 

Q4 2.02 20.0 E-10 

Table 6-17 
Correlation times for Tl-values at two different fields for a 
sodium silicate gel containing 30wt% Si02 with Rjn=4.0 

Tl(500) TC/J 

QO 

Q l 1.15 8.5 E-10 

Q2/Q3cyc 1.06 1.4 E-10 

Q3 1.29 22.0 E-10 

Q4 1.36 40.0 E-10 

2.3 Tendencies of spin-lattice relaxation times 
It is a general experimental fact that the spin-lattice relaxation times in 

silicate solutions increase with decreasing alkalinity (increasing Rm-value)l'9 

In the past these studies were carried out with silicates which, compared to the 

ones investigated here, were relatively low in silica content. 

In these investigations the Rm-values are systematically increased from 

2.0 to 4.0 at a constant Si02 concentration of 30wt%. In figure 6-5 the spin-

lattice relaxation times are plotted versus the Rm-value. 
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Analogous to the frend reported before^S, the spin-lattice relaxation 

times of all structural imits show a steady increase with decreasing alkalinity of 

the silicate solution (figure 6-6). 

Figure 6-6 
Spin-lattice relaxation times versus the Rm-value at constant Si02 
concentration of 30wt%: 

T l \AithRm 

25 

20 4-

i f i 

15 

10 X 

2.5 3 3.5 

Rm (Si02:Na20) 

The increase in Tl-values with increasing Rm-value reflects an 

increase in the degree of condensation (chapter 5-1.2). This can be related to a 

decrease in mobility showing in the correlation times, which generally increase 

with increasing Rm-value (section 2.2 of this chapter). The increase in T l -

values with increasing connectivity of the sihcate species is caused by two 

factors working in the same direction; decreasing mobility in combination with 

decreasing amount of neighbouring protons. 
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3. Silicon Self-diffusion and particle radii 
The dephasing of the magnetisation under the influence of pulsed field 

gradients is a measure for the self-difiusion of the silicate units. The faster the 

self-diffusion, the bigger the loss of magnetisation through dephasing. 

The self-diffusion constants for the Si units in the silicate solution are 

calculated with the following equations^^'ll. For further details the reader is 

referred to chapter 3-2.6. 

in A 
slope = A ° = - y 2 * G * D L i a i 

5 2 ( A - | ) 

slope ( S i ) ^ Y ^ C S i ) _ D ( S i ) 

slope ( H ) y 2 ( H ) " D ( H ) l- l^-l 

- 2573* slope ( H ) * ^ ^ ^ ^ m 

Particle radius : 

The restjlts can be put into the Stokes-Einstein equation which describes the 

diffusion of spherical particles of radius r in a medium of viscosity r|. This 

equation is independent of the charge of the diffiising particlesl^. It is an 

approximation which is based on the assimiption of the validity of the Stokes 

equation for the viscous drag and is still valid for slow self-diffusion constants 

(as the one for dextrose in water : D=6.7 E-10 m^s"!)!^. The Stokes equation 

can be used for the determination of the particle radius as the viscosity has been 

experimentally determined. Therefore equations like the Mooney equation, 

which are concerned with theoretically determining the viscosity of a complex 

system with the help of the intrinsic viscosity, are not relevant in this case^ .̂ 

' = 6 ^ [1^1 

k=1.3806 E-23m2kgs-2 K"! 

T=298 K Ti=0.0913 Pa s 
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There are three cases which are possible for the investigated systems 

(figure 6-7 first row). The Gaussian curve for the amoimt of particles with a 

certain size versus the particle size (figure 6-7 second row) and the graph of 

52*5-A/3 versus attenuation (figure 6-7 third row) are given for each of the 

three hypothetical cases. I f the distribution of particle sizes matches case 2, the 

hypothetical contribution of Q3 and Q4 units to the distribution of structural 

vmits for the two extremes is illustiated in figure 6-7. From results discussed in 

section 2-2, however, we know that case 3 is the most likely of the three. Thus 

all contributions of Q3 and Q4 units between the two extremes illustrated in 

figure 6-8 are possible, with an emphasis on the medium sizes. 

Figure 6-7 
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Figure 6-8 
Contributions of Q3 and Q4 units to the overall distribution resulting fi-om 
small and large particles 

Q3 

Q4 

small particles 
arge particles 
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The sample investigated in this section is a sodium silicate solution 

with 25wt% Si02 and Rm=4.0. This silicate was enriched to the 95.65%-level 

with 29si to increase the sensitivity of the experiment. The S/N in a single-

shot spectrum is between 6 and 7 for the Q3-resonance. 

In the measurement of the self-diffusion coefficient using pulsed field 

gradients a fine adjustment of the gradient duration has to be carried out for 

each set of measurements. This requires the adjustment of the gradient 

duration for one representative gradient ti l l the maximimi FID is achieved. 

This should ideally be done in one-scan mode to allow optimal adjustment. 

This, however, can not be made on the sihcate sample, since the intensity of the 

single-shot FID is not sufficient to allow any optimising adjustment. Thus 

another nucleus with a resonance fi-equency near 29si had to be used as 

intensity standard. According to table 6-22 iodine is the nucleus with a 

resonance frequency nearest to ^^Si, followed by deuterium. 
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Table 6-22 
Resonance frequencies nearest the resonance frequency of^^Si at a proton 
frequency of 300^^ Hz and nuclear spin: 

SF/MHz Spin I 

Si 59.62 1/2 

I 60.02 5/2 

D 46.05 1 

The sensitivity for iodine in a Kl-solution with 4.4wt% K I should match the 

sensitivity of silicon in the investigated silicate solution and could therefore be 

used as an intensity-standard. 

The following relation is used^^. 

signal ~ N * p * c 

N = sensitivity (absolute) 

p = nuclear density, this is obtained by taking the ratio of the molecular weight 

and the number of nuclei in one molecule (unit cell) 

PSi in Na20(Si02)4 = 302/4 = 0.013 

PI in K I = 166/1 = 0.006 

c = concentration of nuclei 

Thus: 

N s i * PSi * c s i = N i * P I * CI [16] 

Although the intensity of the first point of the FID should be the same no 

matter how many resonances are involved it has to be taken into account that 

the FID for Kl-solution is a one-resonance FID (one iodine resonance), whereas 

the FID of the silicate solution is a five-resonance FID (five silicon resonances 

from QO to Q4). The huge advantage of the nucleus I is that the frequency is 

very near that of Si. The huge disadvantage is that I is quadrupolar ([= 5/2) and 

thus the T2-relaxation is too short (T2 « 500fxs) to apply any field gradients. 
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Another nucleus had to be found with a resonance frequency near that of Si 
with a reasonably long T2 and a reasonably high absolute sensitivity where 
field gradients can be applied and a good FID is achieved on which to do the 
duration-optimisation. The only nucleus which is near to fiilfilling these 
conditions is D in D2O. However, the problem which arises when using D for 
the duration-optimisation is that the gradient-insert for the probe which is 
appropriate for Si is designed for frequencies from 58 to 85 MHz and the 
amplifiers in the spectrometer appropriate for Si have a frequency-range from 
58 to 74 MHz. Using this set-up, designed for the acquisition of Si, does not 
yield any signal for D at all. Therefore all the tuning parameters have to be 
changed from D to Si, and thus the fine-adjustment of the gradient duration for 
deuteriimi is not necessarily applicable to silicon. It is concluded that the fine-
adjustment of the gradient width has to be made on 29si in the silicate solution 
under investigation but can not be carried out in single-shot mode on the FID. 
However, with some experience it is possible to be carried out on the FID 
acquired using 8 transients and a relaxation delay of 20s. 

Another problem arises i f a 90® - 180^ pulse sequence is used. This is 

because of the very small attenuation that is achieved for Si in the silicate units. 

The measiu^ement of the diffusion constant gives optimal results when an 

attenuation of about 10 is achieved. The attenuation that is achieved with the 

above mentioned pulse sequence for the silicate units lies between 1.05 (Q4) 

and 1.8 (Ql). In the field-gradient experiments on silicate solutions we have 

two limiting factors working against each other. One is the very short T2-

relaxation time, the other is a long diffrision constant (thus long 5-values are 

needed which require long A-values, which in turn require long T2-decays). 

To get round the T2-problem stimulated echoes can be used in the field-

gradient measurements, where we get a Tl-dependence of the echo instead of a 

T2-dependencell'14 (see chapter 3-2.6). 

Another possibility is to do the measurements at increased temperature (60^0) 

which could increase the T2-value and decrease the diffusion constant. Since 
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the temperature goes into the Stokes-equation the calculated particle size would 
not change. Nevertheless it has to be considered that the distribution of 
structural units in the silicate solutions changes with increasing temperature. 
Furthermore there is exchange between the silicate units which increases with 
increasing temperature and thus causes the T2-values to decrease (see section 
4.2.2 of this chapter). 

A further possibility is the dilution of the silicate solution, which should work 

in favour of an increase in T2-values. However the disadvantage of this is that 

the particle size would change (see section 5-1.3) and the true size of the 

colloidal material in concentrated silicate solutions would not be represented. 

Al l this leads to the conclusion that the method of choice is the use of the 

stimulated echo sequence. This sequence uses three 90Ox-pulses to generate 

the echo. Before the second and after the third pulse a pulsed field gradient 

(PFG) is switched on for a defined length of time. The duration of the PFG is 

still limited by the T2-decay of the echo but the signal decay in the gap 

between the second and third pulses is only due to Tl-decay. Thus this gap can 

be used to apply large values of A which, just like large 5-values, increase the 

signal attenuation. 

Due to loss of magnetisation between the first two 90^ pulses it is not possible 

to achieve a situation, even i f using the pulse sequence for the stimulated echo, 

where 5 and A are of a length to produce sufficient signal attenuation and a 

reasonably visible silicon spectrum is obtained which has not decayed to an 

unobservable level due to other influences than the PFG. 

The last possibility to obtain silicon self-diffusion constants from PFG-

experiments was to use the extra scope in the field gradient unit for the power 

adjustment. This allows the cutting out of some resistors in the circuit and 

yields an output-current increased maximally by a factor of 10 (with a coil-

resistance of 3Q. this is an improvement of a factor of maximally 30 in the 

output-voltage). This extra scope in the power adjustinent was not used before 

out of safety reasons as the effect on the probe was not established. 
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It was found that an increase in the output-current of 6 was sufficient to 
produce a signal attenuation down to 12% of the original signal at reasonable 
quality. An increase in the output current by a factor of 10 produced even 
better signal attenuation. 

In the following pages all experiments are listed which have successfiilly been 

carried out on a sodium silicate solution with 25wt% Si02 and Rm=4.0 

enriched in 29si to the 96%-level. The attenuation of the resonances is taking 

the peak-intensities as well as the peak-areas into account. The latter can not 

be obtained by straightforward integration as there is an overlap of resonances. 

Therefore a line-fit has to be carried out, for which the Pascal program 

Linesim.3000 was used. In all experiments the scattering of the individual 

values is too big to treat the slopes as i f there was a distribution of particle 

sizes. Thus the slopes were treated as i f there were particles of one average 

size. 
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Tables 6-19 to 6-23 
Self-diffusion constants of silicate species, obtained using an increase in 
the output-current of a factor of 6 

Table 6-19 
Self-diffusion constant of protons in water (literature value) obtained under the 
following conditions: 
NS = 16 
relaxation delay = 1 s 
A = 10 ms 
TAU = 4 ms 

6/ms 62(A-6/3) attenuation 

0.1 0.1 0.987 

0.2 0.4 1.0 

0.3 0.89 0.987 

0.4 1.58 0.905 

0.5 2.46 0.785 

0.6 3.53 0.658 

0.7 4.79 0.563 

0.8 6.23 0.443 

0.9 7.86 0.354 

1.0 9.67 0.266 

slope = 0.143 
correlation = 99.7% 

D/cm2 s-l=2.3E-5 
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Figure 6-9 
Self-diffiision measurement of protons in water: 
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Tables 6-20 to 6-23 
Self-diffusion constants of silicate species, obtained under the following 
conditions: 
A = 50 ms 
5 up to 4.5 ms 
d6 = d7 = 6 ms 
TAU = 44 ms 
NS = 32 
relaxation delay = 60 s 
90O-pulse = 23 ̂ is 
acquisition time = 0.02 s 
receiver gain =10 

The results using peak intensities are represented in tables 6-20, 6-21 and 
figure 6-9 and using peak areas in tables 6-22, 6-23 and figure 6-11. 
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Table 6-20 
Attenuation of peak intensities under the influence of a pulsed field gradient 
in a sodium silicate solution with 25wt% SiO? and Rm=4.0 

5/ms 52(A-5/3) Q l Q2 Q3 Q4 

1 49.7 0.75 0.889 0.917 0.884 

1.5 111.4 0.7 0.785 0.767 0.581 

1.8 160.1 0.625 0.785 0.739 0.581 

2 197.3 0.575 0.741 0.711 0.651 

2.3 260.4 0.575 0.741 0.722 0.698 

2.5 307.3 0.75 0.667 0.694 0.581 

2.8 384.7 0.5 0.59 0.58 0.54 

3 441.0 0.5 0.59 0.64 0.44 

3.3 532.5 0.375 0.52 0.56 0.40 

3.5 598.2 0.13 0.67 0.63 0.35 

3.8 703.7 0.13 056 0.69 0.3 

4 778.7 _ 0.39 0.39 0.19 

4.3 898.0 _ 0.41 0.41 0.23 

4.5 982.1 - 0.37 0.33 0.1 

Table 6-21 
Self-diffusion constants for structural units using the attenuation of peak 

Ql Q2 Q3 Q4 

slope - 1.167E-3 - 2.585E-4 - 3.819E-4 - 6.908E-4 

correlation 87% 63% 90% 94% 

D/m2 s-1 7.4E-13 1.6E-13 2.4E-13 4.4E-13 

r/m 3.2 E-9 14.6 E-9 9.8 E-9 5.4 E-9 
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Figure 6-10 
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Table 6-22 
Attenuation of peak areas under the influence of a pulsed field gradient 
in a sodium silicate solution with 25wt% SiO? and Rm=4.0 

S/ms 52(A-5/3) Q l Q2 Q3 Q4 

1 49.7 0.75 0.87 0.9 0.97 

1.5 111.4 0.66 0.84 0.77 0.61 

1.8 160.1 0.81 0.81 0.73 0.65 

2 197.3 0.72 0.77 0.69 0.81 

2.3 260.4 0.63 0.88 0.8 1.0 

2.5 307.3 0.8 0.69 0.7 0.71 

2.8 384.7 0.63 0.74 0.69 0.87 

3 441.0 0.63 0.64 0.63 0.55 

3.3 532.5 0.42 0.56 0.57 0.68 

3.5 598.2 0.38 0.72 0.65 0.55 

3.8 703.7 0.38 0.58 0.71 0.48 

4 778.7 0.18 0.51 0.43 0.48 

4.3 898.0 0.13 0.51 0.5 0.48 

4.5 982.1 0.13 0.4 0.33 0.39 

Table 6-23 
Self-diffusion constants for structural units using the attenuation of peak areas 

Ql Q2 Q3 Q4 

slope -7.72 E-4 -4.66 E-4 -3.85 E-4 -4.88 E-4 

correlation 94.4% 92.8% 81.9% 76.3% 

D/m2 s-1 4.9E-13 3.0E-13 2.4E-13 3.1E-13 

radius/m 4.9 E-9 8.1 E-9 9.8 E-9 7.7 E-9 
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Figure 6-11 
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Tables 6-24 to 6-32 
Self-difiusion constants of silicate species using an increase in the output-
current of a factor of 10 

Table 6-24 
Self-diffusion constant of protons in water (literature value) obtained under the 
following conditions: 
NS= 16 
relaxation delay = 1 s 
A = 50 ms 
T A U = 44 ms 

Table 6-24 

5/ms 52(A-6/3) attenuation 

0.05 0.12 0.91 

0.1 0.50 0.74 

0.15 1.12 0.55 

0.2 2.0 0.34 

0.25 3.12 0.19 

0.3 4.49 0.09 

0.35 6.11 0.04 

slope = -0.543 

correlation = 99.98 % 

D/cm2 s-1 = 2.3E-5 
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Figure 6-12 
Self-diffusion measurement of protons in water 
I H NMR spectra of the attenuation of the half-echo 
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Figure 6-13 
Self-diffusion measurement of protons in water 
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Tables 6-35 to 6-38 
Self-diffusion constants of silicate species obtained under the following 
conditions: 
A = 50 ms 
5 up to 4.5 ms 
d6 = d7 = 6 ms 
TAU = 44 ms 
NS = 32 
relaxation delay = 60 s 
90O-pulse= 18 
acquisition time = 0.02 s 
receiver gain = 10 

The results using peak areas are represented in tables 6-25, 6-26 and 

figure 6-13 and the results using peak intensities are represented in tables 6-27, 

6-28 and figure 6-14. 



Chapter 6 Mobihty page 154 

Table 6-25 
Attenuation of peak areas under the influence of a pulsed field gradient 

5/ms 52(A-5/3) Q l Q2 Q3 Q4 

0.5 12.5 0.70 0.58 0.70 0.84 

1 49.7 0.80 0.66 0.74 0.95 

1.5 111.4 0.85 0.82 0.92 0.92 

2 197.3 0.94 0.81 0.88 1.0 

2.5 307.3 _ _ _ _ 

3 441.0 0.83 0.71 0.83 0.92 

3.5 598.2 0.24 0.63 0.82 0.81 

4 778.7 0.12 0.25 0.33 0.23 

4.5 982.1 0.08 0.2 0.33 0.39 

Table 6-26 
Self-diffusion constants for structural imits using the attenuation of peak areas 

Q l Q2 Q3 Q4 

slope -2.50 E-3 -1.23 E-3 -9.03 E-4 -1.14 E-3 

correlation 0.913 0.821 0.770 0.774 

D/m2 s-1 4.2E-13 2.0E-13 1.5E-13 1.9E-13 

r/m 5.7 E-9 11.7 E-9 15.9 E-9 12.6 E-9 
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Figure 6-14 
Self-diffusion measurement for silicon in silicate species 
in a sodium silicate solution containing 25wt% Si02 and Rm=4.0 
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Table 6-27 
Attenuation of peak intensities under the influence of a pulsed field gradient 

5/ms 52(A-8/3) Q l Q2 Q3 Q4 

0.5 12.5 0.74 0.84 0.84 1.0 

1 49.7 0.60 0.85 0.85 1.0 

1.5 111.4 0.71 1.0 0.99 0.98 

2 197.3 0.69 1.0 0.98 0.97 

2.5 307.3 _ _ -

3 441.0 0.65 0.96 0.91 0.91 

3.5 598.2 0.17 0.91 0.86 0.85 

4 778.7 0.12 0.52 0.61 0.58 

4.5 982.1 0.10 0.41 0.48 0.51 

Table 6-28 
Self-diffusion constants for structural units using the attenuation of peak 

Q l Q2 Q3 Q4 

slope -2.25 E-3 -6.21 E-4 -5.69 E-4 -6.82 E-4 

correlation 0.927 0.679 0.815 0.929 

D/m2 s-1 3.7E-13 l.OE-13 0.9E-13 1.1 E-13 

r/m 6.4 E-9 23.1 E-9 25.2 E-9 21.0 E-9 
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Figure 6-15 
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Tables 6-29 to 6-32 
Self-diffusion constants of sihcate species, obtamed under the following 
conditions; 
A = 50 ms 
5 up to 7.0 ms 
d6 = d7 = 10 ms 
TAU = 40 ms 
NS = 32 
relaxation delay = 60 s 
90O-pulse = IS lis 
acquisition time = 0.02 s 
receiver gain =10 

The 29Si NMR spectra for the attenuation of tiie half-echos are given in 

figure 6-16. The results using peak areas are represented in tables 6-29, 6-30 

and figure 6-17 and the results using peak intensities are represented in tables 

6-31, 6-32 and figure 6-18. 
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Figure 6-16 
29si NMR spectra for the attenuation of the half-echos 
of the species in a sodium silicate solution containing 25wt% Si02 and Rm=4.0 
enriched in 29si 
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Table 6-29 
Attenuation of peak areas under the influence of a pulsed field gradient 

5/ms 52(A-5/3) Q l Q2 Q3 Q4 

1 49.7 0.88 0.83 1.0 0.93 

3 441.0 0.60 0.68 0.83 0.89 

4 778.7 0.20 0.47 0.48 0.44 

4.5 982.1 0.30 0.49 0.69 0.22 

5.0 1208.3 0.16 0.47 0.85 0.69 

5.5 1457.0 0.06 0.23 0.47 0.34 

6.0 1728.0 0.03 0.22 0.29 0.21 

6.5 2020.9 0.04 0.18 0.27 0.28 

7.0 2335.7 0.02 0.14 0.24 0.31 

Table 6-30 
Self-diffiision constants for structural units using the attenuation of peak areas 

Q l Q2 Q3 Q4 

slope -1.76E-3 -8.20 E-4 -6.57 E-4 -5.54 E-4 

correlation 0.969 0.973 0.891 0.717 

D/m2 s-1 2.9E-13 1.4E-13 l. lE-13 0.9E-13 

r/m 8.2 E-9 17.5 E-9 21.9 E-9 25.9 E-9 
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Figure 6-17 
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Table 6-31 
Attenuation of peak intensities under the influence of a pulsed field gradient 

5/ms 52(A-5/3) Q l Q2 Q3 Q4 

1 49.7 0.72 0.67 1.0 1.0 

3 441.0 0.59 0.60 1.0 1.0 

4 778.7 0.33 0.65 0.88 0.91 

4.5 982.1 0.47 0.63 0.78 0.67 

5.0 1208.3 0.21 0.52 0.91 1.0 

5.5 1457.0 0.12 0.45 0.75 0.74 

6.0 1728.0 0.07 0.42 0.55 0.81 

6.5 2020.9 0.09 0.29 0.55 0.80 

7.0 2335.7 0.03 0.20 0.34 0.54 

Table 6-32 
Self-diffusion constants for structural units using the attenuation of peak 

Q l Q2 Q3 Q4 

slope -1.39 E-3 -5.03 E-4 -4.36 E-4 -2.04 E-4 

correlation 0.948 0.907 0.905 0.720 

D/m2 s-1 2.3 E-13 0.84 E-13 0.73 E-13 0.40 E-13 

r/m 10.3 E-9 28.6 E-9 32.9 E-9 60.2 E-9 
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Figure 6-18 
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Generally there is more confidence in the attenuation obtained by using the 
areas (tables 6-26 and 6-30) than by just using the peak intensities (tables 6-21, 
6-23, 6-28 and 6-32). The areas take changes in the width and the intensity of 
the resonances into account and are thus more sensitive to changes caused by 
the field gradient. It can be assumed that the results obtained at a higher 
gradient power (tables 6-24 to 32) present more confident results than those 
obtained at the lower gradient power (tables 6-19 to 6-23) since the higher 
gradient power produces a bigger attenuation of the resonances. Furthermore 
the experiments with a gradient pulse separation of 10 ms (tables 6-30 and 
6-32) instead of 6 ms (tables 6-21, 6-23, 6-26, 6-28) present the more confident 
results, as higher gradient pulse durations can be used thus achieving a larger 
attenuation. Taking all this into account, it can be concluded that table 6-31 
represents the results with the biggest confidence. 

According to this the self-diffusion constant of the Ql imits is a factor 

two faster than the self-diffusion of Q2 units. The Q2 imits generally diffuse 

slightly faster than the Q3 units, which in turn diffuse faster than the Q4 units. 

It has to be remembered, however, that all self-diffusion constants are for the 

average of the respective unit. This means that all values obtained are averages 

for all possible connectivities of the observed units to other units as well as for 

a distribution of particle sizes. The slower self-diffusion of Q4 units compared 

to Q3 imits is due to the fact that there is a distribution of particle sizes in tiie 

silicate systems as opposed to an average particle size. 

Particle radi i : 

Using the Stokes equation, values for particle radii are obtained 

Although these are only averages, a general idea of the size of the colloidal 

material in highly-condensed silicate solutions is achieved for the first time. 

Macromolecules as large as 1 )xm can often be uniformly dispersed through a 

fluid medium and thus form colloidal solutions. The lower limit of particle size 

for colloidal solutions is around 1 nm. Smaller particles would become 
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indistinguishable from true solutions. The upper limit is usually set at a radius 
of 1 pm21. According to the results presented in table 6-35, the size of 
colloidal particles in silicate solutions with a high degree of condensation 
ranges from about 8 nm to about 26 nm (8 nm to 18 nm for the smaller tmits, 
Ql and Q2 and 22 nm to 26 imi for tiie larger imits, Q3 and Q4). 

4. Silicon-silicon Exchange 
4.1 Room temperature 
4.1.1 Exchange monitored via T2-values 

T2-values have been measured with a pulse programme for the Hahn 

echo experiment (discussed in fiuther detail in chapter 3-2.3). This pulse 

programme can only be used in the case of systems with no chemical exchange. 

In the case of chemical exchange the intensities of resonances in the spectra 

with long inter-pulse delays will be decreased not only by loss of magnetisation 

in the xy-plane due to spin-spin relaxation but also due to exchange. This 

means that the attenuation of the resonances does not follow equation [17]. 

l n M t - l n M o = -t/T2 [17] 

The longer the interpulse delay, t, the more will the intensities be affected by 

loss of xy-magnetisation caused by exchange. The result is that the graph of 

(In Mt-ln Mo) versus t wil l have the form of an exponential decay instead of a 

linear decay. 

In these investigations a representative sodium silicate solution with 

25wt% Si02 and Rm=4.0 is used for the investigations. To allow a decision 

about the form of the decay, the experiment was carried out using the Hahn 

echo pulse sequence with a large number of interpulse delays being increased 

in small steps. 

As shown in figure 6-19 below, the intensities of the Q3 and Q4 

resonances decay in a non-logarithmic way (non-linear in a logarithmic plot). 
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Figure 6-19 
(InMt - InMo) versus t in s for the Q3 and Q4 units in 
a sodium silicate solution containing 25wt% Si02 with Rin=4.0 

Therefore it is concluded, that Q3 and Q4 units in highly condensed 

silicate solutions participate in chemical exchange processes. I f even Q3 and 

Q4 units undergo exchange, it can be assimied that the units with lower 

connectivities (QO, Ql and Q2) imdergo exchange as well. 

4.1.2 2D Exchange Spectroscopy (2D EXSY) 

The conclusion derived from the previous section is of a merely 

qualitative nature. We know that all structural units in a highly condensed 

silicate solution undergo chemical exchange. However, the species they are in 

exchange with and the rate of exchange are not known. Both can be obtained 

using 2D exchange spectroscopy. This technique is described in detail in 

chapter 3-2.4. With 2D EXSY it is possible to study partially overlapping 
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spectra. Furthermore dynamic processes can be monitored as a ftmction of the 
mixing time, whose variation turns the experiment into a 3D technique^^. 
So far only exchange rates for the monomer resonance in silicates with far 
smaller degrees of condensation and without colloidal material have been 
monitored!^"1^. These exchange rates were not measured for a particular 
exchange process. The exchange rate constant determined on the basis of 
approximate kinetic evaluations via the linewidth of the QO resonance 1^ is 
17 s"l at 40c. This method, however, is not very accurate compared to 
exchange rates determined via T2-values, which yield exchange rate constants 
for the monomer of k < 2.8 s"l for a silicate with Rm=1.0 and k < 24 s"l for a 
silicate with Rm=0.3 at 4^C^^. The exchange rate seems to increase with 
decreasing Rm-value. Harris et al. used selective inversion recovery 
experiments to monitor chemical exchange!^'1^. It was stated that the doubly 
deprotonated monomer (H2Si042-) is of negligible importance in mediating Si-
Si exchange compared to the mono deprotonated monomer (H3Si04')l^. 
Two-dimensional exchange spectroscopy was used to qualitatively model 
exchange pathways of silicon in potassium silicate solutions with low Rm-
values (Rm=1.0 and Rm=0.5) using only one mixing time^O. As the rate of 
exchange relative to the mixing time becomes higher (for long mixing times), 
the cross peaks broaden, move closer together and eventually coalesce into a 
broad peak (as in ID NMR-spectra)29. The investigations reported here are the 
first ones to successfiilly monitor the entire exchange processes in a highly 
condensed siUcate solution qualitatively as well as semi-quantitatively. 

Since a silicate system containing 29si in natural abundance (4.7%) is 

far too insensitive for these investigations, a representative highly condensed 

sodium silicate solution with a Si02 concentration of 25wt% and Rm=4.0, 

enriched in ^^Si to the 95.65 %-level, was used. The mixing time was varied 

in order to find the approximate rate of exchange for the silicate units. 

The results are presented in figure 6-20 and summarised in table 6-33. 
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Figure 6-20 
2D EXSY at room temperature 
for exchange between silicate species in a sodium silicate solution 
containing 25wt% Si02 and Rm=4.0 (enriched in 29si) 
relaxation delay 60 s, transients 16, acquisition time 0.01 s, 
128 data points in F l and F2 direction 
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Table 6-33 
Exchange pathways in a 
sodium silicate solution containing 25wt% Si02 with Rm=4.0 

QO Q l Q2 Q3 Q4 

QO X X 

Q l X X X 

Q2 X X X 

Q3 X X X 

Q4 X 

Al l structural units present in a highly condensed siUcate solution are involved 

in chemical exchange processes with the unit showing the next lower and the 

next higher connectivity. Even exchange involving two steps in the 

connectivity can be monitored for the Q3 and Q2 units (the Ql and QO units 

respectively). 

I f several exchange processes combine to exchange networks, it is not possible 

to derive exchange rates from cross-peak intensities, and it becomes necessary 

to record a series of ID exchange spectra with different mixing times, including 

some very short ones^^. In this case a mmierical evaluation of the dependence 

of cross-peak intensities (appearance of cross-peaks) on the mixing time yields 

a semi-quantitative measure of the exchange rate constants. It is desirable to 

determine the rates from the initial build-up of the cross-peak intensities, since 

the intensities for longer mixing times depend also on leakage mechanisms, 

which tend to reduce the transferred magnetisation^If k is much less than 

1/Tl, the frequency labelled z-magnetisation will disappear before it has a 

chance to migrate and give rise to cross-peaks. The mixing time for detecting 

exchange at rate k varies as a function of kT l . Two equations are possible. 



Chapter 6 Mobility page 174 

their applicability depending on the ratio between the spin-lattice relaxation 

times and k37 (for fijrther details the reader is referred to chapter 3-2.4). 

mixing time = (0.5)k-l i f k ~ T l " ! [18] 

mixing time = (1.5)k-l i f k ~ ( 1 0 ) T l - l [19] 

From an evaluation of exchange rate constants and Tl-values it is obvious that 

equation [19] has to be chosen for the calculation of rate constants for 

exchange. The mixing time, which was taken for the calculation of the rate 

constant for the exchange, is the lower limit, which is defined as the mixing 

time, where exchange cross peaks first become apparent. Using this lower limit 

of the mixing times for the calculation, results in the values reported for the rate 

constants being upper limits (maximimi rate constants). These maximimi 

pseudo first order rate constants characterise the minimum exchange lifetimes 

of the silicate species (kj^gx ^ (tmin)"^)- ^ table 6-34 the lower limits for the 

mixing time of the structural uiuts involved in exchange processes and the 

maximum exchange rate constants are presented. 

Table 6-34 
Lower limits for the mixing time and maximum rate constants at 25^0 
for the structural units involved in chemical exchange 

exchange process mixing time 

(lower Iimit)/s 

maximum rate constants for 

exchange/s"l 

Q3-Q4 0.45 3 

Q3 -Q2 0.1 15 

Q3-Q1 2.0 1 

Q2-Q1 0.05 30 

Q2-Q0 0.45 3 

Ql -QO 0.05 30 
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Generally the rate of exchange for the structural units is the faster, the lower 
the degree of condensation of the structural units involved in the exchange. 
The exchange involving two connectivities, as for instance between QO and Q2 
units, is about a factor of 10 slower than the exchange involving only one 
connectivity, as for instance between QO and Ql . Generally the mean Ufetimes 
of the individual species are of the order of 10"2 s or longer and can thus be 
placed in the region of slow exchange, which is characterised by the line 
separation being much larger than the actual linewidth^^. 

The fact that exchange between Q3 and Q4 units can be observed 

supports the conclusions made in chapter 5 about the porous structure of the 

colloidal particles in silicate sols. For Q3 - Q4 exchange to be operative, there 

must be a large amount of contacts between Q3 and Q4 units, which is only 

found in systems with high porosity. Al l species apart from the Q4 imits can 

exchange with more than one other silicate species in the solution, so that 

lifetimes for structural units will necessarily be an average over all the 

exchange processes they are involved in. The fact that Q3 - Q l exchange as 

well as Q2 - QO exchange is very much slower than exchange between Q3 and 

Q2 or exchange between Q2 and Ql units shows that some of the Q2 units are 

connected to Q3 units and some are connected to Ql units. This means that 

separate Q3 - Q2 links along with separate Q2 - Ql links, rather than Q3 - Q2 -

Ql links, are found in the silicate solutions. This supports findings in section 3 

of this chapter. 

4.2 Increased temperature 
4.2.1 T2-values 

I f the temperature is increased, there are two effects influencing the 

spin-spin relaxation times measured using the CPMG pulse sequence. One is 

the increase in particle mobility, the other is the increase in the exchange rate 
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between the structural units. The former will cause an increase in the T2-

values while the latter will result in their decrease. 

The results presented in table 6-35 show that an increase in the 

temperature of 35^0 from 25^C to 60^0 causes a decrease in the spin-spin 

relaxation times of all structural xmits. 

Table 6-35 
Spin-spin relaxation times measured with the CPMG sequence 
using a pulse spacing of 1.5ms between 90Ox and 180Oy pulse 
at 25^0 and 60OC for a sodium silicate solution wit 125wt% Si02 and Rm=4.0 

structural unit T2 in s at 25^0 T2 in s at 60OC 

QO 57 25 

Ql 58 22 

Q2 49 14 

Q3 31 15 

Q4 20 18 

This decrease in the T2-values with increasing temperature can be 

explained by an increase in the rate of chemical exchange, which outweighs the 

increase in mobility. 

4.2.2 2D E X S Y 

The findings described in the previous section are of a qualitative 

nature. For more quantitative information the technique of 2D„(3D) exchange 

spectroscopy has to be used. 

The variation of the mixing time shows that an increase in the 

temperature from 25^0 to 45^0 results in an increase in the rate of exchange 

for all exchange processes. The 2D exchange spectia are shown in figure 6-21. 

The rate constants for chemical exchange, calculated with equation [19], using 

the upper limit of the mixing times at which chemical exchange is still 

observed, are presented in table 6-36 below. 
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Table 6-36 
Maximum rate constants for exchange at 250C and 45^0 for exchange 

exchange 

process 

maximum rate 

constants for exchange 

at 250C /s-1 

maximum rate 

constants for exchange 

at 450c /s-1 

E^max 

/kJmol-1 

Q3-Q4 3 33 100 

Q3 -Q2 15 100 80 

Q3-Q1 1 33 140 

Q2-Q1 30 100 50 

Q2-Q0 3 33 100 

Q l - Q O 30 100 50 

The rate of exchange generally is increased i f the temperature is raised. This 

rate-increase generally is independent of the thermodynamics of the exchange 

(endothermic or exothermic)23. Since it can be assumed that the exchange 

processes are of the same order at the two temperatures investigated (25^0 and 

450C) , the dependency of the rate constant, k, on the temperature is described 

by the Arrhenius equation (equation [20])^^'2'^. A plot of Ink versus 1/T will 

yield a graph with a slope of -Ea/8.314. 

E , 
k = k * exp ( - -) [20] 

The interval where E^ for chemical reactions generally can be found 

is from 5 to 400 kJ/mol^^. For a successftil exchange process, the 

participants have to absorb a certain potential energy, the activation energy. 

This characterises the energy barrier between the potential energy of the two 

participants in the exchange. The probability that the participants can acquire 

this energy is given by tiie Boltzman distribution and is proportional to 

Ea(kBNAT)"l. Only those units are capable of undergoing exchange, which 

have a kinetic energy as large as the activation energy24. Considering the 
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total number of units, die part which is capable of undergoing exchange 
processes is characterised by k/km-

Naturally activation energies obtained with just two points are only 

approximations. Nevertheless they give us an idea of the region in which 

activation energies for chemical exchange between silicate species are found. 

The activation energies obtained with equation [20[ are between 140 kJ/mol 

and 50kJ/mol. Exchange processes involving changes over two coimectivities 

require higher activation energies than required for changes over one 

connectivity. The activation energy required for exchange processes 

generally is the higher the higher the connectivity of the structural units 

involved is. However, the activation energy needed for the exchange 

between Q4 and Q3 uiuts is only a factor of two larger than for tiie exchange 

between species of low connectivity (QO-Ql and Q1-Q2 exchange). The 

relatively low activation energy for the exchange between Q3 and Q4 units 

supports the conclusions made about die highly porous nature of die colloidal 

material in highly condensed silicate solutions. 
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Figure 6-21 
2D EXSY at 4 5 0 C 

for exchange between silicate species in a sodium silicate solution 
containing 25wt% Si02 and Rm=4.0 (enriched in 29si) 
relaxation delay 60 s, transients 16, acquisition time 0.01 s, 
128 data points in F l and F2 direction 
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5. Si-H Distances 
The distances between silicon and protons in Si-OH bonds can be 

calculated via known average Si-0 and average 0-H bond lengths in 

combination with average Si-O-Si and H-O-H angles. Naturally the distances 

thus obtained will only be approximate. Another way to calculate the rAX-

distances (Si-H distances) is to use the correlation times, which have been 

worked out by comparing experimental Tl-values at two different fields (see 

section 2.2 of this chapter), in combination with the experimentally measured 

Tl-value. This method to achieve the Si-H distances will reveal i f the 

correlation times, calculated in section 2.2 from experimental Tl-values, are in 

the right range and prove i f the theory for Tl-relaxation worked out in section 

2.1 is appropriate. 

The following equations are needed: 

— (2 TTR ) 2 = 1. 1258 * 10 * rAX [ 2 . 1 ] 
20 

^ = 1.1258*10 ^ ^ [ j ( c o x - c o A ) + 3J(coA) + 6J(cox + coA)]*rAX ^ C2-1] 

1.1258*10 ^ ^ [ J ( ( o x - ( o A ) + 3J(coA)+6J(cox + coA)]= F^^^. [ 2 5 ] 

••AX = ^ F c a l c * T l [ i S J 

R is the dipolar coupling constant and is proportional to rAX"^ 

rAX is the Si-H-distance 

The values for Fcalc the appropriate field have been calculated for a range of 

Tc-values using equations [22] to [25] with the help of a BASIC programme. 

Then the rAX distances were calculated using the appropriate F^alc values for 

the correlation times, obtained from experimental T l values at different fields 
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for the structural units in a silicate system, in combination with the 

experimentally measured Tl-values at the appropriate field (Tl = Tlexp). The 

results for the silicon-proton distances in sodium sihcate solutions (sols) and 

gels, obtained using equation [25], are reported in tables 6-37 and 6-38. 

Table 6-37 
Average Si-H distances in m for sodium silicate solutions 

structural imit 30wt% Si02 and Rm=2.6 25wt% Si02 andRm=4.0 

QO 1.5 + 0.2E-10 1.6 E-10 

Ql 1.5±0.2E-10 1.7E-10 

Q2 1.8 ±0.05 E-10 1.9 ±0.1 E-10 

Q3 1.7E-10 2.0 ±0.1 E-10 

Table 6-38 
Average Si-H distances in m for sodium silicate gels 

structural unit 33wt% Si02 andRm=3.4 30wt% Si02 and Rm=4.0 

QO _ _ 

Ql 1.8 E-10 1.9 E-10 

Q2 1.8 E-10 1.7E-10 

Q3 1.8 E-10 2.0 E-10 

In this calculation of the rAX-distances, however, a mmiber of effects occurring 

in real silicate systems have been neglected. These are : 

1. the niunber of attached protons 

2. the possibility of anisotropic motion 

(more than one correlation time) 

These can be neglected for the calculation of x as the correlation time is 

calculated from a ratio of Tl-values, since all of the above mentioned effects 

are affecting the Tl-values at two different fields in the same way and therefore 

are cancelled out by taking the ratio of Tl-values at different fields. 
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Number of attached neighbouring protons: 

So far the number of neighbouring protons has not been taken into 

account in the calculation of the Si-H distances. In contrast to the calculation 

of silicon correlation times, where the factors characterising the nxmiber of 

neighbouring protons go into all the equations no matter at what iBeld and thus 

are cancelled by dividing one by the other, they have to be taken into account 

for the calculation of the rAX-value in the calculated T'calc. as well as in the 

experimentally measured Tl-values. 

The values, reported in tables 6-37 and 6-38, are the values for one Si-O-H 

distance, thus: 

for one Si-O-H distance in Q3 units the result is: (Tl)-1= Fcalc * (rAX)-6 

for two Si-O-H distances in Q2 units the result is: (Tl)-1= Fcalc * 2(rAX)-6 

for three Si-O-H distances in Ql imits the result is: (Tl )" l= Fcalc * 3(rAX)"6 

for four Si-O-H distances in QO units the result is: (Tl)-1= Fcalc * 4(rAX)-6 

Here it is assumed that the values for the structural units QO, Q l , Q2 and Q3 

include only nearest neighbour interactions. The Q4-umt has not got any 

directly attached protons but can have protons in the neighbourhood as there 

are holes or caves in the colloidal particles which are big enough for water 

molecules (1). Furthermore Q3-units with direct Si-O-H bonding to protons are 

attached to the Q4-units on the sxufaces (particle surface and caves or holes) 

which are attached to other Q4-units (2). Finally there are Q4-units near 

particle surfaces or near holes or caves that are directly attached to Q3-units 

(3). Thus the interactions which are included in the relaxation of Q4-silicon by 

protons are only long-range interactions with water (1) next next neighbour 

interactions(2) and next nearest neighbour proton-interactions (3). The 

possible interactions of siUcon in Q4 units with protons are illustrated in figure 

6-22. 
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Figure 6-22 
Possible interactions of silicon in Q4 units with protons 

H-0-Q3 

H20 

It can be concluded, that generally the experimental Tl-values can be described 

by two major contributions i f relaxation is dominated by dipolar interaction 

with protons: 

1. direct Si-O-H interaction (next neighbour interactions) 

2. indirect silicon-proton interactions which can be: 

a) next-nearest neighbour interactions (Si-O-Si-O-H) 

b) next next-nearest neighbour interactions (Si-O-Si-O-Si-O-H) 

c) long-range interactions with pore-water 

The spin-lattice relaxation times of all structural imits except the Q4 units can 

be influenced by the direct as well as the indirect dipolar silicon proton 

interactions. Thus subtracting the longitudinal relaxation rate due to 'indirect' 

interactions from the relaxation rate measured by inversion recovery for the 

overall interactions with protons yields the relaxation rate due to next 

neighbour (direct) interactions. All indirect interactions are characteristic for 

the interactions silicon can imdergo with protons i f it is located in Q4-units. 

This explains why average silicon proton distances for tiie Q4 units can not be 

calculated as there would be too much speculation involved. Out of the three 
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above-mentioned possibilities for indirect interactions, the next-nearest 
neighbour interactions are the ones which contribute most strongly to Si-Q4 
relaxation via protons. This is because the Si-H distance is shorter than for the 
other two indirect interactions and because of the porous structure of colloidal 
particles results in a relatively large surface area and therefore a large number 
of Q4-Q3 bonds. 

The contribution of Si-O-H bonds to the 29si relaxation rate due to direct 

dipolar interactions of silicon with next neighbour protons is : 

1 Si-O-H for Q3 units (n=l) 

2 Si-O-H for Q2 units (n=2) 

3 Si-O-H for Q l units (n=3) 

4 Si-O-H for QO units (n=4) 

The following equations are needed for the calculation of the relaxation rate 

due to direct interactions taking the number of attached protons and the indirect 

interactions into account: 

R =nR +R 1:2.6 J 
total direct indirect 

R = - R - - R 
direct total indirect 

with Rindirect = RQ4 

The new Tl-values (Tl*) and Fcalc"values (Fcalc*) taking the number of 

neighbouring protons and the nature of the interaction into account are reported 

in tables 6-39 to 6-44 and used in the calculation of the better approximation to 

Si-O-H distances. 
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Table 6-39 
Best approximation for silicon proton distances in a sodium silicate solution 

structural 

unit 

Tlexp.*/s 

(600MHz) 

Fcalc* 

600MHz/m6 s"! 

rAX*/m 

QO 54.7 5.5E-61 1.8E-10 

Q l 43.3 9.7E-61 1.9E-10 

Q2 34.5 2.1E-60 2.0E-10 

Q3 25.7 4.6E-60 2.2E-10 

Table 6-40 
Best approximation for silicon proton distances in a sodiimi silicate solution 

structural 

unit 

Tlexp.*/s 

(500MHz) 

Fcalc* 

500MHz/m6 s'l 

rAX*/m 

QO 61.5 5.7E-61 1.8E-10 

Ql 50.4 1.12E-60 2..0E-10 

Q2 31.5 2.46E-60 2.1E-10 

Q3 22.7 5.2E-60 2.2E-10 

Table 6-41 
Best approximation for silicon proton distances in a sodium silicate solution 

structural 

imit 

Tlexp.*/s 

(250MHz) 

Fcalc* 

250MHz/m6s-l 

rAX*/m 

QO _ _ -

Q l 43.5 1.3E-60 2.0E-10 

Q2 37.4 3.65E-60 2.3E-10 

Q3 27.2 8.2E-60 2.5E-10 
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Table 6-42 
Best approximation for silicon proton distances in a sodium silicate gel with 

structural 

unit 

Tlexp.*/s 

(600MHz) 

Fcalc* 

600MHz/m6 s'l 

rAX*/m 

QO _ _ _ 

Q l 47.2 1.67E-60 2.1E-10 

Q2 46.5 1.28E-60 2.0E-10 

Q3 29.3 4.42E-60 2.2E-10 

Table 6-43 
Best approximation for silicon proton distances in a sodium sihcate gel with 
30wt% Si02 and Rm=4.0 (fie dwit i i 1h resonance frequency 500MHz): 

structural 

imit 

Tlexp.*/s 

(500MHz) 

Fcalc* 

500MHz/m6s-l 

rAX*/m 

QO _ _ 

Q l 44.8 1.9E-60 2.1E-10 

Q2 33.8 1.34E-60 1.9E-10 

Q3 23.9 5.7E-60 2.3E-10 

Table 6-44 
Average silicon proton distances in a sodium silicate sol and gel 

structural unit 25wt% SiOi Rm=4.0 30wt% SiOi Rm=4.0 

QO 1.8 E-lOm _ 

Q l 2.0 ±0.05 E-lOm 2.1 E-lOm 

Q2 2. 1 ±0.12E-10m 2.0 ± 0.05 E-lOm 

Q3 2.3 ±0.14 E-lOm 2.3 ±0.05 E-lOm 

The average bond-distance for a Si-0 bond in solid silicates is 1.6E-

10m30,32^ the bond-distance for an 0-H bond is 0.93E-10m31. The bond-
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angle for a Si-O-Si angle is reported to be 130O-155o30,32 and the value for 

the H-O-H angle is 105o31. Thus the Si-H distance is between 2.0E-10m and 

2.35E-10m. The values for the average Si-H distance in Si OH bonds calculated 

using literature values are in good agreement with the ones calculated using the 

experimental Tl-values and correlation times. The silicon proton distances for 

the less condensed species are shorter than for the highly condensed ones. The 

results discussed in detail in chapter 5-5 show that the majority of surface 

groups are in the hydrated state (SiOH). The calculated distances account for 

Si-OH distances but not for Si-0" (R20)^SL^ distances. 

Anisotropic correlation time 

The usual case of intramolecular anisotropic correlation times occurs in 

systems like 

where there are two independent correlation times (1 and 2). The whole 

particle rotates with x l and the small connected part additionally rotates with 

T2. This cannot be the case for structural Si-units like Q4, Q3, Q2 and QO as 

these are interlinked in a way which makes this sort of system impossible. It is 

only for Ql-tmits that this anisotropic rotation is possible. 

CJH CjH 

QO 

Intramolecular anisotropic rotation can occur in large colloidal particles where 

parts of the particle can rotate independently to other parts. Thus there would 

be Q3-units and Q4-units with different rotational correlation times. 
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This, however, is unlikely to occur in many of the colloidal silicate particles as 
the prerequisite for this independent rotation of parts of the molecule is that the 
connection between the parts is sufficiently mobile. This is normally not the 
case as there is strong interlinking between most of the imits which condense 
randomly. Thus the particle is quite stiff and rotates as a whole. 

6. Proton Mobility 
6.1 Relaxation time measurements 

Relaxation time measurements for protons can give valuable 

information about the mobility of protons in silicate systems. The protons in 

highly condensed silicate systems can be found in a number of different 

surroundings. They can be attached on surface silanol groups, and they can be 

attached to water molecules, the latter being the bonds most protons are 

engaged in. Water molecules in turn can be found in a number of different 

surroundings, as free water, hydrogen bonded to the silanol surface groups, in 

the hydration shell of sodium ions and in the pores of colloidal material. 

Proton spin-lattice relaxation times were measiu-ed using the inversion 

recovery sequence and for the measurement of spin-spin relaxation times the 

CPMG pulse sequence was used, since the protons participate in exchange 

processes. 

In the investigated silicate solutions the only visible proton peak is the 

water-resonance (8 = 5.6 to 5.1ppm). Free water molecules and water 

molecules in the hydration shell of sodium ions as well as protons in Si-OH 

groups are expected to undergo exchange which is fast on the NMR-timescale, 
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and therefore their protons cannot be distinguished by NMR. The surface 
groups in silica gel can act as proton donors. The proton exchange mechanism 
with surface groups requires the presence of a structural network of adsorbed 
species capable of acting as proton acceptors^^. However, very strong 
hydrogen bonds (as those for instance formed with OH groups of a 
decationized zeolite) seem to hinder the exchange of the SiOH protons with 
protons of free water^^. 

As shown in tables 6-45 and 6-46 the spin-lattice relaxation times for 

protons in the viscous silicate solutions are in every case longer than the spin-

spin relaxation times which indicates that either the proton-correlation times are 

longer than 1/coo and/or the presence of proton-proton exchange in these 

systems is a significant influence. To check this, proton relaxation times were 

measured at two different fields (at a proton resonance frequency of 200MHz 

and 600MHz). Since within error limits these are identical, it can be concluded 

that proton mobility is characterised by rotational correlation times, which are 

on the high motion side of the Tl-minimum. Therefore an increase in the ^H 

Tl-value means an average increase in the proton mobility. The proton T l -

and T2-values of a sodium sihcate solution with Rm=2.0 are particularly small 

compared to those of a sodium silicate solution with Rm=4.0, which leads to 

the conclusion that the protons in the silicate solution with the higher sodium 

content (lower degree of condensation) are less mobile than in a silicate 

solution of lower sodium content. This is in good agreement with the smaller 

diffusion coefficient for protons measured for the silicate with Rm=2.0 (section 

6.2) and indicates that the sodium ions play a crucial role in the structuring of 

water in the silicate solution by co-ordinating water in their hydration shell. 

This agrees with results reported for 23Na mobihty in section 7. 
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Table 6-45 
Sin-lattice relaxation times in ms for protons in sodium silicate solutions at two 

32wt% Si02 

Rm=2.0 

30wt% Si02 

Rm=3.4 

25wt% Si02 

Rm=3.8 

25Avt% Si02 

Rm=4.0 

T l / ms 

on the CXP200 

156 837 973 1007 

T l / ms 

on the VXR600 

158 833 988 1001 

Table 6-46 
Spin-spin relaxation times in sodium silicate systems 

25wt% Si02 

Rm=2.0 

32wt% Si02 

Rm=2.0 

25wt% Si02 

Rm=4.0 

28wt% Si02 

Rm=4.0 

T2 / ms 389 18 663 61 

6.2 Self-diffusion of protons 
Self-diffiision constants of protons provide additional information on 

the mobility of the water in silicate systems. In dealing with ti-anslational 

motion, there is a range of situations, which are illustrated in figure 6-23, 

from free self-diffiision in homogeneous liquids to hindered diffusion of water 

adsorbed on particle surfaces to more resfricted or limited diffusion of the 

type experienced by liquids in porous substances, for instance. 
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Figure 6-23 
Translational molecular mobility 

free 

attached to surfaces 

involved with agglomerates -o o 

restricted by barriers 

in confined geometry 

free solution 

particles 

micelles 

pores / layers 

emulsion droplets 

linear flow flow velocity 

The self-diffusion constants of protons in silicate sols and gels with 

Rm-values of 2.0 and 4.0 are measured using tiie PFG sequence shown in 

figure 3-7 of chapter 3-2.6. Any static magnetic field gradient will impose a 

fixed distribution of precession frequencies on the spins that causes them to 

lose their phase coherence after the 90^^ pulse. Following the ISO^y pulse, 

the spins will completely refocus provided they do not diffuse. If, however, 

dephasing due to franslational diffusive motion occurs across the field 

gradient during the time of the Spin Echo experiment, some 'phase memory' 

will be lost and die height of the echo correspondingly reduced. 

The attenuation of the proton spectra is shown in figures 6-24 and 

6-25. The plots of the half-echo attenuation versus 52(A-5/3) are presented 

in figures 6-26 to 6-29. The resulting self-diffusion constants are given in 

table 6-47. 
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Table 6-47 
Self-diffusion constants for protons in silicate systems 

25wt% Si02 

Rm=2.0 

32wt% Si02 

Rm=2.0 

25wt% Si02 

Rm=4.0 

28wt% Si02 

Rm=4.0 

Dself /m2s- l 3.3E-6 0.9E-6 6.8E-6 5.1E-6 

The self-diffusion of protons in two silicate solutions with identical 

Si02 contents is about half as slow for the silicate solution with the high 

sodium hydroxide content (Rm=2.0) as for the one witii half the sodium 

hydroxide content (Rm=4.0). This leads to the conclusion that tiie rotational 

(section 6.1) as well as the translational mobility of water molecules co

ordinated in the hydration shell of sodium ions is severely limited compared 

to free water in tiie silicate system. Furthermore it can be assumed tiiat free 

water and water in the ions' hydration shell dominate in the proton (water) 

resonance and that water in the pores of the colloidal material represents only 

a fraction of tiie total water in tiie silicate sols. In silicates widi high sodium 

ion contents (high alkaliiuty) the mobility of water molecules generally is 

restricted according to tiie large fraction of water molecules in tiie hydration 

shell (6 molecules per sodium ion). In tiie silicate solutions with identical 

silica contents, the one with Rm=2.0 engages 78% of the total water content 

in tiie sodium hydration shells, whereas in tiie silicate witii Rm=4.0 only 

43 % of the total water molecules are found in co-ordination links to sodium 

ions. An increase in tiie Si02 concenfration at constant alkaliiuty (Rm-value) 

results in a decrease in tiie self-diffusion coefficient of tiie protons. 
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Figure 6-24 
Self-diffiision measurement for protons in sodium silicate solutions and gels 
25R2 = 25wt% Si02 and Rm=2.0 
32R2 = 32wt% Si02 and Rm=2.0 
25R4 = 25wt% Si02 and Rm=4.0 
29R4 = 29wt% Si02 and Rm=4.0 
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Figure 6-25 
Self-diffusion measurement for protons in sodium siHcate solutions and gels 
I H NMR spectra of the attenuation of the half-echo 
relaxation delay 6s, 32 transients, acquisition time 2s, interpulse delay 
(intergradient delay) 50ms for a), c), d) and 25ms for b) 
a) 25wt% Si02 and Rm=2.0 (sol) 
b) 32wt% Si02 and Rm=2.0 (sol) 

a.) 
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c) 25wt% Si02 and Rm=4.0 (sol) 

d) 29wt% Si02 and Rm=4.0 (gel) 

c) 

z 



Chapter 6 Mobility page 197 

7. Sodium Mobility 
Sodium ions can exert a great influence on the structuring in sihcate 

solutions. This suggestion is reinforced by observations made in section 6.2. 

The influence of sodium ions on the general mobility of species in the silicate 

systems is mainly caused by structuring of the water by the cation and is 

particularly apparent in silicates with high sodium-ion contents (low Rm-

values). It is important to check i f observations made for protons, which are of 

an indirect nature, can be made for sodium and thus lead to direct conclusions. 

A number of sodium sihcate systems have been investigated using 

23Na NMR spectroscopy. 23j<fa single-pulse MAS specfra were acquired and 

23Na spin-spin relaxation times were measured using the CPMG sequence. 

The results are presented in table 6-48 below. 

Table 6-48 
Chemical shifts, linewidth at half-height for two spin rates and T2-values for 

chemical 

shifts 

linewidth 

at half-height 

spin rate 90Hz 

hnewidth 

at half-height 

spin rate 2000Hz 

T2-value 

32wt% Si02 

Rm=2.0 (sol) 

36.9ppm 800Hz 781Hz 0.5ms 

30wt% Si02 

Rm=3.4 (sol) 

36.7ppm 293Hz 276Hz 1.3ms 

25wt% Si02 

Rm=4.0 (sol) 

38.3ppm 201Hz 208Hz 1.7ms 

29wt% Si02 

Rm=4.0 (gel) 

38.5ppm 300Hz 268Hz 1.2ms 

The 23Na resonance in a silicate solution with 32wt% Si02 and 

Rm=2.0 is particularly broad, whereas in the siUcate solutions with lower 

alkalinity the linewidth is smaller and decreasing the higher the Rm-value for 
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the silicate solution is. In all sihcate solutions the 23]vfa lines show httle 
narrowing i f the spinning speed is increased from 90Hz to 2000Hz. T2-values 
measured by CPMG match, within experimental error, the T2*-values obtained 
from the linewidth using equation [28]. 

A i / 2 = - ^ ^ [28] 7 :T2 * 

They are lower for a sol than the corresponding gel. Proton-coupled 

and proton-decoupled specfra show no difference, therefore there is no scalar 

couphng between sodiimi ions and protons. This is due to exchange of water 

molecules as well as proton exchange on water molecules. Apart from the 

influence of the correlation time, linewidtiis for 23Na resonances are affected 

by tiie spin quantum number, tiie quadrupole moment and tiie electric field 

gradient. Generally there can be two reasons for sodium resonances not to 

show quadrupolar broadening. One is rapid isotopic tumbling of tiie sodium 

ions, which tends to average tiie quadrupolar energy by randomly varying tiie 

angle between tiie vector of the Bo-field and tiie electric field gradient, q^z-

This gradient is fixed in the molecular framework so that as the molecule 

tumbles the quadmpolar energy is modulated. This averaging, however, is not 

sufficient to give a sharp line i f tc ~ 1/coô . It has been shown that MAS 

does not make any difference for the 29si spectrum of a representative highly 

condensed silicate solution when the 29si correlation times for the species in 

the silicate solution are in the region of l/coo22. Thus it has to be considered 

that though MAS makes only a very slight difference to the sodixmi resonances, 

the 23Na correlation times can be near 1/coo. The other reason for sodium 

resonances not to show quadrupolar broadening is the local symmetry at the 

nucleus. Quadrupolar broadening of the sodium resonances will be minimal i f 

the nucleus in question is in a symmetrical surrounding (tiie important factor is 

electrical symmetry). This is the case for sodium ions surrounded by a 

symmetrical hydration shell of 6 water molecules (octahedral symmetiy). 

Furthermore the hnewidths of the +1/2 / +3/2 transitions of bound sodium ions 
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can be significantly reduced when the former are in rapid exchange with a large 
population of rapidly tumbling fi^ee ions^^. The sodium T2-value in silicate 
systems is mainly influenced by the sodium mobility (the correlation time). 
Two factors account for the low mobility of sodium ions in a sihcate solution 
with a low Rm-value (Rm=2.0) and a high sodium content. First the amount of 
surface groups in the ionised state is larger than in silicates with higher Rm-
values (chapter 5-5) and thus there is a percentage of hydrated sodium ions 
bound near the surface via electrostatic interactions. 

H20 
H20 ^ . OH2 -O-Sf 

•-; Na-f'' 
H 2 0 - • • OH2 

OH2 

H20 
H20 OH2 

H20 i -^OHa 
OH2 

= coordinative bond 

Moreover these sodium ions will be fairly immobile i f they 

participate in interparticle interactions (Si-0" Na'^(H20)6 "0-Si). However, 

in a sodium silicate solution witii Rm=2.0 quadrupolar broadening is assumed 

to contribute to the broad 23Na lines, since the electrostatic interaction with 

SiO' bonds can slightly distort the octahedral symmetry around the 23^3 ions 

and thus give rise to a quadrupolar contribution to the linewidth. Second the 

sodium ions take water out of the systems, vMch is bound in the hydration 

shell. The more sodium ions in the system, the larger is the percentage of the 

total water engaged in the hydration shells and thus the slower the overall 

mobility. It is interesting that even in a gel the sodium ions are more mobile 

than in a silicate sol with high sodium content. This indicates a strong 

influence of sodium ions on the structuring of the solution especially in systems 

with a high sodium content caused by the water in the solution being engaged 

in the hydration shells of sodium ions. It can be concluded that characteristic 

parameters of the silicate species in silicate systems such as the sol/gel-
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transition or the overall mobility are not only determined by the condensation 

characteristics of the silicate structures but also by the sodium ion content. 

7.1 Dilution-study 
The dilution of a sodium siUcate solution with 30wt% Si02 and 

Rm=3.4 shows a shifting of the sodium-resonance to higher frequency and a 

narrowing of the resonance-line with increasing dilution. Increasing the MAS 

rate makes no difference to the 23Na-linewidth in the highly diluted solutions 

(13wt% and 5%wt% Si02), whereas in the more concentrated solutions 

(25wt% and 30wt% Si02) the linewidth is slightly decreased (5% and 6%) (see 

table 6-49). 

Table 6-49 
Sodium chemical shifts and linewidths at two spinning speeds for a range of 

chemical 

shifts 

linewidth 

at half-height 

spin rate 90Hz 

linewidth 

at half-height 

spin rate 2000Hz 

30wt% 36.7ppm 293Hz 276Hz 

25wt% 37.0ppm 208Hz 198Hz 

13wt% 37.9ppm 90Hz 90Hz 

5wt% 38.2ppm 20Hz 20Hz 
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8. Conclusions 
The silicate systems under investigation are of a highly complex nature, 

which makes a detailed analysis very difficult and in some cases the range, 

where a physical parameter is found, rather than a distinct value has to be 

reported. Nevertheless reliable trends have been established with good 

repeatability and high confidence in many cases, v^^ere no information was 

available before. This states the value and importance of these experiments. 

On the basis of a working model for the spin-lattice relaxation times 

the range of rotational correlation times for the silicate species in a number of 

highly condensed silicate systems was obtained. This is the first time that 29si 

Tl-values in highly viscous silicate systems in sol and gel form with a high 

degree of condensation have reliably been determined for all structural units 

(even the ones in colloidal particles). It is an achievement that these have been 

analysed in a quantitative way. 

For the first time self-diffiision of silicate species in a highly condensed 

silicate solution was investigated and self-diffusion coefficients in the range of 

0.9E-13 cm2 s"! for the Q4 units to 2.9E-13 cm2 s"! for the Ql units were 

obtained. 

These results open the possibility to get an idea of the approximate size 

of the colloidal material present in these highly-condensed silicate solutions. 

The average particle sizes range from 8 imi for the smaller particles to 26 nm 

for the larger particles. This is the first time that sizes of colloidal particles in 

highly-condensed silicate solutions have been obtained experimentally, since 

obstacles like the sensitivity of silicate systems to the atmosphere and their 

relatively small size range made the determination of the particle size 

impossible so far. 

Chemical exchange in a highly-condensed sihcate solution was 

monitored and maximum exchange rate constants for all exchange processes 

including exchange between the units with the highest connectivities, Q3 and 

Q4 units, were obtained. This has never been attempted before. Exchange 
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rates at room temperature range from 30 s"l for the species with the low 

connectivities, QO and Q l , to 3 s"l for the units with high connectivities, Q3 

and Q4. A temperature increase of 20OC increases the exchange rate constants 

by a factor of 3 for the former and a factor of 10 for the latter. Approximate 

activation energies for the exchange processes were obtained using the 

Arrhemus equation, which are in the range of 50 kJ/mol to 140kJ/mol. 

Though most investigations in this thesis are concerned with the 

behaviour of silicon, the mobility of protons (water mobility) and the sodium 

ion mobility are other important factors in understanding these very complex 

systems. It was found that the mobility of water molecules in the hydration 

shells of sodium ions is severely limited compared to free water. Therefore 

sodium ions, in their ability as co-ordinators of water molecules in an 

octahedral hydration shell, play an important role in the overall mobility for 

silicate systems and an important physical parameter for silicate systems like 

the sol/gel-transition is not only influenced by condensation characteristics of 

the silicate species but also by the sodium ion content. 
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7. Additive influence 
The aim of this chapter is to investigate the influence of various additives 

on the structuring and mobility in silicate systems on either side of the sol/gel-

transition, the biggest and most important group of additives studied being 

surfactants. Al l additives interact in some way with the colloidal particles in the 

silicate systems. Adsorption on the particle surfaces can alter the particle 

characteristics, whereas dissolution in the aqueous phase can change the ionic 

strength of the solution causing precipitation and affecting the colloidal particles 

this way. 

The distribution of structural units will give information about changes in 

the average particle sizes while the rotational correlation times show how the 

additive affects the particle mobiUty. All in all, the addition of additives to a 

silicate system can give valuable information about its behaviour and stability, and 

the technological, environmental and biological importance of additive-interaction 

with colloidal particles can hardly be overestimated. 

A. Surfactant influence 
The stability of colloidal dispersions in a liquid bulk phase often requires 

the presence of adsorbed surfactants at the interface. Industrially important effects 

produced by the surfactant can be (i) enhanced wetting of the sohd by a liquid 

phase, (ii) the reduction of interfacial energies to promote formation of small 

particle sizes, or (iii) the formation of a stabilising layer to prevent particle 

coagulationl. 

Surfactants are amphiphilic molecules constituted of a hydrophobic and a 

hydrophilic part. In the presence of water they tend to form condensed phases 
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called micelles where polar/apolar contacts are avoided. The concentration of 
surfactant characteristic for this point is the critical micelle concentration 
(cmc)l'12 It has bggn foimd that in many cases the concentration of surfactant 
characteristic for the maximum amount adsorbed on silica surfaces coincides with 
the critical micelle concentration^^. 

Three types of surfactant of the categories anionic , cationic and non-ionic 

have been used, with the main emphasis on surfactants containing Ci2-chains 

(laiiryl groups) as the alkyl chain. The anionic surfactant sodium dodecylsulfate 

(SDS) is very commonly used, the Ci2-chain being of a medium length, providing 

a hydrophobic surfactant tail of reasonable length without the hydrophobic part 

dominating the amphiphilic nature of the surfactant as the alkyl chain does in 

soaps. 

The surfactants used in this work are the following: 

Anionic surfactants: 

- Sodium dodecylsulfate " sodium laurylsulfate " ( SDS) 

cmc ( i n water at 250C ) = 8 * 10-3 M 

- Sodium hexylsulfate ( SHS ) 

Cationic surfactant: 

- Dodecyltrimethylammonium bromide " laurylbromide " 

cmc ( i n water at 250C ) = 14 *10-3 M 

Non-ioruc surfactant: 

- Hexaethyleneglycolmono n-dodecylether " laurylether " 

cmc ( i n water at 25^0 ) = 0.07 * 10-3 M 

The investigations were started at the point where the concenfration of 

anionic and cationic surfactant do not exceed their cmc in water at 25^C. At this 
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point the SDS and the laurylbromide were not completely soluble. Although the 
concentration of the non-ionic surfactant laurylether was exceeding the cmc in 
water at 25^0 by more than 20 times it dissolved completely (Chapter 7-1.3). In 
further investigations the surfactant concenfrations were taken to a point where the 
maximum amoimt of surfactant is dissolved. In the case of SDS the surfactant was 
added beyond the limit of dissolution where it forms a mixed crystalline and 
hexagonal phase in the silicate solution (Chapter 7-1.6.1). 

1. Silicate systems with complete Si02-dissolution 
1.1 General information 

The influence of the surfactant on the structural units in the silicate 

solution is manifested mainly by the effect on the colloidal particles in the system. 

Since in these particles Q4 units are forming the cores and Q3 units are the 

surface-units the effect of the surfactant on the structures in the silicate system can 

be described in terms of the Q3/Q4-ratio, which characterises changes in the 

colloidal material. 

Quantitative experiments have been carried out to investigate i f there is 

any precipitation of silica under the influence of the surfactant due to a salting-out 

effect caused by the surfactant which results in silica that is not observed in the 

29si solution-state spectrum. It was confirmed that in all cases the silicon in the 

system is observed quantitatively. Thus the observed changes in the distribution of 

structural imits are entirely due to changes within the sihcate solutions. 

1.2 Preparation and Equilibration 
All surfactants have been added to silicate solutions which had reached 

equilibrium. After the addition of the surfactant the solutions were given at least 
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24 hours to eqitilibrate before any specfra were recorded. This time period was 
found to be sufficient to allow fijll equilibration of the structural units under the 
influence of the surfactant. This is shown by the example of a highly condensed 
silicate solution which had reached its equilibrium. To this solution lwt% sodium 
hexylsulfate was added and spectra were recorded at fixed time intervals up to a 
total time of 46 hrs. The results are as in Table 7-1. 

Table 7-1 
Distribution of structural units versus the time (in minutes) after the addition of 
SHS to a silicate solution witii 25.5wt% Si02 and Rm=3.8 

0 53 106 159 212 318 848 1908 2756 

0.6 0.7 0.1 0.2 0.3 0.8 0.7 0.5 0.6 

01 4.4 3.2 2.7 3.0 2.6 2.7 2.4 2.3 2.5 

01 22.7 22.5 23.7 23.9 23.8 23.4 23.2 23.5 23.3 

01 52.2 55.5 55.6 55.3 56.0 56.1 56.6 56.4 56.6 

Q4 20.1 18.1 17.9 17.6 17.3 17.0 17.1 17.2 17.0 

03/04 2.6 3.1 3.1 3.1 3.2 3.3 3.3 3.3 3.3 

A stable equilibrium has been established in the sihcate solution 

approximately 14 hours after the addition of the surfactant SHS to the sihcate 

solution. It has to be considered that the apphcability of this value to other 

silicate-surfactant systems is dependent on the surfactant used. The amount of 

SHS dissolved in the silicate solutions is bigger than the amoimt of dissolved SDS 

and it is possible that SHS produces the observed effect on the structural 

distribution in the silicate solution more quickly than SDS does. Therefore the 

value for the establishment of the equilibrium can only be taken as a guide i f 

applied to other silicate -surfactant systems. 
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1.3 Surfactant dissolution 
The level of dissolution of the surfactant in the silicate solutions was 

investigated by making use of the method of quantification described in chapter 4. 

Proton spectra were used for the quantification. Since the proton spectra were 

recorded in rotor inserts made of Teflon FEP it was not possible to use an internal 

reference. Thus it had to be ensured that dielectric changes between the standard 

and the investigated sample were negligible. This was achieved by using a 

solution of surfactant as a standard which contains the surfactant at the same 

concentration as in the silicate solution and with the same alkalinity. Fiuthennore, 

the intensity of the water signal had to be reduced. This was achieved by using 

D2O instead of H2O as a solvent (for the sodium silicate solution deuterated water 

instead of protonated water was used in the preparation). To investigate i f the 

alkalinity of the silicate solution causes a change in the surfactant which is not due 

to interactions with the silicate system each solution of the surfactant in D2O has 

been prepared without the addition of NaOH and with the addition of NaOH. 

These spectra were compared with the spectrum of the surfactant in the silicate 

solution. The investigated sodium silicate solution contains 30wt% Si02 with 

Rm=2.6. 

The investigations have been carried out on a Bruker CXP200 spectrometer. One 

of the results (with laurylbromide) has been checked on a Varian VXR400 where 

we get better resolution of the resonances, and the result matched the one obtained 

on the Bruker CXP200. 

The results of the quantification are reported in Table 7-2. 
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Table 7-2 

Dissolution of surfactants in a sodium silicate solution with 30wt% Si02 and 

Rm=2.6 using the method of quantification 

SDS c*=8mM: 3 % dissolved (cdissolved=0-3mM) 

SHS c*=8mM: 20 % dissolved (cdissolved=l-6mM) 

Laurylbromide c*=14mM: 26 % dissolved (cdissolved=3.6mM) 

Laurylether c*=2niM: 98 % dissolved (cdissolved=2.0mM) 

c* denotes the concentration of surfactant in the standard which is 

the same as placed into the sihcate solution 

% dissolved relates to the amount of dissolved smfactant detected by 

the method of quantification relative to the concentration of 

surfactant in the standard 

^dissolved is the concentration of surfactant dissolved in the aqueous phase 

of the silicate solution or adsorbed on the particle surfaces 

(surfactant that can not be centrifuged to the bottom of the silicate 

solution) 

The surfactant which is most easily dissolved in a silicate solution is the 

non-ionic surfactant laurylether. It fiilly dissolves in the silicate solution to a 

concentration which exceeds its critical micelle concentration in water by a factor 

of almost 30. Laurylether is not charged, so the salinity of the silicate system has 

the smallest effect on its dissolution. Thus it is not salted out by the sihcate 

solution. It is known that an increase in the salinity of the system causes a 
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decrease in the critical micelle concentration of non-ionic surfactants and surface 

coverage at lower surfactant concentrations than in systems with low sahnity^^. 

The anionic surfactant SDS is the least dissolved in the sihcate solution. The 

concentration of SDS dissolved in the silicate solution is only 3% of its critical 

micelle concentration in water. This indicates that the salinity of the sHicate 

solution prevents the dissolution of SDS in the aqueous phase (the salinity of the 

silicate solution is directly proportional to the electiolyte concentration). The 

anionic surfactant SHS dissolves to 20% of it's critical micelle concentration. This 

shows that the anionic surfactant with a shorter hydrophobic chain is less easily 

salted out by the silicate solution. The cationic surfactant laurylbromide dissolves 

to 26% of its cmc in water. Adsorption of the surfactant's positively charged head 

groups on the charged Si-0- is possible, but the salinity of the silicate solution has 

an effect on the dissolution of the charged surfactant so that it does not dissolve 

completely. The case where the salinity exerts the smallest effect is the non-ionic 

surfactant. 

The resonances in the proton spectra of surfactants can give information 

about their behaviour in alkaline media and in the sihcate system. Al l surfactants 

under investigation have a very similar structuring. 

X = S04-
X=N(CH3)3+ 
X=( 
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The proton resonances all surfactants imder investigation have in common are at: 

61 = 0.1 ppm => methyl group at the end of the CH2-chain 

52 = 1.3 ppm => methylene groups in -(CH2)n-chain 

83= 1.8 ppm => methylene group next nearest to functional polar group 

84= 3 to 4 ppm => methylene group adjacent to functional polar group 

The proton spectra of the surfactant SDS in D2O with and without the 

addition of NaOH show identical chemical shifts. The proton resonances of SDS 

in the sihcate solution are much broader than the resonances of SDS in solution 

without any silicate imits (Figure 7-1). This shows that the surfactant is not 

changed by the alkalinity of the siUcate system. The broadened lines for the 

proton resonances of the dodecane chain in the silicate solution suggest that there 

is some restriction in the movement of the surfactant which is caused by the 

adsorption of its hydrophobic tail on the surface of colloidal particles via 

dispersion forces. 

In the case of SHS, proton spectia of the surfactant in D2O with and 

without the addition of NaOH and in the sodium silicate solution are identical 

(Figure 7-2). This suggests that although showing an effect on the distribution of 

structural units in the siHcate solution, SHS seems to retain its mobihty in the 

silicate system. 

The proton specfra of the cationic siufactant laurylbromide in D2O with 

and without the addition of NaOH are identical (Figure 7-3). This shows that the 

alkalinity of the silicate system exerts no effect on laurylbromide. The proton 

spectrum of laurylbromide in the silicate solution only shows a weak and broad 

proton resonance for the methyl groups attached to the nifrogen at 5=3.15ppm (as 

shown in Figure 7-3). This can be explained by immobilisation of the polar heads 

of the surfactant by adsorption on charged surface sites which causes a broadening 

of the lines. 
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In the case of the non-ionic surfactant laurylether the proton spectra in 
D2O with and without the addition of NaOH are identical. This shows that 
laurylether is not hydrolysed in a system with the alkalinity of the silicate solution. 
In the proton spectrum of the laurylether in the silicate solution the resonance for 
the oxyethylenic chain at 3.7ppm is shifted to l . lppm and the main resonance of 
the dodecane chain is shifted from 1.3ppm to -0.3ppm along with broadening of 
the resonances, the resonance of the ethyleneoxide protons being more affected 
than the resonance of the hydrophobic chain. This indicates that the non-ionic 
surfactant laurylether is strongly adsorbed on the uncharged surface sites of the 
colloidal particles via hydrogen bonding with the polar chain. This causes 
increased shielding of the protons and immobilises the surfactant, the polar 
oxyethylenic chain being more affected than the hydrophobic chain. 
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Figure 7-1 
Proton NMR spectra of SDS in : 
a) D20 
b) D2O with NaOH (same alkalinity as silicate) 
c) sodium silicate solution with 30wt% Si02 and Rm=2.6 in D2O 
They were acquired on the Bruker CXP200 with 128 transients, relaxation delay 
of 10s, acquisition time of 0.08s, spectral width of 50ppm 

a) 

^ -
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Figure 7-2 
Proton NMR spectra of SHS in : 
a) D20 
b) D2O with NaOH (same alkalinity as silicate) 
c) sodium silicate solution with 30wt% Si02 and Rm=2.6 in D2O 
were acquired on the Bniker CXP200 with 128 transients, relaxation delay of 10s, 
acquisition time of 0.08s, spectral width of 50ppm 

a) 

C ) 
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Figure 7-3 
Proton NMR spectra of laurylbromide in : 
a) D20 
b) D2O with NaOH (same alkalinity as silicate) 
c) sodium silicate solution with SOw^o Si02 and Rm=2.6 in D2O 
were acquired on the Bruker CXP200 with 128 transients, relaxation delay of IDs, 
acquisition time of 0.08s, spectral width of 50ppm 

b) 

c) 
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Figure 7-4 
Proton NMR spectra of laurylether in : 
a) D20 
b) D2O with NaOH (same alkalinity as silicate) 
c) sodium silicate solution with 30wt% Si02 and Rm=2.6 in D2O 
were acquired on the Bruker CXP200 with 128 transients, relaxation delay of 10s, 
acquisition time of 0.08s, spectral width of 50ppm 

c) 
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1.4 Surfactant effect on structural behaviour 
Generally, all the investigated surfactants shift the distribution of 

structural units in the silicate system towards an increased number of Q3-units 

parallel to a decreased number of Q4-imits (Table 7-1 and 7-3 to 7-14). 

Considering the nature of the colloidal particles in the systems, this experimental 

observation goes along with an increase in the surface area of the particles parallel 

to a decrease in the core area. Therefore the general effect of the surfactants 

appears to be a decrease in the size of the colloidal particles. This effect, which is 

observed in the case of all surfactants and all silicate systems v ^ c h have been 

investigated, is only small. Nevertheless it was found to be very consistent by the 

repetition of experiments and when a new preparation of the whole system was 

done. The results for a representative sodium silicate solution containing a large 

amount of colloidal particles, 25.5wt% Si02 Rm=3.8, have been checked by 

preparing a new stock-solution and adding surfactants accordingly. The results 

show the same tendency as established in previous results. The addition of the 

surfactants does not cause any change in the pH-value of the silicate systems. 

It is concluded that there is a small but consistent and thus relevant 

decrease in the size of colloidal particles due to the surfactant. This conclusion is 

supported by DSC (differential scanning calorimetry) measurements, v ^ c h show 

a decrease in the amount of pore water (water tiapped in the pores of the colloidal 

particles) of 20% to 30% of the amount of pore water in a silicate without 

surfactants upon the addition of surfactants. Figures 7-5 and 7-6 show typical 

29Si NMR spectra of silicate/surfactant systems in comparison with the silicate 

solution without surfactant. The changes in the structuring of the sihcate systems 

are not visible in these ^^Si NMR spectra and only detailed integration and 

repetition of experiments convinces of the observed effect. It was found that 

spherical silica particles of 500-700A can be synthesised as stable dispersions by 
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controlled hydrolysis of TEOS in non-ionic surfactant/cyclohexane/water reverse 
micellar systems, the presence of surfactant limiting the particle size produced!^. 
This is an example of a surfactant producing a decrease in the average particle size 
documented in the literature, though the mechanism can not be adapted to the 
systems investigated here. 

The decrease in the average particle size caused by the surfactant does not 

revert to the old state with time but stays constant, which can be seen in the 

constant amount of Q4-imits (Table 7-5). Nevertheless in the case of the non-ionic 

surfactant there is a tendency for a decrease in the less condensed units QO, Q l , 

Q2cyc and Q2, indicating condensation. This, however, does not go any further 

than to increasing the amount of Q3 surface imits (Table 7-5). These observations 

indicate that there is a fairly complete surface coverage by the non-ionic surfactant 

I f there was no surface coverage by the surfactant the condensation of Q3-units to 

Q4 units could occur as it does in a surfactant-free system (Chapter 5.1). I f the 

surface is covered by adsorbed surfactant at least a part of the Ql and Q2 units 

have to be connected to the particle surfaces to be able to condense to Q3-imits. I f 

these Ql and Q2 units were not connected to the Q3-surface units it would be very 

difficult for them to access a surface with adsorbed surfactant for the 

condensation. 

The addition of SDS in concentrations where it is only partially dissolved 

produces very different reactions. I f it exceeds the cmc in water by a factor of 10 

it does not change the structuring in the silicate solution, as shown in Table 7-10. 

However, a further drastic increase in the concentration of SDS to 9wt% affects 

the structuring in the silicate and results in the silicate solution not being fluid at 

room temperature any more but it does not cause precipitation (For further 

discussion see Chapter 7-1.6.1). In the former concentration the surplus SDS 

(undissolved SDS) is on the bottom of the silicate solution as a precipitate whereas 
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in the higher concentration the SDS forms a liquid crystalline phase containing the 
silicate. 

In diluted silicate solutions the effect of the anionic surfactant SDS on the 

silicate structuring is much more pronounced than in the concentrated systems, as 

can be seen in Table 7-11 and 7-12. This can be explained by the fact that the 

solubility of the surfactant is higher in the dilute system, which has got a lower 

alkalinity and a smaller ion content. Of course there are less contact points for the 

surfactant in a dilute solution than in a concentrated solution but this seems to be 

more than compensated by the increased amount of surfactant dissolved in the 

system. 

I f the non-ionic surfactant is added to its maximum concentration, which 

was determined to be 1.4wt% (39mM), the average particle size decreases 

compared to the effect created by laurylether at a concentration of 2mM 

(0.0025wt%) but the change is only slight (Table 7-7). The addition of more non-

ionic surfactant than 1.4 wt% does not cause precipitation of the silicate but results 

in a surfactant phase separating from the silicate and resting on top of the silicate 

solution. The structuring in the silicate system stays the same as for the silicate 

solution containing 1.4 wt% non-ionic surfactant. 

Sodium hexylsulfate is a short-chain anionic surfactant. The dissolution 

of short-chain surfactants is less affected by the ionic influence of the sihcate 

solution than is the dissolution of long-chain surfactants (Table 7-2). Thus SHS is 

more soluble than SDS in the sodium silicate solutions. Table 7-8 shows that the 

effect caused by the addition of SHS is stronger than for the same amount of SDS, 

which is due to the fact that more SHS can dissolve in the silicate solution than 

SDS. However it should be mentioned that the addition of 1.0wt% SHS to the 

silicate solution causes precipitation of the silicate and the separation of two 

phases, the bottom phase consisting of the precipitated silicate, and the top phase 
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being an aqueous phase containing the surfactant. Therefore there is a tendency 
for a higher Q4 content parallel to a lower Q3 content than found in the initial 
silicate solution, which both characterise an increase in the average particle size 
(which usually goes along with the precipitation of a silicate). In the silicate 
solution containing SHS, however, the amoimts of Q3 and Q4 units only revert 
back to the state of the initial silicate solution. The average particle size compared 
to the silicate containing 8mM SHS increases due to the precipitation but this does 
not proceed any further than the average article size in the silicate solution without 
SHS (Table 7-8). 29si NMR spectra illustrating tiie effect of SHS are presented in 
Figure 7-7. 

A mixture of two surfactants, the non-ionic laurylether and the anionic 

SHS in the weight ratio 1:1 at concentrations of 0.7 wt% , does not cause a great 

change in the structures apart from a very slight decrease in particle size 

(Table 7-9). This effect of the surfactant mixture on the silicate solution, however, 

is smaller than the effect caused by the addition of any one of the two surfactants 

on its own to the silicate solution. This indicates that the two surfactants interact 

with each other and thus cannot be taken into account for the silicate surfactant 

interaction. 

The values for the structural distributions that are reported in the following tables 

are average values over at least two experiments. 
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Table 7-3 
Distribution of structural units in % in a 

structural unit without surfactant with laurylsulfate 

c=8mM 

QO 1.0 1.2 

Ql 11.4 12.4 

Q2cyc 2.7 4.0 

Q2 46.3 49.8 

Q3 37.6 32.2 

Q4 1.0 0.4 

Q3/Q4 37.6 80.5 

Table 7-4 
Distribution of structural units in % in a 

structural without with with with 

unit surfactant SDS laurylbromide laurylether 

c=8mM c=14mM c=0.2mM 

QO 0.7 0.8 0.6 0.8 

Ql 6.7 6.6 6.6 6.8 

Q2cyc 1.5 1.2 1.0 1.2 

Q2 36.5 36.6 37.2 35.3 

Q3 47.2 47.9 48.8 48.8 

Q4 7.4 6.9 5.8 7.1 

Q3/Q4 6.4 6.9 8.4 6.9 
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Table 7-5 
Distribution of structural units in % in a 

structural 

unit 

with SDS 

c=8mM after 1 year 

with laurylether 

c=0.2mM after 1 year 

QO 0.5 0.4 

Q l 5.6 3.9 

Q2cyc 0.8 0.7 

Q2 37.9 33.2 

Q3 48.2 54.8 

Q4 7.0 7.0 

Q3/Q4 6.9 7.4 

Table 7-6 
Distribution of structural units in % in a 

structural without with with 

unit surfactant SDS laiuylbromide 

c=8mM c=14mM 

QO 0.6 0.4 0.1 

Q l 4.4 2.5 1.7 

Q2cyc 0.0 0.1 0.06 

Q2 22.7 23.3 23.0 

Q3 52.2 58.6 57.84 

Q4 20.1 15.1 17.3 

Q3/Q4 2.6 3.9 3.3 
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Table 7-7 
Distribution of structural units in % in a 

structural 

unit 

without 

surfactant 

with laurylether 

c=0.2mM 

with lauryletiier 

c= 39mM* 

QO 0.6 0.2 0.5 

Ql 4.4 2.7 1.8 

Q2cyc 0.0 0.1 0.0 

Q2 22.7 24.1 23.4 

Q3 52.2 55.3 57.2 

Q4 20.1 17.6 17.1 

Q3/Q4 2.6 3.1 3.3 

* the laurylether concentration of 39mM corresponds to c=1.4wt% 

Table 7-8 
Distribution of structural units in % in a 

structural 

unit 

without 

surfactant 

with 

SHSc=0.1wt%* 

with 

SHS c=lwt%** 

with 

SHS c=3wt% 

QO 0.6 0.5 0.5 0.3 

Ql 4.4 2.8 2.5 2.4 

Q2cyc 0.0 0.4 0.0 0.0 

Q2 22.7 22.5 21.7 22.7 

Q3 52.2 59.2 57.5 51.8 

Q4 20.1 14.6 17.8 19.8 

Q3/Q4 2.6 4.1 3.2 2.6 

* the SHS concentration of 0. lwt% corresponds to c=8mM 
** at the concentration of c=lwt% the SHS causes precipitation m the silicate system 
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Table 7-9 
Distribution of structural units in % in a 
sodium silica te solution containing 25.5 wt% Si02 with Rm=3.8 

structural 

vmit 

without 

surfactant 

with 

SHS:laurylether in ratio 1:1 (c=0.7 wt% ) 

QO 0.6 0.7 

Ql 4.4 2.8 

Q2cyc 0.0 0.0 

Q2 22.7 22.8 

Q3 52.2 55.8 

Q4 20.1 17.9 

Q3/Q4 2.6 3.1 

Table 7-10 
Distribution of structural imits in % in a 

structural imit without 

siufactant 

with SDS 

c=8mM 

with SDS 

c=80mM 

QO 0.7 0.8 1.1 

Q l 3.3 3.0 2.8 

Q2cyc 0.0 0.0 0.0 

Q2 21.4 22.2 23.5 

Q3 52.3 53.2 52.6 

Q4 22.3 20.8 20.0 

Q3/Q4 2.3 2.6 2.6 
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Table 7-11 
Distribution of structural units in % in a sodium silicate solution 

structural unit without surfactant witiiSDS 

c=4 mM 

QO 2.4 1.3 

Ql 9.1 9.2 

Q2cyc 2.1 1.1 

Q2 38.1 37.0 

Q3 35.8 43.9 

Q4 12.5 7.5 

Q3/Q4 2.9 5.9 

Table 7-12 
Distribution of structural units in % in a sodium silicate solution 
with 8.0wt% Si02 with Rm = 4.0 diluted from 25wt% SiO^ with I 

structural unit without surfactant with "laurylbromide" 

c=5 mM 

QO 3.3 2.8 

Ql 5.3 6.3 

Q2cyc 0.0 0.0 

Q2 23.5 25.2 

Q3 53.4 55.7 

Q4 14.5 10.0 

Q3/Q4 3.7 5.6 
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Figure 7-5 
29si NMR spectra of a sodium silicate solution with 30wt% Si02 and Rm=2.6 
a) without surfactant 
b) with SDS 
c) with laurylbromide 
d) with laurylether 

a) to c) acquired on the Varian VXR300 with 1020 transients, relaxation delay 
80s, spinning speed 600Hz (at the magic angle) 
d) acquired on the Bruker AMX500 withl20 transients, relaxation delay 80s 
acquisition time 0.06s, spectral width 200ppm 

a) 

b) 

c) 

d) 
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no PFH 

110 FPH 
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Figure 7-6 
29si NMR spectra of a sodium silicate solution with 25.5wt% Si02 and Rm=3.8 
a) without surfactant 
b) with 8mM SDS 
c) with 14mM laurylbromide 
d) with 2mM laiuylether 
a) to d) acquired on the Bruker AMX500 
120 transients, relaxation delay 100s, acquisition time 0.04s, spectral width 
200ppm 
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Figure 7-7 
29si NMR spectra of a sodium silicate solution with 25.5wt% Si02 and Rm=3.8 
a) without surfactant 
b) with 8mM SHS 
c) with lwt% SHS 
d) witii 3wt% SHS 
a) to d) acquired on the Bruker AMX500 with 160 transients, acquisition time 0.06s, 
spectral width 200ppm, a) and b) relaxation delay 100s, c) and d) relaxation delay 140s 

-no 
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1.5 The shifting of the sol/gel-transition 
The transition from a sol to a gel is a property which is characteristic for 

the composition of a silicate system. Any change of this property caused by 

additives is very important for industrial applications, particularly in the adhesives 

industry. 

The effect of the anionic surfactants SHS and SDS on the sol/gel-transition 

has been investigated. SHS (8mM) was added to a sodiimi sihcate solution with 

25.5wt% Si02 and Rm=3.8. After leaving the solution for 1 day to equilibrate it 

was concentrated by heating and evaporating water to the point -when the sol/gel-

transition was passed according to the procedure described in Chapter 3-4.1.1. 

This point was not passed until a Si02 concentration of 33wt% was reached 

(Table 7-13). At a Si02 concentration of 27.5wt%, which is the point where the 

silicate without any surfactant passes the sol/gel-fransition, the sihcate containing 

8mM of SHS was still in the sol-region. Thus the addition of sodium hexylsulfate 

shifts the Si02 concentration for the sol/gel-transition from 27.5wt% to 33wt%. 

The sol/gel-transition of the same silicate solution containing SDS instead of SHS 

was less affected by the surfactant and the fransition to the gel is passed at an Si02 

concentration of 30 wt% instead of 27.5wt% without SDS. The results are in 

Table 7-13. 

Both silicate gels show a slight increase in the amoimt of Q3 imits and a 

slight decrease in the amount of Q4 units (Table 7-14). The structuring in a 

silicate system generally does not show substantial changes when the transition to 

the gel is passed (Chapter 5-2). The addition of surfactants, which in tiiese 

experiments are already in equilibrium with the siUcate before the system is 

concentrated, only causes a small change. SHS is dissolved to a greater extent 

than SDS and thus generally affects the systems more than SDS. 
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Table 7-13 
Sodium silicate solution with Rm=3.8 

without surfactant withSDS with SHS 

sol/gel-transition at27.5wt%Si02 at 30wt% Si02 at 33wt% Si07 

Table 7-14 
Distribution of structural units: 

structural unit 30wt% Si02 

without surfactant 

30wt% Si02 

with SDS c=8mM 

33wt% Si02 

with SHS c=8mM 

QO 0.0 0.0 0.3 

Q l 3.0 3.5 2.7 

Q2cyc 0.0 0.0 0.0 

Q2 24.3 21.7 23.4 

Q3 51.5 54.2 54.3 

Q4 21.2 18.6 19.3 

Q3/Q4 2.4 2.9 2.8 

1.6 Silicate systems with the anionic surfactant 
in the liquid crystal phase 

1.6.1 The addition of SDS 
Sodium silicate systems on both sides of the sol/gel-transition have been 

investigated. The anionic surfactant SDS is added at a concentiation of 9wt% to 

silicate systems with Rm-values smaller than or equal to 4.0 and mixed into the 
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silicate at room temperature as much as possible. Then the mixture is heated and 
at already ~ 60OC a clear homogeneous phase is formed which is left for another 
20 minutes at this temperature. After cooling to room temperature the result is a 
white homogeneous phase which is not fluid. This situation is not caused by the 
silicate solution passing the sol/gel-transition but by the SDS forming a phase 
which restricts movement in the system. In the case of a silicate solution with 
25wt% Si02 and Rm=4.0 the addition of 9wt% SDS causes a restriction of 
movement for the silicate units and the silicate does not flow at room temperature 
any more. In spite of this, the Q3- and Q4-imits do not show any tendency for 
further condensation but in contrast show the same effect on the amount of Q3-
and Q4-units as is observed for all surfactants, characterising a decreasing particle 
size (Table 7-15). This is illustrated in Figure 7-8. Even in a silicate gel the 
addition of 9wt% SDS is followed by a decrease in particle size as shown in 
Figure 7-9 (Table 7-19). Though it is much more difficult for a surfactant to 
interact with a locked-up gel structure than with a sol, the heating of both systems 
to homogenise the SDS gives it the chance to shift the equilibriimi of the exchange 
between silicate units, since all motion is increased at a raised temperature. It was 
foimd that in the presence of surfactants forming liquid crystalUne phases 
nucleation for the growth of particles is restricted by the microdomains and a large 
nxmiber of small particles can result^^. 
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Figure 7-8 
29si NMR specfra of a sodium silicate solution witii 25vA% Si02 and Rm=4.0 
a) without surfactant 
b) with 9wt% SDS 
a) and b) were acquired on the Bruker AMX500 with 140 transients, acquisition time 
0.04s, spectral width 200ppm, a) relaxation delay 100s, b) relaxation delay 140s 
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Figure 7-9 
29si NMR spectra of a soditmi silicate gel with 33wt% Si02 and Rm=3.4 
a) without surfactant 
b) with 9wt% SDS 
a) and b) acquired on the Varian VXR300 with 1040 transients, acquisition time 0.04s, 
spectral width 300ppm, a) relaxation delay 120s, b) relaxation delay 150s 
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The silicon-proton distances in the silicate systems containing SDS in a 

liquid crystalline phase (tables 7-18 and 7-21) remain imchanged within the error 

limits compared to the pure silicate systems. 

A comparison of the T2-values of the sihcate/SDS solution with the T2-

values of the silicate solution without SDS as presented in Table 7-16 shows that 

the mobility of Si-units decreases compared to the surfactant-free solution v^en 

the surfactant SDS is added to 9wt%-level. The rotational correlation times for the 

structural units in the silicate systems with and without SDS are calculated via 

spin-lattice relaxation times at different Bo-fields (Tables 7-17 and 7-20). As 

illustrated in Figure 7-10 the correlation times for the structural units in a sihcate 

system on the sol-side of the sol/gel-fransition increase when 9wt% SDS is added, 

the correlation time of the Q2-unit by a factor of 2, the correlation times of Q3-

and Q4-units by a factor of about 6. 

Figure 7-10 
Comparison of correlation times without and with 9 wt% SDS for a 
sodium silicate solution v^th 25wt% Si02 and Rm=4.0 
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This indicates that the mobility of the Q2-units is less restricted by the interaction 

with a liquid crystal phase than the mobihty of Q3- and Q4-units. It can be 

concluded that in the sol there is still scope for the movement of small particles in 

the liquid crystal phase of the SDS whereas the mobility of larger particles is 

severely restrained. 

In contrast, figure 7-11 shows the increase in correlation times for a 

silicate gel in interaction with SDS in a liquid crystalline phase. In this case the 

mobility of the Q2-units decreases by a factor of about 5 whereas for the Q3- and 

Q4-units the decrease is only by a factor of 2. 

Figure 7-11 
Comparison of correlation times for a silicate gel 
containing 33wt% Si02 with Rm=3.4 without and with 9wt% SDS: 

33R3.4 
33R3.4 SDS 
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The silicate gel is in a state of low mobihty before the SDS is added and it is 

particularly the silicate units with a higher degree of condensation (Q3- and Q4-

units) whose mobility is most affected by the forming of a locked up gel-structure 

(Chapter 5-2). Thus the decrease in mobility for these structural units is relatively 

small compared to the decrease in mobility for the Q2-units which remain fairly 

mobile even in a gel (Chapter 6-2.2). The fact that the interaction with the Uquid 
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crystalline phase restricts the overall mobility of the sihcate solution as well as the 
silicate gel indicates that the silicate particles are locked up in the SDS phase. 

Phase diagrams explore the numerous phases a SDS/water system passes 

with varying surfactant concenfration at varying temperatures^'^. The three most 

common liquid crystal phases are the lamellar phase, where , bilayers of 

amphiphilic molecules arranged in sheets are separated by water^^^ the hexagonal 

phase where cylinders of surfactant are arranged in a two-dimensional hexagonal 

lattice and the cubic phase where the primary units are short rod-like aggregates 

which are connected at each end and form two interwoven but independent three-

dimensional networks^. 

To characterise the structure the SDS forms when added in high 

concenfration to a silicate system, investigations by optical microscopy were 

carried out (Figure 7-12). SDS was observed in the solid phase where it is 

crystalhne. Then water was added and the SDS in water was heated. The phase-

fransition to a hexagonal phase occurs at 26^C and the phase transition to a 

lamellar phase takes place at 580C. The silicate systems under investigation 

contain 33.0 wt% Si02 with Rm=3.4 and 25wt% Si02 with Ilm=4.0. The former 

is past the sol/gel-fransition and the latter is on the sol side of the sol/gel-

transition. Both contain 9wt% SDS. From the previous investigations of the 

SDS/water system it can be concluded that at room-temperature the SDS in both 

silicates is foimd in a mixed phase. The SDS is in crystalline form, in the form of 

precipitated fine needles as well as forming a hexagonal phase underlying the 

crystalline phase in the background. Both phases reflect the light in a 

characteristic way and can thus most clearly be seen using the polariser. The 

structure of the SDS phases is very similar in both silicate systems. Further 

investigations by optical microscopy to understand the behaviour of the SDS in 
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these systems were carried out by hearing the silicate-SDS systems to temperatures 

up to 750C (Figure 7-13). At a temperature of 340C the ciystaUine phase 

dissolves into the hexagonal phase. No transition from the hexagonal phase into a 

lamellar phase can be seen even when the temperature is raised to 750C. 

Figure 7-12 
Optical microscopy on SDS 
a) in crystalline form 
b) in aqueous solution non-heated 
c) in aqueous solution heated 
d) in a sodium silicate system with 33wt% Si02 and Rm=3.4 at room temperature 
e) in a sodium silicate system with 25wt% Si02 and Rm=4.0 at room temperature 
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Figure 7-13 
Optical microscopy on SDS with increasing temperature in 
a) sodium silicate system with 33wt% Si02 and Rm=3.4 
b) sodium silicate system with 25vvt% Si02 and Rm=4.0 

CD 
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It can be concluded that SDS forms a hexagonal hquid crystal phase in 
sihcate systems with Rm-values < 4.0 when added in high concentration (9wt%). 
The silicate structures seem to be arranged in the two-dimensional network in a 
way that does not influence the structuring formed at increased temperature and 
that does not disturb the formation and stabihty of a two-dimensional SDS 
network. It can be assumed that the changes in the sfanctural distribution in both 
silicates take place during the period where the temperature is increased. The fact 
that the hexagonal phase, which is fairly rigid compared with the highly mobile 
lamellar phase, does not change into a lamellar phase at high temperature indicates 
that the silicate particles and the SDS are locked up in the hexagonal phase. 
Presumably the silicate prevents the arrangement of the SDS in sheets with water 
in between them as silicate particles would be too big to fit in-between normal 
intersheet distances. 



Chapter 7 Additive Influence page 245 

Silicate system in sol form : 

Table 7-15 
Distribution of structural units in a 

structural imit without surfactant with SDS c=9 wt% 

QO 0.7 0.2 

Qi 3.3 2.4 

Q2cyc 0.0 0.0 

Q2 21.4 20.9 

Q3 52.3 58.3 

Q4 22.3 18.2 

Q3/Q4 2.3 3.2 

Table 7-16 
T2-values in s measured with the CPMG sequence (Bruker AMX500): 

structiiral unit without surfactant with SDS c=9 wt% 

QO 360 ms _ 

Q i 107 ms 51 ms 

Q2cyc _ 

Q2 71 ms 46 ms 

Q3 54 ms 34 ms 

Q4 35 ms 23 ms 
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Table 7-17 
Tl-values in s at different fields measured by inversion recovery and 
calculation of the rotational correlation time TC using the ratio T 1(600 

structural without with SDS with SDS TC 

imit surfactant c=9 wt% c=9 wt% 

at 500 MHz at 500 MHz at 600 MHz 

QO 8.4 • _ 

QI 8.8 9.6 10.8 3.5E-10 s 

Q2cyc - _ 

Q2 8.5 9.8 10.9 3.0E-10 s 

Q3 10.2 11.7 13.8 1.2E-9 s 

Q4 18.5 26.5 34.8 2.6E-9 s 

Table 7-18 

structural 

imit 

rSiH 

QO _ 

QI 2.0E-10m 

Q2 2.0E-10m 

Q3 2.2E-10 m 
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Silicate system in gel form 

Table 7-19 
Structural distribution in a 

structural unit without surfactant with SDS c=9wt% 

QO 0.0 0.0 

Qi 5.6 2.8 

Q2cyc 0.0 0.0 

Q2 25.6 27.1 

Q3 50.2 56.3 

Q4 18.6 13.8 

Q3/Q4 2.7 4.1 

Table 7-20 
Tl-values in s at different fields measured by inversion-recovery and calculation 

structural 

unit 

without 

surfactant 

at 500MHz 

with SDS 

c=9wt% 

at 500MHz 

with SDS 

c=9wt% 

at 600MHz 

TC 

QO 7.9 _ _ 

Qi 8.1 9.7 10.2 1.3E-10S 

Q2cyc _ _ _ _ 

Q2 8.6 9.1 11.4 1.7E-9 s 

Q3 10.1 11.3 14.5 2.0E-9 s 

Q4 22.0 24.7 33.6 4.0E-9 s 
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Table 7-21 

structural 

unit 

rSiH 

QO _ 

Q i (1.9 ± 0.05) E-lOm 

Q2 (2.1 ±0.05) E-lOm 

Q3 2.2E-10m 

1.6.2 The addition of SHS 
It has been investigated whether using SHS, which is more soluble in 

silicate solutions than SDS, as an anionic surfactant instead of SDS forms an 

ordered phase with the silicate and possibly exerts a greater effect on the sihcate 

structures than SDS. However, the addition of 9wt% SHS to a sodium siHcate 

solution containing 25wt% Si02 with Rm=4.0 results in a non-homogeneous 

mixture (two phases) where a part of the sihcate has precipitated or strongly 

coagulated and an aqueous phase has separated. Nevertheless 95 % of the 29-Si in 

the precipitated part of the silicate can still be detected by solution-state NMR 

(AMX 500) with a broad peak underlying the Q1-, Q2-, Q3- and Q4-resonance 

which vanishes in MAS solid-state NMR. (Figure 7-14). 
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Figure 7-14 
29si NMR spectra of a sodium silicate solution with 25wt% Si02 and Rm=4.0 
a) without surfactant acquired on the Varian VXR300 
b) with 9wt% SHS acquired on the Varian VXR300 with MAS 
a) and b) 1080 transients, acquisition time 0.04s, spectral width 300ppm, a) relaxation 
delay 100s, b) spin rate 1200Hz, relaxation delay 150s 

a) 

b) 

- r -
-eo -20 -40 -60 -too -120 -140 •160 pPM-180 
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The change in the structuring of the silicate system upon addition of 

9wt% SHS is interesting not only for the drastically decreasing amount of Q3-units 

along with an increase in the amount of Q4-units, but also for an increasing 

number of QO- and Ql-units (Table 7-22). The former is characteristic for the 

increasing degree of condensation of the siUcate system whereas the latter 

indicates a tendency towards less condensed units at the same time. This suggests 

that the process taking place is a gradual coagulation to highly-condensed 

partially-insoluble networks rather than a sudden precipitation of big 'lumps' of 

silica. It is assumed that only a part of the surface units (Q3-units) undergoes 

further condensation whereas the other part decondenses. In Chapter 6-4 it was 

established that Q3-units exchange with Q4-units as well as with Q2- and even 

Ql-imits and that the structuring in silicate systems is determined by the exchange 

equilibria. It can be assumed that the change in the structuring caused by SHS is 

mainly due to a change in the exchange equilibria of the Q3 surface units. 

Table 7-22 
Structural distribution in a 

structural unit without surfactant 

(sol) 

with 9wt% SHS 

(precipitate) 

QO 0.7 5.3 

Q l 3.3 15.1 

Q2cyc 0.0 0.0 

Q2 21.4 21.7 

Q3 52.3 21.1 

Q4 22.3 36.8 
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1.7 Heat-influence 
Silicate-surfactant systems have been investigated under the influence of 

increased temperature, providing information on the structures in the solutions. 

The systems studied contain a high level of surfactant whilst still being solutions. 

The general idea behind these experiments is that at increased temperature the 

exchange between all species is more rapid (Chapter 6-4.2) and the exchange 

equilibrium shifts towards structures with a lower degree of condensation (Chapter 

5-1.5). This means that at raised temperature the increase in the exchange rate 

fi-om more-condensed to less-condensed species is bigger than that for the 

exchange firom less-condensed to more-condensed species. Therefore it should be 

easier for the surfactant to shift the equilibrium of the exchange towards smaller 

particles, as the tendency for this process is existing anyway at higher temperature. 

It has to be considered, however, that agglomeration of micelles upon heating has 

been documented in the literature 1"*. This can result in surfactant being taken out 

of the silicate/surfactant interaction. 

In these experiments sodium silicate solutions with 25.5wt% Si02 and 

Rin=3.8 containing laurylether in the maximum amount dissolved (c=1.4wt%) and 

SHS in high concentration (c=lwt%) were heated to 65^C and S5^C for 4 hours. 

During the last three hours of heating the ^^Si NMR spectra were recorded at the 

respective temperatures. After the heat-freatment the sihcate/surfactant solutions 

were left at room temperature for 6 weeks to re-estabhsh equilibrium (Chapter 

5-1.5) after which their structural distribution was compared to the starting 

position before heat-treatment. The results are presented in Tables 7-23 and 7-24. 

At increased temperature the structuring in the siUcate solutions containing 

surfactants shows the same tendency for a decrease in the amount of Q3- and Q4-

units as in silicate solutions which do not contain surfactants. The general 

tendency going fi-om the more-condensed towards the less-condensed units is not 
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affected by the surfactants. After the re-equihbration to room temperature the 

structuring in the silicate solutions shows an average particle size which is slightly 

smaller than the one in the starting system. 

Taking into account that the starting temperature 250C was increased to 

850C and that an increase of the temperature to only 45^C results in an increase in 

the Si-Si exchange rate of a factor of more than 10 compared to that at room-

temperature, it is concluded that heat-treatment has only a minor influence on the 

effect of surfactants on the structuring in silicate solutions. 

Table 7-23 
Distribution of structural units for a 
sodium silicate solution 25.5wt% Si02 ; Rm=3.8 with laurylether 

structural 

unit 

at 250C at 650C at 850C at 250C* 

QO 0.5 0.0 0.0 0.3 

Ql 1.8 4.2 7.0 2.2 

Q2 22.4 27.3 32.5 23.0 

Q3 57.2 53.4 47.6 58.0 

Q4 18.1 15.1 12.9 16.5 

Q3/Q4 3.2 3.5 3.7 3.5 

* 6 weeks after heat-treatment to 85^0 for 2 hrs 
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Table 7-24 
Distribution of structural units for a 

structural 

unit 

at 250C at 850C at 250C* 

QO 0.5 0.0 0.0 

Ql 2.5 1.1 2.3 

Q2 21.7 28.8 22.4 

Q3 56.5 53.5 57.3 

Q4 18.8 16.6 18.0 

Q3/Q4 3.0 3.2 3.2 

* 6 weeks after heat-tieatment to 85^0 for 2 hrs 

1.8 Surfactant interaction with colloidal particles 
In water/surfactant systems micelle formation is promoted by the 

thermodynamically unfavourable dissolution of the hydrophobic tails of the 

surfactant in water and the mutual atfraction of the tails due to dispersion 

forces!'3. -jhe micelle has a liquid-like character and can be regarded as a 

microscopic droplet3. It is possible to distinguish between rapid internal motions 

(in the range of 10"Us) and slow overall motions (lO'^s and upwards) in 

surfactant aggregates. Fast motion occurs in the hydrocarbon chains whereas slow 

motion is dominated by micelle rotation and surfactant molecule lateral diffusion 

along the micelle surface^. 

It was established (chapter 5-5) that the surfaces of the colloidal particles 

in highly viscous silicate solutions with Rm-values bigger than 2.0 is mainly 
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uncharged Nevertheless there are sites carrying charges resulting fi-om the 
alkaline cleavage of Si-O-Si bonds. 

The starting point for the preparation of highly viscous silicate solutions is 

a dispersion of undissolved silica in a sodiimi hydroxide solution. This 

undissolved silica consists of siUca particles whose surface area is covered with Si-

OH groups wiiich are mainly Q3-units. To dissolve these particles Si-O-Si bonds 

are hydrolysed to the extent that the amoimt of OH-ions in the system allows. 

These can either deprotonate Si-OH groups or hydrolyse Si-O-Si bonds. In any 

case a charged surface unit is produced. Since not all surface imits are attacked by 

hydroxyl ions there is a considerable amount of Si-OH groups remaining in the 

system and the higher the molar ratio is, the higher is the ratio of uncharged to 

charged sites. Thus in the adsorption of additives there is a certain contribution of 

electrical effects along with the mechanisms present on polar, uncharged surfaces. 

Adsorption of a surfactant on a sohd/liquid interface is mainly controlled 

by three factors: the nature of the surfactant (including the nature of the head-

group which determines the fimctionality and the nature of the hydrophobe), the 

nature of the sohd surface and the nature of the hquid environment^. The forces 

which can be involved in the adsorption of surfactants at the solid/liquid interface 

are electrostatic interactions (illustrated in C, overleaf) , hydrogen bonding and 

dipolar interactions (illustrated in B, overleaf), dispersion forces and Van der 

Waals attractions (illustrated in A, overleaf)!. Adsorption usually occurs on a 

molecular level 1. I f a bilayer is adsorbed it will be via chain-chain interactions^. 
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A small change in the characteristics of the system can cause a major 

change in the adsorption 1. Hydration effects at the particle/solution interface are 

disrupted by the adsorbed surfactant^. 

The hydrogen bonding of large organic molecules and surfactants is 

considerably reduced by a surface charge as the large hydrated sodium ion which 

is adsorbed on the charged sites prevents the attachment not only on the charged 

site but also on the neighbouring sites22. This however is only of importance in 

silicate systems with low Rm-values, as in systems with higher Rm-values and 

lower alkaliiuty uncharged SiOH groups dominate on the surface of the colloidal 

particles. 

The only case when the electrical effect on the adsorption mechanism has 

to be taken into account is the addition of surfactants with a cationic headgroup. 

Here the cationic headgroup competes with hydrated sodium ions in the adsorption 

on the charged sites. In the presence of charged sites the hydrophobic interaction 
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between alkyl chains on the silica surface is reported to be small 1^. There are two 
possibilities for the adsorption of charged surfactants on surfaces carrying charges. 
First, adsorption can be promoted by the charge difference then there is a 
changeover of mechanism to adsorption via Van der Waals forces onto sites with 
equal charge, for example on the crystal edges of kaolinit. This mechanism, 
however, is unlikely for the adsorption of cationic surfactants on silica surfaces. 
Second, adsorption can be promoted by the charge difference, and fiirther 
adsorption occurs through bilayer formation on the monolayer^. Lee et al. found 
that the adsorption of the cationic surfactant CjgTAB on silica occurs as a thick 
layer with head groups at both the silica surface and oriented into the bulk solution 
even at surfactant concentrations below the cmcH. The adsorption of surfactants 
on ionic surfaces is enhanced by salt-addition^. 

Surfactants with anionic headgroups do not adsorb via electrical effects. 

The charge balance on the charged surface sites is provided by hydrated sodium 

ions. The adsorption of cationic and anionic surfactants is considerably reduced 

by a surface charge as the large hydrated sodium, which is adsorbed on the 

charged sites, prevents the attachment not only on the charged site but also on the 

neighbouring sites22. This however is only of importance in silicate systems with 

low Rm-values, since in systems with higher Rm-values and lower alkalinity 

uncharged Si-OH groups dominate on the surface of the colloidal particles. 

+6H20 

^ ^ / H / / H ^ 
J2 Q Q Q Q- Q Q Q Q _ 
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On polar uncharged surfaces the electrolyte content is expected to have a 
less pronotmced effect upon adsorption of surfactants than on charged surfaces 1. 
Potential forces at a polar uncharged surface include dispersion forces, dipolar 
interactions and hydrogen bonding^. The balance between the dispersion forces 
and the polar interactions determines the orientation of the surfactant molecules on 
the surface. I f the former predominates, the hydrophobic tails align on the surface. 
If, however, the latter predominates, the hydrophiUc head group will be at the 
surface and the tail oriented towards the aqueous phase. Dispersion forces are 
relatively weak but long-range. They are always present but not always dominant. 
The adsorption increases with increasing chain length. The drive for the 
dispersion forces or hydrophobic bonding is the tendency of the hydrophobic 
chains to be pushed out of the aqueous environment!''*. I f the head groups are 
derivatives of strong acids such as sulphuric acid salts (SDS, SHS) or derivatives 
of stiong bases such as quaternary ammonium ions the adsorption on polar 
uncharged surfaces via dispersion force interactions prevails. From tiiis it can be 
concluded that the anionic surfactants SDS and SHS adsorb on the silica surface 
via dispersion forces. These are sfronger for SDS than for SHS but it has to be 
considered that more SHS is dissolved than SDS, so for these surfactants there are 
two reciprocal effects. Materials tike polyoxyethylenes can interact sfrongly with 
OH-groups on the surface via hydrogen bonding with the ethyleneoxide chains. 
Non-ionic surfactants are found to adsorb onto polar uncharged surfaces in a 
loose-packed monolayer with molecules parallel to the surface 1. It was foimd that 
an increase in the length of the polyoxyethylene chain enhances adsorption at low 
concentrations and decreases the adsorption density 1^. The hydrophobicity of the 
surface is dependent on the ethyleneoxide chain length as well as the hydrophobic 
chain lengthl'l^. Iti a surfactant mixture the surfactant with the longer chain 
displaces the one with the shorter chain^. In a mixture of an anionic with a non-
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ionic surfactant the stronger hydrogen bonds with the non-ionic prevail over 

dispersion forces and it is assumed that the non-ionic will displace the anionic 

surfactant on the surface. 

It can be said that all surfactants used in the present investigations adsorb 

on the surface of the colloidal particles in silicate systems via different 

mechanisms which depend on the nature of the surfactant. In chapter 6-4 it was 

estabhshed that the exchange equilibrium between sihcate units in silicate systems 

gives rise to the distribution of structures observed in the silicate spectra. To 

understand the effect surfactants exert on the structuring in the silicate systems the 

fact that Q3-surface units exchange with Q4-units is of particular importance. The 

adsorption of surfactants onto the surface units of colloidal particles inhibits the 

recondensation of Q3-imits and thus causes the equilibrium of the exchange to be 

shifted to the less condensed units. 

silir.ate w i t h m i t snrfar.tant 

Q3 

i-OH HO-Si 

silicate w i t h snrfartant 

Q3 

urfactant 

i-OH i HO-Si — ^ W 

4 ^ 

Q4 

Q4 
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2. Silicate systems with incomplete Si02-dissolution 
2.1 Introduction 

The aim in this paragraph is to produce silicate systems with Rm-values 

bigger than 4.0, the emphasis being placed on systems with Rm-values of 4.5 and 

5.0. The molar ratio of Rm=4.0 is reported to be the precipitation boundary of 

Si02 in silicate solutions26,27 n -̂ ŝ investigated i f this boundary can be shifted 

with the use of surfactants. Since surfactants seem to cause a decrease in the size 

of colloidal particles there is the possibihty that by decreasing the average particle 

size in a silicate solution with undissolved silica more silica can be brought into 

solution. 

The amount of dissolved siUca was determined using the method of 

quantification described in chapter 4. In contrast to colloidal silica particles which 

are dissolved and stabilised, undissolved silica sinks to the bottom of the sihcate 

solutions and can thus easily be separated by decanting. To make sure that this 

method only picks up silicon in silicate units which are dissolved in the sihcate 

solution, the amount of sihca dissolved in the silicate solutions is investigated after 

decanting and thus separating from the undissolved silica on the bottom. 

Therefore any silicon in undissolved sihca is disregarded in the quantification. 

Although the task was to produce sodium silicate systems containing 20wt% Si02 

with Rm-values of 4.5 and 5.0, in the majority of experiments reported in this 

paragraph these compositions could not be achieved. The initial composition of 

the systems before separation from the imdissolved silica, which is the starting 

point for all systems in this paragraph, is reported in terms of notional Si02 

concentration (Si02n)and notional Rm-value (Rmn). The amount of sihca 

dissolved in the sihcate systems determines their real composition and thus their 

actual Si02 concentration and Rm-value, which are reported in terms of real Si02 

concentration and real Rm-value. 
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In this paragraph the real composition of the silicate systems is determined 
via the amount of silica dissolved. It could be argued that this could also be 
obtained by separating, drying and weighing of the undissolved sihca. This, 
however , is not feasible due to the high viscosity combined with the high 
sensitivity of the silicate systems. 

2.2 Preparation 
The silicate systems with notional Rm-values > 4.0 were prepared by 

dissolving fumed silica in sodiimi hydroxide solution. The systems were left at 

room temperature for six weeks and the amount of dissolved silica was 

determined. After this the surfactant was added to the system, which was then 

left to equilibrate at room temperature for at least two weeks before the NMR 

analysis. The silicates without surfactant were heated in order to check i f the 

increased temperature promotes further dissolution of siUca than can be achieved 

at room temperature. The only silicate system containing surfactant to be heated 

was the case of the addition of 9wt% SDS. This silicate SDS system was heated to 

70^0 to homogenise the surfactant in the silicate solution and yielded a 

homogeneous phase at 70^0. After cooling to room temperature the result was a 

white but not completely homogeneous phase which is non-fluid at room 

temperature and a slight phase separation due to precipitation occurs. 

2.3 Si02-solubility 
The silica in silicate systems with notional Rm-values bigger than 4.0 did 

not dissolve completely without heating the system as shown in tables 7-25.1 and 

7-26.1. In a sodium silicate solution with cSiO2n=20wt% and Rmn=4.5 80% of 

the silica is dissolved whereas in the same solution but with Rmn=5.0 it is only 
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71%. Without heat-treatment the actual molar ratio of Si02 to Na20 can not be 
increased above Rm=3.6. The initial composition of the systems makes no change 
to the end-result. 

The amoimt of dissolved sihca increases when the systems are kept at 

increased temperature for a certain time. After heating to 70^0 to 80^0 for 10 

hours it dissolved completely in a silicate with Rm=4.5 (Table 7-30.2) and stayed 

in solution when the silicate was brought back to room temperature. This is 

remarkable as the Rm of 4.0 was claimed to be the precipitation boundary of 

silica. In a silicate with Rmn=5.0 heating increases the level of dissolved silica to 

91% (Table 7-26.2). It can be concluded that heat-freatment can produce sihcate 

systems with Rm-values as high as 4.6 with Si02 concentrations of about 20wt%. 

However, the silica also dissolved completely in a silicate solution with 

Rm=4.5 when SDS (sodium dodecyl sulfate) was added (c=8mivr) without having 

to heat the solution (Table 7-25.4). In a sihcate solution with Rm=5.0 89% of the 

silica dissolved under the influence of 8mM SDS (Table 7-26.4). This 

demonstiates that the addition of SDS causes the same effect as heat-treatment in 

producing silicate solutions with Rm-values of 4.5 at Si02 concentrations of about 

20wt% and can thus replace the heat-treatment. 

At a concentiation of only 3mM the effect of the SDS is reduced 

(Table 7-25.3) and a Rm-value of only 3.9 is obtained. Thus the influence of the 

surfactant SDS is subject to its concentration. The dissolution of silica in non 

heat-freated silicates under the influence of a surfactant, however, never exceeds 

the level of dissolution achieved with heat tieatment. Leaving the sihcate 

solutions containing 8mM SDS for up to 7 months exerts no effect on the 

dissolution of the silica. Thus there is no reverse effect caused by salting-out and 

the systems are stable (Table 7-25.5 and 7-26.5). 
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The addition of SDS in a high concentration (c=9wt%) gives rise to the 
formation of a liquid crystalline SDS phase in the sihcate and increases the level of 
dissolution compared to the level of sihca dissolution in the same silicate without 
SDS (Table 7-26.6) although the mobihty of the system is decreased. This means 
that a small increase in the Rm-value above Rm=4.0 is achieved and the 
composition of the system changes to 15wt% Si02 with Rm=4.2. However, 
compared to the silicate with 8mM SDS, where SDS does not form a hquid 
crystalhne phase, the level of Si02 dissolution is smaller. This is due to a shght 
precipitation of the silicate caused by the large amoimt of SDS in the system, 
which goes along with the results presented in Table 7-28.2 indicating an increase 
in the average particle size in this system. 

As shown in Table 7-25.6 the cationic surfactant dodecyl-trimethylammonium 

bromide only causes a slight increase in the level of siUca dissolution in increasing 

the Rm-value of the silicate solution from 3.6 to 3.7 and is thus less effective than 

SDS. 

A sodium silicate solution of Rm=5.0 where only 70% of the usual concentration 

is taken as initial concentration (14wt% Si02) was investigated and it was found 

that without heat-treatment the silica is not completely dissolved to this level 

without the addition of a surfactant (Table 7-26.3).Nevertheless a composition of 

12wt% Si02 and Rm=4.4 can be obtained. 

Furthermore it was found that the anionic surfactant sodium hexylsulfate (SHS) is 

more effective for the dissolution of siUca than SDS (Table 7-26.7). This can be 

explained as SHS is less salt-sensitive than SDS. Under the influence of SHS a 

silicate solution with the highest Rm-value (Rm=4.8) found in these investigations 

was achieved. 



Chapter 7 Additive Influence page 263 

The tendencies reported before have been reconfirmed in a new preparation of the 
same samples at Rm=4.5 and Rm=5.0. The effect observed is repeatable and 
therefore seems to be genuine. 

Tables 7-25.1 to 7-25.6 
Sodium silicate solutions with cSiO2n=20wt% and Rmn=4.5 

(% dissolved Si02 describes the ratio of the amount of sihca initially given into the system 
(20wt% Si02) to the amomt of dissolved sihca determined after separation from the 
undissolved siUca and quantification) 

Table 7-25.1 
20wt% Si02 Rm=4.5 no heating, 6 weeks after preparation 

detected : average : dissolved Si02 
16.4wt% Si02 
16.Owt% Si02 15.9 ± 0.4wt% Si02 80 % 
15.4wt% Si02 
actual composition: 
16wt% Si02 and Rm=3.6 
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Table 7-25.2 
20wt%SiO2 Rin=4.5 heating to 70-80OC for 10 his 
6 weeks after preparation 

detected: average: dissolved Si02 : 
19.8wt% Si02 
20.4wt% Si02 
19.7wt% Si02 
actual composition: 
20wt% Si02 andRm=4.5 

20.0 ± 0.3wt% Si02 100 % 

Table 7-25.3 
after 6 weeks with 3mM SDS without heating: 
detected : average : 
17.2wt% Si02 
16.7wt% Si02 
17.8wt% Si02 
actual composition: 
17wt% Si02 and Rm=3.9 

17.2 +0.4 wt%Si02 

dissolved SiO? : 

86% 

Table 7-25.4 
20wt% Si02 Rm=4.5 with 8mM SDS, no heating 
6 weeks after preparation 
detected : average : dissolved Si02 : 
19.9wt% Si02 
actual composition: 
20wt% Si02 and Rm=4.5 

99.5% 

Table 7-25.5 
after 7 months with 8mM SDS without heating 
detected : average : dissolved SiO? : 
20.2wt% Si02 
20.0wt% Si02 
20.0wt% Si02 
actual composition: 
20wt% Si02 andRm=4.5 

20.1±0.1wt%SiO2 100 % 
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Table 7-25.6 
20wt% Si02 Rm=4.5 with 14mM laurylbromide, no heating 
6 weeks after preparation 
detected: average : dissolved Si02 
16.3wt% Si02 16.6 ± 0.3wt% Si02 83 % 
16.9wt%Si02 
actual composition: 
17wt%Si02 andRm=3.7 

Tables 7-26.1 to 7-26.7 
Sodivmi silicate solutions with cSiO2n=20wt% and Rmn=5.0 
(% dissolved Si02 describes the ratio of the amount of sihca initially given into the system 
(20wt% Si02) to the amount of dissolved sihca determined after separation from the 
undissolved sihca and quantification) 

Table 7-26.1 
20wt% Si02 Rm=5.0, not heated, after leaving for 10 weeks 
detected : average : dissolved SiO? : 
14.7wt% Si02 
14.2wt% Si02 14.2 ± 0.4wt% Si02 71% 
13.8wt% Si02 
actual composition: 
14wt% Si02 and Rm=3.6 

Table 7-26.2 
20wt% Si02 Rm=5.0, heated to 70^0 for 10 hrs, after leaving for 10 weeks 
detected : average : dissolved SiO? : 
17.3wt% Si02 
18.5wt% Si02 18.2 ± 0.7wt% Si02 91% 
18.9wt% Si02 
actual composition: 
18wt% Si02 and Rm=4.6 
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Table 7-26.3 
14wt% Si02 Rm=5.0, not heated, after leaving for 10 weeks 

detected: average : dissolved SiQ2 : 
12.4wt%Si02 - 89% 
actual composition: 
12wt% Si02 and Rm=4.4 

Table 7-26.4 
20wt% Si02 Rm=5.0 with 8mM SDS, not heated, after leaving for 10 weeks 

detected: average : dissolved Si02 : 
17.1wt%Si02 
17.5wt% Si02 17.7 ± 0.5 wt% Si02 89% 
18.4wt% Si02 
actual composition: 
18wt% Si02 and Rm=4.5 

Table 7-26.5 
20wt% Si02 Rm=5.0 with 8mM SDS, not heated, after leaving for 5 montiis 

detected : average : dissolved Si02 : 
17.7wt% Si02 
17.2wt% Si02 17.5 ± 0.2 wt% Si02 87% 
17.5wt%Si02 
actual composition: 
18wt% Si02 and Rm=4.5 

Table 7-26.6 
20wt% Si02 Rm=5.0 witii 9wt% SDS, heated to 70OC for 
10 minutes to homogenise, not completely homogeneous, after 18 weeks 

detected: average : dissolved Si02 : 
16.6wt%Si02 - 83% 
actual composition: 
15wt% Si02 and Rm=4.2 
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Table 7-26.7 
20wt% Si02 Rm=5.0 with 8mM SHS, not heated, after leaving for 10 weeks 

detected: average : dissolved SiO? : 
17.8wt% Si02 
18.9wt% Si02 19 ± 1.0wt% Si02 95% 
19.3wt%Si02 
20.5wt% Si02 
actual composition: 
19wt% Si02 and Rm=4.8 

2.4 Structural distribution under surfactant influence 
Tables 7-27.1, 7-27.2, 7-28.1 and 7-28.2 summarise the structural 

distribution characterising the behaviour of the silicate systems under heat and 

surfactant influence. In all the investigated cases an increase in the amount of Q3 

units was observed. Heat-treatment generally increases the Si02 concentration 

and the Rm-value of the silicate solutions and therefore an increased amount of 

Q3- and Q4-imits is found. It has to be bom in mind throughout these 

investigations that the effect on the structuring is not only caused by heat-

treatment or surfactant addition but also by the increased level of Si02-dissolution 

which changes the composition of the system. The comparison of a silicate 

solution with Rm=5.0 containing 14 wt% Si02 with the same system 

containing 20wt% Si02 indicates that the average particle size in the former is 

smaller than in the latter. 

The addition of the surfactant SDS results in a constant amount of Q3-

units along with a slight decrease in the amount of Q4-imits compared to a sihcate 

solution without SDS with the same notional composition but a real composition 

of 14wt% Si02 and Rm=3.6. This indicates that a slight decrease in the degree of 

condensation takes place which can be related to a slight decrease in particle size. 
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in the real Si02 concentration and the Rm-value is. The addition of 8mM SHS 

produces the largest Rm-value achieved in these investigations. In this case both 

the amounts of Q3- and Q4-units stay constant compared to heat-treated silicate 

solutions where the level of Si02 concentrations and Rm-values are only slightiy 

smaller than obtained with the addition of SHS. The structuring in the 

silicate/surfactant systems is stable within a period of 7 months. The addition of 

9wt% SDS to the sihcate solutions causes a decrease in the amount of Q3-units 

and an increase in the amount of Q4-units. This indicates an increase in particle 

size produced by the precipitation of the silicate under the influence of 9wt% SDS. 

Table 7-27.1 and 7-27.2 
Distribution of structural units in sodium silicate solutions with 
cSiO2n=20wt% and Rmn=4.5 

Table 7-27.1 
without surfactant 

not heated 
without surfactant 

heated to 70OC for 10 hrs 
actual 

composition 
16wt% Si02 

Rm=3.6 
20wt% Si02 

Rm=4.5 

QO 0.0 0.0 

Ql 1.8 1.0 

Q2cyc 0.0 0.0 

Q2/Q3cyc 24.6 20.0 

Q3 50.8 53.4 

Q4 22.8 25.6 
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Table 27.2 
with 

3mM SDS 
with 

8mM SDS 
with 

8mM SDS 
after 7 months 

with 
14mM 

laurylbromide 
actual 

composition 
17wt% Si02 

Rm=3.9 
20wt% Si02 

Rm=4.5 
20wt% Si02 

Rm=4.5 
17wt% Si02 

Rm=3.7 

QO 0.0 0.2 0.2 0.4 

Ql 1.2 2.3 2.5 2.2 

Q2cyc 0.0 0.0 0.0 0.0 

Q2/Q3cyc 21.4 18.6 18.5 22.7 

Q3 53.9 56.7 56.0 50.8 

Q4 23.5 22.2 22.8 23.9 

Table 7-28.1 and 7-28.2 
Distribution of structural units in sodium silicate solutions with 
cSiO2n=20wt% and Rmn=5.0 

Table 7-28.1 
without surfactant 

not heated 
without surfactant 

heated to 70OC for 10 hrs 
actual 

composition 
14wt% Si02 

Rm=3.6 
18wt%Si02 

Rm=4.6 

QO 0.3 0.0 

Q l 1.2 1.7 

Q2cyc 0.0 0.0 

Q2 24.1 16.2 

Q3 51.4 54.5 

Q4 23.0 27.6 
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Table 7-28.2 
with 

8mM SDS 
with 

8mM SDS 
after 5 months 

with 
9wt% SDS 

with 
8mM SHS 

actual 
comp. 

18wt%Si02 
Rm=4.5 

17wt% Si02 
Rm=4.4 

15wt% Si02 
Rm=4.2 

19wt% Si02 
Rm=4.8 

QO 0.0 0.0 0.4 0.4 

Q l 1.0 0.9 1.8 1.2 

Q2cyc 0.0 0.0 0.0 0.0 

Q2 20.9 21.2 15.2 16.1 

Q3 54.7 55.0 50.2 54.3 

Q4 23.4 22.9 32.4 28.0 

2,5 The shifting of the sol/gel-transition 
A sodium silicate solution containing 8mM SDS was concentrated from 

20wt% Si02 Rm=4.5 to a notional Si02 concentration of 30wt% by heating to 

80OC for 40 minutes with evaporation of water (The procedure is more accurately 

described in chapter 3-4.1.2). The silicate had an increased viscosity but had not 

passed the sol/gel-transition. It has to be considered that the whole composition of 

the system changes during the procedure (see table 7-29.1). The Si02 

concentration increases and the Rm-value decreases during the concenfration of 

the silicate but the notional Si02 concenfration of 30wt% was not obtained. A 

sodium silicate system with an Rm-value of 4.0, vMch does not contain SDS, has 

passed the fransition from a sol to a gel at a Si02 concenfration of 27wt% 

(see chapter 5-2). Thus it can be concluded that the presence of the anionic 

surfactant SDS in silicate systems with Rm-values > 4.0 shifts tiie sol/gel-

fransition of a silicate solution to higher Si02 concenfrations and the silicate with 
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SDS locks up to the gel-structure at higher silica concentrations than a silicate 

without SDS. 

Table 7-29.1 
sodium silicate solution with 30wt% Si02, Rm=4.5 and 8mM SDS 

detected : average : dissolved Si02 
26.6wt% Si02 
25.1wt%Si02 
28.0wt% Si02 

27 + 1.2wt%Si02 

Table 7-30 
Distribution of structural imits : 
sodium silicate solutions 

structural unit 27wt%Si02Rm=4.1 

with 8mM SDS 

QO 0.1 

Q l 1.0 

Q2cyc 0.0 

Q2 18.3 

Q3 55.1 

Q4 25.5 

90% 

2.6 Conclusions 
From the experimental results the general conclusion can be drawn that 

surfactants added to silicate solutions with Rm-values bigger than 4.0, where the 

silica is not completely dissolved, assist in the dissolution. The addition of a 

surfactant has the same effect on the dissolution of silica as heat-treatment at 70^C 
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for 10 hours. It is known from results discussed in chapter 5 that at increased 
temperature the amount of Q3- and Q4-units decreases and that systems with 
maximal Rm-values of 4.0 resume the structuring they had at room temperature 
after a certain time. From information given in Chapter 6 we know that at 
increased temperature (at 45^0) the rate constant for exchange between structural 
units increases by a factor of more than 10. Silicate systems with Rm-values up to 
4.0 are heated to promote the dissolution of silica. Thus it is assumed that in 
silicates with Rm-values bigger than 4.0 the heating only assists in decreasing the 
time-scale of the Si02-dissolution. Surfactants cause a decrease in the amount of 
Q4-units in silicates. In silicate systems with undissolved silica this opens the 
possibility to dissolve more silica till the amount of Q4 reaches a limiting factor 
which has been further discussed in chapter 5-1.2. 

B. Other additives than surfactants 

1. The effect of NaCl addition 
The addition of NaCl is interesting for two reasons. Ffrst the salt 

influence generally is of considerable interest in siUcate solutions. Second the 

addition of the surfactant SDS involves the addition of sodiimi ions which could 

affect the structures in the silicate solution. It had to be investigated i f the effect 

of the anioruc surfactants SDS and SHS on the structuring in the sihcates is 

possibly caused by sodium ions. 

It was found that the addition of more than 6wt% NaCl to a representative 

sodium silicate solution with 25wt% Si02 and Rm=4.0 causes precipitation so that 
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the system is no longer homogenous. I f NaCl is added to an extent which does not 

cause precipitation the silicate solutions proceed very slightly to the more 

condensed region (Table 7-31 to 7-33). It is assimied that this is due to soditmi 

ions taking water out of the system for their hydration. 

The effect of the anionic surfactants SDS and SHS is the reverse effect to 

that caused by sodiimi ions. It can be concluded that the additional sodium ions 

added with the anionic surfactants do not affect the structuring. Generally it can 

be said that in concentrations where it does not cause precipitation NaCl has no 

significant effect on the structuring in silicate solutions. Sodium ions in high 

concentrations seem to take so much water for their hydration shell out of the 

silicate system that precipitation is caused. 

The addition of a sodium salt to a silicate solution does not change the 

Rm-value, since this is defined as the ratio of silica to sodium oxide (sodium 

hydroxide) dissolved in the system and thus characterises the silicate system in 

terms of alkalinity rather than sodium ion content. 

Table 7-31 

structural unit without NaCl with NaCl c=8mM 

QO 0.9 0.6 

Ql 4.7 4.0 

Q2cyc 0.0 0.0 

Q2/Q3cyc 23.2 22.1 

Q3 51.5 53.9 

Q4 19.7 20.4 
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Table 7-32 
Structural distribution for sodium silicate solution 30wt%SiO2 ; Rm=2.4 

structural unit without NaCl with 4wt%NaCl 

QO 0.85 0.6 

Q l 8.6 7.2 

Q2cyc 2.3 2.2 

Q2/Q3cyc 38.75 37.8 

Q3 44.8 46.6 

Q4 4.7 5.6 

Table 7-33 
Structural distribution for sodium silicate solution 25wt%SiO 

structural imit without NaCl with 5.5wt% NaCl 

QO 0.7 0.4 

Q l 3.3 3.1 

Q2cyc 0.0 0.0 

Q2/Q3cyc 21.4 20.1 

Q3 52.3 53.6 

Q4 22.3 22.8 
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2. Addition of CaCl2*6H20 
In certain cases a structure-directing effect of calcium ions in sihcates has 

been reported^^. These investigations however do not deal with silicate solutions 

on the border of the sol/gel-fransition as the present studies do. The adsorption of 

CaCl2 on SiOH-bonds takes place above a pH of 521. j t ĵ ag heen confirmed that 

each Ca2+ ion is only linked to one SiOH-group^l. 

SiOH + Ca2+ SiOCa+ + H+ 

The chelation of calciimi ions by sodium silicates was observed by determining the 

total free calcium content in a silicate solution using a calcium elecfrodel^. 

In the investigated highly-condensed silicate solutions the addition of 

CaCl2*6H20 leads to precipitation of the silicate. The result is a white solid 

suspended in aqueous solution. Al l investigations have been on the resulting 

suspensions in the original state 1 day after addition of the CaCl2. The intensities 

reported in table 7-34 are measured with the deconvolution program (DECON) 

with the data sent from the VXR300 to an Archimedes computer. 

The addition of 2.1mmol CaCl2*6H20 per g silicate corresponds to the 

addition of as many Ca2+-ions as there are Na'^-ions in the solution. As 

demonsfrated in Figure 7-15 this caused severe precipitation and only Q3- and Q4-

units are remaining in the system as shown in figure 7-15. 

Generally the adsorption of charged species changes the surface 

properties, and uncharged colloids are not stable any more. It can be assumed that 

the bonding of calcium ions to the surface, which disturbs the elecfrostatic 

equilibrium in the system by producing a charged surface along with releasing 

protons (the latter acidifying the system)^!, is responsible for the precipitation of 

the silicate. Since the calcium ions are added in the fully hydrated form as 

CaCl2*6H20 they do not take water out of the system for their hydration. Much 

less calcium ions are needed to precipitate the silicate than sodium ions, which 
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indicates that silicate solutions are more sensitive to the adsorption of ions than to 

hydration effects. 

Table 7-34 
Distribution of structural units (VXR300); 
sodiimi silicate solution with 25wt% Si02 and Rm=4.0 

structural unit without 

CaCl2*6H20 

with 2.1mmol CaCl2*6H20 

per g silicate 

QO 0.7 0.0 

Q l 3.3 0.0 

Q2cyc 0.0 0.0 

Q2 21.4 0.0 

Q3 52.3 49.0 

Q4 22.3 51.0 
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Figure 7-15 
29si NMR spectra of a sodium silicate solution with 25wt% Si02 and Rm=4.0 
a) without additive 
b) with 2. Immol CaCl2*6H20 
a) and b) acquired on the Varian VXR300 with 1040 transients, acquisition time 0.04s, 
spectral width 300ppm, a)relaxation delay 100s, b) and c) relaxation delay 160s 

a) 

b) 

-20 -40 -ao •100 -120 -140 -160 ppffiao 
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3. FeCl3 in silicate solutions 
In previous investigations it was found that Fe3''' ions adsorb strongly onto sihca 

surfaces22. In chapter 3-5 the addition of a small amount of FeCls was studied 

and it was foimd that in low concentration the Tl-values are shortened wiiile the 

structuring does not change. The addition of FeCl3 in concentrations of 3wt% and 

9wt% drastically changes the nature of the silicate. A silicate precipitate is 

formed, but unlike the precipitation of sihcates imder the influence of additives 

like NaCl or CaCl2 * 6H2O, the voliune of the aqueous phase which separates is 

extremely small. Table 7-35 shows that the addition of 3wt% FeCl3 only results 

in a slight increase in the degree of condensation of the silicate, whereas FeCl3 in 

a concentration of 9wt% causes a drastic increase in the amount of Q4-units at the 

cost of Q3-units. This indicates an increase in the particle size characteristic of a 

precipitate rather than a gel. 

I f there is more than a certain amount of FeCl3 in the system the 

constitution of the silicate changes from a gel to a precipitate. FeCl3 reacts as a 

weak acid in aqueous solution^"* and it can be concluded that the coordination of 

water in the hydration shell of Fe3+, along with the release of protons, is 

responsible for the gelation of the sihcate. 

FeCl3 + H2O = FeCl3[0H-] + H+ 
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Table 7-35 
Distribution of structural units sodium silicate solution 25wt% Rm=4.0 

structural unit without with with 

FeCls 3wt% FeCl3 9wt% FeCls 

QO 0.7 0.0 0.0 

Ql 3.3 0.0 0.0 

Q2 21.4 20.0 18.4 

Q3 52.3 54.8 30.3 

Q4 22.3 24.2 51.3 

4. The effect of lauric acid 
Laurie acid was chosen as a representative Ci2-organic acid for the 

investigation of the effect of fatty acids on silicate solutions. The addition of 

lauric acid in a concentration of 1.3wt% does not affect the silicate. If the 

concentration of lauric acid is increased to 10wt% precipitation is caused. Most 

affected by this are Q3- and Q4-units, wiiereas Ql- and Q2-umts stay relatively 

unaffected, as shown in Figure 7-16 and Table 7-36. 

Lauric acid can adsorb on the silica surface with the hydrophobic chain 

via dispersion forces or via the hydrophilic carboxyl group with hydrogen 

bonding. In both cases the resulting effect should not be the precipitation of the 

silicate. Therefore the acidity of lauric acid is assumed to be the reason for the 

precipitation. Since lauric acid is a weak organic acid25 the release of protons at 

low acid concentration has no effect, and high acid concentrations are required to 

cause precipitation of the silicate. 
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Table 7-36 
Distribution of structural units in a sodium silicate solution 25wt% Rm=4.0 

structural unit without 

Laurie acid 

with 1.3wt% 

Laurie acid 

with 10wt% 

Laurie acid 

QO 0.7 0.0 0.0 

Qi 3.3 2.7 1.4 

Q2 21.4 20.0 16.0 

Q3 52.3 52.3 29.5 

Q4 22.3 25.0 53.0 
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Figure 7-16 
29si NMR spectra of a sodium silicate solution with 25wt% Si02 and Rm=4.0 
a) without surfactant 
b) with 1.3wt% lauric acid 
c) with 10wt% lauric acid 
a) to c) acquired on the Varian VXR300 with 1040 transients, acquisition time 0.04s, 
spectral width 300ppm, a)relaxation delay 100s, b) and c) relaxation delay 140s 

I 

a) 

b) 

c) 
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5. Polyethylene glycols as additives 
Polyethylene glycols are industrially important additives and their effect 

on silicate systems is of great commercial interest. Polyethylene glycols 

(PEG400 and PEG1500) were added to an equilibrated commercial sodium 

silicate solution containing 28 wt% Si02 with an Rm-value of 3.4. It has been 

found that the adsorption of polar polymers onto the silica surface causes an 

immobilisation of solvent molecules 19. 

Both glycols added in amounts of 1 wt% and 3 wt% caused the 

separation of an aqueous phase. This takes up 15 vol% of the total volume in 

the case of the addition of 3 wt% PEG400. Quantitative investigations by ^^C-

NMR and ^^sj.jsjMR show that the aqueous phase contains the PEG but no 

silicate. The phase containing the silicate has tiie consistency of a gel that is 

produced by evaporation of water from a silicate solution. Further confkmation 

that the effect caused by polyethyleneglycols is a gelation rather than a 

precipitation is presented in Figure 7-17 and Table 7-37, which show that 

although a water-phase separates the Si-stiiictures are not affected to a great 

extent. 

It is remarkable that the addition of a polyethylene glycol in a 

concentration of only lwt% causes the separation of a water phase whereas the 

addition of 3wt% the non-ionic surfactant laurylether, which adsorbs via the 

same mechanism through the oxyethylenic chain like PEG, produces a slightiy 

decreased particle size. It is assumed tiiat PEG, which has many more polar 

sites than lauryletiier, competes strongly witii the silicate system for hydration 

water, and at concentrations of lwt% it takes so much water out of the system 

that the system passes the sol/gel-ti"ansition. 
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Table 7-37 
Distribution of structural units 

sodium silicate solution commercial 28wt% Si02, Rm=3.4 

1 without any PEG 

2 with 1 wt% PEG400 (20hrs after addition) 

3 with 3 wt% PEG400 (24 hrs after addition) 

4 with 3 wt% PEG400 (4 weeks after addition) 

5 water-phase which has separated from the silicate/PEG mixture 

(4 weeks after the PEG400-addition) 

This water-phase has been measured quantitatively using the method of 

quantification and it was found to contain 1 wt% Si02. 

The corresponding gel-phase was analysed with 13C-quantification and it 

was established that it contains only negligible amounts of PEG400. 

6 with lwt% PEG1500 (24 hrs after addition) 

7 with lwt% PEG1500 (4 weeks after addition) 

1 2 3 4 5 6 7 

QO 0.1 0.4 0.3 0.3 0.0 0.3 0.4 

Ql 2.8 3.0 3.7 3.8 19.5 3.8 3.5 

Q2 27.8 27.4 28.2 28.7 36.0 28.7 25.5 

Q3 55.8 55.6 53.1 53.6 39.0 53.6 56.8 

Q4 13.5 13.8 14.7 13.6 0.0 13.6 13.8 
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Figure 7-17 
29si NMR spectra of 
a) commercial sodium silicate solution with 28wt% Si02 and Rm=3.4 
b) witii 3wt% PEG400 
c) with3wt%PEG1500 
a) to c) acquired on the Bruker AMX500 with acquisition time 0.06s, spectral width 
200ppm, relaxation delay 150s, 180 transients 

a) 

b) 

c) 

-100 -no 
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Appendix 

List of Lectures and Seminars 
Colloquia, Lectures and Seminars given by invited Speakers 
from Aug 1991 to April 1994 

1991 
Oct 17 Dr. J. A. Salthouse, University of Manchester 

Son et Lumiere - a demonstration lecture 
Oct 31 Dr. R. Keeley, Metropolitan Police Forensic Science 

Modem Forensic Science 
Nov 6 Prof. B. F. G. Johnson, Edinburgh University 

Cluster - surface analogies 
Nov 7 Dr. A. R. Butier, St. Andrews Uiuversity 

Traditional Chinese herbal drugs : a different way of treating disease 
Nov 13 Prof. D. Gain, St. Andrews University 

The chemistry of PLP-dependent enzymes 
Nov 20 Dr. R. More O'Ferrall, University College, Dublin 

Some acid-catalysed rearrangements in organic chemistry 
Nov 28 Prof. I . M. Ward, IRC in Polymer Science, University of Leeds 

The SCI lecture : the science and technology of oriented polymers 
Dec 4 Prof. R. Grigg, Leeds Uruversity 

Palladiimi-catalysed cyclisation and ion-capture processes 
Dec 5 Prof. A. L. Smith, ex Unilever 

Soap, detergents and black puddings 
Dec 11 Dr. W. D. Cooper, Shell Research 

Colloid Science : theory and practice 

1992 
Jan 22 Dr. K. D. M. Harris, St. Andrews University 

Understanding tiie properties of solid inclusion compounds 
Jan 29 Dr. A. Holmes, Cambridge University 

Cycloaddition reactions in the science of the synthesis of piperidine 
and indolizidine natural products 

Jan 30 Dr. M. Anderson, Sittingboume Research Centre, Shell Research 
Recent advances in the safe and selective chemical conti-ol 
of insect pests 

Feb 12 Prof. D. E. Fenton, Sheffield University 
Polynuclear complexes of molecular clefts as models 
for copper biosites 

Feb 13 Dr. J. Saunders, Glaxo Group Research Limited 
Molecular modelling in drug discovery 
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Feb 19 Prof. E. J. Thomas, Manchester University 
Applications of organostannanes to organic synthesis 

Feb 20 Prof. E. Vogel, University of Cologne 
Porphyrins : molecules of interdisciplinary interest 

Feb 25 Prof. J. F. Nixon, University of Sussex 
Phoosphalkynes : new building blocks in inorganic and 
organometallic chemistry 

Feb 26 Prof. M. L. Hitchman, Sfrathclyde University 
Chemical vapour deposition 

Mar 5 Dr. N. C. Billingham, University of Sussex 
Degradable Plastics - Myth or magic? 

Mar 11 Dr. S. E. Thomas, Imperial College 
Recent advances in organoiron chemistry 

Mar 12 Dr. R. A. Hahn, ICI Imagedata 
Electronic Photography - an image of the future 

Mar 18 Dr. H. Maskill, Newcastle University 
Concerted or stepwise fragmentation in a deamination-type reaction 

Apr 7 Prof. D. M. Knight, Philosophy Department, University of Durham 
Interpreting experiments : the beginning of electrochemistry 

May 13 Dr. J.-C. Gehret, Ciba Geigy, Basel 
Some aspects of industrial agrochemical research 

Oct 15 Dr. M. Glazer, Dr. S. Tarling, Oxford University & 
Birbeck College, London 
It pays to be British - the chemists role as an expert witness in 
patent litigation 

Oct 20 Dr. H. E. Bryndza, Du Pont Centra Research 
Synthesis, reactions and thermochemistry of metal (alkyl) cyanide 
complexes and their impact on olefin hydrocyanation catalysis 

Oct 22 Prof. A. Davies, University College, London 
The behaviour of hydrogen as a pseudometal 

Oct 28 Dr. J. K. Cockcroft, University of Durham 
Recent developments in powder diffraction 

Oct 29 Dr. J. Emsley, Imperial College, London 
The shocking history of phosphorus 

Nov 4 Dr. T. P. Kee, University of Leeds 
Synthesis and co-ordination chemistry of silylated phosphites 

Nov 5 Dr. C. J. Ludman, University of Durham 
Explosions, a demonstration lecture 

Nov 11 Prof. D. Robins, Glasgow University 
Pyrrolizine alkaloids : biological activity, biosynthesis and benefits 

Nov 12 Prof. M. R. Tmter, University College, London 
Luck and logic in host-guest chemistry 
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Mar 17 Dr. R. J. K. Taylor, University of East Anglia 
Adventures in natural product synthesis 

Mar 24 Prof. I . 0. Sutherland, Uitiversity of Liverpool 
Chromogeiuc reagents for cations 

May 13 Prof. J. A. Pople, Carnegie-Mellon University, Pittsburgh, USA 
Applications of molecular orbital theory 

May 21 Prof. L. Weber, University of Bielefeld 
Metallo-phospha alkenes as synthons in organometallic chemistry 

Jun 1 Prof. J. P. Konopelski, Uiuversity of Califonua, Santa Cruz 
Syntiietic adventures in enantiomerically pure acetals 

Jun 2 Chiral discrimination in the stereospecific polymerisation of 
alpha olefms 

Jun 7 Prof. R. S. Stein, University of Massachusetts 
Scattering studies of crystalline and liquid crystalline polymers 

Jun 16 Prof. A. K. Covington, University of Newcastie 
Use of ion selective electrodes as detectors in ion chromatography 

Jun 17 Prof. 0. F. Nielsen, H. C. Oersted Institute, 
Uruversity of Kopenhagen 
Low-frequency IR- and Raman studies of hydrogen bonded liquids 

Oct 4 Prof. F. J. Fehder, University of California and Irvine 
Bridging the gap between surfaces and solution with sessilquioxanes 

Oct 20 Dr. P. Quayle, Uiuversity of Manchester 
Aspects of aqueous ROMP chemistry 

Oct 23 Prof. R. Adams, University of South Carolina 
The chemistry of metal carbonyl cluster complexes containing 
platinum and iron, ruthenium or osmium and tiie development of a 
cluster based alkyne hydrogenation catalyst 

Oct 27 Dr. R. A. Jones, Cavendish Laboratory 
Perambulating polymers 

Nov 10 Prof. M. N. R. Ashford, University of Bristol 
High-resolution photofragment translational spectroscopy : a new way 
to watch photodissociation 

Nov 17 Dr. A. Parker, Laser support Facility 
Applications of time resolved raman spectroscopy to chemical and 
biochemical problems 

Nov 24 Dr. P. G. Bruce, University of St. Andrews 
Synthesis and application of inorganic materials 

Dec 1 Prof. M. A. McKervy, Queens University, Belfast 
Functionalised Calixerenes 

1994 
Jan 19 Prof. 0. Metii-Cohen, Sunderland University 
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Jan 26 Prof. J. Evans, University of Southampton 
Shining light on catalysis 

Feb 2 Dr. A. Masters, University of Manchester 
Modelling water without using pair potentials 

Feb 9 Prof. D. Young, University of Sussex 
Chemical and biological studies on the coenzyme tetrahydrofolic acid 

Feb 16 Dr. R. E. Mulvey, University of Strathclyde 
Structural patterns in alkali metal chemistry 

Feb 23 Prof. P. M. MaiUis FRS, University of Sheffield 
Why rhodium in homogeneous catalysis 

Mar 2 Dr. C. Hunter, University of Sheffield 
Non-covalent interactions between aromatic molecules 

Apr 20 Prof. P. Parsons, University of Reading 
New methods and strategies in natural product synthesis 


