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Abstract

Let K be a quadratic number field, Ok its ring of integers, and G a cyclic group
of order prime p. In this thesis, we study the kernel group D(OkG) and obtain
a number of results concerning its order and structure. For K imaginary, we also
investigate the subset R(OxG) of the locally free class group Cl(OkG) consisting of
classes which occur as rings of integers of tame extensions of K with Galois group
isomorphic to G. We calculate R(OxG) under a variety of conditions and obtain, for

an arbitrary tame extension L of K with group G, invariants which determine the

class of Of in R(OkG).
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1. Introduction

Let K be an algebraic number field, Ok the ring of integers in K, and A a finite
dimensional semisimple K-algebra with 1. Let A be an Og-order in A. By definition,
A is a subring of A which is a finitely generated Og-module, and K ®p,, A >~ A. For
each prime P of K we denote by Ok p the localization of Og at P. A A-lattice is
a finitely generated (left) A-module which is Og-torsion free. Let M be a A-lattice
and Mp = Ok p ®0o, M its localization at a prime P of K. Then Mp is a (left)
Ap-module where Ap = Ok p ®0,. A. The A-lattice M is said to be a locally free
A-module if Mp is a free A p-module for all P. In the case when M is locally free let

r(M) denote its local rank. The rank r(M) is the same for all P.

Next we define the locally free class group CI(A). Let S(A) denote the abelian
group of locally free A-modules. The group S(A) is the free abelian group generated
by symbols [M], one for each isomorphism class of locally free A-modules M. Let T'(A)
be the subgroup of S(A) generated by expressions of the form [M & N] — [M] — [N].
Set

S(A
P(A) = T%&
The map [M] + 7(M) induces a surjective homomorphism between the groups P(A)
and Z, and CI(A) is defined to be its kernel. The locally free class group CI(A) thus

occurs in the following exact sequence:
1—- Cl(A)— P(A)—=Z — 0.

The class group CI(A) is the subgroup of P(A) consisting of elements of the form
[M] — [N] where M and N are of the same rank. The group CI(A) is a finite group.
This follows from the fact that each element of CI(A) can be written as [M] — [A]
where M is a locally free A-lattice in A with r(M) =1 (see [13]), and by the Jordan-
Zassenhaus theorem (see, for example, [11], §26) there are finitely many isomorphism

classes of such lattices.

Let A’ D A be a maximal Qg-order in A. The map defined by
[M] + [A" ®4 M]

gives a surjective homomorphism CI(A) — CI(A’) (see [14]). Let D(A) denote the

kernel, then we have the exact sequence:
1 — D(A) — Cl(A) - Cl(A) - 1.
It can be shown that up to isomorphism D(A) is independent of the choice of the

1



maximal order A’ containing A (see [8]).

The significance of the class group CI(A) and the kernel group D(A) is that if L
is a tame Galois extension of K with Galois group G then A = OgG is an Og-order
contained in the K-algebra KG and

(Or) = [01] - [0k G]

defines a class in Cl(OgQ). Identification of the class (Or) in Cl{(OkG) is of great
interest and is the central problem of “relative additive Galois module structure”. In
“absolute additive Galois module structure” where K = @ it was proved by Frohlich
[4] that (Or) € D(OkG). It is this discovery that makes D(ZG) and, in general,
D(OkQG) interesting to study, and indeed it is precisely this group D(OkQ@) that is
the topic of our investigations here. We will study D(OgG) in the case when K is a

quadratic number field and G is a cyclic group of order odd prime p.

The calculation of D(OgG), as we will see, depends on whether or not p is
ramified in K. The case when p is unramified in K was partially dealt by Homayouni
in his Ph.D. thesis [6]. In this case we give results which can be regarded as an
extension of Homayouni’s work. We will also discuss the case when p is ramified in
K. This case, we will see, splits into two further cases: K is ramified at p only, and K
is ramified at p as well as at primes distinct from p. We will study both cases. In the
latter we will show that the calculation of D(OgG) can be reduced to a calculation
of a kernel group of the form D(Ok:G) where K' is a quadratic number field which

is unramified at p but otherwise has the same ramification as the field K.

For the rational case where K = Q it is well known that the kernel group D(ZG)
is trivial (see [3]). It will be interesting for us to see here how our findings for D(OkQG)

compare with D(ZG).

Another aspect of CI(OgG) which we will investigate in the present work is the
subset R(OkG) of Cl(OkG) consisting of realizable classes, i.e., classes of the form
(Or) where L is a tame extension of K with Galois group isomorphic to G. (An
extension L/K is tame if for each prime r of Ok, the ramification index e, of 7 in L
is relatively prime to r.) For an arbitrary tame extension L of K with group G the
ring Op, of integers is a locally free O G-module and hence it defines a class (Op)
in R(OkG). The problem of determining the structure of Oy as an Ok G-module is
equivalent to identifying the class of Of in R(OkG). If O corresponds to the trivial
class in R(OkG) then the extension L/K has the interesting property of possessing a

normal integral basis, i.e., an Ok-basis for Of, consisting of G-conjugates of a single
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element in Of,.

L. McCulloh in [10] showed that for an arbitrary finite abelian group G the set
R(OkG) of realizable classes forms a subgroup of Cl{(OxG) which in the case of a
cyclic group G of order prime p can be described in terms of the action on CI%(OkG)
of a Stickelberger ideal in the integral group ring ZA, where

CIO(0gG) = Ker(Cl(OkG) — Cl(Ok)),

and A ~ Aut(G). We will use this description to study R(OkG) in the case when
K is a quadratic imaginary number field and G is a cyclic group of order prime p. In
the case when K({p) ((p here is a primitive pth root of unity) has trivial ideal class
group we will calculate R(OkQ@G) and determine the precise conditions under which a
tame extension L of K with group G has a normal integral basis. We will also discuss
R(OkG) under a slightly less restrictive set of conditions.

Again for comparison with our calculations, it is worth mentioning briefly here
that in the rational case we have Taylor’s theorem [15] which implies, for an arbitrary
finite group G, R(ZG) = 1if G has no complex irreducible symplectic characters,
and if G has such characters then the elements of R(ZG) have order at most 21in
CI(ZG). In particular, if G is abelian then R(ZG) = 1.

In the next section we will start in earnest with the task of calculating D(O kG),
but we end the present section with the description of a technique for calculating

D(A) which we will repeatedly use. Let

A A
[P
Ay 2 A

be a commutative square of rings and ring homomorphisms. The square is said to be
cartesian if for all (A1, A2) € A1 X A2 with j1(A1) = j2(Ag) there is a unique A € A
with i1(A) = A1, i2(A) = Ag. If the square is cartesian then A can be identified with
the subring

{01, 22) € A1 x Az | 1(01) = j2(A2)}

of A; x Ag. Cartesian squares can arise in a variety of ways. If, for example, ] and
J were two two-sided ideals of the ring A which have trivial intersection then there
is a cartesian square

A2 Al

le Lin

AT B AT+



where all the maps are canonical.

For an arbitrary number field K if an Og-order A contained in a commutative

finite-dimensional semisimple K-algebra A is given by a cartesian square

A A
i 2
Ay 5 R

in which

a) each A; is an Ok-order contained in K-algebra 4;,
b) A is an Ok-torsion Og-algebra, and

c) at least one of the maps j; and jj is surjective,

then the sequence
1= A = A XA — A" = D(A) — D(A1) x D(Ag) = 1 (1.1)
is exact (see [12]). The map D(A) — D(A1) x D(Ay) is the restriction of

CI(A) — Cl(A1) x Cl(Az),
[M] — [A] = ([A1 @2 M] = [A1],[Az @4 M] — [A2]),

to D(A), and the map A" — D(A) sends u € A~ to [(A,u)] — [A], where
(A, w) = {(A1,X2) € A1 x Az | j1(M)u = j2(A2)}

is a locally free A-lattice.

The usefulness of the sequence (1.1) lies in the fact that often it is easier to
calculate D(A1) and D(Ajg) than calculating D(A) directly. In cases where Ay or Ay
is a maximal order, the corresponding kernel group vanishes and this simplifies the
calculation of D(A) even further.

Later on when calculating D(OgG) in the case when p is ramified in K, we will
encounter a cartesian square for which the condition (a) given above will not hold.

For such a square the exact sequence (1.1) is replaced by
1 — A = A x Af = A" = Pic(A) — Pic(A1) x Pic(Ag) — Pic(A),  (1.2)

where Pic(A) is the group of isomorphism classes of invertible A-modules, with group
operation given by ®, (see [12]). The sequence (1.2) does not explicitly involve
D(A), but, in spite of this, we will still be able to use it to calculate the kernel group
D(OgG). We leave the details till we actually come to calculate D(OkG).
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Notation

For a finite abelian extension L of Q we will write Op, for the ring of integers in
L, Ep for the group of units in Of, and Wy, for the group of roots of unity in Ef.
We may also use O to denote Ep. For z in L, normp(z) will denote the absolute
norm of z from L to Q. The maximal real subfield of L will be denoted by L.

We will represent comlpex conjugation by c; if = is an algebraic number then the

complex conjugate of ¢ will be written as 2°. The rest of the notation is as follows.

p = an odd prime,

G = (g | g* = 1), a cyclic group of order p,

K = Q(v/—d), a quadratic number field (d is square-free),
Gal(K/®Q) = (o | o = 1),

d(K/Q) = discriminant of K,

Ok = Z[a], a = (1 +v=d)/2 if d = 3 mod (4), @ = v/—d otherwise,
Cp = e2™/P g primitive pth root of unity,

N = Q(¢%),

M = KN = Q(v-4d,{).




2. D(OkQG), p unramified in K

In this section we will calculate the kernel group D(OgG) in the case when p is

unramified in K. We will prove:

(2.1) THEOREM. The kernel group D(OkG) is cyclic whose order divides p +1

or p — 1 depending on whether p is inert or it splits in K.

(2.2) THEOREM. If K is a quadratic imaginary number field, then the cyclic
group D(OkQ) has order

p*/4, if K =Q(V-1),
|D(OkG)| = p*/6, if K =Q(+/-3),
p*/Qp, otherwise,

where

*_{p—i-l, if p is inert in K,
p= p—1, ifpsplitsin K,

and Qs is the index of Wy Ep+ in Epp. The possible values for Qp are 1 and 2.
We begin with the proof of (2.1).

Proofof (2.1). Let A = OgG,I = (1—-g)OgG,and J = (1+g+-- +gP HOKG.
Then
A/INJT) =5 AT

o

M B AT+ )
is a cartesian square.

The ring A/I is isomorphic to Og. To show that, consider the map A — Ok,
g — 1, which clearly is a surjective ring homomorphism. The ideal ] lies in the kernel.
In fact, I is the kernel. Let ¢ = z191 + -+ Tpgp € A, gi = g*, be an element which

lies in the kernel. We want to show that
z = (1—-g)a1g1 + - + apgp),

or
z191 + -+ zpgp = (a1 — ap)g1 + (a2 — a1)g2 + - -+ + (ap — ap-1)9p
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is soluble for a; € Ok. Equating coeflicients of g; for 1 <7 < p gives

al—ap:ml,

a; — a;—1 = Ty, 2<i<p.

The above equations are soluble and they give
i
ai=z:rj+:cp, 1<:1<p—-1,
i=1

and ap, = zp. Therefore if z lies in the kernel then it can be written as z = (1-
9)(a1g1+ -+ apgp), ai € Ok, which shows that z € I = (1 — g)A. Therefore, under
the map g +— 1, A/I ~ Okg.

The ring A/J is isomorphic to Ops. The isomorphism is induced by the map
A — Oy, g + (p, which is a surjective ring homomorphism. Let z = z191+- - -+ Zpgp

be an element which lies in the kernel. Then z1(p, + --- + mp_lg{;‘l + z, = 0 and
therefore £; = z3 = -+ = zp. So any element which lies in the kernel lies in
(14+g+--+ g7 1)Ok and, of course, (1 +g+ -+ g?~1)Ok lies in the kernel. So
the kernel is (1+g+---+ ¢P"1)Ok. But the element 1+g+---+ gP~! is unchanged

under the multiplication by the elements of G, and therefore
(1+g+-+" Ok =(1+g+-+¢"")OkG,

which proves our assertion that J is the kernel and A/J ~ Oyy.

Finally, the ring A/(I + J) is isomorphic to Ok /pOg. The map A — Ok /pOk,
g — 1, is clearly surjective. Let z = 191 + - - - + Zpgp be an element which lies in the
kernel. Then z1+---+zp = 0 mod (pOk). So x can be written as y191+- - - +ypgptpa
where y;,a € Ok, and y; + - - - + yp = 0. But we have already seen that any element
Y191 + - -+ + Ypgp With g1 + + - 4+ yp = 0 lies in (1 — g)Ok G. Therefore if z lies in the

kernel then
z € (1-g)OxG+pOk.

But (1 — g)OkG+pOk clearly lies in the kernel. So (1-9)OxG+pOk is the kernel.
The ideal I + J lies in the kernel and therefore

(1-9)OkG+(1+g+ - +g" OgG C (1 - g)OkG + pOk.
But, since
(1-gc+(1+g+ +g")=p
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where
p—1
i=1
pliesin (1 - g)OkG+ (1 +g+ -+ g?1)OkG. Therefore
(1- 9)OkG +pOk C (1 - 9)OkG+(1+ g+ + ¢ )OkG,

and hence I + J = (1 — g)OkG + pOg. So the kernel of the surjective ring homo-
morphism A — Ok [pOk, g — 1, is I +J and therefore A/(I + J) ~ Ok [pOk as we

had claimed.
Our cartesian square can now be written as
OkG 2 Oy
O - Og[pOk

The action of various maps is given by

i

g — Cp
liz ) lj1
1

The Mayer-Vietoris sequence attached to the square (2.3) gives
jl((l);‘,) X ]Q(OIX{) — ((')K/pOK)X — D(OKG) — D(OM) X D(OK) — 1.

The rings of integers Ok and Q) are maximal orders in K and M respectively, and
therefore their kernel groups D(Og) and D(Oyy) vanish. Since j2(Ok) C j1(Op),

we can rewrite the above sequence omitting j2(Of) as

1— ]1(01)\(,1) — (OK/pOK)X — D(OkG) — 1, (2.4)
or
(@ Ok)*
D(OkG) ~ CK/POK)”
71(Oy)
Since M contains (p, the group O3y of units contains the cyclotomic units
1—-¢
= <a<p-—
€a 1 Cp’ 1<a<p-1,



The image of £, under j; is a, and so
(Z/pZ)™ C ji(cyclotomic units) C j1(Opy).

The kernel group D(OgQ@) is therefore isomorphic to a quotient group of
(O /pOK)*/(Z[pZ)*. The ideal pOk is either a prime or it is a product of two

primes. If it is a prime then

— ~ GF(p®),
pOxk ")

oK \* _
(;T(_')—;) ~ sz—la (25)
(Ok/pOK)*

(Z/pz)< ~ TV

and if it is a product of two primes then

9K GR(p) x GF(p),

POk
Ok \*
(335) =t % O 29
(Ok /pPOK)*
(Z/pZ)*
In both cases (Og /pOk)* [(Z[pZ)* is a cyclic group. Since D(OkG) is isomorphic
to a quotient group of a cyclic group, it is cyclic. The order of D(OgG) divides p+1

o~ Op—]_.

if p is inert in K or it divides p — 1 if p splits in K. O

Next we calculate the order of D(OkG) in the case when K is imaginary. Let
(Ok /[POK)*
(Z/pZ)*

be the map induced by j;. Then D(OkG) ~ Coker(7;) and the order of D(OgG) is
p*/[71(OF)| where p* is the order of (O /pOk)* /(Z/pZ)*. From (2.5) and (2.6)

we have

J1: 03 —

*_{P+1, if p is inert in K,
P= p—1, if psplitsin K.

So in order to calculate the order of D(OgG) we need to obtain j;(Oj). A subgroup
of OF (= Eum) is Way Epr+. So let us first calculate the image of W Epr+ under 71

(2.7) LEMMA. The image of Epr+ under j is 1, and so j3(WarEm+) = 1:(Wnr).
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Proof. Since the extensions K/® and N/Q are ramified at different primes,- the

ring of integers Ops in M = KN is a compositum of the rings of integers in K and

N, that is, Opr = OgOp. The rings Ok and Oy are given by

OK = (La)Z)
ON = <Cp) s 7(5_1>Za

and therefore
O = {Gpy--- T 0y, ..., aB )z

Fixing Oy under complex conjugation gives the ring of integers in M +

O+ = (Cp+ gp-l,..., ,(,p—lw + C;(p_l)/z,a(Cp - Cp_l),
L a((ETVR Dy, i d 3 mod (4),

or

Ome =G+ Gl (FV2 4 GOV 7 4 a(G - G,
PO (IR D2y i = 3 mod (4).

So any element u € Fjs+ can be written as

(p—-1)/2
u= Y la(G+GH) +bia(G -G, if d#3mod (4),
=1
or
(p-1)/2

u= Y [a(G+GH) +b(G (G-, if d=3mod (4),
i=1
where a;, b; € Z. If we now apply j1 to u we find

-1)/2 .
ji1(u) = { 2521 )/ 2a;, if d #Z 3 mod (4),

SPV2(94, 1+ 1), if d =3 mod (4),

which shows that j1(u) € (Z/pZ)* and therefore jy(Ep+) = 1.

a

(2.8) LEMMA. The image of Wy under 7, is 1 unless K is Q(v/—1) or Q(v/-3)

in which case
Cy, ifK = Q(v-1),

31(Wae) = {C's, if K = Q(v=3).
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Proof. Assume K is a field other than Q(v/—1) or Q(v/—3). Then
Wr = (—I,Cp>.

Applying 7; to Wy gives j;(Wy) = L.
If K is Q(v/-1) or Q(+/-3), then

= {06 K =GV,

(-1,¢3,G), if K = Q(v=3),

and therefore
| ([¢a)), if K = Q(vV=1),
([Ga), if K = Q(vV=3).

The group 7;(War) is cyclic of order 2 if K = Q(v/~1), and it is cyclic of order 3 if

K = Q(v=3). O

Now that we have obtained j; (W Eps+), we would like to calculate the index of
71(WarEp+) in 7,(Enm). But before we could do that we need to find the index of
WarEp+ in Epr. The following lemma will allow us to find this index.

W) = {

(2.9) LEMMA. Let L be an abelian extension of Q. Then the index Qp of W Ep+

in Ey is either 2 or 1 depending on whether or not

—_ WL
By — —,
Y B W
w s fu/u,
is surjective.
Proof. Define
Y Ep — Wi,
u— uful.

The extension L/@ is abelian. So the complex conjugation commutes with all other
elements of Gal(L/Q). For u € Er, u/u® and its Gal(L/Q)-conjugates have absolute
value 1. Therefore u/u¢ € W, (see [16], lemma (1.6)). Let

be the map induced by ¢. If ( € Wr then %(() = ¢/¢7 = ¢* € W2, and so
Wi C Ker(¥). The group Er+ also lies in Ker(). On the other hand, suppose

11



P(u) € WL2 for a u € Er. Then u = (2u€ for some ( € Wr. We can write u as u = (v
where v = (u’. One can easily check that v® = v and therefore v € Er+. This shows
that u € Wi Ez+, and so Ker(¢) = W Ep+. We thus have the exact sequence

v Wi

1> WrEp+ — EL—_)WE‘

The group W/ Wg has order 2. If % is surjective then

B, Wi
WiBpr WP

and the order of E /W E+ or, equivalently, the index Q@ of Wy Er+ in Ef is 2; if
¥ is not surjective then Qr = 1. O

Since M is an abelian extension of @, the above lemma applies to M and gives
@np =1or 2

(2.10) LEMMA. IfK is Q(+v/~1) or Q(v/—3) then Qpr = 2.

Proof. By the above lemma, Qs = 2 if the map

is surjective. Assume K = Q(v/—1). Then Wi /W% = {[C4]). The element u =
1 — (4¢p is a unit in Oy, and

1 — {4,
1»b(u) = ITC;%T,

= —C4Cp7

and therefore ¥(u) = [(4]. So ¥ is surjective, and hence Qp = 2.

For K = Q(+/—3) we have Wa /Wi = ([—1]). The element u =1 — (3(p is a
unit in Oy, and ¥(u) = [—1]. Therefore Qp = 2. U

We can now return to the problem of calculating 7;(Ear). Since [Epr : War Epr+] =
Qur, the index of 7,(WarEpr+) in 71(Ear) divides Qpr. In fact we have the following

stronger result.
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(2.11) THEOREM. Let K be quadratic imaginary. Then
[71(Em) : 51(WmEnm+)] = Qumr-
Proof. If K = Q(v/=1) then, by (2.10),
Eym = (WuEm+,1— Glp),
and therefore, by (2.7),
71(Eum) = (71(Wn), [1 = Ca])-
The element [1 — (4] has order 4 whereas, by (2.8), 71(Way) is of order 2. Therefore

[71(Em) : 1 (Wm Ep+)] = 2.

If K = Q(+/-3) then, by (2.10),
Epy = (WyEp+,1 - (30p),
and therefore, by (2.7),
71(Eum) = (G1(War), [1 - Ga]).
The element [1 — (3] has order 6 and, by (2.8), 71(Wps) has order 3, and so

[71(Em) : 51(WnEpr+)] = 2.

Now assume K is a field other than Q(y/—1) or Q(v/-3). If Qp = 1 then,
since the index of 71 (WarEp+) in 71(Enr) divides Qur, [71(Enm) : 1(WmEn+)l = 1.
Assume Qpr = 2. By (2.7) and (2.8), j1(WumEp+) = 1. To show that

[71(En) : T1(WumEm+)] = 2,

we have to show that j;(Eps) # 1. Since Qu =2, by (2.9), the map

is surjective. The group War/W}; is generated by [—1]. So there exists a unit u € Ep
such that P(u) = [-1], or u = —C%uc for some ¢ € Wps. We can absorb ( into u and
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obtain u = —u®. Since u € Oy and
Om = (Cpa SRR g_la an’ s 7aC£—1>Z’

we can write u as

p—1

u = Z(aiq; + abiy),

i=1

where a;,b; € Z. The condition « = —u¢ forces u to have the form
(p-1)/2 ‘ . ' .
u= 3 [a(Gh -G +ebi(Gi+ G, if d#3mod (4),
=1
or

p—1
u= Z[ai(; - afa; + ap_i)(]";], if d =3 mod (4).
=1

If we now apply 7 to u, we find

- (u) = { [2(b1 + -4 b(p_l)/g)a], if d # 3 mod (4),
I = a1+ + ap1)(1 - 22)], if d = 3 mod (4).

In both cases 7;(u) # 1, and therefore j;(Ep) # 1.
We are now in a position to prove (2.2).

Proof of (2.2). By (2.11),

71 (Enm)| = Qumlir(Wa Ep+)l,

and so, by (2.7), (2.8) and (2.10),

4, if K =Q(V-1),
lF1(Em)l =16, if K=Q(v/-3),

Qwm, otherwise.

Since
*

p

IPOxON = T )

(2.2) is obvious.
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We now briefly discuss the case when K is real. As in the imaginary case, the

kernel group D(OkQ@) is isomorphic to

(Ok/pOk)*[(Z/pZ)*
71(Em) ’

where themap 7; : Ep — (Og /pOk)* /(Z [pZ)* sends (p to 1. Unlike the imaginary
case the index Qs = [Enr : War Ear+) now is always 1. To prove this, we note that
Qs is 2 if and only if there exists a unit u in Ejs such that ¢ = —u. But any element

z of Opr which satisfies ¢ = —z belongs to

(CP _ Cp_la cen, l()P"l)/2 _ Cp_(p—l)/2) a(Cp - Cp—l), o ’a(CZ()P—l)/Z _ Cp—(p—l)/z»Za

and is therefore divisible by the prime ideal ({,—(, HON of N = Q(¢p) lying above p.
So there does not exist a unit u € Ejs such that u¢ = —u, and consequently Qp =1
or, equivalently, Epr = War Ep+.

Since Was = (—1,(p), the image of Wy, under j; is 1. Therefore J1(EpM) =
71(Ep+). Since K is real, a subgroup of Ep+ is Ek. Because of the fundamental
unit of K, the image of Ex under j; may not always be trivial. One can ask the

question: how close does 7;(Ex) come to generating 71(Ep+)?

(2.12) PROPOSITION. Ifp is inert in K and p = 3 mod (4), then the image of

(Og[pOk )™

5. E —
i M T T e

is the same as the image of Ex under j;.

Proof. Let u € Epr+. Then normps+/ k(u) lies in Eg and

71(normpr+ g (u)) = (h(“))(p_l)/z,

since the degree of Mt over K is (p — 1)/2. The order of the group

(Ok/pOK)*/(Z/pZ)* is p + 1 which, as p = 3 mod (4), is prime to (p — 1)/2.
Therefore the subgroup generated by ji(u) is the same as the one generated by
(G1(w))P~V/2. Hence 7;(Epm+) C j1(Ek). But Ex C Ep+. Therefore J1(Bpm+) =

71(EK). O

In general, the behaviour of the fundamental unit of K under the map 7 is fairly

random; in some cases it generates the entire group (O /pOk)* /(Z/ pZ.)* and hence
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determines completely the image of 7; while in others it maps to the identity element
and so gives no clue as to the order of j,(Ep+). If, for example, K = Q(ﬂ) then the
fundamental unit is 1 + « which, for p = 7, generates the entire group. On the other
extreme, if K = Q(\/l_g) then the fundamental unit is 170 + 39« which for p = 3 or
13 maps to 1.

We now return to the index Qs which, as we can see from theorem (2.2), in the
case when K is quadratic imaginary, has a direct bearing on the order of D(OkG).

In the next section we will attempt to calculate this index.
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3. The calculation of @y

We continue to use the earlier notation except that X now is quadratic imaginary
and the prime p is unramified in K. As before, we will write K as Q(v/=d); d now
is positive. The ring of integers Ok in K is Z[e] where o is v/—d or (1 + Vv=d)/2
depending on whether d # 3 mod (4) or d = 3 mod (4).

The problem here is to calculate the index Qpr = [Eps : WagEpg+] for M = K((p).
This index in the case when K = Q(v/—1) or Q(+/=3) was calculated in the last
section. So here we will assume that K is a field other than Q(v/=1) or Q(v/=3).

(3.1) PROPOSITION. The index Qs is 2 if and only if there exists a unit u € Epy

such that u¢ = —u.

Proof. The group, Wy, of roots of unity in M is generated by —1 and (p; WJ%/I
is generated by (p. Therefore

Wy
WZ = ([-1])-
M
By (2.9), @ = 2 if and only if the map Ey — War /Wi, u i [u/uf], is surjective,
which is the case if and only if there exists a unit v € Eps such that [v/v°] = [-1] or
v = —(2v° for some ¢ € Wyys. Setting u = ("o gives u = —uC. O

The extension N/N* (recall that N = Q((,)) is ramified at p and as N* C N C
M, M/N7 is ramified at p. Since M = M™*(v/=d) and p does not divide d, M/M*
is unramified at p. Therefore M+ /N* must be ramified at p. The degree of M* over
N7 is 2 and so M*/N7 is fully ramified. In terms of ideals we have

p0N+ —_— Pp(pr) )/ 3
-1
pOp+ = P,‘(p, ),

Pn+Opy+ = PJ:\ZJM

where Py+ and Pjy+ respectively are prime ideals of Op+ and O+ which lie above
the rational prime p. The prime ideal Py+ is principal—for a generator we can
take normpyy+(1 — (p). So the ideal Pps+ has order at most 2 in Cl(Op+). The
absolute norm of Py+ is p, and so Pps+ is principal if and only if there exists an
element & € O+ of absolute norm +p. The problem of determining whether Pyg+ 1s

principal is equivalent to calculating the index @pr as the following theorem shows.
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(3.2) THEOREM. The index Qyr is 2 if and only if the prime ideal of Mt lying

above p Is principal.
Before we could prove the above theorem we need the following lemma.

(3.3) LEMMA. An arbitrary element z of Op+ can be expressed as
z=a+o(p— Cp_l)b,

where a,b € Oy+ if a = \/=d, or a € Op, b € Oy+, a© = a + (¢p — (;l)b if
a=(1++-d)/2.

Proof. For an element z € Oy to lie in O+, one must have z¢ = z. Writing z
as 7 + sa, 7,8 € Oy, and requiring z¢ = z gives r € On+, $° = —s if a = +/—d, or
r¢ =r4s, 5= —sifa = (1++/—d)/2. Since s € Oy and s° = —s, s must have the
form

(p-1)/2 ' _
s = Z Si(C;,— p_l), s; € Z.
i=1
But Cf, —(p i generates the same prime ideal of M as the element (p —(; 1 Therefore
C}; - ({,‘i is an associate of (, — Cp—l, and (CI’; - (;i)/(cp — Cp_l) is a unit which, one

can easily check, lies in Ops+. So s can be expressed as

(p—-1)/2

s=((p— Cp‘l) Z CRIP
i=1

where u; = (C;; - I;‘i)/((p - (I',"l). Therefore s € ({p — (p_l)(’)NJr. The statement of
O

the lemma is now obvious.

Proof of (3.2). First assume that Qp = 2. There therefore exists a unit u € Epy
such that u® = —u. Let £ = u((p — (;*). The element z is an integer of M which

is fixed under complex conjugation. Therefore z € Ops+. Taking the norm from M*

to Nt gives
normps+ N+ (z) = (¢ — Cl;l)%ormM/N(u)'

Now normy/n () is a unit in O. Since [normpy/n(w)]¢ = normpr/n(u), the element
normpg/n(u) is a unit in Oy+. The element ({p — Cp“l)2 generates the prime of Oy+
lying above p and so the prime of O+ lying above p is principal.
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Conversely assume that the prime of O+ lying above p is principal. This means

that we can find an element z € O+ such that
normys+ /n+(2) = v(¢p — {p_l)?,

where v € Ey+. Now if a = v/—d then, by (3.3), any element of Ops+ can be written
as a + a(¢p — Cp_l)b where a,b € On+. Writing z in this form and then taking norm
from M* to NT gives

a4 d(Gp - 1% = w(¢ — G

This shows that a? lies in ({p — Cp—1)20N+_ Since ({p— Cp'l)2(’)N+ is a prime ideal and
a € Op+, it follows that a € ({p — Cp_l)z(')NJr. If we write a = ({p — Cp‘l)za', where

a' € Opy+, then z can be written as
z=((p— Cp—l)[(Cp - C;;_l)al + abl.
Let u = (¢ — Cp‘l)a’ + ab. Then u € Opr and u® = —u. Since

normyg+ v+ (2) = (G — ¢ 1) *mormyg/w (w),
=v((p — ;1)2’
it follows that normM/N(u) = v, and therefore u is a unit. So we havé succeeded in
constructing a unit u in Ops which satisfies u¢ = —u. Therefore Qpr = 2.
On the other hand if @ = (1 + v/—d)/2 then, by (3.3), = can be written as
z=a+a((p— Cp_l)b where a € Oy, b € Opn+ and a® = a+ (- Cp‘l)b. Taking norm
of z from M+ to N* gives

1+d

¥+@—gﬂw+( y@—gwﬁzwg—gW-

Replacing a2 + (¢ — ¢ Dab by aa® gives

d
aat + (1_1___) (Cp _ Cp—1)2b2 — U(Cp _ C;I)Z,

from which we see that aa® € ({ — (71)2On+ or a € ({ — ;1)On. Let a =
(¢p — Cp‘l)a', where a' € Oy and o'° = —(a’' + b), and
T

(G-GY)

Then u® = —u and, since normy/n(u) = v, u is a unit. Therefore Qum =2 O

U = =ad + ab.
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The above theorem is useful in that it establishes a link between the index Qs
and the class group CI(Ops+), but it does not really aid the calculation of @pr. Of
course if CI(Oy+) is known to be of odd order, the theorem will then give Qar = 2.
But in practice it will be more difficult to calculate the order of Cl(Ops+) than to
calculate Qps. Also the order of Cl(Op+) determines Qs only if it is odd—the class
group Cl(Ops+) can have elements of order 2 and still @ can have either of its two
possible values.

Next we investigate more practical methods for calculating @pr. We begin with

a theorem which will enable us to calculate Qps for a large number of fields.

(3.4) THEOREM. If Qp = 2, then either
1\t
(i) _1, (__( 1)p> —1, forallq|d,

p q

L
(é) = -1, (————( 1) p) =1, for all q|d,

p q
where g denotes a prime divisor of d and t = (p — 1)/2 is the degree of N¥ over Q.

or

Proof. Assume Qpr = 2. Let u be a unit in Eps such that u¢ = —u. Let us first
assume that & = v/—d. Then u can be written as u = a + ba where a,b € Oy and
a® = —a, b = b. Since u is a unit, normps(u) = 1. We can write normps(u) as

normps(u) = normp(a® + db?),
= [normy+(a? 4 db?)]2.

Equating this to &1 gives [normy+(a® + db?)]? = £1. But normy+(a® + db?) € Z.
Therefore

-normN+(a2 + db?) = +1. (3.5)

Since a® = —a, a can be written as a = ({, — Cp“l)a’ where a’ € On+. Reducing (3.5)

mod (p) gives d5” = +1 mod (p) where b € (Z/pZ)* and b = b mod ({, — {;71).
Solving for d gives 45’ = 22* mod (p) if 45 = 1 mod (p) or a8’ = 22+ mod (p) if
45" = —1 mod (p) where z is a generator for (Z/pZ)* and k is an integer. These
congruences show that

(d) _ {+1, if normy+ (a2 + db?) = 1,

2_7 -1, if nor1111\,-+(a,2 + db2) = -1,

Let ¢ be a prime divisor of d. Reducing normpy+(a? + db?) = 1 mod (g) gives
normp+(a?) = 1 mod (g). Now normp+(a®) = (—1)'normy(a). Substituting for
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a= (- () gives

normpy+ (az) = (—1)tn0rnlN((Cp - Cp_l)a,)’

= (=1)*plnormy+(a'))%,

= 1 mod (g),

and therefore (—1)p is a square mod (g) for all ¢, that is,

-1} .
(%) =1, for all g|d.

Similarly reducing normpy+(a? + db?) = —1 mod (g) leads to

i+l
(-(-—%2) =1, for all g|d.

This completes the proof in the case when a = v —d.

If o« = (14 +/—d)/2, then u can be written as u = a+ba where a € Oy, b € On+
and a® = —(a + b). Taking the norm of u from M to @ gives

normps(u) = normpy(a® + ab + b*(1 + d)/4),
= [normy+(a® + ab + b*(1 + d)/4)]%,
= +1.

Therefore
normpy+(a? + ab + b%(1 + d)/4) = 1,
or
normpy+(((2a + b)? + db?)/4) = +1. (3.6)

Since (2a + b)® = —(2a + b), we can write 2a + b as ({p — (;1)a’ where o’ € Op+.
Reducing (3.6) mod (p) and mod (g), respectively, proves the theorem in the case
when a = (1+ v —d)/2. O

If we solve the conditions of (3.4) for d we obtain

(3.7) THEOREM. If Qu = 2, then either d is a product of primes where each

21



prime is a square mod (p), or d has the form d = 2%g1---qry -+ Tm where 6 =0 or 1,

¢ = 1 mod (4), <%)=1, 1<i<l,

r; = 3 mod (4), <5>=—1, 1<i<m,
P

and

2 _
6(—1)—8—1—)+m51mod (2).

Proof. We have to prove that the conditions on d given here are equivalent to
those given in (3.4).

Let us then assume that

1t
(é) =1, (( D) p) =1, for all g|d.
P q

Let ¢ be an odd prime divisor of d. Then
(8), ifp=1mod(4),

((—1)tp> _ ) \e

q (), ifp=3mod (4),
(19)), if p=1 mod (4),
(:q—l)(g), if p = 3 mod (4).

Now
1, if¢=1mod (4),

-1, if ¢ =3 mod (4),

(z_)> _ (%), ifg=1mod (4),
q —(2), if ¢ =3 mod (4).

Therefore, for p = 3 mod (4),

and, for p = 3 mod (4),

and so, for any p,

(E22)- ()

that is, each odd prime divisor of d is a square mod (p). But since (%) = 1, it follows

that 2, if it is a divisor of d, is also a square mod (p), and therefore each prime divisor

of d is a square mod (p).

22



Conversely if we assume that each prime divisor of d is a square mod (p) then it

1\t
(5) =1, (( D) p) =1, for all g|d.
p g

We now assume that

_1)t+l
(é) = -1, ((_-1—)—9) =1, for all g|d.
p q

Let ¢ be an odd prime divisor of d. Then

((—1)“’1])) _ | (3B), ifp=1mod(4),
q B (), ifp=3mod (4).

is obvious that

Now, for p = 1 mod (4),

(i) B (2), ifg=1mod (4),
g ) | -(%), ifg=3mod (4),

(z_)) _ (#), ifg=1mod (4),
q —(%), if ¢ =3 mod (4).

and, for p = 3 mod (4),

P
Therefore
((_1)t+1p) B { (1), ifg=1mod (4),
q - —(%), if ¢ = 3 mod (4),
and so

(q) B {1, if ¢ =1 mod (4),
p) | -1, if ¢=3 mod (4).

Let d = 28¢y -+ - qur1 -+ -y With ¢; =1 mod (4) and r; = 3 mod (4). Then

©)- (e

- (_1)5((P2—1)/8)+m_

Equating this to —1 gives §((p? — 1)/8) + m = 1 mod (2).

Conversely if we assume the conditions on d given in (3.7) then we can readily

_q\t+1
(é) = _1, (——( D) p) =1, forall gld.
p g
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Because of the strong conditions in (3.7) which d must satisfy if Qa7 is to be 2,
a large proportion of all the possible values for d, for a given p, fail to satisfy these
conditions and, consequently, for these values of d one gets Qpr = 1. If, for example,
p = 3 then there are 45 possible values for d less than 100. Out of these 45 values, 24
fail to satisfy the conditions of (3.7) and so for these values we immediately obtain
Qu = 1. For p = 5 there are 50 values for d < 100 and only 22 of them satisfy (3.7).

Next we prove a result which will allow us to calculate Qs for M = Q(v/~g,(p)

where ¢ is a prime congruent to 3 mod (4).

(3.8) THEOREM. Let L be an abelian extension of Q which contains M or is a
subfield of M. If the degree of L over M or M over L, whichever is applicable, is odd

then Qr = QM.

Proof. Let us first assume L contains M. The group, Wi, of roots of unity in
L can be written as ((s,(p) where a is a power of 2 and b is an odd integer. If
the degree of L over M is odd then a can not be greater then 2. The group Wp is
therefore generated by —1 and (. The group Wg is generated by (3, and so WL/WI%
is generated by —1.

Assume Qr = 2. Then, by (2.9), there exists a unit u € Ef, such that u® = —u.

Taking norm of u* = —u from L to M giveé
normp /pr(u€) = normg pr(—u),
= ()M normng (u),
= —normp/pr(u),

since [L : M]isodd. As Lis an abelian extension of Q, complex conjugation commutes

with all the other automorphisms; we obtain
[normp /pr(u)]® = —normpas(u).
Since v is a unit in Of, normy () is a unit in Opr. So there exists a unit v =

normL/M(u) in Ejs such that v® = —v, and therefore Qpr = 2.

Conversely assume that Qa7 = 2. Then we can find a u in Ejs such that u¢ = —u.

Treating u as an element of Ef gives Qp = 2.

The proof when L is a subfield of M is similar and so we omit it. O

(3.9) COROLLARY. If M = Q(v/~¢,(p), where g is a prime congruent to 3 mod
(4), then Qp = 2.
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Proof. Let L = ©Q((q,{p). Then L contains M and the degree of L over M is
(¢ — 1)/2 which is odd since ¢ = 3 mod (4). The group Wy is generated by —1 and

(pq, and W/ W,% is generated by —1. The element 1 — (pq is a unit in L, and

(1- Cpq)c = - 1;;1(1 - Cpq)-

Now (pq lies in W2 but —1 does not. Therefore Q@ = 2. Using (3.8) now gives
QM = 2. a

Theorem (3.8) has another useful application. If M has a subfield L with [M : L]
odd and whose degree over @ is small then it may be easier to calculate Q1 (and hence

Q»r) than calculating @y directly. We now explore this possibility for calculating
QM-

Our success in obtaining Qs through calculating @1 will depend on the degree
of L over Q being small. This degree is smallest when p = 3 mod (4), and so in the

following we will restrict our considerations to the case when p = 3 mod (4) only.

So let us assume that p = 3 mod (4). Then L = Q(a, 8) where 8 = (1++/—p)/2.
The group, Wy, of roots of unity in L is (—1) unless p = 3 in which case Wi =
(—1,¢3). In any case we have Wi /W2 = (-1), and so Qp = 2 if and only if there

exists a unit u € F, such that u® = —u.

Now any element z € Of, satisfying ¢ = —2 can be written as

_ Jav=d+b/=p, if d # 3 mod (4),
e 2(av/=d + by/=p), if d =3 mod (4),

where a,b € Z and, in the case d = 3 mod (4), a + b = 0 mod (2). So if z is a unit

satisfying ¢ = —z then

(2) —da? + pb?, if d # 3 mod (4),
ormy g (z) =
HOTHL/K 1(~da? + pb?), if d =3 mod (4),

must be a unit in Q. Since the only units in Ok are £1, we conclude that Q; =2

if and only if the equation

da? — pb? = { +1, if d Z 3 mod (4),

+4, if d =3 mod (4),
has an integer solution. Multiplying this equation by p or d, whichever is the smaller
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of two, allows us to write this equation as
z? — pdy® = 6k, (3.10)

where 6 = £1 and
b= {min{p, d}, ifd# 3 mod (4),
4 min{p,d}, if d =3 mod (4).
So whether Qpr = 2 or 1 depends on whether or not (3.10), a generalized Pell’s
equation, is soluble. This equation, fortunately for us, belongs to a family of equations
for which it is possible to settle the question of solubility in any particular case. In

the following we will show how to determine whether (3.10) is soluble.
Consider the equation .

z? — pdy® = 6k', (3.11)
where '
W = { k, if d # 3 mod (4),

k/4, if d=3 mod (4).

The equation (3.10) is clearly soluble if (3.11) is. So let us first discuss (3.11). This
is one of the standard equations which one encounters when studying quadratic in-
determinate equations. A treatment of this equation can be found in, for example,
[7]. In the following we will only state the main theorem on the solubility of (3.11)
without the proof.

The method of solution for (3.11) involves the continued fractions expansion of
vpd. Let Ag = \/pd and let ag be the integer part of Ag. For ¢ > 1, define

A= (Aim1 —ai1) 7L

Set a; equal to the integer part of A;. The sequence of integers [ag, a1, . . .] represents
the continued fractions expansion of y/pd. This representation is periodic, i.e., we can

find integers r and s such that a; = a;4+, for ¢ > r. To indicate this the continued
fractions expansion of v/pd is written as [ag,a1,...,ar,. .., Grrs—1]-
The constants A; can be expressed as

A = YPAt D
: Qi
where Py =0, Q¢ = 1, and, for ¢ > 1,
P,=a;1Q;-1 — P,
_ pd—(a;-1Qi-1 — Pi_1)?
Qi = _ :
Qz—l
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Both P; and Q; are integers. To prove this we use induction. Assume A; = (v/pd +
Pz')/Qi. Then

(\/P_d + P ) -1
Aipp=|\—rr——-ai] ,
Qi
_ Q:
Vpd + Pi — a;Q;’
_ Vpd + a;Q; — P;
(pd - (a:Qi — P;)?)/Qs’

which can be seen to have the form (/pd + Pi11)/Q:i+1. To prove that P; and Q; are
integers we note that if P; and Q; are integers for all 7 < j then Pj4; = a;Q; — P; is

also an integer, and
pd — (a;Q; — Pj)2 =pd - Pj2 mod (Q;),
= Qj-1Q; mod (@),
and therefore Q)41 is also an integer. Hence P; and Q); are integers for all 1.

Because of the periodicity of a;’s the set of distinct values which P; and @); can
take is finite. In fact, P; = Piys, and Q; = Q45 for i > 7. Let pg = ag, g0 = 1,
p1 = aga1 + 1, ¢1 = a3, and

Pitl = Qi41Pi + Pi-1, 121,
Qi+l = Qi+19; + gi-1, 12> 1

The following theorem which has been taken from [7], §10.8, deals with the ques-
tion of solubility of (3.11) conclusively.

(3.12) THEOREM. Let | be an integer with [* < pd. The equation
z? — pdy? =1

is soluble if and only if | = (—l)iQ.; for some 1. If this is the case then any solution

z,y can be written as ¢ = xpj_1, y = £qj—1 wherel = (-1 1Q;. O
j j J

In (3.11) k'2 < pd and so we can use the above theorem to decide whether (3.11)
is soluble. If (3.11) is soluble then @ = 2, and, since Q@ = Q, @p will also be 2.
But if (3.11) is not soluble then, in the case d = 3 mod (4), the equation (3.10) may

still have a solution.
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Let us assume that (3.11) is not soluble and d = 3 mod (4). We want to determine
whether (3.10) has a solution. In the following we will show that any solution to (3.10)

arises from a proper solution (z,y are relatively coprime) to
z? — pdy® = 1, (3.13)

where 7 = £1 and [ is a positive integer with I? < pd. By using (3.12), we can
then proceed to obtain all the solutions to (3.13), that is, if they exist. Once all the
solutions to (3.13) have been obtained, by checking whether any of these gives rise to

a solution to (3.10) we will be able to decide whether or not (3.10) is soluble.

Let
k, if 16p < d,
(d—p)/4, ifp<d, 16p > d,
L= k, if 16d < p,

(p—d)/4, ifd<p, 16d> p.

Then [ is a positive integer with 12 < pd. Let n = 1.

(3.14) PROPOSITION. Any solution to 2?2 — pdy? = 6k arises from a proper
solution to 72 — pds® = nl.

Proof. If | = k then there is nothing to prove. Assume [ = (d — p)/4. Let z,y be
a solution to 2 — pdy? = 6k. Then we claim that

(3.15)

where §' = +1 and , s are integers satisfying 72 — pds® = nl. To prove this, observe
that (z, y)z, the square of the highest common factor of z and y, divides k. Since &
is 4p or 4d and d is square-free, (z,y) = 1 or 2. But (z,y) # 2, for otherwise (3.11)
will be soluble. So (z,y) = 1. Let r, s be integers such that

zs —yr = 6. (3.16)

If rg, so is a particular solution to (3.16) then r,s can be written as

T =7rg+ me,

s = sq + my,
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where m is an integer. Multiplying z2 — pdy? = 6k by (r? — pds?) gives
(r? — pds?)(2? — pdy®) = (r® — pds®)6k,
(rz — pdsy)? — pd(zs — yr)? = (r? — pds?)ék,
or
(rz — pdsy)? — pd = (7'2 — pds?)6k. (3.17)
Now
rz — pdsy = (ro + ma)z — pd(se + my)y,

= 7oz — pdsoy + m(z” — pdy®),
= rox — pdsoy + mobk.

Choose m such that
|rz — pdsy| < k/2 = 2p.
Since

(rz — pdsy)? — pd = 0 mod (4p),

we have

rz — pdsy = §'p. (3.18)
Substituting for rz — pdsy = §'p in (3.17) gives
p* - pd = (r* — pds®)sk,

or

r? — pd52 = nl.

Equations (3.16) and (3.18) can now be solved for z,y to give (3.15).

The proof for the case | = (p — d)/4 is similar to the one given above and so we

omit it. O

So in order to determine whether (3.10) is soluble we first, using (3.12), solve
(3.13). If we find that (3.13) has a proper solution 7, s for which z,y in (3.15) are
integers then (3.10) is soluble and Qy = Q@ = 2. If (3.13) has no such solution then
(3.10) is insoluble and Qp = QL = 1.
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Let us consider a few examples. Let p = 19 and d = 51. Then Q7 = 2 if and
only if the equation 22 — 969y% = £76 has an integer solution. We first consider the

equation

z? — 969y% = +19.

The continued fractions expansion of v/969is [31,7,1,3,3,1,1,1,2,1,1,1,3,3,1, 7,62).
The above equation has a solution if and only if there exists an ¢ such that ¢); = £19.
The constants Q;’s are given by [1,8,43,15,16,33,25, 32,19, 32, 25, 33, 16, 15, 43,8].
Since Qg = 19, the above equation is soluble. For a solution we can take p; = 11362,

g7 = 365:
113622 — 969 - 3652 = 19.

Hence Qp = 2. v
Let p = 31 and d = 39. The equation we have to solve now is 22 —-1209y% = +124.

But first we consider

z? — 1209y2 = +31.

The continued fractions expansion of /1209 is (34, 1,3,2,1,3,2,1,1,22,1,1,2,3, 1,2,
3, 1,6'8]. For the constants Q;’s we get [1,53, 16,23,40,17,25, 29, 40, 3, 40, 29, 25, 17,
40, 23, 16,53]. Since for no value of 7 is Q; = £31, the above equation is insoluble.
We now consider z2 — 1209y* = £124. By (3.14), any solution to this equation arises

from a solution to

z? — 1209y% = +2.

But again for no value of 7 is Q; = +2. Therefore the above equation is insoluble and

hence @ = 1.
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4. D(OkG), p ramified in K

Our task here is to calculate the group D(OgG) in the case when p is ramified
in K. We will prove

(4.1) THEOREM. If d(K/Q) = pZ, then the kernel group D(OkG) is given by

the exact sequence
1 — Coker(j1) — D(OgG) — Coker(j1) — 1,
where
j1:(OkG/J)* — (O /pOk)”,
g1
J=(Q+g+- -+ )OkG, and ji : O — ((’)N/PJ(\J;’—IW)" is induced by the ring

homomorphism
On — ON/PI(\?—I)/Z.

Here Py = (1 — {)On is the prime ideal of N = Q((p) lying above p.

(4.2) THEOREM. If K is real, d(K/Q) # pZ, b # 0 mod (p), where u = a+ba is
the fundamental unit in K, and p does not divide the class number hys of M = K((p),
then

D((')KG) ~ Cp X oo X Cp XC|D(OK:G)|a
N 7
n factors

where
_ {(p —1)/4, ifp=1mod (4),
(p—3)/4, ifp=3mod (4),

K'=Q(V-d),d =éd/p,§ =+1ifp=1mod (4), or 6 = -1 if p =3 mod (4).

(4.3) THEOREM. If K is imaginary, d(K/Q) # pZ, and p does not divide the
class number hpr of M = K((p), then D(OkG) is given by the exact sequence

1— Cp i D(OKG) — Cp X - X Cp XC|D(OK’G)| — 1,
(T
n factors

where

{ (p—5)/4, ifp=1mod(4),
(p—3)/4, ifp=3 mod (4),

K'=Q(vV=d),d =6éd/p,§ =+1ifp=1mod (4),or6 = —11ifp=3 mod (4), and
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D(OkG) has order p"t1|D(Ok/G)|.

Proof of (4.1). Let I = (1 - g)OgG,and J =(1+g+- -+ ¢?1)OkG. Then
the following is a cartesian square.
OxG/INJ) 2  OxG/J
Lo . la (4.4)
OxG/I L OxG/I+J)
The map g — z sets up an isomorphism

Ok |z
EE

OKGQ

and this isomorphism allows the following identification:

~ (1 _ . Oklz]
I—(]‘ x)<$p-—1>,
J~(l+z+ ...+$p—1)<2K_[m1]).

We can now simplify the rings which appear in (4.4). The ideals / and J have trivial

intersection and therefore
OxG
TnJ = 0xG

This follows from the fact that the factors 1 —zand 1+ +---+ zP~1 of 2P — 1 are

relatively coprime and therefore

ﬂ(1+m+---+mp_1)-%(%=0.

Ok|z]

@ —1)
The other rings in (4.4) simplify to

OkG Oklz]

J T {(l4+z+---+zpl)y
OxG , Ox
T—-F_J——pOK.

INJ~(1-z)

The square (4.4) can now be written as
OxG 2 OxG/J

L L

ok L 0g/pOk
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The action of various maps on g is given by

g — g

PR

1 &
Both j; and jp are surjective. The Mayer-Vietoris sequence attached to the above
square is

1 — j1((OkG/J)*) x j2(Ok) — (Ok/pOk)”
— D(OgG) - D(OgG/J) x D(Og) — 1.

Since Ok is the maximal order in K, the kernel group D(Ok) is trivial. The group
O lies in (OgG/J)*. We can rewrite the above sequence as

1 - j1((0xG/I)*) = (Ok [pOk)* — D(OkG) — D(OkG[J) = 1. (45)

This sequence shows that in order to calculate D(OkG) we need to find D(OxG/J).
Let
OkG Ok |z
A= ~ .
J (l+z+ - +aPl)
The polynomial m(z) = 14z +- - - +2P~! splits into two irreducible factors in Og/[z].
We denote these factors by mi(z) and ma(z). We can assume that mi(¢p) = 0. The
two factors m1(z) and my(z) are relatively coprime. We therefore have
K z] _ _Ki=| K|z
Tzt tzr by (mi@)  (ma(@)
~ K((p) x K(a(p)),
~ N x N,

where o is the non-trivial element of Gal(N/Q)/Gal(N/K) ~ Gal(K/Q). The iso-
morphism (4.6) allows us to embed A in Oy x On:

_ OgG

(4.6)

A _’ONXONa

gr ((P’U(CP))'
Let I' = mi(g)A, J' = ma(g)A. Then the diagram
AJI'NT) — AL

l l (47)

AT — A"+ )
is a cartesian square. Since mj(z) and ma(z) are relatively coprime, the ideals I' and
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J' have trivial intersection and therefore A/(I' N J') ~ A. For the ring A/I' we have

A Oxlsl
I (myz))
Since K is a subfield of N = Q({,), Ok[(p] = Z[¢y] = On. Therefore A/I' ~ Op.
The ring A/J' is also isomorphic to On. For A/(I' + J') we get
A Ok|z]
I'+J" 7~ (ma(z), ma(z))’
~ OK[Cp]

~ (ma(G))
On

= ma(G))

The polynomial ma(z) can be written as

ma(e) = [J(z - o()*),

a

Ok [Cp]-

where the product is over the elements of Gal(N/K). Therefore

ma(Cp) = H(Cp - a((p)")-

a

For each a € Gal(N/K) the element ¢, — 0((p)* generates the prime ideal Py =
(1 - (p)On of N lying above p. Therefore

ma((p)ON = 1(\;)_1)/27

and hence

A N On
1 1= (p-1)/2°
r'+J p]\Z;’ )/

The square (4.7) can now be written as
OxGlJ On
L ) Lt (4.8)
On KL ON/PJ(J-)_U/z

The maps i'’s and j'’s are given by
P J g

5 oG
le Ld

& 2 1G]
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The above square gives the exact sequance:
1 - 1(OF) = (On/PY )" = D(OxG/J]) = 1.
Here we have used the fact that D(Oy) = 1. This sequence together with the

sequence (4.5) proves the theorem. O

Next we attempt to calculate the groups Coker(j;) and Coker(j]) which appear
in (4.1).

(4.9) PROPOSITION. The cokernel of the map
j1: (OkG[J)* = (Ok/pOk)",
g1

is either trivial or it is isomorphic to a cyclic group of order p.

Proof. A subring of OxG/J is ZG/{1 + g + --- + gP~!) which is isomorphic to
On = Z[{]. The image of O} under j; is (Z/pZ)*. In fact, the cyclotomic units in
O alone are enough to give (Z/pZ)*. Therefore Coker(j1) ~ Coker(7;) where

I (O—I;G-> — @(—%—i%{,?—x (4.10)

is induced by j1. The ideal pOg ramifies in K: pOg = PIZ(. The ring Og /pOk is
therefore a local ring with the unique maximal ideal Px/pOg. The group of units in
Ok [pOk is given by

P 8 N\
1—>1+—K——)<———0K> —><O—K> — 1.
POk POk Pk
The order of 1+ Pk /pOk is p and (Ok/Pk)* ~ GF(p)*. Therefore (Ok/pOx)* ~
Cp x Cp_1. Going back to (4.10), we see that

(Ok [pOK)*
(Z/pZ)>

and therefore Coker(j;) ~ 1 or Cp. | O

~ Cp,

(4.11) THEOREM. If K is imaginary, i.e., p = 3 mod (4), then the cokernel of
the map

j1: (OkG/J)* = (Ok [pOK)™

is isombrphic to a cyclic group of order p unless K = Q(+/—3), in which case it is

trivial.
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Proof. Since Coker(j;) ~ Coker(j;) where

- <(’)KG>X (Ok [pOK)*

nil=—) = e
J (Z/pZ)

is induced by j1, we consider the map ;.

By (4.8), we have an isomorphism
k:(OkGJJ)* — A= {(a, b) € 0% x 0% | a = 071(b) mod (P](\?_IW)}
given by g — ({p,o((p)). The inverse map k~l: A - (OgG/J)* is given by
k_l(a, b)=z19+ -+ acp_lgp_l

where z; € Ok, and

a=z1(p+---+ mp—lgg—la

b=z10(p) + -+ :cp_1a(g’17;'1).
The above equations are soluble for z;, 1 < 4 < p~ 1. To prove this, let z; = r; + sic,
r;, 8 € Z. Since a = 0~ 1(b) mod (P](f_l)/z), we can find )_; ciCI’; € Op such that
a—-o1(b)=(02a-1)Y; Cin,- But

p—1

o= o7} (b) = 3 (@ - o @)

i=1
p—-1
=(2a-1)> sl
i=1

Therefore s; = ¢;, 1 < i < p~1. The integers r;, 1 < i < p—1, can now be determined

by using the equation a = z1(p + -+ + Tp-1 5—1’ or

p—1 p—1
E ri(p=a—a Z $iCp-
i=1 i=1

Let
(O /pOK)™
(Z/pZ)>

denote the composite map ;4 !. Then the cokernel of 71 is isomorphic to Coker(k').
The group Coker(k') is trivial if there exists an element in A whose image under k'

FiA-
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is non-trivial; otherwise Coker(k') ~ Cy. Now, for an element (a,b) € A, we have

p—1
K(a,b) =7 (Z(Ti + Sia)gz) ) ri,8i € Z,

=1

p-1 p—1
= 2(27'1' +8i)+ (2a—-1) Z Si
i=1 =1

since 2 € (Z/pZ)*. The element 25;11(2?‘1' + 5;) lies in (Z/pZ)™ and therefore we
can express k'(a,b) as
p—1

K(a,b) =1+ (2a -1 i=1 % .
(a5) ( )Ef;ll 2r; + i)

But

p-1
2(27'1- + 5;) = t(a+ o~1(b)),

i=1
p-1 -1
S si=t <__ff__@) |
200 — 1

i=1

where t : On — Op /Py denotes reduction mod (Pp). Hence

a—a‘I
k'(a,b) =1+ (2 — 1)t ( 5o 1(b) . a+al“1(b)) .

Since, for any element (a,b) € 4,
(a,0) = (a,0(a))(1,0(a)"b),
and
K'(a,0(a)) =1,

it follows that k'(A) = k'(B) where B is the subgroup of A consisting of elements of
A of the form (1,a). The group B is clearly isomorphic to

E%p—l)/z) ={z € Ey|z=1mod (P](f—l)/z)}‘

Ep, of course, is the group of units in Op. Let

o gl _, (Ok/pOk)"
N (Z/pZ)*
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denote the map induced by the isomorphism

El(é}’—l)ﬂ) — B,
a+— (1,0(a)).

Then Coker(7;) = Coker(k").

Assume K = Q(v/=3). Then Ey = (~1,(3), and EY = (¢s). The image of (3
under k" is non-trivial. This follows from the fact that

" _ _ 1“(3' 1
k(Cg)-—l-i'(Qa 1)t<2a_1 1+C3>’

and (1 - (3)/(2a—1) = ¢2 which is a unit. Therefore Coker(k") = 1 and hence
Coker(j;) = 1.

Now assume K # Q(\/_—_§) Then p is a prime greater than 3 which is congruent
to 3 mod (4). Let z € E%p—lw). Then, since Exy = WNEN+, where Wy = (=1,(p)
is the group of roots of unity in Oy and En+ is the group of units in On+, T can
be written as z = C;;u where 1 < i < p and u € En+. As z is congruent to 1 mod
(Pﬁ—l)/z), it can also be written as 1 + (2a — 1)y where y € On. Applying the

complex conjugation to the equation = = (;;u =14 (2a — 1)y gives
¢ = (lu=1- (20 = 1)¢".
Substituting for u = C;i(l + (2a — 1)y) gives
1- ¢ = (20— 1)(G Y +9°):

If i # p then (1 — (;%)On = Py. Since (2a -~ 1)ON = PEV? and (p-1)/2 i
greater than 1, the above equation is valid if and only if 4 = p. Therefore Yy = -y
The subset of Oy consisting of elements which satisfy y¢ = —y is ((p — ¢ NOy+.
Therefore any T € E%p—l)/z) can be written as ¢ = 1+ (20 — (¢ - Cp‘l)y where
y € Oy+. Since t((1 - z)/(2a — 1)) = 0, applying k" to z gives 1, and therefore
Coker(k") ~ Cp. Hence Coker(7;) =~ Cp as required. O

The situation is markedly different in the case when K is real.

(4.12) THEOREM. If K is real, then Coker(j1) is trivial if b £ 0 mod (p), where
u = a4 bo is the fundamental unit of K. Ifb = 0 mod (p) then Coker(j1) = Chp-
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Proof. If b # 0 mod (p) then the image of u under j; is non-trivial and therefore
Coker(7;)=1. Since Coker(j1) ~ Coker(j,), we obtain Coker(j1) = 1.
Now assume b = 0 mod (p). In the proof of (4.11) we saw that Coker(j;) ~
Coker(k") where
. ple-vr _, (Ok/pOK)”
N (z/pz)* ’
1- 1
mr—>1+(2a—1)t< i )

2a-1 14z

Suppose Coker(k"”) = 1. Let z € EJ(\(,p—l)ﬂ) be a unit whose image under k" is non-
trivial. Then z = 1+ (2a — 1)y where y € Oy and t(y) € (Z/pZ)*. Taking the
norm of z from N to K gives a unit in Og which satisfies

normy/g(z) = 1+ (2a — 1)tryyk(y) mod (pOk).

For try/k(y) we have
p—1
try/k(y) = —2—t(y) mod ((2a — 1)Ok),

and therefore
" _p- 1 / !
rn/k(y) = -Tt(y) + (20 - 1)y, y € Ok.

Hence

normy/g(z) =1+ (2o — 1) (g-;—l) t(y) mod (pOk).

So we have a unit 7+ sa in Ok such that s Z 0 mod (p). But this contradicts the fact
that, mod (pOx), the fundamental unit lies in (Z/pZ)*. Therefore Coker(k") ~ Cp
and hence Coker(j1) ~ Cp. O

The above theorem shows that in order to calculate Coker(j1) all one has to do

is obtain the image of the fundamental unit of K under the map

(Ok /pOK)*™
(Z/pZ)>

If this image is non-trivial then Coker(ji) = 1; otherwise Coker(ji) =~ Cp. It is

of course an interesting question to ask whether there exist primes p for which the

fundamental unit in K fails to generate (Og /pOx)* [(Z/pZ)*.

X
O —
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Next we consider the map

X
. On
!, X
J1:Oy = ( P(p—l)/2)
and its cokernel. This is the second of the maps whose cokernel appears in (4.1). The

group (ON/PJ(\;)_l)/2)X is given by the exact sequence

X
Py On <(9N>x
l=14—F—7F7%— | —7 - | = - 1.
P](\:;’—l)/2 <P1(\?—1)/2> Py

The group 1+ 1:’1\r/P](\?—1)/2 is isomorphic to (p — 3)/2 copies of Cp and (On/Pn)*
is isomorphic to Cp_1. Since the order of 1 + Ply\r/.’{,(\}’_l)/2 is coprime to the order of
(On/Pn)*, it follows that

X
On
(W) ~ p_IXCpX"'XOp.
N (p—3)/2 factors

If we let A =1 — (p then ((9N/P1(\}p"1)/2)>< can be written as

X
(—(-DN—> = <z,1—)\,1—)\2,...,1—/\(p_3)/2>,
P(P"l)/2
N

where z is a generator of (Z/pZ)*.

Since the map Oy — (On/Pn)* =~ (Z/pZ)* = (z) is surjective, we can find a
unit v in Oy such that u = z mod (Py), and hence u? = 2P = z mod (pOy). The
ideal PP~V divides pOy and therefore w? = z mod (P®~/%). This shows that
(Z/pZ)* lies in the image of jj. Also, ( = 1 — A and therefore the element 1 — A
and the subgroup of (Opn/ Pj(é) —b/ 2)" which it generates also lies in the image of j1.

To advance further with our calculation of Im(j{) we have to make an assumption
about the class number of N = Q((p). If we assume that p is regular then there exist
real units of the form

u; = 1+ a1A? mod (M0Op),
ug = 1+ agA?* mod ()\5(9N),

up-3)2 =1+ a(p_g)/z/\p_3 mod (\P~20p),

where a; € (Z/pZ)* for all i, which generate a subgroup Ey4 of En+ of index prime
to p (see [5]). En+ of course is the group of units in the maximal real subfield N +
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of N. The index of Wy E}y, in Wy En+ is prime to p and, since Eny = WyEN+,
the image of j] is the subgroup of (ON/PJ(\?_I)/?)>< generated by z and the image of
Wy E}y4 under j.

Let, forz > 1,
ji : By — (ON]PR)*.

Then Im(j1) = 1 and the image of j; for ¢ > 2 is isomorphic to Im(k;) x Im(ji-1)
where
(On/Py)*

ki: Ely — :
1 N+ (ON/P]LV—].)X

is the map induced by j;. Hence
Im(j;) =~ Im(k;) x -+ x Im(ka) x Im(j1).

The group (On/P4)*/(On/ Pi71)* is generated by 1 — A1 and is isomorphic to
Cp. Therefore Im(k;) = 1 or Cp. If we apply k; to u;, 1 < [ < (p—3)/2, we find
Im(k;) is trivial if ¢ is even or Im(k;) ~ Cp if i is odd. Hence Im(j;) is isomorphic to
n copies of Cp where n is the number of odd indices in {2,3,...,1}. In particular,
71(Ely+) = Im(j_1)/2) is isomorphic to n copies of Cp where n = (p — 5)/4 if
p=1mod (4), or n = (p—3)/4if p = 3 mod (4). We can now obtain j;(WnE}y+)
and therefore Im(j}). We find Im(j{) =~ Cp-1 if p = 3, and if p > 3 then

Im(j1) & Cp-1 X Cp x -+ x Cp,
N

n factors

where n = (p—1)/4 if p= 1 mod (4), or n = (p + 1)/4 if p = 3 mod (4). It is now

straightforward to prove

(4.13) THEOREM. Ifp is regular, then the cokernel of the map
i : OF — (On/ P V)

is trivial if p = 3. Otherwise it is isomorphic to n copies of Cp where n = (p—5)/4
ifp=1mod (4),orn=(p—"7)/4if p=3 mod (4). O
We now prepare the ground for proving (4.2) and (4.3). Let us assume d(K/ Q) #

pZ. The polynomial 1—z? splits into two irreducible factors 1 -z and 1+z+- - -+zP7!
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in K which are relatively coprime. Let I = (1 - g)OxG, and J = (1 +g+--- +
g 1)OkG. Then
OxG/INT) 2 0gGlJ
liz . ljl
OxG/I 5 OxG/I+J)

is a cartesian square. The rings in the above square simplify as

OxG/(INJ)~OkG,
OxG/I ~ Ok,
OxG/J = Ok[Gl,

OxG/(I+J) ~Og/pOk,

and so the above square can be written as

OkG -5 Oklg)
Liz Lin

ok = Ok /[pOk

Both j; and js are surjective. The above square gives the exact sequence:
1— j1(Ok[&])*) — (Ok/pOK)* — D(OkG) — D(OklGl) — 1. (4.14)

In writing the above sequence we have omitted j2(O%) and D(Og); the reason being
j2(0%) C j1(Ok[G]*), and D(Ok) = 1. In the above sequence we can not set
D(Ok[¢p]) to 1 as Ok[(p) is not the maximal order in M. The maximal order in M
is Opr and Ok[(p) is a proper subring of Opr. In fact we have

(4.15) PROPOSITION. As an abelian subgroup of Oy, the Z-index of Og[(p| in
O\ is given by

(O : Ok[Gp]) = PP~/

Before we prove the above proposition we need to introduce some notation. Let
d = 6d/p where § = +1 if p = 1 mod (4), and 6§ = —1 if p = 3 mod (4). Let
K' = Q(v/=d). Then d = d’ mod (4) and the two discriminants d(K/Q) and d(K'/Q)
are related by d(K/Q) = pd(K'/Q). For the field M we have M = K'N where
N = Q({p). Since N/Q is ramified at p only and p does not divide d(K'/Q), K'

and N have discriminants which are relatively coprime. The ring of integers in M is
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therefore a compositum of the rings of integers in K’ and N, that is Op = Og:Op.
Since Ok = Z[B] where

g = { v-d, if &’ # 3 mod (4),
(1+v/=d)/2, ifd =3 mod (4),
it follows that Oy = Z[8, ().
Proof of (4.15). The index (Oar : Og|[(p]) is given by

(O + Okl = 27, (4.19)

The ring Og[(p] is a compositum of Ok and Oy, and therefore
Am(OklG]) = Ax(Ok)P AN (ON)*.
For the ring Ops we have Oy = Og:Op and so
Au(On) = Ag (O P AN(ON).
Substituting for Ap(Ok|[(p]) and Ap(Onr) in (4.16) gives

AK(OK) )(10—1)/2
Ag/(Okr) '

Using Ax(Ok) = pAk(Ok') now gives the required result. O

(Or : OIG)) = (

So before we can proceed any further with our calculation for D(OkG) we need to
calculate D(Ok|[(p]), and for that we need to find a cartesian square which describes
Ok[(y]. Let us, as a first step to obtaining a cartesian square for O k[Cp), prove that
pOys is an ideal of Ok[(p]. pOu clearly is a module over Ok[(y]. To show that it
is an ideal of Ok [(y] we need to show that pOyr = pZ[B, ¢p] C Ok|(p]. It is obvious
that p(p € Ok|[(p). For pB we have

5 = { §/6pa, if d' # 3 mod (4),
"\ 6v8p((~1 + v3p)/2 + @), if d =3 mod (4).
Both /&p and (-1 + +/8p)/2 lie in Z[(p]. Therefore p8 € Ok/[(p]-

The following can now be seen to be a cartesian square.
Oklp] —  Om

l l

OklGl/pOu — Oum/pOm
Since Ok [{p]/pOn is not an Og-order contained in some K-algebra A, the exact

sequence attached to the above square has the form (1.2) rather than (1.1). The
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exact sequence is

1 - (0k([G])* — O x (Okll/pOu)™ — (Om/pOm)*
— Pic(Ok[¢p]) = Pic(Onr) x Pic(Ok[(p)/pOu) — Pic(On/pOna).
But for a finite ring A, Pic(A) = 1, and for an integral domain A, Pic(A) = CI(A).

So we can rewrite the above sequence as

1 — Okl — Opp % (Ok[G]/pOm)*
s (Om/pOm)* — CUOK[G)) — CU(Ox) — 1.

Since ;s is the maximal order in M, we get
1 — Ok[G]* — O3 x (Ok[Gl/pOM)* — (Om/pOu)* — D(Okl((]) = 1. (4.17)

Combining (4.14) and (4.17) gives

(4.18) THEOREM. If d(K/Q) # pZ, then the kernel group D(OkG) is given by

the exact sequence

1 — Coker(j;) — D(OgG) — Coker(j1) — 1,

where
j1: OklG)* — (Ok/pOK),
1
and
it 0% — (Om/POMm)*
(O[Sl /POM)*
is induced by the ring homomorphism Opr — Oum/pOum. a

Next we calculate Coker(j1).

 Let Woy(c,) be the subgroup of Ok(¢p)* consisting of roots of unity, and
Okt = {= € Okl(p] | 2° =}

(4.19) LEMMA. If the map

WOK i¢s)

2 )
Worle!

T — z/zf,

$30K[Cp]x -

is surjective, then the index of Wo,.(,](Ok[(p] 1) in Ok|[(p)™ is 2; otherwise it is 1.
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Proof. The sequence

— W .

Ok ¢l
is exact; the proof of this is similar to the one given in (2.9). Since Wp, (] = (=1, (p)
and WCz)K[Cp] = ({p), the group WOA‘[CP]/Wg)K[(p] is generated by —1. If ¢ is surjective
then
Ok [l ~ Wox¢,)
VVOK[C,,]((I)K[Cp]dl_)>< B W(zph.[cp]

and [Ox[G]* : Worie,|(Ok(p]T)*] = 2; otherwise

OK[Cp]x -1
Wori)(OklGH)x

and [Ok [(]* : Wo (¢, )(Ox[G])"] = L. O

= 02)

(4.20) LEMMA. If K is quadratic imaginary, then cokernel of
j1 : OklG]* — (Ox/pOk)*
is a cyclic group of order p.

Proof. Since Z[{p] C Ok[{p], Ox[{p]* contains units of the form

1—-¢C
a= ) l1<a<lp-1
Sa =TT a p
The image of £,’s under j; is (Z/pZ)*, and therefore Coker(j1) ~ Coker(7;) where
= (Ok/pOk )™
: 0 X -

is induced by ji.
The ideal pOg ramifies in K: pOg = PIQ( where P is the prime of K lying above
p. The ring Ok /pOk is therefore a local ring with the unique maximal ideal Pk [pOk.
The group of units in Ok /pOk is O /pOk minus Pk [pOg. Now |0k /pOk| = P,
and |Pg /pOk| = p. Therefore |(Ok /pOk)*| = p(p — 1), and so
Ok /POK)* &
(Z/pz)* — 7"
a cyclic group of order p. The cokernel of 7, is, therefore, either 1 or Cp. Let
us assume that Coker(7;) = 1. Then [7;(Ok[(]*)| = p, and, since [Og[(]™ :
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Worie)(OklGl)*] < 2by (4.19), [71(Wo, (O[] T) )l = p. But from Wo, () =
(-1,¢p) and

OK[Cp]+ — <Cp + Cp—l’ o z(’17—1)/2 n Cp—(p—l)/z,a(Cp _ Cp_l)’
oV - TV i d # 3 mod (4),

or

OK[CP]+ — <<p + C;l,- ., ;(,p—l)/2 + Cp—(l’—l)/2’<;1 + a(Cp _ C;-z_l))

LGPV Lol DYy if d = 3 mod (4),

we have 71(W0K[cp](OK[Cp]+)x) = 1 which contradicts |j_'1(WoK[Cp](C)K[Cp]+)")| =p.
Therefore Coker(j;) =~ Cp, and so our lemma is proved. O

(4.21) LEMMA. If K is quadratic real and b # 0 mod (p) where u = a + ba is
the fundamental unit in K, then Coker(jy) is trivial. Otherwise Coker(j1) ~ Cp.

Proof. From the proof of (4.20) we know that Coker(j1) ~ Coker(7; ), and
Coker(7;) is either 1 or Cp. If b # 0 mod (p) then the image of the fundamental unit

u under 7, is non-trivial and therefore Coker(j;) = 1.

If b = 0 mod (p), then Coker(j;) = 1 or Cp. Assume Coker(j;) = 1. Let z be
a unit in Og[¢p]* whose image under j; generates (Ok/pOk)™/(Z/pZ)*. Then

normpy, k() is a unit in K whose image under the map

0% = (OK/pOK)x
(2 /Z)x
generates (O /pOk)*/(Z/pZ)*. But, since b = 0 mod (p), this is not possible.
Therefore Coker(j,) ~ Cp. O

We now turn our attention to Coker(jy).

(4.22) LEMMA. The kernel of the map

(Om/POm)*

!, X —
3100 = 0r 1 rOm)”

is Ok [Cp)™-
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Proof. It is obvious that

O3 N OkG) € Ker(}).

To show that Ker(j}) C OF N Ok[(p], let & € Ker(j]). Then z = a + pb where
a € Ok[(y) and b € Op. But pOpy C Og[(p]. Therefore z € Ok(¢p), and so
Ker(j]) C O N Okl¢p]. Since Okl(p] is closed under the action of Gal(M/Q),
03 N Oxl6] = Okl 0

The cokernel of j] is

(Om/pOm)* [(Ox[(p)/POM) ™
Im(j;) ’

Coker(j1) =

and, by (4.22),
. Oy,

So in order to calculate Coker(jj) we need to work out the structure of

(O /pOum)™
(OKKP]/POM)X

and O} /Ogl[(,]*. We begin with (O/pOn)*/(Ok (Gl /POM)*-

(4.23) LEMMA.

O\~ O\~
—_ ~ e .
<p(9M) wx(pOK,)
2(p—2) factors

Proof. Let rad(Ops/pOur) denote the radical of Ops/pOur; rad(Op/pOn) is the
intersection of all the maximal ideals of Opr/pOps. Then the sequence

Oum Om\~ Oum/pOum X
1—-1+4+ rad(—) — (——) — ( ) — 1 4.24
pOum pOum rad(Op /pOnr) (4.24)

is exact. The ideal rad(Oas/pOnr) is given by

rad( 0M> _ HPM,

pPOum pOum

where the product is taken over primes of M lying above p. There is only one prime

of N which lies above p, namely (1 — (,)On. Since p does not divide d(M/N), the
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extension of (1 — (;)On to M is either a prime or it is a product of two distinct
primes. In any case the product of primes of M lying above p is (1 = (p)Om. So we

can rewrite the sequence (4.24) as

1 =)0 (O_M) . (_"’M__) .
114 —3 O =000 L. (4.25)

Since |Op/pOn| = P2~V and |On/(1 - &)Ouml = p?, it follows that

(1- CP)OM} (1-¢)Oum 2(p-2
1+ = = p2(P=2), 4.26
I pOMm pOm P (4.26)

To find the structure of 1 + (1 — (p)On /PO, let £ € 1+ (1 — ()Onm/pOp. Then
z=1+(1- Cp)y7 y € (Op/pOn), and
2P = (1+ (1 -Gyl
=1+ (1 - )Py? mod (pOu),

This shows that 1+ (1 — {p)On/pOns is an elementary p-group, and so, by (4.26),

(1-6)Om
—p@pM——szx~--xCp.
2(p—2) factors

1+

To find (Op/(1 — {p)Om)>, we note that
Om N Ok
(1-¢)OM ~ Ok’

the isomorphism is induced by (, — 1. Substituting for 1 + (1 — (p)Om/pOn and
(On/(1 - (p)OuM)* in (4.25) gives

O\ O\~
1—»Cpx...x0p—> (pOM> — (p—OKr> — 1.

Since p does not divide d(K'/Q), p is either inert in K’ or it splits. In any case the
order of (Og:/pOk:)* is coprime to p. The end groups in the above exact sequence,

therefore, have orders which are relatively coprime, and so

X X
_(Q_JW_ ’ZCpX"'XCpX OK’ .
pOum —  \ POk
 2(p—2) factors
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(4.27) LEMMA.
OK[CP] * ( Z\"
—_— ~ C o x C — ] -
( pOuM \.p_>.<_v_x_dpx pZ
(3p—5)/2 factors

Proof. As in (4.23), the sequence

(2 - (25 - (S8R 0

is exact.

To find rad(Ox [(p)/POn), We note that for a finite commutative ring R,
rad(R)={z € R|2" =0 for some integer n},

and if S is a subring of R then rad(S) = rad(R) N 3. Applying this argument to
O /pOu and Ok[G]/POM gives

rad(OK [CP]) = rad( Om ) A k(6]

pOuM pOum pOum
_(1-6)%u Ok [¢]
pOMm pOM
— (1 - Cp)OM N OK[CP]
pOM '

Let
T = {z € On | (1 - &)z € Ok[Gl}-

Then
ad (OK[Cp]> _a- (,,)T,

pOm
and (4.28) now gives

Now (1 — ¢{p)T is an ideal of Ok[(p) Which contains (1 - ¢p)Ok(Gl:
(1- CP)OK[CP] c(l- Cp)T C OK[CP]- (4'30)

The Z-index of (1 — (p)Oklp) In Ok¢p) is given by
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Since
(Onm:(1- Cp)OK[Cp]) = normp(1 — (p) - (Om - OK[CP])’
we obtain
(Okl¢) : (1 - ()Ok(Gp)) = PZ-

In (4.30) (1 — ()T # Okl¢p] and, since the element (1 = ¢p)P~3/28 lies in T but

not in Ok[¢p), (1 — &)Ok (¢ # (1 — ()T Therefore (Okl¢p) : (1 = ¢)T) = p. This
implies that (1 — ()T is a maximal Ok [(p]-ideal, and therefore

OK[CP] ~ _Z_
(1-G)T "~ pZ

Next we calculate the order of the group 1 + (1 — {p)T/pOnr. We have

, _ (Oum :pOm)
(OK[CP] . pOM) = (OM : oK[Cp])’
p2r—1)

- p(P"l)/Z,

= =172,
But

(OklG) : POM) = (Ok(G] - (1 = )TN = )T - pOm).

Therefore

(Ok (] : POM)
OK[CP] H(1- Cp)T’
(3p-5)/2

(1= G)T : pOn) = (

=P

This gives us the order of 1 + (1 - ¢p)T/pOnr. If we now use the fact that 1+ (1 —
(p)T/pOn is a subgroup of 1 + (1 - ¢)Oum/pOn and 1+ (1 - (p)Om/pOp is an

elementary p-group, we obtain

14 (1= )T /pOp = Cpx -+ X Cp.
o,
(3p—5)/2 factors

Substituting for 1 + (1 — ¢)T/pOn and Ok{(]/(1 — ()T in (4.29) gives

OklG] ) Z\*
lﬁCpX"'XCp—’(?(,)—Af — ]—)Z —)1,
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and therefore

Ok [G] )™ Z\"
(—pﬁ ’;’CpX"'XCpX ;i .
(3p-5)/2 factors

O
We are now in a position to prove the following.
(4.31) THEOREM.
(Om/pOm)™
~C,x %X CpxChpe,
(Ok[Gl/POM)* — Feeee ™
(p—3)/2 factors
where
. {p+1, if p is inert in K',
p—1, ifpsplitsin K'.
Proof. From (4.23) and (4.27) we have
(Om/pOM)* (Ok'/pOk:)>
~Cp X oo X Cp X —m .
(OK[CP]/pOM)x \ﬁ——v——e (Z/pZ)x
(p—3)/2 factors
Since pOk: is either a prime or it is a product of two primes,
Ok _ {GF(pz), if p is inert in K’,
pOg' ~ | GF(p) x GF(p), if p splits in K'.
Therefore
(OK' )x {sz_l, if p is inert in K’,
pOg T | Cp-1 x Cp—1, if p splits in K.
The rest is obvious. O

Having obtained the structure of (Op/pOn)*/(Ok(Cp)/pOn)™, we now calcu-
late O}/ Ok |[Cp]™.

By (4.22), O3,/Oxk|[(p]* is isomorphic to a subgroup of

(Om/pPOM)™
(Ok[]/POM)*
and, since we know the structure of this group, we can at once write
Oy
Ok [¢p]*

~ Cp x -+ x Cp xCy,
N, e’
n factors

where [0} : Ok|[(p]*] = p"a, and a is a divisor of p*. So if we knew the integers n
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and a we will know the structure of O /Og[(p]*.

Let A\ = (1—-(p),, 0<i<p-1,and O; = On([Aif]. Then we have the following

chain of rings:

Op-1 C Op—2 C--- C O COp.

In the above chain, each ring properly contains the preceding ring.

(4.32) LEMMA.

Proof. We have
00 = (Cp; el 5—1,5@), e vﬂC;I;—l)Za
Op—l = (Cp, s 1C£_lap:3Cpa s apﬁ§£—1>Za
and therefore (QOp : Op—1) = p*~!. But
p—2
(Oo : Op-1) = [[(O:: Oit1).
1=0

So each index (O; : O;41) must be a power of p. Since O; properly contains Oit1,
(O; : ©i41) > p. As there are p — 1 factors in the above product, (O; : Oi+1) =p. O

In the above notation, Oy = OQo, Ok[(y] = O(p-1)/2 and, by (4.32), (Og
(9(p_1)/2) = pP=1)/2 which is consistent with (4.15).

The Og-ideal pOy lies in Op_1, and therefore it is an O;-ideal forall 0 < i < p-1.

(4.33) LEMMA.

0 \” .
;53 ’ZCpX"'XCpXCp_l, 1<:<p-1
S
2p—3—1 factors

Proof. The proof is similar to the one given in (4.27). We start with the exact

0O; 0; \”* 0;/p0¢ X
— —_— ] 2 | — - | —— — 1.
boltrad <P00> <p00> (rad(oi/P00)>
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For 1 <i<p-—1,rad(0;/pOy) is given by

Oi 00 ) Oi
rad| —— | =rad| — ) N —,
(POO ) (1000 pOo

(1 - Cp)OO N Oi
pOg pOy’

Now (1 — (,)O;_1, one can easily show, is a maximal O;-ideal, and
(O;: (1= ¢p)0i1) =p,

| (1= p)Oi-1 : pOy) = PP~

Therefore

(-8 i)
pOg Oy (1-¢)0i-1/) |
=pP 3 (p - 1),

If we now use (4.23) and the fact that (O;/pOg)* is a subgroup of (Op/pOo)*, we
obtain the required result. O

Let OF be the maximal real subring of O;, U; = OX, and U} = (OF)*. Then

(O3 : O[] ™] = [Uo : Up_yysals
(p—3)/2

=[] Wi:Uina):

1=0

The following result takes us a step closer to calculating the index [O}; : Ok[(p]*].

(4.34) LEMMA.
[Uo : U1] = p*/|D(OkG)],
(Ui : Uipa]) =1 or p, 1<i<p—2.

Proof. Let

(Oi/pOo)*
(Oi41/p00)*
be the map induced by O; — O;/pO¢. Then Ker(k) = U;11, and therefore U; /Uit
is isomorphic to a subgroup of (O;/p0g)* /(Oit+1/pO0)*. By (4.33),

(0i/pOo)™
(Oiy1/p00)*
and therefore, for 1 <i < p—2, [U;: Uiza] =1 or p.

k:U;, —

=p 1<i<p—-2,

)
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If i =0, then
(Qo/pO0)* _ (Ok!/pPOK)* _
(01/p00)< —  (Z/pZ)* ~
The isomorphism is induced by {, — 1. Let &’ be & followed by reduction mod (1—(p).
Then Coker(k') ~ D(Ok:G), and so |¥'(Up)| = p*/|D(OkG)|. Since Up/U1 ~ k'(Up),
[Uo : 0h] = 5*/|D(O G- O

(4.35) LEMMA. For 1 < i < p—1, let Q; be the index of WiUi+ in U;. Then
Qi=1lor2,and@Q;=Q1 forall1 <i<p-—1.

Proof. There is an exact sequence:
1 — WU — Ui Wi/ W2,

where ¥ sends a unit u to [u/u¢]. The group W;/W? is generated by —1. If P is
surjective then Q; = 2; otherwise @; = 1.

To prove the second part, we note that U;/ WiU;' is isomorphic to a subgroup of
U1 /W1 U1+ and therefore Q; divides Q1. If @1 = 1 then @; = 1. Let us assume @1 = 2.

Let u be the unit that lies in U; but not in W1U1+. We can assume u¢ = —u. By
(4.34), [Uy : Ui] = p". Therefore u?’ € U;, and (v?')° = —uP". So 9 : U — Wi /W2 is
surjective, i.e., @Q; = 2. O

(4.36) LEMMA.

(Ui : Uip1) = [UF - UR], 1<i<p-2

Proof. We can express the index [U; : U} 4] as
U : U] = (Ui Usd][Ui = U], (4.37)

or

Ui : Ut y) = [Us : UFNUF - UL, (4.38)
By (4.35), [Ui : WiUF]=Q1,1<i<p—1,0r
[U; : U] = Qup, (4.39)

since [WiU;t : U] = p. Equating (4.37) and (4.38), and using (4.39) proves the
O
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(4.40) LEMMA. If K' is real, then, for odd 1,
Ur:vtl=1  1<i<p-2
and if K' is imaginary, then, for even 1,
[UF:Ufl=1 1<i<p-2
Proof. Let us assume K' is real, and, for an odd i, [U;" : U{:_l] # 1. Let u

be the unit that lies in Ui+ but not in Uiil' Then u = a + A\;B3b, a,b € Oy, and
b¢ (1—(p)On. Since u is real, u® = u. But

u® = af + (—1)°¢, * AifBb°.
Therefore
(a+ XiBBb) — (a®+ (=1)'¢*\ifBb%) = 0,
and so a — a® = 0, and
Xib — (=1)°¢ b = 0. (4.41)

The above equation gives b + C;ibc = 0, since 7 is odd. This implies 1 + Cp‘i =
0 mod (1 — {p) which clearly is not true.

The proof of the second part is similar except that we obtain
Xib+ (=1 A =0
instead of (4.41). Since i is even now, this again leads to 1+ {;* = 0 mod (1 —¢p). O

(4.42) LEMMA. If p does not divide hyy, the class number of M, then, for K'

real and i even and for K' imaginary and 4 odd,
[U{F:Ui':_l]=p, 1<i<p-2.
Proof. The lemma will follow at once if we allow ourselves the following (see [6]):
if p does not divide hjpy, then there are units in Ud*' which satisfy, for K’ real,

u1 = 1 4+ a1z mod ()A3),
ug = 14 agA4 mod ()\5),

Up-3)/2 = 14 a(p_3)/2/\p_3 mod ()\p_z),
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v1 = 14 b1A2 mod (A3),
vg = 1+ baAg mod (As),

Y(p-1)/2 = 1 + bp—_1)/2Ap-1 mod (Ap),
where a;,b; € Ok and, for each 1 <7 < (p — 3)/2,
% = (ai, bi)}%)
and, for K’ imaginary,
u1 = 1+ A2 mod (A3),
ug = 1+ Ag mod (As),

'u.(p_g)/z =1+ /\p—3 mod ()\p_g),

v1 =14 v—d'A\1 mod (A2),
ve =14+ vV —d'A3 mod ()\4),

Vp—1)/2 = 1 + V=d'Ap—2 mod (Ap-1).

In the K’ real case, for a given 1 < i < (p — 3)/2, ui,v; € US:. The units u;,v;
cannot both lie in U2t‘+b for otherwise a;, b; will fail to be a basis for Ok /pOg over
Z/pZ. Therefore [Uy; : Usi, ;] > 1. But, by (4.34) and (4.36), (U3 :UfJ=1o0rp.
Therefore [U; : Uét_i_l] =p.

In the K’ imaginary case, v; € U;}_l but v; clearly does not lie in U;,Li , and so
[Us_, : U] > 1. Using (4.34) and (4.36) gives [US;_, : Uj}] = p. O

Combining the results of last several lemmas we obtain

(4.43) THEOREM. If p does not divide hyy, then
On

WQCI)X"'XCPXCG,,

n factors

where a = p*/|D(Ok:G)| and, if K’ is real,

_ { (p—5)/4, ifp=1mod (4),
(p—3)/4, ifp=3mod (4),
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and if K' is imaginary,

_ {(P— 1)/4, ifp =1 mod (4),
(p—3)/4, ifp=3mod (4).

Proof. The proof is a straightforward matter of obtaining the number of even
indices in 1 < i < (p — 3)/2 in the K’ real case, and the number of odd indices in
1 <i<(p-3)/2in the K' imaginary case. Using (4.42) will then give the order of

O3/Ok(G)* at p.
The order of O3, /Ok[(p]* away from p was calculated in (4.34). d

We can now prove (4.2) and (4.3).

Proof of (4.2). By (4.18), the kernel group D(OgG) is given by
1 — Coker(j;) — D(OxQG) — Coker(j1) — 1.
But, by (4.21), Coker(j1) = 1. The group Coker(j]) is given by

1y (Om/pOu)* [(Ok (Gl /pOM)™
Coker(j;) ~ O}TJ/OK[Cp]X )

Using (4.31) and (4.43) now proves the theorem. O

Proof of (4.3). The proof, as in the case of (4.2), is a straightforward matter of
putting (4.18), (4.20), (4.31), and (4.43) together. O
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5. R(OxG) — the group of realizable classes

We now turn to the problem of calculating the group, R(OgG), of realizable
classes in Cl(OkG) where K is a quadratic imaginary number field. In the following
we will calculate R(OkG) subject to G being a cyclic group of prime order p and the
class number of M = K((;) being trivial. We will also, given a tame extension L of
K with Gal(L/K) ~ G, obtain invariants of L which will completely determine the
class of Or, in R(OkG).

Just to confirm our notation, we will continue to write K as Q(v/'—d) and Ok as

Z[c]. The values of d are now restricted to positive square-free integers.
Our starting point is the description of R(OkG) given in [9] which goes as follows.

Let A = Aut(G), the group of automorphisms of G. Then, since G is cyclic of
order p, A ~ (Z/pZ)*. We can take A to be

A={5|1<i<p-1},

where the action of §; on G is defined as 6;(g9) = g*. For § € A and (C) € CI(OkQG),
let (C?%) be the class in Cl(OgG) where C? is isomorphic to C as an abelian group
but with G-action gz = (6(g)z)?. Then under the multiplication

A x Cl(OkgG) — Cl(OkG),
(8,(C)) = (€"),
Cl(OkQ) is a ZA-module. Let

and

J=ZAN(8/p)ZA,
the Stickelberger ideal. Then the group of realizable classes is given by
R(OkG) = ClI%(0kG)’,
where
Cl0(OkG) = Ker(Cl(OgG) — Cl(Ok)).

CI(Ok@G)’ is the subgroup of CI°(OkG) generated by (C9) for (C) in CI%(OkG)
and j in J.
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We can now proceed with the calculation of R(OgG). In the next section we will
calculate R(OkG) for p an odd prime, but here we obtain R(OkG) in the case when
p=2.

(5.1) THEOREM. If G~ C3 and M has class number 1, then

1, ifK=Q(-1), QV=3), or QV-T),
R(OkG)~ < Cy, ifK = Q(V-2),

Cs, otherwise.
Proof. For G ~ Cy, the Stickelberger ideal J is Z and therefore
R(OkG) = CI°(OkG)’ = CI%(OkG).
The maximal order in KG is O x Ok, and so we have an exact sequence
1 - D(OkG) — Cl(OgG) — Cl(Ok) x C(Ok) — 1.
Since the class number of M = K((3) = K is 1, C{(Og) = 1 and therefore
Cl(OkG) = Cl(OxG) = D(OkG).

To calculate D(OgG), we note that the diagram

OkG LR Ok
li i

Ok B 0g/20x

is a cartesian square. The various maps are given by

i1

g — -1
e L
1 Zoq

The Mayer-Vietoris sequence attached to the above square gives
jl(OIX{) X ]2(0}}) — ((’)K/QOK)X — D(OKG) — D(@K) X D((’)K) — 1.
But j2(O)) C j1(Ok), and D(Ok) = 1. Therefore D(OkG) ~ Coker(j1) where

71 :OIX{ — (OK/QOK)X.
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The group, OF, of units is

(G), i K=Q-1),
OIX{ = (—1)<3>) fK = Q(\/:?’—)a

(-1), otherwise.

Now 2 ramifies in Q(v/=1) and Q(+/=2), and so, for these fields, (Og/20)* =~
Cy. If K = Q(v/=1), then (Og/20k)* = ({4), and j; is surjective, which means,
D(OgG)=1.If K = Q(v/-2), then (O /20k)* = (1+ a), and D(OgG) ~ C.

If K = Q(+/~7), then 2 splits in K and (Og/20k)* = 1. So we obtain
D(OkG) =1 for K = Q(v/-T7).

For the rest of the fields, 2 is inert and so (Ok/20g)* ~ C3. If K = Q(v/-3),
then D(OgG) = 1; otherwise D(OgG) ~ C;. O

(5.2) COROLLARY. If K = Q(v-1), Q(v-3) or Q(+/=7), then any tame

quadratic extension of K has a normal integral basis.
Proof. Obvious from the theorem. W

Next, for a tame quadratic extension L of K with Gal(L/K) ~ G, we identify the
class of O, in R(OkG). Because of (5.2) we can assume that K is a field other than

Q(v~=1), Q(/-3), or Q(+/—7). We continue to assume that M, which for p = 2 is

K, has class number 1.

Let L be a quadratic extension of K. Then L = K(B) where § = Vi e Ok.

Since hg = 1, we can assume [ is square-free.
(5.3) THEOREM. L is a tame extension of K if and only if | = a® mod (40k)
where a € (Og /20k)*;

(ox)*_{{l,ua}, if K = Q(v/2),

20 /) {1,¢,1+ a}, otherwise.

The class of O, in
Cy, if K = Q(v/-2),

C3, otherwise,

R(OkG) ~ {

is trivial if | = 1 mod (40Qk), and it generates R(OgG) if | # 1 mod (40k).
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Proof. Since [L : K] = 2 and K is complex, L will be tame over K as long as
2 doesn’t ramify in L. A prime of K ramifies in L if and only if it divides d(L/K).
Therefore, for tameness, we require (d(L/K),20k) = Ok.

Now 410k C d(L/K) C Ok, and so L/K is tame if and only if d(L/K) = IOk
and (I0g,20k) = Ok.

Ifd(L/K) = IOk, then there must be an integer z in O, of the formz = (r+sp6)/2
where 7, s € (Og/20k)*. Taking the norm of z from L to K gives

r? — 521 = 0 mod (40k),

and therefore

| = (r/s)? mod (40k).

Let | = a? mod (40k) where a € (Og/20k)*. Then 6 = (a+ f)/2 is an integer
in Or, and Of = (1,8)p,. Let us assume that O is a free O G-module with the

element © + s6 € Op, r,s € Ok, generating a normal integral basis for L over K.

Then
d(L/K) = Apjkla(r + s8), go(r + $6)|Ok,

r+sa -—s 2
= det ( ) Apk(1,0]0k,
S

r

= (2rs+ s2a)2d(L/K),

and therefore 2rs + s?a = u where v € O% = {£1}. Since 2rs + s’a is divisible by
s, s € Of. Therefore s = £1 and s2 = 1. The equation 27s 4+ s%a = u now gives
u — a = 0 mod (20 ) which is soluble for u if and only if a = 1. So L has a normal
integral basis over K if and only if { = 1 mod (40k). If I = 1 mod (40k), then the
element § = (1 + ()/2 generates one such basis. ()
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6. R(OkG), p an odd prime

We now consider the case when p is an odd prime which is unramified in K. We
make a further assumption that the index Qpr of WiysEpp+ in Epr is 2. (By (3.9),

there are infinitely many cases where this index is 2.)

Our main results in this section are:

(6.1)THEOREM. If M has class number 1 and p is inert in K, then R(OkG) ~
Coker(j), where the map

j . OX - ( OM ) X
M (1-¢p)Om
is induced by reduction mod ((1—(p)Opr), and the class of O for a tame extension L
of K with Gal(L/K) ~ G and discriminant d(L/K) = IP"'Og, | € Ok, corresponds
to the element [z] € Coker(j) where z? = | mod (pOk).

(6.2) THEOREM. If M has class number 1 and p splits in K, then R(OkG) =1,
that is, every tame extension L of K with Gal(L/K) ~ G has a normal integral basis.

We will also prove the following results which are specific quadratic imaginary

number fields which have class number 1.

(6.3) THEOREM. Ifp = 3, then R(OkG) is trivial if K = Q(v-1), Q(v/-2), or
Q(v/—11), and R(OkG) is cyclic of order 2 if K = Q(v=T7), Q(v-19), Q(v/-143),
Q(v/=67), or Q(v/=163). In cases where R(OgG) is non-trivial, a tame extension L
of K with Gal(L/K) ~ G and discriminant d(L/K) = I*O has a normal integral
basis if and only if | mod (30k) lies in (Z/3Z)*.

(6.4) THEOREM. Ifp =5, then R(OkG) is trivial if K = Q(v/=1) or Q(v/-3),
and R(OkG) is cyclic of order 3 if K = Q(v/=2) or Q(v/-T7). If K = Q(v-2)
or Q(v/=7), then a tame extension L of K with Gal(L/K) ~ G and discriminant
d(L/K) = 1*Ok has a normal integral basis if and only if | mod (50k) lies in
(Z/5Z)>.

We begin with a few preliminary calculations. Let us assume that M has class

number 1. In the following this assumption will continuously be in effect unless it is
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explicitly removed. A consequence of this assumption is that CI°(OgG) is the entire

kernel group D(OgG). This follows from the exact sequence
1 — D(OkG) — Cl(OkG) — Cl(Ok) x Cl(On) — 1.

The group Cl(Oyy) is trivial and so CI°(OkG) = D(OgG). By the proof of (2.1),
the group D(OkQG) is given by

D(OkG) ~ Coker(j),

where

0% ( Oum )x

7 m (1-¢)Om
is the map induced by reduction mod (1 — ¢p)Onr). We will write an element of
Coker(j) as [z] where o € M with  coprime to 1 — (p. Let [z] € Coker(j), then the

element (C(z)) of D(OgG) which corresponds to [z] under the above isomorphism is
described by the diagram:

Clz) — Om

l L

Ok = OM/(l—Cp)OM

where j; is multiplication by z followed by reduction mod ((1 — (p)Oxr) and j2 is
reduction mod (pOk). We can write C(z) as

C(z) = {(a,b) € Ok X Op | a=zbmod ((1 - (p)Om)}
The action of G on C(z) is induced from the action on KG = K x M:
g(a,b) = (a,(pb).

The group A = Aut(G) acts on D(OkG). For § € A and (C(z)) € D(OkG),
[x] € Coker(j), (C(z)) = (C(z)?) where C(z)? is same as C(z) as an abelian group,
but the G-action on C(z)? is defined as g(a, b)? = (6(g)(a, b))%.

(6.5) LEMMA. D(OkG) is a trivial A-module.

Proof. We need to show that, for §; € A and (C(z)) € D(OkQ), C(z)% is

isomorphic to C(z).
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Since A ~ Gal(Q(¢y)/ @), elements of A act on ¢, by 6((p) = C;;' As a result, A
acts on Oys. Define
f:C(z)" — C(z),
(a,0)” = (a,81(b)).
For b € Oy, we obtain 6i_1(b) from b by replacing (, by an appropriate conjugate of
(p- Therefore, on reduction mod ((1 — (,)On), b = 5i_l(b). So the image of f lies
in C(z). The map f clearly is an isomorphism of abelian groups. It also respects the

action of G as the following shows.
f(g(a,8)%) = £((g*(a,8))%),
= f((a, b)),
= (a,6; (b)),
= (a, (87 (b)),
= gf(a, b)é‘.

The map f is therefore an O g G-isomorphism. O

A consequence of the above lemma is that for a € ZA and (C(z)) € D(OgG),
C(z)* ~ C(z)@,

where € : ZA — Z is the augmentation map.

We are now set to calculate R(OgG), the group of realizable classes in CI(OxG).

(6.6) THEOREM.
R(OKG) = { D(0OgG), 1:fp is ifler.t in K,
1 if p splits in K.

Proof. The group R(OkQG) is given by
R(OgG) = D(OkG)’,
where J = ZA N (8'/p)ZA is the Stickelberger ideal and §' = Zg;} ab; !, of course,
is the Stickelberger element. Since the action of A on D(OgG) is trivial,

R(0OxG) = D(Og@G)’,
= D(OgG)*),
= D(OgG)#P 172,
whefe we have used the fact that ¢(J) = ((p—1)/2)Z. By (2.2), the order of D(OkG)
divides (p+1)/Qps if p is inert in K or it divides (p —1)/Qar if p splits in K. Qpr, of
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course, is the index of Wy Eps+ in Ejpy which we are assuming to be 2. So the order
of D(OkQ) divides (p+ 1)/2 if p is inert in K or it divides (p — 1)/2 if p splits in K.
Since (p+1)/2 and (p — 1)/2 are relatively coprime, we obtain
D(OKG) D/ — { D(OkG), ifpisinertin K,
1, if p splits in K.
(]
Proof of (6.2). Immediate from the above theorem. O

Having calculated R(OgG) we can now proceed with the business of identifying
the class of O in R(OgG) where L is a tame extension of K with Gal(L/K) ~ G.
Since, by (6.2), there is not anything further to prove in the case when p splits in K,
we only need to consider the case when p is inert in K.

Let § € O be an element which generates a normal basis for L over K, that is,

an element whose conjugates form a basis for L as a vector space over K:

L =(g1(8),-..,9p(0)) k-

We can assume that trp g (6) = 1. The element § sets up an isomorphism between
the KG-modules L and KG:
¢:L— KG,
z — ¢(z),
where ¢(z)(6) = z. The map ¢ allows us to embed Of, in KG. The K-algebra KG
splits as K x M. Let m; be the projection of K'G into the first factor, and w3 into the
second. We take the action of (71, 72) on KG to be

(m1,m2)(g) = (1, {p) -
The combined map (71, 72)¢ induces an injective O g G-homomorphism:
(r1,m2)¢p: O — K x M.

Because of our choice of 8, the map m1¢ : O — K is the ordinary trace map from L
to K. Therefore m1¢(Or) C Ok. Since L/K is tame, there exists in O an element
of trace 1 and, consequently, m1¢(Or) = Og. The image of O, under m9¢ will not
in general be Q. It will be a fractional ideal of Ops. Because of our assumption
that Cl(Op) = 1, ma¢(Or) will be a principal fractional ideal. Let m2¢(OL) = yOum
with y € M. The element y uniquely determines the class of O in R(OgG) as the

following theorem shows.
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(6.7) THEOREM. The class of Oy, in R(OkG) is (C(y)).

Proof. Let y~ma¢ : O — Oy be the homomorphism obtained by combining
7o with multiplication by y~1. Then y~!my¢ is a surjective O G-homomorphism.
The map m ¢ : O, — Ok is also a surjective O g G-homomorphism into Og. We can

use these maps to construct a square of O G-modules:
-1
o, '3* Om
l’lr1¢ . ljl (68)
Ok = Om/(1-G)O0m

where j; is multiplication by y followed by reduction mod ((1 — ()Opr) and j2 is
reduction mod (pOf). The above square is commutative. To show this, let z € Of.
Then

#(z) = z191+ - - + Tpgp, z; € K,

and
mé(z) =1+ - + zp,

77'2¢(‘T)‘= TCp+ -+ "Bp(};

Reducing m2¢(z) mod ((1 — {p)On) gives 21 + - - + 2, mod (pOk ) which is same as
m1¢(z) mod (pOk).

Since Opr/(1 — (p)Om ~ Ok [pOk, the map ja is surjective, and, as the square
is commutative, j; is also surjective. As (m1,y7!m2)¢ : Op — Ok X O is injective,
(6.8) is cartesian. The square (6.8) is exactly how we had previously defined C(y).
Therefore O, ~ C(y), and (Or) = (C(y)). a

The above theorem shows that in order to determine the class of O in R(OgG)
we need to calculate the element y € M which generates mo¢(Op) over Op. Actually,
it is the coset of ¥ in
(Ou/(1 = §)Ou)"

i(O3)
that we need to calculate, for the class (C(y)) of O depends on [y] rather than y.
It is proper that the class of O should depend on [y] instead of y. The value of y
depends on our choice of 8 used to define the isomorphism ¢ : L — KG, and, as
there is not any canonical way of defining this isomorphism, there is not any unique
value for y. In the following we will see that different values of § may lead to different

values of y but they all define the same coset in Coker(j). This is consistent with the

Coker(j) ~
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fact that the class of Of in R(OgG) is independent of how we choose to represent
the isomorphism L ~ KG. ‘

We begin our calculation of [y] by computing the discriminant d(L/K) of L over
K. The discriminant d(L/K), we will see below, is central to the calculation of [y].

(6.9) LEMMA. The discriminant d(L/K) is a (p — 1)th power of an ideal of Ok,
ie., d(L/K) = HP~! where H is an ideal of Og.

Proof. Let D(L/K) be the different. Then, since L/K is tame and the ramifica-

tion index of any prime which ramifies in L is p, we have
D(L/K) =[] or .
Q
The product is over the primes which ramify. The discrminant is

d(L/K) = normp g (D(L/K)),
= [[ normy/k (@)

Q
Since normL/K(Q), for each Q, is an ideal of Ok, the discriminant d(L/K) is a
(p — 1)th power of the product of prime ideals of Ox which ramify in L. O

The product of prime ideals of Og which ramify in L will not in general be a

principal ideal. For cases where it is, we have the following result.

(6.10) LEMMa. Ifd(L/K) = 1P"'Ok, | € Ok, then lis a square in (Ok /pOk)*,

i.e., the congruence

| = k? mod (pOk)
is soluble for k € (Og [pOk)™.

Proof. Let P be a prime of K which divides [Of. Let @ be the prime of L lying
above P, and Kp and Lg denote the completions at the indicated primes. Then
POr = QF and Gal(Lg/Kp) ~ G. The local Artin map Kp — Gal(Lg/Kp),
induces an isomorphism

Ep

normgp(Eq) ~ Gal(Lg/Kp),

where Ep and Eg, respectively, are groups of units in Kp and Lg, and normg,p
is the norm mapping from Lg to Kp. Since L/K is tame, the subgroup E}l; of Ep
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consisting of units congruent to 1 mod (POp) lies in normg/p(Eq) (see [2]) and
consequently the order of Gal(Lg/Kp) divides the order of Ep/Ep. The order of
Gal(Lg/Kp) is p. To find the order of Ep/E} we note that

Ep (&.)x ~ (9"
EL " \POp) ~\ P )
The order of the group (Og/P)* is normg (P) — 1. Hence normg (P) = 1 mod (p).

Since normy is multiplicative, normg(!) = 1 mod (p). So [ lies in the kernel of the

(o) - (=)

e r— —_ D

POk pZ

induced by normg : O — Z. Since p is inert in K, (Og/pOk)* is a cyclic group

of order p? — 1. The kernel of the above map is (O /pOk)*)P~1. So [, in fact, is
not just a square but a (p — 1)th power in (Og /pOk)*. O

map

Next We define an object detg(Or) which will link [y} with the discriminant
d(L/K) of L over K.

Assume that the discriminant d(L/K) has the form P~!Og. Then since d(L/K)
is principal, Oy is a free Og-module (—in general, to determine the class of Of in
Cl(Ok), one has to consider the square root of the discriminant d(L/K) but in our
case, since p — 1 is even, such considerations are irrelevant). Let us fix an O K-basis

for OL:
Op = {(e1,---,€p)Ox-
The image of O under ¢ can be written as

¢(OL) = <¢(el)’ v )¢(6P)>0K’

where
p
¢(e,') = Z Eij95, Eij € K.
J=1

Define detg(Or) = det(E). The 6 in dety(Or) signifies detg(Or)’s dependence on the

choice of 6.

(6.11) LEMMA.
detg(Op) = ukP~! mod (pOk),

where u € OF and k* = | mod (pOk).
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Proof. Let A;; = gi(e;) and Byj = gi(g;(0)). Then, since

= 9; (Z Ejkgk(a)) ,

1 M@

]kgk gz
P
= Z jkBkza
( )1_7’

where (EB)T denotes the transpose of the matrix EB, A = (EB)T and therefore
det(A) = det(E)det(B). But det(E) = detg(OL). Hence

det(A) = detg(Or)det(B). (6.12)

Now det(4) € Og. To prove this, we note that det(A) € Or and g(det(4)) =
det(g(A)) where g(A) = (g(Ai;)). By interchanging rows in g(A) we can transform
g(A) to A. The number of interchanges required is p — 1 and therefore det(g(A4)) =
(—1)P~1det(A4) = det(A). So the element det(A) € O is fixed under G and therefore

it lies in Of.
The discriminant of the basis e;, 1 <t < p, is
Apgler,. .. ep) = det(gi(e;))?,
= det(A)>.
But d(L/K) = Ag/kler, ..., ep|Ok = P~10g. Therefore det(A) = vI(P~1)/2 where
v € O, or det(4) = vkP~! mod (pOg) where k? = [ mod (pOk).

The determinant of the matrix B, on reduction mod (pQOk), gives
(=1)®=D72(g1(8) + - - - + gp(8))” mod (pOk),
(=1)P=D/ 24 1 ()P mod (pOk),

(=1)P~/2 mod (pOK),

det(B)

since trz g () = 1.
Returning to (6.12), we find

vkP~! = (=1)P=1/2dety(Or) mod (pOk),
or detg(Or) = ukP~! mod (pOk) as required. O
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Having related detg(Oy) to d(L/K), we now relate it to y where ma¢(Or) = yOur.
(6.13) LEMMA.
detg(Or) = uy?~! mod ((1 - {p)Om), u € Ok.
Proof. The image of ¢(Or) under (71, m2) is
(m1,m2)($(O1)) = {(a,b) € Ok x yOu | a = b mod ((1 - {)Om)}-
Let z € Ok be such that z = y mod ((1 — (,)Onr). Then

(m1,m2)($(O1)) = (2, ¥Gp)r- - (2,951, (P, 0)) 0

and
¢(0L) = (7{.117!-2)—1((27) pr)) v 7("171 yq;—l), (p; 0))01\
But
(77-17 WQ)_I((CB, pr), vy ((E, yCII))—l)) (p) 0))01\' = (fl) vy fp)OKa
where
P
fi=Y_ Fijgj, Fij € K,
j=1
and

p
S Fj==2, 1<i<p-1,
j=1

S Py =y, 1<i<p-1,
j=1

Fpy=1, 1<5<p

But previously we had ¢(Or) = (#(e1),...,d(ep))oy, Where ¢(e;) = Z?:l Eij95,
E;; € K. Therefore

P
By = Z T Fjx,
j=1

where T}; € Ok with det(T) € Ok, and dety(Or) = det(E) = vdet(F'), v € Ox.
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In the matrix (Fj;), if we subtract the pth column from the ith for all 1 < ¢ <
p — 1 and denote the resulting matrix by (F';;), then det(F') is unchanged by the
operation (Fy;) — (F'i;), and so det(F) = det(F'). But det(F') = det(F") where
F'iyj=Fjj— Fpisap—1xp—1matrix. For1<:<p-1,

p=-1

p-1
Z F'¢) = Z(Fij — Fy)(3,
j=1

j=1
p=1
=D FiG+ Fall,
=1
= yc;)a
and so, for 1 < 1 < p — 1, the elements E:;:% F"ijCIJ; generate yOps over Og. As a
result,
det(F";;) = wnormyg/ g (y), w € Og.
We therefore have detg(Or) = vwnormys k(y), or

detg(Or) = vwy?™! mod ((1 — {)Om).

We are now in a position to prove (6.1).

Proof of (6.1). We have already proved in our earlier discussions that if p is inert
in K then R(OgG) ~ Coker(j) where j : Oy — (Op/(1=(p)Onm)™. It only remains
to identify the class of Of in R(OgG).

By (6.7), the class of Of is (C(y)) where [y] € Coker(s) and, by (6.11) and (6.13),

yP~! = ukP! mod ((1 - ¢)Om),

where u € OF, k* = I mod (pOk), and d(L/K) = P~10k is the discriminant. Since
p is inert in K, the group (Opr/(1 — {p)Onr)* which is isomorphic to (O /pOk)*
is cyclic of order p? — 1. Let z be a generator of (Op/(1 — ()Opm)™. The subgroup
of (Opr/(1 = ¢p)Om)™ generated by Oy is (2" =1/ty where t is 4 if K = Q(v/=1), 6
if K = Q(v/=3), or 2if K # Q(v/~1), Q(v/=3). If we let y/k = 2* then the above

congruence can be written as
22@=1) = 2@ =D/t ;mod (1 - ¢)On),

where 1 < a < t. This implies z(p - 1) = a(p? — 1)/t mod (p? — 1). Since the image
of j : OF — (Om/(1 — (p)Om)™ is generated by 2Pt/ it follows that p + 1 =
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0 mod (t). We therefore have z = a(p+1)/t mod (p+1), or z = a(p+1)/t+b(p+1),
b€ Z. Hence y = 2P+D/tzb(+1) k. The elements 24P+t and ZHP+D) lie in 7(Op):
Therefore, in Coker(j), [y] = [k]. ]

Although theorem (6.1) can be used to determine the class of Of for a tame
extension L of K with Gal(L/K)~ G and d(L/K) = IP"'Ok, it does not, of course,
establish the existence of such extensions. Next we prove a result which will show

that there indeed exist extensions of K to which (6.1) is applicable.

In (6.9) and in the proof of (6.10) we saw that if L is a tame extension of K with
Gal(L/K) ~ G then the discriminant d(L/K) has the form HP! where H = [[, his
the product of primes of K which ramify in L and, for each h, normg(h) = 1 mod (p).
We now consider the question whether for a given product H = [], & of primes of
K with normg(h) = 1 mod (p) for each h there exists a tame extension L of K with
Gal(L/K) ~ G whose discriminant d(L/K) is H P=1  The following theorem answers

this question in the case where only one single prime h of K is involved.

(6.14) THEOREM. Let h be a prime of K with normg(h) = 1 mod (p). Then
there is a unique tame extension L of K with Gal(L/K) ~ G and discriminant

d(L/K) = h*L,

Proof. The proof is a straightforward exercise in class field theory. Let I, be the
group of fractional ideals of Ok which are relatively prime to h. Let P denote the
subgroup of I, consisting of principal fractional ideals and let P,} be the subgroup of
P, consisting of ideals which have generators congruent to 1 mod (k). Under the map
induced by P, — (Og/h)*, 2Ok ~ [z}, Py/ P} is isomorphic to (Ok /h)* modulo the
subgroup of (O /h)* generated by Of. The order of (O /h)* is normg (h)—1 which
is divisible by p. The group O is ({4) if K = Q(v~=1), (¢6) if K = Q(v/=3), or (—1)
otherwise. The order of the subgroup generated by Oy is, therefore, relatively prime
to p. Hence p divides the index (P : P) and, consequently, p divides (In: P}). Let
Q, P,} C Q C Iy, be the unique subgroup whose index in I, is p. Then the classfield
of Q is the unique tame extension L of K with Gal(L/K) ~ G and d(L/K) = RP~1
whose existence we are trying to prove. The Galois group of the class field over K
is isomorphic to Ij,/Q, the isomorphism being induced by the Artin map. The group
I;,/Q is cyclic of order p and therefore isomorphic to G. O

The above theorem basically is a recipe for generating tame extensions L of K with

Gal(L/K) ~ G and discriminant d(L/K) = HP~! where H = [], h, normg(h) =
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1 mod (p), is an arbitrary product of primes of K. Stating with a product H =
1, hi, normg (ki) = 1 mod (p), of primes of K we denote by L; the extension of K
guaranteed by (6.14) which is ramified at h; only. The compositum [I;=; Li thenis a
tame extension of K ramified at primes dividing H only with Galois group consisting
of n copies of G. The field []\-; L; has a whole series of subfields  which are tame
over K with Gal(L/K) ~ G and d(L/K) = HP~!. In fact any tame extension L of
K with Gal(L/K) ~ G and d(L/K) = HP~! arises in this manner. If H = lOg is
principal then we have a whole string of tame extensions of K to which (6.1) can be
applied.

Next we prepare the ground for proving (6.3) and (6.4). We assume K is a
quadratic imaginary number field with class number 1. The values of d are now
restricted to 1,2,3,7,11,19, 43,67, and 163.

(6.15) THEOREM. Ifp = 3, then Cl(Oy) = 1forall K. Ifp = 5, then Cl(On) =
1 for K = Q(v~=1), Q(v=2), Q(v=3), and Q(v=T).

Proof. Let hjs be the class number of M and hps+ the class number of M+,
Then, by [16], theorem (4.17),

M Qe[ Wa] I1 (_%Bcp), (6.16)

h
M+ ¢ odd

where the product is over odd Dirichlet characters of M, Qs is the index of Was Epr+

in Ejz, and, for a character ¢ with conductor f,

BSO‘ = f%; Z v(a)a,

a

where the sum is over the elements of (Z/f,Z)>.

Let us first calculate the index Qps. From (2.10) we have Q@ = 2 for K =

Q(v/-1) and K = Q(v/=-3). If K = Q(v/=2), then the element 1 — (g(p is a unit in
Q(Cs, ¢p). Taking the norm of 1 — (gCp from Q((s,¢p) to M = Q(v-2,¢p) gives

u=(1-(s6)(1 - &) € Enm,

and u/uf = —Cg ¢ W2,. Hence, by (2.9), Qm = 2.
For the rest of K’s, M has the form Q(1/—g, (p) where g is a prime congruent to
3 mod (4). By (3.9), we at once obtain Qar = 2 for these fields.
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Let p = 3. Then M = K((3). If K = Q(+/-3), then M = K((3) = Q(v/-3), and
the class number of M is 1 (M is one of the quadratic imaginary number fields with

class number 1).

Assume K is a field other than Q(v/—3). The group W)y of roots of unity in M
is
M= {<<4)<3>7 if K = Q(V_l))

(—1,(3), otherwise,

and so |Wys| = 12 if K = Q(+/—1); 6 otherwise.
The character group X (M) of M is a subgroup of the character group for Q(¢p, (3)

where D is the smallest positive integer such that M C Q({p, {3) which is the same
thing as the positive generator for the discriminant d(K/Q). We have

X(M)=(x,%|xt=4*=1),

where x is a character of Q({p) and % is the non-trivial character of Q({3). The
action of 9 on Gal(Q((3)/Q) ~ (Z/3Z)* is clear; it sends the generator of (Z/3Z)*
to —1. The action of x on Gal(Q({p)/Q) ~ (Z/DZ)* depends on the value of D.
If K = Q(+/—1), then D =4 and x(1) = 1, x(3) = —1. If K = Q(v/=2), then D = 8
and x(1) = x(3) = 1, x(5) = x(7) = —1. For the rest of the K’s, D is an odd prime

@ (3) <(E)"

To find the odd characters of M we recall that a character is odd if it sends —1,
i.e. complex conjugation, to —1 (and even if it sends it to 1). Now x is clearly odd
if K = Q(v/—1) or Q(v/—2). For the other fields, D is a prime congruent to 3 mod
(4), and therefore —1 is not a square mod D, and hence x(—1) = —1. So x is an odd
character for all K. The character 1 is also odd. The set of odd characters of M,

therefore, consists of x and +. The conductor of x is D whereas it is 3 for 9.

and

Now that we have the set of odd characters of M, computing B, for each odd

character ¢ gives, for ¥,

x =

B — {—1/2, if K = Q(v-1),
-1, otherwise,
and, for ¢, By = —1/3.
Evaluating the quotient in (6.16) now gives har/hp+ = 1, or hpyr = hpy+. The

field M* is a real quadratic number field. From the table given in [1] on the class
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numbers of real quadratic number fields we get hpr+ = 1 for all M, and therefore
hy =1 for all K.

Now assume p = 5. Then M = K((5). The group Wys of roots of unity in M is
(C43C5>a if K = Q(V _l)a
Wu =14 (-1,(,0), if K =Q(v-3),
(-1,¢s), otherwise.
The order of Wy is 20 if K = Q(v/-1), 30 if K = Q(+/—3), and 10 otherwise.

The character group X (M) is given by
X(M)=(x9|x*=9"=1),

where x is a character of Q({p) which is defined in the same way as in the p = 3
case and v generates the character group for Q(¢5). We define the action of ¢ on
Gal(Q(¢5)/Q) ~ (Z/5Z)* as 1(2) = (4. Since 2 generates (Z/5Z)>, the action of ¥
on the other elements of (Z/5Z)* can be obtained from the action of ¥ on 2.

The set of odd characters of M consists of x, x%2, ¥3, and %. The conductors
are: fy =D, fyy2 = 5D, fys =5, fy = 5. Calculating B, for each odd character ¢

gives
(-1/2, if K = Q(v~1),
By=3 -1/3, if K = Q(v3),
| -1, otherwise,
(-2, if K = Q(v-1),Q(v-2),Q(v/-3), or QV-T),
-4, if K = Q(v-11),
By = ¢ -8, if K = Q(v/-19),
W) 14, if K = Q(v/=43),
~18, if K = Q(+/-67),
( =30, if K = Q(v/—163),
Bys = —%(3 — (4),
By = —%(3 +C4)

Substituting for Qas, [Wasl, and By, in (6.16) gives
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(1, if K = Q(v=1), Q(v=2), Q(v=3), or Q(V-T),
2, if K =Q(v-11),
ha < 4, if K = Q(v-19),
R+ 7, if K = Q(v/—-43),
9, if K =Q(v-67),
L 15, if K = Q(v/—=163),

which shows that, for K = Q(v~1), Q(v-2), Q(v/-3), and Q(vV=T), by = by,
and, since hpr+ is an integer, hyr > 1 for K = Q(v-11), Q(v-19), Q(v-43),
Q(+/—67), and Q(v/—163).

Next we show that, for K = Q(v/~1), Q(v-2), Q(v/-3),and Q(v-T7), hyg+ = 1.
We use Minkowski bound method for calculating hps+.

If we write K as Q(v/—d) then M7 can be written as Q(B,~) where g = (1 +
V5)/2, and v = /d(B+2) if d # 3 mod (4) or v = (14 B+ /d(B+2)/2 i
d = 3 mod (4). The ring of integers in M is

OM+ = (17 13)71137)2

The discriminant d(M*/Q) of M+ over Q is 534(K/Q)2.

If K = Q(v/=1), then d(M*/Q) = 2*5°Z and the Minkowski bound for Mt is 4.
The rational prime 2 is inert in Q(3) but it ramifies in M*. The prime of M7 lying
above 2 is generated by 1+ § + v and therefore is principal. The prime 3 is inert in
Q(p), so there is no ideal of norm 3. Every ideal with norm < 4 is principal; Mt has
class number 1.

If K = Q(+/=2), then d(M*/Q) = 26537, and the Minkowski bound for M* is
8. There is only one prime ideal of M + lying above 2 and it is generated by 2+ 7. As
3 is inert in Q(8), there is no ideal of norm 3. The prime 5 ramifies in Q(8) and it
ramifies further in M*. The prime of M lying above 5 is generated by 1 — 28 — 7.
The prime 7 is inert in Q(B). The class number of M * is therefore 1.

If K = Q(+/=3), then d(M*/Q) = 32537, The Minkowski bound for M7 is 3.
Both 2 and 3 are inert in Q(8). So there is no ideal of norm < 3.
If K = Q(+/—7), then d(M*/Q) = 72537 and the Minkowski bound for M* is

7. There is only one ideal with norm < 7 and it is the one which lies above 5 and is

generated by 1 — 8v. The class number of M is therefore 1.
So, for K = Q(V _1)’ Q(V _2)a Q(V _3)1 and Q(V —'7)) hy+ = 1. O
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Proof of (6.3). If K = Q(+/—2) or Q(+/—11), then 3 splits and therefore, for these
fields, R(OkG) = 1. For the remaining fields 3 is inert and the order of R(OgG) is

1if K = Q(v/—1) or 2 otherwise.

Let K be a field such that R(OgG) is non-trivial. Then, by (6.1), the class of
Oy in R(OkG) is trivial if and only if z € j(O};) where 22 = [ mod (30k). The
group (Ok/30k)* is generated by . The image of Oy under j is the subgroup of
(Ok /30K)* generated by a®. Therefore 7(0F)% = () = {£1}. Hence L has a
normal integral basis if and only if { = 1 mod (30k). O

Proof of (6.4). If K = Q(v/-1), then 5 splits and therefore R(OxG) = 1. If
K = Q(W/=2), Q(+/=3) or Q(+/=7), then 5 is inert. The order of R(OkG) is 1 if
K = Q(+/=3) or 3 otherwise.

Let K = Q(+/=2) or Q(v/=7). Then, by (6.1), the class of O in R(OkG) is
trivial if and only if z € j(Oj;) where 2?2 = | mod (50g). If K = Q(v/-2), then
(0 /50K)% = (@ +1), 5(0F) = (e +1)%) = (@), and j(Oy)? = (3). Therefore
L has a normal integral basis if and only if | mod (50) lies in (Z/5Z)*. If K =
Q(v/=7), then we obtain j(O};)* = (2) and so L has a normal integral basis if and
only if [ mod (50k) € (Z/5Z)>. O
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7. R'(OxG) — a subgroup of R(OkG)

Let K be an imaginary quadratic number field with class number 1. In this section
we consider the subgroup R'(OgG) of R(OkG) generated by classes of the form (Of)
where L is a tame Galois extension of K with Gal(L/K') isomorphic to G' which is
also a Galois extension of Q. As in the last section, we assume that p is unramified

in K but, unlike the last section, we do not impose the condition Cl{(Opr) = 1.

Let L be a tame extension of K with Gal(L/K) ~ G which is also a Galois
extension of Q. The group Gal(L/®), then, is either cyclic or it is isomorphic to
the dihedral group Dy, of order 2p. Let us first consider the case when Gal(L/Q) is
cyclic. The group Gal(L/Q) has a unique subgroup whose index in Gal(L/Q) is 2;
let F' be the corresponding subfield of L. Then F' is a tame Galois extension of @
with the Galois group Gal(F/Q®) isomorphic to G and L = K'F.

(7.1) LEMMA. If the discriminants d(K/Q) and d(F/Q) are relatively coprime,
then L has a normal integral basis, i.e., the class of O in R'(OgQ) is trivial.

Proof. Assume that the discriminants d(K/Q) and d(F/Q) are relatively coprime.
Then, since L = K F, the ring Of, of integers in L is a compositum of the rings O and
Op of integers in K and F, i.e., O = OgOp. Since F is a tame Galois extension of @
with Gal(F/Q) ~ G which is abélian, by Taylor’s proof [15] of Frohlich’s conjecture,
F has a normal integral basis over Q. This means that Of ~ ZG and therefore
O ~ OgG. The element of Op which generates a normal integral basis for F' over

@ also generates a normal integral basis for L over K. - ]

Next, for each K, we identify cases where d(K/Q) and d(F/Q) can have a common

factor. We will need the following lemma.

(7.2) LEMMA. Let r be a prime integer which divides d(F/Q). Then r =
1 mod (p).

Proof. Let R be the prime of F' which lies above rZ. Let Q, and Fg denote
completions of Q and F at 7 and R respectively. Then rOf = RP and Gal(Fg/Q,) ~
G. Since the inertia subgroup of Gal(Fr/Q,) is the entire group Gal(Fr/Q,), the

local Artin map

Q:‘( - Ga’l(FR/Qr)
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induces an isomorphism
E,
————— ~ Gal(Fr/Q,),
IIOI‘IIIR/T(ER) ( R/Q )

where E, and Eg denote the groups of units in Q, and Fg respectively, and normpy,
is the norm mapping from Fp to Q,. Let E7(‘0) = E, and, for a positive integer a,
E,(.a) be the subgroup of E, consisting of units congruent to 1 mod (r®Q;). Then, by

the class field theory, we can find an integer a such that

Eﬁa) - normR/T(ER).
Let a be the smallest such integer. Then, since EL9 does not lie in norm r/r(ER), we
can assume a > 1. Since Gal(Fr/®,) is cyclic whose order is a prime integer, under
the local Artin map, E,(aa_l) will map onto Gal(Fg/Q,) with E® lying in the kernel.
Therefore the order of Gal(Fr/Q,) divides the index of E,(na) in E,(na_l). Ifa =1, then

£0)N o, X 7 X
Eﬁl)— rO, ~\rz)

and the index of Eﬁl) in E’(“O) ist—1. Ifa>1, then

(a—1) a—1
E; Z .
@ ~ Traoor ~ (additive group),
A T

and the index of E,Ea) in Eﬁa—l) is 7. So the order of Gal(Fg/Q,), which is p, divides
r — 1 or it divides 7. But p does not divide r; r is a prime distinct from p. Therefore

p divides r — 1 or, equivalently, r = 1 mod (p). O

In the process of proving (7.2), we have proved, keeping in mind that Fis a real

field and therefore there is no possibility of the infinite prime of Q ramifying in F,

(7.3) LEMMA. Let | be the product of finite primes of Q which ramify in F'
Then the conductor f(F/Q) of F over Q is simply [Z. O

(7.4) THEOREM. If K = Q(v/-1), Q(v-2), or Q(v/—3), then the class of Of
in R'(OkQG) is trivial.

Proof, Let K = Q(v/=1), Q(v/=2), or Q(v/=3). Then d(K/Q) = 4Z, 8Z, or
3Z. By (7.2), there does not exist an abelian extension F of @ of degree p such
that 2 or 3 divides the discriminant d(F/Q). Therefore, for any abelian extension F
of @ of degree p, d(K/®) and d(F/Q) are relatively coprime. Applying (7.1) now

immediately proves the theorem. O
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Since, by (7.4), there is nothing else to be said about the case when K is Q(v-1),
Q(v/=2) or Q(+/-3), let us assume that K is a field other than Q(v-1), Q(v/-2)
or Q(+/—3). We can write K as Q(,/—¢) where g is a prime congruent to 3 mod (4).
The discriminant d(K/®) of K over Q is ¢Z. The discriminant d(F/Q) of F over
Q is [P~1Z where [ is the product of prime integers of @ which ramify in F'. This
follows easily from the fact that

d(F/Q) = normp(D(F/Q)),

where the different D(F/Q) is the product of ramified primes of F raised to the power
p — 1. There are three distinct possibilities for the prime factors of [:

a) [ = g, i.e., F is ramified at g only,

b) I =m, (¢,m) = 1, i.e,, F is ramified at primes other than ¢, and

¢) I =gm, (¢g,m) =1, ie., F is ramified at ¢ as well as at primes other than g¢.

To indicate F’s ramification, we will write F' as Fy, Fi,, or Fy;, representing the above
three possibilities. The associated field L will be written as Lq, Lm, or Lgm. In the

following we will determine the class of O in R'(OgG) in each of the three cases
L = Ly, Ly, and Lgm. We begin with L = L,, which is the easiest to deal with.

(7.5) THEOREM. If L = Ly, then the class of Of in R'(OkQG) is trivial.

Proof, This is a straightforward case of applying (7.1). The discriminants d(K/Q)
and d(F/Q) are relatively coprime and therefore L has a normal integral basis over
K, and hence the class of O in R'(OkG) is trivial. ]

Let Oy and Ogm, respectively, be the rings of integers in Ly and Lgy,. The next

result links the class of Ogy, to the class of O,.

(7.6) THEOREM. In R'(OkG), (Ogm) = (Oy), i-e., as an OgG-module, Ogy, Is

isomorphic to Oy.

Before we could prove the above theorem, we need a number of auxiliary results.
First of all, we note that the extension L, is unique. To prove this we observe that
the extension L, is a compositum of K with F, where F is an abelian extension of
Q whose conductor, by (7.3), is ¢Z. The smallest cyclotomic field containing Fj 1s,
therefore, Q({;). The Galois group Gal(Q(¢,)/ Q) is isomorphic to (Z/qZ)* which
is cyclic of order ¢ — 1. Since p divides ¢ — 1, Gal(Q(¢g)/Q) has a unique subgroup
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whose index in Gal(®Q({)/®) is p. Therefore, by Galois correspondance, Q({;) has a
unique subfield whose degree over @ is p. Since F, lies in Q({y) and its degree over
Q is p, F; must be that field.

Next we indicate how extensions of the form Fy, and Fy, can arise. Let us first
consider F,,,. The conductor of Fy, is mZ and therefore Fy,, C Q((m). If m = [[im; 74

is the factorization of m into prime integers, then

ca@em/@ = ()« x ()

Since ; = 1 mod (p), each group (Z/r;Z)* has a subgroup whose index in (Z/rZ)*
is p. Consequently Gal(Q((r)/®) has a whole string of subgroups with indices p in
Gal(Q(¢m)/®). As aresult, Q((r) has an entire family of subfields with degree p over

Q and discriminants which divide mP~1Z. The field F,, is one such field. Extensions

of the form Fy;, also arise in this manner.

Given an extension Fy,, there is a quicker way of generating extensions of the form
Fym. It involves forming the compositum FyFy, of Fy, with Fy and then fixing under a
subgroup of Gal(F,F,,/Q). The group Gal(FyFn/Q) is isomorphic to Gal(Fy/Q) x
Gal(Fy,/Q) where each factor is cyclic of order p. There are p + 1 subgroups of
Gal(FyFm/Q) with indices p in Gal(FyFp/Q). So there are p + 1 subfields of FyFy,
with degree p over Q. Out of these p + 1 subfields, 2 correspond to Fy and F,. The
remaining p — 1 subfields are of the form F,. The following result proves that any

extension of the form Fy,, can be generated in this manner.

(7.7) LEMMA. For any extension F,, there exists a unique extension Fy such

that Fyy, is a subfield of the compositum FyFo,.

Proof. The compositum Fy Fy, lies in Q(¢{gm) and contains a unique extension i
of @ of degree p which is ramified at primes dividing m only. The degree of FyFy;, over
Q is p? which is the same as the degree of FyyFy,, over Q. Therefore FoFgm = FgFiy
and hence Fyp, C FyFh,.

The Galois group Gal(F,F,,/Q) is isomorphic to Gal(F,/Q) x Gal(Fn/Q). Let
gq and gy, Tespectively, be generators of Gal(F,/Q) and Gal(Fm/Q). Then the sub-
groups of Gal(F,F,/Q) with indices p in Gal(FyFn/Q) are (gq), (gm), and {(gggm),
1 < a < p-—1. The fixed fields of (g9,) and (gm) are Fy, and Fy respectively. Fixed

fields of (gggm) correspond to extensions which are ramified at g as well as at primes
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dividing m. Therefore

Fym = (FgFm)%9m),
forsome1<a<p-1. O

Proof of (7.6). By (7.7), there exists an extension Fy, and an integer a, 1 < a <
p — 1, such that Fgy, is a subfield of FyF,, fixed under the subgroup of Gal(Fy/Q) x
Gal(Fr/Q) generated by gggm. For the fields Ly, Ly, and Ly, this implies

Lqm = (Lqu)(g,‘,’gm> )

where Gal(Lg/K) ~ Gal(Fy/Q) and Gal(Ly/K) ~ Gal(Fin/®).

" The ring of integers in LqL,, is O4O,,. This follows from the fact that LyL,, can
written as LgFy,. The discriminants d(L,/Q) and d(F,,/Q) are relatively coprime
and therefore the ring of integers in LyFy, is OqC’)' m where Oy, is the ring of integers
in Fy,. Since O C Oy, it follows that 0,0, = 040k O'r,. But OO’y is the ring
O, of integers in L,, = K Fy,. Therefore the ring of integers in Ly Fy, is OgOp,.

By (7.5), L, has a normal integral basis. Let § € Oy, be an element which
generates a normal integral basis for L,, over K. Then O,, = OgGal(Ln/K)(6)
and OgOpn, = OyGal(Lm/K)(#). Each element of O;O,, can be uniquely written as

mlgvln(a) +- ng?n(o), T; € Oq.
To find the ring Oy, of integers in Ly, we note that an element > z:9%,(6),
z; € Oq, of Oqom lies in qu if an only if

p p
gggm (Z mlg:n(o)) = Z wlg:n(e)
i=1 1=1

This gives z; = g2*(zp). Therefore

qm—{zg gm I:BEO}

It is now straightforward to check that the map

O - qua

z Z 984(z) g1 (6),

is an isomorphism of O g G-modules. O
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We had set ourselves the task of identifying the class of O in R/(OgG) for
L = L4, Ly, and Lgy,. We have shown that (Op,) is trivial and (Ogm) = (O4). So,
to complete the task, all there remains for us to do is to determine the class of Oy in

R'(OkG). This we now do.

(7.8) LEMMA. The class of Oy lies in the kernel group D(OkG).

Proof. Since
1—- D(OKG) — Cl(OkG) — Cl(Og) x CI(OM) -1,

and the class number of K is 1, the proof involves showing that O, corresponds to a

principal ideal in C!(Ojs). More concretely, we need to show that, under the map

me¢: Ly — M,
where

¢: L, = KG,

z — ¢(z),

#(z)(8) = z, 0 is an element of Oy which generates a normal basis for L, over K and
79 is the projection of the algebra K G, which splits as K x M, into M, the image of
Oy is a principal ideal.

If ¢ = 7, then p must be 3, for only then ¢ — 1 = 0 mod (p) and an extension Fy
which is ramified at ¢ exists. But, by (6.15), M has class number 1 and therefore all
ideals of M are principal.

If ¢ = 11, then p is 5 and Lj; is the unique extension contained in Q(¢11) whose

degree over K is 5. Since the degree of Q({11) over K is 5, L11 = Q((11). Let 8 = (11.

Then @ generates a normal integral basis for Li; over Q, i.e.,

O11 = ZGal(L11/Q)(6).

Let 0 € Gal(K/Q) be the non-trivial element. Then
O11 = ZGal(L11/K)(0,0(8)),
= ZG(8,0(9)),

where the action of G on 8 = (33 is defined as g(¢(11) = C?l Let ¢: L1y — KG be
the isomorphism induced by . Then

$(O11) = ZG(1, ¢(a(6))).
To find ¢(c(f)), we note that 86 = (z + oy)(#), where § is the trace of (13 from Ly;
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to K,and ¢ = g3 +g* and y+ 1+ g% + ¢g° are elements of KG. The element ¢(f) can
be written as o(6) = ((—z + 8)/y)(8), and therefore

1
o(0n) = 26 (1,1~ +5).
Applying 79 : KG — M, g — (5, gives

r2$(On) = <1, ;21(?7)-(—%2(33) +ﬂ)>

Oum

But ma(y) = 1+ ¢ + ¢ = (1 — v/5)/2 is a unit in Ops. Therefore m2¢(O11) = Our.
So ma$(O11) indeed is principal and hence (O11) € D(OkG).

If ¢ = 19, then p = 3. By (6.15), C{(On) = 1 and therefore every ideal is
principal.

If ¢ = 43, then p = 3 or 7. If p = 3 then, by (6.15), C{(Op) = 1. Assume p = T.
Then Las is the unique subfield of ®Q((y3) whose degree over K is 7. Let 8 be the
trace of (43 from Q({43) to L43. Then

0 = Caz + (35 + (35,
and
Oys = ZGal(L43/Q)(9),

or
Oy = ZG(@,G(ﬂ)),

where o € Gal(K/Q) is the non-trivial element and the action of G on ¢ is induced

from g(Ca3) = (§5. Let ¢ : L — KG be the isomorphism induced by 6. Then
$(Os3) = ZG(1, ¢(a(6)))-

To find ¢(c(8)), we need to express o(6) as z(¢) where z € KG. We have 6 =
(z+0y)(6), where S is the trace of (43 from Q(Cs3) to K, z = 14+g9+2¢°+9*+39°+2¢°
andy=3+g+ g%+ 2¢° + 20 + g% + g%, and therefore

1
#(O43) = ZG (1, -y-(-—:l: + ﬂ)) .
Applying m3 : KG — M, g — (7, gives

mo(O43) = <1> ;r;t?)(—WZ(x) + ﬂ)>

O
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But the norm of the element
ma(y) = —(207 + 2G5 + G + (7 + 2 + 2¢7)

is 1 and therefore it is a unit. Hence ma¢(O43) = Oy,
If ¢ = 67, then p = 3 or 11. If p = 3 then, by (6.15), Ci(Oy) = 1 and so
(04) € D(OkG). Assume p = 11. Then Lg7 C Q((p7) and

Ogr = ZGal(Le7r/Q)(0),
where 8 = (g7 + (37 + (37 is the trace of (57 from Q(Ce7) to Lg7. We can write Opr as
O¢7 = ZG(0,0(9)),

where ¢ is the non-trivial element of Gal(K/Q), and the action of G on § is induced
from g((e7) = 437. Let ¢ : Lg7 — K G be the isomorphism induced by 6. Then

0er) = 26 (1,5(-2 +5))

where £ is the trace of (g7 from Q(({g7) to K, and
x:1+2g2+g3+2g4+g5+2g6+g7+2g8+g9+3gm,
y=3+2g+2¢% + g%+ 2¢° + 245 + ¢® + 2¢° + 29™.

Applying 73 : KG — M, g — (11, to ¢(Og7) gives
1
Ogr) = (1, ——(=m9(z) +
T9¢(Op7) < 7r2(y)( ma(z) ﬂ)>0M

Unlike the previous cases, the norm of the element
mo(y) = =(Cun + Gy + 26K + 3¢ + ¢h + ¢+ 3¢T + 2¢h + O + )

from N = Q(¢11) to @ is not 1 or —1 and therefore it is not a unit. The norm of
the element 72(y) from N to @ is 892. The prime 89 splits completely in N. Let A,
1 < i < 10, denote primes of N lying above 89. Then

A =(89,C11 - 2oy, 1<i<10.

By subjecting m3(y) to the maps, one for each 1,

On
On — 717,

we can find the primes which occur in the factorization of mg(y)On. We obtain
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Now each of the primes A;, 1 < ¢ < 10, splits further in M. This is due to the
fact that 89 splits in K. Let B; and By be the primes of K lying above 89. Then,
we can assume, B = (8 + a)p, and By = (9 — a)p,. We can now write down the

primes of M lying above 89. They are
Cij = (Ai, Bj)ou» 1<:i<10,1£5<52.
The factorization of m3(y)Ops in M is therefore given by

m2(y)Om = C21C22C91Cys.

To obtain the factorization of (—=ma(z)+8)Or, we note that the norm of —m(z)+
B form M to N is me%(z) + m2(z) + 17. By using a method similiar to the one for
72(y)OnN, we can show that (my%(z) + ma(z) + 17)OpN = A3 A%. Under the maps

Om — 1<4<10,1<5 272,

Cii’

—7a(z) + B lies in the kernel if and only if i =2, j = 1 ori =9, j = 2. Therefore
(—m2(z) + B)Om = C3:C4y,

since the norm from M to N is A%AS.
Returning to the ideal m2¢(Og7), we find
C%,C?
T O — 1, 21%-92 > ,
26(Oo) < C21C22C91C92 / o,

_ 1
" C92C1’

To prove that mo¢(Og7) is principal and hence (Og7) € D(OkG), we need to show that
the ideal C99Cy9; is principal. The ideal C3C9; is fixed under complex conjugation.
Complex conjugation sends A; to Aj;j—; and Bj to By, and therefore

(C22)° = (A2, B2)b,, = (A9, B1)o,, = Co1.

So the ideal Cq3C9; basically is a prime ideal of Mt extended to M. From this we
conclude that m¢(Qg7) is principal if the primes of M T lying above 89 are principal.
The primes of M* lying above 89 are principal. In fact, the class number of M +

is 1. To give the generators for the primes dividing 89, let us write M + as Q(v) where
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v is a zero of the polynomial
p(z) =20 — 2% — 186(z® — =) + 12530(2® — z°) — 365771(z* - z°)
+ 4227884(z% — z) — 11390543.
The primes dividing 89 are then generated by the element

1

31057\ " 849 — 1008 + 96147 + 10588 — 3704205 — 4111904

+ 5041900° + 6076920 — 1708239y — 4787272)

and its Gal(M*/Q)-conjugates. The ideal m3¢(Og7) is therefore principal, and so
(O¢7) € D(OKG).

Lastly, if ¢ = 163 then p = 3, and, by (6.15), the class number of M is 1. Hence
(Oq) € D(OKG). O

The next result completes our calculations to determine the class of O,.
(7.9) LEMMA. The class of Oy in R'(Ok Q) is non-trivial; its order is 2.

Proof. By (7.8), (Oy) lies in the kernel group D(OkG). In the last section we
saw that D(OgG) ~ Coker(j), where the map

A A ((1 —OCS@M)
is induced by reduction mod ((1 — (,)Oyr), and, for an element [z] € Coker(j), the -
corresponding class (C(z)) in D(OkG) is defined by the diagram:

C(z) — Om
! L

Ok 2 Ou/(1-()0um

where j; is multiplication by z followed by reduction mod ((1 — (,)Op) and j2 is
reduction mod (pOk ).

On the other hand, given a class in D(Og@G) in the form of a ring Oy, of integers
in a tame extension L over K with Gal(L/K) ~ G, the way we determine the

corresponding element in Coker(j) is to subject O to the map
(m,m2)¢: L — K x M,

where ¢ : I — KG is an isomorphism and 71(g) = 1, ma(g) = (p, and obtain the
images, say, tOk and yOp in K and M respectively. These images, as has been
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indicated, are principal ideals since it is known that (Op) € D(OkG). The class
(OL) can then be described by the diagram:

O i Om

lzme B

Ok > OuM/(1-G)Ou
where j; is multiplication by y/z followed by reduction mod ((1 = {p)Onr) and j2 is
reduction mod (pOk ). But this square defines (C(y/z)). Therefore (0r) = (C(y/x))
and the element of Coker(j) corresponding to (Of) is [y/z].

To prove the lemma, we have two distinct cases to consider: p is inert in K, or p
splits in K. Assume p splits in K. Then there is only one instance of this which occurs
when g = 11 and p = 5. In the proof of (7.8) we saw that if $: L1y — KG is the
isomorphism induced by (11 then ma¢(O11) = Opr. To calculate m1¢(O11), we note
that the map m1¢ is the familiar trace from L1; to K composed with multiplication

by l/trL/K(Cu). Therefore

_ trpyx(On)

m¢(O11) = Tyx(Cn)

Since Li; is a tame extension of K, there is an element in @17 with trace 1. Con-
sequently, try x(O11) = Ok. The trace of (11 is a@ — 1. Therefore m¢(On1) =
(1/a — 1)Ok and hence (O11) = (C(a - 1)).

The structure and the order of the group Coker(j) was calculated in section 2.
For the case under consideration, it is a cyclic group of order 2 generated by [a].
Since [@ — 1] = [a], (O11) = (C(a)), and hence the order of (011) in D(OkG) is 2.
In fact, (O11) generates D(OkG).

If p is inert in K, then by using an argument similar to the one for (6.1) we
can show that the class of (O) is (C(z)) where 22 = | mod (pOk) and d(Ly/K) =
P~10k is the discriminant. The only prime of K which ramifies in Ly/K is the
one lying above ¢Z. The rational prime ¢Z ramifies in K: ¢Og = (\/:E)QOK =
(2a — 1)20k. Therefore d(Lg/K) = (2a — 1)»~10k. The group (Ok/pOk)* is
cyclic of order p? — 1. Let z be a generator for (Ok/pOk)*. Then the image of j is
generated by 2(P+1)/2 and Coker(j) is a cyclic group of order (p +1)/2. Solving the
congruence z2 = [ mod (pOk) in (Ok /pOk)* gives

z = +2P*D/* mod (pOk),

which shows that z € Im(j) and therefore, in Coker(j), [z] # 1. This proves that the
class of Oy is non-trivial. Since [z]2 = 1, the order of (Og) in R'(OkG) is 2. O
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This concludes our discussion of the case when Gal(L/Q) ia abelian. We have

proved

(7.10) THEOREM. If L is a tame extension of K with Gal(L/K) ~ G which is
also an abelian extension of @, then the class of O, lies in D(OkG) and has order
at most 2. a

Next we consider the case when Gal(L/Q) is isomorphic to Dap.

(7.11) THEOREM. Let L be a tame extension of K with Gal(L/K) ~ G and
Gal(L/Q) ~ Dyp. If (Or) € D(OkQ@) and p is inert in K then Of is a free OG-

module.

Proof. Let us recall that the kernel group D(OkQG) is isomorphic to the cokernel
of the map j : O}y — (Om/(1 = ()Om)™. For [z] € Coker(j), the class in D(OkG)
which corresponds to [z] is (C(z)) (see section 6 for the definition of C(z)).

Let 8 € Oy with trL/K(G) — 1 be an element which generates a normal basis for
L over K, let ¢ : L —» KG be the isomorphism of K G-modules defined by = — ¢(z)
where ¢(z)(8) = z, and let (m1,7m2) : KG — KX M be the map given by (71,72)(g) =
(1,¢p). (OL) € D(OkG), then, because of our choice of 8, 11 ¢(Or) is Ok, m2¢(OL)
is a principal fractional ideal, and (Of) = (C(y)) where m2¢(Or) = yOum- By using

an argument similar to the one used to prove (6.1) we can show that
yP~1 = wk?~! mod ((1 - {)Om);

where u € Ok, k% =l mod (pOk), and [ is the product of primes of K which ramify
in L. The above congruence can be solved to give, in Coker(j), [y] = [k]. So the class
of Oy is (C(k)) where k? = ! mod (pOk)-

Since L/K is a cyclic extension of degree prime p, any prime 7 of K which
ramifies in L satisfies normg(r) = 1 mod (p). Therefore normg ({) = 1 mod (p). By
considering ramification of rational primes in the maximal real subfield of L we can
show that [ has the form ul' where u € O and !’ is a product of rational primes.
The congruence normg({) = 1 mod (p) now gives I =1 mod (p), or ' € (z(pz‘l)ﬂ)
where z is a generator of (On/(1 — ()Onm)* which is a cyclic group of order P -1
The group O of units is ((4) if K = (V=1), (G) if K = Q(v/=3), or {(-1) if
K # Q(v/-1), Qv/-3). So any unit u € 0%, on reduction mod (pOk), lies in
(2P =D/ty where ¢ is 4 if K = Q(V=1), 6if K = Q(v/=3), or 2if K # Q(vV-1),

89



Q(v/=3). Therefore, on reduction mod (pQOk), [ lies in (2/2+D)@E* =D/1)  Solving
the congruence k2 = | mod ((1 — {,)Onr) now shows that k lies in the subgroup
generated by z(PtD/t. But by (2.2) the order of D(OgG) ~ Coker(j) is (p+1)/t and
so the image of j : O — (Onr/(1 = (p)On)* is generated by z(P+D/t Therefore, in
Coker(j), [k] = 1 and hence the class (C(k)) is trivial. g

The proof of the above theorem, as has been stated in the statement of the
theorem, works only if p is inert in K. If p splits in K then the class of Oy is
still determined by the element y where m2¢(Or) = yOpr. But because, for any
z € (Op/(1 = {p)Onm)*, P! =1, we can not use a congruence of the form yPl =
ukP~! mod ((1 — {;)Onm) to calculate y.
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