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Abstract 

In this thesis admission stationary poHcies for small Symmetric Star telecommunica

tion networks in which there are two types of calls requesting access are considered. 

Arrivals form independent Poisson streams on each route. We consider the routing 

to be fixed. The holding times of the calls are exponentially distributed periods of 

time. Rewards are earned for carrying calls and future returns are discounted at 

a fixed rate. The operation of the network is viewed as a Markov Decision Pro

cess and we solve the optimality equation for this network model numerically for 

a range of small examples by using the policy improvement algorithm of Dynamic 

Programming. The optimal policies we study involve acceptance or rejection of traf

fic requests in order to maximise the Total Expected Discounted Reward. Our Star 

networks are in some respect the simplest networks more complex than single links 

in isolation but even so only very small examples can be treated numerically. From 

those examples we find evidence that suggests that despite their complexity, optimal 

policies have some interesting properties. 

Admission Price policies are also investigated in this thesis. These policies are not 

optimal but they are believed to be asymptotically optimal for large networks. In 

this thesis we investigate if such policies are any good for small networks; we suggest 

that they are. 

A reduced state-space model is also considered in which a call on a 2-link route, 

once accepted, is split into two independent calls on the links involved. This greatly 

reduces the size of the state-space. We present properties of the optimal policies and 

the Admission Price policies and conclude that they are very good for the examples 

considered. Finally we look at Asymmetric Star networks with different number of 

circuits per link and different exponential holding times. Properties of the optimal 

policies as well as Admission Price policies are investigated for such networks. 
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Chapter 1 

Introduction 

1.1 Introduction 

In recent years there has been a resurgence of interest in the mathematical theory 

of Telecommunication networks as well as the stochastic modelling of them, and in 

their application to the design and control of Telecommunication systems. This is 

due to 

(1) the variety of new problems raised by advances in the technology of 

computers, electronics and communication systems; and 

(2) the increased computing power available to researchers. 

Throughout the century, problems from this field have provided an impetus to the 

development of probability theory, pure and applied. 

Advances in the technology of modern Telecommunication systems have made it 

feasible to consider sophisticated schemes which can control the routing of calls 

within a network. Such schemes decide whether an arriving call should be accepted, 

and, if so, how it should be routed. 

The answer to the question of how should calls be routed or capacity allocated so 

as to improve the performance of the network is not straightforward. An increase in 

10 



the offered traffic along a particular route will increase the blocking at links along 

that route; that will affect traffic carried along other routes that use these links, and 

also - in the case of alternative routing - along routes which act as alternatives. Such 

hysterisis or knock-on effects will generally propagate throughout the entire network. 

Nevertheless, it is more fundamental to ask whether a call should be accepted, since 

the routing of the call is in practice easier to answer and not so critically dependent 

on solving optimally. This is particularly true for modern computer and telecoms 

networks, which are able to respond to randomly fluctuating demands and failures 

by rerouting traffic and by reallocating resources. They do this so well, that in many 

respects, large-scale networks appear as coherent as intelligent organisms. 

In this thesis models of a telecommunications, star-shaped. Loss network which con

sist of K links of the same capacity C linked through a common node are considered. 

Such networks are known as Symmetric Star networks. 

There are two types of route on which calls can request admission: 1-link routes 

and 2-link routes involving any pair of the single links. Arrivals form independent 

Poisson streams on each route. The networks are circuit-switched in that before a 

request is accepted, it is first checked that sufficient resources are available to deal 

with the request. We also consider the routing to be fixed, that is a call has but 

one try to get through the network; otherwise, either rejected or denied a route, it 

is considered lost (Loss). 

Every link contains circuits which the calls hold for some exponentially distributed 

periods of time. Dependency arises through occupancy of pairs of circuits. Both 

types of calls have the same exponential holding time. For every call carried we 

earn a reward; for different types of calls we earn different rewards. The rewards 

are discounted at a fixed rate. 

The operation of the network is viewed as a Markov Decision Process which, when 

observed in time, is in one of a number of states. In the models we investigate 

stationary policies which choose actions depending on the state of the process at 

that time and hence our approach is dynamic. These actions involve whether to 

accept or reject traffic requests in order to maximise the Total Expected Discounted 

Reward (TEDR). 
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We solve the optimality equation for our networks numerically for a range of small 

examples by using the policy improvement algorithm of Dynamic Programming. 

The programs written can deal with a range of network sizes and offered traffics. 

Generally, optimal policies are complex to describe and 'nobody' has exact solutions 

except for problems on a single link. Star networks are in some respect the simplest 

networks which aren't a single link or two in series but even so only verj'̂  small 

examples can be treated numerically. For such examples we find evidence that 

suggest that the optimal policies have some interesting properties. 

An obvious class of policies investigated also in our work, are the Admission Price 

policies. These policies are not optimal but they are believed to be asymptotically 

optimal for large networks; where the number of links grows to infinity. In this 

work we investigate if such policies are any good for small networks; we suggest 

that they are. Stationary distributions of blockings of links are also considered both 

theoretically and numerically. We then compare independent blocking assumptions -

as presented in Kelly (1986, 1988) - with our numerically calculated 'exact' solution. 

A reduced state-space model is also investigated in which a call on a 2-link route, 

once accepted, is split into two independent calls on the links involved. We com

ment on the size of the state-space and employ the Admission Price policies and 

conclude that they are very good for the examples considered. A comparison for 

the Admission Price policies between the full and the reduced model is carried out 

which shows that they are very similar. The policies are also compared to similar 

ones suggested in routing schemes proposed by Ott Krishnan (1985, 1986) and 

Key (1990). Our reduced model is the next simplest network to that of two hnks in 

series with traffic which uses single links or use all the links; see Key (1990). 

Finally we look at Asymmetric networks with different number of circuits per link 

and different exponential holding times. The Admission Price policies are investi

gated and compared to the ones for the ful l and reduced models. Properties of the 

policies of such networks are studied. 
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1.2 Telecommunication Networks: A Brief and 

Biased Introduction 

Schemes that can control the acceptance and routing of calls in the network include 

Dynamic and Adaptive Schemes. 

Dynamic Schemes are routing schemes which select a route for a call on the basis 

of the network state at the time of call-arrival and they are state-dependent. The 

purpose of such Dynamic Schemes is to: 

(a) adjust routing patterns in accordance with varying and uncertain 

offered traffics; 

(b) make better use of spare capacity in the network which may result 

from dimensioning upgrades or forecasting errors; 

(c) provide extra flexibility in order to minimise network blocking; and 

(d) provide robustness to respond to failures or overloads. 

Two approaches in particular have received considerable attention. In the United 

States, AT&T has implemented a scheme called Dynamic Nonhierarchical Rout

ing (DNHR) and in Canada, Bell-Northern Research has proposed a scheme called 

Dynamic Controlled Routing (DCR). 

The DNHR uses traffic forecasts for different times of the day in a large-scale opti

misation procedure to predict a routing pattern. In DNHR, calls try their assigned 

paths in a pre-determined sequence, and the calls are blocked when all assigned 

paths are busy. The DCR proposes a central controller which receives information 

of the current state of all links at regular intervals of about 5-10 seconds to determine 

a routing pattern. The problem with the DNHR and DCR is that the former uses 

a large off-line calculation to advise on choices of alternative routes which can only 

change hourly, whereas the latter is centralised, time-delayed and requires detailed 

information about circuit occupancies and traffic arrivals. 

Akinpelu (1984), studied the performance of Nonhierarchical (NH) and Hierarchical 

(H) networks under overloads using analytical and simulation models. Her work 
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assumes a NH network without controls in which its link sizes, offered loads and a 

fixed route for each pair are specified. In these networks the traffic offered is Poisson 

and the link blocking probabilities are independent. Calls blocked on a link of a path 

can always return to the switching system so that they can access the next path 

of their route. The basic idea of his analysis is to determine the offered load as a 

function of the link blocking. He provides equations which solved iteratively and 

starting with an initial estimate of the link blockings, determine the offered traffic 

and blocking probabilities. 

The efficiency of NH axid networks was examined by Akinpelu (1984) in examples. 

She found that under no control, the H networks made more efficient use of their 

circuits under overload than do the NH networks; without control in H networks 

the calls carried increase steadily as offered load increases over the entire range of 

overloads considered. She also examined NH networks in which the control was 

trunk reservation for first routed traffic. Examples of both NH and H networks 

under trunk reservation^ control are also examined only to conclude that such a 

control has an extremely beneficial effect on the performance of the network under 

overload in that by limiting the amount of multi-link and alternate-routing calls in 

the network, it allows more efficient use of the circuits for the one link calls. 

Akinpeku (1984) and Ackerley (1987) have found that as the network load increases, 

there can only exist two states, a high blocking state with most of the calls carried 

on two link paths, and a low blocking state where most calls are carried on a single 

hnk. 

Simulations for Symmetric networks carried out by Akinpelu (1984) and Ackerley 

(1987) show that a maximal packing strategy which accepts whenever it is possible to 

carry the call can have disastrous effects under general overload, creating instabilities 

and carrying much less traffic than if the dynamic policy was switched off. This was 

a very important result as it proposes a dichotomy between an individual and a 

'social' or network optimum. This dichotomy suggests the idea of using a flexible 

Dynamic Scheme at low loads and turn it off at high loads. A simple way of doing 

this is to apply trunk reservation. 

^ Trunk reservation is presented and discussed in §1.6. 
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Dynamic Alternative Routing (DAR) was the routing scheme proposed by Gibbens, 

Kelly and Key (1989). DAR in contrast to DNHR and DCR, is decentralised and only 

uses local information with that being whether trunk reservation limits have been 

exceeded on a route, and the current recommended alternative route. Gibbens, Kelly 

and Key (1989), obtain bounds which hold for any DAR scheme and they compare 

the performance of DAR with such bounds. They developed a simple analytical 

model which enables DAR to be implemented on both large and small fully connected 

loss networks. Empirical validation of the model as well as a number of examples are 

discussed. They also show that trunk reservation controls the instabihty of dynamic 

routing and limits the extent of rerouting under various overloads. 

Various aspects of dynamic routing in fully connected circuit-switched networks are 

considered by Gibbens and Kelly (1990). They consider networks of nodes and the 

calls use a single circuit/trunk between two nodes or can be rerouted via a tandem 

node. 

In Gibbens and Kelly (1990), bounds on the overall performance of a dynamic 

routing scheme are derived under a fixed pattern of offered traffic. These bounds 

provide a measure of the extent to which it may be possible to improve on the 

performance of any given scheme. They study two types of bounds. The first they 

term max-flou? and holds under minimal assumptions concerning the stochastic 

structure of the system. The second bound they consider, called the Erlang hound, 

apphes when streams of offered traffic are Poisson, and, is obtained by consideration 

of the random flows across the networks. 

Gibbens and Kelly (1990) study Symmetric networks and use the fixed-point approx

imation general scheme to measure the effect of trunk reservation. A wide range of 

alternative routing is allowed. Gibbens and Kelly (1990), show that in networks 

with well-matched traffic and capacity, there is limited potential for dynamic rout

ing to improve network performance. DAR is also studied. The problem of how the 

capacity of links within a network should be chosen is considered; this is known as 

the 'dimensioning problem'. 

Routing schemes which select a route for a call on the basis of the network state at 

the time of an arrival in order to minimise network blocking were investigated by Ott 

^The motivation for this bound was the fluid flow. 
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and Krishnan (1985) and Krishnan and Ott (1986). They consider circuit-switched 

networks with n links (trunkgroups) and Ck circuits in trunkgroup k, k = 1,2, . . .n. 

Their schemes have the properties that in order to compare the relative desirability 

of two routes, only information on trunkgroups in those routes is used, and that the 

comparison is simple enough to make the schemes implementable. 

In their work, they make two assumptions about the stochastic behaviour of the 

network. The first is that all calls have exponentially distributed holding times with 

unit mean. The second is that as soon as a call has been accepted on an n-link 

route, it becomes n independent calls on the n links (trunkgroups) involved, each 

with an independent holding time as above. As a result, the state of the network 

at any time is reduced, and described by the number of occupied circuits on every 

link. 

The offered link-loads are regarded as independent direct-routed Poisson loads of

fered to the links. At call arrivals, a routing decision needs to be made: in the 

non-alternate routing scheme, each arriving call is offered precisely to one admissi

ble path; if the selected path is busy, no other path is tried and the call is blocked. 

Their objective is to find a poHcy which minimises the average number of lost calls 

per unit time. Using results based on Howard's (1960) value determination and 

policy iteration methods, they show that many policies can be given in the form of 

a value function and when there is a way to compute such a function, we have in hand 

an implementable policy. To find such a value function they obtain a state-dependent 

routing scheme called Separable Routing when a policy iteration procedure of Markov 

Decision Theory on the finite state-space is used to improve upon a nominal scheme 

of direct routing. This procedure is carried out by considering a value cost of adding 

a call to a link; see also §1.7.1. 

Krishnan and Ott (1985, 1986) compare their Separable Routing scheme with two 

other schemes: DNHR and the Least-Loaded Routing (LLR) using two network de

signs. DNHR is a state independent routing scheme and LLR uses state information. 

In DNHR a call is blocked if all assigned paths are busy, whereas in LLR, the blocked 

call is allowed rerouting to the path with the largest number of idle trunks. In com

parison with DNHR and LLR schemes, Krishnan and Ott (1985, 1986) achieve a 

lower network blocking for a considerable range of overloads for the first design -

16 



improvement occurs above a certain level of overload - but not for the second design; 

a detailed description of DNHR schemes can be found in Ash, Cardwell, and Murray 

(1981), LLRis examined in Ash (1985). Krishnan and Ott (1989) also observed that 

the use of their 'cost' formula appears to underestimate the true cost of a two-link 

call and thus cause Separable Routing to do more two-link routing than is desirable. 

A modification to Separable Routing scheme was also presented in Krishnan and Ott 

(1989) as an attempt to accommodate alternate routing in which an arriving call 

has access to all admissible paths, and blocking on a single link or a path does not 

necessarily amount to call loss. This scheme is called Forward-Looking Routing, and 

achieves better performance than the other routing schemes such as DNHR, LLR 

and Separable Routing in that results to lower network blocking of calls over a wide 

range of loads. This scheme curbs the tendency for excessive two-link routing and 

thus reduces switch loads as well. 

The question of minimising the cost of lost calls in networks of finite capacity which 

can carry calls of different types requiring different resources, was also investigated 

by Zachary (1988). 

Zachary (1988) models the problem as a Markov decision process, using the objective 

of average cost function optimisation. He considers the application of the policy 

improvement method upon a 'base' policy, in order to find computationally tractable 

methods of determining nearly optimal policies; exact optimal policies are impossible 

to be computed due to the large state-space. 

The 'base' policy considered is good in itself and allows the average cost function to 

be easily computed as a sum of components each of which usually depends only on 

the state of the network, at least to a good approximation: For any policy T T G 11, 

he considers the corresponding differential cost function of Markov Decision Theory, 

(j)'^ : X ^ R, normalised so that (j)^{0) = 0, where X is the set of all possible states 

and n is the set of all non-randomised stationary Markov policies. <p^{x) is the cost 

of being in state a; at a given time, relative to that of being in state 0 at that time, 

measured by the difference in expected future costs incurred in the network. 

Zachary (1988) presents a theorem which shows that for any policy TT € 11, is the 

unique solution of a system of linear equations in a; € This cost function is then 
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used to determine the one-step improvement on the 'base' policy which is defined 

by the first iteration of the improvement method. This latter can be interpreted 

as an attempt, at each iteration, to define the 'optimal' policy, using the current 

differential cost function as an estimate of that at the optimum. Hence, the one-step 

improvement of a good initial good policy is general close to the optimum. 

In this work existing calls are allowed rearrangement even when the arriving call is 

initially rejected. Zachary (1988) considers application of the theory to particular 

types of network, showing how good base policies might be defined with differential 

cost functions readily computable as described earlier. An example is a fully con

nected telephone network, with a direct link between each pair of nodes between 

which calls may arise. Examples of cellular radio networks are also examined. He 

finally considers briefiy the extent to which the ideas mentioned in his work are 

applicable to more general networks and he mentions problems which most require 

further investigation in order to examine the robustness of his method with respect 

to deviations from the assumptions of the model. 

1.3 The Network as a Markov Decision Process: 

Description and Mathematical Framework 

1.3.1 Description of the Network 

In this section, we consider the following description of a stochastic circuit-switched 

network, using the terminology of telephony and notation similar to that of Kelly 

(1986) and Key (1990). 

There are K links, labelled A; = 1,2,.., K and hnk i comprises d circuits/trunks. A 

subset r C {1,2, . . , K} identifies a route. Let 71 be the set of possible routes. A call 

on route r uses Air circuits from link i , where Air € .^+. In the important special 

case where each element of the matrix A = [Air^i — l ,2 . . . , /v ; r G TV) is either 0 or 

1 a route r can be identified with a subset of the set of finks {1,2,..,/<'} - just set 

r = {i: Air = I l 

ls 



In our work we consider 7̂  to be 7?, = [ { i } , { z , ; } , i,j = 1,2, ..,K; i ^ j], in other 

words all the one and two link routes. We also assume A,v to be either 1 or 0 

according to whether link i is a part of route r or not. 

Assume that calls requesting route r arrive as a Poisson Process of rate i/r, and that 

as r varies over 7Z i t indexes independent Poisson streams. Suppose that there is 

no control and therefore a call requesting route r is blocked and lost if on any link 

i in the route, there are less than Air circuits free. Otherwise the call is accepted 

and simultaneously holds A,v circuits from links i for the holding period of the call. 

Holding periods of calls on route r are identically exponentially distributed with 

mean fi~^. 

Let nr{t) be the number of calls in progress at time t on route r, n{t) = {nr{t),r G 

7^), and C = (Ci, C2,.., Ca'). The exponential holding times of Poisson arrivals 

make the sequence {n{t),t > 0) a Markov Process that is a stochastic process with 

the Markovian property which, when observed in time, is in one of a number of 

states. The stochastic process (n( t ) , i > 0) has a unique stationary distribution and 

under this distribution 7r(n) = P {n{t) = n) is given by the product form 

(1.1) 7r{n) = G{C) n ^ ' ' ' ^ ^ f \ nG<S(C), 

where 

(1.2) S{C) = {ne Z+'^-.0 <An<C} 

and G'(C) is the normalising constant or partition function 

(1.3) G{c)-'= E n 
nes{C) ren 

The result (1.1) is easy to check if we view the process as a multi-dimensional birth 

and death process with equlibrium distribution given by (1.1). 

Most quantities of interest can be written in terms of the distribution (1.1) or the 
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partition function (1.3). For example let Lr be the stationary probability that a call 

requesting route r is lost, then, since the arrival stream of calls requesting route r 

is Poisson, 

(1.4) l-Lr= A^) = G{C)G{C-Aer)-\ 
n£S(C-Aer) 

where is the unit vector from S{C) describing just one call in progress on route 

r. 

The above simple explicit form (1.3) does not provide the complete solution because 

it is impractical for all but the smallest networks to compute G directly. Note that 

the number of routes % may grow as fast as exponentially with the number of finks 

K. For a description of the problem see Harvey and Hills (1979) as well as Louth, 

Mitzenmader and Kelly (1994). 

1.3.2 Reversible and Irreversible Processes 

The distribution (1.1) satisfies the detailed balance equations 

7r(n) Vr - 7r(n -|- ê ) (n^ + 1), n, n -|- £ S{C) 

where is the unit vector describing just one call in progress on route r. This 

models a reversible process, and as Burman, Lehoczky & Lim (1984) and Whittle 

(1986) prove, the distribution (1.1) is insensitive to the form of the holding time 

distribution. In what follows we assume that the holding times have an exponential 

distribution with unit mean. 

A classical example of the above model is a telephone network. The model also 

rises naturally in the study of local area networks, multi-processor interconnection 

architectures, database structures, mobile radio and broadband packet network; 

Kelly (1985) and Hui (1990, 1991). 

Reversibility is a very attractive property, giving a closed product form which can be 
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approximated [see Kelly (1991)], and some authors have looked at optimal controls^ 

which preserve reversibility; see for example Kelly (1986), Key (1988) and Zachary 

(1988) . Probabilistically, thinning the arriving stream - by accepting say 1 in x 

calls - is such a control, as are 'admissible set policies' which restrict the sets that 

could be used; for example we might in addition to equation (1.2) require that 

n G n C S{C). Such 'admissible' controls which preserve reversibility were studied 

by Foschini and Gopinath (1981). 'Co-ordinate convex' control [Ross and Tsang 

(1989) ] which effectively truncates the state-space also preserves reversibility. 

For our model we must decide at arrival times of calls whether to accept or reject 

them taking into account the state of the process. Thus we have a Markov decision 

process. To accept or reject arrivals we must follow some policy. A policy is any 

rule for choosing actions. Policies in general are mappings TT : S xR'^ —> A, where S 

is the state space and A is the action space. In this work we consider policies which 

choose actions depending on the state of the process at that time and are mappings 

TT : S ^ A. Such policies are called stationary. 

Blackwell (1965), shows that if the state-space and the action-space are finite, there 

is an optimal policy according to some control, and furthermore there is an optimal 

stationary one; see also Ross (1983). 

If the process is in state {n{t)) at time t and action a is chosen, then independent of 

the past, two things occur: (a) We receive a reward Rr immediately if an arrival of 

type r is accepted; (b) The process moves to a new state after an exponential time 

which is independent of the control policy employed but depends upon the state 

of the process. Thus the expected time between transitions is not constant. After 

uniformisation [Lippman (1975)], the Markov Decision process can be represented 

by an equivalent discrete-time Markov decision process n{t). Uniformisation makes 

the rate of transitions between states constant, and turns the problem into one that 

can handled discretely (and hence on the computer); see Chapter 2. 

However, now that there is a stationary optimal state-dependent control, one that 

is deterministic and doesn't depend on time, and which says whether to accept or 

reject a call of type r depending upon the network state in order to maximise the 

average reward, the controlled process is not in general reversible. 

'See §1.1 for the need of controls. 
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1.3.3 Optimality and Maximising the Reward 

As pointed out by Ott k Krishnan (1986), Zachary (1988) and Key (1990), any pol

icy which is expressed in the form of routing decisions is impractical to implement. 

Research for years have been focused on methods that are general enough to be de-

sciptive and yet computationally feasible. The work of Bellman (1957) and Howard 

(1970) on the Dynamic Programming and Markov Chain Theory was pioneering in 

the field. The basic idea of their work is that Dynamic Programming can result 

a recursive procedure for calculating an optimal value function from a functional 

equation. Such research has supported the suggestion that many poficies can be 

given in the form of a value function often called 'relative-value' and hence if there 

exists a mechanism to compute such functions, we have an implementable policy; 

see for example Howard (1960), Ott & Krishnan (1985,1986) and Ross(1983). The 

emphasis is therefore stressed on computing or approximating such value functions. 

The functional equation is obtained from the principle of optimality, stating that an 

optimal policy has the property that whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from the first transition - a principle being always valid when the 

number of states and the number of actions is finite. Therefore calculating the 

optimal value functions calculates the optimal policy. 

Under the above assumptions one can look for an optimal control policy to maximise 

the average reward over an infinite or finite length of time in which the reward is 

accumulated. Rewards can be discounted or not. Discounting at rate > 0 means 

that a reward R, received at time t has present value i?exp(—i^i). Apart from 

ensuring that the total reward is bounded, discounting suggests the fact that the 

rewards earned in the future are worth less than those earned immediately. This 

is very useful since in approximations one might not wish to look too far ahead. 

In case that the discounting is not considered and the time horizon is infinite, any 

policy that does not reject all the calls will result in an infinite reward, and therefore 

the criterion in this case to select among policies is the reward earned per unit time 

or average reward we seek to maximise; see Key (1990). 

Let V(z) denote the expected discounted reward earned over an infinite time length 

given the intial state is z, and Vn{z) be the reward when n transitions remain. Using 
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uniformisation the Dynamic Programming enables the recursions or value iterations 

for Vn to be written down immediately under the optimal policy; see Lippman 

(1975), Ross (1983) and Key (1990). Under this, it is optimal to accept a type r 

call if and only if 

Rr>Wn{z,r) = Vr,{z)-V4z + er). 

It can be shown that the recursions considered is a contraction mapping on the set of 

bounded functions on the state-space, and hence the function Vn converges to a limit 

V which satisfies the optimality equation, for all bounded initial VQ; see Ross (1970, 

1983). This method is the method of successive approximation or value-iteration, 

which provides an efficient computational approach. 

If R{t) denotes the reward earned by time t with no discounting ({ = 0) for a policy 

TT and zo is the state at time t = 0, then the expected reward (f>Tr{z) given an initial 

state z is defined as 

(f)-^(z) = lim E 
t—yco 

If for some policy / , <l>f{z) — sup^(j)^{z), Vz, then / is said to be average-reward 

optimal. 

Let now Vfj^{z) be the ra-stage return under stationary policy / with no discounting 

and initial state z, then using the uniformised transition rates A gives another kind 

of expected average reward, < /̂(-?), 

<f>f{i) = l im E f,n 
n/A 

Ross (1983) shows that the average cost does not depend upon the initial state and 

links the average-reward optimal and discounted reward via a theorem which proves 

that 
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(1.5) \imiV{z) = <j>^{z), Vz. 

In our work the optimality criterion we use to discriminate between policies is the 

total expected discounted return; see Chapter 2. 

1.4 Size of Networks and the State-Space 

In this work we look for optimal policies in time where the state of the network can 

be described by the state of all current routes. Thus, the optimal state-dependent 

routing in our case is a problem of optimal control of a Markov decision process in 

a huge state-space. Because of the size of the state-space, numerical calculations 

are very difficult and any policy which is given in the form of routing decisions is 

unimplementable. 

To demonstrate the problem with the state-space size, consider a model of a reduced 

Star network with K links each of capacity C in which calls arrive randomly and 

according to a Poisson distribution. There are two types of route: 1-link routes and 

2-link routes involving any pair of the single hnks. A 2-link route on pair ( i , j ) , after 

its acceptance, is split into 2 independent single link routes on links i and j\ this 

network is often called a reduced state-space network. Both types of calls have an 

exponential holding time with mean 1, (Exp(l)). For this example the state of the 

network at any time we observe it is the number of busy circuits in the K links. In 

this 'simple example' the size of the state-space |<S| is given by the expression 

(1.6) \S\ = { C ^ l f ; 

For a network with K = 190 and (7 = 20 (1.6) is |<S| = 21^9° which is considerably 

more than 10^°, the estimated number of elementary particles in the universe [Ott 

and Krishnan (1985)]; see Table 1.1. 

Under the assumptions of the Symmetric Star network we investigate in Chapter 

2, things are more complicated as there is no closed form expression in general for 
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calculating the size of the state-space. The rate of increase in the size is so rapid 

that direct numerical approaches can never deal and even in moderate sized systems 

there will always be a problem. In our work the size of the state-space was obtained 

by counting the number of states on a computer; see Appendix B . l . 

The following table gives the size of the state-space for a range of small values of 

K, the number of finks and C, the capacity of each link for the reduced state-space 

network model^ as well as the ful l modeP. 

K C (C + 1)̂ ^ \s\ 
2 3 16 30 
2 4 25 55 
3 3 64 336 
3 4 125 1023 
3 5 216 2610 
3 6 343 5860 
3 7 512 11942 
4 3 256 5142 
4 4 625 28746 
4 5 1296 124074 
4 6 2401 442918 
4 7 4096 1366806 
5 3 1024 101368 
5 4 3125 1131389 
5 5 7776 8940840 
5 6 16807 54653970 
5 7 32768 273816800 

Table 1.1: The size \S\ for the state-space. 

For our Symmetric Star network by permuting the ordering of the links, many of 

the states when K is large are equivalent. 

For example, in a Symmetric Star network with A' = 4, C = 3 and |<S| =5143, we 

could have 4! equivalent states: If we represent the state of the network as a vector 

{Xa,Wab,Wac,Wad,Xb,..,Xd), 

^Discussed in Chapter 5. 
^Discussed in Chapters 2,3 and 4. 
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where denotes the number of single link calls on link z, and Wij, the number of 

two-link calls on pair ( i , i ) , and look at the states 

A = (1,1,0,0,0,0,2,2,0,0), 5 = (1,1,0,0,0,2,0,0,0,2) 

we can see that WadiA) = Wac{B), and Wbc{A) = Wbd{B), and re-labelfing c and d 

has no effect. Further research might highfight probable benefits of this equivalence, 

in order to reduce the size of the huge state-space. I t seems to be very difficult to 

try to take advantage of this. There are many serious problems to be considered 

about for example how to debug and to be confident of the results and of course 

the restriction that such a benefit could only apply to Symmetric networks; our 

computing programs are made to work for asymmetric cases too. 

The major problem that the large size of the state-space causes can be reviewed as 

follows: Our model is a Markov decision process in which our goal is to maximise the 

Total Expected Discounted Reward V and as such there is an optimality equation 

which is used in a recursive procedure for calculating optimal value functions V 

and for the calculation of the optimal policy itself. The optimality equation after 

uniformisation is linear in V but the state-space quickly becomes huge. If we define 

the iterative method to be 

AVp = Rp, for Vp, 

where Rp is the rewards vector, we can see that A is |<Sp in size while V and R are 

size |<S|. We have efficient storage for the policies as well as the values V but not 

for A. The storage problem as well as the important fact that we are interested in 

the policies more than the values V were the reasons not to use the value-iteration 

peocedures in our calculations; see §1.3.3. A more detailed presentation can be 

found in Chapter 2. 

Due to the large size of the state-space we have restricted our investigation for 

networks with: 

(a) K = 2, C <7, 
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(b) i r = 3, C < 5, 

(c) / f = 4, C < 4, 

(d) K = 5, C = 3. 

In Appendix A we consider the difficulties arising in trying to calculate the state-

space for the Symmetric networks considered in this thesis. 

1.5 Approximation procedures and Asymptotic 

analysis 

Blocking and Loss probabilities for calls in networks have been the subject of much 

research [see for example Gibbens, Girard, Kelly, Mitra, Key, Ziedins, Whitt] . The 

behaviour of such networks under limiting regimes has been studied and properties 

of the models have been presented. The above researchers modelled networks with 

increasing link capacity and offered traffic, but fixed network topology. That is 

because if capacities increase more quickly then all blocking probabilities will tend 

to 0, while if capacities increase more slowly then some blocking probabilities will 

approach 1. 

A major advance has been the development of approximation procedures. One of 

the main reasons for that was the intractability of (1.1) - (1-4). Such approximations 

avoid computational problems and in some cases provide deeper insights. The most 

important is the Erlang fixed-point approximation developed and studied by Holtz-

man (1971), Lin et al (1978), Girard and Ouimet (1983), Heyman (1985), Whitt 

(1985), Kelly (1986, 1991) and others. 

The Erlang fixed-point approximation we now describe. Let 

;i.7) E{u,C) = ^_ 
C j^n 

E 
-1 

Erlang's formula for the loss probability of a single Unk of capacity C offered Poisson 

traffic at rate v. Let i?,, z = 1,2, ..,/<' solve the non-linear equations 
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(1.8) E, = E{pi,Ci), t = l,2,..,K 

w here 

(1.9) P^=E^^rK U {1 ' E,f^\ 
ren jer-{i} 

Then an approximation for the loss probability on route r is given by 

(1.10) l-Lr^Ui^-E^f'" 
i€r 

The reasoning behind this approximation is as follows. Suppose that a stream of 

rate Vr is thinned by a factor (1 — Ej) at each link j € r — {i} before being offered to 

link i. If these thinnings could be assumed independent both from link to link and 

over all routes passing through Hnk i (they clearly are not), then the traffic offered 

to link i would be Poisson at rate (1.9), the blocking probability at link i would be 

given by (1.8) and the loss probability on route r would satisfy (1.10) exactly. 

Heyman (1985) and Whitt (1985) call the fixed-point procedure the reduced load 

approximation. 

The fixed-point approximation procedure is an important one for a number of rea

sons. Firstly, it has a long history in Telecommunications and has been found to be 

an effective approximation in a variety of circumstances. Secondly, it has recently 

been the subject of a number of theoretical analyses, establishing its accuracy under 

various limiting regimes [Whitt (1985), Kelly (1986), Ziedins and Kelly (1989)]. The 

approximation has a mathematical interest due to similarities between the approx

imated and asymptotic results as we shall see later. Thirdly, it can accommodate 

additional features such as alternative routing and trunk reservation discussed also 

in Kelly (1986, 1990, 1991). 

In the following subsections a brief description of the work on reduced load approx

imation and limiting behaviour of large networks examined by Kelly is given along 

with his equations and results. The idea of decentralisation is also discussed. Other 
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results by other researchers are also featured. 

1.5.1 Limiting Regimes and Fixed-Point Approximation 

Kelly (1986) aims to show that the analysis of circuit-switched networks becomes 

simpler the larger the network. He shows that when the capacity and offered traffic 

are increased together in a network with fixed topology, a limiting regime emerges 

in which loss probabifities are as if the links block independently, with blocking 

given by the solution of a simple convex optimisation problem. Kelly considers the 

fixed-point approximation procedure based on solving Erlang's formula under the 

assumption of independent blocking. This procedure produces a unique solution 

with fixed routing and under the Hmiting regime the estimated loss probabilities 

obtained from the procedure converge to the correct values. 

He first considered the optimisation problem of finding the most likely state n under 

the probability distribution 7r(n). This is equivalent to 

(1.11) max ^ ( n ^ log - logn^!) 
r 

over n G S{C), a problem which is made difficult by the discrete nature of the 

state-space. To simplify this replace logn! by nlogn — n by using Stirling's formula 

and replace the integer vector n by a real x. The resulting problem is 

(1.12) max J^^{Xr\ogl^r - XrlogXr -\- Xr) 

subject to X > 0, Ax < C. 

The dual of the above problem expressed in terms of a vector y = {yi,y2, ••,yK) is 

to 

1.13) min Er exp ( - Ei Vi^ir) + J2i y^Ci 
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subject to y > 0. 

Unless otherwise specified, summations run over r G 7̂  or ^ G {1,2, . . , K}. 

Kelly (1986) treated problems (1.12) and (1.13) rigorously and proved that there 

exists a unique optimum z = {zr.,r G TZ) to problem (1.12). It can be expressed in 

the form 

(1.14) zr = iyrl[{i-B,)'''\r e n 
i 

where B = (i?i, ^2, ..^BK) is any solution to the set 

Y^A„iyrl[{l-B,y^^ = C„ if B,>0 

(1.15) J2^^rl^rUi^-B,)''^^ < C., if B, = 0 

Br,B2,...,BKe[0,l). 

There always exists a solution to relations (1.15), and it is unique if A has rank 

K. There is a one-to-one correspondence between solutions to relations (1.15) and 

optima of problem (1.12), given by the transformation 1 — Bi = 1 — exp (—J/i), where 

y is the vector of Lagrange multipliers. [A proof can be found in Kelly(1986) . 

Relations (1.15) have a straightforward interpretation in terms of a continuous, or 

fluid, traffic. Suppose that an offered traffic of on route r is thinned by a factor 

(1 — Bj)"^^" on each link j , so that a traffic of 

(1.16) 11(1 - ^ . ) ^ ^ ' ' 

remains on route r where one unit of traffic on route r uses Av at link i. Then 

relations (1.15) state that at any link i for which Bi > 0 the total capacity of that 

Hnk, Ci, must be utilised by the superposition over r G 7̂  of the traffic (1.16). 
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In Kelly's limiting regime the behaviour of loss probabilities Lr has a very simple 

description. There is a parameter Bi € [0,1) associated with link i such that 

(1.17) Lr^l-Ui^-B,)^-, r e 71. 
er 

The above limit is deduced as a law of large numbers; see Kelly (1986). This limit 

allows him to classify a link as overloaded, critically loaded or underloaded which 

has an impact for the process describing the number of free circuits at the link. 

Note the similarity between (1.17) and (1.10). 

It is as if links block independently, link i blocking with probability Bi. Now the 

various thinnings are clearly not independent, but the reasoning does suggest that 

the approximation (1.17) might be more accurate the more diverse the collection of 

routes passing through any given link. 

Kelly (1986) and, Ziedins and Kelly (1989) provide theoretical evidence for this sug

gestion, by presenting an asymptotic analysis of networks exhibiting various forms 

of symmetry. 

Heyman (1985) and Whitt (1985) obtain results similar to Ziedins and Kelly (1989) 

for Symmetric networks. Whitt's approach is to prove a functional law of large 

numbers for the process 

{m{t),...Qmu>o} as K ^ ^ , 

where Q^i^-{t) represents the numbers of links with i busy circuits at time i in a 

Symmetric network with K links. This approach is very powerful: it provides results 

for the non-stationary behaviour of the system when holding times are exponential, 

and promises to be able to deal with networks where the product-form solution 

(1.1)-(1.4) is not available. In contrast, Ziedins and Kelly (1989) make heavy use of 

particular features of the partition function (1.3). They show that the reduced load 

approximation may give either an upper or a lower bound on the loss probability of 

a call in a Symmetric network; an upper bound on the error of the approximation 

is obtained in the special case when C = 1. 
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Heyman (1985), Kelly (1985), Mitra and Weinberger (1984) and Mitra (1985) all 

present results on blocking and loss probabilities under traffic conditions where ar

rival rates are normalised so that as network size increases blocking probabilities 

approach 0. 

Key (1994, 1990) examined the problem of Adaptive Control in the context of lim

iting regimes, where we accept or reject probabilistically, with no knowledge of the 

underlying state. He describes the asymptotic regime and re-confirms the results of 

Kelly (1986), Whitt (1985) and Ziedins (1986) which show that approximations are 

asymptotically valid as networks increase in size in a certain way, or as the traffic 

and circuits grow larger. His results say that asymptotically, we can use adaptive 

routing to maximise our gain. 

Key (1990, 1994) uses the hmiting regime suggested by Kelly (1986) which assumes 

a sequence of problems where the offered traffic and capacities C are replaced 

by A(iV) = {Xr{N),r e n), C{N) = {C,{N),j = 1 , 2 , . f o r N = 1,2,..,, and 

where the following is satisfied as N ^ oo: 

K{N) C,{N) 

where r G 1Z and j = 1,2,...,S. 

He considers x to be the optimal solution to the following hnear program which gives 

the max-flow bound [see Gibbens, Kelly and Key (1989)] on the optimal return under 

any dynamic routing. 

(1.18) L P l : m a x EreT^^r^r 

subject to Xr < K, r GTZ 

Xr>0 

where Xr represents the carried traffic on route r, and RT is the return associated 

with each call of type r. Let x{N) be the optimal solution to L P l when the traffic 
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and capacities X{N),C{N). 

Key (1990) shows that 

(1.19) ^ x ( 7 V ) ^ x 

and that this bound can be achieved asymptotically by the state-independent adap

tive policy which rejects a proportion Pr of type r traffic, and routes the remainder 

of the traffic directly, where Pr — {1 — f^). In other words, if Zr is the carried traffic 

under this scheme, then 

W here 

Using Kelly's results. Key proves that 

ZriN) = i l - P r ) \ r l [ i ^ - b , y ' ^ , 
j 

where bj are the link blockings which satisfy (1.15) with = Ar(l — P^)-

He emphasises on the fact that if bj = 0 for all j, then the equations that bj satisfy 

are identical to the optimum x which solves (1.18). 

His theorems say that asymptotically we can use adaptive routing to maximise our 

return, and that there is nothing to be gained by accepting more traffic into the 

network than the solution to the linear program (1.18). 

The expected undiscounted rate of return from a network with no controls where 

the blocking for a link is calculated in Key (1990) as the unique solution to a set of 

fixed-point equations is examined, and results similar to those of Kelly (1986), Lin 
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(1978), Girard and Ouimet (1983) are reached. 

1.5.2 Decentralisation 

Another very interesting idea tackled by Kelly (1988, 1990) was to investigate how 

the routes in use affect the performance of the network and furthermore, if there are 

many substitute routes that could carry calls between two nodes to search if there 

is a criterion for comparing their efficiency. 

A related issue in the literaure of telecommunications concerns the extent to which 

control can be decentralised. This asks whether control could be distributed over 

the switching nodes of the network, with computations and decisions made locally. 

Over a period of time the form of the network or the demands placed on it may 

change, and routings may need to adapt accordingly. A single node could perhaps 

control this, receiving information from everywhere in the network and making all 

decisions about routing an obvious problem being possible node failures. Another 

idea would be to distribute the control over the links of the network, with compu

tations and decisions made locally. 

To progress with such questions, Kelly considered the following rate of return from 

a network under the Erlang fixed-point approximation to be 

r 

where Â . = Vr Ylkeri^ ~ ^k) where E is the Erlang fixed-point defined in §1.4. 

He shows that there exist implicit shadow prices associated with each route and with 

each link of the network, and that the equations defining these prices have a local or 

decentralised character. He illustrates how his results can be used as the basis for 

such a decentralised routing scheme, responsive to changes in the demands placed 

on the network. In the networks considered, both alternative and fixed routing 

are considered. Kelly's (1988) scheme is adaptive in the sense that it attempts to 

respond to changes in network form or in arrival rates rather than to seek out and 
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utilise capacity left idle for very short periods. 

A very important result of his work is that the distinction between the Adaptive 

and Dynamic approaches is mainly one of emphasis: with sufficiently many levels of 

priority at each link and a sufficiently broad pattern of alternative routes. Adaptive 

Schemes become Dynamic. Kelly's approach contrasts the Dynamic approach of 

Gibbens (1986), Key (1987), Krishnan and Ott (1985, 1986) and Zachary (1988). 

1.6 Trunk reservation 

As mentioned in §1.1, a maximal packing strategy of always accepting every call 

when there is room to fit it in can be very bad. This is a classical example of 

the dichotomy between a 'user' optimum and a 'social' optimum where we seek to 

limit an individual call's freedom in order to maximise the overall performance; see 

Lippman & Stidham (1977). Ideally we would hke to use a flexible dynamic routing 

control at low loads and turn it off at high loads. Fortunatelly a simple way of doing 

this exists, trunk reservation. 

Under trunk reservation, a bound m is specified for each link and alternate-routed 

calls attempting to occupy a circuit on the link are refused if the number of free 

circuits on the link is below the bound m. Only relatively small values of m, typically 

less than 10, are needed even for very large circuit quantities. 

The advantages of trunk reservation were first suggested in the work of J. Weber [see 

Kelly (1990)], who used a series of simulation studies to examine the effectiveness 

of various alternate routing schemes. Songhurst (1980) has compared a number of 

service protection methods and concluded that trunk reservation is inherently the 

most efficient method under a range of traffic load patterns. Akinpelu (1987) has 

used the fixed-point approximation as well as simulation results to show that trunk 

reservation can suppress instabilities under overloads and that such a control allows 

more efficient use of the circuit for the routes for the one Hnk routes; see §1.1. 

Trunk reservation is a very attractive control because its idea is simple and can be 

easily implemented. Usually it is refered as a control which allows priority to be 

given to chosen traffic streams. 
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Kelly (1990) extended his work (1988) on routing and capacity allocation in circuit-

switched networks to include trunk reservation and showed that fixed-point methods 

can apply to i t . Such a generalisation is important due to the practical importance 

of trunk reservation. His routing scheme is assumed static over a period. When a 

call arrives it is routed (or lost) on the basis of a relatively restricted amount of 

information on the current network state. Under alternative routing for example, 

the route assigned to an arriving call is determined by information on which links 

are ful l or occupied above or below their trunk reservation parameters. Using such 

a simplified control, he shows that there exist implied costs associated with the 

priority and non-priority traffic through a fink. The equations defining these costs 

have also a local or decentralised character and can be used as a basis for routing or 

capacity allocation strategies. In this work the routing can be fixed, or alternative 

and many levels of priority as well as fully connected networks are featured. 

Some insight into the efficacy of trunk reservation is given by the Markov decision 

analysis of a single fink offered two streams of traffic. Suppose that one of the 

streams has a priority and generates a larger reward. Suppose also that arrival rates 

are known and the decision on accepting or rejecting a call depends on the priority 

level and the history of the link. The aim is to maximise the long-run average 

expected reward per unit time. Assume also that the holding times are identical 

and exponential, then it is sufficient to consider policies which summarise the entire 

history of the link by a single integer, the number of calls currently in progress. 

But the optimal policy for the Markov decision process is to accept nonpriority 

calls provided the number of free circuits is above a certain integer. This is a trunk 

reservation policy, and Lippman (1975) has shown that this form of policy remains 

optimal under a wide variety of discount and finite length of time criteria. 

When a single link is offered many types of call, each type with its own reward, 

the optimal policy is trunk reservation with multiple priority levels. The strict 

optimality of trunk reservation does not extend to networks involving more than 

one link, but is reasonable to expect that such policies will perform well; see Kelly 

(1990). There is an emphasis that a trunk reservation based routing scheme has 

to take into account hysterisis effects; in fact it can provide a method of control 

as it is known that unrestricted use of alternative routes can severely damage the 

performance of a network; see §1.2, Ott & Krishnan (1986), Gibbens h Kelly (1990) 
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and Key (1990). 

Key (1990) compares the trunk reservation parameter with thinning of the the of

fered stream. His examples suggest that trunk reservation is a robust control and an 

important one in practice as offered traffic can be varying and imprecisely known. 

He also mentions cases in which trunk reservation is exactly optimal. 

1.7 Reduced State-Space Models, Admission Poli

cies and Properties of the Optimal Policy 

In this section we briefly present some results of research carried out by Ott & 

Krishnan (1985, 1986) and Key (1990) on the reduced models. These results are of 

particular interest for us because they form the background on which we examine 

our Admission price policies and properties of them for both the full and reduced 

state-space networks of Chapters 2, 3, 4 and 5. 

1.7.1 Separable Routing and Cost functions 

As mentioned in §1.2, Ott & Krishnan (1985) and Krishnan & Ott (1986) inves

tigated the reduced state-space model by using a state-dependent routing scheme 

called Separable Routing which is obtained by applying the policy iteration procedure 

of Markov decision process on a nominal routing scheme. Under the assumptions 

of their model (§1.2), Ott & Krishnan investigate the single link which is offered a 

stream of Poisson traffic at rate A and where a reward 1 is earned for each accepted 

call. The policy iteration procedure is then carried out by considering the value cost 

of adding a call to the link: if link k has C trunks and is offered a Poisson load of A 

erlangs, the 'cost' of adding a call to the link when it already has j calls in progress 

is given by 
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The above relative value/cost is the probability that if the trunkgroup is in state 

j at time 0 and a call is added, then at least one future call will be blocked on 

trunkgroup k during the lifetime of the call. A(7, k) is therefore an estimate of the 

expected increase in future blocked calls on the trunkgroup due to the addition of a 

call when j calls are already in progress. 

Equation (1.20) can be extended to the case of a network with many finks. As the 

links are regarded to be independent, the cost of adding a multi-fink call which is 

worth 1 and uses a single circuit from each of the links ki, ...,kjn, in the respective 

states is then given by 

m 
(1.21) w=Y:m,j>)-

i=l 

Thus, the cost of a path r is separable into the costs of the constituent links, which 

accounts for the name Separable Routing. 

Krishnan and Ott's (1985,1986) routing scheme (admission policy) can now be spec

ified as follows: when a call arrives at path r, the cost W, in the current network 

state, of each admissible path that has at least one free circuit on each fink in the 

path is calculated by the above expressions. If the minimum path cost W > 1, then 

the call is rejected; otherwise it is routed on the minimum-cost path. 

1.7.2 The Single Link Model 

Key (1990, 1994), considers a stochastic loss network with fixed routing patterns, 

constant Poisson arrivals, and holding times of negative exponential duration with 

the same mean. The notation used in the description of the Network is that of 

§1.3.1. The rewards considered are discounted and the target is to maximise the 

total reward. A reduced state-space is sometimes used, in which the resources are 

held independently; that is the state space is described by the vector x of the number 

of different types of calls in progress and the result is an irreversible system. 

Key (1994, 1990, 1988) appfies the theory of Markov decision processes to a single 

link network which is offered one or two streams of traffic. For a single link network 
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of capacity C which is offered Poisson traffic at rate A he calculates the value function 

to be 

(1.22) W,{j) = with H/,(0) = F,{C). 

F is such a function that when the discount factor ^ —> 0, -F^(i) —> E{X,j); see 

(1.7). Thus in this case equation (1.22) becomes (1.20), the formula that gives the 

Ott & Krishan 'cost' function. Key (1990) generahses the above results to a general 

birth and death process with state-dependent arrivals and holding times. 

He then considers the case of a single link which is offered two streams of Poisson 

traffic, which one is worth more than the other. He uses the results of Lippman 

(1975) that the optimal policy is trunk reservation and investigates the choice of 

optimal trunk reservation parameter. He analyses the problem by starting with a 

policy that rejects all nonpriority traffic and applies policy improvement to change 

the trunk reservation parameter. 

Key (1990) investigates approximations for routing schemes for networks. He con

siders admissible controls where the state-space is reduced to Q C <S. His 'link-based 

approach' calculates approximate relative values for individual links Wj{xj) and ac

cepts a multilink call worth Rr which uses finks 1, . ,m on which there are currently 

xi, ..,Xm calls in progress if 

(1.23) Wr{x,) + ... + W^{Xm)<Rr. 

where W are calculated by using (1.20), the Ott & Krishnan 'cost' formula. Key 

(1990) gives sufficient conditions for this simple approximation to be good: He 

proves a theorem which states that if the call types include all the single link routes 

on a link j , worth Rj of rate Aj, rij is the number of busy circuits on link j and 

Rr < Vr that use link j, then 
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The above relative values are Rj times the expected increase in blocked calls caused 

by adding a call to the route [compare with (1.20) . 

Key extends the Ott and Krishnan Erlang's Loss formula results by proposing a 

decomposition method to approximate the poficy in a large network by using the 

single link results. 

1.8 Properties of the Optimal Policies 

As Key (1990) states, the optimal policies in real networks will be constrained by 

the information available to us. Within the framework of his model the optimal 

policy - by taking into account the state of the network - is a deterministic one 

which will reject or accept a call or even send it in an alternative route according to 

the entire state of the network. Specifying such policies for large networks would be 

infeasible because of combinatorial explosion, apart from being unrealistic because 

of the amount of information required. Key's (1990) aim is to understand something 

of the nature of optimal poficies by looking at a single fink, and to apply some of 

this knowledge to obtain good strategies for larger networks. 

Key (1990) describes some general properties about the nature of optimal policies, 

describing monotonicity for a certain class of networks. 

Key's results hold true for the reduced discounted state-space model in which links 

are held independently. 

For a single link offered different traffic streams, optimal policies are monotonic 

increasing [see Lippman (1975)], that is, if a call is rejected in state x, then it is 

optimal to reject the calls in states bigger than x; which proves that optimal policy 

is of a critical number type. As we later will investigate whether monotonicity and 

other properties for optimal polices hold for our optimal policy, it is necessary to 

briefly present Key's results in which we will refer to again in Chapter 3. 

Let H^(x,r) = V{x) — V{x -\- e^), where V = Va is the expected discounted reward. 

What follows is a summary of Key's results on properties of the optimal policy and 

can be found in detail in Key (1990). 
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Properties 

(I) Theorem 4.1 in Key (1990): If type i calls use fewer resources on each link 

in the network than type k calls, then for all the discount factors and states x, 

V{x + e,) > V{x + e,). 

(II) Corollary 4.1 in Key (1990): If type i calls use fewer resources than type k calls, 

then for all the discount factors and states x, W{x,i) < W{x, k). 

( I I I ) Assumption A l in Key (1990): Either type i calls are smaller than type k calls, 

or routes i and k do not use any common links. 

(IV) Assumption A2 in key (1990): Calls of type larger than i are worth less i.e. 

R^ > Rk. 

(V) Theorem 4.2 in Key (1990): Under the Assumptions A l and A2 it is always 

optimal to accept all calls of type i. 

(VI) Property P I in Key (1990): If we reject a type i call in state x, then we reject 

it in state x + k iov calls i and k which are distinct and not disjoint. 

(VII) Property P2 in Key (1990): If we reject type j call in a; + then we reject it 

in X for calls i and j which are disjoint. Property P2 means that for calls which are 

disjoint, and thus could be widely separated in a network, in general, the more type 

i calls in progress, the less likely we are to reject type j calls, and vice-versa. 

He then proves a theorem that shows that Properties P I and P2 hold for all discount 

factors for a certain class of networks in which among other things type k calls are 

monotonic with respect to themselves i.e. if we reject a type k call in x, we reject it 

in a; + ê . 

Theorem 4.1, Corollary 4.1 and Theorem 4.2. are all of special interest to us because 

as we shall see later on we assume that 2-link routes are worth less than the 1-link 

routes. In Chapter 3, we discuss properties of our optimal policies and see if the 

results of Key (1990) apply to our networks. 

In our work we do not consider trunk reservation, admissible controls, alternative 

routing nor state-dependent arrivals. 
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Chapter 2 

The Model,Definitions,Theorems, 

Computational Procedures 

2.1 Introduction 

We consider Symmetric, star-shaped, circuit-switched Loss networks which consist 

of K links of capacity C linked through a common node. Calls requesting routes 

arrive at the network randomly and according to a Poisson process. There are two 

types of route: 1-link routes and 2-link routes involving any pair of the single links. 

Requests for 1-link routes arrive at rate Ai on each link and requests for 2-link 

routes arrive at rate \2/{K — 1) on each 2-link pair. Both types of calls have an 

exponential holding time with mean 1, (Exp(l)). 

2-link routes involving links i and j , where i < j will be denoted by the ordered pair 

(«,i) . As a matter of convenience, we say that 1-link calls on fink i relate to pair 

(^,^). 

For every Tlink call carried we earn reward Ri and for every 2-link call carried we 

earn reward R2. Rewards are bounded and earned immediately. In our networks we 

take i ? 2 to be less than twice Ri 
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i ? 2 < 2i?i. 

The reason for this is that as we are considering the case where all 1-link routes are 

accepted, we think that it is reasonable to take R2 < 2Ri; it is our assumption. 

2.2 The Network as a Markov Decision Process 

We consider the operation of the network as a process which, when observed in time, 

is in one of a number of states. The set of all possible states S is finite. Denote a 

typical state hy z E: S. 

The exponential holding times of accepted calls make the sequence of states Zt,t > 0, 

a continuous time Markov process. At arrival points, and after observing the state 

of the process, an action a must be chosen which accepts or rejects arrivals. To 

accept or reject arrivals we must follow some policy T T . A policy TT is any rule for 

choosing actions a. In our case, a rule for accepting or rejecting arrivals. In this 

work we consider policies which are non-randomised and choose actions depending 

on the state of the process at that time and are mappings w : S A, where <S is the 

state space and A is the action space. Such policies are called stationary. Stationary 

policies are simple and Blackwell (1965) shows that i t is not necessary to consider 

more complicated time-dependent policies; which is a great advantage in case where 

one is analysing a Markov process over an infinite length of time. 

The times between consecutive decision epochs are not identical but are exponen

tially distributed with state-dependent mean. If the process is in state z at time t 

and policy 7r(z) is chosen, then independent of the past, two things occur: 

a) We receive a reward R{Z,IT) immediately if an arrival is accepted. 

b) The next state of the system is chosen according to the transition 

probabifities P-K{Z)-

After uniformisation [Lippman (1975)], a procedure in which null trnsitions are 

introduced into the system in an appropriate state-dependent fashion, the continuous 
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time Markov decision process can be represented by an equivalent discrete time 

Markov decision process z in which the rate of transition between states is constant. 

Under unijormisation the times between transitions are independent of not only 

the control policy employed, but also the state of the process. The purpose of 

unijormisation is to enable us to replace the complex differential equation form of 

the optimality equation with a simpler iterative equation as we shall see later on. 

Note that both rewards earned and the transition probabilities are functions only of 

the last state and the subsequent action. Uniformisation is discussed in §2.3. 

In investigating the performance of different policies a key consideration is opti

mality. The optimafity criterion we use in this work is the Total Expected Dis

counted Return ( T E D R ) as defined in Ross (1983) and the goal is to exhibit 

optimal policies that can be implemented in the network and maximise the TEDR. 

The above criterion assumes a discount factor a, 0 < a < 1, and among all policies 

T T , attempts to maximise the TEDR 

(2.1) V^z) = J2R{z,ir)ta'\z{0) = z 
t=o 

where E^ represents the conditional expectation given that poficy TT is employed; 

Vjr{z) is well defined [Ross, 1983]. (2.1) represents the TEDR after uniformisation. 

The discount factor a is introduced because a reward to be earned in the future is 

less valuable than one earned today. This way we also ensure that the total reward 

is bounded. 

As mentioned in §1.3, Blackwell (1965), shows that if the action space S and the 

state-space A are finite there is an optimal T T * such that, for every T T , K-*(-2) > ^-(2), 

Vz G S, in the set of all possible states. He also shows that if there is an optimal T T , 

there is one which is stationary. 

If we define V{z) to be 

V{z) = snpV^{z) 
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then a policy T T * is said to be a-optimal (or optimal) if 

(2.2) v^.{z) = v{z), yzes 

An optimal policy has the property that whatever the initial state and initial action 

are, the remaining actions must constitute an optimal policy with regard to the 

state resulting from the first transition - a principle being always valid when the 

number of states and the number of actions is finite. Now we can use Dynamic 

Programming results to calculate the optimal policy by considering an optimality 

equation; see §1.3.3. 

In our work the optimality equation is given by the following expression 

(2.3) V{z) = max E[Riz,i:)] + aY,PA'^\^)Viz) 

where z,z E S. [A proof can be found in Ross (1983) . 

The optimality equation (derived by considering the network as a Markov decision 

process) will be our tool for the analysis of such problems for the main reason that 

under uniformisation it becomes a linear equation which can be solved recursively 

by Gauss-Seidel or some such iterative procedure; the iterative procedures we are 

using are presented in §2.4. 

Proposition 1 

V stationary policies T T , K is the unique solution of 

(2.4) V^{z) = E[R{z,7r)] + a^P . ( j | ^ )K( j ) 

Proof: A proof can be found in Ross (1983). 
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Theorem 1 

Let g be the stationary policy that when the process is in state z, selects the action 
which maximises the right hand side of (2.4), then 

V,{z) = V{z), V z > 0 

and hence g is a-optimal. 

Proof. A proof can be found in Ross (1983). 

Before we discuss the actual procedures for calculating our optimal policies, we give 

definitions of the parameters used to describe the network and the rates in which 

events happen as well as the transition probablities. 

2.3 Definition of the Model 

2.3.1 Preliminary Definitions 

Definition 1 

The number of all possible pairs ( i j ) , where ^ < j , is denoted by /3, where 

Definition 2 

The number of all possible 2-fink pairs where z < j is denoted by 7, where 
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where 1 < i < j < K-

Lemma 1 

We can index all the 2-fink pairs [i,j) with the formula 

Khj) = - 7, --K + J 

where I < i < j < K-

Proof. To derive the above expression for l{i,j) write out the pairs as follows 

(1.2) , (1,3), (1,K) 

(2.3) , (2,4), (2,K) 

(K-2,K-1), (K-2,K) 

(K-1,K) 

In the first row l{l,j) — j - 1; in the second /(2, j ) = K - 1 + j - 2; and in row i 

n=K-i+l 

which can be rearranged to give the formula of / ( i , j ) . 

Definition 3 

The number of 1-Hnk calls on link i is denoted by Xi, where 0 < re,- < C. 
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The number of 2-lmk calls on pair [ij] with index number /(z, j ) is denoted by 

wi(^ij), where 0 < < C. 

Definition 4 

The number of 1-link calls in the network is denoted by x, where 

X = { X I , X 2 , . . . , X K ) 

The number of 2-link calls in the network is denoted by w, where 

w 

Definition 5 

The state of the network at the time we observe it is denoted by {x,w), where 

{ x , w ) = { X I , . . , X K ; W I , . . , W ^ ) 

For each i, 

0 < + X ) < C 

where A, = {I : 1 = l{i,j) or / = l{j,i), some j ^ i}. 

We say that the link i is full when the number of calls of both types in i is C 1-link 

calls depart from link i at rate x,; and 2-link calls depart from pair ( i j ) at rate wi. 
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2.3.2 Rates of Events 

Definition 6 

1- link calls arrive on the network at rate Ui, where 

z/i = /\ Ai 

2- link calls arrive on the network at rate 1^2, where 

_ 7A2 _ K X 2 

1-link calls depart from the network at rate 1^3, where 

K 

i=l 

2-link calls depart from the network at rate 2/4, where 

Under the framework of our network the transitions to the next state are exponen

tially distributed, but with various rates. To allow transitions to occur at a uniform 

rate we used the technique of uniformisation, introduced by Lippman (1975), in 

which transitions occur from each state by introducing fictitious null events, that 

is transitions from a state to itself [Lippman (1975), Lippman and Stidham (1977), 

Ross (1985)]. This enables us to replace the continuous time problem with a discrete 

time problem. 

The rate of null events in the network is denoted by 1^5, where 

Z/5 = KC - 1/3-

49 



Note that when the system is full i.e. there are no free links, we cannot accept 

arrivals of any type. 

The Total Rate of events in the network is denoted by Rate, where 

A2 (2.5) Rate = ^ u , = K{X, -f ^ + C) 
i=i ^ 

The rate of offered traffic per Hnk over the network is denoted by L, where 

(2.6) i = A , + ( ; f - l ) ^ ^ ^ = A, + ^ . 

I t is also necessary to add that now that the transitions in the network occur at 

rate (2.5) the correction between discrete steps in the optimality equation after uni-

formisation and 'time' in the continuous time process for the discount factor a is 

_ Rate 
a = 

Rate + {—Ina) 

Remark: In most cases examined in this thesis a ^ 0.8. All the results for a fixed 

L (e.g. 2.95) are comparable by having the same discount rate but different values 

of L yield slightly different actual discount value. The results presented in tables in 

Chapters 4, 5 and 6 have values calculated by the approximation a = a^l^"-^^ and 

are about 0.6% smaller than the results that would be derived by using the above 

correction.This, however, has no effect in the optimal policies and the differences 

between optimal y(0) and the Admission Price optimal Ku(0); see Chapter 4. 

The results on this and later chapters are usually grouped by the value of L for 

'historical reasons' - when running the programs this keeps the rate of events the 

same for a collection of different arrival rates for networks of given size. 

Notation 

ei = (0,.., 1,.., 0), with 1 in the z*'' place. 
K 
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e/ = (0,.., 1,.., 0), with 1 in the place. 

Possible transitions: ±6,-, i = 1,2,..,K., and ±e;, / = 1,2, ..,7. 

2.3.3 Transition Probabilities 

The transition probabilities for the network are as follows: 

P^{x + e^,w\x,w) = I 
0, if Tr(x,w) = reject 

I. Rate , otherwise 

Xi 
P^{x - ei,w\x,w) = i f Xi>0 

P„{x,w + ei\x,w) 
0, if 7r(a;, iy)= reject 

i (ftr)^e^ otherwise 

wi 
P^{x,w - ei\x,w) = r^^, if u;; > 0. 

P^{x,w\x,iv) = 
t^5 

Rate 

As we always accept 1-link calls when there is room to fit them in 

P^{x + ei,w\x,w) = 
0, iixi = C 

{ Rate •̂^ , otherwise 

Definition 7 

The reward to be expected in the next transition out of state {x,w) when poHcy TT 
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chooses action a is denoted by "if, where 

(2.7) ^ = E[Ri{x,w),7r)] = ^ P^{x,w))R{x,w) 
a^A 

K 

= J2P^{X + et,w\x,w)Rl + 
i=l 
7 

^P^(a;,u; + et\x,w)R2. 
1=1 

^ can also be written as 

^ ' ^ Rate 

where I{ei\x,w) = 1 or 0 according as a call on route / is accepted or rejected by 

the admission policy. 

Using (2.7), (2.4) can be expressed as 

K 

V^{x,w) = * + a^P^(a ; ± ei,to|a:,u;)Kr(a; ± ei,u;)+ 

1 
a^P^(a; , iy ± ei\x,w)V.„{x,w ± ei) + 

1=1 

(2.9) a[P^{x,w\x,w)]V^{x,w). 

2.4 Computational Procedures for the Optimal 

Policy 

The problem of formulating optimal policies for Loss Networks has been a subject 

of research for the last 20 years. In general the optimal policy and the value func

tions cannot be determined for realistic size networks which comprise a number of 

resources and where different call-types share resources, although it is possible to 
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determine controls that are asymptotically optimal in a suitable defined sense. The 

two factors which make the problem of formulating the optimal policy so hard are 

the size of the state-space and the fact that, in order to compare the relative desir

ability of two different routes, the state of trunkgroups not in either of these routes 

may be relevant. 

It has been shown by Key (1990) that the optimal pohcies can be compHcated to 

describe and do not share properties possessed by optimal policies for the simple 

case of a single link. We will also show how complex the optimal policies are even 

in our simple networks in Chapter 3. 

2.4.1 Policy Improvement 

Theorem 1 suggests that, once we have determined the optimal function V, then we 

would know the optimal policy - it would be the stationary policy n that, when in 

state z = {x,w), maximises 

E[R(z,7r)] + a^P^{z\z)V,(z) 

Suppose now that for some stationary policy g we have computed Vg, the expected 

return under g; and suppose that we now define h to be the policy that, when in 

state z, selects the action a that maximises the above. The question is how good 

is h compared with g. This describes Howard's pohcy improvement procedure and 

Ross (1983) contains a proof that h is at least as good as g and if it is not strictly 

better than g for at least one initial state, then g and h are both optimal. In our 

work we apply policy improvement on a computer to obtain the optimal policy when 

the state space is finite. 

Step 0 (Initialisation). Choose any stationary pohcy g and employ it in our Network 

as a rule for rejecting calls. 

Step 1 (Value Determination). Compute Vg as the unique solution of the set of 

equations 
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(2.10) V,{z) = E[R{z,g)] + ccY.PM^)V,{z) 
z 

Step 2 (Policy Improvement). Determine a policy h as the policy that, for each state 

2 G 5, selects the action which maximises the right hand side of (2.10). 

Step 3 (termination). If the new policy h equals the old policy g, the algorithm is 

stopped with policy h as the optimal. Otherwise, go to step 1 with g replaced by h. 

The policy improvement algorithm converges after a finite number of iterations; a 

proof can be found in Tijms (1988). It is empirically found that policy improvement 

is a remarkably robust algorithm which converges very fast in specific problems. 

The number of iterations is practically independent of the number of states and 

of the starting policy, and varies typically between 3 and 15 (see Tijms). In our 

examples (see §2.5) it never exceeded 5. In Tijms (1988) it is also stated that the 

expected return of the pohcies generated by policy improvement converge at least 

exponentially fast to the maximum return. 

Note: Policy improvement is usually more complicated than value iteration. How

ever in our case it is only slightly more complicated and as we can store the optimal 

policy compactly we use policy improvement which allows us to get direct access to 

the optimal policy itself and not only the maximum expected discounted reward. 

This is the right place to add that we initially found a method for storing pohcies 

for controlling the 2-link calls with the intention of treating the more general case 

later (i.e. possible rejection of calls of either type), but ran out of time; see §3. 

2.4.2 The Value Determination Step 

Step 2 of the policy improvement algorithm calculates recursively the expected re

turns K when a policy TT is employed. The algorithm used to do this is as follows 

Step 0. Choose 0̂(2;) > 0 be any arbitrary bounded function for all z. Let n := 1, 

and employ a poHcy T T . 
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Step 1. Compute the unique solution to (2.10) using the following system of hnear 

equations for all z 6 <? under the policy considered 

(2.11) K ( ^ ) = [E{R{z,i^)) + a ^ P . ( j | ^ ) K _ i ( j ) ] 
z 

recursively 

StepS. The algorithm is stopped when 

imix\Vn{z) - Vn-i{z)\ < e, 
266 

where e is a prespecified tolerance number. Otherwise, go to step 3. 

Step 3. n := n + 1 and go to step 1. 

This algorithm is computing recursively a sequence of value functions approximating 

the expected discounted returns (TEDR) per unit time. 

Equation (2.11) can be expressed in vector form as 

(2.12) Vn = q + TV„_i, n = l , 2 , . . 

where Vn is a column vector with l ^ l components Vn{x,w). 

If we rearrange (2.12) the right way, the linear iteration scheme resulting can be 

solved by the Gauss-Seidel (G-S) iteration method for solving a linear system A V 

= R, where A is been split into its diagonal D, strictly lower-triangular part L and 

strictly upper-triangular part U so that 

A = D - L - U . 

Under this assumption, the Gauss-Seidel scheme is represented by (2.12) where 
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T = (D - L ) - ' U . 

T is called the Gauss-Seidel Iteration Matrix. 

The point about using iterative techniques is that, storing the elements of matrix 

A is impracticable as the size of it will be |<S|̂ ; see also §1.4. That's why iterative 

techniques for solving the value determination step are an extremely important tool 

in the analysis of Markov decision processes which have a large state space as it 

involves solving a set of linear equations whose size is dependent on the state space, 

and other approaches such as the linear programming one suffer even more from 

complexity considerations. 

The policy improvement with value determination algorithm's greatest benefit is 

that it can be directly implemented on a computer; see Appendix B.2 and B.3. 

2.4.3 The Successive Over-Relaxation Algorithm (SOR) 

The convergence speed of the value determination algorithm may be accelerated by 

using a relaxation factor such as in successive overrelaxation (SOR) for solving a 

single system of linear equations. Then at the n*'* iteration, a new approximation 

to the value function Vn{z) is obtained by using both the previous values Vn-i{z) 

and the residuals Vn{z) — Vn-i{z). 

The following modification of the value determination can be formulated as follows: 

The steps 0,1 are as before, while steps 2 and 3 become 

Step 2. \/z G <S, change Vn{z) according to 

Vn{z) - ( l - u ; ) K - i ( ^ ) + 
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(2.13) u 

where z,z ^ S. 

E{R{z,7r)) + aJ2M'^\^)Vn-iiz) 

Step 3. If the algorithm is stopped, the process is finished. Otherwise, n ~ n + 1 

and go to step 1. 

The SOR value determination method can also be expressed in vector form as 

Vn = q + TVn_i, n = l , 2 , . . 

but this time the matrix T is 

(2.14) T = {B-uLy^[{l-Lo)D + LoU], 

where D, L and U are the matrices defined in §2.4.2 associated with matrix A. 

Note, that the iteration method with a; = 1 is the Gauss-Seidel method described 

earlier on. 

The convergence speed of the successive overrelaxation may dramatically depend 

on the choice of the relaxation factor a;, and even worse, the method may diverge 

for some choices of u. A suitable value of u> has to be determined experimentally 

usually 1 < a; < 2. 

2.5 The Efficiency of the SOR method 

In our work we have tried different over-relaxation (SOR) values for u> and the 

optimal results in convergence speed (the total number of iterations needed) suggest 

that optimal u> are different for problems of different size. As we shall see later from 

the figures, i t seems that the variation is associated more with the change in offered 

traffic rates than the network size; see especially Figures 2.5 and 2.6. 
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The next six figures show some results for Symmetric networks of sizes [K, C) = 

(3,3) and (/ \ , C) — (4,3) for both the ful l model described in this Chapter as well 

as the reduced state-space model described in Chapter 4. 

In Figures 2.5 and 2.6, K = 3 and C = 3,4,5,6. 

The arrival rates in Figures 2.1, 2.2, 2.3 and 2.4 are (Ai,A2): 

(a) (0.5;4.9) and (2;2) for the ful l Symmetric networks of both sizes. 

(b) (0.5;4.9) and (2;4) for the reduced state-space Symmetric networks of both sizes. 

In Figures 2.5 and 2.6 the arrival rates are (0.5,4.9) and (2,4) respectively. 

For theses examples Ri = 2 and R2 = 1. In the graphs n l = Ai and n2 = A2. 

900 

800 

700 

•g 600 
2 
B 
o 500 

E 
3 400 

300 

200 

100 

1 

(K,C)=.(3 ,3) 

j 1 

/ / 

s. (2; 2) / / 
/ / 

/ / 
/ / 
/ / 

/ / 

(0 5;. 4.9 > 
y 

/ 
; 
/ 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1. 
Choice for SOR parameter 

Figure 2.1: The effect of a; on the no. of iterations for the ful l Symmetric network 
iK,C) = i3,3). 

58 



1100 

1000 

900 

J 800 

Z. 700 

f 600 
3 

B 500 

400 

300 

200 

100 

1 1 1 1 1 1 

(K,C)=(.4 3) 
(0.5; 4.9) / 

/ ' 
/ ' 

/ ' 

/ ' 

\ ^ 

\ X 

: / / 

'• / ' 

\ N : / / 
7 / 

/ ' ' 

^ ^ ^ ^ ^ / -

; 

1 1 1 1 

'1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
Choice for SOR parameter 

Figure 2.2: The effect of u on the no. of iterations for the ful l Symmetric network 
(/^,C) = (4,3). 

1200 

1000 

§ 800 

B 
o 
S 600 
E 
Z 
•(0 

o 400 

200 

0 

1 

(K,C)=(3 

1 1 1 

3) / 

1 

" - ^ :{2; 4) 

" - ^ 7 

/ 
/ 

/ 
/ 

: / 

1 1 1 

: / 
J 

1 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
Choice for SOR parameter 

Figure 2.3: The effect of bj on the no. of iterations for the reduced state-space 
Symmetric network {K^C) = (3,3). 

59 



1400 

1200 

1000 

^ 800 

0) 
X I 

1 600 

400 

200 

\ 
\ 

\ 

(K,C)=(4 3) 

s. \ 

s 

(0.5; 4. 
\ 

N 
1 

1 
N 1 

1 
1 

1 

N (2 4) 
1 

1 
1 

.1 -

N. 

N 

1 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
Choice for SOR parameter 

Figure 2.4: The effect of LO on the no. of iterations for the reduced state-space 
Symmetric network {K,C) = (4,3). 

K=3, (n1,n2)=(0.5,4.9) 
800 

700 

600 

o 

I 500 

400 

B o 

300 

200 

100 

1. 

V Vy= 

\ 
S 

C=4 X ^ . \ 
N \ 

N * S 
\ N \ . 

/ ' / / ' ^ 

. / / / / 
' / 

J / / 

1 

'1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1. 
Choice for SOR parameter 

Figure 2.5: The effect of w on the no. of iterations for the ful l Symmetric networks 
with Ai = 0.5, As = 4.9, = 3 and (7 = 3,4,5,6. 

60 



K=3, (n1,n2)={2,4) 
1400 

1200 

1000 

^ 800 

0) 

1 600 

.o 

400 

200 

1 1 

s \ ^ 
N ^ 

S 
N 

C=6 

C 
s \ 

;=5 ^ . 
N 

S 

C= 4 ^ " . ^ 

C=3 
• — / 

• • / 

1 1 

1.1 1.2 1.3 1.4 1.5 
Choice for SOR parameter 

1.6 1.7 1.8 

Figure 2.6: The effect of u) on the no. of iterations for the ful l Symmetric network 
with Ai = 2, A2 = 4, = 3 and (7 = 3,4,5,6. 

The actual convergence of these schemes as well as arguments on the error analysis in 

relation to the numerical evaluation of the TEDR for small Star Symmetric networks 

are examined in detail in the next section. 

2.6 Convergence Analysis for SOR 

In previous sections we presented the Gauss-Seidel (G-S) and the SOR schemes, 

as the value determination algorithms adopted for the numerical calculation of the 

TEDR. We know that the Gauss-Seidel method converges because there is an op

timal discounted reward (the problem has finite state and action space); see Ross 

(1983) and Tijms (1988). It is now time to show, using Numerical and Matrix 

Analysis results as well as data from the study-cases, that the SOR scheme con

verges. We will also derive results for possible rounding and truncation errors in our 

calculations. 

Before we do so, it is necessary to include some theory and definitions from Numerical 
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Analysis. 

Definition 8 

The spectral radius /o(A) of a matrix A is defined by 

p{A) = max |A|, 

where A is an eigenvalue of A. 

The spectral radius of a matrix is closely related to the norm of the matrix as shown 

in the following theorem. 

Theorem 2 

If A is an n X n matrix, then 

p{A) < A for any natural norm || * | • 

Proof: Proofs can be found in Burden and Faires (1989) or Ortega (1972). 

Corollary 1 

If | |T | | < 1 for any natural matrix norm, then the sequence {Vn}^o 

Vn = q + T V n - i , n = 1,2,.. converges for any VQ G i?" to a vector V G i?", 

and the following error bound holds 

| | V - V n | | < | | T | r | | V o - V | | . 

Therefore a necessary and sufficient condition for convergence is that p{T) < 1. 

Proof: A proof can be found in Burden and Faires (1989); see also Hageman and 

Young (1981). 
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The relationship of the rapidity of convergence to the spectral radius of the iteration 

matrix T can be clearly seen from Corollary 1. Since the Corollary holds for any 

natural norm, it follows from Theorem 2 that 

(2.15) \ \ Y n - y \ \ ^ p { T r | | V o - V | | . 

Thus it is desirable to select an iterative technique with minimal p{T) < 1 for the 

solution of the associated linear system. The point about SOR with the best choice 

of oj is that its associated matrix T has minimal spectral radius. 

Kahan (1958) has shown that if an / 0 for each z = 1,2, . . ,n, then 

K T S O R ) > | ^ - 1 | , 

with equaUty possible only if all eigenvalues of / ^ (TSOR ) have modulus — 1 | . Thus 

a necessary condition for the convergence of the SOR method is that 0 < a; < 2. 

In our examples we have calculated p{T) numerically on a computer for 0 < a; < 2 

and it is indeed always < 1. That is an assurance that the SOR method converges; 

see §2.7. 

Another way to approach convergence is the Ostrowski - Reich theorem which states 

that if A is a positive definite matrix and 0 < a; < 2, then the SOR method converges 

for any choice of initial approximate solution vector V Q . Our matrix A is positive 

definite as it is diagonally dominant i.e. |a,i| > YTj^j j=\ k t j l ) ^ = 1)2, . n. 

Definition 9 

The condition number k{A) of a matrix A is defined by 

k{A) = \\A\\ \\A-^\l 

for any natural norm 11 * | . 
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The condition number of a matrix measures the sensitivity of the solution of a 

system of linear equations to errors in data. As we shall see in §2.7, A;(A) gives an 

indication of the accuracy of the results from matrix inversion and linear equation 

solution. 

In this work the norm we are using as a measure of the magnitude of the elements 

of the matrix A is the infinity norm which is defined by |jAj|oo = max^ J^j l^ijl, the 

largest row sum of A. 

2.7 Errors in Computational Procedures 

In this section we consider an analysis on the accuracy of the results and possible 

errors due to (a) truncation^ in the iterative procedures considered (SOR), and (b) 

rounding errors in Gauss Elimination. 

To study the problem of truncating/rounding errors in calculating the TEDR values, 

and apart from a theoretical approach, we have compared the TEDR values starting 

from different initial values for the iteration and keeping the optimal policy fixed. 

This comparison showed that any differences are due to rounding errors. 

In numerically calculating the maximal TEDR by either the G-S or the SOR method, 

the algorithm considered is given by 

Vn = q + T V n - i , n = l , 2 , . . 

where Vn is a column vector with K components Vn{x,tu) and T is the Iteration 

Matrix (see §2.4). This algorithm recursively computes a sequence of value functions 

V approximating the maximal TEDR. 

The Gauss Elimination solves AV = R. 

iSee §2.4.2 
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2.7.1 Truncation Error 

Suppose that the real maximal TEDR is denoted by V* and that a sequence satisfies 

Vo ,Vi ,... V* and \ Vn+i-V*\ < C\Vn-V* \ for some ^ < 1. From (2.15) a suitable 

value of is p{T). The value determination algorithm approximates V* by V/v where 

we choose iV to be sure that \VN — VN+I \ < e. A natural question arises now is to 

find out how big the distance \VN — V*\ is. Applying the triangle equality we see 

that 

\VN~V*\ < \VN - VN+I\ + \VN+I - V* 

< e + C\VN~V*\ 

and hence 

(2.16) \ V N - V * \ < ^ ^ . 

Knowing e to be the algorithm tolerance number it remains to calculate the number 

From the plausible approximation 

\VM+l-VN\^f\Vl-Vo\ 

we get 

C^{e/\V,-Vo\fr 

2.7.2 Rounding Errors 

We know from Numerical Analysis that in solving A V = R a small value of the 

residual r = R - A V does not necessarily imply that | |V — V*| | will be small as well. 

It is also known that 
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- l l | | V - V * | | < | |r| | | |A 

Theorem 8.19, Burden and Faires (1989)]. Forsythe and Moler (1967) also show 

that the residual vector r for the approximation of V* has the property that 

|r | i ^ 10-* | |A|| | |V*||, 

where the solution of A V = R is being determined using t-digit arithmetic and 

Gaussian EHmination. 

If we consider Y * the approximate solution of A Y = r then, 

Y * ^ A - ^ r = A - ^ ( R - AV*) = A - ^ R - A-^AV* = V - V*. 

so Y * is an approximate of the error in approximating the solution to the original 

system. From Forsythe and Moler (1967) we can now deduce that 

(2.17) l |Y* | | 5̂:! | | V - V * | | = | | A - i r | i 

< | | A - i | | | |r| | Pi 10-*A;(A)||V*||. 

The above means that it is easy to deduce an approximation for the rounding error 

involved if we can calculate the condition number of the matrix A and have the 

solution V* stored. 

Gauss Elimination and the calculation of the condition number is possible for the 

smallest of our examples. We can use these to test the rest of the algorithms for 

the smallest cases. Particularly we can compare p{T) with the approximation ^ ^ 

{e/\V^ - Vol)^/^. 

For larger cases we have to use SOR; see Case V in §2.7.3. 

66 



2.7.3 Numerical Examples on Errors 

In the following examples of networks we present firstly the results for the ap

proximation of errors as deduced in practice from (2.16) and secondly as they are 

deduced by the approximation (2.17) applying MATLAB Gauss Elimination with 

13-digit arithmetic to the problems. 

In particular in the following examples we calculate: (i) the condition number, (ii) 

the spectral radius p{T), (iii) the approximation ( ~ (e/ |K — Vo\Y^^ and compare 

with p{T). The tolerance number in the following examples is e = 10~^. 

Case I : Consider a network with {K,C) = (2,3), (RuRi) = (2,1) and (Ai,A2) = 

(0.5,4.9). 

Applying policy improvement, the value determination takes 7V = 45+31 iterations 

to calculate the TEDR with the improved policy and therefore using the approxi

mation (2.16) with e = lO"'^ and C = 0.67828 we get 

3.11 X 10 - 6 

1 - e 

p{T) = 0.7122 ( ^ 0-

The condition matrix for the above example calculated using MATLAB Matrix 

Operations is k{A) = 88.9028 and hence (2.17) becomes 

| Y * | | ^ 10-' k{A) \\y*\\ = 1.391 X 10-11 

in 13-digit arithmetic and Gaussian elimination. The above approximation suggests 

that | |V — V*| | is very small. 

Case I I : Consider a network with {K,C) = (2,3), (i?i,i?2) = (2,1) and (Ai,A2) = 

(1,5). 

Applying policy improvement, the value determination takes iV = 44+34 iterations 

to calculate the TEDR with the improved policy and therefore using the approxi

mation (2.16) with e = 10'^ and ^ = 0.70532 we get 
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= 3.39 X 10-^ 
1 - ^ 

p{T) = 0.7378 (fti 0-

The condition matrix for the above example calculated using MATLAB Matrix 

Operations is k(A) = 89.8614 and hence (2.17) becomes 

| | Y * | | f« 10-* k{A) \\Y*\\ = 1.8546 x 10-" 

in 13-digit arithmetic and Gaussian elimination. The above approximation suggests 

that i |V - V*| | is very small. 

Case I I I : Consider a network with {K,C) = (3,3), {Ri,R2) = (2,1) and (Aj, A2) = 

(1.8,2.3). 

Applying policy improvement, the value determination takes iV = 61+49+39 it

erations to calculate the TEDR with the improved policy and therefore using the 

approximation (2.16) with e = IQ-^ and ^ = 0.892588 we get 

9.31 X 10-^ 

p{T) = 0.8720 i). 

The condition matrix for the above example calculated using MATLAB Matrix 

Operations is fc(A) = 102.5391 and hence (2.17) becomes 

| Y * | | ^ 10-* fe(A) |1V*|| = 4.3621 x I Q - " 

in 13-digit arithmetic and Gaussian elimination. The above approximation suggests 

that | |V - V*| | is very small. 

Case I V : Consider a network with {K,C) = (3,3), {Ri.R^) = (2,1) and (Ai,A2) = 

(2,3). 

Applying poHcy improvement, the value determination takes N — 67+49 iterations 

to calculate the TEDR with the improved pohcy and therefore using the approxi

mation (2.16) with t = 10-^ and ^ = 0.863274 we get 
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^ = 7.31 X 10"^ 
1 - e 

p{T) = 0.8591 ( ^ 0-

The condition matrix for the above example calculated using MATLAB Matrix 

Operations is k{A) = 107.9399 and hence (2.17) becomes 

| | Y * | | ^ 10-* k{A) \\Y*\\ = 4.9123 x lO-^^ 

The above approximation suggests that | |V — V*| | is very small. 

Case V : Consider a network with {K,C) = (4,3), (i?i,i?2) = (2,1) and (Ai,A2) = 

(2,2). 

Applying policy improvement, the value determination takes N = 92+63 iterations 

to calculate the TEDR with the improved policy and therefore using the approxi

mation (2.16) with e = 10-*̂  and C = 0.82553 we get 

^ = 5.56 X 10" 

2.7.4 Conclusion and Accuracy Check 

The Value Detemination step in Policy Improvement can be solved by either using 

iterative techniques (G-S, SOR) or Gauss Elimination. As mentioned in §2.7.2, the 

Gauss Elimination solution of A V = R as well as the calculation of the condition 

number are possible for small examples of networks only. This is due to the difficulty 

posed by the huge state-space in calculating and storing A which is \S\^ in size; see 

also §2.4.2. 

The above examples clearly demonstrate that | |Y* | | is much smaller than the SOR 

truncation error so the Gauss Elimination solution is more accurate. In our examples 

with {K = 2,C) and [K = 3,C), where C < 4, the Gauss Ehmination solution 

V = A - i R agrees with the SOR solution to the expected precision (i.e. 10"^). 

That confirms the accuracy of the SOR algorithm. 
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2.8 The max-flow Bound for Symmetric Star Net

works 

In this section we demonstrate how to obtain the max-flow bound^ on the perfor

mance of our routing scheme under a fixed pattern of offered traffi.c. The max-flow 

bound is extensively discussed in Gibbens k Kelly (1990) and Gibbens, Kelly & Key 

(1988); see also §1.5.1. Key (1990) obtains a bound for the optimal return under 

any dynamic routing scheme by solving a linear programming problem; Lemma 2.1 

in Key (1990). 

For the networks considered in this thesis the max-flow bound is obtained by the 

solution to the following linear programming problem L P l : 

max 
• K K{K-l)/2 

i=i 1=1 

where X , < Ai, z = 1, . . , /^ ; {K-l)wi < A2, / G A , a;^+E/G^• ^ ( < C; Xi,wi > 0. 

Replacing each Xi by ?/i and each term {K - l)wi by 1/2 we get the following linear 

programming problem LP2: 

max K Riyi + Y ^2 y2\, where yi < Ai; y2 < A2; yi + 2/2 < C; yi,y2 > 0. 

Clearly the maximum of L P l is at least as large as that of LP2 . The question to 

ask is whether the maximum of L P 2 is > than that of L P l . The answer is yes as 

demonstrated in the following Lemma. 

Lemma 2 

L P 2 has maximum > than that of L P l . 

Proof: Suppose that (x, w) is an optimal solution with Xi 7̂  xj for some i ^ j, or 

wi ^ Wk for some I ^ k. By relabelling the links we can produce another non-

symmetric solution [X^W) say. Consider all such solutions (a;'',to'') produced by 

^See §1.5.1 and (1.18). 
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permutations p of the indices {1,2, . . , K}. Consider 

K\ 

(xTu;) is feasible for L P l by convexity of the feasible region and has the same 

objective function value. Further xj = ¥2 = .. = xj^ and uTf = = .. = til^ and so 

there exists an optimal solution to L P l which is symmetric. Hence the maximum 

for L P l is no larger than the maximum for LP2 . 

L P 2 is trivial to solve. The max-flow bound is an upper bound for the rate of return 

for the network. To get a bound for the rate of return per link we just divide by the 

number of links K. 

For the small networks we have considered^ the max-flow bound is not very tight as 

we will see in §2.9. 

2.9 The Rate of Return from the Network 

2.9.1 Fixed-Point Approximation for the Blocking Proba

bilities 

In Kelly (1986), if the capacities Cj , j = 1,2, and the offered traffic Vr are 

increased together a limiting regime emerges which has a very simple description. In 

the limit, there is a parameter Bj G [0,1] associated with link j , and the probability 

that a call requesting route r is lost is given by 

(2.18) pa 1 - n ( i - r e n 

where Air is the number of circuits a call on route r uses from link i\ Air G 

Z^. In our Symmetric Star network, each element of the matrix A = {Air,i = 

^See §1.4. 
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1,2..., K;r £ TV) is either 0 or 1, and a route r can be identified with a member of 

^ = ({0){^ i}) = 1)2, ..,/v; i ^ j ) in other words all the one and two fink 

routes. 

In our networks (2.18) becomes 

(2.19) « 1 - (1 - Bi){l - Bj), for r = 

(2.18) is as i f links block independently, fink i blocking with probabihty Bi, where 

B = {Bi,B2, -.^BK) is any solution to the set 

Y.vr'^lil-B,) = C„ if Bi>0 
r:ier j 

(2.20) Y l ' ' r l l i ^ - B j ) < a , if B, = 0 
r:ie.r j 

B,,B2,...,BK e [0,1). 

(2.20) simplifies in our case to 

(2.21) Ai(l-^0+¥,^Zy Y i^-B,)'C = 0, B.>0 

Kelly states that there always exist a solution to the above relation, and it is unique 

if the matrix A = (Ajr) has rank K. 

Under the symmetric assumption for our networks, the quantities Bj are the same 

for every link i.e. Bi = B2 — ••• = BR- = B, and hence the fixed-point approximation 

relation (2.21) becomes 

(2.22) A a ( l - 5 ) + ( / ^ - l ) ^ | ^ - - ^ - C = 0, i ? e [ 0 , l ) . 

Note that (2.22) is the same for networks with various K. This is the result of 

normalisation of 2-link traffic to rate A2/(/v — 1). 

The above relation (2.22) is a very useful and convenient one as it allows a straight-
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forward approximation for the rate of return in the network. Denote this return as 

Rpp, which is given by 

(2.23) RFP^Y.RMl-Lr), 
r 

where Lr is the proportion of calls offered to route r which are lost and Vr is the 

arrival rate on route r; since a route in our work can be identified to be single link 

traffic and 2-link traffic we can say vi = Ai and V2 = Xi/iK — 1). The relations 

below apply 

(2.24) L, = Bu i2 = l - ( l - 5 l ) ^ 

for the proportion of calls offered to routes 1 and 2 respectively. 

2.9.2 Calculating the Blocking Probabilities in Equilib

rium 

The equilibrium equations for our model can be calculated numerically on a com

puter and are described by the following full balance equations 

(2.25) a ( z ) ^ K ^ , j ) = ^<7( j )p(J ,^ ) 
2e<s zes 

where a{z) denotes the equihbrium distribution of the system being in state 2 , and 

z z 

Note that we cannot apply the detailed balance due to lack of reversibility. 

In this work, a program has been written that solves the equations (2.25) with a 

procedure similar to that used in the value determination step for solving (2.9). This 

procedure calculates: 
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(a) The blocking probability of a single link traffic on link, say i, when there are C 

calls present on i (i.e. Fi = 0), as 

B i ^ Y l ^(^) ^^^^'^ Si = {z : F^ = 0}, 
Si 

where Fi is the number of free circuits on link i. The above expression gives the 

true blocking Bi. 

(b) The actual blocking probability of a 2-link call on route / under the optimal 

policy, as 

B2 = ^(T{Z) where S2 = {z £ S : I{ei,z) = 0], 
S2 

where /(e;, z) = 0 denotes rejection by the optimal policy. 

Because Poisson arrivals see the equilibrium distribution'', the rate of blocked single 

link traffic on link z, is given by 

Ai ^i^) where S^ = {z e S : F, = 0}, 

The actual rate of return per fink per unit time is also calculated numerically as 

follows: 

RE = R^a,(1-Bi) + ^ ^ x : ' ( i - ^ 2 ) 

which becomes 

RE = Rr \i ( l - 5 i ) + y A 2 ( 1 - ^ 2 ) 

Note that in the exact case it is necessary to calculate B2 the same way Bi is 

*See Tijms (1988). 
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calculated because (1 — B2) 7^ (1 — J5i)^; this is only asumptotically correct. 

The following table shows some results in order to compare the Equilibrium Re

turn (RE)-, the Real Return (RR), the max-flow returm Rmj and the Fixed-Point 

Approximation Return (RFP) as well. 

Size of networks 1^1 1^2 RR RE RFP Rmf 
{K, C) 

0.5 4.9 1.53 1.28 2.05 2.25 
0.7 4.5 1.72 1.56 2.28 2.55 
1 3.9 2.02 1.92 2.63 3.00 

3,3 1.3 3.3 2.34 2.32 3.01 3.45 
1.5 2.9 2.54 2.55 3.28 3.75 
1.8 2.3 2.84 2.87 3.70 4.20 
0.3 5.6 1.38 1.07 1.81 1.95 
0.6 5 1.66 1.42 2.14 2.40 
1 4.2 2.03 1.92 2.60 3.00 

3,3 1.4 3.4 2.45 2.44 3.07 3.60 
1.7 2.8 2.74 2.76 3.47 4.05 
2 2.2 3.03 3.05 3.89 4.50 

0.5 4.9 1.33 0.91 2.05 2.25 
0.7 4.5 1.51 1.03 2.28 2.55 
1 3.9 1.80 1.53 2.63 3.00 

4,3 1.3 3.3 2.10 2.09 3.01 3.45 
1.5 2.9 2.19 2.33 3.28 3.75 
1.8 2.3 2.56 2.69 3.70 4.20 
0.3 5.6 1.18 0.85 1.81 1.95 
0.6 5 1.42 0.92 2.14 2.40 
1 4.2 1.80 1.55 2.60 3.00 

4,3 1.4 3.4 2.20 2.20 3.07 3.60 
1.7 2.8 2.47 2.54 3.47 4.05 
2 2.2 2.73 2.92 3.89 4.50 

Table 212: Real , equilibrium, max-flow and fixed-point rate of return per 
link. 

The real return RR is not of any interest to us as we never consider what happens 

as q; —̂  1. It only provides a good check on the accuracy of our programs for 

calculating the stationary distribution from (2.25). RR shown in Table 2.2 are 

calculated using the following formula that connects the average and discounted 

reward (with a = 0.8) RR ^ ^(°K^~"), The results suggest that the fixed-point 

approximation is not very good for the small networks considered. 
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Chapter 3 

Optimal Policies for Symmetric 

Networks 

3.1 Complexity 

For our networks presented in §1.1 and §2.1, we consider poHcies that always accept 

1- link calls when there is room to fit them in. It is the 2-link calls we seek to restrict 

(in order to maximise the TEDR) and hence a policy is a set of |5| x lK{K — 1)-

tuples of Boolean variables. 336 triples when [K = 3,C = 3). As the networks 

increase in size the optimal policy increases rapidly. In the following examples, 

we describe the exact optimal policy for networks with {K = 3, C = 3) only to 

show the complexity and difficulty that both arise in trying to evaluate network's 

behaviour and performance by looking at the calculated optimal policy. In the 

following description we do not include: (a) the cases in which the optimal policy 

accepts the 2-link calls when there is room to fit them in; (b) the cases in which the 

network is ful l . 

Let F = (Fi , F2, F3) denote the number of free circuits on finks X, Y and Z respec

tively. A network state is represented by a 6-tuple (X,XY,XZ,Y,YZ,Z). For example 

(010011) describes the state of the network with: one 2-fink call on pair XY, one 

2- link call on pair YZ, and a single-link call on Z with corresponding free circuits 
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F = (2,1,1). Many states have the same number of free circuits; for example states 

(110010), (020001) and (200201) all have F = (1,1,2). 

Let 0 denote the state with all circuits on all Hnks free i.e. F = (C, C, C) for the 

3-link networks. Let y(0) denote the total expected discounted reward (TEDR) for 

the state 0. The number of possible states in the following examples is 336; see §1.4. 

The quantities Ai, A2,-Ri, i?2) and a are all defined in §2.1, §2.2 and §2.3. Note that 

the a values given are for the continuous time process and not the modified values 

used in the uniformised optimality equation; see §2.3.2. 

In this description we follow the L.Carroll (1865) method in Alice in Wonderland in 

which we first present some evidence and then the sentence/conclusion. 

In what follows we will say that a state z >z whenever i ^^ < Fj. For example a 

state z with F^ = (1,1,1) is considered z > z where F^ — (1,1,3) i.e. a very large 

state in terms of link occupancy has a very small number of free circuits. 

The following examples demonstrate the complexity in describing the optimal case 

for networks with {K,C) = (3,3),i?i = 2, i?2 = 1 and a = 0.8 in which there are 

336 possible states. 

Example 3.1 

A i = 2 , A 2 = l 

The optimal poHcy rejects some 2-link calls when there is room to fit them in. 

Specifically in this network the optimal policy rejects: 

(a) Al l 2-link calls in 60 states with F= (1,1,1), (2,2,2), (3,1,1), (2,2,1), (2,1,1), 

(2,1,2), (1,3,1), (1,2,1), (1,1,3), (1,1,2), (1,2,2). 

(b) X Y and XZ calls in states with (1,3,2), (1,2,3) and (1,3,3) free circuits. 

(c) X Y and YZ calls in states with (3,1,2), (3,1,3) and (2,1,3) free circuits. 

(d) XZ and YZ calls in states with (3,3,1), (3,2,1) and (2,3,1) free circuits. 

(e) X Y calls in states with (3,1,0), (1,3,0), (2,2,0), (2,1,0), (1,2,0), (1,1,0) and (2,2,3) 

free circuits. 
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(f) XZ calls in states with (3,0,1), (1,0,3), (2,0,1), (1,0,1), (2,0,2), (2,3,2) and (1,0,2). 

(g) YZ calls in states with (0,3,1), (0,1,3), (0,1,2), (0,2,1), (0,2,2), (0,1,1) and (3,2,2). 

The value for the TEDR for state 0 is V{0)= 60.0658. 

Observation 1 

Different states with the same number of free circuits F under the optimal policy 

have similar TEDR values. For example, the states (000020), (000111) and (000202) 

with F = (3,1,1) have TEDR values at 58.1079, 58.1069 and 58.1057. 

Different states with 'symmetrical' appear to have similar Total Expected Dis

counted Return (TEDR) values. For example, states with F = (1,2,1), (2,1,1) 

and (1,1,2) have TEDR values at 57.7419 (002100), 57.7429 (010011) and 57.7411 

(010102). For states with F= (2,2,1), (1,2,2) and (2,1,2) some TEDR values are: 

58.3171 (001010), 58.3141 (001101), 58.3163 (001200) and 58.3171 (010010). For 

states (000001), (100000) and (000100) with F= (3,3,2), (2,3,3) and (3,2,3) the 

TEDR is the same. This is not surprising since the 'symmetrical' denotes permuta

tions with underlying network symmetry. 

Observation 2 

As i t is clear from the above example and due to the symmetry assumption of our 

networks i t is easy to deduce the optimal policy for all 2-link routes by just looking 

at its description for one of the possible 2-fink routes. For example knowing that a 

XY call is rejected in (1,1,2) and (1,1,3) can help us deduce that rejections in XZ 

will be in (1,2,1) and (1,3,1) i.e. by permuting the F2 with the F3. 

In the next examples with {K, C) = (3,3), the rate of the total traffic offered per link 

over the network L = Ai + A2/2 remains the same (=2.95) while the rate of 2-link 

traffic decreases. 

Example 3.2 

Ai = 0.5, A2 = 4.9 

The optimal poHcy rejects some 2-fink. SpecificaUy in this network the optimal 

policy rejects: 
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(a) 2-link calls on XY in 12 states with F^ (1,1,2), (1,1,3), (1,1,1); XZ and YZ calls 

are accepted in these cases except (1,1,1). 

(b) 2-link calls on XZ in 12 states with F= (1,3,1), (1,2,1), (1,1,1); XY and YZ calls 

are accepted in these cases except (1,1,1). 

(c) 2-link calls on YZ in 12 states with F= (3,1,1), (2,1,1), (1,1,1); XY and XZ calls 

are accepted in these cases except (1,1,1). 

Example 3.3 

A i = 1.5, A2 = 2.9 

The optimal policy rejects a 2-hnk call on pair XY in states with: 

a) F= (2,2,3) but not in states with F= (2,2,0), (2,2,1), (2,2,2). 

b) F= (1,1,0), (1,1,1), (1,1,2) and (1,1,3). 

c) F= (2,1,0), (2,1,1), (2,1,2) and (2,1,3). 

d) F= (1,2,0), (1,2,1), (1,2,2) and (1,2,3). 

e) (1,3,0), (1,3,1), (1,3,2) and (1,3,3). 

f ) F= (3,1,0), (3,1,1), (3,1,2) and (3,1,3). 

Example 3.4 

A i = 1.8, A2 = 2.3 

The optimal policy rejects: 

(a) Al l 2-link calls in 45 states with F= (1,3,1), (3,1,1), (1,1,3), (2,2,2), (1,1,1), 

(2,1,1), (1,1,2) and (1,2,1). 

(b) X Y and XZ calls in states with F= (1,2,2), (1,3,2), (1,2,3) and (1,3,3). 

(c) XZ and YZ calls in states with F= (2,2,1), (2,3,1), (3,2,1) and (3,3,1). 

(d) XY and YZ calls in states with F^ (2,1,2), (3,1,2), (2,1,3) and (3,1,3). 

(e) XY calls in states with (2,2,3), (3,1,0), (1,3,0), (2,1,0), (1,2,0) and (1,1,0). 
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(f) YZ calls in states with F= (3,2,2), (0,3,1), (0,1,3), (0,2,1), (0,1,2) and (0,1,1). 

(g) XZ calls in states with F= (2,3,2), (1,0,3), (3,0,1), (2,0,1), (1,0,2) and (1,0,1). 

Note: As demonstrated in the above examples, in various states all, two or one of 

the 2-link call types are rejected. We focus our analysis on rejection of calls on a 

particular 2-\ink route, XY. If we consider the previous case for example, by rejecting 

a call on XY we include states from (a), (b), (d) and (e). 

3.2 Opt imal Policies: Properties when R2 < 2Ri 

Before we proceed with giving evidence that suggest certain properties of the op

timal policies, we shall briefly refer to the important results of Key (1990)^ on the 

properties of the optimal policy for networks where links are held independently. In 

our work we assume that 2-link calls hold both links for the same amount of time 

(dependency^) and therefore it is very interesting to investigate whether 'indepen

dent occupancy' results as considered by Key (1990) apply to our networks. 

We mentioned earlier on that we assume R2 < 2Ri. We have assumed this motivated 

from Theorems 4.1 and 4.2 in Key (1990) which are presented in §1.8. Key's results 

only imply acceptance of all 1-hnk calls for R2 < Ri which is often the case in most 

of the examples in this Chapter. Assumptions A l and A2 in Key (1990) hold for 

our networks. Theorem 4.3 in Key (1990) does not apply to our networks: think for 

example of a Star network with K > 3. 

The properties we seek to find evidenece for or against are the following: 

Property A: Dependency on the State-Space 

Property B : Property P2 in Key (1990) suggests that if we reject type j calls in 

z + Ci then we reject them in z for call types i and j which are disjoint. Property 

P2 means that for calls which are disjoint, and thus could be widely separated in a 

network, in general, the more type i calls in progress, the less likely we are to reject 

iSee §1.8 
2See §1.1 
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type j calls, and vice-versa; disjoint calls are for example XY and Z calls. 

Property C : Monotonicity. If an arrival for a 2-link call on route k is rejected 

in state z, then it will also be rejected in states z, where z >z. 

Property D: Property PI in Key (1990) suggests that if we reject a type i call in 

state z, then we reject it in state z + Ck for calls i and k which are distinct and not 

disjoint; not disjoint calls are for example XY and YZ calls. 

Property E : Weak Monotonicity Assumption Cl in Key (1990) in which type 

k calls are monotonic with respect to themselves, that is we assume that for all call 

types k, if we reject a type k call in state z, then we reject a type call k in state 

z + ek. 

By looking at examples of networks for the cases with 

(a) K = 2, C < 5, 

(b) K = 3, C < 5, 

(c) = 4, C < 5, 

(d) K = 5, C = 3. 

and for 24 various offered traffic per case, we have evidence that suggest the prop

erties A, B and E apply in our Symmetric networks: 

Property A: Dependency on the State-Space The optimal policy depends 

upon the ful l state space <S and not just the free circuit configurations. This is 

demonstrated in the following examples. 

Example 3.5 

With parameters {K, C) = (3, 3), Ai = 0.5, A2 = 4.9, i?i = 2, i?2 = 1-

The optimal policy rejects a 2-Hnk call on pair (Y,Z) in the following states with 

F= (1,1,1): 

(200020) and (200111) 

With the same free circuits, F =(1,1,1), the optimal pohcy accepts a 2-hnk call on 
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pair (Y,Z) in states: 

(200202), (110011) and (020002) 

The values of these states are 20.8016, 20.8411 and 20.8452 respectively . 

These differences are not due to truncation error effects. For instance at state 

(200020) by comparing the 'accept' and 'reject' decisions we see that^ 

i?2 + aV; (200030) = 20.5672 

while 

aVa{200020) = 20.5862 

and the difference is four orders of magnitude bigger than the truncation error (which 

is calculated to be 3.05 x 10"^; see §2.4.7. 

Property B: Non-Locality and Disjointness 

The following examples give evidence to support Property P2 for disjoint types of 

calls. In what follows we examine the disjoint types of calls XY and Z. 

In examples 3.5.1 and 3.5.2 iK,C) = (3,3),i?2 = l,R2 = I a.nd a = 0.8 and the 

number of states is 336. 

Example 3.5.1 

Ai = 0.5, A2 = 4.9 

The optimal policy rejects a 2-link call on pair XY in states with F= (1,1,1), (1,1,2), 

(1,1,3) but not in states with F= (1,1,0). 

For example consider the following states in which, i f XY is rejected m z + 63 , then 

it will be rejected in z. 

(1) Rejection of X Y in (110102) coincides with rejection in both (110101) and 

(110100); with free circuits (1,1,1), (1,1,2) and (1,1,3) respectively. 

3See §2.4.1. 
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(2) Rejection of XY in (020002) coincides with rejection in both (020001) and 

(020000); with free circuits (1,1,1), (1,1,2) and (1,1,3) respectively. 

(3) Rejection of XY in (200201) coincides with rejection in (200200); with free 

circuits (1,1,2) and (1,1,3) respectively. 

Example 3.5.2 

Al = 1,A2 = 4 

The optimal policy rejects a 2-Hnk call on pair XY in states with: 

(a) F= (2,1,1), (2,1,2), (2,1,3) but not in states with F= (2,1,0). 

(b) F= (1,2,1), (1,2,2), (1,2,3) but not in states with F= (1,2,0). 

(c) F= (1,1,0), (1,1,1), (1,1,2) and (1,1,3). 

In examples 3.5.3 and 3.5.4 {K^C) = (3,4) and the number of states is 1023. 

Example 3.5.3 

Al = 2,A2 

The optimal policy rejects a 2-hnk call on pair XY in states with F= (2,2,3), (2,2,4) 

but not in states with F = (2,2,0), (2,2,1), (2,2,2). 

For example consider the following states in which, if XY is rejected m z -\- 63 , then 

it will be rejected in z. 

(a) Rejection of XY in (200201) coincides with rejection in (200200); with free 

circuits (2,2,3) and (2,2,4) respectively. 

(b) Rejection of XY in (110101) coincides with rejection in (110100); with free 

circuits (2,2,3) and (2,2,4) respectively. 

The optimal poHcy also rejects a XY call in all states with free circuits (l,3,n), 

(3,l,n), (l,2,n), (2,l,n), ( l , l , n ) (l,4,n) (4,l,n) where n=0,l,2,3,4. 
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Example 3.5.4 

Ai = 0.5, A2 = 4.9 

The optimal poHcy rejects a 2-Hnk call on pair XY in states with (1,1,2), (1,1,3), 

(1,1,4) but not in states with F= (1,1,0), (1,1,1), 

For example consider the following states in which, if XY is rejected in z + 63 , then 

it will be rejected in z. 

(1) Rejection of XY in (030002) coincides with rejection in both (030001) and 

(030000); with free circuits (1,1,2) and (1,1,3) and (1,1,4) respectively. 

(2) Rejection of X Y in (111201) coincides with rejection in (111200); with free 

circuits (1,1,2) and (1,1,3) respectively. 

Discussion on Property B 

The above examples demonstrate clearly that the optimal policy is non-local in that 

the status of link Z effects the acceptance of 2-link calls on XY. It seems that the 

optimal policy acts like a very intelligent mechanism which in Example 3.5.3 for 

example rejects a XY call in states (010000) and (100100) and not in other states 

with F=(2,2,0) waiting probably for more profitable calls to arrive on routes XZ 

and YZ. 

The above examples also suggest that Property P2 in Key (1990) seems to apply in 

our networks. Property P2 suggests that for calls that are 'disjoint', and thus could 

be separated in a network, in general, the more i calls in progress, the less likely we 

are to reject type j calls, and vice-versa. This is true in all of our examples. 

Property C : Monotonicity I f an arrival for a 2-link call on route k is rejected in 

state z, then it will also be rejected in states z, where z >z. 

Our results tell us that Property C does not hold for our networks in general; see 

Examples 3.2, 3.5.2 and 3.5.3 and 3.5.4. 

In Example 3.2: If we describe states with free circuits (1,1,0), (1,1,1), (1,1,2), and 

(1,1,3) as zo, zi, Z2 and 23 respectively, then it is obvious that ZQ > zi > Z2 > 23 in 

terms of occupancy. Rejection in Z3 coincides with rejection in Z2 and zi but not in 
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ZQ. Rejection in Z2 coincides with rejection in zi but not in ZQ- Rejection in Zi does 

not coincide with rejection in ZQ. 

In Example 3.5.3: If we describe states with free circuits (2,2,0), (2,2,1), (2,2,2), 

(2,2,3), and (2,2,4) as ZQ, zi, Z2, Z3 and Z4 respectively, then it is obvious that 

ZQ > zi > Z2 > Z3 > Zi in terms of occupancy. Rejection in 24 coincides with 

rejection in Z3 but not in ZQ, zi and Z2. 

Property D: Not Disjointness 

For not disjoint types of calls i and k if we reject type i in z, then we will reject it 

in z -\- k. Not disjoint types of calls are for example XY and YZ calls. 

In 13 examples Property D did hold. 

Example 3.5.5 

Al ^ 1.8, A2 = 2.3 

A X Y call is rejected in state (010000) with (2,2,3) free circuits as well as in (010010) 

with (2,1,2) free circuits; see Example 3.3. 

Property E : Weak Monotonicity If we reject a type k 2-Hnk call in state z, 

then we reject a type call k in state z + ei,. In 13 examples of various size networks 

Property E was true. 

Example 3.5.6 

Al = 2,A2 = 2.2 

A XY call is rejected in state (010000) with (2,2,3) free circuits and also in (020000) 

with (1,1,3) free circuits. 

Example 3.5.7 

Al = 1.6, A2 = 4.8 

A X Y call is rejected in state (000110) with (3,1,2) free circuits and also in (010110) 

with (2,0,2) free circuits. 
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3.3 T h e Opt imal Policy as a ^ 1. 

In this section we will briefly present observations on the optimal policy for networks 

with K, C, Al, A2, i?i, i?2 fixed in which a —> 1. The results suggest that as a ^ 1 the 

optimal policy rejects more 2-link calls. That means that the optimal policy takes 

into account the fact that the reward earned in the present becomes less important 

than potential earnings in the future. Key (1990) demonstrates this fact for the 

case of single link offered a number of traffic. It seems to be true in the star-shaped 

networks we study which confirms their simplicity in some respect. 

In what follows we will describe the optimal policy on the rejection of 2-link calls 

on route XY as well as rejection of all 2-link calls (XY, XZ and YZ); results for 

the other 2-link routes can be deduced by applying the 'symmetry' assumption; see 

Observation 2 in §3.1. 

Example 3.6 

Al = 0.5, A2 = 4.9 

1: a = 0.8. The optimal poHcy rejects XY calls in 12 states with F = (1,1,1), (1,1,2) 

and (1,1,3) free circuits. 1/(0) = 22.9963. 

I I : a = 0.9. (a) The optimal pohcy rejects XY calls in 9 states with F = (1,1,2) 

and (1,1,3) free circuits, (b) The optimal policy rejects XY, XZ and YZ calls in 10 

states with = (1,1,1). V(0) = 45.9458. 

I l l : a = 0.95. (a) The optimal policy rejects XY calls in 23 states with F = (1,1,0), 

(1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal poHcy rejects XY, 

XZ and YZ calls in 11 states with F = (1,1,1). ^(0) = 91.7682. 

I V : a = 0.99. (a) The optimal pohcy rejects XY calls in 24 states with F = (1,1,0), 

(1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal pohcy rejects XY, 

XZ and YZ calls in 11 states with F = (1,1,1). ^(0) = 458.4749. 

V : Of = 0.999. (a) The optimal pohcy rejects XY calls in 27 states with = (1,1,0), 

(1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal policy rejects XY, 

XZ and YZ calls in 11 states with F = (1,1,1). V{0) = 4583.5120. 
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V I : a = 0.9992. (a) The optimal policy rejects XY calls in 27 states with = 

(1,1,0), (1,1,2), (1,1,3), (2,1,3) and (1,2,3) free circuits, (b) The optimal poHcy 

rejects XY, XZ and YZ calls in 11 states with = (1,1,1). V{Q) = 5729.3537. 

To find approximately the Expected Average Reward (AER) for the above cases we 

just multiply the above y(0) quantities with their respective (1 — a). The results for 

the above cases are then as follows: I) 0.2856, (II) 0.2703, (III) 0.2633, (IV) 0.2580 

and (V) 0.2569 and (VI) 0.25684; see (1.5) in §1.3.3 for the relation between the 

Average and the Discounted Expected Reward. 

As we see the optimal policy remains the same for of > 0.999 and so this policy is 

the Expected Average Reward (EAR) optimal; see Ross (1983). 

3.4 Propert ies of the Opt imal Policy when i?2 

2 X i ? i 

In this section we will only describe the behaviour of the optimal policy under the 

assumption i?2 ~ 2 x In all the examples {K,C) = (3,3) and i?i = 1, and 

a = 0.8. 

Example 3.7. 

Ai = 0.5, A2 = 4.9 

(a) R2 = I: The optimal policy rejects a 2-link call on pair XY in states (020000), 

(020001) and (200200) with F= (1,1,3) but not in states with F= (1,1,2), (1,1,0), 

(1,1,1). 

(b) i?2 = 1.5: The poHcy rejects a 2-Hnk call on pair XY in state (020000) with F= 

(1,1,3) but not in states with F= (1,1,2), (1,1,0), (1,1,1). 

(c) i?2 = 1.8: The policy never rejects a 2-link call on pair XY when there is room 

to fit it in. 

(d) R2 ~ 1.9: The policy never rejects a 2-link call on pair XY when there is room 

to fit it in. 
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(e) i?2 = 2: The policy never rejects a 2-hnk call on pair XY when there is room to 

fit it in. 

(f) i?2 = 2.3: The policy never rejects a 2-link call on pair XY when there is room 

to fit it in. 

In the following example we keep the rewards fixed and see what happens as the 

offered traffic varies. 

Example 3.8 

i?i = l , i22 = 1.9 

The policy 

(a) never rejects a 2-link call on pair XY when there is room to fit it in for the 

following examples with arrival rates ( A i , A 2 ) = (1.4, 3.4), (2, 4) and (2, 2). 

(b) rejects one 2-hnk call on pair XY in states (020000), (020001) and (200200) 

with F= (1,1,3) but not in states with F= (1,1,2), (1,1,0), (1,1,1) with arrival rates 

( A i , A 2 ) = (0.7, 6.6). 

In the following example we keep the traffic fixed and try different rewards for the 

single link traffic. 

Example 3.9 

Al = 0.7, A2 = 6.6, i?i = l,a = 0.8 

(a) R2 =^ I: The optimal policy rejects a 2-link call on pair XY in 10 states with 

F= (1,1,3), (1,1,2) but not in states with F= (1,1,1), (1,1,0). 

(b) R2 = 1.5: The optimal pohcy rejects a 2-link call on pair XY in 7 states with 

F= (1,1,3), (1,1,2) but not in states with F= (1,1,1), (1,1,0). 

(c) R2 = 1.8: The optimal policy rejects a 2-hnk call on pair XY in 4 states with 

F= (1,1,3), (1,1,2) but not in states with F= (1,1,1), (1,1,0). 

(d) i?2 = 1-9: The pohcy rejects a 2-hnk caU on pair XY in 4 states with F= (1,1,3), 

(1,1,2) but not in states with F = (1,1,1), (11,0). 
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(e) i?2 = 2: The policy rejects a 2-link call on pair XY in 3 states with F= (1,1,3) 

but not in states with F= (1,1,2), (1,1,1), (1,1,0). 

(f) i?2 = 2.3: The policy rejects a 2-Hnk call on pair XY in 3 states with F= (1,1,3) 

but not in states with F = (1,1,2), (1,1,1), (1,1,0). 

3.4.1 Future Work 

I t remains to be investigated in the future whether the policy that is found in cases 

(d), (e) and (f) is indeed the optimal one, and also to see if it is at all optimal to 

restrict the single link traffic in order to maximise TEDR for the latter cases. 

At the time this thesis was completed there was a program in progress to investigate 

possible rejections of 1-Hnk calls in cases where i?2 ~ 2 x That would enable 

us to know if the policy derived in the above examples is indeed the optimal one. 

Unfortunatelly time limitations did not allow us to continue. Part of this program 

can be found in Appendix B.5. 
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Chapter 4 

Admission Price Policies 

4.1 Definit ion and Background 

As mentioned in Chapter 1 and demonstrated in §3, the optimal policies are not easy 

to interpret; the results of our programs give us the optimal policy in an explicit 

way which looks extremely complex. 

An idea considered in our work has been to approximate the optimal poHcy by con

sidering policies that depend only upon the occupancy status of the links. Our aim is 

to calculate important features of the network behaviour under these approximating 

policies. A class of such policies investigated in this chapter are the Admission Price 

policies; we shall call them 0 policies. These policies are not optimal but they are 

believed to be [Hunt, Laws, MacPhee and Ziedins] asymptotically optimal for large 

networks; where the number of links grows to infinity. In this work we investigated 

if such policies are any good for small networks. The results suggest that they are. 

The Q poHcies are easy to describe: Let W = (WQ, Wi,.., Wc) be a set of constants 

where 0 < VKi < Let a 2-link route call arrive requesting route and let Fi 

and Fj be the number of free circuits on links i and j respectively. The 2-link call 

is accepted when 
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WF, -f WF^ < R2. 

Comments: 

(a) The 0 policies are well defined for any collection of Wi. 

(b) It is of interest to find good Wi but numerical optimisation methods struggle 

because of the nature of V; see §4.1.2. 

(c) Because we know (numerically) the optimal value function, we can make excellent 

guesses for the Wi. 

4.1.1 Calculating the Wi, 

Numbers can be calculated the following way: 

For the optimal V under the optimal (but difficult to describe) policy, and for all 

the states z — (a;, w) that could possibly accept an increase in their number of 1-link 

calls, we calculate the differences 

V{z + e,) - V{z). 

Then we look at those differences for a collection of states Za,Zb,..Zm with the same 

number of free links Fi. For 'good' Wi the following relation must be satisfied 

V{z + e,)-V{z)^WF,. 

The choice for such Wp, is taken from within the range of the above differences; 

usually their mean value. 

The restriction that Wi < i?i is necessary since we assumed in this work that 

R2 < 2i?i and because of the interpretation that differences V{z + ei) — V{z) have 

as the extra amount to be paid for starting in state z + Ci rather than in z. 
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The motivation in considering policies which only depend on the state of the links of 

a network was the work of Ott & Krishnan (1985, 1986) and Key (1990), who both 

investigate value functions which can describe the optimal poHcy and a routing 

scheme. These authors argue from the single link in isolation towards the more 

complex network. 

Ott & Krishnan based their Separable Routing scheme on the calculation of (1.20)^ 

by considering the differences V{k + 1) — V{k) as a representation of the expected 

number of additional calls blocked (in the long run) when we start with k busy 

circuits rather than k; see also Howard (1960) and Tijms (1988). 

Key (1990) uses Howard's results on relative values and considers the difference 

Vj — Vi as the difference in total expected reward over an indefinitely long period 

caused by starting in state j rather than i under a certain poHcy employed. He also 

states that the relative values can be used in calculating the reward functions until 

accuracy is achieved. 

In this work we check how good these 0 policies are numerically on a computer; see 

Appendix B.4 for details of the programs used. As the results in §4.2 suggest, these 

policies are indeed very close to the optimal. 

4.1.2 Restrictions and Optimisation 

The problem is how to choose good values for the Wi. We only think that Ws found 

from looking at the true optimal V will be good and indeed they are, but there are 

lots of examples where we don't know V so how can we choose the Wi in such cases? 

The answer is not easy. An idea would be to use optimisation methods to try to get 

better WiS so that we can check our guesses about the Wi. 

In optimisation our first task is to find an expression for 

y ( 0 ; W ) = M^^), 

Ŝee §1.7.1 

92 



where f2 is the Admission Price pohcies described in section §4.1. The problem 

could then be expressed as follows: 

maxvK h{Cl) 

where 

0 < Wi < i ^ i . 

The function and the constraints are continuous and the optimisation problem is a 

non-linear constrained problem. We know by examining the policy that h{0,) will 

be locally constant in W—space with discontinuities at various places (many Wi^s 

give the same policy and the policy determines V) so all methods that assume that 

V is differentiable will be unreliable. 

We have tried optimisation methods for the Ws on a computer: 

(a) Firstly, by considering the problem as a Sequential Quadratic Programming 

(SQP) problem in which a quadratic subproblem is solved at each iteration. In 15 

examples of different networks, this did not perform any optimisation for the reasons 

stated above. 

(b) Secondly, by considering the problem with no constraints using the simplex 

algorithm of Nelder and Mead (1965) in which the simplex algorithm automatically 

rescales itself according to the local geometry of the function h{fl). The method 

was easily and quickly programmed and was very modest in storage demand but 

did not perform any optimisation when we started with the best fl policy; when 

started with a choice not as good as the best 0 it performed a slight improvement 

but the Ws rarely reached the optimal level. 

For small networks we should not worry about this for the reason that the W from 

the very simple and 'easy' - relatively speaking - networks are very good if applied 

for larger networks. For example, in cases hke (/v, C) = (4,3), (4,4), (4,5), the 

results are excellent if we use W from the (3,3), (3,4), (3,5) networks respectively. 

As we have lots of initial Ws from the 2, 3 and 4 links networks we have in our 

hands an estimation of the Wi which is - at least as far as our examples suggest -

excellent. 

93 



4.2 Compar ing the Opt imal Policy with the A d 

mission Pr ice Policy 

In this section we present tables with results and figures that show: 

(1) How good the approximation Viy(O) is for V{0); 

(2) The behaviour of the Wi themselves. In the examples presented in the tables 

the size of the numerical error ranges: 

(a) from 1.15 x lO-'^ to 4.67 x 10-'̂  for networks {K,C) = (2,3). 

(b) from 2.83 x 10"^ to 9.82 x 10"^ for networks {K,C) = (3,3). 

(c) from 5.22 x 10"^ to 8.12 x 10"^ for networks {K,C) = (4,3). 

We present the results in groups of three categories: 

(a) The size of the network i.e. [K, C); 

(b) For a specific size of a network we keep L fixed for convenience; this keeps the 

rate of events the same for a collection of different arrival rates. We have focused on 

examples for networks where L is 'critical' for the link i.e. nearly ful l , fu l l , overloaded 

etc; see in §2.3.2. 

(c) For a specific L we consider various arrival rates. In the tables Vi = Xi and 

1/2 = A2. In the figures n l = Aj and n2 = A2. All the other quantities have been 

defined in §2. Unless otherwise specified Ri = 2 and i?2 = 1 and / t i = l , | i 2 = 1. 

V(0) is calculated using the uniformised optimality equation and by employing the 

policy improvement algorithm; see §2.4. 

Vw{0) is calculated by value determination when ft poHcy is employed for the re

jection of 2-Hnk calls. 

For an explanation of why a is not exactly 0.8 see the remark on page 50. 
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K = 2,C = 3,i22 = l,Ri = 2,R2 = l,a = 0.8 

^2 y(o) VV(0) 
0.5 4.9 2.95 15.6528 14.7918 
0.7 4.5 2.95 17.5433 17.0851 
1 3.9 2.95 20.4357 20.3214 

1.3 3.3 2.95 23.5023 23.5020 
1.5 2.9 2.95 25.5357 25.5353 
1.8 2.3 2.95 28.4599 28.4599 
0.5 5 3 15.6812 14.8235 
0.7 4.6 3 17.5733 17.1149 
1 4 3 20.4578 20.3481 

1.3 3.4 3 23.5230 23.5228 
1.5 3 3 25.5536 25.5535 
2 2 3 30.3991 30.3991 

0.3 5.6 3.1 14.3999 12.5278 
0.6 5 3.1 16.6175 16.6174 
1 4.2 3.1 20.4994 20.3979 

1.4 3.4 3.1 24.5818 24.5812 
1.7 2.8 3.1 27.5340 27.5339 
2 2.2 3.1 30.4095 30.4094 

0.5 6 3.5 15.9102 15.7782 
0.7 5.6 3.5 17.8234 17.3670 
1 5 3.5 20.6379 20.5681 

1.3 4.4 3.5 23.6930 23.2417 
1.6 3.8 3.5 26.6509 26.6493 
2 3 3.5 30.4430 30.4431 

0.5 7 4 16.0666 15.7300 
0.7 6.6 4 18.0078 17.5801 
1 6 4 20.7770 20.7313 

1.3 5.4 4 23.8157 23.8151 
1.6 4.8 4 26.7247 26.7239 
2 4 4 30.4714 30.4714 

Table 4.1: Networks with {K,C) = (2,3). 
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K = 3, C = 3, f.t2 = l,Ri = 2,R2 = l,a = 0.8 

^2 + 1^2/2 1/(0) Vw{0) 
0.5 4.9 2.95 22.9963 22.8486 
0.7 4.5 2.95 25.8420 25.8320 
1 3.9 2.95 30.3238 30.2914 

1.3 3.3 2.95 35.0391 35.0389 
1.5 2.9 2.95 38.1230 38.1224 
1.8 2.3 2.95 42.5410 42.5230 
0.5 5 3 23.0410 22.8902 
0.7 4.6 3 25.8825 25.8703 
1 4 3 30.3579 30.3276 

1.3 3.4 3 35.0693 35.0693 
1.5 3 3 38.1477 38.1465 
2 2 3 45.4389 45.4389 

0.3 5.6 3.1 20.6261 20.5218 
0.6 5 3.1 24.4902 24.4882 
1 4.2 3.1 30.4228 30.3966 

1.4 3.4 3.1 36.6757 36.6753 
1.7 2.8 3.1 41.1450 41.1325 
2 2.2 3.1 45.4556 45.4556 

0.5 6 3.5 23.4143 23.3994 
0.7 5.6 3.5 26.2203 26.1996 
1 5 3.5 30.6507 30.6334 

1.3 4.4 3.5 35.3305 35.3233 
1.6 3.8 3.5 39.8202 39.8042 
2 3 3.5 45.5097 45.5097 

0.5 7 4 23.6898 23.6188 
0.7 6.6 4 26.4749 26.4418 
1 6 4 30.8740 30.8642 

1.3 5.4 4 35.5319 35.5112 
1.6 4.8 4 39.9446 39.9201 
2 4 4 45.5568 45.5568 

Table 4.2: Networks with (K,C) = (3,3). 
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K = 4, C = 3, 1, i?i = 2, = 1, a = 0.8 

^2 vi + V2/2 T/(0) 
0.5 4.9 2.95 26.5908 26.4586 
0.7 4.5 2.95 30.2549 30.2494 
1 3.9 2.95 35.9764 35.9574 

1.3 3.3 2.95 41.9580 41.9576 
1.5 2.9 2.95 45.7919 45.7918 
1.8 2.3 2.95 51.2012 51.1965 
0.5 5 3 26.6335 26.5042 
0.7 4.6 3 30.2916 30.2854 
1 4 3 36.0065 35.9989 

1.3 3.4 3 41.9841 41.9875 
1.5 3 3 45.8108 45.8107 
2 2 3 54.6797 54.6797 

0.3 5.6 3.1 23.5052 23.3229 
0.6 5 3.1 28.4877 28.4869 
1 4.2 3.1 36.0646 36.0518 

1.4 3.4 3.1 43.9647 43.9647 
1.7 2.8 3.1 49.4720 49.4711 
2 2.2 3.1 54.6874 54.6874 

0.5 6 3.5 26.9887 26.8898 
0.7 5.6 3.5 30.5968 30.5858 
1 5 3.5 36.2743 36.2663 

1.3 4.4 3.5 42.2056 42.2056 
1.6 3.8 3.5 47.7782 47.7749 
2 3 3.5 54.7126 54.7126 

0.5 7 4 27.2517 27.0193 
0.7 6.6 4 30.8310 30.8067 
1 6 4 36.4886 36.4785 

1.3 5.4 4 42.3745 42.3744 
1.6 4.8 4 47.8736 47.8720 
2 4 4 54.7351 54.7351 

Table 4.3: Networks with {K,C) = (4,3). 
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Observations on Wi''s 

(I) Robustness: An Admission Price Policy can only be robust if the Wi do not 

change much as the offered traffics change. This is not true for our Q policies. 

(II) Our observed Wi satisfy the following restriction 

The fact that VF, — Wi+i > 0 relates to the obvious fact that spare capacity has 

potential worth as we can use it to carry future calls. In fact if we define S{Wi) = 

Wi — Wi+i, then we observe 

^(M/.)> W + i ) 

which means that units of spare capacity become more valuable as the system fills 

up. 

(III) As stated in §2.6, states with the same F have similar TEDR values. That 

explains why Admission Price policies with appropriate VK's policies are good. 

(IV) The Wi^s get bigger as Ai = nl increases. This increase translates to more 

acceptance of single link traffic which returns a bigger reward than the 2-link one. 

(V) As it is demonstrated in the following graphs the Wi^s do not change much 

as K increases. This is of practical importance as it suggests that the W.'s from 

small networks could well be used as a good approximate for the optimal policy in 

larger networks. We found that by applying the f2 policy derived from networks 

{K, C) = (3,3) to {K, C) = (4,3) and {K, C) = (5,3) we have excellent results. 

In the next figures we present results on the performance of the O policy which 

include: 

(a) How Wi change as Ai = nl increases; for fixed K,C and L. 

(b) How Wi change as K increases; for fixed C, L. 
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K=3,C=3,n1+(n2/2)=2.95 
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Figure 4.1: Change in Wi as n l increases; for nl+(n2/2)=2.95. 
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Figure 4.2: Change in Wi as n l increases; for nl+(n2/2)=3.5. 
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Figure 4.3: Change in Wi as n l increases; for n l+(n2/2)=3. 
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Figure 4.4: Change in Wi as n l increases; for nl+(n2/2)=2.95. 
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K=4,C=3,n1+(n2/2)=3.5 
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Figure 4.5: Change in w;̂  as n l increases; for nl+(n2/2)=3.5 
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Figure 4.6: Change in Wi as n l increases; for n l+(n2/2)=3.1 . 
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C=3, n1+(n2/2)=2.95 
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Figure 4.7: Change in wi as K increases for nl+(n2/2)=2.95. 
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Chapter 5 

The Reduced State-Space Model 

5.1 The Reduced State-Space Model 

In this model of a Symmetric Star network, Poisson streams of calls arrive at the 

network requesting routes. There are two types of route: 1-link routes and 2-link 

routes involving any pair of the single links. 1-link calls arrive at rate Ai on each 

link and 2-link calls arrive at rate X2/{K — 1) on each 2-link pair. A 2-link call on 

pair after its acceptance, is split into 2 independent single link calls on links i 

and j. Both types of calls have an exponential holding time with mean 1, (Exp(l)). 

For every 1-link call accepted we earn reward Ri and for every 2-link call accepted 

we earn reward R2. Rewards are bounded and earned immediately. We assume that 

R2 < 2Ri; see §2. 

Definition 11 

The state of the network at the time we observe it is the collection of link occupancies 

in the network, and it is denoted by a;, where x = {xi^X2, . . . , X K ) -

For each link i, 0 < xi < C. We say that the hnk i is full when the number of calls 

in i is C. Calls depart from the network at rate 
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Notation 

Vr is the optimal value function (TEDR) for the reduced state-space model. Vrw is 

the optimal value function of the reduced model in which Vl policy is employed. V 

is the optimal value function (TEDR) for the ful l model. 

The network is modelled as a Markov decision process and the analysis followed is 

the one described in Chapter 2 for the ful l model. The optimality approach as well 

as the policy improvement study are the same as for the full model. To calculate 

the Total Expected Discounted Reward for the reduced model K we use the SOR 

method described in §2.4.3. 

The reason we studied the reduced state-space model was that it is a simplification 

for the fu l l model because the state-space is reduced^ to (C + 1)̂ ^ states which is 

a great advantage. The reduction of the size of the state-space is a very attractive 

feature and in this chapter we investigate the performance of the reduced state-space 

model to see how much it behaves like the full model. We do this by comparing the 

optimal value function for the reduced state-space model K to the optimal value 

function for the ful l model V. If the reduced state-space model behaves like the 

fu l l model we could then work with the simplified version to deduce results on the 

nature of the optimal policy as well as the general behaviour of the network. 

Another reason was to look at the optimal policy and its properties on this simplified 

version. A natural question to ask was whether the optimal policy is of Admission 

Price form. The results show that it is not, though once again there are very good 

0 poHcies. 

In the reduced state-space model the policy is a '̂ '̂̂ "^^^-tuple of Boolean variables 

for each of the (C + 1)^ states, with the first K places for single hnk calls. In the 

reduced state-space networks considered in this chapter, the pohcy is to accept the 

single link calls if there is room to fit them in, and accept (or reject) 2-link calls 

according to (a) the optimal policy; and (b) the relevant J7 policy derived by the 

specific networks. 

^See Table 1.1 in §1. 
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5.2 Computing and Results 

This section describes the way we proceeded with analysing the reduced state-space 

network. In this analysis three questions were of importance to us: 

Question A : Can the reduced state-space model approximate the ful l model? If 

yes, how well? To answer this question one has but to compare the optimal value 

function for the reduced state-space model K with the optimal value function for 

the fu l l model V. Tables 5.1 and 5.2 show some results for networks with (/v, C) = 

(3,3) and also (4,3) which suggest that: (a) The reduced state-space model is a good 

approximation for the ful l model in the case with (/v, C) = (3,3) and (b) the reduced 

state-space model is not such a good approximation for the case with {K^ C) — (4,3). 

Question B: Is the reduced state-space Q. policy a good approximation of the 

optimal policy in such networks? The results suggest that the Admission Price 

policies (0) are an excellent approximation for the optimal policy. In Tables 5.1 

and 5.2 we compare the optimal value functions K-tu(O) (when is employed) with 

K(0) . 

Question C: Is the pohcy from the reduced state-space model a good approx

imation for the optimal policy of the ful l model and vice-versa? To answer this 

question one has but to employ the 0 policy of one model to the other and look at 

the results. The results suggest that the policy of the reduced state-space model 

is a very good approximation for the optimal policy of the ful l model (see Table 5.5) 

and vice-versa (see Tables 5.3 and 5.4). In both cases very little improvement is left 

to be performed by applying them; in some cases none. 

The results in the following Tables are presented in groups of three categories (a) 

The size of the network i.e. (/<', C), (b) for a specific size of a network we keep 

L fixed; we have focused on examples for networks where L is fixed and 'critical' 

for the link i.e. nearly ful l , fu l l , overloaded etc; see §2.3.1. (c) For a specific L we 

consider various arrival rates. Note that in the tables and figures following Ui = Xi 

and z/2 = A2. Al l the other quantities have been defined in §2. 

For an explanation of why a is not exactly 0,8 see the remark on page 50. 
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/ I ' = 3, C = 3, ^ 2 = 1, i ^ i = 2, i ? 2 = 1, Q; = 0.8 

^2 v;(o) Kz .(0) V(0) 
0.5 4.9 2.95 22.6982 22.6379 22.9963 
0.7 4.5 2.95 25.6198 25.6107 25.8420 
1 3.9 2.95 30.1459 30.1344 30.3238 

1.3 3.3 2.95 34.9453 34.9453 35.0391 
1.5 2.9 2.95 38.0624 38.0624 38.1230 
1.8 2.3 2.95 42.5160 42.5139 42.5410 
0.5 5 3 22.7407 22.6832 23.0410 
0.7 4.6 3 25.6583 25.6483 25.8825 
1 4 3 30.1782 30.1678 30.3579 

1.3 3.4 3 34.9740 34.9740 35.0693 
1.5 3 3 38.0850 38.0850 38.1477 
2 2 3 45.4275 45.4275 45.4389 

0.3 5.6 3.1 20.2407 20.1827 20.6261 
0.6 5 3.1 24.2523 24.2523 24.4902 
1 4.2 3.1 30.2395 30.2310 30.4228 

1.4 3.4 3.1 36.5948 36.5948 36.6757 
1.7 2.8 3.1 41.1052 41.0954 41.1450 
2 2.2 3.1 45.4431 45.4431 45.4556 

0.5 6 3.5 23.1132 23.0673 23.4143 
0.7 5.6 3.5 25.9784 25.9615 26.2203 
1 5 3.5 30.4535 30.4491 30.6507 

1.3 4.4 3.5 35.2131 35.2130 35.3305 
1.6 3.8 3.5 39.7572 39.7465 39.8202 
2 3 3.5 45.4927 45.4927 45.5097 

0.5 7 4 23.3897 23.3582 23.6898 
0.7 6.6 4 26.2212 26.1921 26.4749 
1 6 4 30.6668 30.5850 30.8740 

1.3 5.4 4 35.3976 35.3896 35.5319 
1.6 4.8 4 39.8709 39.8556 39.9446 
2 4 4 45.5354 45.5354 45.5568 

Table 5.1: Reduced state-space networks with 
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^2 Pi + z/2/2 K ( 0 ) V(0) 
0.5 4.9 2.95 30.2229 30.1657 26.5908 
0.7 4.5 2.95 34.1066 34.0994 30.2459 
1 3.9 2.95 40.1520 40.1466 35.9764 

1.3 3.3 2.95 46.5446 46.5446 41.9580 
1.5 2.9 2.95 50.6831 50.6831 45.7919 
1.8 2.3 2.95 56.6035 56.6006 51.2012 
0.5 5 3 30.2886 30.2275 26.6335 
0.7 4.6 3 34.1584 34.1505 30.2916 
1 4 3 40.1977 40.1928 36.0066 

1.3 3.4 3 46.5847 46.5847 41.9841 
1.5 3 3 50.7148 50.7145 45.8108 
2 2 3 60.4732 60.4732 54.6797 

0.3 5.6 3.1 26.9180 26.8861 23.5052 
0.6 5 3.1 32.3074 32.3062 28.4877 
1 4.2 3.1 40.2863 40.2810 36.0646 

1.4 3.4 3.1 48.7399 48.7399 43.9647 
1.7 2.8 3.1 54.7262 54.7154 49.4720 
2 2.2 3.1 60.4958 60.4958 54.6874 

0.5 6 3.5 30.7907 30.7529 26.9887 
0.7 5.6 3.5 34.5873 34.5786 30.5968 
1 5 3.5 40.5903 40.5842 36.0646 

1.3 4.4 3.5 46.9219 46.9221 43.9647 
1.6 3.8 3.5 52.9413 52.9354 49.4720 
2 3 3.5 60.5691 60.5691 54.6874 

0.5 7 4 31.1750 31.1527 27.2517 
0.7 6.6 4 34.9137 34.8959 30.8310 
1 6 4 40.8958 40.8810 36.4886 

1.3 5.4 4 47.1761 47.1752 42.3745 
1.6 4.8 4 53.1085 53.0931 47.8736 
2 4 4 60.6341 60.6341 54.7351 

Table 5.2: Reduced state-space networks with 
( i f , C ) = (4,3). 
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= 3, C = 3, /i2 = 1, i?i = 2, i?2 = 1, a = 0.8 

1̂2 vm VM 
0.7 4.5 2.95 25.6107 25.6198 
1 3.9 2.95 30.1344 30.1459 

1.3 3.3 2.95 34.9453 same 
1.5 2.9 2.95 38.0624 same 
1.8 2.3 2.95 42.4990 42.5160 
0.5 5 3 22.6288 22.7407 
0.7 4.6 3 25.6483 25.6583 
1 4 3 30.1678 30.1782 

1.5 3 3 38.0850 same 
2 2 3 45.4275 same 

0.3 5.6 3.1 20.1827 20.2407 
0.6 5 3.1 24.2523 same 
1 4.2 3.1 30.2314 30.2395 

1.7 2.8 3.1 41.0954 41.1052 
2 2.2 3.1 45.4431 same 

Table 5.3: Employing the Vl of §4 in a reduced state-space network with 
(/^,(7) = (3,3). 

= 4, C = 3, /i2 = 1, = 2, i?2 = 1, a = 0.8 

^2 vi + V2I2 14(0) K-(O) 
0.3 5.6 3.1 26.8861 26.9067 
0.6 5 3.1 32.3062 32.3070 
1.4 3.4 3.1 48.7399 same 
1.7 2.8 3.1 54.7154 54.7224 
2 2.2 3.1 60.4958 same 

0.5 6 3.5 30.7529 30.7757 
1 5 3.5 40.5842 40.5880 

1.3 4.4 3.5 46.9219 same 
1.6 3.8 3.5 52.9354 52.9392 
2 3 3.5 60.5691 same 

0.5 7 4 30.9412 31.0757 
0.7 6.6 4 34.8959 34.9137 
1 6 4 40.8810 40.8898 

1.3 5.4 4 47.1752 47.1758 
2 4 4 60.6341 same 

Table 5.4: Employing the 0 of §4 in a reduced state-space network with 
(A^C) = (4,3). 
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K = d^C = 3,fX2 = 1, Ri=2,R2 = l,a = 0.8 

2̂ 1 1^2 ui + 1/2/2 ^2(0) y(o) 
0.7 4.5 2.95 22.8750 22.9963 

1 3.9 2.95 30.2914 30.3238 
1.3 3.3 2.95 35.0388 35.0391 
1.5 2.9 2.95 38.1223 38.1230 
1.8 2.3 2.95 42.5411 same 
0.5 5 3 22.9215 23.0411 
0.7 4.6 3 25.8702 25.8825 

1 4 3 30.3245 30.3580 
1.5 3 3 38.1464 same 
2 2 3 45.4389 same 

0.3 5.6 3.1 20.5218 20.6262 
0.6 5 3.1 24.8820 24.4490 
1 4.2 3.1 30.3965 30.4229 

1.7 2.8 3.1 41.1325 41.1450 
2 2.2 3.1 45.4557 same 

Table 5.5: Employing the Q of §5 in a full network with {K,C) = (3,3). 

In the following figures we can see that the behaviour of the Wi for the reduced 

model is similar to those of the ful l model: 

(I) Robustness: The Admission Price policy for the reduced state-space model is 

not robust as Wi do change as the offered traffics change. 

(I) Our observed Wi satisfy the following restriction Wi > Wi+i] see also §4.2. 

( I I I ) As stated in §2.6, states with the same have similar TEDR values. That 

explains why our policies are good. 

(IV) The Wi^s get bigger as i/i increases. This increase translates to more acceptance 

of single link traffic which returns a bigger reward than the 2-link one. 

(IV) The H^i's do not change significantly as K increases. The practical importance 

of this is discussed in §4.2. By applying the fl pohcy derived from networks {K, C) = 

(3,3) to {K,C) = (4,3) and {K,C) = (5,3) we have excellent results. 

Figures 5.9 and 5.10 demonstrate clearly the similarity in the Ct policies for the ful l 

and reduced model; see also Question C. In the figures n l = A i , n 2 = A2. 
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Figure 5.1: Change in Wi as n l increases; for nl+(n2/2)=2.95. 
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Figure 5.5: Change in Wi as n l increases; for nl+(n2/2)=3.5. 
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K=3,C=3,n1+(n2/2)=2.95,R1=2,R2=1 
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5.3 Optimal Policies and Properties 

For the reduced state-space networks considered in this chapter, we study, as before, 

policies that always accept 1-link calls when there is room to f i t them in. 

In the following examples, we describe the exact optimal policy for networks wi th 

{K = 3 ,C = 3). In the following description we do not include: (a) the cases in 

which the opt imal policy accepts the 2-Hnk calls when there is room to fit them in; 

(b) the cases in which the network is f u l l . 

Let = {Fi,F2,F3) denote the number of free circuits on links X,Y and Z re

spectively. A network state is represented by a triple ( X , Y , Z ) . For example (012) 

describes the state of the network wi th one call on l ink Y and 2 calls on l ink Z. 

The quantities A i , A2, i ? i , i22, and a are all defined in §2.1, §2.2 and §2.3. Note that 

the a values given are for the continuous time process and not the modified values 

used in the uniformised optimality equation; see §2.3.2. 

I n what follows we w i l l a consider a state z >z whenever < Fj. For example a 

state z w i t h F^ = (1,1,1) is considered z > z where Fj — (1,1,3) i.e. a very large 

state in terms of l ink occupancy has a very small number of free circuits. 

I n the following examples the size of the state-space is 64 states; see Table 1.1. 

The properties we look at in the reduced state-space networks are the following: 

P r o p e r t y A : For the reduced state-space networks the policy by definition depends 

upon the state or equivalently, the free circuits. The crucial point is that the optimal 

policy isn't an Q, policy because the state of the l ink Z matters in deciding acceptance 

of a 2-link route in X Y and therefore the optimal policy cannot be of the form: accept 

i f Wf^. + Wpy < R2\ see Property B. 

P r o p e r t y B : [Property P2 in Key (1990)] For calls which are disjoint, i and j say, 

and thus could be widely separated in a network, in general, the more type i calls 

in progress, the less likely we are to reject type j calls, and vice-versa; disjoint calls 

are for example X Y and Z calls. This property does hold for the reduced state-space 

networks considered; see Examples 5.1 and 5.4. 
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P r o p e r t y C: Monotonicity. I f an arrival for a 2-link call on route k is rejected 

in state z, where z >z, then i t wi l l also be rejected in states z. Our results suggest 

that this property does not hold in general; see Examples 5.1, 5.2 and 5.4. 

P r o p e r t y D : [Property P I in Key (1990)] I f we reject a type i call in state z, then 

we reject i t in state z + k for calls i and k which are distinct and not disjoint; not 

disjoint calls are for example X Y and YZ calls. This property does hold in general 

i n the reduced state-space networks considered; see Example 5.2. 

P r o p e r t y E : W e a k Monotonicity [Assumption C l in Key (1990)] I f we reject a 

type k call in state z, then we reject a type call k in state z + e^. This property 

does hold for the reduced state-space networks considered; see Example 5.2. 

E x a m p l e 5.1 

Ai = 0.5, A2 = 4.9 

The opt imal policy rejects a 2-Hnk call on pair X Y in states wi th F= (1,1,3), (1,1,2) 

but not in states wi th F=(1,1 ,0) , (1,1,1); 

I f we denote states (220), (221), (222) and (223) wi th (1,1,3), (1,1,2), (1,1,1), (1,1,0) 

free circuits as ZQ, zi, Z2., Z3, where ZQ < zi < Z2 < z^, we see that rejection in Zo,Zi 

does not coincide w i t h rejection in Z2, Z3 and therefore Property C does not hold. 

We also note that for the distinct calls X Y and Z, a rejection of X Y in state (221) 

w i t h (1,1,2) free circuits coincides wi th rejection of X Y in state (220) wi th (1,1,3) 

free circuits. Continuing the analysis for all states confirms that Property B holds 

for this example. 

E x a m p l e 5.2 

Ai = 1.8, A2 = 2.3 

The opt imal policy rejects a 2-link call on pair X Y in states wi th F= (1,1,3), (1,1,2). 

(1,1,1), (1,1,0); (3,1,3), (3,1,2), (3,1,1), (3,1,0); (1,2,3), (1,2,2), (1,2,1), (1,2,0); 

(2,1,3), (2,1,2), (2,1,1), (2,1,0), but not in (2,2,1), (2,2,0). 

Rejection of X Y in state (110) wi th (2,2,3) free circuits coincides wi th rejection in 

state (220) w i t h (1,1,3) free circuits. That shows that Property E does hold. 
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I f we consider X Y and Y Z calls which are not disjoint, rejection of X Y in state (211) 

w i t h (1,2,2) free circuits coincides wi th rejection of X Y in state (222) wi th (1,1,1) 

free circuits and that suggests that Property D does hold. 

E x a m p l e 5.3 

Ai = 0.7, A2 = 5.6 

The opt imal poHcy rejects a 2-link call on pair X Y in states wi th F= (1,1,3), (1,1,2), 

(1,1,1), (1,1,0); (2,1,3); (1,2,3). 

E x a m p l e 5.4 

Ai = 1,A2 = 6 

The opt imal poHcy rejects a 2-Hnk call on pair X Y in states wi th F= (1,1,3), (1,1,2), 

(1,1,1), (1,1,0); (3,1,3), (3,1,2); (1,2,3), (1,2,2), (1,2,1), (1,2,0); (2,1,3), (2,1,2), 

(2,1,1), (2,1,0); (1,3,3), (1,3,2) but not in (3,1,1), (3,1,0); and (1,3,1), (1,3,0). 

Consider disjoint calls X Y and Z. Rejection of X Y in states wi th (3,1,2) free circuits 

coincides wi th rejection in states wi th (3,1,3) free circuits and therefore Property B 

does hold. 

Observation 1 

Due to the symmetry assumption of our networks i t is easy to deduce the optimal 

policy for all 2-link routes by just looking at its description for one of the possible 2-

hnk routes. For example knowing that a X Y call is rejected in (1,1,2) and (1,1,3) can 

help us deduce that rejections in XZ wi l l be in (1,2,1) and (1,3,1) i.e. by permuting 

the F2 w i t h the Fz. 

Note: In various states all, two or one of the 2-link call types are rejected. We focus 

our analysis on 2-link call rejection on a particular pair in a states with particular 

F without restricting possible rejections of the other pairs in those states. 
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5.4 Using the H policy from the full networks 

I n this example we present the results of numerical optimisation in which an ini t ial 

estimate for the W is taken f rom the f u l l model case, and the Nelder-Mead (1965) 

simplex algorithm f r o m the M A T L A B O P T I M I S A T I O N T O O L B O X was applied in 

an attempt to find better Wi; see also §3.1.1. 

The results f r o m a variety of examples were not encouraging as in no case did the 

Nelder-Mead algorithm find Wi as good as those derived f rom knowledge of the 

opt imal value funct ion for the reduced model. 

E x a m p l e 5.5 

For the case {K = 3 ,C = 3), ( A i , A 2 ) = (0.5,4.9) of the reduced state-space model 

w i t h Vr = 22.6982, we first take as an ini t ia l estimate a W f rom the f u l l model. 

V{0) is 22.5881 in the first iteration. Then i t improves (when i t does) to: 

(a) 22.638 for W = (0.5416, 0.3788, 0.288) and ini t ia l estimate (0.49, 0.378. 0.288) 

f r o m the f u l l model. 

(b) 22.638 for W = (0.55, 0.45, 0.35) and ini t ia l estimate (0.5, 0.4, 0.3). 

(c) 22.5881 for W = (0.36, 0.27, 0.180) and ini t ia l estimate (0.4, 0.3, 0.2). 

This example as well as 14 more demonstrate that the task of directly finding good 

Wi w i t h standard numerical optimisation routines is not giving any results. 

5.5 The Ott and Krishnan 'costs' 

I n §1.7.1, the Separable Routing Scheme of Ot t and Krishnan (1985,1986) was pre

sented. The scheme was carried out by considering the value cost of adding a call to 

a l ink . As the links were assumed independent, the cost of adding a mul t i l ink call 

to links k i , ..,km, in the respective states j i , ..,jrn is given by 

E r = i A(fc., J O , where A(fc, j ) = 0 < ; < C, 
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and each l ink k has C circuits and is offered a Poisson load of A Erlangs. 

For the reduced state-space model of §5.1, the cost of adding a 2-link call to links 

i and j w i l l then be given by = A(z,a;i) - f A ( j , X j ) , where Xk is the occupancy 

of l ink k. Krishnan and Ott 's (1985,1986) routing scheme (admission pohcy) for a 

2-link call is now specified as follows: when a 2-link call arrives requesting route on 

( z , i ) , the cost in the current network state, of each admissible pair that has at least 

one free circuit on each l ink i n the pair is calculated by the above expression. I f W 

exceeds R2 (the cost of a lost 2-hnk call), then the call is rejected; otherwise i t is 

accepted. 

Remember that our Admission Price Routing Scheme accepts a 2-link call on a pair 

( i , j ) whenever + Wpj < i?2 , where Fk denotes the free circuits on l ink k. 

I t is obvious that there is a Hkeness in the ideas behind the two schemes, and i t 

would be, therefore, interesting to compare the values of Ot t and Krishnan's costs 

w i t h our Q, policy values. 

For the Symmetric reduced state-space network wi th K links of capacity C, and wi th 

arrival rates for single l ink calls and 2-link calls to be A i , A2 the Poisson demand for 

circuits on every l ink is X = L, where L is given by (2.6). 

E x a m p l e 5.6 

For a Symmetric network wi th K = 3,C = 3, Xi = 0.5 and A2 = 4.9, the Ot t and 

Krishnan A{k,Xk) are shown in Table 5.5. In the same table the Admission Price 

policies W's for both the f u l l and the reduced state-space network are given. 

Calls present (xk) Wf^u 

3 1 2 2 
2 0.65 0.4924 0.5292 
1 0.45 0.3781 0.3529 
0 0.34 0.2881 0.2650 

Table 5.5: Separable Routing and Admission Price Policies 

121 



Chapter 6 

Asymmetric Models 

6.1 Introduction 

I n this chapter we consider star-shaped, circuit-switched Loss networks which consist 

of K links of capacity C,-, i = 1,2, . . j /C, linked through a common node. This is 

known as an Asymmetric Star network. We also relax the assumptions about the 

offered traffic rates being the same for all 1-link routes and for 2-link routes and also 

the assumption that all types of traffic have the same mean holding time. 

The reason we looked at Asymmetric networks is that they are very complicated 

and there are no good theoretical results existing even for the single l ink case when 

distinct call types have different mean holding times. We present in this chapter 

some results of research on the behaviour of small Asymmetric networks as well as 

properties of the optimal policies in some of them. We do not in this thesis tackle 

the subject theoretically. 

6.2 The Model 

Calls requesting routes arrive at the network randomly and according to a Poisson 

distr ibution. There are two types of route: 1-link routes and 2-link routes involving 
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any pair of the single links. Requests for 1-link routes arrive on link i at rate Ai,-, 

and requests for 2-link routes arrive at rate A 2 ( i j ) / ( / ^ — 1) on each 2-link pair {i,j). 

1-link routes have an exponential holding time wi th mean = 1, and 2-link routes 

have an exponential holding t ime wi th mean fi2-

The number of all possible pairs (z,y), where i < j , is /? = ^^^^y^- The number of 

all possible 2-Hnk pairs ( « , j ) , where « < j is 7 = A l l the 2-Hnk pairs {i,j) 

are indexed w i t h the formula given in Lemma 1 in §2. The number of 1-Hnk 

calls on Hnk i is denoted by x,-. The number of 2-Hnk caHs on pair {i,j) w i th index 

number / ( i , j ) is denoted by wi. The number of 1-link calls in the network is denoted 

by X and the number of 2-link calls in the network is denoted by w. The state of the 

network at the t ime we observe i t is denoted by ( . T , I O ) . The above quantities are all 

defined in §2. For every 1-link call carried we earn reward Ri and for every 2-link 

call carried we earn reward R2. Rewards are bounded and earned immediately. The 

uni t of reward per unit t ime for carrying a 2-link call is now i?2//*2 (i t was R2). 

1-link calls depart f rom link i at rate Xi] and 2-link calls depart f rom pair at 

rate wil 112-

The operation of such networks is considered as a Markov decision process in which 

we investigate the performance of different policies using an optimality equation 

i n order to maximise the Total E x p e c t e d Discounted R e w a r d (TEDR)^. The 

optimality equation for calculating the optimal policies and the T E D R as well as 

the iterative methods used to do so, axe also presented and discussed in §2. In 

fact, the networks considered in this section only differ f rom those of §2 in that the 

rate of events and therefore the transition probabilities are slightly different. The 

state-space is also different. For example for networks wi th K = 2) and capacities 

C = (3 ,3 ,4) , C = (3,3,5) and C = (3,3,6) the sizes are respectively 477, 622 and 

768 possible states. 

^Defined in §2. 
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6.3 Rates of Events and Transition Probabilities 

for Asymmetric Networks 

1- l ink calls arrive on the network at rate i^ i , where Vi = Yli=i Xn. 

2- l ink calls arrive on the network at rate 1̂ 2, where 1^2 = 1̂ 7=1 (R-i 

1-link calls depart f rom the network at rate 1/3 = X^jli and 2-link calls depart 

f r o m the network at rate U4 = I]7=i(^'//"2)-

The rate of null events in the network is denoted by Vs, where 

(6.1) 1^5 - 1^3- J^4, 
1=1 

where Ji = min{iJ,i, fj.2}-

The To ta l R a t e of events i n the network is denoted by Rate, where 

5 K A ^ C' 

(6.2) Rate = Y.''i = T.>^u + E7jr^ + 12^-
i=i i=i 1=1 l ^ ^ ~ ^) i=i 

The transitions i n the network occur at rate (6.2) and the correction between steps 

in the optimality equation and ' t ime ' in the continuous t ime process for the discount 

factor a is 

_ Rate 
a = 

Rate + ( - I n a ) ' 

I n the examples considered we used the approximation a = a^^^^'^. The correction 

as well as the effect that our approximation has in calculating T E D R values and 

opt imal poHcies is discussed in §2.3.2; see remark on page 50. 

The notation is that of Chapter 2, and the transition probabilities for the network 

are as follows: 
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P-^{xi + e^,w\x,w) 
0, i f 7r{x,w) = reject 

otherwise 

P^{xi-e,,w\x,w) = if Xi>0 

P„{x,wi + ei\x,w) = < 
0, i f 'K{X,W) reject 

p otherwise 
Rate(h - 1 ) ' 

P^(2;, wi - ei\x, w) = wi > 0. 

P^rix, w\x, w) = 1^5 

Rate 

As in earlier chapters, one l ink calls are accepted whenever there is room for them. 

Hence 

P^{xi + ei,w\x,w) 
0, ifxi>=C 

j ^ , otherwise 

The average reward for the Asymmetric network we consider is denoted by Vt, where 

(6.3) 
1 ^ R2 
— [Rl Yl w) + J2 ^2il{ei\x, w) 

Rate K - I 

where I{ei\x,w) = 1 or 0 according as a call on route / is accepted or rejected by 

the admission policy. 
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6.4 Computing and Results 

We present the results in groups of three categories: 

(a) The size of the network i.e. ( / i ' , C ) ; 

(b) For a specific size of a network we keep L = Ai -|- A2/2 fixed^; we have focused on 

examples for networks where L is 'cr i t ical ' for the l ink i.e. nearly f u l l , f u l l , overloaded 

etc; 

(c) For a specific L we consider various arrival rates. 

The tables suggest that the Admission Price policies are a good approximation for 

the opt imal policy under various considerations for the Asymmetric networks. 

I n the following Tables and figures n\ — vi = Ai and n2 = V2 — A2. Ri = 2,i?2 = 

1. A l l the other quantities have been defined in §2. ^2 wi l l be 1 unless specified 

differently. 

Table 6.1: presents some results for Asymmetric networks wi th {K,C) = (3,3) 

in which the arrival rate of single link traffic on Hnk Z, A13 is different than that of 

links X and Y An and A12. The results suggest that the Admission Price policy is 

a good approximation for the optimal policy. 

Tables 6.2, 6.3 and 6.4: present results for Asymmetric networks w i th K = 3 and 

capacities C = (3 ,3 ,4) , (3,3,5) and (3,3, 6). The results suggest that the Admission 

Price policies are a good approximation of the optimal policy. The properties of the 

opt imal policies i n the latter networks are analysed in §6.5. 

The Admission Price poHcy described by Wi is calculated by our usual method f rom 

the opt imal value function under the optimal (but difficult to describe) policy, and 

for all the states z = {x^w) that could possibly accept an increase in their number 

of 1-link calls. For such states we calculate the differences V{z + e.) — V{z). Then we 

look at those differences for a collection of states Za^z^^ ..Zm w i th the same number 

of free Hnks F,. For 'good' V{z + e,) - V{z) Wp, must be satisfied. The 

choice for such Wp, is taken f rom wi th in the range of the above differences; usually 

2See §2.3.2. 
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their mean value; see also Chapter 4. 

Table 6.5: presents the case of a [K, C) — (3,3) network and (t<2 = 0.8. Compare 

Table 6.5 w i t h Table 4.2. 

Table 6.6: demonstrates the performance of the Admission Price policies for a 

network w i t h {k,C) = (3,3) and /i2 increasing. See also discussion of the optimal 

policy in this case in §6.6. 

The behaviour of the 0 pohcy is the same as described in §4.2. 

Note that by comparing Figures 6.3 wi th 6.5, and 6.4 wi th 6.5, i t is clear that the 

do not change much as the capacity varies for the 3rd l ink. 

F o r an explanation of why a is not exactly 0.8 see the remark on page 50. 

= " 3 , = 1, i ^ i = 2, = 1, = 0.8 

Single link 2-link call Capacities Optimal w-Optimal 

-^11,2,3 ^^21,2,3 Cl,2,3 V(0) Vw{0) 

0.5 0.5 0.5 4.9 3,3,3 22.9963 22.8750 
0.5 0.5 1.16 4.9 3,3,3 26.2778 25.9658 
0.5 0.5 1.55 4.9 3,3,4 27.1022 26.7767 
0.5 0.5 1.93 4.9 3,3,5 32.0108 31.7014 
1.3 1.3 1.3 3.3 3,3,3 35.0391 35.0389 

1.3 1.3 1.76 3.3 3,3,3 37.3559 37.3401 
1.3 1.3 2.35 3.3 3,3,4 38.6687 38.6534 
1.3 1.3 2.93 3.3 3,3,5 44.9085 44.8831 
1.8 1.8 1.8 2.3 3,3,3 42.5410 42.5230 

1.8 1.8 2.13 2.3 3,3,3 44.1330 44.1281 
1.8 1.8 2.85 2.3 3,3,4 45.6073 45.6013 
1.8 1.8 3.56 2.3 3,3,5 52.6654 52.5794 

Table 6.1: Networks with A 1 3 / C 3 constant 
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K = 3,C = {3,3,4:),112 = 1,Ri = 2,R2 = l , a = 0.8 

1^1 + 1^2/2 T4(0) V^̂ (O) 
0.5 4.9 2.95 21.7478 21.5569 
0.7 4.5 2.95 24.4493 24.4200 
1 3.9 2.95 28.7907 28.6471 

1.3 3.3 2.95 33.2670 33.2153 
1.5 2.9 2.95 36.2549 36.2425 
1.8 2.3 2.95 40.5929 40.5510 
0.5 5 3 21.7947 21.6026 
0.7 4.6 3 24.4905 24.4585 
1 4 3 28.8245 28.6814 

1.3 3.4 3 33.2969 33.2416 
1.5 3 3 36.2803 36.2668 
2 2 3 43.3637 43.3324 

0.3 5.6 3.1 19.3951 18.7791 
0.6 5 3.1 23.1699 23.1183 
1 4.2 3.1 28.8884 28.7468 

1.4 3.4 3.1 34.8465 34.8284 
1.7 2.8 3.1 39.2294 39.1944 
2 2.2 3.1 43.3835 43.3508 

0.5 6 3.5 22.1846 21.9895 
0.7 5.6 3.5 24.8346 24.7803 
1 5 3.5 29.1064 28.9714 

1.3 4.4 3.5 33.5472 33.4598 
1.6 3.8 3.5 37.9402 37.9026 
2 3 3.5 43.4504 43.4114 

0.5 7 4 22.4683 22.2815 
0.7 6.6 4 25.0941 25.0173 
1 6 4 29.3137 29.1905 

1.3 5.4 4 33.7369 33.6980 
1.6 4.8 4 38.0797 38.0293 
2 4 4 43.5148 43.4670 

Table 6.2: Networks with C= (3,3,4) 
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K = 3,C = {3,3,b), 112 = 1, Ri = 2, R2 = l,a = 0.8 

1^1 1^2 z/i + z/2/2 K(0) Vw{0) 
0.5 4.9 2.95 23.4263 23.1659 
0.7 4.5 2.95 26.1843 26.0638 
1 3.9 2.95 30.6177 30.3458 

1.3 3.3 2.95 35.0779 34.9928 
1.5 2.9 2.95 38.1238 38.0030 
1.8 2.3 2.95 42.6614 42.5814 
0.5 5 3 23.4937 23.2281 
0.7 4.6 3 26.2421 26.1185 
1 4 3 30.6675 30.3938 

1.3 3.4 3 35.1199 35.0321 
1.5 3 3 38.1620 38.0351 
2 2 3 45.6225 45.5476 

0.3 5.6 3.1 20.9844 20.4359 
0.6 5 3.1 24.9770 24.7892 
1 4.2 3.1 30.7624 30.4853 

1.4 3.4 3.1 36.7212 36.6101 
1.7 2.8 3.1 41.2599 41.1888 
2 2.2 3.1 45.6697 45.5868 

0.5 6 3.5 24.0721 23.7614 
0.7 5.6 3.5 26.7439 26.5818 
1 5 3.5 31.0946 30.8011 

1.3 4.4 3.5 35.4835 35.3614 
1.6 3.8 3.5 39.9966 39.9149 
2 3 3.5 45.8273 45.7388 

0.5 7 4 24.5118 24.1714 
0.7 6.6 4 27.1359 26.9317 
1 6 4 31.4202 31.1111 

1.3 5.4 4 35.7698 35.6060 
1.6 4.8 4 40.2426 40.1235 
2 4 4 45.9737 45.8746 

Table 6.3: Networks with C =(3,3,5) 
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K = 3,C = (3,3,6), = I, Ri = 2, R2 = l,a = 0.8 

1^1 + z^2/2 K(0) Vw{0) 
0.5 4.9 2.95 26.6353 26.3354 
0.7 4.5 2.95 29.5568 29.2722 
1 3.9 2.95 34.0770 33.8368 

1.3 3.3 2.95 38.6492 38.4930 
1.5 2.9 2.95 41.7328 41.5717 
1.8 2.3 2.95 46.4414 46.3152 
0.5 5 3 26.7454 26.4310 
0.7 4.6 3 29.6548 29.3596 
1 4 3 34.1656 33.9162 

1.3 3.4 3 38.7238 38.5622 
1.5 3 3 41.8033 41.6327 
2 2 3 49.6603 49.4969 

0.3 5.6 3.1 24.1087 23.6947 
0.6 5 3.1 28.3947 28.0711 
1 4.2 3.1 34.3353 34.0680 

1.4 3.4 3.1 40.3935 40.2238 
1.7 2.8 3.1 45.0549 44.9286 
2 2.2 3.1 49.7727 49.5881 

0.5 6 3.5 27.7135 27.2647 
0.7 5.6 3.5 30.5147 30.1165 
1 5 3.5 34.9227 34.5953 

1.3 4.4 3.5 39.3668 39.1458 
1.6 3.8 3.5 43.9445 43.7734 
2 3 3.5 50.1623 49.9739 

0.5 7 4 28.4955 27.9252 
0.7 6.6 4 31.1840 30.5453 
1 6 4 35.5100 35.1160 

1.3 5.4 4 39.8659 39.5831 
1.6 4.8 4 44.4079 44.1543 
2 4 4 50.5519 50.2915 

Table 6.4: Networks with C = (3,3,6). 
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K = 3,C = 3,112 = 0.8, Ri = 2,R2 = l,a = 0.8 

1^1 1^2 + U2/2 Va{0) Vw{0) 
0.5 4.9 2.95 25.2701 24.8526 
0.7 4.5 2.95 27.7956 26.6446 
1 3.9 2.95 31.9165 31.4875 

1.3 3.3 2.95 36.0950 35.9199 
1.5 2.9 2.95 38.9657 38.9222 
1.8 2.3 2.95 43.1925 42.9558 
0.5 5 3 25.3446 24.9222 
0.7 4.6 3 27.8563 26.7031 
1 4 3 31.9696 31.5410 

1.3 3.4 3 36.1393 35.9675 
1.5 3 3 39.0066 38.9646 
2 2 3 45.9144 45.8077 

0.3 5.6 3.1 23.0098 22.1278 
0.6 5 3.1 26.7275 26.4895 
1 4.2 3.1 32.0701 31.6431 

1.4 3.4 3.1 37.6502 37.5679 
1.7 2.8 3.1 41.9053 41.5665 
2 2.2 3.1 45.9637 45.8519 

0.5 6 3.5 25.9787 25.5174 
0.7 5.6 3.5 28.3669 27.2069 
1 5 3.5 32.4101 31.6901 

1.3 4.4 3.5 36.5127 36.3723 
1.6 3.8 3.5 40.7551 40.2608 
2 3 3.5 46.1310 46.0013 

0.5 7 4 26.4589 24.2533 
0.7 6.6 4 28.7510 27.5994 
1 6 4 32.7484 32.0485 

1.3 5.4 4 36.8005 35.7422 
1.6 4.8 4 40.9983 40.4603 
2 4 4 46.2899 46.1428 

Table 6.5: Networks with {K,C) = (3,3) and 112 = 0.8. 
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K = 3,C = 3,iii = l,Ri = 2,R2 = l,a = 0.8 

1^2 K(0) VwiO) 
0.5 30.4205 25.5860 
0.7 26.6804 24.1823 
0.8 25.2701 24.8526 
0.9 24.0541 23.7876 
1.1 22.0883 22.0773 
1.3 20.7773 20.3181 
1.5 19.8160 19.0632 
1.7 19.1032 18.0421 
1.9 18.5503 17.1950 
2 18.3136 16.8235 

Table 6.6: Networks with various /j,2. for ui = 0.5; U2 = 4.9. 

6.5 Optimal Policy and Properties 

For Asymmetric networks presented in §6.1, we consider policies that always accept 

1-link calls when there is room to fit them in. It is the 2-link calls we seek to restrict 

(in order to maximise the TEDR) and hence a policy is a set of \S\ x — 1)-

tuples of Boolean variables. 477 triples when K = d,C = (3,3,4). As the networks 

increase in size the optimal policy increases rapidly. In the following examples, we 

describe the exact optimal policy for some networks with: 

(a) K = 3 and various C = (3,3,C3); 

(b) {K,C) = (3,3), (Ai = 0.5, A2 = 4.9) and various ^2; 

(c) (/v, C) = (3,3), fj,2 = 0.8 (it was 1) and various arrival rates; 

only to show the complexity and difficulty that both arise in trying to conclude 

about a network's behaviour and performance by looking at the calculated optimal 

policy. In the following description we do not include the cases in which the optimal 

pohcy accepts the 2-link calls when there is room to fit them in, nor the cases in 

which the network is ful l . 
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Let F = (Fi,F2, F3) denote the number of free circuits on links X, Y and Z respec

tively. A network state is represented by a 6-tuple (X,XY,XZ,Y,YZ,Z). For example 

(010011) describes the state of the network with: one 2-Hnk call on pair XY, one 

2-link call on pair YZ, and a single-link call on Z with coresponding free circuits 

F = (2,1,1). Many states have the same number of free circuits. 

The quantities Ai, A2, i?2 , and a are all defined in §2.1, §2.2 and §2.3. If not 

specified / / i = l , / i 2 = 1-

For the description of the optimal poHcy we proceed the same way as in the analysis 

of §2. 

6.5.1 What Happens as C3 increases 

Example 6.1 

K = 3, Ai = 0.5, A2 = 4.9, Ri=2,R2 = l,a = 0.8 

I : Capacities C=(3,3,4). States=477 

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically 

in this network the optimal policy rejects: 

(a) 2-link calls on XY in 49 states with F= (1,1,4), (1,1,3), (1,1,2), (1,1,1), (1,1,0), 

(2,1,3), (2,1,4), (1,2,3) and (1,2,4); XZ and YZ calls are accepted in the previous 

cases. 

(b) 2-link calls on XZ for F = (1,3,1), (1,2,1); XY and YZ are accepted in the previous 

cases. 

(c) 2-hnk calls on YZ for F= (3,1,1), (2,1,1); XY and XZ calls are accepted in the 

previous cases. 

Compare with Example 3.2. Note that changes in the capacity of link Z have an 

effect on the accceptance/rejection of XY calls i.e. the optimal policy is not of an 

admission price form as it depends upon the state-space and not just the two fink 

involved. 
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I I : Capacities C=(3,3,5). States=622 

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically 

in this network the optimal policy rejects: 

(a) 2-link calls on XY in 94 states with F= (1,1,5), (1,1,4), (1,1.3), (1,1,2), (1,1,1), 

(1,1,0), (2,1,5), (2,1,4), (2,1,3), (2,1,2), (1,2,5), (1,2,4), (1,2,3), (1,2,2); XZ and YZ 

calls are accepted in the previous cases. 

(b) 2-link calls on XZ for F= (1,3,1), (1,2,1); XY and YZ are accepted in the previous 

cases. 

(c) 2-link calls on YZ for F= (3,1,1), (2,1,1); XY and XZ calls are accepted in the 

previous cases. 

Example 6.2 

K = 3,Ai = 1.8, A2 = 2.3, i?i = 2,i?2 = l , a = 0.8 

I : Capacities C=(3,3,4). States=477 

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically 

in this network the optimal policy rejects: 

a) A l l 2-link calls in states with F= (1,3,1), (3,1,1), (1,1,3), (2,2,1), (1,1,4), (1,1,1), 

2,1,1), (1,1,2), (1,2,1) and (2,2,4). 

b) XY and XZ calls in states with F= (1,3.4), (1,3,3), (1,3,2) and (1,2,4), (1,2,3) 

and (1,2,2). 

c) XZ and YZ calls in states with F= (2,3,1), (3,2,1) and (3,3,1). 

d) XY and YZ calls in states with (2,1,4), (2,1,3), (2,1,2) and (3,1,4), (3,1,3) 

and (3,1,2). 

e) X Y calls in states with F= (2,2,4), (2,2,3), (2,2,2), (2,2,0), (2,1,0), (3,1,0), (1,3,0), 

1,1,0) and (1,2,0). 

f ) YZ calls in states with F= (0,3,1), (0,2,1), (0,1,4), (0,1,3), (0,1,2) and (0,1,1). 

g) XZ calls in states with F = (3,0,1), (2,0,1), (1,0,1), (1,0,2) (1,0,3) and (1,0,4). 
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I I : Capacities C=(3,3,5). States=622 

The optimal policy rejects 2-link calls when there is room to fit them in. Specifically 

in this network the optimal pohcy rejects: 

a) Al l 2-link calls in states with (3,1,1), (1,3,1), (2,2,1), (1,2,1), (2,1,1), (1,1,5), 

1,1,4), (1,1,3), (1,1,2) and (1,1,1). 

b) XY and XZ calls in states with F= (1,3,5), (1,3.4), (1,3,3), (1,3,2), (1,2,5), 

1,2,4), (1,2,3) and (1,2,2). 

c) XZ and YZ calls in states with F= (2,3,1), (3,2,1) and (3,3,1). 

d) XY and YZ calls in states with F= (2,1,5), (2,1,4), (2,1,3), (2,1,2) and (3,1,5), 

3.1.4) , (3,1,3) and (3,1,2). 

e) XY calls in states with F= (2,2,5), (2,2,4), (2,2,3), (2,2,2), (2,2,0), (2,1,0), (1,2,0), 

2.3.5) , (2,3,4), (3,1,0), (1,3,0), (3,2,4) (3,2,5) and (1,1,0). 

f ) YZ calls in states with F= (0,2,1), (0,3,1), (0,1,5), (0,1,4), (0,1,3), (0,1,2) and 

0,1,1). 

g) XZ calls in states with F= (3,0,1), (2,0,1), (1,0,1), (1,0,2) (1,0,3), (1,0,4) and 

1,0,5). 

6.5.2 What Happens as / i 2 increases 

In the following examples we investigate what happens as ^2 increases. As ^2 

increases the optimal value function (TEDR) V decreases as less valuable calls are 

using up more network resources. In the examples we describe the optimal policy 

for such cases ans see that the optimal policy rejects more and more 2-link traffic 

as ^2 increases. 

In the following cases i?i > {R211^2)-

Example 6.3 

J^ = 3,C = 3,Ai = 0.5,A2 = 4.9,Mi = l , i ^ i = 2,i?2 = l , a = 0-8 
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The optimal policy rejects: 

I : ii2 = 0.5. 2-Iink calls on X Y in 1 state with F= (1,1,3) but not in (1,1,2), (1,1,1), 

(1.1.0) ; XZ and YZ calls are accepted in (1,1,3). 1/(0) = 30.42962. 

I I : ^2 = 0.8. 2-link calls on XY in 10 states with F= (1,1,3) and (1,1,2) but 

not in (1,1,1), (1,1,0); XZ and YZ calls are accepted in (1,1,3) and (1,1,2) states. 

V(0) = 25.2701. 

I l l : fi2 = 0.9. 2-link calls on XY in 10 states with (1,1,3) and (1,1,2) but 

not in (1,1,1), (1,1,0); XZ and YZ calls are accepted in (1,1,3) and (1,1,2) states. 

y(0) = 24.05442. 

I V : ^2 = 1. See Example 3.2 in Chapter 3. V{0) = 22.9963. 

V : fi2 = 1.1. (a) XY, XZ and YZ calls in 11 states with (1,1,1) free circuits, 

(b) 2-link calls on XY in 11 states with F= (1,1,3) and (1,1,2) but not in (1,1,0). 

y(0) = 22.08844. 

V I : /i2 = 1.7. (a) XY, XZ and YZ calls in 11 states with (1,1,1) free circuits, (b) 

X Y and XZ calls in 9 states with (1,2,2), (1,1,2) and (1,2,1) free circuits, (c) 2-

link calls on X Y in 21 states with F= (1,1,3), (1,1,2), (1,1,0), (2,1,3) and (1,2,3). 

V(0) = 19.0572. 

V I I : fi2 = 2. (a) XY, XZ and YZ calls in 12 states with (1,1,1), (1,2,1), (1,1,2) and 

(2.1.1) free circuits, (b) XY and XZ calls in 9 states with (1,2,2), (1,1,2) and (1,2,1) 

free circuits, (c) 2-link calls on XY in 27 states with (1,1,3), (1,1,2), (1,1,0), 

(2,1,3), (1,2,3), (2,2,3), (2,1,0) and (1,2,0). V{0) = 18.3173. 

Example 6.4 

= 3,C = 3 , A i = 1.8, A2 = 2.3, fii = l , i ? i = 2,i?2 = 1,Q = 0.8 

The optimal policy rejects: 

I : /i2 = 0.5. (a) XY, XZ and YZ calls in 11 states with (1,1,1) free circuits, (b) 

2-link calls on XY in 11 states with F = (1,1,3), (1,1,2) and (1,1,0). V{0) = 45.1248. 

I I : 1x2 = 0.8. (a) XY, XZ and YZ calls in 41 states with (3,1,1), (1,3,1), (1,1,3), 

(1,1,1), (1,2,1), (1,1,2) and (2,1,1) free circuits, (b) XY and XZ calls in 8 states with 
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(1,2,2), (1,2,3) and (1,3,2) free circuits, (c) 2-link calls on XY in 34 states with F = 

(3.1.0) , (1,1,0), (2,1,0), (1,3,0), and (1,2,0). V(0) = 43.1926. 

I l l : H2 - 0.9. (a) XY, XZ and YZ calls in 41 states with (3,1,1), (1,3,1), (1,1,3), 

(1.1.1) , (1,2,1), (1,1,2) and (2,1,1) free circuits, (b) XY and XZ calls in 8 states with 

(1.2.2) , (1,2,3) and (1,3,2) free circuits, (c) 2-Hnk calls on XY in 37 states with F= 

(3,1,0), (1,1,0), (2,1,0), (1,3,0), (2,2,3) and (1,2,0). V{0) = 42.8465. 

6.5.3 Properties 

In 6 Asymmetric networks in which the number of link K = 'i and capacity varies as 

well as networks in which C is fixed but 1x2 increases the results suggest that the 

properties of the optimal policy are those of the Symmetric networks. In particular: 

Property A: Dependency on the State-Space. 

Property B: For calls which are disjoint, i and j say, and thus could be widely 

separated in a network, in general, the more type i calls in progress, the less likely 

we are to reject type j calls, and vice-versa; disjoint calls are for example XY and 

Z calls. This property does hold for the Asymmetric networks. See Example 6.1 

in which XY rejection in states with (2,1,3) free circuits coincides with rejection in 

states with (2,1,4) free circuits. 

Property C: Monotonicity. If an arrival for a 2-link call on route k is rejected 

in state J, where z >z, then i t will also be rejected in states z. Our results suggest 

that this property does not hold in general; see Examples 6.1 in which rejection in 

states with (2,1,4) and (2,1,3) free circuits does notcoincide with rejection in states 

(2,1,2), (2,1,1) and (2,1,0). 

Property D: If we reject a type i call in state 2, then we reject it in state z-\-k for 

calls i and k which are distinct and not disjoint; not disjoint calls are for example 

X Y and YZ calls. This property does hold for the Asymmetric networks. 

Property E : Weak Monotonicity If we reject a type k call in state z, then we 

reject a type call k in state z + ê . This property does hold. 
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Figure 6.1: Change in Wi for {K = 3,C = 3,3,4) as n l increases; 
nl+(n2/2)=2.95. 
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6.6 The max-flow Bound for Asymmetric Net

works 

In chapter 2 we presented the max-flow bound for the Symmetric networks. Here 

we will just give an expression of the linear programming problem whose solution 

gives an upper bound on the performance of Asymmetric networks, and present a 

few results for networks with K = 3 and C = (Ci, Ci , C 2 ) . 

For the general formula we will consider that the arrival rates for single link and 

2-link traffic are (Ai ,Ai ,Ai) and ( A 2 , A 2 , A 2 ) respectively. 

The relevant Hnear programming problem^ is 

L P l : 

max 
K 

X, < Ai, 2 = 1, . . , /^ ; {K - l)wi < A2, / e Ai 

xi + wi + W2 < Ci, X2 + wi + W3 < Ci and X3 + Wi + W3 < C2,Xi,wi > 0. 

3 S e e also §2.8 
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Chapter 7 

Conclusions 

In this thesis Symmetric Starljoss circuit-switched networks which consist of K finks 

of the same capacity C linked through a common node were considered. There are 

1-link routes and 2-link routes involving any pair of the single links on which calls 

can request admission. Arrivals form independent Poisson streams on each route 

and the routing is fixed. Dependency arises through occupancy of pairs of circuits. 

Both types of calls have the same exponential holding time. For different types of 

calls we earn different rewards with the single link calls generating bigger rewards. 

The rewards are discounted at a fixed rate. 

The operation of the networks is viewed as a Markov Decision Process. In the 

networks we investigated stationary policies which accept or reject traffic requests 

in order to maximise the Total Expected Discounted Reward (TEDR). We solved 

the optimality equation numerically for a range of small examples by using the Policy 

Improvement iterative algorithm of Dynamic Programming. 

Reduced state-space networks were also considered in which a call on a 2-link route, 

once accepted, is split into two independent calls on the links involved. This greatly 

reduces the size of the state-space. Finally we looked at Asymmetric Star networks 

with different number of circuits per link and different exponential holding times. 
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7.1 Optimal Policies and their Properties 

Generally, optimal policies are complex to describe and 'nobody' has exact solutions 

except for problems on a single link. Our networks are in some respect the simplest 

networks which aren't a single link or two in series but even so only very small 

examples can be treated numerically. For such examples we showed how complex 

the optimal policies are and found evidence that suggest that the following properties 

- except Monotonicity - hold for all the models of networks considered i.e. the full 

state-space, reduced state-space and Asymmetric networks: 

(a) Dependency on the State-Space The optimal policy depends upon the ful l state 

space S and not just the free circuit configurations. 

(b) Non-Locality and Disjointness If we reject type j calls in z + then we reject 

them in z for call types i and j which are disjoint. Property B means that for calls 

which are disjoint, and thus could be widely separated in a network, in general, 

the more type i calls in progress, the less likely we are to reject type j calls, and 

vice-versa. 

(c) Not Disjointness If we reject a type i call in state then we reject it in state 

z -\- Ck for calls i and k which are distinct and not disjoint. 

(d) Weak Monotonicity In which type k calls are monotonic with respect to them

selves, that is we assume that for all call types k, if we reject a type k call in state 

z, then we reject a type call k in state z -\- Ck-

The property of Monotonicity in which if an arrival for a 2-link call on route k is 

rejected in state then it will also be rejected in states ^, where z does not 

hold as our examples suggest. 

7.2 Admission Price Policies 0 

These policies are not optimal but they are believed to be asymptotically optimal 

for large networks. In this thesis we investigated if such policies are any good for 

small networks. Our results suggest that they are very good for both the ful l and 

144 



reduced state-space networks; this is also true for some examples of Asymmetric 

networks. 

Our fl policies are not robust in that they change much as the offered traffics change. 

The costs they assume get bigger as Ai increases; this increase translates to more 

acceptance of single link traffic which returns a bigger reward than the 2-link one. 

The policies reflect clearly the fact that spare capacity has potential worth as we can 

use it to carry future calls and that units of spare capacity become more valuable 

as the system fills up. 

Although not robust, our Admission Price policies have the following very interesting 

properties: 

(a) they do not change much as K increases. This is of practical importance as 

i t suggests that the f i calculated from small networks could be used as a good 

approximate for the optimal policy in larger networks. For example, we found that 

by applying the 0 policy derived from networks {K,C) = (3,3) to ( / \ ,C) = (4,3) 

and (K, C) = (5,3) the results are excellent; and 

(b) 0 policies of the reduced state-space model is a very good approximation for the 

optimal policy of the ful l model and vice-versa; in both cases very little improvement 

is left to be performed by applying them and in some cases none. 

Our Admission Price policies were also compared to similar ones suggested in routing 

schemes proposed by Ott & Krishnan (1985, 1986) and Key (1990) for an example 

with (/^ = 3,C = 3). 

7.3 Other Results 

In this work, as mentioned earlier, we looked for optimal policies in time where the 

state of the network can be described by the state of all current routes. Thus, the 

optimal state-dependent routing in our case is a problem of optimal control of a 

Markov Decision Process in a huge state-space. Because of the size of the state-

space, numerical calculations are very difficult and any policy which is given in the 

form of routing decisions is unimplementable. We comment on the size of the state-
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space and we discuss the difficulties arising in trying to calculate the state-space for 

the Symmetric networks considered in this thesis. 

The Value Detemination step in Policy Improvement can be solved by either using 

iterative techniques (G-S, SOR) or Gauss Elimination. The actual convergence of 

these schemes as well as arguments on the error analysis in relation to the numerical 

evaluation of the TEDR for small ^^ar Symmetric networks are examined which 

suggest that the the Gauss Elimination solution is more accurate. 

Unfortunately, at the time of writing this thesis, the solution of A V = R as well as 

the calculation of the condition number were possible for small examples of networks 

only. This is due to the difficulty posed by the huge state-space in calculating and 

storing A which is in size. Nevertheless, in our examples with {K — 2, C) 

and (K = 3,C), where C < 4, the Gauss Ehmination solution V = A~^R agrees 

with the SOR solution to the expected precision (i.e. ~ 10~^). That confirms the 

accuracy of the SOR algorithm. 

In our work we have also tried different over-relaxation (SOR) parameters and the 

optimal results in convergence speed (the total number of iterations needed) suggest 

that the optimal parameters are different for problems of different size. As we show, 

it seems that the variation is associated more with the change in offered traffic rates 

than the network size. 
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Appendix A 

The Size of the State-space 

The exact size of the state space for our Star network with K links of capacity C 

and both 1 and 2-link calls is not easy to find. For any given values of K and C 

it can be determined with a recursive counting routine carried out on a computer^ 

but a general asymptotic of a useful nature seems too difficult to find. 

To see why this is consider the following counting scheme: for each possible number 

of 2-link calls in the network and for each possible arrangement of these calls count 

the number of different arrangements of 1-Knk calls using the free circuits remaining 

and then sum. Let N{K, C) denote the size of the state space. 

For is:=2 we find 

i=0 J=l " 

since there is only one way to allocate j 2-link calls on this network. 

For K=3 the network can carry up to [3C/2] 2-link calls and hence 

[3C/2] 3 

^See Appendix B . l 
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where the second summation is over all distinct allocations of 2-link calls to the 

K = 3 links that satisfy ji +jk^C and the product is the number of arrangements 

of 1-link calls in the free capacity left after the allocation of the 2-link calls. 

We can describe the general case similarly. Index the K(K — l)/2 distinct 2-Hnk 

call types by / and introduce mappings 1(*) and 2(*) to idenitfy from which links a 

specific 2-link call requires circuits. 

Let P{j) be the set of arithmetic partitions of j into at most K{K — l ) / 2 non-zero 

parts which satisfy all the constraints 

where L{i) = {/ : 1(/) = ^ or 2(/) = i} i.e. the collection of 2-hnk call types that 

require a circuit from link i. With this notation we can see that 

[KC/2] A'(A'-l)/2 

j=0 P(j) 1=1 

and this shows the source of the difficulty very clearly. 

The problem of counting arithmetic partitions of integers is an old one and has been 

much studied (see Hardy and Wright [1960]) but no good asymptotic results have 

been found for sets similar but simpler than P{j). 

An approximation to iV(A', C) for small K can be found by finding the volume of 

an appropriate set in We will consider the case K = 3. The discrete 

state space is 6 dimensional so let Xi,X2,X3 correspond to the variables counting 1-

link calls and y-i_,y2,y3 correspond to the variables counting 2-link calls. We require 

0 < Xi,yi < C, and 

x^ + Y.yl<C, z = 1,2,3. 
m 

For numbers a, 6 let a A 6 = min (a, b). 
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The volume of the polyhedral region satisfying these constraints is 

^ 3 = I I {C - yi{i) - ?/2(o) dx dy 
Jy^Jx I 

r j- i'{C-yl)A{C-y2) 

J J {C - y i - y2){C - y i - ?/3)(C - 2/2 - yz) dyzdy2dyi 

ksC 

for some constant ks. 

In general it seems that when there are K links we will get 

AK = kK 

7V(ir, C) counts the number of lattice points in a region with volume AK SO as C 

becomes large we expect that for fixed K 

N{K,C)^kK (C- f 1)^'(^'+^)/' 

where the constants kK decreases as K grows. 

The numerical calculations of N{K, C) for small C when K = 3,4,5 accord reason

ably well with this approximation. 

K C = 4 C = b C = 6 C = 7 estimated kK 

3 1023 2610 5860 11942 4 10-2 

4 28746 124074 442918 1366806 2 10-3 

5 1131389 8940840 54653970 273816800 4 10-^ 

Estimating kK from N{K,C). 

From this we see that for K = 6 (and so K{K + l ) / 2 = 21) the number of states 

grows as (C - f 1)^^ and for larger K the rate of growth is even more rapid. 
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Appendix B 

Computing 

The following programs are written in Unix Berkeley Pascal 5.0. 

B . l Counting the States 

The following program counts the number of possible states for a Symmetric star-

shaped network with A' = 5 of capacity C = 3. The program can only work with 

C < 7. Remember that for the reduced state-space model there is a formula to 

calculate the number of possible states; see §1.4. 

A state is stored effectively as an array of K[K + l ) / 2 elements which contains 

information on the number of single and 2-link calls present at this state. Every 

new state is given a 'registration' number and is then added into a hash table that 

contains the state space; see procedures compactor, key. 

I f the hash function was perfect, i t would automatically put every incoming state 

into a different spot in the hash table. Unfortunately, hash functions tend to be 

imperfect. Unless we make the hash table excessively large, two or more different 

states will eventually be sent to the same spot. This is known as a collision. To 

solve this problem we have made each state entry the head of a Hnked list. We 

store incoming states by adding them to the appropriate linked list. If there is a 
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collision, we add a new element to the linked list associated with the particular hash 

value; see definition of pothc and procedures a d d s t a t e t o h a s h t a b l e , f i n d s t a t e , 

compactor, c l e a r h a s h t o r e , i n i t h a s h s t o r e . 

IVIost of the procedures found in this programe can be found incorporated in the 

programs that perform the policy improvement and calculate the optimal policy as 

well as the Total Expected Discounted Reward (TEDR); see Appendix B.2. 

Running the following program gives us an idea of the memory needed for storing 

the states as well as information about every state. 

B.1.1 Program STATECOUNTER 

program STATECOUNTER ( i n p u t . o u t p u t . S t a t e ) ; 

c o n s t 

NoLinks= 5; 
NoAllPos= 15; { t h e number K ( K + l ) / 2 } 
Cap= 3; 

hashmaxin= 1135333; 
compactlength= 5; { b y t e s needed f o r compact st o r a g e = 

(3*MoAllPos)/8 rounded up } 

t y p e 
{Cap i s as much as 7; i . e . o c t a l } 

byte=0..225; 
C i r c u i t s = 0..Cap; 
Spare = a r r a y [ 1 . . N o L i n k s ] of C i r c u i t s ; 
L i n k = a r r a y C l . . N o A l l P o s . l . . 2 ] of 1..NoLinks; 
S t o r e = a r r a y [ 1 . . N o A l l P o s ] of byte; 
compact=array[1..compactlength] of byte; 
hashnumber=0..hashmaxin; 
p o t h c = ' ' c o l l i s i o n l i s t ; 
o l l i s i o n l i s t = r e c o r d 

r:double; 
state:compact; 
hcnext:pothc; 

end; 

v a r 
XXX,X : S t o r e ; 
L i n k s : L i n k ; 
F : Spare; 
C u r r e n t , i , j , k , X I : i n t e g e r l 6 ; 
p:pothc; 

151 



Counter : i n t e g e r 3 2 ; 
S t a t e : t e x t ; 
mrhashnumber; 
hashstore:array[hashnumber] of pothc; 
t a d d , t c o l l : i n t e g e r 3 2 ; 

procedure compactor(var s : S t o r e ; v a r h:compact); 
v a r 

b l , c h , c s : b y t e ; 

begin 
h [ l ] :=s[MoAllPos] ; 
f o r ch:=2 t o compactlength do h[ch]:=0; 
c s : = N o A l l P o s - l ; 
c h : = l ; 
bl:=5; 
w h i l e cs>0 do c a s e b l of 

3..8:begin 
h [ c h ] : = h [ c h ] + l s h f t ( s [ c s ] , ( 8 - b l ) ) ; 
b l : = b l - 3 ; 
c s : = c s - l ; 

end; 
2:begin 

h [ c h ] :=h[ch] + ( s [ c s ] mod 4)*64; 
ch:=ch+l; 
h [ c h ] : = ( s [ c s ] d i v 4 ) ; 
c s : = c s - l ; 
bl:=7; 

end; 
1:begin 

h [ c h ] :=h[ch] + ( s [ c s ] mod 2)*128; 
ch:=ch+l, 
h [ c h ] : = s [ c s ] d i v 2; 
c s : = c s - l ; 
bl:=6; 

end; 
0:begin 

ch:=ch+l; 
bl:=8; 

end; 
end; 

end; 

procedure c l e a r h a s h s t o r e ; 

v a r 

i:hashnumber; 
h,hh:pothc; 

b e g i n 

f o r i:=0 t o hashmaxin do 
begin 

h : = h a s h s t o r e [ i ] ; 
w h i l e h O n i l do 
begin 

hh:=h; 
h:=h~.hcnext; 
d i s p o s e ( h h ) ; 

end; 
end; 
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end; 
{*****************•**************************************** 

procedure i n i t h a s h s t o r e ; 
v a r 

i:hashnumber; 

be g i n 
f o r i:=0 t o hashmaxin do h a s h s t o r e [ i ] : = n i l ; 

end; 
{******************************************************** 

f u n c t i o n k e y ( v a r c:compact):hashnumber; {need not be v a r } 
v a r 

a , k : i n t e g e r 3 2 ; 
i:1..compactlength; 

b e g i n 
k:=0; 
f o r i : = l t o compactlength do 
begin 

a : = i * ( { n o t } c [ i ] ) ; 
k : = k + s q r ( a ) ; 

end; 
key:=(k mod hashmaxin); 

end; 
{*********•******************************************** 

procedure f i n d s t a t e ( v a r y : S t o r e ; v a r h:pothc); {need not be v a r } 
v a r 

found:boolean; 
j : i n t e g e r l 6 ; 
c:compact; 

b e g i n 

compactorCy,c); 
h : = h a s h s t o r e [ k e y ( c ) ] ; 
m:=key(c); 
f o u n d : = f a l s e ; 

w h i l e not ( ( h = n i l ) or found) do 
beg i n 

j :=0; 
w i t h h" do 

r e p e a t 
j : = j + l ; 
found:= c [ j ] = s t a t e [ j ] ; 

u n t i l found or ( j = N o A l l P o s ) ; 
i f not found then h:=h~.hcnext; 

end; 
end; 

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ 

p r ocedure a d d s t a t e t o h a s h t a b l e ( v a r y : S t o r e ) ; 

v a r 
kk:hashnumber, 
{ j : i n t e g e r l 6 ; .-
hh:pothc; 
c:compact; 

begin 
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{ i f ( t a d d mod 100)=0 then w r i t e l n ( m e m a v a i l , ' ',tadd,' t c o l l ) ; } 
tadd:=tadd+l; 
compactorCy,c); 
k k : = k e y ( c ) ; 
{ w r i t e l n ( k k ) ; } 
new(hh); 

i f h a s h s t o r e [ k k ] = n i l then 
begin 

hashstore[kk]:=hh; 
h h " . h c n e x t : = n i l ; 

end e l s e begin 
t c o l l : = t c o l l + l ; 
h h " . h c n e x t : = h a s h s t o r e [ k k ] ; 
h a s h s t o r e [ k k ] : = h h ; 

end; 

w i t h hh" do 
beg i n 

s t a t e : = c ; 
end; 

{ w r i t e C H N ' , k k : l , ' : ' ) ; 
f o r j : = l to NoAllPos do w r i t e C ' , y [ j ] ) ; 
w r i t e l n ; 
w r i t e ( ' c o m p a c t : ' ) ; 
f o r j : = l to compactlength do w r i t e ( ' ' , c [ j ] : 3 ) ; 
w r i t e l n ; } 

end; 

{ The f o l l o w i n g procedure r e c u r s i v e l y counts t h e number } 
{ of s t a t e s i n a s t a r network w i t h number of l i n k s as above } 
{ each h a v i n g t h e same number (Cap) of c i r c u i t s : t h e network} 
{ c a r r i e s 1 and 2 - l i n k c a l l s . } 

{********************************************************** 

procedure Count(F : Spare; C u r r e n t : i n t e g e r l 6 ) ; 

v a r 
i , L i m i t : i n t e g e r l 6 ; 
F l : Spare; 
T e s t : boolean; 
k : i n t e g e r l S ; 

b e g i n 

X [ C u r r e n t ] := 0; F l := F; 
i f F [ L i n k s [ C u r r e n t , 1 ] ] >= F [ L i n k s [ C u r r e n t , 2 ] ] then 

L i m i t := F [ L i n k s [ C u r r e n t , 2 ] ] 
e l s e L i m i t := F [ L i n k s [ C u r r e n t , 1 ] ] ; 

r e p e a t 

b e g i n 
F l [ L i n k s [ C u r r e n t , ! ] ] := F [ L i n k s [ C u r r e n t , 1 ] ] - X [ C u r r e n t ] ; 
i f ( L i n k s [ C u r r e n t , 2 ] <> L i n k s [ C u r r e n t , 1 ] ) then 

F l [ L i n k s [ C u r r e n t , 2 ] ] := F [ L i n k s [ C u r r e n t , 2 ] ] - X [ C u r r e n t ] ; 
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T e s t := f a l s e ; j := NoAllPos + 1; 

r e p e a t 
b e g i n 

j : = j - l ; T e s t := ( F l [ L i n k s [ j , 1 ] ] > 0 ) and ( F l [ L i n k s [ j , 2 ] ] > 0 ) ; 
end; 

u n t i l T e s t or ( j = C u r r e n t ) ; 

i f ( j = C u r r e n t ) then 
begin Counter := Counter + L i m i t + 1; 

XXX:=X; 
f o r k:=0 t o L i m i t do 
b e g i n 

a d d s t a t e t o h a s h t a b l e ( X X X ) ; 
XXX[Current]:=XXX[Current]+1; 

end; 
L i m i t := -1; end 

e l s e 
b e g i n 

C o u n t ( F l , C u r r e n t + l ) ; 
X [ C u r r e n t ] : = X [ C u r r e n t ] + 1 ; 
L i m i t : = L i m i t - l ; 

end; 
end; 

u n t i l ( L i m i t < 0 ) ; 

end; { T h i s ends th e r e c u r s i v e procedure.} 

{ * * * * * * * * * * * * * * * * * * * * * * Main Program * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * } 

b e g i n 

open(State,'State.txt','unknown'); 
r e w r i t e ( S t a t e ) ; 

i f Cap>7 th e n 
w r i t e l n ( ' C o m p a c t o r cannot handle C a p a c i t i e s l a r g e r than 7') 

e l s e b e g i n 

i n i t h a s h s t o r e ; 
t c o l l : = 0 ; 
tadd:=0; 

{ T h i s i d e n t i f i e s what type of c a l l s X[k] r e c o r d s } 

f o r i := 1 t o NoLinks do 
f o r j := i to NoLinks do 
begin 

XI := i * ( 2 * N o L i n k s - i + 1 ) ; XI := (XI d i v 2 ) ; 
k := XI - (NoLinks - j ) ; 
L i n k s [ k , l ] := i ; L i n k s [ k , 2 ] := j ; 

end; 

f o r i := 1 t o NoLinks do F [ i ] := Cap; 

Counter:= 0; 
C u r r e n t : = 1; 
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C o u n t ( F , C u r r e n t ) ; 

w r i t e l n ( S t a t e , ' N o L i n k s = ',NoLinks,' C a p a c i t y = ',Cap); 
w r i t e l n ( S t a t e , ' T h e number of p o s s i b l e s t a t e s = Counter); 
w r i t e l n ( S t a t e , ' h a s h m a x i n = hashmaxin); 

w r i t e l n ( ' T h e r e w e r e ' , t c o l l : 1 , ' c o l l i s i o n s a l l t o l d i n ' , t a d d : 1 , ' e n t r a n c e s . ' ) ; 

c l e a r h a s h s t o r e ; 

end; 

end. 
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B.2 Policy Improvement Program 

The following program: 

a) counts the possible states; 

b) performs the value determination step discussed in §2.4.2; see procedure COST; 

c) performs the policy improvement analysed in §2.4.1 using the Succesive Over-

Relaxation Algorithm (SOR) presented in §2.4.3; see procedures STATUS, IMPROVE; 

d) it effectively stores the optimal policy in the hash table of the states; 

e) calculates the Admission Price pohcy Wt as given in §4.1.1; 

e) Calculates and stores the optimal value function for every possible state; see 

procedure COST. 

B.2.1 The Beginning 

program vague33(input, output, F i l e 3 ) ; 

{Output of s t a t e s and t h e i r a d d r e s s e s , improvement of p o l i c y i n c l u d e d } 

{ 3 , 3 - C a s e / U n i x B e r k e l e y P a s c a l / 1992-1993} 

c o n s t 
NoLinks=3; 
Cap=3; 
ee=lE-6; { t o l e r a n c e number} 
hashmaxin=953; 

NoAllPos=6; {number K(K+l)/2= b e t a } 
NoPairs=3; {number K ( K - l ) / 2 = gamma} 

compactlength=3; 
{ b y t e s needed f o r compact storage= 3*NoAllpos/8 rounded up} 
compactlengthplusl=4; 

discount=0 .8; { t h e d i s c o u n t f a c t o r } 
omega=1.5; { t h e s o r parameter} 

t y p e 
b y t e = 0..255; 
C i r c u i t s = 0..Cap; 
Spare = a r r a y [ 1 . . N o L i n k s ] of C i r c u i t s ; 
Sub = a r r a y [ 1 . . N o L i n k s ] of double; 
L i n k = a r r a y [ 1 . . N o A l l P o s , ! . . 2 ] of 1..NoLinks; 
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S t o r e = a r r a y [ 1 . . N o A l l P o s ] of byte; 
A l l = l . . N o A l l P o s ; 
P a i r = a r r a y [ L . N o P a i r s ] of boolean; 
E x t r a = a r r a y [ l . . N o P a i r s ] of i n t e g e r 1 6 ; 
Index=array [ l . . N o P a i r s ] of A l l ; 
Co m p a c t = a r r a y [ l . . c o m p a c t l e n g t h p l u s l ] of byte; 
hashnumber=0..hashmaxin; 
p o t h c = " c o l l i s i o n l i s t ; 
c o l l i s i o n l i s t = r e c o r d 

value:double; 
{ d i f e r : d o u b l e ; } 
approx:Sub; 
f r e e c i r c : i n t e g e r l 6 ; 
state:Compact; 
hcnext:pothc; 
P o l i c y : P a i r ; 

end; 
v a r 

F i l e 3 : t e x t ; 
L i n k s : L i n k ; 
F:Spare; P o l i c y T e s t : b o o l e a n ; 
Ind:Index; X:Store; 
temp,h:pothc; 
t a d d , t c o l l , C o u n t e r : i n t e g e r 3 2 ; 
h ashstore:array[hashnumber] of pothc; 
AveRewl,AvCostHome, Re l R a t e l , R e l R a t e 2 , N l , N 2 , a , r r r : d o u b l e ; 
ITERl,ITER2,ITER3,BETTER,Home,Current,Circ,repet i t i o n : i n t e g e r l 6 ; 
Count , w , i , i , l , k , k l , k 2 , k 3 , c o n t r o l , B e t t er,stop,Rewl,Rew2:integer16; 
Rate,RR,v,PI,P2,P3,XX,Dif,AbsDif,BigDif,AbsApprox,Par1,Par2:double; 
One,Two,Three,Onecount,Twocount,Threecount,f: double; 

procedures and f u n c t i o n s * * * * * * * * * * * * * * * * * * * * * * * * * } 

p r ocedure COMPACTOR(var s : S t o r e ; v a r h:Compact); 

v a r 
b l , c h , c s : b y t e ; 

b e g i n 

h [ l ] : = s [ N o A l l P o s ] ; 
f o r ch:=2 t o compactlength do h[ch]:=0; 
c s : = N o A l l P o s - l ; 
c h : = l ; 
bl:=5; 
w h i l e cs>0 do 
c a s e b l of 
3..8:begin 

h [ c h ] : = h [ c h ] + l s h f t ( s [ c s ] , ( 8 - b l ) ) ; 
b l : = b l - 3 ; 
c s : = c s - l ; 

end; 
2: begin 

h [ c h ] : = h [ c h ] + ( s [ c s ] mod 4)*64; 
ch:=ch+l; 
h [ c h ] : = ( s [ c s ] d i v 4 ) ; 
c s : = c s - l ; 
bl:=7; 

end; 
1: begin 

h [ c h ] :=h[ch] + ( s [ c s ] mod 2)*128; 
ch:=ch+l; 
h [ c h ] : = s [ c s ] d i v 2; 
c s : = c s - l ; 
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bl:=6; 
end; 

0:begin 
ch:=ch+l; 
bl:=8; 

end; 
end; 

end; 

p r o c e d u r e CLEARHASHStoRE; 

v a r 
i:hashnumber; 
h,hh:pothc; 

b e g i n 
f o r i:=0 t o hashmaxin do 
begin 

h:=hashstore [ i ] ; 
w h i l e h O n i l do 
beg i n 

hh:=h; 
h:=h~.hcnext; 
d i s p o s e ( h h ) ; 

end; 
end; 

end; 
{********************************************************** 

procedure INITHASHStoRE; 

v a r 
i:hashnumber; 

b e g i n 

f o r i:=0 t o hashmaxin do h a s h s t o r e [ i ] : = n i l ; 

end; 

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

f u n c t i o n K E Y ( v a r c:Compact):hashnumber; {need not be v a r } 

v a r 
a , k : i n t e g e r 3 2 ; 
i:1..compactlength; 

b e g i n 
k:=0; 
f o r i : = l t o compactlength do 
begin 

a : = i * ( { n o t } c [ i ] ) ; 
k : = k + s q r ( a ) ; 

end; 
KEY:=(k mod hashmaxin); 

end; 
{******************************************************** 
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procedure FINDSTATE(var yrStore; var h:pothc); 
var 

nfound:boolean; j : i n t e g e r l 6 ; 
c:Compact; 

begin 
COMPACTOR(y,c); 
h:=hashstore[KEY(c)]• 
cEcompactlengthplusl] :=0; 
nfouna:=true; 
while ( h O n i l ) and (nfound) do 
begin 

h~.state[compactlengthplusl] : = 1; 
j:=0; 
repeat 
u n t i l c [ j ] O h " . s t a t e [ j ] ; 
nfound:=j<compactlengthplusl; 
i f nfound then h:=h'~ .hcnext; 

end; 
end; 

procedure ADDSTATEtoHASHTABLE(var y:Store); 
var 

kk:hashnumber; 
i : i n t e g e r l 6 ; 
nh:pothc; 
c:Compact; 

begin 
{ i f (tadd mod 000)=0 then writeln(memavail,' ',tadd,' ' , t c o l l ) ; } 
tadd:=tadd+l; 
COMPACTOR(y,c); 
kk:=KEY(c); 
new(hh); 
i f hashstore[kk]=nil then 
begin 

hashstoreCkk]:=hh; 
hh~.hcnext:=nil; 

end else begin 
t c o l l : = t c o l l + l ; 
hh".hcnext:=hashstore[kk]; 
hashstore[kk]:=hh; 

end; 
with hh" do 
begin 

state:=c; 
value:=20; { i n i t i a l value f o r policy improvement V_0} 
f o r j : = l to NoPairs do P o l i c y [ j ] : = f a l s e ; 
f o r j : = l to NoLinks do approx[j]:=0; 

end; 
end; 
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B.2.2 Value Determination Step 

The following procedure performs the value determination step of the policy im

provement by calculating the optimal value function for the state examined; this 

procedure is recursively called for all the possible states of the state-space. It also 

calculates the Average Reward by carrying 2-link traffic in the particular state ex

amined. 

procedure COST(XLOCAL:Store; p:pothc; Count 1:integer16; Fl:Spare); 
var 

i,which,Count2,find,multi,numero:integerl6; 
Xpoint:pothc; 
Old,AvCostNeighbour,AveRew2:double; 
Neighbour,AbsApprox,pprox: Sub; begin 

PI 
P2 
P3 

Count2:=0; P1:=0; P2:=0; P3:=0; XX:=0; 
Xpoint:=p; 
Old:=Xpoint".value; 
AvCostHoine:=0; AveRew2:=0; 
F1:=F1; 
{ i f BETTER=0 then begin 

ACCEPT(Fl,Xpoint); 
end;} 
f o r i : = l to NoPairs do 
begin 

i f X p oint".Policy[i] then Count2:=Count2+l; 
end; 

=XLOCAL[1]+XLOCAL[2]+XLOCAL[3]+XLOCAL[4]+XLOCAL[5]+XLOCAL[6]; 
=NoLinks*Cap; 
= (NoLinks-Countl)*Nl+(NoPairs-Count2)*(N2/(NoLinks-l)); 

XX:=(P2+P3-P1); 
XX:=XX*(l/Rate)*01d; 
AveRew2:=Rew2*N2*(Count2/RR); 
f:= 1-(a/Rate)*(P1+P2-P3); 
which:=1; 

f o r i : = l to NoLinks do begin 
Neighbour[i]:=0; AbsApprox[i]:=0; 

end; 

f o r i : = l t o NoAllPos do {investigates a l l the possible t r a n s i t i o n s } 
begin {from state XLOCAL} 

i f XLOCAL[i]<Cap then 
begin 

XLOCAL[i]:=XLOCAL[i]+l; 
FINDSTATE(XLOCAL,p); 
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XLDCAL [i]:=XLOCAL[i]-1; 
i f ( p O n i l ) then 
begin 

AvCostNeighbour:=p".value; 
i f ( L i n k s [ i , l ] = L i n k s [ i , 2 ] ) then { l - l i n k a r r i v a l s } 
begin 

AvCostHome:=AvCostHome+a*RelRatel*AvCostNeighbour; 
Neighbour[which]:=AvCostNeighbour; 
which:=which+l; 

end else begin 
f i n d : = i - L i n k s [ i , l ] ; { 2 - l i n k a r r i v a l s } 
i f Xpoint~.Policy[find] then 
AvCostHome:=AvCostHome+a*RelRate2*AvCostNeighbour; 

end; { i f } 
end else begin 

i f ( L i n k s [ i , l ] = L i n k s [ i , 2 ] ) then begin 
Neighbour [which]:=0; 
which:=which+l; 

end; { i f (Links} 
end; { i f p O n i l } 

end else begin 
i f ( L i n k s [ i , l ] = L i n k s [ i , 2 ] ) then begin 

Neighbour[which]:=0; 
which:=which+l; end; { i f L i n l } 

end; { i f XLOC} 
i f XLOCAL[i]>0 then {Possible departures} 
begin 

XLOCAL[i]:=XLOCAL[i]-l; 
FINDSTATE(XLOCAL,p); 
XLDCAL[i]:=XLOCAL[i] +1; 
i f ( p O n i l ) then begin 

AvCostNeighbour:=p".value; 
AvCostHome:=AvCostHome+a*XLOCAL[i]*AvCostNeighbour/Rate; 

end; 
end; { i f } 

end; { f o r } 

{**The o p t i m a l i t y Equation under Succesive Over-Relaxation (SOR)**} 
AvCostHome: = (1-omega)*01d+(omega/f)*(AveRewl+AveRew2+AvCostHome); 

Dif:=AvCostHome-01d; 
AbsDif:=abs(Dif); 

f o r i : = l to NoLinks do begin 
i f Neighbour [i]<>0 then begin 

pprox[i]:=Neighbour[i]-AvCostHome; 
AbsApprox[i]:=abs(pprox[i]); 
Xpoint'.approx[i]:=AbsApprox[i] ; 

end else begin 
AbsApprox[i]:=0; 
Xpoint".approx[i]:=0; 

end; { i f } 
end; { f o r } 

162 



numero:=0; m u l t i : = l ; 
f o r i:=NoLinks downto 1 do begin 

numero:=numero+multi*Fl[i]; 
multi:=multi*10; 

end; 
{Xpoint ~ . d i f e r : = D i f ; } 
Xpoint".freecirc:=numero; 
Xpoint".value:=AvCostHome; 
i f AbsDif>BigDif then BigDif:=AbsDif; 
01d:=0; 

end; 

procedure COMMON(var Fl:Spare; F:Spare; 
Current,Linkl,Link2:integer16; 
var j : i n t e g e r l 6 ) ; 

var 
Test:boolean; 

begin 
F l [ L i n k l ] : = F [ L i n k l ] - X [ C u r r e n t ] ; 
i f (Linkl<>Link2) then Fl[Link2]:=F[Link2]-X[Current]; 
Test:=false; j:=NoAllPos+l; 
repeat 
begin 

j : = j - i ; 
Test:=(F1[Links[j,1]]>0) and ( F l [ L i n k s [ j , 2 ] ] > 0 ) ; 

end; 
u n t i l (Test) or (j=Current); 

end; 

procedure COMMONHEAD(var Linkl,Link2,Countl,Limit:integerl6; 
Current:integerl6; var Fl:Spare;F:Spare); 

begin 
Linkl:=Links[Current,1] ; 
Link2:=Links[Current,2] ; 
X[Current]:=0; 
Count 1:=0; 
i f F[Linkl]>=F[Link2] then Limit:=F[Link2] 

else L i m i t : = F [ L i n k l ] ; 
F1:=F; 

end; 
{******************************************************** 
procedure MAKESTATE(F:Spare; Current:integerl6); 
var 

Limit,i,j,Count1,Linkl,Link2:integerl6; 
Fl:Spare; 

begin 
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COMMONHEAD(Linkl,Link2,Count 1,Limit,Current,Fl,F); 
repeat 

COMMON(F1,F,Current,Linkl,Link2,j); 
i f (j=Current) then 
begin 

Count 1:=0; 
f o r i: = l to NoLinks do i f F l [ i ] > 0 then Count 1:=Count1+1; 
f o r j:=Current+l to NoAllPos do X[j]:=0; 
while (X[Current]<=Limit) do 
begin 

i f (X[Current]=Limit) and (Count1>0) and (Linkl=Link2) 
then Count1:=Count1-1; {computeValueFncts} 

ADDSTATEtoHASHTABLE(X); 
X[Current]:=X[Current]+1; 
i f X[Current]<=Limit then 
begin 

i f F l [ L i n k l ] > 0 then F l [ L i n k l ] : = F 1 [ L i n k l ] - 1 ; 
i f (Linkl<>Link2) and (Fl[Link2]>0) then 

Fl[Link2]:=F1[Link2]-1; 
end; 

end; {while} 
end else begin { i f } 

MAKESTATE(Fl,Current+l); 
X[Current]:=X[Current]+1; 

end; { i f } 

u n t i l (X[Current]>Limit); {repeat} 
end; 

B.2.3 Policy Improvement 

The following two procedures perform the policy improvemnt step. In changing the 

policy: 

(a) In procedure IMPROVE it works out all the policy actions when we are on a 

particular state 

(b) For each action calculates a value and remembers which action does 'best'. At 

the end and in procedure STATUS. 
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Note the termination criterion i f BigDif >ee in the main program. 

procedure IMPROVE(Ypoint:pothc; CurrentPair:integerl6; 
Z:double; N:Extra; 
var Action,BestAction:Pair; 
var BigSum:real); 

var 
w,i,No:integer16; Y,Sum,AvCostNeighbour:double; p:pothc; 

begin 
w:=0; 

repeat 
begin 

Action[CurrentPair]:=false; 
i f w=l then Action[CurrentPair]:=true; 
i f w=0 then 
begin 

AvCostHome:=Ypoint".value; 
Y:=Z+RelRate2*AvCostHome; 

end else begin 
X[Ind[CurrentPair]]:=X[Ind[CurrentPair]]+1; 
FINDSTATE(X,p); 
X[Ind[CurrentPair]]:=X[Ind[CurrentPair]]-1; 
i f p O n i l then begin 

AvCostNeighbour:=p".value; 
Y:=Z+RelRate2*AvCostNeighbour; 

end else begin Y:=Z; end; 
end; { i f } 

i f CurrentPair<NoPairs then 
begin 

IMPROVE(Ypoint,CurrentPair+1,Y,N,Act ion,BestAct ion,BigSum); 
end else begin 

No:=0; 
f o r i : = l to NoPairs do 
begin 

i f A c t i o n [ i ] then No:=No+l; 
end; 
Sum:=Rew2*N2*No/RR+a*Y; 
i f Sum>BigSum then 
begin 

BigSum:=Sum; 
BestAction:=Action; 

end; 
end; { i f } 

end; {begin} 
w:=w+l; 

u n t i l w>N[CurrentPair]; 
end; 

procedure STATUS(Fl:Spare; var p:pothc); 
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var 
w , l l ,12,CurrentPair:integerlS; Output:boolean; 
Action,BestAction:Pair; N:Extra; BigSum,Y,Sum:double; 
Ypoint:pothc; 

begin 
f o r w:=l to NoPairs do 
begin 

Action[w]:=false; 
BestAction[w]:=false; 
N[w] :=0: 
kl:=Ind[w]; 
l l : = L i n k s [ k l , l ] ; 12:=Links[kl,2]; 
i f (F1[11]>0) and (Fl[12]>0) then N[w] :=N[w]+l; 

end; 
CurrentPair:=l; Y:=0; Sum:=0; BigSum:=0; 
Ypoint:=p; 
IMPROVE(Ypo int,CurrentPair,Y,N,Action,BestAction,BigSum); 
Output:=false; 
f o r w:=l to NoPairs do 
begin 

i f p".Policy[w]<>BestAction[w] then 
begin 

p~.Policy [w]:=BestAction[w] ; 
Folic ' " icyTest:=false; 

end; 
i f ITER1>=1 then} 

i f (not BestAction[w]) and (N[w]=l) then 
begin 

Output:=true; 
writeln(File3,w); 

end; 
end; 
i f Output then begin 

w r i t e l n ( F i l e 3 , 'X =' ,X[1] ,X[2] .X[3] ,X[4] ,X[5] ,X[6]); 
writeln(File3,'F=',F1[1],F1[2],F1[3]); 

end; 
end; 

procedure FINDAVCOST(F:Spare; Current:integerl6); 
var 

Limit,i,j,Count1,Linkl,Link2:integer16; 
Fl:Spare; p:pothc; 

begin 
COMMONHEAD(Linkl,Link2,Count1.Limit,Current,Fl,F); 

repeat 
COMMON(F1,F,Current,Linkl,Link2,j); 
i f (j=Current) then 
begin 

Count 1:=0; 
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f o r i : = l to NoLinks do i f F l [ i ] > 0 then Count 1:=Count1+1; 
f o r j:=Current+l to NoAllPos do X[j]:=0; 
while (X[Current]<=Limit) do 
begin 

i f (X[Current]=Limit) and (Countl>0) and (Linkl=Link2) 
then Countl:=Countl-l; 

FINDSTATE(X,p); 
i f p O n i l then 
begin 

AveRewl:=Rewl*Nl*(Countl/Rate); 
COST(X,p,Countl,Fl); 

end else begin 
writeln('ERRor-NIL POINTER'); 

end; 
X[Current]:=X[Current]+1; 
i f X[Current]<=Limit then 
begin 

L i n k l 
:Link2; 

i f F l [ L i n k l ] > 0 then Fl 
i f (Linkl<>Link2) and (F l l 

Fl[Link2]:=F1[Link2]-1; 
end; 

:=F1[Linkl]-1; 
>0) then 

end; {while} 
end else begin { i f } 

FINDAVCOST(Fl,Current+l); 
X[Current]:=X[Current]+1; 

end; { i f } 
u n t i l (X[Current]>Limit); {repeat} 
end; 

procedure USEAVCOST(F:Spare; Current:integer16); 
var 

Limit,j,Countl,Linkl,Link2:integerl6; 
Fl:Spare; p:pothc; 

begin 
COMMONHEAD(Linkl,Link2,Count 1,Limit,Current,Fl,F); 

repeat 
COMMON(F1,F,Current,Linkl,Link2,j); 
i f (j=Current) then 
begin 

f o r j:=Current+l to NoAllPos do X[j]:=0; 
while (X[Current]<=Limit) do 
begin 

FINDSTATE(X,p); 
i f p O n i l then STATUS (Fl ,p); 
X[Current]:=X [Current]+1; 
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i f X[Current]<=Limit then 
begin 

i f F l [ L i n k l ] > 0 then F l [ L i n k l ] : = F 1 [ L i n k l ] - 1 ; 
i f (Linkl<>Link2) and (Fl[Link2]>0) then 

Fl[Link2]:=F1[Link2]-1; 
end; 

end; {while} 
end else begin { i f } 

USEAVCOST(Fl,Current+l); 
X[Current]:=X[Current]+1; 

end; { i f } 
u n t i l (X[Current]>Limit); {repeat} 
end; 

{ MAIN PROGRAM } 

begin 

repeat 

Nl:=0.5 
Rewl:=2 
stop:=l 

N2:=4.9; { a r r i v a l rates f o r 1 and 2-link t r a f i c } 
Rew2:=l; {rewards f o r 1 and 2-link t r a f f i c } 

open(File3,'File3.txt','unknown'); 
r e w r i t e ( F i l e 3 ) ; 

Rate:=(Nl+N2/2+Cap)*NoLinks; {The rates of events} 

RelRatel:=Nl/Rate; 
RelRate2:=N2/((NoLinks-1)*Rate) ; 
RR:=Rate*(NoLinks-l); 
Parl:=Nl/N2; 
Par2:=Nl+(N2/2); 

rrr:=1/Rate; 
a:=exp(rrr*ln(discount)); {the alpha"(1/Rate)} 
w r i t e l n ( F i l e 3 , ' a is=',a); 
ITER1:=0; BETTER:=0; 
INITHASHStoRE; 
t c o l l : = 0 ; tadd:=0; 
f o r i : = l to NoLinks do f o r j : = i to NoLinks do 
begin 

kl:=i*(2*NoLinks-i+l); k2:=(kl div 2); 
k:=k2-(NoLinks-j); L i n k s [ k , l ] : = i ; 
L i n k s [ k , 2 ] : = j ; k3:=k-i; 
i f i o j then Ind[k3] :=k; 

end; 
f o r i : = l t o NoLinks do F[i]:=Cap; 
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repeat 

Counter:=0; Current:=1; 
MAKESTATE(F,Current); 

writeln(File3,'NoLinks',NoLinks); 
w r i t e l n ( F i l e 3 , ' Capacity',Cap); 
writeln(Files,'ArrivalRates f o r 1 and 2 l i n k C a l l s =',N1,N2); 
writeln(File3,'Rewards Rewl, Rew2=',Rewl,Rew2); 
writeln(File3,'ee =',ee); 
write l n ( F i l e 3 , ' n l / n 2 =',Parl,',','nl+n2/2 =',Par2); 
writeln(File3,'hasmaxin' ,hashmaxin); 
writeln(File3,'There w e r e ' , t c o l l : 1 , ' c o l l i s i o n s ' ) ; 
w r i t e l n ( F i l e 3 , ' A l l t o l d i n ',tadd:1,'entrances'); 
{CLEARHASHStoRE;} 
ITER1:=0; BETTER:=0; ITER3:=0; 

BigDif:=0; Count:=0; ITER2:=0; 

{ * * * * * s t a r t i n g value determination f o r every state*****} 

while (ITER2=0) do 
begin 

f o r i : = l to NoLinks do F[i]:=Cap 
f o r w:=l to NoAllPos do X[w]:=0 
Current:=1; BigDif:=0 
FINDAVCOST(F,Current); 
Count:=Count+l; 
i f BigDif>ee then 
begin 

BigDif:=0; 
end else begin 

ITER2:=ITER2+1, 
h:=hashstore[0] ; 
writeln(File3,'AvCost[0]=',h".value); 

end: { i f } 
end; {while} 

- [ * * * * * * * * * * s t a r t i n g policy improvement******************} 

PolicyTest:=true; {BETTER:=1;} 
f o r i : = l t o NoLinks do F[i]:=Cap; 
f o r i : = l to NoAllPos do X[i]:=0; 
Current:=1; 
USEAVCOST(F,Current); 
ITER1:=ITER1+1; 

u n t i l (ITER1>4) or (PolicyTest); 

{end of p o l i c y improvement} 
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{Calculate the Admission Price Policy w's} 

B.2.4 Calculating the Q Policy 

Search f o r states with part. Fl's **************} 

f o r i:=0 to hashmaxin do 
begin 

i f h a s h s t o r e [ i ] O n i l then begin {through a l l the possible states} 
temp:=hashstore [ i ] ; 
r e petition:=0; 
repeat 
Circ:=temp~.freecirc; {keep track of t h e i r number of free c i r c u i t s } 

i f Circ=013 then begin 
Three:=Three+temp".approx[3]; 
One:=One+temp".approx[2] ; 
Onecount:=Onecount+l; 
Threecount:=Threecount+l; end; 

i f Circ=033 then begin 
Three:=Three+temp".approx[3]; 
Three:=Three+temp".approx[2] ; 
Threecount:=Threecount+l; 
Threecount:=Threecount+l; end; 

i f Circ=023 then begin 
Two:=Two+temp".approx[2] ; 
Three:=Three+temp".approx[3]; 
Twocount:=Twocount+l; 
Threecount:=Threecount+l; end; 

i f Circ=011 then begin 
One:=One+temp".approx[2]; 
One:=One+temp".approx[3] ; 
Onecount:=Onecount+l; 
Onecount:=Onecount+l; end; 

i f Circ=010 then begin 
One:=One+temp".approx[2]; 
Onecount:=Onecount+l; end; 

i f Circ=022 then begin 
Two:=Two+temp~.approx[3]; 
Two:=Two+temp".approx[2] ; 
Twocount:=Twocount+l; 
Twocount:=Twocount+l; end; 

i f Circ=021 then begin 
Two:=Two+temp".approx[2]; 
One:=One+temp".approx[3] ; 
Onecount:=Onecount+l; 
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Twocount:=Twocount+l; end; 
i f Circ= 030 then begin 

Three:=Three+temp~.approx[2] ; 
Threecount:=Threecount+l; end; 

i f Circ= 012 then begin 
One:=One+temp".approx[2] 
Two:=Two+temp".approx[3] 
Onecount:=Onecount+l; 
Twocount:=Twocount+l; 

i f Circ=020 then begin 
Two:=Two+temp~.approx[2] 
Twocount:=Twocount+l; 

end; 

end; 
i f Circ= 003 then begin 

Three:=Three+temp".approx[3] ; 
Threecount:=Threecount+l; end; 

{check i f there was a c o l l i s i o n } 
t emp:=t emp".hcnext; 

u n t i l (temp=nil); 
end; { i f } 

end; { f o r } 

Wl 
W2 
W3 

=One/Onecount; 
=Two/Twocount; 
=Three/Threecount; 

{calculates the w's} 

writeln(File3,'Ws =',W1,',',W2); 
writeln(File3,W3); 

{*********************************************************************} 
stop:=stop+l; {repeat f o r d i f f e r e n t a r r i v a l rates} 

i f (stop=2) then begin 
i f (stop=3) then begin 
i f (stop=4) then begin 
i f (stop=5) then begin 

Nl =0. 7; N2 =4.5; Rewl =2; Rew2:=l; end; 
Nl =1; N2 =3.9; Rewl =2; Rew2:=l; end; 
Nl = 1. 3; N2 =3.3; Rewl =2; Rew2:=l; end; 
Nl = 1. 5; N2 =2.9; Rewl =2; Rew2:=l; end; 

Nl =0. 5; N2 =6; Rewl =2; Rew2:=l; end; 

Nl =2; N2 = 16; Rewl =2; Rew2:=l; end; 
u n t i l (stop>36); 
end. 
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B.3 The Reduced State-Space Model 

The following program contains the policy improvement for a reduced state-space 

network as presented in Chapter 5. 

progreim SPLITimprovement(input,output,Split43); 
{ 2 - l i n k c a l l s s p l i t t i n g model; Calculates the r e l a t i v e values w } 
const 

NoLinks = 4; 
Cap = 3; 
NoPairs = 6 ; {the number K(K-l)/2} 
Nostates = 256 ; 
ee= lE-6; 
discount= 0.8; 

type 
C i r c u i t s = 0..Cap; 
NoPostates = array [0..Cap,0..Cap,0..Cap,0..Cap] of r e a l ; 
Strategy = array [0..Cap,0..Cap,0..Cap,0..Cap,1..6] of integerl6; 
Sub = array [1..NoLinks] of r e a l ; 
Spare = array [1..NoLinks] of C i r c u i t s ; 
pothc = record 

f r e e c i r c : integerl6; 
approx: Sub 

end; 

var 
Split43: t e x t ; 
PolicyTest: boolean; 
Policy,CheckPolicy: Strategy; 
AvCost,AveRewl,AveRew: NoPostates; 
state: array [0..Cap,0..Cap,0..Cap,0..Cap] of pothc; 
X, Y,Z,U,1,Count,BiglTER,Count 1,Count2,w: integer16; 
ITER,i,j,k,Rewl,Rew2,stop,which,I5pass: integer16; 
multi,numero,Circ: integerl6; 
XI, X2,X3,X4,X5,X6,X7,RelRatel,RelRate2,Yl,Y2,Y3,Y4,Y5,Y6: r e a l ; 
Dif,AbsDif,Num,Sum,BigSum,AveRew2,X8,X9,X10,Xll,a: r e a l ; 
Rate,PI,P2,P3,P4,XX,RR,Costs,BigDif,Old,N1,N2,rrr: r e a l ; 
Neighbour, AbsApprox, pprox: Sub; 
F l : Spare; 
status: pothc; 
OneSum,TwoSum,ThreeSum: r e a l ; 
OneCount,TwoCount,ThreeCount,wl,w2,w3: r e a l ; 
Il,I2,I3,I4,I5,I6,Ilpass,I2pass,I3pass,I4pass: integerl6; 
Postl,Post2,Post3,Post4,Posts,Post6,I6pass: integer16; 

{************************************************** 
begin 
open(Split43,'Split43.txt','unknown'); 
r e w r i t e ( S p l i t 4 3 ) ; 
Rewl:=2; Rew2:=l; 
Nl:=0.5; N2:=4.9; 
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stop:= 1; 
repeat 
Rate:=(Nl+N2/2+Cap)*NoLinks; 

{ f o r various pairs of Nl and N2} 
{calculate the rates of events} 

rrr:=1/Rate; 
a:=exp(rrr*ln(discount)); 
w r i t e l n ( S p l i t 4 3 , ' a is=',a); 
w r i t e l n ( S p l i t 4 3 , ' a r r i v a l s are=',N1,',',N2); 
RelRatel:=Nl/Rate; 
RelRate2:=N2/((NoLinks-l)*Rate); 
RR:=Rate*(NoLinks-l); 

{ i n i t i a l i z e the arrays} 
= 0 to Cap do 
= 0 to Cap do 
= 0 to Cap do 
= 0 to Cap do 

f o r i : 
f o r i : 
f o r k: 
f o r 1: 
begin 

AveRew[i,j,k,l]:= 0; 
AveRewl[i,j,k,l]:= 0; 
f o r w:=l to NoPairs do P o l i c y [ i , j , k , l , w ] : = 0 ; 
A v C o s t [ i , j , k , l ] : = 20; 

end; 

=0 to Cap do 
=0 to Cap do 
=0 to Cap do 
=0 to Cap do 

f o r X:=0 to Cap do {calculates the AveRewl f o r single t r a f f i c } 
f o r Y: - -
f o r Z: 
f o r U: 
begin 

Countl:=0; 
i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then 
begin 

i f (X<Cap) then Countl:=Count1+1; 
i f (Y<Cap) then Countl:=Count1+1; 
i f (Z<Cap) then Countl:=Countl+l; 
i f (U<Cap) then Countl:=Count1+1; 

end; 
AveRewl[X,Y,Z,U]:=Rewl*Nl*(Countl/Rate); 

end; 

BigITER:=0; 

repeat {including the improvments} 
BigDif:=0; ITER:=0; Count:=0; 

B.3.1 Value Determination Step 

repeat { j u s t the finavCost routines} 
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Count:=Count+l; 
f o r X:=0 to Cap do 
f o r Y:=0 to Cap do 
f o r Z:=0 to Cap do 
f o r U:=0 to Cap do 
begin 

i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then 
begin 

Count1:=0; 
status:= state[X,Y,Z,U] ; 
i f (X<Cap) then Count 1:=Count1+1; 
i f (Y<Cap) then Count 1:=Count1+1; 
i f (Z<Cap) then Count1:=Count1+1; 
i f (U<Cap) then Count 1:=Count1+1; 
F l [ l ] 
F l [ 2 ] 
F l [ 3 ] 
F l [ 4 ] 

Cap 
Cap 
Cap 
Cap 

01d:= AvCost[X,Y,Z,U]; 
AvCost [X,Y,Z,U]:= 0; 
Count2:=0; 
which:= 1; 
f o r j : = l to NoLinks do 
begin 

Neighbour[j]:=0; 
AbsApprox[j]:=0; 

end; 

X1:=0; X2:=0; X3:=0; X4:=0; X5:=0; X6:=0; 
X7:=0; X8:=0; X9:=0; X10:=0; X11:=0; 
i f (X<Cap) then 
begin 

XI:= a*RelRatel*AvCost[X+l,Y,Z,U]; 
Neighbour[which]:= AvCost[X+1,Y,Z,U]; 
which:= which + 1; 
i f (Y<Cap) then begin 
X2:= a*RelRate2*Policy[X,Y,Z,U,l]*AvCost[X+l,Y+l,Z,U] ; 

end; 
i f (Z<Cap) then begin 
X3:= a*RelRat e2*Poli cy[X,Y,Z,U,2]*AvCo st[X+1,Y,Z+1,U]; 

end; 
i f (U<Cap) then begin 
X4:= a*RelRate2*Policy[X,Y,Z,U,3]*AvCost[X+l,Y,Z,U+l]; 

end; 
end else begin 

Neighbour[which]:= 0; 
which:= which+1; 

end; 

i f (Y<Cap) then 
begin 

X5:= a*RelRatel*AvCost[X,Y+l,Z,U] ; 
Neighbour[which]:= AvCost[X,Y+1,Z,U]; 
which:= which + 1; 
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i f (Z<Cap) then begin 
X6:= a*RelRate2*Policy[X,Y,Z,U,4]*AvCost[X,Y+l,Z+l,U] ; 

end; 
i f (U<Cap) then begin 

X7:= a*RelRate2*Policy[X,Y,Z,U,5]*AvCost[X,Y+1,Z,U+1]; 
end; 

end else begin 
Neighbour[which]:= 0; 
which:= which+1; 

end; 

i f (Z<Cap) then 
begin 

X8:= a*RelRatel*AvCost[X,Y,Z+l,U]; 
Neighbour[which]:= AvCost[X,Y,Z+1,U]; 
which:= which + 1; 
i f (U<Cap) then begin 

X9:= a*RelRate2*Policy[X,Y,Z,U,6]*AvCost[X,Y,Z+l,U+l] ; 
end; 

end else begin 
Neighbour[which]:= 0; 
which:= which+1; 

end; 

i f (U<Cap) then 
begin 

X10:= a*RelRatel*AvCost[X,Y,Z,U+l]; 
Neighbour[which]:= AvCost[X,Y,Z,U+1]; 
which:= which + 1; 

end else begin 
Neighbour [which]:= 0; 
which:= which+1; 

end; 

X l l : = X*AvCost[X-l,Y,Z,U] + Y*AvCost[X,Y-1,Z,U] + Z*AvCost[X,Y,Z-1,U]; 
X l l : = X l l + U*AvCost[X,Y,Z,U-l]; 
X l l : = a*(Xll/Rate); 
Count2:= Policy[X,Y,Z,U,l] + Policy[X,Y,Z,U,2] + Policy[X,Y,Z,U,3]; 
Count2:= Count2 + Policy [X,Y,Z,U,4] + Policy[X,Y,Z,U,5]; 
Count2:= Count2 + Policy[X,Y,Z,U,6]; 
PI 
P2 
P3 
XX 
XX 

= X+Y+Z+U; 
= NoLinks*Cap; 
= (NoLinks-Countl)*Nl+(NoPairs-Count2)*(N2/(NoLinks-l)) ; 
= (P3+P2-P1); 
= XX*(l/Rate)*01d; 

AveRew2:= Rew2*N2*(Count2/RR); 

Costs:= XI + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + XIO + X l l + a*XX; 
AvCost[X,Y,Z,U]:= AveRewl[X,Y,Z,U] + AveRew2 + Costs; 

Dif:= AvCost[X,Y,Z,U] - Old; 
AbsDif:= abs(Dif); 
01d:= 0; 

i f AbsDif>BigDif then BigDif:=AbsDif; 

f o r j := 1 to NoLinks do 
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begin 
i f Neighbour[j]<>0 then 
begin 

pproxCj]:= NeighbourCj] - AvCost [X,Y,Z,U]; 
AbsApproxCj]:= abs(pprox [ j ] ) ; 
s t a t e [ X ,Y,Z,U].approx[j]:= AbsApprox[j]; 

end e l s e 
begin 
AbsApproxLj]:= 0; 
state[X,Y,Z,U] .approxCj] := 0; 

end; 
end; 

numero:= 0; mult i : = 1; 
f o r j : = NoLinks downto 1 do begin 

numero:= numero + m u l t i * F l [ j ] ; 
m u l t i : = m u l t i * 1 0 ; 

end; 
s t a t e [ X , Y , Z , U ] . f r e e c i r c : = numero; 

end; end; 

i f BigDif>ee then 
begin 

B i g D i f : = 0 ; 
end e l s e begin 

ITER:=ITER+1; 
w r i t e l n ( S p l i t 4 3 , ' A v C o s t [ 0 ] = ' , A v C o s t [ 0 , 0 , 0 , 0 ] ) ; 
{ w r i t e l n ( S p l i t 4 3 , ' C o u n t is='.Count);} 
{ w r i t e l n ( S p l i t 4 3 , ' e e i s = \ e e ) ; } 
B i g D i f : = 0 ; 

end; 

u n t i l (ITER>0); 

B.3.2 Policy Improvement 

Policy-Test := t r u e ; 
BigSum:= 0; 

=0 t o Cap do 
=0 t o Cap do 
=0 t o Cap do 
=0 t o Cap do 

f o r i 
f o r j 
f o r k 
f o r 1 
begin 
C h e c k P o l i c y [ i , j , k , l , l ] 
C h e c k P o l i c y C i , j , k , l , 2 ] 
C h e c k P o l i c y L i , j , k , l , 3 ] 
C h e c k P o l i c y [ i , j , k , l , 4 ] 
C h e c k P o l i c y L i , j , k , l , 5 ] 
C h e c k P o l i c y L i , j , k , l , 6 ] 

end; 

=0 
=0 
=0 
=0 
=0 
=0 
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f o r X 
f o r Y 
f o r Z 
f o r U 

=0 t o Cap do 
=0 t o Cap do 
=0 t o Cap do 
=0 t o Cap do begin 

i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then begin 
l l p a s s : = 0 ; I2pass:=0; I3pass:=0; 
I4pass:=0; I5pass:=0; I6pass:=0; 
i f (X<Cap) and (Y<Cap) then I l p a s s : = l 
i f (X<Cap) and (Z<Cap) then I2pass:=l 
i f (X<Cap) and (U<Cap) then I3pass:=l 
i f (Y<Cap) and (Z<Cap) then I4pass:=l 
i f (Y<Cap) and (U<Cap) then I5pass:=l 
i f (Z<Cap) and (U<Cap) then I6pass:=l 

BigSum 
f o r 11 
f o r 12 
f o r 13: 
f o r 14: 
f o r 15: 
f o r 16: 

Y l : 
Y2: 
Y3: 
Y4: 
Y5: 
Y6: 

=0; 
=0 t o I l p a s s do 
=0 t o I2pass do 
=0 t o I3pass do 
=0 t o I4pass do 
=0 t o I5pass do 
=0 t o I6pass do begin 
=RelRate2 
=RelRate2 
=RelRate2 
=RelRate2 
=RelRate2 
=RelRate2 

*Il*AvCost 
*I2*AvCost 
*I3*AvCost 
*I4*AvCost 
*I5*AvCost 
*I6*AvCost 

[X+1,Y+1,Z,U: 
•x+i,Y,z+i,u: 
•X+l,Y,Z,U+i: 
•x,Y+i,z+i,u: 
•X,Y+l,Z,U+i: 
"X,Y,Z+1,U+1' 

Nuin:= Y1+Y2+Y3+Y4+Y5+Y6; 
Num:= Num + (MoPairs-Il-I2-I3-I4-I5-I6)*AvCost[X,Y,Z,U]*RelRate2; 

AveRew2:= Rew2*M2*(I1+I2+I3+I4+I5+I6)/RR; 
Sum:= AveRew2 + a*Num; 

{ f i n d the maximum sum} 
i f Sum>BigSum then 
begin 

BigSum:= Sum; 
P o s t l : = I l 
Post2:=I2; 
Post3:=I3; 
Post4:=I4; 
Post5:=I5; 
Post6:=I6; 

end; 
end; { f o r l o o p } 

CheckPolicyCX,Y,Z,U,l] 
CheckPolicyCX,Y,Z,U,2] 
CheckPolicy[X,Y,Z,U,3] 
CheckPolicy[X,Y,Z,U,4] 
CheckPolicy[X,Y,Z,U,5] 
CheckPolicy[X,Y,Z,U,6] 

P o s t l 
Post2 
Post3 
Post4 
Posts 
Posts 

f o r w:= 1 t o NoPairs do 
begin 
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i f CheckPolicy[X,Y,Z,U,w]<>PolicyLX,Y,Z,U,w] then 
begin 

Policy[X,Y,Z,U,w]:= CheckPolicyLX,Y,Z,U,w]; 
PolicyTest:= f a l s e ; 

end; 
end; 

end; end; 

BigITER:=BigITER+l; 

u n t i l (BigITER>4) or ( P o l i c y T e s t ) ; 

{end of improvement} 
OneSum:=0; TwoSum:=0; ThreeSum:=0; 
OneCount:=0; TwoCount:=0; ThreeCount:=0; 

f o r X 
f o r Y 
f o r Z 
f o r U 

=0 t o Cap do 
=0 t o Cap do 
=0 t o Cap do 
=0 t o Cap do begin 

i f (X<=Cap) and (Y<=Cap) and (Z<=Cap) and (U<=Cap) then begin 

{ t h r o u g h a l l t h e p o s s i b l e s t a t e s } 
s t a t u s : = state[X,Y,Z,U]; 
C i r c : = s t a t u s . f r e e c i r c ; {keep t r a c k of t h e i r F's} 

i f Circ=0013 then begin 
OneSum:= OneSum+stateLX,Y,Z,U].approxC3] ; 
OneCount:= OneCount+1; 
ThreeSum:= ThreeSum+stateLX,Y,Z,U].approx[4]; 
ThreeCount:= ThreeCount+1; 

end; 

i f Circ=0020 then begin 
TwoSum:= TwoSum+stateLX,Y,Z,U].approx[3]; 
TwoCount:= TwoCount+1; 

end; 
end; end; { f o r } 
Wl:= OneSum/OneCount; W2: = TwoSum/TwoCount; 
W3:= ThreeSum/ThreeCount; 
w r i t e l n ( S p l i t 4 3 , W l , ' ,' ,\]2,' ,' ,W3); 
stop:= stop + 1; 

i f (stop=2) then begin Nl:=0.7; N2:=4.5; end; 

u n t i l (stop>30); 
end. 
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B . 4 Employ ing the fl Policy 

The following sample contains procedures as well as part of the main program which 
is used to employ the fl policy calculated from programs similar to those in Appendix 
B.2 as the admission rule on accepting or rejecting 2-link calls. 

program vague35readwValues(input, o u t p u t , F i l e 3 5 w ) ; 
{3-5 case; w's read from vague35.pas, s t o r e d i n F i l e 3 5 ; 
read t h e w values and f i n d t h e w-optimal V_w(0)} 

const 
NoLinks=3; Cap=5; 
ee=lE-6; 
hashmaxin=5531; 
NoAllPos=6; NoPairs=3; 
compactlength=3; 
{ b y t e s needed f o r compact storage= 3*NoAllpos/8 rounded up} 
compactlengthplusl=4; 
discount=0.8; 

t y p e 
byte = 0..255; 
C i r c u i t s = O..Cap; 
Capnumb=0..Cap; 
Spare = array[1..NoLinks] of C i r c u i t s ; 
Walues = array[Capnumb] of r e a l ; 
L i n k = arrayCl..NoAllPos,!..2] of 1..NoLinks; 
Store = array[1..NoAllPos] of byte; 
A l l = l . . N o A l l P o s ; 
E x t r a = a r r a y [1..NoPairs] of i n t e g e r l 6 ; 
Index=array [1..NoPairs] of A l l ; 
Compact=array[1..compactlengthplusl] of by t e ; 
hashnumber=0..hashmaxin; 
p o t h c = " c o l l i s i o n l i s t ; 
c o l l i s i o n l i s t = r e c o r d 

v a l u e : r e a l ; 
state:Compact; 
hcnext:pothc; 

end; 

procedure COMPACTOR 
procedure CLEARHASHSTORE 
procedure KEY 
procedure FINDSTATE 
procedure ADDSTATEtoHASHSTABLE.. 
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procedure COST(XLOCAL:store; p:pothc; Count 1 : i n t e g e r l 6 ; Fl:Spare); 
var 

begin 

i,kl,11,12,Count2:integer16; 
Old,AvCostNeighbour,AveRew2:real; 

Xpoint:pothc; 

Count2:=0; P1:=0; P2:=0; P3:=0; XX:=0; 
Xpoint:=p; 
Old:=Xpoint".value; 
AvCostHome:=0; AveRew2:=0; 
F1:=F1; 
f o r i : = l t o MoPairs do 
begin 

k l : = I n d L i ] ; 
l l : = L i n k s [ k l , l ] ; 1 2:=LinksLkl,2]; 
i f WLFlLll]]+WLFlLl2]]<=Rew2 then Count2:=Count2+l; 

end; 

f o r i : = l t o NoAllPos do 
begin 

i f XLOCALLi]<Cap then 
begin 

XLOCAL Li]:=XLOCAL L i ] + 1; 
FINDSTATE(XLOCAL,p); 
XLOCAL [i]:=XLOCAL L i ] - 1 ; 
i f ( p O n i l ) then 
begin 

AvCostNeighbour:=p~.value; 
i f ( L i n k s L i , l ] = L i n k s L i , 2 ] ) then 
begin 

AvCostHome:=AvCostHome+a*RelRatel*AvCostNeighbour; 
end else begin 

1 1 : = L i n k s L i , l ] ; {employing t h e Omega p o l i c y } 
1 2 : = L i n k s L i . 2 ] • 
i f WLFlLll]J+WLFlLl2]]<=Rew2 then 

AvCostHome:=AvCostHome+a*RelRate2*AvCostNeighbour; 
end; { i f ( L i n } 

end; { i f p O n i l } 
end; { i f XLOCAL} 

procedure COMMONHEAD(var L i n k l , L i n k 2 , C o u n t l , L i m i t : i n t e g e r l S ; 
C u r r e n t : i n t e g e r l S ; var Fl:Spare;F:Spare); 

procedure MAKESTATE(F:Spare; C u r r e n t : i n t e g e r l S ) ; 

{ • 

begin 

-MAIN PROGRAM-

Nl:=0.5; N2:=4.9; Rewl:=2; Rew2:=l; 
stop:=25; WLO]:=99999; 

:=0.5699; W 
3]:=0.2307; W 

2]:=0.2766; 
' :=0.1566; 
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repeat 

W[5]:=0.1321; 
open(File35w,'File35w.txt','unknown'); 
r e w r i t e ( F i l e 3 5 w ) ; 

Rate:=(Nl+N2/2+Cap)*NoLinks; 

i f (stop=28) then begin 
Nl:=1.3; N2 

:=0.7249 
=0.1891 

i f (stop=29) then begin 

=5.4; 
W[2]:=0.3673; W[3]:=0.3055; W[4]:=0.2203; 
end; 

Nl:=1.6; N2 
=0.7776 
:=0.1850 

=4. 

i f (stop=30) then begin 
W[2]:=0.3927; W[3]:=0.3030; W [4]:=0.2193; 
end; 

Nl:=2; N2 
W[l]:=0.8508 
W[5]:=0.1811 

=4; 
W[2]:=0.4403; W[3]:=0.3174; W[4]:=0.2262; 
end; 

u n t i l (stop>30); 
end. 
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B . 5 W h a t Happens as ~ 2Ri 

In this section we present parts of an un-finished program in which after the optimal 

policy onrejecting 2-link calls, we examine policy improvement by rejecting 1-link 

calls in order to maximise the TEDR; see also in §3.4. Most parts of the following 

program are included in program in Appendix B.2. 

procedure IMPROVER(Ypoint: pothc; CurrentSingle: i n t e g e r l 6 ; 
Z: double; N: Extra; 
var Actionb,BestActionb: T r a f f i c ; 
var BigSumb: double); 

var 
w,i,No: i n t e g e r l 6 ; Y,Sumb,AvCostNeighbour: double; p: pothc; 

begin 

w:=0; 
repeat 
begin 

A c t i o n b L C u r r e n t S i n g l e ] : = f a l s e ; 
i f w=l then A c t i o n b [ C u r r e n t S i n g l e ] : = t r u e ; 
i f w=0 then 
begin 

AvCostHome:=Ypoint".value; 
Y:=Z+RelRatel*AvCostHome; 

end else begin 
X [ I n d [ C u r r e n t S i n g l e ] ] : = X [ I n d [ C u r r e n t S i n g l e ] ] + 1 ; 
FINDSTATE(X,p); 
X [ I n d [ C u r r e n t S i n g l e ] ] : = X [ I n d [ C u r r e n t S i n g l e ] ] - 1 ; 
i f p O n i l then begin 

AvCostNeighbour:=p'~ .value; 
Y:=Z+RelRatel*AvCostNeighbour; 

end else begin Y:=Z; end; 
end; { i f } 

i f CurrentSingle<NoLinks then 
begin 

IMPROVER(Ypoint,CurrentSingle+1,Y,N,Act ionb,BestAct ionb,BigSumt 
end else begin 

No:=0; 
f o r i : = l t o NoLinks do 
begin 

i f A c t i o n b [ i ] then No:=No+l; 
end; 
Sumb:=Rewl*Nl*(No/Rate)+a*Y; 
i f Sumb>BigSumb then 
begin 

BigSumb:=Sumb; 
BestActionb:=Actionb; 

end; 
end; { i f } 

end; { b e g i n } 
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w:=w+l; 
u n t i l w>NLCurrentSingle]; 

end; 

procedure STATUSB(F1:Spare; var p:pothc); 
var 

w. Cu r r e n t S i n g l e : i n t e g e r l 6 ; Output: boolean; 
Actionb,BestActionb: T r a f f i c ; 
N: E x t r a ; 
BigSumb,Y,Sumb: double; Ypoint: pothc; 

begin 
f o r w:=l t o NoLinks do 
begin 

ActionbLw]:=false; 
BestActionbLw]:=false; 
N L W ] :=0; 
i f (FlLw]>0) then NLw] := N L W ] + 1 ; 

end; 
C u r r e n t S i n g l e : = l ; Y:=0; Sumb:=0; BigSumb:=0; 
Ypoint:=p; 
IMPROVER(Ypoint,CurrentSingle,Y,N,Actionb,BestActionb,BigSumb); 

Output:=false; 
f o r w:=l t o NoLinks do 
begin 

i f p".SingleLw]<>BestActionbLw] then 
begin 

3 ~ . S i n g l e Lw]:=BestActionb Lw]; 
P o l i c y S i n g l e : = f a l s e ; 

end; 
i f ITER1>=1 then 

i f (not BestActionbLw]) and ( N L W ] = 1 ) then 
begin 

Output:=true; 
writeln(change,'oops change=',w); 

end; 
end; 

i f Output then begin 
writeln(change,'CHANGING the OPTIMAL POLICY'); 
w r i t e l n ( c h a n g e , 'Xb =' ,XLl] ,XL2] ,XL3] ,XL4] ,XL5] ,XL6]) ; 
writeln(change,'Fb=',F1Ll],F1L2],F1L3]); 
w r i t e l n ( c h a n g e , ' ' ) ; 

end; 

{ I n t h e main program} 
RejectXY:=0; 

P o l i c y T e s t : = t r u e ; 
f o r i : = l t o NoLinks do FLi]:=Cap; 
f o r i : = l t o NoAllPos do XLi]:=0; 
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Current:=1; 
USEAVCOST(F,Current); ITERl:=ITER1+1; 
writeln(change,'No States XY was o p t i m a l l y rejected=',RejectXY); 

u n t i l (ITER1>4) or ( P o l i c y T e s t ) ; 
writeln(change,'Check i f t h e r e i s a change i n Optimal P o l i c y ' ) ; 

ITERb:=0; 
repeat 

P o l i c y S i n g l e : = t r u e ; 
f o r i : = l t o NoLinks do F[i]:=Cap; 
f o r i : = l t o NoAllPos do X [ i ] : = 0 ; 
Current:=1; 
USEAVC0ST2(F,Current); 
ITERb:=ITERb+l; ITER2:=0; 
Big D i f : = 0 ; Count:=0; ITER2:=0; 
w h i l e (ITER2=0) do 
begin 

f o r i : = l t o NoLinks do F[i]:=Cap 
f o r w:=l t o NoAllPos do X[w]:=0 
Current:=1; BigDif:=0 
FINDAVC0ST2(F,Current); 
Count:=Count+l; 
i f BigDif>ee then 
begin 

BigDif:=0; 
end else begin 

ITER2:=ITER2+1-
h:=hashstore[0] ; 
writeln(change,'Changing r e j e c t i o n of S i n g l e ' ) ; 
writeln(change,'AvCost[0]bb = ', h". v a l u e ) ; 

end; { i f } 
end; { w h i l e } 

u n t i l (ITERb>3) or ( P o l i c y S i n g l e ) ; 
r e p e t i t i o n : = r e p e t i t i o n + l ; Rewl:=1; 

i f ( r e p e t i t i o n = 2 ) then begin Rew2:=1.9; end; 
i f ( r e p e t i t i o n = 3 ) then begin Rew2:=2; end; 
i f ( r e p e t i t i o n = 4 ) then begin Rew2:=2.3; end; 

u n t i l ( r e p e t i t i o n > 4 ) ; 
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