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Abstract 

We derive and analyse two families of multistep collocation methods for periodic 

initial-value problems of the form 

y" = f{x, y); y{xo) = yo, y'{xo) = ZQ 

involving ordinary differential equations of second order i n which the first derivative 

does not appear explicitly. 

A survey of recent results and proposed numerical methods is given in chapter 

2. Chapter 3 is devoted to the analysis of a family of implic i t Chebyshev methods 

proposed by Panovsky & Richardson. We show that for each non-negative integer 

r , there are two methods of order 2r f rom this family which possess non-vanishing 

intervals of periodicity. The equivalence of these methods wi th one-step collocation 

methods is also established, and these methods are shown to be neither P-stable nor 

symplectic. 

In chapters 4 and 5, two families of multistep collocation methods are derived, 

and their order and stability properties are investigated. A detailed analysis of the 

two-step symmetric methods f r o m each class is also given. The multistep Runge-

Kut ta -Nys t rom methods of chapter 4 are found to be difficult to analyse, and the 

specific examples considered are found to perform poorly in the areas of both accuracy 

and stability. By contrast, the two-step symmetric hybrid methods of chapter 5 are 

shown to have excellent stability properties, in particular we show that all two-step 

2A'^-point methods of this type possess non-vanishing intervals of periodicity, and we 



give conditions under which these methods are almost P-stable. P-stable and efficient 

methods f r o m this family are obtained and demonstrated in numerical experiments. 

A simple, cheap and effective error estimator for these methods is also given. 
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Chapter 1 

Introduction 

I n recent years there has been considerable interest in direct methods for the numerical 

solution of initial-value problems of the fo rm 

y" = f{x,y); y{xo)=yo, y\xo) = ZQ (1.1) 

involving ordinary differential equations of second order in which the first derivative 

does not appear explicitly. In this thesis we are concerned wi th problems of the form 

(1.1) whose solutions are oscillatory in nature. Such problems arise in a wide variety 

of physical applications including celestial mechanics and quantum scattering. 

A survey of the numerical methods now available to solve problems of the fo rm 

(1.1) can be found in chapter 2, along wi th a discussion of some of the concepts, such 

as periodicity, which have been introduced in order to give a deeper understanding 

of the behaviour of numerical solutions generated by these methods. 

Chapter 3 is devoted to the analysis of a family of implic i t Chebyshev methods 

for (1.1) proposed by Panovsky & Richardson [53]. In the first half of that chapter 

we show that these methods may be wri t ten as two-step hybrid methods, and we go 

on to derive results regarding their order and stability properties. In particular we 

show that for each non-negative integer r , there are two methods of order 2r f rom 

this f ami ly which possess non-vanishing intervals of periodicity. In the second half 



of the chapter, the equivalence of the Panovsky-Richardson and one-step collocation 

methods is established. W i t h the aid of this equivalence we are able to show that 

these methods are neither P-stable nor symplectic. 

Aspects of one-step collocation methods for (1.1) have recently been investigated 

by a number of authors. In particular, Coleman [22] has shown that none of these 

methods is P-Stable. In an attempt to overcome this problem we have derived two 

new classes of multistep collocation methods for (1.1). 

The methods f r o m the first of these classes are natural generalisations of the 

collocation-based Runge-Kutta-Nystrom methods. Each of these methods is based on 

a polynomial which interpolates to y and y' at the previous step-points {xn_k+i, • • •, Xn} 

{k >2) and which satisfies the differential equation under consideration at the points 

{xn+ci}iLi contained wi th in [xn-k+i,Xn+i]. The analysis of these methods turns out 

to be particularly complex in all but the simplest cases, and so in order to derive 

some meaningful results we concentrate on the two-step methods whose nodes are 

symmetrically distributed in the interval [a:„_i, a r„+i] . Examples of specific methods 

and numerical results comparing them wi th the Panovsky-Richardson methods are 

also given. 

Methods f r o m the second class differ f r o m those mentioned above in that they, like 

the hybr id methods and the differential equations wi th which we are concerned here, 

contain no explicit derivative information. The construction of these methods is seen 

to be considerably simpler than that for the previous methods, as are the conditions 

under which these methods are defined. The lack of explicit derivative information 

does present some difficulties when investigating the order of these methods, and 

consequently we are forced to resort to arguments based on Taylor analysis. The 

most attractive feature of these methods is their stability properties. In particular 

we show that, for the examples considered, the conditions under which a two-step 

2A''-point method f r o m this family is almost P-stable are far less restrictive than 

those necessary to guarantee that a similar method f rom the previous class has a 

non-vanishing interval of periodicity. A simple and inexpensive local truncation error 



estimator is also given, and its effectiveness is demonstrated for a number of test 

problems. Examples of P-stable methods and a sixth order method wi th order of 

dispersion eight are also given. 



Chapter 2 

The story so far 

Recent years have seen a considerable increase in the number of authors researching 

into numerical methods for in i t ia l value problems of the fo rm 

y" = f{x,y); yi^o) = 2/0, y'{xo] = 20, ( 2 . 1 ) 

involving second order differential equations in which the first derivative does not ap­

pear explicitly, and in particular, those problems (2 .1) whose solutions are oscillatory 

in nature. I n this chapter we give a brief account of the methods available and of the 

concepts, such as periodicity, which have been introduced in order to give us a deeper 

understanding of the behaviour of numerical solutions produced by these methods. 

I n section 2.1 we look at the oldest of the classes of methods considered here, the 

linear multistep methods. Section 2.2 is concerned wi th one-step methods, including 

collocation methods. Finally, in section 2.3, we look at the newest class of methods, 

the hybr id methods, which combine features of the methods discussed in the previous 

sections. 
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2.1 Linear multistep methods 

In this section we look at linear multistep methods for (2.1). We begin by looking at 

how such methods may be derived, and then move on to considerations of accuracy, 

stability, periodicity and dispersion. 

Let Xr = XQ + r / i , for h > 0 and r 6 R , and let yr and Zr denote numerical 

approximations to the exact solution of the differential equation under consideration, 

and its derivative, at the point Xr- A linear A;-step method for (2.1) is a method of 

the f o r m 
k k 

Y,OC.yn+i = h'Y.P,Ui (2.2) 
2=0 2 = 0 

where fr = f{xr,yr)- Throughout this section we w i l l assume that the numbers 

{cti,/9j}-Lo satisfy the conditions 

k 
ak = 1; |ao| + \Po\ > 0 and ^ | A | > 0, (2.3) 

i=o 

which simply ensure that the method (2.2) does not degenerate. 

A common procedure for deriving linear multistep methods (2.2) has as its starting 

point the identi ty 

y{x + 6 ) - y{x) = 6y'{x) + + 6 - T)y"{T)dT. (2.4) 
Jx 

The first derivative term can be made to vanish by combining this formula wi th the 

formula obtained by replacing ^ by —6, giving 

y{x + 8 ) - 2yix) + y{x -6)= /'^% + 6 - r ) (y" (T) + y"{2x - T))dT. (2.5) 
Jx 

Individual methods are now obtained by replacing y" in the above integral by a 

polynomial interpolating to y" at previous step points, and by choosing x and 8 

appropriately. A notable example of methods derived in this way is the family of 

Stormer-Cowell methods (see Henrici [38] p291), which takes its name f rom the work 
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of Stormer i n 1907 and Cowell & Crommelin in 1910. These methods have remained 
popular and have been used successfully in a wide range of appHcations for a great 
many years. For example, w i th A; = 2 we obtain the expHcit method 

and the impl ic i t method 

- 22/„ + 2/„_x = + 10/„ + (2.6) 

which is at t r ibuted to Numerov. 

Other linear multistep methods have been derived by choosing the numbers {a^, -LQ 

so as to satisfy certain order and stability conditions. 

2.1.1 Order and stability 

Following Henrici [38] p295, we associate wi th each method of the fo rm (2.2) the 

linear functional 

k k 

i=0 i=0 

This functional can act on any function y{x) which possesses a second derivative, but 

in what follows we w i l l assume that y{x) w i l l be as differentiable as we please. By 

expanding the terms y{x + ih) and y"{x + ih) as Taylor series about the point x we 

may wri te 

C[y{x), h] = Coy{x) + C^y'ix) + C2y"{x) + ... + Cry^'\x) + ... (2.8) 

where the Cr are constants. 
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Defini t ion 2.1 A linear multistep method (2.2) is said to he of order p i f , for all 

sufficiently differentiable functions y{x), we have 

C[y{x)M = 0{h^^^) 

The method is said to he consistent if it has order at least L 

W i t h each linear multistep method (2.2) we associate the polynomials p{£^) and 

cr(^) defined as follows: 

K O = E « . r , (̂0 = E A r - ( 2 . 9 ) 
t=0 t=0 

For the methods considered in this section i t w i l l be assumed that p{0 and a{0 have 

no common factors. In what follows we shall refer to (2.2) as the method (/9, cr). We 

may now write the conditions for the method (/?, a) to be consistent in terms of these 

polynomials, giving 

^(1) = p'{i) = 0 and p"{l) = 2(7(1) (2.10) 

We w i l l assume that all methods considered in this section satisfy these conditions 

and so are consistent. The roots of p{() we denote by ^ i , for i = 1,...,A;, where 

6 = '̂ 2 = 1 are called the principal roots, and iov i = 3,... ,k are called spurious 

roots. 

Def in i t ion 2.2 The method (/9, cr) is said to be zero stable if all roots of p{() lie in 

the unit disc {z G C: \z\ < 1}, and any roots that lie on the unit circle {z ^ C: \z\ = 

1} have multiplicity at most 2. 

I t can be shown (e.g. Henrici [38] pp300-303) that consistency and zero stability 

are necessary and sufficient conditions for the method (/9, cr) to be convergent. Since 

we have 2k + 2 parameters in the method (/>, cr) we might hope that its order could 

be raised to 2k. However this is not possible i f in addition we require the method to 
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be zero stable. The maximum order of a zero stable fc-step method turns out to be 
A; + 2 i f A; is even, and k + 1 i f A; is odd. Henrici [38] p311 gives examples of optimal 
order methods w i t h k = 2,4 and 6. 

When the method (/?, a) is applied to the scalar linear test equation 

(2.11) 

we obtain the recurrence relation 

k 

^ ( a , + u'l3,)yn+i - 0, 
i=0 

where i/ = uh, whose characteristic equation is 

^ ( ^ , i^') = /^ (O + ^ M O = 0. (2.12) 

This polynomial 7r(^, v^) has roots for z = 1 , . . . , k, which are perturbations of the 

roots (i of p((). 

Defini t ion 2.3 A linear multistep method (p, cr) is said to be absolutely stable for 

— if all roots of Tr{(,v'^) lie in the unit disc, and any roots that lie on the unit 

circle have multiplicity no greater than 2. A method is said to have an interval of 

absolute stabil ity (0,/3^) if it is absolutely stable for each € (0,/?^). If a method 

is absolutely stable for all positive values of then it is said to be unconditionally 

stable (Dahlquist [26]). 

The investigation of the stability properties of a method can be simphfied wi th 

the aid of the Routh-Hurwitz transformation (Lambert [45] p80) 

1 — z 

which maps the unit disc onto the half-plane Re z < 0, and the unit circle onto 

the imaginary axis. Applying this transformation to equation (2.12) and mult iplying 
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throughout by (1 — z)'^ we obtain the polynomial equation 

aoz'' + arz''-^ + •.. + ak-iz + = 0. (2.13) 

Then, for example, w i t h k = 2, the necessary and sufficient conditions for the roots 

of (2.12) to have modulus less than 1, i.e. for the roots of (2.13) to have negative real 

parts, are that ao, a i and 02 be positive. 

2.1,2 Periodicity and dispersion 

Consider the scalar test equation (2.11). W i t h x interpreted as time, this equation 

represents mot ion in a circular orbit in the complex plane. I f Numerov's method 

is applied to this problem w i t h a sufficiently small steplength, then the computed 

numerical solution stays on the orbit , though i t does suffer an error in phase. How­

ever i f a Stormer-Cowell method wi th k > 2 is used, then the numerical solution 

spirals inwards. Stiefel & Bettis [58] call these phenomena orbital stability and orbital 

instability respectively. 

The investigation of these phenomena was continued by Lambert & Watson [46 . 

In that paper they introduce the notions of periodicity and P-stabihty, and give 

necessary and sufficient conditions under which a method {p,cr) is periodic for u 

sufficiently small. The following definitions and results are taken f r o m that paper. 

,2 

Def in i t ion 2.4 The method {p, a) is said to have an interval of periodicity (0, /?^) 

if for all e {0,/3^), the roots r,- o/7r(^,z/2) g^tisfy 

= e'^M, r2 = e-''^-\ \r,\ < 1, for i ^ 3,... ,k 

T h e o r e m 2.1 Let the method (/O, cr) have a non-empty interval of periodicity. Then 

(/?, cr) is a symmetric method, i.e. 

ai = ak-i and = I3k-i, fori = 0,...,k 
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I n particular, this means that the Stormer-Cowell methods wi th k > 2 possess no 

ntervals of periodicity, since they are not symmetric. 

T h e o r e m 2.2 Let the method {p,cr) be symmetric, and let p{^) have no double roots 

on the unit circle other than the principal roots and ^2- Then {p^a) has a non-

vanishing interval of periodicity. 

Defini t ion 2.5 A method (p^a) is said to be P-stable if its interval of periodicity 

is (0, co). 

T h e o r e m 2.3 Let (p, cr) be a P-stable method. Then (i) (p,cr) is implicit, (ii) all 

roots of cr[^) lie on the unit circle, and (Hi) the order of {p,a) is at most 2. 

Dahlquist [26] fur ther showed that the order of an unconditionally stable method 

cannot exceed 2. 

Lambert & Watson [46] give examples of methods of orders up to 8 which possess 

non-empty intervals of periodicity, higher order methods were derived by Quinlan &; 

Tremaine [54]. Jeltsch [42] uses the growth parameters pi = 2a{^i)/^'-p"{(i) associated 

w i t h each root of 7r({, /^^) of modulus 1 to provide a complete characterisation of linear 

multistep methods w i t h an a non-empty interval of periodicity. 

Def in i t ion 2.6 (van der Houwen & Sommeijer [65]) Assuming that the principal 

roots of 7r (^ , v'^) are of the form 

= a{u)e'^^''^and ^ = a{iy)e-'^^'^ 

with a.,6 > 0, then the quantities 

1 — a{u) and \0{v) — u 

are respectively called the dissipation error and phase error. A linear multistep 

method is said to have order of dispersion q if \0{i') — I'l = (9(z/'"^^) as —> 0. 
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(Note: we have altered the original definition of the phase error in order to make 
it consistent with the rest of this thesis.) 

Observe that i f the method (p, cr) is periodic then i t has zero dissipation error. 

Van der Houwen & Sommeijer [65] have constructed predictor-corrector methods of 

algebraic orders 4 and 6, and orders of dispersion of up to 10, which possess non-empty 

intervals of periodicity. 

2.1.3 Rounding error 

Henrici [38] p327 shows that convergent linear multistep methods for (2.1) are more 

sensitive to the build-up of rounding errors than the corresponding methods for first 

order equations. The main reason for this is that for very small h, the double root 

^1,2 = 1 of p causes the recurrence relation (2.2) to become unstable. To overcome 

this diff iculty, Henrici presents an alternative formulation of (2.2) which he called the 

summed form, obtained, as its name suggests, by summing (2.2) for n = 0 , 1 , . . . , A'̂ . 

The resulting method then takes the fo rm of a one-step method, and the problem of 

the double root at 1 is removed. Hairer et al. [35] p425 discuss a further reformulation 

of (2.1) which proceeds by factorising the polynomial p(Q in order to separate the 

roots at 1. For example, the method 

yn+l - 2yn + yn-l = h'^ fn 

can be reformulated as 

Wn+l = Wn + hfn 

Vn+l = yn + hWn+1 

We shall return to the subject of rounding error in section 3.10. 
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2.2 One-step methods 

The most important class of one-step methods is that of the Runge-Kutta-Nystrom 

methods. As in the previous section we begin by showing how these methods were first 

derived, and by defining the concepts of order and stability. W i t h these definitions 

under our belt we give a brief account of the way in which research into these methods 

has progressed over the years. Section 2.2.4 is concerned wi th the one-step collocation 

methods, which are a sub-class of the imphcit Runge-Kutta-Nystrom methods. 

2.2.1 The first Runge-Kutta-Nystrom methods 

The first R K N methods were derived wi th the purpose of reducing the computational 

costs involved in numerically solving the general second order differential equation 

y" = f i x , y, y'y, y{xo) = yo, y'{xo) = ZQ (2.14) 

by attacking i t directly, rather than first splitt ing i t into a higher dimensional system 

of coupled first order differential equations and then applying a conventional Runge-

K u t t a or linear multistep method. 

To begin w i t h we suppose that (2.14) has been split into the pair of coupled first 

order equations 

y 

\ I , f{x,y,z) j 

y{xo) = yo 

z{xo) = ZQ. 

(2.15) 

I f we now apply a Runge-Kutta method to this problem we obtain 

Ki = Zn + h'^a^jLj 
3 

Li = f{xn + Ci / i , yn + h ^ aijKh Zn-VhY^ aijLj) 
i 3 

y-a+i = y-a + hY^hjKj 
3 

Zn+1 = Zn + h ^ b j L j 
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By inserting the first of these formulae into the others we can eliminate the /v,- quan­
tities to get 

Li = f{xn + Cih,yn + Cihzn-i- h'^Y^aijLj,Zn-\-J2"'i3^3) 
J j 

Vn+i = yn + hz„ - I - h'^Ylh^j (2-16) 
i 

Zn+i = Zn-\-hJ2bjLj 
i 

where the constants Uij and bj are given by 

aij = "^aikttkj, bj = ^bkakj. (2-17) 
k k 

I n 1925, Nystrom proposed the first methods of the form (2.16) whose coefficients 

violated conditions (2.17), which we now know as Runge-Kutta-Nystrom methods. He 

claimed that his methods were more efficient f rom a computational point of view than 

' the' Runge-Kutta method (see Hairer et al. [35], p l37) , though this does not appear 

to be the case. However his methods do have the advantage of a 25%-50% saving 

in storage requirements over the Runge-Kutta methods applied to the corresponding 

first order system. 

Where Nystrom's methods do lead to a very real decrease in computational costs 

is i n the special case when the function / in (2.14) does not depend on y', which is of 

particular interest to us in this thesis. In this case we may write the R K N method as 

Vn+Ci = yn + CihZn + ^ Aj /n+cy , (2.18) 
j 

Vn+l — y-n + hZr, + h'J2bjfn+c, (2.19) 
j 

2„+X = z^ + hY,d,fn+c, (2.20) 
i 

Nystrom's methods were explicit, but in the same way as for Runge-Kutta methods 

we can define impl ic i t methods (the matr ix B = {Bij) is f u l l ) , diagonally impl ic i t 



2.2. ONE-STEP METHODS 14 

methods (the mat r ix B is lower triangular), etc. In this section we w i l l assume that 
(2.18)-(2.20) is a f u l l y imphcit method wi th m stages, so that all the summations in 
those formulae should run f rom 1 to m . 

2.2,2 Order, stability and dispersion 

The following definition is taken f rom Hairer et al. [35] p261: 

Defini t ion 2.7 A Runge-Kutta-Nystrom method (2.18)-(2.20) is said to have (al­

gebraic) order p i f , given that y(xn) = y-n. and y'(xn) = Zn, the numerical solution 

{yn+i,Zn+i) satisfies 

y{xn+i)~yn+i = Oih^^') 

y'{Xn+l) - Zn+l = 0{h^^') 

for y sufficiently smooth. 

As w i t h Runge-Kutta methods, i t is possible to identify the order conditions for 

explicit methods w i t h relatively few stages using a bare-hands Taylor series approach, 

however this approach is unsuitable for most methods due to the complexity and 

number of the computations involved. A far more elegant approach has been derived 

by Hairer and Wanner [36], which is an extension of Butcher's tree-based approach 

used for Runge-Kutta methods (see e.g. Hairer et al. [35] ppl42-153). Using this 

approach, numerous explicit methods of order 8 have been derived, and Hairer [34 

has derived an explicit R K N method of order 10 which requires 35% fewer function 

evaluations per step than Runge-Kutta methods of the same order. In addition, a 

number of embedded methods have been derived of orders as high as 11(10) (see 

e.g. F i l i p i & Graf [29]). We w i l l see later that in the case of collocation-based R K N 

methods the order conditions can be identified by considering a simple interpolatory 

quadrature problem. 

The stabil i ty of a Runge-Kutta-Nystrom method is investigated by applying i t to 

the standard scalar test problem (2.11). Once again setting v = uh and applying the 
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R K N method (2.18)-(2.20) to (2.11) we obtain 

y„+i = A{u')y^, (2.21) 

where y„ = (y„, h z ^ f , 

I 1 _ y'^^{i + z /2^)-ie 1 - v''^(\ + v'^BY^c \ 

- / / M ^ ( l - f z/25)-ie 1 - j / M ^ ( l + z/25)-ic ^ 

T T T T 

b = ( 6 i , . . . , 6 „ ) , d = ( ( i i , . . . , d „ ) , c = ( c i , . . . , c „ ) and e = ( 1 , . . . , 1 ) . Let \\{v'^) 

and A2(i^^) be the eigenvalues of A(i /^) w i th |A i ( j / ^ ) | > |A2(i^^)|, then we adopt the 

following definitions. 

Defini t ion 2.8 A Runge-Kutta-Nystrom method (2.18)-(2.20) is said to be abso­

lute ly stable for = VQ if the eigenvalues A i ( fo ) and A2(fo) closed unit 

disc {z e G : \z\ < 1}, and Ai(i /^) / A2(z/o) «/ |Ai(!^o)l = 1- The RKN method is 

said to have an interval of absolute stability (0,/?^) if it is absolutely stable for 

all G (0,/?^); and is said to be unconditionally stable if it is absolutely stable 

for all > 0. 

Defini t ion 2.9 A Runge-Kutta-Nystrom method (2.18)-(2.20) is said to be periodic 

forv^ — UQ if the eigenvalues Ai(j/o) and X2{i'o) lie on the unit circle {z G C : |z| = 1}, 

and Ai(j^o) ^2(I^O)- The RKN method is said to have an interval of periodicity 

(0,/?^) if it is periodic for all G (0,^^)^ and is said to be P-stable if it is periodic 

for all j / ^ > 0. 

For brevity we w i l l suppress the argument of A in what follows. Employing the 

Routh-Hurwitz criterion once again we can obtain stabiHty conditions in terms of 

the trace and determinant of the matr ix A. The R K N method (2.18)-(2.20) wi l l be 

absolutely stable for u'^ = i f 

jdet A\ < 1 and \tr{A)\ < |1 + det A\, 
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and periodic for = i f 

d e t A = l and \tr{A)\ < 2. 

Several authors have investigated the stability properties of explicit and diagonally 

impl ic i t methods w i t h relatively few stages, (see e.g. Chawla & Sharma [19] and 

Sharp et al. [56]). W i t h the problem of solving large systems of semi-discretised 

hyperbolic equations in mind, van der Houwen [63] has derived a number of methods 

w i t h extended stability intervals obtained by restricting their order to 1 or 2 and 

then using the remaining free parameters to improve the stability properties of the 

methods. Chawla [12] shows that the maximum length of the periodicity interval for 

these methods is bounded above by 4m^ and that this bound can only be attained 

i f the method has order no greater than 2. Jain et al [40] investigates implici t R K N 

methods and has succeeded in deriving a family of P-stable formulae based on Lobatto 

quadrature. 

Van der Houwen & Sommeijer [66] define the phase error or dispersion of a Runge-

Kut ta -Nys t rom method to be 

\ 
^''^^^ ^ (2.22) 

V2det A, 

assuming A has complex conjugate eigenvalues for sufficiently small v'^. Order of 

dispersion is then defined as follows. 

Def in i t ion 2.10 A Runge-Kutta-Nystrom method (2.18)-(2.20) is said to have or­

der of dispersion q if the quantity <j){v) given by (2.22) satisfies (f){u) — (9(/i'+^) as 

0. 

Expl ic i t and diagonally implici t Runge-Kutta-Nystrom methods whose order of 

dispersion is higher than their algebraic order have been discussed by Chawla & Rao 

18], Sharp et al. [56] and by van der Houwen & Sommeijer [64] and [66]. In particular, 

van der Houwen h Sommeijer [66] have derived diagonally implici t methods wi th a 
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relatively low algebraic order (2 or 3) but w i th orders of dispersion as high as 10. Their 
numerical experiments show that for linear oscillation problems the higher order of 
dispersion can be a considerable advantage, however for non-linear problems and large 
stepsizes this advantage may be lost. 

2.2.3 Symplecticness 

A Hamil tonian system w i t h A*" degrees of freedom is a system of ordinary differential 

equations of the f o r m 

dpi OH doi dH 

where the Hamil tonian H = H{pi,... ,p;v, 9 i , • • •, IN) is a sufficiently differentiable 

real-valued funct ion. The flow of this system, (l>t,Hi is a transformation of the phase 

space such that 

( p , q ) = (^t,H(po,qo) 

is the solution at t ime t given that p(0) = po and q(0) = qo- For each value of t, <^t^H 

is a symplectic transformation. This means that for any bounded two-dimensional 

surface S in phase space, the sum of the two-dimensional areas of the A'̂  projections 

of S onto the planes {pi, qi) is the same as the sum of the areas of the N projections 

of (j)t^H{S) onto those planes. In particular when N = 1, (j)t^jj is area-preserving. 

A one-step numerical method defines a transformation ij)t,H such that 

( p - + l , q - + l ) = ^ , ^ ( p " , q " ) . 

A symplectic method is one for which ij^t^H is a symplectic transformation for all 

Hamiltonians H and all steplengths h. According to Channell & Scovel [8] the first 

symplectic methods were discovered in 1956 by De Vogalaere in a series of unpubhshed 

reports, however i t was not un t i l 1983 that the first work involving these methods 

was published. To begin wi th , symplectic methods were derived using generating 
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functions, but more recent work has shown that there are symplectic Runge-Kutta and 
Runge-Kutta-Nystrom methods. In particular Sanz-Serna [55] has shown that there 
exist no exphcit symplectic RK methods, but that those based on Gauss-Legendre 
quadrature are symplectic. 

The autonomous second order system 

may be rewrit ten as 

I f f is the gradient of a scalar function —V then this is a Hamiltonian system wi th 

the Hamil tonian 

f f ( p , q ) = i p ^ p + F ( q ) . 

A Runge-Kutta-Nystrom method (2.18)-(2.20) is symplectic i f the following condi­

tions, a t t r ibuted to Suris (see Suris [59] or Okunbor & Skeel [52]), are satisfied: 

hi — (1 — Ci)di, for z = 1 , . . . , m 

dj{h, - Bji) = d^{bj - Bij), for z , i = 1 , . . . , m 

Calvo & Sanz-Serna [4] found that these conditions led to a simplification of the order 

conditions for such methods. Explicit symplectic R K N methods exist and have been 

investigated in several papers by Calvo, Sanz-Serna, Okunbor & Skeel and others. 

Calvo & Sanz-Serna [5] have shown that for Kepler's two-body problem their four th 

order symplectic methods are more efficient than the standard variable-stepsize codes, 

this is pr imar i ly due to the fact that the global error exhibits a linear dependence on 

the number of orbits in the case of their methods, while for the standard methods this 

dependence is quadratic. Encouraged by these results they implemented a variable-

stepsize symplectic method in the hope of combining the advantages of symplecticness 

and stepsize control, however they found that this was not possible, and that their 
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new method was less efficient than its fixed stepsize counterparts. 

2.2.4 Collocation methods 

I n the same way as for first order systems, a collocation method for (2.1) proceeds by 

approximating the solution on the interval [x„,a;„+i] by a polynomial which satisfies 

the difl^erential equation at a number of specified points contained within that interval. 

Let { c , } ^ i be a set of distinct real numbers wi th 0 < Ci < C2 < . . . < < 1, then 

an m-point one-step collocation method for (2.1) is defined as follows: find u G "Pm+i 

such that 

uiXn) = yn 

u'{Xn) = Zn 

u"{xn -t- Cih) = f{xn -\- c,h, u{xn + Cih)) for z = 1 , . . . , m 

then take u{xn-^i) and u'{xn+\) as approximations to t/(a;„+i) and 2(x„+i) respectively. 

The th i rd of the above conditions may be satisfied by a polynomial of the fo rm 

i = i 

where lj{x) is the j * ^ fundamental Lagrange basis function based on the collocation 

nodes {xn+ajTLi: and where we have set yn+a = uixn+a), for z = 1 , . . . , m . Integrat­

ing this twice and using the remaining conditions we obtain 

U{x) = u{Xn) + { X - Xn)u'{Xn) + fn+ci / / lj{o)dadT. 

Using this, and changing variable to 5 = (x - a;„)//i, we may rewrite our collocation 

method as an impHcit Runge-Kutta-Nystrom method of the form (2.18)-(2.20) wi th 

the coefficients of the method given by 

Bij = I [Ci - T)lj{T)dT, 
Jo 
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k = l\^-r)h{r)di 
Jo 

^3 = / 
Jo 

for z , j = l , . . . , m . 

By construction, an m-point one-step collocation method has order at least m . 

However, by choosing the collocation nodes {Xn+c,}iLi appropriately, i t is possible to 

increase the order to as much as 2m (superconvergence at the step-points). Using a 

modified version of the Grobner-Alekseev formula i t can be shown that the method 

w i l l have order m - f r i f 

r-' [[{T — Xn+ci)dT = 0, for i = 0 , . . . , r 
i=i 

(see e.g. van der Houwen et al. [68]). 

The polynomial u"(x)-\-uj'^u{x) on the interval Xn+i] has degree at most m-\-l, 

and has simple zeros at the collocation nodes {a^n+di^ i - Hence we can write 

m 

u"{x) = -i.0^u(x) -t- R{x) U^X - Xn+c) 
i=l 

where R(x) is a polynomial of degree at most 1. Kramarz [44] uses this expression 

to derive a simpler method of constructing the matrix A for any one-step collocation 

method than that given in section 2.2.2. He further shows that the method must 

be symmetric (i.e. the collocation nodes must be distributed symmetrically in the 

interval [xn, a^n+i]) in order for i t to possess a non-empty interval of periodicity. Van 

der Houwen et al. [67], [68] analyse the attainable order and stability properties of 

both direct (see above) and indirect (collocation-based Runge-Kutta methods applied 

to the equivalent first order system) collocation methods for (2.1). They show that 

while direct methods can have higher stage orders than indirect methods, their stabil­

i t y properties are not as good. Kramarz and van der Houwen et al. were unsuccessful 

in deriving P-stable collocation methods, and both pose the question of whether such 
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methods do exist. The answer to this question was provided by Coleman [22] who 
showed that there do not exist any P-stable one-step collocation methods. In an 
attempt to improve the stabiUty properties of their methods, van der Houwen et al. 
67], [68] introduce a stabihsation technique based on preconditioning, and, using this 

technique, they succeed in deriving a number of P-stable and A-stable formulae. 

By considering collocation over the interval [a;„+/;_i,a;„+i] (k > 2), Norsett and 

Lie [50], [47] have derived and investigated multistep collocation methods for first 

order systems. This work provides a basis for the work contained in chapters 4 and 

5. 

2.3 Hybrid methods 

In 1955, De Vogalaere [28] introduced a fourth order method which combined features 

of one-step and multistep methods. This method is exphcit and is given by 

2/n+l = yn + hZn + —i4:fn+l/2+2fn) 

Zn+1 = Zn + -{fn+1 + 4/„+l/2 + 2/„) 

h 
yn+l/2 = Vn-h -Zn + ^ ( ^ / n - fn-l/l)-

The first two equations are obtained by approximating the integral (2.4) and the 

corresponding integral for y'. These equations are similar to those arising in an RKN 

method, however in this case, information from the previous step is required in order 

to generate the ofF-step value yn+i/2- Procedures to start the method were also given. 

Although this method is designed for general second order differential equations, it is 

of interest to us since it is believed to be the first of the hybrid methods for second 

order problems. 

Coleman & Mohamed [24] analysed De Vogalaere's method in detail, and in par­

ticular found that it possesses no interval of periodicity. Subsequently Coleman [20 

proposed a modification of the method which resulted in a method which was peri-
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odic in (0,2.4). A further modification proposed by Kambo et al. [43] resulted in a 
P-stable method. 

There has been considerable interest in the development of hybrid methods in 

recent years. This interest stems mainly from the fact that hybrid methods do not 

suffer the conflict between high order and P-stabihty which affects linear multistep 

methods. These methods also score over Runge-Kutta-Nystrom methods in that they 

can achieve high order of convergence and P-stability with relatively few implicit 

stages. In the remainder of this section we will outline some of the hybrid methods 

which are available and some of the motivating factors behind their derivation. In 

the next section we will look at a way of studying the stability properties and orders 

of dispersion of many of these methods, and all Runge-Kutta-Nystrom methods, 

investigated by Coleman [21 . 

One family of methods which has received particular attention is that derived by 

Cash [6]. Methods from this family take the form 

yn+l - 2yn + Vn-l = h\l3oifn+l + f n - l ) + 1 fn + Hfn+a, + fn-a,)) (2.25) 

yn±oi = A±yn+l + B^yn + C±yn~l + h?{s±fnJrl + ^ ± / n + ^ ± / n - l ) ) (2-26) 

Cash [6] has derived a three-parameter family of P-stable methods of order four from 

this family. Chawla [9] independently derived methods from a subclass of the methods 

(2.25)-(2.26) obtained by imposing the symmetry conditions 

A± — and s± = Uq: 

and found a two-parameter family of fourth order P-stable methods of this type. The 

fourth order P-stable methods of Costabile k Costabile [25] also fall into the class of 

methods (2.25)-(2.26). 

Cash [6] further showed that even if this family is extended to include approxima­

tions yn±a2 a, second pair of off-step points, generated in the same way as (2.26), 
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then one cannot obtain a method of this form which is both sixth order and P-stable. 
However it is possible to derive sixth order P-stable methods if approximations to 
y at two pairs of ofF-step points are included and if in addition the approximations 
2/n±a2 are allowed to depend on yn±ai, i-e. 

yn+l - 2y„ + Vn-i = h?{Wn+\ + f n - l ) + i f n + Wn+a, + fn-a,) 

+Wn+a, + fn-a,)) (2-27) 

yn±a, = R±yn+l+S±yn + T±yn-l+h\U±fn+l + V±fn + W±fr,_^ 

+X±fn-a, + Z ^ U , , ) (2.28) 

with yn±ai determined from (2.26) as before. 

The fourth order methods of Cash [6] and Chawla [9], and Cash's sixth order 

methods require three and five (new) function evaluations per step respectively. Cash 

[7], Chawla & Neta [14] and Thomas [60], [61] have derived methods from these classes 

which require only two and four (new) function evaluations per step respectively, and 

Thomas [62] has derived sixth order methods which require only three (new) function 

evaluations per step. If these methods are to be implemented using a modified Newton 

iteration scheme, then another way in which their eflSciency can be improved is to 

force the iteration matrix to be a perfect square/cube. Methods which possess this 

property are derived by Thomas [61], [62 . 

The possibility of increasing the order of dispersion of these methods was in­

vestigated by Thomas [60], who showed that this could only be done by sacrificing 

P-stability. However the author does succeed in deriving fourth order methods with 

order of dispersion six and sixth order methods with order of dispersion eight which 

are almost P-stable in the sense that they are periodic for both small and very large 

values of u'^, or more accurately: 

Definition 2.11 (Thomas) A method is said to be almost P-stable if it is periodic 
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for all ly^ 6 (0,^^) and for z/̂  G (7^ oo), with 0 < < 7^. 

Another approach used by many authors to derive hybrid methods is to take an 

existing linear multistep method, and replace some of the function values required by 

that method by those generated in additional implicit or explicit stages. One method 

which has been used as a starting point for many methods derived in this way is the 

popular Numerov method (2.6). 

By introducing the stage 

yn = yn- ah'^{fn+l - 2/„ + f n - l ) 

where a is a parameter, and replacing (2.6) by 

yn+l - 2yn + yn-l = —{fn+l + 10fn + fn-l), 

Chawla [10] obtained a family of unconditionally stable methods (a > 1/120), and 

Chawla & Rao [15] obtained a method with order of dispersion six and a slightly 

longer interval of periodicity than Numerov's method. Chawla [11], [13] then went 

on to consider the more general family of explicit methods given by 

yl+i = 2yn - yn-i + h'fi"^^ 

yn+l - 2yn + yn-l = J^ifn+1 + 10/„ + f n - l ) , 

for i = 1 , . . . , m with /^°^ = / „ . Methods from this family which possess periodicity 

intervals of length nearly 2((m + l ) (m + 3))^^^ have been derived. A further modi­

fication suggested by Chawla & Rao [17] produced an explicit method with an even 

smaller phase lag and a slightly larger interval of periodicity. 

A number of methods, based on different Hnear multistep methods, have been 

derived in this way by Jain et al. [41], Chawla & Rao [16], Ananthakrishnaiah [1], 
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Simos [57] and others. 

Al l the methods discussed so far have been designed to be exact when the solu­

tion to the differential equation under consideration is a polynomial of sufficiently low 

degree. However, if the differential equation describes orbital or oscillatory motion, 

then its solution is more likely to be a linear combination of exponential functions 

with complex arguments than a polynomial. It is for this reason that the so-called 

exponential fitting methods were developed by Gautschi [31]. As their name suggests, 

these methods are designed to be exact for polynomials in e'^^'^^, or Fourier polyno­

mials, of sufficiently low degree, where a; is a given (fixed) frequency. Stiefel & Bettis 

58] extended this idea and derived methods which are exact for products of ordinary 

and Fourier polynomials; since then, a great many of these methods have been pro­

posed by numerous authors. A further discussion of exponential fitting methods is 

beyond the scope of this thesis; we mention them here for completeness only. 

2.3.1 P e r i o d i c i t y and dispers ion 

When any of the two-step hybrid methods mentioned in the previous section, or the 

methods of Ananthakrishnaiah [2] or Meneguette [49], are applied to the scalar test 

equation (2.11) we obtain a recurrence relation of the form 

yn+l - 2Rx^{u^)yn + yn-i = 0 (2.29) 

where v = toh and Rx^{iy^) is a rational function with numerator of degree A and 

denominator of degree fi. In what follows we will refer to Rxf^iiy^) as the stability 

function of the method. The solutions of (2.29) are determined by the roots of the 

characteristic equation 

e - 2R,,iu')C + I = 0. (2.30) 
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Observe that the same type of equation occurs when analysing the stability properties 
of Runge-Kutta-Nystrom methods (2.18)-(2.20). The exact solution to (2.11) satisfies 

y{Xn+l) -2cOs{u)y{Xn) + y{Xn-l) = 0 

hence R\^{v'^) may be regarded as a rational approximation for cos(z/). 

For a method whose characteristic equation is of the form (2.30) to be periodic 

(Lambert & Watson [46]) for v'^ = vl, the roots of that equation must lie on the unit 

circle {z G (D : |^| = 1}, or equivalently, Rxfj_{vl) must be less than or equal to one 

in modulus. When \R\^{UQ)\ ~ 1, then the stability of numerical solutions depends 

on details of the method, for example Hairer [33] presents two methods which have 

the same stability function, but one is P-stable, while the other is periodic for all 

z/̂  except u"^ = 12. Consequently, since in this section we seek to draw conclusions 

regarding the stability properties of methods solely based on investigations of the 

characteristic equation (2.30), we take \R\^{y'^\ < 1 as our condition for periodicity. 

Definition 2.12 (van der Houwen & Sommeijer) For any method corresponding to 

the characteristic equation (2.SO), the quantity 

(f>{v) = V - cos'^[R\^{v'^) 

is called the dispersion (or phase-lag). If ^{v) = 0{i'^'^^) as // —> 0 the order of 

dispersion is q. 

From this i t can easily be deduced that if the method has order of dispersion q = 2r 

then 

cos{u) - Rx,{y') = 0{,y'^+') 

By investigating the properties of Rx^{v'^), Coleman [21] determines the attainable 

orders of dispersion and stability properties of a range of methods, and also discovers 

a conflict between the requirements of P-stability and high order of dispersion. We 

close this section with some of the main results from that paper. 
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Theorem 2.4 For given values of A and p,, the maximum order of dispersion is 
2A + 2p. That order is attained when R\^{v'^) is the [2A/2//] Fade approximant for 
cos{i>). 

Theorem 2.5 If an explicit method with stability function R\Q[V^) possesses an in­

terval of periodicity (0,/?^) and order of dispersion 2X, then (3 < n when A is odd, 

and /3 < 2TT when A is even. 

Theorem 2.6 A F-stable method with stability function Rx^i^v"^) has order of disper­

sion at most 2/i. 
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A n a l y s i s o f t h e m e t h o d s o f 

P a n o v s k y & ; R i c h a r d s o n 

Panovsky & Richardson [53] proposed a family of implicit methods for initial value 

problems of the form 

y" = fix, y); y{xo) = yo, y'{xo) = zo, (3.1) 

involving second order differential equations in which the first derivative does not 

appear explicitly. Each method from this family is based on a polynomial approxi­

mation of degree n for the function / whose interpolation nodes are determined by the 

extrema of the Chebyshev polynomial of degree n. The derivation of these methods 

is summarised in section 3.1. 

In section 3.2 we show that these methods may be expressed as two-step symmetric 

hybrid methods and we derive expressions for the coefficients involved. The accuracy 

of these methods is investigated in section 3.3, and we show that the methods have 

order n -f- 1 i f n is odd, and n ^- 2 if n is even. 

In section 3.4 we show that the stability properties of methods from this family 

are determined by the roots of a quadratic equation, — 2a„(/^^)A -|- 1 = 0, where 

an{i/^) is a rational approximation for cos(f). We also show that each Panovsky-

28 
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Richardson method possesses a non-vanishing interval of periodicity, and we tabulate 
the periodicity intervals for methods of degrees 1 to 10. These results suggest some 
conjectures for which we do not yet have proof. 

Implementation considerations are discussed in section 3.5, and the results of 

numerical experiments are given in section 3.6. 

A generalisation of the methods of Panovsky & Richardson is introduced in sec­

tion 3.7 with a view to extending the applicability and simplifying the derivation 

of the main result of section 3.8. In section 3.8 we show that these generalised 

Panovsky-Richardson methods are equivalent to certain collocation-based Runge-

Kutta-Nystrom methods in the sense that, in the absence of rounding errors, they 

would produce identical numerical results from the same starting values. 

With the aid of the equivalence established in section 3.8, we are able to show in 

section 3.9 that the Panovsky-Richardson methods are neither P-stable nor symplectic 

Finally, in section 3.10 we investigate the effect of rounding errors on these meth­

ods in both the original and the RKN formulations. 

3.1 The methods of Panovsky and Richardson 

Integrating (3.1) twice gives: 

y{x ± Ch) - yix) = ±(hy'{x) + / (x ± ^h - T)f{T)dT (3.2) 

where for notational convenience we have temporarily suppressed the second argument 

of / . Adding these expressions we obtain the identity 

y [x + Ch) - 2y{x) + y{x - ^h) = {x + Ch - r ) [ / (T) + f{2x - T)]dr (3.3) 

As noted in section 2.1, this identity provides a starting point for the derivation of 

a number of methods for (3.1) which do not require an approximation for the first 

derivative of the solution. Let Xm = xo + mh for m = 0,1,2,. . . and where the 
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steplength h is assumed to be fixed. Introducing a new variable a defined by the 
relation 

T = Xm + l h { l a ) 

and taking a; = a; ,̂ we can write (3.3) as 

y{x + ih) - 2y{x) + y{x - ^h) = \h' f^~\2i - 1 - a)[/+(a) + f-{a)]da (3.4) 

with 

f^{a) = f{xm±\h{l^-cc)) 

The Stormer-Cowell methods are derived from this identity by replacing by inter­

polating polynomials based on previous grid points and taking ^ = 1 (see e.g. Hairer 

et al. [35] p422 or Henrici [38] p290). Panovsky and Richardson [53] also replace 

by interpolating polynomials, but their interpolation nodes include off-step points 

which are the extrema of a Chebyshev polynomial. 

The Chebyshev polynomial of degree n, r „ , takes its extreme values on the interval 

— 1,1] at the points 

aj = cos $j where 9j = , j = 0 , 1 , . . . , n (3.5) 

The polynomial of degree n which interpolates to a function g at the points Oj is 

Pr.{a) = J2"Ckn{a) (3.6) 

A;=0 

where 

^3=0 

where the double prime on the sum indicates that the first and last terms are to be 

halved (see e.g. Fox & Parker [30] p32). 
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Let 

= 1(1 + a j ) and Xm±^^ =Xm± ( j h , j = 0, 

Then the corresponding expressions for f^ are 

. . . ,n (3.7) 

(3.8) 
A:=0 

with 
9 « fm+ij (3.9) 

where 

fm±^j = f{Xm±i, , ym±ij ), j = 0,...,n 

and where y ^ i ^ , is an approximation for ?/(x™±^J. By substituting these approxima­

tions for into (3.4), Panovsky and Richardson obtain the formulae 

(3.10) 
k=0 

for j = 1 , . . . , n , where 

f_'''\2C, - 1 - a)n{a)da •3k 

(3.11) 

Using the identities 

j Tk{a)da 

j Ti{a)da 

I Toia)da 

\{To{a) + T,{a)), 

TiH 

(3.12) 

(3.13) 

(3.14) 

to evaluate the integrals (3.11) we can derive the following explicit expressions for 
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the Rjk--

cos[{k + 2)ej] cos k9j cos [{k - 2)6 j] 
" 4(A; + 1)(A; + 2) ~ 2(P - 1) ^ A{k - l){k - 2) 

-1) 
cos ,̂- ^ 1 k > 3 (3.15) 

_P - 1 ' P - 4 _ 

Rj2 = — ( - 9 - 16 cos cos 2̂ ^ -f cos 46^), (3.16) 
48 

= - ^ ( - 8 - 9 c o s ^ , + cos3%), (3.17) 

i?̂ o = ^ ( 3 - f 4cose, + cos2%). (3.18) 

Equation (3.15) corrects a misprint in the corresponding expression given in [53 . 

3.2 An alternative formulation 

By substituting (3.9) into (3.10) and changing the order of the summations we can 

write 

ymHi - 22/7n + ym-U = TT ^ "^^j{fmH, + fm-^,), Z = 1, . . . , n (3.19) 

with 

A, = f2"R^kTk{a,). (3.20) 
k=o 

This simple rearrangement shows the methods of Panovsky and Richardson [53] as 2-

step symmetric hybrid methods with 2n —2 off-step points in the interval [xm-i,Xm+i 

for each m. We will refer to the integer n, which is the degree of the polynomial 

approximations for f^{a) in (3.8), as the degree of the method. Panovsky and 

Richardson call n the order of the method, but we prefer to reserve that word for its 

normal use (see the next section). 

The first two methods from this family are given in the following examples 

Example 1 n = 1 
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In this case there are no off-step points and (3.19) gives a single equation 

ym+l - 2ym + ym-l = | / i ' ( / n x + l + i f m + fm-l) (3.21) 

as noted in [53]. This is a linear 2-step method of order 2. 

Example 2 n = 2 

The equations for this method are 

j / „ + i - 2 t / „ - f = i / , 2 ( 7 / „ + 3 ( / ^ ^ i - f / _ i ) 

- l i f m + l + f m - l ) ) (3.22) 

ym+i-2ym + ym-i = §/i'(/™ + 1 + / „ _ I ) • (3.23) 

This method has order 4. 

3.2.1 T h e coefficients A 

In this subsection we attempt to find explicit expressions for the coefficients Aij in 

terms of the numbers Oj. 

Combining equations (3.20) and (3.11) we obtain 

A , = r r E " n{a,)TM diSda (3.24) 
•^-1 •^-1 fc=0 

Let 13 = cos (f>, then we may rewrite the sum in the above integral as 

f 2 " cos k0j cos k(t> = (cos [k{<t> + 9,)] + cos [k{(t> - 6^]) 
k=0 k=0 

= \{-l)^-^ smn<t> (cot [!(</. + e,)] + cot [i(<^ - 6,)]) 

2(cos - cos <̂ ) ^ • ' 
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Using this result we may re-express Aij in the following forms: 

A. = 

2n 

/:/: 
/:/: 

(cos 9j — cos (j>) 
d{cos (j))da 

( _ ! ) « - . ^a. (1 - ^^)T'M 
d/3da 

i-ir-' r ( ^ . - « ) ( ! - <^')W 
2n i: da 

(3.26) 

(3.27) 

(3.28) 

Now T^{ct) is a polynomial of degree n — 1 which has zeros on the open interval (—1,1) 

at the points a j , for j = 1 , . . . , n — 1. We can thus write 

for some constant K. By looking at the limit of T!^[a) as a tends to 1, we can 

determine the value of this constant, and hence obtain the following expression for 

Using this i t is easy to show that (1 — a^)T'^{a)l{aj — a) is a polynomial for each 

J = 0 , . . . , n. It is not yet clear if Aij can be expressed in a simple closed form for all 

z, j < n and n arbitrary, but we have found explicit formulae for Ajj, Aio and for A in-

The special cases i = j 

A 33 2n 
3 ra 

£ \ l - a ' ) Z { a ) d a 

Using 

/ aTk{a)da = - ^ rfc+2(«) - r ^ T , _ 2 ( a ) 
k + 2 k-2' 

k>3 (3.29) 
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to evaluate the above integral we obtain 

2n 
/ I / \ , Tn+2{aj) Tn-2{a,) ^ 2 ( - l ) " 

2 ( n - 2 ) n 2 - 4 
n > 3. 

Furthermore, since 

r „ ( a , ) = cosn^, = (-1)"-^ and r„±, (« , ) = (-1)""^'cos r%, r > 0 (3.30) 

this can be reduced to 

( l - a y - 2 ( l - ( - l ) 0 
- 2n(n2 - 4) ' " -

(3.31) 

The coefficients Ajj are defined only for j < n where n is the degree of the method. 

For n = 1 the only coefficient of this form is A n = | . When n = 2 the relevant 

coefficients are An = \ and A22 = 0. 

In particular, when j = n we have 

Ann — \ 

, f o r n > 2, 
n{n'^ - 4) 
0, for n = 2, 

| , for n = 1. 

The special cases j = 0 

Once again the denominator of the integrand of (3.28) is a factor of the numerator 

and the integral is easily evaluated. 

A, tO 2n 
f \ a , - a){l - a)T'n{a)da 

= 4 ^ - « ) ( ! - ^)Tn{a)Y:, + (1 + «.) r Tn{a)d 
2n I -'-1 

- 2 y""" ar„(a)(̂ -
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Using the integration formulae (3.12)-(3.14) and (3.29) to evaluate the above integrals, 

and (3.30) to simplify the resulting expression, we obtain, for n > 2 

( l + a . ) ( l + (- l ) 'a . ) 2 ( l + ( - l ) - ( 2 » . ' - l ) } 
2(1 -I- a i ) H : h n2 - 1 

. (3.32) 

When n = 1 the only relevant coefficient is Aio = | , and when n = 2, the coefficients 

of this form are Aio = ^ and A20 = |-

The special cases j = n 

In this case (3.28) becomes 

An = ^ - «)(1 + cc)T:,{a)da 

For n > 2 we obtain 

A . 
( _ l ) n + i 

2n 
2 ( ( - l ) ' + l - 2 a ? ) 

n2 - 4 
(1 - aO(a. + ( -1) ' ) (3.33) 

For n = 1 the only coefl&cient of this form is A n = | , and when n = 2 the relevant 

coefficients are A12 = ^ and A22 = 0. 

3.3 Order and local truncation error 

In order to study the local truncation error of these methods we adopt the approach 

used by Lambert [45]. For y an arbitrary test function, assumed to be as differentable 

as we please, we define the linear functionals 

CAy{x),h] = y{x + (^h)-2y{x)-^y{x-C^h) 

[y"i^ + W + y"i^ - , ^ = l , • • • ,n . (3.34) 
2n j=o 
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Expanding y(x ± ^{h) and y"{x ± (jh) as Taylor series about x and collecting terms 
we obtain 

h] = 2± '̂'[̂ T+P''̂ ^̂  ̂  ^ = l , . . . , n . (3.35) 
9=0 

where 

«; = f ? - - e ^ i f ^ i : " A , e f . (3.36) 
i=o 

Denote by 6i[y{xm), h] the local truncation error in the approximation ym+u y{^m + 

^i), where ?/ is a solution to the differential equation under consideration. Then i t is 

easy to show that 

6i[y{xm), h] = £i[y(xm), h] + ——(a;™, y(xm)) Y l h] + . . . (3.37) 
2n dy -̂̂ o 

From this we see that the following conditions are sufficient, but by no means neces­

sary, for the method of advancing the solution from Xm to Xm+i to have order 2p: 

Bl = 0, z = l , . . . , n , q = Q,...,p-l (3.38) 

B; / 0, (3.39) 

If these conditions are satisfied then the error constant for the method, which is the 

coefficient of the leading term in the expansion of the local truncation error at Xm+i, 

is given by 

, . N 2 P 

(2p + 2)! ' (2p + 2)! n{2p)lfr(, 

The following theorem gives the order and error constant of the Panovsky-Richardson 

method of arbitrary degree n. 
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Theorem 3.1 When n is odd, the Panovsky-Richardson method of degree n has order 

n + 1 and its error constant is 

1 

For even n the method has order n + 2 and its error constant is 

22"(n + 2)(n2 - l ) ( n 2 - 9)(n - 1)!' 

P roo f For a suitable set of coefficients C[ we can write 

1 + X (3.41) 

since the left-hand side is a polynomial of degree r m x. To prove this theorem we 

substitute the above expansion into (3.40), and then simplify the resulting expression 

using the following summation orthogonality property of the Chebyshev polynomials: 

For k < n. 

3=0 

n if A; = 0 and i = 0, 2n, 4n , . . . 

n ii k = n and i = n, 3n, 5n,... 

\n if /c ^ 0 or n and i = k., 2n±k, in± k, 

0 otherwise. 

Case (i) 2q<n 

Combining (3.20) and (3.41) we have 

2q 1 ^ 2q 

n fc=0 

1 
1=0 3=0 

^ k=0 
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L J-1 J-1 .̂̂ Q 

1 r°' f l + 13' 

2 J-1 J - i \ 2 
2̂9+2 

{q + l)(2q + iy 

2q 

d^da 

Hence i?' = 0 for i = 0 , . . . , n when 2q < n. It follows that the order of the method 

IS at least n + 1 when n is odd, and n + 2 when n is even. 

Case (ii) 2q > n 

With the convention that C^" = 0ifi>2q, we have in this case that 

3=0 ^ 

l + a A ' ^ 1 E Cl^Rik + C'^\iRi,n-\ + Cn+2Ri,n-2 + • 
2q 

.k=0 

If n is odd and 2q = n + 1 then 

2q+2 
(2q + 2)i2q + l) 

^ _ (" + 3Kn + 2) y^f .̂ (̂ ^^ ^ ^^^^ 

It is possible to express this integral in closed form for each i but since we shall see 

that 5 " is non-zero, it is not necessary to consider 5J for other values of Forn > 3 

we have 

B. 
„ (n-h3)(n + 2)(7:+^ 71+1 ^1 

n+2 n n - 2 
da. 
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Since the polynomials Tn and T„±2 are odd functions, only the lower limit of the first 
integral contributes anything to and we readily obtain 

_ 2(n + 2)(n + 3)C:+^ 

It is easy to show that this also holds when n = 1. 

If n is even and 2q = n + 2 then, by similar arguments, 

Bl = ^ ^ ^ " + 1 (i?i ,n+i — Ri,n-l) + C'"^2(-^i,n+2 " Ri,n-2) 

Once again we need only consider the special case i = n. By evaluating the integrals 

Rn,n+1 - Rn,n-1 = j \ j \ [T^M ' Tn-M] d/3da 

and 

we obtain 
Rn 2n(n + 3)(n + 4 ) ( 2 C - | - C : + ^ ) 

= (n^ - l)(n^ - 9) ^^-^^^ 

It is trivial to show that the leading term of Tr{x) is 2'""̂ a;'" for all r > 0, and hence 

= 2^~'^Tr{x) + a polynomial of degree (r — 2) 

so that 

( i [ l + a;])' = 2-'" [2^-'"T,(x) + 2'^-WTr-i{x) + a polynomial of degree (r - 2)' 

Therefore, 

= and 22^-2 
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Substituting these values into equations (3.42) and (3.43) and forming the error con­

stants (2Bp/{2p + 2)!), we obtain the expressions given in the statement of the theo­

rem. • 

The leading term of the local truncation error at Xm is 

2 2 " - i n ( n 2 - 4 ) ( n + l ) ! ' 
- / i " + 4 y ( " + 4 ) ( x „ ) 

n odd. 

22"(n + 2)(n2 - l){n^ - 9){n - 1)!' n even. 

(3.44) 

(3.45) 

Panovsky & Richardson's [53] estimate for the modulus of the leading term is given 

by 

for all n. 
22»-in3(n + 1)! 

Comparing this with our own expressions, we find that this estimate is quite accurate 

for n odd and not too small, but it fails to reveal the higher order when n is even. 

3.4 Absolute stability and periodicity 

In this section we will derive the stability function for Panovsky-Richardson methods 

of arbitrary degree n. We will further show that every such method has a non-empty 

interval of periodicity. Finally we will use our results to investigate the stability 

properties of the P-R methods of degrees 1 and 2. 

We begin by writing equations (3.19) in matrix form. To do this we define the 

(n + 1)—dimensional column vectors 

Y(m) 

ym 

\ Vm+l J 

Y(m) 

/ y \ 
ym 

\ Vm-l / 

^ f ^ 
Jm 

\ /m-l-1 / 

Jm 

\ fm-1 I 

v i - ( 1 , 1 , . . . , 1)'̂  and an (n + 1) x (n + 1) matrix B with Bq^ = 0, for J = 0 , 1 , . . . , n 
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and, for i = 1,. 

-^Aij, for J = l , 2 , . . . , n - 1 , 
2_p 

— f o r j = 0 , 

f o r ; = n . 

Adding the identity = ?/m to (3 .19) we then have 

Y ( « ^ ) = 2ymvi - Y ^ ' " ) + h'B{F + F ) . (3.46) 

When applied to the test equation y" = —u'^y we obtain the relation 

(3.47) 

with P = In+i + u'^B and Q = 2Ui-P, where is the (n + l)-dimensional identity 

matrix, u'^ = u^h^ and 
/ 1 0 

1 0 

0 

0 

\ 

V i 0 . . . 0 / 

We seek a recurrence relation of the form 

Y(m) ^ j ^ Y ^ ™ - ^ ' m = l , 2 , . . . (3.48) 

Hnking the solution vectors { Y ' ™ ) } , where K is an (n + 1 ) x (n + 1 ) matrix depending 

only on the parameter u and the coefficients of the method under consideration. 

To construct such a relation we use the fact that the extrema of the Chebyshev 

polynomials are symmetric on the interval [—1,1] , and so 

^ih = Xm-i + Cn-ih, for z = 0 , 1 , . . . , n. 
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It follows that 

where T is the permutation matrix 

T 

0 0 

0 0 

0 1 

1 0 

0 1 

1 0 

. 0 0 

. 0 0 

Thus we have our recurrence relation (3.48) with the matrix K given by 

K = P-^QT = {2P-'Ui - In+i)T. 

The stability properties of the method can now be investigated by analysing the 

eigenvalues of K. Suppose that P~^ has elements pij and let 

ai = Y,Pij^ for z = 0, l , . . . , n . 
i=o 

Then 

p-^Ui 

( ao 0 . . . 0 

a i 0 . . . 0 

\ 

y Q ; „ 0 . . . 0 y 

From the definition of P it can be shown that ao = 1- The eigenvalues of K are 



3.4. ABSOL UTE STABILITY AND PERIODICITY 44 

therefore the roots of the characteristic polynomial 

' A 0 

0 A 
I 

n+l. det {K - A/„+i) = (-1)"+Met 

0 1 

1 0 

0 

1 

- 1 

-2ai 

A - 2 a „ _ i 

0 A - 2 t t „ 

Observe that the structure of the above matrix will depend on whether it has an even 

or an odd number of rows, and may be determined by considering the sum air + bTI^, 

a,b G R, and using induction on r. The above polynomial can be greatly simpHfied 

by expanding the determinant about its bottom row to get 

det {K - XIn+i) = {-1T+\X' - 2(Xn\ + l)dn-i 

where dn-\ is the (n - 1) x (?? - 1) determinant 

/ 

dn-i = det 

A 0 . 

0 A . 

0 1 . 

1 0 . 

0 1 

1 0 

. A 0 

. 0 A 

It is easy to show that c/„_i = (A^ - l)dn-3 and hence 

det ( / ^ - A / „ + i ) = { 
(A2 - 2a„A + 1)(A2 - l ) ( " - i ) /2 , n odd 

(A2 - 2a„A + 1)(A2 - l ) ( - 2 ) / 2 ( - A - 1), n even. 

Thus we have the remarkable result that the eigenvalues are ± 1 and the two roots of 

the quadratic equation 

Â  - 2a„A - M = 0. 
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Let the matrix P have elements pij and let 7r,j be their corresponding cofactors in 

P. Then 

1 

3=0 

1 

det P f ^ . 

det P 
det 

det 

Poo 

Pio 

1 + i^'Bn 

21 

det 

P0,n-1 1 

1 - v'^B 10 

I /2B2,n-l l - i ^ ' 5 2 0 

• V^Bn,n~\ 1 - u^B 

l + ^ / ' ^ l l . • y^Bx^n-X y'^B^n 

V''B2X . • V^B^^n-X l^'B2n 

v'^B^^ . . . U^Bn,n-l 1 + i^^B, 

which is a quotient of polynomials of degree n in v'^. 

Finally we must verify that the multiple eigenvalues at ± 1 do not lead to un­

bounded solutions. To do this we must show that the matrix K is non-defective, i.e. 

possesses a fu l l set of eigenvectors, when 7̂  ± 1 . This turns out to be a relatively 

simple task, for example with A = 1 the matrix equation 

( / ^ - A / „ + i ) r = 0 

has the components 

ro-rn = 0 

ri + Vn-i - 2air„ = 0 
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ro + ( l - 2 « „ ) r „ = 0. 

Let To = 0 = r„. Then for n = 2i these equations are satisfied if = 0 and r„_j = —rj 

for j = 1 , . . . , z — 1. By choosing r i , . . . , r i _ i in turn to be 1 while the other members 

of that set take the value 0 we obtain (n — 2)/2 linearly independent eigenvectors 

corresponding to the eigenvalue A = 1 which has multiplicity (n — 2)/2. Similar 

arguments apply when n is odd, and for both odd and even n when A = — 1. 

Our conclusions are summarised in the following theorem. 

Theorem 3.2 Wlien the Panovsky-Richardson method of degree n is applied to the 

test equation y" = —ui^y with a steplength h, the stability of the resulting solution is 

determined by the roots of the quadratic equation 

Â  - 2a„A + 1 = 0 

where Q „ is a rational function of degree [n/n] in — uPK^. Intervals of periodicity 

are intervals of values of v'^ for which | Q ; „ | < 1. For these methods intervals of 

periodicity and intervals of absolute stability coincide. 

Proof NED. • 

It follows from this theorem that, with regard to stability considerations, the 

methods of Panovsky and Richardson fall into the class of methods investigated by 

Coleman [21]. In the terminology of [21] the rational function a„ is the stability 

function of the method. For example, when the method of degree 2 is applied to the 

test equation, the matrix P defined above is given by 

P = 

^ 1 0 0 ^ 

7Z/V96 l + uyi6 -I/V96 
y 1/2/6 uV3 1 y 
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Then the stability function is 

288 - 126z/' + 4J/'' 
288 + 18i/2 + 

By Theorem 5 of [21] the method is not P-stable, by Theorem 7 its order of dispersion 

is 4, and the periodicity conditions (see pl59 of [21]) are 

< 48 and (z/̂  - 12){5u^ - 48) > 0. 

Therefore the primary interval of periodicity is (0,9.6) and there is a secondary interval 

of periodicity (12,48). The order of the method is 4 and its error constant, by Theorem 

3.1 above, is 1/720. By contrast Numerov's method, which is based on the formula 

ym+l - 2ym + ym-l = ^ ^ ^ ( / m + 1 + 10/m + / m - l ) 

is also of order 4, but has only one implicit stage and requires less information to be 

carried forward to the next step. However the error constant for Numerov's method 

is three times that for the above Panovsky-Richardson method and i t has a shorter 

interval of periodicity, (0,6). 

Theorem 3.3 Each Panovsky-Richardson method has a non-empty interval of peri­

odicity, and is absolutely stable for z/̂  sufficiently small. 

Proof Two different methods of proof have been derived. The first proceeds 

by expanding the determinants in our expression for the stability function «„, but 

is rather cumbersome and so is not given here. The second method is far more 

straightforward and uses the fact that Q;„ is an approximation for cos v. The order of 

dispersion of the Panovsky-Richardson method of degree n is at least n -f 1, since it 

is the order of accuracy achieved when that method is applied to the test equation 

y" = -u'^y. Then from equation (2.8) of [21] we have, as i / —> 0, 

an = cosi/-F o(z^"+^) 
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It follows that for € (0,7), for some 7 > 0, the modulus of Q:„ is less than 1. 

Consequently, (O.7) is an interval of periodicity and of absolute stability. • 

-a 
o 
6 

1 

Q 

nu/pi 

Figure 3.1: Intervals of periodicity for the Panovsky-Richardson methods of degrees 
1 to 10. 

We have computed the coefficients of the stability function Q;„ for n < 10 and then 

found the corresponding periodicity intervals. These periodicity intervals are shown 

in figure 3.1 and table 3.1. We have expressed the boundaries of these intervals 

in terms of u/ir in order to highlight a number of interesting trends in the data. 

The complexity of the calculations and consequently the time taken to produce the 

periodicity intervals increases quite sharply as n increases, so we have not pursued a 

detailed study beyond n = 10. However we have identified a number of periodicity 



3.4. ABSOLUTE STABILITY AND PERIODICITY 49 

n bo « i &1 «2 b2 «3 b3 a4 b. 

1 1.10266 
2 0.98625 1.10266 2.205 
3 0.99817 1.01187 1.972 2.546 3.3632 
4 0.99977 1.00110 1.982 2.103 3.017 4.435 5.488 
5 0.99998 1.00004 1.995 2.017 2.954 3.336 4.186 6.820 7.844 

6 1.00000 1.00000 1.999 2.002 2.974 3.077 3.947 4.758 5.543 
7 1.00000 1.00000 2.000 2.000 2.993 3.002 3.939 4.213 5.002 

8 1.00000 1.00000 2.000 2.000 2.999 3.002 3.975 4.050 4.907 

9 1.00000 1.00000 2.000 2.000 3.000 3.000 3.994 4.009 4.941 
10 1.00000 1.00000 2.000 2.000 3.000 3.000 3.999 4.001 4.980 

n as bs ae 6̂ «7 bj as 8̂ b9 

6 9.721 10.723 
7 6.400 7.130 13.145 14.131 
8 5.455 6.161 8.276 8.966 17.093 18.068 
9 5.133 5.904 6.824 7.495 10.395 11.056 21.566 22.533 

10 5.033 5.900 6.282 6.963 8.335 8.914 12.760 13.400 26.56 27.53 

Table 3.1: Periodicity intervals for the P-R methods of degree n up to 10. The i*-^ 
periodicity interval takes the form u'^ G {ajTT^, 6-TT^) with OQ = 0. 
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intervals for n as high as 20. 

Our results suggest the following conjectures for which at present we can offer no 

proof. 

Conjectures 

L The Panovsky-Richardson method of degree n has n disjoint periodicity inter­

vals. 

2. For fixed i, as n ^ co, 

a,- —> i and bi —>• (i + 1). 

Consequently the length of the i^^ periodicity interval tends to TT^ and the length 

of the interval of instability between the i^^ and (i + Vf^ periodicity intervals 

tends to 0 as n ^ oo, for fixed i. 

3. For fixed n, the length {a'-^-i — b'^)'^'^ of the i ' ^ interval of instability increases with 

i. Furthermore, ( a„ — 6„_i) increases without bound as n oo, and it seems 

that so also does [an-i+i — bn-i) for each fixed i. In particular, this means that 

the length of the gap between the penultimate and final intervals of periodicity 

increases without bound. 

We might wish to attempt to improve upon the performance of these methods 

by allowing the steplength h to vary. Before doing so however, we must investigate 

the possible effects of a step-changing routine choosing a steplength which lies in 

one of the intervals of instabihty mentioned above. As an example we will apply 

the Panovsky-Richardson method of degree 16 to an initial value problem used by 

Kramarz [44 

y" = 2498?/+ 49982, ?/(0) = 2, 2/'(0) = 0 

z" = -2499?/- 4999^, ^(0) = - 1 , ^'(0) = 0, 
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for which the exact solution is 

51 

y[x) = 2 cos x, ix) cos X. 

The initial conditions eliminate the higher-frequency component corresponding to cj = 

50. We carried out three calculations, with fixed steplengths hi = 0.657r, h2 = 3/ii/4 

and hs = hi/4. With u = 50, the value of v lies near the middle of the 15th periodicity 

interval when the steplength is hi, between the 14th and 15th periodicity intervals 

when the steplength is /i2 and in the 8th periodicity interval when the steplength is 

h3. The results of these calculations are given in Table 3.2. We see that reducing 

the steplength from hi to /i2 leads not to a reduction, but rather to a catastrophic 

blow-up of the global error. These results show that considerable care must be taken 

to ensure that the intervals of instability are excluded from the range of allowable 

steplengths in any variable-step implementation of these methods. 

X hi h2 h3 
1.957r 8.70 E - 13 3.4:2 E- 13 2.01 E- 15 
3.907r 1.32E - 12 1.31 8 3.86E - 15 
5.857r 1.42E - 12 5.31 - 3 3.86E - 15 
7.807r 1.42E - 12 2.16E + 4 3.86E - 15 
9.757r 1.42 £; - 12 8.79E + 8 5.69 E - 15 

Table 3.2: The maximum absolute errors on intervals [0,x] when the method Pi?16 
is appKed to a test problem of Kramarz with the steplengths hi, /i2 and hs. 

3.5 Implementation 

In this short section we consider the choice of method used to solve the non-linear 

equations (3.19) at each step. Panovsky k Richardson [53] used an iteration scheme 

which resembles the Gauss-Seidel scheme used for linear equations. They work with 

the methods in their original form (3.10) and iterate to form the a^ quantities using 

starting values based on data from the previous step. An alternative approach, which 
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in our tests requires less computation per step, is to solve the equations (3.19) using 

the Gauss-Seidel-type iteration 

/j2 n 
y^H, = 2?/™ - ?/™-l + — 1 ] 

j=o 

where = fixmnj^VrnHj) 2/m|«, = y™, for ; = 0 , 1 , . . . , n. The single prime 

on the second summation indicates that the first term in that sum is to be halved. 

In the light of the remarks made by Lambert [45] (page 238) regarding the con­

vergence of iterative schemes used in implicit methods for stiff first order systems, 

we would expect that, for a given problem, the rate of convergence of either of the 

iteration processes above will depend on the steplength / i , and that for h sufficiently 

large the process will fail to converge. The following two examples show that care 

must be taken in choosing the iteration process if we are to make use of the relatively 

large stability intervals provided by these methods. 

Example 1 When the degree 1 Panovsky-Richardson method is applied to the test 

equation y" — —cû y with steplength h our Gauss-Seidel-type iteration formula may 

be written 

,,('•+1) - - i . w 

where r/ contains information from the previous step and is a constant with respect 

to the iteration process. This method is periodic whenever < 12, but to ensure 

convergence of the iteration scheme we must impose the condition that ly^ < 6. 

Example 2 Replacing the degree 1 Panovsky-Richardson method by the degree 2 

method in the above example we obtain the following iteration formula 
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where c is a constant with respect to the iteration process, 

0 hiy' 
A = 

0 1 

96(96 + 6/̂ )̂ 0 
5 

and y ^ ! | . i = ( 2 / T O + I / 2 ' r = 0 , 1 , . . . . For the above iteration scheme to 

converge we require that the modulus of the largest eigenvalue of A~^B is bounded 

above by 1. We find that the eigenvalues of A~^B are of the form ±A, so we can 

take det A'^B < 1 as our convergence condition. After some algebra our convergence 

condition becomes i/'^ < 9 + 3-^41 ~ 28, whereas the secondary periodicity interval 

in this case extends to 48. 

For methods of higher degree also, the Gauss-Seidel scheme fails to converge in some 

steplength intervals for which the method is absolutely stable. 

In most of our calculations we have used a Newton method instead of the Gauss-

Seidel iteration. Equation (3.49), without the superscript denoting the mth step, may 

be written as 

G(Y) = Y - }?BY + a - 0, 

where a includes all terms which do not depend on the elements of Y . . The Newton 

formula then gives 

where now the superscript denotes the iteration number and Kij — 6ij — h'^BijJj with 

' ~ dy 

The description given here apphes to a single differential equation; for a system of 

equations Jj becomes a Jacobian matrix. This approach not only allows calculations 

at larger steplengths, but it also reduces, sometimes very substantially, the number of 

iterations needed to achieve convergence to a given accuracy. Of course an assessment 

of computational efficiency would involve not only the iteration count, but also the 
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cost of each iteration and of any overheads such as Jacobian evaluations for Newton's 
method. 

3.6 Numerical results 

In this se'ction we present the results of a number of numerical experiments involving 

both hnear and non-linear test problems. Unless otherwise stated, all these r^ults 

were produced from FORTRAN programs running in double precision on a Sun 4 

workstation. Our experiments have shown that, subject to the effects of rounding 

error, the first 20 Panovsky-Richardson methods exhibit roughly the same quahtative 

behaviour, consequently we have restricted our attention to the methods of orders 

4, 6 and 8. Finally, in view of the oscillatory nature of the observed global errors 

of these methods, we take as our measure of accuracy the maximum absolute global 

error over a given interval. 

Buffing's equation 

Following Panovsky and Richardson [53] we take as our first test problem the conser­

vative Buffing's equation 

y" + (1 _ = 2kY- y{0) = 0, y'(0) = 1. (3.50) 

which has as its solution the Jacobi eUiptic functions 

y{x) = sn{x; k), 

(see e.g. Luke [48] p90). 

Panovsky and Richardson give some results for this problem, but since they did 

not divulge the value of k they used, we conducted tests of our own using a number 

of different k values. Table 3.3 and figure 3.2 show the results of applying the eighth 

order Panovsky-Richardson methods PR6 and PR7, as well as an eighth order expHcit 
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Runge-Kutta-Nystrom method due to Hairer [32] to (3.50) with k = 0.5. We see from 
this table that for the fixed steplength h = 0.5, the PR7 method is the most accu­
rate, and that the RKN8 method performs rather poorly. To compare the long-term 
behaviour of the global error we repeated our computations with the PR6 and RKN8 
methods with stepsizes chosen so that the methods would have roughly the same max­
imum global error over the interval [0,200] as that of the PR7 method with h = 0.5. 
These results clearly demonstrate the linear dependence of the maximum global error 
on the length of integration interval for the two Panovsky-Richardson methods as 
noted by Panovsky and Richardson [53], and the near quadratic dependence in the 
case of the RKN8 method. 

X 

h = 0.5 h = 0.315 h = 0.145 
X RKN8 PR6 PR7 PR6 RKN8 
100 4.01 E-05 1.89 E-08 5.86 E-10 8.52 E-10 3.98 E-10 
200 1.76 E-04 3.93 E-08 1.22 E-09 1.73 E-09 1.85 E-09 
500 1.13 E-03 9.88 E-08 3.08 E-09 4.39 E-09 1.24 E-08 

1000 4.54 E-03 1.98 E-07 6.15 E-09 8.78 E-09 5.06 E-08 
2000 1.82 E-02 3.94 E-07 1.23 E-08 1.76 E-08 2.06 E-07 
5000 1.14 E-01 9.88 E-07 3.08 E-08 4.40 E-08 1.29 E-06 

Table 3.3: Maximum absolute errors on intervals [0,x] when methods PR6, PR7 and 
RKN8 are appHed to (3.50) with k = 0.5. 

The Stiefel-Bettis problem 

In testing an exponential-fitting method for second order equations, Stiefel and Bettis 

used the initial value problem 

z" + z^ 0.001e'^ z{0) = 1, z'{0) = 0.9995Z, (3.51) 
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X 
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Figure 3.2: Long-term propagation of the maximum global errors in the methods 
PR6, PR7 and RKN8 when applied to Buffings equation with k = 0.5 and with 
steplengths chosen so that the maximum global errors on [0,200] were approximately 
in agreement with that of PR7 with h = 0.5. Sohd hne = PR7, dotted Hne = PR6, 
dashed line = RKN8 
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which represents a perturbed harmonic oscillator with a perturbation in resonance 

with the unperturbed oscillation. This problem has exact solution 

z = {l + 0.0005zx)e*'̂ . 

This problem has subsequently been used by numerous authors to test and compare 

other methods, particularly those designed for problems with nearly periodic solu­

tions. In order to solve this problem numerically we first spht equation (3.51) into 

two coupled equations by setting z = x + iy. 

h RKN4 PR2 PR3 T4 PR4 PR5 T6 

7r/2 
7r/4 
7r/8 

7r/16 

8.70E-01 
5.89E-02 
1.75E-03 
4.54E-05 

-1.17E-02 
-7.53E-04 
-4.81E-05 
-3.03E-06 

-l . l lE-03 
-6.58E-05 
-4.06E-07 
-2.53E-07 

-7.15E-05 
-7.94E-07 
-1.35E-08 

-2.95E-05 
-4.71E-07 
-7.40E-09 
-1.16E-10 

3.57E-07 
1.02E-08 
1.79E-10 
2.87E-12 

-5.61E-06 
-1.45E-08 
7.60E-09 

Table 3.4: Errors in the computed value of |2;(407r)|, where z is the solution of the 
Stiefel-Bettis problem. 

Table 3.4 shows the results obtained by applying several methods of orders 4 and 

6 to this problem. The number tabulated in each case is the error in approximating 

z{4:07r)\ = (H-0.00047r2)i/2. The Panovsky-Richardson methods PR2 and PR3 have 

order 4, PR4 and PR5 have order 6; the columns headed T4 and T6 contain results 

produced by Thomas [60] using a fourth order method with a phase lag of order 6, 

and a sixth order method with a phase lag of order 8 respectively, and finally the 

column headed RKN4 contains results obtained from a popular explicit fourth order 

Runge-Kutta-Nystrom method (see Hairer et al. [35], p262). 

Thomas' fourth order method T4 is the most accurate of the four fourth order 

methods, which we would expect since it has the advantage of a sixth order phase 

lag. Since the RKN4 method is expHcit and has no interval of periodicity, it is not 

surprising that this is the least accurate method, indeed we would expect a rather 

sharp increase in its global error i f the integration interval were to be extended. By 
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contrast, the situation for the sixth order methods is not what we would have expected 
at all. Thomas' sixth order method T6 has the advantage of an eighth order phase lag 
and is the best of the methods considered by Thomas [60] for this problem, yet the 
Panovsky-Richardson method PR5, which lacks this advantage, is significantly more 
accurate. This is perhaps explained by the fact that the error constant for the PR5 
method, which from equation (3.40) is approximately 2.6 x 10~^, is very much smaller 
than the figures quoted by Thomas [60] for the methods studied in that paper. 

We have also studied the propagation of the maximum global error over intervals 

0, x] for this problem and have found the same linear growth as was observed in the 

results for the previous problem. 

The two body problem 

Following Panovsky and Richardson [53] we adopted the two body problem as our 

final test problem. This problem is also used commonly in the Uterature for testing 

numerical methods. The problem as given by Panovsky and Richardson contains a 

misprint and should read 

y" + y/r' = 0; j/(0) = a( l - e), y'(0) = 0, (3.52) 

z" + z/r' = 0; ^ ( 0 ) - 0 , z'{0) = a-'/'^{l + e ) / ( l - e), (3.53) 

with = z^. This has exact solution 

y = a{cos{E) - e), z = a V l - e ^ sin(E), 

where e is the eccentricity of the orbit, and the eccentric anomaly E is defined im­

plicitly by Kepler's equation 

x = a^^\E^esm{E)). 

To remove the confusion caused by the misprint in [53] and since the value of 
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a used to produce the numerical results was not given in that paper, most of our 

calculations were carried out with a set to 1. Some time after these calculations were 

performed we learned that the authors had in fact used a = (10/(27r))2/^. Using this 

o o 

1) > o 

O 
B 

a 

10 12 14 

Degree (n) of method 

16 18 20 

Figure 3.3: Maximum global errors over the interval [0,100] for methods PR4, PR6, 
PR9, PR12, PR15 and PR20 with four different stepsizes. SoHd Hne: h = 0.5, dotted 
line: h = 1.0, dashed Une: h = 2.0 and dash-dotted line: h - 3.0. 

value of a we have produced figure 3.3, which is an attempt to reproduce figure 2 

of [53]. Our results are very close to those of Panovsky and Richardson, except for 

those at around 10"^^. By repeating our calculations using FORTRAN quadruple 

precision (32 digits) we confirmed our suspicion that both our results and those of 

Panovsky and Richardson were severely affected by rounding errors, and that these 

differences were most likely due to the different floating point representations used 

by our respective computers. This rather severe build up of rounding error has been 
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evident in our results for all three test problems where small stepsizes were used, and 

could cause difficulties i f these methods were ever used in a variable stepsize code. 

Later in this chapter we will show that by supplying alternative starting values to 

the Panovsky-Richardson methods, they can be reformulated in such a way as to 

significantly reduce the effect of rounding errors. 

X 
o 
> o 

o 

-5.5 

-6 

-6.5 

-7.5 

-8.5 

L5 2.5 3.5 

LoglO X 

Figure 3.4: Long-term propagation of the maximum global errors in the methods 
PR6, PR7 and RKN8 when applied to the two body problem with a = 1 and e = 
0.1 and with steplengths chosen so that the maximum global errors on [0,200] were 
approximately in agreement with that of PR7 with h = 0.5. Solid line = PR7, dotted 
line = PR6, dashed line = RKN8 

Table 3.5 and figure 3.4 show the results of applying the three eighth order methods 

PR6, PR7 and RKN8 to the two body problem with a = 1 and e = 0.1. For the fixed 

stepsize h = 0.5 we see that the PR7 is the most accurate and that once again the 

RKN8 method performs rather poorly. To investigate the long-term behaviour of the 
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X 

•h = 0.5 h = 0.309 h = 0.125 
X RKN8 PR6 PR7 PR6 RKN8 
100 3.19 E-04 1.04 E-07 2.99 E-09 2.98 E-09 1.39 E-09 
200 1.40 E-03 2.16 E-07 6.24 E-09 6.22 E-09 6.22 E-09 
500 9.38 E-03 5.63 E-07 1.62 E-08 1.59 E-08 4.14 E-08 

1000 3.86 E-02 1.14 E-06 3.27 E-08 3.23 E-08 1.69 E-08 
2000 1.54 E-01 2.28 E-06 6.44 E-08 6.54 E-08 6.78 E-07 
5000 9.19 E-01 5.66 E-06 1.54 E-07 1.72 E-07 4.26 E-06 

Table 3.5: Maximum absolute errors on intervals [0,a;] when methods PR6, PR7 and 
RKN8 are apphed to the two body problem with a = 1 and e = 0.1 

maximum global error of these methods for this problem we repeated our calculations 

with the PR6 and RKN8 method with stepsizes chosen so that their maximum global 

errors over the interval [0,200] were approximately equal to that of the PR7 method 

with h = 0.5; the results of these calculations are shown in figure 3.4 and in the 

final two columns of table 3.5. Once again we see a near linear dependence on x 

of the maximum global error for the Panovsky-Richardson methods, while for the 

RKN8 method this dependence is approximately quadratic. I t is also interesting to 

note that the ratio of the maximum global errors of the two Panovsky-Richardson 

methods remains approximately constant over the interval [0,5000 . 

Calvo & Sanz-Serna [5] has shown that i f a symplectic Runge-Kutta-Nystrom 

method (see section 2.2.3) is appHed to Kepler's two-body problem with a constant 

stepsize, then the maximum global error will exhibit a hnear dependence on the length 

of the integration interval. Since the Panovsky-Richardson methods of degrees 1 to 

20 exhibit this same linear dependence when apphed to this problem, we began to 

wonder if these methods were in fact symplectic. Later in this chapter we will see 

that this is not the case. We have as yet been unable to determine why the maximum 

global error should grow Hnearly in the case of the Panovsky-Richardson methods, 

and quadratically in the case of certain explicit Runge-Kutta-Nystrom methods 
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3.7 Generalised Panovsky-Richardson methods 

In this section we extend the methods of Panovsky and Richardson to allow ar­

bitrary interpolation nodes. These methods, which we call "Generalised Panovsky-

Richardson methods", or GPR methods, have been introduced in order to both extend 

the applicability of the main result of the next section, and to greatly simplify the 

proof of that result. 

We begin, as in Section 3.1, with the identity 

y ( x + sh) - 2y(x) + y ( x ~ sh) = j'''^'^(x + sh ~ z ) [ f { z ) + f{2x - z ) ] d z (3.54) 

where, as before, the second argument of the function / has been temporarily sup­

pressed. Once again we let Xm = XQ + mh for m = 0,1,2,. . . and h fixed. Taking 

X = Xm and z = x^ + rh we can write (3.54) as 

y{xm + sh) - 2y(x„) + y{xm - sh) = h^ / % - T ) [ / + ( T ) + r ( T ) ] d r (3.55) 
JO 

where 

f ^ { T ) = f { x ^ ± T h ) 

Let / ^ ( T ) be approximated by interpolating polynomials of degree n based on a set 

oi n + 1 distinct nodes {ci}^_o, i.e.. 

fHr) = j:h{r)fHc,] 
j=0 

W l i th 

l.(r) = f \ ^ ^ = ^ (3.56) 
i i c , - c , ( r - c , ) M ' ( c , ) ^ ^ 

and 

M ( r ) = n(r - q). 
1=0 
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Let ?/m and ym±ci be approximations for y(xm) and y{xm±ci) respectively, and let 

fm±Ci ~ f{Xm±Ciiym±Ci)i 

then from equation (3.55) we obtain the formulae 

n 

Vm^c^ = 2t/„ - ym-c. +h'J2 Bij{fm+c, + fm-c,) (3.57) 

where 

B,, = r\c, - T)l,{r)dT, z,j - 0 , 1 , . . . ,n . (3.58) 
JQ 

If the nodes {q}"_o are restricted to the interval [0,1] with 

0 = Co < Ci < . . . < Cn-l <c„ = l (3.59) 

then (3.57) gives a set of n equations from which ym+i and the off-step values ym+ci, 

for i — 1,2,... , n — 1, may be calculated. As with the methods of Panovsky and 

Richardson, in any implementation of these 2-step hybrid methods we must provide 

the n 1 starting values j / ^ - c i , • • • j 2 /m-c„_i j 2/m-i- If these methods were to be 

included in a variable stepsize code, then a similar problem would arise at each change 

of the steplength h. 

The Panovsky-Richardson method of degree n is based on the nodes 

Cj = | ( 1 -f- aj), with ctj = cos[(n — i)7r/n], (3.60) 

for j = 0 , 1 , . . . , n. With this choice of nodes it can be shown that, for j = 1,2,..., n — 

1, 
lAr) = ^ ' ' (3.61) 

where a = 2r — 1. The corresponding expressions for the cases j = 0,n are found by 

halving the right-hand side of the above equation and substituting the appropriate 

value of j. I t can then be shown that (3.57) gives (3.19) with the coefficients as given 
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in equation (3.28). 

The Panovsky-Richardson interpolation nodes display the symmetry property 

C-n-j l - c „ for i = 0 , l , . . . , r ( n - l ) / 2 l . (3.62) 

This symmetry property, which is a feature of a number of node choices based on the 

zeros or extrema of orthogonal polynomials, plays a crucial role in the equivalence to 

be discussed in the next section, and also in the following preparatory lemma. 

Lemma 3 . 4 If the set of real numbers {CJ-LQ satisfies conditions (3.59) and (3.62) 

then, for j = 0 , 1 , . . . , n, 

+ Bnn-, = / ' l,{T)dT. (3.63) 
Jo 

Proof From (3.56) we can write 

i^-M=n 7 ^ ^ ^ = n " r l " " = « i - (3-64) 

Hence 

B „ = J \ l - T)1,{1 - r)dT = alj{a)da, (3.65) 

with a = 1 — T. The required result follows immediately. • 

3.8 The equivalence of G P R and collocation meth­

ods 

In this section we will show how the Generalised Panovsky-Richardson methods are 

equivalent to one-step collocation methods providing that the starting values for the 

GPR methods are chosen in a particular way. 

Let {ci}"_o be distinct real numbers satisfying condition (3.59). Let h, x^ and 

ym be as previously defined, and let Zm be an approximation for y'{xm). Recall from 
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section 2.2.4 that a one-step collocation method for the differential equation (3.1) 
based on the nodes {CJ-LQ may be written as the following Runge-Kutta-Nystrom 
method: 

Vm+c, = ym + C,hZm-Vh?Y.Bijfm+c,, i = 0 , l , . . . , n (3.66) 
i=o 

n 
Vm+l = ym + hZm + h'^J2^jfm+Cj (3-67) 

i=0 

Zm+1 Zm + hY.d.f^^.^ (3.68) 
i=o 

where 

= X (q - T ) / j ( r ) o ? T (3.69) 

h = / (1 - '')h{'r)dT (3.70) 

= £ h { r ) d T . (3.71) dj 

For brevity, we shall refer to these collocation-based Runge-Kutta-Nystrom methods 

as CRKN methods. A symmetric CRKN method is one whose collocation nodes 

satisfy the symmetry conditions (3.62). 

The following lemma will be used in the proof of the main result of this section. 

L e m m a 3 .5 The approximations determined by a symmetric CRKN method satisfy 

the equations 
n 

CihZm+l = ? /m+l - Vm+Cn-i + Bijfm+Cn-j 

for i = 1,... ,n and m = 0,1, — 

Proof Let u € ^71+2 be the polynomial satisfying the collocation conditions defin­

ing the symmetric CRKN method, then we have 

n 

u"{Xm + sh) = J2hi^)fm+c, 
i=0 
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Integrating this twice over the range {s, 1) and using u{xm+i) = J/m+i and u'{xm+i) = 
Zm+i, we obtain 

n -1 
(1 - s)hZm.+l = ym+1 - u{Xm + sh) + h'^ ' s)lj{T)dT f^+cj 

In particular, i f 5 = c„_, = 1—0; then 

/ (r - 1 - I - Ci)lj{T)dT = / (c, - cr)lj{l - a)da = Bin-j 
Jl-ci Jo 

from (3.64). The required results follows. • 

Define the quantities w^^, for i = 1 , . . . , n and m = 1,2,..., by the relations 

n 

C M ^ = y m - ym-c, +h''J2 Bijfm-c, • (3.72) 
J=0 

Using these definitions, the forward stepping stage of our GPR method (3.57) may 

be written as 
n 

ym+l =ym + /i^L"^ +h'Yl Br^Jm+c, (3.73) 
i=o 

Substituting m -|- 1 for m and setting i = n in (3.72), and using (3.73) we obtain 

hw^:l = hw^:^ + h ' f : 5«,(/™+i-c, + fm+c,) (3.74) 
3=0 

Making use of the symmetry condition (3.62), we may write this as 

j=o 

Using Lemma 3.4 and equation (3.71) to simplify this further, we obtain 

^ ^ S i = ^ L " ^ + / ^ E ^ . / " ^ + c , - (3.75) 

Equations (3.73) and (3.75) are of the same form as equations (3.67) and (3.68) of 
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the corresponding C R K N method, but the off-step values fm+a appearing in the two 
sets of equations may be different. 

More generally, the G P R method (3.57) can be re-expressed as 

n 

Vm+c. =ym + Cihwl^^ +h^Yl Bijfm+c, (3.76) 
3=0 

with w;« as defined in (3.72). This differs from the C R K N method (3.66)-(3.68) 

in that this method appears to use a different derivative approximation, wl^, in 

calculating each of the off-step values ym+a-

In theorem 3.6 we show that if the corresponding C R K N method is used to start 

the G P R method, then the derivative approximations are independent of i, and 

the two methods are equivalent. 

Theorem 3 . 6 Let { c , } - L Q be a set of distinct nodes in [0,1] such that CQ = 0 < C i < 

... < Cn-i < 1 = Cn and c„_j- = 1 — Ci, for z = 0 , 1 , . . . , ("n/2]. Two numerical methods 

are based on these nodes, the GPR method (3.57) and the CRKN method (3.66)-

(3.68). If the starting values provided for the former method are the approximations 

generated by the latter on [XQ,XI\, then the two methods would give identical results 

at all subsequent steps if the arithmetic could be done exactly. 

Proof Suppose that the C R K N method is used to provide the starting values 

required by the G P R method on [XQJXI]. NOW consider the first step of the G P R 

method. From Lemma 3.5 we have 

z/;̂ *' = z\ for i = 1 , . . . , n 

so that, for this step, the two methods give identical results. In the second step, lemma 

3.5 once again gives us that xv^' — z^ and so the two methods produce identical results 

in this step also. The required result follows by induction on the number of steps. • 

It can be shown that if the G P R method is started by an alternative method, then it 
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is still the case that the derivative approximations are independent of i , however 

the equivalence between the CRKN and GPR methods is lost. 

3.9 P-stability and symplecticness 

In section 3.4 we derived the stability function for the Panovsky-Richardson methods 

and tabulated the periodicity intervals of the methods of degree up to 10. Based on 

these results we conjectured that none of the Panovsky-Richardson methods would 

be P-stable. With the equivalence established in the previous section, we are now in 

a position to be able to prove the more general result that none of the Generalised 

Panovsky-Richardson methods are P-stable. This equivalence has also greatly sim­

plified the analysis of the symplecticness of the Panovsky-Richardson methods, and 

has led to a proof of the second result of this section: that none of the Panovsky-

Richardson methods are symplectic. 

We begin with the question of P-stability. 

Theorem 3 . 7 Generalised Panovsky-Richardson methods are not P-stable for any 

choice of interpolation nodes. 

Proof The stability analysis of section 3.4 was devised for the Panovsky-Richardson 

methods, but it does not rely on a particular choice of interpolation nodes. With the 

appropriate interpretation of the matrix B, the analysis applies to all GPR methods. 

Furthermore, this analysis makes no reference to the choice of starting values, so it 

applies to the CRKN methods, and to any other implementations of the GPR for­

mulae. Since Coleman [22] has proved that there are no P-stable symmetric one-step 

collocation methods (i.e. CRKN methods), the result follows. • 

In view of the equivalence established in the previous section, we have at our 

disposal two quite different methods of analysing the stabihty properties of the GPR 

methods: our method from section 3.4, and that of Kramarz [44]. Whilst we express 

the stability function a„ as a ratio of determinants of re X n matrices, Kramarz' 
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expression is a ratio of determinants of 2 x 2 matrices. Clearly the matrices involved 

in these expressions must be related in some way, but this relation has so far eluded 

us. 

Conditions under which a Runge-Kutta-Nystrom method with no redundant stages 

is symplectic have been derived and are attributed to Suris. In the notation of the 

previous section, these conditions are 

bi = { l - Ci)di 0 < i < n (3.77) 

and 

dj{k - Bj,) = di{bj - Bij) 0<i,j<n (3.78) 

For a brief discussion of symplecticness and symplectic methods, the reader is referred 

to section 2.2.3. 

Theorem 3.8 The Panovsky-Richardson methods are not symplectic. 

Proof (i) The conditions (3.77). 

From equations (3.70), (3.71) and (3.56). 

b i - { l - C ^ ) d , = [ \ c , - T ) k { T ) d T 
Jo 

= - r r - ^ t M(T)d7 M'{ci)Jo ^ ^ 

For symmetric nodes, 

M ( l -s) = ( - l )"+iM(5) 

and consequently conditions (3.77) are satisfied when n is even, and in fact for all 

choices of the interpolation nodes {cJf_o. In other words every symmetric CRKN 

method with an odd number of stages satisfies the first set of the Suris conditions. 

Such a general result does not exist for methods with an even number of stages, so 

we restrict our attention to the Panovsky-Richardson methods. In this case, letting 



3.9. P-STABILITY AND SYMPLECTICNESS 70 

T = 1(1 + a) and with Q = | ( 1 + ai) where is as previously defined, we have 

1 
n(n2 - 4)22"-i 

from our derivation of the coeflBcients An in section 3.2. It follows that the Panovsky-

Richardson methods of odd degree are not symplectic. 

(a) The conditions (3.78). 

In what follows it will be assumed that n is even, so that conditions (3.77) are 

satisfied. If c„ = 1 then the method is an FSAL method, i.e. 

bi = Bm 0<i<n 

and condition (3.77) with i = n gives 

bn = 0. 

Then the conditions (3.78) corresponding to the choice j = n reduce to 

d,B,n = 0 0 < z < n (3.79) 

We will now prove that both di and Bin â re non-zero for the Panovsky-Richardson 

methods. 

Equation (3.69) gives 

Bln= r {Ci - T)h{T)dT ^ 0 
Jo 

since the integrand is of constant sign on the interval (0,ci). 

Two methods of proof have been found to show that di ^ 0. The first proceeds 

by deriving an alternative expression for di, but this is rather long and is not given 
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here, for further details see Coleman & Booth [23]. For the second method we notice 
that the numbers di are, apart from a factor of 2, the weights of a Clenshaw-Curtis 
quadrature formula, so that the conclusion di > 0 is a. special case of the result, 
proved by Imhof [39], that the Clenshaw-Curtis weights are all positive. • 

The two body problem revisited 

In section 3.6 we noted that for the two body problem, and indeed for all the problems 

considered, the maximum global error of the Panovsky-Richardson methods appears 

to exhibit a linear dependence on the length of integration interval. The errors quoted 

in that section for the two body problem were the maximum modulus of the global 

errors in the approximation of y(x) and z{x). It turns out that the error in the 

approximation for z[x) is, at least on the integration intervals considered, very much 

larger than the corresponding error in the y{x) approximation, and it is this error 

which appears to grow linearly with the length of the integration interval. The error 

in the approximation for ?/(a;), on the other hand, displays a quadratic dependence on 

the length of the integration interval and will, if this interval is extended sufficiently, 

eventually exceed the error in the approximation for z{x). Figure 3.5 shows the results 

of applying the sixth order PR5 method to the two body problem with a = 1, e = 0.1 

and h set to 7r/5, so that the method performs ten steps per orbit. Similar results 

were obtained for other steplengths and degrees of method. 

3.10 Propagation of rounding errors 

In carrying out the calculations in section 3.6 we found that the effects of rounding 

error can build up rapidly in the Panovsky-Richardson methods. These effects are 

illustrated by the changes in the shape of the curves at around 10""̂ ^ in the graphs 

contained in that section. We have found that, in addition to its other benefits, the 

CRKN formulation of these methods is far more stable with respect to the propagation 

of rounding errors. 
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Figure 3.5: Maximum global errors in the approximations for y{x) (dotted line) and 
z{x) (solid line) at the end of each orbit when the PR5 method is applied to the two 
body problem with a = 1, e = 0.1 and h = IT/5. 
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There are many instances of mathematically equivalent formulations of a numer­
ical method producing very different results. Hairer et al. [35] applied the Stormer 
formula 

h'^ 
yn+l - 2yn + yn-l = J^l^^/n " 2/„-i + fn~2) 

in this form, and in an equivalent one-step formulation to y" = —y. The effects of 

rounding error were found to be far more severe in the original version. Also Henrici 

38] pointed out the superiority of the "summed form" of the Stormer-Cowell methods 

in this respect. Note that, unlike our CRKN formulation of the GPR methods, while 

the reformulated methods of Hairer et al. [35] and Henrici [38] may be interpreted as 

one-step methods, they still require the same number of starting values as the original 

methods. In view of the structural similarity of the Stormer-Cowell methods and our 

GPR methods, it is reasonable to expect our one-step formulation to be the more 

stable with respect to the propagation of rounding errors, and indeed this turns out 

to be the case. 

The Panovsky-Richardson methods may be formulated as in equation (20) of [53], 

as the two-step hybrid form of equation (3.19) of section 3.2 and as the CRKN method 

(3.66)-(3.68) of section 3.8 with the nodes { c j given by (3.60). In exact arithmetic 

these three formulations would yield identical results, however our computers are 

not capable of exact floating point arithmetic and so rounding errors are inevitable. 

To show the differences in the build-up of rounding errors in these formulations we 

have applied them to a linear, a non-linear and a stiff test problem. Since we have 

observed no significant differences in the results given by the first two formulations, 

we concentrate on comparisons of the two-step hybrid form and the equivalent CRKN 

method. For all the calculations reported in this section, the steplengths were chosen 

so that the magnitude of the global truncation error on the interval considered was 

less than the unit round-olf in the arithmetic used. We have also confirmed that our 

conclusions are not affected by reasonable changes in the tolerance parameter for the 

iterations necessary to solve the implicit equations at each step. 
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The Harmonic Oscillator 

The sixth order Panovsky-Richardson method PR4 and the equivalent Runge-Kutta-

Nystrom method, denoted by RKN6, were used to solve the linear initial value prob­

lem 

y"=-y, 1/(0) = 1, 2/'(0) = 0. (3.80) 

For the fixed steplength h = 0.01, the magnitude of the global truncation error is less 

-16.5 100 200 300 400 500 600 700 800 900 1000 

Number of steps 

Figure 3.6: Global errors of the sixth order methods PR4 and RKN6 when applied to 
(3.80) over the interval [0,100] with steplength h = 0.01. Smooth Hne = PR4, jagged 
fine = RKN6. 

than 5 x 10"^^ on [0,10] and less than 6 x 10"^^ on [0,100]. Figure 3.6 shows the 

observed global errors in the two methods over the range [0,10]. These results were 

generated by a double precision FORTRAN program run on a SUN workstation. 

Table 3.6 compares the results obtained from the PR4 and RKN6 methods over 
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the interval [0,100] in a variety of computing environments. The MATLAB pro­

gram employed a Gauss-Seidel-type iteration scheme to solve the system of implicit 

equations arising at each step, whereas the FORTRAN programs run on both the 

mainframe and SUN workstation used a Newton scheme (see section 3.5). The en­

tries in Table 3.6 are due solely to the propagation of rounding errors, and clearly 

demonstrate the greater stability of the one-step CRKN formulation for this prob­

lem. Unlike the Microcomputer and the SUN, the mainframe stores floating point 

numbers as hexadecimal digits and operates a chopping, rather than a rounding, algo­

rithm. This accounts for the increased rate of error growth observed in the mainframe 

simulations. 

MATLAB FORTRAN Double Precision 
SUN Workstation SUN Workstation Mainframe 

X PR4 RKN6 PR4 RKN6 PR4 RKN6 
1 3.4 E-14 5.6 E-16 1.7 E-14 4.4 E-16 4.9 E-13 1.2 E-15 
2 5.2 E-14 9.4 E-16 6.8 E-14 4.4 E-16 1.1 E-12 1.6 E-15 
5 1.1 E-13 1.1 E-15 9.0 E-14 1.1 E-15 3.0 E-12 5.8 E-15 

10 1.1 E-13 2.7 E-15 9.1 E-14 2.8 E-15 5.0 E-12 1.7 E-14 
20 2.4 E-13 4.4 E-15 1.0 E-13 2.9 E-15 1.2 E-U 3.3 E-14 
50 4.6 E-13 7.9 E-15 2.2 E-13 1.2 E-14 3.1 E-11 8.7 E-14 

100 4.6 E-13 1.2 E-14 5.0 E-13 1.3 E-14 6.3 E-11 1.7 E-13 

Table 3.6: Maximum absolute errors on intervals [0, x] when methods PR4 and RKN6 
are applied to (3.80) with steplength h = 0.01. 

Tv^ro-body Problem 

For our non-Hnear test problem we once again take the two body problem 

y" + y/r' y(0) = 1 - e, y'{0) = 0 (3.81) 

z" + z/r' = 0, z(0) = 0, ^'(0) = VV + e ) / ( l - e) (3.82) 

with = y^ + z^. The two equivalent methods PR4 and RKN6 were applied to this 

problem with the fixed steplength h = 0.01, which guaranteed that the modulus of 
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X PR4 RKN6 
1 1.2 E-14 1.0 E-15 
2 2.2 E-14 4.2 E-15 
5 2.1 E-13 2.8 E-14 

10 6.9 E-13 5.1 E-14 
20 1.4 E-12 1.2 E-13 
50 1.4 E-11 2.3 E-13 

100 2.5 E-11 1.1 E-12 

Table 3.7: Maximum absolute errors on intervals [0, x] when methods PR4 and RKN6 
are applied to problem (3.81)-(3.82) with steplength h = 0.01. 

the maximum global error was less than 3 x 10"^^ on [0,10], and less than 5 x 10~^̂  on 

0,100]. The results shown in table 3.7 were obtained using the SUN double-precision 

FORTRAN implementation of these methods. 

A 'stiff' problem 

The results from the two non-stiff problems above clearly demonstrate the superiority 

of the Runge-Kutta-Nystrom formulation of these methods. The question we now ask 

is whether this remains the case if these methods are applied to a stiff problem. To 

answer this we applied the two sixth order methods PR4 and RKN6 with the fixed 

steplength h = 0.01 to Kramarz' ([44]) test problem 

y" = 2498y + 4998^; y(0) = 2, y'{0) = 0, 

z" = -2499y - 4999^; ^(0) = - 1 , ^'(0) = 0. 

(3.83) 

(3.84) 

For this steplength, the modulus of the maximum global errorin these methods is less 

than 9 x 10"^^ on [0,10] and less than 9 x lO"^*' on [0,80]. The results shown in table 

3.8 were generated using a MATLAB program run on a microcomputer. 
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X PR4 RKN6 
1 6.8 E-14 1.1 E-15 
2 1.0 E-13 1.9 E-15 
5 2.2 E-13 2.2 E-15 

10 2.2 E-13 5.8 E-15 
20 4.6 E-13 1.4 E-14 
40 6.4 E-13 2.3 E-14 
80 9.0 E-13 4.3 E-14 

Table 3.8: Maximum absolute errors on intervals [0, x] when methods PR4 and RKN6 
are applied to problem (3.83)-(3.84) with steplength h = 0.01. 

3.11 Conclusion 

Remarks in the introduction to Panovsky & Richardson's paper [53] imply that the 

methods they propose are designed for problems "whose solutions have a quasi-

periodic character". While it seems that the authors' main interest lay in solving 

such problems, their methods take no account of the possible oscillatory behaviour 

of the solution, unlike the exponential fitting methods mentioned in chapter 2. The 

fact that Tn{x) = cos(n cos~^(a;)), and that Tn{x) oscillates on [—1,1], does not imply 

any connection with trigonometric interpolation or with any other device designed to 

mimic the behaviour of periodic solutions. 

The work of Panovsky & Richardson has given us an interesting family of methods 

for initial value problems of the form (3.1). For each positive integer r there are two 

methods of order 2r, one corresponding to polynomial interpolation of degree 2r — 1 

and the other to interpolation of degree 2r — 2. We have shown that the information 

required to analyse the stability properties of the method of degree n is contained 

in the rational function Q : „ ( I / ^ ) , and that every method from this family possesses a 

non-vanishing interval of periodicity. 

The total length of the union of the periodicity intervals increases with n, but the 

fact that these intervals remain disjoint is an undesirable feature. The example at 

the end of section 3.4 shows what may happen when a steplength reduction results 
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in moving from an interval of periodicity to an interval of instability. The gaps 
between periodicity intervals shrink as n increases, but the methods remain unstable 
for v'^ = kir'^ for sufficiently small non-negative integers k, for example, with n = 9 
this is true for ^ = 0 , 1 , . . . , 6. 

The Gauss-Seidel-type iterations suggested by Panovsky &; Richardson, or our 

version given by (3.49), to solve the implicit system of non-linear equations arising 

at each step are economical when convergence is rapid. However, as demonstrated 

in section 3.5, these schemes can place severe restrictions on the range of possible 

stepsizes in order to guarantee convergence. 

Numerical results in [53] and section 3.6 show that these methods can produce 

solutions of high accuracy. Comparisons show them to be more accurate than some 

established methods of the same order. Of particular interest is the fact that the 

global errors of these methods appears to exhibit a near-linear dependence on the 

length of the integration interval, whereas for some RKN methods this dependence is 

quadratic. We still have no explanation as to why this is the case. 

In section 3.8 we showed that the methods of Panovsky & Richardson are equiva­

lent to certain collocation-based Runge-Kutta-Nystrom methods. In any implemen­

tation of these methods, the RKN formulation is to be preferred since it is both 

easier to start and is more stable with respect to the build-up of rounding errors, as 

demonstrated in section 3.10. 

In section 3.9 we showed that these methods are neither P-stable nor symplectic. 

By looking at the individual components of the global error of some of these methods 

when applied to Kepler's two-body problem, we found that only one component 

grows approximately linearly with the length of the integration interval, the other 

component, though very much smaller, grows approximately quadratically. 



Chapter 4 

Multistep collocation methods I: 

The multistep 

Runge-Kutta-Nystrom methods 

Aspects of one-step collocation methods for initial value problems of the form 

y" = f{x,y); y(xo) = yo, y'ixo) = zo, (4.1) 

involving second order ordinary differential equations in which the first derivative does 

not appear explicitly have recently been investigated by Coleman [22], Coleman & 

Booth [23] and Van der Houwen et al. [67], [68]. In particular, Coleman [22] has shown 

that there are no P-stable collocation-based Runge-Kutta-Nystrom methods. N0rsett 

and Lie [50], [47], have derived and investigated properties of multistep collocation 

methods for first order differential equations. 

In this and the following chapter we derive and investigate two classes of multistep 

collocation methods for (4.1). The methods presented in this chapter incorporate both 

y and y' values from previous step-points. These methods are natural extensions of 

the one-step collocation-based Runge-Kutta-Nystrom methods, and so we refer to 

then as MCRKN (Multistep Collocation-based RKN) methods. In chapter 5 we look 

79 
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at methods for which derivative data is not required. 

Before attempting to construct an MCRKN method we must first ensure that the 

interpolation problem defining that method is uniquely solvable. In section 4.1.1 we 

show that this requirement places few restrictions on the range of possible collocation 

nodes. MCRKN methods with arbitrary stepnumber k and number of collocation 

points m are constructed in section 4.1.2 and are shown to be natural extensions of 

the one-step collocation methods. 

Since our interest lies in solving problems of the form (4.1) whose solutions are 

oscillatory in nature, we seek methods which possess non-vanishing intervals of pe­

riodicity. In an attempt to derive such methods we restrict our attention to the 

two-step symmetric MCRKN methods whose off-step points, {x„+c, } i ^ i , are symmet­

rically distributed in the interval [x„_i,a;„+i]. Order conditions for these methods 

are considered in section 4.2, and their stability properties are investigated using the 

results of section 4.3. 

Some specific examples of two-step symmetric MCRKN methods are analysed in 

section 4.4. For the methods considered in this section we find that the requirement 

of periodicity drastically reduces the range of available collocation nodes. The re­

sults of numerical experiments comparing some of these methods with the Panovsky-

Richardson methods requiring comparable computational efi"ort are given in section 

4.5. 

4.1 Construction 

In this section we consider the construction of the MCRKN methods and give expres­

sions for the coefficients for arbitrary stepnumber k and number of collocation points 

m. These expressions will be seen to be natural generahsations of the coefficients for 

the one-step case. 

First however, we consider the existence of a unique solution to the collocation 

problem, and give examples of cases where a unique solution is not defined. In order 
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to do this we associate each MCRKN method with a corresponding interpolation 
problem which is independent of our differential equation. The uniqueness conditions 
are derived in the normal way by considering the generahsed Gram determinant for 
this problem. For the cases looked at so far, the conditions imposed by the uniqueness 
criterion do not unduly restrict the range of possible interpolation nodes. 

4.1.1 Unique solvability of the interpolation problem 

In this section we define the interpolation problem associated with each MCRKN and 

give conditions which ensure that the problem is uniquely solvable. These conditions 

are then simplified, and examples are given for a number of specific methods. 

Let Xr = xo + rh for all r G R, and let {ci}J^^ (m > 1) be distinct real numbers. 

A k-step, m-point MCRKN method is defined as follows 

Find u G Vm+2k-i such that 

u{xn-jh) = yn-j j = 0 . . . k - l 

u'(Xn - jh) = Zn-j j = 0 . . . k - l 

u"{Xn + Cih) = f{Xn+ci,u{Xn+c,)) i = l . . . m 

then take 

yn+i = u{xn+i) and z^+i = u'{xn+i) 

where yn+r and Zn+r are approximations to y{xn+r) and y'{xn+r) respectively, 

for r e IR. 

The solution to this problem will be discussed in the next section. With this method 

we associate the following interpolation problem: 

Find p € Vm+2k-i such that 

p{x-jh) - 9 { x - j h ) j = 0 . . . k - l (4.2) 

p'{x-jh) = g'ix-jh) j = 0 . . . k - l (4.3) 
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p"{x + c,h) = g"{x + Cih) i = l . . . m 
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(4.4) 

where the function g is assumed to be as differentiable as we please. 

It is easy to show that the problem defining the MCRKN method is uniquely solvable 

if and only if there exists a unique solution to the above interpolation problem. Let 

p(^x) = Y^n=o''~^ ctno;", and define a = (ao,.. .,am+2k-\f- We may now replace the 

interpolation problem by the system of linear equations 

Aa = b (4.5) 

where A is the (m -|- 2k) x {m + 2k) matrix 

A 

1 0 

1 - 1 

0 

1 

1 {1-k) {1-k)' ( l - k ) ' 

0 

0 

0 

- 2 

0 

3 

0 1 2(1-A;) 3(1-A;)^ 

0 0 

0 0 6c„ 

and 6G H ' ' is given by: 

0 

( - i r 

(1 - ky 

0 

i l - k) r-1 

6ci . . . r ( r - l ) c ; r - 2 

b = (5(0) , . . . ,5(1 - k),g'iO),.. .,g'{l - k),g"{c,),... , / ( c ^ ) ) ^ 

where for notational convenience we have taken a; = 0 and r = m + 2k — I. From 

Davis [27], the above interpolation problem will have a unique solution if and only if 
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A is non-singular. 

We now show how the determinant of A may be reduced to the determinant of an 

m X m matrix. The matrix A may be partitioned as: 

A = 
\ A21 A22 } 

where A n G ]R^^ X ]R2^ A^^ e IR '̂̂  X R™, A21 € R™ x R̂ *̂  and A22 € R'" x R'". We 

can view A\\ as the coefficient matrix arising from a Hermite interpolation problem 

where the values g(x) and g'(x) are fitted at the nodes a; = 0 , . . . , A; — 1. It is easy 

to verify that since these interpolation nodes are distinct, the Hermite interpolation 

problem is uniquely solvable, and A\\ is non-singular. Let B e ]R,™+2A: ]|̂ ™+2'= be 

given by 

0 /„ 
B = 

where the zero blocks have the same dimensions as the corresponding blocks of A, 

and Im is the m x m identity matrix. Premultiplying A by 5 gives: 

BA 
A 21 

AraMi2 

A22 

(4.6) 

where l2k is the 2k x 2k identity matrix. Note that since B is independent of the 

collocation nodes {c,}™!, det{BA) is just a constant multiple of det(A). By premul­

tiplying BA by the matrix 
hk 0 

c = 
- A 21 

we obtain: 

CBA = 
hk An"^Ai2 

0 A22 - AsiAn A12 
(4.7) 
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and: 
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det A = a det CBA 

= a det A (4.8) 

where A = {A22 — A21A11 A12), and a is some real number. Further simphfication is 

possible by imposing constraints (e.g., symmetry) on the nodes {c ,}-^^ . 

Below are three examples of two-step MCRKN methods. These examples show 

that one cannot just assume that the interpolation problem is uniquely solvable. 

Although no further results are known at this time, it seems logical to anticipate 

similar problems in methods with higher values of m and k, and to take the necessary 

precautions. 

Example 1 k = 2, m — 1. 

In this case the matrices A and A are as follows: 

and 

^ 1 0 0 0 0 ^ 

1 - 1 1 - 1 1 

A = 0 1 0 0 0 

0 1 - 2 3 - 4 

^ 0 0 2 6ci 12cl ^ 

A = { ̂  2{Qcl + 6ci + 1) ) 

det A = -2{6cl + 6ci + 1) 

Thus the interpolation problem is uniquely solvable provided ci ^ | ( - 1 ± • ^ ) . 

Example 2 k = 2, m - 2. 
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The matrices A and A are as follows: 

A 

1 0 0 

1 

0 

0 

-1 1 

0 0 

0 0 

0 0 0 ^ 

- 1 1 - 1 

0 0 0 

3 - 4 5 

6ci Ucj 204 

6c2 I2cl 204 } 

A = 
2{Qc\ + 6ci + 1) 2(10c? - 9ci - 2) 

2{<ocl + 6c2 + 1) 2(104 - 9c2 - 2) 

and 

det A = 4(ci - C2)(60c^c^ + 60ciC2(ci + c^) + 10(cJ + c^) + 

12(ci + C2) + 64ciC2 + 3) 

Here the interpolation problem is uniquely solvable provided the nodes {01,02] are 

distinct and satisfy 

-30c^ - 32c2 - 6 ± yjm4 + eOOcj + 384cl + 84c2 + 6 

10(6cl + 6c2 + 1) 
(4.9) 

Later i n this chapter we w i l l restrict our attention to those methods whose nodes 

satisfy the symmetry condition 

Ci + c„+i_ i = 2 - A; i = l , . . . , [ y _ (4.10) 

or more specifically for the case k = 2 , those methods whose nodes are symmetric about 

zero. I f we impose this condition now, our uniqueness criterion becomes: 

ci(60ct - 44c? + 3) 7̂  0 (4.11) 
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I.e. 

ci 7̂  0 and cj / 
2 , 11 ± 2 ^ 

30 
(4.12) 

E x a m p l e 3 A; = 2, m = 3, symmetric nodes. 

To save ourselves some unnecessarily complex algebra, we once again impose our 

symmetry constraints: C3 = —cj and C2 = 0, and look only at the matr ix A. In this 

case 

A 

and 

2(6c2 + 6ci + 1) 2(10c3 - 9ci - 2) 6(5c^ + 4ci + 1) ^ 

2 - 4 6 

2(6c2-6c2 + l ) 2(-10c3 + 9 c 2 - 2 ) 6(5ct - 4ci + 1) 

det A = -48(50ct - 45c^ + 6)c^ 

The interpolation problem is thus uniquely solvable provided 

ci 7̂  0 and 7̂  
9 ± V36 

20 

Much of this section is an extension of a paper by Lie & N0rsett [47], in which 

multistep collocation methods for general first order differential equation y' = f(x, y), 

y[xo) = yo are studied. I n that paper they state without proof that their collocation 

problem is uniquely solvable. We show here that this is not always the case, and give 

examples of where uniqueness fails. Once again we consider the approximation of an 

arbi trary funct ion g, assumed to be as differentiable as we please. Lie Sz N0rsett's 

interpolation problem is as follows: 

F ind u £ Vm+k-i such that 

u { x - j h ) = g { x - j h ) j = 0 . . . . , k - l 

u'{x + Cih) = g'{x + c^h) i = 1 , . . . , m 

(4.13) 

(4.14) 
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In the same way as before, we fo rm the corresponding matr ix A given by 

1 0 

1 - 1 

1 {1-k) {1-kY 

0 1 2ci 

0 

( - i r 

[ i - k y 

rc r-l 

0 1 2c„ re. r - l 

where for notational convenience we have taken a; = 0 and r = m + k — 1. Since our 

aim is to f ind an example where uniqueness fails, we w i l l not attempt to simphfy the 

mat r ix A. As before, we seek nodes { c i } - ^ ^ such that det A = 0. We know that when 

A; = 1 a unique solution always exists, so we t ry k = 2: 

E x a m p l e 1, k = 2 , m = l 

I n this case the matr ix A is given by: 

' ^ 1 0 0 ^ 

A = 1 - 1 1 

0 1 2ci 

and 

det A = - ( 2 c i + 1) 

so that the interpolation problem has a unique solution provided ci / - | . 

E x a m p l e 2, k = 2 , m = 2 
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The mat r ix A i n this case is given by: 

1 0 0 0 \ 

and 

1 - 1 1 - 1 

0 1 2ci 3c2 

\̂  0 1 2c2 3cl j 

det A = ( c i - C2)(6ciC2 + 3 (c i + cg) + 2) 

so that the interpolation problem has a unique solution provided 

c i 7̂  C2 and Ci ^ -
3c2 + 2 

3(2c2 + 1) 

I f we were to impose the symmetry constraint Ci = - C 2 , then the uniqueness criterion 

becomes Ci 7̂  

E x a m p l e 3, k = 2 , m = 3 

I n this case the matr ix A is given by: 

A 

1 0 0 0 0 

1 - 1 1 - 1 1 

0 1 2ci 3c2 4cl 

0 1 2c2 Zcl 44 

[0 1 2cs 34 44 J 

and 

det A = 2(Ci - C2)(Ci - C3)(C2 - C3)(12CiC2C3 + 6(ciC2 + C2C3 + C3C1) 

+ 4 ( c i + C2) + C3 + 3) 

so that the interpolation problem is uniquely solvable provided the nodes { 0 1 , 0 2 , 0 3 } 
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are distinct and satisfy 

, 6C3C2 + 4(c2 + C3) + 3 

^ 2(6c2C3 + 3(c2 + C3) + 2) 

I f we were to impose the symmetry constraint C3 = — C i , C2 = 0 then the uniqueness 

criterion would become Ci 7̂  0 and c\ ^ 

I t is interesting to note that in all three of the above examples the determinant 

of A is given by: 
r-l 

det A = a / - Ct) (4.15) 
^0 i=i 

for some real number a. We shall come back to this point at the end of the next 

subsection. 

Af te r completing this work we found that the existence of a unique solution to Lie 

& N0rsett's interpolation problem had also been investigated by Hairer & Wanner 

in their book [37]. In this work they show that uniqueness may be guaranteed by 

requiring that al l the nodes {Cj j j ^ i be positive. 

4.1.2 Construction of the collocation solution. 

I n this section we return to the task of solving the differential equation (4.1). We 

show how to construct a A;-step, m-point multistep collocation method ( M C R K N ) 

and show that these methods fo rm a subclass of the multistep Runge-Kutta-Nystrom 

methods. We begin w i t h some definitions. 

Let {yn,Zn]tzl be given approximations for {y{xn),y'{xn)}nZo- For notational 

convenience we change variable to 

S = ; (i.e. X = Xn + Sh) 
h 

for the rest of this section. Define 

U{s) = u{x^ + sh) (4.16) 
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F{s,Uis)) = f{xr. + sh,u{x„ + sh)) (4.17) 

and let a prime denote differentiation wi th respect to s (observe that d/ds = hdjdx). 

A fc-step m-point collocation method for (4.1) is constructed as follows: 

F ind U G Vm+2k-i such that 

U{-j) = yn-, ; = 0 , . . . , A ; - 1 (4.18) 

U'{-j) = hz^^, j = 0 , . . . , k - l (4.19) 

U"{c,) = h'F{c„U{c,)) z = l,...,m (4.20) 

then as approximations to y(xn+i) and hy'{xn+i) we take: 

y„+a = C/(l), hz^+, = U'{1) (4.21) 

The fol lowing lemma shows that the multistep collocation methods form a subclass 

of the multistep Runge-Kutta-Nystrom methods. 

L e m m a 4.1 The multistep collocation method defined by (4.18)-(4-81) may be writ­

ten as the multistep Runge-Kutta-Nystrom method: 

fc-i fc-i 

y^ = X]Aj(Ci)y„-i + / i ^ A i i ( c , ) 2 n - j + 
i=o j=o 

m 

h''Y:^vi{ci)F{ci,Yi) z = l , . . . , m (4.22) 

k-l k-l 
Vn+l = Yl ^jWVn-l +hY^ Mj(l)2^n-i + 

J=0 j=0 
m 

h'Y,yiil)F{ci,Yi) (4.23) 

fc-i fc-i 

hZn+l = YX'^il)yn-j + hJ2^',{^)^n-j + 
j=0 i=o 

m 
h'Y.^[{l)F{ci,Y,) (4.24) 
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where Xj, fi^, vi G Vm-\-2k-\-

P r o o f Let Yi = ^/(c,), i — l , . . . , m . Then for some A j , /Xj , vi £ 7̂ 771+24-1 we 

have f r o m (4.18)-(4.20) that 

k~i k-i 

i=o j=o 

771 

h'^iyi{s)F{c,,Yi) (4.25) 
1=1 

Expressions (4.22)-(4.24) follow immediately. • 

We now show how to construct the polynomials Xj, f i j , vi. Without loss of 

generality we take Xn = ^ and / i = 1 for the remainder of this section. 

T h e polynomials z/, (z = 1 , . . . , m ) 

From the collocation conditions (4.18)-(4.20) we see that the following conditions are 

imposed on Vi'. 

v^{-r) = 0 r = 0 , . . . , f c - l (4.26) 

v'.{-r) = 0 r = 0 , . . . , / c - l (4.27) 

'^K^j) = J = l,.-.,m (4.28) 

Condition (4.28) can be satisfied by a polynomial of the fo rm 

/ 2k-3 \ 

p^'is) = h{s) 1 + ^ a^s - Ci)s^ (4.29) 
V P=o / 

- k{s) + M{s) ^ a,,s^ (4.30) 

where li{s) is the fundamental Lagrange basis function based on the nodes { c i j - ^ i , 
771 

M{s) = l[{s-c,) 
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and (lip = aip/M'{ci). Integrating (4.30) and using (4.27) we obtain: 

i^K^) = / ' hir)dr + £ a,p / ' T' 'M(r)t^T. (4.31) 
Jo p^o •̂ o 

A fur ther integration gives 

2k 3 

U,{s) = r da r U{T)dT + / ' r Tm{T)dT (4.32) 
JO Jo ^ Jo Jo 

2k—3 
= Hs - r)k{T)dT + V l \ s - TyM{T)dT (4.33) 

Jo ^ Jo 

The remaining collocation conditions (4.26) and (4.27) may now be re-expressed as: 

2k-3 ~o rO 
T ««P / r^M{T)dr = - / k{T)dT (4.34) 
p^o 

flip / ( - r - r ) T ' ' M ( r ) d r = - / ( - r - T)l,{T)dT (4.35) 

p=o 

for r = 1 , . . . , A; — 1. Using equation (4.34) i t is possible to simpHfy (4.35) to get: 

2fc-3 -0 ,0 

Y . aivj T^^^M{T)dT = - j Th{T)dT (4.36) 

Equations (4.34) and (4.36) fo rm a linear system of 2k - 2 equations for the 2k - 2 

unknowns {aipjpio^. Using Cramer's Rule we readily obtain 

u.{s) = (D2k-2 r h{r)dT + A ? [\s - TyMir)dT] (4.37) 
F>2k-2 \ Jo / 
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where, for A; > 1, 

/ f _ , M{r)dT ... / ° , r2^-3M(r)^r \ 

D2k-2 = det 
Ilk M{r)dT 

/_°, rM{T)dT 

.. !l,r''-^M{T)dT 
(4.38) 

\f,_,TM{r)dr . . . SUr^'-^M{r)dT ) 

and D-p^ is the determinant obtained when the p^^ column of D2k~2 is replaced by 

the vector 

v\'^ = { f -k{T)dT,...,f -U{T)dT,f -Tk{r)dT,...,f -Tk{r)dry (4.39) 
\J-1 Jl-k J-1 Jl-k / 

T h e polynomials / i j ( j = 1 , . . . , A; - 1) 

From the collocation conditions (4.18)-(4.20) we see that the following conditions are 

imposed on jij-. 

r = 0 , . . . , A ; - l 

r = 0 , . . . , A ; - 1 

i = 1 , . . . , m 

(4.40) 

(4.41) 

(4.42) 

The last condition can be satisfied by a polynomial of the form 

2k-3 

Integrate this w i t h respect to s: 

2k-3 

f^'M= E ^ . p / rm{T)dr + ,,'^{0). 
p=o •'° 

(4.43) 
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Integrating once more we obtain: 

Ni^) = E'/̂ .P /% - r)r^M{T)dT + 5^;.(0) + / . , (0). (4.44) 

From (4.40) and (4.41) we have that ^^(0) = 0 and ^'^{0) = Sjo, Using these, and 

equations (4.43) and (4.44) we can rewrite condition (4.40) as: 

2k-3 0̂ 

E 
p=0 

and condition (4.41) as: 

2k-3 »o 

''Y^^JP f T^M{T)dT = 6,o-S,r r = 1 , . . . , - 1 (4.45) 
r, J—r 

E / " r^'''M{r)dT = r6,r r = l , . . . , k - l (4.46) 
p=o 

Let C j G R*""-̂  be a column vector which has 1 as the entry and all other entries 

zero. Let D^^^ be the determinant obtained when the p'^ column of D^k-i is replaced 

by the vector 

' ( 1 , . . . , 1 | 0 , . . . , 0 ) ^ ; = 0 

'3 
(4.47) 

- e / je- f J > 0 

Using Cramer's Rule once again to solve the system (4.45), (4.46) we obtain 

2k-3 j^if^) 

His) = s6,o + E T T ^ r)rm{T)dr (4.48) 

T h e polynomials Xj {j = 1,... ,k — 1) 

From the collocation conditions (4.18)-(4.20) we see that the following conditions are 

imposed on A j : 

A , ( - r ) = Sjr r = 0 , . . . , f c - l (4.49) 

A ; . ( - r ) = 0 r = 0 , . . . , J b - l (4.50) 

Aj(c i ) = 0 i = l,...,m (4.51) 
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The last condition can be satisfied by a polynomial of the fo rm 

2fc-3 

P A;'(3) = M{s) Y: 7.p5 
p=0 

Integrate this w i t h respect to s: 

2k-3 -s 
A ; ( ^ ) = E % p / r ^ M ( r ) . ^ r + A;.(0) (4.52) 

p=0 

A fur ther integration gives 

2k-3 

E 
p=0 

A,(5) = E'T̂ P - r)Tm{r)dT + sX'^{0) + A,(0) (4.53) 

From (4.49) and (4.50) w i t h r = 0 we have that A^(0) = 0 and Aj(0) = 6jo. We 

may now rewrite the conditions (4.49) and (4.50) as the following system of linear 

equations: 

2k-3 
Y ^ J P I r^M{T)dT = 0 r = l , . . . , A ; - l (4.54) 

' l ^ l ^ p f r''''Mi^)dr = Sjr-Sjo r = l , . . . , A ; - l (4.55) 

Let Djp^ be the determinant obtained by replacing the p'^ column of D2k-2 w i th the 

vector 
(A) f ( 0 , . . . , 0 | - l , . . . , - l ) ^ ; = 0 

Vj^^^ = < (4.t»6) 
1 ( 0 , . . . , 0 | e / y j>0 

Using Cramer's Rule we can readily solve the system (4.54),(4.54) giving: 

2k-3 r)(A) 

A,(̂ ) = «5.o + E / - TyM{r)dr (4.57) 
p^O ^ 2 i - 2 Jo 

The above results are summarised in the following lemma. 
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L e m m a 4.2 The polynomials Xj, fXj and Vi defined in Lemma 4-1 are given by 

where 

(A) 

Df^ = det 

D^r^ = det 

Ojo w 

/ r T 

= det 

/ fo 

V J 

A2k-2 

/ - I M{T)dT 

Sl,M{r)dr 

f \ TM{T)dT 

A2k-2 

JO^ ^2k-3M{^r)dT 

ll,r''-'M{r)dr 

JO^ r2*=-2M(T)t^T 

w 

\ j l , r M { r ) d r ... / ° _ , r ^ ^ - ^ M ( r ) d r ^ 

( f \ s - T)M{T)dT, [ \ s - Ty'-'M{T)dT) 
Jo Jo 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

v\^^ = ( r -h{T)dT, . . . J ' -k{T)dT, f -Tk{r)dT,...,[ -Th{r)dr) 
\J—1 Jl—k J—1 Jl—k / 

( l , . . . , l | 0 , . . . , O f i = 0 

( -e- I je- r i > 0 

and D2k-2 — det A2k-2-

( 0 , . . . , 0 | - 1 , . . . , - 1 ) ^ j = 0 

( 0 , . . . , 0 | e / f ; > 0 

P r o o f N E D . • 
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Before looking at an example of M C R K N methods, we briefly return to the ques­
t ion of the unique solvability of the associated interpolation problem. In the previous 
section we were able to derive a necessary and sufficient condition for unique solv­
abi l i ty involving the determinant of an m x m matrix. From the proof of Lemma 
4.2 we see that this condition can be re-expressed in terms of the determinant of the 
(2A; — 2) X (2A; — 2) matr ix A2k-2, whose entries are considerably more complicated. 
I n practice, since the determinant D2k-2 must be constructed in order to find the 
polynomials A j , and there seems l i t t l e point i n constructing the determinant 
used in the previous section. I t is however interesting to note that, as in the case of 
the stabil i ty analysis for the Panovsky-Richardson methods, we have two very differ­
ent ways of expressing the same condition, and as yet we have not established a l ink 
between them. I n the case of the Lie & N0rsett multistep collocation methods, the 
uniqueness condition may be re-expressed in terms of the determinant of the following 
(A; — 1) X (A; — 1) matr ix : 

^ j\M{T)dT . . . J^^T'^-'M{T)dT ^ 

[jl,M{r)dT ... f,_,r'-^M{r)dr ) 

I n particular, when k = 2 we readily obtain the uniqueness condition 

J° M{T)d' r = 0 

which we saw at the end of the previous section. As an example we now consider the 

simplest two-step M C R K N method: 

E x a m p l e A; = 2, m - l 
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In this case M{s) = s - Ci, and so the matr ix A2k-2 and vector w are given by 

/ l + 2ci 2 + 3ci 

A2k-2 = 

2 6 

2 + 3ci 3 + 4ci 
V 6 12 / 

T 

W = 
's^{s-3ci) s\s-2ci) 
. 6 ' 12 y 

Af te r constructing the polynomial U{s) in the way described above, we obtain the 

following M C R K N method: 

2{6cl + 6ci + l)y„+ci -2(6c^ + Ibct + 8c? - 6cl - 6ci - l )y„ 

+2c?(6cJ + 15ci + 8)yn-i 

+2ci{3ct + 10c? + 12c? + 6ci + l)hzn 

+2c?(3c? + 5ci + 2)hzn-i 

+ C?(Ci + lYh'fn+c, (4.64) 

(6c? + 6ci + l)2/„+i = 8(1 - 3c?)y„ + (30c? + 6ci - 7)y„- i 

+4(6c? + 3ci - l)hzn + 2(6c? - l ) / i2r„- i 

+2/lVn+ci (4.65) 

(6c? + 6ci + l)hzn+i 24(1 - 3c?)(j/„ - yn-i) 

+4(12c? + 3ci - 4 ) / i2„ 

+(30c? - 6ci - 7)hzn-i 

+6/iVn+ci (4.66) 

w i t h fn+c, = f{xn+c^,Xn+c,)- By lookiug at the coefficients of the left hand sides of 

these equations we see immediately that the method w i l l collapse unless (6c? + 6ci + 
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1) 7̂  0. Recall f r o m Example 1 of the previous section that this is the criterion for 

the unique solvability of the interpolation problem. 

Since we are more interested in methods which possess intervals of periodicity 

rather than just absolute stability, following Lambert & Watson [46] we t ry imposing 

the symmetry constraint c i = 0. In this case the interpolation problem is uniquely 

solvable and leads to the method: 

Vn+l = 8yn - lyn-l " ^hZn - 2hZn-l + 2/ lVn 

hZn+1 = 24(?/„ - yn-i) - 16hzn - 7hZn-l + 6/lVn 

Unfortunately, as we shall show in section 4.4, this method has no interval of peri­

odicity, and is therefore useless. However i t is possible to obtain methods f rom this 

fami ly w i t h a non-empty interval of absolute stability by choosing Ci appropriately. 

4.2 Order conditions 

In the case of one-step collocation methods for first order equations N0rsett & Wanner 

51] have shown that by using the Grobner-Alekseev Theorem, the order conditions 

may be derived using a simple quadrature approach. This analysis has been extended 

to cover multistep collocation methods for first order equations by Lie & N0rsett [47] 

and one-step collocation methods for second order equations by N0rsett [50] and van 

der Houwen et al. [68]. 

I n this section we modify the Grobner-Alekseev Theorem so that i t can be used 

directly on second order equations. Then, following the work of Lie & N0rsett [47 

and van der Houwen et al. [68] we go on to derive order conditions for the two-step 

m-point symmetric M C R K N methods. 

T h e o r e m 4.3 (Grobner (1960), Alekseev (1961)) Let u,y he the solutions of the 



4.2. ORDER CONDITIONS 100 

following initial value problems 

y'{x) = f{x,y), y(0) = yo 

u{x) = f{x,u)-\-g{x,u), u{0) = yo 

where a prime denotes differentiation with respect to x, and suppose that d f / d y exists 

and is continuous. Then y and u are connected by 

where 

rx 
y{x) - u{x) = / $ ( x , r , u{T))g{T, u{T))di 

Jo 

dy 

$ ( a ; , T , u ( T ) ) = -—{X,T,U{T)) 

P r o o f See Hairer et al. [35]. • 

C o r o l l a r y 4.4 Let u,y be the solutions of the following initial value problems 

y"{x) = f{x,y); 2/(0) = j/o, y'{0) = Zo 

u"{x) =: f { x , u ) g { x , u ) u{0) = yo, u'{0) = Zo 

where a prime denotes differentiation with respect to x, and suppose that d f / d y exists 

and is continuous. Then 

y'{x)-u'{x) = r ^X,T,u{T),u\T))g{T,u{T))dT (4.67) 
Jo 

y{x)-u{x) = r{x-T)T{x,T,u{T),u'{T))g{T,u{T))dT (4.68) 
Jo 

for some functions $ and T. 

P r o o f Equation (4.67) follows immediately f rom the above theorem for first order 

equations. Integrating this w i th respect to x gives: 
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y{x)-u{x)= I I ^{T,a,u{a),u'{a))g{a,u{a))dadT 
Jo Jo 

Changing the order of integration gives: 

y{x)-u{x) = da ^T,a,u{a),u'{a))g{a,u{a))dT 

= g{a,u{a)) J $ ( T , <j, u(cr) , u'(cr))c?rd(T 

Observe that the inner integral vanishes when cr = a;, so that for some function F we 

have 

y(x) — u{x) = / g(a,u(a))(x — a)T{x,(J,u((7),u'(a))da 
Jo 

a 

For notational convenience we will change variable for the rest of this section from 

x to the 5-variable used in the previous section. Without loss of generality we also 

take a;„ = 0 and h = 1. 

In order to find the local truncation error of a fc-step, m-point MCRKN method 

defined by (4.18)-(4.21) we consider the sHghtly different interpolation problem: 

Find V G Vm+2k-i such that 

V{-r) = y{-r) r = 0,...,k-l (4.69) 

V'{-r) = y'{-r) r = 0,...,k-l (4.70) 

y"(cO = F{ci,V{c,)) i = l,...,m. (4.71) 

This is just another way of imposing the usual localising assumptions that all back-

step approximations have zero error. 

Define the local truncation error vector L to be: 

L = (y( l ) - y ( l ) , y'{\) - V'{l)f 
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Now V satisfies the following initial value problem 

V"{s) = F{s, Vis)) + 6(3); V{0) = i/(0), ¥'(0) = y'iO) 

where S has the property that it vanishes at the collocation nodes { c i } ^ ^ . Applying 

our corollary to the Grobner-Alekseev theorem we obtain the following expressions 

connecting V and y: 

y'{s)-V'{s) = r ^6{T)dT (4.72) 
Jo 

y[s)-V{s) = r ( S - T)T8{T)dT (4.73) 
Jo 

where the arguments of $ and T have been suppressed for brevity. We may now 

re-express our localising assumptions as follows: 

j ' ^8{T)dT = 0 r = l , . . . , A ; - l (4.74) 
Jo 

r \ - r - T)T6(T)dT = 0 r = l , . . . , A ; - l (4.75) 
Jo 

and the local truncation error vector as: 

L = ( [\l - T)rS{T)dT, f\6{T)dT] (4.76) 
\Jo Jo J 

Following Lie & N0rsett's ([47]) approach we define a linear vector space S as 

follows: 

S = \^p\J~\iT)dT = 0, j j ^ l\{a)dadT = 0- r = 1 , . . . , A ; - 1 . } (4.77) 

We construct an interpolatory quadrature rule for the integral 

/ ' G{T)dT, G e s 
Jo 

which replaces G by a polynomial P ^ S interpolating to G at the collocation nodes 
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The quadrature error is then 

l\G{r) - P{T))dT = R{T)M{T)dl (4.78) 

where KM G S and M is as defined in the previous section. 

We now consider the application of this quadrature rule to the y' component of L. 

Since the integrand vanishes at the collocation nodes {ci}'^^, we have immediately 

that 

£ ^S{T)dT = £ R{T)M{T)dT (4.79) 

We would like this quadrature error to vanish for R a polynomial of as high a degree 

as possible. Let 
2k—2 

R,{s)= Y^a,,s'+^ 1 = 0,1,... 3=0 

and ai = (0,0, • • •, 0^2 -̂2)̂ - Then the condition R^M € S becomes 

B^a, = 0 (4.80) 

and the condition that the quadrature error is zero becomes: 

bi a, = 0 (4.81) 

where, for i = 0 , 1 , . . . 

5,: = 

r^M{r)dr 

T'M{T)dT 

!o-\-l-r)T^M{r)dT 

j-1 ^2fc-2+t 

Jl-k ^2k-2^riM{T)dT 

j - i (_ l_ r )T2 '=-2+ 'M(r ) (^T 

1̂  j j - f c ( l _ k - T)T^M{r)dT ... - k - T)T''-'+^M{r)dr ) 
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anc 

Let 

T 

b, = T'M{T)dT, ...,J^ T''-^+'M{T)dT^ . 

P^ = (4.82) 

and Qi = det Pi, for i = 0 , 1 , . . . , then the system PiO,- = 0 has a non-trivial solution 

i f and only if = 0-

In order to make any further progress with our derivation we must at this point 

restrict our attention to the two-step m-point MCRKN methods whose collocation 

nodes are distributed symmetrically in the interval [—1,1]. Using this symmetry 

property we may simplify the matrix P for these methods to get 

P = 

I{i) + / (^ + 2) 

/(z + 1) -7(2 + 2) J(z-f-3) 

\̂  /(z-t-1) 7(2 + 2 ) ; 

where, for j = 0 , 1 , . . . , 

U j ) = j\m{T)dT. 
Jo 

After some simple algebra we find that Qi factorizes to give 

Q, = I{i + 1) det 
^7(2 + 1) 7(z + 3)^ 

Suppose first that I{i + 1) 7̂  0, then for Pai = 0 to have a non-trivial solution, 

we require that the second term in our expression for Qi vanishes. 

Next suppose that I{i + 1) = 0. In this case the quadrature condition becomes 

I{i)aio + I{i + 2)ai2 = 0, (4.83) 
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and RiM lies in S if 

- I{i + 2)a,i + I{i + 3)ai2 = 0. (4.84) 

For the interpolation problem to remain uniquely solvable we must have that I(i) x 

I{i + 2) 7̂  0. The system (4.83)-(4.84) has solutions 

= -7^S)««-2 + ^i2s\ if I{i + 3) = 0, 

= - 7 ^ « ' 2 + ^ ) a a s + a2s\ if I{i + 3) 0. 

with a2 7̂  0. Observe that the corresponding integral arising from the y component 

of the local truncation error vector is evaluated exactly by our quadrature formula if 

I{i + 3) = 0. Hence the following theorem is seen to hold: 

Theorem 4.5 If the nodes of a two-step m-point MCRKN method are chosen so that 

for each i G { 0 , . . . , p o } ; ihe interpolation problem (4.18)-(4-80) remains uniquely 

solvable and either 

/ ( z + 1 ) 7 ^ 0 and I{i)I{i + 3) - I{i + l){I{i + 2) = 0, 

or 

I{i + 1) = 0 and I{i -f 3) = 0, 

then the resulting method will have order at least m + 2-\- {po + 1). 

Proof NED • 

We close this subsection with an example. 

Example A; = 2, m = 2 and C2 = —ci. 

The minimum order of a method from this family is four. Set i = 0, then 

m = ( l - 3 c ? ) / 2 

I{i + 1) = ( l - 2 c ^ ) / 4 

I{i + 2) = (3-5cJ)/15 
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7(2 + 3) = ( 2 - 3 c 2 ) / 1 2 . 

If = 1/2, then 7(2 + 1) = 0, but 7(2 + 3) 7̂  0, so we cannot increase the order of the 

method this way. However with = (6± V(21))/15, 7(2)7(2 + 2 ) -7 (2 + l )7( i + 3) = 0, 

hence the method has order at least five. Further investigation shows that five is the 

maximum order of a method from this class. We will see from the example at the end 

of section 4.4 that the methods from this class which have order five are unstable, 

and so are useless. In that section we will also verify the order conditions derived 

here using Taylor analysis. 

4 . 3 S t a b i l i t y a n a l y s i s 

In this section we derive an explicit expression for the stability polynomial 7r(A) for 

a general A;-step, m-point multistep collocation method. Our method of construction 

follows closely that of Kramarz [44], who analysed the stabiHty of one-step collocation 

methods. 

In order to study the stability properties of these methods we apply them to the 

standard scalar test problem: 

— = -u^y, y{xo) = yo, j^{xo) = zo (4.85) 

When a ^-step MCRKN method is appHed to (4.85) with constant stepsize h we 

obtain a numerical solution of the form 

u „ = A " - M j „ - . n = k-l,k,... (4.86) 

where A, the so-called iteration matrix, is a 2k x 2k matrix whose entries are inde­

pendent of n, and whose eigenvalues are functions of = uPh?, 

T 

Ur,. = u(x„), . . . ,u(a;„-fc+i), ^ ( ^ " ) ' • • •' ^ '^" -*^+^^ 
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Vn - {yn,Zn,- • • ,yn-k+l,Zn~k+l)'^ , n = k - l , k , . . . 

and {yj,Zj}jZQ are approximations to {y(xj),dy{xj)/dx}jZQ obtained from a suitable 

starting procedure. 

The stability polynomial for these methods is given by 

7r(A) = det [A - Xhk) 

where l2k is the 2k x 2k identity matrix. Let \i{v'^),..., X2k{'^^) G € be the roots of 

7r(A), i:e. the eigenvalues of A, ordered so that |Ai(j/^)| > |A2(i^^)| > • • • > |A2fc(j^^)|. 

Recall from chapter 2 that for the method to be absolutely stable we require that the 

roots of 7r(A) lie in the unit disc { 2 G € : | 2 | < 1 } and that all roots of modulus one 

have multipHcity at most two. Recall also that the method will be periodic if A I ( J / ^ ) 

and A2(j^^) are complex conjugates lying on the unit circle {z € € : |2| = 1}, and if 

the remaining roots lie in the unit disc. 

We begin by constructing the iteration matrix A. Instead of attempting to express 

A in terms of the coefficients of the method, we follow the ideas of Kramarz [44] and 

Wright [69] and try to express it solely in terms of the collocation nodes {c i j -^j . 

When a A;-step m-point MCRKN method is applied to the scalar test problem 

(4.85) the collocation problem (4.18)-(4.20) becomes; 

Find u e 'Pm+2k-i such that 

u{Xn-j) = yn-i j = 0,...,k-l 

^ ( X n - j ) = ^n-, J=0,...,k-1 (4.87) 

— (x„+c.) = -to u{Xn+ci) l = l,...,m 

The function d'^u{x)/dx'^ + uj'^u{x) is a polynomial of degree m + 2k - 1 with roots 

at x = Xn+ci, i = I,... ,rn. Using this, and the collocation conditions (4.87), we see 
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that w is a solution of the following initial value problem: 

d'^u ^'"'^ 
— {x)+uj\{x) = R{x) (^v^"^ 
ax p=0 

y-iXn-k+l) = Vn-k+l 

^{Xn-k+l) = Zn-k+1 (4-88) 
dx 

where 

R{x) = l [ { x - Xn+a) 
i=l 

and Qp G R, p = 0 , . . . , 2A; - 1. For notational convenience we will use the scaled 

variable 
X - Xn-k+l 

h 

and let a prime denote differentiation with respect to s for the rest of this section. 

Take n = A; — 1 so that we are considering the first step in which the MCRKN method 

is applied. Using the method of variation of constants it is possible to solve the initial 

value problem (4.88) to get: 

u{sh) = yo cos{vs) + — sin(i/s) + 

- / sin[(5 - T)U]M{T) apT^dr (4.89) 
^ Jo p=0 

-—{sh) = —ijjyoS\Ti{ys) + zoCos{us)-\-
dx 

/ cos[(5 - T ) i / ] M ( r ) Y ^p^'dT (4.90) 
•̂ 0 p=0 

where 

M ( T ) = M ( T - A; + 1) 

with M ( T ) as previously defined, and = aph'^+^+P, iov p = 0,... ,2k - 1. Since u 

is a polynomial, we can immediately obtain two equations relating yo and ZQ to the 

{apYJlTo^ by equating the coefficients of cos{us) and sin(z/5) in (4.89) and (4.90) to 
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zero. First however, we must evaluate the integrals contained in (4.89) and (4.90), to 
do this we will need the following lemma. 

Lemma 4.6 Let g e Vn, n>0, and let q = [n/2\, then 

i-iyg^'^s) 
[ sm[{s - T)iy]g{T)dT = ^ 

•̂ 0 ,=n 

/ cos[{s - T}l/\g{T)dT = 2^ 

.=0 -^^-^^ 

^{-iygW){0)cos{us) 

{-iygi^^+%) 

2j+2 
i=o 

^ (-l)J^(2j+i)(0)cos(;/5) 

^ (-l)^ff(^^^(0)sin(^6) g2) 

.=0 

Proof Use induction on n, and integration by parts. • 

Let 

$W(r ) = \M{ry] (4.93) 

then by Leibniz' rule: 

inin(r,p) , ^ | 

Let 

and 

Ip{s) = [ Sm[{s - T)v]MiT)T^dT 
Jo 

Jp(^) = / cos[(s - T)i/]M(r)rPJr 
J 0 
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then, using the above Lemma, we have that 

^p(^) = E ( ^ ) ' ( ^ ^ f ) ( ^ ) - ^ c o s ( ^ . ) $ f ) ( 0 ) 

-^sm{us)^l'^+'\0) 

-~sm{ps)^^^'\0) 

(4.95) 

(4.96) 

where Np = [ | ( m + j9)J. Equating coefficients of cos{i/s) and sin(z/5) in u{sh) to zero, 

we obtain the following equations expressing a = (ao,... , a2A:-i)^ in terms of j/o and 

zo-
/ 1 n \ 1 / r7o,. , \ 

(4.97) 
1 0 

0 uj-^ 
a 

1 / Co . . . C2k-1 

\ So . . . S2k-1 J 

where Cp and Sp are the coefficients of cos(i/s) and sin(2/s) in Ip{s) respectively. Using 

these conditions to simplify u{sh) and u'{sh) we obtain: 

2k-l 
u{sh) = h « P * P ( ' S ) 

pish) = 
p=0 

(4.98) 

(4.99) 

where 
1 / _ 1 \ i , , 

Wi th u in this form we can easily enforce the collocation conditions 

(4.100) 

du 
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to get the following equations expressing a in terms of yk-i: 

yk-^ = Pa (4.101) 

where P is given by 

/ 

P = 

h^oik~l) 

%ik-l) 

/i*o(0) 

%{0) 

h^2k-iik-l) 

%k-,{k-l) 

\ 

h^2k-liO) 

Evaluating u(s/i) and duish)/dx a,t s = k (i.e. x = a;„+i), and using (4.101) gives: 

^ du \ 
uikh),—ikh) = Qa 

1 dx I 

= QP-'vk-. (4.102) 

where Q is a 2 x 2A; matrix given by 

( h^oik) ... h^2k-iik) 

%{k) nk-i{k) 

We note in passing that the factor h appearing in the odd rows of P and Q may be 

removed by replacing y„ by the vector: 

Vn = iyn.hZn, . . . ,yn-k+l,hZn-k+l)'^• 

The MCRKN method defines yk and to be uikh) and duikh)/dx respectively, so 

we now have an explicit expression for our y and y' approximations at step 1 in terms 

of the information carried forward from step 0. Using the same idea we can write the 

approximations at step 2 in terms of the information carried forward from step 1, and 
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so on. The iteration matrix A such that yn+i = Ayn = A" '''^'^yk-i is now trivial to 

form, and is given by 

/ QP-' \ 
A= (4.103) 

l2k-2 02fc_2,2 J 

where 72^-2 is the (2A; — 2)x(2A; — 2) identity matrix and 02A:_2,2 is a {2k — 2) x 2 matrix 

of zeroes. In the following section we consider the two-step MCRKN methods with 

1,2,3 and 4 collocation nodes, and use this matrix to derive their stabihty properties. 

In order to analyse the stability properties of a particular MCRKN method or 

class of MCRKN methods we need to re-express the functions '̂p as functions of the 

collocation nodes {ci}™i. Substituting back for ^̂ •̂'̂  gives: 

with the convention that M^''\s) = 0 if r < 0. Letting 

Nr, 

^ ^ ^ " . ^ o U ^ J ( 2 ; - 2 ) ! 

it is immediately obvious that the range of the summation index in the above sum is 

in fact { , [l{m + i)\}. After some algebra we obtain the following expressions 

for r ,(s) and r;(s): 

- 1 \ 5 AT lV(2j_+_2)! 

^^\y^J (2j + l ) ! 

(2j)! 

2 even, 

= i ) ' " " ' i : f = i V e ^ M < - . w .odd. 
'ri\„^J (2i +1)! 

- ^ ^ ' E f = i V ^ l ^ M < - . W .even, 

2 odd. 

These expressions are natural generaUsations of the corresponding expressions given 
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by Kramarz [44] for the case of one-step collocation methods. 

In view of the work done for one-step methods, i t seems a lot to ask to draw useful 

conclusions regarding the stabihty properties of an MCRKN method with arbitrary 

stepnumber and number of collocation nodes. In an attempt to make at least some 

progress we will restrict our attention to the case k = 2. Since these methods are de­

signed to approximate the solutions of periodic initial value problems (4.1), we would 

prefer them to be periodic rather than just absolutely stable. Following Lambert and 

Watson [46] we impose the following symmetry constraint on the collocation nodes 

{c^]T=^•• 
Ci 4-c„+i_, = 0, z = l , . . . , [ | m l (4.104) 

In order to show more clearly any possible symmetry properties in the stabihty poly­

nomial we will use the shifted variable t = s — 1, along with the following definitions 

for the rest of this section: 

4>'^\t) = ^'p\s), ^p(t) = *,(s) and 7.(^) = r , ( 6 ) . 

Under the constraint (4.104), the polynomial M( t ) satisfies 

M^'-^t) = i-l)""-'M^'\-t) r = 0 , 1 , . . . 

from which the following identities involving the functions 7i(t) may easily be derived: 

7,(t) = ( - l ) - + ' 7 , ( - t ) , (4.105) 

m = i-ir^'-'Hi-t), (4.106) 

7,(0) = 0, m + i even, (4.107) 

7 '̂(0) = 0, m + i odd. (4.108) 
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Using these identities the matrix P may be written as: 

114 

P 

when m is even, and 

P 

/ 7o(0) 7o(0) 7o(0) + 72(0) 7o(0) +372(0) ^ 

0 7U0) 27{(0) 37((0)+73(0) 

7o(l) - 7 i ( l ) 72(1) -73(1) 

v 

A 

-7^(1) 7((1) -7^(1) 7 (̂1) ; 

/ 0 71 (0) 271 (0) 371(0)+73(0) ^ 

7 (̂0) 7 (̂0) 7^(0)+ 72(0) 7^(0)+ 37^(0) 

-7o(l) 7i(l) -72(1) 73(1) 

\ 7 (̂1) - 7 U 1 ) 7 (̂1) -7^(1) ; 

when m is odd. The matrix Q is given by 

( \ 

where 

and 

7o(l) 

270(1)+ 7i(l) 

470(1)+ 471(1)+ 72(1) 

\̂  870(1)+ 1271(1)+ 672(1)+ 73(1) j 

^ 7^(1) ^ 

2 7 o ( l ) + 7((1) 

4 7 o ( l ) + 4 7 i ( l ) + 72(1) 

V 87^(1)+ 1271(1) +67^1) +7^(1) } 

Theorem 4.7 Let the collocation nodes {ci}^^ of a 2-step MCRKN method satisfy 

the symmetry constraint (4.IO4), then the determinant of the iteration matrix A is 1 

for all values of m. 

q = 
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Proof We will only prove the theorem for MCRKN methods with an even number 

of collocation nodes, since the proof for methods where m is odd is almost identical. 

Let p- be the z"̂  row of P, for z = 1 , . . . , 4, and let Q = (g, q',Pi,P2f- We may now 

rewrite the iteration matrix A as A = QP~^. From our expression for P above, we 

have that 
( ( vl \ 

B 

where 

B = 

1 2 4 8 

0 - 1 - 4 -12 

0 0 1 6 

0 0 0 - 1 

By inspection we see that 

so that Q may be written as: 

Q = JPB 

where J is given by 

J = 

0 0 1 0 

0 0 0 - 1 

1 0 0 0 

0 - 1 0 0 

Finally we have that 

det A = det iJPBP-^) 

= det P det P-^ 

smce B and J both have determinant 1. The result follows immediately. • 
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Theorem 4.8 Under the conditions of the above theorem, the characteristic polyno­

mial of A is symmetric. 

Proof Write A as 

A = 

^ a n ai2 ai3 ai4 ^ 

^21 0,22 0,22, 024 

1 0 0 0 

0 1 0 0 

then it can be shown that 

7r(A) = det {A - Xh) 

A'* - tv{A)X^ + (aiia22 - «2 i« i2 - « i3 - a24)A^ 

-ir{A-^)X + l 

From the above theorem we have that 

A-^ = {JPBP-^Y^ 

= p ^ - i p - i j - i 

= J-^AJ 

since J"^ — B"^ — h. It is easy to show that tr(JVF) = ii{WJ) for all matrices W, 

and thus tr{A) = tr(A~^). Hence the required result: 

7r(A) = Â  - ( a n + a22)A^ + (011022 - ^21012 - ai3 - a24)A^ 

- ( a n + a22)A + 1 

• 

In order to determine the stabihty properties of an MCRKN method we make use 
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of the well-known Routh-Hurwitz transformation described in chapter 2. Let 

1 + C R{() = (1 - C)''7r(A) w i th A 
1 - C 

I n view of the above two theorems, we see that the Routh-Hurwitz polynomial w i l l 

be of the f o r m 

R{() = a^C + + c^o, 

w i t h ao , (^2,0:4 G ]R, which is a quadratic in C^. Thus for all roots of R{Q to he in the 

left half plane {z G € : Rez < 0 } , they must he on the imaginary axis. From this we 

can deduce that i f our method has an interval of absolute stability, then i t is also an 

interval of periodicity. The conditions under which R{() has purely imaginary roots 

are as follows: 

sign(Q:o) = sign(a2) - sign(Q:4) (4.109) 

and 

a ia^ao > 0 (4.110) 

The first condition is just the well-known Routh-Hurwitz criterion for quadratics 

which ensures that the squares of the roots of R{() have negative real parts, and the 

second condition ensures that they have no imaginary parts. 

Using these conditions we have been able to determine the stability properties 

of a number of specific 2-step M C R K N methods. Unfortunately, apart f rom noting 

that the constraints imposed by the two stability conditions above are rather severe, 

no general trends have so far emerged f rom our results. We have also encountered 

numerous problems on the analytical front , and so the question of existence of peri­

odici ty intervals for 2-step M C R K N methods wi th an arbitrary number of collocation 

nodes remains unanswered. 
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4.4 Some symmetric two-step M C R K N methods 

In this section we analyse the order and stabihty properties of two-step M C R K N 

methods w i t h 1,2,3 and 4 collocation nodes. Since we are interested in methods 

which may possess intervals of periodicity, we consider only those methods whose 

collocation nodes are symmetrically distributed in [—1,1]. 

The 2-step 1-point symmetric M C R K N method 

There is only one 2-step 1-point symmetric M C R K N method: 

yn+l = Syn - 7?/„-l - 4:hZn - 2hZn-l + h?fn 

hzn+1 = 24(y„ - y„_i) - IQhzn - Ikz^-i + 6/iVn-

By construction, this method has order at least three. To see i f the method has order 

greater than three we check to see i f the conditions of theorem 4.5 hold wi th i = 0. 

I{i + 1) = 1/3, so for order greater than three we must have that + 2) — I{i + 

-|- 3) = 0, which is not the case here. 

The Routh-Hurwitz polynomial for this method is given by 

w i t h 

04 = 3̂ -̂ , a2 = 12 — 4ẑ ^ and ao = — 8. 

For v'^ G (0 ,8) , UQ is negative while the other coefficients are positive, and for j / ^ > 8, 

02 is negative. Hence this method is unstable for all values of z/̂  and so is useless. 

The 2-step 2-point M C R K N methods 

The symmetry constraint for these methods is C2 = — C i . In view of the complexity of 

the expressions involved we w i l l not give the general method f rom this family, or f rom 
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the families w i t h m — 3,4. By construction, methods f rom this family have order 
not less than four. I n section 4.2 we saw that w i th the choices Cj = (6 ± y^(21))/15 
we obtain methods of order five. We can verify this by expanding the y and y' 
components of the local truncation error vector as Taylor series. The leading terms 
in the two expansions are 

{3~10cl){15ct-12cl + l)h'y('\x^) 

180(604 ~ Ucl + 3) 

and 
(1 - 2cl){15ct - 12cl + l)h'y('Kx^) 

12(604 - U4 + 3) 

respectively. W i t h 4 — 1/2, we increase the order of the y' approximation, but not 

the y approximation, and so this does not lead to an increase in the order of the 

method. I f 4 takes either of the above values, then the orders of both the y and y' 

approximations are increased by one, hence the resulting method w i l l have order five. 

The Routh-Hurwitz polynomial for methods f rom this family is 

R(Q = a^C + 0.2^ + «o 

where the coefficients ao, and 04, and the discriminant D are given by: 

a4 = 8i/2((13ct - 5c? + 2) / .^ - f 30(2c? - 1)) 

a2 = 16((?>4 - ^4 + %4 - 2 y + 2(334 - 52c? + + 60(2c? - 1) 

ao 8((24 - 104 + n4 - 11c? + 2)i/^ + 2(324 - 984 + 82c? - n)iy^ 

+16(304 - 37c? - f 9)) 

D = 256ctz/^(3c? - 14c? + 24ct - 18c? + 5) 

+ 1024c?i/^(21c? - 61c? + b04 - 5c? - 5) 

-1024z/^(51c? - 402c? + SOScf - 192c? + 11) 

-61440//'(54c? - 114 - f 26c? - 2) 
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+921600(4c^-4c^ + l ) 

In an attempt to reduce the range of allowable values for Ci we look at our stability 

conditions i n the case where ly is small enough for us to be able to neglect terms 

of order u'^. I n this case the coefficients and discriminant of the Routh-Hurwitz 

polynomial are given by 

(24 — a4{2cl — 1) 

02 = a2{2cl - 1) 

ao = ao(10cj - 9)(3c? - 1) 

D = as{2c,-lY 

where the a's are positive constants independent of C i . On applying the stability 

conditions we find that the M C R K N method is periodic for small values of v i f and 

only i f 6 (1/3,1/2) U (9/10,1). Notice that already the range of allowable values for 

c i has decreased by a factor of 5. Our interest lies in determining the boundary of the 

first interval of periodicity in terms of C i , for, i f these methods were to be used in a 

variable stepsize code, then i t is this boundary that would impose an upper bound on 

the range of allowable stepsizes. The boundaries of the periodicity intervals may be 

determined as functions of c i by finding the roots of the coefficients and discriminant 

of our Routh-Hurwitz polynomial. These functions were plotted over the range of 

allowable values of C i , (i.e. cj e (1/2,1/3) U (9/10,1)), and the results are shown in 

figures 4.1 and 4.2. So far we have not succeeded in finding a closed fo rm expression 

for the roots of the discriminant £>, though we have been able to approximately 

determine where i t changes sign by producing contour plots as shown in figures 4.1 

and 4.2. I n figure 4.3 we have super-imposed all the plots for each range of C i . The 

pr imary interval of periodicity is now given by the vertical distance f rom the axis to 

the nearest curve. By examining these plots we see that the largest possible interval 

of periodicity has length approximately 7, and is achieved when fti 0.46. After 
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Figure 4.1: Graphs of the roots of the Routh-Hurwitz coefficients and discriminant for 
2-step 2-point symmetric M C R K N methods as functions of ci , w i th c? G (1 /2 ,1/3) . 
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Figure 4.2: Graphs of the roots of the Routh-Hurwitz coefficients and discriminant 
for 2-step 2-point symmetric M C R K N methods as functions of C i , w i th cj G (9/10,1). 
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Figure 4.3: Superpositions of the graphs contained wi th in figures 4.1 (left) and 4.2 

( r ight) . 

some analysis we find that the maximum attainable interval of periodicity is in fact 

(0,7.2771) (4 d.p.), and is achieved when c? = 0.4592 (4 d.p.). 

From our investigations of the order of these methods we know that any method 

f r o m this fami ly which has a non-empty interval of periodicity must have order 4, and 

two f u l l y impl ic i t stages. From chapter 3, the degree 2 Panovsky-Richardson method 

also has order 4 and 2 fu l l y imphcit stages, but i t is an FSAL method and has a 

pr imary periodicity interval of (0,9.6). The 2-step 2-point M C R K N method does have 

one advantage over the Panovsky-Richardson method however, the polynomial u(x) 

can be used to generate an order 4 approximation to y(x) for any x G ( a ; „ _ i , x „ + i ) , 

which might be useful in a variable stepsize implementation. 

The 2-step 3-point symmetric M C R K N methods 

The collocation nodes for these methods are required to satisfy the symmetry con­

straints C2 = 0 and C3 = — C i . By construction, the min imum order of methods 

f r o m this fami ly is five. To see i f we can raise the order beyond five we check to 

see i f the conditions of theorem 4.5 can be satisfied wi th i = 0. Set i ~ 0, then 

l(i + 1) = (3 - 5c?)/15. W i t h I(i - M ) = 0, I(i -t- 3) 7̂  0, so we cannot increase the 

order of the method this way. I f I(i + 1) 7̂  0, then l(i)I(i + 2) - I(i + l)I(i + 3) = 0, 
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and the resulting method w i l l have order six, provided Cj = (10 ± y/37)/21. I t is a 
simple matter to verify that the conditions of theorem 4.5 do not hold when i = 1, 
and so the maximum order of a method f rom this family is six. 

The Routh-Hurwitz polynomial for methods f rom this family is 

R{C) = « 4 C ' + « 2 C ' + « 0 

where the coefficients a^, 02 and ao, and the discriminant D are given by 

a4 = 4z / 2 [ j / ^ (3c^ - l l c^ + 15c^-9c^ + 2) + 6z/^(25cf-62c^ + 50c^ -13 ) 

+180(10ct - 13c^ - f 4); 

a2 = 1 6 z / ^ ( - c f + 4 c ^ - 6 c ^ - h 4 c ? - l ) + 16i^^(3c^-61c^ + 150c^-128c^- f36) 

+%u^{254 - 162c^ + 190cJ - 60) + 2880(10c^ - 13c^ -1- 4) 

ao = 4 i /^ (c^-5c^ + 9 c t - 7 c ^ + 2 ) - f -8z / ' ' ( - 4c^ -h43c^ -112c t -M06cJ -33 ) 

+ 462c^ - 537c^ + 180) -t- 384(-50c^ - f 75c2 - 27) 

D = 64[//^2ct(cP - 6cJ° + 15c? - 20c^-f 15c^ - 6 c 2 - M ) 

+4z/^°c?(22cJ2 _ 209cjo + 219c? - 226c? -\- 124c^ - 33c? - f 3) 

+4:u\9c\^ - 66cl^ + 860cJ' - 2898cJ° - f 4216c? - 3052c? + 1090c^ 

-168c? + 9) 

+48i/^(75c}'* - 461c}2 + 1752cf - 3191c? + 2815c? - 1194ct - f 216c? - 12) 

-M44z/^(925c}2 - 4590c}° + 9294c? - 9210c? + 4339c? - 860c? + 36) 

4-8640//^ (250c?° - 945c? -\- 1306c? - 828c? -|- 238c? - 24) 

- f 129600(100c? - 260c? - f 249c? - 104c? - f 16) 

I n view of the complexity of these expressions we shall once again begin by restricting 

our attention to those values of p which are sufficiently low to allow us to neglect terms 
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of order u^. I n this case the coefficients and discriminant become 

a4 

ao 

D 

= 0 

a 2 ( 2 c ? - l ) ( 5 c ? - 4 ) 

ao(3 - 5c?)(10c? - 9) 

a 5 ( 2 c ? - l ) ' ( 5 c ? - 4 ) ' 

where the a's are positive constants independent of c?. Applying our stability con­

ditions we find that a method f rom this family w i l l possess a non-empty interval of 

periodicity provided c? G (1/2,3/5) U (4/5,9/10). Comparing these ranges wi th the 

values obtained f r o m considerations of the order of these methods, we find that there 

are no sixth order methods f rom this family which possess non-vanishing intervals of 

periodicity. In the same way as for the 2-point methods discussed earlier, we have 

T3 

I 
3 

Contour plot for aO 
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cl squared 

0.6 

I 
3 
Z 

Contour plot for a2 

0.55 
cl squared 

0.6 

Figure 4.4: Contour plots of the Routh-Hurwitz coefficients and discriminant for the 
2-step 3-point symmetric M C R K N method wi th c? G (1/2,3/5) . 

produced contour plots to determine where the coefficients and discriminant change 

sign for c? in the ranges (1/2,3/5) and (4/5,9/10). The relevant plots are shown in 

figures 4.4 and 4.5. Figure 4.6 shows the results of super-imposing each of the sets of 

contour plots. Once again, the length of the first interval of periodicity, i f i t exists, 

is given by the vertical distance f rom the c?-axis to the nearest curve. These graphs 
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Figure 4.5: Contour plots of the Routh-Hurwitz coefficients and discriminant for the 
2-step 3-point symmetric M C R K N method wi th c? € (4/5,9/10). 

Contour plots super-imposed 

3 

3 

z 

0.55 
c l squared 

3 

3 

z 

0.6 

, g Contour plots super-imposed 

0.85 
cl squared 

0.9 
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show that the largest interval of periodicity is obtained when c? = 4/5 and is of length 
25/3 (8.3333 to 4d.p.). Here again we find that the order and periodicity conditions 
are incompatible, i.e. there are no methods f rom this class of order six which possess 
non-empty intervals of periodicity. 

The 2-step 4-point M C R K N methods 

The symmetry constraints for these methods are C4 = — C i and C3 = — C 2 . By construc­

t ion, methods f r o m this family have order at least six. To see i f any methods f rom 

this f ami ly w i t h order greater than six exist, we look at the conditions of theorem 4.5 

w i t h i = 0. Set i = 0, then I(i - f 1) = 0 i f the nodes are chosen so that 

cl = (3c? - 2)/(6c? - 3). 

Due to the l imitat ions of the algebraic manipulation package used to generate the 

results i n this section, and the complexity of the expressions involved, we have been 

able to continue our analysis only in the case I{i -|- 1) = 0. In this case, I{i - f 3) 

vanishes i f 

and Co 
2 1 + 1/V3 - 2 1 - 1 / \ / 3 

c? = ^ and C2 = . 

I t is easy to verify that w i th this choice of nodes, the conditions of theorem 4.5 are 

satisfied for i = 1, and so the resulting method w i l l be of order eight. 

Our attempts at analysing the stability properties of these methods have also 

been hampered by the limitations of our algebra package and the complexity of the 

expressions involved. Consequently we have not been able to produce contour plots 

similar to those for the 2- and 3-point methods. We have, however, succeeded in 

showing that the eighth order method mentioned above, unlike the superconvergent 

methods discussed previously, does possess a non-vanishing interval of periodicity, 

and that this interval is (0,9). 
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4.5 Numerical results 

In view of the concluding remarks we w i l l make at the end of this chapter, we feel that 

there is l i t t l e to be gained in exhaustively testing the two-step symmetric M C R K N 

methods. Instead, as an illustration of the unremarkable performance of these meth­

ods, we give here the results of applying the 2-point four th order method wi th the 

largest possible interval of periodicity and the 4-point superconvergent method of 

order eight to both a linear and a non-linear test problem. For comparison purposes 

we also give the results obtained by applying the R K N formulation of the Panovsky-

Richardson methods R K N 4 and RKN6, of degrees 2 and 4 respectively, to these 

problems. 

The harmonic oscillator 

For our linear test problem we take the scalar equation 

y" = -y; y(o) = i, y'(0) = o. (4.111) 

The second and th i rd columns of table 4.1 show the results of applying the 2-point 

M C R K N method, which we refer to as M2, and the degree 2 Panovsky-Richardson 

method, which requires approximately the same computational effort, wi th steplength 

h = 0.1 to this problem. The four th and fifth columns show the results obtained f rom 

the superconvergent 4-point M C R K N method, which we call M4 here, and the degree 

4 Panovsky-Richardson method wi th steplength h = 0.2. Notice that the global error 

for method M4 exhibits a quadratic dependence on the length of integration interval, 

so that for all reasonable stepsizes we would expect i t to be less accurate than the 

R K N 6 method for x sufficiently large. 
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X M2 RKN4 M4 RKN6 
1 1.36 E-07 4.38 E-08 1.05 E-12 2.78 E-11 
2 3.27 E-07 9.47 E-08 1.83 E-12 6.01 E-11 
5 9.01 E-07 2.51 E-07 7.63 E-12 1.58 E-10 

10 1.48 E-06 4.12 E-07 4.31 E-11 2.62 E-10 
20 3.44 E-06 9.50 E-07 1.64 E-10 6.04 E-10 
50 9.22 E-06 2.54 E-06 1.09 E-09 1.60 E-09 

100 1.87 E-05 5.15 E-06 4.40 E-09 3.27 E-09 

Table 4.1: M a x i m u m absolute errors on intervals [0, x] when methods M2, RKN4, M4 
and R K N 6 are applied to problem (4.111) wi th steplengths as given in the text. 

The two-body problem 

As our non-linear test problem we take Kepler's two-body problem 

y" + y/r' = 0, y(0) = 1 - e, y'(0)=0 (4.112) 

t" + z/r' = 0, z(0) = 0, z'(0) = ^(1 + e ) / ( l - e) (4.113) 

w i t h = - f 2 ^ Table 4.2 is the analogue of table 4.1 for this problem, though here 

we used the steplength h = 0.05 for the two four th order methods. 

X M2 R K N 4 M4 RKN6 

1 6.95 E-08 1.54 E-08 1.75 E-10 7.52 E-10 
2 3.96 E-07 2.43 E-08 1.25 E-09 7.52 E-10 

5 2.65 E-06 6.12 E-08 1.48 E-08 1.15 E-08 
10 3.47 E-06 1.77 E-07 3.91 E-08 1.93 E-08 
20 1.04 E-05 5.25 E-07 2.26 E-07 5.77 E-08 
50 2.65 E-05 1.32 E-06 1.20 E-06 1.47 E-07 

100 5.21 E-05 2.62 E-06 2.84 E-06 2.89 E-07 

Table 4.2: M a x i m u m absolute errors on intervals [0,x] when methods M2, RKN4, M4 
and R K N 6 are apphed to problem (4.112)-(4.113) wi th steplengths as given in the 
text. 

I t is possible to choose the collocation nodes for the M C R K N methods so that 

their global errors are smaller than those seen in the Panovsky-Richardson methods. 
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but only at the cost of reducing the length of the periodicity intervals. Notice that 

even w i t h the node choices used here, the two Panovsky-Richardson methods have 

larger intervals of periodicity than the corresponding M C R K N methods. 

4.6 Conclusion 

We have shown how to construct multistep collocation-based Runge-Kutta-Nystrom 

methods w i t h arbitrary stepnumber k and number of collocation nodes m, and have 

given expressions for the coefficients of these methods. 

The stabili ty polynomial for methods f r o m this class has been derived and used to 

investigate the stabihty properties of the two-step symmetric M C R K N methods. In 

particular we have shown that for the aforementioned methods, intervals of absolute 

stabil i ty are intervals of periodicity. Conditions under which these two-step methods 

have order p > m-{-2 have also been derived. 

For the methods considered in section 4.4 we saw that the conditions imposed by 

the requirement that the methods should possess a non-vanishing interval of period­

ic i ty placed severe restrictions on the range of possible collocation nodes. None of the 

methods analysed in that section had outstanding stability properties, and in partic­

ular we did not succeed in deriving any P-stable methods. The increasing complexity 

of the coefficients involved leads us to question the practicality of this type of analysis 

for methods wi th a greater number of collocation nodes. 

The numerical results given in section 4.5 show that, for the problems considered, 

these methods are inferior to the Panovsky-Richardson methods f rom the point of 

view of both accuracy and stabihty properties. 

To obtain these methods we have sacrificed the advantages of one-step methods, 

and we appear to have gained nothing in return. We wi l l see that this is not the case 

for the methods considered in the next chapter. 



Chapter 5 

Multistep collocation methods I I : 

The multistep hybrid methods 

I n this chapter we present the second of our two classes of multistep collocation 

methods for second order periodic in i t ia l value problems of the form 

y" = f(x,y); y(xo) = yo, y'(xo) = zo. (5.1) 

These methods, which we shall refer to as M C H (Multistep Collocation-based Hybrid) 

methods require no derivative data and are aimed specifically at solving problems of 

the f o r m (5.1). 

The unique solvability of the interpolation problem defining each of these methods 

is discussed in section 5.1.1, and in particular we find that in the case A: = 2 we need 

only require the collocation nodes to be distinct in order to guarantee the unique 

solvability of this problem. I n section 5.1.2 we show how to construct M C H methods 

w i t h arbitrary step number k and number of collocation points m. 

The stabili ty polynomial for these methods is found in section 5.2.1 and is used in 

section 5.2.2 to investigate the stability properties of the two-step symmetric M C H 

methods. We find that the analysis of the stability properties of these methods is 

considerably simpler than that for the M C R K N methods f rom the previous chapter. 

131 
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and we are able to derive a number of encouraging general results. 

The order of the two-step symmetric M C H methods is investigated in section 

5.3, and a simple and inexpensive local truncation error estimator is proposed and is 

shown to be effective for a number of test problems. 

Symmetric two-step M C H methods wi th 1,2,3 and 4 collocation nodes are analysed 

in detail i n section 5.4. In particular we find that i t is relatively easy to derive P-

stable methods w i t h 2 or 4 nodes. Numerical results in section 5.5 compare selected 

methods f r o m the previous section wi th the Panovsky-Richardson methods requiring 

comparable computational effort. 

5.1 Construction 

In this section we consider the construction of the M C H methods and give expressions 

for the coefficients for arbitrary stepnumber k and number of collocation points m . 

The method of construction we use is the same as was used to construct the M C R K N 

methods, though due to the reduction in the number of collocation conditions used 

to define the M C H methods, far less work is required. 

First however, we consider the existence of a unique solution to the collocation 

problem, and give examples of cases where a unique solution is not defined. I n order 

to do this we associate w i t h each M C H method an interpolation problem which is 

independent of the differential equation under consideration. The uniqueness condi­

tions are derived in the same way as for the M C R K N methods of the previous chapter. 

We w i l l see that the conditions imposed by the uniqueness criterion are a l i t t l e less 

restrictive than those for the M C R K N methods, especially in the case k — 2. 

5.1.1 Unique solvability of the interpolation problem 

I n this subsection we define the interpolation problem associated wi th each M C H 

method, and derive conditions which ensure its unique solvability. In particular we 

show that in the case = 2, unique solvability is guaranteed i f and only i f the 
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nodes {ci}'^-^ are distinct. Examples of specific methods are given at the end of this 
subsection. 

Let Xr = xo + rh, for all r G ]R, and let { c ; } - ^ j (m > 1) be distinct real numbers. 

A A;-step m-point M C H method is defined as follows: 

F ind u G Vm+k-i such that 

u{xn - jh) = yn-j j = 0 , . . . , k - l 

u"{xn + Cih) = f{xn +c^h,u{xn +Cih)) i = l,...,m 

then take 

yn+l = u{Xn+l) 

where yn+r is an approximation to y(xn+r), for all r G ]R. 

The solution to this problem w i l l be considered in the next subsection. We associate 

w i t h this method the following interpolation problem: 

F ind u G Vm+k-i such that 

u{x-jh) = g{x-jh) j = 0 , . . . , k - l 

u"{x + Cih) — g"{x + Cj / i ) i = I,... ,m 

where the funct ion g is assumed to be as differentiable as we please. 

I n the same way as before, we let u{x) - J2^Jo^~^ OpX^ and replace the above inter­

polation problem by the system of linear equations 

Aa = b 
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where A is the (m + k) x (m + k) matr ix 

A = 

0 

1 

0 

- 1 

1 ( l - k ) ( l - k f { l - k f 

0 0 2 6ci r r 

0 

( - i r 

(1 - ky 

0 0 

a = ( a o , t t r f , and 6 G R'" is given by: 

6c„ 

b = ig{0),...,gil-k),9"{c,),...,g"{cjf 

where for ease of notation we have taken r = m k — 1 and a; = 0. The above 

interpolation problem w i l l have a unique solution i f and only i f the determinant of A 

is non-zero. 

For those methods where k is much larger than m , i t might be advantageous to 

s impl i fy the mat r ix A using a similar idea to that used in section 4.1. We begin by 

part i t ioning A as follows: 

All Ai2 

A21 A22 

where A n G x R ^ A12 G JR'' x R " , A21 G R " x R ^ A22 G R " X R " . The matrix 

All may be viewed as the coefficient matr ix arising f rom a Lagrange interpolation 

problem in which the values of ^'(x) are fitted at the nodes x = 0,... ,k — l, and hence 

must be non-singular. Af t e r some algebra (see section 4.2) we obtain: 

det A = a det {A22 - A2iA^iAi2) 

A = 

where a is some real number. When = 2, the matr ix A may be row and column 
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reduced to the coefficient matr ix associated wi th one-step collocation-based Runge-

Kut ta -Nys t rom ( C R K N ) methods, f rom which we see immediately that we need i m ­

pose no further constraints on the nodes { c j ^ ^ ^ to guarantee unique solvability. 

We close this subsection w i t h a number of examples of specific M C H methods. As 

was the case for the M C R K N methods, we see that enforcing the uniqueness criteria 

results i n a relatively minor reduction in the range of possible collocation nodes. 

E x a m p l e 1 k = 3 , m = l . 

The coefficient mat r ix A in this case is given by: 

^ 1 0 0 0 ^ 

1 - 1 1 - 1 

1 - 2 4 - 8 

\ o 0 2 6ci y 

A 

and 

det A = - 1 2 ( 1 + ci^ 

So that the interpolation problem w i l l be uniquely solvable provided Ci ^ — 1 . 

E x a m p l e 2 k = 3 , m = 2 . 

I n this case the coefficient matr ix A is given by: 

A = 

1 0 0 0 0 ^ 

1 - 1 1 - 1 1 

1 - 2 4 - 8 16 

0 0 2 6ci 12c^ 

0 0 2 6c2 12c^ I 

and 

det A = -24(c2 - ci)(6ciC2 + 6(c2 + ci) + 7). 
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So that the interpolation problem w i l l be uniquely solvable provided that 

6c2 + 7 

'6c2 + 6' 
ci / C2 and Ci ^ 

I f we were to impose the symmetry constraint 

Cl + C2 = - 1 

then our uniqueness conditions would become 

C 1 / - I / 2 and ci^^±J^. 

E x a m p l e 3 k = 4 , m = 2 . 

The coefficient mat r ix A in this case is given by: 

A = 

/ 1 0 0 0 

1 - 1 1 - 1 

1 - 2 4 - 8 

0 0 ^ 

1 - 1 

16 - 3 2 

1 - 3 9 - 2 7 81 -243 

0 0 2 6ci 12cl 20c? 

\ 0 0 2 6c2 12cl 204 J 

and 

det A = 240(12cJc^ + 36c iC2 (c i -hc2) + 22(c^-f c2) + 112clC2^-

72(cl + C 2 ) + 5 1 ) ( c 2 - c i ) 

So that the interpolation problem w i l l be uniquely solvable provided that Ci ^ C2 and 

IScl + 56c2 + 36 ± ^60c | + 360c i+ 744ci + 612c2 + 174 

2{64 + 18c2 + 11] 
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I f we were to impose the symmetry constraint 

Cl + C2 = - 2 

then our uniqueness conditions would become 

Cl 7̂  - 1 , Cl 7̂  - 1 ± and Ci -1 ± \J^. 

5.1.2 Construction of the collocation solution 

I n this subsection we show how to construct a multistep collocation (MCH) method 

and show that these methods fo rm a subclass of the multistep hybrid methods. 

Let {yn}tZo be given approximations to {y{xn)}nZo- ^'^^ notational convenience 

we w i l l use the scaled variable 

s = ^ (i.e. a; = a;„-I-5/1) 

for the remainder of this section. In the same way as before, we define 

U{s) = u(x„ + s/i) (5.2) 

F{s,U{s)) = / (a;„ + 5/i,u(a;„ + s/i)) (5.3) 

and let a prime denote differentiation wi th respect to s. A A;-step, m-point M C H 

collocation method for (5.1) is defined as follows: 

Find U e Vm+k-i such that 

U{-j) = yn-j j = 0 , . . . , k - l (5.4) 

U"{ci) = h'F{ci,U{c^)) i = l,...,m (5.5) 
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then as an approximation to we take: 

Vn+l = U{1). (5.6) 

In the following lemma we show that the M C H multistep collocation methods form 

a subclass of the multistep hybrid methods. 

L e m m a 5.1 The MCH multistep collocation method defined by (5.4)-(5.6) may be 

expressed as the following multistep hybrid method: 

k-l m 
Yi = Y.^3{(^^)yn-3 + h''Y,vi{c,)F{ci,Yi) z = l , . . . , m (5.7) 

j=o /=i 
fc—1 m 

= i : ^ . ( l ) 2 / - . + ^ ' E ^ K l ) n Q , > 1 ) (5.8) 

where Xj, Vi G Vm+k-\-

P r o o f Let Yi = U{ci) for i = l , . . . , m . Then f rom the collocation conditions 

(5.4) and (5.5) we must have that 

k-l m 
U{s) = Y: A,(6)y„_, + h'Y: '^i{s)F{ci, Yi) (5.9) 

j=0 1=1 

for some polynomials \ j and Ui of degree at most m + k — 1. Expressions (5.7) and 

(5.8) follow immediately. • 

We now show how the polynomials Xj and Vi may be constructed. Without loss of 

generality we let Xn = 0 and / i = 1 for the remainder of this section. 

T h e polynomials A j , j = 0 , . . . , A; — 1 

From the collocation conditions (5.4) and (5.5) we see that the polynomial Aj must 

satisfy the following conditions: 

A , ( - r ) = 6jr r = 0 , . . . , k - l (5.10) 
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A"(cO = 0 i = 1 , . . . , m 
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(5.11) 

When A; = 2, we have that A" G Vm-i, but since we require i t to vanish at m different 

points, i t must be identically zero. Thus in this case 

Xo{s) = 1 -|- s and Ai(s) = —.! (5.12) 

Suppose now that k > 3. Condition (5.5) may be satisfied by a polynomial of the 

f o r m 

x';{s) = M{s)J2^jp^' 
p=0 

where M{s) is as defined in the previous chapter. Integrating twice we obtain: 

k 3 
K^) = Yl «JP / ~ T)T^M{T)dT + ajk-2S + 6jO 

p=0 
(5.13) 

for some ajk-2 G R . The collocation conditions (5.10) may now be wri t ten as: 

k-3 .0 
J2ajp I ir + TyM{T)dT-ra,k-2 = S,r-Sjo r = l , . . . , k - l (5.14) 

Using Cramer's Rule to solve this (A; — 1) x (^ — 1) system of Hnear equations we 

obtain: 

M ^ ) = E 7 ^ / - ryM{T)dr + - ^ s + 6,0 (5.15) 
p_o Lik-i Jo L>k-i 

where 

Dk-i = det 

+ T)M{T)dT . . . S\{l+T)T^-^M{T)dT - 1 

V \l-k{k - 1 + T)M{T)dT . . . J l , { k - 1 + Ty-^M{T)dT l - k j 

(5.16) 
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and D\t^ is the determinant obtained when the p'^ column of Dfc-i is replaced by the 
vector 

-IT J = 0 
(5.17) 

e j J > 0 

th where 1 G IR^ ^ = ( 1 , . . . , 1 ) and Sj G ^ has 1 as its j*-^ entry, and all other 

entries zero. 

T h e polynomials « = 1 , . . . , m 

From the collocation conditions (5.4) and (5.5) we see that the following conditions 

are imposed on Uii 

( - r ) = 0 r = 0 , . . . , f c - l (5.18) 

r (c i ) = 8,, j = l , . . . , m (5.19) 

We w i l l deal w i t h the special case A; = 2 in a moment, but for now we assume that 

A: > 3. Condition (5.19) can be satisfied by a polynomial of the form 

v'l{s)^U{s)^M{s)Y.h,s^ (5.20) 

where, for m > 1, li{s) is the i^^ fundamental Lagrange basis function based on the 

nodes { c , } ^ i , and h{s) = 1 when m = 1. Integrating twice, and using condition 

(5.18) we obtain: 

k—2> 
V,{S) = f 2 K / % - TyM{T)dT + Hs - T)U[T)dT + b, k-2S (5.21) 

p=0 

Rewrit ing the remaining collocation conditions as a system of linear equations, and 

using Cramer's Rule we readily obtain: 

.,{s) = [ \ s - r)U{r)dT + X: ^ l\s - r)Tm{T)dT + (5.22) 
Jo ^ Dk-i Jo Uk-\ 
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where D-p' is the determinant obtained when the p"^ column of Dk~i is replaced by 
the vector 

vl""^ = ( [ \ l + r)U{T)dT, r { k - l + T)h{T)dT] (5.23) 
\J-1 Jl-k J 

Now suppose that k = 2. From condition (5.19) we must have that 

^r(^) = his) 

Integrating twice and using (5.18) gives: 

Vi{s) = J \ s - T)k{T)dT - f 5 (1 + T)li{T)dT (5.24) 

We close this section wi th two examples of M C H methods. 

E x a m p l e 1 A; = 3, m = 1 

From the previous subsection we have that the interpolation problem is uniquely 

solvable provided that Ci ^ — 1 . Assuming that this condition holds, the method is 

given by 

6y„+c i = (2ci + 7ci + 6)y„ - 2ci(ci + 2)?/„_i + ci(2ci -1- l ) j / „ _ 2 

+ / i \ i ( c i + 2) /„+, , 

( l + c i )? /„+i = ( 3 c i 2 ) ? / „ - (3ci 4-1 )?/„_!-h c i y „ _ 2 / i V n + c i 

This method has order at least 2 by construction, and has order 3 when Ci = ( \ / l 5 — 

3) /6 . For absolute stabili ty we must have Ci > —1/2. The method has an interval 

of periodicity u'^ G (0,8/3) when Ci = —1/2, and is unconditionally stable whenever 

Cl > ( V 7 — l ) / 2 . When Ci = (-\/15 — 3)/6 the method is absolutely stable for 

^ ^ G (0 ,9 /2) . 

E x a m p l e 2 k = 2,m = 2, symmetric nodes. 

Later i n this chapter we w i l l restrict our attention to 2-step M C H methods whose 

nodes are symmetrically distributed in the interval [ - 1 , 1 ] . In this example we give 
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the general f o r m of a 2-point method f rom this family and outline some of its more 
desirable properties. The analysis used to derive these results may be found in later 
sections of this chapter. The general 2-point 2-step symmetric M C H method is given 
by 

yn±c, = {l±ci)ynTciyn-i + 

- {{icl ± 3ci - l ) / „ ± , , + {2cl ± 3ci + l ) / „ ^ , , ) 

yn+l = 2yn - yn~l + y ( / n + c i + fn-c, ) 

By construction, this method has order 2, i t is possible to increase this to 4 by taking 

Cj = i n which case the method is periodic for all ly^ G (0,6). The method has 

a single, non-empty interval of periodicity whenever Ci G {0,1/y/2) and is P-stable 

whenever Ci G [17-^2,1]. 

5.2 Stability analysis 

I n section 5.2.1 we present two methods by which the stability polynomial for a 

general A;-step, m-point M C H method may be constructed. The first method is based 

on the use of the variation of constants approach used in section 4.4, while the second 

is based on the repeated differentiation approach used by Wright [69 . 

I n section 5.2.2 we restrict our attention to 2-step, m-point M C H methods whose 

collocation nodes are symmetrically distributed in [-1,1]. We show that for these 

methods, any interval of absolute stability is also an interval of periodicity, then go 

on to derive conditions under which these methods possess a non-empty interval of 

periodicity, or are almost P-stabie i n the sense of Thomas [60 . 
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5.2.1 Construction of the stability polynomial 

T h e variat ion of constants approach 

The normal way to analyse the stability properties of a method is to apply i t to the 

standard scalar test problem 

— = - c j y, y{xo) = yo, -^{xo) = ZQ (5.25) 

We cannot use this approach directly here, since the M C H methods contain no deriva­

tive approximation stages. A more natural choice of test problem in this case might 

be the following boundary value problem: 

= - ^ ^ y , y{xo) = 2/0, y{xi) = yi (5.26) 

This may be reposed as the equivalent in i t ia l problem 

^ = -oo'y, y{xo) = yo, ~{xo) = ^(yo, Vi) (5.27) 

where Z is the value of dy{xo)/dx required to ensure that y{xo + h) = yi. Problem 

(5.27) is just (5.25) w i th different in i t ia l conditions. In what follows we w i l l use the 

formulations (5.26) and (5.27) interchangeably. 

When a A;-step M C H method is appHed to the problem (5.26) wi th constant step-

size h we obtain a numerical solution of the form: 

M„ = A " - ( ^ - i ) y , _ i n = k - l , k , . . . 

where A is a A; x A; matr ix whose entries are independent of n , and whose eigenvalues 

are functions oi u = ujh, 

Un = {u{Xn),. . . ,u{Xn-k+l)) 

Vn = {ym---,yn-k+lf n : = k - l , k , . . . 
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and {yo, • • •, Vk-i} are approximations to {y{xo),..., y(xk-i)} obtained using a suit­
able starting procedure. The collocation conditions (5.4) and (5.5) in this case be­
come: 

F ind u G Vm+k-i such that 

u{xn-jh) = yn-j j = 0 , . . . , k ~ l (5.28) 

d'^u 
— (a;„-Fc,/i) = -uj'^u{xn + Cih) i = l,...,m (5.29) 

The funct ion d'^u{x)/dx'^ + u)'^u{x) is a polynomial of degree m -|- A; — 1 which has 

simple roots at the collocation nodes { q } - ^ ! • Using this, and the above collocation 

conditions, we see that u{x) is a solution of the following in i t ia l value problem: 

'^'"'{x)+u'u{x) = R{x)Y,a,x^, 
p=0 

u{Xn-k+l) = Vn-k+l (5.30) 

^^(x„-fc+l) = Z 

dx^ 

dx' 

where Z is such that u{xn~k+2) = yn-fc+2, G R , for p = 0 , . . . , A; - 1, and R{x) is 

as defined in section 4.3. In what follows i t w i l l be convenient to replace x by the 

scaled variable 
X - Xn-k+l 

s -- h 

and to let a prime denote differentiation wi th respect to s. Take n = A; — 1, so that we 

are considering the first step in which the M C H method w i l l be applied. The ini t ia l 

value problem (5.30) is easily solved using the method of variation of constants to 

give: 

u{sh) = yoCos{v's)-\ sin(i/s)-|-
UJ 

- r sm[{s-T)u]M{T)YapTPdT (5.31) 
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where Op = ap/i'"+^'^^, for p = 0 , . . . , A; — 1 and M ( T ) is as defined in section 4.3. Our 
first task is to eliminate the unknown starting derivative value Z f r om our expression 
for u{sh). To do this we enforce the collocation condition u{h) = yi, f r om which we 
obtain: 

Z I 1 / - i . \ 
— = cosec(j/) -yos in ( j / ) -\-yi / s in[(l - T)v]MiT) apT^dr (5.32) 

Af t e r substituting (5.32) into (5.31) and re-arranging we obtain the following expres­

sion for u{sh) sm{i'): 

u{sh) sm{v) = yo{sm{v) cos(z^5) — cos(z/) sin(i/5)) + yi sm{i's) — 

/ ' s in[( l - T)U]M{T) T ^pr'dT - f 

/ ' sin[(5 - T)U]M{T) T apT^dT (5.33) 

Using the identi ty 

sin(A) s in (5 - C) - s in(5) sin(A - C) = sin(C) s in(5 - A ) 

along w i t h the standard double-angle formulae to simplify (5.33) we obtain: 

sh)sm{u) = yo(sin(t/(l - s) ) - t -?/ i sin(2^s)-t-

s i n ( . ( ^ s i n [ . r ] M ( r ) g apT^dr + 
-̂ 0 p=0 

k-i sin(z^) 
r sin[(s - T)V]M{T) apT^dr (5.34) 

•̂ 1 p=0 

Our next task is to evaluate the integrals contained in the above equation, to do this 

we w i l l use the following lemma: 
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L e m m a 5.2 Let g G Vn-, n >0, and let q = [n/2\, then 

-i)V'^)(o) 
/ sm[vT]g{T)dT = 22 

-'0 «̂  

i=0 

^ ( _ i ) V 2 . + i ) ( i ) 

/ sin[j/(s - T)]g{T)dT = J2 
J^ 3=0 

" (5.35) 

( - i )V^^)( . ) 

' ( - i ) V ! ^ 
cos(j/(5 - 1)) ^ — : ^ 

.=0 

s i n ( K . - l ) ) t ^ ' ^ i C r ^ ' ^ (5-36) 

P r o o f Use induction on n , and integration by parts. • 

Let 
Ai-l 

and 

/p = / sin[z /T]M(T) V apT^c^r 
•̂ 0 p=0 

J p ( 6 ) = / sin[jy(5 - T ) ] M ( T ) ^ apT^dr 
p=0 

Now define A, B , C, -D G ]R so that 

/p = A - B cos(z/) + C sin(i/) 

and 

J p ( 5 ) = D -Bcos{iy{s - 1)) - Csin(i / (5 - 1)) 

Substituting these expressions back into (5.33) gives: 

u{sh)sin{i') = -yosm{v{s - 1)) + yis'm{us) + 

u~^[Asm{u{s - 1)) + Dsm{p) -
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B{s\n{v{s — 1)) cos(i/) -|- sin(:^) cos{i/{s — 1))} -|-

C{sm{i/{s ~ 1)) sm{i>) - sin(i/) sin(j/(5 - 1))} 

= sm{iy{s - l)){-yo + u;~^A} + sm(us){yi - u~^B} + 

D sm{v) 

We know that u is a polynomial, so that the coefl'icients of sin(z/.s) and sin(i/(5 — 1)) in 

the above expression must vanish. Let the functions "^pis) and $ ,̂'"^(5) be as defined 

in section 4.4, then we have that 

fc-i 
u{sh) = a p $ p ( s ) 

p=0 

W i t h u in this f o r m we may now easily enforce the collocation conditions 

(5.37) 

^{jh) = yj j = 0 , . . . , k - l 

and hence obtain the following equations expressing a = (ao, . . . , 0 ^ - 1 ) ^ in terms of 

Vk-i-

Vk-i = hPa (5.38) 

where P is given by: 

^ ^ o { k - l ) ... ^ k - i { k - l ) ^ 

P = 

*o(0) ^k-i{0) 

Evaluating u{sh) ai s - k to find our approximation for yk gives: 

u{kh) = hq^a 

= q'P-'Vk-. (5.39) 
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where q is given by: 

q = { M k ) . . . . . ^ k - m f 

We now have an explicit expression for our y approximations at step 1 in terms of 

the information carried forward f rom step 0. Using the same idea we can write the 

approximations at step 2 in terms of the information carried forward f rom step 1, and 

so on. The iteration matr ix A such that y„ = A"~*^"''^?/jt-i5 ?̂  = A; — 1, A;, . . . is now 

t r i v i a l to fo rm , and is given by: 

A 
\ h-2 Ofc_2 / 

(5.40) 

where Ik-2 is the (A; — 2) x (A; — 2) identity matr ix, and 0fc_2 is a (A; — 2)-dimensional 

vector of zeroes. Let w = q , then the stability polynomial 7r(A) for the A;-step, 

m-point M C H method is given by: 

k 
7r(A) = A ' ^ - ^ u ^ . A ^ - ' (5.41) 

i=o 

where = (lOo, • • •, Wk). To see this notice that A takes the form of a companion 

mat r ix . 

T h e repeated differentiation approach 

Let G{s) - T!;11 a p 5 ^ where Op G R , for p = 0 , . . . , A; - 1 and let N{s) = G{s)M{s), 

where M{s) is as defined previously. Wi thout loss of generality we take h = 1 and 

n = A; — 1. From above we have that the polynomial u[s) satisfies the following 

differential equation: 

u'\s) + u\{s) = N{s) (5.42) 

Differentiate this twice w i t h respect to s to obtain: 

n W ( 3 ) + u\"{s) = N"{s) (5.43) 
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Using (5.42) we can eliminate u"{s) f r om the above equation to get 

u^^\s) - iy^u{s) = -iy^N{s) + N"{s) (5.44) 

We now repeat this process unt i l eventually we f ind: 

r - l 
-{-iyyu{s) = J2N^^'\s){-uy-'-\ m + k = 2r (5.45) 

i=o 
r 

.^-„y+^u{s) = ^ i V ( ' ^ ) ( ^ ) ( - 0 ' ' " ' > m + k = 2r + l (5.46) 

Recall f r o m the previous chapter: 

ds 

and 

$W(s) = f M ( s ) 5 H , p , z > 0 

From these we see immediately that N'^^^^s) may be wri t ten as 

k-i 
iV(2^)(3) = 53a , $ (2^) (5 ) , j = 0 , . . . 

p=0 

and hence u{s) may be wr i t ten as 

k-i 

«(^) = E « p * p ( ^ ) -

This expression is identical to that obtained f rom the variation of constants approach. 

The construction of the stabihty polynomial now proceeds as before. 

As an example we now use our stability polynomial to analyse the stability prop­

erties of the general 2-step, 1-point M C H method. 

E x a m p l e k = 2, m = 1. 
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The general 2-step, 1-point M C H method is defined for all Ci and is given by: 

Vn+ci = (1 -f- Cl)yn - Ciyn-l + l^^li^ + Cl)/n+Ci 

The stability polynomial for this method is: 

7r(A) ^ A 2 ( c i ( 1 + c ^ y + 2) + 2A((1 - c \ y - 2) + ci (c i - l y + 2 

Af te r applying the Routh-Hurwitz transformation, we obtain the following Routh-

Hurwi tz polynomial: 

i?(C) = 2c^((2c^ - l y + 4) + ^ccy + 21.2 

The Routh-Hurwitz criteria for this problem are that all the coefficients of i?(C) niust 

have the same sign, i.e. 

ci > 0 and {2cl - l y + 4 > 0 

In particular, the method w i l l be unconditionally stable whenever Ci > l / \ / 2 , and 

periodic w i t h periodicity interval u"^ G (0,4) i f and only i f ci = 0. The method has 

order 1 unless Ci = 0, i n which case its order is 2, and the leading error coefficient is 

1/12. 

5.2.2 The symmetric two-step, m-point M C H methods 

I n this section we restrict our attention to the two-step symmetric M C H methods 

whose collocation nodes {c;}™^ are symmetrically distributed in the interval [—1,1]. 

We show that for these methods, intervals of absolute stability are intervals of peri­

odicity, and then go on to derive conditions under which a 2A'^-point method f rom 

this f ami ly is almost P-stable in the sense of Thomas. In particular we find that, for 
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m = 2,4:, there are many P-stable methods f rom this family. 

I n order to show more clearly any possible symmetry properties in the stability 

polynomial we w i l l change variable f rom s to the shifted variable t = s — l. Before we 

begin our analysis we give again the definition of the functions ji{t) used in section 

4.3. We w i l l find i t convenient to append the suffix m to the 7i( t) to get: 

7m A^) 

- i x ^ - ^ / - i y ( 2 ^ 

- i y ( ' + i ) Z , / - i y (2j + z + i ) ! 

(2; + 1 ) ! 

I even, 

i odd 

From above, the matr ix P and vector q for these methods are given by: 

7m,o(0) 7m,l(0) 

7m,o( - l ) - 7 m , o ( - l ) + 7 m , l ( - l ) J 

9 ^ = ( 7m,o(l) 7 » , 0 ( l ) + 7 m , l ( l ) 

We now assume that the collocation nodes {cj}™j satisfy the following symmetry 

constraint: 

Ci + c„+i_ i = 0 i = l,...,\\m 

We w i l l see in example 1 of this section that the 2-point method has far better stability 

properties than the 1-point method. We wi l l see that this is no coincidence, and that, 

i n general, i t is far easier to find almost P-stable methods i f the number of collocation 

points is even. We consider the cases m = 2A'' and m = 2N + 1 (Â ^ > 0) separately. 

T h e 2N-point M C H methods 

When m = 2N the polynomial M{t) satisfies the identity 

M ( ' " ) ( - 0 = {-iyM^'\t) r > 0 
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So that 

72A^,o(-l) = l2N,o{l) 

7 2 i V , l ( - l ) = - 7 2 i v , i ( l ) 

72N , i(0) = 0 

T T 1 
Using the above relations, we may simplify w — q P to get 

V 72iv,o(0j ; 

and thus the stability polynomial 7r(A) is given by: 

; ,(A)==A2-2^:H411A + 1 (5.47) 
72;v,o(0j 

Many numerical methods for second order differential equations, e.g. C R K N methods 

and the hybr id methods of Cash, Chawla and others, have stability polynomials 

of the f o r m (5.47). A general framework for analysing the stability properties and 

order of dispersion of such methods is given in Coleman [21]. We wi l l go on to 

derive some general results regarding the stability properties of the 2-step, 2iV-point 

M C H methods i n a moment, but first we look at the stability polynomial in the case 

m = 2A^ + l . 

T h e 2 N + l - p o i n t M C H methods 

The polynomial M{t) in this case satisfies 

M ( ' - ' ( - t ) = {-\y+^M('\t) r > 0 

So that 

72iv-i-i,o(-l) = -72JV-i-i,o(l) 
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7 2 J V + i , i ( - l ) = 72Ar+i , i ( l ) 
72iV-n,o(0) = 0 

T 

Using these relations we may write the vector w as: 

^ ( 272iV+i,o(l) +72 jv+i , i ( l ) _ ^ ' 
V 72Af+l,l(0) / 

From which we see that the stability polynomial 7r(A) takes the same form as before, 

and is given by: 

. ( A ) = A^ - 2^2^^^^° (^ )+3 ;^^^^^(^ )A - 1 (5.48) 
72iV+i,i(0) 

Using the fact that 

iV 
M{t) = tM2N{t) where M2N{t) = n ( ^ ^ ~ 

we can wri te 

M^^P^O) = 0 

^(2p+i ) (0) = ( 2 p + l ) M i ^ ^ ' ( 0 ) p = 0 , l , . . . 

M M ( - 1 ) = ( - I ) ' - M S ( I ) r = 0 , l , . . . 

These relations can be used to re-express the 72Ar+i,i(i) in terms of the '^2N,i arising 

f r o m the method obtained by discarding the node cjv+i = 0, to get: 

72Af+i,o(0 = ^72JV,o(i) + 72Ar ,i(0 

l2N+\,\{t) = i72iV, l (0 +727V,2(0 

so that the stability polynomial may be wri t ten as 

x ( A ) = A^ - 2^^^^o{l) + 2^.N,{l) + ^2N,{l)^ _ ^ (5_4g^ 
72iV,2(0) 
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We w i l l now use the stability polynomials above to derive some sufficient con­
ditions for these methods to possess a non-empty interval of periodicity, and to be 
almost P-stable in the sense of Thomas [60]. Define amii'^) such that 

7r(X) = -2amii^^)X + l 

Following Coleman [21], since our aim is to draw conclusions regarding the stability 

properties of these methods using only the above characteristic or stability polyno­

mia l , we take |aTO(i^^)| < 1 as our condition for periodicity. 

T h e o r e m 5 . 3 A symmetric 2-step 2N + 1-point MCH method can be almost P-stable 

only i i /3 z e { 1 , . . . , N} such that Ci = 1. 

P r o o f We look at the behaviour of a2N+i{i^^) as v'^ becomes large. For the method 

to be almost P-stable we must have that \a2N+i{i^^)\ < 1 as i / ^ —> cx3. For large u^, 

a2iv+i( j^^) is given by 

_ MM^) + o ( ^ - ^ ) 

> - 2 M , ^ ( 0 ) ( - . - ) + O ( . - ) 

Clearly this w i l l grow without bound as i/^ increases unless M2Ar ( l ) = 0 • 

T h e o r e m 5 . 4 Every symmetric 2-step, 2N-point MCH method possesses a non­

empty interval of periodicity. Furthermore, for each method from this class there 

exist infinitely many choices of the collocation nodes { c , } ^ i such that the method is 

almost P-stable. 

P r o o f We begin by showing that every 2-step, 2iV-point M C H method possesses a 

non-empty interval of periodicity. To do this we wi l l look at the behaviour of a2N{i^^) 

for small j / ^ . For small v"^, the funct ion a2/v(i^^) may be wri t ten as 

2. _ M ( ^ ^ ) ( l ) - z /^M(^^-^)( l ) + Oju") 
0^2N{1^ ) - ^(2;V)(0) - j,271^(2iV-2)(0) + 0{,y^) 
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where we have mult ipl ied the top and bot tom of a2Ny) by v'^^. Now 

so that w i t h 

we have that 

" (2Af ) (2A^- 1) U ' ' ^ 

a2N{i' ) = 1 + Z/2j^ - f 0 ( j / 4 ) 

+ 0{u') 

Clearly there exists some fQ > 0 such that |a:2Af(2^^)| < 1 for all G (0 , fo) -

We now look at the behaviour of a2Ny) as i /^ becomes large. For large f^ , we 

may wri te a2Ny) as 

M ( l ) + 0 ( ^ - 2 ) 

"^^^'^ ^ - M ( 0 ) + O ( . - ) 

So that i f 

M ( 1 ) = 0 or | M ( 1 ) | < | M ( 0 ) | (5.50) 

then there w i l l exist some /Ŝ  such that the method is periodic for all z/̂  6 {^^,oo). 

Let 

-cl 
1 = 1,...,N 

so that | M ( 1 ) | = H i l l 1-^(0)I- I t is now easy to show that cr̂  < 1 provided that 

Ci G {l/y/2,1]. This completes our proof. • 

I n the following lemma we give slightly better bounds for the range of collocation 

nodes which give rise to almost P-stable symmetric 2-step, 2A'^-point M C H methods. 

L e m m a 5 . 5 If the collocation nodes {ci}^^-^ of a symmetric 2-step, 2N-point MCH 
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method satisfy the following constraints: 

CAT+i-i > \Jl - 4 

> T2 

i = \,...,p withp=[\N\. 

ifN=^2p-\-l 

and {ci}iL-i C (0,1], then the method will be almost P-stable. 

P r o o f Assume that { c j - ^ i C (0,1]. Let A^ = 2p, w i th p>0, then we may write 

Mil = n ( ( l z M t i 3 f ± i J \ 

M{0) i \ [ cfc^^,_, ) 

We require this ratio to be less than one. Let 
(1 - c^)(l - i = l,...,p 

then a sufficient condition for M ( 1 ) / M ( 0 ) < 1 is <Ti < 1, for z = 1 , . . . ,p, i.e. 

; i - - + c ^ ^ + i - « ) < 

CN+l-^ > y l - C i for z = 1 , . . . ,p 

When A^ = 2p -I-1 we may write 

M ( l ) 
M ( 0 ) 

1 - 4+1 
-p-i-i i=i 

f r o m which the lemma follows immediately. 

• 

To illustrate the results of this section we analyse in detail the stability proper­

ties of the general 2-step, 2-point and 3-point M C H methods w i t h symmetric nodes. 

Analysis of the symmetric 2-step 4-point M C H method is given in section 5.4. 

E x a m p l e 1 k = 2, m = 2, symmetric nodes. 
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The stabil i ty polynomial for these methods is 

. ( X ) . ^ ^ ( l - c ? ) - 2 

The corresponding Routh-Hurwitz polynomial is given by 

R{0 = 2{{A + u'{2cl-l))e + u') 

Apply ing the Routh-Hurwitz conditions we find immediately that when Ci G (0, l / \ / 2 ) 

the method is periodic provided that G (0,4(1 — 2c^)~^), and when Ci G [ 1 / ^ 2 , 1 

the method is P-stable. 

E x a m p l e 2 A; = 2, m = 3, symmetric nodes. 

The stability polynomial for these methods is 

= ^ 2 ^ ^ ^ 4 

A f t e r applying the Routh-Hurwitz transformation we obtain the following Routh-

Hurwi tz polynomial: 

R(() = - cl) - 4^^(3 - cj) + 48)C - ^^((1 - - 12) 

The Routh-Hurwitz conditions are thus 

and 

- cl) - iu\3 ~ cj) + A8 > 0) (5.52) 

Assume Ci 7̂  1. The above quadratic in v'^ has roots r± given by 

r± = ^ (c? - 3 ± yjct + Qcl - 3) 
cj — 1 V ' / 
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When cj < 2^/3 - 3, the roots r± are complex, and so condition (5.52) holds for all 
u^. When > 2-̂ /3 — 3, then the quadratic has real roots, and so (5.52) holds for 
u'^ G ( 0 , r _ ) U ( r+ ,oo) . When ci = 1, the method becomes Numerov's method. To 
summarize, the periodicity intervals for these methods are as follows: 

c^G ( 0 , 2 ^ 3 - 3 ) : G (0, ^ ) 

G ( 2 v ^ 3 - 3 , 1 ) : G (0, r _ ) U ( r+ , j l ^ ) 

cl = l: iy'e{0,6) 

5.3 Order and local truncation error 

I n the previous chapter on M C R K N methods we were able to derive order condi­

tions for the two-step methods wi th arbitrary number of collocation nodes using the 

Grobner-Alekseev theorem. This derivation relied heavily on the fact that we had 

informat ion about the quantities u{x) — y(x) and u'{x) — z{x) at the previous step-

points Xn-i and Xn- The M C H methods of this chapter are designed so as to contain 

no explicit first derivative evaluations, since they are intended to be used solely for 

the special second order differential equation y" = f{x,y)\ y{xo) = yo, y'{xo) = ZQ. 

This means that we have no information about the quantities u'{x) — z[x) at the 

previous step-points, and so the previous derivation of the order conditions may not 

be used here. 

We begin by restricting our attention to the two-step symmetric methods once 

again. Using a Taylor series approach and properties of the coefficients of these 

methods, we derive conditions for methods wi th an even number of collocation nodes 

to have order at least m -|- 4, and those wi th an odd number of nodes to have order 

at least m -|- 3. 

In section 5.3.2 we examine an approach used by N0rsett & Lie [47] to derive order 

conditions for their multistep collocation methods for first order systems, and show 

that i t is not applicable to our methods. 

Finally, in section 5.3.3 we present a simple, cheap and effective local truncation 
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error estimator for the 2A^-point methods of order 2N. 

5.3.1 Taylor series approach 

I n this subsection we consider the two-step m-point M C H methods, and later restrict 

our at tention to those methods whose nodes are distributed symmetrically in [—1,1], 

which for brevity we w i l l call 2CHS methods. We adopt the approach used by Lambert 

45] for linear multistep methods and associate wi th each two-step M C H method a 

number of linear operators. Using these operators we examine the leading terms in 

the local truncation error expansion. We show that the min imum order of an m-

point 2CHS method is m i f m is even, and m - f 1 i f m is odd, we then go on to derive 

conditions under which a 2A^-point 2CHS method w i l l have order at least m + 2. 

We begin by wr i t ing the general 2-step m-point M C H method as 

2/n+c. = (1 + Ci)yn - C^yn-l + ^ilfn+c, i = l,...,m (5.53) 

m 
yn+1 = 2yn - yn-1 + £ Am+l,jfn+c, (5.54) 

where 

Aij = j J lj{a)dadT — Ci J J lj(a)dadT i = 1,... ,m-\-l, j = I,... ,m (5.55) 

and where we have taken c^+i = 1. W i t h each method f rom this class we associate 

the fol lowing linear operators: 

Ci[y{x)] = y(x -f- ah) - (1 - f Ci)y{x) + Ciy{x - h) 
m 

-K^ Aijy"{x + c,h) i = l...,m (5.56) 

m 

Cm+iW)] = y{x + h)-2y{x) + y{x-h)-h'YAm+i,jy"{x + c,h){b.b7) 

where y is an arbitrary test function, assumed to be as differentiable as we please. By 
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expanding the functions y(x ± h), y[x -\- Cih) and the second derivatives y"{x - f c^/i) 
(for 2 = 1 , . . . , m) as Taylor series about x, we may re-express the operators Ci[y{x) 
as 

A[2/(x)] = E ^ — ^ 7 ^ ^ + 0 ( 0 ^ = l , . . . , m - t - l (5.58) 

for some r < oo, where 

(5 .59 ) 

We know that the order of methods f rom this class is at least m. This result follows 

directly f r o m the method by which they are constructed, or, as we show here, using 

expressions (5.58) and (5.59), and basic properties of Lagrange interpolation. A two-

step M C H method w i l l have order at least m i f the coefficients 5^ satisfy the following 

conditions: 

Bl = 0 for z = l , . . . m , p = 0 , . . . m - 3 (5.60) 

= 0 f o r p = 0 , . . . , m - l (5.61) 

Let be a funct ion, assumed to be as differentiable as we please. The error in 

Lagrange interpolation for g at the nodes { c j ^ i may be wri t ten as 

9{x)-±g{cM^)-^^''^^^^}'^^''^^ for all a; (5.62) 
i = i ^ • 

where M{x) = YYiLi{x — A ) , and rj is some number that depends on x. Now let 

g{x) = x'P, for some p G { 0 , . . . , m - 1}. Using (5.62) we have that 

^ c ^ / , ( x ) = xP f o r a l U 
i = i 
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Using this we may write 

/ • - I ™ 

•̂ 0 i = i 

= / " ( c , - T)rPclr + Ci r \ - l - r y d r 
Jo Jo 

{p + l){p + 2) 

We see immediately f r o m this that Bp = 0 for p < m and i = l , . . . , m - | - l , and hence 

the required result follows. 

When 2-step m-point M C H method is applied to the differential equation 

y"{x) = f{x,y), y{xo) = yo, y'ixo) = zo (5.63) 

the local truncation error in the approximation yn+i is defined to be 

Sm+l[yiXn)] = y{Xn+l) - ^n+l (5.64) 

where y{x) is a solution of (5.63), and j / „+ i is obtained f r o m the M C H method under 

the assumptions ?/„ = y{xn) and = y{xn-i). Similarly we define the local 

truncation error in the z'^ corresponding off-step value yn+a to be 

Si[y{xn)] = y{xn+ci) - yn+a f o r i = l , . . . , m (5.65) 

under the above localising assumptions. The operators 6i[y{xn)] may be re-expressed 

using the Ci[y(xn)] operators as follows: 

H y M ] = A[?/(a;„)]-/ i 'E^«-J-2/"K+<=;) 

i = i 
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= £i[y{xn)] 

+h' E A , E ^-T^i^AyM]y^{xr.+c,,y{^n+o,)) (5.66) 

m! + (m-fl)! + 

(m + 2)! ^ , l ^ A A j / ^ 

+ 0 ( / i " + ' ) (5.67) 

Before proceeding any further w i t h our error analysis we impose the symmetry con­

straints 

a -F Cm+i-i = 0 for i = 1 , . . . , + 1, w i th A^ = L|mJ (5.68) 

and restrict our attention to the 2CHS methods. When the conditions (5.68) are 

satisfied, a number of identities involving the Aij and B'^ may be derived. These 

identities may then be used to simplify the definition of the method given in (5.53) 

and (5.54), and the local truncation error as given by (5.67). Let j G { 1 , • • •, A^} then 

= n 
(=1 \ ^3 - J 

- { x - C m + l - l ) \ 

1=1 \ - { C m + l - j - Cm+l-t), 

lm+l-j{x) 

Using the above identity, consider w i th j G { 1 , . . . , A^}: 

Am+i, = l \ l - r ) h { T ) d T + r \ - l - T ) l , { r ) d r 
Jo JO 

= ( - 1 - a)lm+i-j{(T)d(7 + _^ (1 - (T)lm+i-j{(^)dcr 

= Am+l,m+l-3 (5-69) 

where we have changed the integration variable f rom r to a = - r . Using the same 
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idea we can also show that 

Aij -t- Am+l-i,j = Ai^rn+1-3 + Am+l-i,m+l-j i,j = I,. . . ,N 

I n view of these identities we might be tempted to write the 2CHS method in the 

same f o r m as the Panovsky-Richardson methods. Take m = 2A'̂ , and let aij = 

Aij + Am+i-i,j for i , j = 1 , . . . , A^, then we might write the general 2A''-point 2CHS 

method as 

N 

yn+c, - 2yn + yn-a = Yl ifr^+c: + fn-cj) i = l,...,N 

N 

yn+l - 2yn + yn-l = E ^rn+lj {fn+cj + fn-c, ) 
J=l 

The problem now is, how do we generate the values yn-cj We could provide these 

values in the first step, in the same way as for the Panovsky-Richardson methods, but 

this would not help us in step 2. In addition we could force the positive nodes { c i j i l i 

to be symmetrically distributed in the interval (0,1), and t ry the same method of 

advancing as used by those methods. Unfortunately this does not work either. For 

the Panovsky-Richardson method of advancing to work, we must have that for each 

zG { 1 , . . . , A ^ } , 

J/(n+i)-c, = yn+cj for some G { 1 , . . . , A^.} (5.70) 

This was the case for the Panovsky-Richardson methods, since, now that we know 

them to be one-step collocation methods, we see that the same collocation polynomial 

u{x) is used to calculate both y(^n+i)-ci and yn+cj- However this is not the case for 

the 2CHS methods. The collocation polynomial used to calculate yn+cji Unix) say, 

is defined by incomplete Hermite interpolation over the interval x G [a;„_i,x„+i], 

whereas the polynomial Un+i{x) used to calculate is defined by interpolation 

over the interval x G [a;„,a;„+2], and so i t is clear that u„ ^ u„+i . This means that in 

general, we w i l l not be able to satisfy condition (5.70). I t is due to difficulties such 

as this that we have so far been unable to derive a complete set of order conditions 
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for the M C H methods w i t h arbitrary k and m. 

Let us now look at the coefficients i ?^ . Using our expression (5.62) for the error 

in Lagrange interpolation, w i th g{x) = we have that 

m 

J2 Iji^K = - M{x) for all x 

Using this to s implify B'^ gives 

Bl = £'{ci-T)M{T)dT -\-Ci ^{-1 -T)M{T)dT i = l , . . . , m 

and, using M ( - x ) = {-l)'^M{x), 

i?r' = (l + (-in l\l-r)M{T)dT 
JO 

Thus we see that the min imum order of an arbitrary 2CHS method is m when m is 

even, and m-\- \ when m is odd. So far we have been able to obtain sufficient, but by 

no means necessary, conditions for an arbitrary m-point 2CHS method to have order 

at least m -\-2, and for an arbitrary 2A'^-point method to have order at least m 4- 4. 

These results are summarised in the theorems below. 

T h e o r e m 5 . 6 The minimum order, po, of an arbitrary m-point 2CHS method is m 

if m is even, and m if m is odd. If the conditions 

/ \ l - T ) M ( r ) d r = 0 m = 2N (5.71) 

1̂ -''̂ ?"" = (2iV + 3)(2iV + 4) ' " = ^ ^ + ' ( " ^ ' 

are satisfied, with 

A ^ + i , , = A l - T ) ( / , ( T ) + / , ( - r ) ) d T i = l , . . . , m 
J 0 

then the method will have order PQ -\- 2. If in addition the nodes of a 2N-point 2CHS 
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method satisfy the conditions 

N I 

g A „ + i , , c f + ^ = (2iV + 3)(2iV + 4) ^^-^^^ 

EA^+,, r\c,-T)M{r)dr 0 (5.74) 

then the method will have order 2N + 4. 

P r o o f NED ° 

T h e o r e m 5.7 If the nodes of a 2N-point 2CHS method are chosen so that condition 

(5.71) is satisfied, then there exists at least one j G { 1 , . . . ,2N} such that 

r\c,-T)M{T)dT^O. (5.75) 
Jo 

P r o o f Postponed un t i l the end of section 5.3.2. • 

Observe that this result means that at least one of the ofF-step approximations, ?/n+c, , 

f r o m a 2A'^-point 2CHS method has order at most 2N whenever the nodes are chosen 

so that the method itself is of order 2N + 2. 

The Taylor series analysis in this subsection, though not as elegant as we would 

have liked, has proved useful in analysing the 2CHS methods wi th 1,2,3 and 4 nodes. 

The analysis of these methods may be found in section 5.4. In order to make any 

fur ther progress i n deriving a f u l l set of order conditions for M C H methods w i t h 

arbitrary stepnumber and number of collocation nodes, we believe that a formulation 

similar to that used in the previous chapter must be found. One avenue which we 

pursued was to attempt to extend the 'Collocation approach' used by Lie & N0rsett 

47] for their methods. 
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5.3.2 Lie &: N0rsett's 'Collocation approach' 

Once again we restrict our attention to the symmetric two-step M C H methods. Before 

we begin our analysis, we w i l l change variable f rom x to 

s = ;—-

As before we define 

u{xn + sh) = U{s) 

y{xn + sh) = Y{s) 

f{xn + sh,yixn + sh)) = F{s,Yis)) 

and let a prime denote differentiation wi th respect to s. We consider the approxima­

t ion of an arbitrary test funct ion Y, assumed to be as differentiable as we please, by 

a polynomial U using our interpolation scheme. Let 

* = r - f/. 

Lie & N0rsett begin wi th the assertion that, for their methods, order p corresponds 

to 

^ r ( l ) = 0 for all Y G Vp, 

i.e. the error i n interpolating Y hy U is zero for polynomials up to degree p. We 

feel that this assertion is incorrect. To see why, let us consider the application of the 

simple impl ic i t Runge-Kutta method 

Vn+l =yn + hf{Xn + \h, - f (5.76) 
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to the first order in i t i a l value problem 

2 / ' = ^ , y{xo) = xl (5.77) 

X 

which has solution y{x) = x^. Take XQ = 1, then 

h{l+yi) 
2/1 = 1 + l + lh 

1+jh 

Expand this as a Taylor series to get 

yx = (l + lh)il + \h + \ e + 0{h')) 

= xl + lh^ + 0{h') 

In this example we clearly see that, though the method has order 2, the solution 

y{x) = x'^ is not reproduced exactly. Having said this, Lie & N0rsett's approach 

does seem to work for their methods, though this appears to be more by luck than 

by design. One possible reason for this might be that their methods satisfy the 

s impl i fying assumptions of Burrage & Moss [3] which ensure that the only Butcher 

trees which contribute to the order conditions are the quadrature trees (see Hairer et 

al. [35] pp203-4). 

We now extend this approach to cover our 2CHS methods. To begin wi th we 

w i l l proceed as Lie & N0rsett, and ignore the above flaw. Af ter generating the 'order 

conditions', we w i l l use them to analyse a number of examples and compare our results 

w i t h those obtained f r o m the Taylor series approach f rom the previous subsection. 

Following Lie & N0rsett we begin wi th the assertion that order p corresponds to 

^ ' ( l ) = 0 for all Y € Vp+i 

We know already that such methods have order at least m , so we can take p = m + p 
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w i t h p > 0. The interpolation conditions defining U{s) are as follows: 

U{-j) = Y H ) J =0,1 (5.78) 

C/"(cO = r ' ( c O i = l,...,m (5.79) 

Let ^r{s) € Vm+i be the polynomial which interpolates to s^ using our interpolation 

scheme, for r = 0 , 1 , . . . , and let Y{s) be given by 

P+i 
Y{s) = J^ars' a, € R , r = 0 , . . . , p + 1 

r = 0 

We may now wri te ^{s) as 

* ( . ) = X : a , ( 6 ^ - $ . ( 5 ) ) 
r = 0 

Since there are m + 2 interpolation conditions in (5.78) and (5.79), we must have that 

'̂̂  = $^(5) for r = 0 , . . . , m + 1, and hence 

^{s)= J2 ar{s'-M^))- (5-80) 
r=m+2 

I n order to proceed w i t h our analysis we wi l l need to re-express ^ ( s ) in a more 

convenient fo rm. Using the interpolation conditions (5.78) and forcing ^'(1) = 0 we 

can wri te 

^{s) = S{S - 1){S + l)Rp-2is) w i th Rp-2{s) e (5.81) 

The remaining interpolation conditions (5.79) may now be expressed as 

*" ( c i ) = 0 fo rz = l , . . . , m . (5.82) 
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Let Rp-2{s) be given by 

p-2 

Rp-2is) = J2 Vrs'' w i th r]r e n , r = 0,...,p-2 
r=zO 

Then we seek values of TJQ,..., r}p_2 such that conditions (5.82) are satisfied for 

polynomials Rp-2 of degree p — 2. From equation (5.80) above, we see that the 

only free parameters in Rp-2{s) are the numbers rjm-i, • • • ,Vp-2, the remaining T/'S 

are just linear combinations of these. We now attempt to simplify the conditions 

^"{ci) = 0, i = 1 . . . , m by making use of the symmetry properties of the 2CHS 

methods. Let 

r , ( s ) = s'({r + 3)(r + 2)s^ - r{r + 1)) for r = 0 , 1 , . . . 

Then the conditions ^"(c ; ) = 0 may be wri t ten as 

p-2 
Y^rirTr(c,) = 0 i = l,...,7n 
r = 0 

Using the symmetry of the nodes { c j ^ i , and noting that is even if r is even, and 

odd otherwise, we may rewrite the above conditions as 

p-2 

J2 VrTr{c^) = 0 l = l,...,N (5.83) 
r=0 

r odd 

p - 2 

J2 VrTric^) = 0 I = I, . . . , N (5.84) 
r = 0 

r even 

= 0 when m = 2A^ + 1 (5.85) 

where equation (5.85) represents the condition ^'"(0) = 0. Notice in particular that 

this condition means that the order of a 1-point 2CHS method may not exceed 2. 

As examples of how to apply these conditions we consider the general 2-, 3- and 

4-point 2CHS methods. 
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E x a m p l e 1 m = 2, C2 = — C i , p > 2. 

We seek the largest value of p such that a non-trivial solution to the system (5.83)-

(5.85) exists and has 7^ 0. 

(i) p=3. The conditions (5.83)-(5.85) in this case are as follows: 

6ci7/o = 0 

2{%cl-l)r^, = 0 

We require that this system be solvable for all i.e. that c\ = l / \ / 6 . 

(a) p=4- Take ci = l / \ / 6 . The conditions (5.83)-(5.85) now become: 

V^Vo — = 0 

which is clearly solvable for all 772. 

(Hi) p=5. The condition (5.84) remains unchanged f rom the p = 4 case. Condition 

(5.84) is now 

^ , 3 = 0 

The only solution to this equation is 773 = 0. 

We have shown that the conditions (5.82) can be satisfied wi th R(s) a polynomial of 

degree at most 2 by choosing Ci = By applying our Taylor analysis above, we 

see that this value of Ci does indeed result in an increase in the order of the method 

f r o m 2 to 4. For the stability analysis for these methods we refer the reader to section 

5.4, numerical results may be found in section 5.5. 

E x a m p l e 2 m = 3, C3 = - c j , C2 = 0, p > 3. 

From our Taylor series analysis above, we know that the min imum order of these 

methods is in fact 4, so that we need only consider p > 5 here. 
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(i) p = 5. The conditions (5.83)-(5.85) in this case are given by 

6ci77o + ci(20c?-6)772 = 0 

6cl{5cl-2) = 0 

The first of these equations remains unchanged f rom the p = 4 case, and so we know 

that i t is solvable for all 7/2. The second equation has a non-trivial solution i f and 

only i f 5c^ — 2 = 0, note that Ci = 0 is not permitted. 

(ii) p = 6. The condition (5.83) remains unchanged f rom the p = 5 case above. 

Condition (5.84) is now 
32 

67?o + 2r]2 - —7/4 = 0 

which certainly possesses solutions wi th 772 and 7/4 both non-zero. 

(in) p = 7. The condition (5.84) remains unchanged f r o m the p = 6 case above. 

Condition (5.83) now becomes 
152 

125"= = ° 

Clearly the only solution to this equation is 7/5 = 0. 

When 7n = 3 we have shown that the condition (5.82) can be satisfied by a polynomial 

R{s) of degree at most 4 by choosing Ci = \J2J5. From our Taylor series analysis 

above, we find that this value of Ci does in fact result in an increase in the order of 

the method f r o m 4 to 6. 

There is evidence f r o m these examples to support the conjecture that the maximum 

attainable order of an 7n-point 2CHS method is 2m. In the next example we w i l l see 

that this is i n fact not the case. We w i l l also see that this collocation approach to 

the order analysis fails to find correct order conditions for p > po + 2. By relating 

this analysis back to the Taylor analysis above, we see that this failure is due to the 

fact that the operators . . . ,£m[2/] are not taken into consideration. We might 

then ask why this approach works for Lie L N0rsett's methods, but not for these? 

Unfortunately we have been unable to find an answer to this question. One approach 
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which we have not pursued might be to extend the Butcher theory of trees to cover 
General Linear Methods for our special second order differential equation, and then 
to t ry to find s implifying assumptions similar to those used by Burrage &; Moss [3]. 

E x a m p l e 4 m = 4, C4 = —ci, C3 = —C2, p > 4. 

(i) p = 5. The conditions (5.83)-(5.85) in this case are given by 

QciT]o + 2c,{lQcf ~ Z)r]2 = 0 i = 1,2 

2(6c2 - 1)7/1 + 6c,2(5c,2 - 2)7/3 = 0 1 = 1,2 

We require that there be a non-trivial solution to this system wi th 7/3 7̂  0. Wri t ing 

the second pair of equations in matr ix fo rm we have 

A{rj^,T]sf = 0 

where 

/ Qcl-1 3cl{5cl-2) 

\ 6 c l - l 3cl{5cl - 2) 

Our requirement now becomes de t (A)=0. 

det (A) = 12{c\ - c\){ZOc\c\ - h{c\ ^ c\) + 2) 

This determinant w i l l vanish provided that the nodes {ci,C2} satisfy 

Cn = 
5(6c2 - 1) 

(ii) p = 6. The conditions (5.83) remain unchanged f rom the previous case. Condi­

tions (5.84) now become 

6c,7/o + 2c,(10c^ - 3)7/2 + 2c?(21c,2 - 10)7/4 = 0 ? = 1,2 
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We require that a non-trivial solution to this system exists and has 7/4 7̂  0 Write this 
system in mat r ix fo rm as 

B{Tjo,V2f = -brj4 

Our requirement now becomes det(jB) / 0. 

det (B) = 120ciC2{cl - cl) 

Since we have chosen the collocation nodes to be distinct, this determinant can never 

vanish. 

(Hi) p = 7. The conditions f rom (5.84) remain unchanged f rom the previous case. 

Conditions (5.83) are now given by 

2(6c,' - 1)7/1 + 6c,'(5c,' - 2)7/3 + 2ct{28c^i - 15)7/5 = 0 2 = 1,2 

We require this system to have a non-trivial solution wi th 7/5 / 0. Let { 0 1 , 0 2 } be 

chosen so that the mat r ix A f r o m the p = 5 case is singular. There must now exist a 

constant ( such that the second column of y4 is ^ times the first column. Lett ing 

a = Vi+ CV3 

we may now rewrite the above system of equations as 

2(6c^ - l ) a + 2ct{38cj - 15)7/5 = 0 2 = 1,2 

Wri te this as a mat r ix system: 

C ( a , 7 / 5 ) ^ = 0 

w i t h 

C 
( 2{6c^ - 1) 2ct{28c^ - 15) ^ 

2 ( 6 c 2 - l ) 2ct{2Scf-15) ) 
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We now require that de t (C)=0. 

det [C] = 4(c^ - cl){lQ8{clcl + 15){cl + c\) - 2%{c\ \ c^) - 118c?c^) 

Af te r enforcing de t (A)=0 this becomes 

. ^ 4 (49(k | -310c2 + 19)(15c^ - 5c^ - f 1) 
= 125(6cl - 1)^ 

The mat r ix C is thus singular whenever 

2 155 ill 71635 

490 

B y checking w i t h our Taylor series analysis f rom the previous section we find that 

the condition on the nodes arising f rom the p = 5 case does indeed guarantee that 

the method is of order 6. However the condition f rom the p = 7 case is not sufficient 

for the method to have order greater than 6. Though we cannot achieve order 8 for 

general non-linear problems, i t is possible to choose the node C2 so that the method 

has order of dispersion 8, for this analysis we refer the reader to section 5.4. 

Before moving on to look at some examples of 2CHS methods, we return to the 

proof of Theorem 5.7. 

P r o o f (Theorem 5.7) Suppose that Y G 'P2Af-i-2, and let the polynomial ^ be as 

defined above. We suppose that \I'(s) = 0 whenever s G { —1,0,1, C i , . . . , C 2 A r } and 

show that this must imply that $ is identically zero. Observe that this is equivalent 

to asking that all of the off-step approximations y„+co for z = 1 , . . . ,2A^, have order 

at least 27V + 2. 

We present two methods by which this theorem may be proved. The first method 

works whatever the values of the nodes {c i}?^ i , while the second is considerably 

shorter but works only i f none of the nodes is equal to 1. 

Suppose that * ( 1 ) = 0 and ^ (c , ) = 0, for z = 1 , . . . , 2A^, whenever Y G : P „ + 2 . 
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Method (i) 

Let 

$(5) = s{s + l)R{s) 

where R G V2N is given by R{s) = E^=o^7•5^ Suppose that for each / G { 1 , . . . , 2A^} 

there exists a polynomial Ri ^ 0 given by 

2N-1 

r = 0 

such that R{s) = {s - ci)Ri{s). Wri te 

^ , (5 ) = s{s + l ) ( s - ci)Ri{s) for / = 1 , . . . , 2iV 

Differentiat ing twice w i t h respect to s we obtain 

2N-1 

$;'(,) = Vr,is^'' ( (^ + 3)(^ + 2)^ ' + {r + 2)(r + 1)5) 
r = 0 

2N-1 

- Q E ((^ + 2)(r + 1)5 + r{r + 1)) 

We now attempt to enforce the conditions (5.82). Using the symmetry properties of 

the nodes {c i}?^ i to s implify these conditions, and wri t ing them in matr ix fo rm we 

obtain 

(A - ciB)T]t =0 (5.86) 

where 

/ 2 12c? 12c2 . . . 2iV(2iV - l ) c f - 2 {2N + l)i2N + 2)cf \ 

A = 

2N 2 12cl 12cl ... 2N{2N-l)cf-' {2N+ 1){2N+ 2)c]^ 

6ca 6ci 20cl ... 2N{2N+ l ) c f - ' 2 iV(2iV-t - l )c?^-^ 

6c;v SCAT 2 0 ^ ••• 2iV(2iV + l ) c f 2 i V ( 2 i V + l ) c f / 
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B 

2 2 \2c\ 

2 2 \2c\ 

0 6ci 6ci 

2A^(2A^ - l)c?^-2 2N{2N - 1)0?^"^ ^ 

2iV(27V - 1 )4^ -2 2A^(2Af - 1 ) 4 ^ - ^ 

(2A^ - 1)(27V - 2)c2^-3 2iV(2A^ + \ ) c f - ^ 

\ ^ 6c;v 6cAr . . . (2A^ - l ) (2 iV - 2 ) 4 ^ - 3 2A^(2iV + 1 ) ^ ^ " ^ / 

i V Vi= y Tjo,i • • • rj2N-i,i ^ 

I f our assumptions are correct then we must have that det {A — ciB) = 0 for each / G 

{ 1 , . . . , 2N]. Before we look at det (A — CiB), let us first investigate the determinants 

of A and B individually. By performing elementary column operations on the matrix 

A we can s implify its determinant somewhat to get 

r i ( c i ) . . . r2iv - i (c i ) 0 

det A = a 

= a 

ri(civ) 

0 

0 

r i ( c i ) 

r2Af-l(cAr) 0 

0 ro(ci) 2Ar-2 

0 ro(cAr) . . . r2Ar-2(civ) 

r2Ar-i(ci) 

ri(cAr) . . . V2N-I{CN) 

ro(ci) . . . r2iv-2(ci) 

ro(cjv) . . . r2;V-2(cAf) 

for some a 7̂  0 independent of the nodes {c ,}?^ i . Since we have enforced the condition 

^ ( 1 ) = 0, we see f r o m above that the first of these two determinants must vanish, 

and so A must be singular. I t can be shown that 

d e t 5 = ^ n c , n ( c ? - a 
i=i '-=1 
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for some /? 7̂  0 independent of the nodes {ci}^^^. From the restrictions we have 
placed on the nodes, we see immediately that B must be non-singular. Let us now 
look at the determinant of A — ciB. Since B is non-singular we can write 

det (A - ciB) = det B det [B'^A - C I ^ N ) 

where I2N is the 2A'̂  x 2N identity matr ix. The idea now is to view this as an eigenvalue 

problem. The above determinant wi l l vanish i f and only i f c/ is an eigenvalue of B~^A. 

Since the nodes {ci}?^^ are distinct and non-zero, our assumption that ^(c;) = 0 for 

each / G { 1 , . . • ,'2N} is equivalent to the assumption that the eigenvalues of B~^A 

are { c i , . . . , C2N}- A simple result f r o m Linear Algebra states that the determinant of 

a mat r ix is equal to the product of its eigenvalues. Applying this result to the matr ix 

B~^A gives 

2N 

i=l 

which is nonsense in view of the conditions we have imposed on the nodes. Hence 

^'(Q) must be non-zero for at least one value of / in { 1 , . . . , 2A'^}. 

Method (li) (when c, ^ 1 for all {!,..., 2N]). 

The polynomial ^ now has m + 3 roots, namely { — l , 0 , l , c i , . . . , C 2 i v } . Since $ has 

degree at most 2N -|- 2, we must have that = 0. • 

5.3.3 A simple error estimation technique 

Before closing this section on order conditions we present a simple and cheap method 

of estimating the local truncation error in an arbitrary 2A'^-point 2CHS method of 

order 2N. Numerical results which show the effectiveness of this estimator are given 

at the end of this subsection. 

Suppose we are given a 2iV-point 2CHS method of order 2A'' based on the nodes 
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{ c i , . . . ,CN, —CAT, . . . , — c i } . We w i l l write this method as 

2N 

yl+c. = ( l + C . ) 2 / n - C , y n - l + / ^ ' E ^ f / n % ^ = l,...,2N (5.87) 

We associate w i t h this method the operators Cf'^[y{x)] and 6f^[y{x)],ioT: i = 1 , . . . , 2A'̂ -|--

1, as defined in section 5.3.1. The superscript '2N ' has been used in the above def­

initions to reinforce the fact that these quantities are associated wi th the 2A'^-point 

method. 

We now consider the 2N + 1-point 2CHS method based on the collocation nodes 

{ c i , . . . , CAT, 0, — C j v , . . . , — C i } , w i t h { c i , . . . , cj^} the same as for the above 2A^-step 

method. Using the same notation as above, we may write the final stage of this 

method as 

yl'tt' = 2y . - yn-r + E ^ l U h (C^ + fn^S') + h ' ^ l N l i N . J n (5.89) 
i = i 

By construction, this method has order at least 2N-\-2. Our idea is now to replace 

the values fn±J^^ i n (5.89) by the values f^^^. computed f rom the 2A^-point method 

above. Let 

j=i 

and define the local truncation error in yl^i^ to be 

s'2^tl[yM] = yixn + h ) - y l ^ t ' 

w i t h y(x) a solution to the differential equation under consideration, and where we 

have assumed that y{xn) = yn and y{xn-i) = yn-i- Using the operators w i th the 
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appropriate superscripts, we may write ^N+i[y{^n)] as 

+Oih"'+') 

From our analysis above we know that the off-step approximations yn+a generated by 

27V-point method have order at least 2N, so that in general, yn+i^ w i l l be an order 

2N + 2 approximation for y(xn+i). I t is possible to express the leading term of this 

expansion in terms of the Aij coefficients, and then write these as functions of the 

collocation nodes. I t would appear f rom our numerical experiments that the value of 

the leading coefficient has a relatively minor effect on the accuracy of yl^i^, and so 

there seems to be l i t t l e point in calculating i t . The local truncation error in y ^ ^ j may 

now be estimated by looking at the difference 

2N+1 _ 2N 
Vn+l Vn+l 

This estimator turns out to be surprisingly accurate, as we w i l l now demonstrate in 

the following examples. 

E x a m p l e 1 (Harmonic Oscillator) 

I n this example we consider the application of two 4-point 2CHS methods wi th 

corresponding error estimators to the standard test problem 

y"=~y, y(0) = l , y'(0) = 0 

w i t h solution y{x) = cos{x). Method 1 is found by taking C i = 1 and C2 = \, and is 

given by 

h^ 
- + = — ( 3 2 / „ + n _ - f 5 2 / „ _ , - 5 / „ _ i - 7 / „ + i ) 

^2 
?/„_! - \yn - IVn-l = ^ ( - 4 / „ + l - 6 4 / „ _ l - 5 / „ - l + 
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yn+i - 2y„ + yn-i = ( l O ( / „ + | + / „ _ | ) - ( / „ - l + /n+l)) 

J 2 

y U - 2 y n + y n - l = ^ ( ( / n - l + / . + l ) + 1 6 ( / „ _ | + / „ + | ) + 2 6 / „ ) 

This method has order 4, and is periodic for G (0,12) U (16, oo). For method 2 we 

take ci = 1/4 and C 2 = 3/4 to get 

j^2 

yn-l - - \yn-l = ( 9 / „ + 1 - 108/„_ , - 2/„+3_ - 43/„_3_) 

y n + l - b n + b n - l = ( 4 4 / „ + , + 161/„_ , - 3/„+1 + 38/ ,_ | ) 
?/„_! - - = j ^ ( 6 / „ + i - 5 7 / „ _ i - / „ + 3 _ - 9 2 / „ _ | ) 

y n ^ - h n + bn-i = (399 /„+L -h 4 6 2 / „ _ L + 28/„+1 -f-119/„_3_) 

7 / „ + i - 2 y „ - H y „ - i = ^ ( l 9 ( / „ _ L + / „ + i ) + 5(/„_3. + /„^3.)) 

y ' + i - 2?/. + = ^ ( l 3 ( / „ _ L + / „ + i ) + 3 ( / „ _ 3 _ - F / „ ^ | ) - 2 / „ ) 

This method is also of order 4, and is periodic for i^^ 6 (0,8.2196) U (13.1138,32.0000) 

(to 4 d.p.). Note that for brevity we have suppressed the superscripts on all but the 

yl+t^ values. 

The tables below show the results of applying these methods to the test problem 

above. The second and four th columns of each table show the estimated L T E obtained 

f r o m our estimator, while the th i rd and fifth columns show the value of S^ly] w i th 

y{x) — cos(a;). These tables show that the local truncation errors in method 2 are 

approximately 50 times smaller than those of method 1 at the output points. From 

our Taylor analysis above we find that the leading coefficients for these methods also 

differ by a factor of approximately 50. This is yet another example of the apparent 

confiict between the conditions required for higher accuracy, and those for improving 

the stabili ty properties of a method. 

There were two main factors that influenced our choice of stepsize for tables 5.1 and 

5.2. We expect our error estimator to perform well when the stepsize is small, since 
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Method 1 Method 2 
X Est. L T E LTE Est. L T E LTE 

1.000 -2.8030 X 10" -09 -2.7991 X 10--09 6.0672 X 10--11 6.0840 X 10" -11 

2.000 1.4578 X 10" -09 1.4557 X 10" -09 -3.1555 X 10--11 -3.1642 X 10" -11 

3.000 4.3782 X 10" -09 4.3721 X 10" -09 -9.4771 X 10--11 -9.5032 X 10" -11 

4.000 3.2734 X 10" -09 3.2688 X 10--09 -7.0855 X 10--11 -7.1051 X 10" -11 

5.000 -8.4101 X 10" -09 -8.3985 X 10--09 1.8205 X 10--11 1.8255 X 10" -11 

6.000 -4.1822 X 10" -09 -4.1764 X 10--09 9.0527 X 10" -11 9.0777 X 10" -11 

7.000 -3.6783 X 10" -09 -3.6731 X 10--09 7.9619 X 10--11 7.9839 X 10--11 

8.000 2.0742 X 10" -09 2.0714 X 10--09 -4.4901 X 10--12 -4.5025 X 10" -12 

9.000 3.9024 X 10" -09 3.8970 X 10--09 -8.4471 X 10--11 -8.4705 X 10" -11 

10.000 4.0095 X 10" -09 4.0040 X 10--09 -8.6790 X 10--11 -8.7030 X 10--11 

Table 5.1: Error estimator performance for y" 
w i t h h = 0.1. 

—y over a short integration interval, 

Method 1 Method 2 
X Est. L T E LTE Est. L T E L T E 

1000 -2.8962 X 10--09 -2.8914 X 10--09 6.2674 X 10--11 6.2847 X 10--11 

2000 1.2280 X 10--09 1.2283 X 10--09 -2.6625 X 10--11 -2.6698 X 10--11 

3000 4.2779 X 10" -09 4.2729 X 10" -09 -9.2621 X 10--11 -9.2876 X 10--11 

4000 3.5852 X 10--09 3.5777 X 10--09 -7.7550 X 10--11 -7.7765 X 10--11 

5000 -2.4412 X 10" -10 -2.4885 X 10" -10 5.3964 X 10--12 5.4089 X 10--12 

6000 -3.8598 X 10" -09 -3.8576 X 10" -09 8.3619 X 10--11 8.3849 X 10--11 

7000 -4.0987 X 10" -09 -4.0900 X 10" -09 8.8655 X 10--11 8.8901 X 10--11 

8000 -7.5175 X 10--10 -7.4269 X 10--10 1.6095 X 10--11 1.6143 X 10--11 

9000 3.2529 X 10" -09 3.2547 X 10" -09 -7.0552 X 10" -11 -7.0744 X 10--11 

10000 4.4117 X 10--09 4.4034 X 10--09 -9.5448 X 10--11 -9.5713 X 10--11 

Table 5.2: Error estimator performance for y" - -y over an extended integration 
interval, w i t h h = 0.1. 
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i t approximates only the leading term of the LTE. Before drawing any conclusions as 
to the usefulness of this estimator, we need to know how well i t performs for "large" 
steplengths. Unfortunately, due to the low order of these methods, we must impose 
fa i r ly t ight bounds on the range of permitted stepsizes in order to keep the global 
truncation errors sufficiently small. As a compromise between these two conflicting 
requirements, we chose a steplength of 1/10. This steplength guarantees that the 
max imum global truncation errors over the interval x £ [0,10000] are bounded above 
by 2.25 X 10"^ in the case of Method 1, and 4.9 x 10"^ in the case of Method 2. 

The results shown in these two tables are very encouraging. For this problem, our 

error estimator agrees to 2, or in some cases 3 significant digits w i th the actual local 

truncation errors. 

E x a m p l e 2 (Two Body Problem) 

In this example we repeat the experiments of the previous example, but this t ime 

we w i l l use as our test problem Kepler's Two-Body problem: 

y"+^ = 0 y{0) = l - e , y'{0) = 0 

, " + - 1 = 0 . (0 ) = 0, ^'(o) = / ( | ^ 
r 

w i t h = + z^. This problem has exact solution 

y{x) = cos(E) - e, z{x) = Vl - e'^sin{E) 

where E is defined impl ic i t ly by 

X = E — e s in(£ ' ) . 

and e is taken to be 0.1. The results of our experiments are shown in the table below. 

The format of this table is the same as that used in Example 1, except that here 

we quote that component of the LTE which has largest absolute value at the output 
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points. For these experiments we chose our steplength to be 0.05. This was sufficient 

to guarantee that the maximum global truncation errors over the integration interval 

X E [0,10000] were bounded above by 6.65 x 10"^ in the case of the first method, 

and 1.44 x lO" ' ' i n the case of the second. Once again our error estimator performs 

surprisingly well. 

Method 1 Method 2 

X Est. L T E L T E Est. L T E LTE 

1000 2.6942 X 10-10 2.6943 X 10--10 -5.8364 X 10-" -5.8433 X 10--12 

2000 9.4463 X 10-" 9.4329 X 10--11 -2.0406 X 10-" -2.0397 X 10--12 

3000 -3.0050 X 10-" -3.0073 X 10--11 6.5015 X 10-" 6.4945 X 10--13 

4000 -4.7849 X 10-" -4.8158 X 10--11 1.0418 X 10-" 1.0414 X 10--12 

5000 1.7515 X 1.7671 X 10--10 -3.8255 X 10-" -3.8276 X 10--12 

6000 5.1886 X IQ - IO 5.1938 X 10--10 -1.1240 X 10-" -1.1236 X 10--11 

7000 -5.1928 X -5.1927 X 10--10 1.1236 X 10-" 1.1234 X 10--11 

8000 1.8317 X lO - io 1.8049 X 10--10 -3.9053 X 10-" -3.9095 X 10--12 

9000 4.9741 X 10-" 4.9053 X 10--11 -1.0607 X 10-" -1.0608 X 10--12 

10000 -3.0172 X 10-" -3.0172 X 10--11 6.5237 X 10-" 6.5159 X 10--13 

Table 5.3: Error estimator performance for the two body problem over an extended 
integration interval, w i t h h = 0.05. 

These examples demonstrate the effectiveness of our error estimator for a non­

linear problem as well as for the usual linear test problem. Without a f u l l theoretical 

analysis, we are not in a position to make claims regarding the effectiveness of this 

estimator when applied to an arbitrary non-linear problem; however these results, and 

the relatively insignificant implementation costs, jus t i fy its inclusion in any code based 

on the 2CHS methods. Observe that good performance on a range of test problems 

is the only justif ication for the inclusion of several error estimators in modern ODE 

solvers. 

5.4 Some two-step symmetric M C H methods 

I n this section we analyse in detail the order and stability properties of the 2-step 

M C H methods w i t h 1, 2, 3 and 4 collocation nodes. Some of these methods have 
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already been analysed in the examples at the end of sections 5.1.2, 5.2.1 and 5.2.2; 
in these cases we give a summary of the results obtained. 

T h e 2-step 1-point symmetr ic M C H method 

The only method of this type is the linear multistep method 

yn+i - 2t/„ + yn-i = h?fn 

which has order two and is periodic for v'^ G (0>4). Observe that this method is 

equivalent to Euler's method applied to the first order system 

y' = z, z'= f{x,y). 

T h e 2-step 2-point s y m m e t r i c M C H methods 

The general method f r o m this fami ly is given in example 2 of section 5.1.2. The value 

Ci = (0.4082 to 4d.p.) produces a method of order four which is periodic for 

/̂ ^ G (0,6) , all other methods f rom this family have order two. P-stable methods may 

be derived by taking Ci G 1 . 

T h e 2-step 3-point symmetr i c M C H methods 

The general method f r o m this fami ly takes the form 

/ j 2 

yn+i - 2yn + yn-i = 12^^^''+^' ^ ^ ^ ^ i ~ + •̂ "-'=1 ^ 

y„±,, - ( l ± c i ) t / n ± c i 2 / „ _ i = ^ ^ ^ ^ ^ ( ( 3 C ? T 3 C I + 1) /„±, , 
+ {5cl ± Ci - l ) f n + {cl TCl- l)fnTc, ) 
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I n particular, notice that when Ci = 1 this reduces to Numerov's method. Expanding 
the quantities Ci[y{xn)], for i = 1 , . . . , m -1- 1 as Taylor series, we obtain 

jC4[y{xn)] = + 0{h ), 

. r . . . c,{cl-l){7cl-3)h'y('Kx^) ê  A b K ) ] = 7̂7̂  + 0{h}, 

jCsivixn)] = -C,[y{xn)] + 0{h^). 

Thus a method f r o m this family w i l l have order four, unless = 2/5, in which case 

i t w i l l have order six. The stability properties of methods f rom this family were 

investigated in example 2 of section 5.2.2. From that analysis we f ind that the sixth 

order method mentioned above is periodic for G (0,20) 

T h e 2-step 4-point M C H methods 

In view of the length and complexity of the coefficients involved, we wi l l not give 

the general method f r o m this family. Expanding the quantities Ci[y{xn)], for i = 

1 , . . . , m - I - 1 as Taylor series, we obtain 

i30clcl-b{cl+cl) + 2)h'yi^) 
720 

+Oih% 

, , c i ( l + ci)(5c^(5c^ + 5ci - 1) - 3ct + Scf - Zcj - 2ci + 2)h^y^^) 

+0{h'), 

^ ^ , ,. c i (c i - l)(5c2(5c? - 5ci - 1) - 3ct - 3c', - Scj + 2ci + 2)h'y(^^ 

+0{h'), 

^ ^ , ^. C2(l + C2){5cl{5cl + 5c2 - 1) - 34 -f- 34 - 3cl - 2c2 + 2)/i«y(«) 

+0{h'), 

^ r / M C2(c2 - I)(5c2(5c2 - 5c2 - 1) - 3c^ - 3cf - 34 + 2C2 + 2)h^y^^^ 
C3[y{Xn)] = 

-\-0{h'). 
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By construction, these methods have order at least four. Sixth order methods may 
be derived by requiring that the nodes satisfy 

2 2 - 5c2 
5 - 30c? 

I t is not possible to obtain a method of order eight f rom this family, instead we seek 

methods w i t h order of dispersion eight. W i t h the collocation nodes satisfying the 

above condition, we apply our method to the scalar test problem, and expand the 

quanti ty 6m+i{y{xn)] as a Taylor series to obtain 

'^^t^("")^ = 302400(6cf - 1) + ^ ( ^ 

Thus the method w i l l have order of dispersion eight i f cf = (55 — 3-y/235)/210 and 

cl = (55 + 3^/235)/210. 

The Routh-Hurwitz polynomial for methods f rom this family takes the form 

^ ( C ) = «2C' + «0 

w i t h a2 and GQ given by 

ao = 2i/''(2c?c^ - ( c j - f c^) - f 1) + 8i/'(c2 + - 3) + 96 

a2 = 2u\cl + c l - l ) + 24:u' 

We know f r o m theorem 5.4 that every method f rom this family possesses a non-empty 

interval of periodicity, so we look for methods which are P-stable. From theorem 5 of 

Coleman [21], a four th order method f r o m this family wi l l be P-stable i f and only i f 

+ > 3 and 2c?c^ - (c? + c^) + 1 > 0 

or 

1 < + < 3 and - 22cjc^ + - 6(c? -H c^) - 3 < 0 
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Observe that since the nodes {01,02} are required to he in [0,1], only the second of 
these conditions is relevant here. We have so far been unable to determine whether 
there are any P-stable sixth order methods f rom this family. The sixth order method 
w i t h order of dispersion eight is periodic for i/' G (0,126/5). 

I f we require that Ci = 1 then, f r o m lemma 5.5 we know that all the resulting 

methods must be almost P-stable, and f rom theorem 5 of Coleman [21] the necessary 

and sufficient condition under which a four th order method of this type is P-stable is 

4 - 16c2̂  -h < 0 

i.e. cl G (2(4 - ^ 1 5 ) , 1], or 02 G (0.5040,1) (4 d.p.). The sixth order method of this 

type is periodic for !/' G (0, 7.2133) U (55.4534, 00) . 

5.5 Numerical results 

I n this section we present the results of a number of numerical experiments in which 

symmetric two-step M C H methods wi th 2,3 and 4 collocation nodes were applied 

to both linear and non-hnear test problems, these results are then compared wi th 

those f r o m the Panovsky-Richardson methods wi th comparable computational costs. 

A l l results given here were computed using F O R T R A N double precision programs 

running on a Sun workstation. 

Methods tested 

The following methods are tested in this section: 

M24: The 2-point 2CHS method of order four. This method is periodic for 

^ ^ G ( 0 , 6 ) . 

M34: A 3-point 2CHS method of order four. This method is periodic for 

u' G (0,9.4641) U (0,4641,22.3924), (4d.p.). 

M36: The sixth order 3-point 2CHS method. This method is periodic for 
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G (0,20). 

M44: A P-stable four th order 4-point 2CHS method which nearly minimises 

the leading efficient in the local truncation error expansion. 

M46: The sixth order, almost P-stable, 4-point 2CHS method wi th Ci — 1. 

This method is periodic for G (0,7.2133) U (55.4532, CXJ), (4d.p.). 

M468: The sixth order 4-point 2CHS method wi th order of dispersion eight. 

This method is periodic for u"^ G (0,25.2). 

The following Panovsky-Richardson methods, formulated as R K N methods, are 

also used: 

RKN24: The degree 2 Panovsky-Richardson method. This method has order 

four and is periodic for G (0,9.6) U (12,48). 

RKN34: The degree 3 Panovsky-Richardson method. This method has order 

four and is periodic for i^^ G (0,9.8515) U (9.9868,19.4629) U (25.0293,33.1935). 

RKN46: The degree 4 Panovsky-Richardson method. This method has or­

der six and is periodic for ly^ G (0,9.8673) U (9.8805,19.5616) U (20.7558,29.7766) U 

(43.7717,54.1644), (4d.p.). 

T h e harmonic oscillator 

The results of applying all the methods mentioned above to the harmonic oscillator 

problem, 

y"^-y; y(0) = i , j/'(o) = o, (5.90) 

w i t h the fixed steplength h = 0.1 are shown in table 5.4. As expected, method M468 is 

the most accurate for this problem. Also, since the error constants for the Panovsky-

Richardson methods are somewhat smaller than those for the 2CHS methods used 

here, they are more accurate than the remaining 2CHS methods. Observe that, for 

this problem, method M36 is both more accurate and more efficient than the almost 

P-stable method M46. Though method M46 is almost P-stable, the gap between its 

pr imary and secondary intervals of periodicity is rather large, and its primary interval 
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is approximately a th i rd of the length of that for method M36. 

X M24 M34 M44 RKN24 RKN34 

1 1.58 E-07 4.86 E-08 1.77 E-07 4.38 E-08 3.65 E-09 
2 3.60 E-07 1.11 E-07 4.05 E-07 9.47 E-08 7.90 E-09 
5 9.83 E-07 3.03 E-07 1.10 E-06 2.51 E-07 2.09 E-08 

10 1.63 E-06 5.02 E-07 1.83 E-06 4.12 E-07 3.44 E-08 

20 3.79 E-06 1.17 E-06 4.26 E-06 9.50 E-07 7.93 E-08 

50 1.01 E-05 3.12 E-06 1.14 E-05 2.54 E-06 2.11 E-07 

100 2.06 E-05 6.34 E-06 2.31 E-05 5.15 E-06 4.29 E-07 

X M36 M46 M468 RKN46 

1 1.63 E-11 7.84 E-11 2.66 E-15 4.35 E-13 
2 3.72 E-11 1.79 E-10 7.05 E-15 9.39 E-13 
5 1.01 E-10 4.88 E-10 1.95 E-14 2.49 E-12 

10 1.68 E-10 8.09 E-10 3.23 E-14 4.09 E-12 

20 3.91 E-10 1.88 E-09 6.97 E-14 9.43 E-12 

50 1.05 E-09 5.03 E-09 1.89 E-13 2.52 E-11 

100 2.13 E-09 1.02 E-08 3.78 E-13 5.11 E-11 

Table 5.4: M a x i m u m absolute errors on intervals [0,a;] for problem (5.90) w i th 
steplength h = 0.1. 

T h e St iefe l -Bett is problem 

As our second test problem we take the Stiefel-Bettis problem 

z"-\-z = O.OOle'"; ^(0) = 1, z'{0) = 0.9995z, (5.91) 

which has solution 

z = {l + 0.0005?a;)e'". 

Table 5.5 shows the results obtained by applying the methods mentioned above, and 

two methods, T4 and T6, due to Thomas [60]. In each case the number tabulated 

is the error i n approximating |z(407r)| = (1 O . O O O A T T ' ) ' / ' . Method T4 is a four th 

order method w i t h order of dispersion six, and method T6 is sixth order w i th order 

of dispersion eight. The results for methods RKN24, RKN34, RKN46, T4 and T6 

are taken f r o m table 3.4 f r o m section 3.6. Once again, Thomas' method T4, w i t h 
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h M24 M34 M44 RKN24 RKN34 T4 

T T / 2 
7 r / 4 

7r /8 

7r/16 

5.19 E-02 
3.15 E-03 
1.96 E-04 
1.22 E-05 

-2.53 E-02 
-1.06 E-03 
-6.11 E-05 
-3.75 E-06 

-3.61 E-02 
-3.39 E-03 
-2.16 E-04 
-1.36 E-05 

-1.17 E-02 
-7.53 E-04 
-4.81 E-05 
-3.03 E-06 

-1.11 E-03 
-6.58 E-05 
-4.06 E-07 
-2.53 E-07 

-7.15 E-05 
-7.94 E-07 
-1.35 E-08 

h M36 M46 M468 RKN46 T6 

7r /2 

7r /4 

7r /8 

7r/16 

-1.76 E-03 
-2.12 E-05 
-3.14 E-07 
-4.85 E-09 

6.24 E-03 
9.69 E-05 
1.49 E-06 
2.33 E-08 

-7.44 E-05 
-2.39 E-07 
-9.58 E-10 
-4.70 E-12 

-2.95E-05 
-4.71E-07 
-7.40E-09 
-1.16E-10 

-5.61 E-06 
-1.45 E-08 
7.60 E-09 

Table 5.5: Errors i n approximating |2(407r)| for problem (5.91). 

its advantage of higher order of dispersion, is the most accurate of the four th order 

methods. For the sixth order 2CIIS methods, only method M468, which, like T6, has 

order of dispersion eight, is more accurate than method T6. In fact, for the smaller 

steplengths, the accuracy, for this problem, of method M468 is comparable to that of 

the degree 5 Panovsky-Richardson method. 

T h e two-body problem 

For our non-linear test-problem we take Kepler's two-body problem 

y" + y/r' = 0, y(0) = 1 - e, y'(0) = 0 (5.92) 

r" + z/r' = 0, ^(0) = 0, ^'(0) = V^(l + e)/(l - e) (5.93) 

w i t h = + 2^. 

Table 5.6 shows the results obtained by applying our 2CHS methods and the 

Panovsky-Richardson methods to this problem wi th the fixed steplength h = 0.1. Of 

the four th order 2CHS methods, method M34 is once again the most accurate, having 

errors approximately equal to those of RKN24, though both of these are larger than 

those for RKN34. Method M46 is once again the poorest of the sixth order methods, 

and i t seems that, for this problem and this steplength, the higher order of dispersion 

of method M468 is less beneficial than the low error constant for method RKN46. 
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X M24 M34 M44 RKN24 RKN34 

1 1.82 E-06 3.74 E-07 1.36 E-06 2.47 E-07 2.67 E-08 
2 7.57 E-06 2.12 E-06 7.73 E-06 3.87 E-07 1.52 E-07 

5 2.50 E-05 1.44 E-05 5.26 E-05 9.77 E-07 9.85 E-07 

10 5.18 E-05 1.89 E-05 6.91 E-05 2.83 E-06 1.29 E-06 
20 8.67 E-05 5.65 E-05 2.07 E-04 8.39 E-06 3.86 E-06 

50 2.61 E-04 1.44 E-04 5.27 E-04 2.11 E-05 9.81 E-06 

100 5.42 E-04 2.83 E-04 1.04 E-03 4.18 E-05 1.93 E-05 

X M36 M46 M468 RKN46 

1 3.32 E-10 2.50 E-09 1.63 E-10 1.17 E-11 
2 1.38 E-09 6.58 E-09 7.80 E-10 1.17 E-11 
5 9.12 E-09 1.14 E-08 3.93 E-09 1.79 E-10 

10 1.21 E-08 3.69 E-08 5.61 E-09 3.02 E-10 

20 3.61 E-08 6.25 E-08 1.39 E-08 9.05 E-10 
50 9.19 E-08 1.90 E-07 3.55 E-08 2.29 E-09 

100 1.81 E-07 3.95 E-07 6.97 E-08 4.52 E-09 

Table 5.6: M a x i m u m absolute errors on intervals [0,a;] for problem (5.92)-(5.93) wi th 
steplength h = 0.1. 

I n chapter 3 we observed that the global errors in the Panovsky-Richardson meth­

ods appeared to exhibit a near-linear dependence on the length of integration interval. 

To see i f this is the case for any of our 2CHS methods we repeated our computations 

w i t h much larger integration intervals. The results f rom these computations are shown 

in figure 5.1, for the four th order methods, and figure 5.2 for the sixth order methods. 

From these figures we see that the long-term global error for these methods, as in the 

case of the Panovsky-Richardson methods, does exhibit a near linear dependence on 

the length of the integration interval. We st i l l have no explanation as to why this is 

the case. 

Of the M C H methods considered in this section, the P-stable method M44 is the 

least accurate and most inefficient method for these problems. The most accurate 

method is, as expected the sixth order method M468 wi th order of dispersion eight. 

The other method which stands out is method M36. This method has a sizeable 

interval of periodicity, requires only two new function evaluations per iteration, and 

is more accurate, for the problems considered here, than both the remaining M C H 

methods and the Panovsky-Richardson methods of degrees 2 and 3. 
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Figure 5.1: Long-term propagation of the maximum global errors in the methods 
M24, M34 and M44 when apphed to problem (5.92)-(5.93) w i th steplength h = 0.1. 
Solid fine = M24, dashed line = M34, dotted line = M44. 
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Figure 5.2: Long-term propagation of the maximum global errors in the methods 
M36, M46 and M468 when applied to problem (5.92)-(5.93) w i th steplength h = 0.1. 
Sohd line = M36, dashed fine = M46, dotted fine = M468. 
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5.6 Conclusion 

We have shown how to construct multistep collocation-based hybrid methods wi th ar­

bi t rary step number k and number of collocation nodes m , and have given expressions 

for the coefficients of these methods. 

Conditions have been derived for a two-step 2A''-point or 2A'̂  -|- 1-point symmetric 

M C H method to have order 2A^ -f- 4, and we have used these conditions to derive 

superconvergent methods wi th 2,3 and 4 collocation nodes. We have also given a 

simple and inexpensive local truncation error estimator for the 2A'^-point methods of 

order 2N and demonstrated its effectiveness using a number of test problems. 

The stability properties of the two-step symmetric M C H methods have been in­

vestigated and, in particular, we have given conditions under which a method wi th 

an even number of collocation nodes is almost P-stable. We have also succeeded in 

deriving P-stable methods w i t h 2 and 4 collocation nodes. The two-step symmetric 

M C H methods considered require the same computational effort as the methods of 

Panovsky & Richardson of degree m, but i n chapter 3 we showed that none of the 

Panovsky-Richardson methods are P-stable. 

Numerical results have demonstrated an apparent conflict between the require­

ments of high accuracy and P-stability for these methods. These results suggest that 

the P-stable M C H methods are reserved for problems which are known to be stiff, 

and that the superconvergent methods which are not required to be stable at infinity, 

but which possess sizable intervals of periodicity, are used for non-stiff problems. 

The results in this chapter are very encouraging and, in our opinion, certainly 

jus t i fy fur ther investigation of these methods. 



Chapter 6 

Conclusion and areas for further 

research 

The work of Panovsky & Richardson has given us an interesting family of methods 

for the in i t i a l value problems wi th which we are concerned here. I n chapter 3 we 

investigated their order and stability properties, and also showed that they are equiv­

alent to collocation-based Runge-Kutta-Nystrom methods. In our numerical tests 

these methods performed very well, and were shown to be more accurate than some 

established methods. Of particular interest was the near-linear dependence of the 

global error upon the length of integration interval which these methods exhibited. 

This same near-linear dependence was also observed for the two-step symmetric M C H 

methods of chapter 5, but not for the expHcit Runge-Kutta-Nystrom methods used 

in chapter 3. The identification of the properties of a method which distinguishes 

between linear and quadratic error growth we leave as a problem for further research. 

I n chapters 4 and 5 we derived and analysed two famihes of multistep collocation 

methods. The stabili ty polynomial for these methods was found, and we also went 

some way to investigating their order. The multistep Runge-Kutta-Nystrom methods 

of chapter 4 were the most diff icult to analyse, and the specific methods considered 

were inferior to the Panovsky-Richardson methods of chapter 3 in the areas of both 

accuracy and stability. The derivation of order conditions for M C R K N methods for 

195 
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arbitrary k and m , and an answer to the question of whether the poor performance 
observed is common to all methods of this type we leave as challenges for future work. 

The multistep hybrid methods of chapter 5, on the other hand, were seen to possess 

extremely good stability properties. We saw that, for the specific methods analysed, 

the conditions under which these methods were almost P-stable were considerably less 

restrictive than the conditions for the corresponding M C R K N methods to possess a 

non-vanishing interval of periodicity. The lack of derivative information did present a 

few problems in the analysis of the order of these methods, but the results that were 

obtained were sufficient for a complete investigation of the two-step symmetric M C H 

methods w i t h 1,2,3 and 4 collocation nodes. Numerical experiments showed that i t is 

possible to derive efficient and useful methods f rom this family. As for the M C R K N 

methods above, we suggest the derivation of order conditions and the investigation 

of methods w i t h higher stepnumber and number of collocation points as areas for 

fur ther research. 
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