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Abstract 

Let K he a. quadratic number field, Oj{ its ring of integers, and G a cyclic group 
of order prime p. In this thesis, we study the kernel group D{OKG) and obtain 
a number of results concerning its order and structure. For K imaginary, we also 
investigate the subset R{OKG) of the locally free class group CI{OKG) consisting of 
classes which occur as rings of integers of tame extensions of K with Galois group 
isomorphic to G. We calculate R{OKG) under a variety of conditions and obtain, for 
an arbitrary tame extension L of K with group G, invariants which determine the 
class of OL in R{OKG). 
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1. Introduction 

Let K be an algebraic number field, OK the ring of integers in K, and A a finite 
dimensional semisimple iiT-algebra with 1. Let A be an OjcordeT in A. By definition, 
A is a subring of A which is a finitely generated Cj^-module, and K <SIOK A ~ >l. For 
each prime P oi K we denote by OK,P the localization of OK at P. A A-lattice is 
a finitely generated (left) A-module which is Cj^-torsion free. Let M be a A-lattice 
and Mp — Ojc,p ®C>K- ^ its localization at a prime P of K. Then Mp is a (left) 
Ap-module where Ap = OK,P ®e»j,- A. The A-lattice M is said to be a locally free 
A-module if Mp is a free Ap-module for all P. In the case when M is locally free let 
r{M) denote its local rank. The rank r ( M ) is the same for all P. 

Next we define the locally free class group C/(A). Let 5(A) denote the abehan 
group of locally free A-modules. The group 5(A) is the free abeUan group generated 
by symbols [M], one for each isomorphism class of locally free A-modules M. Let T'(A) 
be the subgroup of 5(A) generated by expressions of the form [M @ A'"] - [M] — [N . 
Set 

P(A) = ^ 
^ ^ r ( A ) ' 

The map [M] i - * r ( M ) induces a surjective homomorphism between the groups P{A) 
and Z , and C/(A) is defined to be its kernel. The locally free class group C/(A) thus 
occurs in the following exact sequence: 

1 Cl{A) ^ P(A) Z ^ 0. 

The class group Cl{A) is the subgroup of P{A) consisting of elements of the form 
M] — [N] where M and N are of the same rank. The group C/(A) is a finite group. 

This follows from the fact that each element of C/(A) can be written as [M] - [A 
where M is a locally free A-lattice in A with r ( M ) = 1 (see [13]), and by the Jordan-
Zassenhaus theorem (see, for example, [11], §26) there are finitely many isomorphism 
classes of such lattices. 

Let A' D A be a maximal OK-order in A. The map defined by 

M] ^ [A' ® A M 

gives a surjective homomorphism C/(A) Cl{A') (see [14]). Let D{A) denote the 
kernel, then we have the exact sequence: 

1 ^ D{A) ^ Cl{A) ^ Cl{A') 1. 

I t can be shown that up to isomorphism D{A) is independent of the choice of the 



maximal order A' containing A (see [8]). 

The significance of the class group Cl{A) and the kernel group D{A) is that if L 

is a tame Galois extension of K with Galois group G then A = O^G is an C>if-order 

contained in the if-algebra KG and 

(OL) = [OL] - [OKG] 

defines a class in CI{OKG). Identification of the class {Oi) in CI{OKG) is of great 
interest and is the central problem of "relative additive Galois module structure". In 
"absolute additive Galois module structure" where i ^ ' = Q i t was proved by Frohlich 
4] that {OL) e D(OKG). It is this discovery that makes D ( Z G ) and, in general, 

D{OKG) interesting to study, and indeed i t is precisely this group D(OxG) that is 
the topic of our investigations here. We will study D{OKG) in the case when K \s & 
quadratic number field and G is a cyclic group of order odd prime p. 

The calculation of D{OKG), as we will see, depends on whether or not p is 
ramified in K. The case when p is unramified in K was partially dealt by Homayouni 
in his Ph.D. thesis [6]. In this case we give results which can be regarded as an 
extension of Homayouni's work. We will also discuss the case when p is ramified in 
K. This case, we wUl see, splits into two further cases: K is ramified at p only, and K 
is ramified at p as well as at primes distinct from p. We will study both cases. In the 
latter we will show that the calculation of D{OKG) can be reduced to a calculation 
of a kernel group of the form D[OK'G) where K' is a quadratic number field which 
is unramified at p but otherwise has the same ramification as the field K. 

For the rational case where i f = Q it is well known that the kernel group Z)(ZG) 

is trivial (see [3]). It will be interesting for us to see here how our findings for D{OKG) 

compare with £ ) (ZG) . 

Another aspect of CI{OKG) which we will investigate in the present work is the 
subset R{OxG) of CI{OKG) consisting of reahzable classes, i.e., classes of the form 
{OL) where L is a tame extension of K with Galois group isomorphic to G. (An 
extension L/K is tame if for each prime r of OK, the ramification index Cr of r in L 
is relatively prime to r . ) For an arbitrary tame extension L oi K with group G the 
ring OL of integers is a locally free C^'G-module and hence it defines a class {OL) 
in R{OKG). The problem of determining the structure of OL as an Cj^G-module is 
equivalent to identifying the class of in R{OKG). UOL corresponds to the trivial 
class in R{OKG) then the extension L/K has the interesting property of possessing a 
normal integral basis, i.e., an Cjf-basis for OL consisting of G-conjugates of a single 



element in C?£. 
L. McCulloh in [10] showed that for an arbitrary finite abelian group G the set 

R{OKG) of realizable classes forms a subgroup of CI{OKG) which in the case of a 

cyclic group G of order prime p can be described in terms of the action on CI^(OKG) 

of a Stickelberger ideal in the integral group ring Z A , where 

Cfi{OKG) = KeT{Cl{OKG) CI{OK)), 

and A ~ Aut(G). We will use this description to study R{OKG) in the case when 

K is a. quadratic imaginary number field and G is a cychc group of order prime p. In 

the case when i f ( C p ) (Cp here is a primitive pth root of unity) has trivial ideal class 

group we will calculate R{OKG) and determine the precise conditions under which a 

tame extension L of K with group G has a normal integral basis. We will also discuss 

R(OKG) under a slightly less restrictive set of conditions. 

Again for comparison with our calculations, it is worth mentioning briefly here 
that in the rational case we have Taylor's theorem [15] which implies, for an arbitrary 
finite group G, R{1LG) = 1 if G has no complex irreducible symplectic characters, 
and if G has such characters then the elements of R{'LG) have order at most 2 in 
C/(ZG). In particular, i f G is abehan then R{'SLG) = 1. 

In the next section we will start in earnest with the task of calculating D{OKG), 

but we end the present section with the description of a technique for calculating 

D{A) which we will repeatedly use. Let 
A A i 

A2 ^ A 

be a commutative square of rings and ring homomorphisms. The square is said to be 

cartesian i f for all (Ai, A2) e A i x A2 with j ' i(Ai) = j2(A2) there is a unique A 6 A 

with n (A) = Ai , i2(A) = A2. I f the square is cartesian then A can be identified with 

the subring 

{ ( A i , A 2 ) G A i x A 2 | ; i ( A i ) = j 2 ( A 2 ) } 

of A i X A2. Cartesian squares can arise in a variety of ways. If, for example, / and 

J were two two-sided ideals of the ring A which have trivial intersection then there 

is a cartesian square 

A A / J 

A/7 A / ( / + J) 



where all the maps are canonical. 

For an arbitrary number field K if an Ojc-order A contained in a commutative 

finite-dimensional semisimple i^-algebra A is given by a cartesian square 

A ^ A i 

A2 ^ A 
in which 

a) each A^ is an OK-order contained in K-algebra, Ai, 
b) A is an Ox-^OTsion C?;^-algebra, and 
c) at least one of the maps ji and 72 is surjective, 

then the sequence 

1 A^ A f X - > A"" -* D{A) D{Ai) x D{A2) 1 ( 1 . 1 ) 

is exact (see [12]) . The map D{A) —> D{Ai) x D{A2) is the restriction of 

G / (A) G / (A i ) X G/(A2), 

M ] - [A] ^ ([Ai ® A M] - [Ai], [A2 ® A M\ - [A2]), 

to -D(A), and the map A —* D{A) sends M G A to [(A,u)] — [A], where 

(A, u) = { ( A i , A2) G A i X A2 I j i ( A i ) u = i2(A2)} 

is a locally free A-lattice. 

The usefulness of the sequence ( 1 . 1 ) lies in the fact that often it is easier to 

calculate •D(Ai) and D{A2) than calculating D{A) directly. In cases where Ai or A2 
is a maximal order, the corresponding kernel group vanishes and this simplifies the 

calculation of D{A) even further. 

Later on when calculating D{OKG) in the case when p is ramified in K, we will 
encounter a cartesian square for which the condition (a) given above wiU not hold. 
For such a square the exact sequence ( 1 . 1 ) is replaced by 

1 A'^ A f X A^ A"" -> Pic(A) ^ Pic(Ai) X Pic(A2) ^ Pic(A), (1 .2) 

where Pic(A) is the group of isomorphism classes of invertible A-moduIes, with group 

operation given by 0^ (see [12]) . The sequence (1 .2 ) does not exphcitly involve 

D{A), but, in spite of this, we will still be able to use it to calculate the kernel group 

D{OKG). We leave the details t i l l we actually come to calculate D{OKG). 



Notation 

For a finite abelian extension X of Q we will write Oi for the ring of integers in 

L, El for the group of units m OL-, and WL for the group of roots of unity in EL-

We may also use C?£ to denote Ei. For x in L, norm£(a;) will denote the absolute 

norm of x from L to Q. The maximal real subfield of L will be denoted by . 

We will represent comlpex conjugation by c; i f x is an algebraic number then the 
complex conjugate of x will be written as x'^. The rest of the notation is as follows. 

p = an odd prime, 
G — {g \ g'P = \), & cyclic group of order p, 
K = <Q(v^^), a quadratic number field {d is square-free), 

Gal(K/q) ={a\a^ = l), 
d{K/(^) — discriminant of K, 
OK = Z [ a ] , a = ( 1 + - / ^ ) / 2 if d = 3 mod (4), a = otherwise, 

= e27ri/p̂  ^ primitive pth root of unity, 

N = Q(Cp), 



2. D{OKG), P unramified in K 

In this section we will calculate the kernel group D{OKG) in the case when p is 

unramified in K. We will prove: 

(2.1) T H E O R E M . The kernel group D{OKG) is cyclic whose order divides p+1 

or p — 1 depending on whether p is inert or it splits in K. 

(2.2) T H E O R E M . / / K is a quadratic imaginary number field, then the cyclic 

group D{OKG) has order 

p*/4, i f K = <^{^), 
\D{OKG)\ = { p*/6, i f K = Q ( v / ^ ) , 

P*/QM, otherwise, 

where 
^ ^ p + 1, i f p i s inert in K, 

p 
•* if p splits in K, \ p - l , it 

and QM is the index of V F M ^ M + EM- The possible values for QM are I and 2. 

We begin with the proof of (2 .1 ) . 

Proof of (2.1). Lei A ^ OKG, I = {I-g)OKG, and J = {\+g +• • • +gP-^)OKG. 

Then 
A / ( / n J ) A / J 

, .12 _ j l 

A / / ^ A / ( / + J) 

is a cartesian square. 

The ring A / / is isomorphic to OK- To show that, consider the map A OK, 
5 I—> 1, which clearly is a surjective ring homomorphism. The ideal I lies in the kernel. 
In fact, / is the kernel. Let x = xig\ - j - • • • -f- Xpgp G A, gi = g'^, be an element which 
lies in the kernel. We want to show that 

X = ( 1 - g){aig\ + • • • + apgp), 

or 

x\gi -f 1- Xpgp - (ai - ap)gi + {a2 - ai)g2 -\ h (op - Op-i)ffp 



is soluble for Oi G OK- Equating coefficients of for 1 < i < p gives 

ai - ap = xi, 

ai — ai-i = Xi, 2 < i < p-

The above equations are soluble and they give 

i 
ai = ^ X j + X p , l < i < p - l , 

and ap = Xp. Therefore if x Hes in the kernel then it can be written as a; = ( 1 -

9){ai9l H \- CLpQp)-, O'i £ OK-, which shows that x e J = ( l — g)A. Therefore, under 

the map ^ i - ^ 1 , A/1 ~ OK-

The ring A / J is isomorphic to OM- The isomorphism is induced by the map 
A —> OM, 9 ^ Cpi which is a surjective ring homomorphism. Let x = x i ^ i H VXpgp 

be an element which hes in the kernel. Then xiCp + • • • + a^p-iCp~^ -\- Xp = Q and 
therefore xi = X2 = • • • = Xp. So any element which lies in the kernel lies in 
( 1 + 5 + • • • -h 9'P~'^)OK and, of course, {I + g ^ • • • + g^~^)OK hes in the kernel. So 

the kernel is {l+ g^ 1- g^~^)OK- But the element 1 -h ̂  -I h g^~^ is unchanged 
under the multiphcation by the elements of G, and therefore 

{1 + 9 + --- + 9P-')OK = {1 + 9 + --- + 9'-')OKG, 

which proves our assertion that J is the kernel and A / J ~ OM-

Finally, the ring A/(7 -h J) is isomorphic to OK/POK- The map A -> OK/POK, 
p I—+ 1, is clearly surjective. Let x = xigi -!-••• + Xpgp be an element which lies in the 
kernel. Then xi-\ \-Xp = 0 mod {POK)- SO X can be written as j/i^iH l-ypgp+pa 

where yi,a £ OK, and yi + • • • + Vp = 0. But we have already seen that any element 

yi9l + 1- yp9p with 2/1 -f h 2/p = 0 hes in ( 1 - g)OKG. Therefore if x lies in the 

kernel then 

xe{l-g)OKG + pOK-

But (l-g)OKG+pOK clearly lies in the kernel. So (1- g)OKG + pOK is the kernel. 
The ideal I + J lies in the kernel and therefore 

( 1 - 9)OKG + ( 1 + 5 + • • • + 9P-')OKG C ( 1 - g)OKG + POK-

But, since 

( l - g ) x + il+g-\---- + gP-') = p, 

7 



where 
P-i 

a; = - ^ igi, 
i=l 

p lies in ( 1 - g)OKG + {1 + g + • • • + gP-^)OKG. Therefore 

( 1 - g)OKG + POK C ( 1 - g)OKG + {\+g + --- + gP-')OKG, 

and hence / - f J = (1 - g)OKG + POK- SO the kernel of the surjective ring homo

morphism A OK/POK, g ^ I, is I + J and therefore A / ( / -f J) ~ OK/POK as we 

had claimed. 

Our cartesian square can now be written as 

OKG OM 

i ^ ' (2-3) 
OK OK/POK 

The action of various maps is given by 

9 — ' Cp 
h ji 

1 A [1] 

The Mayer-Vietoris sequence attached to the square (2.3) gives 

j i { 0 ^ ) X j2{0^) ^ {OK/POK)"" - D{OKG) ^ D{OM) X D{OK) -> 1-

The rings of integers OK and OM are maximal orders in K and M respectively, and 
therefore their kernel groups D{OK) and D{OM) vanish. Since j2{0^) C ; I ( O M ) > 
we can rewrite the above sequence omitting j2{0^) as 

1 - h i O ^ ) - {OKIVOK)"" - D{OKG) 1, (2.4) 

or 

Since M contains Cp, the group O^ of units contains the cyclotomic units 

1 - C 
(a = z - - ^ , l < a < p - l , 

J- ~ t,p 

= i + Cp + --- + Cp"'-



The image of under ji is a, and so 

(Z/pZ)"" C ii(cyclotomic units) C ji{0^). 

The kernel group D{OKG) is therefore isomorphic to a quotient group of 
(OK/POK)^/{'Z/p'^)^- The ideal POK is either a prime or it is a product of two 
primes. I f it is a prime then 

(OK/POKV 
(Z /pZ)x 

and if it is a product of two primes then 

OK 

Cp+i, 

pO K 
^ GF(p) X GF(p), 

{OKIPOKY . . ^ 
(z /pZ)x 

In both cases {OKIV^KYl^lv^Y ^ cyclic group. Since D{OKG) is isomorphic 
to a quotient group of a cyclic group, it is cychc. The order of D{OKG) divides p-|-1 
if p is inert in K or it divides p — 1 if p splits in i i ' . • 

Next we calculate the order of D{OKG) in the case when K is imaginary. Let 

{OK/POKY 
(Z /pZ)x 

be the map induced by j\. Then D{OKG) ~ Coker(ii) and the order of D(OKG) is 

p*/\liiO^)\ where p* is the order of {OK/POKY/(.'^/p'^Y • From (2.5) and (2.6) 
we have 

p -I- 1, if p is inert in K, 
p* _ , 

[p — 1, if p splits in K. 
So in order to calculate the order of D{OKG) we need to obtain ; i ( C ^ ) . A subgroup 

of O^j {— EM) is WMEM+- SO let us first calculate the image of WMEM+ under j^. 

(2.7) L E M M A . The image of EM+ under is 1, and so ;I(VKM-E'M+) = JI(W^M)-

9 



Proof Since the extensions K/ Q and N/Q are ramified at different primes, the 
ring of integers OM in M = KN is a compositum of the rings of integers in K and 
iV, that is, OM = OKON- The rings OK and OM are given by 

OK = {1,^)71, 

ON = {Cp,...,ep-')z^ 

and therefore 

c?M = ( C p , - - - , C p ^ " \ « C p , - - - , " C r ' ) z -

Fixing OM under complex conjugation gives the ring of integers in M"*": 

OM^ = ( C p + C p \ - . . , ci'-'^^' + c;^^-^^/', a(Cp - Cp-^), 

..., a{cl'-'^^' - Cp-^"-'^/'))z, if d ^ 3 mod (4), 

or 

. . . , Cp-''- '»'^ + - K i " - ' " ^ - C ; ' ^ - ' " ^ ) ) Z , it ^ ^ 3 mod (4). 

So any element u G can be written as 

(p-l)/2 

E [«^(C; + Cp-') + M C ; - C p - ' ) ] , if a! ^ 3 mod (4), 

or 
(p-l)/2 

E k i ( c ; + Cp-̂ ) + «'i(Cp-' + a ( c ; - C p - ^ ) ) ] , if of = 3 mod (4), 
i=l 

where Oj, 6̂  6 Z . If we now apply ji to we find 

• / E £ l ' ^ ' ' ' 2 a , , if d ^ 3 mod (4), 

^ I E£T ' ^^ ' ( 2a . + 6,), i f r f = 3mod(4) , 

which shows that ji{u) G ( Z / p Z ) ^ and therefore i i ( -E 'M+) = 1- ^ 

( 2 . 8 ) L E M M A . The image ofWM under ji is 1 uniess K is <^{\f-[) or Q ( \ / ^ ) 

in which case 

C2, i[K = 'Si{V^), 

10 



Proof. Assume K is a, field other than Q ( v ^ ) or Q ( \ / ^ ) . Then 

WM = {-1,CP)-

Applying J i to WM gives ]I{WM) = 1. 

If K is Q ( V ^ ) or Q ( V ^ ) , then 

f(C4,Cp), ifK^qiV^), 
l ( - l , C 3 , C p ) , if = Q(v/=3), 

and therefore 
([C4]), i f / r = Q ( y ^ ) , 

' ^ ^ ' ^ ^ ^ n ( [ C 3 ] ) , ifi^ = Q ( x / ^ ) . 

The group ; I ( H ^ M ) is cychc of order 2 if K = Q ( - \ / ^ ) , and i t is cychc of order 3 if 

K = Q ( v ^ ) . • 

Now that we have obtained ; I ( W M - £ ' M + ) ) we would hke to calculate the index of 
jl(M^M-£^M+) in ji{EM)- But before we could do that we need to find the index of 
W^M-£'M+ i l l ^M- The following lemma will allow us to find this index. 

(2.9) L E M M A . Let L be an abelian extension of (Q. Then the index QL of Wi£'x+ 

in El is either 2 or 1 depending on whether or not 

•u I—> [u/u^], 

is surjective. 

Proof. Define 
^p•.EL-^ Wl, 

u H^- u/u'^. 

The extension Z/Q is abehan. So the complex conjugation commutes with all other 
elements of Gal{L/(^). For u E Ei, uju^ and its Ga/(i//Q)-conjugates have absolute 
value 1. Therefore ujvF G Wi (see [16], lemma (1.6)). Let 

be the map induced by ip. I f C € then V ( C ) = ClC^ = £ so 
WL C Ker(V'). The group EL+ also Hes in Ker(V'). On the other hand, suppose 

11 



rp{u) 6 for a u € Ei. Then u = C^u'̂  for some ( E Wi- We can write u as u = <^v 

where v = C î'̂ - One can easily check that - v and therefore v G This shows 

that u e WLEI+, and so Ker(V') = WLEI+. We thus have the exact sequence 

L 

The group WL/W^ has order 2. If ip is surjective then 

EL ^ WL 

WLEL+ ~ Wl' 

and the order of E1/W1E1+ or, equivalently, the index QL of WIEL+ in EL is 2; if 

tp is not surjective then Qz, = 1. D 

Since M is an abelian extension of (Q, the above lemma applies to M and gives 

QM = IOT 2. 

( 2 . 1 0 ) L E M M A . If K is Q ( v ^ ) or Q ( / ^ ) then Q M = 2. 

Proof. By the above lemma, = 2 if the map 

WM 

Wl M 

is surjective. Assume K = Q ( v ^ ) - Then WM/WI[ = {[U])- The element u = 

1 — C^Cpis a. unit in C?M) and 

I - C 4 - V 

and therefore V'(") = [C4]- So ip is surjective, and hence QM = 2. 

For = we have W^M/M^M = ( [ - I ] ) - The element u = 1 - CaCp is a 

unit in OM, and V'(w) = [ - 1 ] . Therefore = 2. • 

We can now return to the problem of calculating j i (£ 'M)- Since [̂ M̂ : WMEM+] = 

QM, the index of JI(VKM-£^M+) in 1\{EM) divides QM- In fact we have the following 

stronger result. 

12 



( 2 . 1 1 ) T H E O R E M . Let K be quadratic imaginary. Then 

[7I{EM) •JI{WMEM+)] = QM-

Proof. U K = ( Q ( V ^ ) then, by ( 2 . 1 0 ) , 

EM - {WMEM+,1 - CiCp), 

and therefore, by ( 2 . 7 ) , 

J I ( ^ M ) = ( J I ( M ^ M ) , [ 1 - C 4 ] ) . 

The element [1 — ^4] has order 4 whereas, by ( 2 . 8 ) , J I ( V K M ) is of order 2. Therefore 

[7I{EM)-1I{WMEM+)] = 2. 

UK = Q ( V ^ ) then, by ( 2 . 1 0 ) , 

EM = {WMEM+A-CZCP), 

and therefore, by ( 2 . 7 ) , 

J I ( ^ M ) = ( J I ( M ^ M ) , [ 1 - C 3 ] ) . 

The element [1 — Cs] has order 6 and, by ( 2 . 8 ) , i i(W^M) has order 3, and so 

[7I{EM):7I{WMEM+)]=2. 

Now assume i f is a field other than or Q ( - / ^ ) . If QM = 1 then, 

since the index oiJi{WMEM+) in 7\{EM) divides QM, [7\{EM) • 7I{^MEM+)] = 1-

Assume = 2. By ( 2 . 7 ) and ( 2 . 8 ) , J I ( 1 ^ M - E M + ) = 1. To show that 

[7iiEM)-7i{WMEM+)] = 2, 

we have to show that 7\{EM) 7̂  1- Since QM = 2, by ( 2 . 9 ) , the map 

is surjective. The group WM/^M generated by [—1]. So there exists a unit u 6 EM 

such that tjj{u) — [—1], ov u = —Ĉ w*̂  for some C € M^M- We can absorb C into u and 
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obtain u = —u'^. Since u G OM and 

we can write u as 

p-i 
u = Y,{aiCp + abiCp), 

1=1 

where a ,̂ 6j € Z . The condition « = -zx'̂  forces u to have the form 

(p-l)/2 
E M a - C r ) + « M a + Cp-^)], if c i ^ 3 mod (4), 
»=l 

or 

P-i 
u = 'Yy^iCp - "(flj + Op-j)Cp]) if c? = 3 mod (4). 

i=l 

If we now apply ji to u, we find 

- ( \ = [ f̂ ^̂ ' + • • • + K - i ) l M , if ^ ^ 3 mod (4), 
l [ ( a i + --- + a p _ i ) ( l - 2 a ) ] , if d = 3 mod (4). 

In both cases j\{u) ^ 1, and therefore ^^{EM) ^ 1 - C 

We are now in a position to prove (2.2). 

Proof o£ (2.2). By (2.11), 

7I{EM)\ = <?M|JI (1^M^M+)I . 

and so, by (2.7), (2.8) and (2.10), 

4, \{K = Q ( V ^ ) , 

| i i ( ^ M ) | = ^ 6, i f / r = Q ( v ^ ) , 

QMI otherwise. 

Since 

\D{OKG)\ = ^^* 
\JI{EM)\ ' 

( 2 . 2 ) is obvious. D 
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We now briefly discuss the case when K is real. As in the imaginary case, the 

kernel group D{OKG) is isomorphic to 

1I{EM) 

where the map J i : EM —> {OKIpOKYI{'L jpTLY sends Cp to 1. UnUke the imaginary 

case the index QM = [EM '• WMEM+\ now is always 1. To prove this, we note that 

QM is 2 if and only if there exists a unit u in EM such that u'^ = —u. But any element 

X of OM which satisfies x*̂  = —x belongs to 

(Cp - c ; ' c r " ' ^ - c ; " ' - • " ^ « ( c , - c ; ' ) M c i ' - " ' - c ; " - ' " ^ ) ) z . 

and is therefore divisible by the prime ideal {C,p — Cp^)(^N oi N = Q(Cp) lying above p. 

So there does not exist a unit u 6 EM such that = - u , and consequently QM = 1 

or, equivalently, EM — WMEM+-

Since WM = (—l,Cp)) the image of WM under ji is 1. Therefore 3\{EM) = 

ji(EM+)- Since K is real, a subgroup of EM+ is Ej^. Because of the fundamental 

unit of K, the image of EK under ji may not always be trivial. One can ask the 

question: how close does ji{Ej() come to generating i i(-£'M+)' 

(2.12) P R O P O S I T I O N . I f p is inert in K andp = 3 mod (4), then the image of 

. (OK/POKT 
• ^ ( 2 / p Z ) x 

is the same as the image of EK under j-^. 

Proof Let u G EM+- Then noimM+/K{''^) ii^s in EK and 

J,{non^M^/K{u)) = Gli^))^'''^^', 

since the degree of M + over K is {p — l ) / 2 . The order of the group 

{OKIPOKYli'^/p'^Y is p + 1 which, as p = 3 mod (4), is prime to {p - l ) /2 . 

Therefore the subgroup generated by ii{u) is the same as the one generated by 

(Ji(«))^^~^^/^- Hence n{EM+) Q 'J^{EK). But EK C Therefore 3^{EM+) = 

J l ( ^ i ^ ) . • 

In general, the behaviour of the fundamental unit of K under the map is fairly 

random; in some cases it generates the entire group [OKIPOKYH'^IP'^Y ^nd hence 
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determines completely the image of ji while in others it maps to the identity element 

and so gives no clue as to the order of ji{EM+)- If, for example, K = (Q(\/2) then the 

fundamental unit is 1 + a which, for p = 7, generates the entire group. On the other 

extreme, if K = Q ( \ / l 9 ) then the fundamental unit is 170 + 39Q: which for p = 3 or 

13 maps to 1. 

We now return to the index QM which, as we can see from theorem (2.2), in the 

case when K is quadratic imaginary, has a direct bearing on the order of D{OKG). 

In the next section we will attempt to calculate this index. 
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3. The calculation of QM 

We continue to use the earlier notation except that K now is quadratic imaginary 

and the prime p is unramified in K. As before, we will write K as Q(V' -^) ; d now 

is positive. The ring of integers OK in K is Z[a] where a is - \ /~^ or (1 + y/^)/2 

depending on whether d ^ 3 mod (4) or d = 3 mod (4). 

The problem here is to calculate the index QM = [EM '• ^MEM+] for M = K{(p). 

This index in the case when K = Q ( \ / ^ ) or Q ( v / ^ ) was calculated in the last 

section. So here we will assume that K is a field other than Q(v/—1) or Q(-\/—3). 

(3.1) P R O P O S I T I O N . The index QM is 2 if and only if there exists a unit u 6 EM 

such that u"^ — —u. 

Proof. The group, WM, of roots of unity in M is generated by —1 and Cp! 

is generated by Cp- Therefore 

WM 

Wh 
= ( [ - I ] ) -

By (2.9), QM = 2 if and only if the map EM —> WM/W^, U i-> [U/U'^], is surjective, 

which is the case if and only if there exists a unit v G EM such that [v/v'^] = [—1] or 

V = —(^"^v*^ for some C G WM- Setting u = C"^^ gives u = —u^. • 

The extension iV/A''+ (recall that iV = Q(Cp)) is ramified at p and as iV+ C iV C 

M , M/N'^ is ramified at p. Since M = M + ( V ^ ) and p does not divide d, M / M + 

is unramified at p. Therefore M'^/N'^ must be ramified at p. The degree of M"*" over 

N'^ is 2 and so M'^/N'^ is fully ramified. In terms of ideals we have 

PN+OM+ = PM+, 

where P/vr+ and PM+ respectively are prime ideals of Opf+ and OM+ which lie above 

the rational prime p. The prime ideal P;\r+ is principal—for a generator we can 

take normjy/jv+(l — (p). So the ideal PM+ has order at most 2 in CI{OM+)- The 

absolute norm of PM+ is P, and so PM+ is principal if and only if there exists an 

element x G OM+ of absolute norm ±p. The problem of determining whether PM+ is 

principal is equivalent to calculating the index QM as the following theorem shows. 
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(3.2) T H E O R E M . The index QM is 2 if and only if the prime idea] of M+ iying 

above p is principal. 

Before we could prove the above theorem we need the following lemma. 

(3.3) L E M M A . An arbitrary element x of OM+ can be expressed as 

X = a + a{(p - Cp^}b, 

where a,b £ ON+ if a = V ^ , or a E ON, b e ON+, = a + (Cp - g'^)b if 

a = (l + v ^ ) / 2 . 

Proof For an element x 6 OM to lie in OM+, one must have x'^ = x. Writing x 

as r + sa, r,s £ ON, and requiring x^ - x gives r £ ON+, = - S if a = \ / ^ , or 

r'^ = r + s, s'^ = —s if a = (1 + • \ / ^ ) / 2 . Since s £ ON and s'^ = —s, s must have the 

form 
(p-l)/2 

i=i 

But Cp — Cp^ generates the same prime ideal of M as the element (p — Therefore 

- Cp' is an associate of Cp - and (C^ - Cp 0/(Cp - Cp ^) is a unit which, one 

can easily check, lies in OM+ • So s can be expressed as 

(p-l)/2 
5 = (Cp - Cp ^) ^ SiUi, 

i = l 

where m = (C^ - Cp')/(Cp " Cp" )̂- Therefore s G (Cp - Cp" )̂OiV+- The statement of 

the lemma is now obvious. • 

Proof of (3.2). First assume that QM = 2. There therefore exists a unit u 6 EM 

such that u'^ = —u. Let x = u(Cp — Cp^)- The element x is an integer of M which 

is fixed under complex conjugation. Therefore x G OM+- Taking the norm from M"*" 

to gives 

normM+/Ar+(x) = (Cp - Cp ^)^normM/Ar(«)-

Now normjif/7v('u) is a unit in ON- Since [i\oimMIN{'^)Y — normA//iv(w), the element 

norniM/Ni'^) i^ a unit in ON+- The element (Cp - Cp generates the prime of ON+ 

lying above p and so the prime of OM+ lying above p is principal. 
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Conversely assume that the prime of OM+ lying above p is principal. This means 

that we can find an element x G OM+ such that 

noTmM+/N+ix) = ^(Cp " Cp ^ ) ^ 

where v G E]^+. Now if a = y/—d then, by (3.3), any element of OM+ can be written 

as a + Q(CP — C ^ ^ ) ^ where a, 6 G 0^+. Writing x in this form and then taking norm 

from to iV*" gives 

a' + d{Cp-c;')H' = v{Cp-g')'. 

This shows that lies in (Cp — Cp^YOi^+. Since {(p — CP^)^ON+ is a prime ideal and 

a G ON+, it follows that a G (Cp - (p^yON+. If we write a = (Cp - C^^)^a', where 

a' G ON+, then x can be written as 

^ = (Cp-Cp-')[(Cp-Cp'"')a ' + a6]. 

Let w = (Cp — Cp^)^' + Then u G OM and = —u. Since 

normM+/iv+(a;) = (Cp - Cp ^)^normM/iv(^i), 

= viCp - Cp-^)^ 

it follows that noniaM^^{u) = v, and therefore u is a unit. So we have succeeded in 

constructing a unit u in OM which satisfies u'^ — —u. Therefore QM = 2. 

On the other hand if a = (1 + •v/-^)/2 then, by (3.3), x can be written as 

X = a + a(Cp - C^^)^ where a e ON, b e ON+ and a'̂  = a + (Cp - Cp ̂ )^- Taking norm 

of X from M"*" to N"^ gives 

a' + (Cp - C^')ab + ( i ± ^ ) (Cp - Cp-^)^^^ = -(Cp - Cp-^)^. 

Replacing + (Cp - (p^)ab by aa^ gives 

from which we see that aa^ G (Cp - Cp^)^0]sf+ ov a e (Cp - CP^)ON- Let a = 

(Cp - Cp^)a', where a' e ON and a"" = -(a' + b), and 

Then u'̂  = —u and, since normM/i\r('f^) = v, uis a unit. Therefore Q M = 2. • 
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The above theorem is useful in that it estabhshes a Unk between the index QM 

and the class group CI{OM+), but it does not really aid the calculation of QM- Of 

course if CI(OM+) is known to be of odd order, the theorem will then give QM = 2. 

But in practice it will be more difficult to calculate the order of CI{OM+) than to 

calculate QM- Also the order of CI{OM+) determines QM only if it is odd—the class 

group CI{OM+ ) can have elements of order 2 and still QM can have either of its two 

possible values. 

Next we investigate more practical methods for calculating QM- We begin with 

a theorem which will enable us to calculate QM for a large number of fields. 

(3.4) T H E O R E M . If QM = 2, then either 

^ ^ = 1 , ( t } y i ) ^ ^ , for all,\d, 

or 

- = - 1 , ^ 1 = 1, for all q\d, 
P j \ Q J 

where q denotes a prime divisor of d and t = (p — l ) / 2 is the degree of N'^ over Q. 

Proof. Assume QM — 2. Let u be a unit in EM such that u'^ = —u. Let us first 

assume that a = \ / ^ . Then u can be written as u = a + 6a where a, 6 G ON and 

a"^ — —a, b'^ = b. Since u is a unit, normA/(u) — ± 1 . We can write normM('") as 

normjvf (u) = normj\r(a^ + db^), 

— [normjv+(<2^ + db'^)]^. 

Equating this to ± 1 gives [norm;v+(fi^ + db"^)]"^ = ±1. But novmN+{ci^ + db"^) G Z . 

Therefore 

normjv+(a2 + db^) = ± 1 . (3.5) 

Since = —a, a can be written as a = (Cp — Cp^)^' where a' G ON+- Reducing (3.5) 

mod (p) gives d!'b = ± 1 mod (p) where b G ( Z / p Z ) ^ and b = b mod (Cp - C^T )̂-

Solving for d gives db = z^^ mod (p) if d^b = 1 mod (p) or db = z^'^^'^ mod (p) if 

d!'b = — 1 mod (p) where z is a generator for ( Z / p Z ) ^ and k is an integer. These 

congruences show that 

'd\ _ j +1, if normAr+(a^ + db'^) = 1, 

, p / 1 - 1 , if norniN+ia^ + db"^) = - 1 . 

Let g be a prime divisor of d. Reducing normjv+(a^ + db'^) = 1 mod (q) gives 

norm;v'+(a^) s 1 mod (q). Now normAf+(a^) = (-l)*normAf(a). Substituting for 
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o = (Cp - Cp gives 

normjv+(a^) = (-l)*norm7^((Cp - Cp ^)a'). 

= (- l)V[norm^+(a')]2, 

= 1 mod [q), 

and therefore ( —l)'p is a square mod (q) for all q, that is, 

LJUi = 1, for all q\d. 
\ Q J 

Similarly reducing norm^+(o^ + db^) = - 1 mod {q) leads to 

^ ^ = 1, for all q\d. 

V 9 / 

This completes the proof in the case when a = y/—d. 

If a = ( l + - \ / -^)/2, then u can be written asu = a + ba where a G ON, b G ON+ 

and a*̂  = - ( a + 6). Taking the norm of u from M to Q gives 

normM('") = norm;v('i^ + ab + 6 (̂1 + d)/4), 

= [norm;v+(o^ + ab + 6 (̂1 + d)/4)]^ 

= ± 1 . 

Therefore 

norm7v+(a^ + ab + 6 (̂1 + d)/4) = ± 1 , 

or 

normAr+(((2a + bf + db^)/i) = ± 1 . (3.6) 

Since (2a + b)" = -{2a + b), we can write 2a + 6 as (Cp - Cp^)a' where a' G ON+-

Reducing (3.6) mod (p) and mod (q), respectively, proves the theorem in the case 

when a = (1 + A / ^ ) / 2 . • 

If we solve the conditions of (3.4) for d we obtain 

(3.7) T H E O R E M . If QM = 2, tiien either d is a product of primes where each 
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prime is a square mod (p), or d has the form d = 2^q\ - - • qm • • • r,„ where 6 = 0 or 1, 

qi = 1 mod (4), (̂^̂  = 1 , l < i < l , 

ri = 3 mod (4), - i = - 1 , 1 < i < m, 
\ P j 

and 
„2 

6^—11 + ^ = 1 mod (2). 
8 

Proof We have to prove that the conditions on d given here are equivalent to 

those given in (3.4). 

Let us then assume that 

(i) = 1, (izlfl) = 1, f „ . all 
V P / \ 1 J 

Let q be an odd prime divisor of d. Then 

f { - l Y p \ ^ f ( f ) . i fp = l m o d ( 4 ) , 

V q J ~ l ( f ) ' i f p = 3mod(4) , 

_ r ( ^ ) , i f p = l m o d ( 4 ) , 

~ l ( f ) ( P ' i f P ^ 3 m o d ( 4 ) . 

Now 
/ - l \ _ r i , i fg = l m o d ( 4 ) , 
[ q J i f9 = 3mod(4) , 

and, for p = 3 mod (4), 

p \ _ i ( i ) , i fg = l m o d ( 4 ) , 
q) j - ( J ) , i f 9 = 3mod(4) . 

Therefore, for p = 3 mod (4), 

and so, for any p, 

- 1 \ / p \ ^ / g 

q J \qJ VP 

q J VP, 

that is, each odd prime divisor of d is a square mod (p). But since ( | ) = 1, it follows 

that 2, if it is a divisor of d, is also a square mod (p), and therefore each prime divisor 

of d is a square mod (p). 
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Conversely if we assume that each prime divisor of is a square mod (p) then it 

is obvious that 

= 1, ( t l h ) = 1, for all qld. 

We now assume that 

V P / \ <1 J 

Let q be an odd prime divisor of d. Then 

'i-lY+'p\ ^ f ( f ) . i f p = l m o d ( 4 ) , 
9 ; \ ( f ) , i fp = 3mod(4) . 

Now, for p = 1 mod (4), 

_ / ( ? ) ' i f 9 = l m o d ( 4 ) . 
q J " \ - ( p , i fg = 3mod(4) , 

and, for p = 3 mod (4), 

r (2), i fg = l m o d ( 4 ) . P 

Therefore 

and so 

qj i fg = 3mod(4) . 

{ - i y + ' p \ \ ( ? ) . i fg = l m o d ( 4 ) , 
9 ; 1 -(^)> ifg = 3mod(4) , 

' 5 \ ^ r i , i fg = l m o d ( 4 ) , 

1 - 1 , i f9 = 3mod(4) . 

Let d = 2*gi • • • qiT\ • • • with 5i = 1 mod (4) and = 3 mod (4). Then 

(-) = (-) V i r 
\ p j \PJ 

= (_l)5((/-l)/8)+m_ 

Equating this to —1 gives 5{{p'^ — l ) / 8 ) + m = 1 mod (2). 

Conversely if we assume the conditions on d given in (3.7) then we can readily 

obtain 

(or a l l , . . 
P. 

• 
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Because of the strong conditions in (3.7) which d must satisfy if QM is to be 2, 

a large proportion of all the possible values for d, for a given p, fail to satisfy these 

conditions and, consequently, for these values of d one gets QM = 1- If, for example, 

p = 3 then there are 45 possible values for d less than 100. Out of these 45 values, 24 

fail to satisfy the conditions of (3.7) and so for these values we immediately obtain 

QM = 1- For p = 5 there are 50 values for d < 100 and only 22 of them satisfy (3.7). 

Next we prove a result which will allow us to calculate QM for M = Q(\/—9, Cp) 

where g is a prime congruent to 3 mod (4). 

(3.8) T H E O R E M . Let L be an abelian extension of Q which contains M or is a 

subfield of M. If the degree of L over M or M over L, whichever is applicable, is odd 

then QL = QM-

Proof. Let us first assume L contains M. The group, WL, of roots of unity in 

L can be written as (Ca, Cfc) where a is a power of 2 and b is an odd integer. If 

the degree of L over M is odd then a can not be greater then 2. The group WL is 

therefore generated by —1 and Cft- The group W^ is generated by Cft, and so WL/W^ 

is generated by —1. 

Assume QL = 2. Then, by (2.9), there exists a unit u E EL such that u'^ — -u. 

Taking norm oi u'^ = —u from L to M gives 

novmL/Miy''') = normi/jv^(-ix), 

= i-lf'-'^^normL/Min), 

= -noTmL/M{u), 

since [L : M] is odd. As L is an abelian extension of Q, complex conjugation commutes 

with all the other automorphisms; we obtain 

norm£/M(M)]' = -normi/M(^)-

Since u is a unit in OL, normi/jl^(u) is a unit in OM- SO there exists a unit v — 

novmL/Mi'^) in EM such that v'^ = —v, and therefore QM = 2. 

Conversely assume that QM = 2. Then we can find a u in EM such that u'^ = —u. 

Treating w as an element of EL gives (5i = 2. 

The proof when L is a subfield of M is similar and so we omit it. • 

(3.9) C O R O L L A R Y . If M — ( Q ( \ / ^ , Cp); where q is a prime congruent to 3 mod 

(4), then QM = 2. 
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Proof. Let L = (Q(Cg)Cp)- Then L contains M and the degree of L over M is 

(g - l ) / 2 which is odd since q = Z mod (4). The group WL is generated by - 1 and 

Cpg, and WLIWI is generated by - 1 . The element 1 - Cpg is a unit in L , and 

( i - C p , ) ^ = - C p V ( i - C p , ) . 

Now Cpg lies in Wl but - 1 does not. Therefore QL - 2. Using (3.8) now gives 

Q M = 2. • 

Theorem (3.8) has another useful application. If M has a subfield L with [M : L] 

odd and whose degree over Q is small then it may be easier to calculate Qi (and hence 

QM) than calculating QM directly. We now explore this possibility for calculating 

QM-

Our success in obtaining QM through calculating QL will depend on the degree 

of L over Q being small. This degree is smallest when p = 3 mod (4), and so in the 

following we will restrict our considerations to the case when p = 3 mod (4) only. 

So let us assume that p = 3 mod (4). Then L = Q(a, /?) where /3 = ( l + y/^)/2. 

The group, WL, of roots of unity in L is (—1) unless p = 3 in which case WL = 

(—1,C3)- In any case we have WL/WI = ( - 1 ) , and so QL = 2 if and only if there 

exists a unit u G EL such that u*̂  = —u. 

Now any element x G OL satisfying x'^ = —x can be written as 

X = 
av /^ + b^r^, i f d ^ 3 mod (4), 

i ( a v ^ + 6 v ^ ) , if d = 3 mod (A), 

where o, 6 G Z and, in the case d = 3 mod (4), a + 6 = 0 mod (2). So if a; is a unit 

satisfying x'^ — —x then 

/ -da^ + p62, i f d ^ 3 mod (4), 
norm,/^(x) = | ^^^2)^ if ^ ^ 3 (4), 

must be a unit in OK- Since the only units in OK are ± 1 , we conclude that QL — 2 

if and only if the equation 

^ 2 ,2 f ± l ' if 7̂  3 mod (4), 
da -pb = < 

i ± 4 , i f d = 3 mod (4), 

has an integer solution. Multiplying this equation by p or d, whichever is the smaller 
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of two, allows us to write this equation as 

x^-pdy^ = 6k, (3.10) 

where 6 = ±1 and 

. minjp, d}, if d ^ 3 mod (4), 
k — ' 

4 min{p, d}, if d = 3 mod (4). 

So whether QM = 2 or 1 depends on whether or not (3.10), a generalized Pell's 

equation, is soluble. This equation, fortunately for us, belongs to a family of equations 

for which it is possible to settle the question of solubility in any particular case. In 

the following we will show how to determine whether (3.10) is soluble. 

Consider the equation 

x"^ - pdy^ = 6k', (3.11) 

where 
ifd-^3 mod (4), 

1 yfc/4, ifd = 3 mod (4). 

The equation (3.10) is clearly soluble if (3.11) is. So let us first discuss (3.11). This 

is one of the standard equations which one encounters when studying quadratic in

determinate equations. A treatment of this equation can be found in, for example, 

7]. In the following we will only state the main theorem on the solubility of (3.11) 

without the proof. 

The method of solution for (3.11) involves the continued fractions expansion of 

y/pR. Let AQ = -\/P^ and let ao be the integer part of AQ. For i > 1, define 

Ai = (Ai_i - a i _ i ) ~ ^ 

Set ai equal to the integer part of Ai. The sequence of integers [ao, a i , . . . ] represents 

the continued fractions expansion of y/pd. This representation is periodic, i.e., we can 

find integers r and s such that â  — ai+g for i > r. To indicate this the continued 

fractions expansion of y/pd is written as [ao, a i , . . . , a^, • • . , Or+s-l • 

The constants Ai can be expressed as 

_ V^+Pj 
" Qi ' 

where PQ = 0, QQ = 1, and, for i > 1, 

Pi - ai-iQi-i - Pi-i, 

^ _ pd - {aj-iQi-i - Pi-\f 
Qi — ^ 

Qi-i 
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Both Pi and Qi are integers. To prove this we use induction. Assume Ai = {y/pR + 

Pi)/Qi. Then 

fVpd + Pj 

V Qi 

Qi 

y/pd + Pi - UiQi ' 
_ Vpd + ajQi - Pj 
- {pd-{aiQi-PiY)IQi' 

which can be seen to have the form {y/pd+ Pi^i)/Qi+i. To prove that Pi and Qi are 

integers we note that if Pi and Qi are integers for all i < j then Pj^i = ajQj - Pj is 

also an integer, and 

pd - {ajQj - Pjf =pd- Pf mod (Qj), 

= Qj-iQj mod (Qj), 

and therefore Qj+i is also an integer. Hence Pj and Qi are integers for all i. 

Because of the periodicity of a '̂s the set of distinct values which Pj and Qi can 

take is finite. In fact, Pj = Pj+s, and Qi = Qi+s for i > r. Let po = ao, qo = 1, 

pi = aoai + 1, gi = a i , and 

Pi+l = fli+iPi +Pi-1 , i > 1, 

qi+l = aj+i5i + qi-i, i > 1. 

The following theorem which has been taken from [7], §10.8, deals with the ques

tion of solubility of (3-11) conclusively. 

(3.12) T H E O R E M . Let / be an integer with < pd. The equation 

X — pdy = I 

is soluble if and only if I = { — l)^Qi for some i. If this is the case then any solution 

x,y can be written as x = ± P j - i , y — ± 9 j - i where / = { — lyQj. • 

In (3.11) k' < pd and so we can use the above theorem to decide whether (3.11) 

is soluble. If (3.11) is soluble then QL = 2, and, since QM = QL, QM will also be 2. 

But if (3.11) is not soluble then, in the case d = 3 mod (4), the equation (3.10) may 

still have a solution. 
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Let us assume that (3.11) is not soluble and d = 3 mod (4). We want to determine 
whether (3.10) hais a solution. In the following we will show that any solution to (3.10) 
arises from a proper solution {x, y are relatively coprime) to 

x^-pdy^=ril, (3.13) 

where T; = ± 1 and / is a positive integer with < pd. By using (3.12), we can 
then proceed to obtain all the solutions to (3.13), that is, if they exist. Once all the 
solutions to (3.13) have been obtained, by checking whether any of these gives rise to 
a solution to (3.10) we will be able to decide whether or not (3.10) is soluble. 

Let 
' k, if 16p < d, 

^ {d-p)/4, i{p<d,16p>d, 
~ \ k, if 16d < p, 

^(j)-d)lA, i{d<p,\M>p. 

Then / is a positive integer with < pd. Let = ± 1 . 

(3.14) P R O P O S I T I O N . Any solution to — pdy"^ = 6k arises from a proper 
solution to — pds^ = -ql. 

Proof. U I = k then there is nothing to prove. Assume I = (d — p)/4. Let x, y be 
a solution to — pdy"^ = 6k. Then we claim that 

X = -^{S'pr - Spds), 
"I (3.15) 

y = —M'ps - 6r), 

where 6' = ± 1 and r, s are integers satisfying - pds"^ = rjl. To prove this, observe 
that (x,2/)^, the square of the highest common factor of x and y, divides A;. Since k 
is 4p or 4d and d is square-free, (x,y) = 1 or 2. But {x,y) ^ 2, for otherwise (3.11) 
will be soluble. So (x,y) = 1. Let r, s be integers such that 

xs — yr = 8. (3.16) 

If ro, so is a paxticular solution to (3.16) then r, s can be written as 

r = ro + mx, 

s = So + "^y, 
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where m is an integer. Multiplying - pdy"^ = 6k by (r^ - pds"^) gives 

(r2 - pds^){x^ - pdy^) = (r^ - pds^)6k, 

(rx - pdsy)^ - pd{xs - yr)"^ = (r^ - pds'^)6k, 

or 

Now 

Choose m such that 

Since 

{rx - pdsy)^ - pd = (r^ - pds'^)6k. (3.17) 

ra; — pdsy = (ro + mx)x — pd{sQ + my)y, 

-- rox - pdsoy + m{x^ - pdy^), 

— VQX — pdsQy + mSk. 

rx — pdsy\ < k/2 - 2p. 

{rx — pdsy)"^ — pd = 0 mod (4p), 

we have 

rx — pdsy = 6'p. (3.18) 

Substituting for rx - pdsy = 6'p in (3.17) gives 

-pd = {r^ -pds^)6k, 

or 
,2 ^ . 2 r — pds — r]l. 

Equations (3.16) and (3.18) can now be solved for x,y to give (3.15). 

The proof for the case I = {p- d)/4 is similar to the one given above and so we 

omit i t . • 

So in order to determine whether (3.10) is soluble we first, using (3.12), solve 

(3.13). I f we find that (3.13) has a proper solution r,s for which x,y in (3.15) are 

integers then (3.10) is soluble and Q M = = 2. If (3.13) has no such solution then 

(3.10) is insoluble and QM = = 1-
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Let us consider a few examples. Let p = 19 and ci = 51. Then Qi = 2 if and 

only if the equation x^ — 969j/^ = ±76 has an integer solution. We first consider the 

equation 

a;2 _ 969̂ /2 ^ ^^9 

The continued fractions expansion of \/969 is [31, 7,1,3,3,1,1,1, 2,1,1,1, 3,3,1, 7,62 . 

The above equation has a solution if and only if there exists an i such that Qi = ±19. 

The constants Qi's are given by [1,8,43,15,16,33,25,32,19,32,25,33,16,15,43,8]. 

Since = 19, the above equation is soluble. For a solution we can take pj — 11362, 

qr - 365: 

113622 - 969 • 365^ = 19. 

Hence QL = 2. 

Let p = 31 and d = 39. The equation we have to solve now is x^ — I209y'^ = ±124. 

But first we consider 

x^ - 12092/2 = ±31 . 

The continued fractions expansion of v/l209 is [34,1,3,2,1,3,2,1,1,22,1,1,2,3,1,2, 

3,1,68]. For the constants Qi's we get [1,53,16,23,40,17,25,29,40,3,40,29,25,17, 

40,23,16,53]. Since for no value of i is Qi = ±31 , the above equation is insoluble. 

We now consider - 1209y'^ = ±124. By (3.14), any solution to this equation arises 

from a solution to 

x^'- 12097/2 = ±2. 

But again for no value of i is Qi — ±2 . Therefore the above equation is insoluble and 

hence QL = 1-
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4. D{OKG), P ramified in K 

Our task here is to calculate the group D{OxG) in the case when p is ramified 

in K. We will prove 

(4.1) T H E O R E M . Ifd{K/(£l) = pTL, then the kernel group D{OKG) is given by 

the exact sequence 

1 -> Coker(ii) ^ D{OKG) ^ Coker(ii) 1, 

where 

h-{OKG/Jr ^{OK/POKT, 

p ^ 1, 

J = (1 + 5 + . . . + gP-^)OKG, and j[ : 0 ] ^ {ON/Pj^'^^^^^ is induced by the ring 

homomorphism 

ON - ONlP^r'^". 

Here PAT = (1 - CP)ON is the prime ideal of N = Q(Cp) lying above p. 

(4.2) T H E O R E M . I f K is real, d{K/(£l) ^ pX, b ̂  Q mod (p), where u^a + bais 

the fundamental unit in K, andp does not divide the class number of M = K{C,p), 

then 

D{OKG) ~ Cp X • • • X Cp XC\D^o^,G)\, 

n factors 

where 
[p - l ) / 4 , i f p = 1 mod (4), 

3)/4, i f p = 3 mod (4), " n ( p -

K' = Q ( v ^ ) , d' = 6d/p, 6 = +l i f p = I mod (4), or <5 = - 1 i f p = 3 mod (4). 

( 4 . 3 ) T H E O R E M , f f K is imaginary, d{K/<^) 7̂  pZ, and p does not divide the 

ciass number hu of M = K{Cp), then D{OKG) is given by the exact sequence 

71 factors 

where 
_ r (p - 5)/4, i f p = 1 mod (4), 

" ~ 1 (p - 3)/4, i f p = 3 mod (4), 

K' = Q ( \ / ^ ) , d' = 6d/p, 6 = +l i f p = 1 mod (4), or 5 = - 1 i f p = 3 mod (4), and 

31 



D{OKG) has orderP''+^D{OK'G)\. 

Proof of (4.1). Let / = (1 - 9)OKG, and J = (1 + 5 + • • • + gP-^)OKO. Then 
the following is a cartesian square. 

OKG/{InJ) OKG/J 

n [h (4.4) 

OKGII OKG/{I + J ) 

The map p —> a: sets up an isomorphism 

OK-\X 

° - « - ( ; ^ ' 

and this isomorphism allows the following identification: 

We can now simplify the rings which appear in (4.4). The ideals / and J have trivial 

intersection and therefore 

This follows from the fact that the factors 1 - x and 1 + x -\ h xP~^ of - 1 are 
relatively coprime and therefore 

The other rings in (4.4) simplify to 

OKG _ OK[X] 

J ~ (1 + X + - - - + XP-1)' 

OKG OK 

I + J POK 

The square (4.4) can now be written as 

OKG OKGIJ 

OK ^ OKIPOK 
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The action of various maps on g is given by 

9 ^ [9] 

1 ^ [1] 

Both ji and j2 are surjective. The Mayer-Vietoris sequence attached to the above 

square is 

1 - MiOxG/Jr) X j2iO^) ^ (OK/POK^ 

^ D{OKG) ^ D{OKG/J) X D{OK) - 1. 

Since OK is the maximal order in K, the kernel group D{OK) is trivial. The group 

O^ lies in (OKG/J)^. We can rewrite the above sequence as 

1 - h{(OKG/Jr) - {OK/POKV - D{OKG) D{OKG/J) -> 1. (4.5) 

This sequence shows that in order to calculate D{OKG) we need to find D{OKG/ J). 

Let 
^^^OKG^ OK[X] 

J {l + x + --- + xP-'^)' 

The polynomial m,{x) = l + x-\ \-XP~^ splits into two irreducible factors in Oii'[x]. 
We denote these factors by mi(x) and m2{x). We can assume that mi(Cp) = 0. The 
two factors Tni (x) and 7712(2;) are relatively coprime. We therefore have 

K[x] K[x] K[x] 

{1 + X + --- + xP- i ) ~ (mi(x)) (m2(x))' 
~ K{Cp) X K{a{Cp)), (4-6) 

^ N X N, 

where a is the non-trivial element of Gal{N/(£l)/Gal{N/K) ~ Gal{K/(Et). The iso

morphism (4.6) allows us to embed A in ON X ON-

A = ^ ^ONX ON, 

9 ^ (Cp,'7(Cp))-

Let / ' = mi{g)A, J' — 7712(5)A. Then the diagram 

A / ( / ' n J ' ) — . A / J ' 

I i (4-7) 
A/I' A / ( / ' + J') 

is a cartesian square. Since mi(x) and 7712(x) are relatively coprime, the ideals I' and 
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J' have trivial intersection and therefore A / ( / ' n J') ~ A. For the ring A / / ' we have 

A OK\X\ r> 1 
/ ' (mi(x)) 

Since i i ' is a subfield of Â  = Q(Cp), OK[Q = Z[Cp] = ON. Therefore A / / ' ~ 0;^. 
The ring A / J ' is also isomorphic to O^- For A / ( / ' + J') we get 

A 0K[X, 
I' + J'~ (mi(x),m2(x))' 

{'^2{Cp))' 

The polynomial mi{x) can be written as 

m2(x) = - ^ ( C P D ' 
a 

where the product is over the elements of Gal{N/K). Therefore 

= \{{Cv - cr(Cp)"). 
a 

For each a € Gal{N/K) the element Cp - (^{CpT generates the prime ideal = 

(1 - CP)ON of N lying above p. Therefore 

m2{QON = P^r^^'\ 

and hence 
A ON 

I> + J' ~ p(P-l)/2 • 

The square (4.7) can now be written as 

OKG/J ON 

i'2 [A (4.8) 

ON ^ ONIP^"^" 

The maps i"s and j " s are given by 

[Q] ^ ^ ( G ) 

Cp ' [(p. 
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The above square gives the exact sequance: 

1 - j'liO^) - {ON/Pj^-'^^'r - D{OKGIJ) - 1. 

Here we have used the fact that D{ON) = 1- This sequence together with the 

sequence (4.5) proves the theorem. • 

Next we attempt to calculate the groups Coker(ji) and Coker(7{) which appear 

in (4.1). 

( 4 . 9 ) P R O P O S I T I O N . The cokernel of the map 

h-iOKGlJY -^{OKIVOKY, 

is either trivial or it is isomorphic to a cyclic group of order p. 

Proof A subring of OKG/J is Z G / ( 1 + g + • • • + 5^~^) which is isomorphic to 
ON = '^{Cpl- The image of O^ under ji is ( Z / p Z ) ^ . In fact, the cyclotomic units in 
O^ alone are enough to give ( Z / p Z ) ^ . Therefore Coker(ji) ~ Coker(7i) where 

is induced by ji. The ideal POK ramifies in K: POK = PK- The ring OK/POK is 

therefore a local ring with the unique maximal ideal PK/POK- The group of units in 

OK/POK is given by 

^OK^KPOK) ^ \ P K ) POK 

The order of 1 + PK/POK is P and {OK/PKV - GF(p)^. Therefore {OKIPOKY ^ 
Cp X Cp-i. Going back to (4.10), we see that 

{OK/POKY 
( Z / p Z ) ^ " ^ ' 

and therefore Coker(ji) ~ 1 or Cp. • 

(4.11) T H E O R E M . If K is imaginary, i.e., p = 3 mod (4), tlien the coJcernei of 

the map 

h • {OKG/JY {OKIPOKY 

is isomorphic to a cyclic group of order p unless K = Q(v'—3), in which case it is 

trivial. 
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Proof Since Coker(ji) ~ Coker(jfi) where 

-r (OKGY {OK/POKY 
^^•\ J ) ^ (Z/pZ)x 

is induced by j i , we consider the map j ^ . 

By (4.8), we have an isomorphism 

k : {ORG/JY --A= [{a,b) e0^xO^\a~ a-\b) mod (P^^"'^/^)} 

given by 5 i-> {C,pi<^{Cp))- The inverse map k~^ : A —> {OKG/JY is given by 

A;~-̂ (a, b)-xig-\- h X p _ i p P ~ ^ 

where X j 6 OR, and 

a = xiCp + • • • + X p _ i C ^ ~ \ 

6 = xi<7(Cp)-f ••• + Xp_i<T(C|-^). 

The above equations are soluble for X j , 1 < i < p - 1. To prove this, let xi = ri + Sia, 

ri,Si e TL. Since a = a-^{b) mod (PjSf"^^^^), we can find Y.i<^iCp € ON such that 

a - a - l ( 6 ) = ( 2 a - l ) i : . c 4 . But 

a - a - i ( 6 ) = ^ ( x , - a - i ( x , ) ) C ; , 
i=\ 

p-\ 

i=l 

Therefore Sj = C j , 1 < 7 < p —1 . The integers r ; , 1 < i < p - 1 , can now be determined 

by using the equation a = xi(p + • • • + Xp_iCp \ or 
p-l p-i 
^ r , C ; = a - a ^ s 4 . 
i=l i=l 

Let 

{OK/POKY 
^ - " ^ ^ (Z/pZ)x 

denote the composite map jik~^. Then the cokernel oi ji is isomorphic to Coker(fc'). 

The group Coker(A;') is trivial if there exists an element in A whose image under k' 
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is non-trivial; otherwise Coker(A;') ~ Cp. Now, for an element (a, b) 6 A, we have 

/ p - l \ 
k'{a,b)=ji ^{ri +Sia)g'\ , n^Si^'E, 

p - l P - l 

= 5 ] ( 2 r i + s0 + ( 2 a - l ) 5 ] ; s i , 

since 2 6 ( Z / p Z ) ^ . The element E C i (2n + Si) Ues in (Z/pZ)"* and therefore we 

can express k'{a, b) as 

But 
p-l 
Y,{2ri + Si) = t{a + G-\b)), 
1=1 

P - l / „ ^-1 

2a - 1 
j = l 

G - a - i ( i ' ) 

where t : ON ON/PN denotes reduction mod (Pjv)- Hence 

Since, for any element (a, 6) 6 A, 

(a,6) = (a,a(a))(l ,a(a)-i6), 

and 

/j'(a,a(a)) = 1, 

it follows that k'{A) = k'{B) where B is the subgroup of A consisting of elements of 

A of the form ( l , a ) . The group B is clearly isomorphic to 

E^{f-'^l'^ = {xeEN\x^l mod ( P ^ ' ^ ^ ' ) } -

EN, of course, is the group of units in ON- Let 

un. AiP-m) _ {OK/POKY 
(Z /pZ)x 
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denote the map induced by the isomorphism 

,((p-l)/2) 

a -̂> ( l ,a(a)) . 
J^N 

Then Coker(ji) ~ Coker(fe"). 

Assume K = Q ( v ^ ) - Then EN = ( - l .Cs) , and E'}^^ = (Cs). The image of Ca 

under k" is non-trivial. This follows from the fact that 

r(C3) = i + ( 2 . - i ) < ( i ^ . ^ ) , 

and (1 - C3)/(2Q! - 1) = C3 which is a unit. Therefore Coker(A;") = 1 and hence 

Coker(Ji) = 1. 

Now assume K 7̂  Q ( V ^ ) . Then p is a prime greater than 3 which is congruent 

to 3 mod (4). Let x e E'}!f~'^^^^\ Then, since EN = WNEN+. where WN = (-l,Cp) 

is the group of roots of unity in ON and EN+ is the group of units in ON+, X can 

be written as x = Cp̂  where 1 < i < p and u E EN+. As x is congruent to 1 mod 

{PN'^^^"^)^ i t can also be written as 1 + (2a - l)y where y 6 ON- Applying the 

complex conjugation to the equation x = C^pU = 1 + {2a — l)y gives 

= g'u = 1 - (2a - l ) y ^ 

Substituting for u = C.p'^{I-\- {2a - l)y) gives 

l-C;'''^{2a-l){(:f^y + f ) . 

I f i ^ p then (1 - g'^')ON = PN- Since (2a - 1)ON = P^N'^^'"^ and (p - l ) / 2 is 

greater than 1, the above equation is valid if and only if z = p. Therefore y"^ = -y. 

The subset of ON consisting of elements which satisfy y" = -y is (Cp - C,P^)ON+-

Therefore any x 6 ^ j j ^ ^ ' ^ ^ ^ ^ ^ can be written as x = 1 + (2a - l)(Cp - g^)y where 

y e ON+- Since t ( ( l - x)/(2a - 1)) = 0, applying k" to x gives 1, and therefore 

Coker(fc") ~ Cp. Hence Coker(Ji) ~ Cp as required. • 

The situation is markedly different in the case when K is real. 

(4.12) T H E O R E M . UK is real, then Coker(ji) is trivia] ifb^O mod (p), where 

u = a + ba is the fundamental unit of K. 7/6 = 0 mod (p) then Coker(;i) ~ Cp. 
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Proof I f 6 ̂  0 mod (p) then the image of u under ji is non-trivial and therefore 
Coker(Ji)=l. Since Coker(ji) ~ Coker(Ji), we obtain Coker(;i) = 1. 

Now assume 6 = 0 mod (p). In the proof of (4.11) we saw that Coker(;i) ~ 

Coker(A;") where 

u> . p((p-i)/2) _^ {OK/POKY 

, / 1 - X 1 \ 
X 1 + (2a - 1)^ • 

^ ^ \2a - 1 1 + xy 

Suppose Coker(A;") = 1. Let x e E'J^^~^^^'^^ be a unit whose image under k" is non-
trivial. Then x = 1 -f- (2a - l)y where y £ ON and t{y) e ( Z / p Z ) ^ . Taking the 
norm of x from N to K gives a unit in OK which satisfies 

normjv/ii:(x) = 1 -|- (2a - l)trN/K{y) mod (POK)-

For tiN/Kiy) h^a^ve 

tXNjKiy) = ^y^^(2/) niod ((2a - 1)OK), 

and therefore 

i^N/Kiy) = ^ ^ t i y ) + (2^^ -1)2/'> y' e OK-

Hence 
/ p - 1 \ 

normjv/if(x) = l - f (2a - 1) j Ky) mod (pCi^). 

So we have a unit r + sa in OK such that s ^ 0 mod (p). But this contradicts the fact 

that, mod (pOx), the fundamental unit lies in ( Z / p Z ) ^ . Therefore Coker(^") ~ Cp 

and hence Coker(ji) ~ Cp. • 

The above theorem shows that in order to calculate Coker(ji) all one has to do 
is obtain the image of the fundamental unit of K under the map 

(OK/POKY 
^ (Z /pZ)x • 

If this image is non-trivial then Coker(ji) = 1; otherwise Coker(ji) ~ Cp. It is 

of course an interesting question to ask whether there exist primes p for which the 

fundamental unit in K fails to generate {OK/POKY/i'^/p'^Y • 
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Next we consider the map 

, • r>x / ON 

and its cokernel. This is the second of the maps whose cokernel appears in (4.1). The 

group {ON/PN~^^^^Y given by the exact sequence 

^^^^ ( ON Y . (^N 
3 b - i ) / 2 \̂  p j p - ^ ) / 2 ; \PN 

The group 1 + PN/PN~^^^^ is isomorphic to (p - 3)/2 copies of Cp and {ON/PNY 

is isomorphic to Cp_i. Since the order of 1 + PN/PN~^^^^ is coprime to the order of 
{ON/PNY^ it follows that 

^ ~ C7p_i X Cp X • • • X Cp. 
p(p- l ) /2 

^ ' (p-3)/2 factors 

If we let A = 1 - Cp then {ONIPN'^^^'^Y written as 

[ - ^ ) ^ ' - ^ " " ' " ) ' 

where z is a generator of ( Z / p Z ) ^ . 

Since the map O^ —> {ON/PNY — {'^IP'^Y ~ {^) is surjective, we can find a 
unit u in O^ such that u =. z mod {PN), and hence = 2^ = 2 mod (pOjv)- The 
ideal P^'^^^^ divides PON and therefore = z mod (Pji^~^^/^). This shows that 
(Z/pZ) '^ lies in the image of j[. Also, Cp = 1 — and therefore the element 1 — A 
and the subgroup of {ON/PN'^^^'^Y which it generates also lies in the image of j { . 

To advance further with our calculation of Im(jJ) we have to make an assumption 
about the class number of N = Q(Cp)- If we assume that p is regular then there exist 
real units of the form 

ui = l + aiA^ mod {X^ON), 

U2 = 1 + asA* mod {X^ON), 

7i(p_3)/2 = 1 + a(p_3)/2A?'-3 mod {XP ^ON), 

where E ( Z / p Z ) ^ for all i, which generate a subgroup E'^+ of EN+ of index prime 
to p (see [5]). EN+ of course is the group of units in the maximal real subfield A'"̂  
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of N. The index of WNE'^+ in WNEN+ is prime to p and, since EN = WNEN+, 

the image of j'l is the subgroup of {ON/PN~^^^'^Y generated by z and the image of 

WNE'J^+ under j [ . 

Let, for i > 1, 

ji:E'^,^{ON/PhY-

Then I m ( j i ) = 1 and the image of ji fori>2 is isomorphic to Ira(A;i) x Im( i t_ i ) 

where 

is the map induced by ji. Hence 

Im(;,) ~ lm{ki) x - • - x Im(A;2) x I m ( j i ) . 

The group {ON/P'NY/{ON/P'N^Y is generated by 1 - A^-^ and is isomorphic to 

Cp. Therefore Im(^i) = 1 or Cp. I f we apply ki to ui, 1 < I < {p — 3)/2, we find 

Im(A;i) is trivial if i is even or lm{ki) Cp if i is odd. Hence Im(j i ) is isomorphic to 

n copies of Cp where n is the number of odd indices in { 2 , 3 , . . . In particular, 

jl{E'j^+) = l^{j(p-i)/2) is isomorphic to n copies of Cp where n = (p - 5)/4 if 

p = 1 mod (4), or 71 = (p — 3)/4 if p = 3 mod (4). We can now obtain j[{WNE'^+) 

and therefore lm{j[). We find Im(jJ) ~ Cp-i if p = 3, and if p > 3 then 

Im ( ; i ) ~ Cp_i X gp X • • • x Cp, 

n factors 

where TI = (p — l ) / 4 i f p = 1 mod (4), or n = (p -f- l ) / 4 if p = 3 mod (4). I t is now 

straightforward to prove 

(4.13) T H E O R E M . I f p is regular, then the cokernel of the map 

j[ : {ON/PI^-'^^'Y 

is trivial if p = 3. Otherwise i t is isomorphic to n copies of Cp where TI = (p — 5)/4 

i / p = 1 mod (4), or n = (p - 7)/4 i f p = 3 mod (4). • 

We now prepare the ground for proving (4.2) and (4.3). Let us cissume d{K/^) ^ 

pTL. The polynomial 1 —x^ splits into two irreducible factors 1-x and l-|-xH |-x^~^ 
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in K which are relatively coprime. Let / = (1 — g)OKG, and J = {I + g + • • • + 

gP-^)OKG. Then 

OKG/{Ir)J) A . OKG/J 

OKG/I OKG/{I+J) 

is a cartesian square. The rings in the above square simplify as 

OKG/{lnJ)^OKG, 

OKG/I ~ OK, 

OKG/J^OK[Q, 

OKG/{I + J) ~ OK/POK, 

and so the above square can be written as 

OKG OK[Q 

OK ^ OK/POK 

Both ji and j 2 are surjective. The above square gives the exact sequence: 

1 ^ hiOKW) - {OK/POKY - D{OKG) ^ D{OK[CP]) - 1. (4.14) 

In writing the above sequence we have omitted i2{0^) and D{OK)\ the reason being 

h{0^) C ji(Oisr[Cp]^)) S'lid D{OK) = 1- In the above sequence we can not set 

D{OK[CP]) to 1 as Cii-[Cp] is not the maximal order in M. The maximal order in M 
is OM and C?if [Cp] is a proper subring of OM- In fact we have 

( 4 . 1 5 ) P R O P O S I T I O N . A S an abelian subgroup of OM, the Z-index of ^^^[Cp] in 

OM is given by 

{OM:OK[CP])=P^^-'^/'. 

Before we prove the above proposition we need to introduce some notation. Let 
d' = 6d/p where <J = -f-1 i f p = 1 mod (4) , and ^ = - 1 if p = 3 mod (4) . Let 
K' = Q ( v / ^ ) . Then d = d' mod (4) and the two discriminants d{K/<£l) and d{K'/Q) 
are related by d{K/(^) = pd{K'/Q). For the field M we have M = K'N where 
iV = Q(Cp)- Since N/(^ is ramified at p only and p does not divide d{K'/^), K' 
and N have discriminants which are relatively coprime. The ring of integers in M is 
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therefore a compositum of the rings of integers in K' and N, that is OM = OK'ON-

Since OK' = Z[/3] where 

V ^ , if d' ^ 3 mod (4), 
= 1 ^ 1(1 (1 + V ^ ) / 2 , if d' = 3 mod (4), 

it follows that OM = "^iPXp]-

Proof of (4.15). The index {OM • OK[CP\) is given by 

(n - n f /-n2 ^M{OK[CP\) 

The ring Cji'fCp] is a compositum of OK and ON, and therefore 

AM{OK[<P]) = AK{OKr-''AN{ONf-

For the ring OM we have OM = OK'ON and so 

A M ( O M ) = Air'(O;^0^"'AAr(Oiv)2. 

Substituting for AM{OK[CP]) Ajvf (Cjif) in (4.16) gives 

(0« . 0«[f,)) = . 

Using Aj(:(Cji-) = PAK'{OK') now gives the required result. • 

So before we can proceed any further with our calculation for D{OKG) we need to 

calculate D{OK[CP]), and for that we need to find a cartesian square which describes 

(PjffCp]. Let us, as a first step to obtaining a cartesian square for Ci(:[Cp], prove that 

POM is an ideal of OK[CP]- POM clearly is a module over OKICP)- TO show that it 

is an ideal of CA:[CP] we need to show that POM = pZ[/3,Cp] C C/f [Cp]- It is obvious 

that pCp e OKKPI- For p/? we have 

r 6y/6^a, if d' ^ 3 mod (4), 
I 6 ^ { { - l + ^f6p)/2 + a), i f d' = 3 mod (4). 

Both ^/Wp and ( - 1 - f ^/6p)/2 lie in Z[Cp]. Therefore p/3 G OK\C.P -

The following can now be seen to be a cartesian square. 

OK\C,P[ — ' OM 

OK[CP\/POM — ^ OM/POM 

Since OK[C,P\/POM is not an OK-ovdev contained in some if-algebra A, the exact 

sequence attached to the above square has the form (1.2) rather than (1.1). The 
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exact sequence is 

1 - {OKICPW ^ O ^ X iOK[Cp]/pOMr -> (OM/pOur 

PiciOKlCp]) - Pic(OM) X Pic{OK[(p]/pOM) - VlciOM/pOM). 

But for a finite ring A, Pic(A) = 1, and for an integral domain A, Pic(A) = C/(A). 
So we can rewrite the above sequence as 

1 - OKICP^ - X {OK[Cp]/pOMr 

- {OMIPOMY - CI{OK[Q) - CI{OM) - 1. 

Since OM is the maximal order in M , we get 

1 - OK[CPV ^ O ^ X {OxiCpUpOMY - {OMIPOMY - D{OK[Q) - 1. (4.17) 

Combining (4.14) and (4.17) gives 

(4.18) T H E O R E M . I{d{K/<^) # pX, then the kernel group D{OKG) is given by 

the exact sequence 

1 ^ Coker(ji) ^ D{OKG) ^ Coker(jO 1, 

where 

h-.OKiCpr ^{OK/POKY, 

(p ^ 1, 

and 
{OMIPOMY 

is induced by the ring homomorphism OM —* OMIP^M-

Next we calculate Coker(jfi). 

Let ^OK[C,P\ subgroup of OK\C,P\'^ consisting of roots of unity, and 

(4.19) L E M M A . I f the map 

X I ^ X j %Z J 

is surjective, then the index O(WOK\C,;^{OK\C.^''Y ^KiCp]"" is 2; otherwise it is 1. 44 



Proof. The sequence 

is exact; the proof of this is similar to the one given in (2.9). Since W ô̂ -ĵ p] = (—Ij Cp) 
and ^^^.[^p] = (Cp)) the group ^OK\(,P\/^OK\C,P\ generated by —1. If i/- is surjective 

then 

and [C?jr[Cp]^ : H ^ O K - [ C P ] ( ^ ^ M + ) ' ' ] = 2; otherwise 

and [OKICP]'' : Wo^[QiOK[Cpm = 1- • 

(4.20) L E M M A . If K is quadratic imaginary, then cokernel of 

is a cyclic group of order p. 

Proof Since Z[(p] C Oj([Cp], OK[CP]^ contains units of the form 

1 -
= ^ , 1 < a < p - 1. 

J- - t.p 

The image of ^ '̂s under ji is ( Z / p Z ) ^ , and therefore Coker(;i) ~ Coker(ji) where 

is induced by ji. 

The ideal pOx ramifies in K: pOx - Pjc where PK is the prime of K lying above 
p. The ring OKIV^K is therefore a local ring with the unique maximal ideal PKIV^K-

The group of units in OKIVOK is OKIPOR minus PK/POR- Now |Oi(:/pC?i(-| = p^, 
and iP i f /pO/f l = p. Therefore \{OK/pOKy\ = p{p - 1), and so 

(Z /pZ)x ~ 
a cyclic group of order p. The cokernel of ji is, therefore, either 1 or Cp. Let 
us assume that Coker(Ji) = 1. Then iJi(Oii:[Cp]^)| = P, and, since [Oj<'[Cp]'' : 
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Wo.-iQi^KiCpm < 2 by (4.19), \jiiWo,iQ{OK[Cpm\=P- But from = 
( - l , C p ) and 

...M&-'^'"-^;^'~"^'"))'L^ if 3 mod (4), 

or 

..., Cp^'-'^^' + cict'^^' - C ; ^ - ^ ^ / ^ ) ) z , i f ^ = 3 mod (4), 

we have li{Wo^.[QiOK[Cp]-^Y) = 1 which contradicts \JI{WO^.[Q{OK[CP]-^Y)\ = P-
Therefore Coker(ji) ~ Cp, and so our lemma is proved. • 

(4.21) L E M M A . If K is quadratic real and 6 ^ 0 mod (p) where u = a + ba is 

the fundamental unit in K, then Coker(ji) is trivial. Otherwise Coker(ji) ~ Cp. 

Proof From the proof of (4.20) we know that Coker(ji) ~ Coker(ji), and 

Coker(j2) is either 1 or Cp. If 6 ^ 0 mod (p) then the image of the fundamental unit 

u under is non-trivial and therefore Coker(j|) = 1. 

If 6 = 0 mod {p), then Coker(;i) = 1 or Cp. Assume Coker(;i) = 1. Let x be 

a unit in OK[CPY whose image under ji generates {OK/POKY/i'^/p'^Y • Then 

normjj^/;j^(x) is a unit in K whose image under the map 

, {OK/POKY 
^ {x/pXY 

generates {OKIPOKYH'^IP'^Y• But, since 6 = 0 mod (p), this is not possible. 

Therefore Coker(Ji) ~ Cp. • 

We now turn our attention to Coker(jj). 

(4.22) L E M M A . The Jcernei of the map 

{OM/POMY 
^ {OK[(:P]/POMY 

ISOKKPY-
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Proof. I t is obvious that 

0^nOK[(p]CKev{j[). 

To show that Ker(iJ) QO^D OKKP], let x € Ker( i i ) . Then x = a + pb where 
a e OKICP] and 6 e OM- But pC>M C O^-fCp]- Therefore x € Oj^fCp], and so 
Ker ( j i ) C n OxiCp]- Since Oi(:[Cp] is closed under the action of Ga/(M/Q), 

0^nOK[Cp] = OK[Cpr. • 

The cokernel of j[ is 

(CM/p0M)V(C?if[Cp]/pC?Mr 
Coker(iO = j ^ ^ ^ . , ^ 

and, by (4.22), 

SPJ 

So in order to calculate Coker(ji) we need to work out the structure of 

{OM/pOMr 

{OK[CP]/POM)'' 

and 0^/OK[CPV- We begin with (OM/PC»M)V(C?if[Cp]/pOM)^ 

(4.23) L E M M A . 

-?r- ^Cpx ••• xCpxi —— . 
\POMJ ^ — V ^ KPOK'J 

2(p-2) factors 

Proof. Let rad(C?M/pC>Af) denote the radical of OM/POM', ^^^[OMIPOM) is the 
intersection of aJl the maximal ideals of OM/POM- Then the sequence 

is exact. The ideal rad(OM/pCM) is given by 

^ ^ J < ^ M \ _ Y[PM 

\POM) POM ' 

where the product is taken over primes of M lying above p. There is only one prime 

of iV which lies above p, namely (1 - CP)ON- Since p does not divide d{M/N), the 
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extension of (1 - Cp)(^N to M is either a prime or it is a product of two distinct 
primes. In any case the product of primes of M lying above p is (1 - Cp)<^M- So we 
can rewrite the sequence (4.24) as 

( l - C p ) C ^ M , [OMV . ( 
POM \POMJ V ( I 

OM 

CP)OM 
(4.25) 

Since \OM/POM\ = P^^^"^^ and |C?M/(1 - CP)OM\ = p\ it follows that 

il-Cp)OM 

POM 

( I - Cp)C?M 

POM 
= p 

,2(p-2) (4.26) 

To find the structure of 1 + (1 - CP)OM/POM, let X £ 1 + ( I - QOMIPOM- Then 

X = I + (1 - Cp)y, y e (OM/POM), and 

x^ = (1 + (1 - Cp)y)^ 

= 1 + (1 - Cp)V mod ( P C M ) , 

= 1 mod {POM)-

This shows that 1 + (1 - CP)OM/POM is an elementary p-group, and so, by (4.26), 

pOu ^ . ' 
2(p-2) factors 

To find (C»M/(1 - (p)OMYy we note that 

OM OK' 

{ \ - Q O M ~ POK'' 

the isomorphism is induced by (p i-^ 1- Substituting for 1 + (1 - C,P)OMIPOM and 

{OMI{1 - CP)OMY in (4.25) gives 

Since p does not divide d{K'/(^), p is either inert in K' or it splits. In any case the 
order of {OJ('IPOK>Y is coprime to p. The end groups in the above exact sequence, 
therefore, have orders which are relatively coprime, and so 

X • • • X X 

2(f)-2) factors 

• x i ^ X 
^ [POK'J • 

• 
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(4.27) L E M M A . 
X 

(3p-5)/2 factors 

Proof. As in (4.23), the sequence 

1 -> 1 + rad 

V* n 

is exact. 

To find rad(C?i(:[Cp]/pC>M), we note that for a finite commutative ring R, 

rad(ii) = { x e i? | = 0 for some integer n } , 

and if 5 is a subring of R then rad(5) = rad(i?) D 5. Applying this argument to 

OMIPOM and OK[CP\IPOM gives 

Let 

Then 

POM ) ''^^KPOMJ ' ' POM 

_^ (1 - CPPM ^ OKKP] 

POM POM 

^ {1-CP)OM^OK[Q 

POM 

T = {x G O M 1(1 - Cp)a: e OK[CP]}-

POM J POM ' 

and (4.28) now gives 

^ V ; \POM ) W - C p ) T j ^ 

Now (1 - Cp)T is an ideal of OxlCp] which contains (1 - Cp)< Ĵ<:[Cp]: 

(1 - CP)OK[CP] C (1 - Cp)T C OKIU (4-30) 

The Z-index of (1 - CP)OK[CP] in OK[(P] is given by 

{OKU : (1 - Q O K U ) - (c?^ : OK[Q) • 
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Since 

{OM • (1 - CP)OK[CP]) = normM(l - Cp) • {OM : OKKP]), 

we obtain 

{OK[CP]-{1-(:P)OK[CP])=P'-

In (4.30) (1 - Cp)T ^ OK[CP] and, since the element (1 - Cp)̂ "̂̂ ^̂ /̂3 lies in T but 
not in OKKP], (1 - CPPKICP] ^ {I - Cp)^'. Therefore {ORKP] : (1 - Cp)^) = P- This 
implies that (1 - Cp)T is a maximal Cj<:[Cp]-ideal, and therefore 

( l - C p ) T - p Z -

Next we calculate the order of the group 1 + (1 — (p)T/pOM- We have 

/n \r ] .^n \ ( O M : pOu) 

p2(p-l) 
= p(p-l)/2' 

^ p3(p-l)/2 

But 

(Cif[Cp] : P C ' M ) = {OKiCp] : (1 - Cp)r)((l - Cp)^ : POM). 

Therefore 

( ( l - C p ) T . p C ^ M ) = ( ^ ^ [ ^ ^ j ^ ( ^ _ ^ ^ ) ^ , 

^ p(3p-5)/2 

This gives us the order of 1 + (1 - Cp)T/pOM- If we now use the fact that 1 + (1 -

CP)T/POM is a subgroup of 1 + (1 - CP)OM/POM and 1 -I- (1 - CP)OM/POM is an 

elementary p-group, we obtain 

1 + (1 - CP)T/POM ^CpX...x Cp. 
(3p-5)/2 factors 

Substituting for 1 -H (1 - QTjpOM and OK{QI{1 - QT in (4.29) gives 

X 
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and therefore 

[ I ^C^^--^Cpx[-=-
\ POM ) ^ — . ^ V P Z 

(3p-5)/2 factors 

We are now in a position to prove the following. 

( 4 . 3 1 ) T H E O R E M . 

(p-3)/2 factors 

f p is inert in K', 
P^ " 

\POK') ~ l C p _ i x C p _ i , if 

• 

wJiere 
^ f p + l , i 

i p — 1, i f p spiits in K'. 

Proof From (4.23) and (4.27) we have 

{OK[QIPOMY (Z /pZ)x 
(p-3)/2 factors 

Since pOx' is either a prime or it is a product of two primes, 

OK< ^, f GF(p^), if p is inert i n / r ' , 
POK' ~ 1 GF(p) X GF(p), if p splits in K'. 

Therefore 
if p is inert in K', 
i f p splits in K'. 

The rest is obvious. • 

Having obtained the structure of {OMIPOMYI{OK[C,P]IPOMY^ we now calcu

late O^MIOKKPY-

By (4.22), O^IOK[CPY i ^ isomorphic to a subgroup of 

{OMIPOMY 

{OK[CP]IPOMY 

and, since we know the structure of this group, we can at once write 

^ ~ Cp X • • • X Cp XCa, 
X 

•p\ 
n factors 

where [O^ : ORKPY] = P"'^' " ^ divisor of p*. So if we knew the integers n 
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and a we will know the structure of O^^/OKKPY • 

Let Ai = (1 - Cp)*, 0 < i < p - 1, and C?i = 0Ar[Ai/3]. Then we have the following 

chain of rings: 

Op-i C Op-2 C ••• C Oi C Co

in the above chain, each ring properly contains the preceding ring. 

(4.32) L E M M A . 

{Oi: Oi+i) ^ P, 0 < i < p - 2 . 

Proof. We have 

c?o = (Cp,..-cr''/5Cp,-..,^cr')z. 
Op-i = (Cp, . . . , cr'.p/^Cp, • • • ,p/3cr')z. 

and therefore {OQ : Op-i) = p^-^ But 

p-2 
{Oo : Op_i) = ll{Oi : Oi+i). 

i=0 

So each index (Cj : Oj+i) must be a power of p. Since Oi properly contains Oi+i, 
{Oi : Oi+i) > p. As there are p — 1 factors in the above product, (Oj : Oi+x) = p. • 

In the above notation, OM = OQ, O^lCp] = C'(p-i)/2 and, by (4.32), {OQ : 

0(p-i)/2) = p(P~^^/^ which is consistent with (4.15). 

The C?o-ideal pOo lies in Op-i, and therefore it is an Oi-ideal for all 0 < z < p - 1. 

(4.33) L E M M A . 

( - ^ ) ~ ( 7 p X - - - x C p X C 7 p _ i , l < ^ < p - l . 

2p-3-i factors 

Proof. The proof is similar to the one given in (4.27). We start with the exact 

sequence 

^-'^-^'^\p0oj~'\p0oj ^ [vad{Oi/pOo)J 



For 1 < i < p - 1, rad(C?i/pOo) is given by 

(1 - Cp)Oo ^ O. 

\pOoJ 

pOo " p O o ' 
_ (1 - Cp)Oi-i 

POQ • 

Now (1 - Cp)Oi-i, one can easily show, is a maximal Oi-ideal, and 

{Oi : {1 - Cp}Oi-i) = p, 

( ( l - C p ) C ? i _ i : p C ? o ) = : p 2 ^ - 3 - \ 

Therefore 

1 , (1 - Cp)Oi-i ( Oi V 
po^ V ( i - C p ) c ? i - i y 

= p 2 P - 3 - ( p - l ) . 

I f we now use (4.23) and the fact that (Oi/pOoY is a subgroup of {OQ/POQY , we 

obtain the required result. • 

Let Of be the maximal real subring of Oi, Ui = O f , and Uf = {Of)"". Then 

(p-3)/2 
= J ] [Ur.Ui+i]. 

i=0 

The following result takes us a step closer to calculating the index [O^ : Cii'fCp]^]-

(4.34) L E M M A . 

IUO:U,]^P*/\D(OK'G)\, 

[Ui : Ui+i] = 1 or p, 1 < i < P - 2. 

Proof Let 

• iO,+,/pOoY 

be the map induced by Oi —> Oi/pOQ. Then Ker(A;) = f^i+i, and therefore UijUi-^i 

is isomorphic to a subgroup of {Oi/pO^Y/{Oi^i/pOoY • By (4.33), 

{OilpO^Y 
= P, 1 < ^ < P - 2, 

((!?,+i/pOo)>^ 

and therefore, for 1 < i < p - 2, [Ui : fJi+i] = 1 or p. 
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If i = 0, then 

{OQIPOQY {OK'IPOK'Y 

{OxlpOoY~ {TLIpTLY ~ 

The isomorphism is induced by Cp ^ 1- Let k' be k followed by reduction mod ( l - ^ p ) . 

Then Coker(;fc') ~ D{OK'G), and so\k'{Uo)\ = p*/\D{OK'G)\. Since UQ/UI ~ k'{Uo), 

[UO:UI]=P*/\D{OK'G)\. • 

(4.35) L E M M A . For 1 < Z < p - 1, Jet Qi be the index ofWiU^ in Ui. Then 

Qi = 1 or 2, and Qi = Qi for all 1 < i < p - 1. 

Proof. There is an exact sequence: 

where ip sends a unit u to [u/u'^]. The group Wi/W^ is generated by —1. If is 

surjective then Qi = 2; otherwise Qi = 1. 

To prove the second part, we note that Ui/WiU^ is isomorphic to a subgroup of 
Ui/WiU^ and therefore Qi divides Qi. If Qi = 1 then Qi = 1. Let us assume Qi - 2. 
Let u be the unit that lies in Ui but not in WiU^. We can assume u'^ = —u. By 
(4.34), [Ui : Ui] = p^ Therefore G Ui, and {UP'Y = -UP\ SO ̂ : C/i ^ Wi/W^^ is 
surjective, i.e., Qi = 2. • 

( 4 . 3 6 ) L E M M A . 

[Ui : Ui+i] = [Ut : U^^^], 1 < i < p - 2. 

Proof We can express the index [Ui : U^-^] as 

[Ui : f / + i ] = [f/. : U,+m+i •• Ut+il (4.37) 

or 

[Ui : U+,] = [U, : U+][Ut : U+^,]. (4.38) 

By (4.35), [Ui : WiU^] = Qi, I < i < P - I, or 

[Ui : U+] = Qip, (4.39) 

since [WiU^^ : f/^^] = p. Equating (4.37) and (4.38), and using (4.39) proves the 

lemma. D 



(4.40) L E M M A . I f K' is real, then, for odd i, 

[U+ : tZ+i] = 1, 1 < i < P - 2, 

and i f K' is imaginary, then, for even i, 

[Ut : t ^ i t i l = 1' l<i<P-2. 

Proof Let us assume K' is real, and, for an odd i, [Uf : U^-^] ̂  1. Let u 
be the unit that lies in but not in U^.^^. Then u = a + Ai/36, a,6 e ON, and 
6 0 (1 - Cp)0^•. Since u is real, u'^ = u. But 

u' = a' + {-iyg^Xi/3b'. 

Therefore 

(a + XiPb) - (a'̂  + {-\fC;'\il5b'^) = 0, 

and so a — a*̂  = 0, and 

\ib-{-iyg^\ib'^ = Q. (4.41) 

The above equation gives b + C^̂ fc*̂  = 0, since i is odd. This implies 1 + C,~^ = 

0 mod (1 - Cp) which clearly is not true. 

The proof of the second part is similar except that we obtain 

A i i + ( - l ) V ^ , - 6 ^ = 0 

instead of (4.41). Since i is even now, this again leads to 1 + = 0 mod (1 — (p). • 

(4.42) L E M M A . I f p does not divide HM, the class number of M, then, for K' 

real and i even and for K' imaginary and i odd, 

[Uf ••Ut+i]=P, 1 < ^ < P - 2. 

Proof. The lemma will follow at once if we allow ourselves the following (see [6]): 

if p does not divide HM, then there are units in UQ which satisfy, for K' real, 

ui = 1 + aiA2 mod (A3), 

U2 = 1 + a2A4 mod ( A 5 ) , 

^i(p-3)/2 = 1 + a(p-3)/2'^P-3 mod (Ap_2), 
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VI = 1 + biX2 m o d (A3), 

V2 = 1 + 62A4 m o d (A5) , 

•y(p-i)/2 = 1 + ^(p-i)/2 '^P-i mod (Ap), 

w h e r e Oj, hi € 0^-' a n d , for e a c h 1 < i < (p — 3)/2, 

= (oi,6i) — , 

a n d , for J f ' i m a g i n a r y . 

wi = 1 -I- A2 mod (A3), 

U2 = 1 -h A4 mod (A5), 

(p-3)/2 = 1 + ^p-3 mod (Ap_2), 

•yi = 1 -|- V—d'Xi mod (A2), 

?;2 = 1 -I- V-d'Xz mod (A4), 

^^(p-l)/2 = 1 + V^Xp-2 mod (Ap_i). 

In the K' real case, for a given 1 < « < (p — 3)/2, Ui,Vi E U^i- The units Ui,Vi 

cannot both lie in f ^ ^ + i , for otherwise ai, hi will fail to be a basis for OK'IPOK' over 

Z / p Z . Therefore [U^i : U^^^^] > 1. But, by (4.34) and (4.36), [U+ : f /g^J = 1 or p. 

Therefore [U^^ : f/gl+ll = P-

In the K' imaginary case, Vi G f^2i-l clearly does not he in t / j t ' and so 

iKi-i • f^2i] > 1- Using (4.34) and (4.36) gives [U+_^ : U+^ = p. • 

Combining the results of last several lemmas we obtain 

(4.43) T H E O R E M . I f p does not divide KM, then 

^ X • * * X cp X C(i J 
OK[0- >. "V-

71 factors 

where a = p*/\D{OK'G)\ and, if K' is real, 

n 
\ { p -

( p - 5 ) / 4 , i f p = 1 mod (4), 
3)/4, i f p = 3 mod (4), 
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and i f K' is imaginary. 

(p - l ) / 4 , i f p = 1 mod (4), 
" ~ ^ ( p - 3 ) / 4 , i f p = 3 mod (4). 

Proof. The proof is a straightforward matter of obtaining the number of even 

indices in 1 < i < (p — 3)/2 in the K' real case, and the number of odd indices in 

1 < * < (p ~ 3)/2 in the K' imaginary case. Using (4.42) will then give the order of 

OM/OK[(:PY at p. 

The order of 0^/OK[CPY away from p was calculated in (4.34). • 

We can now prove (4.2) and (4.3). 

Proof of (4.2). By (4.18), the kernel group D{OKG) is given by 

1 ^ Coker(ii) D{OKG) ^ Coker(ii) ^ 1. 

But, by (4.21), Coker(ji) = 1. The group Coker(ji) is given by 

Cokerf7') iOMlpOMYKOK[QlpOMY 
^''^ 0-JOK[CP]>^ 

Using (4.31) and (4.43) now proves the theorem. • 

Proof of (4.3). The proof, as in the case of (4.2), is a straightforward matter of 
putting (4.18), (4.20), (4.31), and (4.43) together. • 

57 



5. R{OKG) — the group of realizable classes 

We now turn to the problem of calculating the group, R{OKG), of reahzable 
classes in Cl{OxG) where K is a quadratic imaginary number field. In the following 
we will calculate R{OKG) subject to G being a cyclic group of prime order p and the 
class number of M = K{(p) being trivial. We will also, given a tame extension L of 
K with Gal{L/K) ~ G, obtain invariants of L which will completely determine the 
class of OL in R{OKG). 

Just to confirm our notation, we will continue to write K as <^{y/—d) and OK as 
Z[a] . The values of d are now restricted to positive square-free integers. 

Our starting point is the description of R{OKG) given in [9] which goes as follows. 

Let A = Aut(G), the group of automorphisms of G. Then, since G is cychc of 

order p, A ~ (Z/pZ)"". We can take A to be 

A = { S i [ l < i < p - l } , 

where the action of 6i on G is defined as 6i{g) ~ g^. For (5 e A and (C) 6 CI{OKG), 

let (C*) be the class in CI{OKG) where is isomorphic to C as an abelian group 
but with G-action gx^ = {8{g)xY. Then under the multiplication 

A X CI{OKG) ^ CI{OKG), 

{S,{C))^{C% 

CI{OKG) is a ZA-module. Let 

p - l 

a=\ 

and 

J = ZA n (^7P)ZA, 

the Stickelberger ideal. Then the group of realizable classes is given by 

R{OKG) = CI\OKGY, 

where 

CI\OKG) = Kev{Cl{OKG) ^ CI{OK)). 

Cf{OKGY is the subgroup of CI^{OKG) generated by ( C ^ for (C) in CI^{OKG) 

and j in J. 
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We can now proceed with the calculation of R{Oj(G). In the next section we wiU 

calculate R{OKG) for p an odd prime, but here we obtain R{OKG) in the case when 

p = 2. 

( 5 . 1 ) T H E O R E M . I f G ~ C2 and M has class number 1, then 

( 1, ifK = Q ( V ^ ) , Q ( V ^ ) , or Q(y=7) , 

R{OKG)C^I C2, i f K = (£iiV^), 

_ C3, otierwise. 

Proof. For G ~ C2, the Stickelberger ideal J is Z and therefore 

R{OKG) = CI^{OKGY = CI^{OKG). 

The maximal order in KG is OK X OK, and so we have an exact sequence 

1 D{OKG) CI{OKG) ^ CI{OK) X CI{OK) ^ 1. 

Since the class number of M = - '̂((2) = is 1, CI{OK) - 1 and therefore 

Cl'^iOKG) = CI{OKG) = D{OKG). 

To calculate D{OKG), we note that the diagram 

OKG ^ OK 

OK OK/20K 

is a cartesian square. The various maps are given by 

9 —^ - 1 

1 ^ [1] 

The Mayer-Vietoris sequence attached to the above square gives 

HO^K) X n { 0 ^ ) - {OKIIOKY - D{OKG) ^ D{OK) X D{OK) - 1. 

But j2{0^) C i i ( O ^ ) , and P ( O i f ) = 1. Therefore D{OKG) ~ Coker(ji) where 

3X:01^{OKI20KY-
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The group, C?^, of units is 

r(C4), i f i r = Q ( v / ^ ) , 

(^K^\ (-1>C3), i f i r = Q ( v ^ ) , 
( — 1), otherwise. 

Now 2 ramifies in Q ( v / ^ ) and Q ( v / ^ ) , 
and so, for these fields, {OX/'^^K}^ — 

C2. U K = Q ( \ / ^ ) , then {OKI'^OKY - (C4)) and j\ is surjective, which means, 

D{OKG) = \.liK = Q ( V ^ ) , then {OKI^OKY = (1 + «), and D(OKG) ~ C2. 

If = Q ( v ^ ) , then 2 splits in K and {OKI^ORY = 1- 8° we obtain 

D{OKG) = liovK ^ Q ( v ^ ) -

For the rest of the fields, 2 is inert and so {OK/20KY - G^. If K = (E^( /^) , 

then D{OKG) = 1; otherwise D{OKG) ~ C3. • 

(5.2) C O R O L L A R Y . If K = Q ( V ^ ) , Q ( v ^ ) or Q ( v ^ ) , then any tame 
quadratic extension of K has a normal integral basis. 

Proof. Obvious from the theorem. • 

Next, for a tame quadratic extension L oi K with Gal{L/K) ~ G, we identify the 

class of OL in R{OKG). Because of (5.2) we can assume that A" is a field other than 

Q ( - / ^ ) , Q ( V ^ ) , or Q ( \ / ^ ) . We continue to assume that M, which for p = 2 is 

K, has class number 1. 

Let L be a quadratic extension of K. Then L = K{P) where jS = -\//, / G On-

Since HK = 1, we can assume / is square-free. 

(5.3) T H E O R E M . L is a tame extension of K if and only if I = mod {AOK) 

where a e {OK/20KY; 

rOK\ " ^ r {1,1 + « } , ifK = Q ( v ^ ) , 
\20K J \{l,a,l + a}, otherwise. 

The class ofOi in 

C2, i f X = Q(v/=2), 
^ ^ ^ I (7̂ , otiierwise, 

is trivia] if / = 1 mod {AOK), and it generates R{OKG) if 1^1 mod {40K)-
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Proof. Since [L : K] = 2 and K is complex, L will be tame over K as long as 
2 doesn't ramify in L. A prime of K ramifies in L if and only if it divides d{L/K). 
Therefore, for tameness, we require (d{L/K),20K) — OK-

Now mK C d{L/K) CIOK, and so L/K is tame if and only if d{L/K) = 10K 

and ilOK,20K) = OK. 

lfd{L/K) = IOK, then there must be an integer x in Oi of the form x = (r+s/3)/2 

where r,s e [OKI^OKY • Taking the norm of x from L to K gives 

- s^l = 0 mod (4C?j<:), 

and therefore 

/ = (r/s)2 mod (WK). 

Let / = o2 mod (WK) wh ere a € (OK/'^OK)^• Then 6 = {a + P)/2 is an integer 

in C i , and 0^ = (1,^)0^.. Let us assume that Oi is a free C/^-G-module with the 

element r + sO E Oi, r,s E OK, generating a normal integral basis for L over K. 
Then 

d{L/K) = AL/K[gi{r + s^),52(r + se)]OK, 

f r + sa ~s\^ , 
= det /\LIK['^AOK, 

= {2rs + s^afd{L/K), 

and therefore 2rs + s^a — u where u € = {±1} . Since 2rs + is divisible by 
5, s e C ^ . Therefore s = ±1 and = 1. The equation 2rs + s^a = u now gives 
u — a = 0 mod {20K) which is soluble for u if and only if a = 1. So L has a normal 
integral basis over K if and only if / = 1 mod {WK)- If / = 1 mod {WK), then the 
element ^ = (1 + /3)/2 generates one such basis. • 
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6. R[OKG), P an odd prime 

We now consider the case when p is an odd prime which is unramified in K. We 
make a further assumption that the index QM of WMEM+ in EM is 2. (By (3.9), 
there are infinitely many cases where this index is 2.) 

Our main results in this section are: 

( 6 . 1 ) T H E 0 R E M . If M has class number 1 and p is inert in K, then R{OKG) ~ 

Coker(;), wijere the map 

j : 0 
^ ' V(i - QOM 

is induced by reduction mod ((1 — CP)OM), .̂nd the class ofOi for a tame extension L 
ofK with Gal{L/K) ~ G and discriminant d{L/K) = IP~'^OK, I E OK, corresponds 
to the element [x] E Coker(j) where = I mod {POK)-

(6.2) T H E O R E M . If M has class number 1 and p splits in K, then R{OKG) = 1, 

that is, every tame extension L of K with Gal{L/K) ~ G has a normal integral basis. 

We will also prove the following results which are specific quadratic imaginary 

number fields which have class number 1. 

(6.3) T H E O R E M . I f p = 3, then R{OKG) is trivial if K = Q ( v ^ ) , Q(>/^), or 
Q ( v / ^ ) , and R{OKG) is cyclic of order 2 if K = Q ( \ / ^ ) , Q ( \ / ^ ) , Q ( \ / ^ ) , 
Q(\/-67), or Q(-v/-163). In cases where R{OKG) is non-trivial, a tame extension L 
of K with Gal{L/K) ~ G and discriminant d(L/K) — I'^OK has a normal integral 
basis if and only if I mod {30K) lies in (Z /3Z)^ . 

(6.4) T H E O R E M . I f p = 5, then R{OKG) is trivial if K = Q ( v ^ ) or Q ( \ / ^ ) , 

and R{OKG) is cyclic of order 3 if K = Q(v/=2) or Q ( / ^ ) . If K ^ Q ( \ / ^ ) 
or Q(-\/—7), then a tame extension L of K with Gal{L/K) ~ G and discriminant 
d{L/K) — I'^OK has a normal integral basis if and only if I mod {50K) lies in 
(Z/5Z)'<. 

We begin with a few preUminary calculations. Let us assume that M has class 
number 1. In the following this assumption will continuously be in effect unless it is 
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exphcitly removed. A consequence of this assumption is that CI^{OKG) is the entire 

kernel group D{OKG). This follows from the exact sequence 

1 D{OKG) GI{OKG) ^ CI{OK) X CI{OM) 1-

The group CI{OM) is trivial and so Cf{OKG) = D{PKG). By the proof of (2.1), 

the group D{OKG) is given by 

D{OKG) ~ Coker(j), 

where 

is the map induced by reduction mod ((1 — CP)^M)- We will write an element of 

Coker(j) as [x] where x E. M with x coprime to 1 — (p. Let [x] G Coker(j), then the 

element {C{x)) of D{OKG) which corresponds to [x] under the above isomorphism is 

described by the diagram: 

C{x) (DM 

OK OM/{1-CP)OM 

where ji is multiplication by x followed by reduction mod ((1 — CP)OM) and j2 is 

reduction mod (POK)- We can write C{x) as 

C{x) = {(a, b)eOK xOM\a = xb mod ((1 - CP)OM)}-

The action of G on C{x) is induced from the action on KG ~ x M: 

g{a,b) = {a,Cpb). 

The group A = Aut(G) acts on D{OKG). For (5 G A and (C(x)) G D{OKG), 

[x] G Coker(j'), (C(x)Y = (C(x)*) where C{xy is same as C{x) as an abelian group, 

but the G-action on Cixf is defined as g{a,by = {S(g)(a,b)Y. 

(6.5) L E M M A . D{OKG) is a trivial A-module. 

Proof We need to show that, for Si e A and (C(x)) G D{OKG), C(x)*' is 

isomorphic to C{x). 
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Since A ~ Ga/(Q(Cp)/Q), elements of A act on (p by 8i{Cp) = Cp- As a result, A 
acts on OM- Define 

/ : C{xf C(x), 

For b G Cjif, we obtain 6i~^{b) from b by replacing C,p by an appropriate conjugate of 

C,p. Therefore, on reduction mod ((1 - CP)OM), b = Si~^{b). So the image of / lies 

in C{x). The map / clearly is an isomorphism of abeUan groups. It also respects the 

action of G as the following shows. 

f ( g { a , b f ) = fa9'^ia,b)f), 

^ ma,Cpbfy 

-{a,6-\Cpb)), 

^{a,(:p6-\b)), 

= 9f{a,bY. 

The map / is therefore an O î̂ G-isomorphism. • 

A consequence of the above lemma is that for a G Z A and {C{x)) G D{OKG), 

C{xY ^ C{xY^''\ 

where e : Z A —» Z is the augmentation map. 

We are now set to calculate R{OKG), the group of realizable classes in CI{OKG). 

(6.6) T H E O R E M . 

f D{OKG), i f p is inert in K, 

if p splits in K. 
R{OKG) = ^^^ 

Proof The group R(OKG) is given by 

RiOKG) = DiOKGY, 

where J = Z A n { e ' / p ) ' Z A is the Stickelberger ideal and 6' = J2lZ\ a5~\ of course, 
is the Stickelberger element. Since the action of A on D{OKG) is trivial, 

RiOKG) = D{OKGY, 

= D{OKGY^'\ 

= D{OKGfP-^^l'^, 

where we have used the fact that £( J) = ((p- l) /2)Z. By (2.2), the order of D{OKG) 

divides {p+ 1)/QM if P is inert in K or it divides (p— 1)/QM if P splits in K. QM, of 
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course, is the index of WMEM+ in EM which we are assuming to be 2. So the order 
of D(OKG) divides (p + l)/2 if p is inert in K or it divides (p - l)/2 if p splits in K. 

Since (p + l)/2 and (p — l)/2 are relatively coprime, we obtain 

1 1, ifp splits in K. 

• 
Proof of (6.2). Immediate from the above theorem. • 

Having calculated R{OKG) we can now proceed with the business of identifying 
the class of OL in R{OKG) where X is a tame extension of K with Gal{L/K) ~ G. 
Since, by (6.2), there is not anything further to prove in the case when p splits in K, 
we only need to consider the case when p is inert in K. 

Let 6 E OL he an element which generates a normal basis for L over K, that is, 
an element whose conjugates form a basis for L as a vector space over K: 

L = {9,{e),...,gpi9))K. 

We can assume that trijK{Q) = 1- The element 9 sets up an isomorphism between 
the iTG-modules L and KG: 

(t>:L^ KG, 

X 1-̂  (t>{x), 
where ^(x)[9) = x. The map </> allows us to embed Oi in KG. The /f-algebra KG 
splits as K X M. Let TTI be the projection of KG into the first factor, and Tt2 into the 
second. We take the action of (7ri,7r2) on KG to be 

(7ri,7r2)(p) = ( l ,Cp) . 

The combined map (7ri,7r2)^ induces an injective CjfG-homomorphism: 

(7ri,7r2)<?i: ^ K x M. 

Because of our choice of 9, the map TTI4> : OL —^Kis the ordinary trace map from L 
to K. Therefore TTI^(OL) C OK- Since L/K is tame, there exists in Oi an elemeiit 
of trace 1 and, consequently, Tri(p(OL) = OK- The image of OL under 7r20 will not 
in general be OM- It will be a fractional ideal of OM- Because of our assumption 
that CI{OM) = li T^l<t>{OL) will be a principal fractional ideal. Let 7r2(/>(C?£) = DOM 

with y E M. The element y uniquely determines the class of Oi in R{OKG) as the 
following theorem shows. 
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(6.7) T H E O R E M . The class o f O i in R{OKG) is {C{y)). 

Proof Let y~^TT2<f> : Oi —> OM be the homomorphism obtained by combining 

7r2</) with multiplication by y~^. Then y~^Tr24> is a surjective (Pj^-G-homomorphism. 

The map T T I ^ : Oi —> OK is also a surjective O^^G-homomorphism into OK- We can 

use these maps to construct a square of C^G-modules: 

OL ''-^^ OM 

„7ri0 | j i (6.8) 

OK OMI{\ - (.P)OM 

where i\ is multiplication by y followed by reduction mod ((1 — Cp)^Af) and is 
reduction mod {POK)- The above square is commutative. To show this, let x G Oi. 

Then 

4>{X) = xxgx + • • • + Xpgp, Xi G K, 

and 

Tri(f>(x) = XI + • - • + Xp, 

Tr2(l>{x) ^ xi(p + --• + Xp(P. 

Reducing 7r2^(x) mod ((1 - CP)OM) gives xi-\ \-Xp mod (POK) which is same as 

7ri<̂ (x) mod (JPOK)-

Since C?Af/(l — Cp)^M — OK/POK, the map j2 is surjective, and, as the square 

is commutative, ji is also surjective. As {Tri,y~^ir2)(p : Oi —» OK X OM is injective, 

(6.8) is cartesian. The square (6.8) is exactly how we had previously defined C{y). 

Therefore OL C { y ) , and (OL) = {C{y)). • 

The above theorem shows that in order to determine the class of OL in R(OKG) 

we need to calculate the element y G M which generates 7r2</>(C>i) over OM- Actually, 

it is the coset of y in 

that we need to calculate, for the class (G(y)) of OL depends on [y] rather than y. 
It is proper that the class of OL should depend on [y] instead of y. The value of y 
depends on our choice of 9 used to define the isomorphism cj) : L ^ KG, and, as 
there is not any canonical way of defining this isomorphism, there is not any unique 
value for y. In the following we will see that different values of 6 may lead to different 
values of y but they all define the same coset in Coker(j'). This is consistent with the 
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fact that the class of OL in R{OKG) is independent of how we choose to represent 

the isomorphism L ~ KG. 

We begin our calculation of [y] by computing the discriminant d{L/K) of L over 
K. The discriminant d{L/K), we will see below, is central to the calculation of [y . 

(6.9) L E M M A . The discriminant d{L/K) is a (p - l)th power of an ideal of OK, 

i.e., d(L/K) = HP-'^ where H is an ideal of OK-

Proof. Let T>(L/K) be the different. Then, since L/K is tame and the ramifica
tion index of any prime which ramifies in L is p, we have 

V{L/K) = llQP-'. 
Q 

The product is over the primes which ramify. The discrminant is 

d{L/K) = novmLiKiHL/K)), 

= '2normL,K{Qf-^-
Q 

Since normL/K{Q)^ for each Q, is an ideal of OK, the discriminant d{L/K) is a 
(p - l)th power of the product of prime ideals of OK which ramify in L. • 

The product of prime ideals of OK which ramify in L will not in general be a 
principal ideal. For cases where it is, we have the following result. 

(6.10) L E M M A . Ifd{L/K) = IP~'^OK, I € OK, then I is a square in {OK/POKY, 

i.e., the congruence 

I = mod (POK) 

is soluble for k E (OK/POKY-

Proof Let P be a prime of K which divides IOK- Let Q be the prime of L lying 
above P, and Kp and LQ denote the completions at the indicated primes. Then 
POL = QP and Gal^Lq/Kp) ~ G. The local Artin map K^ Gal{LQ/Kp), 
induces an isomorphism 

^ ^ T T T T ^ GaliLn/Kp), 

where Ep and EQ, respectively, are groups of units in Kp and LQ, and nornig/p 
is the norm mapping from LQ to Kp. Since L/K is tame, the subgroup E\, of Ep 
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consisting of units congruent to 1 mod (POp) lies in normg/p(£^Q) (see [2]) and 
consequently the order of Gal{LQ/Kp) divides the order of Ep/Ep. The order of 
Gal{LQ/Kp) is p. To find the order of Ep/E}, we note that 

X 

X 

Ep f Op Y (OK 

4 - \ p o p ) - V P 

The order of the group {OK/P)^ is norm^(P) - 1. Hence noTmK{P) = 1 mod (p). 

Since normjf is multiplicative, normx-(/) = 1 mod (p). So I lies in the kernel of the 

map 

( O K V / Z \ 

induced by normjf : OK Z . Since p is inert in K, (OK/POK)^ is a cyclic group 

of order p̂  — 1. The kernel of the above map is ((OK/POK)^)^'^• So /, in fact, is 

not just a square but a (p — l)th power in (OK/POK)^ - D 

Next We define an object det^(Ci) which will hnk [y] with the discriminant 

d{L/K) of L over K. 

Assume that the discriminant d { L / K ) has the form P~^OK- Then since d{L/K) 

is principal, OL is a free CJ/f-module (—in general, to determine the class of OL in 

CI{OK), one has to consider the square root of the discriminant d { L / K ) but in our 

case, since p — 1 is even, such considerations are irrelevant). Let us fix an Oj^-basis 

for OL: 

OL = {ei,...,ep)oK-

The irhage of OL under 0 can be written as 

4>iOL) = {<P{ei)^---,<P{ep))o^; 

where 
p 

4>{^i) ^^Eijgj, Eij e K. 

Define dete(Ci) = det(£:). The 9 in det^(Oi) signifies dete(Oi)'s dependence on the 

choice of 9. 

(6.11) L E M M A . 

deteiOL) = ukP-^ mod (POK), 

where u G O^ and = / mod (POK)-
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Proof. Let Aij = gi(ej) and Bij = gi(gj{9)). Then, since 

f P \ 
Aij = gi 5Z ^3k9k{0) , 

\k=\ I 
V 

k=l 
p 

= (EB^, 

where (EB)'^ denotes the transpose of the matrix EB, A = (EB)-^ and therefore 

det(>l) = det(£;)det(B). But det(.£;) = dete(C>L). Hence 

det(^) = dete(Oi)det(5). (6.12) 

Now det(>l) e OK- T O prove this, we note that det(^) E OL and 5(det(^)) = 
det(5(.A)) where g{A) — (g{Aij)). By interchanging rows in g(A) we can transform 
g{A) to A. The number of interchanges required is p - 1 and therefore det{g{A)) = 
{-iy-'^det{A) = det{A). So the element det(>l) € OL is fixed under G and therefore 
it lies in OK-

The discriminant of the basis ê , 1 < i < p, is 

= det{Af. 

But d{L/K) = AL/K[eu---,ep]OK = IP'^OK- Therefore dei{A) = where 

V E O^, or det(vl) = vkP''^ mod (POK) where k^ = I mod {POK)-

The determinant of the matrix B, on reduction mod (POK), gives 

det(5) = (-l)iP-')/\g,{9) + ••• + gp(e))P mod (POK), 

= {-lfP-^^'hvLiK{0)P mod {POK), 

= (_l)(p-i)/2 mod {POK), 

since tr^/i^(^) = 1. 

Returning to (6.12), we find 

vkP-^ = {-l)^P~^^l'^deXe{OL) mod {POK), 

or dete(C?i) = ukP~^ mod (POK) as required. • 
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Having related dete(Oi) to d{L/K), we now relate it to y where Tr2^{0L) = VOM-

( 6 . 1 3 ) L E M M A . 

det^(C?£) = uyP-'' mod ((1 - QOM). n G O^. 

Proof. The image of ^^(Ci) under (7ri,7r2) is 

(7ri,7r2)(<?i((Pi)) = {(a, 6) G Cj^ x yC»M I a = i mod ((1 - C P ) C M ) } . 

Let X G OK be such that x = y mod ((1 - CP)C?M)- Then 

{j^X.i^MiPL)) = ( ( x , K p ) , • • •, (P, 0))OK-, 

and 

But 

where 

<^{OL) = (7ri,7r2)-i((x, 2/Cp), • • •, (^, 2/Cr')' 

( T T I , 7r2)-\(x, K p ) , • • •, (̂ , K r ^ ) ' (P' = (/i . • • • . /p)o.-, 

/ i = ^ Eijgj, Fij G ii'. 

and 

Y,Fij = ^, l < i < p - l , 

Y.Fi,Cp = yC;, l < i < p - l , 

i^Pi = i , i < i < p . 

But previously we had (P{OL) - {<p{ei),... , (l){ep))oj,-, where <f){ei) = YJj^iFijgj, 

Eij G K. Therefore 

p 

E,k = Y.'^^i^jk^ 
3=1 

where G OK with det(r) G C ^ , and deie{Oi) = det(£) = ^;det(F), v 6 C ^ . 
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In the matrix (Py), if we subtract the pth column from the ith for all 1 < i < 
p — 1 and denote the resulting matrix by (P'iy), then det(P) is unchanged by the 
operation (Fij) -* (F'ij), and so det(P) = det(P'). But det(P') = det(P") where 
F"ij = Fij — Fip i s a p — I x p — 1 matrix. For 1 < i < p — 1, 

j=i j=i 
p-i 

and so, for 1 < 2 < p — 1, the elements XlJlJ F"ijCp generate yOM over OK- A S a 

result, 

det(P"i^) = wnoTmM/K{y), ^ O^. 

We therefore have det^(Oi) = vwRorniM/Kiy)) or 

det^(C?i) = vwyP-'^ mod ((1 - CP)OM). 

• 
We are now in a position to prove (6.1). 

Proof of (6.1). We have already proved in our earUer discussions that ifp is inert 

in K then R{OKG) ~ Coker(;) where j •-O^ ^ {OM/{1-CP)OMY • I* only remains 

to identify the class of OL in R{OKG). 

By (6.7), the class of OL is {C{y)) where [y] E Coker(j) and, by (6.11) aiid (6.13), 

yP-^ = ukP-^ mod ((1 - CP)OM), 

where u 6 O^, k"^ = I mod (POK), and d { L / K ) = F'^OK is the discriminant. Since 
p is inert in K, the group (0^/(1 — CP)OMY which is isomorphic to {OK/VOKY 

is cyclic of order p̂  - 1. Let 2 be a generator of ( C M / ( 1 - C P ) ^ M ) ^ - The subgroup 
of (OM/(1 - CP)OMY generated by O^ is (^(f'-i)/*) where t is 4 if = Q ( \ / ^ ) , 6 
\{ K = <Q( /^) , or 2 if i f 7̂  Q ( \ / ^ ) , Q ( / ^ ) - If we let y/k = 2* then the above 
congruence can be written as 

^ x ( p - l ) ^ ^aip^~l)lt ^^^^ _ 

where I <a <t. This implies x(p - 1) ^ o(p^ - l ) / i mod (p̂  - I ) . Since the image 
of 3 •- OIJ ( O M / ( 1 - QOMY is generated by 2^+1)/*, it follows that p + 1 = 
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0 mod (t). We therefore have x = a{p + l)/t mod (p+1), or x = a{p + l)/t + b{p+l), 
b G Z . Hence y = 2a(p+l)A2Mp+l)A;. The elements and z^(P+l) lie in j ( C ^ ) . 
Therefore, in Coker(;), [y] — [k]. • 

Although theorem (6.1) can be used to determine the class of OL for a tame 
extension L of K with Gal{L/K) ~ G and d(L/K) — P~^OK-, it does not, of course, 
establish the existence of such extensions. Next we prove a result which will show 
that there indeed exist extensions of K to which (6.1) is applicable. 

In (6.9) and in the proof of (6.10) we saw that if L is a tame extension of K with 
Gal{L/K) ~ G then the discriminant d{L/K) has the form if^"^ where H = Y[j^his 
the product of primes of K which ramify in L and, for each h, novmK{h) = 1 mod (p). 
We now consider the question whether for a given product H = Ylf^ h of primes of 
K with normji-(/i) = 1 mod (p) for each h there exists a tame extension L of K with 
Gal(L/K) ~ G whose discriminant d[L/K) is HP~^. The following theorem answers 
this question in the case where only one single prime h of K is involved. 

(6.14) T H E O R E M . Let h be a prime of K with noTmK{h) = 1 mod (p). Then 

there is a unique tame extension L of K with Gal(L/K) ~ G and discriminant 

d{L/K) = hP-\ 

Proof. The proof is a straightforward exercise in class field theory. Let 1^ be the 
group of fractional ideals of OK which are relatively prime to h. Let P/j denote the 
subgroup of Ih consisting of principal fractional ideals and let P^ be the subgroup of 
Ph consisting of ideals which have generators congruent to 1 mod (h). Under the map 
induced by Ph —> (OK/h)^, XOR ^ [A^ Phi Pi, is isomorphic to (OK/h)^ modulo the 
subgroup of (C/i-//i)^ generated by C ^ . The order of (Ojfi-//i)^ is normji-(/i)-l which 
is divisible by p. The group O^ is (C4) if K = Q ( v ^ ) , (Ce) if K ^ Q ( \ / ^ ) , or (-1) 
otherwise. The order of the subgroup generated by O^ is, therefore, relatively prime 
to p. Hence p divides the index {Ph, : P^) and, consequently, p divides (J/j : P^). Let 
Q, P^ C Q C Ih, be the unique subgroup whose index in Ih is p. Then the classfield 
of Q is the unique tame extension L of K with Gal{L/K) ~ G and d{L/K) = hP~^ 
whose existence we are trying to prove. The Galois group of the class field over K 
is isomorphic to Ih/Q, the isomorphism being induced by the Artin map. The group 
Ih/Q is cyclic of order p and therefore isomorphic to G. • 

The above theorem basically is a recipe for generating tame extensions L of K with 

Gal{L/K) ~ G and discriminant d{L/K) = RP''^ where H = Uh^, norm/^(/i) = 

7 2 



1 mod (p), is an arbitrary product of primes of K. Stating with a product H = 

Y17-1 normjii-(/ii) = 1 mod (p), of primes of K we denote by Li the extension of K 

guaranteed by (6.14) which is ramified at hi only. The compositum f l iL i *hen is a 

tame extension of K ramified at primes dividing H only with GaJois group consisting 

of n copies of G. The field HiLi ^ whole series of subfields L which are tame 

over K with Gal{L/K) ~ G and d(L/K) = HP~^. In fact any tame extension L of 

K with Gal{L/K) ~ G and d(L/K) = HP-'^ arises in this manner. U H = IOK is 

principal then we have a whole string of tame extensions of K to which (6.1) can be 

applied. 

Next we prepare the ground for proving (6.3) and (6.4). We assume if is a 

quadratic imaginary number field with class number 1. The values of d are now 

restricted to 1,2,3, 7,11,19, 43,67, and 163. 

(6.15) T H E O R E M . I f p = 3, then CI{OM) = 1 for aiJ K. I f p = 5, then CI{OM) = 

lforK = Q ( v / ^ ) , Q(^/=2), Q ( x / ^ ) , and Q ( y ^ ) . 

Proof. Let be the class number of M and the class number of M'^. 

Then, by [16], theorem (4.17), 

=QM\WM\ n (̂ -̂ ^̂  
•"^ tp odd 

where the product is over odd Dirichlet characters of M, QM is the index of WMEM 

in EM, and, for a character <p with conductor f^p, 

where the sum is over the elements of (Z//(^Z)^. 

Let us first calculate the index QM- From (2.10) we have QM = 2 for K = 

Q ( v / ^ ) and K = Q ( / ^ ) . If K ^ Q ( \ / ^ ) , then the element 1 - CsG is a unit in 

Q(C8,Cp)- Taking the norm of 1 - (sCp from Q(C8,Cp) to M = Q(\/=2,Cp) gives 

u = { l - C8Cp)(l - CiCp) e EM, 

and = -C} ^ W^M- Hence, by (2.9), QM = 2. 

For the rest of K's, M has the form Q(i/-9) Cp) where ? is a prime congruent to 

3 mod (4). By (3.9), we at once obtain QM = 2 for these fields. 
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Let p = 3. Then M = ii:(C3). If if = Q ( v ^ ) , then M = ^('(Cs) = Q ( v ^ ) , and 
the class number of M is 1 (M is one of the quadratic imaginary number fields with 
class number 1). 

Assume A" is a field other than Q ( \ / ^ ) . The group WM of roots of unity in M 

is 
(C4,C3), ifK = Q{V^), 

WM= , 
(-1,C3), Otherwise, 

and so \WM\ = 12ifK = Q ( v ^ ) ; 6 otherwise. 

The character group X{M) of M is a subgroup of the character group for ̂ {(D, CZ) 
where D is the smallest positive integer such that M C Q ( C D , C 3 ) which is the same 
thing as the positive generator for the discriminant d{K/Q,). We have 

X{M) = {x,i'\x^ = i^^ = l), 

where x is a character of Q(Cz)) and tp is the non-trivial character of Q(C3)- The 
action of ip on Ga/(Q(C3)/Q) ^ (Z /3Z)^ is clear; it sends the generator of (Z/3Z)^ 
to -1 . The action of x on Ga/(Q(Cz))/Q) {Z/DZ)'' depends on the value of D. 
l f K = Q ( v ^ ) , then = 4 and x ( l ) = 1, x(3) = -1 . If K Q ( v ^ ) , then D = 8 
and x ( l ) = x(3) = 1, x(5) = x(7) = -1- For the rest of the K's, D is an odd prime 
and 

X{^) = I n ' e ' -

To find the odd characters of M we recall that a character is odd if it sends -1 , 
i.e. complex conjugation, to —1 (and even if it sends it to 1). Now x is clearly odd 
\f K — (Q( \ /^) or Q ( \ / ^ ) . For the other fields, P is a prime congruent to 3 mod 
(4), and therefore —1 is not a square mod and hence x( —1) = ~1- So x is an odd 
character for all K. The character T/I is also odd. The set of odd characters of M, 
therefore, consists of x and The conductor of x is whereas it is 3 for •0. 

Now that we have the set of odd characters of Af, computing for each odd 

character <̂  gives, for Xi 

K = Q ( x / ^ ) , ^ r - 1 / 2 , if 

I - 1 , ot: otherwise, 

and, for '0, = —1/3. 

Evaluating the quotient in (6.16) now gives / IM/^M+ = 1) or = ^M+- The 
field M+ is a real quadratic number field. From the table given in [l] on the class 
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numbers of real quadratic number fields we get hM+ = 1 for all M"*", and therefore 

/iM = 1 for all K. 

Now assume p — b. Then M = K{(r,). The group WM of roots of unity in M is 

r (C4,C5), if = Q(v/=T), 
WM^< ( - 1 , C 3 , C 5 ) , i f K = Q i ^ ) , 

. ( - l . C s ) , otherwise. 

The order of WM is 20'd K = Q(>/^) , 30 if if = Q ( V ^ ) , and 10 otherwise. 

The character group X{M) is given by 

X ( M ) = (x ,V | x ' = V'̂  = l ) , 

where x is a character of (Q(C£)) which is defined in the same way as in the p = 3 
case and ^ generates the character group for Q(C5)- We define the action of tp on 
Ga/(Q(C5)/Q) ^ (Z /5Z)^ as ip{2) = Ci- Since 2 generates (Z/5Z)'*, the action of ip 
on the other elements of (Z /5Z)^ can be obtained from the action of ip on 2. 

The set of odd characters of M consists of x, xi''^, and ip. The conductors 
are: = D, = 5D, f^3 = 5, = 5. Calculating B^ for each odd character (p 

gives 

1/2, i{K = <^{V^), 
5v = < -1 /3 , if = Q(y=3), 

— 1, otherwise, 
- 2 , ifK = (^(V^),q( 
-4 , i f i r = Q ( v ^ ) , 
-8 , if;i: = <Q(v^) , 
-14, if i ir = ( Q ( v ^ ) , 
-18, i f i r = Q ( y ^ ) , 
-30, if = Q(v^^l63), 

2 ) , Q ( v ^ ) , or Q(y=7), 

5^3 = • 5 ( 3 - C 4 ) , 

5^ = - - ( 3 + C4). 

Substituting for QM, \WM\, and in (6.16) gives 
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f 1, ilK = Q ( v ^ ) , Q ( V ^ ) , Q ( V ^ ) , or Q(^ /^)> 

hM 
= < 

2, if = Q ( y ^ ) , 

4, UK = Q ( v ^ ) , 
7, if if = 
9, iiK^ Q ( v ^ ) . 

I 15, if i f = Q ( v / ^ ) , 

which shows that, for K = <^{V^), Q ( / ^ ) , Q ( \ / ^ ) , and Q ( v ^ ) , % = ^M+, 

and, since hM+ is an integer, hu > 1 ior K = Q ( / ^ ) , Q ( ^ / ^ ) , Q ( v / ^ ) , 

( Q ( y ^ ) , and Q(y^T63). 

Next we show that, for K = Q ( \ / ^ ) , Q ( V ^ ) , and Q ( v ^ ) . /iM+ = 1-

We use Minkowski bound method for calculating hM+ • 

If we write K as Q ( \ / ^ ) then M+ can be written as Q(/3,7) where /? = (! + 

V^) /2 , and 7 = y / d i p f l ) if d ^ 3 mod (4) or 7 = (1 + /3 + y 5 ( J T 2 ) ) / 2 if 

d = 3 mod (4). The ring of integers in M"̂  is 

C M + = ( 1 , A 7 , / 3 7 ) Z -

The discriminant d(M+/Q) of M+ over Q is 5^d{K/(Si)^. 

UK = Q ( v ^ ) , then rf(M+/Q) = 2^5^Z and the Minkowski bound for M+ is 4. 

The rational prime 2 is inert in Q(/3) but it ramifies in M"*". The prime of M"*" lying 

above 2 is generated by 1 + ^ + 7 and therefore is principal. The prime 3 is inert in 

(Q(/3), so there is no ideal of norm 3. Every ideal with norm < 4 is principal; M"*" has 

class number 1. 

If K = Q(>/=2), then £f(M+/(Q) = 2^5^^. and the Minkowski bound for M+ is 
8. There is only one prime ideal of M'^ lying above 2 and it is generated by 2 + 7. As 
3 is inert in Q(/?), there is no ideal of norm 3. The prime 5 ramifies in Q(/3) and it 
ramifies further in M" .̂ The prime of M"*" lying above 5 is generated by 1 - 2/3 — 7. 
The prime 7 is inert in The class number of M"̂  is therefore 1. 

li K = then d(M+/Q) = S^S^Z. The Minkowski bound for M+ is 3. 

Both 2 and 3 are inert in So there is no ideal of norm < 3. 

U K = Q ( v ^ ) , then £i(M+/Q) = 725^2 and the Minkowski bound for M+ is 

7. There is only one ideal with norm < 7 and it is the one which lies above 5 and is 

generated by 1 — ^7. The class number of M"*" is therefore 1. 

So, for K = Q ( y ^ ) , Q ( ^ ) , Q ( v ^ ) , and Q ( v ^ ) , /IM+ = 1- • 
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Proof of (6.3). IfK = Q ( \ / ^ ) or Q ( v ' ^ ) , then 3 splits and therefore, for these 
fields, R(OKG) = 1. For the remaining fields 3 is inert and the order of R{OKG) is 
1 if i f = Q ( V ^ ) or 2 otherwise. 

Let K he a, field such that R{OKG) is non-trivial. Then, by (6.1), the class of 
OL in R(OKG) is trivial if and only if x G j ( C ^ ) where = I mod {30K)- The 
group {OKI^OK)^ is generated by a. The image of under j is the subgroup of 
{OKI^OKY generated by a^. Therefore j{0'^f = (a^) = {±1} . Hence L has a 
normal integral basis if and only if / = ±1 mod {2)0K)- D 

Proof of (6.4). U K = Q ( v ^ ) , then 5 splits and therefore R{OKG) = 1. If 
K = Q ( \ / ^ ) , or Q ( v ^ ) , then 5 is inert. The order of R{PKG) is 1 if 
K = Q ( V ^ ) or 3 otherwise. 

Let K = Q ( v ^ ) or Q ( v / ^ ) . Then, by (6.1), the class of OL in R{OKG) is 
trivial if and only if x G iiO^j) where = / mod (50/^-). If if = Q ( v ^ ) , then 
{OKI^OKY = {OC + 1), i ( O ^ ) = ((a + 1)3) = (a), and j{Ol,f = (3). Therefore 
L has a normal integral basis if and only if / mod {50K) lies in (Z/5Z)^. U K = 
Q(v'—7), then we obtain = (2) and so L has a normal integral basis if and 

only if / mod {50K) € (Z /5Z)^ . • 
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7. R'{OKG) — a subgroup of R{OKG) 

Let K be an imaginary quadratic number field with class number 1. In this section 
we consider the subgroup R'{OKG) of R{OxG) generated by classes of the form (Oi) 
where L is a tame Galois extension of K with Gal{L/K) isomorphic to G which is 
also a Galois extension of Q. As in the last section, we assume that p is unramified 
in K but, unlike the last section, we do not impose the condition CI{OM) = 1-

Let L be a tame extension of K with Gal{L/K) ~ G which is also a Galois 

extension of Q. The group Gal{L/Q), then, is either cycHc or it is isomorphic to 

the dihedral group D2p of order 2p. Let us first consider the case when Ga/(L/Q) is 

cyclic. The group Ga/(L/Q) has a unique subgroup whose index in Ga/(L/Q) is 2; 

let F be the corresponding subfield of L. Then F is a tame Galois extension of Q 

with the Galois group Gal(F/(^) isomorphic to G and L = KF. 

(7.1) L E M M A . If the discriminants d{K/(^) and d ( F / Q ) are reiativeiy coprime, 
then L has a normal integral basis, i.e., the class ofOi in R'{OKG) is trivial. 

Proof Assume that the discriminants d{K/Q) and d{F/Q) are relatively coprime. 
Then, since L = KF, the ring OL of integers in L is a compositum of the rings OK and 
OF of integers in K and F, i.e., OL = OxOp. Since F is a tame Galois extension of Q 
with Gal(F/<Q,) ~ G which is abelian, by Taylor's proof [15] of Frohlich's conjecture, 
F has a normal integral basis over Q. This means that Op — and therefore 
OL — OKG. The element oi Op which generates a normal integral basis for F over 
Q also generates a normal integral basis for L over K. • 

Next, for each K, we identify cases where d{K/(^) and d(F/<^) can have a common 

factor. We will need the following lemma. 

(7.2) L E M M A . Let r be a prime integer which divides d ( F / Q ) . Then r = 

1 mod (p). 

Proof. Let R be the prime of F which lies above r Z . Let and Fji denote 

completions of Q and F at r and R respectively. Then rOp = RP and Gal{FR/<^^) ~ 
G. Since the inertia subgroup of Gal{Fii/(^^) is the entire group Ga/(Fj?/Q^), the 

local Artin map 

C - Gal{FR/Q,) 
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induces an isomorphism 

Gal{FR/q,), 
noTmji/r{ER) 

where Er and ER denote the groups of units in and FR respectively, and normR/j. 

is the norm mapping from FR to Q .̂ Let E^^^ = Er and, for a positive integer a, 

Er^^ be the subgroup of Er consisting of units congruent to 1 mod {r°'Or)- Then, by 

the class field theory, we can find an integer a such that 

E^r"^ C novmR/riER). 

Let a be the smallest such integer. Then, since Er^^ does not lie in norm^/r(£';j), we 
can assume a > 1. Since Gal{FR/<^r) is cyclic whose order is a prime integer, under 
the local Artin map, Ei" will map onto Ga/(Fjj/Qr) with ^i"^ lying in the kernel. 
Therefore the order of Ga/(Fi?/Q^) divides the index of EI^."^ in If a = 1, then 

E^ fOr_Y / _ Z " 
^(1) - [rOrJ - [rX 

and the index of ^̂ ^̂  in E^P^ is r - 1. If a > 1, then 

^ ^ "y. (additive group). jr 

and the index of si'^^ in si"''^^ is r. So the order of Gal{FR/(^r)> which is p, divides 
r — 1 or it divides r. But p does not divide r; r is a prime distinct from p. Therefore 
p divides r — 1 or, equivalently, r = 1 mod (p). • 

In the process of proving (7.2), we have proved, keeping in mind that F is a real 
field and therefore there is no possibility of the infinite prime of Q ramifying in F, 

(7.3) L E M M A . Let I be the product of finite primes of Q which ramify in F. 

Then the conductor / ( F / Q ) of F over Q is simpiy / Z . • 

(7.4) T H E O R E M . If K = Q ( v ^ ) , <^{\^), or Q ( v ^ ) , then the class ofOi 

in R\OKG) is trivied. 

Proof. Let K = Q(v/=I), Q ( v / ^ ) , or Q(v/=3). Then d{K/l^) = 4Z, 8Z, or 
3Z. By (7.2), there does not exist an abelian extension F of Q of degree p such 
that 2 or 3 divides the discriminant d{F/Q,). Therefore, for any abelian extension F 
of <Q of degree p, d{K/Q,) and d(F/Q) are relatively coprime. Applying (7.1) now 
immediately proves the theorem. • 
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Since, by (7.4), there is nothing else to be said about the case when K is Q(-v/^), 
Q ( V ^ ) or Q ( v ^ ) , let us assume that K is a field other than Q ( v ^ ) , Q ( V ^ ) 
or Q ( - \ / ^ ) . We can write K as Q ( - / ^ ) where g is a prime congruent to 3 mod (4). 
The discriminant d{K/(^) of K over Q is qZ. The discriminant d(F/(^) of F over 
Q is IP~^X where / is the product of prime integers of Q which ramify in F. This 
follows easily from the fact that 

d{F/q) = noTmp{V{F/q)), 

where the different V{F/<Q,) is the product of ramified primes of F raised to the power 
p — 1. There are three distinct possibilities for the prime factors of I: 

a) I = q, i.e., F is ramified at q only, 
b) / = m, {q,rn) = 1, i.e., i*" is ramified at primes other than q, and 
c) / = qm, {q,m) = 1, i.e., F is ramified at q as well as at primes other than q. 

To indicate F's ramification, we will write F as Fq, Ffn, or Fqjji representing the above 
three possibilities. The associated field L will be written as Lq, Lfni or Lqm- In the 
following we will determine the class of in R'{OKG) in each of the three cases 
L = Lq, Lm, and Lqm. We begin with L = Lm which is the easiest to deal with. 

(7.5) T H E O R E M . l f L = L,n, then the class ofOL in R'{OKG) is trivial. 

Proof. This is a straightforward case of applying (7.1). The discriminants d{K/(Q) 
and d(F/Q) are relatively coprime and therefore L has a normal integral basis over 
K, and hence the class of OL in R'{OKG) is trivial. • 

Let Oq and Oqm, respectively, be the rings of integers in Lq and Lq^. The next 

result links the class of Oqm to the class of Oq. 

(7.6) T H E O R E M . In R'{OKG), (C^,,,,) = {Oq), i.e., as an OKG-module, Og^ is 

isomorphic to Oq. 

Before we could prove the above theorem, we need a number of auxiliary results. 
First of all, we note that the extension Lq is unique. To prove this we observe that 
the extension Lq is a compositum of K with Fq where Fq is an abelian extension of 
Q whose conductor, by (7.3), is gZ. The smallest cyclotomic field containing Fq is, 
therefore, (̂ (C )̂- The Galois group Ga/(Q(Cg)/Q) is isomorphic to (Z/gZ)^ which 
is cyclic of order q - 1. Since p divides q - 1, Ga/(Q((g)/Q) has a unique subgroup 
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whose index in Ga/(Q(Cg)/Q) is p. Therefore, by Galois correspondance, Q(Cg) has a 
unique subfield whose degree over Q is p. Since Fq lies in QiCq) and its degree over 
Q is p, Fq must be that field. 

Next we indicate how extensions of the form Fm and Fqm can arise. Let us first 

consider Fm- The conductor of Fm is mZ and therefore Fm C Q(CTO)- If "2 = HiLi '''i 

is the factorization of m into prime integers, then 

/ Z X'' / Z \ 

Since rj = 1 mod (jo), each group (Z/r^Z)^ has a subgroup whose index in (Z/r^Z)'^ 
is p. Consequently GaZ(Q(Cm)/Q) has a whole string of subgroups with indices p in 
Go/(Q(Cm)/Q). As a result, Q(Cm) has an entire family of subfields with degree p over 
Q and discriminants which divide m^~^Z. The field Fm is one such field. Extensions 
of the form Fqm also arise in this manner. 

Given an extension Fm, there is a quicker way of generating extensions of the form 
Fqm- It involves forming the compositum FqFm of Fm with Fq and then fixing under a 
subgroup of Gal{FqFml<k)- The group Ga/(FgF,„/Q) is isomorphic to Ga/(Fg/Q) x 
Gal(Fm/^) where each factor is cyclic of order p. There are p + 1 subgroups of 
Gal{FqFm/(^) with indices p in Gal{FqFm/<^)- So there are p + 1 subfields of FqFm 
with degree p over Q. Out of these p + I subfields, 2 correspond to Fq and Fm- The 
remaining p — 1 subfields are of the form Fqm- The following result proves that any 
extension of the form Fqm can be generated in this manner. 

(7.7) L E M M A . For any extension Fqm there exists a unique extension Fm such 

that Fqm is a subfield of the compositum FqFm-

Proof. The compositum FqFqm lies in Q(C97n) and contains a unique extension Fm 
of Q of degree p which is ramified at primes dividing m only. The degree of FqFm over 

(Q is which is the same as the degree of FqFqm over Q. Therefore FqFqm — FqFm 
and hence Fqm C FqFm-

The Galois group Gal{FqFm/<^) is isomorphic to Gal{Fq/<^) x Gal{Fm/<^)- Let 
Qq and Qmi respectively, be generators of Gal(Fq/Q,) and Gal(Fm/^)- Then the sub
groups of Gal{FqFm/^) with indices p in Gal{FqFm/<^) are (gq), (gm), and (gggm), 
1 < a < p — 1. The fixed fields of (gq) and (gm) are Fm and Fq respectively. Fixed 
fields of {gqQm) correspond to extensions which are ramified at q as well as at primes 
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dividing m. Therefore 

for some l < a < p — 1. • 

Proof of (7.6). By (7.7), there exists an extension Fm and an integer a, 1 < a < 
p — 1, such that Fqm is a subfield of FqFm fixed under the subgroup of Gal{Fq/€l) x 
Ga/(F„i/Q) generated by gggm- For the fields Lq, Lm and Lqm this impUes 

where Gal{Lq/K) ~ Ga/(Fg/Q) and Gal{Lm/K) ~ Ga;(F„j/Q). 

The ring of integers in L g i ^ is OqO,n- This follows from the fact that LgLm can 
written as LqFm- The discriminants d(Lg/Q) and d(F^/Q) are relatively coprime 
and therefore the ring of integers in LqFm is OqO'm where O'm is the ring of integers 
in Fm. Since OK C Og, it follows that OqO'm = OqOKO'm- But OKO'm is the ring 

of integers in Lm = KFm- Therefore the ring of integers in LqFm is OqOm-

By (7.5), Lm has a normal integral basis. Let Q G Om be an element which 
generates a normal integral basis for Lm over K. Then C,„ = OKGal{Lm/K){0) 
and OqOm = OqGal(Lm/K){6). Each element of OqOm can be uniquely written as 
xiglie) + ••• + xpgfn{0), Xi e Oq. 

To find the ring Ogm of integers in Lqm, we note that an element Xl^^l ^i9m{^): 
Xi e Oq, of OqOm hes in if an only if 

\i=l / i=l 

This gives Xj = 5'°*(xp). Therefore 

Oqm^\YlgTix)gM\xeOq 

It is now straightforward to check that the map 

Og > Ogmi 
V 

i=l 

is an isomorphism of C^G-modules. • 
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We had set ourselves the task of identifying the class oi Oi in R'[OKG) for 
L = Lq, Lm, and Lqm- We have shown that (Om) is trivial and (Ogm) = {C>q). So, 
to complete the task, all there remains for us to do is to determine the class of Oq in 
R'{OKG). This we now do. 

(7.8) L E M M A . T ie ciass of Oq lies in the kernel group D{OKG). 

Proof. Since 

1 -> D{OKG) ^ CliOKG) CI{OK) X CI{OM) - 1, 

and the class number of ii' is 1, the proof involves showing that Oq corresponds to a 
principal ideal in CI{OM)- More concretely, we need to show that, under the map 

Tr2^ : Lq M, 

where 
<f>:Lq^ KG, 

X H-> (l){x), 

(^(x){d) = X, 9 is an element of Oq which generates a normal basis for Lq over K and 
7r2 is the projection of the algebra KG, which sphts as ii' x M, into M, the image of 
Oq is a principal ideal. 

If q = 7, then p must be 3, for only then q — I = 0 mod (p) and an extension Fq 
which is ramified at q exists. But, by (6.15), M has class number 1 and therefore all 
ideals of M are principal. 

If q = 11, then p is 5 and L n is the unique extension contained in Q(Cii) whose 
degree over K is 5. Since the degree of Q(Cii) over K is 5, i n = Q(Cll)- Let ^ = Cii-
Then 6 generates a normal integral basis for Lu over Q, i.e., 

On = ZGal{Ln/m). 

Let a G Gal(K/([l) be the non-trivial element. Then 

On = 'EGaliLn/K){9,a{e)), 

^ZG{e,a{e)), 

where the action of G on ^ = Cll is defined as ^(Cll) = Cn- Let 4> : Ln KG be 
the isomorphism induced by 6. Then 

<^(Oii) = ZG(l,(^((7(^))). 

To find (^{a{6)), we note that (SO - {x + ay){6), where /3 is the trace of Cii from Ln 
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to K, and x g^ +g^ and y + l+g^+g'^ are elements of KG. The element a{0) can 
be written as a(9) = ((—x + P)/y)(9), and therefore 

(?i(Oii) = Z G f l , - ( - x + /3)̂  . 
\ y / 

Applying TT2 : KG M, g Cs, gives 

\ My) I ou 

But 7r2(2/) = 1 + Cl + Cf == (1 - V^)/2 is a unit in OM- Therefore -Kt^^Oix) = OM-
So 7r2^(C>ii) indeed is principal and hence {On) G D{OKG). 

If 5 = 19, then p = 3. By (6.15), CI{OM) = 1 and therefore every ideal is 

principal. 

If 9 = 43, then p = 3 or 7. If p = 3 then, by (6.15), CI{OM) = 1- Assume p = 7. 

Then L43 is the unique subfield of Q(C43) whose degree over K is 7. Let 9 be the 

trace of C43 from Q(C43) to X43. Then 

o = az + C43 + 

and 

C43 = ZGa/(L43/Q)(^), 

or 

043 = ZG{9,a{9)), 

where a G Gal{K/Q) is the non-trivial element and the action of G on 9 is induced 
from g{C,^i) = Cfs- Let (p : L KG be the isomorphism induced by 9. Then 

?i(043) = ZG(l,^(a(^))). 

To find <t){a{9)), we need to express a{9) as z{9) where z G KG. We have ^9 = 
{x + ay){9), where /3 is the trace of C43 from Q(C43) to ii', x = 1+5-1-25 -̂1-5 -̂̂ 35 -̂1-25'̂  

and 5 = 3 + 5 + 5̂  + 25^ -H 25'̂  + 5̂  + 5*̂ , and therefore 

<̂ (C?43) = Z G ( l , - { - x + ^)]. 
\ y J 

Applying W2 : KG —> M, 5 t-+ C7, gives 

84 



But the norm of the element 

^2{y) = - ( 2 C 7 + 2C| + CT + Cr + 2C7 + 2C7) 

is 1 and therefore it is a unit. Hence TT2(t>{0^^z) — OM-

If q = 67, then p = 3 or 11. If p = 3 then, by (6.15), CI(OM) = 1 and so 
(Oq) e D{OKG). Assume p = 11. Then LQ^ C Q(C67) and 

= ZGa/(L67/Q)(^), 

where ^ = C67 + Cl? + Cl? i^ the trace of ("67 from Q(C67) to LQT- We can write 0Q^ as 

067 = ZG(^,a(^)), 

where a is the non-trivial element of Gal{K/(^), and the action of G on ^ is induced 
from g(C67) = Ce?- Let </) : LQ7 —> KG be the isomorphism induced by 6. Then 

<P{067)^-ZG(I,-{-X + P)Y 

where /3 is the trace of 6̂7 from Q(C67) to K, and 

rc = 1 -f 2̂ 2 ^ 25* + 5̂  + 25̂  + 5̂  + 2g^ -V g^ + 3^^°, 

2/ = 3 + 2^ -F 2̂ 2 ^ 5̂  + 2^^ + 1g^ + 5̂  + 2^^ + 2g^^. 

Applying -KI • KG M, g i-y (n, to ^(Oe7) gives 

^24>iOe7) = (l,-^A-Tr2{x) + P)) . 

\ ^2[y) I OM 

Unlike the previous cases, the norm of the element 

7r2(2/) = - ( C l l + C!i + 2Cfi + 3Cfi + Ci'i + Ci'i + sell + 2Cfi + C?i + ci?) 

from A'' = Q(Cll) to (Q is not 1 or —1 and therefore it is not a unit. The norm of 
the element •K'i{y) from A?" to Q is %9p-. The prime 89 splits completely in A''. Let Ai, 
1 < i < 10, denote primes of A'̂  lying above 89. Then 

^ i = (89 ,Cii-2 ')o. , , 1<2<10 . 

By subjecting 7r2(y) to the maps, one for each i, 

we can find the primes which occur in the factorization of TT2{y)ON- We obtain 

7r2(2/) = ^2^9-
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Now each of the primes Ai, 1 < i < 10, splits further in M. This is due to the 

fact that 89 splits in K. Let Bi and B2 be the primes of K lying above 89. Then, 

we can assume, Bi = {8 -\- Q:)c)̂ . and B2 = {9 — a)Q^.. We can now write down the 

primes of M lying above 89. They are 

Cij = {Ai, Bj)ou, l<i<lO, l < j <2. 

The factorization of •7T2{y)OM in M is therefore given by 

'^2{y)OM = G21G22G91G92. 

To obtain the factorization of (—7r2(x)-|-/3)CM) we note that the norm of -7r2(x)-|-
/3 form M to iV̂  is 7r2 (̂x) + 7r2(x) - j - 17. By using a method similiar to the one for 
'^2{y)Ois[, we can show that (7r2 (̂x) -f- 7r2(x) -f- 17)ON = A^Ag. Under the maps 

O M ^ ^ , 1 < ^ < 10, 1 < j < 2, 
Uij 

—7r2(x) -I- 0 lies in the kernel if and only if z = 2, j = 1 or z = 9, j = 2. Therefore 

(-7r2(x)-f/3)C>M = ?̂ll<̂ 92, 

since the norm from M to iV is A\A\. 

Returning to the ideal 7r2$i'(C67), we find 

7r2<?̂ (C?67) = / l ^21^92 
\ ' G21G22G91G92 0^ 

G22G91 

To prove that TT24>{OQI) is principal and hence (Ce?) € D{OKG), we need to show that 
the ideal G22G91 is principal. The ideal G22G91 is fixed under complex conjugation. 
Complex conjugation sends Ai to Au-i and Bi to B2, and therefore 

(G22)' = ( ^ 2 , 5 2 ) ^ , , = { ^ 9 , 5 i ) o ^ = G91. 

So the ideal G22G9i basically is a prime ideal of M"*" extended to M. From this we 
conclude that 'K2(I>{OQ'J) is principal if the primes of lying above 89 are principal. 

The primes of M"̂  lying above 89 are principal. In fact, the class number of M"*" 

is 1. To give the generators for the primes dividing 89, let us write M"*" as (Q(z/) where 
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1/ is a zero of the polynomial 

p(x) =x^° -x^ - 186(x^ - x'^) + 12530(a;̂  - x^) - 365771(x^ - x )̂ 

-I- 4227884(a;2 - x) - 11390543. 

The primes dividing 89 are then generated by the element 

— ^ - — ( - 82/̂  - 10̂ ^ + 961z/̂  1058z/̂  - 370421/̂  - 41119z/'̂  
331057 

-h 5041901/̂  -h 6076922/2 _ 17032392/ - 4787272) 

and its GaZ(M+/Q)-conjugates. The ideal 7r2(/>(C67) is therefore principal, and so 

(067) € D{OKG)-

Lastly, if g = 163 then p = 3, and, by (6.15), the class number of M is 1. Hence 
{Oq) 6 D{OKG). • 

The next result completes our calculations to determine the class of Oq. 

(7.9) L E M M A . The cJass of Oq in R'(OKG) is non-trivial; its order is 2. 

Proof By (7.8), (Oq) lies in the kernel group D{OKG). In the last section we 

saw that D(OKG) ~ Coker(j), where the map 

3 • *-̂ M 

is induced by reduction mod ((1 - CP)(^M), and, for an element [x] G Coker(j), the 
corresponding class (G(x)) in D{OKG) is defined by the diagram: 

C{x) OM 

OK OMI{1-QOM 

where ji is multiplication by x followed by reduction mod ((1 - C,P)OM) and j2 is 

reduction mod (pOx)-

On the other hand, given a class in D{OKG) in the form of a ring OL of integers 
in a tame extension L over K with Gal{L/K) ~ G, the way we determine the 
corresponding element in Coker(j) is to subject Oi to the map 

(7ri,7r2)<?̂ : L ^ K X M, 

where <p : L KG is an isomorphism and T^i{g) = 1, i^iig) = (p, and obtain the 
images, say, XOK and yOM in K and M respectively. These images, as has been 
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indicated, are principal ideals since it is known that {OL) G D{OKG). The class 

{OL) can then be described by the diagram: 

OL "'^^ OM 

OK OM/{1 - CP)OM 

where ji is multiplication by 5/x followed by reduction mod ((1 — CP)OM) and j2 is 

reduction mod (POK)- But this square defines {C{y/x)). Therefore {OL) = {C{y/x)) 

and the element of Coker(j) corresponding to {OL) is [y/x . 

To prove the lemma, we have two distinct cases to consider: p is inert in K, or p 
splits in K. Assume p splits in K. Then there is only one instance of this which occurs 
when 5 = 11 and p = 5. In the proof of (7.8) we saw that if <f> : Ln —* KG is the 
isomorphism induced by Cn then 7r2(l>{Ou) = OM- To calculate TTi(p{Oii), we note 
that the map Tri4> is the familiar trace from Ln to K composed with multiplication 
by l/tr£/;i:(Cii). Therefore 

Since is a tame extension of K, there is an element in On with trace 1. Con
sequently, ttL/Ki^n) = ^K- The trace of Cil is a — 1. Therefore 7ri(/>(Oii) = 
(1/a - 1)OK and hence {On) = {C{a - 1)). 

The structure and the order of the group Coker(j) was calculated in section 2. 
For the case under consideration, it is a cyclic group of order 2 generated by [a]. 
Since [a - 1] = [a], {On) = {C{a)), and hence the order of (On) in D{OKG) is 2. 
In fact, {On) generates D{OKG). 

If p is inert in K, then by using an argument similar to the one for (6.1) we 
can show that the class of {Oq) is (G(x)) where x̂  = / mod {POK) and d{Lq/K) = 
IP~^OK is the discriminant. The only prime of K which ramifies in Lg/K is the 
one lying above 5Z. The rational prime ?Z ramifies in K: qOK = {^/—q)^OK — 
{2a - 1)^OK. Therefore d{Lq/K) = (2a - 1)P-^OK. The group {OK/POK)"" is 
cyclic of order p̂  — 1. Let z he a generator for {OK/POK)^• Then the image of j is 
generated by 2^^+^^/^ and Coker(jf) is a cyclic group of order (p -|- l)/2. Solving the 
congruence x̂  H / mod {POK) in {OK/POK)^ gives 

X = ± 2 ( P + i ) / 4 mod {POK), 

which shows that x 0 Im(ji) and therefore, in Coker(j), [x] 7^ 1. This proves that the 
class of Oq is non-trivial. Since [x]̂  = 1, the order of {Oq) in R'{OKG) is 2. • 



This concludes our discussion of the case when Go/(L/Q) ia abeUan. We have 

proved 

(7.10) T H E O R E M . If L is a tame extension of K with Gal{L/K) ~ G which is 

also an ahelian extension of Q, then the ciass of OL h'es in D{0KG) and has order 

at most 2. • 

Next we consider the case when Ga/(f//Q) is isomorphic to D2p-

(7.11) T H E O R E M . Let L be a tame extension of K with Gal{L/K) ~ G and 

Gal{L/q) ~ D2p. IfiOi) e D{OKG) and p is inert in K then OL is a free OKG-

module. 

Proof. Let us recall that the kernel group D{OKG) is isomorphic to the cokernel 
of the map j : OM(OM/(1 - (PPMV- For [x] 6 Coker(j), the class in D{OKG) 

which corresponds to [x] is (C(x)) (see section 6 for the definition of C{x)). 

Let & 6 OL with trL/Ki^) = 1 be an element which generates a normal basis for 
L over K, let (p : L KG be the isomorphism of iiTG-modules defined by x i-> ^(x) 
where (i>{x){d) = x, and let (7ri,7r2) : KG —> KxMhe the map given by (7ri,7r2)(5) = 
(l,Cp). If ((Pi) e D{OKG), then, because of our choice oid, Tri(j){OL) is OK, T^2^{OL) 

is a principal fractional ideal, and (OL) = (G(y)) where T^2<t>{0L) = yOM- By using 
an argument similar to the one used to prove (6.1) we can show that 

yP-' = mod ((1 - CP)OM), 

where u 6 O^, = / mod (POK), and / is the product of primes of K which ramify 

in L- The above congruence can be solved to give, in Coker(j), [y] — [k]. So the class 

of OL is {C{k)) where k^ = I mod [POK)-

Since L/K is a cyclic extension of degree prime p, any prime r of K which 
ramifies in L satisfies normjf(r) = 1 mod (p). Therefore noimK{l) = 1 mod (p). By 
considering ramification of rational primes in the maximal real subfield of L we can 
show that I has the form ul' where u E O'^ and /' is a product of rational primes. 
The congruence normA-(Z) = 1 mod (p) now gives l'^ = 1 mod (p), or I' G (ẑ ^ - i ) /2) 
where 2 is a generator of {OM/{^ - CP)OM)^ which is a cyclic group of order p̂  - 1. 
The group O^ of units is (C4) if K = Q ( v / ^ ) , (Ce) if K = Q ( v ^ ) , or (-1) if 
K ^ Q ( - / ^ ) , Q ( - \ / ^ ) . So any unit u G O^, on reduction mod (POK), lies in 

where t is 4 if = Q ( v ^ ) , 6 if K = Q ( v ^ ) , or 2 if 7̂  Q ( \ / ^ ) , 
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Q ( v ^ ) . Therefore, on reduction mod {POK), I lies in (2(</2+i)(p'-i)/t). Solving 
the congruence A:̂  = / mod ((1 — CP)OM) now shows that k lies in the subgroup 
generated by ^(P+i)/*. But by (2.2) the order of D{OKG) ~ Coker(;) is {p + l)/t and 
so the image of j : O^ {OM/{1 - CP)OM)'' is generated by ^(p+i)/*. Therefore, in 
Coker(j), [k] = 1 and hence the class {C{k)) is trivial. • 

The proof of the above theorem, as has been stated in the statement of the 

theorem, works only if p is inert in K. If p splits in K then the class of OL is 

still determined by the element y where 7r2^(Oi) = yOM- But because, for any 

^ £ {OM/{^ ~ CP)^M)^, xP~^ = 1, we can not use a congruence of the form yP~^ = 
ukP~^ mod ((1 — <^P)OM) to calculate y. 
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