
Durham E-Theses

Optimal admission policies for small star networks

Antoniu, Nikolaos H.

How to cite:

Antoniu, Nikolaos H. (1994) Optimal admission policies for small star networks, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5665/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5665/
 http://etheses.dur.ac.uk/5665/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

O P T I M A L
ADMISSION P O L I C I E S

F O R SMALL
STAR N E T W O R K S .

The copyright of this thesis rests with the author.

No quotation from it should be pubhshed without

his prior written consent and information derived

from it should be acknowledged.

A thesis presented for the
degree of Doctor of Philosophy
at the University of Durham.

Nikolaos H . Antoniu

Department of Mathematical Sciences,
University of Durham,

Durham, D H l 3LE.
ENGLAND.

September 1994

1 3 JAN 1995

Abstract

In this thesis admission stationary poHcies for small Symmetric Star telecommunica­

tion networks in which there are two types of calls requesting access are considered.

Arrivals form independent Poisson streams on each route. We consider the routing

to be fixed. The holding times of the calls are exponentially distributed periods of

time. Rewards are earned for carrying calls and future returns are discounted at

a fixed rate. The operation of the network is viewed as a Markov Decision Pro­

cess and we solve the optimality equation for this network model numerically for

a range of small examples by using the policy improvement algorithm of Dynamic

Programming. The optimal policies we study involve acceptance or rejection of traf­

fic requests in order to maximise the Total Expected Discounted Reward. Our Star

networks are in some respect the simplest networks more complex than single links

in isolation but even so only very small examples can be treated numerically. From

those examples we find evidence that suggests that despite their complexity, optimal

policies have some interesting properties.

Admission Price policies are also investigated in this thesis. These policies are not

optimal but they are believed to be asymptotically optimal for large networks. In

this thesis we investigate if such policies are any good for small networks; we suggest

that they are.

A reduced state-space model is also considered in which a call on a 2-link route,

once accepted, is split into two independent calls on the links involved. This greatly

reduces the size of the state-space. We present properties of the optimal policies and

the Admission Price policies and conclude that they are very good for the examples

considered. Finally we look at Asymmetric Star networks with different number of

circuits per link and different exponential holding times. Properties of the optimal

policies as well as Admission Price policies are investigated for such networks.

Nikolaos H. Antoniu ©MCMXCIV

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived form it should

be acknowledged.

Dedication

I dedicate this thesis to my parents Hristos and Elektra, my sister Helena, Antigone

Karadimou and Melpomeni Petrani for their love and support.

This thesis is also dedicated to Catherine Louise Faulkner for being my dream-keeper

and for making me reahse that at one time in my Hfe I might have had any number

of stories, but now there is no other. This is the only story I will be able to tell.

Acknowledgements

The work in this thesis was carried out between January 1991 and September 1994

under the supervision of Dr. Iain M. MacPhee. I would hke to express my graditude

to Dr. Iain M. MacPhee for his help and guidance throughout the course of this work.

Further acknowledgements are due to David Woof for his help in the computing

work.

I would also like to thank the following: Dougal Wilson for being the other side of

Nebs Communications, Barrie Hall because the media is the message, Simonefor not

being die frau ohne schatten, Prof. Protonotarios, Catherine, Ersie and Dimitrios

Zevgolis, Dr. Panagiotis Dounis, Dr. Vicky Malandraki, Dr. Nikitas Vaptismas,

Dr. Marina Moula and Kalliope Tsarouhi for being here when everything started,

Elspeth Faulkner for sharing my love for Herge's Tin-Tin, Dr. Georgantopoulos

for being the reason I first visited Durham, Alain Resnais, J.S. Bach for his Triple

Concert BWV 1044, Mike and Mary Faulkner, Yiannis and Fotini, Bernarda and

Fernanda de Utrera, Georgina Hillard, Mike, Ray and Roy, Barry Magarian for his

Wagner.

Finally I would like to thank all the Members of Staff of the Department of Mathe­

matical Sciences as well as the Secretarial Staff for their help and understanding.

Contents

1 Introduction 6

1.1 Introduction 6

1.2 Telecommunication Networks: A Brief and Biased Introduction 9

1.3 The Network as a Markov Decision Process: Description and Math­

ematical Framework 14

1.3.1 Description of the Network 14

1.3.2 Reversible and Irreversible Processes 16

1.3.3 Optimality and Maximising the Reward 18

1.4 Size of Networks and the State-Space 20

1.5 Approximation procedures and Asymptotic analysis 23

1.5.1 Limiting Regimes and Fixed-Point Approximation 25

1.5.2 Decentrahsation 30

1.6 Trunk reservation 31

1.7 Reduced State-Space Models, Admission Pohcies and Properties of

the Optimal Pohcy 33

1.7.1 Separable Routing and Cost functions 33

1.7.2 The Single Link Model 34

5

1.8 Properties of the Optimal Policies 36

2 The Model,Definitions,Theorems, Computational Procedures 38

2.1 Introduction 38

2.2 The Network as a Markov Decision Process 39

2.3 Definition of the Model 42

2.3.1 Prehminary Definitions 42

2.3.2 Rates of Events 45

2.3.3 Transition Probabihties 47

2.4 Computational Procedures for the Optimal Policy 48

2.4.1 Policy Improvement 49

2.4.2 The Value Determination Step 50

2.4.3 The Successive Over-Relaxation Algorithm (SOR) 52

2.5 The Efficiency of the SOR method 53

2.6 Convergence Analysis for SOR 57

2.7 Errors in Computational Procedures 60

2.7.1 Truncation Error 61

2.7.2 Rounding Errors 61

2.7.3 Numerical Examples on Errors 63

2.7.4 Conclusion and Accuracy Check 65

2.8 The max-flow Bound for Symmetric Star Networks 66

2.9 The Rate of Return from the Network 67

2.9.1 Fixed-Point Approximation for the Blocking Probabilities . . . 67

2.9.2 Calculating the Blocking Probabilities in Equilibrium 69

3 Optimal Policies for Symmetric Networks 72

3.1 Complexity 72

3.2 Optimal Policies: Properties when R2 < 2Ri 76

3.3 The Optimal Pohcy as a -> 1 82

3.4 Properties of the Optimal Policy when i?2 ~ 2 x i2i 83

3.4.1 Future Work 85

4 Admission Price Policies 86

4.1 Definition and Background 86

4.1.1 Calculating the 87

4.1.2 Restrictions and Optimisation 88

4.2 Comparing the Optimal Pohcy with the Admission Price Policy . . . 90

5 The Reduced State-Space Model 101

5.1 The Reduced State-Space Model 101

5.2 Computing and Results 103

5.3 Optimal PoUcies and Properties 113

5.4 Using the 0 policy from the ful l networks 116

5.5 The Ott and Krishnan 'costs' 116

6 Asymmetric Models 118

6.1 Introduction 118

6.2 The Model 118

7

6.3 Rates of Events and Transition Probabilities for Asymmetric Networks 120

6.4 Computing and Results 122

6.5 Optimal PoHcy and Properties 128

6.5.1 What Happens as C 3 increases 129

6.5.2 What Happens as ^2 increases 131

6.5.3 Properties 133

6.6 The max-flow Bound for Asymmetric Networks 138

7 Conclusions 139

7.1 Optimal Policies and their Properties 140

7.2 Admission Price PoHcies 140

7.3 Other Results 141

A The Size of the State-space 143

B Computing 146

B . l Counting the States 146

B.1.1 Program STATECOUNTER 147

B.2 Policy Improvement Program 153

B.2.1 The Beginning 153

B.2.2 Value Determination Step 157

B.2;3 Pohcy Improvement 160

B.2.4 Calculating the Pohcy 166

B.3 The Reduced State-Space Model 168

B.3.1 Value Determination Step 169

B.3.2 Pohcy Improvement 172

B.4 Employing the Pohcy 175

B.5 What Happens a.s R2 ^ 2Ri 178

Chapter 1

Introduction

1.1 Introduction

In recent years there has been a resurgence of interest in the mathematical theory

of Telecommunication networks as well as the stochastic modelling of them, and in

their application to the design and control of Telecommunication systems. This is

due to

(1) the variety of new problems raised by advances in the technology of

computers, electronics and communication systems; and

(2) the increased computing power available to researchers.

Throughout the century, problems from this field have provided an impetus to the

development of probability theory, pure and applied.

Advances in the technology of modern Telecommunication systems have made it

feasible to consider sophisticated schemes which can control the routing of calls

within a network. Such schemes decide whether an arriving call should be accepted,

and, if so, how it should be routed.

The answer to the question of how should calls be routed or capacity allocated so

as to improve the performance of the network is not straightforward. An increase in

10

the offered traffic along a particular route will increase the blocking at links along

that route; that will affect traffic carried along other routes that use these links, and

also - in the case of alternative routing - along routes which act as alternatives. Such

hysterisis or knock-on effects will generally propagate throughout the entire network.

Nevertheless, it is more fundamental to ask whether a call should be accepted, since

the routing of the call is in practice easier to answer and not so critically dependent

on solving optimally. This is particularly true for modern computer and telecoms

networks, which are able to respond to randomly fluctuating demands and failures

by rerouting traffic and by reallocating resources. They do this so well, that in many

respects, large-scale networks appear as coherent as intelligent organisms.

In this thesis models of a telecommunications, star-shaped. Loss network which con­

sist of K links of the same capacity C linked through a common node are considered.

Such networks are known as Symmetric Star networks.

There are two types of route on which calls can request admission: 1-link routes

and 2-link routes involving any pair of the single links. Arrivals form independent

Poisson streams on each route. The networks are circuit-switched in that before a

request is accepted, it is first checked that sufficient resources are available to deal

with the request. We also consider the routing to be fixed, that is a call has but

one try to get through the network; otherwise, either rejected or denied a route, it

is considered lost (Loss).

Every link contains circuits which the calls hold for some exponentially distributed

periods of time. Dependency arises through occupancy of pairs of circuits. Both

types of calls have the same exponential holding time. For every call carried we

earn a reward; for different types of calls we earn different rewards. The rewards

are discounted at a fixed rate.

The operation of the network is viewed as a Markov Decision Process which, when

observed in time, is in one of a number of states. In the models we investigate

stationary policies which choose actions depending on the state of the process at

that time and hence our approach is dynamic. These actions involve whether to

accept or reject traffic requests in order to maximise the Total Expected Discounted

Reward (TEDR).

11

We solve the optimality equation for our networks numerically for a range of small

examples by using the policy improvement algorithm of Dynamic Programming.

The programs written can deal with a range of network sizes and offered traffics.

Generally, optimal policies are complex to describe and 'nobody' has exact solutions

except for problems on a single link. Star networks are in some respect the simplest

networks which aren't a single link or two in series but even so only verj'̂ small

examples can be treated numerically. For such examples we find evidence that

suggest that the optimal policies have some interesting properties.

An obvious class of policies investigated also in our work, are the Admission Price

policies. These policies are not optimal but they are believed to be asymptotically

optimal for large networks; where the number of links grows to infinity. In this

work we investigate if such policies are any good for small networks; we suggest

that they are. Stationary distributions of blockings of links are also considered both

theoretically and numerically. We then compare independent blocking assumptions -

as presented in Kelly (1986, 1988) - with our numerically calculated 'exact' solution.

A reduced state-space model is also investigated in which a call on a 2-link route,

once accepted, is split into two independent calls on the links involved. We com­

ment on the size of the state-space and employ the Admission Price policies and

conclude that they are very good for the examples considered. A comparison for

the Admission Price policies between the full and the reduced model is carried out

which shows that they are very similar. The policies are also compared to similar

ones suggested in routing schemes proposed by Ott Krishnan (1985, 1986) and

Key (1990). Our reduced model is the next simplest network to that of two hnks in

series with traffic which uses single links or use all the links; see Key (1990).

Finally we look at Asymmetric networks with different number of circuits per link

and different exponential holding times. The Admission Price policies are investi­

gated and compared to the ones for the ful l and reduced models. Properties of the

policies of such networks are studied.

12

1.2 Telecommunication Networks: A Brief and

Biased Introduction

Schemes that can control the acceptance and routing of calls in the network include

Dynamic and Adaptive Schemes.

Dynamic Schemes are routing schemes which select a route for a call on the basis

of the network state at the time of call-arrival and they are state-dependent. The

purpose of such Dynamic Schemes is to:

(a) adjust routing patterns in accordance with varying and uncertain

offered traffics;

(b) make better use of spare capacity in the network which may result

from dimensioning upgrades or forecasting errors;

(c) provide extra flexibility in order to minimise network blocking; and

(d) provide robustness to respond to failures or overloads.

Two approaches in particular have received considerable attention. In the United

States, AT&T has implemented a scheme called Dynamic Nonhierarchical Rout­

ing (DNHR) and in Canada, Bell-Northern Research has proposed a scheme called

Dynamic Controlled Routing (DCR).

The DNHR uses traffic forecasts for different times of the day in a large-scale opti­

misation procedure to predict a routing pattern. In DNHR, calls try their assigned

paths in a pre-determined sequence, and the calls are blocked when all assigned

paths are busy. The DCR proposes a central controller which receives information

of the current state of all links at regular intervals of about 5-10 seconds to determine

a routing pattern. The problem with the DNHR and DCR is that the former uses

a large off-line calculation to advise on choices of alternative routes which can only

change hourly, whereas the latter is centralised, time-delayed and requires detailed

information about circuit occupancies and traffic arrivals.

Akinpelu (1984), studied the performance of Nonhierarchical (NH) and Hierarchical

(H) networks under overloads using analytical and simulation models. Her work

13

assumes a NH network without controls in which its link sizes, offered loads and a

fixed route for each pair are specified. In these networks the traffic offered is Poisson

and the link blocking probabilities are independent. Calls blocked on a link of a path

can always return to the switching system so that they can access the next path

of their route. The basic idea of his analysis is to determine the offered load as a

function of the link blocking. He provides equations which solved iteratively and

starting with an initial estimate of the link blockings, determine the offered traffic

and blocking probabilities.

The efficiency of NH axid networks was examined by Akinpelu (1984) in examples.

She found that under no control, the H networks made more efficient use of their

circuits under overload than do the NH networks; without control in H networks

the calls carried increase steadily as offered load increases over the entire range of

overloads considered. She also examined NH networks in which the control was

trunk reservation for first routed traffic. Examples of both NH and H networks

under trunk reservation^ control are also examined only to conclude that such a

control has an extremely beneficial effect on the performance of the network under

overload in that by limiting the amount of multi-link and alternate-routing calls in

the network, it allows more efficient use of the circuits for the one link calls.

Akinpeku (1984) and Ackerley (1987) have found that as the network load increases,

there can only exist two states, a high blocking state with most of the calls carried

on two link paths, and a low blocking state where most calls are carried on a single

hnk.

Simulations for Symmetric networks carried out by Akinpelu (1984) and Ackerley

(1987) show that a maximal packing strategy which accepts whenever it is possible to

carry the call can have disastrous effects under general overload, creating instabilities

and carrying much less traffic than if the dynamic policy was switched off. This was

a very important result as it proposes a dichotomy between an individual and a

'social' or network optimum. This dichotomy suggests the idea of using a flexible

Dynamic Scheme at low loads and turn it off at high loads. A simple way of doing

this is to apply trunk reservation.

^ Trunk reservation is presented and discussed in §1.6.

14

Dynamic Alternative Routing (DAR) was the routing scheme proposed by Gibbens,

Kelly and Key (1989). DAR in contrast to DNHR and DCR, is decentralised and only

uses local information with that being whether trunk reservation limits have been

exceeded on a route, and the current recommended alternative route. Gibbens, Kelly

and Key (1989), obtain bounds which hold for any DAR scheme and they compare

the performance of DAR with such bounds. They developed a simple analytical

model which enables DAR to be implemented on both large and small fully connected

loss networks. Empirical validation of the model as well as a number of examples are

discussed. They also show that trunk reservation controls the instabihty of dynamic

routing and limits the extent of rerouting under various overloads.

Various aspects of dynamic routing in fully connected circuit-switched networks are

considered by Gibbens and Kelly (1990). They consider networks of nodes and the

calls use a single circuit/trunk between two nodes or can be rerouted via a tandem

node.

In Gibbens and Kelly (1990), bounds on the overall performance of a dynamic

routing scheme are derived under a fixed pattern of offered traffic. These bounds

provide a measure of the extent to which it may be possible to improve on the

performance of any given scheme. They study two types of bounds. The first they

term max-flou? and holds under minimal assumptions concerning the stochastic

structure of the system. The second bound they consider, called the Erlang hound,

apphes when streams of offered traffic are Poisson, and, is obtained by consideration

of the random flows across the networks.

Gibbens and Kelly (1990) study Symmetric networks and use the fixed-point approx­

imation general scheme to measure the effect of trunk reservation. A wide range of

alternative routing is allowed. Gibbens and Kelly (1990), show that in networks

with well-matched traffic and capacity, there is limited potential for dynamic rout­

ing to improve network performance. DAR is also studied. The problem of how the

capacity of links within a network should be chosen is considered; this is known as

the 'dimensioning problem'.

Routing schemes which select a route for a call on the basis of the network state at

the time of an arrival in order to minimise network blocking were investigated by Ott

^The motivation for this bound was the fluid flow.

15

and Krishnan (1985) and Krishnan and Ott (1986). They consider circuit-switched

networks with n links (trunkgroups) and Ck circuits in trunkgroup k, k = 1,2, . . .n.

Their schemes have the properties that in order to compare the relative desirability

of two routes, only information on trunkgroups in those routes is used, and that the

comparison is simple enough to make the schemes implementable.

In their work, they make two assumptions about the stochastic behaviour of the

network. The first is that all calls have exponentially distributed holding times with

unit mean. The second is that as soon as a call has been accepted on an n-link

route, it becomes n independent calls on the n links (trunkgroups) involved, each

with an independent holding time as above. As a result, the state of the network

at any time is reduced, and described by the number of occupied circuits on every

link.

The offered link-loads are regarded as independent direct-routed Poisson loads of­

fered to the links. At call arrivals, a routing decision needs to be made: in the

non-alternate routing scheme, each arriving call is offered precisely to one admissi­

ble path; if the selected path is busy, no other path is tried and the call is blocked.

Their objective is to find a poHcy which minimises the average number of lost calls

per unit time. Using results based on Howard's (1960) value determination and

policy iteration methods, they show that many policies can be given in the form of

a value function and when there is a way to compute such a function, we have in hand

an implementable policy. To find such a value function they obtain a state-dependent

routing scheme called Separable Routing when a policy iteration procedure of Markov

Decision Theory on the finite state-space is used to improve upon a nominal scheme

of direct routing. This procedure is carried out by considering a value cost of adding

a call to a link; see also §1.7.1.

Krishnan and Ott (1985, 1986) compare their Separable Routing scheme with two

other schemes: DNHR and the Least-Loaded Routing (LLR) using two network de­

signs. DNHR is a state independent routing scheme and LLR uses state information.

In DNHR a call is blocked if all assigned paths are busy, whereas in LLR, the blocked

call is allowed rerouting to the path with the largest number of idle trunks. In com­

parison with DNHR and LLR schemes, Krishnan and Ott (1985, 1986) achieve a

lower network blocking for a considerable range of overloads for the first design -

16

improvement occurs above a certain level of overload - but not for the second design;

a detailed description of DNHR schemes can be found in Ash, Cardwell, and Murray

(1981), LLRis examined in Ash (1985). Krishnan and Ott (1989) also observed that

the use of their 'cost' formula appears to underestimate the true cost of a two-link

call and thus cause Separable Routing to do more two-link routing than is desirable.

A modification to Separable Routing scheme was also presented in Krishnan and Ott

(1989) as an attempt to accommodate alternate routing in which an arriving call

has access to all admissible paths, and blocking on a single link or a path does not

necessarily amount to call loss. This scheme is called Forward-Looking Routing, and

achieves better performance than the other routing schemes such as DNHR, LLR

and Separable Routing in that results to lower network blocking of calls over a wide

range of loads. This scheme curbs the tendency for excessive two-link routing and

thus reduces switch loads as well.

The question of minimising the cost of lost calls in networks of finite capacity which

can carry calls of different types requiring different resources, was also investigated

by Zachary (1988).

Zachary (1988) models the problem as a Markov decision process, using the objective

of average cost function optimisation. He considers the application of the policy

improvement method upon a 'base' policy, in order to find computationally tractable

methods of determining nearly optimal policies; exact optimal policies are impossible

to be computed due to the large state-space.

The 'base' policy considered is good in itself and allows the average cost function to

be easily computed as a sum of components each of which usually depends only on

the state of the network, at least to a good approximation: For any policy T T G 11,

he considers the corresponding differential cost function of Markov Decision Theory,

(j)'^ : X ^ R, normalised so that (j)^{0) = 0, where X is the set of all possible states

and n is the set of all non-randomised stationary Markov policies. <p^{x) is the cost

of being in state a; at a given time, relative to that of being in state 0 at that time,

measured by the difference in expected future costs incurred in the network.

Zachary (1988) presents a theorem which shows that for any policy TT € 11, is the

unique solution of a system of linear equations in a; € This cost function is then

17

used to determine the one-step improvement on the 'base' policy which is defined

by the first iteration of the improvement method. This latter can be interpreted

as an attempt, at each iteration, to define the 'optimal' policy, using the current

differential cost function as an estimate of that at the optimum. Hence, the one-step

improvement of a good initial good policy is general close to the optimum.

In this work existing calls are allowed rearrangement even when the arriving call is

initially rejected. Zachary (1988) considers application of the theory to particular

types of network, showing how good base policies might be defined with differential

cost functions readily computable as described earlier. An example is a fully con­

nected telephone network, with a direct link between each pair of nodes between

which calls may arise. Examples of cellular radio networks are also examined. He

finally considers briefiy the extent to which the ideas mentioned in his work are

applicable to more general networks and he mentions problems which most require

further investigation in order to examine the robustness of his method with respect

to deviations from the assumptions of the model.

1.3 The Network as a Markov Decision Process:

Description and Mathematical Framework

1.3.1 Description of the Network

In this section, we consider the following description of a stochastic circuit-switched

network, using the terminology of telephony and notation similar to that of Kelly

(1986) and Key (1990).

There are K links, labelled A; = 1,2,.., K and hnk i comprises d circuits/trunks. A

subset r C {1,2, . . , K} identifies a route. Let 71 be the set of possible routes. A call

on route r uses Air circuits from link i , where Air € .^+. In the important special

case where each element of the matrix A = [Air^i — l ,2 . . . , /v ; r G TV) is either 0 or

1 a route r can be identified with a subset of the set of finks {1,2,..,/<'} - just set

r = {i: Air = I l ­

ls

In our work we consider 7̂ to be 7?, = [{ i } , { z , ; } , i,j = 1,2, ..,K; i ^ j], in other

words all the one and two link routes. We also assume A,v to be either 1 or 0

according to whether link i is a part of route r or not.

Assume that calls requesting route r arrive as a Poisson Process of rate i/r, and that

as r varies over 7Z i t indexes independent Poisson streams. Suppose that there is

no control and therefore a call requesting route r is blocked and lost if on any link

i in the route, there are less than Air circuits free. Otherwise the call is accepted

and simultaneously holds A,v circuits from links i for the holding period of the call.

Holding periods of calls on route r are identically exponentially distributed with

mean fi~^.

Let nr{t) be the number of calls in progress at time t on route r, n{t) = {nr{t),r G

7^), and C = (Ci, C2,.., Ca'). The exponential holding times of Poisson arrivals

make the sequence {n{t),t > 0) a Markov Process that is a stochastic process with

the Markovian property which, when observed in time, is in one of a number of

states. The stochastic process (n(t) , i > 0) has a unique stationary distribution and

under this distribution 7r(n) = P {n{t) = n) is given by the product form

(1.1) 7r{n) = G{C) n ^ ' ' ' ^ ^ f \ nG<S(C),

where

(1.2) S{C) = {ne Z+'^-.0 <An<C}

and G'(C) is the normalising constant or partition function

(1.3) G{c)-'= E n
nes{C) ren

The result (1.1) is easy to check if we view the process as a multi-dimensional birth

and death process with equlibrium distribution given by (1.1).

Most quantities of interest can be written in terms of the distribution (1.1) or the

19

partition function (1.3). For example let Lr be the stationary probability that a call

requesting route r is lost, then, since the arrival stream of calls requesting route r

is Poisson,

(1.4) l-Lr= A^) = G{C)G{C-Aer)-\
n£S(C-Aer)

where is the unit vector from S{C) describing just one call in progress on route

r.

The above simple explicit form (1.3) does not provide the complete solution because

it is impractical for all but the smallest networks to compute G directly. Note that

the number of routes % may grow as fast as exponentially with the number of finks

K. For a description of the problem see Harvey and Hills (1979) as well as Louth,

Mitzenmader and Kelly (1994).

1.3.2 Reversible and Irreversible Processes

The distribution (1.1) satisfies the detailed balance equations

7r(n) Vr - 7r(n -|- ê) (n^ + 1), n, n -|- £ S{C)

where is the unit vector describing just one call in progress on route r. This

models a reversible process, and as Burman, Lehoczky & Lim (1984) and Whittle

(1986) prove, the distribution (1.1) is insensitive to the form of the holding time

distribution. In what follows we assume that the holding times have an exponential

distribution with unit mean.

A classical example of the above model is a telephone network. The model also

rises naturally in the study of local area networks, multi-processor interconnection

architectures, database structures, mobile radio and broadband packet network;

Kelly (1985) and Hui (1990, 1991).

Reversibility is a very attractive property, giving a closed product form which can be

20

approximated [see Kelly (1991)], and some authors have looked at optimal controls^

which preserve reversibility; see for example Kelly (1986), Key (1988) and Zachary

(1988) . Probabilistically, thinning the arriving stream - by accepting say 1 in x

calls - is such a control, as are 'admissible set policies' which restrict the sets that

could be used; for example we might in addition to equation (1.2) require that

n G n C S{C). Such 'admissible' controls which preserve reversibility were studied

by Foschini and Gopinath (1981). 'Co-ordinate convex' control [Ross and Tsang

(1989)] which effectively truncates the state-space also preserves reversibility.

For our model we must decide at arrival times of calls whether to accept or reject

them taking into account the state of the process. Thus we have a Markov decision

process. To accept or reject arrivals we must follow some policy. A policy is any

rule for choosing actions. Policies in general are mappings TT : S xR'^ —> A, where S

is the state space and A is the action space. In this work we consider policies which

choose actions depending on the state of the process at that time and are mappings

TT : S ^ A. Such policies are called stationary.

Blackwell (1965), shows that if the state-space and the action-space are finite, there

is an optimal policy according to some control, and furthermore there is an optimal

stationary one; see also Ross (1983).

If the process is in state {n{t)) at time t and action a is chosen, then independent of

the past, two things occur: (a) We receive a reward Rr immediately if an arrival of

type r is accepted; (b) The process moves to a new state after an exponential time

which is independent of the control policy employed but depends upon the state

of the process. Thus the expected time between transitions is not constant. After

uniformisation [Lippman (1975)], the Markov Decision process can be represented

by an equivalent discrete-time Markov decision process n{t). Uniformisation makes

the rate of transitions between states constant, and turns the problem into one that

can handled discretely (and hence on the computer); see Chapter 2.

However, now that there is a stationary optimal state-dependent control, one that

is deterministic and doesn't depend on time, and which says whether to accept or

reject a call of type r depending upon the network state in order to maximise the

average reward, the controlled process is not in general reversible.

'See §1.1 for the need of controls.

21

1.3.3 Optimality and Maximising the Reward

As pointed out by Ott k Krishnan (1986), Zachary (1988) and Key (1990), any pol­

icy which is expressed in the form of routing decisions is impractical to implement.

Research for years have been focused on methods that are general enough to be de-

sciptive and yet computationally feasible. The work of Bellman (1957) and Howard

(1970) on the Dynamic Programming and Markov Chain Theory was pioneering in

the field. The basic idea of their work is that Dynamic Programming can result

a recursive procedure for calculating an optimal value function from a functional

equation. Such research has supported the suggestion that many poficies can be

given in the form of a value function often called 'relative-value' and hence if there

exists a mechanism to compute such functions, we have an implementable policy;

see for example Howard (1960), Ott & Krishnan (1985,1986) and Ross(1983). The

emphasis is therefore stressed on computing or approximating such value functions.

The functional equation is obtained from the principle of optimality, stating that an

optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the first transition - a principle being always valid when the

number of states and the number of actions is finite. Therefore calculating the

optimal value functions calculates the optimal policy.

Under the above assumptions one can look for an optimal control policy to maximise

the average reward over an infinite or finite length of time in which the reward is

accumulated. Rewards can be discounted or not. Discounting at rate > 0 means

that a reward R, received at time t has present value i?exp(—i^i). Apart from

ensuring that the total reward is bounded, discounting suggests the fact that the

rewards earned in the future are worth less than those earned immediately. This

is very useful since in approximations one might not wish to look too far ahead.

In case that the discounting is not considered and the time horizon is infinite, any

policy that does not reject all the calls will result in an infinite reward, and therefore

the criterion in this case to select among policies is the reward earned per unit time

or average reward we seek to maximise; see Key (1990).

Let V(z) denote the expected discounted reward earned over an infinite time length

given the intial state is z, and Vn{z) be the reward when n transitions remain. Using

22

uniformisation the Dynamic Programming enables the recursions or value iterations

for Vn to be written down immediately under the optimal policy; see Lippman

(1975), Ross (1983) and Key (1990). Under this, it is optimal to accept a type r

call if and only if

Rr>Wn{z,r) = Vr,{z)-V4z + er).

It can be shown that the recursions considered is a contraction mapping on the set of

bounded functions on the state-space, and hence the function Vn converges to a limit

V which satisfies the optimality equation, for all bounded initial VQ; see Ross (1970,

1983). This method is the method of successive approximation or value-iteration,

which provides an efficient computational approach.

If R{t) denotes the reward earned by time t with no discounting ({ = 0) for a policy

TT and zo is the state at time t = 0, then the expected reward (f>Tr{z) given an initial

state z is defined as

(f)-^(z) = lim E
t—yco

If for some policy / , <l>f{z) — sup^(j)^{z), Vz, then / is said to be average-reward

optimal.

Let now Vfj^{z) be the ra-stage return under stationary policy / with no discounting

and initial state z, then using the uniformised transition rates A gives another kind

of expected average reward, < /̂(-?),

<f>f{i) = l im E f,n
n/A

Ross (1983) shows that the average cost does not depend upon the initial state and

links the average-reward optimal and discounted reward via a theorem which proves

that

23

(1.5) \imiV{z) = <j>^{z), Vz.

In our work the optimality criterion we use to discriminate between policies is the

total expected discounted return; see Chapter 2.

1.4 Size of Networks and the State-Space

In this work we look for optimal policies in time where the state of the network can

be described by the state of all current routes. Thus, the optimal state-dependent

routing in our case is a problem of optimal control of a Markov decision process in

a huge state-space. Because of the size of the state-space, numerical calculations

are very difficult and any policy which is given in the form of routing decisions is

unimplementable.

To demonstrate the problem with the state-space size, consider a model of a reduced

Star network with K links each of capacity C in which calls arrive randomly and

according to a Poisson distribution. There are two types of route: 1-link routes and

2-link routes involving any pair of the single hnks. A 2-link route on pair (i , j) , after

its acceptance, is split into 2 independent single link routes on links i and j\ this

network is often called a reduced state-space network. Both types of calls have an

exponential holding time with mean 1, (Exp(l)). For this example the state of the

network at any time we observe it is the number of busy circuits in the K links. In

this 'simple example' the size of the state-space |<S| is given by the expression

(1.6) \S\ = { C ^ l f ;

For a network with K = 190 and (7 = 20 (1.6) is |<S| = 21^9° which is considerably

more than 10^°, the estimated number of elementary particles in the universe [Ott

and Krishnan (1985)]; see Table 1.1.

Under the assumptions of the Symmetric Star network we investigate in Chapter

2, things are more complicated as there is no closed form expression in general for

24

calculating the size of the state-space. The rate of increase in the size is so rapid

that direct numerical approaches can never deal and even in moderate sized systems

there will always be a problem. In our work the size of the state-space was obtained

by counting the number of states on a computer; see Appendix B . l .

The following table gives the size of the state-space for a range of small values of

K, the number of finks and C, the capacity of each link for the reduced state-space

network model^ as well as the ful l modeP.

K C (C + 1)̂ ^ \s\
2 3 16 30
2 4 25 55
3 3 64 336
3 4 125 1023
3 5 216 2610
3 6 343 5860
3 7 512 11942
4 3 256 5142
4 4 625 28746
4 5 1296 124074
4 6 2401 442918
4 7 4096 1366806
5 3 1024 101368
5 4 3125 1131389
5 5 7776 8940840
5 6 16807 54653970
5 7 32768 273816800

Table 1.1: The size \S\ for the state-space.

For our Symmetric Star network by permuting the ordering of the links, many of

the states when K is large are equivalent.

For example, in a Symmetric Star network with A' = 4, C = 3 and |<S| =5143, we

could have 4! equivalent states: If we represent the state of the network as a vector

{Xa,Wab,Wac,Wad,Xb,..,Xd),

^Discussed in Chapter 5.
^Discussed in Chapters 2,3 and 4.

25

where denotes the number of single link calls on link z, and Wij, the number of

two-link calls on pair (i , i) , and look at the states

A = (1,1,0,0,0,0,2,2,0,0), 5 = (1,1,0,0,0,2,0,0,0,2)

we can see that WadiA) = Wac{B), and Wbc{A) = Wbd{B), and re-labelfing c and d

has no effect. Further research might highfight probable benefits of this equivalence,

in order to reduce the size of the huge state-space. I t seems to be very difficult to

try to take advantage of this. There are many serious problems to be considered

about for example how to debug and to be confident of the results and of course

the restriction that such a benefit could only apply to Symmetric networks; our

computing programs are made to work for asymmetric cases too.

The major problem that the large size of the state-space causes can be reviewed as

follows: Our model is a Markov decision process in which our goal is to maximise the

Total Expected Discounted Reward V and as such there is an optimality equation

which is used in a recursive procedure for calculating optimal value functions V

and for the calculation of the optimal policy itself. The optimality equation after

uniformisation is linear in V but the state-space quickly becomes huge. If we define

the iterative method to be

AVp = Rp, for Vp,

where Rp is the rewards vector, we can see that A is |<Sp in size while V and R are

size |<S|. We have efficient storage for the policies as well as the values V but not

for A. The storage problem as well as the important fact that we are interested in

the policies more than the values V were the reasons not to use the value-iteration

peocedures in our calculations; see §1.3.3. A more detailed presentation can be

found in Chapter 2.

Due to the large size of the state-space we have restricted our investigation for

networks with:

(a) K = 2, C <7,

26

(b) i r = 3, C < 5,

(c) / f = 4, C < 4,

(d) K = 5, C = 3.

In Appendix A we consider the difficulties arising in trying to calculate the state-

space for the Symmetric networks considered in this thesis.

1.5 Approximation procedures and Asymptotic

analysis

Blocking and Loss probabilities for calls in networks have been the subject of much

research [see for example Gibbens, Girard, Kelly, Mitra, Key, Ziedins, Whitt] . The

behaviour of such networks under limiting regimes has been studied and properties

of the models have been presented. The above researchers modelled networks with

increasing link capacity and offered traffic, but fixed network topology. That is

because if capacities increase more quickly then all blocking probabilities will tend

to 0, while if capacities increase more slowly then some blocking probabilities will

approach 1.

A major advance has been the development of approximation procedures. One of

the main reasons for that was the intractability of (1.1) - (1-4). Such approximations

avoid computational problems and in some cases provide deeper insights. The most

important is the Erlang fixed-point approximation developed and studied by Holtz-

man (1971), Lin et al (1978), Girard and Ouimet (1983), Heyman (1985), Whitt

(1985), Kelly (1986, 1991) and others.

The Erlang fixed-point approximation we now describe. Let

;i.7) E{u,C) = ^_
C j^n

E
-1

Erlang's formula for the loss probability of a single Unk of capacity C offered Poisson

traffic at rate v. Let i?,, z = 1,2, ..,/<' solve the non-linear equations

27

(1.8) E, = E{pi,Ci), t = l,2,..,K

w here

(1.9) P^=E^^rK U {1 ' E,f^\
ren jer-{i}

Then an approximation for the loss probability on route r is given by

(1.10) l-Lr^Ui^-E^f'"
i€r

The reasoning behind this approximation is as follows. Suppose that a stream of

rate Vr is thinned by a factor (1 — Ej) at each link j € r — {i} before being offered to

link i. If these thinnings could be assumed independent both from link to link and

over all routes passing through Hnk i (they clearly are not), then the traffic offered

to link i would be Poisson at rate (1.9), the blocking probability at link i would be

given by (1.8) and the loss probability on route r would satisfy (1.10) exactly.

Heyman (1985) and Whitt (1985) call the fixed-point procedure the reduced load

approximation.

The fixed-point approximation procedure is an important one for a number of rea­

sons. Firstly, it has a long history in Telecommunications and has been found to be

an effective approximation in a variety of circumstances. Secondly, it has recently

been the subject of a number of theoretical analyses, establishing its accuracy under

various limiting regimes [Whitt (1985), Kelly (1986), Ziedins and Kelly (1989)]. The

approximation has a mathematical interest due to similarities between the approx­

imated and asymptotic results as we shall see later. Thirdly, it can accommodate

additional features such as alternative routing and trunk reservation discussed also

in Kelly (1986, 1990, 1991).

In the following subsections a brief description of the work on reduced load approx­

imation and limiting behaviour of large networks examined by Kelly is given along

with his equations and results. The idea of decentralisation is also discussed. Other

28

results by other researchers are also featured.

1.5.1 Limiting Regimes and Fixed-Point Approximation

Kelly (1986) aims to show that the analysis of circuit-switched networks becomes

simpler the larger the network. He shows that when the capacity and offered traffic

are increased together in a network with fixed topology, a limiting regime emerges

in which loss probabifities are as if the links block independently, with blocking

given by the solution of a simple convex optimisation problem. Kelly considers the

fixed-point approximation procedure based on solving Erlang's formula under the

assumption of independent blocking. This procedure produces a unique solution

with fixed routing and under the Hmiting regime the estimated loss probabilities

obtained from the procedure converge to the correct values.

He first considered the optimisation problem of finding the most likely state n under

the probability distribution 7r(n). This is equivalent to

(1.11) max ^ (n ^ log - logn^!)
r

over n G S{C), a problem which is made difficult by the discrete nature of the

state-space. To simplify this replace logn! by nlogn — n by using Stirling's formula

and replace the integer vector n by a real x. The resulting problem is

(1.12) max J^^{Xr\ogl^r - XrlogXr -\- Xr)

subject to X > 0, Ax < C.

The dual of the above problem expressed in terms of a vector y = {yi,y2, ••,yK) is

to

1.13) min Er exp (- Ei Vi^ir) + J2i y^Ci

29

subject to y > 0.

Unless otherwise specified, summations run over r G 7̂ or ^ G {1,2, . . , K}.

Kelly (1986) treated problems (1.12) and (1.13) rigorously and proved that there

exists a unique optimum z = {zr.,r G TZ) to problem (1.12). It can be expressed in

the form

(1.14) zr = iyrl[{i-B,)'''\r e n
i

where B = (i?i, ^2, ..^BK) is any solution to the set

Y^A„iyrl[{l-B,y^^ = C„ if B,>0

(1.15) J2^^rl^rUi^-B,)''^^ < C., if B, = 0

Br,B2,...,BKe[0,l).

There always exists a solution to relations (1.15), and it is unique if A has rank

K. There is a one-to-one correspondence between solutions to relations (1.15) and

optima of problem (1.12), given by the transformation 1 — Bi = 1 — exp (—J/i), where

y is the vector of Lagrange multipliers. [A proof can be found in Kelly(1986) .

Relations (1.15) have a straightforward interpretation in terms of a continuous, or

fluid, traffic. Suppose that an offered traffic of on route r is thinned by a factor

(1 — Bj)"^^" on each link j , so that a traffic of

(1.16) 11(1 - ^ .) ^ ^ ' '

remains on route r where one unit of traffic on route r uses Av at link i. Then

relations (1.15) state that at any link i for which Bi > 0 the total capacity of that

Hnk, Ci, must be utilised by the superposition over r G 7̂ of the traffic (1.16).

30

In Kelly's limiting regime the behaviour of loss probabilities Lr has a very simple

description. There is a parameter Bi € [0,1) associated with link i such that

(1.17) Lr^l-Ui^-B,)^-, r e 71.
er

The above limit is deduced as a law of large numbers; see Kelly (1986). This limit

allows him to classify a link as overloaded, critically loaded or underloaded which

has an impact for the process describing the number of free circuits at the link.

Note the similarity between (1.17) and (1.10).

It is as if links block independently, link i blocking with probability Bi. Now the

various thinnings are clearly not independent, but the reasoning does suggest that

the approximation (1.17) might be more accurate the more diverse the collection of

routes passing through any given link.

Kelly (1986) and, Ziedins and Kelly (1989) provide theoretical evidence for this sug­

gestion, by presenting an asymptotic analysis of networks exhibiting various forms

of symmetry.

Heyman (1985) and Whitt (1985) obtain results similar to Ziedins and Kelly (1989)

for Symmetric networks. Whitt's approach is to prove a functional law of large

numbers for the process

{m{t),...Qmu>o} as K ^ ^ ,

where Q^i^-{t) represents the numbers of links with i busy circuits at time i in a

Symmetric network with K links. This approach is very powerful: it provides results

for the non-stationary behaviour of the system when holding times are exponential,

and promises to be able to deal with networks where the product-form solution

(1.1)-(1.4) is not available. In contrast, Ziedins and Kelly (1989) make heavy use of

particular features of the partition function (1.3). They show that the reduced load

approximation may give either an upper or a lower bound on the loss probability of

a call in a Symmetric network; an upper bound on the error of the approximation

is obtained in the special case when C = 1.

31

Heyman (1985), Kelly (1985), Mitra and Weinberger (1984) and Mitra (1985) all

present results on blocking and loss probabilities under traffic conditions where ar­

rival rates are normalised so that as network size increases blocking probabilities

approach 0.

Key (1994, 1990) examined the problem of Adaptive Control in the context of lim­

iting regimes, where we accept or reject probabilistically, with no knowledge of the

underlying state. He describes the asymptotic regime and re-confirms the results of

Kelly (1986), Whitt (1985) and Ziedins (1986) which show that approximations are

asymptotically valid as networks increase in size in a certain way, or as the traffic

and circuits grow larger. His results say that asymptotically, we can use adaptive

routing to maximise our gain.

Key (1990, 1994) uses the hmiting regime suggested by Kelly (1986) which assumes

a sequence of problems where the offered traffic and capacities C are replaced

by A(iV) = {Xr{N),r e n), C{N) = {C,{N),j = 1 , 2 , . f o r N = 1,2,..,, and

where the following is satisfied as N ^ oo:

K{N) C,{N)

where r G 1Z and j = 1,2,...,S.

He considers x to be the optimal solution to the following hnear program which gives

the max-flow bound [see Gibbens, Kelly and Key (1989)] on the optimal return under

any dynamic routing.

(1.18) L P l : m a x EreT^^r^r

subject to Xr < K, r GTZ

Xr>0

where Xr represents the carried traffic on route r, and RT is the return associated

with each call of type r. Let x{N) be the optimal solution to L P l when the traffic

32

and capacities X{N),C{N).

Key (1990) shows that

(1.19) ^ x (7 V) ^ x

and that this bound can be achieved asymptotically by the state-independent adap­

tive policy which rejects a proportion Pr of type r traffic, and routes the remainder

of the traffic directly, where Pr — {1 — f^). In other words, if Zr is the carried traffic

under this scheme, then

W here

Using Kelly's results. Key proves that

ZriN) = i l - P r) \ r l [i ^ - b , y ' ^ ,
j

where bj are the link blockings which satisfy (1.15) with = Ar(l — P^)-

He emphasises on the fact that if bj = 0 for all j, then the equations that bj satisfy

are identical to the optimum x which solves (1.18).

His theorems say that asymptotically we can use adaptive routing to maximise our

return, and that there is nothing to be gained by accepting more traffic into the

network than the solution to the linear program (1.18).

The expected undiscounted rate of return from a network with no controls where

the blocking for a link is calculated in Key (1990) as the unique solution to a set of

fixed-point equations is examined, and results similar to those of Kelly (1986), Lin

33

(1978), Girard and Ouimet (1983) are reached.

1.5.2 Decentralisation

Another very interesting idea tackled by Kelly (1988, 1990) was to investigate how

the routes in use affect the performance of the network and furthermore, if there are

many substitute routes that could carry calls between two nodes to search if there

is a criterion for comparing their efficiency.

A related issue in the literaure of telecommunications concerns the extent to which

control can be decentralised. This asks whether control could be distributed over

the switching nodes of the network, with computations and decisions made locally.

Over a period of time the form of the network or the demands placed on it may

change, and routings may need to adapt accordingly. A single node could perhaps

control this, receiving information from everywhere in the network and making all

decisions about routing an obvious problem being possible node failures. Another

idea would be to distribute the control over the links of the network, with compu­

tations and decisions made locally.

To progress with such questions, Kelly considered the following rate of return from

a network under the Erlang fixed-point approximation to be

r

where Â . = Vr Ylkeri^ ~ ^k) where E is the Erlang fixed-point defined in §1.4.

He shows that there exist implicit shadow prices associated with each route and with

each link of the network, and that the equations defining these prices have a local or

decentralised character. He illustrates how his results can be used as the basis for

such a decentralised routing scheme, responsive to changes in the demands placed

on the network. In the networks considered, both alternative and fixed routing

are considered. Kelly's (1988) scheme is adaptive in the sense that it attempts to

respond to changes in network form or in arrival rates rather than to seek out and

34

utilise capacity left idle for very short periods.

A very important result of his work is that the distinction between the Adaptive

and Dynamic approaches is mainly one of emphasis: with sufficiently many levels of

priority at each link and a sufficiently broad pattern of alternative routes. Adaptive

Schemes become Dynamic. Kelly's approach contrasts the Dynamic approach of

Gibbens (1986), Key (1987), Krishnan and Ott (1985, 1986) and Zachary (1988).

1.6 Trunk reservation

As mentioned in §1.1, a maximal packing strategy of always accepting every call

when there is room to fit it in can be very bad. This is a classical example of

the dichotomy between a 'user' optimum and a 'social' optimum where we seek to

limit an individual call's freedom in order to maximise the overall performance; see

Lippman & Stidham (1977). Ideally we would hke to use a flexible dynamic routing

control at low loads and turn it off at high loads. Fortunatelly a simple way of doing

this exists, trunk reservation.

Under trunk reservation, a bound m is specified for each link and alternate-routed

calls attempting to occupy a circuit on the link are refused if the number of free

circuits on the link is below the bound m. Only relatively small values of m, typically

less than 10, are needed even for very large circuit quantities.

The advantages of trunk reservation were first suggested in the work of J. Weber [see

Kelly (1990)], who used a series of simulation studies to examine the effectiveness

of various alternate routing schemes. Songhurst (1980) has compared a number of

service protection methods and concluded that trunk reservation is inherently the

most efficient method under a range of traffic load patterns. Akinpelu (1987) has

used the fixed-point approximation as well as simulation results to show that trunk

reservation can suppress instabilities under overloads and that such a control allows

more efficient use of the circuit for the routes for the one Hnk routes; see §1.1.

Trunk reservation is a very attractive control because its idea is simple and can be

easily implemented. Usually it is refered as a control which allows priority to be

given to chosen traffic streams.

35

Kelly (1990) extended his work (1988) on routing and capacity allocation in circuit-

switched networks to include trunk reservation and showed that fixed-point methods

can apply to i t . Such a generalisation is important due to the practical importance

of trunk reservation. His routing scheme is assumed static over a period. When a

call arrives it is routed (or lost) on the basis of a relatively restricted amount of

information on the current network state. Under alternative routing for example,

the route assigned to an arriving call is determined by information on which links

are ful l or occupied above or below their trunk reservation parameters. Using such

a simplified control, he shows that there exist implied costs associated with the

priority and non-priority traffic through a fink. The equations defining these costs

have also a local or decentralised character and can be used as a basis for routing or

capacity allocation strategies. In this work the routing can be fixed, or alternative

and many levels of priority as well as fully connected networks are featured.

Some insight into the efficacy of trunk reservation is given by the Markov decision

analysis of a single fink offered two streams of traffic. Suppose that one of the

streams has a priority and generates a larger reward. Suppose also that arrival rates

are known and the decision on accepting or rejecting a call depends on the priority

level and the history of the link. The aim is to maximise the long-run average

expected reward per unit time. Assume also that the holding times are identical

and exponential, then it is sufficient to consider policies which summarise the entire

history of the link by a single integer, the number of calls currently in progress.

But the optimal policy for the Markov decision process is to accept nonpriority

calls provided the number of free circuits is above a certain integer. This is a trunk

reservation policy, and Lippman (1975) has shown that this form of policy remains

optimal under a wide variety of discount and finite length of time criteria.

When a single link is offered many types of call, each type with its own reward,

the optimal policy is trunk reservation with multiple priority levels. The strict

optimality of trunk reservation does not extend to networks involving more than

one link, but is reasonable to expect that such policies will perform well; see Kelly

(1990). There is an emphasis that a trunk reservation based routing scheme has

to take into account hysterisis effects; in fact it can provide a method of control

as it is known that unrestricted use of alternative routes can severely damage the

performance of a network; see §1.2, Ott & Krishnan (1986), Gibbens h Kelly (1990)

36

and Key (1990).

Key (1990) compares the trunk reservation parameter with thinning of the the of­

fered stream. His examples suggest that trunk reservation is a robust control and an

important one in practice as offered traffic can be varying and imprecisely known.

He also mentions cases in which trunk reservation is exactly optimal.

1.7 Reduced State-Space Models, Admission Poli­

cies and Properties of the Optimal Policy

In this section we briefly present some results of research carried out by Ott &

Krishnan (1985, 1986) and Key (1990) on the reduced models. These results are of

particular interest for us because they form the background on which we examine

our Admission price policies and properties of them for both the full and reduced

state-space networks of Chapters 2, 3, 4 and 5.

1.7.1 Separable Routing and Cost functions

As mentioned in §1.2, Ott & Krishnan (1985) and Krishnan & Ott (1986) inves­

tigated the reduced state-space model by using a state-dependent routing scheme

called Separable Routing which is obtained by applying the policy iteration procedure

of Markov decision process on a nominal routing scheme. Under the assumptions

of their model (§1.2), Ott & Krishnan investigate the single link which is offered a

stream of Poisson traffic at rate A and where a reward 1 is earned for each accepted

call. The policy iteration procedure is then carried out by considering the value cost

of adding a call to the link: if link k has C trunks and is offered a Poisson load of A

erlangs, the 'cost' of adding a call to the link when it already has j calls in progress

is given by

37

The above relative value/cost is the probability that if the trunkgroup is in state

j at time 0 and a call is added, then at least one future call will be blocked on

trunkgroup k during the lifetime of the call. A(7, k) is therefore an estimate of the

expected increase in future blocked calls on the trunkgroup due to the addition of a

call when j calls are already in progress.

Equation (1.20) can be extended to the case of a network with many finks. As the

links are regarded to be independent, the cost of adding a multi-fink call which is

worth 1 and uses a single circuit from each of the links ki, ...,kjn, in the respective

states is then given by

m
(1.21) w=Y:m,j>)-

i=l

Thus, the cost of a path r is separable into the costs of the constituent links, which

accounts for the name Separable Routing.

Krishnan and Ott's (1985,1986) routing scheme (admission policy) can now be spec­

ified as follows: when a call arrives at path r, the cost W, in the current network

state, of each admissible path that has at least one free circuit on each fink in the

path is calculated by the above expressions. If the minimum path cost W > 1, then

the call is rejected; otherwise it is routed on the minimum-cost path.

1.7.2 The Single Link Model

Key (1990, 1994), considers a stochastic loss network with fixed routing patterns,

constant Poisson arrivals, and holding times of negative exponential duration with

the same mean. The notation used in the description of the Network is that of

§1.3.1. The rewards considered are discounted and the target is to maximise the

total reward. A reduced state-space is sometimes used, in which the resources are

held independently; that is the state space is described by the vector x of the number

of different types of calls in progress and the result is an irreversible system.

Key (1994, 1990, 1988) appfies the theory of Markov decision processes to a single

link network which is offered one or two streams of traffic. For a single link network

38

of capacity C which is offered Poisson traffic at rate A he calculates the value function

to be

(1.22) W,{j) = with H/,(0) = F,{C).

F is such a function that when the discount factor ^ —> 0, -F^(i) —> E{X,j); see

(1.7). Thus in this case equation (1.22) becomes (1.20), the formula that gives the

Ott & Krishan 'cost' function. Key (1990) generahses the above results to a general

birth and death process with state-dependent arrivals and holding times.

He then considers the case of a single link which is offered two streams of Poisson

traffic, which one is worth more than the other. He uses the results of Lippman

(1975) that the optimal policy is trunk reservation and investigates the choice of

optimal trunk reservation parameter. He analyses the problem by starting with a

policy that rejects all nonpriority traffic and applies policy improvement to change

the trunk reservation parameter.

Key (1990) investigates approximations for routing schemes for networks. He con­

siders admissible controls where the state-space is reduced to Q C <S. His 'link-based

approach' calculates approximate relative values for individual links Wj{xj) and ac­

cepts a multilink call worth Rr which uses finks 1, . ,m on which there are currently

xi, ..,Xm calls in progress if

(1.23) Wr{x,) + ... + W^{Xm)<Rr.

where W are calculated by using (1.20), the Ott & Krishnan 'cost' formula. Key

(1990) gives sufficient conditions for this simple approximation to be good: He

proves a theorem which states that if the call types include all the single link routes

on a link j , worth Rj of rate Aj, rij is the number of busy circuits on link j and

Rr < Vr that use link j, then

39

The above relative values are Rj times the expected increase in blocked calls caused

by adding a call to the route [compare with (1.20) .

Key extends the Ott and Krishnan Erlang's Loss formula results by proposing a

decomposition method to approximate the poficy in a large network by using the

single link results.

1.8 Properties of the Optimal Policies

As Key (1990) states, the optimal policies in real networks will be constrained by

the information available to us. Within the framework of his model the optimal

policy - by taking into account the state of the network - is a deterministic one

which will reject or accept a call or even send it in an alternative route according to

the entire state of the network. Specifying such policies for large networks would be

infeasible because of combinatorial explosion, apart from being unrealistic because

of the amount of information required. Key's (1990) aim is to understand something

of the nature of optimal poficies by looking at a single fink, and to apply some of

this knowledge to obtain good strategies for larger networks.

Key (1990) describes some general properties about the nature of optimal policies,

describing monotonicity for a certain class of networks.

Key's results hold true for the reduced discounted state-space model in which links

are held independently.

For a single link offered different traffic streams, optimal policies are monotonic

increasing [see Lippman (1975)], that is, if a call is rejected in state x, then it is

optimal to reject the calls in states bigger than x; which proves that optimal policy

is of a critical number type. As we later will investigate whether monotonicity and

other properties for optimal polices hold for our optimal policy, it is necessary to

briefly present Key's results in which we will refer to again in Chapter 3.

Let H^(x,r) = V{x) — V{x -\- e^), where V = Va is the expected discounted reward.

What follows is a summary of Key's results on properties of the optimal policy and

can be found in detail in Key (1990).

40

Properties

(I) Theorem 4.1 in Key (1990): If type i calls use fewer resources on each link

in the network than type k calls, then for all the discount factors and states x,

V{x + e,) > V{x + e,).

(II) Corollary 4.1 in Key (1990): If type i calls use fewer resources than type k calls,

then for all the discount factors and states x, W{x,i) < W{x, k).

(I I I) Assumption A l in Key (1990): Either type i calls are smaller than type k calls,

or routes i and k do not use any common links.

(IV) Assumption A2 in key (1990): Calls of type larger than i are worth less i.e.

R^ > Rk.

(V) Theorem 4.2 in Key (1990): Under the Assumptions A l and A2 it is always

optimal to accept all calls of type i.

(VI) Property P I in Key (1990): If we reject a type i call in state x, then we reject

it in state x + k iov calls i and k which are distinct and not disjoint.

(VII) Property P2 in Key (1990): If we reject type j call in a; + then we reject it

in X for calls i and j which are disjoint. Property P2 means that for calls which are

disjoint, and thus could be widely separated in a network, in general, the more type

i calls in progress, the less likely we are to reject type j calls, and vice-versa.

He then proves a theorem that shows that Properties P I and P2 hold for all discount

factors for a certain class of networks in which among other things type k calls are

monotonic with respect to themselves i.e. if we reject a type k call in x, we reject it

in a; + ê .

Theorem 4.1, Corollary 4.1 and Theorem 4.2. are all of special interest to us because

as we shall see later on we assume that 2-link routes are worth less than the 1-link

routes. In Chapter 3, we discuss properties of our optimal policies and see if the

results of Key (1990) apply to our networks.

In our work we do not consider trunk reservation, admissible controls, alternative

routing nor state-dependent arrivals.

41

Chapter 2

The Model,Definitions,Theorems,

Computational Procedures

2.1 Introduction

We consider Symmetric, star-shaped, circuit-switched Loss networks which consist

of K links of capacity C linked through a common node. Calls requesting routes

arrive at the network randomly and according to a Poisson process. There are two

types of route: 1-link routes and 2-link routes involving any pair of the single links.

Requests for 1-link routes arrive at rate Ai on each link and requests for 2-link

routes arrive at rate \2/{K — 1) on each 2-link pair. Both types of calls have an

exponential holding time with mean 1, (Exp(l)).

2-link routes involving links i and j , where i < j will be denoted by the ordered pair

(«,i) . As a matter of convenience, we say that 1-link calls on fink i relate to pair

(^,^).

For every Tlink call carried we earn reward Ri and for every 2-link call carried we

earn reward R2. Rewards are bounded and earned immediately. In our networks we

take i ? 2 to be less than twice Ri

42

i ? 2 < 2i?i.

The reason for this is that as we are considering the case where all 1-link routes are

accepted, we think that it is reasonable to take R2 < 2Ri; it is our assumption.

2.2 The Network as a Markov Decision Process

We consider the operation of the network as a process which, when observed in time,

is in one of a number of states. The set of all possible states S is finite. Denote a

typical state hy z E: S.

The exponential holding times of accepted calls make the sequence of states Zt,t > 0,

a continuous time Markov process. At arrival points, and after observing the state

of the process, an action a must be chosen which accepts or rejects arrivals. To

accept or reject arrivals we must follow some policy T T . A policy TT is any rule for

choosing actions a. In our case, a rule for accepting or rejecting arrivals. In this

work we consider policies which are non-randomised and choose actions depending

on the state of the process at that time and are mappings w : S A, where <S is the

state space and A is the action space. Such policies are called stationary. Stationary

policies are simple and Blackwell (1965) shows that i t is not necessary to consider

more complicated time-dependent policies; which is a great advantage in case where

one is analysing a Markov process over an infinite length of time.

The times between consecutive decision epochs are not identical but are exponen­

tially distributed with state-dependent mean. If the process is in state z at time t

and policy 7r(z) is chosen, then independent of the past, two things occur:

a) We receive a reward R{Z,IT) immediately if an arrival is accepted.

b) The next state of the system is chosen according to the transition

probabifities P-K{Z)-

After uniformisation [Lippman (1975)], a procedure in which null trnsitions are

introduced into the system in an appropriate state-dependent fashion, the continuous

43

time Markov decision process can be represented by an equivalent discrete time

Markov decision process z in which the rate of transition between states is constant.

Under unijormisation the times between transitions are independent of not only

the control policy employed, but also the state of the process. The purpose of

unijormisation is to enable us to replace the complex differential equation form of

the optimality equation with a simpler iterative equation as we shall see later on.

Note that both rewards earned and the transition probabilities are functions only of

the last state and the subsequent action. Uniformisation is discussed in §2.3.

In investigating the performance of different policies a key consideration is opti­

mality. The optimafity criterion we use in this work is the Total Expected Dis­

counted Return (T E D R) as defined in Ross (1983) and the goal is to exhibit

optimal policies that can be implemented in the network and maximise the TEDR.

The above criterion assumes a discount factor a, 0 < a < 1, and among all policies

T T , attempts to maximise the TEDR

(2.1) V^z) = J2R{z,ir)ta'\z{0) = z
t=o

where E^ represents the conditional expectation given that poficy TT is employed;

Vjr{z) is well defined [Ross, 1983]. (2.1) represents the TEDR after uniformisation.

The discount factor a is introduced because a reward to be earned in the future is

less valuable than one earned today. This way we also ensure that the total reward

is bounded.

As mentioned in §1.3, Blackwell (1965), shows that if the action space S and the

state-space A are finite there is an optimal T T * such that, for every T T , K-*(-2) > ^-(2),

Vz G S, in the set of all possible states. He also shows that if there is an optimal T T ,

there is one which is stationary.

If we define V{z) to be

V{z) = snpV^{z)

44

then a policy T T * is said to be a-optimal (or optimal) if

(2.2) v^.{z) = v{z), yzes

An optimal policy has the property that whatever the initial state and initial action

are, the remaining actions must constitute an optimal policy with regard to the

state resulting from the first transition - a principle being always valid when the

number of states and the number of actions is finite. Now we can use Dynamic

Programming results to calculate the optimal policy by considering an optimality

equation; see §1.3.3.

In our work the optimality equation is given by the following expression

(2.3) V{z) = max E[Riz,i:)] + aY,PA'^\^)Viz)

where z,z E S. [A proof can be found in Ross (1983) .

The optimality equation (derived by considering the network as a Markov decision

process) will be our tool for the analysis of such problems for the main reason that

under uniformisation it becomes a linear equation which can be solved recursively

by Gauss-Seidel or some such iterative procedure; the iterative procedures we are

using are presented in §2.4.

Proposition 1

V stationary policies T T , K is the unique solution of

(2.4) V^{z) = E[R{z,7r)] + a^P . (j | ^)K(j)

Proof: A proof can be found in Ross (1983).

45

Theorem 1

Let g be the stationary policy that when the process is in state z, selects the action
which maximises the right hand side of (2.4), then

V,{z) = V{z), V z > 0

and hence g is a-optimal.

Proof. A proof can be found in Ross (1983).

Before we discuss the actual procedures for calculating our optimal policies, we give

definitions of the parameters used to describe the network and the rates in which

events happen as well as the transition probablities.

2.3 Definition of the Model

2.3.1 Preliminary Definitions

Definition 1

The number of all possible pairs (i j) , where ^ < j , is denoted by /3, where

Definition 2

The number of all possible 2-fink pairs where z < j is denoted by 7, where

46

where 1 < i < j < K-

Lemma 1

We can index all the 2-fink pairs [i,j) with the formula

Khj) = - 7, --K + J

where I < i < j < K-

Proof. To derive the above expression for l{i,j) write out the pairs as follows

(1.2) , (1,3), (1,K)

(2.3) , (2,4), (2,K)

(K-2,K-1), (K-2,K)

(K-1,K)

In the first row l{l,j) — j - 1; in the second /(2, j) = K - 1 + j - 2; and in row i

n=K-i+l

which can be rearranged to give the formula of / (i , j) .

Definition 3

The number of 1-Hnk calls on link i is denoted by Xi, where 0 < re,- < C.

47

The number of 2-lmk calls on pair [ij] with index number /(z, j) is denoted by

wi(^ij), where 0 < < C.

Definition 4

The number of 1-link calls in the network is denoted by x, where

X = { X I , X 2 , . . . , X K)

The number of 2-link calls in the network is denoted by w, where

w

Definition 5

The state of the network at the time we observe it is denoted by {x,w), where

{ x , w) = { X I , . . , X K ; W I , . . , W ^)

For each i,

0 < + X) < C

where A, = {I : 1 = l{i,j) or / = l{j,i), some j ^ i}.

We say that the link i is full when the number of calls of both types in i is C 1-link

calls depart from link i at rate x,; and 2-link calls depart from pair (i j) at rate wi.

48

2.3.2 Rates of Events

Definition 6

1- link calls arrive on the network at rate Ui, where

z/i = /\ Ai

2- link calls arrive on the network at rate 1^2, where

_ 7A2 _ K X 2

1-link calls depart from the network at rate 1^3, where

K

i=l

2-link calls depart from the network at rate 2/4, where

Under the framework of our network the transitions to the next state are exponen­

tially distributed, but with various rates. To allow transitions to occur at a uniform

rate we used the technique of uniformisation, introduced by Lippman (1975), in

which transitions occur from each state by introducing fictitious null events, that

is transitions from a state to itself [Lippman (1975), Lippman and Stidham (1977),

Ross (1985)]. This enables us to replace the continuous time problem with a discrete

time problem.

The rate of null events in the network is denoted by 1^5, where

Z/5 = KC - 1/3-

49

Note that when the system is full i.e. there are no free links, we cannot accept

arrivals of any type.

The Total Rate of events in the network is denoted by Rate, where

A2 (2.5) Rate = ^ u , = K{X, -f ^ + C)
i=i ^

The rate of offered traffic per Hnk over the network is denoted by L, where

(2.6) i = A , + (; f - l) ^ ^ ^ = A, + ^ .

I t is also necessary to add that now that the transitions in the network occur at

rate (2.5) the correction between discrete steps in the optimality equation after uni-

formisation and 'time' in the continuous time process for the discount factor a is

_ Rate
a =

Rate + {—Ina)

Remark: In most cases examined in this thesis a ^ 0.8. All the results for a fixed

L (e.g. 2.95) are comparable by having the same discount rate but different values

of L yield slightly different actual discount value. The results presented in tables in

Chapters 4, 5 and 6 have values calculated by the approximation a = a^l^"-^^ and

are about 0.6% smaller than the results that would be derived by using the above

correction.This, however, has no effect in the optimal policies and the differences

between optimal y(0) and the Admission Price optimal Ku(0); see Chapter 4.

The results on this and later chapters are usually grouped by the value of L for

'historical reasons' - when running the programs this keeps the rate of events the

same for a collection of different arrival rates for networks of given size.

Notation

ei = (0,.., 1,.., 0), with 1 in the z*'' place.
K

50

e/ = (0,.., 1,.., 0), with 1 in the place.

Possible transitions: ±6,-, i = 1,2,..,K., and ±e;, / = 1,2, ..,7.

2.3.3 Transition Probabilities

The transition probabilities for the network are as follows:

P^{x + e^,w\x,w) = I
0, if Tr(x,w) = reject

I. Rate , otherwise

Xi
P^{x - ei,w\x,w) = i f Xi>0

P„{x,w + ei\x,w)
0, if 7r(a;, iy)= reject

i (ftr)^e^ otherwise

wi
P^{x,w - ei\x,w) = r^^, if u;; > 0.

P^{x,w\x,iv) =
t^5

Rate

As we always accept 1-link calls when there is room to fit them in

P^{x + ei,w\x,w) =
0, iixi = C

{ Rate •̂^ , otherwise

Definition 7

The reward to be expected in the next transition out of state {x,w) when poHcy TT

51

chooses action a is denoted by "if, where

(2.7) ^ = E[Ri{x,w),7r)] = ^ P^{x,w))R{x,w)
a^A

K

= J2P^{X + et,w\x,w)Rl +
i=l
7

^P^(a;,u; + et\x,w)R2.
1=1

^ can also be written as

^ ' ^ Rate

where I{ei\x,w) = 1 or 0 according as a call on route / is accepted or rejected by

the admission policy.

Using (2.7), (2.4) can be expressed as

K

V^{x,w) = * + a^P^(a ; ± ei,to|a:,u;)Kr(a; ± ei,u;)+

1
a^P^(a; , iy ± ei\x,w)V.„{x,w ± ei) +

1=1

(2.9) a[P^{x,w\x,w)]V^{x,w).

2.4 Computational Procedures for the Optimal

Policy

The problem of formulating optimal policies for Loss Networks has been a subject

of research for the last 20 years. In general the optimal policy and the value func­

tions cannot be determined for realistic size networks which comprise a number of

resources and where different call-types share resources, although it is possible to

52

determine controls that are asymptotically optimal in a suitable defined sense. The

two factors which make the problem of formulating the optimal policy so hard are

the size of the state-space and the fact that, in order to compare the relative desir­

ability of two different routes, the state of trunkgroups not in either of these routes

may be relevant.

It has been shown by Key (1990) that the optimal pohcies can be compHcated to

describe and do not share properties possessed by optimal policies for the simple

case of a single link. We will also show how complex the optimal policies are even

in our simple networks in Chapter 3.

2.4.1 Policy Improvement

Theorem 1 suggests that, once we have determined the optimal function V, then we

would know the optimal policy - it would be the stationary policy n that, when in

state z = {x,w), maximises

E[R(z,7r)] + a^P^{z\z)V,(z)

Suppose now that for some stationary policy g we have computed Vg, the expected

return under g; and suppose that we now define h to be the policy that, when in

state z, selects the action a that maximises the above. The question is how good

is h compared with g. This describes Howard's pohcy improvement procedure and

Ross (1983) contains a proof that h is at least as good as g and if it is not strictly

better than g for at least one initial state, then g and h are both optimal. In our

work we apply policy improvement on a computer to obtain the optimal policy when

the state space is finite.

Step 0 (Initialisation). Choose any stationary pohcy g and employ it in our Network

as a rule for rejecting calls.

Step 1 (Value Determination). Compute Vg as the unique solution of the set of

equations

53

(2.10) V,{z) = E[R{z,g)] + ccY.PM^)V,{z)
z

Step 2 (Policy Improvement). Determine a policy h as the policy that, for each state

2 G 5, selects the action which maximises the right hand side of (2.10).

Step 3 (termination). If the new policy h equals the old policy g, the algorithm is

stopped with policy h as the optimal. Otherwise, go to step 1 with g replaced by h.

The policy improvement algorithm converges after a finite number of iterations; a

proof can be found in Tijms (1988). It is empirically found that policy improvement

is a remarkably robust algorithm which converges very fast in specific problems.

The number of iterations is practically independent of the number of states and

of the starting policy, and varies typically between 3 and 15 (see Tijms). In our

examples (see §2.5) it never exceeded 5. In Tijms (1988) it is also stated that the

expected return of the pohcies generated by policy improvement converge at least

exponentially fast to the maximum return.

Note: Policy improvement is usually more complicated than value iteration. How­

ever in our case it is only slightly more complicated and as we can store the optimal

policy compactly we use policy improvement which allows us to get direct access to

the optimal policy itself and not only the maximum expected discounted reward.

This is the right place to add that we initially found a method for storing pohcies

for controlling the 2-link calls with the intention of treating the more general case

later (i.e. possible rejection of calls of either type), but ran out of time; see §3.

2.4.2 The Value Determination Step

Step 2 of the policy improvement algorithm calculates recursively the expected re­

turns K when a policy TT is employed. The algorithm used to do this is as follows

Step 0. Choose 0̂(2;) > 0 be any arbitrary bounded function for all z. Let n := 1,

and employ a poHcy T T .

54

Step 1. Compute the unique solution to (2.10) using the following system of hnear

equations for all z 6 <? under the policy considered

(2.11) K (^) = [E{R{z,i^)) + a ^ P . (j | ^) K _ i (j)]
z

recursively

StepS. The algorithm is stopped when

imix\Vn{z) - Vn-i{z)\ < e,
266

where e is a prespecified tolerance number. Otherwise, go to step 3.

Step 3. n := n + 1 and go to step 1.

This algorithm is computing recursively a sequence of value functions approximating

the expected discounted returns (TEDR) per unit time.

Equation (2.11) can be expressed in vector form as

(2.12) Vn = q + TV„_i, n = l , 2 , . .

where Vn is a column vector with l ^ l components Vn{x,w).

If we rearrange (2.12) the right way, the linear iteration scheme resulting can be

solved by the Gauss-Seidel (G-S) iteration method for solving a linear system A V

= R, where A is been split into its diagonal D, strictly lower-triangular part L and

strictly upper-triangular part U so that

A = D - L - U .

Under this assumption, the Gauss-Seidel scheme is represented by (2.12) where

55

T = (D - L) - ' U .

T is called the Gauss-Seidel Iteration Matrix.

The point about using iterative techniques is that, storing the elements of matrix

A is impracticable as the size of it will be |<S|̂ ; see also §1.4. That's why iterative

techniques for solving the value determination step are an extremely important tool

in the analysis of Markov decision processes which have a large state space as it

involves solving a set of linear equations whose size is dependent on the state space,

and other approaches such as the linear programming one suffer even more from

complexity considerations.

The policy improvement with value determination algorithm's greatest benefit is

that it can be directly implemented on a computer; see Appendix B.2 and B.3.

2.4.3 The Successive Over-Relaxation Algorithm (SOR)

The convergence speed of the value determination algorithm may be accelerated by

using a relaxation factor such as in successive overrelaxation (SOR) for solving a

single system of linear equations. Then at the n*'* iteration, a new approximation

to the value function Vn{z) is obtained by using both the previous values Vn-i{z)

and the residuals Vn{z) — Vn-i{z).

The following modification of the value determination can be formulated as follows:

The steps 0,1 are as before, while steps 2 and 3 become

Step 2. \/z G <S, change Vn{z) according to

Vn{z) - (l - u ;) K - i (^) +

56

(2.13) u

where z,z ^ S.

E{R{z,7r)) + aJ2M'^\^)Vn-iiz)

Step 3. If the algorithm is stopped, the process is finished. Otherwise, n ~ n + 1

and go to step 1.

The SOR value determination method can also be expressed in vector form as

Vn = q + TVn_i, n = l , 2 , . .

but this time the matrix T is

(2.14) T = {B-uLy^[{l-Lo)D + LoU],

where D, L and U are the matrices defined in §2.4.2 associated with matrix A.

Note, that the iteration method with a; = 1 is the Gauss-Seidel method described

earlier on.

The convergence speed of the successive overrelaxation may dramatically depend

on the choice of the relaxation factor a;, and even worse, the method may diverge

for some choices of u. A suitable value of u> has to be determined experimentally

usually 1 < a; < 2.

2.5 The Efficiency of the SOR method

In our work we have tried different over-relaxation (SOR) values for u> and the

optimal results in convergence speed (the total number of iterations needed) suggest

that optimal u> are different for problems of different size. As we shall see later from

the figures, i t seems that the variation is associated more with the change in offered

traffic rates than the network size; see especially Figures 2.5 and 2.6.

57

The next six figures show some results for Symmetric networks of sizes [K, C) =

(3,3) and (/ \ , C) — (4,3) for both the ful l model described in this Chapter as well

as the reduced state-space model described in Chapter 4.

In Figures 2.5 and 2.6, K = 3 and C = 3,4,5,6.

The arrival rates in Figures 2.1, 2.2, 2.3 and 2.4 are (Ai,A2):

(a) (0.5;4.9) and (2;2) for the ful l Symmetric networks of both sizes.

(b) (0.5;4.9) and (2;4) for the reduced state-space Symmetric networks of both sizes.

In Figures 2.5 and 2.6 the arrival rates are (0.5,4.9) and (2,4) respectively.

For theses examples Ri = 2 and R2 = 1. In the graphs n l = Ai and n2 = A2.

900

800

700

•g 600
2
B
o 500

E
3 400

300

200

100

1

(K,C)=.(3 ,3)

j 1

/ /

s. (2; 2) / /
/ /

/ /
/ /
/ /

/ /

(0 5;. 4.9 >
y

/
;
/

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.
Choice for SOR parameter

Figure 2.1: The effect of a; on the no. of iterations for the ful l Symmetric network
iK,C) = i3,3).

58

1100

1000

900

J 800

Z. 700

f 600
3

B 500

400

300

200

100

1 1 1 1 1 1

(K,C)=(.4 3)
(0.5; 4.9) /

/ '
/ '

/ '

/ '

\ ^

\ X

: / /

'• / '

\ N : / /
7 /

/ ' '

^ ^ ^ ^ ^ / -

;

1 1 1 1

'1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Choice for SOR parameter

Figure 2.2: The effect of u on the no. of iterations for the ful l Symmetric network
(/^,C) = (4,3).

1200

1000

§ 800

B
o
S 600
E
Z
•(0

o 400

200

0

1

(K,C)=(3

1 1 1

3) /

1

" - ^ :{2; 4)

" - ^ 7

/
/

/
/

: /

1 1 1

: /
J

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Choice for SOR parameter

Figure 2.3: The effect of bj on the no. of iterations for the reduced state-space
Symmetric network {K^C) = (3,3).

59

1400

1200

1000

^ 800

0)
X I

1 600

400

200

\
\

\

(K,C)=(4 3)

s. \

s

(0.5; 4.
\

N
1

1
N 1

1
1

1

N (2 4)
1

1
1

.1 -

N.

N

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Choice for SOR parameter

Figure 2.4: The effect of LO on the no. of iterations for the reduced state-space
Symmetric network {K,C) = (4,3).

K=3, (n1,n2)=(0.5,4.9)
800

700

600

o

I 500

400

B o

300

200

100

1.

V Vy=

\
S

C=4 X ^ . \
N \

N * S
\ N \ .

/ ' / / ' ^

. / / / /
' /

J / /

1

'1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.
Choice for SOR parameter

Figure 2.5: The effect of w on the no. of iterations for the ful l Symmetric networks
with Ai = 0.5, As = 4.9, = 3 and (7 = 3,4,5,6.

60

K=3, (n1,n2)={2,4)
1400

1200

1000

^ 800

0)

1 600

.o

400

200

1 1

s \ ^
N ^

S
N

C=6

C
s \

;=5 ^ .
N

S

C= 4 ^ " . ^

C=3
• — /

• • /

1 1

1.1 1.2 1.3 1.4 1.5
Choice for SOR parameter

1.6 1.7 1.8

Figure 2.6: The effect of u) on the no. of iterations for the ful l Symmetric network
with Ai = 2, A2 = 4, = 3 and (7 = 3,4,5,6.

The actual convergence of these schemes as well as arguments on the error analysis in

relation to the numerical evaluation of the TEDR for small Star Symmetric networks

are examined in detail in the next section.

2.6 Convergence Analysis for SOR

In previous sections we presented the Gauss-Seidel (G-S) and the SOR schemes,

as the value determination algorithms adopted for the numerical calculation of the

TEDR. We know that the Gauss-Seidel method converges because there is an op­

timal discounted reward (the problem has finite state and action space); see Ross

(1983) and Tijms (1988). It is now time to show, using Numerical and Matrix

Analysis results as well as data from the study-cases, that the SOR scheme con­

verges. We will also derive results for possible rounding and truncation errors in our

calculations.

Before we do so, it is necessary to include some theory and definitions from Numerical

61

Analysis.

Definition 8

The spectral radius /o(A) of a matrix A is defined by

p{A) = max |A|,

where A is an eigenvalue of A.

The spectral radius of a matrix is closely related to the norm of the matrix as shown

in the following theorem.

Theorem 2

If A is an n X n matrix, then

p{A) < A for any natural norm || * | •

Proof: Proofs can be found in Burden and Faires (1989) or Ortega (1972).

Corollary 1

If | |T | | < 1 for any natural matrix norm, then the sequence {Vn}^o

Vn = q + T V n - i , n = 1,2,.. converges for any VQ G i?" to a vector V G i?",

and the following error bound holds

| | V - V n | | < | | T | r | | V o - V | | .

Therefore a necessary and sufficient condition for convergence is that p{T) < 1.

Proof: A proof can be found in Burden and Faires (1989); see also Hageman and

Young (1981).

62

The relationship of the rapidity of convergence to the spectral radius of the iteration

matrix T can be clearly seen from Corollary 1. Since the Corollary holds for any

natural norm, it follows from Theorem 2 that

(2.15) \ \ Y n - y \ \ ^ p { T r | | V o - V | | .

Thus it is desirable to select an iterative technique with minimal p{T) < 1 for the

solution of the associated linear system. The point about SOR with the best choice

of oj is that its associated matrix T has minimal spectral radius.

Kahan (1958) has shown that if an / 0 for each z = 1,2, . . ,n, then

K T S O R) > | ^ - 1 | ,

with equaUty possible only if all eigenvalues of / ^ (TSOR) have modulus — 1 | . Thus

a necessary condition for the convergence of the SOR method is that 0 < a; < 2.

In our examples we have calculated p{T) numerically on a computer for 0 < a; < 2

and it is indeed always < 1. That is an assurance that the SOR method converges;

see §2.7.

Another way to approach convergence is the Ostrowski - Reich theorem which states

that if A is a positive definite matrix and 0 < a; < 2, then the SOR method converges

for any choice of initial approximate solution vector V Q . Our matrix A is positive

definite as it is diagonally dominant i.e. |a,i| > YTj^j j=\ k t j l) ^ = 1)2, . n.

Definition 9

The condition number k{A) of a matrix A is defined by

k{A) = \\A\\ \\A-^\l

for any natural norm 11 * | .

63

The condition number of a matrix measures the sensitivity of the solution of a

system of linear equations to errors in data. As we shall see in §2.7, A;(A) gives an

indication of the accuracy of the results from matrix inversion and linear equation

solution.

In this work the norm we are using as a measure of the magnitude of the elements

of the matrix A is the infinity norm which is defined by |jAj|oo = max^ J^j l^ijl, the

largest row sum of A.

2.7 Errors in Computational Procedures

In this section we consider an analysis on the accuracy of the results and possible

errors due to (a) truncation^ in the iterative procedures considered (SOR), and (b)

rounding errors in Gauss Elimination.

To study the problem of truncating/rounding errors in calculating the TEDR values,

and apart from a theoretical approach, we have compared the TEDR values starting

from different initial values for the iteration and keeping the optimal policy fixed.

This comparison showed that any differences are due to rounding errors.

In numerically calculating the maximal TEDR by either the G-S or the SOR method,

the algorithm considered is given by

Vn = q + T V n - i , n = l , 2 , . .

where Vn is a column vector with K components Vn{x,tu) and T is the Iteration

Matrix (see §2.4). This algorithm recursively computes a sequence of value functions

V approximating the maximal TEDR.

The Gauss Elimination solves AV = R.

iSee §2.4.2

64

2.7.1 Truncation Error

Suppose that the real maximal TEDR is denoted by V* and that a sequence satisfies

Vo ,Vi ,... V* and \ Vn+i-V*\ < C\Vn-V* \ for some ^ < 1. From (2.15) a suitable

value of is p{T). The value determination algorithm approximates V* by V/v where

we choose iV to be sure that \VN — VN+I \ < e. A natural question arises now is to

find out how big the distance \VN — V*\ is. Applying the triangle equality we see

that

\VN~V*\ < \VN - VN+I\ + \VN+I - V*

< e + C\VN~V*\

and hence

(2.16) \ V N - V * \ < ^ ^ .

Knowing e to be the algorithm tolerance number it remains to calculate the number

From the plausible approximation

\VM+l-VN\^f\Vl-Vo\

we get

C^{e/\V,-Vo\fr

2.7.2 Rounding Errors

We know from Numerical Analysis that in solving A V = R a small value of the

residual r = R - A V does not necessarily imply that | |V — V*| | will be small as well.

It is also known that

65

- l l | | V - V * | | < | |r| | | |A

Theorem 8.19, Burden and Faires (1989)]. Forsythe and Moler (1967) also show

that the residual vector r for the approximation of V* has the property that

|r | i ^ 10-* | |A|| | |V*||,

where the solution of A V = R is being determined using t-digit arithmetic and

Gaussian EHmination.

If we consider Y * the approximate solution of A Y = r then,

Y * ^ A - ^ r = A - ^ (R - AV*) = A - ^ R - A-^AV* = V - V*.

so Y * is an approximate of the error in approximating the solution to the original

system. From Forsythe and Moler (1967) we can now deduce that

(2.17) l |Y* | | 5̂:! | | V - V * | | = | | A - i r | i

< | | A - i | | | |r| | Pi 10-*A;(A)||V*||.

The above means that it is easy to deduce an approximation for the rounding error

involved if we can calculate the condition number of the matrix A and have the

solution V* stored.

Gauss Elimination and the calculation of the condition number is possible for the

smallest of our examples. We can use these to test the rest of the algorithms for

the smallest cases. Particularly we can compare p{T) with the approximation ^ ^

{e/\V^ - Vol)^/^.

For larger cases we have to use SOR; see Case V in §2.7.3.

66

2.7.3 Numerical Examples on Errors

In the following examples of networks we present firstly the results for the ap­

proximation of errors as deduced in practice from (2.16) and secondly as they are

deduced by the approximation (2.17) applying MATLAB Gauss Elimination with

13-digit arithmetic to the problems.

In particular in the following examples we calculate: (i) the condition number, (ii)

the spectral radius p{T), (iii) the approximation (~ (e/ |K — Vo\Y^^ and compare

with p{T). The tolerance number in the following examples is e = 10~^.

Case I : Consider a network with {K,C) = (2,3), (RuRi) = (2,1) and (Ai,A2) =

(0.5,4.9).

Applying policy improvement, the value determination takes 7V = 45+31 iterations

to calculate the TEDR with the improved policy and therefore using the approxi­

mation (2.16) with e = lO"'^ and C = 0.67828 we get

3.11 X 10 - 6

1 - e

p{T) = 0.7122 (^ 0-

The condition matrix for the above example calculated using MATLAB Matrix

Operations is k{A) = 88.9028 and hence (2.17) becomes

| Y * | | ^ 10-' k{A) \\y*\\ = 1.391 X 10-11

in 13-digit arithmetic and Gaussian elimination. The above approximation suggests

that | |V — V*| | is very small.

Case I I : Consider a network with {K,C) = (2,3), (i?i,i?2) = (2,1) and (Ai,A2) =

(1,5).

Applying policy improvement, the value determination takes iV = 44+34 iterations

to calculate the TEDR with the improved policy and therefore using the approxi­

mation (2.16) with e = 10'^ and ^ = 0.70532 we get

67

= 3.39 X 10-^
1 - ^

p{T) = 0.7378 (fti 0-

The condition matrix for the above example calculated using MATLAB Matrix

Operations is k(A) = 89.8614 and hence (2.17) becomes

| | Y * | | f« 10-* k{A) \\Y*\\ = 1.8546 x 10-"

in 13-digit arithmetic and Gaussian elimination. The above approximation suggests

that i |V - V*| | is very small.

Case I I I : Consider a network with {K,C) = (3,3), {Ri,R2) = (2,1) and (Aj, A2) =

(1.8,2.3).

Applying policy improvement, the value determination takes iV = 61+49+39 it­

erations to calculate the TEDR with the improved policy and therefore using the

approximation (2.16) with e = IQ-^ and ^ = 0.892588 we get

9.31 X 10-^

p{T) = 0.8720 i).

The condition matrix for the above example calculated using MATLAB Matrix

Operations is fc(A) = 102.5391 and hence (2.17) becomes

| Y * | | ^ 10-* fe(A) |1V*|| = 4.3621 x I Q - "

in 13-digit arithmetic and Gaussian elimination. The above approximation suggests

that | |V - V*| | is very small.

Case I V : Consider a network with {K,C) = (3,3), {Ri.R^) = (2,1) and (Ai,A2) =

(2,3).

Applying poHcy improvement, the value determination takes N — 67+49 iterations

to calculate the TEDR with the improved pohcy and therefore using the approxi­

mation (2.16) with t = 10-^ and ^ = 0.863274 we get

68

^ = 7.31 X 10"^
1 - e

p{T) = 0.8591 (^ 0-

The condition matrix for the above example calculated using MATLAB Matrix

Operations is k{A) = 107.9399 and hence (2.17) becomes

| | Y * | | ^ 10-* k{A) \\Y*\\ = 4.9123 x lO-^^

The above approximation suggests that | |V — V*| | is very small.

Case V : Consider a network with {K,C) = (4,3), (i?i,i?2) = (2,1) and (Ai,A2) =

(2,2).

Applying policy improvement, the value determination takes N = 92+63 iterations

to calculate the TEDR with the improved policy and therefore using the approxi­

mation (2.16) with e = 10-*̂ and C = 0.82553 we get

^ = 5.56 X 10"

2.7.4 Conclusion and Accuracy Check

The Value Detemination step in Policy Improvement can be solved by either using

iterative techniques (G-S, SOR) or Gauss Elimination. As mentioned in §2.7.2, the

Gauss Elimination solution of A V = R as well as the calculation of the condition

number are possible for small examples of networks only. This is due to the difficulty

posed by the huge state-space in calculating and storing A which is \S\^ in size; see

also §2.4.2.

The above examples clearly demonstrate that | |Y* | | is much smaller than the SOR

truncation error so the Gauss Elimination solution is more accurate. In our examples

with {K = 2,C) and [K = 3,C), where C < 4, the Gauss Ehmination solution

V = A - i R agrees with the SOR solution to the expected precision (i.e. 10"^).

That confirms the accuracy of the SOR algorithm.

69

2.8 The max-flow Bound for Symmetric Star Net­

works

In this section we demonstrate how to obtain the max-flow bound^ on the perfor­

mance of our routing scheme under a fixed pattern of offered traffi.c. The max-flow

bound is extensively discussed in Gibbens k Kelly (1990) and Gibbens, Kelly & Key

(1988); see also §1.5.1. Key (1990) obtains a bound for the optimal return under

any dynamic routing scheme by solving a linear programming problem; Lemma 2.1

in Key (1990).

For the networks considered in this thesis the max-flow bound is obtained by the

solution to the following linear programming problem L P l :

max
• K K{K-l)/2

i=i 1=1

where X , < Ai, z = 1, . . , /^ ; {K-l)wi < A2, / G A , a;^+E/G^• ^ (< C; Xi,wi > 0.

Replacing each Xi by ?/i and each term {K - l)wi by 1/2 we get the following linear

programming problem LP2:

max K Riyi + Y ^2 y2\, where yi < Ai; y2 < A2; yi + 2/2 < C; yi,y2 > 0.

Clearly the maximum of L P l is at least as large as that of LP2 . The question to

ask is whether the maximum of L P 2 is > than that of L P l . The answer is yes as

demonstrated in the following Lemma.

Lemma 2

L P 2 has maximum > than that of L P l .

Proof: Suppose that (x, w) is an optimal solution with Xi 7̂ xj for some i ^ j, or

wi ^ Wk for some I ^ k. By relabelling the links we can produce another non-

symmetric solution [X^W) say. Consider all such solutions (a;'',to'') produced by

^See §1.5.1 and (1.18).

70

permutations p of the indices {1,2, . . , K}. Consider

K\

(xTu;) is feasible for L P l by convexity of the feasible region and has the same

objective function value. Further xj = ¥2 = .. = xj^ and uTf = = .. = til^ and so

there exists an optimal solution to L P l which is symmetric. Hence the maximum

for L P l is no larger than the maximum for LP2 .

L P 2 is trivial to solve. The max-flow bound is an upper bound for the rate of return

for the network. To get a bound for the rate of return per link we just divide by the

number of links K.

For the small networks we have considered^ the max-flow bound is not very tight as

we will see in §2.9.

2.9 The Rate of Return from the Network

2.9.1 Fixed-Point Approximation for the Blocking Proba­

bilities

In Kelly (1986), if the capacities Cj , j = 1,2, and the offered traffic Vr are

increased together a limiting regime emerges which has a very simple description. In

the limit, there is a parameter Bj G [0,1] associated with link j , and the probability

that a call requesting route r is lost is given by

(2.18) pa 1 - n (i - r e n

where Air is the number of circuits a call on route r uses from link i\ Air G

Z^. In our Symmetric Star network, each element of the matrix A = {Air,i =

^See §1.4.

71

1,2..., K;r £ TV) is either 0 or 1, and a route r can be identified with a member of

^ = ({0){^ i}) = 1)2, ..,/v; i ^ j) in other words all the one and two fink

routes.

In our networks (2.18) becomes

(2.19) « 1 - (1 - Bi){l - Bj), for r =

(2.18) is as i f links block independently, fink i blocking with probabihty Bi, where

B = {Bi,B2, -.^BK) is any solution to the set

Y.vr'^lil-B,) = C„ if Bi>0
r:ier j

(2.20) Y l ' ' r l l i ^ - B j) < a , if B, = 0
r:ie.r j

B,,B2,...,BK e [0,1).

(2.20) simplifies in our case to

(2.21) Ai(l-^0+¥,^Zy Y i^-B,)'C = 0, B.>0

Kelly states that there always exist a solution to the above relation, and it is unique

if the matrix A = (Ajr) has rank K.

Under the symmetric assumption for our networks, the quantities Bj are the same

for every link i.e. Bi = B2 — ••• = BR- = B, and hence the fixed-point approximation

relation (2.21) becomes

(2.22) A a (l - 5) + (/ ^ - l) ^ | ^ - - ^ - C = 0, i ? e [0 , l) .

Note that (2.22) is the same for networks with various K. This is the result of

normalisation of 2-link traffic to rate A2/(/v — 1).

The above relation (2.22) is a very useful and convenient one as it allows a straight-

72

forward approximation for the rate of return in the network. Denote this return as

Rpp, which is given by

(2.23) RFP^Y.RMl-Lr),
r

where Lr is the proportion of calls offered to route r which are lost and Vr is the

arrival rate on route r; since a route in our work can be identified to be single link

traffic and 2-link traffic we can say vi = Ai and V2 = Xi/iK — 1). The relations

below apply

(2.24) L, = Bu i2 = l - (l - 5 l) ^

for the proportion of calls offered to routes 1 and 2 respectively.

2.9.2 Calculating the Blocking Probabilities in Equilib­

rium

The equilibrium equations for our model can be calculated numerically on a com­

puter and are described by the following full balance equations

(2.25) a (z) ^ K ^ , j) = ^<7(j)p(J ,^)
2e<s zes

where a{z) denotes the equihbrium distribution of the system being in state 2 , and

z z

Note that we cannot apply the detailed balance due to lack of reversibility.

In this work, a program has been written that solves the equations (2.25) with a

procedure similar to that used in the value determination step for solving (2.9). This

procedure calculates:

73

(a) The blocking probability of a single link traffic on link, say i, when there are C

calls present on i (i.e. Fi = 0), as

B i ^ Y l ^(^) ^^^^'^ Si = {z : F^ = 0},
Si

where Fi is the number of free circuits on link i. The above expression gives the

true blocking Bi.

(b) The actual blocking probability of a 2-link call on route / under the optimal

policy, as

B2 = ^(T{Z) where S2 = {z £ S : I{ei,z) = 0],
S2

where /(e;, z) = 0 denotes rejection by the optimal policy.

Because Poisson arrivals see the equilibrium distribution'', the rate of blocked single

link traffic on link z, is given by

Ai ^i^) where S^ = {z e S : F, = 0},

The actual rate of return per fink per unit time is also calculated numerically as

follows:

RE = R^a,(1-Bi) + ^ ^ x : ' (i - ^ 2)

which becomes

RE = Rr \i (l - 5 i) + y A 2 (1 - ^ 2)

Note that in the exact case it is necessary to calculate B2 the same way Bi is

*See Tijms (1988).

74

calculated because (1 — B2) 7^ (1 — J5i)^; this is only asumptotically correct.

The following table shows some results in order to compare the Equilibrium Re­

turn (RE)-, the Real Return (RR), the max-flow returm Rmj and the Fixed-Point

Approximation Return (RFP) as well.

Size of networks 1^1 1^2 RR RE RFP Rmf
{K, C)

0.5 4.9 1.53 1.28 2.05 2.25
0.7 4.5 1.72 1.56 2.28 2.55
1 3.9 2.02 1.92 2.63 3.00

3,3 1.3 3.3 2.34 2.32 3.01 3.45
1.5 2.9 2.54 2.55 3.28 3.75
1.8 2.3 2.84 2.87 3.70 4.20
0.3 5.6 1.38 1.07 1.81 1.95
0.6 5 1.66 1.42 2.14 2.40
1 4.2 2.03 1.92 2.60 3.00

3,3 1.4 3.4 2.45 2.44 3.07 3.60
1.7 2.8 2.74 2.76 3.47 4.05
2 2.2 3.03 3.05 3.89 4.50

0.5 4.9 1.33 0.91 2.05 2.25
0.7 4.5 1.51 1.03 2.28 2.55
1 3.9 1.80 1.53 2.63 3.00

4,3 1.3 3.3 2.10 2.09 3.01 3.45
1.5 2.9 2.19 2.33 3.28 3.75
1.8 2.3 2.56 2.69 3.70 4.20
0.3 5.6 1.18 0.85 1.81 1.95
0.6 5 1.42 0.92 2.14 2.40
1 4.2 1.80 1.55 2.60 3.00

4,3 1.4 3.4 2.20 2.20 3.07 3.60
1.7 2.8 2.47 2.54 3.47 4.05
2 2.2 2.73 2.92 3.89 4.50

Table 212: Real , equilibrium, max-flow and fixed-point rate of return per
link.

The real return RR is not of any interest to us as we never consider what happens

as q; —̂ 1. It only provides a good check on the accuracy of our programs for

calculating the stationary distribution from (2.25). RR shown in Table 2.2 are

calculated using the following formula that connects the average and discounted

reward (with a = 0.8) RR ^ ^(°K^~"), The results suggest that the fixed-point

approximation is not very good for the small networks considered.

75

Chapter 3

Optimal Policies for Symmetric

Networks

3.1 Complexity

For our networks presented in §1.1 and §2.1, we consider poHcies that always accept

1- link calls when there is room to fit them in. It is the 2-link calls we seek to restrict

(in order to maximise the TEDR) and hence a policy is a set of |5| x lK{K — 1)-

tuples of Boolean variables. 336 triples when [K = 3,C = 3). As the networks

increase in size the optimal policy increases rapidly. In the following examples,

we describe the exact optimal policy for networks with {K = 3, C = 3) only to

show the complexity and difficulty that both arise in trying to evaluate network's

behaviour and performance by looking at the calculated optimal policy. In the

following description we do not include: (a) the cases in which the optimal policy

accepts the 2-link calls when there is room to fit them in; (b) the cases in which the

network is ful l .

Let F = (Fi , F2, F3) denote the number of free circuits on finks X, Y and Z respec­

tively. A network state is represented by a 6-tuple (X,XY,XZ,Y,YZ,Z). For example

(010011) describes the state of the network with: one 2-fink call on pair XY, one

2- link call on pair YZ, and a single-link call on Z with corresponding free circuits

76

F = (2,1,1). Many states have the same number of free circuits; for example states

(110010), (020001) and (200201) all have F = (1,1,2).

Let 0 denote the state with all circuits on all Hnks free i.e. F = (C, C, C) for the

3-link networks. Let y(0) denote the total expected discounted reward (TEDR) for

the state 0. The number of possible states in the following examples is 336; see §1.4.

The quantities Ai, A2,-Ri, i?2) and a are all defined in §2.1, §2.2 and §2.3. Note that

the a values given are for the continuous time process and not the modified values

used in the uniformised optimality equation; see §2.3.2.

In this description we follow the L.Carroll (1865) method in Alice in Wonderland in

which we first present some evidence and then the sentence/conclusion.

In what follows we will say that a state z >z whenever i ^^ < Fj. For example a

state z with F^ = (1,1,1) is considered z > z where F^ — (1,1,3) i.e. a very large

state in terms of link occupancy has a very small number of free circuits.

The following examples demonstrate the complexity in describing the optimal case

for networks with {K,C) = (3,3),i?i = 2, i?2 = 1 and a = 0.8 in which there are

336 possible states.

Example 3.1

A i = 2 , A 2 = l

The optimal poHcy rejects some 2-link calls when there is room to fit them in.

Specifically in this network the optimal policy rejects:

(a) Al l 2-link calls in 60 states with F= (1,1,1), (2,2,2), (3,1,1), (2,2,1), (2,1,1),

(2,1,2), (1,3,1), (1,2,1), (1,1,3), (1,1,2), (1,2,2).

(b) X Y and XZ calls in states with (1,3,2), (1,2,3) and (1,3,3) free circuits.

(c) X Y and YZ calls in states with (3,1,2), (3,1,3) and (2,1,3) free circuits.

(d) XZ and YZ calls in states with (3,3,1), (3,2,1) and (2,3,1) free circuits.

(e) X Y calls in states with (3,1,0), (1,3,0), (2,2,0), (2,1,0), (1,2,0), (1,1,0) and (2,2,3)

free circuits.

77

(f) XZ calls in states with (3,0,1), (1,0,3), (2,0,1), (1,0,1), (2,0,2), (2,3,2) and (1,0,2).

(g) YZ calls in states with (0,3,1), (0,1,3), (0,1,2), (0,2,1), (0,2,2), (0,1,1) and (3,2,2).

The value for the TEDR for state 0 is V{0)= 60.0658.

Observation 1

Different states with the same number of free circuits F under the optimal policy

have similar TEDR values. For example, the states (000020), (000111) and (000202)

with F = (3,1,1) have TEDR values at 58.1079, 58.1069 and 58.1057.

Different states with 'symmetrical' appear to have similar Total Expected Dis­

counted Return (TEDR) values. For example, states with F = (1,2,1), (2,1,1)

and (1,1,2) have TEDR values at 57.7419 (002100), 57.7429 (010011) and 57.7411

(010102). For states with F= (2,2,1), (1,2,2) and (2,1,2) some TEDR values are:

58.3171 (001010), 58.3141 (001101), 58.3163 (001200) and 58.3171 (010010). For

states (000001), (100000) and (000100) with F= (3,3,2), (2,3,3) and (3,2,3) the

TEDR is the same. This is not surprising since the 'symmetrical' denotes permuta­

tions with underlying network symmetry.

Observation 2

As i t is clear from the above example and due to the symmetry assumption of our

networks i t is easy to deduce the optimal policy for all 2-link routes by just looking

at its description for one of the possible 2-fink routes. For example knowing that a

XY call is rejected in (1,1,2) and (1,1,3) can help us deduce that rejections in XZ

will be in (1,2,1) and (1,3,1) i.e. by permuting the F2 with the F3.

In the next examples with {K, C) = (3,3), the rate of the total traffic offered per link

over the network L = Ai + A2/2 remains the same (=2.95) while the rate of 2-link

traffic decreases.

Example 3.2

Ai = 0.5, A2 = 4.9

The optimal poHcy rejects some 2-fink. SpecificaUy in this network the optimal

policy rejects:

78

(a) 2-link calls on XY in 12 states with F^ (1,1,2), (1,1,3), (1,1,1); XZ and YZ calls

are accepted in these cases except (1,1,1).

(b) 2-link calls on XZ in 12 states with F= (1,3,1), (1,2,1), (1,1,1); XY and YZ calls

are accepted in these cases except (1,1,1).

(c) 2-link calls on YZ in 12 states with F= (3,1,1), (2,1,1), (1,1,1); XY and XZ calls

are accepted in these cases except (1,1,1).

Example 3.3

A i = 1.5, A2 = 2.9

The optimal policy rejects a 2-hnk call on pair XY in states with:

a) F= (2,2,3) but not in states with F= (2,2,0), (2,2,1), (2,2,2).

b) F= (1,1,0), (1,1,1), (1,1,2) and (1,1,3).

c) F= (2,1,0), (2,1,1), (2,1,2) and (2,1,3).

d) F= (1,2,0), (1,2,1), (1,2,2) and (1,2,3).

e) (1,3,0), (1,3,1), (1,3,2) and (1,3,3).

f) F= (3,1,0), (3,1,1), (3,1,2) and (3,1,3).

Example 3.4

A i = 1.8, A2 = 2.3

The optimal policy rejects:

(a) Al l 2-link calls in 45 states with F= (1,3,1), (3,1,1), (1,1,3), (2,2,2), (1,1,1),

(2,1,1), (1,1,2) and (1,2,1).

(b) X Y and XZ calls in states with F= (1,2,2), (1,3,2), (1,2,3) and (1,3,3).

(c) XZ and YZ calls in states with F= (2,2,1), (2,3,1), (3,2,1) and (3,3,1).

(d) XY and YZ calls in states with F^ (2,1,2), (3,1,2), (2,1,3) and (3,1,3).

(e) XY calls in states with (2,2,3), (3,1,0), (1,3,0), (2,1,0), (1,2,0) and (1,1,0).

79

(f) YZ calls in states with F= (3,2,2), (0,3,1), (0,1,3), (0,2,1), (0,1,2) and (0,1,1).

(g) XZ calls in states with F= (2,3,2), (1,0,3), (3,0,1), (2,0,1), (1,0,2) and (1,0,1).

Note: As demonstrated in the above examples, in various states all, two or one of

the 2-link call types are rejected. We focus our analysis on rejection of calls on a

particular 2-\ink route, XY. If we consider the previous case for example, by rejecting

a call on XY we include states from (a), (b), (d) and (e).

3.2 Opt imal Policies: Properties when R2 < 2Ri

Before we proceed with giving evidence that suggest certain properties of the op­

timal policies, we shall briefly refer to the important results of Key (1990)^ on the

properties of the optimal policy for networks where links are held independently. In

our work we assume that 2-link calls hold both links for the same amount of time

(dependency^) and therefore it is very interesting to investigate whether 'indepen­

dent occupancy' results as considered by Key (1990) apply to our networks.

We mentioned earlier on that we assume R2 < 2Ri. We have assumed this motivated

from Theorems 4.1 and 4.2 in Key (1990) which are presented in §1.8. Key's results

only imply acceptance of all 1-hnk calls for R2 < Ri which is often the case in most

of the examples in this Chapter. Assumptions A l and A2 in Key (1990) hold for

our networks. Theorem 4.3 in Key (1990) does not apply to our networks: think for

example of a Star network with K > 3.

The properties we seek to find evidenece for or against are the following:

Property A: Dependency on the State-Space

Property B : Property P2 in Key (1990) suggests that if we reject type j calls in

z + Ci then we reject them in z for call types i and j which are disjoint. Property

P2 means that for calls which are disjoint, and thus could be widely separated in a

network, in general, the more type i calls in progress, the less likely we are to reject

iSee §1.8
2See §1.1

80

type j calls, and vice-versa; disjoint calls are for example XY and Z calls.

Property C : Monotonicity. If an arrival for a 2-link call on route k is rejected

in state z, then it will also be rejected in states z, where z >z.

Property D: Property PI in Key (1990) suggests that if we reject a type i call in

state z, then we reject it in state z + Ck for calls i and k which are distinct and not

disjoint; not disjoint calls are for example XY and YZ calls.

Property E : Weak Monotonicity Assumption Cl in Key (1990) in which type

k calls are monotonic with respect to themselves, that is we assume that for all call

types k, if we reject a type k call in state z, then we reject a type call k in state

z + ek.

By looking at examples of networks for the cases with

(a) K = 2, C < 5,

(b) K = 3, C < 5,

(c) = 4, C < 5,

(d) K = 5, C = 3.

and for 24 various offered traffic per case, we have evidence that suggest the prop­

erties A, B and E apply in our Symmetric networks:

Property A: Dependency on the State-Space The optimal policy depends

upon the ful l state space <S and not just the free circuit configurations. This is

demonstrated in the following examples.

Example 3.5

With parameters {K, C) = (3, 3), Ai = 0.5, A2 = 4.9, i?i = 2, i?2 = 1-

The optimal policy rejects a 2-Hnk call on pair (Y,Z) in the following states with

F= (1,1,1):

(200020) and (200111)

With the same free circuits, F =(1,1,1), the optimal pohcy accepts a 2-hnk call on

81

pair (Y,Z) in states:

(200202), (110011) and (020002)

The values of these states are 20.8016, 20.8411 and 20.8452 respectively .

These differences are not due to truncation error effects. For instance at state

(200020) by comparing the 'accept' and 'reject' decisions we see that^

i?2 + aV; (200030) = 20.5672

while

aVa{200020) = 20.5862

and the difference is four orders of magnitude bigger than the truncation error (which

is calculated to be 3.05 x 10"^; see §2.4.7.

Property B: Non-Locality and Disjointness

The following examples give evidence to support Property P2 for disjoint types of

calls. In what follows we examine the disjoint types of calls XY and Z.

In examples 3.5.1 and 3.5.2 iK,C) = (3,3),i?2 = l,R2 = I a.nd a = 0.8 and the

number of states is 336.

Example 3.5.1

Ai = 0.5, A2 = 4.9

The optimal policy rejects a 2-link call on pair XY in states with F= (1,1,1), (1,1,2),

(1,1,3) but not in states with F= (1,1,0).

For example consider the following states in which, i f XY is rejected m z + 63 , then

it will be rejected in z.

(1) Rejection of X Y in (110102) coincides with rejection in both (110101) and

(110100); with free circuits (1,1,1), (1,1,2) and (1,1,3) respectively.

3See §2.4.1.

82

(2) Rejection of XY in (020002) coincides with rejection in both (020001) and

(020000); with free circuits (1,1,1), (1,1,2) and (1,1,3) respectively.

(3) Rejection of XY in (200201) coincides with rejection in (200200); with free

circuits (1,1,2) and (1,1,3) respectively.

Example 3.5.2

Al = 1,A2 = 4

The optimal policy rejects a 2-Hnk call on pair XY in states with:

(a) F= (2,1,1), (2,1,2), (2,1,3) but not in states with F= (2,1,0).

(b) F= (1,2,1), (1,2,2), (1,2,3) but not in states with F= (1,2,0).

(c) F= (1,1,0), (1,1,1), (1,1,2) and (1,1,3).

In examples 3.5.3 and 3.5.4 {K^C) = (3,4) and the number of states is 1023.

Example 3.5.3

Al = 2,A2

The optimal policy rejects a 2-hnk call on pair XY in states with F= (2,2,3), (2,2,4)

but not in states with F = (2,2,0), (2,2,1), (2,2,2).

For example consider the following states in which, if XY is rejected m z -\- 63 , then

it will be rejected in z.

(a) Rejection of XY in (200201) coincides with rejection in (200200); with free

circuits (2,2,3) and (2,2,4) respectively.

(b) Rejection of XY in (110101) coincides with rejection in (110100); with free

circuits (2,2,3) and (2,2,4) respectively.

The optimal poHcy also rejects a XY call in all states with free circuits (l,3,n),

(3,l,n), (l,2,n), (2,l,n), (l , l , n) (l,4,n) (4,l,n) where n=0,l,2,3,4.

83

Example 3.5.4

Ai = 0.5, A2 = 4.9

The optimal poHcy rejects a 2-Hnk call on pair XY in states with (1,1,2), (1,1,3),

(1,1,4) but not in states with F= (1,1,0), (1,1,1),

For example consider the following states in which, if XY is rejected in z + 63 , then

it will be rejected in z.

(1) Rejection of XY in (030002) coincides with rejection in both (030001) and

(030000); with free circuits (1,1,2) and (1,1,3) and (1,1,4) respectively.

(2) Rejection of X Y in (111201) coincides with rejection in (111200); with free

circuits (1,1,2) and (1,1,3) respectively.

Discussion on Property B

The above examples demonstrate clearly that the optimal policy is non-local in that

the status of link Z effects the acceptance of 2-link calls on XY. It seems that the

optimal policy acts like a very intelligent mechanism which in Example 3.5.3 for

example rejects a XY call in states (010000) and (100100) and not in other states

with F=(2,2,0) waiting probably for more profitable calls to arrive on routes XZ

and YZ.

The above examples also suggest that Property P2 in Key (1990) seems to apply in

our networks. Property P2 suggests that for calls that are 'disjoint', and thus could

be separated in a network, in general, the more i calls in progress, the less likely we

are to reject type j calls, and vice-versa. This is true in all of our examples.

Property C : Monotonicity I f an arrival for a 2-link call on route k is rejected in

state z, then it will also be rejected in states z, where z >z.

Our results tell us that Property C does not hold for our networks in general; see

Examples 3.2, 3.5.2 and 3.5.3 and 3.5.4.

In Example 3.2: If we describe states with free circuits (1,1,0), (1,1,1), (1,1,2), and

(1,1,3) as zo, zi, Z2 and 23 respectively, then it is obvious that ZQ > zi > Z2 > 23 in

terms of occupancy. Rejection in Z3 coincides with rejection in Z2 and zi but not in

84

ZQ. Rejection in Z2 coincides with rejection in zi but not in ZQ- Rejection in Zi does

not coincide with rejection in ZQ.

In Example 3.5.3: If we describe states with free circuits (2,2,0), (2,2,1), (2,2,2),

(2,2,3), and (2,2,4) as ZQ, zi, Z2, Z3 and Z4 respectively, then it is obvious that

ZQ > zi > Z2 > Z3 > Zi in terms of occupancy. Rejection in 24 coincides with

rejection in Z3 but not in ZQ, zi and Z2.

Property D: Not Disjointness

For not disjoint types of calls i and k if we reject type i in z, then we will reject it

in z -\- k. Not disjoint types of calls are for example XY and YZ calls.

In 13 examples Property D did hold.

Example 3.5.5

Al ^ 1.8, A2 = 2.3

A X Y call is rejected in state (010000) with (2,2,3) free circuits as well as in (010010)

with (2,1,2) free circuits; see Example 3.3.

Property E : Weak Monotonicity If we reject a type k 2-Hnk call in state z,

then we reject a type call k in state z + ei,. In 13 examples of various size networks

Property E was true.

Example 3.5.6

Al = 2,A2 = 2.2

A XY call is rejected in state (010000) with (2,2,3) free circuits and also in (020000)

with (1,1,3) free circuits.

Example 3.5.7

Al = 1.6, A2 = 4.8

A X Y call is rejected in state (000110) with (3,1,2) free circuits and also in (010110)

with (2,0,2) free circuits.

85

3.3 T h e Opt imal Policy as a ^ 1.

In this section we will briefly present observations on the optimal policy for networks

with K, C, Al, A2, i?i, i?2 fixed in which a —> 1. The results suggest that as a ^ 1 the

optimal policy rejects more 2-link calls. That means that the optimal policy takes

into account the fact that the reward earned in the present becomes less important

than potential earnings in the future. Key (1990) demonstrates this fact for the

case of single link offered a number of traffic. It seems to be true in the star-shaped

networks we study which confirms their simplicity in some respect.

In what follows we will describe the optimal policy on the rejection of 2-link calls

on route XY as well as rejection of all 2-link calls (XY, XZ and YZ); results for

the other 2-link routes can be deduced by applying the 'symmetry' assumption; see

Observation 2 in §3.1.

Example 3.6

Al = 0.5, A2 = 4.9

1: a = 0.8. The optimal poHcy rejects XY calls in 12 states with F = (1,1,1), (1,1,2)

and (1,1,3) free circuits. 1/(0) = 22.9963.

I I : a = 0.9. (a) The optimal pohcy rejects XY calls in 9 states with F = (1,1,2)

and (1,1,3) free circuits, (b) The optimal policy rejects XY, XZ and YZ calls in 10

states with = (1,1,1). V(0) = 45.9458.

I l l : a = 0.95. (a) The optimal policy rejects XY calls in 23 states with F = (1,1,0),

(1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal poHcy rejects XY,

XZ and YZ calls in 11 states with F = (1,1,1). ^(0) = 91.7682.

I V : a = 0.99. (a) The optimal pohcy rejects XY calls in 24 states with F = (1,1,0),

(1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal pohcy rejects XY,

XZ and YZ calls in 11 states with F = (1,1,1). ^(0) = 458.4749.

V : Of = 0.999. (a) The optimal pohcy rejects XY calls in 27 states with = (1,1,0),

(1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal policy rejects XY,

XZ and YZ calls in 11 states with F = (1,1,1). V{0) = 4583.5120.

86

V I : a = 0.9992. (a) The optimal policy rejects XY calls in 27 states with =

(1,1,0), (1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal poHcy

rejects XY, XZ and YZ calls in 11 states with = (1,1,1). V{Q) = 5729.3537.

To find approximately the Expected Average Reward (AER) for the above cases we

just multiply the above y(0) quantities with their respective (1 — a). The results for

the above cases are then as follows: I) 0.2856, (II) 0.2703, (III) 0.2633, (IV) 0.2580

and (V) 0.2569 and (VI) 0.25684; see (1.5) in §1.3.3 for the relation between the

Average and the Discounted Expected Reward.

As we see the optimal policy remains the same for of > 0.999 and so this policy is

the Expected Average Reward (EAR) optimal; see Ross (1983).

3.4 Propert ies of the Opt imal Policy when i?2

2 X i ? i

In this section we will only describe the behaviour of the optimal policy under the

assumption i?2 ~ 2 x In all the examples {K,C) = (3,3) and i?i = 1, and

a = 0.8.

Example 3.7.

Ai = 0.5, A2 = 4.9

(a) R2 = I: The optimal policy rejects a 2-link call on pair XY in states (020000),

(020001) and (200200) with F= (1,1,3) but not in states with F= (1,1,2), (1,1,0),

(1,1,1).

(b) i?2 = 1.5: The poHcy rejects a 2-Hnk call on pair XY in state (020000) with F=

(1,1,3) but not in states with F= (1,1,2), (1,1,0), (1,1,1).

(c) i?2 = 1.8: The policy never rejects a 2-link call on pair XY when there is room

to fit it in.

(d) R2 ~ 1.9: The policy never rejects a 2-link call on pair XY when there is room

to fit it in.

87

(e) i?2 = 2: The policy never rejects a 2-hnk call on pair XY when there is room to

fit it in.

(f) i?2 = 2.3: The policy never rejects a 2-link call on pair XY when there is room

to fit it in.

In the following example we keep the rewards fixed and see what happens as the

offered traffic varies.

Example 3.8

i?i = l , i22 = 1.9

The policy

(a) never rejects a 2-link call on pair XY when there is room to fit it in for the

following examples with arrival rates (A i , A 2) = (1.4, 3.4), (2, 4) and (2, 2).

(b) rejects one 2-hnk call on pair XY in states (020000), (020001) and (200200)

with F= (1,1,3) but not in states with F= (1,1,2), (1,1,0), (1,1,1) with arrival rates

(A i , A 2) = (0.7, 6.6).

In the following example we keep the traffic fixed and try different rewards for the

single link traffic.

Example 3.9

Al = 0.7, A2 = 6.6, i?i = l,a = 0.8

(a) R2 =^ I: The optimal policy rejects a 2-link call on pair XY in 10 states with

F= (1,1,3), (1,1,2) but not in states with F= (1,1,1), (1,1,0).

(b) R2 = 1.5: The optimal pohcy rejects a 2-link call on pair XY in 7 states with

F= (1,1,3), (1,1,2) but not in states with F= (1,1,1), (1,1,0).

(c) R2 = 1.8: The optimal policy rejects a 2-hnk call on pair XY in 4 states with

F= (1,1,3), (1,1,2) but not in states with F= (1,1,1), (1,1,0).

(d) i?2 = 1-9: The pohcy rejects a 2-hnk caU on pair XY in 4 states with F= (1,1,3),

(1,1,2) but not in states with F = (1,1,1), (11,0).

88

(e) i?2 = 2: The policy rejects a 2-link call on pair XY in 3 states with F= (1,1,3)

but not in states with F= (1,1,2), (1,1,1), (1,1,0).

(f) i?2 = 2.3: The policy rejects a 2-Hnk call on pair XY in 3 states with F= (1,1,3)

but not in states with F = (1,1,2), (1,1,1), (1,1,0).

3.4.1 Future Work

I t remains to be investigated in the future whether the policy that is found in cases

(d), (e) and (f) is indeed the optimal one, and also to see if it is at all optimal to

restrict the single link traffic in order to maximise TEDR for the latter cases.

At the time this thesis was completed there was a program in progress to investigate

possible rejections of 1-Hnk calls in cases where i?2 ~ 2 x That would enable

us to know if the policy derived in the above examples is indeed the optimal one.

Unfortunatelly time limitations did not allow us to continue. Part of this program

can be found in Appendix B.5.

89

Chapter 4

Admission Price Policies

4.1 Definit ion and Background

As mentioned in Chapter 1 and demonstrated in §3, the optimal policies are not easy

to interpret; the results of our programs give us the optimal policy in an explicit

way which looks extremely complex.

An idea considered in our work has been to approximate the optimal poHcy by con­

sidering policies that depend only upon the occupancy status of the links. Our aim is

to calculate important features of the network behaviour under these approximating

policies. A class of such policies investigated in this chapter are the Admission Price

policies; we shall call them 0 policies. These policies are not optimal but they are

believed to be [Hunt, Laws, MacPhee and Ziedins] asymptotically optimal for large

networks; where the number of links grows to infinity. In this work we investigated

if such policies are any good for small networks. The results suggest that they are.

The Q poHcies are easy to describe: Let W = (WQ, Wi,.., Wc) be a set of constants

where 0 < VKi < Let a 2-link route call arrive requesting route and let Fi

and Fj be the number of free circuits on links i and j respectively. The 2-link call

is accepted when

90

WF, -f WF^ < R2.

Comments:

(a) The 0 policies are well defined for any collection of Wi.

(b) It is of interest to find good Wi but numerical optimisation methods struggle

because of the nature of V; see §4.1.2.

(c) Because we know (numerically) the optimal value function, we can make excellent

guesses for the Wi.

4.1.1 Calculating the Wi,

Numbers can be calculated the following way:

For the optimal V under the optimal (but difficult to describe) policy, and for all

the states z — (a;, w) that could possibly accept an increase in their number of 1-link

calls, we calculate the differences

V{z + e,) - V{z).

Then we look at those differences for a collection of states Za,Zb,..Zm with the same

number of free links Fi. For 'good' Wi the following relation must be satisfied

V{z + e,)-V{z)^WF,.

The choice for such Wp, is taken from within the range of the above differences;

usually their mean value.

The restriction that Wi < i?i is necessary since we assumed in this work that

R2 < 2i?i and because of the interpretation that differences V{z + ei) — V{z) have

as the extra amount to be paid for starting in state z + Ci rather than in z.

91

The motivation in considering policies which only depend on the state of the links of

a network was the work of Ott & Krishnan (1985, 1986) and Key (1990), who both

investigate value functions which can describe the optimal poHcy and a routing

scheme. These authors argue from the single link in isolation towards the more

complex network.

Ott & Krishnan based their Separable Routing scheme on the calculation of (1.20)^

by considering the differences V{k + 1) — V{k) as a representation of the expected

number of additional calls blocked (in the long run) when we start with k busy

circuits rather than k; see also Howard (1960) and Tijms (1988).

Key (1990) uses Howard's results on relative values and considers the difference

Vj — Vi as the difference in total expected reward over an indefinitely long period

caused by starting in state j rather than i under a certain poHcy employed. He also

states that the relative values can be used in calculating the reward functions until

accuracy is achieved.

In this work we check how good these 0 policies are numerically on a computer; see

Appendix B.4 for details of the programs used. As the results in §4.2 suggest, these

policies are indeed very close to the optimal.

4.1.2 Restrictions and Optimisation

The problem is how to choose good values for the Wi. We only think that Ws found

from looking at the true optimal V will be good and indeed they are, but there are

lots of examples where we don't know V so how can we choose the Wi in such cases?

The answer is not easy. An idea would be to use optimisation methods to try to get

better WiS so that we can check our guesses about the Wi.

In optimisation our first task is to find an expression for

y (0 ; W) = M^^),

Ŝee §1.7.1

92

where f2 is the Admission Price pohcies described in section §4.1. The problem

could then be expressed as follows:

maxvK h{Cl)

where

0 < Wi < i ^ i .

The function and the constraints are continuous and the optimisation problem is a

non-linear constrained problem. We know by examining the policy that h{0,) will

be locally constant in W—space with discontinuities at various places (many Wi^s

give the same policy and the policy determines V) so all methods that assume that

V is differentiable will be unreliable.

We have tried optimisation methods for the Ws on a computer:

(a) Firstly, by considering the problem as a Sequential Quadratic Programming

(SQP) problem in which a quadratic subproblem is solved at each iteration. In 15

examples of different networks, this did not perform any optimisation for the reasons

stated above.

(b) Secondly, by considering the problem with no constraints using the simplex

algorithm of Nelder and Mead (1965) in which the simplex algorithm automatically

rescales itself according to the local geometry of the function h{fl). The method

was easily and quickly programmed and was very modest in storage demand but

did not perform any optimisation when we started with the best fl policy; when

started with a choice not as good as the best 0 it performed a slight improvement

but the Ws rarely reached the optimal level.

For small networks we should not worry about this for the reason that the W from

the very simple and 'easy' - relatively speaking - networks are very good if applied

for larger networks. For example, in cases hke (/v, C) = (4,3), (4,4), (4,5), the

results are excellent if we use W from the (3,3), (3,4), (3,5) networks respectively.

As we have lots of initial Ws from the 2, 3 and 4 links networks we have in our

hands an estimation of the Wi which is - at least as far as our examples suggest -

excellent.

93

4.2 Compar ing the Opt imal Policy with the A d ­

mission Pr ice Policy

In this section we present tables with results and figures that show:

(1) How good the approximation Viy(O) is for V{0);

(2) The behaviour of the Wi themselves. In the examples presented in the tables

the size of the numerical error ranges:

(a) from 1.15 x lO-'^ to 4.67 x 10-'̂ for networks {K,C) = (2,3).

(b) from 2.83 x 10"^ to 9.82 x 10"^ for networks {K,C) = (3,3).

(c) from 5.22 x 10"^ to 8.12 x 10"^ for networks {K,C) = (4,3).

We present the results in groups of three categories:

(a) The size of the network i.e. [K, C);

(b) For a specific size of a network we keep L fixed for convenience; this keeps the

rate of events the same for a collection of different arrival rates. We have focused on

examples for networks where L is 'critical' for the link i.e. nearly ful l , fu l l , overloaded

etc; see in §2.3.2.

(c) For a specific L we consider various arrival rates. In the tables Vi = Xi and

1/2 = A2. In the figures n l = Aj and n2 = A2. All the other quantities have been

defined in §2. Unless otherwise specified Ri = 2 and i?2 = 1 and / t i = l , | i 2 = 1.

V(0) is calculated using the uniformised optimality equation and by employing the

policy improvement algorithm; see §2.4.

Vw{0) is calculated by value determination when ft poHcy is employed for the re­

jection of 2-Hnk calls.

For an explanation of why a is not exactly 0.8 see the remark on page 50.

94

K = 2,C = 3,i22 = l,Ri = 2,R2 = l,a = 0.8

^2 y(o) VV(0)
0.5 4.9 2.95 15.6528 14.7918
0.7 4.5 2.95 17.5433 17.0851
1 3.9 2.95 20.4357 20.3214

1.3 3.3 2.95 23.5023 23.5020
1.5 2.9 2.95 25.5357 25.5353
1.8 2.3 2.95 28.4599 28.4599
0.5 5 3 15.6812 14.8235
0.7 4.6 3 17.5733 17.1149
1 4 3 20.4578 20.3481

1.3 3.4 3 23.5230 23.5228
1.5 3 3 25.5536 25.5535
2 2 3 30.3991 30.3991

0.3 5.6 3.1 14.3999 12.5278
0.6 5 3.1 16.6175 16.6174
1 4.2 3.1 20.4994 20.3979

1.4 3.4 3.1 24.5818 24.5812
1.7 2.8 3.1 27.5340 27.5339
2 2.2 3.1 30.4095 30.4094

0.5 6 3.5 15.9102 15.7782
0.7 5.6 3.5 17.8234 17.3670
1 5 3.5 20.6379 20.5681

1.3 4.4 3.5 23.6930 23.2417
1.6 3.8 3.5 26.6509 26.6493
2 3 3.5 30.4430 30.4431

0.5 7 4 16.0666 15.7300
0.7 6.6 4 18.0078 17.5801
1 6 4 20.7770 20.7313

1.3 5.4 4 23.8157 23.8151
1.6 4.8 4 26.7247 26.7239
2 4 4 30.4714 30.4714

Table 4.1: Networks with {K,C) = (2,3).

95

K = 3, C = 3, f.t2 = l,Ri = 2,R2 = l,a = 0.8

^2 + 1^2/2 1/(0) Vw{0)
0.5 4.9 2.95 22.9963 22.8486
0.7 4.5 2.95 25.8420 25.8320
1 3.9 2.95 30.3238 30.2914

1.3 3.3 2.95 35.0391 35.0389
1.5 2.9 2.95 38.1230 38.1224
1.8 2.3 2.95 42.5410 42.5230
0.5 5 3 23.0410 22.8902
0.7 4.6 3 25.8825 25.8703
1 4 3 30.3579 30.3276

1.3 3.4 3 35.0693 35.0693
1.5 3 3 38.1477 38.1465
2 2 3 45.4389 45.4389

0.3 5.6 3.1 20.6261 20.5218
0.6 5 3.1 24.4902 24.4882
1 4.2 3.1 30.4228 30.3966

1.4 3.4 3.1 36.6757 36.6753
1.7 2.8 3.1 41.1450 41.1325
2 2.2 3.1 45.4556 45.4556

0.5 6 3.5 23.4143 23.3994
0.7 5.6 3.5 26.2203 26.1996
1 5 3.5 30.6507 30.6334

1.3 4.4 3.5 35.3305 35.3233
1.6 3.8 3.5 39.8202 39.8042
2 3 3.5 45.5097 45.5097

0.5 7 4 23.6898 23.6188
0.7 6.6 4 26.4749 26.4418
1 6 4 30.8740 30.8642

1.3 5.4 4 35.5319 35.5112
1.6 4.8 4 39.9446 39.9201
2 4 4 45.5568 45.5568

Table 4.2: Networks with (K,C) = (3,3).

96

K = 4, C = 3, 1, i?i = 2, = 1, a = 0.8

^2 vi + V2/2 T/(0)
0.5 4.9 2.95 26.5908 26.4586
0.7 4.5 2.95 30.2549 30.2494
1 3.9 2.95 35.9764 35.9574

1.3 3.3 2.95 41.9580 41.9576
1.5 2.9 2.95 45.7919 45.7918
1.8 2.3 2.95 51.2012 51.1965
0.5 5 3 26.6335 26.5042
0.7 4.6 3 30.2916 30.2854
1 4 3 36.0065 35.9989

1.3 3.4 3 41.9841 41.9875
1.5 3 3 45.8108 45.8107
2 2 3 54.6797 54.6797

0.3 5.6 3.1 23.5052 23.3229
0.6 5 3.1 28.4877 28.4869
1 4.2 3.1 36.0646 36.0518

1.4 3.4 3.1 43.9647 43.9647
1.7 2.8 3.1 49.4720 49.4711
2 2.2 3.1 54.6874 54.6874

0.5 6 3.5 26.9887 26.8898
0.7 5.6 3.5 30.5968 30.5858
1 5 3.5 36.2743 36.2663

1.3 4.4 3.5 42.2056 42.2056
1.6 3.8 3.5 47.7782 47.7749
2 3 3.5 54.7126 54.7126

0.5 7 4 27.2517 27.0193
0.7 6.6 4 30.8310 30.8067
1 6 4 36.4886 36.4785

1.3 5.4 4 42.3745 42.3744
1.6 4.8 4 47.8736 47.8720
2 4 4 54.7351 54.7351

Table 4.3: Networks with {K,C) = (4,3).

97

Observations on Wi''s

(I) Robustness: An Admission Price Policy can only be robust if the Wi do not

change much as the offered traffics change. This is not true for our Q policies.

(II) Our observed Wi satisfy the following restriction

The fact that VF, — Wi+i > 0 relates to the obvious fact that spare capacity has

potential worth as we can use it to carry future calls. In fact if we define S{Wi) =

Wi — Wi+i, then we observe

^(M/.)> W + i)

which means that units of spare capacity become more valuable as the system fills

up.

(III) As stated in §2.6, states with the same F have similar TEDR values. That

explains why Admission Price policies with appropriate VK's policies are good.

(IV) The Wi^s get bigger as Ai = nl increases. This increase translates to more

acceptance of single link traffic which returns a bigger reward than the 2-link one.

(V) As it is demonstrated in the following graphs the Wi^s do not change much

as K increases. This is of practical importance as it suggests that the W.'s from

small networks could well be used as a good approximate for the optimal policy in

larger networks. We found that by applying the f2 policy derived from networks

{K, C) = (3,3) to {K, C) = (4,3) and {K, C) = (5,3) we have excellent results.

In the next figures we present results on the performance of the O policy which

include:

(a) How Wi change as Ai = nl increases; for fixed K,C and L.

(b) How Wi change as K increases; for fixed C, L.

98

K=3,C=3,n1+(n2/2)=2.95
- r

^ 0.7

^-0.6

^ 0.5

0.1 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

Figure 4.1: Change in Wi as n l increases; for nl+(n2/2)=2.95.

K=3,C=3,n1+(n2/2)=3.5

0.6

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

Figure 4.2: Change in Wi as n l increases; for nl+(n2/2)=3.5.

99

K=3,C=3,n1+{n2/2)=3
1 1 1 1 1 1 1

; WI y^^^

. ... W2

.. • i.̂ .-r".'.̂ ..: VV3

; r ' ' " \

1 1 1 1 1 1 1 1

0.9

0.8

CO
5 0.7
c
(0

SO.6

^0 .5

™ 0.4

0.3

0.2 h

0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Traffic Ratio (n1/n2)

Figure 4.3: Change in Wi as n l increases; for n l+(n2/2)=3.

K=4,C=3,n1+(n2/2)=2.95

0.9

0.8

• a
c 0.7

g0.e

O
in

% 0.5

>
0.4

0.3

0.2

• I 1 1 1

WI

/ W2

W3

1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6

Offered Traffic Ratio (n1/n2)
0.7 0.8

Figure 4.4: Change in Wi as n l increases; for nl+(n2/2)=2.95.

100

K=4,C=3,n1+(n2/2)=3.5

0.9

0.8

Y 0.7
CO

i
J 0.6

o
J 0.5
(0

>
0.4

0.3

0.2

1 1

W1

W2
_ , '

'• ^ - ^

W3

-

1 1
0.1 0.2 0.3 0.4 0.5

Offered Traffic Ratio (n1/n2)
0.6 0.7

Figure 4.5: Change in w;̂ as n l increases; for nl+(n2/2)=3.5

K=4,C=3,n1+(n2/2)=3.1

0.9

0.8

CD
C\J

- 0 . 6

J 0.5
CD

>

0.4

0.3 h

0.2

WI

W2 ____

- ' ' '

W3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Offered Traffic Ratio (n1/n2)

Figure 4.6: Change in Wi as n l increases; for n l+(n2/2)=3.1 .

101

C=3, n1+(n2/2)=2.95

^ 0.75

0)0.65

O 0.6

0.1 0.2 0.3 0.4 0-5 0.6
Offered Traffic Ratio (n1/n2)

Figure 4.7: Change in wi as K increases for nl+(n2/2)=2.95.

0.9

! 0.8
(0
0)

0.7

0.6
0)
C3>

O0.5

0.4

0.3

K=2

0.1 0.2

C=3, n1+(n2/2)=2.95

0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 4.8: Change in W2 as K increases for nl+(n2/2)=2.95.

102

0=3, n1+(n2/2)=2.95
0.4

iO.35
CO

§
> 0.3
0)
CD
c
CO SI
O

0.25

1

K=2

1 1

y '

y
y '

y '
y '

/
1

1

1

/
y

y
y

y
y y

y^

1

1

1

K=3

^ ' • ^ ^ /

y
y

y
y

y
y

y .
y /

y /
y /

K=4

t 1
0.1 0.2 0.3 0.4 0.5 0.6

Offered Traffic Ratio (n1/n2)
0.7 0.8

Figure 4.9: Change in as K increases for nl+(n2/2)=2.95.

0=3, n1+(n2/2)=3.5
1

0.95

0.9

I 0.85
CO
0)

I 0.8

c n

" 0.75
i
% 0.7
O)
c
<3

0.65 h

0.6

0.55

0.5

O

1 ' ^ •

• ^ y" ^ \yy

K-2
_y-

y y'''^'^
y^y

y

• ^ y^
y y^ y

y

y / y
y' /y

y / y

/
/ >

/
• y ••//•••

/ ' /
/ /

/ ' ' /
/

/
K=ii.

/ / /
/ /

— / /
//
/

/

K=4

/
/

/

'0 0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7

Figure 4.10: Change in w\ as K increases for nl+(n2/2)=3.5.

103

0.6

0.55

C=3, n1+(n2/2)=3.5

0.5

cu

0.45

0.4

0.35

0.3

1 1 1 1

y '

K=2
y

y

y '. / V

• •

> ^
yy

/

/

~~ • y^ ^ •
jy y

y^y
y / / ^

/y

/

/

/

/

y^
y/

y /
y /

y /

\
/

/

N<=3

/ y

y ^y

H :=4

1
0.1 0.2 0.3 0.4 0.5

Offered Traffic Ratio (n1/n2)
0.6 0.7

Figure 4.11: Change in as K increases for nl+(n2/2)=3.5.

0=3, n1+(n2/2)=3.5
0.4

CO
CD

CD
a>
c
CO

O

0.35

0.3

0.25

/
/

/

/
/

/
/ /

/ / / /
/

/

/

/

K=2/
: /

: /

/
/

/
' / / f

/ /
• / / /
. / / /
• • // // // : /7

/

/

/

\

1

1

/
/

/

<=4 /
X

X
X

/ / / / / / / / / / / / /

// // / / //

< /
' K=: 3

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.6 0.7

Figure 4.12: Change in wi as K increases for nl+(n2/2)=3.5.

104

Chapter 5

The Reduced State-Space Model

5.1 The Reduced State-Space Model

In this model of a Symmetric Star network, Poisson streams of calls arrive at the

network requesting routes. There are two types of route: 1-link routes and 2-link

routes involving any pair of the single links. 1-link calls arrive at rate Ai on each

link and 2-link calls arrive at rate X2/{K — 1) on each 2-link pair. A 2-link call on

pair after its acceptance, is split into 2 independent single link calls on links i

and j. Both types of calls have an exponential holding time with mean 1, (Exp(l)).

For every 1-link call accepted we earn reward Ri and for every 2-link call accepted

we earn reward R2. Rewards are bounded and earned immediately. We assume that

R2 < 2Ri; see §2.

Definition 11

The state of the network at the time we observe it is the collection of link occupancies

in the network, and it is denoted by a;, where x = {xi^X2, . . . , X K) -

For each link i, 0 < xi < C. We say that the hnk i is full when the number of calls

in i is C. Calls depart from the network at rate

105

Notation

Vr is the optimal value function (TEDR) for the reduced state-space model. Vrw is

the optimal value function of the reduced model in which Vl policy is employed. V

is the optimal value function (TEDR) for the ful l model.

The network is modelled as a Markov decision process and the analysis followed is

the one described in Chapter 2 for the ful l model. The optimality approach as well

as the policy improvement study are the same as for the full model. To calculate

the Total Expected Discounted Reward for the reduced model K we use the SOR

method described in §2.4.3.

The reason we studied the reduced state-space model was that it is a simplification

for the fu l l model because the state-space is reduced^ to (C + 1)̂ ^ states which is

a great advantage. The reduction of the size of the state-space is a very attractive

feature and in this chapter we investigate the performance of the reduced state-space

model to see how much it behaves like the full model. We do this by comparing the

optimal value function for the reduced state-space model K to the optimal value

function for the ful l model V. If the reduced state-space model behaves like the

fu l l model we could then work with the simplified version to deduce results on the

nature of the optimal policy as well as the general behaviour of the network.

Another reason was to look at the optimal policy and its properties on this simplified

version. A natural question to ask was whether the optimal policy is of Admission

Price form. The results show that it is not, though once again there are very good

0 poHcies.

In the reduced state-space model the policy is a '̂ '̂̂ "^^^-tuple of Boolean variables

for each of the (C + 1)^ states, with the first K places for single hnk calls. In the

reduced state-space networks considered in this chapter, the pohcy is to accept the

single link calls if there is room to fit them in, and accept (or reject) 2-link calls

according to (a) the optimal policy; and (b) the relevant J7 policy derived by the

specific networks.

^See Table 1.1 in §1.

106

5.2 Computing and Results

This section describes the way we proceeded with analysing the reduced state-space

network. In this analysis three questions were of importance to us:

Question A : Can the reduced state-space model approximate the ful l model? If

yes, how well? To answer this question one has but to compare the optimal value

function for the reduced state-space model K with the optimal value function for

the fu l l model V. Tables 5.1 and 5.2 show some results for networks with (/v, C) =

(3,3) and also (4,3) which suggest that: (a) The reduced state-space model is a good

approximation for the ful l model in the case with (/v, C) = (3,3) and (b) the reduced

state-space model is not such a good approximation for the case with {K^ C) — (4,3).

Question B: Is the reduced state-space Q. policy a good approximation of the

optimal policy in such networks? The results suggest that the Admission Price

policies (0) are an excellent approximation for the optimal policy. In Tables 5.1

and 5.2 we compare the optimal value functions K-tu(O) (when is employed) with

K(0) .

Question C: Is the pohcy from the reduced state-space model a good approx­

imation for the optimal policy of the ful l model and vice-versa? To answer this

question one has but to employ the 0 policy of one model to the other and look at

the results. The results suggest that the policy of the reduced state-space model

is a very good approximation for the optimal policy of the ful l model (see Table 5.5)

and vice-versa (see Tables 5.3 and 5.4). In both cases very little improvement is left

to be performed by applying them; in some cases none.

The results in the following Tables are presented in groups of three categories (a)

The size of the network i.e. (/<', C), (b) for a specific size of a network we keep

L fixed; we have focused on examples for networks where L is fixed and 'critical'

for the link i.e. nearly ful l , fu l l , overloaded etc; see §2.3.1. (c) For a specific L we

consider various arrival rates. Note that in the tables and figures following Ui = Xi

and z/2 = A2. Al l the other quantities have been defined in §2.

For an explanation of why a is not exactly 0,8 see the remark on page 50.

107

/ I ' = 3, C = 3, ^ 2 = 1, i ^ i = 2, i ? 2 = 1, Q; = 0.8

^2 v;(o) Kz .(0) V(0)
0.5 4.9 2.95 22.6982 22.6379 22.9963
0.7 4.5 2.95 25.6198 25.6107 25.8420
1 3.9 2.95 30.1459 30.1344 30.3238

1.3 3.3 2.95 34.9453 34.9453 35.0391
1.5 2.9 2.95 38.0624 38.0624 38.1230
1.8 2.3 2.95 42.5160 42.5139 42.5410
0.5 5 3 22.7407 22.6832 23.0410
0.7 4.6 3 25.6583 25.6483 25.8825
1 4 3 30.1782 30.1678 30.3579

1.3 3.4 3 34.9740 34.9740 35.0693
1.5 3 3 38.0850 38.0850 38.1477
2 2 3 45.4275 45.4275 45.4389

0.3 5.6 3.1 20.2407 20.1827 20.6261
0.6 5 3.1 24.2523 24.2523 24.4902
1 4.2 3.1 30.2395 30.2310 30.4228

1.4 3.4 3.1 36.5948 36.5948 36.6757
1.7 2.8 3.1 41.1052 41.0954 41.1450
2 2.2 3.1 45.4431 45.4431 45.4556

0.5 6 3.5 23.1132 23.0673 23.4143
0.7 5.6 3.5 25.9784 25.9615 26.2203
1 5 3.5 30.4535 30.4491 30.6507

1.3 4.4 3.5 35.2131 35.2130 35.3305
1.6 3.8 3.5 39.7572 39.7465 39.8202
2 3 3.5 45.4927 45.4927 45.5097

0.5 7 4 23.3897 23.3582 23.6898
0.7 6.6 4 26.2212 26.1921 26.4749
1 6 4 30.6668 30.5850 30.8740

1.3 5.4 4 35.3976 35.3896 35.5319
1.6 4.8 4 39.8709 39.8556 39.9446
2 4 4 45.5354 45.5354 45.5568

Table 5.1: Reduced state-space networks with

108

^2 Pi + z/2/2 K (0) V(0)
0.5 4.9 2.95 30.2229 30.1657 26.5908
0.7 4.5 2.95 34.1066 34.0994 30.2459
1 3.9 2.95 40.1520 40.1466 35.9764

1.3 3.3 2.95 46.5446 46.5446 41.9580
1.5 2.9 2.95 50.6831 50.6831 45.7919
1.8 2.3 2.95 56.6035 56.6006 51.2012
0.5 5 3 30.2886 30.2275 26.6335
0.7 4.6 3 34.1584 34.1505 30.2916
1 4 3 40.1977 40.1928 36.0066

1.3 3.4 3 46.5847 46.5847 41.9841
1.5 3 3 50.7148 50.7145 45.8108
2 2 3 60.4732 60.4732 54.6797

0.3 5.6 3.1 26.9180 26.8861 23.5052
0.6 5 3.1 32.3074 32.3062 28.4877
1 4.2 3.1 40.2863 40.2810 36.0646

1.4 3.4 3.1 48.7399 48.7399 43.9647
1.7 2.8 3.1 54.7262 54.7154 49.4720
2 2.2 3.1 60.4958 60.4958 54.6874

0.5 6 3.5 30.7907 30.7529 26.9887
0.7 5.6 3.5 34.5873 34.5786 30.5968
1 5 3.5 40.5903 40.5842 36.0646

1.3 4.4 3.5 46.9219 46.9221 43.9647
1.6 3.8 3.5 52.9413 52.9354 49.4720
2 3 3.5 60.5691 60.5691 54.6874

0.5 7 4 31.1750 31.1527 27.2517
0.7 6.6 4 34.9137 34.8959 30.8310
1 6 4 40.8958 40.8810 36.4886

1.3 5.4 4 47.1761 47.1752 42.3745
1.6 4.8 4 53.1085 53.0931 47.8736
2 4 4 60.6341 60.6341 54.7351

Table 5.2: Reduced state-space networks with
(i f , C) = (4,3).

109

= 3, C = 3, /i2 = 1, i?i = 2, i?2 = 1, a = 0.8

1̂2 vm VM
0.7 4.5 2.95 25.6107 25.6198
1 3.9 2.95 30.1344 30.1459

1.3 3.3 2.95 34.9453 same
1.5 2.9 2.95 38.0624 same
1.8 2.3 2.95 42.4990 42.5160
0.5 5 3 22.6288 22.7407
0.7 4.6 3 25.6483 25.6583
1 4 3 30.1678 30.1782

1.5 3 3 38.0850 same
2 2 3 45.4275 same

0.3 5.6 3.1 20.1827 20.2407
0.6 5 3.1 24.2523 same
1 4.2 3.1 30.2314 30.2395

1.7 2.8 3.1 41.0954 41.1052
2 2.2 3.1 45.4431 same

Table 5.3: Employing the Vl of §4 in a reduced state-space network with
(/^,(7) = (3,3).

= 4, C = 3, /i2 = 1, = 2, i?2 = 1, a = 0.8

^2 vi + V2I2 14(0) K-(O)
0.3 5.6 3.1 26.8861 26.9067
0.6 5 3.1 32.3062 32.3070
1.4 3.4 3.1 48.7399 same
1.7 2.8 3.1 54.7154 54.7224
2 2.2 3.1 60.4958 same

0.5 6 3.5 30.7529 30.7757
1 5 3.5 40.5842 40.5880

1.3 4.4 3.5 46.9219 same
1.6 3.8 3.5 52.9354 52.9392
2 3 3.5 60.5691 same

0.5 7 4 30.9412 31.0757
0.7 6.6 4 34.8959 34.9137
1 6 4 40.8810 40.8898

1.3 5.4 4 47.1752 47.1758
2 4 4 60.6341 same

Table 5.4: Employing the 0 of §4 in a reduced state-space network with
(A^C) = (4,3).

110

K = d^C = 3,fX2 = 1, Ri=2,R2 = l,a = 0.8

2̂ 1 1^2 ui + 1/2/2 ^2(0) y(o)
0.7 4.5 2.95 22.8750 22.9963

1 3.9 2.95 30.2914 30.3238
1.3 3.3 2.95 35.0388 35.0391
1.5 2.9 2.95 38.1223 38.1230
1.8 2.3 2.95 42.5411 same
0.5 5 3 22.9215 23.0411
0.7 4.6 3 25.8702 25.8825

1 4 3 30.3245 30.3580
1.5 3 3 38.1464 same
2 2 3 45.4389 same

0.3 5.6 3.1 20.5218 20.6262
0.6 5 3.1 24.8820 24.4490
1 4.2 3.1 30.3965 30.4229

1.7 2.8 3.1 41.1325 41.1450
2 2.2 3.1 45.4557 same

Table 5.5: Employing the Q of §5 in a full network with {K,C) = (3,3).

In the following figures we can see that the behaviour of the Wi for the reduced

model is similar to those of the ful l model:

(I) Robustness: The Admission Price policy for the reduced state-space model is

not robust as Wi do change as the offered traffics change.

(I) Our observed Wi satisfy the following restriction Wi > Wi+i] see also §4.2.

(I I I) As stated in §2.6, states with the same have similar TEDR values. That

explains why our policies are good.

(IV) The Wi^s get bigger as i/i increases. This increase translates to more acceptance

of single link traffic which returns a bigger reward than the 2-link one.

(IV) The H^i's do not change significantly as K increases. The practical importance

of this is discussed in §4.2. By applying the fl pohcy derived from networks {K, C) =

(3,3) to {K,C) = (4,3) and {K,C) = (5,3) we have excellent results.

Figures 5.9 and 5.10 demonstrate clearly the similarity in the Ct policies for the ful l

and reduced model; see also Question C. In the figures n l = A i , n 2 = A2.

I l l

K=3,C=3,n1+(n2/2)=2.95

0.9

0.8

•g 0.7
(0

- 0 . 6

o
01 tn
_D
CO

>

0.5

0.4

0.3

0.2

1 1 1

wi : :

vy2

— \ W3

1 i 1

0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 5.1: Change in Wi as n l increases; for nl+(n2/2)=2.95.

K=3,C=3,n1+{n2/2)=3.1
r - 1 1 1

WI :

W2

^ W3

1 1 1

0.9

0.8 h

c '
CO

go.eh

o

J 0.5

>

0.4

0.3

0.2
"O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered Traffic Ratio (n1/n2)

Figure 5.2: Change in Wi as n l increases; for n l+(n2/2)=3.1 .

112

K=3,C=3,n1+(n2/2)=4

0.9

S
-a c ffl
CM 0.7

O0.6

(0

> 0.5

0.4

0.3

1 r T r

W1

W2
_ - , - -

^ - - ' - - - ' '

w 3

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Offered Traffic Ratio (n1/n2)

Figure 5.3: Change in Wi as n l increases; for n l+(n2/2)=4.

K=4,C=3,n1+(n2/2)=2.95

0.9

0.8

ra
5
g-0.6

" o
w

J 0.5
CO

>
0.4

0.3

0.2

•1 • 1

:W1

: ;W2

^ - - - '

W3

1 1

0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 5.4: Change in Wi as n l increases; for nl+(n2/2)=2.95.

113

K=4,C=3,n1+(n2/2)=3.5

•r- 0.6

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio {n1/n2)

0.6 0.7

Figure 5.5: Change in Wi as n l increases; for nl+(n2/2)=3.5.

K=4,C=3,n1+(n2/2)=3.1

0.9

0.8
CO

"i 0.7
to
CM

gO.6

'o
cn

§ 0 . 5

0.4

0.3

0.2

1 1 1 1

WI \

W2

i 1

. W3

"O 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Offered Traffic Ratio (n1/n2)

0.8 0.9 1

Figure 5.6: Change in Wi as n l increases; for n l+(n2/2)=3.1 .

114.

C=3, n1+(n2/2)=2.95

0.9

SO.8

0.7

I 0 . 6
CM

0.5

0)

(0

SI
O

0.3

0.2

1 1 1 1

WI .

<=3j;;?:^^

K=3

= - -

W2

W3

: K=4

1 1 1

K=3

0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 5.7: Change in Wi as K increases; for nl+(n2/2)=2.95.

C=3, n1+(n2/2)=3.5

0.9
CO

as
S0.8
o c

0.7

I 0.6

: 0.5

^0.4

O

0.3 h

0.2

i 1 1 1 WI

K=3
W2

K=3
^. fT . .

^ - ^ : : i i 4 -

^ = =

W3

- -r " K=3 ^.^•--'•'[Z'-

;'<=4

1 1 1 1

K=3 ^.^•--'•'[Z'-

;'<=4

1 1 1 1

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.6 0.7

Figure 5.8: Change in Wi as K increases; for nl+(n2/2)=3.5.

115

K=3,C=3,n1+(n2/2)=2.95,R1=2,R2=1

0.9

0.8

0.7

I 0.6

0.5

0.4

0.3

0.2
0.1

1 1 1

—:Reducec State-Space IVIodel

W1

W2

W3 \
- - - - -

0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 5.9: Comparing the ?t pohcies of the ful l and reduced state-
space networks with (i^^C) = (3,3).

K=4,C=3,n1+(n2/2)=3.5,R1=2,R2=1

0.9

0.8

C3 0.7

-a c
^0.6

0.5

0.4

0.3

0.2

•--f e^ucecl State-Space IVIodel

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.7

Figure 5.10: Comparing the pohcies of the ful l and reduced
state-space networks with (A', C) = (4,3).

116

5.3 Optimal Policies and Properties

For the reduced state-space networks considered in this chapter, we study, as before,

policies that always accept 1-link calls when there is room to f i t them in.

In the following examples, we describe the exact optimal policy for networks wi th

{K = 3 ,C = 3). In the following description we do not include: (a) the cases in

which the opt imal policy accepts the 2-Hnk calls when there is room to fit them in;

(b) the cases in which the network is f u l l .

Let = {Fi,F2,F3) denote the number of free circuits on links X,Y and Z re­

spectively. A network state is represented by a triple (X , Y , Z) . For example (012)

describes the state of the network wi th one call on l ink Y and 2 calls on l ink Z.

The quantities A i , A2, i ? i , i22, and a are all defined in §2.1, §2.2 and §2.3. Note that

the a values given are for the continuous time process and not the modified values

used in the uniformised optimality equation; see §2.3.2.

I n what follows we w i l l a consider a state z >z whenever < Fj. For example a

state z w i t h F^ = (1,1,1) is considered z > z where Fj — (1,1,3) i.e. a very large

state in terms of l ink occupancy has a very small number of free circuits.

I n the following examples the size of the state-space is 64 states; see Table 1.1.

The properties we look at in the reduced state-space networks are the following:

P r o p e r t y A : For the reduced state-space networks the policy by definition depends

upon the state or equivalently, the free circuits. The crucial point is that the optimal

policy isn't an Q, policy because the state of the l ink Z matters in deciding acceptance

of a 2-link route in X Y and therefore the optimal policy cannot be of the form: accept

i f Wf^. + Wpy < R2\ see Property B.

P r o p e r t y B : [Property P2 in Key (1990)] For calls which are disjoint, i and j say,

and thus could be widely separated in a network, in general, the more type i calls

in progress, the less likely we are to reject type j calls, and vice-versa; disjoint calls

are for example X Y and Z calls. This property does hold for the reduced state-space

networks considered; see Examples 5.1 and 5.4.

117

P r o p e r t y C: Monotonicity. I f an arrival for a 2-link call on route k is rejected

in state z, where z >z, then i t wi l l also be rejected in states z. Our results suggest

that this property does not hold in general; see Examples 5.1, 5.2 and 5.4.

P r o p e r t y D : [Property P I in Key (1990)] I f we reject a type i call in state z, then

we reject i t in state z + k for calls i and k which are distinct and not disjoint; not

disjoint calls are for example X Y and YZ calls. This property does hold in general

i n the reduced state-space networks considered; see Example 5.2.

P r o p e r t y E : W e a k Monotonicity [Assumption C l in Key (1990)] I f we reject a

type k call in state z, then we reject a type call k in state z + e^. This property

does hold for the reduced state-space networks considered; see Example 5.2.

E x a m p l e 5.1

Ai = 0.5, A2 = 4.9

The opt imal policy rejects a 2-Hnk call on pair X Y in states wi th F= (1,1,3), (1,1,2)

but not in states wi th F=(1,1 ,0) , (1,1,1);

I f we denote states (220), (221), (222) and (223) wi th (1,1,3), (1,1,2), (1,1,1), (1,1,0)

free circuits as ZQ, zi, Z2., Z3, where ZQ < zi < Z2 < z^, we see that rejection in Zo,Zi

does not coincide w i t h rejection in Z2, Z3 and therefore Property C does not hold.

We also note that for the distinct calls X Y and Z, a rejection of X Y in state (221)

w i t h (1,1,2) free circuits coincides wi th rejection of X Y in state (220) wi th (1,1,3)

free circuits. Continuing the analysis for all states confirms that Property B holds

for this example.

E x a m p l e 5.2

Ai = 1.8, A2 = 2.3

The opt imal policy rejects a 2-link call on pair X Y in states wi th F= (1,1,3), (1,1,2).

(1,1,1), (1,1,0); (3,1,3), (3,1,2), (3,1,1), (3,1,0); (1,2,3), (1,2,2), (1,2,1), (1,2,0);

(2,1,3), (2,1,2), (2,1,1), (2,1,0), but not in (2,2,1), (2,2,0).

Rejection of X Y in state (110) wi th (2,2,3) free circuits coincides wi th rejection in

state (220) w i t h (1,1,3) free circuits. That shows that Property E does hold.

118

I f we consider X Y and Y Z calls which are not disjoint, rejection of X Y in state (211)

w i t h (1,2,2) free circuits coincides wi th rejection of X Y in state (222) wi th (1,1,1)

free circuits and that suggests that Property D does hold.

E x a m p l e 5.3

Ai = 0.7, A2 = 5.6

The opt imal poHcy rejects a 2-link call on pair X Y in states wi th F= (1,1,3), (1,1,2),

(1,1,1), (1,1,0); (2,1,3); (1,2,3).

E x a m p l e 5.4

Ai = 1,A2 = 6

The opt imal poHcy rejects a 2-Hnk call on pair X Y in states wi th F= (1,1,3), (1,1,2),

(1,1,1), (1,1,0); (3,1,3), (3,1,2); (1,2,3), (1,2,2), (1,2,1), (1,2,0); (2,1,3), (2,1,2),

(2,1,1), (2,1,0); (1,3,3), (1,3,2) but not in (3,1,1), (3,1,0); and (1,3,1), (1,3,0).

Consider disjoint calls X Y and Z. Rejection of X Y in states wi th (3,1,2) free circuits

coincides wi th rejection in states wi th (3,1,3) free circuits and therefore Property B

does hold.

Observation 1

Due to the symmetry assumption of our networks i t is easy to deduce the optimal

policy for all 2-link routes by just looking at its description for one of the possible 2-

hnk routes. For example knowing that a X Y call is rejected in (1,1,2) and (1,1,3) can

help us deduce that rejections in XZ wi l l be in (1,2,1) and (1,3,1) i.e. by permuting

the F2 w i t h the Fz.

Note: In various states all, two or one of the 2-link call types are rejected. We focus

our analysis on 2-link call rejection on a particular pair in a states with particular

F without restricting possible rejections of the other pairs in those states.

119

5.4 Using the H policy from the full networks

I n this example we present the results of numerical optimisation in which an ini t ial

estimate for the W is taken f rom the f u l l model case, and the Nelder-Mead (1965)

simplex algorithm f r o m the M A T L A B O P T I M I S A T I O N T O O L B O X was applied in

an attempt to find better Wi; see also §3.1.1.

The results f r o m a variety of examples were not encouraging as in no case did the

Nelder-Mead algorithm find Wi as good as those derived f rom knowledge of the

opt imal value funct ion for the reduced model.

E x a m p l e 5.5

For the case {K = 3 ,C = 3), (A i , A 2) = (0.5,4.9) of the reduced state-space model

w i t h Vr = 22.6982, we first take as an ini t ia l estimate a W f rom the f u l l model.

V{0) is 22.5881 in the first iteration. Then i t improves (when i t does) to:

(a) 22.638 for W = (0.5416, 0.3788, 0.288) and ini t ia l estimate (0.49, 0.378. 0.288)

f r o m the f u l l model.

(b) 22.638 for W = (0.55, 0.45, 0.35) and ini t ia l estimate (0.5, 0.4, 0.3).

(c) 22.5881 for W = (0.36, 0.27, 0.180) and ini t ia l estimate (0.4, 0.3, 0.2).

This example as well as 14 more demonstrate that the task of directly finding good

Wi w i t h standard numerical optimisation routines is not giving any results.

5.5 The Ott and Krishnan 'costs'

I n §1.7.1, the Separable Routing Scheme of Ot t and Krishnan (1985,1986) was pre­

sented. The scheme was carried out by considering the value cost of adding a call to

a l ink . As the links were assumed independent, the cost of adding a mul t i l ink call

to links k i , ..,km, in the respective states j i , ..,jrn is given by

E r = i A(fc., J O , where A(fc, j) = 0 < ; < C,

120

and each l ink k has C circuits and is offered a Poisson load of A Erlangs.

For the reduced state-space model of §5.1, the cost of adding a 2-link call to links

i and j w i l l then be given by = A(z,a;i) - f A (j , X j) , where Xk is the occupancy

of l ink k. Krishnan and Ott 's (1985,1986) routing scheme (admission pohcy) for a

2-link call is now specified as follows: when a 2-link call arrives requesting route on

(z , i) , the cost in the current network state, of each admissible pair that has at least

one free circuit on each l ink i n the pair is calculated by the above expression. I f W

exceeds R2 (the cost of a lost 2-hnk call), then the call is rejected; otherwise i t is

accepted.

Remember that our Admission Price Routing Scheme accepts a 2-link call on a pair

(i , j) whenever + Wpj < i?2 , where Fk denotes the free circuits on l ink k.

I t is obvious that there is a Hkeness in the ideas behind the two schemes, and i t

would be, therefore, interesting to compare the values of Ot t and Krishnan's costs

w i t h our Q, policy values.

For the Symmetric reduced state-space network wi th K links of capacity C, and wi th

arrival rates for single l ink calls and 2-link calls to be A i , A2 the Poisson demand for

circuits on every l ink is X = L, where L is given by (2.6).

E x a m p l e 5.6

For a Symmetric network wi th K = 3,C = 3, Xi = 0.5 and A2 = 4.9, the Ot t and

Krishnan A{k,Xk) are shown in Table 5.5. In the same table the Admission Price

policies W's for both the f u l l and the reduced state-space network are given.

Calls present (xk) Wf^u

3 1 2 2
2 0.65 0.4924 0.5292
1 0.45 0.3781 0.3529
0 0.34 0.2881 0.2650

Table 5.5: Separable Routing and Admission Price Policies

121

Chapter 6

Asymmetric Models

6.1 Introduction

I n this chapter we consider star-shaped, circuit-switched Loss networks which consist

of K links of capacity C,-, i = 1,2, . . j /C, linked through a common node. This is

known as an Asymmetric Star network. We also relax the assumptions about the

offered traffic rates being the same for all 1-link routes and for 2-link routes and also

the assumption that all types of traffic have the same mean holding time.

The reason we looked at Asymmetric networks is that they are very complicated

and there are no good theoretical results existing even for the single l ink case when

distinct call types have different mean holding times. We present in this chapter

some results of research on the behaviour of small Asymmetric networks as well as

properties of the optimal policies in some of them. We do not in this thesis tackle

the subject theoretically.

6.2 The Model

Calls requesting routes arrive at the network randomly and according to a Poisson

distr ibution. There are two types of route: 1-link routes and 2-link routes involving

122

any pair of the single links. Requests for 1-link routes arrive on link i at rate Ai,-,

and requests for 2-link routes arrive at rate A 2 (i j) / (/ ^ — 1) on each 2-link pair {i,j).

1-link routes have an exponential holding time wi th mean = 1, and 2-link routes

have an exponential holding t ime wi th mean fi2-

The number of all possible pairs (z,y), where i < j , is /? = ^^^^y^- The number of

all possible 2-Hnk pairs (« , j) , where « < j is 7 = A l l the 2-Hnk pairs {i,j)

are indexed w i t h the formula given in Lemma 1 in §2. The number of 1-Hnk

calls on Hnk i is denoted by x,-. The number of 2-Hnk caHs on pair {i,j) w i th index

number / (i , j) is denoted by wi. The number of 1-link calls in the network is denoted

by X and the number of 2-link calls in the network is denoted by w. The state of the

network at the t ime we observe i t is denoted by (. T , I O) . The above quantities are all

defined in §2. For every 1-link call carried we earn reward Ri and for every 2-link

call carried we earn reward R2. Rewards are bounded and earned immediately. The

uni t of reward per unit t ime for carrying a 2-link call is now i?2//*2 (i t was R2).

1-link calls depart f rom link i at rate Xi] and 2-link calls depart f rom pair at

rate wil 112-

The operation of such networks is considered as a Markov decision process in which

we investigate the performance of different policies using an optimality equation

i n order to maximise the Total E x p e c t e d Discounted R e w a r d (TEDR)^. The

optimality equation for calculating the optimal policies and the T E D R as well as

the iterative methods used to do so, axe also presented and discussed in §2. In

fact, the networks considered in this section only differ f rom those of §2 in that the

rate of events and therefore the transition probabilities are slightly different. The

state-space is also different. For example for networks wi th K = 2) and capacities

C = (3 ,3 ,4) , C = (3,3,5) and C = (3,3,6) the sizes are respectively 477, 622 and

768 possible states.

^Defined in §2.

123

6.3 Rates of Events and Transition Probabilities

for Asymmetric Networks

1- l ink calls arrive on the network at rate i^ i , where Vi = Yli=i Xn.

2- l ink calls arrive on the network at rate 1̂ 2, where 1^2 = 1̂ 7=1 (R-i

1-link calls depart f rom the network at rate 1/3 = X^jli and 2-link calls depart

f r o m the network at rate U4 = I]7=i(^'//"2)-

The rate of null events in the network is denoted by Vs, where

(6.1) 1^5 - 1^3- J^4,
1=1

where Ji = min{iJ,i, fj.2}-

The To ta l R a t e of events i n the network is denoted by Rate, where

5 K A ^ C'

(6.2) Rate = Y.''i = T.>^u + E7jr^ + 12^-
i=i i=i 1=1 l ^ ^ ~ ^) i=i

The transitions i n the network occur at rate (6.2) and the correction between steps

in the optimality equation and ' t ime ' in the continuous t ime process for the discount

factor a is

_ Rate
a =

Rate + (- I n a) '

I n the examples considered we used the approximation a = a^^^^'^. The correction

as well as the effect that our approximation has in calculating T E D R values and

opt imal poHcies is discussed in §2.3.2; see remark on page 50.

The notation is that of Chapter 2, and the transition probabilities for the network

are as follows:

124

P-^{xi + e^,w\x,w)
0, i f 7r{x,w) = reject

otherwise

P^{xi-e,,w\x,w) = if Xi>0

P„{x,wi + ei\x,w) = <
0, i f 'K{X,W) reject

p otherwise
Rate(h - 1) '

P^(2;, wi - ei\x, w) = wi > 0.

P^rix, w\x, w) = 1^5

Rate

As in earlier chapters, one l ink calls are accepted whenever there is room for them.

Hence

P^{xi + ei,w\x,w)
0, ifxi>=C

j ^ , otherwise

The average reward for the Asymmetric network we consider is denoted by Vt, where

(6.3)
1 ^ R2
— [Rl Yl w) + J2 ^2il{ei\x, w)

Rate K - I

where I{ei\x,w) = 1 or 0 according as a call on route / is accepted or rejected by

the admission policy.

125

6.4 Computing and Results

We present the results in groups of three categories:

(a) The size of the network i.e. (/ i ' , C) ;

(b) For a specific size of a network we keep L = Ai -|- A2/2 fixed^; we have focused on

examples for networks where L is 'cr i t ical ' for the l ink i.e. nearly f u l l , f u l l , overloaded

etc;

(c) For a specific L we consider various arrival rates.

The tables suggest that the Admission Price policies are a good approximation for

the opt imal policy under various considerations for the Asymmetric networks.

I n the following Tables and figures n\ — vi = Ai and n2 = V2 — A2. Ri = 2,i?2 =

1. A l l the other quantities have been defined in §2. ^2 wi l l be 1 unless specified

differently.

Table 6.1: presents some results for Asymmetric networks wi th {K,C) = (3,3)

in which the arrival rate of single link traffic on Hnk Z, A13 is different than that of

links X and Y An and A12. The results suggest that the Admission Price policy is

a good approximation for the optimal policy.

Tables 6.2, 6.3 and 6.4: present results for Asymmetric networks w i th K = 3 and

capacities C = (3 ,3 ,4) , (3,3,5) and (3,3, 6). The results suggest that the Admission

Price policies are a good approximation of the optimal policy. The properties of the

opt imal policies i n the latter networks are analysed in §6.5.

The Admission Price poHcy described by Wi is calculated by our usual method f rom

the opt imal value function under the optimal (but difficult to describe) policy, and

for all the states z = {x^w) that could possibly accept an increase in their number

of 1-link calls. For such states we calculate the differences V{z + e.) — V{z). Then we

look at those differences for a collection of states Za^z^^ ..Zm w i th the same number

of free Hnks F,. For 'good' V{z + e,) - V{z) Wp, must be satisfied. The

choice for such Wp, is taken f rom wi th in the range of the above differences; usually

2See §2.3.2.

126

their mean value; see also Chapter 4.

Table 6.5: presents the case of a [K, C) — (3,3) network and (t<2 = 0.8. Compare

Table 6.5 w i t h Table 4.2.

Table 6.6: demonstrates the performance of the Admission Price policies for a

network w i t h {k,C) = (3,3) and /i2 increasing. See also discussion of the optimal

policy in this case in §6.6.

The behaviour of the 0 pohcy is the same as described in §4.2.

Note that by comparing Figures 6.3 wi th 6.5, and 6.4 wi th 6.5, i t is clear that the

do not change much as the capacity varies for the 3rd l ink.

F o r an explanation of why a is not exactly 0.8 see the remark on page 50.

= " 3 , = 1, i ^ i = 2, = 1, = 0.8

Single link 2-link call Capacities Optimal w-Optimal

-^11,2,3 ^^21,2,3 Cl,2,3 V(0) Vw{0)

0.5 0.5 0.5 4.9 3,3,3 22.9963 22.8750
0.5 0.5 1.16 4.9 3,3,3 26.2778 25.9658
0.5 0.5 1.55 4.9 3,3,4 27.1022 26.7767
0.5 0.5 1.93 4.9 3,3,5 32.0108 31.7014
1.3 1.3 1.3 3.3 3,3,3 35.0391 35.0389

1.3 1.3 1.76 3.3 3,3,3 37.3559 37.3401
1.3 1.3 2.35 3.3 3,3,4 38.6687 38.6534
1.3 1.3 2.93 3.3 3,3,5 44.9085 44.8831
1.8 1.8 1.8 2.3 3,3,3 42.5410 42.5230

1.8 1.8 2.13 2.3 3,3,3 44.1330 44.1281
1.8 1.8 2.85 2.3 3,3,4 45.6073 45.6013
1.8 1.8 3.56 2.3 3,3,5 52.6654 52.5794

Table 6.1: Networks with A 1 3 / C 3 constant

127

K = 3,C = {3,3,4:),112 = 1,Ri = 2,R2 = l , a = 0.8

1^1 + 1^2/2 T4(0) V^̂ (O)
0.5 4.9 2.95 21.7478 21.5569
0.7 4.5 2.95 24.4493 24.4200
1 3.9 2.95 28.7907 28.6471

1.3 3.3 2.95 33.2670 33.2153
1.5 2.9 2.95 36.2549 36.2425
1.8 2.3 2.95 40.5929 40.5510
0.5 5 3 21.7947 21.6026
0.7 4.6 3 24.4905 24.4585
1 4 3 28.8245 28.6814

1.3 3.4 3 33.2969 33.2416
1.5 3 3 36.2803 36.2668
2 2 3 43.3637 43.3324

0.3 5.6 3.1 19.3951 18.7791
0.6 5 3.1 23.1699 23.1183
1 4.2 3.1 28.8884 28.7468

1.4 3.4 3.1 34.8465 34.8284
1.7 2.8 3.1 39.2294 39.1944
2 2.2 3.1 43.3835 43.3508

0.5 6 3.5 22.1846 21.9895
0.7 5.6 3.5 24.8346 24.7803
1 5 3.5 29.1064 28.9714

1.3 4.4 3.5 33.5472 33.4598
1.6 3.8 3.5 37.9402 37.9026
2 3 3.5 43.4504 43.4114

0.5 7 4 22.4683 22.2815
0.7 6.6 4 25.0941 25.0173
1 6 4 29.3137 29.1905

1.3 5.4 4 33.7369 33.6980
1.6 4.8 4 38.0797 38.0293
2 4 4 43.5148 43.4670

Table 6.2: Networks with C= (3,3,4)

128

K = 3,C = {3,3,b), 112 = 1, Ri = 2, R2 = l,a = 0.8

1^1 1^2 z/i + z/2/2 K(0) Vw{0)
0.5 4.9 2.95 23.4263 23.1659
0.7 4.5 2.95 26.1843 26.0638
1 3.9 2.95 30.6177 30.3458

1.3 3.3 2.95 35.0779 34.9928
1.5 2.9 2.95 38.1238 38.0030
1.8 2.3 2.95 42.6614 42.5814
0.5 5 3 23.4937 23.2281
0.7 4.6 3 26.2421 26.1185
1 4 3 30.6675 30.3938

1.3 3.4 3 35.1199 35.0321
1.5 3 3 38.1620 38.0351
2 2 3 45.6225 45.5476

0.3 5.6 3.1 20.9844 20.4359
0.6 5 3.1 24.9770 24.7892
1 4.2 3.1 30.7624 30.4853

1.4 3.4 3.1 36.7212 36.6101
1.7 2.8 3.1 41.2599 41.1888
2 2.2 3.1 45.6697 45.5868

0.5 6 3.5 24.0721 23.7614
0.7 5.6 3.5 26.7439 26.5818
1 5 3.5 31.0946 30.8011

1.3 4.4 3.5 35.4835 35.3614
1.6 3.8 3.5 39.9966 39.9149
2 3 3.5 45.8273 45.7388

0.5 7 4 24.5118 24.1714
0.7 6.6 4 27.1359 26.9317
1 6 4 31.4202 31.1111

1.3 5.4 4 35.7698 35.6060
1.6 4.8 4 40.2426 40.1235
2 4 4 45.9737 45.8746

Table 6.3: Networks with C =(3,3,5)

129

K = 3,C = (3,3,6), = I, Ri = 2, R2 = l,a = 0.8

1^1 + z^2/2 K(0) Vw{0)
0.5 4.9 2.95 26.6353 26.3354
0.7 4.5 2.95 29.5568 29.2722
1 3.9 2.95 34.0770 33.8368

1.3 3.3 2.95 38.6492 38.4930
1.5 2.9 2.95 41.7328 41.5717
1.8 2.3 2.95 46.4414 46.3152
0.5 5 3 26.7454 26.4310
0.7 4.6 3 29.6548 29.3596
1 4 3 34.1656 33.9162

1.3 3.4 3 38.7238 38.5622
1.5 3 3 41.8033 41.6327
2 2 3 49.6603 49.4969

0.3 5.6 3.1 24.1087 23.6947
0.6 5 3.1 28.3947 28.0711
1 4.2 3.1 34.3353 34.0680

1.4 3.4 3.1 40.3935 40.2238
1.7 2.8 3.1 45.0549 44.9286
2 2.2 3.1 49.7727 49.5881

0.5 6 3.5 27.7135 27.2647
0.7 5.6 3.5 30.5147 30.1165
1 5 3.5 34.9227 34.5953

1.3 4.4 3.5 39.3668 39.1458
1.6 3.8 3.5 43.9445 43.7734
2 3 3.5 50.1623 49.9739

0.5 7 4 28.4955 27.9252
0.7 6.6 4 31.1840 30.5453
1 6 4 35.5100 35.1160

1.3 5.4 4 39.8659 39.5831
1.6 4.8 4 44.4079 44.1543
2 4 4 50.5519 50.2915

Table 6.4: Networks with C = (3,3,6).

130

K = 3,C = 3,112 = 0.8, Ri = 2,R2 = l,a = 0.8

1^1 1^2 + U2/2 Va{0) Vw{0)
0.5 4.9 2.95 25.2701 24.8526
0.7 4.5 2.95 27.7956 26.6446
1 3.9 2.95 31.9165 31.4875

1.3 3.3 2.95 36.0950 35.9199
1.5 2.9 2.95 38.9657 38.9222
1.8 2.3 2.95 43.1925 42.9558
0.5 5 3 25.3446 24.9222
0.7 4.6 3 27.8563 26.7031
1 4 3 31.9696 31.5410

1.3 3.4 3 36.1393 35.9675
1.5 3 3 39.0066 38.9646
2 2 3 45.9144 45.8077

0.3 5.6 3.1 23.0098 22.1278
0.6 5 3.1 26.7275 26.4895
1 4.2 3.1 32.0701 31.6431

1.4 3.4 3.1 37.6502 37.5679
1.7 2.8 3.1 41.9053 41.5665
2 2.2 3.1 45.9637 45.8519

0.5 6 3.5 25.9787 25.5174
0.7 5.6 3.5 28.3669 27.2069
1 5 3.5 32.4101 31.6901

1.3 4.4 3.5 36.5127 36.3723
1.6 3.8 3.5 40.7551 40.2608
2 3 3.5 46.1310 46.0013

0.5 7 4 26.4589 24.2533
0.7 6.6 4 28.7510 27.5994
1 6 4 32.7484 32.0485

1.3 5.4 4 36.8005 35.7422
1.6 4.8 4 40.9983 40.4603
2 4 4 46.2899 46.1428

Table 6.5: Networks with {K,C) = (3,3) and 112 = 0.8.

131

K = 3,C = 3,iii = l,Ri = 2,R2 = l,a = 0.8

1^2 K(0) VwiO)
0.5 30.4205 25.5860
0.7 26.6804 24.1823
0.8 25.2701 24.8526
0.9 24.0541 23.7876
1.1 22.0883 22.0773
1.3 20.7773 20.3181
1.5 19.8160 19.0632
1.7 19.1032 18.0421
1.9 18.5503 17.1950
2 18.3136 16.8235

Table 6.6: Networks with various /j,2. for ui = 0.5; U2 = 4.9.

6.5 Optimal Policy and Properties

For Asymmetric networks presented in §6.1, we consider policies that always accept

1-link calls when there is room to fit them in. It is the 2-link calls we seek to restrict

(in order to maximise the TEDR) and hence a policy is a set of \S\ x — 1)-

tuples of Boolean variables. 477 triples when K = d,C = (3,3,4). As the networks

increase in size the optimal policy increases rapidly. In the following examples, we

describe the exact optimal policy for some networks with:

(a) K = 3 and various C = (3,3,C3);

(b) {K,C) = (3,3), (Ai = 0.5, A2 = 4.9) and various ^2;

(c) (/v, C) = (3,3), fj,2 = 0.8 (it was 1) and various arrival rates;

only to show the complexity and difficulty that both arise in trying to conclude

about a network's behaviour and performance by looking at the calculated optimal

policy. In the following description we do not include the cases in which the optimal

pohcy accepts the 2-link calls when there is room to fit them in, nor the cases in

which the network is ful l .

132

Let F = (Fi,F2, F3) denote the number of free circuits on links X, Y and Z respec­

tively. A network state is represented by a 6-tuple (X,XY,XZ,Y,YZ,Z). For example

(010011) describes the state of the network with: one 2-Hnk call on pair XY, one

2-link call on pair YZ, and a single-link call on Z with coresponding free circuits

F = (2,1,1). Many states have the same number of free circuits.

The quantities Ai, A2, i?2 , and a are all defined in §2.1, §2.2 and §2.3. If not

specified / / i = l , / i 2 = 1-

For the description of the optimal poHcy we proceed the same way as in the analysis

of §2.

6.5.1 What Happens as C3 increases

Example 6.1

K = 3, Ai = 0.5, A2 = 4.9, Ri=2,R2 = l,a = 0.8

I : Capacities C=(3,3,4). States=477

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically

in this network the optimal policy rejects:

(a) 2-link calls on XY in 49 states with F= (1,1,4), (1,1,3), (1,1,2), (1,1,1), (1,1,0),

(2,1,3), (2,1,4), (1,2,3) and (1,2,4); XZ and YZ calls are accepted in the previous

cases.

(b) 2-link calls on XZ for F = (1,3,1), (1,2,1); XY and YZ are accepted in the previous

cases.

(c) 2-hnk calls on YZ for F= (3,1,1), (2,1,1); XY and XZ calls are accepted in the

previous cases.

Compare with Example 3.2. Note that changes in the capacity of link Z have an

effect on the accceptance/rejection of XY calls i.e. the optimal policy is not of an

admission price form as it depends upon the state-space and not just the two fink

involved.

133

I I : Capacities C=(3,3,5). States=622

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically

in this network the optimal policy rejects:

(a) 2-link calls on XY in 94 states with F= (1,1,5), (1,1,4), (1,1.3), (1,1,2), (1,1,1),

(1,1,0), (2,1,5), (2,1,4), (2,1,3), (2,1,2), (1,2,5), (1,2,4), (1,2,3), (1,2,2); XZ and YZ

calls are accepted in the previous cases.

(b) 2-link calls on XZ for F= (1,3,1), (1,2,1); XY and YZ are accepted in the previous

cases.

(c) 2-link calls on YZ for F= (3,1,1), (2,1,1); XY and XZ calls are accepted in the

previous cases.

Example 6.2

K = 3,Ai = 1.8, A2 = 2.3, i?i = 2,i?2 = l , a = 0.8

I : Capacities C=(3,3,4). States=477

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically

in this network the optimal policy rejects:

a) A l l 2-link calls in states with F= (1,3,1), (3,1,1), (1,1,3), (2,2,1), (1,1,4), (1,1,1),

2,1,1), (1,1,2), (1,2,1) and (2,2,4).

b) XY and XZ calls in states with F= (1,3.4), (1,3,3), (1,3,2) and (1,2,4), (1,2,3)

and (1,2,2).

c) XZ and YZ calls in states with F= (2,3,1), (3,2,1) and (3,3,1).

d) XY and YZ calls in states with (2,1,4), (2,1,3), (2,1,2) and (3,1,4), (3,1,3)

and (3,1,2).

e) X Y calls in states with F= (2,2,4), (2,2,3), (2,2,2), (2,2,0), (2,1,0), (3,1,0), (1,3,0),

1,1,0) and (1,2,0).

f) YZ calls in states with F= (0,3,1), (0,2,1), (0,1,4), (0,1,3), (0,1,2) and (0,1,1).

g) XZ calls in states with F = (3,0,1), (2,0,1), (1,0,1), (1,0,2) (1,0,3) and (1,0,4).

134

I I : Capacities C=(3,3,5). States=622

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically

in this network the optimal pohcy rejects:

a) Al l 2-link calls in states with (3,1,1), (1,3,1), (2,2,1), (1,2,1), (2,1,1), (1,1,5),

1,1,4), (1,1,3), (1,1,2) and (1,1,1).

b) XY and XZ calls in states with F= (1,3,5), (1,3.4), (1,3,3), (1,3,2), (1,2,5),

1,2,4), (1,2,3) and (1,2,2).

c) XZ and YZ calls in states with F= (2,3,1), (3,2,1) and (3,3,1).

d) XY and YZ calls in states with F= (2,1,5), (2,1,4), (2,1,3), (2,1,2) and (3,1,5),

3.1.4) , (3,1,3) and (3,1,2).

e) XY calls in states with F= (2,2,5), (2,2,4), (2,2,3), (2,2,2), (2,2,0), (2,1,0), (1,2,0),

2.3.5) , (2,3,4), (3,1,0), (1,3,0), (3,2,4) (3,2,5) and (1,1,0).

f) YZ calls in states with F= (0,2,1), (0,3,1), (0,1,5), (0,1,4), (0,1,3), (0,1,2) and

0,1,1).

g) XZ calls in states with F= (3,0,1), (2,0,1), (1,0,1), (1,0,2) (1,0,3), (1,0,4) and

1,0,5).

6.5.2 What Happens as / i 2 increases

In the following examples we investigate what happens as ^2 increases. As ^2

increases the optimal value function (TEDR) V decreases as less valuable calls are

using up more network resources. In the examples we describe the optimal policy

for such cases ans see that the optimal policy rejects more and more 2-link traffic

as ^2 increases.

In the following cases i?i > {R211^2)-

Example 6.3

J^ = 3,C = 3,Ai = 0.5,A2 = 4.9,Mi = l , i ^ i = 2,i?2 = l , a = 0-8

135

The optimal policy rejects:

I : ii2 = 0.5. 2-Iink calls on X Y in 1 state with F= (1,1,3) but not in (1,1,2), (1,1,1),

(1.1.0) ; XZ and YZ calls are accepted in (1,1,3). 1/(0) = 30.42962.

I I : ^2 = 0.8. 2-link calls on XY in 10 states with F= (1,1,3) and (1,1,2) but

not in (1,1,1), (1,1,0); XZ and YZ calls are accepted in (1,1,3) and (1,1,2) states.

V(0) = 25.2701.

I l l : fi2 = 0.9. 2-link calls on XY in 10 states with (1,1,3) and (1,1,2) but

not in (1,1,1), (1,1,0); XZ and YZ calls are accepted in (1,1,3) and (1,1,2) states.

y(0) = 24.05442.

I V : ^2 = 1. See Example 3.2 in Chapter 3. V{0) = 22.9963.

V : fi2 = 1.1. (a) XY, XZ and YZ calls in 11 states with (1,1,1) free circuits,

(b) 2-link calls on XY in 11 states with F= (1,1,3) and (1,1,2) but not in (1,1,0).

y(0) = 22.08844.

V I : /i2 = 1.7. (a) XY, XZ and YZ calls in 11 states with (1,1,1) free circuits, (b)

X Y and XZ calls in 9 states with (1,2,2), (1,1,2) and (1,2,1) free circuits, (c) 2-

link calls on X Y in 21 states with F= (1,1,3), (1,1,2), (1,1,0), (2,1,3) and (1,2,3).

V(0) = 19.0572.

V I I : fi2 = 2. (a) XY, XZ and YZ calls in 12 states with (1,1,1), (1,2,1), (1,1,2) and

(2.1.1) free circuits, (b) XY and XZ calls in 9 states with (1,2,2), (1,1,2) and (1,2,1)

free circuits, (c) 2-link calls on XY in 27 states with (1,1,3), (1,1,2), (1,1,0),

(2,1,3), (1,2,3), (2,2,3), (2,1,0) and (1,2,0). V{0) = 18.3173.

Example 6.4

= 3,C = 3 , A i = 1.8, A2 = 2.3, fii = l , i ? i = 2,i?2 = 1,Q = 0.8

The optimal policy rejects:

I : /i2 = 0.5. (a) XY, XZ and YZ calls in 11 states with (1,1,1) free circuits, (b)

2-link calls on XY in 11 states with F = (1,1,3), (1,1,2) and (1,1,0). V{0) = 45.1248.

I I : 1x2 = 0.8. (a) XY, XZ and YZ calls in 41 states with (3,1,1), (1,3,1), (1,1,3),

(1,1,1), (1,2,1), (1,1,2) and (2,1,1) free circuits, (b) XY and XZ calls in 8 states with

136

(1,2,2), (1,2,3) and (1,3,2) free circuits, (c) 2-link calls on XY in 34 states with F =

(3.1.0) , (1,1,0), (2,1,0), (1,3,0), and (1,2,0). V(0) = 43.1926.

I l l : H2 - 0.9. (a) XY, XZ and YZ calls in 41 states with (3,1,1), (1,3,1), (1,1,3),

(1.1.1) , (1,2,1), (1,1,2) and (2,1,1) free circuits, (b) XY and XZ calls in 8 states with

(1.2.2) , (1,2,3) and (1,3,2) free circuits, (c) 2-Hnk calls on XY in 37 states with F=

(3,1,0), (1,1,0), (2,1,0), (1,3,0), (2,2,3) and (1,2,0). V{0) = 42.8465.

6.5.3 Properties

In 6 Asymmetric networks in which the number of link K = 'i and capacity varies as

well as networks in which C is fixed but 1x2 increases the results suggest that the

properties of the optimal policy are those of the Symmetric networks. In particular:

Property A: Dependency on the State-Space.

Property B: For calls which are disjoint, i and j say, and thus could be widely

separated in a network, in general, the more type i calls in progress, the less likely

we are to reject type j calls, and vice-versa; disjoint calls are for example XY and

Z calls. This property does hold for the Asymmetric networks. See Example 6.1

in which XY rejection in states with (2,1,3) free circuits coincides with rejection in

states with (2,1,4) free circuits.

Property C: Monotonicity. If an arrival for a 2-link call on route k is rejected

in state J, where z >z, then i t will also be rejected in states z. Our results suggest

that this property does not hold in general; see Examples 6.1 in which rejection in

states with (2,1,4) and (2,1,3) free circuits does notcoincide with rejection in states

(2,1,2), (2,1,1) and (2,1,0).

Property D: If we reject a type i call in state 2, then we reject it in state z-\-k for

calls i and k which are distinct and not disjoint; not disjoint calls are for example

X Y and YZ calls. This property does hold for the Asymmetric networks.

Property E : Weak Monotonicity If we reject a type k call in state z, then we

reject a type call k in state z + ê . This property does hold.

137

K=3,C=(3,3,4),n1+(n2/2)=2.95
0.9

0.8

•a
ffl 0.6

CO

^0.5

•5 0.4
CO

« 0 . 3

0.2

0.1

0

1 1 ^ — —

:W1

W2 _ _ _ - - - — "

:W3

W4

1 1

0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 6.1: Change in Wi for {K = 3,C = 3,3,4) as n l increases;
nl+(n2/2)=2.95.

K=3,C=(3,3,4),n1+(n2/2)=3.5
1

0.9

0.8

5 0.7 -o c
(0

gO.6

c\j"
§ 0 . 5
i
•5 0.4
0)

« 0.3

0.2

0.1

0

1 1 1 - 1

W2 : _ _ - -

•W3

-

W4

i 1

'0 0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.6 0.7

Figure 6.2: Change in Wi for {K = 3,C = 3,3,4) as n l increases;
nl+(n2/2)-3.5.

138

0.9

0.8

0.7

•gO.6
03

-0.5

50.4
o
m

J 0.3
CO >

0.2

0.1

K=3,C=(3,3,5),n1+(n2/2)=2.95
1 i

;w2

:W3

•W4

0
0.1 0.2 0.3 0.4 0.5 0.6

Offered Traffic Ratio (n1/n2)
0.7 0.8

Figure 6.3: Change in Wi for (K = 3, C = 3,3, 5)as n l increases;
nl+(n2/2)=2.95.

K=3,C=(3,3,5),n1+(n2/2)=3.5
1

0.9

0.8

S0.7
T3 C
ro

g 0.6

? 0.5
i
•5 0.4

I 0.3

0.2

0.1

0

1 1 i 1

Wl ;

W2 _ ^ ^ - - ' - "

"

W3
^.•.r.:-:rr:r

"

.. W4

1 1 1

^.•.r.:-:rr:r

0 0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.6 0.7

Figure 6.4: Change in Wi for [K = 3,C = 3,3,5) as n l increases;
nl+(n2/2)=3.5.

139

K=3,C=(3,3,6),n1 +(n2/2)=2.95
0.9

0.8

0.7

•g 0.6
03

.0.5

5 0.4

t o

J 0.3
CO >

0.2 h

0.1

W2

W3

W4

0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 6.5: Change in wi for {K = 3,C = 3,3,6) as n l increases;
nl+(n2/2)=2.95.

0.9

0.8

5 0.7
•D
C
CO

nO.6

CO

5 0.5
i
•5 0.4
c n
(U

« 0.3

0.2

0.1 h

W2

K=3,C=(3,3,6),n1+(n2/2)=3.5

W3

W4

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.6 0.7

Figure 6.6: Change in wi for {K = 3,C = 3,3,6) as n l increases;
nl+(n2/2)=3.5.

140

K=3,G=3,m=0,8,n1+(n2/2)=2.95

0.9

0.8

•g 0.7
to

| 0 . 6

"o
(0

J 0.5
(0

>
0.4

0.3

0.2

i

W1

W2
— ^ "

W3

1

0.1 0.2 0.3 0.4 0.5 0.6
Offered Traffic Ratio (n1/n2)

0.7 0.8

Figure 6.7: Change in Wi for {K = 3,C = S) and iJ,2 = 0.8 as n l
increases; nH-(n2/2)=2.95.

K=3,C=3,m=0.8,n1 +(n2/2)=3.5

0.9

0.8

-o 0.7 c
(0

(M

^-0.6

o
<D
2. 0.5
(0 >

0.4

0.3

0.2

1 1 1

WI .

r ' '

: W3

1 1 1

0.1 0.2 0.3 0.4 0.5
Offered Traffic Ratio (n1/n2)

0.6 0.7

Figure 6.8: Change in Wi for (iv = 3,C = 3,) and [12 = 0.8 as n l
increases; nl+(n2/2)=3.5.

141

6.6 The max-flow Bound for Asymmetric Net­

works

In chapter 2 we presented the max-flow bound for the Symmetric networks. Here

we will just give an expression of the linear programming problem whose solution

gives an upper bound on the performance of Asymmetric networks, and present a

few results for networks with K = 3 and C = (Ci, Ci , C 2) .

For the general formula we will consider that the arrival rates for single link and

2-link traffic are (Ai ,Ai ,Ai) and (A 2 , A 2 , A 2) respectively.

The relevant Hnear programming problem^ is

L P l :

max
K

X, < Ai, 2 = 1, . . , /^ ; {K - l)wi < A2, / e Ai

xi + wi + W2 < Ci, X2 + wi + W3 < Ci and X3 + Wi + W3 < C2,Xi,wi > 0.

3 S e e also §2.8

142

Chapter 7

Conclusions

In this thesis Symmetric Starljoss circuit-switched networks which consist of K finks

of the same capacity C linked through a common node were considered. There are

1-link routes and 2-link routes involving any pair of the single links on which calls

can request admission. Arrivals form independent Poisson streams on each route

and the routing is fixed. Dependency arises through occupancy of pairs of circuits.

Both types of calls have the same exponential holding time. For different types of

calls we earn different rewards with the single link calls generating bigger rewards.

The rewards are discounted at a fixed rate.

The operation of the networks is viewed as a Markov Decision Process. In the

networks we investigated stationary policies which accept or reject traffic requests

in order to maximise the Total Expected Discounted Reward (TEDR). We solved

the optimality equation numerically for a range of small examples by using the Policy

Improvement iterative algorithm of Dynamic Programming.

Reduced state-space networks were also considered in which a call on a 2-link route,

once accepted, is split into two independent calls on the links involved. This greatly

reduces the size of the state-space. Finally we looked at Asymmetric Star networks

with different number of circuits per link and different exponential holding times.

143

7.1 Optimal Policies and their Properties

Generally, optimal policies are complex to describe and 'nobody' has exact solutions

except for problems on a single link. Our networks are in some respect the simplest

networks which aren't a single link or two in series but even so only very small

examples can be treated numerically. For such examples we showed how complex

the optimal policies are and found evidence that suggest that the following properties

- except Monotonicity - hold for all the models of networks considered i.e. the full

state-space, reduced state-space and Asymmetric networks:

(a) Dependency on the State-Space The optimal policy depends upon the ful l state

space S and not just the free circuit configurations.

(b) Non-Locality and Disjointness If we reject type j calls in z + then we reject

them in z for call types i and j which are disjoint. Property B means that for calls

which are disjoint, and thus could be widely separated in a network, in general,

the more type i calls in progress, the less likely we are to reject type j calls, and

vice-versa.

(c) Not Disjointness If we reject a type i call in state then we reject it in state

z -\- Ck for calls i and k which are distinct and not disjoint.

(d) Weak Monotonicity In which type k calls are monotonic with respect to them­

selves, that is we assume that for all call types k, if we reject a type k call in state

z, then we reject a type call k in state z -\- Ck-

The property of Monotonicity in which if an arrival for a 2-link call on route k is

rejected in state then it will also be rejected in states ^, where z does not

hold as our examples suggest.

7.2 Admission Price Policies 0

These policies are not optimal but they are believed to be asymptotically optimal

for large networks. In this thesis we investigated if such policies are any good for

small networks. Our results suggest that they are very good for both the ful l and

144

reduced state-space networks; this is also true for some examples of Asymmetric

networks.

Our fl policies are not robust in that they change much as the offered traffics change.

The costs they assume get bigger as Ai increases; this increase translates to more

acceptance of single link traffic which returns a bigger reward than the 2-link one.

The policies reflect clearly the fact that spare capacity has potential worth as we can

use it to carry future calls and that units of spare capacity become more valuable

as the system fills up.

Although not robust, our Admission Price policies have the following very interesting

properties:

(a) they do not change much as K increases. This is of practical importance as

i t suggests that the f i calculated from small networks could be used as a good

approximate for the optimal policy in larger networks. For example, we found that

by applying the 0 policy derived from networks {K,C) = (3,3) to (/ \ ,C) = (4,3)

and (K, C) = (5,3) the results are excellent; and

(b) 0 policies of the reduced state-space model is a very good approximation for the

optimal policy of the ful l model and vice-versa; in both cases very little improvement

is left to be performed by applying them and in some cases none.

Our Admission Price policies were also compared to similar ones suggested in routing

schemes proposed by Ott & Krishnan (1985, 1986) and Key (1990) for an example

with (/^ = 3,C = 3).

7.3 Other Results

In this work, as mentioned earlier, we looked for optimal policies in time where the

state of the network can be described by the state of all current routes. Thus, the

optimal state-dependent routing in our case is a problem of optimal control of a

Markov Decision Process in a huge state-space. Because of the size of the state-

space, numerical calculations are very difficult and any policy which is given in the

form of routing decisions is unimplementable. We comment on the size of the state-

145

space and we discuss the difficulties arising in trying to calculate the state-space for

the Symmetric networks considered in this thesis.

The Value Detemination step in Policy Improvement can be solved by either using

iterative techniques (G-S, SOR) or Gauss Elimination. The actual convergence of

these schemes as well as arguments on the error analysis in relation to the numerical

evaluation of the TEDR for small ^^ar Symmetric networks are examined which

suggest that the the Gauss Elimination solution is more accurate.

Unfortunately, at the time of writing this thesis, the solution of A V = R as well as

the calculation of the condition number were possible for small examples of networks

only. This is due to the difficulty posed by the huge state-space in calculating and

storing A which is in size. Nevertheless, in our examples with {K — 2, C)

and (K = 3,C), where C < 4, the Gauss Ehmination solution V = A~^R agrees

with the SOR solution to the expected precision (i.e. ~ 10~^). That confirms the

accuracy of the SOR algorithm.

In our work we have also tried different over-relaxation (SOR) parameters and the

optimal results in convergence speed (the total number of iterations needed) suggest

that the optimal parameters are different for problems of different size. As we show,

it seems that the variation is associated more with the change in offered traffic rates

than the network size.

146

Appendix A

The Size of the State-space

The exact size of the state space for our Star network with K links of capacity C

and both 1 and 2-link calls is not easy to find. For any given values of K and C

it can be determined with a recursive counting routine carried out on a computer^

but a general asymptotic of a useful nature seems too difficult to find.

To see why this is consider the following counting scheme: for each possible number

of 2-link calls in the network and for each possible arrangement of these calls count

the number of different arrangements of 1-Knk calls using the free circuits remaining

and then sum. Let N{K, C) denote the size of the state space.

For is:=2 we find

i=0 J=l "

since there is only one way to allocate j 2-link calls on this network.

For K=3 the network can carry up to [3C/2] 2-link calls and hence

[3C/2] 3

^See Appendix B . l

147

where the second summation is over all distinct allocations of 2-link calls to the

K = 3 links that satisfy ji +jk^C and the product is the number of arrangements

of 1-link calls in the free capacity left after the allocation of the 2-link calls.

We can describe the general case similarly. Index the K(K — l)/2 distinct 2-Hnk

call types by / and introduce mappings 1(*) and 2(*) to idenitfy from which links a

specific 2-link call requires circuits.

Let P{j) be the set of arithmetic partitions of j into at most K{K — l) / 2 non-zero

parts which satisfy all the constraints

where L{i) = {/ : 1(/) = ^ or 2(/) = i} i.e. the collection of 2-hnk call types that

require a circuit from link i. With this notation we can see that

[KC/2] A'(A'-l)/2

j=0 P(j) 1=1

and this shows the source of the difficulty very clearly.

The problem of counting arithmetic partitions of integers is an old one and has been

much studied (see Hardy and Wright [1960]) but no good asymptotic results have

been found for sets similar but simpler than P{j).

An approximation to iV(A', C) for small K can be found by finding the volume of

an appropriate set in We will consider the case K = 3. The discrete

state space is 6 dimensional so let Xi,X2,X3 correspond to the variables counting 1-

link calls and y-i_,y2,y3 correspond to the variables counting 2-link calls. We require

0 < Xi,yi < C, and

x^ + Y.yl<C, z = 1,2,3.
m

For numbers a, 6 let a A 6 = min (a, b).

148

The volume of the polyhedral region satisfying these constraints is

^ 3 = I I {C - yi{i) - ?/2(o) dx dy
Jy^Jx I

r j- i'{C-yl)A{C-y2)

J J {C - y i - y2){C - y i - ?/3)(C - 2/2 - yz) dyzdy2dyi

ksC

for some constant ks.

In general it seems that when there are K links we will get

AK = kK

7V(ir, C) counts the number of lattice points in a region with volume AK SO as C

becomes large we expect that for fixed K

N{K,C)^kK (C- f 1)^'(^'+^)/'

where the constants kK decreases as K grows.

The numerical calculations of N{K, C) for small C when K = 3,4,5 accord reason­

ably well with this approximation.

K C = 4 C = b C = 6 C = 7 estimated kK

3 1023 2610 5860 11942 4 10-2

4 28746 124074 442918 1366806 2 10-3

5 1131389 8940840 54653970 273816800 4 10-^

Estimating kK from N{K,C).

From this we see that for K = 6 (and so K{K + l) / 2 = 21) the number of states

grows as (C - f 1)^^ and for larger K the rate of growth is even more rapid.

149

Appendix B

Computing

The following programs are written in Unix Berkeley Pascal 5.0.

B . l Counting the States

The following program counts the number of possible states for a Symmetric star-

shaped network with A' = 5 of capacity C = 3. The program can only work with

C < 7. Remember that for the reduced state-space model there is a formula to

calculate the number of possible states; see §1.4.

A state is stored effectively as an array of K[K + l) / 2 elements which contains

information on the number of single and 2-link calls present at this state. Every

new state is given a 'registration' number and is then added into a hash table that

contains the state space; see procedures compactor, key.

I f the hash function was perfect, i t would automatically put every incoming state

into a different spot in the hash table. Unfortunately, hash functions tend to be

imperfect. Unless we make the hash table excessively large, two or more different

states will eventually be sent to the same spot. This is known as a collision. To

solve this problem we have made each state entry the head of a Hnked list. We

store incoming states by adding them to the appropriate linked list. If there is a

150

collision, we add a new element to the linked list associated with the particular hash

value; see definition of pothc and procedures a d d s t a t e t o h a s h t a b l e , f i n d s t a t e ,

compactor, c l e a r h a s h t o r e , i n i t h a s h s t o r e .

IVIost of the procedures found in this programe can be found incorporated in the

programs that perform the policy improvement and calculate the optimal policy as

well as the Total Expected Discounted Reward (TEDR); see Appendix B.2.

Running the following program gives us an idea of the memory needed for storing

the states as well as information about every state.

B.1.1 Program STATECOUNTER

program STATECOUNTER (i n p u t . o u t p u t . S t a t e) ;

c o n s t

NoLinks= 5;
NoAllPos= 15; { t h e number K (K + l) / 2 }
Cap= 3;

hashmaxin= 1135333;
compactlength= 5; { b y t e s needed f o r compact st o r a g e =

(3*MoAllPos)/8 rounded up }

t y p e
{Cap i s as much as 7; i . e . o c t a l }

byte=0..225;
C i r c u i t s = 0..Cap;
Spare = a r r a y [1 . . N o L i n k s] of C i r c u i t s ;
L i n k = a r r a y C l . . N o A l l P o s . l . . 2] of 1..NoLinks;
S t o r e = a r r a y [1 . . N o A l l P o s] of byte;
compact=array[1..compactlength] of byte;
hashnumber=0..hashmaxin;
p o t h c = ' ' c o l l i s i o n l i s t ;
o l l i s i o n l i s t = r e c o r d

r:double;
state:compact;
hcnext:pothc;

end;

v a r
XXX,X : S t o r e ;
L i n k s : L i n k ;
F : Spare;
C u r r e n t , i , j , k , X I : i n t e g e r l 6 ;
p:pothc;

151

Counter : i n t e g e r 3 2 ;
S t a t e : t e x t ;
mrhashnumber;
hashstore:array[hashnumber] of pothc;
t a d d , t c o l l : i n t e g e r 3 2 ;

procedure compactor(var s : S t o r e ; v a r h:compact);
v a r

b l , c h , c s : b y t e ;

begin
h [l] :=s[MoAllPos] ;
f o r ch:=2 t o compactlength do h[ch]:=0;
c s : = N o A l l P o s - l ;
c h : = l ;
bl:=5;
w h i l e cs>0 do c a s e b l of

3..8:begin
h [c h] : = h [c h] + l s h f t (s [c s] , (8 - b l)) ;
b l : = b l - 3 ;
c s : = c s - l ;

end;
2:begin

h [c h] :=h[ch] + (s [c s] mod 4)*64;
ch:=ch+l;
h [c h] : = (s [c s] d i v 4) ;
c s : = c s - l ;
bl:=7;

end;
1:begin

h [c h] :=h[ch] + (s [c s] mod 2)*128;
ch:=ch+l,
h [c h] : = s [c s] d i v 2;
c s : = c s - l ;
bl:=6;

end;
0:begin

ch:=ch+l;
bl:=8;

end;
end;

end;

procedure c l e a r h a s h s t o r e ;

v a r

i:hashnumber;
h,hh:pothc;

b e g i n

f o r i:=0 t o hashmaxin do
begin

h : = h a s h s t o r e [i] ;
w h i l e h O n i l do
begin

hh:=h;
h:=h~.hcnext;
d i s p o s e (h h) ;

end;
end;

152

end;
{*****************•**

procedure i n i t h a s h s t o r e ;
v a r

i:hashnumber;

be g i n
f o r i:=0 t o hashmaxin do h a s h s t o r e [i] : = n i l ;

end;
{**

f u n c t i o n k e y (v a r c:compact):hashnumber; {need not be v a r }
v a r

a , k : i n t e g e r 3 2 ;
i:1..compactlength;

b e g i n
k:=0;
f o r i : = l t o compactlength do
begin

a : = i * ({ n o t } c [i]) ;
k : = k + s q r (a) ;

end;
key:=(k mod hashmaxin);

end;
{*********•**

procedure f i n d s t a t e (v a r y : S t o r e ; v a r h:pothc); {need not be v a r }
v a r

found:boolean;
j : i n t e g e r l 6 ;
c:compact;

b e g i n

compactorCy,c);
h : = h a s h s t o r e [k e y (c)] ;
m:=key(c);
f o u n d : = f a l s e ;

w h i l e not ((h = n i l) or found) do
beg i n

j :=0;
w i t h h" do

r e p e a t
j : = j + l ;
found:= c [j] = s t a t e [j] ;

u n t i l found or (j = N o A l l P o s) ;
i f not found then h:=h~.hcnext;

end;
end;

{ * ^

p r ocedure a d d s t a t e t o h a s h t a b l e (v a r y : S t o r e) ;

v a r
kk:hashnumber,
{ j : i n t e g e r l 6 ; .-
hh:pothc;
c:compact;

begin

153

{ i f (t a d d mod 100)=0 then w r i t e l n (m e m a v a i l , ' ',tadd,' t c o l l) ; }
tadd:=tadd+l;
compactorCy,c);
k k : = k e y (c) ;
{ w r i t e l n (k k) ; }
new(hh);

i f h a s h s t o r e [k k] = n i l then
begin

hashstore[kk]:=hh;
h h " . h c n e x t : = n i l ;

end e l s e begin
t c o l l : = t c o l l + l ;
h h " . h c n e x t : = h a s h s t o r e [k k] ;
h a s h s t o r e [k k] : = h h ;

end;

w i t h hh" do
beg i n

s t a t e : = c ;
end;

{ w r i t e C H N ' , k k : l , ' : ') ;
f o r j : = l to NoAllPos do w r i t e C ' , y [j]) ;
w r i t e l n ;
w r i t e (' c o m p a c t : ') ;
f o r j : = l to compactlength do w r i t e (' ' , c [j] : 3) ;
w r i t e l n ; }

end;

{ The f o l l o w i n g procedure r e c u r s i v e l y counts t h e number }
{ of s t a t e s i n a s t a r network w i t h number of l i n k s as above }
{ each h a v i n g t h e same number (Cap) of c i r c u i t s : t h e network}
{ c a r r i e s 1 and 2 - l i n k c a l l s . }

{**

procedure Count(F : Spare; C u r r e n t : i n t e g e r l 6) ;

v a r
i , L i m i t : i n t e g e r l 6 ;
F l : Spare;
T e s t : boolean;
k : i n t e g e r l S ;

b e g i n

X [C u r r e n t] := 0; F l := F;
i f F [L i n k s [C u r r e n t , 1]] >= F [L i n k s [C u r r e n t , 2]] then

L i m i t := F [L i n k s [C u r r e n t , 2]]
e l s e L i m i t := F [L i n k s [C u r r e n t , 1]] ;

r e p e a t

b e g i n
F l [L i n k s [C u r r e n t , !]] := F [L i n k s [C u r r e n t , 1]] - X [C u r r e n t] ;
i f (L i n k s [C u r r e n t , 2] <> L i n k s [C u r r e n t , 1]) then

F l [L i n k s [C u r r e n t , 2]] := F [L i n k s [C u r r e n t , 2]] - X [C u r r e n t] ;

154

T e s t := f a l s e ; j := NoAllPos + 1;

r e p e a t
b e g i n

j : = j - l ; T e s t := (F l [L i n k s [j , 1]] > 0) and (F l [L i n k s [j , 2]] > 0) ;
end;

u n t i l T e s t or (j = C u r r e n t) ;

i f (j = C u r r e n t) then
begin Counter := Counter + L i m i t + 1;

XXX:=X;
f o r k:=0 t o L i m i t do
b e g i n

a d d s t a t e t o h a s h t a b l e (X X X) ;
XXX[Current]:=XXX[Current]+1;

end;
L i m i t := -1; end

e l s e
b e g i n

C o u n t (F l , C u r r e n t + l) ;
X [C u r r e n t] : = X [C u r r e n t] + 1 ;
L i m i t : = L i m i t - l ;

end;
end;

u n t i l (L i m i t < 0) ;

end; { T h i s ends th e r e c u r s i v e procedure.}

{ * Main Program * }

b e g i n

open(State,'State.txt','unknown');
r e w r i t e (S t a t e) ;

i f Cap>7 th e n
w r i t e l n (' C o m p a c t o r cannot handle C a p a c i t i e s l a r g e r than 7')

e l s e b e g i n

i n i t h a s h s t o r e ;
t c o l l : = 0 ;
tadd:=0;

{ T h i s i d e n t i f i e s what type of c a l l s X[k] r e c o r d s }

f o r i := 1 t o NoLinks do
f o r j := i to NoLinks do
begin

XI := i * (2 * N o L i n k s - i + 1) ; XI := (XI d i v 2) ;
k := XI - (NoLinks - j) ;
L i n k s [k , l] := i ; L i n k s [k , 2] := j ;

end;

f o r i := 1 t o NoLinks do F [i] := Cap;

Counter:= 0;
C u r r e n t : = 1;

155

C o u n t (F , C u r r e n t) ;

w r i t e l n (S t a t e , ' N o L i n k s = ',NoLinks,' C a p a c i t y = ',Cap);
w r i t e l n (S t a t e , ' T h e number of p o s s i b l e s t a t e s = Counter);
w r i t e l n (S t a t e , ' h a s h m a x i n = hashmaxin);

w r i t e l n (' T h e r e w e r e ' , t c o l l : 1 , ' c o l l i s i o n s a l l t o l d i n ' , t a d d : 1 , ' e n t r a n c e s . ') ;

c l e a r h a s h s t o r e ;

end;

end.

156

B.2 Policy Improvement Program

The following program:

a) counts the possible states;

b) performs the value determination step discussed in §2.4.2; see procedure COST;

c) performs the policy improvement analysed in §2.4.1 using the Succesive Over-

Relaxation Algorithm (SOR) presented in §2.4.3; see procedures STATUS, IMPROVE;

d) it effectively stores the optimal policy in the hash table of the states;

e) calculates the Admission Price pohcy Wt as given in §4.1.1;

e) Calculates and stores the optimal value function for every possible state; see

procedure COST.

B.2.1 The Beginning

program vague33(input, output, F i l e 3) ;

{Output of s t a t e s and t h e i r a d d r e s s e s , improvement of p o l i c y i n c l u d e d }

{ 3 , 3 - C a s e / U n i x B e r k e l e y P a s c a l / 1992-1993}

c o n s t
NoLinks=3;
Cap=3;
ee=lE-6; { t o l e r a n c e number}
hashmaxin=953;

NoAllPos=6; {number K(K+l)/2= b e t a }
NoPairs=3; {number K (K - l) / 2 = gamma}

compactlength=3;
{ b y t e s needed f o r compact storage= 3*NoAllpos/8 rounded up}
compactlengthplusl=4;

discount=0 .8; { t h e d i s c o u n t f a c t o r }
omega=1.5; { t h e s o r parameter}

t y p e
b y t e = 0..255;
C i r c u i t s = 0..Cap;
Spare = a r r a y [1 . . N o L i n k s] of C i r c u i t s ;
Sub = a r r a y [1 . . N o L i n k s] of double;
L i n k = a r r a y [1 . . N o A l l P o s , ! . . 2] of 1..NoLinks;

157

S t o r e = a r r a y [1 . . N o A l l P o s] of byte;
A l l = l . . N o A l l P o s ;
P a i r = a r r a y [L . N o P a i r s] of boolean;
E x t r a = a r r a y [l . . N o P a i r s] of i n t e g e r 1 6 ;
Index=array [l . . N o P a i r s] of A l l ;
Co m p a c t = a r r a y [l . . c o m p a c t l e n g t h p l u s l] of byte;
hashnumber=0..hashmaxin;
p o t h c = " c o l l i s i o n l i s t ;
c o l l i s i o n l i s t = r e c o r d

value:double;
{ d i f e r : d o u b l e ; }
approx:Sub;
f r e e c i r c : i n t e g e r l 6 ;
state:Compact;
hcnext:pothc;
P o l i c y : P a i r ;

end;
v a r

F i l e 3 : t e x t ;
L i n k s : L i n k ;
F:Spare; P o l i c y T e s t : b o o l e a n ;
Ind:Index; X:Store;
temp,h:pothc;
t a d d , t c o l l , C o u n t e r : i n t e g e r 3 2 ;
h ashstore:array[hashnumber] of pothc;
AveRewl,AvCostHome, Re l R a t e l , R e l R a t e 2 , N l , N 2 , a , r r r : d o u b l e ;
ITERl,ITER2,ITER3,BETTER,Home,Current,Circ,repet i t i o n : i n t e g e r l 6 ;
Count , w , i , i , l , k , k l , k 2 , k 3 , c o n t r o l , B e t t er,stop,Rewl,Rew2:integer16;
Rate,RR,v,PI,P2,P3,XX,Dif,AbsDif,BigDif,AbsApprox,Par1,Par2:double;
One,Two,Three,Onecount,Twocount,Threecount,f: double;

procedures and f u n c t i o n s * }

p r ocedure COMPACTOR(var s : S t o r e ; v a r h:Compact);

v a r
b l , c h , c s : b y t e ;

b e g i n

h [l] : = s [N o A l l P o s] ;
f o r ch:=2 t o compactlength do h[ch]:=0;
c s : = N o A l l P o s - l ;
c h : = l ;
bl:=5;
w h i l e cs>0 do
c a s e b l of
3..8:begin

h [c h] : = h [c h] + l s h f t (s [c s] , (8 - b l)) ;
b l : = b l - 3 ;
c s : = c s - l ;

end;
2: begin

h [c h] : = h [c h] + (s [c s] mod 4)*64;
ch:=ch+l;
h [c h] : = (s [c s] d i v 4) ;
c s : = c s - l ;
bl:=7;

end;
1: begin

h [c h] :=h[ch] + (s [c s] mod 2)*128;
ch:=ch+l;
h [c h] : = s [c s] d i v 2;
c s : = c s - l ;

158

bl:=6;
end;

0:begin
ch:=ch+l;
bl:=8;

end;
end;

end;

p r o c e d u r e CLEARHASHStoRE;

v a r
i:hashnumber;
h,hh:pothc;

b e g i n
f o r i:=0 t o hashmaxin do
begin

h:=hashstore [i] ;
w h i l e h O n i l do
beg i n

hh:=h;
h:=h~.hcnext;
d i s p o s e (h h) ;

end;
end;

end;
{**

procedure INITHASHStoRE;

v a r
i:hashnumber;

b e g i n

f o r i:=0 t o hashmaxin do h a s h s t o r e [i] : = n i l ;

end;

{ *

f u n c t i o n K E Y (v a r c:Compact):hashnumber; {need not be v a r }

v a r
a , k : i n t e g e r 3 2 ;
i:1..compactlength;

b e g i n
k:=0;
f o r i : = l t o compactlength do
begin

a : = i * ({ n o t } c [i]) ;
k : = k + s q r (a) ;

end;
KEY:=(k mod hashmaxin);

end;
{**

159

procedure FINDSTATE(var yrStore; var h:pothc);
var

nfound:boolean; j : i n t e g e r l 6 ;
c:Compact;

begin
COMPACTOR(y,c);
h:=hashstore[KEY(c)]•
cEcompactlengthplusl] :=0;
nfouna:=true;
while (h O n i l) and (nfound) do
begin

h~.state[compactlengthplusl] : = 1;
j:=0;
repeat
u n t i l c [j] O h " . s t a t e [j] ;
nfound:=j<compactlengthplusl;
i f nfound then h:=h'~ .hcnext;

end;
end;

procedure ADDSTATEtoHASHTABLE(var y:Store);
var

kk:hashnumber;
i : i n t e g e r l 6 ;
nh:pothc;
c:Compact;

begin
{ i f (tadd mod 000)=0 then writeln(memavail,' ',tadd,' ' , t c o l l) ; }
tadd:=tadd+l;
COMPACTOR(y,c);
kk:=KEY(c);
new(hh);
i f hashstore[kk]=nil then
begin

hashstoreCkk]:=hh;
hh~.hcnext:=nil;

end else begin
t c o l l : = t c o l l + l ;
hh".hcnext:=hashstore[kk];
hashstore[kk]:=hh;

end;
with hh" do
begin

state:=c;
value:=20; { i n i t i a l value f o r policy improvement V_0}
f o r j : = l to NoPairs do P o l i c y [j] : = f a l s e ;
f o r j : = l to NoLinks do approx[j]:=0;

end;
end;

160

B.2.2 Value Determination Step

The following procedure performs the value determination step of the policy im­

provement by calculating the optimal value function for the state examined; this

procedure is recursively called for all the possible states of the state-space. It also

calculates the Average Reward by carrying 2-link traffic in the particular state ex­

amined.

procedure COST(XLOCAL:Store; p:pothc; Count 1:integer16; Fl:Spare);
var

i,which,Count2,find,multi,numero:integerl6;
Xpoint:pothc;
Old,AvCostNeighbour,AveRew2:double;
Neighbour,AbsApprox,pprox: Sub; begin

PI
P2
P3

Count2:=0; P1:=0; P2:=0; P3:=0; XX:=0;
Xpoint:=p;
Old:=Xpoint".value;
AvCostHoine:=0; AveRew2:=0;
F1:=F1;
{ i f BETTER=0 then begin

ACCEPT(Fl,Xpoint);
end;}
f o r i : = l to NoPairs do
begin

i f X p oint".Policy[i] then Count2:=Count2+l;
end;

=XLOCAL[1]+XLOCAL[2]+XLOCAL[3]+XLOCAL[4]+XLOCAL[5]+XLOCAL[6];
=NoLinks*Cap;
= (NoLinks-Countl)*Nl+(NoPairs-Count2)*(N2/(NoLinks-l));

XX:=(P2+P3-P1);
XX:=XX*(l/Rate)*01d;
AveRew2:=Rew2*N2*(Count2/RR);
f:= 1-(a/Rate)*(P1+P2-P3);
which:=1;

f o r i : = l to NoLinks do begin
Neighbour[i]:=0; AbsApprox[i]:=0;

end;

f o r i : = l t o NoAllPos do {investigates a l l the possible t r a n s i t i o n s }
begin {from state XLOCAL}

i f XLOCAL[i]<Cap then
begin

XLOCAL[i]:=XLOCAL[i]+l;
FINDSTATE(XLOCAL,p);

161

XLDCAL [i]:=XLOCAL[i]-1;
i f (p O n i l) then
begin

AvCostNeighbour:=p".value;
i f (L i n k s [i , l] = L i n k s [i , 2]) then { l - l i n k a r r i v a l s }
begin

AvCostHome:=AvCostHome+a*RelRatel*AvCostNeighbour;
Neighbour[which]:=AvCostNeighbour;
which:=which+l;

end else begin
f i n d : = i - L i n k s [i , l] ; { 2 - l i n k a r r i v a l s }
i f Xpoint~.Policy[find] then
AvCostHome:=AvCostHome+a*RelRate2*AvCostNeighbour;

end; { i f }
end else begin

i f (L i n k s [i , l] = L i n k s [i , 2]) then begin
Neighbour [which]:=0;
which:=which+l;

end; { i f (Links}
end; { i f p O n i l }

end else begin
i f (L i n k s [i , l] = L i n k s [i , 2]) then begin

Neighbour[which]:=0;
which:=which+l; end; { i f L i n l }

end; { i f XLOC}
i f XLOCAL[i]>0 then {Possible departures}
begin

XLOCAL[i]:=XLOCAL[i]-l;
FINDSTATE(XLOCAL,p);
XLDCAL[i]:=XLOCAL[i] +1;
i f (p O n i l) then begin

AvCostNeighbour:=p".value;
AvCostHome:=AvCostHome+a*XLOCAL[i]*AvCostNeighbour/Rate;

end;
end; { i f }

end; { f o r }

{**The o p t i m a l i t y Equation under Succesive Over-Relaxation (SOR)**}
AvCostHome: = (1-omega)*01d+(omega/f)*(AveRewl+AveRew2+AvCostHome);

Dif:=AvCostHome-01d;
AbsDif:=abs(Dif);

f o r i : = l to NoLinks do begin
i f Neighbour [i]<>0 then begin

pprox[i]:=Neighbour[i]-AvCostHome;
AbsApprox[i]:=abs(pprox[i]);
Xpoint'.approx[i]:=AbsApprox[i] ;

end else begin
AbsApprox[i]:=0;
Xpoint".approx[i]:=0;

end; { i f }
end; { f o r }

162

numero:=0; m u l t i : = l ;
f o r i:=NoLinks downto 1 do begin

numero:=numero+multi*Fl[i];
multi:=multi*10;

end;
{Xpoint ~ . d i f e r : = D i f ; }
Xpoint".freecirc:=numero;
Xpoint".value:=AvCostHome;
i f AbsDif>BigDif then BigDif:=AbsDif;
01d:=0;

end;

procedure COMMON(var Fl:Spare; F:Spare;
Current,Linkl,Link2:integer16;
var j : i n t e g e r l 6) ;

var
Test:boolean;

begin
F l [L i n k l] : = F [L i n k l] - X [C u r r e n t] ;
i f (Linkl<>Link2) then Fl[Link2]:=F[Link2]-X[Current];
Test:=false; j:=NoAllPos+l;
repeat
begin

j : = j - i ;
Test:=(F1[Links[j,1]]>0) and (F l [L i n k s [j , 2]] > 0) ;

end;
u n t i l (Test) or (j=Current);

end;

procedure COMMONHEAD(var Linkl,Link2,Countl,Limit:integerl6;
Current:integerl6; var Fl:Spare;F:Spare);

begin
Linkl:=Links[Current,1] ;
Link2:=Links[Current,2] ;
X[Current]:=0;
Count 1:=0;
i f F[Linkl]>=F[Link2] then Limit:=F[Link2]

else L i m i t : = F [L i n k l] ;
F1:=F;

end;
{**
procedure MAKESTATE(F:Spare; Current:integerl6);
var

Limit,i,j,Count1,Linkl,Link2:integerl6;
Fl:Spare;

begin

163

COMMONHEAD(Linkl,Link2,Count 1,Limit,Current,Fl,F);
repeat

COMMON(F1,F,Current,Linkl,Link2,j);
i f (j=Current) then
begin

Count 1:=0;
f o r i: = l to NoLinks do i f F l [i] > 0 then Count 1:=Count1+1;
f o r j:=Current+l to NoAllPos do X[j]:=0;
while (X[Current]<=Limit) do
begin

i f (X[Current]=Limit) and (Count1>0) and (Linkl=Link2)
then Count1:=Count1-1; {computeValueFncts}

ADDSTATEtoHASHTABLE(X);
X[Current]:=X[Current]+1;
i f X[Current]<=Limit then
begin

i f F l [L i n k l] > 0 then F l [L i n k l] : = F 1 [L i n k l] - 1 ;
i f (Linkl<>Link2) and (Fl[Link2]>0) then

Fl[Link2]:=F1[Link2]-1;
end;

end; {while}
end else begin { i f }

MAKESTATE(Fl,Current+l);
X[Current]:=X[Current]+1;

end; { i f }

u n t i l (X[Current]>Limit); {repeat}
end;

B.2.3 Policy Improvement

The following two procedures perform the policy improvemnt step. In changing the

policy:

(a) In procedure IMPROVE it works out all the policy actions when we are on a

particular state

(b) For each action calculates a value and remembers which action does 'best'. At

the end and in procedure STATUS.

164

Note the termination criterion i f BigDif >ee in the main program.

procedure IMPROVE(Ypoint:pothc; CurrentPair:integerl6;
Z:double; N:Extra;
var Action,BestAction:Pair;
var BigSum:real);

var
w,i,No:integer16; Y,Sum,AvCostNeighbour:double; p:pothc;

begin
w:=0;

repeat
begin

Action[CurrentPair]:=false;
i f w=l then Action[CurrentPair]:=true;
i f w=0 then
begin

AvCostHome:=Ypoint".value;
Y:=Z+RelRate2*AvCostHome;

end else begin
X[Ind[CurrentPair]]:=X[Ind[CurrentPair]]+1;
FINDSTATE(X,p);
X[Ind[CurrentPair]]:=X[Ind[CurrentPair]]-1;
i f p O n i l then begin

AvCostNeighbour:=p".value;
Y:=Z+RelRate2*AvCostNeighbour;

end else begin Y:=Z; end;
end; { i f }

i f CurrentPair<NoPairs then
begin

IMPROVE(Ypoint,CurrentPair+1,Y,N,Act ion,BestAct ion,BigSum);
end else begin

No:=0;
f o r i : = l to NoPairs do
begin

i f A c t i o n [i] then No:=No+l;
end;
Sum:=Rew2*N2*No/RR+a*Y;
i f Sum>BigSum then
begin

BigSum:=Sum;
BestAction:=Action;

end;
end; { i f }

end; {begin}
w:=w+l;

u n t i l w>N[CurrentPair];
end;

procedure STATUS(Fl:Spare; var p:pothc);

165

var
w , l l ,12,CurrentPair:integerlS; Output:boolean;
Action,BestAction:Pair; N:Extra; BigSum,Y,Sum:double;
Ypoint:pothc;

begin
f o r w:=l to NoPairs do
begin

Action[w]:=false;
BestAction[w]:=false;
N[w] :=0:
kl:=Ind[w];
l l : = L i n k s [k l , l] ; 12:=Links[kl,2];
i f (F1[11]>0) and (Fl[12]>0) then N[w] :=N[w]+l;

end;
CurrentPair:=l; Y:=0; Sum:=0; BigSum:=0;
Ypoint:=p;
IMPROVE(Ypo int,CurrentPair,Y,N,Action,BestAction,BigSum);
Output:=false;
f o r w:=l to NoPairs do
begin

i f p".Policy[w]<>BestAction[w] then
begin

p~.Policy [w]:=BestAction[w] ;
Folic ' " icyTest:=false;

end;
i f ITER1>=1 then}

i f (not BestAction[w]) and (N[w]=l) then
begin

Output:=true;
writeln(File3,w);

end;
end;
i f Output then begin

w r i t e l n (F i l e 3 , 'X =' ,X[1] ,X[2] .X[3] ,X[4] ,X[5] ,X[6]);
writeln(File3,'F=',F1[1],F1[2],F1[3]);

end;
end;

procedure FINDAVCOST(F:Spare; Current:integerl6);
var

Limit,i,j,Count1,Linkl,Link2:integer16;
Fl:Spare; p:pothc;

begin
COMMONHEAD(Linkl,Link2,Count1.Limit,Current,Fl,F);

repeat
COMMON(F1,F,Current,Linkl,Link2,j);
i f (j=Current) then
begin

Count 1:=0;

166

f o r i : = l to NoLinks do i f F l [i] > 0 then Count 1:=Count1+1;
f o r j:=Current+l to NoAllPos do X[j]:=0;
while (X[Current]<=Limit) do
begin

i f (X[Current]=Limit) and (Countl>0) and (Linkl=Link2)
then Countl:=Countl-l;

FINDSTATE(X,p);
i f p O n i l then
begin

AveRewl:=Rewl*Nl*(Countl/Rate);
COST(X,p,Countl,Fl);

end else begin
writeln('ERRor-NIL POINTER');

end;
X[Current]:=X[Current]+1;
i f X[Current]<=Limit then
begin

L i n k l
:Link2;

i f F l [L i n k l] > 0 then Fl
i f (Linkl<>Link2) and (F l l

Fl[Link2]:=F1[Link2]-1;
end;

:=F1[Linkl]-1;
>0) then

end; {while}
end else begin { i f }

FINDAVCOST(Fl,Current+l);
X[Current]:=X[Current]+1;

end; { i f }
u n t i l (X[Current]>Limit); {repeat}
end;

procedure USEAVCOST(F:Spare; Current:integer16);
var

Limit,j,Countl,Linkl,Link2:integerl6;
Fl:Spare; p:pothc;

begin
COMMONHEAD(Linkl,Link2,Count 1,Limit,Current,Fl,F);

repeat
COMMON(F1,F,Current,Linkl,Link2,j);
i f (j=Current) then
begin

f o r j:=Current+l to NoAllPos do X[j]:=0;
while (X[Current]<=Limit) do
begin

FINDSTATE(X,p);
i f p O n i l then STATUS (Fl ,p);
X[Current]:=X [Current]+1;

167

i f X[Current]<=Limit then
begin

i f F l [L i n k l] > 0 then F l [L i n k l] : = F 1 [L i n k l] - 1 ;
i f (Linkl<>Link2) and (Fl[Link2]>0) then

Fl[Link2]:=F1[Link2]-1;
end;

end; {while}
end else begin { i f }

USEAVCOST(Fl,Current+l);
X[Current]:=X[Current]+1;

end; { i f }
u n t i l (X[Current]>Limit); {repeat}
end;

{ MAIN PROGRAM }

begin

repeat

Nl:=0.5
Rewl:=2
stop:=l

N2:=4.9; { a r r i v a l rates f o r 1 and 2-link t r a f i c }
Rew2:=l; {rewards f o r 1 and 2-link t r a f f i c }

open(File3,'File3.txt','unknown');
r e w r i t e (F i l e 3) ;

Rate:=(Nl+N2/2+Cap)*NoLinks; {The rates of events}

RelRatel:=Nl/Rate;
RelRate2:=N2/((NoLinks-1)*Rate) ;
RR:=Rate*(NoLinks-l);
Parl:=Nl/N2;
Par2:=Nl+(N2/2);

rrr:=1/Rate;
a:=exp(rrr*ln(discount)); {the alpha"(1/Rate)}
w r i t e l n (F i l e 3 , ' a is=',a);
ITER1:=0; BETTER:=0;
INITHASHStoRE;
t c o l l : = 0 ; tadd:=0;
f o r i : = l to NoLinks do f o r j : = i to NoLinks do
begin

kl:=i*(2*NoLinks-i+l); k2:=(kl div 2);
k:=k2-(NoLinks-j); L i n k s [k , l] : = i ;
L i n k s [k , 2] : = j ; k3:=k-i;
i f i o j then Ind[k3] :=k;

end;
f o r i : = l t o NoLinks do F[i]:=Cap;

168

repeat

Counter:=0; Current:=1;
MAKESTATE(F,Current);

writeln(File3,'NoLinks',NoLinks);
w r i t e l n (F i l e 3 , ' Capacity',Cap);
writeln(Files,'ArrivalRates f o r 1 and 2 l i n k C a l l s =',N1,N2);
writeln(File3,'Rewards Rewl, Rew2=',Rewl,Rew2);
writeln(File3,'ee =',ee);
write l n (F i l e 3 , ' n l / n 2 =',Parl,',','nl+n2/2 =',Par2);
writeln(File3,'hasmaxin' ,hashmaxin);
writeln(File3,'There w e r e ' , t c o l l : 1 , ' c o l l i s i o n s ') ;
w r i t e l n (F i l e 3 , ' A l l t o l d i n ',tadd:1,'entrances');
{CLEARHASHStoRE;}
ITER1:=0; BETTER:=0; ITER3:=0;

BigDif:=0; Count:=0; ITER2:=0;

{ * * * * * s t a r t i n g value determination f o r every state*****}

while (ITER2=0) do
begin

f o r i : = l to NoLinks do F[i]:=Cap
f o r w:=l to NoAllPos do X[w]:=0
Current:=1; BigDif:=0
FINDAVCOST(F,Current);
Count:=Count+l;
i f BigDif>ee then
begin

BigDif:=0;
end else begin

ITER2:=ITER2+1,
h:=hashstore[0] ;
writeln(File3,'AvCost[0]=',h".value);

end: { i f }
end; {while}

- [* * * * * * * * * * s t a r t i n g policy improvement******************}

PolicyTest:=true; {BETTER:=1;}
f o r i : = l t o NoLinks do F[i]:=Cap;
f o r i : = l to NoAllPos do X[i]:=0;
Current:=1;
USEAVCOST(F,Current);
ITER1:=ITER1+1;

u n t i l (ITER1>4) or (PolicyTest);

{end of p o l i c y improvement}

169

{Calculate the Admission Price Policy w's}

B.2.4 Calculating the Q Policy

Search f o r states with part. Fl's **************}

f o r i:=0 to hashmaxin do
begin

i f h a s h s t o r e [i] O n i l then begin {through a l l the possible states}
temp:=hashstore [i] ;
r e petition:=0;
repeat
Circ:=temp~.freecirc; {keep track of t h e i r number of free c i r c u i t s }

i f Circ=013 then begin
Three:=Three+temp".approx[3];
One:=One+temp".approx[2] ;
Onecount:=Onecount+l;
Threecount:=Threecount+l; end;

i f Circ=033 then begin
Three:=Three+temp".approx[3];
Three:=Three+temp".approx[2] ;
Threecount:=Threecount+l;
Threecount:=Threecount+l; end;

i f Circ=023 then begin
Two:=Two+temp".approx[2] ;
Three:=Three+temp".approx[3];
Twocount:=Twocount+l;
Threecount:=Threecount+l; end;

i f Circ=011 then begin
One:=One+temp".approx[2];
One:=One+temp".approx[3] ;
Onecount:=Onecount+l;
Onecount:=Onecount+l; end;

i f Circ=010 then begin
One:=One+temp".approx[2];
Onecount:=Onecount+l; end;

i f Circ=022 then begin
Two:=Two+temp~.approx[3];
Two:=Two+temp".approx[2] ;
Twocount:=Twocount+l;
Twocount:=Twocount+l; end;

i f Circ=021 then begin
Two:=Two+temp".approx[2];
One:=One+temp".approx[3] ;
Onecount:=Onecount+l;

170

Twocount:=Twocount+l; end;
i f Circ= 030 then begin

Three:=Three+temp~.approx[2] ;
Threecount:=Threecount+l; end;

i f Circ= 012 then begin
One:=One+temp".approx[2]
Two:=Two+temp".approx[3]
Onecount:=Onecount+l;
Twocount:=Twocount+l;

i f Circ=020 then begin
Two:=Two+temp~.approx[2]
Twocount:=Twocount+l;

end;

end;
i f Circ= 003 then begin

Three:=Three+temp".approx[3] ;
Threecount:=Threecount+l; end;

{check i f there was a c o l l i s i o n }
t emp:=t emp".hcnext;

u n t i l (temp=nil);
end; { i f }

end; { f o r }

Wl
W2
W3

=One/Onecount;
=Two/Twocount;
=Three/Threecount;

{calculates the w's}

writeln(File3,'Ws =',W1,',',W2);
writeln(File3,W3);

{***}
stop:=stop+l; {repeat f o r d i f f e r e n t a r r i v a l rates}

i f (stop=2) then begin
i f (stop=3) then begin
i f (stop=4) then begin
i f (stop=5) then begin

Nl =0. 7; N2 =4.5; Rewl =2; Rew2:=l; end;
Nl =1; N2 =3.9; Rewl =2; Rew2:=l; end;
Nl = 1. 3; N2 =3.3; Rewl =2; Rew2:=l; end;
Nl = 1. 5; N2 =2.9; Rewl =2; Rew2:=l; end;

Nl =0. 5; N2 =6; Rewl =2; Rew2:=l; end;

Nl =2; N2 = 16; Rewl =2; Rew2:=l; end;
u n t i l (stop>36);
end.

171

B.3 The Reduced State-Space Model

The following program contains the policy improvement for a reduced state-space

network as presented in Chapter 5.

progreim SPLITimprovement(input,output,Split43);
{ 2 - l i n k c a l l s s p l i t t i n g model; Calculates the r e l a t i v e values w }
const

NoLinks = 4;
Cap = 3;
NoPairs = 6 ; {the number K(K-l)/2}
Nostates = 256 ;
ee= lE-6;
discount= 0.8;

type
C i r c u i t s = 0..Cap;
NoPostates = array [0..Cap,0..Cap,0..Cap,0..Cap] of r e a l ;
Strategy = array [0..Cap,0..Cap,0..Cap,0..Cap,1..6] of integerl6;
Sub = array [1..NoLinks] of r e a l ;
Spare = array [1..NoLinks] of C i r c u i t s ;
pothc = record

f r e e c i r c : integerl6;
approx: Sub

end;

var
Split43: t e x t ;
PolicyTest: boolean;
Policy,CheckPolicy: Strategy;
AvCost,AveRewl,AveRew: NoPostates;
state: array [0..Cap,0..Cap,0..Cap,0..Cap] of pothc;
X, Y,Z,U,1,Count,BiglTER,Count 1,Count2,w: integer16;
ITER,i,j,k,Rewl,Rew2,stop,which,I5pass: integer16;
multi,numero,Circ: integerl6;
XI, X2,X3,X4,X5,X6,X7,RelRatel,RelRate2,Yl,Y2,Y3,Y4,Y5,Y6: r e a l ;
Dif,AbsDif,Num,Sum,BigSum,AveRew2,X8,X9,X10,Xll,a: r e a l ;
Rate,PI,P2,P3,P4,XX,RR,Costs,BigDif,Old,N1,N2,rrr: r e a l ;
Neighbour, AbsApprox, pprox: Sub;
F l : Spare;
status: pothc;
OneSum,TwoSum,ThreeSum: r e a l ;
OneCount,TwoCount,ThreeCount,wl,w2,w3: r e a l ;
Il,I2,I3,I4,I5,I6,Ilpass,I2pass,I3pass,I4pass: integerl6;
Postl,Post2,Post3,Post4,Posts,Post6,I6pass: integer16;

{**
begin
open(Split43,'Split43.txt','unknown');
r e w r i t e (S p l i t 4 3) ;
Rewl:=2; Rew2:=l;
Nl:=0.5; N2:=4.9;

172

stop:= 1;
repeat
Rate:=(Nl+N2/2+Cap)*NoLinks;

{ f o r various pairs of Nl and N2}
{calculate the rates of events}

rrr:=1/Rate;
a:=exp(rrr*ln(discount));
w r i t e l n (S p l i t 4 3 , ' a is=',a);
w r i t e l n (S p l i t 4 3 , ' a r r i v a l s are=',N1,',',N2);
RelRatel:=Nl/Rate;
RelRate2:=N2/((NoLinks-l)*Rate);
RR:=Rate*(NoLinks-l);

{ i n i t i a l i z e the arrays}
= 0 to Cap do
= 0 to Cap do
= 0 to Cap do
= 0 to Cap do

f o r i :
f o r i :
f o r k:
f o r 1:
begin

AveRew[i,j,k,l]:= 0;
AveRewl[i,j,k,l]:= 0;
f o r w:=l to NoPairs do P o l i c y [i , j , k , l , w] : = 0 ;
A v C o s t [i , j , k , l] : = 20;

end;

=0 to Cap do
=0 to Cap do
=0 to Cap do
=0 to Cap do

f o r X:=0 to Cap do {calculates the AveRewl f o r single t r a f f i c }
f o r Y: - -
f o r Z:
f o r U:
begin

Countl:=0;
i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then
begin

i f (X<Cap) then Countl:=Count1+1;
i f (Y<Cap) then Countl:=Count1+1;
i f (Z<Cap) then Countl:=Countl+l;
i f (U<Cap) then Countl:=Count1+1;

end;
AveRewl[X,Y,Z,U]:=Rewl*Nl*(Countl/Rate);

end;

BigITER:=0;

repeat {including the improvments}
BigDif:=0; ITER:=0; Count:=0;

B.3.1 Value Determination Step

repeat { j u s t the finavCost routines}

173

Count:=Count+l;
f o r X:=0 to Cap do
f o r Y:=0 to Cap do
f o r Z:=0 to Cap do
f o r U:=0 to Cap do
begin

i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then
begin

Count1:=0;
status:= state[X,Y,Z,U] ;
i f (X<Cap) then Count 1:=Count1+1;
i f (Y<Cap) then Count 1:=Count1+1;
i f (Z<Cap) then Count1:=Count1+1;
i f (U<Cap) then Count 1:=Count1+1;
F l [l]
F l [2]
F l [3]
F l [4]

Cap
Cap
Cap
Cap

01d:= AvCost[X,Y,Z,U];
AvCost [X,Y,Z,U]:= 0;
Count2:=0;
which:= 1;
f o r j : = l to NoLinks do
begin

Neighbour[j]:=0;
AbsApprox[j]:=0;

end;

X1:=0; X2:=0; X3:=0; X4:=0; X5:=0; X6:=0;
X7:=0; X8:=0; X9:=0; X10:=0; X11:=0;
i f (X<Cap) then
begin

XI:= a*RelRatel*AvCost[X+l,Y,Z,U];
Neighbour[which]:= AvCost[X+1,Y,Z,U];
which:= which + 1;
i f (Y<Cap) then begin
X2:= a*RelRate2*Policy[X,Y,Z,U,l]*AvCost[X+l,Y+l,Z,U] ;

end;
i f (Z<Cap) then begin
X3:= a*RelRat e2*Poli cy[X,Y,Z,U,2]*AvCo st[X+1,Y,Z+1,U];

end;
i f (U<Cap) then begin
X4:= a*RelRate2*Policy[X,Y,Z,U,3]*AvCost[X+l,Y,Z,U+l];

end;
end else begin

Neighbour[which]:= 0;
which:= which+1;

end;

i f (Y<Cap) then
begin

X5:= a*RelRatel*AvCost[X,Y+l,Z,U] ;
Neighbour[which]:= AvCost[X,Y+1,Z,U];
which:= which + 1;

174

i f (Z<Cap) then begin
X6:= a*RelRate2*Policy[X,Y,Z,U,4]*AvCost[X,Y+l,Z+l,U] ;

end;
i f (U<Cap) then begin

X7:= a*RelRate2*Policy[X,Y,Z,U,5]*AvCost[X,Y+1,Z,U+1];
end;

end else begin
Neighbour[which]:= 0;
which:= which+1;

end;

i f (Z<Cap) then
begin

X8:= a*RelRatel*AvCost[X,Y,Z+l,U];
Neighbour[which]:= AvCost[X,Y,Z+1,U];
which:= which + 1;
i f (U<Cap) then begin

X9:= a*RelRate2*Policy[X,Y,Z,U,6]*AvCost[X,Y,Z+l,U+l] ;
end;

end else begin
Neighbour[which]:= 0;
which:= which+1;

end;

i f (U<Cap) then
begin

X10:= a*RelRatel*AvCost[X,Y,Z,U+l];
Neighbour[which]:= AvCost[X,Y,Z,U+1];
which:= which + 1;

end else begin
Neighbour [which]:= 0;
which:= which+1;

end;

X l l : = X*AvCost[X-l,Y,Z,U] + Y*AvCost[X,Y-1,Z,U] + Z*AvCost[X,Y,Z-1,U];
X l l : = X l l + U*AvCost[X,Y,Z,U-l];
X l l : = a*(Xll/Rate);
Count2:= Policy[X,Y,Z,U,l] + Policy[X,Y,Z,U,2] + Policy[X,Y,Z,U,3];
Count2:= Count2 + Policy [X,Y,Z,U,4] + Policy[X,Y,Z,U,5];
Count2:= Count2 + Policy[X,Y,Z,U,6];
PI
P2
P3
XX
XX

= X+Y+Z+U;
= NoLinks*Cap;
= (NoLinks-Countl)*Nl+(NoPairs-Count2)*(N2/(NoLinks-l)) ;
= (P3+P2-P1);
= XX*(l/Rate)*01d;

AveRew2:= Rew2*N2*(Count2/RR);

Costs:= XI + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + XIO + X l l + a*XX;
AvCost[X,Y,Z,U]:= AveRewl[X,Y,Z,U] + AveRew2 + Costs;

Dif:= AvCost[X,Y,Z,U] - Old;
AbsDif:= abs(Dif);
01d:= 0;

i f AbsDif>BigDif then BigDif:=AbsDif;

f o r j := 1 to NoLinks do

175

begin
i f Neighbour[j]<>0 then
begin

pproxCj]:= NeighbourCj] - AvCost [X,Y,Z,U];
AbsApproxCj]:= abs(pprox [j]) ;
s t a t e [X ,Y,Z,U].approx[j]:= AbsApprox[j];

end e l s e
begin
AbsApproxLj]:= 0;
state[X,Y,Z,U] .approxCj] := 0;

end;
end;

numero:= 0; mult i : = 1;
f o r j : = NoLinks downto 1 do begin

numero:= numero + m u l t i * F l [j] ;
m u l t i : = m u l t i * 1 0 ;

end;
s t a t e [X , Y , Z , U] . f r e e c i r c : = numero;

end; end;

i f BigDif>ee then
begin

B i g D i f : = 0 ;
end e l s e begin

ITER:=ITER+1;
w r i t e l n (S p l i t 4 3 , ' A v C o s t [0] = ' , A v C o s t [0 , 0 , 0 , 0]) ;
{ w r i t e l n (S p l i t 4 3 , ' C o u n t is='.Count);}
{ w r i t e l n (S p l i t 4 3 , ' e e i s = \ e e) ; }
B i g D i f : = 0 ;

end;

u n t i l (ITER>0);

B.3.2 Policy Improvement

Policy-Test := t r u e ;
BigSum:= 0;

=0 t o Cap do
=0 t o Cap do
=0 t o Cap do
=0 t o Cap do

f o r i
f o r j
f o r k
f o r 1
begin
C h e c k P o l i c y [i , j , k , l , l]
C h e c k P o l i c y C i , j , k , l , 2]
C h e c k P o l i c y L i , j , k , l , 3]
C h e c k P o l i c y [i , j , k , l , 4]
C h e c k P o l i c y L i , j , k , l , 5]
C h e c k P o l i c y L i , j , k , l , 6]

end;

=0
=0
=0
=0
=0
=0

176

f o r X
f o r Y
f o r Z
f o r U

=0 t o Cap do
=0 t o Cap do
=0 t o Cap do
=0 t o Cap do begin

i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then begin
l l p a s s : = 0 ; I2pass:=0; I3pass:=0;
I4pass:=0; I5pass:=0; I6pass:=0;
i f (X<Cap) and (Y<Cap) then I l p a s s : = l
i f (X<Cap) and (Z<Cap) then I2pass:=l
i f (X<Cap) and (U<Cap) then I3pass:=l
i f (Y<Cap) and (Z<Cap) then I4pass:=l
i f (Y<Cap) and (U<Cap) then I5pass:=l
i f (Z<Cap) and (U<Cap) then I6pass:=l

BigSum
f o r 11
f o r 12
f o r 13:
f o r 14:
f o r 15:
f o r 16:

Y l :
Y2:
Y3:
Y4:
Y5:
Y6:

=0;
=0 t o I l p a s s do
=0 t o I2pass do
=0 t o I3pass do
=0 t o I4pass do
=0 t o I5pass do
=0 t o I6pass do begin
=RelRate2
=RelRate2
=RelRate2
=RelRate2
=RelRate2
=RelRate2

*Il*AvCost
*I2*AvCost
*I3*AvCost
*I4*AvCost
*I5*AvCost
*I6*AvCost

[X+1,Y+1,Z,U:
•x+i,Y,z+i,u:
•X+l,Y,Z,U+i:
•x,Y+i,z+i,u:
•X,Y+l,Z,U+i:
"X,Y,Z+1,U+1'

Nuin:= Y1+Y2+Y3+Y4+Y5+Y6;
Num:= Num + (MoPairs-Il-I2-I3-I4-I5-I6)*AvCost[X,Y,Z,U]*RelRate2;

AveRew2:= Rew2*M2*(I1+I2+I3+I4+I5+I6)/RR;
Sum:= AveRew2 + a*Num;

{ f i n d the maximum sum}
i f Sum>BigSum then
begin

BigSum:= Sum;
P o s t l : = I l
Post2:=I2;
Post3:=I3;
Post4:=I4;
Post5:=I5;
Post6:=I6;

end;
end; { f o r l o o p }

CheckPolicyCX,Y,Z,U,l]
CheckPolicyCX,Y,Z,U,2]
CheckPolicy[X,Y,Z,U,3]
CheckPolicy[X,Y,Z,U,4]
CheckPolicy[X,Y,Z,U,5]
CheckPolicy[X,Y,Z,U,6]

P o s t l
Post2
Post3
Post4
Posts
Posts

f o r w:= 1 t o NoPairs do
begin

177

i f CheckPolicy[X,Y,Z,U,w]<>PolicyLX,Y,Z,U,w] then
begin

Policy[X,Y,Z,U,w]:= CheckPolicyLX,Y,Z,U,w];
PolicyTest:= f a l s e ;

end;
end;

end; end;

BigITER:=BigITER+l;

u n t i l (BigITER>4) or (P o l i c y T e s t) ;

{end of improvement}
OneSum:=0; TwoSum:=0; ThreeSum:=0;
OneCount:=0; TwoCount:=0; ThreeCount:=0;

f o r X
f o r Y
f o r Z
f o r U

=0 t o Cap do
=0 t o Cap do
=0 t o Cap do
=0 t o Cap do begin

i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then begin

{ t h r o u g h a l l t h e p o s s i b l e s t a t e s }
s t a t u s : = state[X,Y,Z,U];
C i r c : = s t a t u s . f r e e c i r c ; {keep t r a c k of t h e i r F's}

i f Circ=0013 then begin
OneSum:= OneSum+stateLX,Y,Z,U].approxC3] ;
OneCount:= OneCount+1;
ThreeSum:= ThreeSum+stateLX,Y,Z,U].approx[4];
ThreeCount:= ThreeCount+1;

end;

i f Circ=0020 then begin
TwoSum:= TwoSum+stateLX,Y,Z,U].approx[3];
TwoCount:= TwoCount+1;

end;
end; end; { f o r }
Wl:= OneSum/OneCount; W2: = TwoSum/TwoCount;
W3:= ThreeSum/ThreeCount;
w r i t e l n (S p l i t 4 3 , W l , ' ,' ,\]2,' ,' ,W3);
stop:= stop + 1;

i f (stop=2) then begin Nl:=0.7; N2:=4.5; end;

u n t i l (stop>30);
end.

178

B . 4 Employ ing the fl Policy

The following sample contains procedures as well as part of the main program which
is used to employ the fl policy calculated from programs similar to those in Appendix
B.2 as the admission rule on accepting or rejecting 2-link calls.

program vague35readwValues(input, o u t p u t , F i l e 3 5 w) ;
{3-5 case; w's read from vague35.pas, s t o r e d i n F i l e 3 5 ;
read t h e w values and f i n d t h e w-optimal V_w(0)}

const
NoLinks=3; Cap=5;
ee=lE-6;
hashmaxin=5531;
NoAllPos=6; NoPairs=3;
compactlength=3;
{ b y t e s needed f o r compact storage= 3*NoAllpos/8 rounded up}
compactlengthplusl=4;
discount=0.8;

t y p e
byte = 0..255;
C i r c u i t s = O..Cap;
Capnumb=0..Cap;
Spare = array[1..NoLinks] of C i r c u i t s ;
Walues = array[Capnumb] of r e a l ;
L i n k = arrayCl..NoAllPos,!..2] of 1..NoLinks;
Store = array[1..NoAllPos] of byte;
A l l = l . . N o A l l P o s ;
E x t r a = a r r a y [1..NoPairs] of i n t e g e r l 6 ;
Index=array [1..NoPairs] of A l l ;
Compact=array[1..compactlengthplusl] of by t e ;
hashnumber=0..hashmaxin;
p o t h c = " c o l l i s i o n l i s t ;
c o l l i s i o n l i s t = r e c o r d

v a l u e : r e a l ;
state:Compact;
hcnext:pothc;

end;

procedure COMPACTOR
procedure CLEARHASHSTORE
procedure KEY
procedure FINDSTATE
procedure ADDSTATEtoHASHSTABLE..

179

procedure COST(XLOCAL:store; p:pothc; Count 1 : i n t e g e r l 6 ; Fl:Spare);
var

begin

i,kl,11,12,Count2:integer16;
Old,AvCostNeighbour,AveRew2:real;

Xpoint:pothc;

Count2:=0; P1:=0; P2:=0; P3:=0; XX:=0;
Xpoint:=p;
Old:=Xpoint".value;
AvCostHome:=0; AveRew2:=0;
F1:=F1;
f o r i : = l t o MoPairs do
begin

k l : = I n d L i] ;
l l : = L i n k s [k l , l] ; 1 2:=LinksLkl,2];
i f WLFlLll]]+WLFlLl2]]<=Rew2 then Count2:=Count2+l;

end;

f o r i : = l t o NoAllPos do
begin

i f XLOCALLi]<Cap then
begin

XLOCAL Li]:=XLOCAL L i] + 1;
FINDSTATE(XLOCAL,p);
XLOCAL [i]:=XLOCAL L i] - 1 ;
i f (p O n i l) then
begin

AvCostNeighbour:=p~.value;
i f (L i n k s L i , l] = L i n k s L i , 2]) then
begin

AvCostHome:=AvCostHome+a*RelRatel*AvCostNeighbour;
end else begin

1 1 : = L i n k s L i , l] ; {employing t h e Omega p o l i c y }
1 2 : = L i n k s L i . 2] •
i f WLFlLll]J+WLFlLl2]]<=Rew2 then

AvCostHome:=AvCostHome+a*RelRate2*AvCostNeighbour;
end; { i f (L i n }

end; { i f p O n i l }
end; { i f XLOCAL}

procedure COMMONHEAD(var L i n k l , L i n k 2 , C o u n t l , L i m i t : i n t e g e r l S ;
C u r r e n t : i n t e g e r l S ; var Fl:Spare;F:Spare);

procedure MAKESTATE(F:Spare; C u r r e n t : i n t e g e r l S) ;

{ •

begin

-MAIN PROGRAM-

Nl:=0.5; N2:=4.9; Rewl:=2; Rew2:=l;
stop:=25; WLO]:=99999;

:=0.5699; W
3]:=0.2307; W

2]:=0.2766;
' :=0.1566;

180

repeat

W[5]:=0.1321;
open(File35w,'File35w.txt','unknown');
r e w r i t e (F i l e 3 5 w) ;

Rate:=(Nl+N2/2+Cap)*NoLinks;

i f (stop=28) then begin
Nl:=1.3; N2

:=0.7249
=0.1891

i f (stop=29) then begin

=5.4;
W[2]:=0.3673; W[3]:=0.3055; W[4]:=0.2203;
end;

Nl:=1.6; N2
=0.7776
:=0.1850

=4.

i f (stop=30) then begin
W[2]:=0.3927; W[3]:=0.3030; W [4]:=0.2193;
end;

Nl:=2; N2
W[l]:=0.8508
W[5]:=0.1811

=4;
W[2]:=0.4403; W[3]:=0.3174; W[4]:=0.2262;
end;

u n t i l (stop>30);
end.

181

B . 5 W h a t Happens as ~ 2Ri

In this section we present parts of an un-finished program in which after the optimal

policy onrejecting 2-link calls, we examine policy improvement by rejecting 1-link

calls in order to maximise the TEDR; see also in §3.4. Most parts of the following

program are included in program in Appendix B.2.

procedure IMPROVER(Ypoint: pothc; CurrentSingle: i n t e g e r l 6 ;
Z: double; N: Extra;
var Actionb,BestActionb: T r a f f i c ;
var BigSumb: double);

var
w,i,No: i n t e g e r l 6 ; Y,Sumb,AvCostNeighbour: double; p: pothc;

begin

w:=0;
repeat
begin

A c t i o n b L C u r r e n t S i n g l e] : = f a l s e ;
i f w=l then A c t i o n b [C u r r e n t S i n g l e] : = t r u e ;
i f w=0 then
begin

AvCostHome:=Ypoint".value;
Y:=Z+RelRatel*AvCostHome;

end else begin
X [I n d [C u r r e n t S i n g l e]] : = X [I n d [C u r r e n t S i n g l e]] + 1 ;
FINDSTATE(X,p);
X [I n d [C u r r e n t S i n g l e]] : = X [I n d [C u r r e n t S i n g l e]] - 1 ;
i f p O n i l then begin

AvCostNeighbour:=p'~ .value;
Y:=Z+RelRatel*AvCostNeighbour;

end else begin Y:=Z; end;
end; { i f }

i f CurrentSingle<NoLinks then
begin

IMPROVER(Ypoint,CurrentSingle+1,Y,N,Act ionb,BestAct ionb,BigSumt
end else begin

No:=0;
f o r i : = l t o NoLinks do
begin

i f A c t i o n b [i] then No:=No+l;
end;
Sumb:=Rewl*Nl*(No/Rate)+a*Y;
i f Sumb>BigSumb then
begin

BigSumb:=Sumb;
BestActionb:=Actionb;

end;
end; { i f }

end; { b e g i n }

182

w:=w+l;
u n t i l w>NLCurrentSingle];

end;

procedure STATUSB(F1:Spare; var p:pothc);
var

w. Cu r r e n t S i n g l e : i n t e g e r l 6 ; Output: boolean;
Actionb,BestActionb: T r a f f i c ;
N: E x t r a ;
BigSumb,Y,Sumb: double; Ypoint: pothc;

begin
f o r w:=l t o NoLinks do
begin

ActionbLw]:=false;
BestActionbLw]:=false;
N L W] :=0;
i f (FlLw]>0) then NLw] := N L W] + 1 ;

end;
C u r r e n t S i n g l e : = l ; Y:=0; Sumb:=0; BigSumb:=0;
Ypoint:=p;
IMPROVER(Ypoint,CurrentSingle,Y,N,Actionb,BestActionb,BigSumb);

Output:=false;
f o r w:=l t o NoLinks do
begin

i f p".SingleLw]<>BestActionbLw] then
begin

3 ~ . S i n g l e Lw]:=BestActionb Lw];
P o l i c y S i n g l e : = f a l s e ;

end;
i f ITER1>=1 then

i f (not BestActionbLw]) and (N L W] = 1) then
begin

Output:=true;
writeln(change,'oops change=',w);

end;
end;

i f Output then begin
writeln(change,'CHANGING the OPTIMAL POLICY');
w r i t e l n (c h a n g e , 'Xb =' ,XLl] ,XL2] ,XL3] ,XL4] ,XL5] ,XL6]) ;
writeln(change,'Fb=',F1Ll],F1L2],F1L3]);
w r i t e l n (c h a n g e , ' ') ;

end;

{ I n t h e main program}
RejectXY:=0;

P o l i c y T e s t : = t r u e ;
f o r i : = l t o NoLinks do FLi]:=Cap;
f o r i : = l t o NoAllPos do XLi]:=0;

183

Current:=1;
USEAVCOST(F,Current); ITERl:=ITER1+1;
writeln(change,'No States XY was o p t i m a l l y rejected=',RejectXY);

u n t i l (ITER1>4) or (P o l i c y T e s t) ;
writeln(change,'Check i f t h e r e i s a change i n Optimal P o l i c y ') ;

ITERb:=0;
repeat

P o l i c y S i n g l e : = t r u e ;
f o r i : = l t o NoLinks do F[i]:=Cap;
f o r i : = l t o NoAllPos do X [i] : = 0 ;
Current:=1;
USEAVC0ST2(F,Current);
ITERb:=ITERb+l; ITER2:=0;
Big D i f : = 0 ; Count:=0; ITER2:=0;
w h i l e (ITER2=0) do
begin

f o r i : = l t o NoLinks do F[i]:=Cap
f o r w:=l t o NoAllPos do X[w]:=0
Current:=1; BigDif:=0
FINDAVC0ST2(F,Current);
Count:=Count+l;
i f BigDif>ee then
begin

BigDif:=0;
end else begin

ITER2:=ITER2+1-
h:=hashstore[0] ;
writeln(change,'Changing r e j e c t i o n of S i n g l e ') ;
writeln(change,'AvCost[0]bb = ', h". v a l u e) ;

end; { i f }
end; { w h i l e }

u n t i l (ITERb>3) or (P o l i c y S i n g l e) ;
r e p e t i t i o n : = r e p e t i t i o n + l ; Rewl:=1;

i f (r e p e t i t i o n = 2) then begin Rew2:=1.9; end;
i f (r e p e t i t i o n = 3) then begin Rew2:=2; end;
i f (r e p e t i t i o n = 4) then begin Rew2:=2.3; end;

u n t i l (r e p e t i t i o n > 4) ;

184

Bibliography

A C K E R L E Y , R . G .

(1987) Hysterisis-type Behaviour in Networks with Extensive Overflow. British

Telecom Technol. J., 5.

A K I N P E L U , J . M .

(1984) The Overload Performance of Engineered Networks with Nonhierarchical and

Hierarchical Routing. Bell System Technical Journal, 63, 126-181.

A S H , G . R .

(1985) Use of Trunk Status Map for Real-Time DNHR. Proceedings of the 11th

Teletraffic Congress, Kyoto.

A S H , G . R . , C A R D W E L L , R . H . and M U R R A Y , R . R

(1981) Design and Optimisation of Networks with Dynamic Routing. Bell Systems

TechnicalJournal, Vol.60, 1787-1820.

B L A C K W E L L , D.

(1965) Discounted Dynamic Programming. The Annals Of Mathematical Statistics,

Vol.36, 226-235, University of California, Berkeley.

(1967) Possitive Dynamic Programming. Proc. Berkeley Symp. Math. Stat. Prob­

ability, 5th, 415-418.

B U R D E N , R . L . , F A I R E S , J . D .

(1989) Numerical Analysis. (4th Edition). PWS-KENT Publishing Company,

185

Boston.

B U R M A N , D . Y . , L E H O C Z K Y , J .P . and L I M , Y .

(1984) Insensitivity of blocking probabihties in a circuit- switched Network. Journal

of Applied Probability 21: 850-859.

C A R R O L L , L .

(1865) Alice's Adventures in Wonderland. Oxford University Press, 1982.

F E L L E R , W .

An Introduction to Probability theory and its Applications. Vol. I (1966), Vol. I I

(1968). John Wiley & Sons.

F O R S Y T H , G . E . and M O L E R , C . B .

(1967) Computer Solution of Linear Algebraic Systems. Prentice-Hall.

F O S C H I N I , G . J . , G O P I N A T H , B . and H A Y E S , J . F .

(1981) Optimum Allocation of Servers to Two Types of Competing customers. IEEE

Transactions on Communications 29: 1051-1055.

G I B B E N S , R . J .

(1986) Some Aspects Of Dynamic Routing In circuit- switched Telecommunication

Networks. Statistical Laboratory, University of Cambridge.

G I B B E N S , R . J . and K E L L Y , F . R

(1990) Dynamic Routing In Fully Connected Networks. IMA Journal of Mathemat­

ical Control and Information, 7, 77-111.

G I B B E N S , R . J . , K E L L Y , F . R and K E Y , R B .

(1989) Dynamic Alternative Routing - ModeUing and Behaviour. Teletraffic Science

for New Cost-Effective Systems, Networks and Services, 12th International Teletraf­

fic Congress, 1019-1025, Amsterdam: Elsevier.

186

G I R A R D , A.

(1985) Blocking Probability of noninteger groups with trunk reservation. IEEE

Transactions on Communications 33:113-120.

H A G E M A N , L . A . , and Y O U N G , D. M.

(1981) Applied Iterative Methods. Academic Press.

H A R D Y , G . H . and W R I G H T , E . M .

(1960) An Introduction to the Theory of Numbers. Oxford Academic Press, 4th

edition.

H A R V E Y , C . and H I L L S , C . R .

(1979) Determining Grades of Service in a Network. 9th International Teletraffic

Congress.

H E Y M A N , D . R

(1985) Asymptotic Marginal Independence in Large Networks of Loss Systems,. Presented

at ORSA/TIMS Applied Probability Conference, Williamsburg, Va. January. Bell

Communications Research, Homdel.

H O W A R D , R . A .

(1960) Dynamic Programming and Markov Processes. The M.I.T. Press.

H U N T , R J . and L A W S , C . N .

(1993) Asymptotically Optimal Loss Network Control. Mathematics of Operations

Research, Vol. 18, No. 4.

J A G E R M A N , D . L .

(1974) Some Properties of the Erlang Loss Formula. The Bell System Techn. Jour­

nal, Vol.53, No.3, 525-551.

K A H A N

See Burden and Faires (1989) .

187

K A R L I N , S. and T A Y L O R , H . M .

(1975) A first Course in Stochastic Processes. Academic Press.

(1981) A second Course in Stochastic Processes. Academic Press.

K E L L Y , F . R

(1979) Reversibility and Stochastic Networks. John Wiley & Sons.

(1985) Stochastic Models of Computer Communications systems. J. R. Statist. Soc.

47, No.3, 379-395.

(1986) Blocking Probabilities in large Circuit-Switched Networks. Adv. Appl. Prob.,

18, 473-505.

(1987) One-dimensional Circuit-Switched Networks. Ann. Prob. 15, 1166-1179.

(1988) Routing i ln Circuit-Switched Networks: Optimization, Shadow Prices and

DecentraHzation. Adv. Appl. Prob., 20, 112-144.

(1990) Routing and Capacity Allocation in Networks with Trunk Reservation. Math.

Oper. Res., 15, No. 4, 771-793.

(1991) Loss Networks. Annals of Applied Probability, 1, 319-378.

(1994) Bounds on the Performance of Dynamic Routing Schemes for Highly Con­

nected Networks. Math. Oper. Res., 19, No. 1.

K E Y , F . B .

(1987) Optimal Control in Circuit-Switched Networks. British Telecom Research

Laboratories.

(1988) Markov Decision Processes and Optimal Control in circuit- switched Net­

works. Proc. of 5th UK Teletraffic Congress, IEEE Publications.

(1990) Optimal Control and Trunk Reservation in Loss Networks. Probability in the

Engineering and Information Sciences, 4, 203-242.

(1994) Some Control Issues in Telecommunication Networks. Due to appear in

188

Probability, Statistics and Optimization, Ed. by F.P.Kelly, John Wiley & Sons.

K R I S H N A N , K . R . and O T T , T . J .

(1986) State Dependent Routing of Telephone Traffic: Theory and Results. 25th

IEEE Control and Design Conference, Athens .

(1989) Forward-Looking Routing: A New State-Dependent Routing Scheme. Tele-

traffic Science for New Cost-Effective Systems, Networks and Services, ITC-12, El­

sevier Science Publishers, 1026-10320.

L E M B E R S K Y , M . R .

(1974) On Maximal Rewards and e-Optimal Policies In Continuous Time Markov

Decision Chains. The Annals of Statistics, vol. 2, No.l, 159-169, Oregon State

University.

L I N , R M , L E O N , B . J . and S T E W A R T , C . R .

(1978) Analysis of Circuit-Switched Networks Employing Originating-Ofiice Control

with Spill-Forward. IEEE Transactions on Communications, Com-26, No.26.

L I P P M A N , S.A.

(1975) Applying a New Device in the Optimization of Exponential Queueing Sys­

tems. Operations Research, Vol 23, No.4, 687-710.

L I P P M A N , S.A. and S T I D H A M , J . R .

(1977) Individual versus Social Optimization in Exponential Congestion Systems.

Opeartions Research, Vol. 25, No.2.

L O U T H , G . M . , M I T Z E N M A C H E R , M . and K E L L Y , F .P .

(1994) Computational Complexity of Loss Networks. Theor. Comp. Sci.

M a c P H E E , I . M .

Personal communication.

189

M I T R A , D .

(1985) Probablistic Models and Asymptotic results for Concurrent Processing with

Exclusive and Non-Exclusive locks. SIAM J. Comp., I4, 1030-1051.

(1987) Asymptotic Analysis And Computational Methods For A Class Of Simple,

circuit- switched Networks With Blocking. Adv. Appl. Prob., 19, 219-239.

M I T R A , D . and W E I N B E R G E R , P . J .

(1984) Probabilistic Models of Database Locking: Solutions, Computational Algo­

rithms and Asymptotics. / . Assoc. Comp. Mach., 31, 855-878.

O R T E G A , J . M . and R H E I N B O L D T , W . G .

(1970) Iterative Solution of Numerical Equations in Several Variables. Academic

Press.

O R T E G A . J . M .

(1972) Numerical Analysis - A Second Course. Academic Press.

O T T , T . J . and K R I S H N A N , K . R .

(1985) State Dependent Routing of Telephone Traffic and the Use of Separable

Routing Schemes. Proc. Uth International Teletraffic Congress, Kyoto, Amster­

dam: Elsevier.

R O S S , S .M.

(1970) Applied Probability Models with Optimization Applications. Holden-Day.

(1983) Introduction to Stochastic Dynamic Programming. Academic Press.

(1983) Stochastic Processes. John Wiley & Sons..

(1985) Introduction to Probability Models. Academic Press.

R O S S , K . W . and T S A N G , D.

(1988) Optimal Circuit-Switched Access Policies in an ISDN Environment. IEEE

Transactions on Communications 37: 934-940.

190

S E R F O Z O , R .

(1981) Optimal Control of Random Walks, Birth and Death Processes, and Queues.

Adv. Appl. Prob., 13, 61-83.

(1979) An Equivalence Between Continuous And Discrete Time Markov Decission

Processes. Operations Research, Volume 27, No.3, May-June 616-620.

S O N G H U R S T , D . J .

(1980) Protection against Traffic Overload in Hierarchical Networks employing Al­

ternative Routing. Telecommunication networks Planning Symposium, Paris.

T I J M S , H . C

(1988) Stochastic Modelling and Analysis: A Computational Approach. John Wiley

& Sons.

W H I T T , W .

(1985) Blocking when Service is Required from Several Facilities Simultaneously.

A.T. kT Technical Journal, 1807-1856.

Y O U N G , D . M .

(1971) Iterative Solution of Large Linear Systems. Academic Press.

Z A C H A R Y , S.

(1988) Control of Stochastic Networks with Applications. Journal of the Royal

Statistical Society Series B 50: 61-73.

Z I E D I N S , L B . and K E L L Y , F . P

(1989) Limit Theorems for Loss Networks with Diverse Routing. Adv. Appl. Prob.,

21, 804-830.

Z I E D I N S , L B . and M a c P H E E , 1. M.

In preparation.

191

