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A B S T R A C T 

When put to various sources, the question of which sequence of operations and 

machines is best for producing a particular component will often receive a wide range 

of answers. When the factors of optimum cutting conditions, minimum time, 

minimum cost, and uniform equipment utilisation are added to the equation, the 

range of answers becomes even more extensive. Many of these answers will be 

'correct', however only one can be the best or optimum solution. 

When a process planner chooses a route and the accompanying machining 

conditions for a job, he will often rely on his experience to make the choice. Clearly, 

a manual generation of routes does not take all the important considerations into 

account. The planner may not be aware of all the factors and routes available to him. 

A large workshop might have hundreds of possible routes, even if he did 'know it all', 

he will never be able to go through all the routes and calculate accurately which is the 

most suitable for each process - to do this, something faster is required. 

This thesis describes the design and implementation of an Intelligent Route 

Generator. The aim is to provide the planner with accurate calculations of all 

possible production routes in a factory. This will lead up to the selection of an 

optimum solution according to minimum cost and time. The ultimate goal will be the 

generation of fast decisions based on expert information. 

Background knowledge of machining processes and machine tools was initially 

required, followed by an identification of the role of the knowledge base and the 

database within the system. An expert system builder, Crystal, and a database 

software package, DBase III Plus, were chosen for the project. 

Recommendations for possible expansion of and improvements to the expert 

system have been suggested for future development. 



A B B R E V I A T I O N S 

A I Aritificial Intelligence 

ASRS Automated Storage and Retrieval System 

BOM Bills of Material 

CAD Computer-Aided Design 

CAE Computer-Aided Engineering 

CAM Computer-Aided Manufacture 

CAPM Computer-Aided Production Management 

CAPP Computer-Aided Process Planning 
CIM Computer-Integrated Manufacturing 
CPN Coloured Petri Nets 

CRP Capacity Requirements Planning 

DBMS Database Management System 
DCA Design Compatibility Analysis 
DDBMS Distributed Database Management System 

DFA Design for Assembly 
DFM Design for Manufacture 

DNC Direct Numerical Control 

FDL Function Description Language 

FMS Flexible Manufacturing System 
GPN General Petri Nets 
GT Group Technology 
JIT Just in Time 
KBS Knowledge-Based System 
MCKS Multiple Cooperative Knowledge Sources 
MPC Manufacturing Planning and Control 
MPS Master Production Scheduling 
MRP Manufacturing Resource Planning 
NC Numerical Control 
PAC Purchasing and Production Activity Control 
RCCP Rough Cut Capacity Planning 
SFC Shop Floor Control 
SMED Single Minute Exchange of Dies 
UPN Updated Petri Nets 
WIP Work-in-Progress 
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NOTATION 

a cost of setting up and operating a specific process 

P material density 

P process specific total tooling cost for an ideal design 

change over time 

cutting time 

f , feed per revolution per teeth 

Q hourly machine rate 

"P 
number of passes 

n, number of teeth on cutter 

h processing/machining time 

h setup time / component changing time 

h tool changing time 

h tool changing time 

c, tool cost 

h total transportation time 

workpiece handling time 

cB 
cost per batch 

cost per batch for processing 

cP 
cost per part 

xT cost rate of transportation equipment 

direct labour wage / productive hour cost for the machine and operator 

distance value between two consecutive machines in a route 

felt drilling of tapping feed rate 

fm feed rate 

L Fatal 
final processing / machining time 

hourly settinfg rate 

TM 
machine tolerance 

material cost per batch 

% retrieve tool / retrack time 

tool handling time per workpiece 



CB total cost per batch 

transportation cost for batch 

CT transportation cost from machine x to machine y 

tf.Exit transportation time from last machine to exit point 

tx transportation time from machine x to machine y 

T. travel time between machines x and y 

Cu unit cost 

j r a velocity of transportation equipment 

Qorc/i c o s t P e r u a t C n 

^Entry.i distance value between entry point and machine 1 

L/,Exit distance value between last machine and exit point 
s Rapid

 r a P i d feed r a t e 

'fiirry.i transportation time from entry point to machine 1 

tTranEnlryi transportation time including loading and unloading times between entry 

point and machine 1 

hranxy transportation time including loading and unloading times between 

machine x and machine y 

hran^, transportation time including loading and unloading times between last 

machine and exit point 
tuuEnlryX work handling equipment loading and unloading time between entry point 

and machine 1 
tLiufExil

 w o r k handling equipment loading and unloading time between lasst 

machine and exit point 
tuux work handling equipment loading and unloading time between machine x 

and machine y 

Ccomponeia
 c o s t P e r component 

A approach of cutter 

a machine identificator in setup 1 

al distance on x axis between entry point and first machine 

al distance on x axis between two machines 

V l l l 



a3 distance on x axis between last machine and exit point 
b batch size 
b machine identificator in setup 2 
bl distance on y axis between entry point and first machine 
b2 distance on y axis between two machines 
b3 distance on y axis between last machine and exit point 
c machine identificator in setup 3 
Cc relative cost associated with producing different geometries by various 

processes 
Cf relative cost associated with obtaining a specified surface finish 
Cft the higher of Cf and Ct, but not both 

Cm cost of material per unit volume 
Cmp relative cost associated with material-process suitability 
Cs relative cost associated with achieving component section 

reduction/thickness 
Ct relative cost associated with obtaining a specified tolerance 
d diameter of drill 
D maximum cutter diameter / diameter being cut 
Dc component general maximum outside diameter / diameter being cut 
Dw diameter of material piece 
/ last machine in each route / feed rate of spindle and shaft / feed rate 
H depth of hole to be drilled / hours per shift 
h time to setup for a batch 
He component height 
Hs cycle hours 
i machine number 
k number of operations 

L _ component length as a factor of the maximum cutter diameter / length of 
cut for metal cutting (length of shaft) 

Lc component length 
Lw length of material piece 
m material cost per part 

in number of machines required 
Mc manufacturing machining cost 
MCc material cost per component 
MCw material cost per unit weight 
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MLT manufacturing lead time 
MTBF mean time between failures 
MTTR mean time to repair 
/V lot number 
n spindle rotation / number of operations required to achieve the finished 

component 

N spindle speed (rotary cutting speed) 

N total component demand 
Nm number of operations or machines 

O overtravel of cutter 
P machine power 
p pitch 

Pc basic processing cost 
PC production capacity 

Q batch size 
q scrap rate 

R metal removal rate 
Rc relative cost coefficient 
Rp production rate 
s, sz, sR, sn feed rate 
SU setup hours for operation as recorded from data tables 
Sw number of shifts per week 
T machining time 

T process time in seconds for processing an ideal component by a specific 
process 

t time to machine one part 
T tool life 
Tc component tolerance 
Tm actual machining time 
Tmax tool life corresponding to maximum production rate 
Tno non-operation time 
To operation time 
Tp production time 
Tsu setup time 
Tu time to produce a workpiece 
u table feed 

X 



u utilisation 
V cutting speed 

V volume of material required 

Vc component volume / peripheral velocity of surface 
Vmax maximum velocity 
Vmin minimum velocity without revenue considerations 

Vw volume of material piece 

W number of work centres 

Wc component weight 
WDc component width 

WIP work in progress 

X machine cost rate 

z number of teeth 
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CHAPTER 1 
INTRODUCTION AND LITERATURE REVIEW 

In every successful organization there are two basic characteristics. The first one is 
the way in which the resources are allocated in order to achieve results, especially in the 
short term, mattaining a strict management over its utilisation. The second is related to 
its extent of innovation, trying always to find new methods to learn from experience. As 
R.E.J. Roberts [92] stated, innovation means "new ideas implemented successfully", and it 
is a very important element of strategy, while management is defined as "the achievement 
of objectives through the proper combination of the work of others". Combining 
innovation with management in the design and production phases, one tries to achieve a 
strategic management method in order to increase the actual competitiveness of a 
business, "without losing control over current operations nor endangering corporate 
performance" [92]. 

In defining a project, there are certain things like identification of problems, needs, 
opportunities, and integration of critical elements, that should be taken into consideration 
in order to reach the objectives proposed. Besides this, another relevant factor is the 
definition of a team with frequent meetings and information exchange with regular 
'cross-functional contact', having at the same time free flow of information (See Figure 
1). For this project, this team will be conformed by experts from both the design and 
process planning areas. 

Technical Director 

Technical Manager 

Project Dsgn 

Project Mgr 

Innovator Detaflen 
Administrators 

Developers 

TEAM 

etc 

Quality 

Estimating 

CAD 
Mgr e 

Client 

Workshop 

Production 
Engineering 

Figure 1. Design Team Structure and Interfaces 
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The project aims to develop a route generator for machined components. The idea 
is to develop a general design of a part, and identify the resources available to 
manufacture it, in accordance with the design and the related specifications. Since this 
process can increase the manufacturing cost, this is a factor that must be taken into 
consideration. This basic design is sent to the process planning participant, who takes 
into account the manufacturing considerations and generates a list of generic 
manufacturing processes required for producing it. Then, the designer and planner use 
the decision support system described herein to generate the production routes and 
calculate the corresponding lead times and costs. The result of this process is that the 
process planning is performed at the same time as the design process. 

The designers can have feedback from the system at all the stages of the design 
process. This strongly reduces the design and process planning lead times and increases 
the efectiveness of detailed process planning decisions. 

The I R G System 

The decision support system described herein is the IRG (Intelligent Route 
Generator) system. This system is composed of algorithms, knowledge bases, and 
databases. 

Various databases are used throughout, including machines and components 
databases. The system is knowledge-based, and so its predictions should become more 
accurate as the amount of information available to the system is increased. 

Overview of the Thesis 

The main body of the thesis is composed of seven main chapters: 

Chapter one is this introduction. An explanation of the need for and aims of this 
project is provided. Chapter two presents some material about information technology 
and manufacturing systems. 

Chapter three is a general description and explanation of the philosophy of the 
Intelligent Route Generator. 



Chapter four outlines the initial investigation into the problem and the solutions 
chosen, by means of a knowledge-based system for route generation in discrete 
manufacturing, described in detail by a heuristic algorithm. 

Chapter five describes the production concepts and mathematical models used in 
the project. Chapter six demonstrates the functionality and uses of the system, through a 
discussion of some case studies. 

Finally, chapter seven concludes the main body of the report with conclusions and 
recommendations for further work. 

Following the main body of the report are two further sections, the references and 
the appendices. 

Information technology concepts such as manufacturing strategies and 
simultaneous/concurrent engineering are the basis for the development of a decision 
support system. IRG is an idea generated from knowledge-based design methodologies 
and resource allocation strategies. Its interface with planning constraints controlled by 
MRP, CRP, MPS, and MPC provides with intelligent decisions regarding managerial 
needs. It is an approach which improves manufacturing performance based on reduced 
lead times and costs. In order to achieve this, it is necessary to integrate concepts such as 
production systems, machine tools, and manufacturing layouts. The theoretical 
background of these concepts is presented in this chapter and Chaper 2. 

1.1 MANUFACTURING S T R A T E G I E S 

"The introduction of new products or changed products demands flexibility and 
presents a wide range of management challenges" [108]. Design engineers, managers and 
production engineers need to be involved in order to understand and implement the 
changes in manufacturing that will produce substantial business improvement. 

Computer-integrated manufacturing (CIM) aspects are being examined to 
determine their impact on businesses strategies and objectives. Some of these aspects 
include computer-aided design (CAD), computer-aided manufacturing (CAM), 
computer-aided process planning (CAPP), Robotics, direct numerical control (DNC), 
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flexible manufacturing system (FMS), computer-aided production management (CAPM), 
and computer-aided engineering (CAE). CTM has been applied in many different 
companies and the main goals achieved are [ios]: 

o Major reduction in lead times, inventory, and production area 

o Help to construct priorities 
o Relationships improved 
o Improved production scheduling 
o Improvements to production systems 
o Reduced work-in-progress (WJP) 
o Improved communication between sales and marketing, and between engineering and 

manufacture 
o Simplification of shop-floor system 
o Elimination of storage 
o Just in Time (JIT) production 
o Reduction in critical manufacturing lead times 

1.2 SIMULTANEOUS/CONCURRENT ENGINEERING 

Simultaneous or Concurrent Engineering can be defined as "the design of a product 
together with its manufacturing process" [85]. 

O'Grady [si] says that it "involves the simultaneous consideration in the design 
phase of life-cycle factors such as product, function, design, materials, manufacturing 
processes, testability, serviceability, quality, and reliability". Its importance relies in the * 
fact that it is in the design phase where many of the product's costs are determined. It is 
difficult and sometimes more expensive to try to improve a design after the product has 
already been designed. The cost cannot be reduced effectively once we get a product 
into production. 

The problem is that until now, there was a sequential procedure related to the 
design and process planning, since the manufacturing or process engineers were not 
involved in the design of a product during the design process. As a consequence, there 
was a high increase in the period of time between the product conception and its release 
in the market. This results in bad products and delayed releases to the market. It is 



important to "be aware of the importance of teamwork between every function in the 
business cycle to achieve continuous improvements to our competitiveness" [70]. 

Concurrent engineering is one of the most effective methods used to reduce costs in 
today's competitive economies. Its effectiveness relies on the ability to integrate product 
and process design in order to achieve concurrency. Some restructuring and 
improvement could be done to the process planning in order to accomplish this. 

The concurrent product and process planning activities for small and medium size 
batches can be achieved in two stages [102]: 

Stage 1 
Manufacture in cells to achieve the lowest possible production cost'. Group Technology 
has many useful applications in this regard. 

Stage 2 
Ensure that the designed or redesigned product could be manufactured within the 
resources available. In this way, the 'total product development cost' will be minimized. 
Designers can use an Artificial Intelligence design environment to help developing 
'manufactured product designs'. 

In order to achieve this and have a 'useful manufacturability knowledge base', it is 
necessary to integrate (and not just combine or interface) the CAD system and the CAPP 
system, but this will imply some modifications in the actual activities related to the 
design and process planning activities. 

1.2.1 Planning for Manufacturing 

Low-cost manufacturing does not just happen. There is a close relationship 
between the design of a product and the selection of processes and equipment required 
for producing the design. Each of these steps must be carefully considered, planned, and 
coordinated before manufacturing starts. 

The steps involved in getting one product from the original idea stage to 
manufacturing are closely related to each other. For example, the design of the tooling is 
conditioned by the design of the parts to be produced. It is often possible to simplify the 
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tooling if certain changes are made in the design of the parts or the design of the 
manufacturing system. Similarly, the material selection will affect the design of the 
tooling or the processes selected. Close coordination of all the various phases of 
manufacture is essential. All mistakes and "bugs" should be eliminated during the 
preliminary phases because changes become more and more costly as work progresses. 

With the advent of computers and computer-controlled machines, the integration of 
the design function and the manufacturing function through the computer is a reality. 
This is usually called CAD/CAM. The key is a common database from which detailed 
drawings can be made for use by both the designer and the manufacturing engineer and 
from which programs can be generated to make all the tooling. 

In order to help the designer, O'Grady [8i] recommends the use of constraint 
networks, defined in the next section, which will give advice on possible design 
improvements. Some advantages include enough flexibility to approach the 'design 
problem' from a variety of ways, design with incomplete information, and ability to work 
with all life-cycle information. 

Actually, the constraint networks are not usually recommended, especially because 
of the volume, variety and separation of life-cycle information and functions. One way 
of implementing this system is by defining a design team, but then one encounters 
problems like group decision-making and dissimilar knowledge, which is not up-to-date 
as well. In order to solve this, some 'emulated design team' strategies have been 
developed and they can be categorized as follows: 

1) Design Rating 

It is used to evaluate the ease of manufacture or assembly by assigning a numerical value 
to each design. The whole design is evaluated and the acceptance rating is given. In this 
way, poor or no feedback is given to the designer for improvements. The evaluation is 
done for the whole finished design instead of doing it during the design process. Another 
disadvantage is that 'the domain considered is usually fairly narrow'. 
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2) Slruictoredl Approach 

It is eminently done for manufacturing and corresponds to a review done after the design 
is finished by using checklists or procedures. The results obtained could be unrealistic 
because of its inflexible structure. Accurate cost information is needed and this may be 
difficult to obtain. The results may be viewed with greater accuracy than is actually 
warranted. The strict structuring may be unrealistic, resulting in suboptimization. 

3) Reference Approach 

Here the designer uses reference books, databases, handbooks, standards and design 
guides, and incorporates this with the design in order to improve it. The designer is 
responsible for the consideration and integration of this information into design 
decisions. With this method the volume and variety of information managed by the 
designer is very high. Hence, it is usually very difficult to achieve optimal solutions. 

4) Automatic Design 

In this method both, the life-cycle requirements and the design, are fulfilled and 
generated automatically. It involves examining the requirements for the design and 
producing automatically a design that satisfies the life-cycle requirements specified. Not 
too much work has been done in this area. Because of the great amount of information 
and computation that has to be managed in the knowledge base, it is difficult to carry out 
with any degree of success. 

5) Design Advice 

After looking at the design and its requirements, some advice is given to the designer. 
Not too much information is needed, because it is supposed that the designer could access 
his own related information. The final decision of the designer is kept in a log, allowing 
an audit trail to be developed, in order to be able to redesign in a relatively efficient way. 
This is the area in which this project belongs, and is more specifically related to route 
and design generation. 
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O'Grady [si] thinks that the main requirements for a design advice system are: 

o Enough flexibility allowing the possibility of considering various options 
o Design regardless of incomplete information 
o Handle large diversity of life-cycle information 
o Interface with all other related systems (databases, CAD systems) 
o User-friendly 
o Enable 'design audits' 

1.2.2 Constraint Networks 

Every design tries to satisfy certain constraints. "A constraint network is a 
collection of constraints which are interconnected by virtue of sharing variables" [si]. 
These variables can be selected and tested either by computers, humans, or a combination 
of both. In the first case, the problems will be similar as those found in the Automatic 
Design method mentioned above. In the second one, the time and effort related even 
with small networks makes it impractical. Whereas the combination of these two is a 
very practical solution, and is known as constraint monitoring approach. SPARK [si] is 
an example of a constraint network language for concurrent engineering and it was 
developed by obtaining information from interviews with company personnel in 
functions related to the problem (design and manufacture) and by reviewing standards. 

1.2.3 Design for Manufacture (DFM) 

DFM is defined by Subramanyam [102] as "addressing the manufacturing-related 
concerns of individual piece parts". It is directly related to designing for cost and 
according to Pugh [ss], its principal objectives are: 

e Minimize component and assembly costs 
o Minimize development cycles 
o Enable higher-quality products to be made 

Its basic elements are: 

1) Design for assembly (DFA) 
2) Design for piece-part producibility (DFP) 
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Work has been done by Cutkosky and Tenenbaum [23], in which "the designer 
specifies the design he is creating by specifying a sequence of processing steps". For 
example, a machined part would be defined as a blank that is shaped with operations such 
as holes or pockets. The methodology for achieving the DFM concept involves the 
"designer working in 'manufacturing' modes". In order to generate processing 
requirements and check for violation of constraints related to manufacturing, knowledge-
based systems and solid-modelling systems are used. 

1.23.1 Design for Assembly (DFA) 

This is one of the major sub-areas of concurrent engineering, in which a lot of work 
has been done in recent years. It has been studied basically in two areas: 

1) Selection of assembly method 
2) Design for manual assembly, high speed automatic assembly, or robot assembly 

DFA is based in the efficiency and cost of assembly. The user can calculate this by 
the use of charts and a set of rules. 

The aim is to design 'good assembly practices' into a product instead of planning 
them into a production line. There are some approaches that enable the designer to cut 
down the number of parts and, therefore, make the assembly process easier. Some work 
has been done in relation to this. Lai [63] has presented a function description language 
(FDL) in which the functions of the components in an assembly are defined and then 
redundant ones are eliminated. Ishii [54] talks about design compatibility analysis 
(DCA), which tries to quantify "the degree of compatibility between design requirements 
(specifications) and the proposed design". Rehg [89] uses a CAD system to integrate 
design and assembly. 

Finger [34] gives a way of performing mechanical designs that include life-cycle 
requirements. According to Subramanyam [102], one of the deficiencies of this method is 
that it is more related with the assembly level and not with the manufacture of the 
components. Dewhurst and Boothroyd [28] try to solve this drawback by dividing the 
problem into two levels. The first one is related with the principles needed to have a 
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design with the fewest parts. The second one tries to satisfy the manufacturability 
constraints. 

1.2.3.2 Design for Piece-Par! Produscibililty (DFP) 

This is more complex and takes into account more parameters because of the 
variety of possible production processes in order to manufacture a piece-part, since the 
information required for each one must be accessed each time. Even though some 
standardized information already exists, more knowledge-based systems are needed in 
this area to help the design team. 

1.2.4 Tagukhi Approach 

This is a model for design process and it consists of three phases: 

Phase 1 - System Design 

Technology and experience are used to get the most favourable design alternative. 

Phase 2 - Parameter Design 

Optimal values of parameters of the design alternative obtained in the previous phase are 
determined. 
Phase 3 - Tolerance Design 
Permitted tolerances are selected for the design parameters according to the loss function 
of quality control. 

According to Subramanyam [102], this approach is applicable for high volume 
production of parts on dedicated systems (e.g. transfer lines). An expert team will be 
formed and they will determine the product and process parameters. In this method it is 
necessary to know in advance the manufacturing processes needed to manufacture the 
part. 

1.2.5 An AI-Based Design Environment 

Subramanyam [102] presents a computer-based design environment for small and 
medium batch-sizes. With this environment, the designer can know if it is possible to 
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manufacture the part according to the design specifications and the 'machining-related 
concerns'. A model-based reasoning system is used. 

"Model-based reasoning is the knowledge-based system approach to problem 
solving that involves building, analysing and reasoning from an explicit computational 
model of die structure, principle, function, and behaviour of an underlying system. 
Separation of the structured/functional model of a problem domain from the problem-
solving knowledge is the basis of any model-based reasoning system" [61,79]. This system 
is used to model the product and the manufacturing resources. 

A reasoning system is based on the multiple cooperative knowledge sources 
(MCKS) paradigm and it involves three areas [32,49,66]: 

© A database accessed by everyone 
o A group of 'knowledge sources' 
o A manager or controller 

A computer-based knowledge source is used for each relevant task of the 
refinement process, such as facility selection, fixture selection, machine selection, 
operation selection, etc. The manager is in charge of controlling the concurrent activities 
between the product and the process knowledge sources. 

1.3 INFORMATION SYSTEMS F O R INTEGRATED MANUFACTURING 

Although intensive research in product and process design, production planning, 
and scheduling has been done, the full information flow between these modules has not 
yet been reached. This could be achieved by linking the relevant manufacturing systems 
(i.e. CAD, CAPP, MPC, and SFC) according to the common data between them. This 
common data can be classified into two groups [47]: 

Static Data 
« product data 
o resource data 
• process data 
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Dynamic Data 

o planning data 

m Figure 2 the flow of common data between the systems is shown. 

Parts/BOM/Revisions 

Routings/ 
Work Centres Parts/ Work Centres/ Tool BOM BOM/ Mfg Orders Revisions/ 

Routings 

Work Centres 

Figuir® 2. C o m m o n Oerteo Flow b@tw©@m C A D , CAPP, M F C , a n d SFC 

The way to reach the full flow of information proposed by Harhalakis [47] is to 

design "a knowledge-based system (KBS) to control the functional relationships and 

information flow within the elements of the integrated system". This is achieved by 

using Petri Nets, a tool for graphical modelling. A description of each one of the systems 

is given in the next paragraphs. 

Computer-Aided Design (CAD) 

The C A D system is in charge of the product design. By means of this application 

system, the design alternatives can be evaluated, new parts can be created, and existing 

ones can be modified. The Bill of Materials (BOM) starts here. A C A D system enables 

the user to design a component, product, tool, or fixture. The implementation of the 

C A D system results in significant improvement in the quality and efficiency of the 

design function [44]. 
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Coimipiuiter--Aided Process Plamiroinig (CAPP) 

The CAPP system, defined by Harhalakis [47] as "the originator of process plans", has to 

work in an integrated way with C A D in order to decrease the 'product development 

cycle', as will be shown in the next section. The manufacturing process plans are 

generated here, specifying the operations, work centres, tools, jigs, fixtures, setup and run 

times. BOMs for the tools, jigs, and fixtures are generated here. 

Maraiiffactutrimg Plammimg and Control (MPC) 

Plans the acquisition of raw materials and coordinates the manufacture of parts. Records 

the process plans provided by CAPP and the product structures of assemblies to present 

them later to the S F C system. Keeps information related to the work centres. (See 

Section 1.5). 

Shop Floor Control ( S F C ) 

"A system which directly controls the transformation of planned manufacturing orders 

into a set of jobs, for the transformation of raw materials into products" [47]. Its basic 

functions are: 

o Capacity planning and resource allocation based on inputs from MPC. 

o Short-term capacity adjustment by using alternative routings, planning overtime, and 

altering priorities. 

o Feedback for reporting machine performance and status, job completion stage, and 

actual labour and material usage. 

CAPP will provide the detailed route information that will be used by S F C together with 

the information produced by MPC in order to generate the job schedules and monitor 

them. More details about this subject are described in Section 1.5. 

1.3.1 Overall C I M Information Flow Architecture 

Computer-integrated manufacturing (CEVI) systems have emerged as a result of the 

developments in manufacturing and computer technology [ 6 2 ] . 

Harhalakis [47] suggests that all the modules presented in the last section can be 

integrated through a "general distributed database management system (DDBMS)" driven 

by the K B S to "control the information flow, following procedural rules constraints and 
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other procedures derived from the company policies", as shown in Figure 3. The 

DDBMS is in charge of the integration, while the K B S will manage and control the 

information flow. 

D 
Q 

C AD F MRP II 

DBM M D D B M D M 

D D M 

Figure 3. Overall CIM Information Flow Architecture 

C I M is a new concept adopted by a number of companies in order to remain 

competitive. Some of the benefits of implementing a C I M system are: 

o Decrease of manufacturing cost 

o Decrease in number of personnel 

o Decrease in processing time 

o Decrease in work-in-progress inventory 

o Increase in machine utilisation 

o Better decision making 

o Increased performance to customers 

Additionally to this, other functional areas should be integrated within a C I M system. 

Some of these are described in the next paragraphs. 

Production Planning 

Production planning involves establishing production levels for a known length of 

time [44]. This forms the basis for the following two functions: 

o Material requirement planning (MRP) 

o Machine loading and scheduling 
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MRP I I is a system in which the master scheduling, material requirement planning, 

and other functions are integrated with the company's business plan. 

In order to perform scheduling in computer-integrated manufacturing (CIM) 

systems, interaction among various databases is necessary. 

Coimpiiiiteir-Aiided Mfflminffacfariinig System ( C A M ) 

C A M involves programming of N C machines and material handling carriers. It is 

based on the part design produced by the C A D system and the process plan produced by 

the CAPP system. 

Commpiuiter-Aided Qinaity Control System 

In the past, the quality control function (experimental design, inspection, and 

testing of the manufactured parts and products) has been performed manually . As in the 

case of process planning, the use of computers, robots and other automated equipment 

has greatly reduced the human involvement in quality control. For example, robots 

equipped with vision systems have, in some cases, eliminated human involvement. At 

the same time, they perform inspection more efficiently. Computer-controlled coordinate 

measuring machines and laser beam devices are also used for inspection in 

manufacturing systems. 

1.3.2 Knowledge Base Design Methodology 

A methodology is proposed by Harhalakis [47] in which the first step is to define 

rule specifications related to a specific company policy, and then model them with 

Updated Petri Nets (UPN) (a special set of Coloured Petri Nets (CPN)), and a 

"hierarchical modelling methodology". This terms are defined in the next paragraphs. 

The UPN model is then converted into General Petri Nets (GPN) in order to 

validate it in case of conflicting company rules or errors from the modelling phase. After 

validation, the UPN model is translated by a parser into a "rule specification language". 

At the end, an Artificial Intelligence (AI) production system is produced, which controls 

operations, access, and modification of data involved in the processes corresponding to 

the manufacturing applications integrated. This process is depicted in Figure 4. 
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"Company Policy" 

Knowledge 
Acquisition 

flodeling, AnaHysis, and Fesd i eck 

< 3 > J 

-i> 
Knowledge 

Based 
System 

mm 
Expression of company policy for the integration of 
specific application systems (CAD/CAPP/MPC/SFC). 
Modeling of the knowledge base using a formal 
language. Updated Petri Nets (UPN), a sub set of 
Coloured Petri Nets. 
Synthesis Rules to combine modeled scenarios of the 
company policy into an integrated system. 
Transform the UPN into Generalized Petri Nets (GPN) 
for Knowledge Base Verification. 
Analysis, discovery of inconsistencies and 
incompleteness, and feedback. 

Translation from UPN to the knowledge Based System. 

Figure 4. Knowledge Hose Design Methodology 

1.3.2.1 Petri Nets 

©OTFOT 

Petri Nets help representing not only sequential but concurrent activities in a 

graphical way and are very helpful when modelling and analyzing "complex dynamic 

relationships of interacting systems" [47]. Coloured Petri Nets are generalized Petri Nets 

with aggregated information in tokens, places, and arcs. They are applied at different 

abstract levels. Harhalakis [47] employs them for modelling the rule base and the 

"database changes which ensure consistency in representing the database status in the 

C I M system". 

Updated Petri Nets are defined as a "directed graph with three types of nodes: 

places which represent facts or predicates, primitive transitions which represent rules or 
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implications, and compound transitions which represent meta-rules (sub-nets)" [47]. The 

components of UPN are: data, facts, rules, and meta-rules. 

Petri Nets are used because of their ability to validate the K B S in a mathematical 

and systematic way. The validation consists mainly in the completeness, consistency and 

Conflicts [80,65]. 

1.4 A L L O C A T I O N O F R E S O U R C E S 

In order to assure that the most appropriate resources are assigned for producing a 

given product, reliable information is a prerequisite. There are many methods that can be 

used for this purpose [91], some of which are described in the next paragraphs. 

1.4.1 Linear Programming 

This method is used when allocating scarce resources. It is useful when the 

problem variables are 'linearly related to each other'. It is especially applicable in 

production systems studies and, according to Riggs [91], it can be profitable in the three 

evaluation stages: planning, analysis, and control. 

Applicable Problems 

o Planning the location of supply facilities to minimize transportation costs 

o Analyse operations and methods to improve profits 

o Control machine loading to achieve maximum utilisation 

1.4.2 Assignment Method 

In this method the Hungarian algorithm is employed. The format of the variables 

must constitute a square matrix. A dummy variable with zero costs in each cell is added 

to make the number of rows equal to the number of columns. 

Applicable Problems 

o Matching situation where: 

(a) some type of rating can be given to the performance of each pairing 

(b) number of applicants equal number of positions open 
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1.4.3 Graphical! Method 

This is another variant of Linear Programming and is suitable for the selection of 

an optimal mix, i.e. determine the proportion to produce when the resources are limited, 

in order to maximize profit. For accomplishing this, some prerequisites must be fulfilled 

[9i]: 

1) The objective must be stated explicity. 

2) Alternate courses of action must be available. 

3) Resource limitations must be known. 

4) Relationship of variables must be known. 

1AA Transportation or Distribution Method 

It is used to determine preferred routes for the distribution of supplies from a 

number of origins to different destinations [91]. This method has also been used to help 

identify the distribution pattern for any resource which seems to be the more profitable or 

the one with the lowest cost. 

Other Applicable Problems 

© Products to make or buy 

o Plant layout 

o Product marketing 

The problem must be represented in a matrix with no limit to the number of origins 

or destinations. This matrix defines: 

1) Amount and location of supply and demand. 

2) Cost or profit of supplying one unit from each origin to each destination. 

The optimal distribution route is obtained by first finding the initial solution and 

then making sequential tests and revisions of improved solutions "until no further 

improvements are available" [91]. This procedure could let several equal cost-distribution 

patterns, i.e. alternative routes. 
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1.4.5 Vogel's Approximation Method 

The first step is to find an initial solution that will match supply and demand [91]. 

This method is based on the fact that if the lowest cost route is not allocated, a penalty 

must be charged. Other similar method is the assignment by inspection or Northwest 

Corner Rule, where the rim conditions are met progressively by starting the assignment 

at the Northwest corner of the matrix. 

1.4.(5 Optimal Solution by the Stepping-stone Method 

This method helps to determine whether a change is appropriate, where should it be 

made, and how much is saved by making it. A saving (negative transfer cost) is a 

positive opportunity cost because it "represents a cost not incurred by not selecting the 

best possible alternative" [91]. On the other hand, a negative opportunity cost is an extra 

cost. 

1.5 M A N U F A C T U R I N G P L A N N I N G AND C O N T R O L S Y S T E M 

There are many techniques implemented for manufacturing control, such as 

manufacturing resource planning (MRP), Just in Time (JIT), total quality control, etc. 

These controls are necessary because nowadays the customers expect high quality 

products and very fast turn around on orders. 

1.5.1 Organization and Information Processing in Manufacturing 

Groover [44] has designed a model of manufacturing including the physical and 

information-processing activities. The first group of activities is concerned with 

automation, while the second one is concerned with C I M (Figure 5). 

In the information-processing cycle in a factory (Figure 6) [44], the manufacturing 

planning process is divided into four areas: 

Process Planning 

In this area, the manufacturing or industrial engineer is in charge of producing the route 

sheet necessary to establish the "sequence of individual processing and assembly 



operations needed to produce the part" [44]. This will be analysed in more detail in 

Chapter 4. 

Master Schedule 

This is a list of products to be made, in what quantity, and when to deliver them. 

Requirement Flamming 

Here, orders of raw materials and purchased parts from suppliers for individual 

components and subassemblies are planified. 

Capacity Flamming 

In this area, the activities related to manpower and machine resources plannning are 

under progress. 

Product 
Design 

Business 
Functions 

Raw 
Materials 

Factory 
Physical 
Activities 

Manufacturing 
Control 

Information-
processing 
Activities 

Manufacturing 
Planning 

Finished 
Products 

(a) the factory as a processing pipeline 
where the physical manufacturing 
activities are performed, and 

(b) the information-processing activities 
that support manufacturing as a ring 
that surrounds the factory. 

Figure §. Model of Manufacturing 
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Product Design 
Product deve lopmen t 
Engineering drawings 
Bills of materials 

Manufacturing 
Planning 

Business Process Functions planning Customers 
Master Market ing Factory schedule operat ions Sales Requirement 

Order entry p lanning 
Customer C a p a c i t y 

billing p lann ing 

Manufacturing Control 
Shop floor control 

Quali ty control 

Inventory control 

Figur© 6. Information-processing cycle in a typical 
manufacturing firm 

1.S.2 J I T 

Is an approach to manufacturing which concentrates mainly on producing the 

required items meeting the required quality in the required quantities and in the required 

time. Its goal is to pursuit "excellence in all phases of manufacturing systems design and 

operation". 

For the implementation of JIT in a S F C system, a Kanban system is used. The 

Kanban system controls the initiation of production and flow of material in order to get 

the exact quantity of items (components, sub-assemblies, purchased parts) in exactly the 

right place at exactly the right time. JIT supports manufacturing in three basic aspects 

[s]: 

1) It functions as an intelligent match of product design with market demand. 

2) It encourages the definition of product families, in which a common design and 

manufacturing attributes are shared and as a result, the products can be manufactured 
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in product oriented cells. The cells can be used to "aid the design process and reduce 
unnecessary duplication in product design." [8] A manufacturing cell generates flow 
patterns of materials in a plant and allows a group of operators and its supervisor to be 
responsible for a component or group of components. 

3) Establishes a close relationship with suppliers in order to achieve raw material and 

purchased components deliveries on time. 

1.S.3 Improved Manufacturing Performance Based on Reduced Lead Time 

According to Bauer [»], there are five basic approaches: 

1) Product design for ease of manufacture and assembly, achieved by modular design 

and design for simplification. 

2) Manufacturing planning techniques, achieved by production smoothing, which means 

that single lines can produce many varieties of a product each day as a result of the 

market demand. Basically, this technique utilises short production lead times to 

influence the market demand in order to match the 'capability of the production 

process'. 

3) Techniques to facilitate the reduction in queuing production and setup times as a 

consequence of product based plant layouts. This is achieved by using U-shaped 

layouts that allow unit production and transport, since the machines are close together 

and may be connected with chutes or conveyors, leading to synchronization. 

Reduction in Queuing Times 

Each unit produced in each cycle is sent to the next process at the end of the cycle. 

This implies moving away from batch based production systems to flow based 

systems. 

Reduction in Operation Times 

Since the plant layout is product oriented, operation times are reduced. 

Reduction in Transport Times 
U-shaped layouts minimize transport needs for a component or assembly. 
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Redmctnom off Setup Times 

One should separate internal and external setup times. Internal setup refers to the 

setup process which requires the machine to be inoperative in order to undertake it. 

The aim is to convert as much as possible of the internal setup to external setup, 

eliminating any adjustment process where possible. 

4) An approach to the use of manufacturing resources, leading to multiskilled and 

multifunction operators, and hiring of temporary operators when needed. This 

decreases overtime, releases temporary operators and increases the number of 

machines handled by one operator. 

5) Quality control and quality assurance procedures causing total quality control to be 

carried out by inspection in order to prevent defects rather than detect them. The 

automatic control of defects includes a mechanism to detect abnormalities or defects 

as they occur and the capacity to stop production when a defect or abnormality occurs. 

1.5.4 MFC A N D M R P 

The Manufacturing Planning and Control System (MPC) provides the required 

information for the efficient management of the materials flow, utilization of people and 

equipment, coordination of internal activities involving suppliers, and communication 

with customers about market requirements. The system provides the managers with the 

support to make intelligent decisions of manage operations [107]. 

The Manufacturing Resource Planning (MRP) determines the time-phased plans for 

all component parts and raw materials required to produce all the products in the Master 

Production Scheduling (MPS). This material plan can afterwards be utilized in the 

detailed capacity planning systems (Rough Cut Capacity Planning (RCCP) and Capacity 

Requirements Planning (CRP)) to calculate labour or machine centre capacity needed to 

manufacture all the parts [107,8]. (See Figure 7). 

The managerial objective of MRP is to provide "the right part at the right time" to 

meet the schedules for completed products. In order to achieve this, "MRP provides 

formal plans for each part, whether raw material, component, or finished product" [107]. 
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It is also important to accomplish these plans without excess inventory, overtime, labour, 

or other resources. Bauer [s] structures the MRP system as in Figure 8. 
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Figure 7. Manufacturing Planning and Control System 
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Figure 3. Basic Struefur® of an MRP System 

The general MPC framework depicted in Figure 9 shows that detailed requirements 

planning is characterized by the use of time-phased requirement records. The front end 

of the M P C system produces the Master Production Schedule (MPS). The back end, or 
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execution system, deals with shop-floor scheduling of the factory and with managing 

materials coming from suppliers. 
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Figure 9. Detailed Manufacturing Planning and Control System Framework 

The MRP represents a central system in the engine portion of Figure 9. This means 

taking a time-phased set of MPS requirements and producing a resultant time-phased set 

of parts and raw material requirements. Additionally, MRP requires two other basic 
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inputs. A bill of material (BOM) showing, for each product, what other parts are 

required as direct components. The second basic input is inventory status. 

The B O M is a document that specifies the subordinate components required to 

physically make each part or assembly. A simgEe-leveD B O M comprises only the 

immediately required subordinate components, not the components of the components. 

An indented B O M is a list of components, from the final product all the way down to 

the raw materials [107]. 

An MRP system serves a central role in MPC. It translates the overall plans for 

production into the detailed individual steps necessary to accomplish those plans. It 

provides information for developing capacity plans, and it links the systems that actually 

get the production accomplished. 

Effective use of an MRP system allows development of a forward-looking 

(planning) approach to managing material flows. It provides a coordinated set of linked 

product relationships, thereby permitting decentralised decision making on individual 

components. 

1.6 P R O C E S S P L A N N I N G 

The process planning for a mechanical part involves the preparation of a plan that 

outlines the production routes, manufacturing operations, machine tools, fixtures, and 

tools required to produce the part [ 6 2 ] . Based on the design specifications provided by 

the design engineer, the process planner determines a process plan for the part that 

minimizes production cost, manufacturing time, and ensures the quality of the part. It is 

a tedious and demanding task that requires good knowledge of production processes and 

machine capabilities. 

1.6.1 Computer-Aided Process Planning System 

Since process planning is a complex task, there has been a trend to automate it, by 

providing decision support in order to increase production efficiency and produce parts 

more economically. As a result, a number of CAPP systems have been developed. 

Examples are G E N P L A N , M I P L A N , and CPPP [ 6 2 ] . 
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There are two basic approaches to automated process planning: 

o Variant approach 

° Generative approach 

In the variant approach, each part is classified based on a number of attributes and 

coded using a classification and coding system. The code and the process plan for each 

part are stored in a data base. When it is required to generate a process plan for a new 

part, the part is coded and a process plan for a part similar to the new part is retrieved 

from the data base. The retrieved process plan is modified if necessary. The variant 

approach is useful when there is a great deal of similarity between parts. 

In the generative approach, according to Kusiak [ 6 2 ] , there are no process plans 

stored in the data base. Instead, the data base contains information about parts, 

machines, and tooling and the process planriing system creates the required process plan. 

Existing generative process planning systems can generate process plans for parts that 

have rather simple geometry. In fact, most of the existing systems are not trully 

generative because they require human interaction. 

The generative process planning approach is suitable for the application of 

knowledge-based systems. A knowledge-based system for process planning must be 

capable of generating process plans for complex parts. It is also desirable to have a 

knowledge-based system that provides alternative process plans. 

Using an artificial intelligence (AI) framework, the process planning problem has 

been formulated as a sequence of actions (operations) and resources (machines, tools, 

etc.) that enable the goal state (producing a finished part) to be reached given the initial 

state (raw material). On the basis of the preceding formulation, a number of intelligent 

process-planning systems have been developed. Some of the expert process planning 

systems developed to date, their characteristics, and references are presented in Table 3. 

It should be stressed that each system presented represents a research methodology rather 

than a software ready for industrial implementation. 
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•dig* Inference 
System Strategy 

TOM Rules Backward chaining LISP 
PROPLAN Rules Forward and LISP 

Backward chaining 
GAR] Rules Forward chaining MACLISP 
EXCAP Rules Backward chaining PASCAL 
CUTTECH Rules Backward chaining n/a 
AGFPO Rules Forward chaining PROLOG 
SIPP Frames Brand-and bound PROLOG 
Hi-Mapp Rules Backward chaining INTERLISP 
SAPT Rules n/a LISP 
CIMS Rules n/a n/a 

Note: n/a - information not available. 

Table 3. Expert Systems for Process Planning 

Due to the diversity of the process planning task, it is difficult to apply a uniform 
approach for its automation. As shown in Table 4 the process planning task can be 
decomposed into seven phases. 

Phase Number PJs&se Nam& 
1 Volume decomposition KB 
2 Selection of alternative KB 

machines, tools and 
fixtures 

3 Machining optimization OPT/KB 
4 Decomposition of KB 

machinable volumes 
5 Selection of machinable OPT/KB 

volumes 
6 Generation of precedence KB 

constraints 
7 Sequencing of machinable OPT/KB 

volumes 
KB: Knowledge-based approach 

OPT/KB: optimization and knowledge-based approach 

Table 4. Phases of Process Planning 

1.6.2 Selection of Alternative Machines, Tools, and Fixtures 

The process of selection of machines, tools, and fixtures is based on part features 
and it is typically performed in two stages. In the first stage one selects a process, such 
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as drilling or milling, and in the second stage, machines, tools, and fixtures. Since the 
process of selection of machines, tools and fixtures is highly qualitative, a knowledge-
based approach is very suitable. 



CHAPTER 2 

INFORMATION TECHNOLOGY AND MANUFACTURING SYSTEMS 

2.1 THE ROLE OF ENGINEERS I N MANUFACTURING 

Many engineers have as their function the designing of products. The products are 
brought into reality through the processing or fabrication of materials. "A design 
engineer, better than any other person, should know what the design is to accomplish, 
what assumptions can be made about service loads and requirements, what service 
environment the product must withstand, and what appearance the final product is to 
have" [26]. In order to meet these requirements, the material(s) to be used must be 
selected and specified. In most cases, in order to utilize the material and to enable the 
product to have the desired form, the designer knows that certain manufacturing 
processes wil l have to be employed. In many instances, the selection of a specific 
material may dictate what processing is used. On the other hand, when certain processes 
must be used, the design may have to be modified in order for the process to be utilized 
effectively and economically. Certain dimensional characteristics can dictate the 
processing, and some processes require certain sizes of the parts. In converting the 
design into reality, many decisions must be made. In most instances, they can be made 
most effectively at the design stage. It is thus apparent that design engineers are a vital 
factor in the manufacturing process, and it is of great importance to the company i f they 
can design for manufacturing. 

Manufacturing engineers select and coordinate specific processes and equipment to 
be used, or supervise and manage their use. Some design special tooling that is used so 
that standard machines can be utilized in- producing specific products. These engineers 
must have a broad knowledge of manufacturing processes and of material behavior so 
that desired operations can be done effectively and efficiently without overloading or 
damaging machines and without adversely affecting the materials being processed. 
"Although it is not obvious, the most hostile environment a material may ever encounter 
in its lifetime is the processing environment" [26]. 

The machines and equipment used in manufacturing and their arrangement in the 
factory also comprise a design task. Industrial or manufacturing engineers who design 
(or lay out) factories have the same concerns of the interrelationship of design, the 
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properties of the materials that the machines are going to process, and the interface of the 
materials and the machines. 

2.2 MANUFACTURING SYSTEMS 

The manufacturing processes are collected together to form a manufacturing 
system (MS). The manufacturing system takes inputs and produces products for the 
customer. The production system includes the manufacturing system and services to it, 
and it refers to the total company. Different machines do different operations, and some 
machines do operations better than others. The arrangement of machines (often called 
the plant layout) defines the design of the manufacturing system. The plant layout 
influences the way products are scheduled through the shop floor and depends upon the 
volume and variety of production. 

The production system therefore includes the manufacturing system plus all the 
other functional areas of the plant for information, design, analysis, and control. These 
subsystems are somehow connected to each other to produce either goods or services or 
both (See Figure 10). Goods refer to material things. Services are nonmaterial things 
that we buy to satisfy our wants, our needs, our desires. A description of production 
terms for manufacturing systems (MPSs) can be found in Appendix 1. 

Materials 
THE PHYSICAL SYSTEM 

I Labour Physical 
fe Resources Fac mes 

0 Production Pans 

8 Goods 8c Services 

0 
Quality 

Production Control 

Quality Control 

THE CONTROL SYSTEM 

Figure 10. The Elements of a Production System 
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Control of a system applies to overall control of the whole, not merely of the 
individual processes or equipment. The entire manufacturing system must be controlled 
in order to control inventory levels, product quality, and output rates. The organisation 
of the system begins with planning for production. Batch production or automation, 
robotics, cellular or flow layout of equipment, and special sequencing of the batches are 
typical plans that may be undertaken. 

Five manufacturing system designs can be identified: the job shop, the flow shop, 
the "linked-cell" shop, the project shop, and the continuous process. The latter system 
primarily deals with liquids, gases (such as oil refinery) rather than solids or discrete 
parts. 

The job shop is characterized by large varieties of components, general-purpose 
machines, and a functional layout (Figure 11). This means that machines are collected 
by function (all lathes together, all milling machines together) and the parts are routed 
around the shop in small batches to the various machines. 

Flow shops are characterized by larger batches, special-purpose machines, less 
variety, and more mechanization. Flow shop layouts are typically either continuous or 
interrupted. I f continuous, they basically run one large-volume complex item in great 
quantity and nothing else. I f interrupted, the line manufactures large batches but is 
periodically "changed over" to run a similar but different component. 

The "linked-cell" manufacturing system is composed of manufacturing cells 
connected together (linked) using sometimes a unique form of inventory and information 
control (Kanban). 

The project shop is characterized by the immobility of the item being 
manufactured. It is necessary that the men, machines, and materials come to the site. 
The number of end items is not very large. Thus the job shop usually supplies parts and 
subassemblies to the project shop in small lots. 

Naturally, there are many hybrid forms of these manufacturing systems, but the job 
shop is the most common system. Because of its design, the job shop has been shown to 
be the least cost-efficient of all the systems. Component parts in a typical job shop spend 
only 5% of their time in machines and the rest of the time waiting or being moved from 



33 

B. 
C' 

Receiving Turning Boring 
o o o 

Drill Pressses 

Milling 
Machines 

Presses 
(Sheet 
MetaD Assembly Storage Painting 

Heat-
Treating 

(a) Job Shop Functional or Process Layout 

M M 

• 

D 

(b) Production Job Shop - Functional Layout 

Rgur@ 11. Functional Layouts 



34 

one functional area to the next. Once the part is on the machine, it is actually being 
processed (that is, having value added to it by changing its shape) only about 30%-40% 
of the time. The rest of the time it is being loaded, unloaded, inspected, and so on. The 
advent of numerical control machines increased the percentage of time that the machine 
is in cycle because tool movements are programmed and the machines can automatically 
change tools or load and unload parts. This type of machines will be explained in more 
detail later in this chapter. However, there are a number of trends that are forcing 
manufacturing management to consider means by which the job shop system itself can be 
redesigned to improve its overall efficiency. These trends have forced manufacturing 
companies to convert their batch-oriented job shops into "linked-cells". One of the ways 
to form a cell is through the use of group technology (See Section 2.6.2). 

2.3 CHARACTERISTICS OF PRODUCTION SYSTEMS 

Production systems can be divided into six categories according to DeGarmo [26] : 

1) Workstation 

Individual bench, machine, or discrete process; craft work, single stations, or NC 
machine tools working independently; the most primitive production system. 

2) Cell 

Simplest organized production effort; may or may not be computer controlled or robot 
assisted; composed of two or more workstations. 

3) Flexible workstations 

Volume of production has less effect, and use of the computer is characteristic; 
examples include low quantities of engine blocks. 

4) Mechanization 

Dedicated to production of large quantities of one product, with little model variation; 
examples include high-volume and automobile parts. Computers and robots do not 
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have a significant role, although tools and pneumatic, electric, and electronic controls 
are important. 

5) AiiltoinniatMMi 

Examples include transfer lines, which may or may not be computer controlled. More 
recent automation has included robots, which are used for arc welding and parts 
handling, for example. 

<6) Continuous-flow processes 

Examples include production of bulk product, such as chemical plants and oil refineries. 
Features are: flow process from beginning to end, sensor technology available to 
measure important process variables, use of sophisticated control and optimization 
strategies, and full computer control. 

1A THE MACHINE SHOP AND M E T A L PROCESSING 

2.4.1 Metal Cutting 

In manufacturing products it is important that the processes employed should be 
efficient and capable of producing parts of acceptable quality. Metal cutting processes 
include turning, planing, milling, and drilling operations as well as other processes 
performed by machine tools. Parts are produced by removing metal in the form of small 
chips. The selection of machine tools and cutting tools is a very important activity. 

2.4.2 Types of Machine Tools 

A large variety of macliining work is performed in jobbing shops, where the 
number of machine tools is limited. Among the machine tools in use in such shops are 
NC, CNC and manual engine lathes, milling machines, drill presses, shapers, planers, 
boring mills, and grinders. These are equipped with various fixtures and adapters in 
order that a wide range of work may be performed. Work in the jobbing shop usually 
consists of producing small quantities of a each part. The operator performs different 
operations on the machines assigned to him. 
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When production reaches a moderate volume, the jobbing shop becomes a batch 
production environment. The machine tools and equipment of the jobbing shop are also 
used in the batch production environment, since these machines answer the requirements 
of limited production; in addition, however, other machine tools, such as machining 
centres and grinders designed for large production, will be found [26]. The recent trend 
in this area is a reduction in batch size that puts pressure on setup times. Multi-tool and 
multi-spindle machine tools are common particularly in Flexible Manufacturing Systems 
(FMS). 

In mass production environments, many parts are produced at low cost while 
ensuring a high degree of dimensional accuracy to provide interchangeability. Some 
machines previously discussed also form part of this environment. However, the 
predominating machine tools in plants operating on large production volumes include 
automatic and semiautomatic machines of special design and rugged construction that 
perform specialized operations. Among these machines are the following: complex 
turret lathes, automatic screw machines, automatic lathes, multi-spindle drilling 
machines, centerless grinders, broaches and other types of grinding machines, fully 
automatic machines (such as crankshaft turning machines), and cylinder block facing 
machines. Many of these are single-purpose machines built at high cost, but their ability 
to perform operations at low cost per unit warrants their purchase. 

2.4.3 Turning, Drilling, Boring, and Milling Machine Tools 

The oldest and most common machine tool is the lathe, which removes material by 
rotating the workpiece against a single-point cutter. Parts can be held between centres, 
attached to a face plate, supported in a jaw chuck, or held in a draw-in chuck or collet. 
Although this machine is particularly adapted to cylindrical work, it may also be used for 
other operations. Plane surfaces can be obtained by supporting the work in a face plate 
or chuck. Normal operations performed oh a lathe include longitudinal turning, facing, 
profiling, threading, grooving, and parting-off. 

One of the simplest machine tools used in production and toolroom work is the 
drill press. Drilling produces a hole in an object by forcing a rotating drill against it. 
The same can be accomplished by holding the drill stationary and rotating the work, such 
as drilling on a lathe with the work held and rotated by a chuck. Although the drill press 
is essentially a single-purpose machine, a number of dissimilar operations, such as 
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drilling, reaming and threading, are possible with other cutting tools on this machine 
tool. 

Boring is enlarging a hole that has already been formed. Principally, it is an 
operation of truing a hole that has been drilled previously with a single-point lathe-type 
tool. 

A milling machine removes metal when the work is fed against a rotating cutter. 
Except for rotation, the circular cutter moves vertically along the (z) axis. The milling 
cutter has a series of cutting edges on its circumference, each acting as an individual 
cutter in the cycle of rotation. The work is held on a table that controls the feed against 
the cutter. In most machines there are three possible table movements - longitudinal, 
crosswise, and vertical - but in some the table may also possess a swivel or rotational 
movement. 

The milling machine is considered the most versatile of all machine tools. Flat or 
formed surfaces may be machined with excellent finish and accuracy. Angles, slots, gear 
teeth, and recess cuts can be made with various cutters. Drills and reamers can be held in 
the arbor socket. Because table movements have micrometer adjustments, holes and 
other cuts can be dimensioned accurately. Most operations performed on shapers, drill 
presses, gear-cutting machines, and broaching machines can be done on the milling 
machine. Heavy cuts can be taken with little appreciable sacrifice in finish or accuracy. 
Cutters are efficient in their action and the life of modern tools is great. These 
advantages plus the availability of a variety of cutters make the milling machine 
indispensable in any machine shop and toolroom. 

2.4.4 Numerical Control Machine Tools 

NC is the operation of machine tools and other processing machines by a series of 
coded instructions. Perhaps the most important instruction is the relative positioning of 
the tool to the workpiece. An organized list of commands constitutes an NC program. 
"NC is not a machining method; it is a means for machine control" [26]. NC is 
considered as one of the most productive developments in manufacturing in this century. 

NC should be considered whenever there is similar raw material and work parts are 
produced in various sizes and complex geometries. Applications are in low-to medium-
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quantity batches, and similar processing sequences are required on each workpiece. 
Those production shops having frequent changeovers wil l benefit. 

Development of the machining centre with tool storage resulted from NC. Each 
tool can be selected and used as programmed. These machining centres can do almost all 
types of macriining such as milling, drilling, boring, and facing Such machining 
operations can be programmed to occur simultaneously. The NC program selects and 
returns cutting tools to and from the storage magazine, i f equipped, and also inserts them 
into a spindle. Parts can be loaded and moved between pallets, manipulated by rotation, 
and inspected after the work is finished. Robotic operation is possible, also being 
accomplished by NC. 

Systems having a computer controlling more than one machine tool are known as 
direct numerical control (DNC). One or more NC machine tools is connected to a 
common computer memory to receive "on-demand" or real-time distribution of data. In 
this system there is no punched tape. It allows storage of extremely long programs that 
wil l not fit into the memory of a computer NC machine. 

Computer numerical control (CNC) systems use a dedicated stored-program 
minicomputer to perform NC functions in accordance with control programs stored in 
computer memory. It provides basic computing capacity and data buffering as a part of 
the control unit. 

2.5 MANUFACTURING LAYOUTS 

Plant layout is the physical arrangement of all facilities within the factory. It 
depends on product design and specifications, production volume, manufacturing 
operations for the product, and assembly sequence for the product. The best layout wi l l 
attempt to use the least space consistent with safety, comfort, and product manufacture. 
It wil l consider operations, inspections, delays, transportation (material handling), and 
storage. The type employed depends on many factors, and the existing shape of the 
building is a prominent one. 
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2.5.1 FlexiMe Mamiiffacfaiiiriing Systems (FMS) 

The basic structure of machine tools has changed little since the early days of metal 
cutting, but automation has altered machine tools into several distinct types designed for 
specialized processes. Recently, however, the trend has been away from dedicated 
special machines and toward highly adaptable self-contained systems. 

Flexible machine tool systems may have several power units, each of which can 
drive any number of multiple-spindle macliining heads. These special-purpose heads can 
be set up ahead of time and changed quickly. Workpieces are transported automatically 
between workstations, and the entire head-changing and workpiece transport operation is 
under the control of a central process computer (See Figure 12). 

Machining centres not only allow different ways to make parts but a different way 
to do business. The modular construction of the system makes it possible to expand 
when necessary. Design changes and prototypes are easily accommodated because of 
the low setup cost, and inventory can be precisely controlled. In general, the flexibility 
of the system permits changes in the production schedule, design specifications, and even 
the product, all at a much lower cost than with conventional systems. 

FMS are arrangements of individual work stations, cells, machining cells, and 
robots under the control of a computer. Sometimes FMS means flexible machining 
systems. Workpieces are mounted on pallets that move through the system transferred by 
towlines, conveyors, or drag chains. FMS is closely related to cellular systems. 

Equipment and manufacturing cells are located along the material transfer 
highway. Different parts move on the conveyor and generally the quantity is small. The 
process begins with a robot or operator loading or unloading a CNC machine in FMS. 
After processing in FMS the robot wi l l return the semifinished or finished part to the 
conveyor. 

Pallet transfer to and from the machines is by automatically guided vehicles 
(AGVs). These carriers are often rated by the tonnage capacity they are able to move. 
Automatic loading palletizers can be used to mount and unmount the part on the vehicle. 
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Not only are parts moved, but tools are moved between the stations i f a part 
requires tooling that is not available on a specific machine. The robots mount the tool 
into the carriage where it is available for the part at the first time needed. The robot arms 
are able to reach the tool and extend it the required distance. 

A flexible machining system (FMS) is one of the forms of implementing computer-
aided manufacturing. FMSs possess a number of distinct features: 

1) The degree of automation of machines and material handling systems in a FMS is 
much higher than in an equivalent classical machining system. This observation 
follows from the definition of a FMS. 

A FMS can be defined as a set of machines linked by a flexible material handling 
system (e.g., robot, automated guided vehicle), all controlled by a computer system. 

2) A FMS consists of fewer machines than an equivalent classical machining system. 

3) The layout of machines in a FMS is determined by the type of material handling 
equipment used. 

4) The number of setups in a process plan designed for a FMS is significantly smaller 
than in an equivalent classical process plan. 

5) In a FMS, the processing time per machine load is much longer than it would be in an 
equivalent classical machining system. 

6) The volume and flow of information in a FMS are much higher than in an equivalent 
classical machining system. 

7) In a FMS, batch sizes result from other sizes, the capacity of fixtures, and the limited 
life of tools rather than being determined by optimization procedures similar to those 
used in classical manufacturing systems. 

8) The design of a FMS has an impact on its operation. 
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2.5.2 Cell Layoet 

Cell production may involve several machines connected by a conveyor system. I f 
it is a specialized cell, it wi l l make only certain classes of parts. In some situations cell 
design may approach the efficiency of an automated transfer line. 

Cell production encourages the following benefits: for simple product design 
fewer and more straightforward tooling and setups, shorter material-handling distances, 
and less complicated production and inventory control. Improved process planning 
procedures are possible. 

The cells may be stationed along an in-line material transfer system such as a 
conveyor. Raw and intermediate-finished parts move along the conveyor. A "ready for 
workpiece" signal from the control unit of the first machine in a manufacturing cell 
instructs the robot to look for the required workpiece on the conveyor. The robot picks 
up the workpiece, loads it onto the machine, and sends a signal to the machine control to 
begin its operations on the workpiece. A "part-finished" signal from the last machine 
tool to the robot requests that the completed part be unloaded and transferred to the 
outgoing conveyor. The cycle would then be repeated (See Figures 13 (a,b), 13 (c)). 

2.5.3 Group Technology Layout 

Group technology (GT) is a concept whereby similar parts are grouped together 
into part families. Parts of similar size and shape can often be processed through a 
similar set of processes. A part family based on manufacturing would have the same set 
or sequences of manufacturing processes. The set of processes is called a cell. Thus, 
with GT, job shops can be restructured into cells, each cell specializing in a particular 
family of parts (See Figure 14). The parts are handled less, machine setup time is 
shorter, in-process inventory is lower, and the time needed for parts to get through the 
manufacturing system is greatly reduced. 

One variation of group technology (GT) includes the concept of GT machine cells, 
groups of machines arranged to produce similar part families. A cellular arrangement of 
production equipment achieves an efficient work flow within the cell. Labour and 
machine specialization for the particular part families produced by the cell are possible, 
raising the total productivity of the cell. 
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One limitation of the flow line layout requires that all parts in the family be 
processed through the machines in the same sequence. While some processing steps can 
be ignored, it is necessary that the flow of work through the system be unidirectional. 
Reversal of work flow is accommodated in the more flexible group machine layout, but 
not conveniently in the flow line configuration. 

Group technology (GT) is a management philosophy based on the recognition that 
similarities exist in design and manufacture of discrete parts. In "family of parts 
manufacturing", GT achieves advantages on the basis of these similarities. Similar parts 
are arranged into part families. Each family posseses similar design and manufacturing 
characteristics. Efficiencies result from reduced setup times, lower in-process 
inventories, better scheduling, streamlined material flow, improved quality, improved 
tool control, and the use of standarized process plans. In some plants where GT has been 
implemented, the production equipment is arranged into machine groups or cells to 
facilitate work flow and parts handling. In product design there are also advantages 
obtained by grouping parts into families. A parts classification and coding system is 
required in a design retrieval system. GT is a prerequisite for computer-integrated 
manufacturing. 

Parts classification and coding are concerned with identifying the similarities 
among parts and relating these similarities to a coding or a number system. Part 
similarities are of two types: design attributes (such as geometric shape and size) and 
manufacturing attributes (the sequence of processing steps required to make the part). It 
should be noted that GT is not a science with precise formulas, but rather is a tool to be 
developed in each plant. 

Coding can be used in computer-aided process planning (CAPP). CAPP involves 
the computer-generation of an operations sheet or route sheet to manufacture the part. 

2.5.4 Transfer Lines 

This layout is used mostly when a part or product is highly standardized and will be 
manufactured in large quantities. An automated transfer machine will produce the parts 
with a minimum of skilled labour. Between each section there is a provison for banking 
parts. This layout, although highly efficient, can be utilized only to make products in 
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very large volume, and desired changes of design in the products must be avoided or 
delayed because it would be too costly. 

2.6 METHODS OF WORK-HANDLING 

For small quantities the customary method of handling a workpiece is manual if the 
mass is less than 30 to 50 lb (10-25 kg) or by crane or conveyor if heavier. The 
Occupational Safety and Health Act (OSHA) and management practice encourage 
operator safety and welfare, which provides for robots, automatic equipment, and other 
handling devices if the quantity is large or the weight is prohibitive. 

If the quantity of production is sufficient, mechanical loaders have an economic 
advantage over manual loading. A variety of mechanisms is available to load, position, 
control the cycle, and unload the workpiece. Systems are available that can completely 
process and assemble the item. 

2.6.1 Mechanization 

A variety of design configurations is possible. The movement of the workpiece 
may be circular around the machine or linear along the machine if one machine is used. 
Circular movement uses less floor area. Straight-line type machines allow addition and 
subtraction of stations, thus facilitating interchangeability and continuous chip or waste 
removal. Indexing is most suited for drilling, and turning operations. In constant-travel 
mechanization the workpiece is advanced with indexing in either a circular or straight-
line path, and locating and clamping the workpiece is required only once. Constant-
travel mechanization is preferred for milling, broaching, and grinding operations. 

2.6.2 Automation 

Involves automatic handling between machines and continuous automatic 
processing at the machines. The elements continuous and automatic are necessary to 
separate automation from mechanization. Automation exists only when a group of 
related operations are tied together mechanically or electronically or with the assistance 
of computers or with robots. Computers and robots are not necessary to have 
automation. 



48 

2.6.2.1 Automation in Mass Production 

Handling and moving the part was solved first for mass production. The part is 
moved from station to station by mechanical means, and the only manual movement 
remaining is that of loading a new length or batch of raw materials. 

2.6.2.2 Transfer Eqenpnrneimt 

Mechanical loading and transfer devices are used to move components of varied 
geometry from machine to machine. Special jaws grip the part, life, move, and turn it on 
arms, and place it into the new work position. Travel distance, direction, sequence, and 
speed are controlled mechanically, electromechanically, or with fluidic controls. Robots 
anc computer control are used. Dead stops, mechanical arms , or iron hands can be 
reprogrammed, but not very readily. But robotic manipulators overcome the inflexibility 
of mechanical manipulators. 

2.6.2.3 Assembly Limes and Materials Moving 

Materials handling is achieved by many methods. Installing automatic or 
semiautomatic handling equipment between machines already on line is successful and 
permits easy introduction of automation into existing production systems. 

2.6.2.4 Towline or Wire Guidance 

Workpieces are attached to pallet fixtures or platforms that are carried on carts 
towed by a chain located beneath the floor. The pallet fixture is designed so that it may 
be conveniently moved and clamped at successive machines in manufacturing cells. The 
advantage of this methos is that the part is accurately located in the pallet, and it is 
correctly positioned for each machining or assembly operation. 

With the wire guidance system, carts can move along a path determined by wire 
embedded in the floor. A cart picks up a finished palletized workpiece from the 
machining centre and delivers it to an unload station elsewhere in the system. 
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2.6.2.5 Roller Conveyor 

A conveyor consisting of rotating rollers may be used throughout the factory. The 
conveyor can transport palletized workpieces or parts that are moving at constant speed 
between the manufacturing cells. When a workpiece approaches the required cell, it can 
be picked up by the robot or routed to the cell via a cross-roller conveyor. The rollers 
can be powered either by a chain drive or by a moving belt that provides for the rotation 
of the rollers by friction. 

2.6.2.6 Belt Conveyor 

In this materials-moving system, either a steel belt or a chain driven by pulleys 
transports the parts. This system can operate by three different methods. In continuous 
transfer the workpieces are moving continuosly and either the processing is performed 
during the motion or the cell's robot picks up the workpiece when it approaches the cell. 

Synchronous transfer is mainly used in automatic assembly lines. The assembly 
stations are located with the same distance between them, and the parts to be assembled 
are positioned at equal distance along the conveyor. In each station a few parts are 
assembled by a robot or automatic device with fixed motions. The conveyor is of an 
indexing type; namely, it moves a short distance and stops when the product is in the 
station, and subsequently the assembly takes place simultaneously in all stations. This 
method can be applied where station cycle times are almost equal. 

Power and free material handling allows each workpiece to move independently to 
the next manufacturing cell for processing. 

2.6.2.7 Robots 

The Robot Institute of America defines industrial robots as "a reprogrammable 
multifunctional manipulator designed to move materials, parts, tools, or other specialized 
devices through variable programmed motions for the performance of a variety of tasks". 



CHAPTER 3 
PHILOSOPHY OF THE INTELLIGENT ROUTE GENERATOR 

3.1 OVERALL STRUCTURE 

Production engineering is a critical activity and the applications of the 
corresponding considerations in the early stage of the design process will help to 
recognize likely problems related with machine tool and material usage, manufacturing 
tolerances, process planning, and production scheduling. The aim of this research work 
is the integration of design and process planning in order to optimize the design 
according to resource selection and route generation considerations. In order to 
accomplish this goal, the basic steps for constructing an Intelligent Route Generator 
(IRG) are presented. IRG has two main functions (See Figure 15). First, the routing data 
are calculated at the design stage and stored in a knowledge-based system (KBS). Then, 
by means of the concurrent engineering team acting as the core communication element 
between CAD and CAPP, the optimal route will be generated and stored in the KBS. 
(This process will be explained in more detail in the following paragraphs.) 

This information will serve as the input to the production control process, which 
will give rise to the material and capacity plans (i.e., the detailed production plans). This 
production plans from the production process module and the process plans from the 
process planning module will supply the required information to the manufacturing 
module. 

As shown in Figure 16, the designer, through the CAD system, creates the 
component's drawing and sends it to the CAPP system in order to generate the list of 
operations required to manufacture the component. This list will include all the options 
available in relation to the order of the operations, since sometimes it is not compulsory 
to execute all the operations in a certain order. Any flexibility in the order of operations 
could affect in a considerable way the lead times, utilisation of machines, and bottlenecks 
in the shop floor. This order of operations will be specified by expert process planning. 

Taking into account this flexibility, an algorithm implemented using an expert 
system builder (Crystal), will calculate all the possible routes and lead times for each of 
the possible sequences of operations. From this, the best route will be selected and stored 
in the KBS, as depicted in Figure 17. The combination of operations 
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and machines that can perform these operations will be obtained and variables such as 
lead time, cost, actual and past machine utilisation, factory layout, capacity, and work 
handling will be the main aspects on which to base the selection. These will be standard 
parameters and will be used for the rough-cut route generation (See Figure 18). It is 
important to determine how the machines selected will affect the total capacity planning. 
Historical data will be used and a projection will be made on how many hours of 
machining are available and how many are required to do the task. 

By means of Crystal, the correctness of the result obtained in this process will be 
checked by comparing it with previous routes of similar components already stored in the 
KBS. The results of this comparison will then be sent to the designer in order to give 
him feedback about the route selected and its corresponding lead time (See Figures 15, 
17). With this information in hand, the designer could try to modify the actual design 
and add some improvements to it in order to reduce the total production cost. This can 
be done both at the design level and in a concurrent engineering environment. 

The Intelligent Route Generator works as a communication platform between 
CAD and CAPP. IRG is an integrating tool/concept used by both design and process 
planning. The system provides the designer with feedback related to manufacturability 
and performs aggregate process planning tasks (i.e., selection of resources and routes). 
Addtionally, the IRG system calculates costs and times using 'standard' parameters in 
order to have cost and lead time indications. Hence, IRG does 'job estimating' 
functions. 

It is expected that the time and cost estimates will be updated and optimised as 
part of the detailed process planning. Feedback cycles should be implemented from 
optimised plans and shop floor data. This feedback information should be stored in a 
knowledge base in order to compare new IRG routes to historical ones. This closed 
loop system is future work. 

Suggestions for further work based on this project are presented in the lower part of 
Figure 15. The second phase of the project will consist on the optimization of both the 
design and the routing. In this optimization process, the information about the 
component's drawing (provided by the CAD system), the route stored in the KBS 
(calculated by Crystal and calculated in the first phase of the project), the suggestions for 
design route modification (provided by Crystal and obtained by means of analysing how 
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similar designs have changed during the optimization process), and the new more 
accurate process parameters (provided by the CAPP system) will be analysed in 
concurrent engineering procedures. The suggestions for design and route modification 
will be stored in the KBS for future analysis of components with similar routes. New 
design modifications will be generated and the optimized design will be sent back to the 
CAD system. The resource and route selection algorithm (used in the first phase) will 
process this information and will give as a result an optimal route, which will be sent for 
further analysis to Crystal in order to be sure that it fulfils the constraints specified in the 
system according to each company policies. After this verification process, the optimal 
route will be stored in the KBS. 

In the theory of deterministic machine routing, a set of parts is to be processed on a 
set of machines (processors) in order to minimize (maximize) a certain performance 
measure. A job (part or component) may require of a number of operations. All 
machining parameters are assumed to be known in advance. Each operation is to be 
performed by one machine at a time. 

In this project, as described in the last paragraphs, an algorithm has been developed 
to calculate and estimate cost of manufacturing a component and optimal route according 
to its route and lead time. It works within a Crystal environment making full use of an 
interface with DBase I I I Plus. A benefit is that the program acts as an advisor producing 
automatic decision support. An advantage of having this implemented is that you can 
evaluate "what if situations in order to make comparative evaluations. It is important to 
give the most accurate values to the parameters, preferably by experts. 

The technique can be used to specify if a component should be made in house or 
not, if by means of the optimal route it seems not to be cost-effective. One important 
aspect is that it has to be used in the early stages of the design process in order to gain the 
most of it. The model is based on manufacturing considerations. The processing cost is 
based on the cost of producing an ideal design and the relative cost coefficients of each 
component. 

The resources under consideration are production machines used for metal removal 
operations. Resource selection is interpreted in this work as consisting of two parts: the 
selection of the most suitable machines to perform specific operations and the analysis of 
machine sequences used to manufacture a particular product. 
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The machines selected for manufacture must be those which can perform the 
required task at the lowest cost, and with the highest possible efficiency. The 
introduction of NC machines has resulted in increased capacity of available resources. 
Each machine is often capable of many different operations, and thus the selection of 
resources is becoming more demanding. As the number of potential machines available 
for a particular operation increases, the distinction between them becomes increasingly 
important if costs are to be minimised and the machines potential to be fully exploited. 

Resource selection is an ideal area for expert system implementation, as it is 
governed by many specific rules and heuristics, and is also an area which involves the 
consideration of a large volume of information. The aim of this project was to develop a 
methodology for resource selection and to implement this by constructing an expert 
system which will assist designers and process planners in machine tool selection. 

3.2 RESOURCE SELECTION AND ROUTE GENERATION 

Input to the resource selection function is usually in the form of a list of operations 
required for the production of a component. This information is used in the machine 
selection stage. 

The machine selection function considers each operation in the list, and assesses the 
suitability of all available machines for that operation. I f a machine does not have the 
capability to perform the operation specified, it is rejected. A list of suitable machines is 
therefore produced for each operation. 

The suitable machines are then evaluated using other criteria, according to the 
preferences of the process planner. A list of machines can therefore be produced for each 
operation, ranked by level of performance. Ideally, the highest ranking machine should 
be selected, but consideration may be given to using a machine of lower rank which is 
capable of performing many operations in the sequence, thereby reducing setup and 
material handling time. This leads on to the second function, the determination of a 
machine sequence and routing, explained below. 

More than one sequence of operations may be produced, because the provisional 
sequence of operations is often flexible, as operations may sometimes be performed in 
different order without affecting the finished product. For each sequence of operations 
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there is a number of machines that can do each sequence. All the possible sequences can 
be considered, and different routes proposed and assessed, the objective being to select 
the most efficient route. 

The final choice of a sequence of machines to produce a specific component will 
therefore depend upon the capabilities and desirability of the machines in that sequence, 
and also the performance of the sequence itself in terms of time, cost and efficiency. 

3.3 SHOP FLOOR CAPACITY 

The aim is to obtain the most efficient utilisation of the company's current 
resources. Allocation of production machinery to operations must be achieved in such a 
way as to minimise the cost of the component and may include other considerations such 
as the number of different machines involved, material handling, lead time, and cost. 

The number of machines on the shop floor which are considered may be reduced 
for particular layouts. For a funcitonal layout, all the machines on the shop floor are 
considered, but the number may be reduced if the layout is cellular. When machines are 
arranged according to Group Technology principles, groups of machines are placed 
together in cells according to the type of product they manufacture. This results in many 
benefits, including reductions in material handling and setup times, higher machine 
utilisation and more efficient use of shop floor space. 

I f a new product is similar to the family of products that is being manufactured in a 
particular cell, only that cell need to be considered in the provision of resources. This is 
because the machines have been grouped to provide the most efficient production of that 
family type, and so the best machines for the new product will be contained in the family 
cell. This will significantly reduce the amount of information processed by the expert 
system, and a solution will be found more quickly. 

The expert system needs to know to which GT cell does the product correspond, 
and that cell is specified as a stand-alone layout in order to make the best selection of 
resources. 
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3.4 METAL REMOVAL OPERATIONS 

The range of production processes available is large, and subsequently there is a 
large variety of machine types which may be used to manufacture a particular product. 
Different types of machines may need to be defined in a different manner, and so, the 
project considered a restricted range of machines. 

3.4.1 Types off Meta! Removal Operations and MacMnery 

Metal removal operations may be classed in one of two categories: those which 
apply to cylindrical components and those which apply to prismatic components. Some 
types of operation may be applied to both categories, but may require different types of 
machines to perform the operation. Appendix 2 shows the common types of metal 
removal machines. 

Table 3 shows the various types of metal removal processes or operations 
commonly performed on cylindrical and prismatic components. As there is a wide range 
of operations and machine types available, resource selection may be simplified by the 
association of particular machine types with particular operations, as depicted in Table 4. 

3.5 SELECTION OF MACHINES FOR METAL REMOVAL OPERATIONS 

This section details the relevant parameters in the assessment of metal removal 
operations. The most important parameters are those which need to be fulfilled so that 
the machine will be capable of performing a particular operation. These parameters will 
now be described. 

Workpiece Geometry 

Indicates whether the workpiece is cylindrical or prismatic in shape. 

Operation Type 

The resource under consideration must be capable of performing the exact operation 
required. (See Table 4). 
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Madurae €3assstfka4ioi» Arm Operation I f f pe <?«de 

Cylindrical CNC/NC Lathe Area 1 Turning (Longitudinal) 

Facing 

Boring (Internal 

Turning) 

T U 

F C 

BO 

Area 2 Parting Off 

Grooving 

PA 

GR 

Area 3 Threading T C 

Area 4 Drilling 

Reaming 

DC 

R C 

Cylindrical and CNC Vertical Boring Area 1 Vertical Boring BO 

Prismatic Machine 

Prismatic CNC Vertical Area 1 Facing FP 

Milling Machines, Shouldering (Square, SH 

Machining Centres Radius, Angle) 

Chamfering CH 

Area 2 Contouring 

Pocket Milling 

(Pocketing) 

Copy Milling 

CO 

PM 

CM 

Area 3 Vertical Slotting 

Horizontal Slotting 

T-Slotting 

VS 

HS 

TS 

Area 4 Threading TP 

Area 5 Drilling 

Reaming 

DP 

RP 

Prismatic Drilling Centres Area 1 Drilling 

Reaming 

DP 

RP 

Area 2 Threading TP 

Note: Every group or area must have standard roughing and finishing times for an ideal component. 

Table 3. Parametric Model f o r Calculating Times and Costs 



61 

Operant! Type 

Cylindrical T U CNC Turning Centre 

F C CNC Turning Centre 

Vertical Boring Machine 

BO CNC Turning Centre 

Vertical Boring Machine 

T C CNC Turning Centre 

GR CNC Turning Centre 

PA CNC Turning Centre 

DC CNC Turning Centre 

R C CNC Turning Centre 

Prismatic FP CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

DP CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

Drilling Centre 

CH CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

SH CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

TP CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

Drilling Centre 

TS CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

SL CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

CO CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

PM CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

RP CNC Vertical Milling Centre / (Multispindle) 

Horizontal Milling Centre / (Multipallet) 

Drilling Centre 

Table 4. Association of Operation and Machine Types 
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Woricpiece BimmeimsStums 

The dimensions of the workpiece must be less than the equivalent dimensions of the 

available 'working area' of the resource. Cylindrical components are defined by their 

diameter and length. Prismatic components are defined by their length, width, and 

height. 

Tolerance (Accuracy) 

I f a component is to be made to a particular tolerance, then the resource used must be 

capable of this tolerance or better. 

Other parameters may not be so critical to the actual capability of the machine to 

perform a specific operation but could show how cost-effective and easy it would be to 

produce a component. 

Speed Range and Feed Range 

These parameters determine machining time and cost. Hence a specific machine may be 

economical than another one based on these parameters. 

Cost per Operation 

The cost for a particular operation per component may be calculated for each machine. 

This is obviously an important consideration as costs should be minimised where 

possible. 

Times 

Setup, change over and tool changing times are important parameters on which to select a 

resource. A machine which requires long setup, change over, or tool changing times w i l l 

be of lower productivity. Longer times w i l l lead to higher costs, and all the above times 

should be minimised where possible. 

Addi t iona l Parameters 

Parameters such as skill level and number of operators, auxiliary equipment, 

environmental problems, ease of maintenance, utilisation and reliability, should also be 

considered. I n this project, no consideration has been given to them, but their 

implementation can easily be done by having a database assigning specific weighting for 

each parameter. 
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3.6 S E L E C T I O N O F M A C H I N E SEQUENCES 

Some of the parameters that have been analysed in order to evaluate the possible 

routes are described in this section. 

3.6.1 Mater ia l HairadlMirag 

The transportation of materials in different stages in the production process should 

be minimised as much as possible. Material handling is costly and yet adds no value to 

the product. Wherever possible, production f low on the shop floor should be designed to 

minimise this. 

Hence, once individual machines have been selected, the machine sequences 

considered satisfactory should be tested according to the aim of material handling 

minimisation. Consideration should also be given to material handling equipment 

available. Many types o f equipment and methods of material handling may be available 

on the shop floor. Some popular methods are: overhead cranes, conveyors, A.G.V.s, 

fo rk l i f t trucks, and manual transportation. There may also be set paths on the shop floor 

for material handling (particularlly wi th A.G.V.s), and these must be considered when 

evaluating the distance f rom one machine to the next. Points to be considered when 

assessing the material handling for a sequence may also include: 

a) The time taken and cost of the material handling methods. 

b) The sequence should be constructed to f i t in wi th , and utilise, existing material 

handling paths. 

c) The material handling method should be suitable for the workpiece at all times. 

The aim is to minimise material handling time and cost, and to ensure that the 

machines selected are served by the quickest, cheapest, and most suitable material 

handling equipment. 
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3.6.2 Cost per Contpomieinit 

The cost per component is obviously of critical importance when considering 

which machines to use to manufacture a component. I t can be simply expressed in this 

case as the direct manufacturing costs plus the stockholding cost. The manufacturing 

costs can be calculated as the sum of the costs for machining and setting for each 

machine in the sequence. The calculation can be seen in Chapter 4. 

The cost per component differs between one sequence and another i f one or more 

machine(s) are easier to set or complete the machining required in a shorter period of 

time. 

3.6.3 Manufac tu r ing Lead Tame ( M L T ) 

I t is defined as the total time taken for the component to be produced, i.e. the total 

time required to manufacture an item [s], and it consists of: 

1) Order preparation time 

2) Queue time 

3) Setup time 

4) Run time (process time) 

5) Transportation time 

6) Inspection time 

7) Put away time 

I n a batch production system, the lead time is made up o f four components, as 

illustrated in Figure 19. The interest of the company is to minimise M L T , thus reducing 

costs and increasing efficiency. For each sequence, the M L T is calculated. 

Cr 
S@t=up 
Urn© 

Process 
Urn® 

Queue 
Urn© 

Transport 
Urn© 

J j 7 
Figur© 19. ir@ekdown of the Lead Urn© 

in a Batch Production System 
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3.7 EXPERT SYSTEM F U N C T I O N S 

3.7.1 Source off In format ion f o r the Machine Selection 

The aim is to produce ranked lists of machines for each operation specified by the 

user. Information is required f rom the user regarding each operation, and machines 

capable of the operation are then identified. These machines are then ranked. The shop 

floor capacity resources may be further divided into distinct cells i f the layout is cellular. 

I f a new product is similar to an existing product, made in a particular cell, only those 

machines in the cell w i l l be considered. 

3.7.2 Nfflnmber off Operations and Sefaps 

The number of different operations required to produce a component is used as a 

counter to allow the system to loop the required number of times to identify machines for 

each operation. These operations are grouped according to the setups needed for the 

machines. 

3.7.3 Machines Capable off Perffornmiimg the Operation 

The next stage is the application of all information collected so far, i.e. the 

evaluation o f the parameters described in the last section for the machines available. I f a 

machine fails on a single criterion, it is immediately rejected. 

3.7.4 Sequence Determination 

This function considers the time and costs associated with the use o f different 

machine sequences. The sequences can then be judged, scored and ranked. Three main 

parameters may be considered. These are: the material handling, the manufacturing lead 

time, and the cost per component. The total scores for all the machines in a particular 

sequence is also considered to assess which is the optimal sequence. 

From the different possible operation sequences, and the lists o f machines to be 

used for each operation, the combinations of machines which may be used to produce a 

component is found. 
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3.7.5 Mater ia l Handl ing 

Distance 

The total distance travelled in material handling between the machines in the sequence. 

A l l reasonable material handling routes are considered, and the total distance is 

calculated for each one. 

Mater ia l Handl ing Equipment 

The items of material handling equipment available for each part of the proposed 

material handling routes are evaluated. 

Use of Existing Mater ia l Handl ing Routes 

The routes under consideration should be compared with existing ones in order to 

identify the areas over which existing material handling is available. The sequences may 

therefore be scored by the least costly and/or least utilised material handling equipment, 

and by the use of existing material handling routes, depending on what the user considers 

to be important. 

3.7.6 Cost per Component 

The value of this parameter is calculated for each machine sequence considered, using 

the equation in Chapter 4 o f this report. 

3.7.7 Lead Time 

The lead time is calculated as shown in Chapter 4 of this report. 

3.8 T E S T I N G OF T H E S Y S T E M 

A demonstration expert system, developed using the Crystal expert system building 

package, is supplied wi th this report. The management of data is done using DBase HI 

Plus. I t is intended to illustrate the potential of expert systems in the resource selection 

area, and follows many of the themes described in this report. A brief example of the 

methodology which has been outlined in this section of the report is given in Chapter 6. 



C H A P T E R 4 

P R O D U C T I O N CONCEPTS A N D M A T H E M A T I C A L M O D E L S 

There are a great variety of methods to calculate and compute the different 

manufacturing factors that affect production performance. A recopilation of the 

mathematical models most commonly employed in the production environment is 

presented in this chapter. The formulas employed for the routing and costing algorithm 

are presented in the following section, mainly divided in two areas: timing and costing. 

4.1 M A T E R I A L F O R T H E R O U T I N G AND C O S T I N G A L G O R I T H M 

4.1.1 Processing/Machining Times 

Machining time is the time that the tool is actually in the feed mode or cutting and 

removing chips. 

4.1.1.1 Lathe Machines (Turning Type Operations) (Turning, Boring, Facing) [96] 

Single Pass 

n*D*L (min) [4-1] 

Note: For threading use the pitch (p) instead of the feed rate (s). 

Multipass 

h=hc+hR (mi") [4-2] 

rc*Dc*Lc 

[4-3] 
v * s 

t- [4-4] 
Rapid 

Final 
t n [4-5] 
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where, n =number of passes 

u - u 
i C *• Cutting 

'•Retrieve Tool /Retract) 

K * D * n 
Cutting Speed v = (m/min) 

6 H 1000 

[4-6] 

[4-7] 

[4-8] 

4.1.1.2 M i l l i n g Machines [96] 

h = 
_ cutting length 

table feed 
(min) [4-9] 

u s Rapid 

[4-10] 

LFmal 
= np*t2 [4-7] 

where, n =number of passes 

— . ... y_ . V * l 0 0 0 . 
Spindle Rotation n = (rpm) 

Table Feed u = n*z*sz (mm/min) 

[4-11] 

[4-12] 

4.1.1.3 Drilling Machines (Drill and Threading Operations) [%] 

h =- + -
s s 

(min) 
Rapid 

'•Final P 1 

[4-13] 

[4-7] 

where, n =number of passes 

L=5*D (D is the value for the maximum cutter diameter) 

Feed Rate s = n * sn (mm/min) 

[4-14] 

[4-15] 



4.1.2 Costing 

4.1.2.1 Cost per Part per Machine 

m 
C = * * / . + 

1 — v <t=l V 
X * t l k + X * f 3 * • 2,k 

where, i = number of machine 
k = number of operations 
7 = 22.5 (tool l ife) 
m = number of machines required 

4.1.2.2 Cost per Batch per Machine 

CBi =Q*CPi+x*t0 

4.1.2.3 Cost per Batch fo r Processing 

m 
^BP ~ S Cfl, '' ^B, + CBI +• • • + CB„ 

i=l 

where, m machines are required. 

4.1.2.4 Transportation Cost f o r Batch 

(*ra*0.75) 

m - l 
CRr = CTBaryi + X C 7 i J + i +CTm.Exil 

i=l 

where, xT - cost rate of transportation equipment 
m machines are required 
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4.1.2.5 Mate r i a l Cost per Batch 

C B M = Q * M C C [4-22] 

where, m is the material cost per component from the component database. 

4.1.2.6 Total Cost per Batch 

CB=CBP+CBR+CBU [4-23] 

4.2 R E L A T E D M A T H E M A T I C A L M O D E L S 

4.2.1 M a n u f a c t u r i n g Lead Time i4Si 

Nm Nm-i 
MLT=X(Tsui + QToi + T„oi)+ I X + j + ^ + T J ^ [4-24] 

where, T s u i - > setup time for machine / (includes arranging the workplace and 

installing the tooling and fixturing required for the component) 

time per operation at machine i 

non-operation time associated with machine i 

travel time between machines i and i+1 

travel time between entry point and machine 1 

travel time between exit point and machine N m 

batch size (i.e. the number of units in the batch) 

number of operations (or _ machines) through which the 

component must be routed in order to be completely processed 

4.2.2 Machining Times 

T 
SUl 

— > 

T • 
O l 

— > 

T • 
noi 

- - > 

— > 

- - > 

T t N r a , E — > 

Q - - > 

- - > 

Machining time is the time that the tool is actually in the feed mode or cutting and 

removing chips. 
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4.2.2.1 Lathe Machines (Terning-Type Operations) (Turn ing , Bor ing and Facing) 

f =_L_=LnD [ 3 9 4 ] [ 4 . 2 5 ] 

2 sN V.s 

*2 machiriing time 

L — > length of cut for metal cutting (length of shaft) 

s - - > feed rate o f spindle and shaft 
N — > lathe spindle speed (rotary cutting speed), Vc/nD 

D - > diameter being cut 

v c 
~ > peripheral velocity of surface 

(Values must be inserted in consistent units.) 

The feed rate, also expressed in inches per minute, can be found as: 

sm=sN [4-26] 

4.2.2.2 MMMng Machines 

a ) ( i =

 L + A + 0 [94] [4-27] 

where, t2 —> actual mi l l ing time (min) 

L —> length of cut (in) 

A --> approach of cutter (in) 

O --> overtravel of cutter (in) 

s —> feed rate (inlmin) 

The approach of the cutter (A) is the distance the table must move the work into the 

cutter to reach f u l l cutting depth or width. 

The overtravel of the cutter (O) is the distance the table must travel in power feed 

minus the total length of cut. I t is a safety factor that allows for variation in the length 

of workpieces, and clamping. 
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The feed (s) is the most important factor, but there are wide variations in feed 

depending upon the cutter, the material, and the method of holding the work. 

h ) U = ^ - Pi [4-28] 

where, h -> machining time 

L ~ > length of cut 
- > diameter being cut 

v c 
- > peripheral velocity o f surface 
~ > number o f teeth on cutter 

--> feed per revolution per tooth 

(Values must be inserted in consistent units.) 

4.2.2.3 Dr i l l i ng Machines ( D r i l l and Threading Operations) 

a) f, = H + 0 3 d ( f o r blind hole) M [4-29] 
sN 

/, = H + 0 5 d (for through hole) ^ [4-30] 
sN 

where, »2 - > machining time (min) 

d — > diameter o f dr i l l (in) 

H ~ > depth of hole to be drilled ( in) 

s ~ > feed in inches per revolution of spindle 

N ~ > dr i l l spindle speed (rpm) 

b)t2 = Lsdl PI [4-31] 

where, t 2 

L 

machining time (min) 

length o f cut for metal cutting (length o f shaft) (in-mm) 

drill ing or tapping feed rate in minutes per inch 
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4.2.3 Handl ing Time W 

Handling time is the time required to load and unload the workpiece from the 

machine. It can also include the occasional dimensional inspection of the part. I t is 

independent of cutting speed and is a constant for a specified design and machine. 

4.2.4 Batch Time Rate i45' 

BatchTime _ 
~TZ 7~. = T S U + Q T 0 [4-32] 

Machine 

where, T s u --> set up time for machine (includes arranging the workplace and 

installing the tooling and fixturing required for the product) 

T 0 —> time per operation at machine 

I f there is scrap rate: 

BMcMlme _gS_ 
Machine s u ( 1 - q ) 

where, q —> scrap rate 

4.2.5 Production Time 

BatchTime/ , , . 
j /Machine [4-34] 

where, Tp —> average production time per unit of product for the given machine 

Q --> batch size 

I f Q = l (i.e. for a job shop): 

T = T + T 
p su o 

[4-35] 
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where, T s u - > set up time for machine (includes arranging the workplace and 

installing the tooling and fixturing required for the product) 

T 0 --> time per operation at machine 

4.2.6 Production Rate f4Si 

R P = ^ [4-36] 
p 

where, Rp — > average production rate for the machine 

Tp —> average production time per unit of product for the given machine 

4.2.7 Metal Removal Rate 

R = 250 * v * s„ * D (mm3 /min) [4-37] 

where, D is the value for the maximum cutter diameter. 

4.2.8 Operation Time M 

T 0 = T m + T h + T [ h [4-38] 

where, T 0 --> operation time 

T r a --> actual machining time 

T j j - > workpiece handling time 

Tth t 0 ° l handling time per workpiece 

(represents all the time spent in changing tools when they wear out, 

changing from one tool to the next for successive operations 

performed on one machine) (is the average time per workpiece for 

any and all of these tool handling activities) 

4.2.9 Production Capacity t45> 

PC=WSwHRp [4-39] 
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where, PC - > production capacity (measured as the number of good units 

produced per week) 

S w --> number of shifts per week 

H --> hours per shift 

Rp - > production rate 

W --> number of work centres under consideration, capable of producing at 

a rate Rp units per hour, operating H hours per shift 

(a work centre is defined as the production system in the plant 

typically consisting of: 

o 1 worker and 1 machine 

o 1 automated machine and no worker 

© several workers acting together on a production line) 

4.2.10 Util isat ion M 

U = ^ L [4-40] 
Capacity 

where, U —> proportion of time that the facility is operating relative to the cime 

available under the definition of capacity, usually expressed as a 

percentage (refers to the amount of output of a production facili ty 

relative to its capacity) 

4.2.11 Availability M 

Typically expressed as a percentage. Used as a measure of reliability for 

equipment. Especially related with automated production equipment. 

A M T B F - M T T R 
Availability = [4-41] 

M T B F 

where, M T B F --> mean time between failures (average length of time between 

breakdowns of the piece of equipment) 

M T T R - > mean time to repair (average time required to service the equipment 

and place it back into operation when a breakdown does occur) 
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4.2.12 Work in Progress <45> 

Amount of product currently located in the factory that is either being processed or 
is between processing operations. It is inventory that is in the state of being transformed 
from raw material to finished product. 

WIP = - ^ ^ ( M L T ) [4-42] 

where, PC --> production capacity 
U --> utilisation 
S w --> number of shifts per week 
H --> hours per shift 
MLT --> manufacturing lead time 

4.2.13 Costing 

4.2.13.1 Cost per Operation 

a) C ^ ^ Q + C ^ m [4-43] 

where, C\ --> hourly machine rate (£/hour) 
t --> time to machine one part 
C2 --> hourly setting rate (£/hour) 
h --> time to set up for a batch 
b --> batch size 

b) Operation unit cost is composed of handling, irtachining, tool changing, and the tool 
cost, w 

4.2.13.2 Cost per component [6°i 

Ccomponenl = m + Qt + C ^ [4-44] 
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where, m - > material cost per part (£) 
Cl --> hourly machine rate (£/hour) 
t —> time to machine one part 

c 2 
—> hourly setting rate 

h --> time to set up for a batch 
b —> batch size 

4.2.13.3 Cost per Batch 

Cbatch ~ 

where, m —> material cost per part (£) 
Cl - > hourly machine rate (£/hour) 
t --> time to machine one part 

c 2 
—> hourly setting rate 

h —> time to set up for a batch 
b —> batch size 

[4-45] 

4.2.13.4 Handling Cost per Operation >3> 

HandlingCost = Cath [4-46] 

where, Ca --> direct labour wage, does not include overhead costs (£/min) 

th --> time for handling\(min) 

4.2.13.5 Manufacturing Cost (Machining Cost) 

a) Mc = CQT W [4-47] 

Ca —> productive hour cost for the machine and operator (£/min) 

T --> machining time (min) 

b) Mc = VCm + RcPc M [4-48] 
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V --> volume of material required in order to produce the component 
Cm —> cost of the material per unit volume in the required form 
Pc —> basic processing cost for an ideal design component by a specific process 
Rc —> relative cost coefficient assigned to a component design (taking account of 

shape complexity, suitability of material for processing, selection 
dimensions, tolerances and surface finish) 

To allow secondary processing: (i.e. more than one operation) 

Mc = VCm + (Rc i Pc 1 + RC2PC2 + ... + RcnPcn) [4-49] 

n 

Mc = VCm + ] T RclPcl [4-50] 
1=1 

n --> number of operations required to achieve the finished component 

1) Basic Processing Cost (Pc) 

To represent it for a particular process first identify the factors on which it is 
dependent: 

• Equipment costs including installation 
9 Operating costs: labour, number of shifts worked, supervision and overheads 
« Processing times 
• Tooling costs 
« Component demand 

Pc = aT + ̂ - [4-51J 
N 

a --> cost of setting up and operating a specific process, including plant, labour, 
supervision and overheads per second 
process specific total tooling cost for an ideal design 
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T —> process time in seconds for processing an idea] design of component by a 
specific process 

N —> total component demand 

Values for a and P are based on expertise from companies specializing in 
producing components in specific technological areas. 

2) Relative Costt Coefficient (Re): 

This coefficient will determine how much more expensive it will be to produce a 
component with more demanding features than the "ideal" design. 

where, Cmp —> relative cost associated with material-process suitability 
Cc —> relative cost associated with producing different geometries by 

various processes 
Cs —> relative cost associated with achieving component section 

reductions/thickness 
Ct —> relative cost associated with obtaining a specified tolerance 
Cf —> relative cost associated with obtaining a specified surface 

finish 

Rc = <j>(Cmp, Cc, Cs, Ct, Cf) [4-52] 

If Rc = CmpaCcbCscCtdCf [4-53] 

and a, b, c, d, e —> are weight components assigned the value of unity 

Then Rc = CmpCcCsCft [4-54] 

where, Cft is the higher of Cf and Ct, but not both, because when a fine surface 
finish is being produced, fine tolerances could be attained at the same time and thus 
it would be incorrect to compound both relative cost coefficients. 
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For the ideal design Cmp...Cf are unity, but as the component design moves away 
from this state then one or more of the coefficients may increase in magnitude, thus 
changing Mc. 

4.2.13.6 Tool Changing Cost per Operation w 

C 11 
ToolChangingCost = — E - J L J S . [4-5:5 j 

T 

where, tc —> tool changing time (min) 

The tool changing time t c is the time to remove a worn-out tool, replace or index 
the tool, reset it for dimension and tolerance, and adjust for cutting. The time depends on 
whether the tool being changed is a disposable insert or a regrindable tool for which the 
tool must be removed and a new one reset. In lathe turning and milling there is the 
option of an indexable or regrindable tool. The drill is only reground. 

4.2.13.7 Tool Cost per Operation w 

Ct 
ToolCostperOperation = - j ^ [4-56] 

where, Ct --> tool cost, £ 

4.2.14 Additional Notes w 

4.2.14.1 Tool Cost 

Tool cost C t depends on the tool being disposable tungsten carbide insert 01 a 
regrindable tool for turning. For insert tooling, tool cost is a function of the insert price, 
and the number of cutting edges per insert. For regrindable tooling the tool cost is a 
function of original price, and total number of cutting edges. As the speed increases the 
cost for the tool increases. (See Table 5). 
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Operations Times m6 Costs 
Time to index a turning type of carbide tool 2 min 
Time to set a high-speed tool 4 min 
Large milling tool replacement 10 min 
Remove drill, regrind, and replace 3 min 
Cost per tool cutting corner for turning, 
carbide 

$3 

Cost for hig-speed steel tool point $5 
Cost per milling cutter, 6-in. carbide $1500 
Drill cost $3 

Tabic S. Tool Changing or Indexing Times and Costs 

The total cost per operation is composed of these four items. Machining cost is 
observed to decrease with increasing cutting speed while tool and tool changing costs 
increase. Handling costs are independent of cutting speed. Thus we can say that unit 
cost C u is given as 

C, = C 0 t h +-^(C ,+C 0 t c )+C 0 t r [4-5'7] 

Upon substitution of t m and T and after taking the derivative of this equation with 
respect to velocity and equating the derivative to zero, the minimum cost may be found 
as 

K 

C.t.+C 
[4-58] 

which gives the velocity for the unit cost of a rough-turning operation. In this 
development, we give no recognition to revenues that are produced by the machine. 
Consequently, V^,, identifies the minimum velocity without revenue considerations. 
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Ocasionally to avoid bottleneck situations there is a need to accelerate production 
at cutting speed greater than that recommended for minimum cost. In these expedited 
operations, we assume the tool cost to be negligible, or C t = 0. If the costs in the basic 

model are not considered, the model gives the time to produce a workpiece, and we 
develop 

T = t h + t m + - ^ m -
u n m qp 

[4-59] 

where, Tu —> minutes per unit 

The production rate (unit per minute) is the reciprocal of T u. The equation that 

gives the cutting speed that corresponds to maximum production rate is 

V =• K 

- I t 
n 

[4-60] 

The tool life that corresponds to maximum production rate is given by 

T = 
max 

- I t [4-61] 

4.2.14.2 Setup and Cycle 

Setup includes work to prepare the machine, process or bench for producing the 
parts. Starting with the machine in a neutral condition, setup includes punch in and out, 
paperwork, obtaining tools, positioning unprocessed materials nearby, adjusting, and 
inspecting. It also includes return tooling, cleanup, and teardown of the machine ready 
for the next job. The setup does not include the time to make parts or perform the 
repetitive cycle. Setup estimating is necessary for job shops and companies whose parts 
or products have small- to moderate-quantity production. As production quantity 
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increases, the effect of the setup value lessens its unit importance, although its absolute 
value remains unchanged. Setup is measured in hours. 

Cycle time or run time is the work needed to complete one unit after the setup 
work is concluded. It does not include any element involved in setup. Besides finding a 
value for the setup, the planner finds a unit estimate for the work from the listed 
elements, which have the dimension of minutes. These times include allowances in 
addition to the work time that take into account personal requirements, fatigue where 
work effort may be excessive because of job conditions and environment, and legitimate 
delays for operation-related interruptions. Because the allowances are included in the 
time for the described elements, and several or many operations, the allowed time is fair. 
The concept of fairness implies that a worker can perform the work throughout the day. 

The operation is broken down or detailed into elements that are described in 
estimating tables. These elements may be listed on a standardized company form, or 
marginal jottings on the operations sheet may suffice, or even scratch pad calculations 
may be followed. Computer-based estimating is possible. The purpose of the formal or 
informal elemental breakdown is identical: a listing of elements that will do the work is 
visualizes and this listing is coordinated with the company data or manual. 

Tu =^OperationElementsFromTables [4-62] 

where, Tu —> minutes per cycle 

The engineer will select the appropriate elements for the job from the tables. 
Inasmuch as the cycle elements are expressed in minutes, pieces per hour are found using 

PiecesPerHour = — [4-63] 

The operations sheet requires cycle hours per 100 units. This is found using 

[4-64] 
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where, H 8 --> cycle hours per 100 units 

The unit estimate is computation made by using the setup, cycle hours per 100 
units, and the lot quantity. This unit quantity varies and is an important fact found on the 
operations sheet. 

where, SU - > setup hours for operation as recorded from data tables 
N --> lot number 
H 6 —> for the purposes of this equation is per unit 

The unit estimate includes a prorated share of the lot number. 

4.2.14.3 Cost and Price from the Operations Sheet 

The "cost for labor and overhead" is found by multiplying the unit estimate by me 
"labor and rate", in dollars per hour, by the "labor plus overhead rate" for each operation. 
Overhead is a cost item that considers depreciation of machines, tool cost, space, power, 
heat, and other indirect costs. After multiplying by the labour and overhead rate, we then 
have the machine hour cost for that operation. When unit material cost is added along 
with machine hour costs for the operations, the full cost is found. 

^ / N + /unit J UnitEstimate [4-65] 



CHAPTER S 
A KNOWLEDGE-BASED SYSTEM FOR PRODUCTION ROUTE 

GENERATION IN DISCRETE MANUFACTURING 

In recent years manufacturing industry has had significant developments, which 
can be seen by the increase in the number of automated systems employed. The success 
of these systems in increasing productivity depends a lot on the effective use and proper 
selection of available resources such as machines, tools, fixtures, and material handling 
systems. Therefore, in order to improve the design and management functions in 
automated manufacturing systems, knowledge-based systems are used as decision 
support tools. 

5.1 COMPONENTS OF A KNOWLEDGE-BASED SYSTEM 

The basic components in a knowledge-based system includes the following (See 
Figure 20): 

Knowledge base 
Working memory 
Inference engine 
Knowledge acquisition module 
User interface module 

Knowledgef*-
Base 

( User ) 

User Interface 
Module 

A 

Inference 
Engine 

A 

Knowledge 
Acquisition 

Module 

C Expert} 

Working 
Memory 

Figure 20. The Basic Components of a Knowledge-Based System 
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In knowledge-based systems, the effective representation of knowledge is one of 
the most critical issues. Andrew Kusiak [62] describes the domain knowledge as having 
many forms, including detailed definitions of domain-specific terms, descriptions of 
individual objects, classes of objects and their interrelationships, and criteria for making 
decisions. 

5.1.1 Inference Engine 

A knowledge base system should have a good inference mechanism that will enable 
it to use the knowledge of the domain. There are different types of inference engines, 
depending on the type of inference knowledge representation scheme adopted. 
According to Kusiak [62], in a rule-based system the inference engine or rule interpreter 
examines facts and executes rules contained in the knowledge base according to the 
inference and control procedures selected. The application of inference rules to a 
knowledge base enables goals or conclusions to be proved or disproved, or new facts and 
rules to be created. 

5.1.2 Problem Solving Mechanisms 

There are two basic problem solving mechanisms. In top-down problem solving 
the problem solving mechanism reasons backward from the conclusion, repeatedly 
reducing goals to subgoals, until eventually all subgoals are solved directly by the 
original assertions. In bottom-up problem solving, the problem solving mechanism 
reasons forward from the hypotheses, repeatedly deriving new assertions from old ones, 
until eventually the original goal is solved directly by derived assertions. This project 
uses a combination of both mechanisms, by reducing rules to subrules and at the same 
time deriving new assertions for the next rules according to the derived assertions. 

5.1.3 Production Rules 

Production rules are defined as a "subset of predicate calculus with an added 
prescriptive component indicating how the information in the rules is to be used during 
the reasoning" [62]. 
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5.1.4 Structured Production Rimfles 

Production rules have been most frequently used to represent knowledge in 
knowledge-based systems. However, the unstructured production systems have some 
disadvantages. One of them is the inefficiency of program execution due to the necessity 
of scanning a large number of production rules. In order to increase the efficiency of a 
production system, production rules can be structured. This type of a production system 
is called a structured production system. 

5.1.5 Knowledge Acquisition 

One of the traditional methods of knowledge acquisition is protocol analysis [57]. 
Verbal protocol analysis can be used for the development of knowledge-based systems in 
manufacturing. Protocol analysis can be used in conjunction with many other data 
gathering techniques to extract knowledge from an expert. The protocols typically 
provide the initial ideas and inspirations, and the additional methods, such as building a 
computer model and having the expert to evalulate the results, can be used to test and 
refine the ideas produced by protocol analysis. 

5.1.5.1 Protocol Definition 

A protocol is a record of information and protocol analysis is the process by which 
a detailed record of an action is taken and the behavior through the analysis of that record 
is studied. 

A protocol defines the expert's thought process behind the problem solving. It 
shows the ways that were explored and the alternatives that were considered. "Protocol 
analysis is the study of these mental footprints and the attempt to construct models of 
thinking from the paths that were taken during problem solving" [62]. 

Sometimes the best method of solving a problem is the method used by most 
people. For example, people can still do the design of parts or the recognition of objects 
much more quickly than any existing computer program. The idea is simply to borrow 
their methods and code them into programs. Is in cases like this where the use of 
protocol analysis to obtain problem solving methods can save the researcher much time 
spent in trial and error experimenting with different approaches. 
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5.2 STRUCTURE OF THE KNOWLEBGE-BASEB INTELLIGENT ROUTE 
GENERATION SYSTEM (MG) 

In the IRG system the routing problem is defined in a prescribed format, which is 
the system input. The system processes the input and initially decides main aspects of 
the pre-defined algorithm, such as component characteristics, and factory layout. The 
basic components of the IRG are shown in Figure 21. 

Inference 
Engine 

A 

V 

Knowledge Alaonthm Data 
Base Base ase 

¥i§um 21. Struetu?© of fh© l&© 

5.2.1 Knowledge Base 

The knowledge in IRG has to be acquired from routing experts (process planners) 
as well as routing literature. The knowledge has to be derived using a protocol analysis, 
as described above. Models are used to represent the knowledge related to the 
description of routing problems, parts, operations, and the routes generated. 

The procedural-knowledge of IRG is in the form of production rules. In order to 
handle different problems the production rules are divided into three classifications: 

1) Selection of an appropriate path through the algorithm to solve the problem, 
determined by the given component information. 

2) Control of the procedure of applying the sequence of the priority rules in the 
heuristic algorithm. 

3) Evaluation of the routes obtained and selection of the optimal route. 
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5.2.2 Algorithm Base 

In the algorithm base the algorithm selected for the generation of the optimal route 
is stored. It can be modified or appended at any time, and new algorithms can be 
incorporated in the algorithm base if needed when the solutions diverse depending on the 
hypotheses and goals selected. 

5.2.3 Data Base 

The data base contains parameters of the routing models as well as working space 
used by the algorithm. New models can be added when needed. 

5.2.4 Inference Engine 

The inference engine in IRG controls the activation of rules in the knowledge base 
and the procedure of route generation of the algorithm. The inference engine uses what 
is known as a forward chaining control strategy. This means that in a given class of rules 
it attempts to activate all the rules that are related to the case considered. I f a rule is 
activated, i.e., the conditions are true, then the actions of the rule are carried out, 
including all the subrules related to it. When it is needed, some rules stop the search of 
the inference engine and switch the control process to the algorithm. This is done when 
the action does not depend any more on inference results, but on a procedure that is pre-
established by the algorithm. During the execution of the IRG, the inference engine 
maintains a list of the rules which have been activated, in order to keep track and re
evaluate some of them if necessary depending on the results obtained. 

5.2.5 The Heuristic Algorithm 

A process plan specifies the operations which are required on a specific component, 
their corresponding processing times, and the resources required such as machines and 
work handling equipment. In many manufacturing systems, a basic process plan and one 
or more alternative process plans are associated with each component. A basic process 
plan will be defined as the optimal process plan while, in most cases, an alternative 
process plan will be a suboptimal one. The resources specified by an alternative process 
plan will at least be partially different from the resources of the basic process plan. 
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The overall objective of the project is to generate a number of routes according to 
an aggregate process plan (i.e., list of generic manufacturing operations). The optimal 
route is then determined by making full use of the concurrent engineering characteristics, 
and a number of alternative routes are evaluated. 

In the process of route generation, an operation might not be processed according 
to the basic process plan due to the unavailability or high utilisation of the resources 
specified in the basic process plan. A number of priority rules will be tested. The 
following five priority routing rules have been incorporated into the heuristic algorithm: 

Rule 1: Selection of machine types according to the list of operations given in the 
component process plan specification. Additionally, the selection of machine 
types depends upon the operations grouped in one setup. A setup includes 
the work needed to prepare a machine for a job. A machine can execute 
more than one operation per setup. This information will be provided in the 
process plan specification. 

Rule 2: Selection of machines according to shop floor capabilities. Firstly, this is 
based on the selection of the layout to be used, and then the selection of 
machines that will match the machine types specified in each setup group. 

Rule 3: Selection of machines according to the geometrical component specifications. 

Rule 4: Selection of machines according to tolerance values. 

Rule 5: Selection of machines according to total cost per batch. This includes 
processing costs and transportation costs. 

The priority rules are used in various stages of the algorithm in the sequence shown 
here. In order for a route to be applicable, it has to fulfil all these rules. 
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5.2.5.1 Koetiinig Algorithm 

The algorithm used for the IRG system is presented here. The names in brackets 
specify the corresponding knowledge-based file names in the Crystal environment. 

Step 1. 
User inputs component information (IRG08.KB): 

a) Component code and description 
(i.e., component description: "C" - cylindrical, "P" - prismatic —> 1 character 

component code: "0001" —> 4 characters) 

b) Material type 
(i.e., "MS" - mild steel, "AS" - alloy steel, "SS" - stainless steel, "CS" - cast steel, 

"CI" - cast iron, "NF" - non ferrous material) (2 characters). 

c) Batch size (Q —> 4 digits). 

If first character of component code and description is "C" then ask user to input: 
(i) Solid or hollow (S/H) (1 character). 
(ii) Length (Lc --> 5.2 digits). 
(iii) General maximum outside diameter (Dc — > 5.2 digits). 
(iv) Calculate Lc/Dc ratio with information from (ii) and (iii) (5.2 digits). 
(v) Calculate the component weight (Wc --> 5.2 digits). 

where, Vc corresponds to the component volume and is calculated according to 
the formula described below; and p is the material density obtained from 
averaging the values of the materials [74] used in this project (the average value 

d) Case A 

[5.1] 

(vi) 

is 7500 kg/m3). 
n 2 * 1 

Calculate material cost per component (MC [£] --> 4.2 digits). 
MCC = W*MC w 

[5.2] 

[5-3] 
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where, MCW corresponds to the material cost per unit weight and is calculated 
according to information obtained from the Durham's University Manufacturing 
Workshop and depicted in the following formulas. (The approximate cost of 
£600 is applied to a material piece of 7m length and 0.1m diameter.) 

V = - * 0 , 2 * L = - * (0.\mf * (7m) = 0.055///' [5-4] 
4 4 

Ww = * p = 0.55nr * 7 5 0 0 % = 412.5kg [5-5] 
£600 = 1 4 5 „ [ 5 _ 6 ] 

412.5kg /k° 

Case B 

If first character of component code and description is "P" then ask user to input: 
(i) Solid or hollow (S/H) (1 character). 
(ii) Length (Lc -> 5.2 digits). 
(iii) Width (WDc --> 5.2 digits). 
(iv) Height (He -> 5.2 digits). 
(v) Calculate the component weight (Wc --> 5.2 digits). 

Wc = Ve * p [5-1] 

where, Vc corresponds to the component volume and is calculated according to 
the formula described below; and p is the material density obtained from 

averaging the values of the materials [74] used in this project (the average value 
is 7500 kg/m3). 
VC = LC*WDC*HC [5-7] 

(vi) Material cost per component (MCC [£] --> 4.2 digits), calculated as in Case A. 

e) Ask user how many setups are needed, the maximum number of setups is 3. 

f ) Ask user to input operations for each setup and show user a list of operation codes and 
descriptions according to component description: 
(i.e., i f cylindrical component then operation list wi l l be: 

T U —> Turning (Longitudinal) user choose R/F (roughing or finishing) 
FC —> Facing user choose R/F (roughing or finishing) 
BO —> Boring (Internal Turning) user choose R/F (roughing or finishing) 
TC —> Threading assign automatically R 
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GR — > Grooving assign automatically R 
PA — > Parting Off assign automatically R 
DC — > Drilling assign automatically R 
RC — > Reaming; assign automatically R 

prismatic component then operation list wil l be: 
FP — > Facing user choose R/F (roughing or finishing) 
DP - - > Drilling assign automatically R 
CH - - > Chamfering user choose R/F (roughing or finishing) 
SH - > Shouldering user choose R/F (roughing or finishing) 
TP — > Threading assign automatically R 
TS - - > T-slots user choose R/F (roughing or finishing) 
SL - > Slotting user choose R/F (roughing or finishing) 
CO — > Contouring user choose R/F (roughing or finishing) 
PM - - > Pocket Milling user choose R/F (roughing or finishing) 
RP - - > Reaming assign automatically R) 

(i) I f operation selected is threading, then ask for pitch (3 digits) and number of 
passes (2 characters). 
Show table and let the user choose the values (See Appendix 1). 

(ii) I f operation selected is not threading, ask for tolerance value (Tc — > 3 digits) 
and number of passes (2 characters). 

(hi) Assign the machine identification number: 

Setup 1 

In both cases (C/P), the second character of the setup description wil l be " 1 " 
(i.e., all operations in this setup wil l be done in the first machine) (a-1). 

Setup 2 

Ask users if the same machine is going to be used in this setup: 
(1.1) I f "yes" then the second character of the setup description wil l be " 1 " 

(b=a). 
(1.2) I f "no" then it wil l be "2" (b=a+l). 
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Setop 3 

Ask user if the operations in this setup will be done in: 
(1.1) Same machine as setup 1, then second character of the setup description 

wil l be " 1 " (c=a). 
(1.2) Same machine as setup 2, then assign value of machine description in 

setup 2 (c=b). 
(1.3) I f none of the above, then the second character of the setup description 

wil l be (c-b+1). 

Step 2. 

First selection of machines according to list of operations (selection of machine types) 
(IRG08.KB): 

a) According to the component description and operation code, select possible types of 
machines from Machine/Operation database and store the types of machines in an 
array (the maximum number of arrays for machine types will be 5; i.e., one for each 
operation code). 

b) For each setup, compare the available types of machines. I f all the operations 
included in a setup cannot be done on a single machine type, reject this type of 
machine. Keep one array of machine types per setup (i.e., maximum three arrays in 
total, one for each setup). 

c) I f more than one setup is going to be done in the same machine, compare the machine 
types within these setups, and just keep, in the corresponding arrays, the machines that 
are the same. 

Step 3. 

Second selection of machines according to shop floor capabilities (IRG15.KB): 

a) Ask the user the layout to be used. 

b) Access the corresponding Machine/Work Handling/Location database according to the 
layout selected, and obtain the list of machine codes (machine numbers) for each setup 
(i.e., comparing the machine types of the arrays from Step 2 with the machine types 
included in the layout). 
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Step 4. 

Third selection of machines according to component size and weight (IRG25.KB). 

a) For all of the machines selected in Step 3 select the information in the Machine 
database and check if: 

(i) Component description = "C" then: 
Lc (component length) < Z Axis Travel 
Dc (component general maximum outside diameter) < X Axis Travel 

(ii) Component description = "P" then: 
Lc (component length) < First Part of Table Size Overall 

WDC (component width) < Second Part of Table Size Overall 
Hc (component height) < Spindle Nose to Table 

(iii) Both cases: 
Wc (component weight) < Table Load Capacity / Weight (TC) 

(iv) Select only those machines that satisfy these restrictions. 

(v) Obtain the machine cost rate (x), change over time (t0), setup time/component 
changing time (t,), tool changing time (t3) and tolerance from the Machine 
database and store it in the Output database. 

Step 5. 

For all the operations in each setup, calculate the processmg/macruning/operation/cutting 
times (IRG37.KB): 

a) Obtain feed rates (s) and velocities (v) for each operation according to the component 
material type. (This information is obtained from the Material/Operation database and 
the velocity values have to be converted from mlmin to mmlmin). 

(i) I f the operation is threading, obtain the velocity from this database and the pitch 
given by the user in Step 1 wil l be used as feed rate (s=p). 
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b) I f Multipass = "01" and component description = "C" and operation code * "DC" or 

"RC'.then: 

(i) Calculate processing time: 

12 = - (mm) [4-3] 
V* s 

(ii) Calculate final processmg/machining time: 

' 2 J W = n P * h ( , n w ) ^ 

where, n (number of passes) is obtained from the information given by the user 
in Step 1. 

c) I f Multipass * "01" and component description = "C" and operation code ?t "DC" or 
"RC", then: 

(i) Calculate cutting time: 

n*Dc*Lc U = ± ^ (mm) [4-3] 

(ii) Calculate retrieve tool/retrack time: 

U =T-^-7 (min) [4-4] 
( S Rapid ) 

where, SRapid wi l l have a standard value of 9875.00 mmlmin, which was obtained 
from averaging the valules for Rapid Traverse in X Y and Z of all the machines 
in the Machine database used for this project. 

(hi) Calculate processmg/machining time: 
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12 = hr + I 2 R (I"1'1) [4-2] 

(iv) Calculate final processing/machining time: 

^ / w = n

P * h (mm) [4-5] 

where, n (number of passes) is obtained from the information given by the user 
in Step 1. 

d) I f component description = "P" and operation code "DP" or "RP" then: 

(i) Calculate spindle rotation: 

" = —^ (rP»0 [5-8] 
n*D 

where, D is the value for the maximum cutter diameter (obtained from the 
Material/Operation database). 

(ii) Calculate table feed: 

n = n*z*sv (mm/min) [4-12] 

where, z is the number of teeth. 

(iii) Calculate processing time: 

t2= — + -^— (mm) [4-10] 
U S Rapid 

where, SRapjd will have a standard value of 9875.00 mmlmin, which was obtained 
from averaging the valules for Rapid Traverse in X Y and Z of all the machines 
in the Machine database used for this project. 
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(iv) Calculate final processing time: 

where, np (number of passes) is obtained from the information given by the user 

in Step 1. 

e) I f operation code = "DP" or "RP" or "DC" or "RC" then: 

(i) Calculate spindle rotation: 

(1.1) For cylindrical components: 

w = — ( r p m ) [5-9] 
71* Dc 

where, Dc is the value for the general maximum outside diameter 

(obtained from the Component database). 

(1.2) For prismatic components: 

n = — ( r p m ) [5-8] 
n*D 

where, D is the value for the maximum cutter diameter (obtained from the 

Material/Operation database). 

(ii) Calculate feed rate: 

s = n*sn (mm/min) [4-15] 

where, sn is the same as sR in the Material/Operation database. 



99 

(iii) Calculate processing time: 

L L 
(min) [4-13] + 

Rapid 

where, L=5*D, having D as the value for the maximum cutter diameter, and 
sRapid

 w i u n a v e a standard value of 9875.00 mm/min, which was obtained from 

averaging the values for Rapid Traverse in XY and Z of all the machines in the 

Machine database used for this project. 

(iv) Calculate final processing time: 

where, np (number of passes) is obtained from the information given by the user 

in Step 1. 

Step 6. 

Separate the output file into three setup files (IRG37.KB). 

Step 7. 

For all the machines in each setup, compare the tolerance and calculate the processing 
costs (IRG46.KB): 

a) Compare the component tolerance (in each operation) versus the machine tolerance 
(except for threading operations): 

Tc (operation tolerance) < Tu (machine tolerance) 

b) Calculate cost per part per machine: 

[4-7] 

\ m t Y\x*t2,k+x*t3 c x*t, + [4-16] 
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where, i = number of machine 
k = number of operations 
7=22.5 min 
m=number of machines required 

c) Calculate cost per batch per machine: 

CBi=Q*CPj+x*ta [4-17] 

where, Q (batch size) is retrieved from the Component database, and x (machine cost 
rate) and t0 (change over time) are retrieved from the Machine database. 

Step 8. 

Compare all the machines in the 1/2/3 setups to form an array with all possible routings 
(IRG59-5.KB): 

a) For each machine in setup 1 (in the machine types array) compare its value of setup 
description with each one in the machine types array of setup 2, according to the cases 
explained below: 

(i) I f the set up descriptions are different (i.e., a ^ b; see Step l.h.v, l .h.vi, l.h.vii), 
then compare values and form routings with all the machine types in setup 2 that 
are different from the ones in setup 1. 

(ii) I f number of setups > 1 and the setup descriptions are the same (i.e., a=b) then 
select the same machine as in setup 1. 

(iii) I f component description = "P" and number of setups = 3, then: 

(1.1) I f c=a then select the same machine as the one selected for setup 1. 

(1.2) I f c=b then select the same machine as the one selected for setup 2. 

(1.3) I f c>b then compare values and form routings with all machine types in 

setup 3 that are different from the ones selected for setup 1 and setup 2. 
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Step 9. 

Calculate the cost per batch for processing for all the routings generated in Step 8 
(IRG59-5.KB): 

CBP=ZCB, ; CB]+Clh+...+CBiii [4-18] 
7 = 1 

where, n machines are required. 

Step 10. 

Calculate the transportation cost for batch (IRG67.KB): 

a) From the Shop Floor Layout database retrieve the specific material entry and exit 
coordinates according to the layout selected. (All the coordinates are expressed in 
layout units, where 0.5 layout units (u) correspond to 2 metres.) 

b) For each route calculate the distance between the entry point and the first machine: 

a \ = ( X — Entry Coordinate) - ( X - Initial Coordinate)} [5-10] 
b\ = (Y - Entry Coordinate) - (Y - Initial Coordinate), [5-11] 

LEnt^ j = V « l 2 + M 2 (u) [5-12] 

c) Calculate the distance between all consecutive points according to the routing selected 
for all machines in the route, except the last one: 

a2 = (X— Final Coordinate)x - (X-Initial Coordinate)v [5-13] 
b2 = (Y - Final Coordinate)x - (Y - Initial Coordinate)v [5-14] 

Lxy = Ja22 +b22 (ii) [5-15] 
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h) Calculate t n,Exil 

(•sra*0.75) 

where, STR is the velocity of transportation equipment and depends on the work 

handling equipment that will be used (i.e., forklift trucks —> 100 m/min, conveyor 

belts --> 10 m/min, cranes - > 5 m/min); and 0.75 is the work handling equipment 

stopping factor. 

i) Calculate the loading and. unloading times per batch (i.e., for each loading and 
unloading: forklift trucks ~> 3 min assuming that all the batch wil l be shifted at once, 
conveyor belts —J> 5 seconds per part, cranes --> 2 min per part assuming one at a 
time). 

(i) Calculate t U U a u r i 

(1.1) I f work handling equipment = forklift truck, then 

tLiuEatryX

 = LoadingTime + UnloadingTime (min) [5-21] 

(1.2) I f work handling equipment = conveyor belt or crane, then 

tuuEMr/K ~ (LoadingTime + UnloadingTime) *Q (min) [5-22] 

where, Q is the batch size retrieved from the Component database. 

(ii) Calculate tuu^ 

(1.1) I f work handling equipment = forklift truck, then 

tuux

 = LoadingTime + UnloadingTime (min) [5-23] 
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(1.2) I f work handling equipment = conveyor belt or crane, then 

'IJU ~ (LoadingTime + UnloadingTime)* O (min) [5-24] 

where, Q is the batch size retrieved from the Component database, 

(iii) Calculate iUufe 

(1.1) I f work handling equipment = forklift truck, then 

ILIU f = LoadingTime + UnloadingTime (min) [5-25] 

(1.2) I f work handling equipment = conveyor belt or crane, then 

t u u e t = (LoadingTime + UnloadingTime) * O (min) [5-26] 

where, Q is the batch size retrieved from the Component database, 

j ) Calculate the total transportation time tT: 

hrunEmxl =tEnt,y,X+>LIUEnlry,{ (™™) [5"27] 

hranX:y = tx>y + tU(J^ (mill) [5-28] 

'Tran^,, =K,Exit +tL/U„_Exil (m»0 [5-29] 

h =tTranh,lryJ + Z W . + ' ^ . ^ ^ [5-30] 

k) Obtain the xT (cost rate of transportation equipment) from the Work Handling 
Equipment database (for the purposes of this work it wil l have the standard value of 
5£/hr=0.083£/min). 
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1) Calculate the transportation cost for batch: 

C [5-31] 

m)Calculate the material cost per batch: 

C 0*MCc (£) [4-22] 

where, Q and MCC are retrieved from the Component database. 

n) Calculate the total cost per batch: 

CB=CBp+CBr+CBu (£) [4-23] 

Step 11. 

From all the values of total cost per batch for each route, choose the lowest one and 
select its corresponding route in the routing array as the optimal route (IRG67.KB). 

Step 12. 

Store this route in the Routing database (IRG67.KB). 

5.3 DATABASE APPROACH 

5.3.1 Definition of a Database 

"A database is a well organised collection of data. One should be able to process, 
update, and make additions to the contents of a database in a simple and flexible way. It 
should also be easy to make different kinds of unplanned as well as planned retrievals 
from the database." [100] 

The contents of a database should be classified in a meaningful manner. A 
computerised database system that can carry out all the tasks of maintaining and 
accessing a database is known as a Database Management System (DBMS). 



106 

The program chosen for use in this project was Ashton-Tate's DBase HI Plus. The 
program has all the necessary inbuilt database management functions, such as file 
creation and manipulation and searching of the database. It is also sufficiently fast for 
the job, and is the proven international database standard. 

DBase HI Plus was chosen to be used in this project because of all its inbuilt 
database management functions, such as file creation, and manipulation and searching of 
the database. Its functions as a programming language where not totally used, since the 
files defined within it where accessed from Crystal through its interface module and 
corresponding commands. 

5.3.2 I R G Database Structure Definition 

5.3.2.1 Subassembly / Fabrication Database Structure 

(for reference only, not to be used by the route generator) 

1. Subassembly code 
2. Description 

3. Number of components 
4. Codes of components 

5.3.2.2 Component Database Structure 

1. Component code and component description (i.e. "C" - cylindrical, "P" - prismatic, 
"S" - sheet) 

2. Material type 
3. Material cost per component 
4. Discrete Component geometry. 

a) Cylindrical: 
(i) Solid or hollow 
(ii) Length 
(iii) General maximum outside diameter 

(iv) L/D ratio 
b) Prismatic: 

(i) Solid or hollow 
(ii) Length 
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(iii) Width 
(iv) Height 

c) Sheet: 
(i) Length 
(ii) Width 
(iii) Thickness 

5. Weight 
6. Batch size (Q) 
7. Operations required: (5 fields of 10 characters) 

a) Operation code (2 characters) 
b) Roughing/Finishing (1 character) 

I f fmishing, then number of passes must always be 1. 
c) Set up number (2 characters —> 1 for set up number; 1 for machine 

identification) 
d) Tolerance or pitch i f it is threading (0 i f no tolerance; to be compared with the 

machine tolerance) (3 characters divided by 1000 i f tolerance or divided by 100 
i f pitch) 

e) Multipass (2 characters) (01...24) 
f ) Operation number (this is specified by the position of the field) 

5.3.2.3 Operation Database Structure 

(18 files, one for each operation type) 
(definition for TU, FC, BO operation types only) 
(for reference only, not to be used by the route generator) 

1. Description: 
a) Component code 

b) Machine code 
c) Sub-operation type (codes for the direction of machining) 
d) Roughing or finishing 

e) Tolerance mor surface finish 
2. Geometrical data: 

a) Maximum approach angle of the profile 
b) Maximum trailing angle of the profile 
c) Total depth of cut (i.e., stock) 
d) Total length of cut 
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e) Component diameter before cut 
f ) I f hollow: the maximum internal diameter (dint) is required 

3. Tool data: 
a) ISO code for holder / boring bar 
b) ISO code for insert 

c) Insert grade (manufacturer's code) 
4. Approved cutting conditions: 

a) Velocity (% variance from ITS value) 
b) Feed rate (% variance from ITS value) 
c) Depth of cut (% variance from ITS value) 
d) Specific tool life (% variance from ITS value) 

5. Workholding method (i.e. "CH" - chuck/'CT" - chuck + tailstock, "CO" - collet) 

5.3.2.4 Machine Database Structure 

1. Machine code 
2. Machine type 
3. Machine number 
4. Working area geometry: 

a) Lathes, vertical boring: 
(i) Maximum workpiece length (mm) 
(ii) Maximum workpiece diameter (mm) 

b) Mills, vertical drills: 
(i) Maximum workpiece length (mm) 
(ii) Maximum workpiece width (mm) 
(iii) Maximum workpiece height (mm) 

5. Maximum workpiece weight 
6. Tolerance or achievable accuracy 
7. Power (P) 

8. Spindle speed range [Nmin - Nmax] 
9. Feed range (tool post for lathes, table for mills) [Smin - Smax] (mm/rev —> lathes) 
10. Change over time (setting up the tooling, programs, etc) (to) (min) 
11. Tool changing time (t3) (min) 

12. Tool numbers 
(Tool magazine --> maximum number of tools that can be held) 

13. Cost rate (CI, x) (£/hour) 



14. Setting rate (C2) 
15. Waiting time or non-operation time (Tno) 
16. Setup time for each operation (Tsu, tl) (locate the component) 

5.3.2.5 Machine / Operation] Database Structure 

1. Operation code 
2. Component description 
3. Machine codes 

5.3.2.6 Material / Operation Database Structure 

1. a) CNC/NC lathe (cylindrical components): 
(i) Area 1: Turning* / Facing* / Boring* (Internal Turning) 

Roughing time 
Finishing time 

(ii) Area 2: Parting-off* / Grooving* 
Roughing time 

(iii) Area 3: Threading* 
Roughing time 

(iv) Area 4: Drilling* / Reaming* 
Roughing time 

b) CNC vertical boring machine (cylindrical and prismatic components): 
(i) Area 1: Vertical boring* 

Roughing time 
Finishing time 

c) CNC vertical milling machine I machining centres 
(99% prismatic, machining centres —> cylindrical): 
(i) Area 1: Facing* / Shouldering (Square, Radius, Angle) * / Chamfering* 

Roughing time 
Finishing time 

(ii) Area 2: Contouring* / Pocketing* / Copy milling* 
Roughing time 
Finishing time 
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(iii) Area 3: Vertical slotting* / Horizontal slotting* / T-slotting* 
Roughing time 
Finishing time 

(iv) Area 4: Threading* 
Roughing time 

(v) Area 5: Drilling* / Reaming* 
Roughing time 

d) Drilling centres (prismatic components): 
(i) Area 1: Drilling* / Reaming* 

Roughing time 
(ii) Area 2: Threading* 

Roughing time 
(* used by route generator) 

5.3.2.7 Work Handling Equipment Database Structure 
(for reference only) 

1. Work handling code and description 
2. Weight capacity 
3. Length capacity 
4. Width capacity 
5. Height capacity 
6. Cost rate 
7. Travel rate 

5.3.2.8 Machine / Work Handling / Location Database Structure 
(i.e. one for each layout) 

1. Machine / work handling code 
2. Machine number 
3. Machine type 
4. Coordinates: 

(i) X-initial coordinate 
(ii) Y-initial coordinate 
(iii) X-final coordinate 
(iv) Y-final coordinate 
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5.3.2.9 Shop Floor Layout Database Structure 

1. Overall type of layout (S —> single type; M —> multiple type) 
2. Number of different layouts (N) (N=l for S; N>1 for M) 
3. Layout (i) (for i=l...N) 

a) Type - JOB (jobbing shop) 
- FUN (functional) 
- FMS (flexible manufacturing system) 
- GTC (group technology cell) 
- GTL (group technology line) 
- TRL (transfer line) 

b) Coordinates of layout: 
(i) X-lower-left coordinate 
(ii) Y-lower-left coordinate 
(iii) X-upper-right coordinate 
(iv) Y-upper-right coordinate 

c) Buffer space (S --> small; A —> average; H —> high) 
d) Specific material entry: 

(i) X-entry coordinate 
(ii) Y-entry coordinate 

e) Specific material exit: 
(i) X-exit coordinate 
(ii) Y-exit coordinate 

f) Integrated inspection within cell (Y/N) 

5.3.2.10 Capacity and Utilisation Constraints Database Structure 
(for reference only) 

1. Machine code 
2. Historical machine utilisation (from analysing shop floor data, statistical analysis) 

(2 digit figure %) 
3. Average work in progress 
4. Average queueing / waiting times for components (from SF data collection) 
5. Projected loading for current production period (from CRP planning) (probably 

used only in Phase 2) 
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6. Quality problems in relation to this machine (field combining scrap rate % and 
rework rate %) 

5.3.2.11 Routing Database Structure 
(output) 

1. Component code 
2. Operation codes 
3. Machine codes 
4. Processing cost per batch 
5. Transportation cost per batch 
6. Material cost per batch 
7. Total cost per batch 
8. Route number 
9. Layout number 

5.3.2.12 Various Other Database Considerations (for further work in this subject): 

1. Work handling equipment codes 
2. Skill level 
3. Number of operators 
4. Auxiliary equipment 
5. Environmental problems: 

a) Precautionary measures 
b) Safety equipment needed 

6. Ease of maintenance 
7. Reliability: 

a) Susceptibility to breakdowns 
b) Amount of maintenance it has required 
c) Cost of this maintenance 

8. Paths already set: 
a) To Machine code 
b) Distance 
c) Work handling equipment code 



CHAPTER 6 
DISCUSSION AND CASE STUDIES 

This chapter deals with the computational details of the IRG system, and the 
analysis of the results obtained. After some research, we concluded that the heuristic 
algorithm discussed in the last chapter is the most likely algorithm to be used while 
solving routing problems in discrete manufacturing systems. The results generated by 
the IRG system can further be improved by incorporating new production rules. It is 
important to notice that the degree of improvement depends upon the quality of the 
knowledge collected. 

Sample problems have been solved in order to evaluate the quality of solutions 
generated by the IRG. Three different shop floor layouts, created to test the procedures, 
have been presented for the examples. Each one of them containing a combination of 
layout types such as flexible manufacturing systems, functional layouts, group 
technology cells and lines. These are shown in Figures 22, 23, and 24 in the following 
section. Machine tool information has been extracted from the manufacturer's catalogs in 
order to build case studies that could simulate situations close to reality. This machine 
tool information has been stored in the Machine File. The examples that have been 
analysed are the ones shown in the Component File. This file contains the information 
required by the system for the user to input in order to do all necessary calculations and 
determine the optimal route. The Material File data has been obtained from Tool's 
Catalogs and average values have been computed in Appendix 3. 

Other databases have been created in order to allow ease of computation. Such is 
the case of the Machine/Operation File. This file is the interface between the Machine 
File and the Component File, and is used to determine the corresponding machine types 
for the operations specified for the component. The Shop Floor File contains a general 
description of the shop floor layouts. A detailed file of the machine tool location within 
each layout is presented in the Location File. There is one Location File for each shop 
floor layout definition. These files were defined in DBase HI Plus, but their maintenance 
and actualization is done through the Crystal environment. The DBase file specifications 
can be found in Appendix 4. For each component, three temporal files are created each 
time. These files are explained in the next paragraphs. 
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The Output File contains all the information of the machines that have been 
selected from the Machine File according to the component specifications input by the 
user. 

One, two, or three Setup Files are presented, depending on the number of setups 
indicated in the component specification. These files contain the information shown in 
the Output file, but now it is separated by setup, so calculations can easily be applied to 
the data. 

The last one is the Route File, containing the information related to all the possible 
routings generated by the system according to the restrictions presented. The optimal 
route is selected from this file and then stored in the Final File, which contains all the 
optimal routes for all the components produced in the shop floor. 

The rest of this chapter is divided into four sections. In the first section, the three 
shop floor layout examples are depicted. In the following section, the database files are 
presented. Then, three component examples are described and the calculations made by 
the IRG are shown. Step by step results are presented in table form. In the fourth 
section, the temporal files for each one of the case studies are given. 
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6.1 SHOP FLOOR LAYOUT EXAMPLES 

F M S 1 

3 r — i 
M22 M23 

F M S 2 

O O ^ ) 
M17 M l 8 ^ - ^ 

G T L 

M12 

Point 

Point 

F U N 2 

o o 
M40 M40-2 o o 
M39 M39-2 o o 
M38 M41 

F U N 1 

1 1 
M29 M35 

| | 1 I 
M28 M34 

1 1 1 1 
M27 M33 

1 1 
M26 M32 

1 I 1 | 
M25 M31 

1 1 1 1 
M24 M30 

MOTES: 
/ \ VMC - > Vertical Milling Centres 
I | TC-> CNC Turning Centres 

DC --> Drilling Centres 
O V M C (Multispindle) --> Multispindle Vertical Milling Centres 

-i HMC (Multipallet) - > Multipallet Horizontal Milling Centres 

1 
I 

I 
I 

Fiigyr® 22. Ie3y@utf II 
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CELL 1 
Point 

CELL 2 

FMS 

O 
Ml 7 M23-2 

CELL 3 
GTL 

Point 

M22-2 

NOTES: 
/ \ V M C --> Vertical Milling Centres 

TC - > C N C Turning Centres 

D C - > Drilling Centres 

V M C (Multispindle) - > Multispindle Vertical Milling Centres 

HMC (Multipallet) - > Multipallet Horizontal Milling Centres 

• o 
o 
r—-n 

Rgur® 23. LeayeuJ 2 
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GTL 

M22-2 

F M S 

o o 
Ml 9 

FUN 3 

o o 
M40 M40-2 

o o 
M39 M41-2 

o o 
M38 M41 

Point 

F U N 1 

Point 

• • 
M32 M26 • • 
M33 M24 

• • 
M34 M28 

• • 
M35 M29 

• • 
M36 M30 

• • 
M37 M31 

FUN 2 

A A 
M12 M7 

A A 
M13 M8 

A A 
M14 M9 

A A 
M15 M10 

A A 
M16 Mil 

NOTES: 

A V M C - > Vertical Milling Centres 

I | TC - > C N C Turning Centres 

O D C - > Drilling Centres 

0 V M C (Multispindle) --> Multispindle Vertical Milling Centres 

1 I HMC (Muttipallet) - > Multipallet Horizontal Milling Centres 

IFSgur© 24. layout 3 
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6.3 INTELLIGENT ROUTE GENERATOR EXAMPLE CASES 

In this section, three case studies are presented. Each case study shows the 
information input by the user (i.e., machine number for each setup, component 
information, layout number, and work handling equipment to be used), and the results of 
the calculations generated after applying the different rules and constraints of the system. 
At the end, the optimal route selected is shown. The calculations are not shown in detail. 
They are presented in a table form for ease of understanding. These calculations are 
based on the algorithm described in the previous chapter, and implemented in the TRG 
system. 

With these examples, it is easy to observe that the selection of machine tools by 
IRG is done in a systematic way, according to the priorities established by a group of 
experts. The layout may contain a considerable number of machine tools that at first 
glance could execute a required job. But there are other considerations like 
transportation time and cost, processing and material costs, and machine capacity, that 
should be considered in order to obtain an optimal and objective result. 

6.3.1 Case Study 1 

6.3.1.1 Component Description 

Component code 
Material type: 
Material cost per component: 
Weight: 
Batch size: 
Solid/hollow: 
Length: 

C0001 
Stainless Steel (SS) 
£6.17 (MCc) (See Step 1 of Algorithm in Chapter 5) 
4.26 kgs. (Wc) (See Step 1 of Algorithm in Chapter 5) 
34 (Q) 
Solid (S) 
100 mm (Lc) 

General max. outside diameter: 85 mm (Dc) 
Lc/Dc: 
Number of setups: 
Operation 1: 

Tolerance: 
Number of passes: 
Setup number: 

1.18 
2 
Turning / Roughing (TUR) 

0.003 
2 
1 
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Machine number: 1 (See Step 1 (f-iii) of Algorithm in Chapter 5) 
Facing / Roughing (FCR) 
0.003 

Operation 2: 

Tolerance: 
Number of passes: 
Setup number: 
Machine number: 

2 
1 (See Step 1 (f-iii) of Algorithm in Chapter 5) 

6.3.1.2 Selection of Machine Types According to List of Operations 

For each one of the operations specified in the component description, the system 
selects the machine types capable of executing them. 

TUR operation array 1: [TC] 
FCR operation array 2: [TC,VBM] 

These operations are then grouped according to the setup number, and just 
compatible machine types in each setup are considered. 

Setup 1 array: [TC] 
Setup 2 array: [TC] 

6.3.1.3 Selection of Machine Tools According to Shop Floor Capabilities 

The user selects the layout number and the work handlilng equipment. 

Layout: L01 
Work Handling Equipment: Forklift Track 

The machines in the layout selected matching the machine types in each setup 
array are extracted (See Table 30 in Section 6.4). 

Machine array 1: [M24, M25, M26, M27, M28, M29, M30, M31, M32, M33, M34, 
M35] 

Machine array 2: [M24, M25, M26, M27, M28, M29, M30, M31, M32, M33, M34, 
M35] 
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6.3.1.4 Selection off Machine Tools According to Component Geometry 

The component geometrical characteristics are compared with the ones of the 
machines selected in the last step, in order to determine i f the machines are capable of 
executing the job on that specific component or not. After comparing the component 
length (Lc=100mm), diameter (Dc=85mm), and weight (Wc=4.26kgs) against all the 
machines previously selected, all of them where accepted according to the geometric 
characteristics. 

Machine Length 
(mm) 

Diameter 
(mm) 

Weight 
(kgs) 

M24 350 170 410 
M25 620 250 370 
M26 760 280 500 
M27 350 170 410 
M28 620 250 370 
M29 620 250 370 
M30 760 280 500 
M31 1590 280 620 
M32 1590 320 620 
M33 420 150 280 
M34 300 300 270 
M35 160 90 270 

Table 15. Machine Geometric Contraints 

6.3.1.5 Time and Cost Calculations 

The calculations generated for the time and cost constraints are illustrated in the 
following tables. 

Operation Cutting Speed 
(mlmin) 

Feed Hat* 
(mmfrer) 

Processing Time 
(nun) 

TUR 97.36 0.67 0.84 
FCR 97.36 0.67 0.41 

Table 16. Processing Times 
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Machine tO 43 t3 Tolerance 
(£thr) {min) (tiiin) (miis) 

M24 70 75 3 2.0 0.002 
M25 70 90 2 1.8 0.002 
M26 60 85 1 1.9 0.002 

i^iiiililll 111:111111 20 ^ l l l l l l i 1111111 0.003 
M28 40 25 2 1.5 0.002 
M29 55 85 3 0.6 0.001 
M30 m 30 4! JL6 0,003 
M 3 I 70 30 5 0.7 0,003 
M32 50 40 3 1.7 0.002 
M33 i i i i i i i i 35 7. 0.8 0.003 
M34 30 50 4 2.0 0.001 
M35 60 80 5 0.9 0.001 

Table 17. Tolerance 

Cast per IPairt (£) Cost per Balefe (£) 
M27 SI 1.55 69.30 M27 

S2 1.18 56.86 
M30 SI 4.90 196.55 M30 

S2 4.44 180.91 
M31 SI 6.84 267.65 M31 

S2 6.33 250.08 
M33 SI 1.91 88.36 M33 

S2 1.62 78.28 
Note: See Tables 31 and 32 in Section 6.4 

Table 18. Processing Costs 

6.3.1.6 Selection off Optimal Route 

Al l the possible routes are depicted and the total cost per batch for each route is 
calculated (See Table 33 in Section 6.4). The optimal route is the one with the lowest 
total cost per batch. In this example, the optimal route is Route One. 

Route 
Hurnber Sequence 

Cost pel Batch 
for Processing 

m (win) 

Transportaton 
Cost for Botch 

m 

Materjq) Cost 
pet feflsh 

® 

total Cost 
pef Bedttti 

m 
R1 126.16 14.29 1.19 20961 S37.16 
R2 30-30 377.46 14.61 1.22 209.81 588.49 
R3 31 -31 517.73 14.54 1.21 209.81 728.75 
R4 33-33 166.64 14.39 1.20 209.81 377.65 

Table 19. Routes and Total Cost per Batch 

In this case, there are four possible routes in order to produce component C0001. 
As shown by the total cost per batch, the difference between choosing Route One and 
Route Three could have a great impact in the company outcomes. 
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6.3.2 Case Study 2 

6.3.2.1 Component Description 

Component code 
Material type: 
Material cost per component: 

Weight: 
Batch size: 
Solid/hollow: 
Length: 

General max. outside diameter: 
Lc/Dc: 

Number of setups: 
Operation 1: 

Tolerance: 
Number of passes: 
Setup number: 
Machine number: 

Operation 2: 
Tolerance: 
Number of passes: 
Setup number: 

Machine number: 
Operation 3: 

Tolerance: 
Number of passes: 
Setup number: 

Machine number: 
Operation 4: 

Tolerance: 
Number of passes: 
Setup number: 

Machine number: 

C0002 

Mild Steel (MS) 
£6.17 (MCc) (See Step 1 of Algorithm in Chapter 5) 
4.26 kgs. (Wc) (See Step 1 of Algorithm in Chapter 5) 

34 (Q) 
Solid (S) 
100 mm (Lc) 
85 mm (Dc) 
1.18 
3 
Turning / Roughing (TUR) 
0.003 
1 
1 
1 (See Step 1 (f-iii) of Algorithm in Chapter 5) 
Grooving / Roughing (GRR) 
0.003 
2 
1 
1 (See Step 1 (f-iii) of Algorithm in Chapter 5) 
Facing / Roughing (FCR) 
0.003 
1 
2 
2 (See Step 1 (f-iii) of Algorithm in Chapter 5) 
Turning / Finishing (TUF) 

0.003 
1 

3 
3 (See Step 1 (f-iii) of Algorithm in Chapter 5) 
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Operation 5: Facing / Finishing (FCF) 
Tolerance: 0.003 
Number of passes: 1 
Setup number: 3 
Machine number: 3 (See Step 1 (f-iii) of Algorithm in Chapter 5) 

6.3.2.2 Selection! of Machine Types According to List of Operations 

For each one of the operations specified in the component description, the system 
selects the machine types capable of executing them. 

TUR operation array 1: [TC] 
GRR operation array 2: [TC] 
FCR operation array 3: [TC.VBM] 
TUF operation array 4: [TC] 
FCF operation array 5: [TC,VBM] 

These operations are then grouped according to the setup number, and just 
compatible machine types in each setup are considered. 

Setup 1 array: [TC] 
Setup 2 array: [TC] 
Setup 3 array: [TC] 

6.3.2.3 Selection of Machine Tools According to Shop Floor Capabilities 

The user selects the layout number and the work handling equipment. 

Layout: L03 
Work Handling Equipment: Crane 

The machines in the layout selected matching the machine types in each setup 
array are extracted (See Table 34 in Section 6.4). 
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Machine array 1: [M24, M26, M28, M29, M30, M31, M32, M33, M34, M35, M36, 
M37] 

Machine array 2: [M24, M26, M28, M29, M30, M31, M32, M33, M34, M35, M36, 
M37] 

Machine array 3: [M24, M26, M28, M29, M30, M31, M32, M33, M34, M35, M36, 
M37] 

6.3.2.4 Selection of Machine Tools According to Component Geometry 

The component geometrical characteristics are compared with the ones of the 
machines selected in the last step, in order to determine i f the machines are capable of 
executing the job on that specific component or not. After comparing the component 
length (Lc=100mm), diameter (Dc=85mm), and weight (Wc=4.26kgs) against all the 
machines previously selected, all of them where accepted according to the geometric 
characteristics. 

Machine Length 
(mm) 

Diameter 
(mm) 

Weight 
(H$) 

M24 350 170 410 
M26 760 280 500 
M28 620 250 370 
M29 620 250 370 
M30 760 280 500 
M31 1590 280 620 
M32 1590 320 620 
M33 420 150 280 
M34 300 300 270 
M35 160 90 270 
M36 300 300 270 
M35 270 150 10 

Table 20. Machine Geometric Constraints 

6.3.2.5 Time and Cost Calculations 

The calculations generated for the time and cost constraints are illustrated in the 
following tables. 
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C&peraftioini Caiffiag Speed Feed Kate l&'ocesging TSm« 
(mtmin) (mmfref) (min) 

TUR 203.33 0.64 0.21 
GRR 178.33 0.21 1.45 
FCR 203.33 0.64 0.21 
TUF 330.46 0.20 0.40 
FCF 330.46 0.20 0.40 

Table 21. Processing Tsmes 

Machine j i 

(£lkr) 
to 

(mm) 
n 

(min) 
t3 

(min) 
Tolerance 

M37 m m 1 IS 0.003 
M36 70 60 1 1.6 0.002 
M35 60 80 5 0.9 0.001 
M34 30 50 4 2.0 0.001 
M33 4i) l i l l l i i 2 llllllllil 0.003 
M32 50 40 3 1.7 0.002 
M31 70 30 S 0.7 0.003 
M30 1111111: 4 1.6 0.003 
M29 55 85 3 0.6 0.001 
M28 40 25 2 1.5 0.002 
M24 70 75 3 2.0 0.002 
M26 60 85 1 1.9 0.002 

Table 22. Tolerance 

Machine Cost |>er Fart (§) Cost Ba*d» {£) 
M37 SI 2.72 177.65 M37 

S2 1.21 126.29 
M37 

S3 1.84 147.70 
M33 s i 2.47 107.43 M33 

S2 1.48 73.48 
M33 

S3 1.89 87.63 
M31 SI 7.82 300.88 M31 

S2 6.08 241.73 
M31 

S3 6.81 266.38 
M30 SI 5.77 226.15 M30 

S2 4.22 173.47 
M30 

S3 4.87 195.43 
Note: See Tables 35,36 and 37 in Section 6.4 

Table 23. Processing Costs 
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6.3.2.6 Selection! off Optimal Roete 

Al l the possible routes are depicted and the total cost per batch for each route is 
calculated (See Table 38 in Section 6.4). The optimal route is the one with the lowest 
total cost per batch. In this example, the optimal route is Route Eleven. 

C6SrJ»«r8ttfeh transportation Transportation fiflatetfal coat TcteJCOSf 
tor Processing Tlrw? Cost for datch per Baich 

(B) (tnkr) &) (S) 
Rl 37-37-33-31-31 517.51 605.74 50.48 209.81 777.80 
R2 37-37-33-3O30 446.56 591.77 50.15 209.81 706.52 
R3 37-37-31-33-33 507.01 593.70 49.47 209.81 766.30 
R4 37-37-31-30-30 614.81 586.03 49.23 209.81 873.85 
R5 37-37-30-33-33 438.75 592.22 49.35 209.81 697.92 
R6 37-37-30-31-31 617.50 585.98 49.51 209.81 876.82 
R7 33-33-37-31-31 500.10 605.85 50.49 209.81 760.40 
R8 33-33-37-3O30 429.15 593.25 50.36 209.81 689.32 
R9 33-33-31-37-37 496.86 608.58 50.71 209.81 757.39 
RIO 33-33-31-3CK30 544,59 591.81 50.27 209.81 804.67 
em 59346 i 50.6? 20981 689.03 
R12 33-33-30-31-31 547.28 596.78 50.35 209.81 807.45 
R13 31-31-37-33-33 514.80 596.96 49.75 209.81 774.36 
R14 31-31-37-3O30 622.60 590.47 49.68 209.81 882.10 
R15 31-31-33-37-37 522.06 610.50 50.87 209.81 782.75 
R16 31-31-33-30-30 569.79 594.51 50.46 209.81 830.07 
R17 31-31-30-37-37 622.05 587.72 49.90 209.81 881.77 
R18 31-31-30-33-33 561.98 592.12 49.48 209.81 821.28 
R19 30-30-37-33-33 440.07 598.56 49.88 209.81 699.76 
R20 30-30-37-31-31 618.82 594.80 49.95 209.81 878.58 
R21 30-30-33-37-37 447.33 609.41 50.78 209.81 707.93 
R22 30-30-33-31-31 566.01 601.53 50.71 209.81 826.53 
R23 30-30-31-37-37 615.58 587.94 49.99 209.81 875.38 
R24 30-3031-33-33 555.51 594.79 49.79 209.81 815.12 

Table 24. Routes and Total Cost per Batch 

For component C0002 there is a wide range of possibilities. Selecting the best 
possibility could be time consuming i f the user is not working with a system like the one 
described in this thesis. A l l the calculations cannot otherwise be done so easily by the 
manufacturing engineer. 

6.3.3 Case Study 3 

6.3.3.1 Component Description 

Component code 
Material type: 
Material cost per component: 
Weight: 
Batch size: 
Solid/hollow: 

P0003 
Alloy Steel (AS) 
£1.57 (MCc) (See Step 1 of Algorithm in Chapter 5) 
1.08 kgs. (Wc) (See Step 1 of Algorithm in Chapter 5) 
25 (Q) 
Hollow (H) 
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Length: 80 mm (Lc) 
Width: 30 mm (WDc) 

Height: 60 mm (He) 
Number of setups: 3 
Operation 1: Facing / Roughing (FPR) 

Tolerance: 0.003 
Number of passes: 1 
Setup number: 1 
Machine number: 1 (See Step 1 (f-iii) of Algorithm in Chapter 5) 

Operation 2: Threading / Roughing (TPR) 
Pitch: 0.50 mm 
Number of passes: 4 
Setup number: 1 
Machine number: 1 (See Step 1 (f-iii) of Algorithm in Chapter 5) 

Operation 3: Drilling / Roughing (DPR) 
Tolerance: 0.003 
Number of passes: 1 
Setup number: 2 

Machine number: 2 (See Step 1 (f-iii) of Algorithm in Chapter 5) 
Operation 4: Reaming / Roughing (RPR) 

Tolerance: 0.003 
Number of passes: 2 
Setup number: 3 
Machine number: 3 (See Step 1 (f-iii) of Algorithm in Chapter 5) 

Operation 5: Shouldering / Finishing (SHF) 
Tolerance: 0.003 
Number of passes: 1 
Setup number: 3 

Machine number: 3 (See Step 1 (f-iii) of Algorithm in Chapter 5) 

6.3.3.2 Selection of Machine Types According to List of Operations 

For each one of the operations specified in the component description, the system 
selects the machine types capable of executing them. 
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FPR operation array 1: [VMC, VMC (Multispindle), HMC, HMC (MultipaUet)] 
TPR operation array 2: [VMC, VMC (Multispindle), HMC, HMC (Multipallet), DC] 
DPR operation array 3: [VMC, VMC (Multispindle), HMC, HMC (Multipallet), DC] 
RPR operation array 4: [VMC, VMC (Multispindle), HMC, HMC (Multipallet), DC] 
SHF operation array 5: [VMC, VMC (Multispindle), HMC, HMC (Multipallet)] 

These operations are then grouped according to the setup number, and just 

compatible machine types in each setup are considered. 

Setup 1 array: [VMC, VMC (Multispindle), HMC, HMC (Multipallet)] 
Setup 2 array: [VMC, VMC (Multispindle), HMC, HMC (Multipallet), DC] 
Setup 3 array: [VMC, VMC (Multispindle), HMC, HMC (Multipallet)] 

6.3.3.3 Selection of Machine Tools According to Shop Floor Capabilities 

The user selects the layout number and the work handling equipment. 

Layout: L02 
Work Handling Equipment: Conveyor Belt 

The machines in the layout selected matching the machine types in each setup 

array are extracted (See Table 39 in Section 6.4). 

Machine array 1: [M22, M22-2, M23, M21, M18, M16, M17, M23-2, M5, M6, M l , 
M2] 

Machine array 2: [M22, M22-2, M23, M21, M18, M41, M16, M17, M23-2, M38, M5, 
M6,M40,M1,M2] 

Machine array 3: [M22, M22-2, M23, M21, M18, M16, M17, M23-2, M5, M6, M l , 
M2] 

6.3.3.4 Selection of Machine Tools According to Component Geometry 

The component geometrical characteristics are compared with the ones of the 
machines selected in the last step, in order to determine i f the machines are capable of 
executing the job on that specific component or not. After comparing the component 
length (Lc=80mm), diameter (WDc=30mm), height (Hc=60mm), and weight 
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(Wc=1.08kgs) against all the machines previously selected, all of them where accepted 
according to the geometric characteristics. 

Machine Length 
(mm) 

Width 
(mm) 

Height 
(mm) 

Weight 
(kgs) 

M22 400 400 400 400 
M22-2 400 400 400 400 
M23 500 500 450 500 
M21 500 500 450 500 
M18 1650 510 400 1650 
M41 600 350 660 250 
M16 370 130 202 370 
M17 1300 480 400 1300 
M23-2 500 500 450 500 
M38 280 254 400 280 
M5 1500 630 800 1500 
M6 1700 730 900 2000 
M40 280 254 400 280 
M l 950 545 670 500 
M2 950 545 670 700 

Table 25. Machine Geometric Constraints 

6.3.3.5 Time and Cost Calculations 

The calculations generated for the time and cost constraints are illustrated in the 
following tables. 

Operation Cutting Speed 
(mimin) 

Feed Rate 
(mm/rev) 

Processing Time 
(mitt) 

TOR 72.78 0.40 0.24 
GRR 132.50 0.50 0.50 
FCR 93.13 0.25 0.92 
TUF 93.13 0.25 1.84 
FCF 118.75 0.10 0.57 

Table 26. Processing Times 
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Maefeiae x 
• {d/kr) 

to 
{mm) 

BL 
{ mif>) 

C3 
(mix) 

M16 30 35 6 1.0 0.002 
M5 60 50 1 0.7 0.001 
M6 7© 80 2 i i i i i l i i 0J03 
M l 60 30 1 0.5 0.001 
M2 60 85 1 1.9 0.002 
MIS 1111111 45 l l l l l l l l l i i i i i i i i 0.003 
M17 60 55 1 1.4 0.001 
M22 65 65 5 0.7 0.001 
M22-2 65 65 5 0.7 0.001 
M23 60 90 4 1.7 0.001 
M21 i i i i i i i 70 S 1.6 0.003 
M23-2 60 90 4 1.7 0.001 
M41 6© 25 l l l l l l l M 1.2 0.003 
M38 30 70 2 1.5 0.001 
M40 70 80 3 0.7 0.002 

Table 27. Tolerance 

Machine Setup Cost per Part (£) Cast per Baicfe (£) 
M6 SI 3.23 174.03 M6 

S2 3.45 179.61 
M6 

S3 5.26 224.85 
M18 SI 3.22 133.10 M18 

S2 3.45 138.66 
M18 

S3 5.25 183.70 
M21 SI 3.86 143.11 M21 

S2 3.99 146.38 
M21 

S3 5.05 172.89 
M41 SI M41 

S2 6.97 199.16 
M41 

S3 
Note: See Tables 40, 41 and 42 in Section 6.4 

Table 28. Processing Costs 

6.3.3.6 Selection of Optimal Route 

Al l the possible routes are depicted and the total cost per batch for each route is 
calculated (See Table 43 in Section 6.4). The optimal route is the one with the lowest 
total cost per batch. In this example, the optimal route is Route Five. 
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Route Machine Cost per Balcri Transportation Transportation Material Cost Total COSt 
dumber Sequence for Processing Tim© Cos) for Batch per Batch p « Batch 

<$> (trrfn} (S) (S) <£) 
Rl 6-6-18-21-21 485.58 69.22 5.91 39.15 530.64 
R2 6-6-21-18-18 504.11 60.42 5.55 39.15 548.81 
R3 6-641-18-18 556.89 56.05 5.18 39.15 601.22 
R4 6-6-41-21-21 546.08 65.63 5.61 39.15 590.84 
as 18-18-6-21-21 485.60 6869 5.86 39.15 53061 
R6 18-18-21-6-6 504.33 55.25 4.60 39.15 548.08 
R7 18-18-41-6-6 557.11 50.68 4.22 39.15 600.48 
R8 18-18-41-21-21 505.15 50.75 4.37 39.15 548.67 
R9 21-21-6-18-18 506.42 56.61 5.23 39.15 550.80 
RIO 21-21-18-64 506.62 51.65 4.30 39.15 550.07 
Rll 21-21-41-64 567.12 47.89 3.99 39.15 610.26 
R12 21-21-41-18-18 525.97 38.37 3.71 39.15 568.83 

Tafofle 29. Routes arad Tota! Cost per Batch 

In the case of component P0003, the difference between the possible routes is 
almost intangible. One advantage in this case is that i f there is any problem in executing 
the optimal route, the selection of another appropriate route is effortless. 
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CHAPTER 7 
CONCLUSIONS AND RECOMMENDATIONS FOR F U R T H E R WORK 

In an era when the cost of capital is increasing, it is essential to improve the total 
utilisation of resources, facilitated by accurate scheduling. Until now, manufacturing 
has been the area used as an objective for the reduction and control of costs. All the 
areas involved in the transformation of raw material into final product are being 
investigated. "Design research has been concerned with the aim of improving and 
simplifying these manufacturing processes" [62]. This work aims to outline 
organisational issues of current design management, the influence of new technology 
and techniques on design management, to propose a central area for research, and 
methodology by which an improved understanding of design in the industrial context 
may be achieved. 

The general requirements of a system for allocating and managing resources are: 

(i) To assign tasks 
(ii) To control access to expert advice 
(iii) To control access to services 
(iv) To minimise the effects of unforeseen problems by the above methods 

In practice it is often the fourth task which occupies the managers time. This 
must be achieved by the balancing of resources. 

Knowledge-based systems have found many applications in manufacturing. Their 
importance is even greater in automated manufacturing facilities due to the following: 

• Considerable capital investment and therefore the need of high utilisation of 
manufacturing resources such as machines, robots and expert systems. 

• Increased number of variables because of the introduction of new resources, such as 
fixtures, pallets, and automated material carriers. 

The knowledge of an expert is a very vulnerable resource to a firm. Extensive 
damage can be done by a an expert who leaves a firm, whereas often little attention is 
given to the contribution of an expert. It is therefore required to change the role of an 
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expert from one with large capacity to damage a company to one with a large capacity 
to enhance a firm. The way to achieve this switch from negative to positive is firstly to 
understand the nature of the methods an expert uses to accomplish a task - reducing the 
damage which could be done by losing that expert's output, and then use this 
understanding to enhance the value of the expert's output, and the use to which that 
output is put. This would be achieved by developing expert systems and using this 
increased accuracy to demand better utilisation of the expert's views. In new product 
development, the ability to estimate the time and cost a task will take to complete would 
be the skill in question. It is needed to prepare routes and schedules which are 
workable, that is the most vital element to the smooth running of all development 
projects. 

A method which has been used in research to find ways to automate design work 
is protocol analysis. The aim of the technique is to gain insights into the cognitive 
strategies of people undertaking a task of interest. This is achieved by tutoring a subject 
in thinking aloud. The aim of protocol analysis in this project has been to develop a 
generic set of rules for increasing the accuracy of route generation. This was then 
extended into a rule base system introducing knowledge for specific environments, 
which would act as a tool to increase confidence in the accuracy of route, and to make 
the knowledge of temporal estimation more robust. 

The Intelligent Route Generator works as a communication platform between 
CAD and CAPP. IRG is an integrating tool/concept used by both design and process 
planning. The system provides the designer with feedback related to manufacturability 
and performs aggregate process planning tasks (i.e., selection of resources and routes). 
Addtionally, the IRG system calculates costs and times using 'standard' parameters in 
order to have cost and lead time indications. Hence, IRG dos 'job estimating' functions. 

It is expected that the time and cost estimates will be updated and optimised as 
part of the detailed process planning. Feedback cycles should be implemented from 
optimised plans and shop floor data. This feedback information should be stored in a 
knowledge base in order to compare new IRG routes to historical ones. This closed 
loop system is future work. 
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No especification has been done related to the work handling arrangements. The 
type of work handling equipment should be established and their corresponding 
coordinates should be added to the Machine/Work Handling/Location database. 

In the layout database, the types of layout already identify groups and functional 
areas, but this information is not yet fully utilised by the expert system. 

Buffer zones such as WIP (work-in-progress) and KANBAN items areas or 
KANBAN relationship in cells create the interface with the SFC (shop floor control), 
having information about WIP per area, per product or per machine. Information 
related to waiting times is as well needed. 

Besides this, predominant flow direction for each area or for the overall layout 
should be determined, linked with the customer/supplier link in JIT operation. 

The interface with the MPC system should be done, using historical machine 
utilisation data, and planned capacity schedules based on MRP production, i.e. when 
production in a given time slot is needed. 

Another aspect yet to be developed is related with the quality feedback. 
Mamtaining life cycle monitoring of various problems, such as operations, testings, 
inspection, surface, finish, or tolerances. A l l this information should be linked with 
what is already done with the ERG system (See Figure 15 in Chapter 3). A l l of this wi l l 
give raise to a complete feedback analysis and processing. 

Areas like dedicated inspection areas, tool room or tool stores, establishment of a 
predetermined direction within each cell in the layout are of great importance for a 
complete expert system. The size of the container in the buffer should also be 
specified. 

It is possible to establish a relationship between the component code and the cell 
in which it is made. This will become a constraint that wi l l relate a component code to 
and assigned layout in a GT system. I f this is not the case, then any machine can be 
evaluated. 
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Some other parameters such as capacity plans, historical machine loading 
(machine utilisation), work-in-progress, waiting times, quality problems in relation to 
processes/machines (or other contraints) should be evaluated. A weighting system 
could be used in order to evaluate them, using for example lower weighting for greater 
probability. 
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APPENDIX 1 
PRODUCTION TERMS FOR MANUFACTURING PRODUCTION 

SYSTEMS (MPSs) 

Examples 
Production system Al l aspects of men, 

machines, materials, and 
information, considered 
collectively, needed to 
manufacture parts or 
products; integration of all 
units of the system is 
critical. 

Company that makes 
engines, assembly plant, 
glassmaking factory, 
foundry 

Manufacturing system 
(Sequence of operations) 
(Collection of processes) 

A series of manufacturing 
operations resulting in 
specific end products; an 
arrangement or layout of 
many processes. 

Rolling steel plants, 
manufacturing of auto 
bodies, series of connected 
operations or processes, a 
job shop, a flow shop, a 
continuous process 

Machine or machine tool 
or manufacturing process 

A specific piece of 
equipment designed to 
accomplish specific 
processes, often- called a 
machine tool; machine 
tools link together to make 
a manufacturing system. 

Spot welder, milling 
machine, lathe, drill press, 
forge, drop hammer, die 

-caster -

Job (sometimes called a 
station) 

A collection of operations 
done on machines or a 
collection of tasks 
performed by one man at 
one location on an 
assembly line. 

Operation of machines, 
inspection, final assembly. 
Forklift driver has the job 
of moving materials 



Operation (sometimes 

called a process) 
A specific action or 
treatment, the collection of 
which makes up the job of 
a worker. 

Dril l , ream, bend, solder, 
turn, face, mill , extrude, 
inspect, load 

Tools Refers to the devices used 
to hold, cut, shape, or 
deform the work 
materials; called cutting 
tools i f referring to 
machining; can refer to 
jigs and fixtures in 
workholding and punches 
and dies in metal forming. 

Grinding wheel, drill bit, 
tap, end milling cutter, die, 
mold, clamp, three-jaw 
vise 



APPENDIX 2 
MANUFACTURER'S RESOURCES AND CAPABILITIES 

LIST OF MACHINES 

A. Turning (lathes) (C) 
B. Boring (C/P) * 
C. Milling (P) * 
D. Drilling (C/P) * 
E. Machining Centres (C/P) * 
F. NC Machine Tools (C/P) * 
G. Grinding 
H. Pressing 
I. Broaching (C/P) 
J. Sawing 
K. Planer (P) 
L. Shaper (P) 

(* Machines used for the routing project) 

MACHINE CLASSIFICATION 

A. TURNING 

Classification 1' 
1. Horizontal turning machines 

a) conventional centre lathes 
b) CNC lathes 

(i) conventional turret machines 
(ii) sliding head machines 

Classification 23 

1. Lathes Group 
a) engine lathes 
b) turret lathes 
c) tape-controlled turret lathe 
d) vertical turret lathe 
e) automatic vertical multistation lathe 
f) duplicating or tracer lathes 
g) automatic lathes 
h) multispindle automatic 

Classification 3' 
1. Jeweler's or precision lathes 
2. Massive lathes 
3. Heavy-duty engine lathes 
4. Toolmaker's lathe 
5. Vertical boring mills 
6. Vertical turret lathe 
7. Ram-type turret lathe 



8. Saddle-type turret lathe 
9. Small precision manually operated turret lathe 
10. Numerically controlled chucking lathe with turret 
11. Floturn lathe 

B. BORING 

Classification 1 ' 

1. Jig borers 

2. Horizontal borers 

3. Vertical borers 
a) single column elevating rail vertical borers 
b) double column elevating rail vertical borers 

Classification 22 

1. Boring Machine Tool Group 
a) boring machines 
b) jig boring machine 
c) vertical boring mill 
d) horizontal boring machine 

C. MILLING 

Classification 1' 
1. Standard knee type mills 

a) horizontal configuration 
b) vertical configuration 
c) horizontal with motorised overarm 

2. Milling bed type 
a) fixed bed vertical spindle milling machines 
b) piano mills 

Classification 2' 
1. Vertical mills 
2. Universal mills 
3. Toolroom universal overarm mills 

Classification 33 

1. Milling Machine Group 
a) milling machines 
b) hand milling machine 
0 plain milling machine 
d) vertical milling machines 
e) planer-type milling machine 
0 machining centres 
g) planetary milling machine 
h) duplicating machines 

Classification 43 

1. Vertical milling machines 



2. Horizontal milling machines 
a) Bed-type 

b) Knee and column milling machines 

D. DRILLING 

Classification 1' 
1. Fixed height radial arm drills 
2. Conventional fixed bed elevating radial arm drills 
3. Bench top floor-mounted 
4. Pedestal floor-mounted 
5. Drill centre 
Classification 22 

1. Drill Press Group 
a) drill presses 
b) portable and sensitive drills 
c) upright drills 
d) radial drilling machine 
e) gang drilling machine 
f) turret machines 
g) multispindle drilling machines 
h) transfer-type production drilling machines 
i) deep-hole drilling machine 

Classification 33 

1. Sensitive drill 
2. Upright drill press 
3. Radial drill press 
4. Microscopic drilling machine 
5. Deep-hole drilling machines 
6. Turret head drills 
7. Gang drilling machine 
8. Multisplindle drilling machine 
9. Turret (killing machines 

E. MACHINING CENTRES 

Classification 1' 
1. Horizontal machining centres 
2. Vertical machining centres 
3. Universal machining centres 

4. Double column machining centre 

F. NC MACHINE TOOLS 

Classification 1' 
1. CNC turning centres (CNC lathes) 
2. CNC Electro Discharge Machines (EDM) 
3. Slant bed CNC lathes 
4. Fanuc CNC training lathe 
5. Training computer lathe 



6. CNC miller 
7. CNC router 

Classification 2 3 

1. Vertical spindle NC and CNC machining centres 
2. Horizontal spindle NC and CNC machining centres 
3. NC and CNC turning centres 

GRINDING 

Classification 1' 
1. Surface grinders 
2. Cylindrical grinders 

Classification 2 2 

1. Cylindrical grinder 
a) work between centres 
b) centreless 
c) tool post 
d) crankshaft and other special applications 

2. Internal grinder 
a) work rotated in chuck 
b) work rotated and held by rolls 
c) work stationary 

3. Surface grinder 
a) planer type (reciprocating table) 

(i) 
(ii) 

horizontal spindle 
vertical spindle 

b) rotating table 
(i) 
(ii) 
disk 

horizontal spindle 
vertical spindle 

c) 
d) 
e) 
f) 

loose grit 
flap wheel 
wire sawing 

4. Universal 
a) 
b) 
c) 
d) 

cylindrical work 
thread form work 
gear form work 
oscillating 

5 Tool grinder 

Special grinding machines 
a) swinging frame, snagging 
b) cutting off, sawing 
c) portable, offhand grinding 
d) flexible shaft, general purpose 
e) profiling, contouring 



7. Surface preparing 

8. Abrasive grinding belt, single multihead 

9. Mass media 
a) barrel tumbling 
b) vibratory 

Classification 33 

1. Surface grinder 
a) horizontal spindle reciprocating table surface grinder 

2. Cylindrical grinder 
a) center type 
b) roll type 
c) centerless 
d) internal cylindrical 
e) tool and cutter 

3. Miscellaneous grinding machines 
a) form type gear grinding machines 
b) generating-type gear grinding machines 
c) precision thread grinding machines 
d) thread grinders 

H. PRESSING 

Classification 12 

1. Metal forming 
a) inclinable presses 
b) eccentric geared presses 
c) C-frame presses 

2. Compression moulding 
a) hydraulic compression presses 

Classification 23 

1. Inclined press 
2. Gap press 
3. Arch press 
4. Straight-side press 
5. Horn press 
6. Knuckle joint press 
7. Press brake 
8. Squaring shears 
9. Turret press 
10. Hydraulic press 
11. Transfer press 
12. Fourslide machine 



I. BROACHING 

Classification 12 

1. Vertical single-slide surface machines 
2. Vertical push broaching 
3. Vertical pull-down broaching machines 
4. Vertical pull-up broaching machines 
5. Horizontal broaching machines 
6. Rotary broaching machines 
7. Continuous or tunnel broaching machines 

J . SAWING 

Classification 12 

1. Reciprocating saw 
a) horizontal hacksaw 
b) vertical sawing and filing 

2. Circular saw 
a) metal saw 
b) steel friction disk 
c) abrasive disk 

3. Band saw 
a) saw blade 
b) friction blade 
c) wire blade 

Classification 23 

Cutoff machines 
a) reciprocating saws 
b) horizontal band cutoff machine 
c) universal tilt frame cutoff 
d) abrasive cutoff machine 
e) cold saw cutoff machines 

Vertical band machines 
a) general purpose band machine with fixed worktable 
b) band machines with power-fed worktables 
c) high tool velocity band machines 
d) large capacity band machines 

K. PLANER 

Classification 12 

1. Double housing 
2. Open side 
3. Pit type 
4. Plate or edge 



SHAPER 

Classification 12 

1. Horizontal push cut 
a) plain (production work) 
b) universal (toolroom work) 

2. Horizontal draw cut 

3. Vertical 
a) slotter 
b) key seater 

4. Special purpose as for cutting gears 



LIST OF MACHINES AND THEIR OPERATIONS 

MACHINES TYPES OF OPERATION 

1. Lathe Classification 13 

cylindrical surfaces 
drilling 
boring 
reaming 
facing 

Classification 22 

turning 
boring 
facing 
threading 
taper turning 

Classification 3 3 

turning 
threading 
boring 
drilling 
reaming 
facing 
spinning 
grinding 
tapping 
recessing 
grooving 
parting 
knurling 

Classification 4 4 

turning 
facing 
grooving 
parting off 
threading 
boring 
drilling 
reaming 

2. Horizontal boring machine Classification 13 

flat surfaces 

Classification 24 

drilling 
boring 



Vertical boring machine Classification 1 
(drilling) 
boring 
reaming 
facing 

Classification 2 4 

boring 

4. Horizontal milling machine Classification 12 

flat surfaces 
gears 
cams 
drilling 
boring 
reaming 
facing 

Classification 2 5 

facing 
(gears) 
(cams) 
boring 
reaming 
drilling 
slotting 

5. Vertical milling machine Classification 13 

milling 
drilling 
boring 
slotting 

Classification 24 

boring 
reaming 

Classification 3 s 

facing 
square shoulder 
radius shoulder 
angle shoulder 
vertical slot 
horizontal slot 
drilling 
chamfering 
T-slotting 
threading 
contouring 
square pocket 
copy milling 



6. Milling machine Classification 13 

machining steps and squaring 
milling a cavity 
end milling a shaft keyseat 
machining T-slots, dovetails, angle milling, and drilling 

Classification 2" 
parting 
slotting (grooving) 
milling 
threading 
facing (planing) 
drilling 
square shoulder 

drilling 
boring 
facing 
threading 

Classification 2 1 

counterboring 
core drilling 
countersinking 
reaming 
centre drilling 
drilling 
step drilling 
gun drilling 

Classification 34 

(Mlling 
boring 
reaming 
threading 

NC turning 
NC boring 
NC milling 
NC drilling 
NC tapping 
NC contouring 

7. Drill press Classification 11 

8. NC Machine Tools Classification 13 

9. Cylindrical grinder Classification 1' 
cylindrical surfaces (grinding) 



10. Broaching Classification 12 

external and internal surfaces 

Classification 2 4 

drilling 
boring 
shaping 
milling 
planing 
broaching 

cut off 

Classification 24 

Conventional and contour sawing 
Friction sawing 
Band filing and band polishing 

11. Saw Classification 12 

12. Planer Classification 12-4 

flat surfaces (planing) 

13. Shaper Classification 12-4 

flat surfaces (shaping) 
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APPENDIX 3 
CUTTING SPEED A V E R A G E S 

I. CNC/NC L A T H E S (cylindrical components) 

A. TURNING / FACING / BORING (Interna! Turning) 

SECO (30 min. tool life) 

1. Mild Steel: 

TP10,TP15, TP20, TP30 

Finishing Roughing 
Velocity Velocity 
0.15 mm/rev 0.65 mm/rev 

1 392.50 222.50 
2 333.75 188.75 
3 283.75 166.25 
4 235.00 135.00 

311.25 m/min 178.13 m/min 

2. Alloy Steel: 

TP10, TP15, TP20, TP30 

Finishing Roughing 
Velocity Velocity 
0.15 mm/rev 0.65 mm/rev 

3 283.75 166.25 
5 200.00 102.50 
6 178.75 75.00 
7 76.25 

184.69 m/min 114.58 m/min 

3. Stainless Steel: 

TP10.TP15, TP20, TP30 



Finishing Roughing 
Velocity Velocity 
0.15 mm/rev 0.65 mm/rev 
227.50 123.33 
180.00 75.00 
95.00 55.00 
167.50 m/min 84.44 m/min 

4. Cast Steel: 

TP10, TP15, TP20, TP30 

Finishing 
Velocity 
0.15 mm/rev 

Roughing 
Velocity 
0.65 mm/rev 

2 
3 

333.75 
283.75 
235.00 
200.00 

188.75 
166.25 
135.00 
102.50 

263.13 m/min 148.13 m/min 

5. Cast Iron: 

TP10, TP15, TP20, TP30 

Finishing Roughing 
Velocity Velocity 
0.15 mm/rev 0.65 mm/rev 

11 223.75 127.50 
12 180.00 115.00 
13 163.33 95.00 
14 126.67 70.00 
15 102.50 50.00 

199.06 m/min 114.38 m/min 

SECO (15 min tool life) 

1. Mild Steel: 

TP10, TP15, TP20, TP35, S1F 



Finishing Roughing 
Velocity Velocity 
0.25 mm/rev 0.63 mm/rev 

i 427.00 275.00 
2-3 359.00 232.00 

4 263.00 178.00 
349.67 m/min 228.33 m/min 

. A! loy Steel: 

TP 10, TP15, TP20, TP35, S1F 

Finishing Roughing 
Velocity Velocity 
0.25 mm/rev 0.63 mm/rev 

3 299.00 193.00 
5 229.00 156.00 
6 179.00 116.00 
7 146.00 93.00 

213.25 m/min 139.50 m/min 

3. Stainless Steel: 

TP20, TP35,S1F 

Finishing Roughing 
Velocity Velocity 
0.25 mm/rev 0.68 mm/rev 

8 221.67 136.67 
9 175.00 111.67 
10 122.50 82.50 

173.06 m/min 110.28 m/min 

4. Cast Steel: 

TP10, TP15, TP20, TP35, S1F 

Finishing Roughing 
Velocity Velocity 
0.25 mm/rev 0.63 mm/rev 

2-3 299.00 193.00 
4 223.00 138.00 
5 199.00 136.00 

240.33 m/min 155.67 m/min 



5. Cast Iron: 

TP10, TP15, TP20 

Famishing Roeghiiug 
Velocity 
0.25 mm/rev 

Velocity 
0.62 mm/rev 

11 240.00 151.67 
12 200.00 126.67 
13 168.33 106.67 
14 130.00 77.50 
15 110.00 60.00 

169.67 m/min 104.50 m/min 

B. PARTING-OFF 

SECO 

1. Mild Steel: 

GC235/P45, GC435/P35 

Roughing Velocity: 126.67 m/min 

2. Alloy Steel: 

GC235/P45, GC435/P35 

Roughing Velocity: 92.50 m/min 

3. Stainless Steel: 

GC235/P45, GC435/P35 

Roughing Velocity: 100.00 m/min 

4. Cast Steel: 

GC235/P45, GC435/P35 

Roughing Velocity: 82.50 m/min 



5. Cast Iron: 

H20/K20 

Roughing Velocity: 65.00 m/min 

C. GROOVING 

SECO 

1. Mild Steel: 

GC435/P35, GC225/P25 

Roughing Velocity: 178.33 m/min 

2. Alloy Steel: 

GC435/P35, GC225/P25 

Roughing Velocity: 127.50 m/min 

3. Stainless Steel: 

GC435/P35, GC225/P25 

Roughing Velocity: 140.00 m/min 

4. Cast Steel: 

GC435/P35, GC225/P25 

Roughing Velocity: 117.50 m/min 

5. Cast Iron: 

Roughing Velocity: 50.00 m/min 

D. THREADING 

SECO 

1. Mild Steel: 

Roughing Velocity: 166.67 m/min 



Alloy Steel: 

Roughing Velocity: 132.50 m/min 

Stainless Steel: 

Roughing Velocity: 115.00 m/min 

Cast Steel: 

Roughing Velocity: 120.00 m/min 

Cast Iron: 

Roughing Velocity: 155.00 m/min 

CNC V E R T I C A L M I L L I N G MACHINES / MACHINING C E N T R E S 
(99% prismatic, machining centres — > cylindrical) 

A. FACING / SHOULDERING (Square, Radius, Angle) / CHAMFERING 

SECO 

1. Mild Steel: 

S10M, S25M, S60M 

Finishing Roughing 
Velocity Velocity 
0.1 mm/rev 0.4 mm/rev 

1 193.33 118.33 
2 160:00 91.67 
3 123.33 68.33 

158.89 m/min 92.78 m/min 

2. Alloy Steel: 

S10M, S25M, S60M 



Finishing Roughing 
Velocity Velocity 
0.1 mm/rev 0.4 mm/rev 

2 158.33 90.00 
3 126.67 68.33 
4 60.00 112.50 
S 77.50 

118.75 m/min 72.78 m/min 

3. Stainless Steel: 

S10M, S25M, S60M 

Finishing Roughing 
Velocity Velocity 
0.1 mm/rev 0.4 mm/rev 

6 180.00 108.33 
7 155.00 85.00 

167.50 m/min 96.67 m/min 

4. Cast Steel: 

S10M, S25M, S60M 

Finishing Roughing 
Velocity Velocity 
0.1 mm/rev 0.4 mm/rev 

2 141.67 83.33 
3 111.67 65.00 
4 91.67 56.67 

115.00 m/min 68.33 m/min 

5. Cast Iron: 

T25M, HX 

Finishing Roughing 
Velocity Velocity 
0.1 mm/rev 0.4 mm/rev 

8 175.00 90.00 
9 125.00 65.00 
10 90.00 80.00 

130.00 m/min 78.33 m/min 



M . VERTICAL M I L L I N G MACHINES AND DRILLING CENTRE 
(prismatic components) 

A. DRILLING 

SECO 

1. Mild Steel: 

Roughing 
Velocity 
mm/rev 

1 130.00 
2-3 112.50 
4-5 100.00 

114.17 im/retim 

2. Alloy Steel: 

Roughing 
Velocity 
mm/rev 

2-3 112.50 
4-5 100.00 

6 80.00 
7 80J)0 

93.13 mlmm 

3. Stainless Steel: 

Roughing 
Velocity 
mm/rev 

8-9 60.00 
10 50.00 

55.00 m/min 

4. Cast Steel: 

Roughing 
Velocity 
mm/rev 

2-3 112.50 
4-5 100.00 

106.25 m/min 



5. Cast Iron: 

RonnglhiDinig 
Velocity 
mnnnm/rev 

11-12 100.00 
13-14 85.00 

15 70.00 
127.50 m/mnn 

6. Non Ferrous Material: 

Moraghimg 
Velocity 
mm/rev 

16 450.00 
17 115.00 
18 350.00 
22 65.00 

245.00 m/imin 



FEED RATE AVERAGES 

I. CNC/NC LATHES (cylindrical components) 

A. PAMTING-OFF / GROOVING 

SECO 

1. Mild Steel: 

Feed Rate: 0.21 mm/rev 

2. Alloy Steel: 

Feed Rate: 0.17 mm/rev 

3. Stainless Steel: 

Feed Rate: 0.14 mm/rev 

4. Cast Steel: 

Feed Rate: 0.16 mm/rev 

H. V E R T I C A L M I L L I N G MACHINES AND D R I L L I N G C E N T R E S 

(prismatic components) 

A. D R I L L I N G 

SECO 

I . Mild Steel: 

3mm - 18mm 
mm/rev 

1 0.25 
2-3 0.25 
4-5 025 

0.25 



2. Alloy Steel: 

3mm - 18mm 

mm/rev 
2=3 0.25 
4-5 0.25 

6 0.25 
7 024 

0.25 

3. Stainless Steel: 

3mm - 18mm 

mm/rev 
8-9 0.14 

10 014 
0.14 

4. Cast Steel: 

3mm - 18mm 

mm/rev 
2-3 0.25 
4-5 025 

0.25 

5. Cast Iron: 

3mm - 18mm 

mm/rev 
11-12 0.49 
13-140.42 

15 024 
0.38 



Non Ferrous Material: 

3mm - 18mm 

mm/rev 
16 0.49 
17 0.49 
18 0.49 
22 024 

0.38 



GUIDE CUTTING CONDITIONS USING CARBIDE TOOLS 

I . CNC/NC L A T H E S (cylindrical components) 

A. TURNING / FACING / BORING (Internal Turning) 

Material Finishing Finishing Roughing Roughing 
Type Velocity Feed Rate Velocity Feed Rate 

vF (m/min) sP (mm/rev) vR (m/min) sR (mm/rev) 
Mild Steel 330.46 0.2 203.33 0.64 
Alloy Steel 198.97 0.2 127.04 0.64 
Stainless Steel 170.28 0.2 97.36 0.67 
Cast Steel 251.73 0.2 151.90 0.64 
Cast Iron 184.37 0.2 109.44 0.64 
NOTE: Average of data for 15/30 min. tool life. 

B. PARTING-OFF 

Material 
Type 

Roughing 
Velocity 
vR (m/min) 

Roughing 
Feed Rate 
sR (mm/rev) 

Mild Steel 126.67 0.21 
Alloy Steel 92.50 0.17 
Stainless Steel 100.00 0.14 
Cast Steel 82.50 0.16 
Cast Iron 65.00 0.15 

C. GROOVING 

Material 
Type 

Roughing 
Velocity 
vR (m/min) 

Roughing 
Feed Rate 
sR (mm/rev) 

Mild Steel 178.33 0.21 
Alloy Steel 127.50 0.17 
Stainless Steel 140.00 0.14 
Cast Steel 117.50 0.16 
Cast Iron 50.00 0.15 



D. THREADING 

Materia! 
Type 

Roughing 
Velocity 

(mra/mniDini) 
Mild Steel 166.67 
Alloy Steel 132.50 
Stainless Steel 115.00 
Cast Steel 120.00 
Cast Iron 155.00 

P 
(mm) 

No. of 
Passes 

0.50 4-6 
0.75 4-7 
1.00 4-8 
1.25 5-9 
1.50 6-10 
1.75 7-12 
2.00 7-12 
2.50 8-14 
3.00 10-16 
3.50 11-18 
4.00 11-18 
4.50 11-19 
5.00 12-20 
5.50 12-20 
6.00 12-20 
8.00 15-24 

NOTE: Pitch (p) is going to be used as the feed for threading. 



H C N C VERTICAL M I L L I N G MACHINES / MACHINING CENTRES / CNC 
HORIZONTAL M I L L I N G MACHINES 
(99% prismatic, machining centres —> cylindrical) 

A. FACING / SHOULDERING (Square, Radius, Angle) / CHAMFERING / 
CONTOURING / POCKETING / COPY M I L L I N G / VERTICAL SLOTTING / 
HORIZONTAL SLOTTING / T-SLOTTING 

Material 
Type 

Finishing 
Velocity 
vF (m/min) 

Finishing 
Feed Rate 
s (mm/tooth) 

Roughing 
Velocity 
vR (m/min) 

Roughing 
Feed Rate 
SZK (mm/tooth) 

Mild Steel 158.89 0.1 92.78 0.4 
Alloy Steel 118.75 0.1 72.78 0.4 
Stainless Steel 167.50 0.1 96.67 0.4 
Cast Steel 115.00 0.1 68.33 0.4 
Cast Iron 130.00 0.1 78.33 0.4 

m . V E R T I C A L M I L L I N G MACHINES AND D R I L L I N G C E N T R E S / CNC/NC 
L A T H E S 

(cylindrical and prismatic components) 

A. D R I L L I N G / R E A M I N G 

Material 
Type 

Roughing 
Velocity 
vR (m/min) 

Roughing 
Feed Rate 
sR (mm/rev) 

Mild Steel 114.17 0.25 
Alloy Steel 93.13 0.25 
Stainless Steel 55.00 0.14 
Cast Steel 106.25 0.25 
Cast Iron 127.50 0.38 
Non Ferrous Mat. 245.00 0.38 



GUIDE M A X I M U M C U T T E R DIAMETER AND NUMBER OF TEETH 

I . CNC VERTICAL M I L L I N G MACHINES / MACHINING CENTRES / CNC 
HORIZONTAL M I L L I N G MACHINES 
(99% prismatic, machining centres —> cylindrical) 

Cutter Maximum Number 
(Operation Type) Cutter of Teeth 

Diameter z 
D (mm) 

Facing 105.77 4 
Shouldering 105.77 4 
Chamfering 49.18 2 
Contouring 45.99 2 
Pocketing 45.99 2 
Copy Milling 45.99 2 
Vertical Slotting 43.80 5 
Horizontal Slotting 43.80 5 
T-Slotting 28.00 5 
Drilling 36.50 2 
Reaming 36.50 2 
Threading 30.67 1 



APPENDIX 4 
DATABASE FILE SPECIFICATIONS 

S t r u c t u r e f o r database: C:COMP001.dbf 
,Number of data r e c o r d s : 6 
Date of l a s t update : 01/19/93 
F i e l d F i e l d Name Type Width 

1 COMPO CODE Ch a r a c t e r 5 
2 COMPO DESC C h a r a c t e r 1 
3 MAT CLASS Ch a r a c t e r 5 
4 MAT TYPE Ch a r a c t e r 5 
5 MAT COST Numeric 5 
6 S H Char a c t e r 1 
7 LENGTH Numeric 5 
8 DIA WIDTH Numeric 5 
9 LD HEI THI Numeric 5 

10 WEIGHT Numeric 5 
11 BATCH Numeric 5 
12 OP CODE1 Ch a r a c t e r 5 
13 SETUP N01 Numeric 5 
14 OP CODE2 Ch a r a c t e r 5 
15 SETUP N02 Numeric 5 
16 OP CODE3 Ch a r a c t e r 5 

Press any key to continue... 
17 SETUP. NO3 Numeric 5 
18 OP CODE4 Cha r a c t e r 5 
19 SETUP N04 Numeric 5 
20 OP CODE5 Ch a r a c t e r 5 
21 SETUP N05 Numeric 5 
22 TOLERANCE Numeric 5 
23 LEAD TIME Numeric 5 
24 COST Numeric 5 

** T o t a l ** 113 



S t r u c t u r e f o r database: C:MC03.dbf 
Number of data r e c o r d s : 41 
'Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC NO Cha r a c t e r 3 
2 MC TYPE Ch a r a c t e r 25 
3 MC CODE Chara c t e r 28 
4 TASZ TUDIA Char a c t e r 11 
5 TACAP WGHT Numeric 4 
6 X AXIS TVL Numeric 4 
7 Y AXIS TVL Numeric 4 
8 Z AXIS TVL Numeric 4 
9 SPTA DISTC Numeric 4 

10 SPINDLE SP Numeric 4 
11 RAP TRA XY Numeric 5 
12 RAP TRA Z Numeric 5 
13 FEED RATES Numeric 5 
14 MAG CAP Cha r a c t e r 11 
15 SP MOTOR Numeric 4 1 
16 PA SP BDIA Ch a r a c t e r 4 

Press any key to continue... 
17 COST RT X Numeric 6 2 
18 COT TO Numeric 5 1 
19 TCT T3 Numeric 5 1 
20 SUT T l Numeric 5 1 
21 NOT TNO Numeric 5 2 
22 SET RATE Numeric 6 2 
23 TOLERANCE Ch a r a c t e r 5 

** T o t a l ** 163 



•1 

S t r u c t u r e f o r database: C:MCOP02„dbf 
Number o f data r e c o r d s : 21 

"Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type width Dec 

1 OP_CODE Ch a r a c t e r 2 
2 COMP_DESCR Ch a r a c t e r 1 
3 MC_C0DE_1 Ch a r a c t e r 22 
4 MC_C0DE_2 Ch a r a c t e r 22 
5 MC_CODE_3 Char a c t e r 22 
6 MC_C0DE_4 Ch a r a c t e r 22 
7 MC_C0DE_5 Ch a r a c t e r 22 

** T o t a l ** 114 



( 

S t r u c t u r e f o r database: C:MATOP02.dbf 
Number of data r e c o r d s : 34 
"Date o f l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 OP CODE Char a c t e r 3 
2 MILD V Numeric 6 2 
3 MILD S Numeric 4 2 
4 ALLOY V Numeric 6 2 
5 ALLOY S Numeric 4 2 
6 STAIN V Numeric 6 2 
7 STAIN S Numeric 4 2 
8 CAST ST V Numeric 6 2 
9 CAST ST S Numeric 4 2 

10 CAST IR V Numeric 6 2 
11 CAST IR S Numeric 4 2 
12 NON FE V Numeric 6 2 
13 NON FE S Numeric 4 2 
14 DIAMETER Numeric 6 2 
15 TEETH Numeric 1 

** T o t a l ** 71 



S t r u c t u r e f o r database: C:SF01.dbf 
Number of data r e c o r d s : 3 
"Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 LAY CODE Cha r a c t e r 3 
2 OVER TYPE Char a c t e r 1 
3 NO LAYS Numeric 2 
4 LAY TYPE 1 Chara c t e r 5 
5 LAY TYPE 2 Cha r a c t e r 5 
6 LAY TYPE 3 Character 5 
7 LAY TYPE 4 Chara c t e r 5 
8 LAY TYPE 5 Chara c t e r 5 
9 GRAL XLL Numeric 4 1 

10 GRAL YLL Numeric 4 1 
11 GRAL XRU Numeric 4 1 
12 GRAL YRU Numeric 4 1 
13 LAY1 XLL Numeric 4 1 
14 LAY1 YLL Numeric 4 1 
15 LAY1 XRU Numeric 4 1 
16 LAY1 YRU Numeric 4 1 

Press any key to continue... 
17 LAY2 XLL Numeric 4 1 
18 LAY2 YLL Numeric 4 1 
19 LAY2 XRU Numeric 4 1 
20 LAY2 YRU Numeric 4 1 
21 LAY3 XLL Numeric 4 1 
22 LAY3 YLL Numeric 4 1 
23 LAY3 XRU Numeric 4 1 
24 LAY3 YRU Numeric 4 1 
25 LAY4 XLL Numeric 4 1 
26 LAY4 YLL Numeric 4 1 
27 LAY4 XRU Numeric 4 1 
28 LAY4 YRU Numeric 4 1 
29 LAY5 XLL Numeric 4 1 
30 LAY5 YLL Numeric 4 1 
31 LAY5 XRU Numeric 4 1 
32 LAY5 YRU Numeric 4 1 

Pre s s any key to continue... 
33 BUFF SPACE Ch a r a c t e r 1 
34 MAT ENTRYX Numeric 4 1 
35 MAT ENTRYY Numeric 4 1 
36 MAT EXITX Numeric 4 1 
37 MAT EXITY Numeric 4 1 
38 INT INSPEC C h a r a c t e r 1 

** T o t a l ** 146 



S t r u c t u r e f o r database: CsLOl.dbf 
Number of data r e c o r d s : 28 
'Date of l a s t update % 04/20/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Cha r a c t e r 28 
2 MC NO Ch a r a c t e r 5 
3 MC TYPE Ch a r a c t e r 22 
4 LAY TYPE Ch a r a c t e r 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 

** T o t a l ** 81 



<l 

S t r u c t u r e f o r databases C;L02.dbf 
.Number of data r e c o r d s : 21 
Date of l a s t update ; 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Cha r a c t e r 28 
2 MC NO Ch a r a c t e r 5 
3 MC TYPE Ch a r a c t e r 22 
4 LAY TYPE Ch a r a c t e r 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 

T o t a l 81 



S t r u c t u r e f o r database: C:L03.dbf 
Number of data r e c o r d s : 34 
Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Character 28 
2 MC NO Char a c t e r 5 
3 MC TYPE Char a c t e r 22 
4 LAY TYPE Character 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 

** T o t a l ** 81 



S t r u c t u r e f o r database: C:OUTPUT01.dbf 
.Number of data r e c o r d s : 15 
Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Character 28 
2 MC NO Character 5 
3 MC TYPE Character 22 
4 LAY TYPE Character 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 
9 SETUP Character 3 

10 MACHINE Character 3 
11 COST RT X Numeric 6 2 
12 COT_T0 Numeric 5 1 
13 TCT T3 Numeric 5 1 
14 SUT T l Numeric 5 1 
15 NOT TNO Numeric 5 2 
16 SET RATE Numeric 6 2 

Press any key to continue... 
17 TOLERANCE Character 5 
18 COSTPERMC Numeric 8 2 
19 COSTPERBTC Numeric 12 2 

** T o t a l ** 144 



S t r u c t u r e f o r database: C:SET01.dbf 
-Number of data r e c o r d s : 3 
Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Cha r a c t e r 28 
2 MC NO Chara c t e r 5 
3 MC TYPE Char a c t e r 22 
4 LAY TYPE Char a c t e r 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 
9 SETUP Char a c t e r 3 

10 MACHINE Chara c t e r 3 
11 COST RT X Numeric 6 2 
12 COT TO Numeric 5 1 
13 TCT T3 Numeric 5 1 
14 SUT T l Numeric 5 1 
15 NOT TNO Numeric 5 2 
16 SET RATE Numeric 6 2 

Press any key to continue... 
17 TOLERANCE Chara c t e r 5 
18 COSTPERMC Numeric 8 2 
19 COSTPERBTC Numeric 12 2 

** T o t a l ** 144 



<5 

S t r u c t u r e f o r database: C:SET02odbf 
Number of data r e c o r d s : 4 
'Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Chara c t e r 28 
2 MC NO Cha r a c t e r 5 
3 MC TYPE Ch a r a c t e r 22 
4 LAY TYPE Char a c t e r 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 
9 SETUP Char a c t e r 3 

10 MACHINE Cha r a c t e r 3 
11 COST RT X Numeric 6 2 
12 COT TO Numeric 5 1 
13 TCT T3 Numeric 5 1 
14 SUT T l Numeric 5 1 
15 NOT TNO Numeric 5 2 
16 SET RATE Numeric 6 2 

Press any key to continue... 
17 TOLERANCE Chara c t e r 5 
18 COSTPERMC Numeric 8 2 
19 COSTPERBTC Numeric 12 2 

** T o t a l ** 144 



S t r u c t u r e f o r database: C:SET03.dbf 
,Number of data r e c o r d s : 3 
Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 MC WH CODE Ch a r a c t e r 28 
2 MC NO Ch a r a c t e r 5 
3 MC TYPE C h a r a c t e r 22 
4 LAY TYPE Ch a r a c t e r 5 
5 XLL Numeric 5 2 
6 YLL Numeric 5 2 
7 XRU Numeric 5 2 
8 YRU Numeric 5 2 
9 SETUP Ch a r a c t e r 3 

10 MACHINE Cha r a c t e r 3 
11 COST RT X Numeric 6 2 
12 COT TO Numeric 5 1 
13 TCT T3 Numeric 5 1 
14 SUT T l Numeric 5 1 
15 NOT TNO Numeric 5 2 
16 SET RATE Numeric 6 2 

Press any key to continue... 
17 TOLERANCE Ch a r a c t e r 5 
18 COSTPERMC Numeric 8 2 
19 COSTPERBTC Numeric 12 2 

** T o t a l ** 144 

V 



S t r u c t u r e f o r database: C:ROUTES01.dbf 
Number of data r e c o r d s : 12 
"Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 ROUTE NO Character 6 
2 MC NO 1 Character 5 
3 MC NO 2 Character 5 
4 MC NO 3 Character 5 
5 MC NO 4 Character 5 
6 MC NO 5 Char a c t e r 5 
7 COSTPERBS1 Numeric 12 2 
8 COSTPERBS 2 Numeric 12 2 
9 COSTPERBS3 Numeric 12 2 

10 COSTPBTOT Numeric 15 2 
11 Ml XLL Numeric 5 1 
12 Ml YLL Numeric 5 1 
13 Ml XRU Numeric 5 1 
14 Ml YRU Numeric 5 1 
15 M2 XLL Numeric 5 1 
16 M2 YLL Numeric 5 1 

Press any key to continue... 
17 M2 XRU Numeric 5 1 
18 M2 YRU Numeric 5 1 
19 M3 XLL Numeric 5 1 
20 M3 YLL Numeric 5 1 
21 M3 XRU Numeric 5 1 
22 M3 YRU Numeric 5 1 
23 M4 XLL Numeric 5 1 
24 M4 YLL Numeric 5 1 
25 M4_ XRU Numeric 5 1 
26 M4 YRU Numeric 5 1 
27 M5 XLL Numeric 5 1 
28 M5 YLL Numeric 5 1 
29 . M5 XRU Numeric 5 1 
30 M5 YRU Numeric 5 1 
31 COSTTRATOT Numeric 12 2 
32 COSTMATTOT Numeric 12 2 

Press any key to continue... 
33 COSTTOTAL Numeric 15 2 

** T o t a l ** 222 

V 



S t r u c t u r e f o r database: C:FINAL01.dbf 
.Number of data r e c o r d s : 3 
Date of l a s t update : 04/21/13 
F i e l d F i e l d Name Type Width Dec 

1 COMP CODE Character 5 
2 OPERATION1 Character 10 
3 OPERATION2 Chara c t e r 10 
4 OPERATION3 Character 10 
5 OPERATION4 Character 10 
6 OPERATIONS Character 10 
7 MC NO 1 Char a c t e r 5 
8 MC NO 2 Character 5 
9 MC NO 3 Character 5 

10 MC NO 4 Character 5 
11 MC NO 5 Character 5 
12 PROC COST Numeric 12 2 
13 TRANS COST Numeric 12 2 
14 MAT COST Numeric 12 2 
15 TOTAL COST Numeric 15 2 
16 ROUTE NO Character 6 

Press any key to continue... 
17 LAYOUT NO Character 3 

** T o t a l ** 141 

1 


