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ABSTRACT 

Epilithic diatom communities and relevant physico-chemical variables were studied between 

3 May and 16 July 1993 in Harwood Beck, an oligotrophic stream in Upper Teesdale, and the River 

Browney, a lowland eutrophic river. The effect of stormflow on diatom-based water quality indices 

was assessed. 

In both rivers epilithic chlorophyll a (ng cm'^) was highly variable and very low after mid-

June. In Harwood Beck there was a significant difference in epilithic chlorophyll a between cobbles 

and boulders, with the greatest difference after stormflow. Epilithic chlorophyll a in the River 

Browney was initially high, but declined markedly after stormflow. River Browney chlorophyll a 

was inversely correlated with current speed on cobbles and total inorganic nitrogen on cobbles and 

boulders. Uptake of inorganic nitrogen may be directly related to epilithic diatom biomass. A sharp 

rise in the percentage of Cocconeis placentula between mid-June and mid-July suggests that grazing 

may be an important factor limiting algal biomass. The possible roles of algal grazers, Cladophora 

glomerata and silicate concentration, in progressively limiting diatom biomass during the summer are 

discussed. 

Percentage composition changes of taxa after stormflow are generally related to taxa 

morphology and mode of adherance to the substrate. There were no significant differences in the 

percentages of the five most common taxa between cobbles and boulders. 

Percentage changes in taxa were not significantly correlated with nutrients, with the 

exception of Navicula gregaria and Â . lanceolata (in the River Browney) which were inversely 

correlated with the concentration of total inorganic nitrogen. There appears to be a succession of 

dominant species, possibly related to the influence of flow and nutrient concentrations, which tended 

to increase during the study period. 

Diatom water quality indices remained relatively stable over the 10 week period. Effectively 

equal water quality classifications were derived from the Specific Pollufion Index (SPI) and Generic 

Diatom Index (GDI). The zoning system proposed by Round (1993) may be broadly useful, but 

requires careful interpretation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Biological Monitoring 

There is a need for compatible, reliable and practical methods to assess biological water quality 

(Descy, 1979). Biological and chemical motutoring of pollution can and should supplement each 

other, although, in theory, eitiier could provide reasonable indications of the effects of pollutants. 

Chemical monitoring has limitations associated with temporal and spatial sampling and its inability 

to account for the potential synergistic efiects of pollutants and their bioacciunulation in ecosystems 

(Spellerberg, 1993). Organisms react to fluctuations in water quality which may be missed by 

intermittent chemical analysis. 

An organism can act as a biological indicator because its distribution and abundance is related 

to particular enviroimiental variables and/or because it has the capacity for accumulating pollutants in 

its tissues. Good indicator species have the following qualities: 

a. They are easily sampled and identified. 

b. They are cosmopolitan in disUibution. 

c. There must be abundant autoecological data. 

d. They often have economic importance as a resource, nuisance or pest. 

e. They should be easily cultured in the laboratory and have low genetic and niche variability. 

(Hellawell, 1986). 

Bioaccumulative indicators have additionally desirable characteristics not found with 

invertebrates or diatoms; i.e. long life cycles, sufiicient tissue mass for analysis, and concentration of 

the pollutant(s) above the environmental level(s) (Hellawell, 1986). 
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Sampling of macro-invertebrates has been routinely used for many years by U.K. water 

regulatory bodies to supplement chemical analysis. Invertebrate populations exhibit a varied 

response to both toxic and organic pollutants and are relatively sedentary. Heavy pollution affects 

whole taxonomic groups of invertebrates; specific differences are only important in cases of mild 

organic pollution (Mason, 1991). The current method for nationally reporting biological water 

quality using macro-invertebrates is the Biological Monitoring Working Party (BMWP) score. The 

BMWP score is the sum of scores (1 to 10) assigned to individual families according to their 

sensitivity to pollution; the least tolerant families score 10. Average Score Per Taxon (ASPT) values 

are calculated by dividing the BMWP by the number of taxon. Larger samples are likely to include 

more families and species (Mason, 1991). BMWP performs optimally with faster flowing waters over 

a fairly varied stony / gravelly bed (typically riffles). However, when applied to deep slow flowing 

sites or to restricted habitats, the BMWP scores may underestimate water quality (Extence & 

Ferguson, 1989). Standardisation of kick sample time and mesh net guage is necessary, as increasing 

sampling effort leads to substantial increases in the BMWP score, due to a fuller representation of the 

macro-invertebrate community. Quantitative sampling of macro-invertebrates is difficult due to their 

patchy distribution; large numbers of samples are needed to make reasonable estimates of population 

densities (Hellawell, 1986). The summer hatch of many taxa, especially sensitive groups such as 

Plecoptera (stoneflies) means that species absence is not always associated with water quality (Jeffries 

& M i l l s , 1990). However, in a performance evaluation of the BMWP score system at 268 unpolluted 

running water sites on 41 rivers, ASPT values were less influenced by season and sample size than 

BMWP scores (Mason, 1991). The ASPT values indicated that seasonal variations were relatively 

slight compared to the variations due to environmental parameters (Armitage et al, 1983). 

Multivariate analysis has been used to classify clean U.K. running water sites on the basis of 

the macro-invertebrate fauna. Subsequently, RIVPACS (River Invertebrate Prediction and 

Classification System) allowed prediction of the probability of a given species or family occurring 

from environmental data. ASPT values can be predicted using 5 environmental variables in a 

multiple regression equation which explains 67.7% of the total variation. Therefore, observed ASPT 

values can be compared with predicted values in the assessment of water quality (Mason, 1991). ff 
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comparable systems of data interpretation were developed for other organisms then biological 

monitoring of pollution could become more representative of the whole river ecosystem. Algal 

monitoring is more appropriate in some circumstances, such as the assessment of trophic status. 

Implementation of the EC Municipal Wastewater Treatment Directive wi l l legally require algal 

monitoring (Harding & Hawley, 1991). 

Monitoring with macrophytes has been used successfully, especially for the analysis of heavy 

metal concentrations, but for the general surveillance of organic pollution they are less sensitive than 

invertebrates or diatoms. The only macrophyte species appearing to greatiy increase in range with 

organic pollution is the pondweed Potamogeton pectinapi, which is very tolerant (Mason, 1991). / ' 

Macrophytes are stationary and visible to the naked eye, but seasonal variations in biomass and 

diversity are high. Macrophyte communities are largely governed by climate, geology and soil type 

and many freshwater systems such as high altitude streams have sparse floras (Hellawell, 1986). 

Fish, being mobile organisms, tend to avoid pollution; species tend to be either present or 

absent with littie gradation in between (Jeffries & M i l l s , 1990). A major disadvantage of using fish 

for routine environmental surveillance is the intensive and time consuming sampling effort required. 

The principal use of fish in biological moiutoring work is tissue analysis to assess the health risks 

associated with the bioaccumulation of heavy metals and pesticides. 

1.2 Diatoms in water quality monitoring 

Diatoms have figured in river water quality studies since 1902. Contrasting ecological 

tolerances and distributions of many diatom taxa have long been recognised (Cox, 1991). Both short 

and long term (i.e paleolimnological) environmental changes can be inferred from the flora 

(Steinberg & Schiefele, 1988). Pollution often leads to great variations in the communities: it is 

difficult to obtain reliable data to establish tolerance limits of the species. Diatom species distribution 

is such that no two sites are alike, but because presence/absence can be added to abundance data, it is 

easier to define communities by the indicator species (Round, 1993). For example, "clean" waters 
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draining acid/rock soils support a flora dominated by small Eunotia spp., especially E. exigua (e.g. 

Llyn Briaime, Central Wales). Clean calcareous sites tend to be dominated by Amphora pediculus or 

Achnanthes (e.g.R.Tees, R. Avon), whereas "dirty" sites may be dominated by Nitzschia palea and 

Gomphonema parvulum (e.g. R.Mersey, R.Don). Many "dirty" sites support numerous small 

Nitzschia and Navicula spp. but these are difficult to identify accurately (Round, 1993). 

Explanations of species distribution are usually based on conelationi of relative abundance ^ 

with water quality variables. Recent approaches have investigated diatom distributions in relation to 

a wider range of factors with defined ranges and optima and have used statistical tests to detect ^ 

significant correlation's (Cox, 1991). In general, indicator species are present throughout the year, J 

but biomass and relative abundance's change seasonally or continually (Round, 1993). 

Biomonitoring systems based on correlation's between measured environmental variables and species 

abundance often lack laboratory experiments to demonstrate causal relationships. Diatoms are easily 

cultured and are therefore amenable to experimental verification of their reaction (tolerance) to 

nutrients, pollutants etc. (Round, 1988). Freshwater diatom communities are highly diverse in 

relation to other communities and therefore the sensitivity of data interpretation is potentially greater 

(Coste a/., 1991). 

Round (1993) concludes that diatoms are very sensitive to water chemistry, eutiophication and 

pollution but relatively insensitive to physical features of the environment. However, tiiere is much 

evidence in the literature to show that current velocity has a marked affect upon community 

composition (see 1.3.1). Diatoms are cosmopolitan and ubiquitous organisms; they are usually the 

most abundant autotrophic organisms in rivers and present along the whole length of a river/stream 

throughout the year. The same diatom species are found in many parts of the worid and a massive 

literatiu-e exists (Round, 1991). 

Studies on diatom assemblages associated with a variety of substrata indicate that contrasting 

microhabitats have distinctive floras (Round, 1992). Leclercq and Maquet (1987) have argued that 

indices based on diatom composition give more precise and valid predictions than benthic macro-

invertebrates because they react directiy to organic pollutants, whereas macro-invertebrates are more 
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influenced by substratum or current conditions. In eutrophic waters the influence of the substrata on 

the diatom community may be lower due to high nutrient availability (Cox, 1991). Unlike 

invertebrates, diatoms have no specific food requirements or specialist habitat niches (Round, 1992). 

However, algae in general show less sensitivity to pesticides and heavy metals than invertebrates 

(Hellawell, 1978). 

The epilithic diatom community is sometimes visible as a brown mucilaginous coating, 

particularly during the spring bloom period. However, the epilithic diatom biomass can be very low 

or practically absent on some substrates and samples may need to be pooled to obtain a sufficient 

quantity for analysis. Usually a relatively small sample from the upper surface of a rock in the stream 

bed offers a good representation of the whole epilithic community, but replication is advisable 

(Round, 1993). 

Diatom taxonomy is better studied than that of most algal groups (Whitton, 1991). Cell 

coimting by microscope is rapid and accurate; random counts give an excellent assessment of the flora 

as cell densities are very high and permanent slides enable long term storage for future analyses. The 

advantage of examining live verses dead cells is that live cells can be associated wiUi prevaihng 

conditions whereas acciunulated dead or inwashed specimens may have grown under different 

conditions. However, the specific identification of live cells is often more difficult as valve features 

may be obscured by organic matter. The estimation of the live/dead cell ratio remains problematical 

(Coste e/o/., 1991). 

The significance of slight morphological differences are largely unknown and the assessment 

of specific status can be highly subjective; life cycle morphological change may be confused with 

specific differences (Cox, 1991). Identifying species by girdle rather than valve views of the 

frustules or basing the identification on only one valve often requires considerable experience. 

Assemblage composition data are often quantified as relative abundances of taxa. However, this is 

related to the number of taxa present and does not take account of cell size and density. Cell size 

affects the species contribution to biomass and its division rate; smaller cells often have faster 

turnover rates; replication times are typically between 1 and 5 days (Cox, I99I). 
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1.3 Factors affecting diatom communities 

ff diatoms are to be used for routine water quality monitoring, all the environmental factors 

affecting them need to be clearly understood. The factors are often highly inter-related with 

synergistic or antagonistic interactions. For example, an increase in flow rate or current velocity wil l 

be associated with greater stream depth and therefore increased light attenuation. This may lead to 

lower temperatures and reduced photosynthesis, thus affecting the dissolved oxygen concentration. 

However, higher flow and current also create more turbulence which allows the water to become 

reoxygenated from the atmosphere. 

Patrick (1977) carried out fundamental research and has published a comprehensive review of 

the environmental factors affecting stream communities. Discussion of diatom community response 

to flow rate is virtually absent from the literature, but there are many references to the effect of current 

velocity. 

1.3.1 Flow rate and current speed 

In fast flowing streams Achnanthes minutissima, Achnanthes microcephala and Diatoma 

hiemale are most often quoted as the dominants. Enhanced flow may also remove any contaminant 

silt / mucilage flora. Researchers have shown that colonisation (adhesion) is slower in fast flow than 

slow flow and it may take a few weeks for ful l floral development (Round, 1993). 

The nutrient renewal rate and removal rate of potentially auto-toxic excretory products both 

increase with current (Patrick, 1977). Very low currents allow detritus accumulation (Wendker, 

1992). Biomass and immigration rates of diatoms show an inverse relationship with current velocity 

(Antoine & Benson - Evans, 1982). 

Schumacher & Whitford (1965) in Patrick (1977) found that the phosphorus uptake of Eunotia 

pectinalis at 0.18 m s ' was about 7 times greater than in still water. Hustedt (1939) and others in 
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Patrick (1977) have noted that the life form morphology of some diatom taxa is affected by current 

speed. 

In fast flowing waters, strongly attached forms of diatoms such asAchnanthes and Cocconeis 

are more common than in slower flowing waters where Melosira varians and many species of 

Synedra, Gomphonema and Cymbella are more typical (Patrick, 1977). Anyam (1990) found 

Cocconeis and Diatoma to be more abundant in stronger currents and Navicula and Nitzschia to be 

more abundant in weaker currents. 

Antoine and Benson-Evans (1982) studied the effect of current velocity on the growth of 

benthic algal communities imder controlled laboratory conditions using artificial channels. 

Filamentous and coccoid green algae grew better at lower current velocities; chlorophyll a, a correlate 

of algal biomass was inversely related to ciurent. The Bacillariophyta species all reacted differently 

to the current velocities in the channels (i.e. 0.76 m s ', 0.88 m s ' and 1.48 m s ' ) and their 

distribution was related to their size and powers of adhesion. Species such as Cocconeis placentula 

and Nitzschia palea showed a marked inverse relationship to current velocity. Synedra pulchella was 

found in significant numbers at 0.76 m s"' but was not detected at 0.88 m s ' or 1.48 m s '. Diatoma 

vulgare, Cocconeis placentula var. euglypta and Cymbella (= Reimeria) sinuata showed optimum 

biomass at 0.76 m s '. Melosira varians, Achnanthes lanceolata and Gomphonemaparvulum 

flourished best at 0.88 m s ', whereas Fragilaria vaucheriae (= F. capucina var. vaucheriae) grew 

better at 1.48 m s ' (Antoine & Benson-Evans, 1982). 

There is a lack of information on the reaction of diatom communities to current velocity in 

natural streams (i.e. with factors such as detritus accumulation, nutrient availability and current 

dependent grazing of the herbivorous insects). Understanding the reaction of diatom taxa to 

variations in current velocity is important as it may affect water quality assessment. Zimmermann 

(1961) found that saprobian values (an organic pollution index) increased with current velocity where 

the chemical quality of the water was identical. Wendker (1992) found that diversity and evenness 

increased between current velocities of 0.005 m s"' and 0.5 m s"' ; much lower ciurent velocities than 

Antoine & Benson - Evans were experimenting with. 
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1.3.2 Light 

The intensity and duration of light necessary for optimum growth varies according to the 

diatom species under consideration. Therefore, the seasonal variation in diatom community structure 

is partly related to sunshine hours and other climate variables (i.e. temperature and precipitation). 

Sunshine seems to favour the development of Cyclotella meneghiniana, Fragilaria capucina and 

Navicula cryptocephala. Thus, bankside shading, the depth of the epilithon and the quality and 

quantity of suspended solids may significantly affect the diatom flora. StreanUuibidity disturbs the 

sediments, (increasing light attenuation due to suspended solids), but may also affect the micro-ciurent 

patterns (Patrick, 1977). From a study on the River Ithon in Wales, Anyam (1990) showed that at 

stream depths below 1 m light intensity was not an important factor in controlling epilithic 

development; depth and biomass were not significantly correlated. 

1.3.3 Temperature 

Diatoms seem to have varying ranges of temperature tolerance. At optimum temperatures 

species diversity and biomass may increase. Temperature increases affect chemical diffusion rates 

and lower the wate^ dissolved oxygen capacity; these environmental changes may affect reproductive ^ 

rates and metabolism (Patrick, 1977). 

9 . 

1.3.4 Oxygen 

Temperature, light, nutrient levels and other environmental conditions seem to be important in 

determining the rates of photosynthesis and therefore oxygen production. Cholnoky (1968) has 

emphasised that Achnanthes minutissima requires a high oxygen concentration and correlated its' ^ 

increasing abundance with the re-oxygenation of water downstream of an organic pollution input 

(Cholnoky, 1968; in Patrick, 1977). 
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More study is needed to determine the extent to which oxygen generation by photosynthesis 

mitigates the effects of low dissolved oxygen. However, in severely eutrophic situations, with 

excessive algal growth, stream flow is impeded and available light is minimal. Therefore, 

photosynthesis caimot compensate for the deoxygenated conditions (Patrick, 1977). 

1.3.5 pH 

pH affects the carbonate-bicarbonate buffering system: at low pH carbon available for diatom 

growth is in the form of COj or HCO3', whereas at high pHs it is in the form of bicarbonate and 

carbonate. Hustedt (1956) has classified diatoms according to pH preference: alkalibionte (pH > 7), 

alkaliphile forms (pH +/- = 7), acidophile (pH < 7), acidobionte (pH < 5) and indifferent (wide 

tolerance) (Patrick, 1977). There has been extensive work using pH tolerance of lake diatoms to 

reconstruct pH change from fossil assemblages (Batterbee, 1986). 

1.3.6 Nutrients 

Ammonia, nitrate, and phosphate are utilized by diatoms in varying amounts. Many species of 

algae can accumulate large amounts of various nutrients under favourable conditions and therefore 

may not be dependent upon the external medium for some time after a nutrient has been reduced to a 

sub-optimal level. Species such as Melosira varians, Synedra ulna and Cocconeis placentula become 

very common in the presence of high nitrate concentrations ( 2 - 3 mg T' ) in stream waters in eastern 

parts of the U.S.A (Patrick, 1977). Either phosphate or nitrate may be a limiting nutrient, although 

little is known about how the N:P ratio affects different species. 

Silicate is required for the formation of diatom frustules. Different species require varying 

amounts of silicate; silicate is much more available in alkaline than in acid waters. The silicate (Si 

O2) content of diatoms can vary between 30% and 70% of the organic weight (Patrick, 1977). 
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1.3.7 Substrata 

There may be a slight effect of stone type (geology) on the colonising diatom flora; sandstone is ' 

thought to be most conducive to colonisation, especially in the early stages, due to surface pitting 

(Round, 1993). There is slight evidence that stone size affects the biomass of diatoms: lower on 

small stones (Duffer and Dorris, 1966, in Round 1993); the floristic composition relative to stone size 

needs checking. 

1.3.8 Density-dependent factors 

Abiotic factors regulate potential biomass levels, whereas biotic factors directly regulate 

realised biomass levels (Steinman, 1992). 

Katoh (1992) studied the correlation between cell density and the dominant growth form of 

epilithic diatom assemblages. At an intermediately polluted site the relative abundance of adnate 

diatoms {Cocconeis and Achnanthes spp.) decreased, and rosette forming diatoms (Achnanthes 

minutissima, Fragilaria capucina var. vaucheriae) increased, with algal cell density. The relative 

abundance of stalked diatoms (e.g Gomphonema) increased with algal cell density up to 10^ 

cells. mm"2. Benthic invertebrates which selectively graze the epilithic algae (favouring stalked taxa) 

modify the commimity composition such that adnate species tend to become dominant (Katoh, 1992). 

1.3.8.1 Competition 

The development of diatom communities on substrates is relatively well studied. Diatoms are 

usually the most important component of the epilithic algal community. Katoh (1992) recognises 

four general stages in the development of epilithic algal communities: 

a. Slime development of organic matter and bacteria. 

20 



b. Development of adnate algal layer. 

Initially the community is a two dimensional one, with adnate species such as Achnanthes 

lanceolata and Cocconeis placentula forming a flat 'pavement like' growth over the substrate surface. 

Several researchers agree Hast Achnanthes lanceolata and Cocconeis placentula never co-dominate a 

substrate: the first coloniser out-competes the other. At this stage the number of microhabitats (as 

defmed by the variations in current structure, nutrients and light effects, etc.) are relatively few 

(Patrick, 1977). 

c. Development of vertically positioned algal layer (stalked or rosette forming taxa). 

As the adnate layer develops, an irregular micro-current pattern develops and species begin to 

stand upright by producing jelly pads or jelly stalks. Thus, a three dimensional community with 

several microhabitats, maintaining a higher species diversity is created (Patrick, 1977). Lamb & 

Lowe (1981, 1987) and Poff e/ al. (1990) all found that 3-dimensional growth was greater at lower 

current velocities. 

d. Development of filamentous algal layer. 

Diatoms excrete organic compounds which are either autotoxic, heterotoxic or stimulatory. 

Autoantibiosis has been observed by von Denffer (1948) in Nitzschia palea. Jorgensen (1956) found 

that Asterionella formosa and Nitzschia palea produced antibiotics against each other when grown 

together (Patrick, 1977). 

Interactions between algal populations influence community composition: e.g. by competition 

for nutrients and light, area and space, growth inhibition or stimulation by extracellular products and 

growth promotion by the creation of three-dimensional structures. Algae other than diatoms (e.g. 

Cladophora glomerata) may have a greater influence on the diatom communities than factors such as 

organic pollution or pH (Elber & Schanz, 1990). 
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1.3.8.2 Parasitism and predation 

Observations Patrick et al. (1977) have shown that certain insect larvae will select certain 

species of diatoms such as Rhoicosphenia curvata. Patrick (1977) also notes that protozoans, 

particularly ciliates, select diatoms of a given shape and size as their food. 

Winterboum et al. (1992) studied the relationship between algal biomass accumulation, 

invertebrate colonization and stream-water pH in three regions of England and Wales. The 

abundance of Chironomidae larvae (the main epilithic invertebrates) was positively related to algal 

pigment concentration (chlorophyll a and phaeopigments) over a wide pH range (Winterboume et al, 

1992). 

Contrary to the findings of Marker and co-workers who propose silicate as the controlling 

factor, Steiiunan (1992) asserts that biomass level appears to be ultimately constrained by light level 

and herbivory. In a woodland stream inadiance level and grazer density (mainly the snail Elimia 

clavaeformis) were manipulated in a factorial design to examine the relative effects of biotic and 

abiotic factors on periphyton biomass and taxonomic structure. Large or upright diatoms became 

more abundant when grazer density was reduced and light intensify increased. 

1.4 Water Quality Indices 

Indices are an important management tool for interpreting water qualify in terms of communify 

composition. Indices reduce floristic data to a numerical form by classifying species/genera 

according to pollution sensitivify, water qualify indicating value and relative abundance. Various 

indices have been devised for diatoms: (Kolkwitz & Marsson,1908, Patrick et al., 1954, Patrick & 

Hohn, 1956, Fjerdingstad, 1964, Descy, 1979, Schwertfeger, 1980, Leclerq & Maquet, 1987, 

Watanabe, 1988, etc.). Most tend to be based on a limited number of water qualify variables 

associated with organic pollution (Cox, 1991). Difierent experts apply different weightings to the 

commonly used variables (i.e. pH, biochemical oxygen demand, phosphate, nitrate, temperature, 

22 



conductivity and dissolved oxygen). The saprobic system is based on the nutrient chemicals 

ammonia, nitrate and phosphate. Diatom indices have been widely criticised, mainly due to the 

mathematical expressions used. Ratings give incomplete information, but for water management 

purposes are useful; all indices and chemical data are to some extent reductionist. A major problem 

with most indices is that they are poor at separating the effects of eutrophication, heavy metal 

contamination and organic pollution (Round, 1992). 

Diversity has been shown by many workers (e.g. Lange-Bertalot, 1979) to be unsuitable for 

water quality monitoring and also requires time consuming large counts in order to include all the 

rare taxa (Round, 1993). Washington (1984), in Round (1991a), found that only 3 out of 18 diversity 

indices were valuable. Archibald (1972), in Round (1991a) found diversity was not closely correlated 

with water quality. 

Watanabe (1981) developed the diatom community index (DCI). This index is based on his 

idea that the degree of water pollution in rivers actually changes gradually and continuously and 

therefore can not be classified into definite classes (Sumita & Watanabe, 1983). 

Many researchers have compared indices applied to invertebrates and diatoms. A good 

correspondence was found between assessments obtained from diatoms and oligochaetes with physico-

chemical parameters (orthophosphate) despite these two groups of organisms having different 

habitats. In comparisons between chemical and diatom indices on the Rhone basin, Descy and Coste 

(1988) demonstrated biologically acciuate estimates of water quality using diatoms (Coste et al., 

1991). 

This study uses 3 indices: SPI (Species PoUuUon Index, Coste in CEMAGREF, 1982), GDI 

(Generic Diatom Index, Rumeau and Coste, 1988) and the zoning system proposed by Round (1993). 

1.5 Aims 

The effect of flow on the epilithic diatom community may be related to the size of the substrate 

as well as the hydrological regime of the stream. Therefore community changes were studied over 
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time on cobbles and boulders at two sites (upland and lowland). It was thought that diatom biomass 

may be higher, and less variable, on boulders which remain stable at higher flow rates than cobbles. 

Thertbre, variations in diatom communify structure and diatom-based water qualify indices may 

k 
decrease with substrate stabilify. 

The aim of this project is to investigate how the epilithic diatom communify responds to flow 

events and consequently how these events may affect the classification of water qualify by commonly 

used diatom water qualify indices. 
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C H A P T E R 2 

M A T E R I A L S AND METHODS 

2.1 Physico-chemical measurements 

Stream width was measured to the nearest 0. Im at the same position on each field visit. Stream 

depth was measured at 3 positions mid-stream and maximum depth was estimated to +/- 5 cm. 

Temperature (°C) and conductivity (̂ .S cm ') were measured using a WTW (Wissenschaftlich-

Technische Werkstatten) meter (model FC910). 

A calibrated Ott current meter was positioned at the point of fastest current with the propeller 

facing the flow direction at about a third of the depth below the siuface. Cunent was measured over 

a 60 second period. Flow data was obtained from National River Authority automatic recording 

stations (25 m downstream of the Harwood Beck sample site and 4 km downstream of the River 

Browney sample site). 

pH was determined using a WTW meter (model pH91). Total alkalinify was determined by 

titrating 50 ml or 100 ml of stream water with 0.02 M HCl to an end point of pH 4.2 and calculated 

using the following equation: 

Alkalinify = volume of HCl added to end point (ml) x normality of acid x 50 OOP 
(mg 1' CaCOj) volume of sample (ml) 

Total alk. (meq 1') = alk. (mg 1' CaCOj) x 0.0499 (Golterman et al., 1978) 

2.2 Collection of water samples 

Separate water samples for phosphorus and inorganic nitrogen analysis were collected in 250 

ml, polypropylene botfles, which had been washed in 10% H2SO4 for at least an hour, rinsed several 

times in distilled water and rinsed twice with stream water before filling. Samples were returned to 

the laboratory in an ice box. 

2.3 Collection of diatom samples 

Cobbles were defined as being between 64 and 150 mm in diameter and boulders over 256 mm 

in diameter according to the Wentworth scale (Gordon et al., 1992). Diatoms were sampled 
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quantitatively from the upper surface of cobbles and boulders collected from a defmed 10 m reach. 

Most of the cobbles and boulders sampled were sandstones and tended to have smooth, flat surfaces. 

Stones coated with silt or with macroscopic algal growths were avoided in order to select the epilithic 

flora and so that between rock diatom biomass variability measurements were more reliable. The 

sampling method was devised after careful consideration of Uie methods fi-om Douglas (1958) and 

Thorpe & Williams (1980). The sampling area was defined using the base of a cleanly cut 125 ml 

polythene bottle (area » 20 cm^). The diatoms were transferred to sample bottles using a stiff nylon 

brush and distilled water. Replication of sampling from 4 cobbles and 4 boulders was used to assess 

biomass and chlorophyll variation. The samples were transported to the laboratory in an ice box. 

2.4 Laboratory procedures 

Water for phosphorus analysis was filtered immediately on arrival through Whatman GF/F 

filters washed with Milli-Q (MQ) water. Filtrable Reactive Phosphorus (FRP or orthophosphate) and 

Filterable Total Phosphorus (TFP) were determined on the same day using the molybdenium-blue 

method of Murphy and Riley as modified by Eisenreich et al. (1975) with a detection limit in the 

order of 1 |4.g 1' P. 

Water for Nitrite, Nitrate and Ammonia analyses was deep frozen so that several weeks 

samples could be analysed together. Nitrite was determined using a method based on N-1-

napthylethylenediamine dihydrochloride (Stainton et al., 1977). Nitrate was reduced to nitrite by a 

cadmiiun-copper couple and analysed as for nitrite. Ammonia was determined by the indophenol 

blue method (Stainton et al., 1977). The detection limit of these methods is in the order of 5 ng 1' N. 

2.5 Biological analysis 

The diatom samples were each made up to 100 ml with distilled water and firom the 

homogenous suspension 10 ml was stored for diatom analysis, 30 ml was frozen for chlorophyll 

extraction and 60 ml (for biomass) was filtered through 4.7 cm Whatman GF/C, glass microfibre 

filters of known dry weight. The filters were then put back in the oven overnight at 105 °C and 

allowed to cool for a few hours in a desiccator before being re-weighed to estimate biomass. 
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30 % of the quantitative sample for chlorophyll determination was filtered through 2.5 cm 

GF/C (glass microfibre) filters. Chlorophyll a content was estimated by extraction in 5 ml of 90 % 

methanol at 70 °C. The extraction was carried out in 30 ml snap cap bottles covered with foil to 

exclude light, and samples were stored in a cool dark place to prevent chlorophyll breakdown. This 

was repeated to obtain 10 ml samples for which absorbance was measured at 665 nm and 750 nm 

using a Shimadzu dual-beam spectrophotometer. 0.1 ml of 0.1 M HCl was then added, and the 

samples were left for one hour in the refrigerator, before absorbance at 665 and 750 nm was re-

measured in order to estimate the phaeophytin content. The amount of chlorophyll a in ng (C) was 

calculated as follows: 

C = (A^ - Aa).[ R/R-1. K . V/L] 

Where: 

\ = absorbance of extract at 665 nm before acidification less the absorbance at 750 nm 

Ag - absoibance of extract at 665 nm after acidification less the absorbance at 750 nm. 

R = maximum acid ratio (i.e. A^ / Ag) for extracts containing no phaeopigments. 
= 1.59 for 90 % meflianol in 1 x lO-̂  M HCl 

K = lOOOx the reciprocal of the specific absorption coefficient (SAC) of chlorophyll a at 665nm 
= 12.99 

V = volume of solvent used to extract the sample = 10 ml. 

L = path length of the cuvette = 4 cm. 

Diatoms contain chlorophyll a and chlorophyll c. The chlorophyll a content of diatoms lies in 

the range of 0.3-2 % of the dry weight of algae including diatoms (Werner, 1977). 

From 3 June, biomass measurements were discontinued as chlorophyll a was thought to give a 

better estimate of the diatom biomass; biomass and chlorophyll a were poorly correlated. As the 10 

% stored for slides proved to be an inadequate quantify to obtain slides of suitable densify for 

counting, 50% of the quantitative samples were subsequenUy frozen for chlorophyll analysis and 50% 

stored for diatom slide preparation. However, even the 50% or more stored for diatom slides was 

rarely enough, due to the decline in biomass from late May, and slides were produced from pooled 

cobble and boulder samples. 
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2.6 Diatom slide preparation 

The method is based on that of J.R. Carter (pers comm.). Batterbee (1986) explains the 

general principles. Glassware was scrupulously cleaned and separate stirring rods were used for each 

sample in order to prevent cross-contamination. The samples were allowed to settle in the 

refrigerator, the supernatant decanted and the sediment transferred to a boiling tube and allowed to 

settle. Dilute HCl was used to dissolve calcareous material and the samples were centriftiged in 

distilled water. Organic matter was digested by the addition of 5 ml concentrated H2SO4, two crystals 

of potassium permanganate and 10 ml of saturated oxalic acid. The solution was allowed to sediment 

overnight and was then centrifiiged in distilled water several times to remove all traces of acidity. A 

few drops of tliis solution were heated on a cover slip until dry and mounted on a slide using naphrax, 

a high resolution mountant (refractive index = 1.74). Live slides did not generally allow the 

precision of identification to species level due to the valves being obscured by organic matter. 

Sometimes sonication of the sample was required to break up the mucilage and disperse the diatom 

valves and frustules. 

2.7 Diatom counts 

Cobble and boulder samples were pooled in order to obtain slides of sufficient density for 

counting. Slides of counting density could only be produced for 10 replicates. Approximately 200 

valves per slide were counted. This allowed representation of over 90 % of the taxa present to be 

recorded by percentage. Counting errors were minimised by only identifying the diatom by valve 

view and only if over 50 % of the valve was visible (valves sometimes fragment). Any remaining 

taxa were identified by scaiming the slide for an additional 10 minutes but were recorded as being 

present only and not assigned a percentage value. 

Taxonomic identification to species level was achieved using Barber and Haworth (1978) and 

Krammer and Lange-Bertalot (1986, 1988 and 1991). 
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2.8 Diatom guild classification 

Molloy (1992) classified diatom taxa into guilds, distinguished on the basis of morphological 

features associated with their mode of attachment. When the classification system is applied to the 

diatom flora of the River Browney and Harwood Beck the following 6 guilds account for most diatom 

taxa: 

1. Achnanthes: small size, monoraphid, generally prostrate orientation to the substrate. 

2. Cocconeis: concave, monoraphid; prostrate orientation to flie substrate and large ainmounts of 

mucilage (strong adherence). 

3. Adnate: adjacent to substrate surface without being prostrate or erect (including Rhoicosphenia, 

Amphora and Surirella). 

4. Navicula spp. : biraphid, generally prostrate, frequenUy motile. 

5. Stalked: stalk forming genera including Cymbella and Gomphonema. 

6. Erect: perpendicular to substrate without stalks; often forming rosettes. Generally araphid or 

pseudoraphid: Fragilaria, Diatoma, Synedra, Asterionella, Meridian. 

2.9 Pollution Indices 

2.9.1 The Coste SPI and GDI were calculated according to the following formula: 

(Diatom Index) ID 
Sajvj 

where a = relative abundance (» %), v = indicator value (1 = poor indicator, 3 = good indicator) and 

i = sensitivify to pollution ( / = very sensitive,^= tolerant) (Coste et ai, 1991). 7 
5- f 

ID > 4.5 "best biological qualify, no pollution'. 

ID = 4-4.5 : 'almost normal qualify (slight changes in the communify, slight pollution)'. 

ID = 3-4 'more important changes in the communify, decrease of the sensitive species, moderate 

pollution or significant eutrophication'. 

ID = 2-3 'resistant species dominant, decrease or disappearance of the sensitive species (reduced 
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diversity), heavy pollution'. 

ID = 1-2 'marked dominance of a few resistant species (many species disappear), very heavy 

pollution'. (Descy, 1979). 

2.9.2 Round (I993)'s Zone System 

Table 2.1. Round (1993)'s system of zonation for running water sites based on epilithic diatom 

community composition. 

Zone Definition 

1 Clean water in uppermost reaches 

Nutrient richer and somewhat higher pH 
pH 5.6-7.1, alkalinity (mg CaCOj) 2.8 - 5.7 
Leclercq (1977) 

Nutrient rich 
pH 6.5-7.3, alkalinity 5.0-23.3 
Leclercq (1977, 1988) 

Dominant diatoms 

Eunotia exigua 
Achnanthes microcephala 

Ceratoneis arcus 
Fragilaria capucina 
Achnanthes minutissima 

downstream zonation: 
Achnanthes minutissima (upper region) 
Cymbella minuta (middle region) 
Cocconeis placentula (lower-region) 
Reimeria sinuata (lower-region) 
Amphora pediculus (lower-region) 

Eutrophic with restricted flora due to the 
detrimental influx of materials 

Flora grossly restricted by 
detrimental influx of materials 

Gomphonema parvulum 
distinguished by the relative absence of 
Amphora I Cocconeis & Reimeria 

Small Navicula and Nitzschia species 
Gomphonema parvulum 
Gomphonema auger 
Navicula accomoda 
Navicula goeppertiana 
Amphora veneta 
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CHAPTER 3 

FIELD SITES 

3.1 Introduction 

Sampling was undertaken between 3 May and 17 July 1993. The river Browney (NZ 222 455), 

a lowland eutrophic stream, was sampled weekly and Harwood Beck (NY 849 309), an oligotrophic 

stream in Upper Teesdale (altitude: 380 m), was sampled fortnightly until 3 June when both sites were 

sampled approximately every 10 days. 

3.3 River Browncy 

The River Browney drains a millstone grit and coal measure catchment of approximately 

178.5 km^. The landscape is undulating agricultural land used for both crops and pasture and the 

nutrient inputs are from agricultural runoff and a small sewage treatment works about 5 km upstream 

of the sampling site. 

Fig. 3.1. River Browney study site (3 October 1993) 
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Table 3.1 River Browney chemical data (pers.comm., M.G. Kelly). 

Concentrations mg 1"': 
Date Na K Mg Ca Fe Zn Si 02 BOD 
24 April 1992 25 4.5 19.5 44 0.17 0.014 - 13.5 1.4 
28 July 1992 43.5 6.95 24.5 67.5 0.12 0.006 1.75 13.2 -
22 October 1992 39 7.15 19 51.5 0.21 0.01 6.38 - 1.9 
22 January 1993 25.5 4 12.5 37 0.32 0.016 2.6 - 3 
27 April 1993 21 3.9 12.5 34.5 0.33 0.011 6.8 13.4 1.9 

Mean 30.8 5.3 17.6 46.9 0.23 0.011 
Standard deviation 9.8 1.6 5.1 13.3 0.09 0.004 

(Note: Metal concentrations were determined using atomic absorption spectrophotometry; silicate (= 

molybdate reactive silicon) was determined using the Ascorbic Acid Reduction Method; Dissolved 

oxygen was measured with a WTW meter and BOD was determined by incubation in the dark for 5 

days at 20°C in the presence of allylthiourea). 

Table 3.2. Some River Browney physico-chemical parameters over study period. 

Statistic Temp. (°C) Cond. (^S cm'') pH Alk. (meq 1'') 
Mean 11.3 544 ! 5.7 
Standard Deviation 3.2 89 0.4 1.8 
Range 8.6 272 1.1 5.4 
Minimum 6.6 394 7.1 2.7 
Maximum 15.2 666 8.2 8.1 

3.2 HarwoodBeck 

Harwood Beck drains a catchment area of 25.1 km^ where the geology is of the carboniferous 

limestone series. The catchment area consists of moorland and rough grazing land and the 

topography is hilly. 

The two streams are of similar dimensions but the difference in altitude and the much greater 

degree of bankside shading at the River Browney site are key physical factors. The altitude extremes 

and marked contrast in land use between sites can be considered as fundamental factors affecting 

nutrient status. 
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Table 3.3 Harwood Beck chemical data (pers.comm., M.G. Kelly). 

Concentrations mg 1"' 

Date Na K Mg Ca Fe Zn Si 02 5-day BOD 
24 April 1992 5.6 0.96 3.4 38 0.07 0.026 12.6 <1.0 
28 June 1992 5.2 1.25 4.45 47.5 0.03 0.019 1.05 11.6 1.0 
22 October 1992 4.8 0.9 3.5 38 0.15 0.001 1.55 12.9 11 
22 January 1993 5.9 0.65 1.75 15.5 0.26 0.043 0.48 <1.0 
27 April 1993 5.1 0.75 2.45 31.5 0.2 0.028 1.55 13.8 < 1.0 

Mean 5.32 0.9 3.11 34.1 0.14 0.023 
Standard deviation 0.43 0.23 1.04 11.9 0.09 0.015 

(methods as for Table 3.1) 

Table 3.4 Some physico-chemical parameters for Harwood Beck over shidy period. 

Statistics Temp. (°C) Cond. (nS cm-') pH Alk. (meql" ' ; 

Mean 11.5 244 
Standard Deviation 3.6 92 
Range 8.8 234 
Minimum 5.7 112 
Maximum 14.5 346 

1.5 
6.9 
8.4 

6.2 
3.6 

10.1 
1.9 

12.0 

Fig, 3.2. Harwood Beck study site (14 August 1993) 
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C H A P T E R 4 

R E S U L T S 

4.1 Flow 

The maximum flow at both sites was recorded on 14 May (6 days before next visit). There 

were two smaller stormflow events in Harwood Beck at the end of May and mid-July. A comparison 

of Figures 4.1 and 4.2 shows the maximum flow in the River Browney to be about four times that in 

Harwood Beck. 

Figure 4.1. Flow rate of River Browney at Bum Hall over the study period. 
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Figure 4.2. Flow rate of Harwood Beck over study period. 
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4.2 Other environmental conditions over study period 

The River Browney and Harwood Beck had similar widths, depths and temperatures over the 

study period (Table 4.1). The range in conductivity was approximately 250 cm'' at both sites, but 

the minimum recorded in the River Browney (394 fiS cm"') was higher than the maximum in 

Harwood Beck (346 \iS cm"'). The mean conductivity in the River Browney is over twice that of 

Harwood Beck which probably reflects the higher calcium and magnesium levels of the River 

Browney (i. e 'harder' water). This is supported by the data in Tables 3.1 and 3.3. Current speed 

varied by a factor of two at the River Browney and a factor of four at Harwood Beck. 

Table 4,1. Physical measurements of the River Browney (B) and Harwood Beck (H). 

Date Site Stream depth Stream width Temperature Conductivity Current 
(m) (m) ( °C) (iiS cm-') (m s-') 

03 May B 0.32 10.3 8.4 465 0.47 
12 May B 0.38 11.0 10.9 559 0.45 
20 May B 0.45 9.0 6.6 394 0.90 
26 May B 0.35 8.4 7.3 494 0.76 
03 June B 0.26 8.2 12.4 523 0.80 

17 June B 0.25 7.3 13.2 624 0.55 
23 June B 0.29 7.4 12.5 646 0.59 
06 July B 0.15 7.2 14.9 666 0.55 
16 July B 0.35 7.4 15.2 524 0.89 

Mean 0.31 8.5 11.3 544 0.66 
Standard deviation 0.03 0.5 1.1 30 0.06 
Minimum 0.15 7.2 6.6 394 0.45 
Maximum 0.45 11.0 15.2 666 0.90 

Date Site Stream depth Stream width Temperature Conductivity Current 
(m) (m) ( °C) ( nS cm-') (m S-') 

03 May H 0.26 8.5 5.7 278 0.59 

20 May H 0.28 8.2 7.0 209 0.91 
03 June H 0.43 9.6 12.7 137 0.38 
17 June H 0.14 7.4 13.3 314 0.34 

23 June H 0.22 6.6 14.5 310 0.33 
06 July H 0.12 6.3 13.3 346 0.27 

16 July H 0.50 10.2 13.9 112 1.13 

Mean 0.28 8.1 11.5 244 0.56 
Standard dev. 0.05 0.55 1.4 35 0.13 
Minimum 0.12 6.3 5.7 112 0.27 
Maximum 0.50 10.2 14.5 346 1.13 
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Mean values of pH and Total Alkalinity are approximately equal for the River Browney and 

Harwood Beck (Table 4.2). The major difference in the chemisty of the two sites is nutrient stattis. 

Harwood Beck is generally oligotrophic whilst the River Browney is eutrophic. Preliminary data 

analysis did not reveal any significant correlations of pH, alkalinity, conductivity and temperature 

with other variables. 

Table 4.2. Chemical measurements of the River Browney (B) and Harwood Beck (H). 

NH4 - N , ammonium-nitrogen; NO2 - N . Nitrite; NO3 - N . Nitrate; TIN.Total Inorganic 
Nitrogen (= nitrite, nitrate and ammonium); FTP, Filterable Total Phosphorus; FRP, Filterable 
Reactive Phosphorus; -, Unknown 

DATE SITE pH Total Alk. N H 4 - N NO2 -N NO3N TIN FTP FRP N: TIN: 
meq l " ' ngi-' ligl-' ligl-' ngi-' ^gl-' TFP FRP 

03-May B 8.2 7.8 40 12 503 555 325 170 1.5 3.3 
12-May B 7.5 5.7 155 36 514 705 488 339 1.1 2.1 

20-May B 7.6 2.7 108 17 1008 1133 188 159 5.4 7.1 

26-May B 7.9 5.2 81 20 836 937 226 192 3.7 4.9 

02-June B 7.8 4.5 70 45 1311 1426 375 310 3.5 4.6 

17-June B 7.3 6.8 183 239 1191 1613 472 445 2.5 3.6 

23-June B 7.8 6.5 317 100 1248 1665 535 508 2.3 3.3 

06-July B 8.1 8.1 159 258 1098 1515 393 365 2.8 4.2 

16-July B 7.1 4.3 372 108 927 1407 778 647 1.2 2.2 

Mean 7.7 5.7 165 93 960 1217 420 348 2.7 3.9 
Standard 0.1 0.6 38 32 99 135 59 55 0.5 0.5 
Minimiun 7.1 2.7 40 12 503 555 188 159 1.1 2.1 
Maximum 8.2 8.1 372 258 1311 1665 778 647 5.4 7.1 

DATE SITE pH Total Alk. N H 4 - N NO2 -N NO3N TIN FTP FRP N: TIN: pH 
meq 1"' ligl-' ngi- ngi-' ngi-' Ugl" ngi-' TFP FRP 

03-May H 8.4 12.0 <5 < 1.0 54 55 16.5 9.9 3.3 5.5 

20-May H 8.3 4.0 11 < 1.0 91 103 22.2 8.7 4.1 11.8 

02-June H 7.8 2.7 10 1.7 41 53 11.2 <5.0 3.7 -
17-June H 8.0 7.6 17 < 1.0 25 42 <5.0 <5.0 - -
23-June H 8.2 7.9 17 < 1.0 11 28 <5.0 <5.0 - -
06-July H 7.8 7.5 11 < 1.0 83 94 24.0 20.0 3.5 4.7 

16-July H 6.9 1.9 20 < 1.0 17 37 14.8 13.1 1.1 2.8 

Mean 7.9 6.2 46 59 < 14 <9.5 

Standard dev. 0.2 1.3 
Minimum 6.9 1.9 11 28 <5.0 <5.0 
Maximum 8.4 12.0 91 103 24 20.0 
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4.3 Flow and nutrients 

Concentrations of FTP and FRF tend to increase in the water during low flow periods 

(Fig. 4.3). No clear relationship is apparent between mean flow rate and the concentration of Total 

Inorganic Nitrogen (ng ), but in the River Browney TIN gradually increases over the spring and 

simuner, reaching a peak level of over 1.6 mg 1'' by the end of June (Fig. 4.4) 

Figure 4.3. Relationship between mean flow rate in River Browney and Filtrable Total Phosphorus. 
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Figure 4.4. Relationship between mean flow rate in River Browney and Total Inorganic Nitrogen. 
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Figure 4.5. Relationship between mean flow rate in Harwood Beck and Total Inorganic Nitrogen. 
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4.4 Chlorophyll a during study 

4.4.1 River Browney 

Chlorophyll a (^.g cm^^) is highly variable on both cobbles and boulders. However a steep 

drop in chlorophyll a occurred after the major storm on 20 May (Fig. 4.6). An analysis of variance 

on log,o transformed values shows significant differences in chlorophyll a between dates ( p < 0.01), 

but not between cobbles and boulders (Table 4.3). 

Table 4.3. Analysis of variance of log,o transformed chlorophyll a on cobbles and boulders over 
time. 

Source of Variation Sum of Squares degrees of freedom Mean Square F statistic F critical 

Date 11.265 5 2.253 3.355 2.477 

Substrate 0.012 1 0.012 0.018 4.113 

Interaction 2.748 5 0.550 0.818 2.477 

Error 24.176 36 0.672 
Total 38.201 47 

Two sampling dates (23 June and 6 July) are omitted from the analysis as there was 

insufficient material for chlorophyll extraction. There is a close reladonship between chlorophyll a 

on boulders and cobbles ( r = 0.73, p < 0.05 ). 

Figure 4.6. Mean chlorophyll a (ng cm^^) on cobbles and boulders in the River Browney! 
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There is a slight recovery in chlorophyll a (26 May) during a period of low flow following the 

storm (Fig. 4.6). Chlorophyll a is not significantly higher on cobbles or boulders during low flow 

periods, but appears to be higher on boulders during high flow periods. On 3 May, during a low flow 

spring bloom period, mean chlorophyll a on cobbles was over twice as high than on boulders. 

4.4.2 Harwood Beck 

The chlorophyll a is highly variable on both cobbles and boulders. An analysis of variance on 

log,Q transformed values shows significant differences in the chlorophyll a between dates and between 

cobbles and boulders ( p < 0.01 and p < 0.05, respectively). The less intense stormflow at Harwood 

Beck may have been between cobble and boulder stability thresholds and therefore caused a greater 

difference in chlorophyll a on cobbles and boulders. 

Table 4.4. Analysis of variance of log,o transformed chlorophyll a on cobbles and boulders over 
time. 

Source of Variation Sum of squares degrees of freedom Mean square F statistic F critical 

Date 6.910 3 2.303 15.237 3.009 

Substrate 0.682 1 0.682 4.512 4.260 

Interaction 0.557 3 0.186 1.227 3.009 

Error 3.628 24 0.151 

Total 11.777 31 

Maximum chlorophyll a was recorded on boulders after the storm on 20 May (Fig. 4.7). 

This co-incided with the maximum recorded nutrient level. However, chlorophyll a on cobbles 

remained low. By 17 June, after 2 weeks of low flow, mean chlorophyll a on cobbles reached a 

maximum (in very low nutrient conditions). From 23 June chlorophyll a remained very low (< 0.5 ^ 

g cm'2) in Harwood Beck (Figs. 4.6 and 4.7). 
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Figure 4.7. Mean chlorophyll a (ng cm^^) on cobbles and boulders in Harwood Beck. 
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4.4.3 Relationship with other environmental variables. 

Chlorophyll a was generally poorly correlated with physical variables. The only statistically 

significant correlation occurred between chlorophyll a on cobbles and current velocity in the River 

Browney. 

However, in the River Browney, mean chlorophyll a on cobbles and boulders were both 

inversely correlated with Total Inorganic Nitrogen (r = - 0.9, p < 0.01; r = - 0.8, p < 0.05 

respectively), but not with FTP (r = - 0.2). At Harwood Beck, Total Inorganic Niu-ogen was 

inversely correlated with chlorophyll a on boulders, but not on cobbles (Table 4.5). 

Table 4.5. Chlorophyll a conelation with current speed, log,o mean flow rate, TIN and TFP. 

Chlorophyll a (ngcm^*) 
Cobbles Boulders 

River Browney Current (ms^') -0.79 -0.59 
Log 10 mean flow -0.23 -0.07 

Harwood Beck Current (ms^') -0.61 -0.27 
Log 10 mean flow -0.58 -0.26 

River Browney Total Inorganic N (ng l ^ ' ) -0.90 -0.80 
TFP (Jig r ' ) -0.20 - 0.20 

Harwood Beck Total Inorganic N (|ig 1"') 0.08 0.78 
TFP (ng 1-') - -
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4.5 Species composition 

Tables 4.6 and 4.7 present the results of diatom counts from cobbles and boulders at the two 

sites. 

A total of 37 taxa were identified from the River Browney including 2 varieties of Fragilaria 

capucina. The maximum number of taxa found in a single count was 27 from the pooled boulder 

sample of 3 May. Achnanthes minutissima (mean percentage = 23%), Amphora pediculus (17%), 

Navicula gregaria (13%) and Navicula lanceolata (9.6%) all occur with over twice the mean 

percentage of other taxa. 10 species (29% of the taxa) occurred on 3 or less occasions with an 

abundance of 1% or less. Gyrosigma acuminatum, Nitzschia linearis and Nitzschia liebetruthii were 

only found by scaiming the slide after the count. 

The taxa exclusively present in the River Browney (i.e. not Harwood Beck) were: 

Gomphonema parvulum, Gyrosigma acuminatum, Melosira varians, Navicula capitata, Navicula 

tripunctata, Nitzschia dissipata, Nitzschia inconspicua, Nitzschia liebetruthii, Nitzschia linearis and 

Surirella brebissonii. 
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Table 4.6. Percentage of epilithic diatom taxa in the River Browney. 

C = Cobbles; B = Boulders; + = recorded when scaiming the slide after counting; 
F = Frequency of occurrence; A V = Mean Percentage; S D = Standard Deviation 

• = absent 

Date: 03-May 12-May 20-May 26-May 03^une 
Percentage (%) C B C B C B C B C B 

Diatom taxa 
Achnanthes lanceolata 3.1 2.3 0.9 3.6 5 1.9 5.6 6 5.2 14.2 
Achnanthes minutissima 15.4 11.2 14.3 16.8 28.1 17.1 11.1 35 43.4 40.9 

Amphora pediculus 28.7 13.8 25.9 17.2 10 18.8 15.1 29 13.4 8.6 

Ceratoneis arcus - - - - 0.6 1.3 - - 0.4 -
Cyclotella meneghiniana - + - - - - - - 0.4 -
Cocconeis pediculus - - - 0.4 - - - - - -
Cocconeis placentula 0.5 3.2 1.8 0.8 15 2.6 7.1 3 2.8 2.5 
Cymbella ajjinis - 0.5 - - 0.6 0.7 0.8 - 2.8 -
Cymbella delicatula 1 2.8 - - 0.6 0.7 0.4 - 2.8 -
Cymbella microcephala 0.5 2.8 0.4 - 8.7 8.4 0.4 + 7.6 5.6 
Cymbella minuta 1 0.5 0.9 + 1.8 0.7 1.2 0.5 + 0.5 
Reimeria sinuata - - 2.1 - - 1.3 3.2 - 4 2.5 
Diatoma moniliformis + + - + - - - 0.5 + + 
Diatoma tenuis - + - - - - - 0.5 + 1 
Diatoma vulgaris - 0.5 0.4 0.4 + - - - - -
Fragilaria capucina var. cap. 1 0.9 + + - - 0.4 + - 2 
Fragilaria cap.yai.vaucheriae - 1 - - 0.6 - - - 1.2 0.5 
Gomphonema olivaceoides 0.5 + 1.8 0.8 1.2 0.7 - - - 0.5 
Gomphonema olivaceum 0.5 0.9 0.4 2.4 - - 1.2 + 1.2 1 
Gomphonema parvulum + + + + 1.2 - 0.8 - + -
Gomphonema spp. - 2.3 0.4 - 1.2 - - - 0.4 -
Gyrosigma acuminatum - + - - - - - - - -
Meridian circulare - - - - - - - 0.5 - + 
Melosira varians - 0.5 - - - - - - - -
Navicula capitata 
Navicula exigua 
Navicula gregaria 40.5 17 27.2 36 11.8 12.2 24.8 1.5 9.6 9.6 
Navicula lanceolata 2.1 26.4 16.5 14.8 7.5 22.5 19.2 8 2.8 5.1 

Navicula tripunctata - + - - + - - - - -
Nitzschia dissipata 0.5 0.9 + 0.8 1.2 0.7 - - - 0.5 
Nitzschia inconspicua - - 3.1 0.4 - 1.3 0.8 2.5 0.4 -
Nitzschia liebetruthii 
Nitzschia linearis var. linearis - - + + - - - - - -
Nitzschia palea 2.6 1.9 0.9 2 - - 0.8 3.5 + 3.5 

Rhoicosphenia abbreviata + 10.1 1.7 2 4.3 9.1 6.7 9 1.6 1 
Surirella brebissonii 2.1 0.5 1.3 1.6 0.6 - 0.4 0.5 - 0.5 
Synedra ulna 

NUMBER OF TAXA: 18 27 21 20 20 16 18 17 22 20 
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Table 4.6 continued. 

Date: 17>Iune 23-June 06-July 16-JuIy 
Percentage (%) C B C B C B C B 

Diatom taxa F AV SD 

Achnanthes lanceolata 1.6 1.5 9.3 0.5 5.8 5.6 6.1 4.1 18 4.6 3.3 
Achnanthes minutissima 33.6 27.7 11.5 41 8.4 8.7 24 21.2 18 23 12 

Amphora pediculus 21.2 32.6 6.2 34 9.1 11.6 3.9 8.9 18 17 9.4 

Ceratoneis arcus - 0.5 - - - - 0.6 - 5 0.7 0.4 
Cyclotella meneghiniana 0.8 + 8.7 2.5 0.5 0.5 - 1.2 9 1.6 2.8 

Cocconeis pediculus 1.2 0.5 3.1 2 2.1 + - 1.2 8 1.3 1 
Cocconeis placentula 4.1 3.1 12.4 3.5 35.6 38.5 30.6 26 18 11 13 

Cymbella affinis - - - 0.5 1.6 1 0.6 - 9 1 0.8 
Cymbella delicatula - 0.5 - 1 - - 8.3 1.2 10 1.9 2.4 
Cymbella microcephala 2.5 - - 3.5 2.1 2 6.1 3.6 15 3.6 3 

Cymbella minuta 0.8 - 0.6 - - + 1.7 1.8 15 0.8 0.6 

Reimeria sinuata 8.3 4.6 13.7 - 1.5 3.4 0.6 - 11 4.1 3.8 
Diatoma moniliformis + - - 0.5 1 - 0.6 - 10 0.3 0.4 

Diatoma tenuis - - - - - - - - 4 0.4 0.5 

Diatoma vulgaris - - 1.8 - - 0.5 - 0.6 7 0.6 0.6 

Fragilaria capucina var. cap. - 1 - - + - 0.6 - 10 0.6 0.6 

Fragilaria cap. var. vaucheriae 1.2 - - - + - 0.6 - 7 0.7 0.4 
Gomphonema olivaceoides - 1.5 - 1 - - 0.6 - 10 0.9 0.5 
Gomphonema olivaceum 0.8 8.7 1.2 2 2 1 2.8 1.2 16 1.7 2 

Gomphonema parvulum - - 0.6 1 - - - 0.6 10 0.4 0.5 

Gomphonema spp. 2.1 0.5 9.3 - - - - - 7 2.3 3.2 
Gyrosigma acuminatum - - - - - + - - 2 

0.3 0.3 Meridian circulare - - - - - - - - 2 0.3 0.3 

Melosira varians - - - - - - - 0.6 2 0.9 0.5 

Navicula capitata - - - 0.5 - - - - 1 
Navicula exigua 0.4 - - - - - - - 1 

12 Navicula gregaria 3.8 6.6 1.2 1 7.9 8.7 3.9 8.9 18 13 12 

Navicula lanceolata 3.8 5.6 9.9 0.5 12.5 6.2 2.8 6.5 18 9.6 7.5 

Navicula tripunctata - - 0.6 - - + - - 4 0.2 0.3 

Nitzschia dissipata - + 0.6 - 0.5 - - - 10 0.6 0.4 
Nitzschia inconspicua - - - - - - - - 6 1.4 1.1 

Nitzschia liebetruthii - - - - 0.5 - - - 1 
Nitzschia linearis var. linearis - - - - - - - - 2 

1.1 Nitzschia palea 2.5 2.5 0.6 3 1.6 1.5 1.7 4.1 16 2 1.1 

Rhoicosphenia abbreviata 11.3 2.6 7.5 2 6.3 10.3 3.9 7.1 18 5.4 3.7 
Surirella brebissonii + - 1.2 - 1 0.5 + 0.6 14 0.8 0.6 

Synedra ulna + - - - * ~ 1 

NUMBER O F TAXA: 20 18 19 18 20 19 20 18 
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A total of 36 taxa was identified from Harwood Beck over 3 months including 3 varieties of 

Fragilaria capucina along with several small Navicula spp. (one taxon) which could not all be 

identified to species with confidence. The maximum number of taxa identified from any one slide at 

Harwood Beck was 21 (17 June, boulders). The flora is characterised by the dominance of 

Achnanthes minutissima with Navicula spp. being sub-dominant. Ceratoneis arcus, Cymbella 

delicatula, Cymbella microcephala and Gomphonema olivaceum were also present on all sampling 

occasions. 16 species (47% of the taxa) were found on 3 or less occasions (Table 4.7). 

Taxa exclusive to Harwood Beck (i.e not found in the River Browney) were: Fragilaria 

crotonensis, Fragilaria capucina var. gracilis, Fragilaria famelica, Gomphonema acuminatum, 

Navicula exilis and Navicula submolesta. 
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Table 4.7. Percentage of epilithic diatom taxa in Harwood Beck. 

C = Cobbles; B = Boulders; + = recorded when scanning the slide after counting; - = absent 
F = Frequency of occurence; AV = Mean Percentage; SD= Standard Deviation 

Date: 03-May 20-May 03-June 17-June 

Percentage (%) C B C B C B C B 

Diatom taxa 
Achnanthes lanceolata - - 1 0.4 0.6 1.9 + 2.3 
Achnanthes minutissima 57.8 47.7 63.7 78.1 81.5 77.1 62.8 60.2 

Amphora pediculus - - 1.5 0.4 - - - -
Ceratoneis arcus 1.2 0.6 0.5 2.7 0.6 0.4 0.4 0.5 
Cyclotella meneghiniana - - 0.5 - - - - -
Cocconeis pediculus - - - - - - - -
Cocconeis placentula - - 0.5 0.4 + - - 0.5 
Cymbella qffinis 0.3 1.2 - 2.7 0.3 1.5 2.1 3.7 
Cymbella delicatula 1.2 9.3 6.9 3.2 3.2 3.8 7.1 18.7 
Cymbella microcephala 4.8 1.8 2 2.3 1.8 8.8 2.3 1.4 
Cymbella minuta 0.3 0.6 - - 0.3 0.4 + 0.9 
Cymbella silesiaca - - 1 - - + - 0.5 
Reimeria sinuata - 0.6 - - 0.6 - - 0.9 
Diatoma moniliformis 0.3 0.3 - - 0.3 0.4 - + 
Diatoma tenuis 0.3 - - - 0.3 - 0.4 -
Diatoma vulgaris - - + - - - - + 
Fragilaria crotonensis + - - + - - - -
Fragilaria capucina var. cap. - 0.6 - - 0.6 0.8 0.4 0.5 
Fragilaria cop. var. gracilis 0.3 - - - - - - -
Fragilaria cop. var. vaucheriae 0.6 - - - - - - -
Fragilaria famelica - - - - - - - -
Gomphonema acuminatum - - - - - - - -
Gomphonema olivaceoides 1.2 0.9 - - 0.3 0.8 1.1 1.7 
Gomphonema olivaceum 0.3 3.2 1 1.3 1.6 2.3 0.4 1.7 

Gomphonema spp. - - 5 - 0.3 + - 0.9 
Meridion circulare - - - - + - - -
Navicula exilis 0.6 - - - - - - -
Navicula gregaria - - 1.5 0.4 - 0.4 - + 
Navicula accomoda - - - 0.4 - - 6 2.3 
Navicula lanceolata - - 1.5 - - - - -
Navicula submolesta 18 17.4 - - - - 13.1 4.6 

Navicula spp. 12.8 15.8 13.9 8.1 8.3 3.3 3.5 0.5 

Nitzschia palea - - - - + - - -
Nitzschia spp. - - 0.5 - - - - -
Rhoicosphenia abbreviata - - - - - - - -
Synedra ulna - - - - + - 0.4 0.5 

NUMBER OF TAXA: 16 13 16 13 19 15 15 21 
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Table 4.7 continued. 

Date: 23-June 06-July 16-July 
Percentage (%) C B c B C B 

Diatom taxa F AV SD 
Achnanthes lanceolata - - - - 5.6 0.4 8 1.5 1.8 
Achnanthes minutissima 84 82.7 58.5 60.7 59.7 61.7 14 67 11.4 

Amphora pediculus - - - - - - 2 0.9 0.8 

Ceratoneis arcus 1 0.4 0.8 0.6 2.6 1.8 14 1.0 0.8 
Cyclotella meneghiniana - - - - - - 1 0.5 
Cocconeis pediculus - - - + - - 1 0.0 

0.6 Cocconeis placentula 0.5 - 0.8 - 2 0.9 8 0.7 0.6 

Cymbella affinis 1.9 1.1 4.5 2.8 5.6 5.3 13 2.5 1.8 
Cymbella delicatula 2.9 1.9 6.2 5 6.6 3.1 14 5.7 4.4 

Cymbella microcephala 1.9 1.9 9 10 7.2 5.9 14 4.4 3.2 
Cymbella minuta 0.5 - 0.8 - - 0.4 9 0.5 0.3 
Cymbella silesiaca - - - - - - 3 0.5 0.5 
Reimeria sinuata + - - - 1 0.4 6 0.6 0.4 
Diatoma moniliformis 1 - 0.4 0.6 - - 8 0.4 0.3 

Diatoma tenuis - - - - 1.5 0.4 5 0.6 0.5 

Diatoma vulgaris - - - - - - 2 
Fragilaria crotonensis + + 0.4 0.6 - - 6 0.2 0.2 
Fragilaria capucina var. cap. - - 2.1 2.8 2.6 5.3 9 1.7 1.6 
Fragilaria cop. var. gracilis - - - - - - 1 0.3 

0.2 Fragilaria cap.var. vaucheriae 0.5 0.4 - 0.6 - + 5 0.4 0.2 

Fragilaria famelica - 0.8 - - - - 1 0.8 
Gomphonema acuminatum - - - 0.6 - - 1 0.6 

0.5 Gomphonema olivaceoides - 0.4 - - 0.5 1.8 9 1.0 0.5 

Gomphonema olivaceum 1.4 0.4 4.1 2.8 3.6 1.8 14 1.9 1.2 

Gomphonema spp. - - - - - - 4 1.6 2.3 
Meridian circulare - - - - - 0.4 2 0.2 
Navicula exilis - - - - - - 1 0.6 

Navicula gregaria - - - - - - 4 0.6 0.6 

Navicula accomoda - - - - - -
Navicula lanceolata - - + - + 0.4 4 0.5 0.7 

Navicula submolesta - - - - - -
Navicula spp. 4.4 10 12 12.9 6.1 10.4 

1 0.0 Nitzschia palea - - - - - - 1 0.0 

Nitzschia spp. - - - - - - 1 0.5 
Rhoicosphenia abbreviata - - - - 1 - 1 1 

0.3 Synedra ulna - - 0.4 0.6 1 + 7 0.4 0.3 

NUMBER O F TAXA: 13 11 14 14 16 18 
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Paired t - tests were applied to taxa percentage data of the River Browney and Harwood Beck 

for taxa present on all sampling occasions. There were no statisdcally significant differences between 

the observed percentages of these taxa on cobbles or boulders (Tables 4.8 and 4.9). 

Table 4.8. Paired t-Tests between cobble and boulder percentages 

Taxon t value (calculated) t Critical two-tail 

Achnanthes minutissima -0.72 2.31 

Amphora pediculus - 1.06 2.31 

Cocconeis placentula 1.74 2.31 

Navicula gregaria 0.83 2.31 

Navicula lanceolata -0.54 2.31 

4.5.1 Species changes in the River Browney 

For the 5 most common taxa, mean cobble and boulder percentages were plotted against the 

mean daily flow rate over the sampling period (Figs. 4.8 - 4.12). 

The percentage of Achnanthes minutissima increased after the storm (Fig. 4.8) suggesting 

that it is more firmly attached to stones than other taxa and /or it is a colonising species. A slight 

decline in the percentage of Amphora pediculus (Fig. 4.9) was observed following the storm, but no 

overall relationship is evident. The percentage of Cocconeis placentula also increases after the storm 

with a massive increase in percentage during July (Fig. 4.10). By conU-ast, the percentage of 

Navicula gregaria and Navicula lanceolata decline following the storm (Figs 4.1 land 4.12), although 

the percentage of N. lanceolata remains stable before and after stormflow. 
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Figure 4.8. Percentage change of Achnanthes minutissima in the River Browney (vertical bars) plotted 
against mean flow rate (shaded area). 
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Figure 4.9. Percentage change of Amphora pediculus against River Browney mean flow rate. 
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Figure 4.10. Percentage change of Cocconeis placentula against River Browney mean flow rate. 
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Figure 4.11. Percentage change ofNavicula gregaria against River Browney mean flow. 
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Figure 4.12. Percentage change ofNavicula lanceolata against River Browney mean flow rate. 
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The large decline in the percentage of Navicula gregaria and N. lanceolata during June and 

July appears to be related to an increase in Total Inorganic Nitrogen. Figures 4.13 & 4.14 illustrate 

the close relationship between Total Inorganic Nitrogen and the percentage of N. gregaria (r = 0.937, 

p < 0.001) and N. lanceolata (r = 0.9, p < 0.001). 
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Figure 4.13. Correlation between the percentage ofNavicula gregaria in the River Browney 
and Total Inorganic Nitrogen. 
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Figure 4.14. Correlation between the percentage of Navicula lanceolata in the River Browney 
and Total Inorganic Nitrogen. 
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For other taxa Total Inorganic Nitrogen and percentage were poorly correlated. 
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4.5.2 Change in Diatom Guilds of the River Browney 

Analysis of the diatom community guild structure indicated that the strongly adhered 

Cocconeis andAchnanthes taxa and stalked taxa increased in percentage after the storm, whereas the 

motile Navicula species decreased in percentage. A slight decrease in the percentage of adnate taxa 

(i.e. Rhoicosphenia, Amphora and Surirella) was observed. 

Figure 4.15. Mean percentage of River Browney diatoms classified by guild. X = storm. 
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4.5.3 Species changes in Harwood Beck 

For the five most common taxa mean percentage on each sample date was plotted against 

mean daily flow rate data over the sampling period (Figs. 4.16 to 4,20). No significant differences 

were observed between percentages of these taxa on boulders or cobbles. 

Table 4.9. Paired t-Tests between cobble and boulder diatom percentages 

Taxon t value (calc.) t Critical two-tail 

Achnanthes minutissima - 0.01 

Cymbella delicatula - 0.69 

Cymbella microcephala - 0.37 

Cymbella spp. 0.36 

Navicula spp 0.74 

2.45 

2.45 

2.45 

2.45 

2.45 
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The percentage ofAchnanthes minutissima shows a tendency to increase after stormflow 

events (Fig. 4.16), whereas there was a marked decrease in percentage of Navicula spp. after storm 

events (Fig. 4.20). No effect of flow rate on the percentage of Cymbella microcephala (Fig. 4.18) or 

Cymbella delicatula (Fig. 4.17) was evident, but the percentage of C. microcephala increases 

substantially in July. The overall percentage of Cymbella spp. remained stable during stormflow 

periods (Fig. 4.19). 

Figure 4.16. Percentage change of Achnanthes minutissima with mean flow rate in Harwood Beclt. 
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Figure 4.17. Percentage change of Cymbella delicatula with mean flow rate in Harwood Beck. 
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Figure 4.18. Percentage change of Cymbella microcephala with mean flow rate in Harwood Beck. 
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Figure 4.19. Percentage change of Cymbella spp. with mean flow rate in Harwood Beck. 
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Figure 4.20. Percentage change of Navicula spp. with mean flow rate in Harwood Beck. 
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4.5.4 Changes in Diatom Guilds of Harwood Beck 

There were differences in the communities on cobbles and boulders in Harwood Beck, which 

may be related to flow (Figs. 4.21 and 4.22). After the major storm event of mid-May, the percentage 

of stalked taxa (i.e. Gomphonema and Cymbella) increased on cobbles and decreased on boulders. 

On 20 May erect taxa (without stalks) such as Fragilaria, Diatoma, Synedra and Meridian were 

virtually eliminated on both cobbles and boulders. However, on all other sampling occasions some of 

these taxa were present. The percentage of Navicula spp. is also reduced following high flow events. 

Although the percentage of Achnanthes is seen to inaease following the storm (particularly on 

boulders) it also shows a substantial increase on 23 June following a sustained low flow period. This 

may be related to the very low nutrient conditions at this time (Table 4.2). Total Inorganic Nitrogen 

is minimum and P is below detection limit (< 5 ng T ' ) . 
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Figure 4.21. Percentage of Harwood Beck diatoms on cobbles classified by guild. 
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Figure 4.22. Percentage of Harwood Beck diatoms on boulders classified by guild. 
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4.6 Diatom Pollution Indices 

4.6.1 Coste SPI and GDI for the River Browney 

SPI remains relatively stable over time (compared with GDI) with a mean water quahty of 

3.9 (GDI = 3.7), as shown by the arrows (Figs. 4.23 and 4.24). There is close agreement between SPI 

and GDI on cobbles (r = 0.93), but not on boulders (r = 0.44). The variation in SPI was significantly 

coneiated with the percentage of Achnanthes minutissima (cobbles, r = 0.87; boulders, r = 0.71) 

which is highly sensitive to pollution (S = 5) but of poor indicator value (V = 1). A. minutissima was 

not correlated with the GDI. Both SPI and GDI remain more stable on boulders and GDI is more 

variable on both cobbles and boulders (Table 4.10). 

Table 4.10. Standard deviations of SPI and GDI on cobbles and boulders in the River Browney. 

SPI Cobbles SPI Boulders GDI Cobbles GDI Boulders 
Standard deviation 0.25 0.19 0.35 0.24 

Figure 4.23. Species Pollution Index (SPI) in the River Browney over study period. 
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Figure 4.24. Generic Diatom Index (GDI) in the River Browney over study period. 
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4.6.2 Coste SPI and GDI for Harwood Beck 

SPI values are more variable at Harwood Beck than in River Browney, but are still more 

stable on boulders (Table 4.11). The GDI values for Harwood Beck are less variable than SPI values 

(Table 4.11). As for the River Browney, SPI values of Harwood Beck are correlated with the 

percentage ofAchnanthes minutissima (r = 0.62, p > 0.1 and r = 0.89, p < O.OI for cobbles and 

boulders, respectively). GDI values are also well correlated with A. minutissima (r = 0.76, p < 0.05, 

r = 0.88, p < 0.01 for cobbles and boulders respectively). SPI and GDI values are significantly 

correlated (r = 0.8, p < 0.05 for cobbles; r = 0.96, p < 0.001 for boulders). 

Table 4.11. Standard deviations of SPI and GDI on cobbles and boulders in Harwood Beck. 
SPI cobbles SPI boulders GDI cobbles GDI boulders 

Standard deviation 0.42 0.28 0.19 0.21 

Fig. 4.25. Species Pollution Index (SPI) in Harwood Beck over study period. 
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Figure 4.26. Generic Diatom Index (GDI) in Harwood Beck over study period. 
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4.7 Round (1993)'s zonation system for running water sites 

4.7.1 Classification of River Browney 

The River Browney diatom commimity is characteristic of Rounds' zone 3 ("nutrient rich') 

classification. All of the sub-zonal dominant diatom taxa occurred as dominant in the River Browney 

on one or more occasions, with the exception ofReimeria sinuata which occuned at a maximum of 

13.7 % (cobbles) on 23 June. There appears to be a succession of dominant species, possibly related 

to the influence of flow on nutrient concentrations which tended to increase during the summer. 

Amphora pediculus was dominant before the mid-May storm event imd Achnanthes minutissima was 

dominant later in May and on all 3 sampling dates in June. Cocconeis placentula was dominant in 

July. 

4.7.2 Classification of Harwood Beck 

On the basis of the dominant diatom taxa used in Rounds' zone classification system 

Harwood Beck can be considered as a zone 2 site (i.e. 'nutrient richer and somewhat higher pIT), 

because Achnanthes minutissima was clearly dominant on all sampling occasions. 

58 



CHAPTER 5 

DISCUSSION 

5.1 Introduction 

It is clear that stormflow affects epilithic biomass and diatom community composition. A 

sharp decline in chlorophyll a followed heavy stormflow in the River Browney, but in Harwood Beck 

lighter stormflow and consequent higher nutrient availability may have encouraged biomass accrual 

on boulders. At both sites chlorophyll a was over twice as high on boulders as on cobbles, following 

stormflow. However, the difierence between cobble and boulder chlorophyll a over the entire study 

period was only significant in Harwood Beck. Despite high temporal variability in chlorophyll a and 

taxon percentages, diatom-based water quality indices remained stable. 

5.2 Variation in chlorophyll a / biomass 

Fluctuations in algal populations may be caused by various factors and simple correlations 

are difficult to interpret causally (Marker and Willoughby, 1988). The decline in chlorophyll a 

observed in June (Figs 4.6 and 4.7) may be due to interactions between a number of factors including: 

current speed, flow rate, light intensity, herbivory, available nutrients and the growth of algae other 

than diatoms. 

Chlorophyll a on River Browney cobbles showed a significant inverse correlation to current 

velocity (Table 4.5). This is in agreement with other studies based on both field measurements 

(Anyam, 1990) and laboratory experiments (Antoine and Benson-Evans, 1982). However, in the 

natural stream situation this relationship is complicated by the interactions of detritous accumulation, 

nutrient availability, and current-dependant grazing of herbivorous insects. For example, Homer and 

Welch (1981) showed a relationship between current speed, orthophosphate concentration and 

biomass measurement, as chlorophyll a, in a stream. In the River Browney FTP and FRP 

concentrations were inversely correlated with flow rate (Fig. 4.3), but the correlation with chlorophyll 

a was negative and insignificant. The correlation may be due to dilution of nutrient inputs fi-om 

agricultural runoff and the upstream sewage output at higher flows. 
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Marker (1976) found that hard-water, nutrient rich streams (pH = 8), supported a higher 

biomass than softwater, near neutral streams. Although the River Browney has harder water and 

higher nutrient concentrations than Harwood Beck this relationship is complicated by the differences 

in hydrological regime. Chlorophyll a was substantially higher in the River Browney than in 

Harwood Beck, before stormflow in mid-May (Figs 4.6 and 4.7). However, mean peak stormflow was 

approximately four times higher in the River Browney than in Harwood Beck (Figs 4.1 and 4.2). 

Subsequent chlorophyll a levels in Harwood Beck were higher than or comparable to chlorophyll a 

levels in the River Browney. From 23 June, in a period of sustained low flow, the very low 

chlorophyll a (below 0.5 (ig cm'^) in both streams (Figs 4.6 and 4.7) suggests that other factors were 

preventing biomass recovery. 

Although there was no significant difference in chlorophyll a between cobbles and boulders 

over the entire study period, Figs 4.6 and 4.7 show chlorophyll a to be substantially higher on 

boulders shortiy after stormflow, suggesting that boulders provided a more stable substrate. The 

stormflow in Harwood Beck between 13 and 19 May was probably only heavy enough to cause 

disturbance of cobbles, because boulder chlorophyll a was at a maximum on 20 May. If cobbles 

remained stationary a similar increase in chlorophyll a on cobbles might have been expected. The 

maximum difference between cobble and boulder chlorophyll a also occurred on 20 May, and the 

second largest difference occurred on 3 June, immediately after another slightiy smaller flow event. 

Maximum boulder chlorophyll a on 20 May could be partly attributable to the higher nutrient 

conditions on this date. However, Homer et al. (1990) found that constant current velocities up to 

0.6 m s"' enhanced biomass accrual on stationary substiata, with fiulher increases resulting in 

substantial biomass reduction. Harwood Beck current speed on the 20 May was measured as 0.91 

m s"' at a third of stream depth at the point of apparantiy fastest current. However, the epilithon was 

deeper and sampled from various positions in the central stream area where current speed may have 

been as low as 0.6 m s '. High variability in chlorophyll a may be partially associated with spatial 

replication of cobble and boulder samples. Homer et al. (1990) also found that sudden increases in 

velocity increased instantaneous loss rates by an order of magnitude or more, although marked 

biomass reductions were not apparant a day after velocity change. Therefore, recording current 

velocity gradient prior to sample collection could provide usefiil data. River Browney current velocity 
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on 20 May was the same (0.90 m s"'). but a greater preceeding current velocity gradient was probably 

responsible for the marked chlorophyll a loss. 

The River Browney was subject to considerable bankside shading, whereas Harwood Beck 

was highly exposed. The collapse in epilithic diatom biomass occured two to three weeks earlier in 

the River Browney (Figs 4.6 and 4.7), so it is possible light intensity may have been a significant 

factor limiting the recovery of River Browney chlorophyll a in early June. However, in a study 

chlorophyll a was in^enced to a much greater degree by grazing (of the snail Elimia 

clavaeformis) rather than irradiance. Highest levels of areal specific primary productivity occurred 

in 'high light / low grazing' treatments. Biomass levels were similar between 'high light / high 

grazing' and 'low light / high grazing' treatments. Once grazing pressure exceeded a certain 

threshold, biomass levels remained low irrespective of plentiful abiotic resources (Steinman, 1992). 

Marker and Casey (1982) showed that maximum chironomid larvae population density coincided with 

the collapse of the diatom population during the first two weeks in June. 

The slightly alkaline and relatively clean waters of Harwood Beck and the River Browney 

may support rich invertebrate populations. Mulholland et al. (1986) showed marked increases in 

algal biomass as stream pH fell from 7 to 4 (particularly at lower pH values). This may be due to the 

lower numbers of grazing invertebrates in acid waters. Winterboume et al. (1992) found that 

invertebrates thought to feed mainly by grazing and scraping algae from stones, including many 

mayflies and snails, are notably absent from acid streams. 

Steinman et al. (1991) performed laboratory experiments to examine the interactive effects of 

nutrients (N & P) and herbivory (by the snail Elimia clavaeformis). The experiments indicated that 

nutrient uptake by algae was reduced when grazing intensity increased, due to the lower biomass 

levels. In the River Browney, chlorophyll a on cobbles and boulders shows a significant inverse 

correlation with TIN (Table 4.5). 

Nutrient limitations are often critical in the control of community structure and processes in 

stream ecosystems (Chessman et al., 1992). In a study using nutrient diflusing artificial substrata 

Chessman et al. (1992) showed that N was the primary nutrient limiting algal biomass and 

in many cases P was the secondary limiting nutrient. Ratios of total inorganic nitrogen to reactive 

phosphorus in stream waters showed a consistent relationship to limiting nutrients. In some cases, 
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exact ratios could not be calculated because nutrient concentrations were below detection limits. At 

ratios above 17 by mass, phosphorus was always limiting, or results were inconclusive. At ratios 

below 7 by mass nitrogen was limiting. Measurement of stream water nutrient status could be used to 

predict the limiting nutrient in most cases, unless factors other than nutrients (e.g. light and grazing) 

were limiting (Chessman et al., 1992). In the River Browney TIN: FRP ratios, were below 7.1 

(Table 4.2). 

Diatom populations in many temperate streams and rivers show a marked bloom in spring 

and autumn, with much lower populations in summer, when green algae are often more prolific 

(Marker and Willoughby, 1988). Physiological tests indicated that Cladophora growth was likely to 

be limited by N during late sunmier and early autumn (Lohman and Priscu, 1992). In the River 

Browney Cladophora may have been favoured by low TIN: FRP in late June and July. However, 

TIN : FRP was similarly low in early May (Table 4.2). 

Seasonal variations in silicate concentrations in stieams are well documented (Marker, 1976; 

Casey et al., 1981; Marker and Casey, 1982, M.G. Kelly, pers. comm.). There is a general tiend of 

highest silicate levels in the spring and autumn, at times of diatom "blooms', and lowest levels in mid

summer, when there is a widespread collapse in epilithic diatom biomass. The minimum silicate 

requirements of diatoms for growth and reproduction need fiuther investigation in order to further 

assess the importance of silicate availability as a limiting factor. 

5.3 Variations in community structure 

In Harwood Beck, N and P values were very low and frequentiy below the detection limit of 

determination techniques. N and P could not be correlated to percentage changes in individual taxa, 

although species such as Navicula gregaria and N. lanceolata were found only when N and P were 

relatively high. Pringle (1990) observed littie change in periphyton taxonomic stiucture when 

inorganic nitrate and phosphate were added in relatively small amoimts (i.e from 40 to 80 ng 1' NO3 -

N and from 2.5 to 12.5 jig 1' PO4 - P). The apparant resistance of algal taxonomic structure may 

arise from metabolic flexibility in nutrient uptake rates (Steinman et al., 1991). 

Higher available nitrogen concentration when biomass is low may explain the inverse 

correlation of N. gragaria and N. lanceolata with total inorganic nitrogen in the River Browney (Figs 
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4.13 and 4.14), because Navicula spp. appear to decrease in percentage composition when epilithic 

diatom biomass declines as they are loosely attached motile species of the upper epilithon. Figures 

4.11 and 4.20 show the loosely attached nature of Navicula spp. Fig. 4.12 shows the percentage of 

N. lanceolata falling from a stable »30 % to sslO % at the time of the collapse in River Browney 

chlorophyll a (Fig. 4.6). 

Stalked {Gomphonema and Cymbella) taxa and smaller taxa growing directly on the 

substratum (Achnanthes) tended to be most adapted to resisting the mechanical force of current 

velocity (Wendker, 1992). This is supported by Figures 4.15,4.21 and 4.22 which show substantial 

changes in morphological guild structure following stormflow (i.e relative increases in stalked taxa 

andAchnanthes accompanied by the decrease in Navicula spp.). 

Steinman et al. (1991) found the influence of grazing on diatom community structure to 

be a direct fiinction of growth form. Prostrate growth forms (e.g. Cocconeis) are well adapted to high 

grazing pressure (Steinman, 1992). Stalked taxa may be more susceptible to grazing than closely 

adhered forms such as Cocconeis placentula. When biomass is low due to high herbivore activity 

prostrate growth forms become dominant (Steinman et al., 1991). The massive percentage increase 

of C. placentula in the River Browney during July suggests that grazing may be an important process 

(Fig. 4.1). Table 5.1 indicates that Achnanthes minutissima may be more resistant to flow while 

Cocconeis placentula is more resistant to grazing. On 3 June and 6 July, pH, nutrients and 

chlorophyll a were similar (Table 5.1). On 3 June^. minutissima was dominant at a maximum of 42 

% (in high current), while C. placentula was minimal (2.6 %). On 6 July^. minutissima was at its 

lowest (8.5 %) while C. placentula was dominant (37 %). 

Table 5.1. Cross-tabulated River Browney data 

Date pH TIN FRP Current (m s '̂) Chi. a (ng cm'^) %A.min. %C.plac. 

(Ugl"') (ngT') cobbles boulders 

3 June 7.8 1426 310 0.80 0.11 0.45 42 2.6 

6July 8.1 1515 365 0.55 <0.10 < 0.10 8.5 37 
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5.4 Variation in diatom indices 

5.4.1 River Browney 

Figures 4.23 and 4.24 show that the SPI and GDI values for the River Browney become 

slightiy higher following stormflow, due to the percentage increase in Achnanthes minutissima. The 

SPI and GDI are in close agreement, particularly on cobbles, but both remained more stable on 

boulders. 

The Round zone 3 ('nutrient rich') classification is in general agreement with Costes' diatom 

indice classification (SPI and GDI = 3-4 = 'more important changes in the community; decrease of the 

sensitive species; moderate pollution or significant eutiophication'). Round (1993) considers his zone 

3 classification to correspond with the pH and alkalinity classification by Leclercq and Manquet 

(1987) (i.e. pH 6.5 - 7.3; alk. 5.0 - 23.3); however, tiie data collected from tiie River Browney during 

this stiidy do not support this (pH 7.1 - 8.2; alk.2.7 - 8.1). 

5.4.2 Harwood Beck 

Figures 4.25 and 4.26 show that Harwood Beck SPI and GDI values become slightiy 

higher following stormflow, due to the percentage increase in Achnanthes minutissima. The cobble 

SPI values were lowest (i.e. below 4) on 3 May before stormflow (minimum %A. min., maximum % 

Navicula spp.) and 17 June (relatively high percentage of Cymbella delicatula); the GDI remains 

more stable. With these exceptions the SPI and GDI are in close agreement with diatom indice 

values between 4 and 5. 

As for the River Browney, pH (6.9 - 8.4) and alkalinity (1.9 -12) data from tiiis study do 

not fit the ranges adopted by Round for this classification (pH 5.6 - 7.1; alk 2.8 - 5.7). In addition, 

with Round (1993)'s system, Harwood Beck is classified as a zone 2 site (defined as being 'nutrient 

richer'); this is misleading as Harwood Beck was oligotrophic when sampled. Harwood Beck fits the 

zone 1 description ('Clean water of low pH in uppermost reaches'; which corresponds to the 

classification by Coste's SPI and GDI (= 4.0 - 4.5 = 'almost normal quality, slight changes in the 

community, slight pollution or I.D. = > 4.5 = Best biological quality, no pollution'). Achnanthes 

microcephala is present in low abundance, but Eunotia exigua is absent. Round describes these 

species as small celled and firmly attached and this description is suitable foT Achnanthes minutissima 
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which occurs widely in clean waters. Round (1993) does acknowledge that all workers do not 

distinguish between A. microcephala and A. minutissima. Harwood Beck also has a moderate 

abundance of small Navicula spp. which can be misleading when using Round's system as they can be 

the dominant taxa in grossly polluted water. 

5.5 Concluding comments 

Temporal variation in epilithic diatom communities seems to be predominantly associated 

with flow induced changes in diatom biomass and dissolved nutrient concentrations, during spring 

and early summer. The prevention from recovery and summer collapse in diatom biomass may be 

related to increased grazing pressiu-e, low silicon concentration and perhaps increased competition 

with other algae such as Cladophora. However, this has little effect on the interpretation of water 

quality. The maximum TIN : FRP was recorded following stormflow at both sites (Table 4.2). 

Dilution of FRP due to high flow volume and lower uptake of TIN may have been related to the flow-

induced decline in algal biomass. 

The diatom-based SPI and GDI water quality indices generally remained relatively stable 

(i.e. within one class of water quality), despite high variability in flow regime and chlorophyll a . 

GDI was more stable than SPI at Harwood Beck and produced well defined water quality 

classifications for both sites. Changes in the percentage of Achnanthes minutissima (of poor 

indicating value) accounted for much of the variation. The results indicate greater stability of SPI 

and GDI on boulders, which is highly likely to be due to the greater stability of boulders during flow 

events. It is not possible to comment on the stability of indices within stormflow periods and 

sampling at these times would be dangerous and unnecessary. 

Effectively equivalent water quality classifications are derived from the SPI and GDI. 

Although this conclusion is limited to 2 sites it supports observations made by Coste et al. (1991) in 

France, and Kelly (pers. comm.) in other U.K. waters. Round (1993)'s zoning system is qualitative 

and requires careful interpretation, due to differences in taxonomy and the pH and alkalinity ranges. 
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CHAPTER 6 

SUMMARY 

(1) Epilithic diatom communities and relevant physico-chemical variables were studied over 

spring and summer in Hanvood Beck and the River Browney. The eflfect of stormflow on diatom-

based water quality indices was assessed. 

(2) The River Browney and Harwood Beck sites were very similar in channel dimensions, 

temperatures, pH and Total Alkalinity. The main physical differences between sites were altitude, 

magnitude of stormflow events and the degree of bankside shading. 

(3) The most important difference in chemistry of the two sites is in nutrient status: 

River Browney mean TIN = 1200 j ig l " * , mean FRP = 350 ng Harwood Beck mean TIN = 60 ng 

mean FRP = 10 ng r» 

(4) The difference in water hardness is of secondary chemical importance: 

River Browney mean conductivity = 544 p,S cm"'; standard deviation = 30 \iS cm"'; Harwood Beck 

mean conductivity = 244 nS cm"'; standard deviation = 35 jxS cm"' 

(5) The River Browney may be N limited ( T I N : FRP is usually less tiian 7) 

(6) Chlorophyll a (|ig cm"^) is highly variable on cobbles and boulders. Analysis of variance of 

River Browney log,o chlorophyll a data shows a significant difference in chlorophyll a (ng cm"^) 

between dates, but not between cobbles and boulders, over the entire study period. Chlorophyll a (ng 

cm"^) of the River Browney epilithon was inversely correlated with current speed (r = 0.79, p < 0.05 

for cobbles) and total inorganic nitrogen ( r = - 0.9, p < 0.01 for cobbles; r = - 0.8, p < 0.05 for 

boulders). Uptake of inorgaiuc nitrogen may be direcUy related to epilithic diatom biomass. 

At Harwood Beck chlorophyll a (ng cm"^) is significantiy different between dates, and 

between cobbles and boulders, over the entire study period. Differences in chlorophyll a (|ig cm"^) 

between cobbles and boulders of Harwood Beck may be largely attributable to the relative stability of 

boulders and instability of cobbles during stormflow. Following stormflow, chlorophyll a is over 

twice as high on boulders at both sites. 

(7) Cladophora glomerata may be competing with epilithic diatoms for light and space and may 

be favoured by higher N levels in June and July. 
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(8) Cocconeisplacentula mdi Achnanthes minutissima are strongly adhered species which 

increase in percentage following stormflow. By contrast, motile Navicula spp. generally show a 

substantial decrease in percentage following stormflow. 

(9) Stalked Cymbella and Gomphonema spp. appear to be intermediate in strength of adherance / 

resistance to stormflow and maintain a relatively constant percentage representation in the flora over 

stormflow periods. 

(10) A sharp increase in the percentage of Cocconeis placentula between mid-June and mid-July 

is related to the collapse in biomass level as it is a firmly attached prostrate species which colonises 

stones with a pavement like growth. It is thought to be less vulnerable to algal grazers than other 

species of vertical growth form and therefore likely to sharply increase in percentage i f herbivory is 

the principle cause of biomass decline. 

(11) Previous data firom the River Browney, Harwood Beck and many other nmning waters 

indicate that silicate levels are much lower in summer than in spring and autumn and this may be an 

important factor limiting diatom growth. 

(12) Despite the effects of flow rate upon species percentage and the community change associated 

with highly variable biomass levels, the Specific Pollution Index (SPI) and Generic Diatom Index 

(GDI) remain relatively stable over the study period (i.e. seasonally stable). 

(13) The SPI and GDI classify the River Browney as 'slightly to moderately polluted or 

significantly eutrophic' and Harwood Beck as either 'slightiy poUuted' or of the "best biological 

qualify'. This is in general agreement with the Round zoning system which classifies the River 

Browney as zone 3, ('nutrient rich') and Harwood Beck as zone 2. 

(14) The SPI is significantly correlated with the percentage of Achnanthes minutissima at both 

sites. Differences in the SPI and GDI before and after stormflow and between cobbles and boulders 

are within » 0.5 classification unit. The SPI and GDI tend to remain more stable on boulders. 
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APPENDIX 1 

Nomenclatiue follows Krammer and Lange - Bertalot (1986 - 91) wiUi a few exceptions (Round et al, 1990), 
mainly associated with their controversial treatment of the Fragilariaceae. 

Genera Species Authorities 
Achnanthes lanceolata (Brebisson) Grunow in Cleve and Grunow 1880 

minutissima Kiitzing 1833 
oblongella Oestiiip 1902 

Amphora pediculus (Kiitzing) Grunow 1880 
Cyclotella meneghiniana Kutzing 1844 
Cocconeis pediculus Ehrenberg 1838 

placentula Ehrenberg 1838 
Cymbella qffinis Kutzing 1844 

delicatula Kutzing 1849 
microcephala Grunow in Van Heurck 1880 
minuta Hilse ex Rabenhorst 1862 
silesiaca Bleisch in Rabenhorst 1864 

Diatoma moniliformis Kutzing 1833 
tenuis Agardh 1812 
vulgaris Boiy 1824 

Fragilaria crotonensis Kitton 1869 
capucina var. capucina Desmazi^res 1825 
capucina var. gracilis (Oestiiip) Hustedt 1950 
capucina \&x..vaucheriae (Kutzing) Lange-Bertalot 1980 
famelica (Kutzing) Lange-Bertalot 1980 

Gomphonema acuminatum Ehrenberg 1832 Gomphonema 
angustatum (Kutzing) Rabenhorst 1864 
angustum Agardh 1831 non Kutzing 1844 
olivaceoides Hustedt 1950 
olivaceum (Homemann) Brebisson 1838 
parvulum (Kutzing) KuUing 1849 

Gyrosigma acuminatum (Kutzing) Rabenhorst 1853 
Hannaea* arcus (Ehrenberg) Patrick 1966 
Meridion circulare (Greville) C.A. Agardh 1831 
Melosira varians Agardh 1827 
Navicula capitata Ehrenberg 1838 

exigua (Gregory) Grunow in Van Heurck 1880 
ex/7/5 Kutzing 1844 
gregaria Donkin 1861 
lanceolata (Agardh) Ehrenberg 1838 non sensu Kiitzing nec sensu Hustedt 

meniscus Schumarm 1867 
submolesta Hustedt 1949 
tripunctata (O.F. Miiller) Bory 1822 

Nitzschia dissipata (Kiitzing) Grunow 1862 
inconspicua Grunow 1862 pro parte 
liebetruthii Rabenhorst 1864 
linearis var. linearis (Agardh) W. SmiOi 1853 
palea (Kiitzing) W. SmiUi 1856 

Reimeria sinuata (Gregory) Kociolek and Stoermer 1987 

Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot 1980b 

Surirella brebissonii Krammer and Lange-Bertalot 1987 

Synedra pulchella Kutzing 1844 
ulna Ehrenberg 1830 

• Hannaea = Ceratoneis = Fragilaria (in Lange-Bertalot) 



River Browney 

APPENDIX 2 

Chlorophyll and biomass data 

Chlorophyll a (ngcm"^) 

Harwood Beck 
Cobbles Boulders Cobbles Boulders 

Date Mean Standard enor Mean Standard error Mean Standard enor Mean Standard error 

03 May 8.32 2.55 3.36 1.35 1.07 0.42 1.3 0.475 

12 May 6.25 2.48 8.01 3.85 
20 May 0.695 0.30 2.385 1.08 1.14 0.41 4.11 1.65 

26 May 2.815 1.35 3.365 1.87 
03 Jxme 0.105 0.05 0.445 0.19 0.6 0.185 2.185 0.585 

17 June 0.81 0.13 0.57 0.185 3.365 0.72 2.785 0.775 

23 June <0.1 <0.1 <0.1 <0.1 

06 July <0 .1 <0.1 <0.1 <0.1 

16 July 0.15 0.025 0.405 0.06 0.10 0.025 0.29 0.08 

Biomass (mgcm"^) 

River Browney Harwood Beck 
Cobbles Boulders Cobbles Boulders 
Mean Std. deviation Mean Std. deviation Mean Std. deviation Mean Std. deviation 

03 May 2.05. 1.45 0.85 0.45 0.75 0.45 1.45 1.15 

12 May 2.5 1.8 4.5 3.9 
20 May 0.42 0.2 0.52 0.475 0.44 0.34 1.71 0.595 

26 May 0.51 0.345 0.31 0.36 

I I 



APPENDK 3 

Diatom counts from replicate samples 

River Browney = B; Harwood Beck = H; Cobble = c; Boulder = b; + = present; - = absent 

Date: 
Replicates: 

Percentage: 
Diatoms 
Achnanthes lanceolata 
Achnanthes minutissima 
Achnanthes oblongella 
Amphora pediculus 
Ceratoneis arcus 
Cyclotella meneghiniana 
Cocconeis pediculus 
Cocconeis placentula 
Cymbella affinis 
Cymbella delicatula 
Cymbella microcephala 
Cymbella minuta 
Cymbella silesiaca 
Diatoma moniliformis 
Diatoma tenuis 
Diatoma vulgaris 
Fragilaria crotonensis 
Fragilaria capucina var. cap. 
Fragilaria cap.vsr.vaucheriae 
Fragilaria famelica 
Gomphonema angustatum 
Gomphonema angustum 
Gomphonema olivaceoides 
Gomphonema olivaceum 
Gomphonema parvulum 
Gomphonema spp. 
Meridion circulare 
Melosira varians 
Navicula capitata 
Navicula exilis 
Navicula gregaria 
Navicula lanceolata 
Navicula meniscus 
Navicula spp. 
Nitzschia dissipata 
Nitzschia inconspicua 
Nitzschia linearis var. linearis 
Nitzschia palea 
Reimeria sinuata 
Rhoicosphenia abbreviata 
Surirella brebissonii 
Synedra pulchella 
Synedra ulna 

20 May 
Bc2 Bc3 Bbl Bb4 
% % % % 

3 June 17 June 16 July 
Bb2 Hcl Hb2 Hc2 Hc3 Hb3 Hc3 Hbl 
% % % % % % % % 

2.2 1.8 0.8 5.1 6.5 + - - - - 3.9 0.6 
46.9 9.6 17.8 48 8.8 51.4 71.6 55.7 67 84 61.7 66.3 

0.4 
1.1 2.6 31.2 7.2 22.9 
1.7 - - 0.4 - 2 2.3 2.5 1.8 0.4 3.3 0.6 
1.7 - - - 3.2 

- 0.4 1.8 
5 7 2.5 3.8 13.8 - - - - - - 0.3 
3.3 1.8 - - 0.9 1 . 8 - 1 - 1.9 1.1 4.1 
5 2.6 - 0.4 1.4 11.3 2.3 18.1 8.3 0.8 7.8 3.8 

10.6 2.6 1.7 - 2.3 3.5 6 6.4 3.6 0.8 3.9 4.5 
1.1 - - - 2.3 8.3 + - 1.8 0.8 - 1 

1.9 0.5 - 0.8 0.6 -
1 1.2 2 2.2 1.5 0.6 0.6 

- 0.4 0.4 0.5 0.5 0.8 - 0.9 -
- 0.5 0.5 

1.2 + + - - -
0.5 - - 1 1.3 - 2.8 2.5 

2.8 0.9 0.4 0.4 - 2 0.4 1 0.9 0.4 -
0.5 - 0.5 -

0.4 1 0.9 - 2.2 -
2.5 - - - 0.8 • 

0.6 0.9 - - - 2 3.5 - - 0.4 1.1 -
1.7 - 2.1 5.1 0.9 8.8 - 4.4 0.9 0.4 - 6.3 

- 0.8 
- 2.6 0.8 0.4 1.2 1.3 

0.5 - 0.4 - + - 0.6 -
- 0.9 

1.4 
0.4 -

5.6 18.5 6.4 6.8 12.4 
5.6 41.2 11.9 8.9 6 

- 3.4 
2.9 6 5.4 9.6 7.4 8.9 8.1 

- 0.9 0.4 
- 0.8 

0.5 
1.7 0.9 2.5 0.8 2.8 
2.8 0.9 1.7 5.9 0.9 0.6 -
0.6 5.2 18.2 1.4 6 

- 0.4 0.4 2.8 
1.2 

0.5 0.4 0.5 0.4 -

NUMBER OF T A X A : 18 16 17 19 23 18 17 15 16 13 15 13 

I I I 



APPENDIX 4 

Spreadsheet for calculating diatom water quality indices (SPI and GDI) 
(Worked example from 16 July: Harwood Beck, boulders) 

B = Boulders; SPP = Species; GEN = Genera; S = Sensitivity; V = Indicator value; A = Abundance 

Hanvood Beck: 

Diatom 
Achnanthes lanceolata 
Achnanthes minutissima 
Amphora pediculus 
Ceratoneis arcus 
Cyclotella meneghiniana 
Cocconeis pediculus 
Cocconeis placentula 
Cymbella affmis 
Cymbella delicatula 
Cymbella microcephala 
Cymbella minuta 
Cymbella silesiaca 
Cymbella sinuata 
Diatoma moniliformis 
Diatoma tenuis 
Diatoma vulgaris 
Fragilaria crotonensis 
Fragilaria capucina var. cap. 
Fragilaria cap. var. gracilis 
Fragilaria cop.var. vaucheriae 
Fragilaria famelica 
Gomphonema angustatum 
Gomphonema angustum 
Gomphonema olivaceoides 
Gomphonema olivaceum 
Gomphonema spp. 
Meridion circulare 
Navicula exilis 
Navicula gregaria 
Navicula accomoda 
Navicula lanceolata 
Navicula submolesta 
Navicula spp. 
Nitzschia palea 
Nitzschia spp. 
Rhoicosphenia abbreviata 
Synedra pulchella 
Synedra ulna 

Tota l : 

B B 
SPP. % GEN. % 
S V A SVA A V S V A SVA AV 
4 1 0.4 1.6 0.4 5 I 0.4 2 0.4 

5 I 61.7 308.5 61.7 5 1 61.7 308.5 61.7 

4 2 0 0 3 2 0 0 

5 2 1.8 18 3.6 5 2 1.8 18 3.6 

2 1 0 0 3 1 0 0 

4 2 0 0 4 1 0 0 
4 1 0.9 3.6 0.9 4 1 0.9 3.6 0.9 
4 2 5.3 42.4 10.6 5 1 5.3 26.5 5.3 

5 2 3.1 31 6.2 5 1 3.1 15.5 3.1 

4 2 5.9 47.2 11.8 5 1 5.9 29.5 5.9 

4 2 0.4 3.2 0.8 5 1 0.4 2 0.4 

5 2 0 0 5 I 0 0 

5 I 0.4 2 0.4 5 I 0.4 2 0.4 

0 0 0 0 4 I 0 0 

5 3 0.4 6 1.2 4 I 0.4 1.6 0.4 

4 1 0 0 4 1 0 0 

4 1 0 0 4 1 0 0 

4 I 5.3 21.2 5.3 4 I 5.3 21.2 5.3 

4 1 0 0 4 1 0 0 

3 I 0 0 4 1 0 0 

4 I 0 0 4 1 0 0 

4 I 0 0 3 2 0 0 

5 I 0 0 3 2 0 0 

5 3 1.8 27 5.4 3 2 1.8 10.8 3.6 

5 2 1.8 18 3.6 3 2 1.8 10.8 3.6 

3 2 0 0 3 2 0 0 

5 2 0.4 4 0.8 5 2 0.4 4 0.8 

3 1 0 0 3 1 0 0 

3 I 0 0 3 1 0 0 

1 3 0 0 3 1 0 0 

3 1 0.4 1.2 0.4 3 1 0.4 1.2 0.4 

2 2 0 0 3 1 0 0 

3 1 10.4 31.2 10.4 3 I 10.4 31.2 10.4 

1 3 0 0 1 1 0 0 

I 1 0 0 1 1 0 0 

4 1 0 0 4 1 0 0 

3 3 0 0 3 I 0 0 

3 1 0 0 3 I 0 0 

566.1 124 488.4 106.: 

SPI = 566.1 / 124 
= 4.584 

GDI = 488.4 / 106.2 
= 4.599 

IV 


