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ABSTRACT 

This study investigated T-cell surface antigenic changes in the spleen of 
Xenopus following in vivo and in vitro allogeneic challenge, using novel mouse 
monoclonal antibodies (mAb's) against all T cells (CDS), the putative aP-T cell 
receptor (TCR), the putative yS-TCR, the CDS receptor and against major 
histocompatibility complex (MHC) class I I proteins. 

Flow cytometric analyses of splenocytes from skin allografted intact, 5-day 
thymectomised (Tx) and skin allotolerant animals were examined. There was an 
increase in the number of cells expressing yS TCR's in those froges which rejected test 
allografts. The Tx Xenopus laevis and allotolerant LG3 animals that tolerated grafts 
showed no increase in the 76 TCR. Twenty-four days post-grafting X. laevis, most 
of the Y5 TCR positive cells surprisingly co-expressed the aP TCR. Following mixed 
lymphocyte reactions (MLR) for 9-14 days, of previously grafted X. laevis and LG15 
splenocytes, there was an increase in the number of T cells with a significant increase 
of Y5 TCR positive cells. 

Stimulation indices of MLR's were increased by pre-culturing the stimulator 
cells with concanavalin A (ConA). This increase was apparently not due to changes 
in cytokine production or cell surface antigen expression, of the stimulated cells. 
Little increased MHC class I I expression was seen, in flow cytometric analyses. The 
reasons for elevated MLR with ConA-activated stimulators therefore remain to be 
assessed. 

The in vitro response of Xenopus splenocytes to the superantigen, 
staphylococcal enterotoxin B (SEB), was tested. The response was weakly significant 
but was significantly less than that seen in mice. 
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C H A P T E R 1 

INTRODUCTION 

1.1 Comparative Immunology 

The basic requirements of an immune system, specificity (molecules and cells 

which react with foreign molecules and not self), diversity (an antibody can be 

produced against any foreign antigen), adaptivity (memory cells combating a second 

infection more quickly than the first) and the ability to respond to unexpected stimuli, 

have all been met by vertebrates. The defence systems of invertebrates, on the other 

hand, are more primitive, often relying solely on non-specific phagocytic cells. 

Consistent signs of adaptive immunity, together with histological evidence of 

organised lymphoid tissue first appear in the lowest vertebrates, the cyclostomes 

(Roitt, Brostoff and Male, 1987). However it is only once the true fishes are reached 

that a well developed immune system, essentially of the mammalian kind, is seen 

(Cunningham, 1978). 

If, therefore, cold blooded vertebrates mount a fiindamentally identical 

immune response to that of mammals they act as extremely usefial models to study the 

ontogenic development of immunologic capacities of the more evolved vertebrates. 

Use of comparative immunology in the study of non-mammalian vertebrates enables 

better appreciation and understanding of the more complex biological systems. 

1.1.1 Xenopus as a model for comparative immunology 

The immune systems of many amphibians have been well studied. There are 

two classes of Amphibia, the Urodela (for example, newts) and the Anura (for 

example, frogs and toads). The most studied class in terms of the ontogenic aspects 

of immunity is the Anura, with the African clawed toad Xenopus, providing the most 

information. The genus Xenopus comprises six species which cover much of the 



African continent. Xenopus laevis, the major species studied, is a non-tropical species 

and is the only South African amphibian to occupy a completely aquatic habitat, 

feeding and breeding underwater. 

There are several properties of Xenopus which have led to its major use as an 

experimental animal model. It is easy to maintain in the laboratory, since it will 

readily consume food and shows low mortality rate, also it is relatively easy to breed, 

females can be used several times a year for breeding. Frog embryos, tadpoles and 

adults are all amenable to experimental manipulation, permitting in vivo experiments, 

such as grafting studies to be performed at all stages of ontogeny (Obara, Kawahara 

and Katagiri, 1983). Partially inbred major histocompatibility complex (MHC) 

homozygous strains and isogeneic clones (Kobel and Du Pasquier, 1975) exist, which 

allow unambiguous attribution of polymorphic molecules or functions to the MHC 

(Flajnik and Du Pasquier, 1990). Metamorphosis separates the life of Xenopus to two 

distinct periods and provides a useful method to study self tolerance to new self 

antigens (Ags) in an immunocompetent tadpole. 

The immune system of Xenopus has been well characterised. It is less 

complex than that of mammals but exhibits many of the hallmarks of the mammalian 

immune system (Du Pasquier, Schwager and Flajnik, 1989; Flajnik and Du Pasquier, 

1990). The ability to mount an immune response develops early in Xenopus (Hsu and 

Du Pasquier, 1984) by twelve days after fertilisation tadpoles are able to mount 

specific humoral and cellular immune responses which become maximal approximately 

two weeks later. Investigations into the immune system of Xenopus have revealed 

that Xenopus lymphocytes can be separated into T and B cells (Goldstine, Collins and 

Cohen, 1976) by functional (Bleicher and Cohen, 1981; Green (Donnelly) and Cohen, 

1979) and biochemical (Nagata, 1985; Schwager and Hadji-Azimi, 1985; Schwager 

and Hadji-Azimi, 1984) analyses. The production of cytokines analogous to 

interleukins (IL) -1 and -2 has been demonstrated m Xenopus (Watkins and Cohen, 

1987; Watkins, Parsons and Cohen, 1987) and polymorphic MHC molecules 

homologous to mammalian class I and I I have been described (Flajnik and Du 



Pasquier, 1990). Three isotypes of immunoglobulin heavy chain are present, which 

are arranged in the genome in the classical mammalian type organisation (Du 

Pasquier, Schwager and Flajnik, 1989). 

1.2 The Thymus 

In all vertebrates the first organ to become lymphoid is the thymus. This 

occurs in Xenopus at stage 48 (Manning and Horton, 1969), when the animal is about 

8 days of age. By this time the larvae are already feeding and fi-ee-swimming. The 

cellular content (Clothier and Balls, 1985) and role of the amphibian thymus (Horton, 

Horton and Ritchie, In preparation) are homologous to that of mammals, that is it is a 

primary lymphoid organ producing and exporting T lymphocytes to the periphery. A 

small population of B lymphocytes is also routinely present in the Xenopus thymus 

(Williams and Horton, 1980); this contrasts with the mammalian thymus, in which B 

cells are scarce. It is unlikely, however, that the Xenopus thymus spawns these B 

cells. The size of the organ increases rapidly at 2-3 months after metamorphosis, 

when about 1-3x10"^ lymphocytes are present; it then undergoes regression at sexual 

maturity. 

The fiinction of the thymus was first determined from studies on mice in the 

1950's (Miller, 1961). Miller showed that certain immune responses, such as an 

antibody response, are to some extent thymus-independent, while others, such as 

foreign graft rejection, are wholly thymus-dependent, therefore identifying the thymus 

as a vital organ supplying T lymphocytes as defence against infection (Miller, 1961). 

In 1968 investigation of the spontaneous mouse mutant 'nude' (Pantelouris, 1968), in 

which the thymus is hypoplastic, confirmed Miller's observations and irrevocably 

established the concept of separate T and B lymphocyte compartments. 



1.2.1 T lymphocyte development and T cell receptors in birds and mammals 

The lymphocytes of amphibians, birds and mammals have been shown to be 

the executive cells of the specific immune system, and evidence suggests that the same 

is true of fishes (Ellis, 1977). In birds and mammals there are 2 major populations of 

lymphocytes, which are functionally distinct. The T lymphocytes which mature in the 

thymus are involved in cell mediated immunity and exert a regulatory role on the 

second class, the B lymphocytes. The latter are derived from the bursa of Fabricus in 

birds, whereas in mammals they arise from the liver and spleen during foetal life and 

bone marrow post-natally. The B lymphocytes are responsible for antibody 

production. 

The primary role of T lymphocytes in the immune system is to distinguish 

between self and non-self determinants. Recognition of non-self antigens normally 

leads to the activation of distinct subclasses of functional T lymphocytes which , in 

turn, will induce antibody production by B cells and cytolysis of pathogen-infected 

host cells. To distinguish between self and non-self antigens, T lymphocytes utilise 

their antigen receptors. In birds and mammals it is known that these antigen receptors 

are two-chain heterodimers non-covalently associated with the CDS complex. There 

are two distinct T cell receptor (TCR) complexes, which have been identified in both 

mammals and birds, known as the aP- and yS-TCR's, both of which are similar in 

structure and genomic organisation (Brenner et al, 1986; Lahti et al, 1988). The 

structural features of the aP heterodimer are shown in figure 1.1. 

The genes encoding the a, P, y and 5 chains are composed of variable, V, 

diversity, D (except the y chain), joining, J and constant, C, regions. These undergo 

somatic rearrangement during development to create diversity and are located on 

chromosomes 14, 6, 13 and 14 respectively, in the mouse; in fact the 5 chain gene is 

located within that of the a chain locus. 



Figure 1.1 Structure of the human T C R heterodimer (Roitt, Brostoff and Male, 

1993). The TCR a and P chains each comprise two external immunoglobulin-like 

domains (V and C), a transmembrane segment and a short cytoplasmic tail. The a 

and p chains are disulphide linked. The form of the y6 TCR is similar to its aP 

counterpart. In humans the y and 5 chains are either disulphide or non-disulphide 

linked; non-disulphide linked forms have not been reported in mice. 

a 

C D 
C 3 Extracellular region 

Cell membrane 

Intracellular region 

Although T cells expressing aP and yb receptors share some common 

characteristics, they appear to be separate lineages. In the mouse they differ 

significantly in their ontogeny, anatomical distribution and physiological fianctions: 

1.2.1.1 Ontogeny The ap-TCR develops within CD4+8+ 'double positive' 

thymocytes destined to generate CD4"'"8- (helper T cells) and CD4"8"'" (cytolytic T 

cells) 'single positive' T cells, which exit to the periphery (Scollay et al, 1988). 

Eariier in development CD4-8- 'double negative' thymocytes express the yS-receptor 

(Pardoll et al., 1987), while at later times yS-expression on CD4-8- thymocytes is 

greatly reduced or absent. 

In the mouse the expression of yS precedes that of aP-TCR by 1-2 days. 

The sequential appearance of molecules during ontogeny is in general a reflection of 



their phylogenetic history. It is likely therefore that the y6-receptor arose in evolution 

before its aP counterpart. 

The lineage relationship between aP and y5 T cells has been analysed by the 

use of various T cell receptor (TCR) transgenic mice. Commitment to the y5 cell 

lineage seems to be determined not by productive y and 5 gene rearrangements, but by 

nuclear proteins which control y and perhaps 5 chain expression (Haas, Kaufman and 

Martinez-A, 1990); otherwise the aP TCR is formed. 

1.2.1.2 Distribution T cells expressing the aP receptor are the major 

lymphocyte population in the peripheral lymphoid organs, while the y5 T cells are the 

major lymphocyte subset in the epithelia of various non-lymphoid tissues. y5 T cells 

represent about 1-5% of the total cells in the adult thymus. 

1.2.1.3 Physiological functions The repertoire of peripheral aP TCR 

positive T lymphocytes is largely determined by selective events within the thymus, so 

that T cells in the periphery respond to exogenous or endogenous peptides presented 

in the context of self major histocompatibility complex (MHC) molecules. During 

development in the thymus T lymphocytes that express aP T-cell receptors with 

sufficient affinity to MHC molecules expressed on thymic epithelial cells are initially 

positively selected. These cells then undergo a negative selection process, where T 

cells which can react strongly with self-MHC/self-antigens (expressed on dendritic 

cells of the thymus) are inactivated. T cells remaining after these two selection 

processes are allowed to mature to flinctional T cells (Sha et al., 1988). 

At present the selective mechanisms operative for the y6 T cells are poorly 

understood. However a preliminary investigation into the influence of MHC antigens 

on TCR y5 usage in murine CD8"'" intraepithelial lymphocytes (lELs) demonstrated an 

extrathymic selection mechanism for these cells, perhaps in the intestinal epithelium 

and suggested that these cells may exhibit MHC class Il-restricted antigen recognition 

(Lefrancoise^a/., 1990). 



1.2.2 Extra-thymic T cell development 

There is increasing evidence that T cell development can to some extent 

occur outside the thymus in mammals (Kennedy, Pierce and Lake, 1992; Ferrick et 

al., 1989; Hunig, 1983). Indeed it has been known for some time that there is not a 

complete absence of T cells in the nude ('thymusless') mouse, as shown by 

identification of cells bearing the O-antigen (Thy-1) (Raff, 1973). 

The concept of extrathymic T cell development in mammals has been 

reinforced by reports of cells in nude mice showing rearrangements of the genes 

coding for y5 (Yoshikai, Reis and Mak, 1986) and aP T cell receptors (Kishihara et 

al., 1987) and the numbers of cells bearing the T cell markers Thyl, CD4 and CDS 

increase substantially with age in both nude mice and nude rats (Chen et al., 1984; 

Vaessen etal., 1986; Kennedy, Pierce and Lake, 1992). However the number of Thy-

1 positive cells that also express HS A (heat stable antigen - a marker of immature 

thymocytes that usually decreases with age of the mouse) remains at 50%, leading to 

the concept that these cells may resemble immature thymocytes. Also 40% of Thy-1+ 

cells in nude mice express the CD4-CD8- phenotype in contrast to 1-5% in euthymic 

mice. Moreover, the CD4"'" cells of athymic animals do not reject allografts, do not 

induce T-dependent antibody responses, do not evoke delayed-type hypersensitivity 

reactions and do not proliferate to T cell mitogens (Kung and Thomas, 1988; Bell, 

1989), which contrasts with cells which have undergone thymic processing. CD8+ 

cells in athymic animals have a low degree of specific lysis and do not proliferate in 

response to the T cell mitogen, concanavalin A. 

Two populations of CD8"̂  cells have been demonstrated using expression of 

a specific epitope of the differentiation antigen Ly6. Both subsets show cytotoxic 

activity against class I and class I IMHC antigens in allogeneic mixed lymphocyte 

culture. Euthymic mice have both CD8+Ly6C.2- and CD8+Ly6C.2+ subsets in 

roughly equal numbers (Leo et al., 1988), however only the CD8"'"Ly6C.2- are 

thymus-derived. The Ly6C.2 antigen has been found on 85% of CD8+ cells in 

athymic animals (Leo et al., 1988). Perhaps the most persuasive evidence suggesting 



that T cells can develop extrathymically comes from the fact that nude spleen cells 

stimulated in vitro or in vivo with allogeneic cells and exogenous IL-2 develop into 

specific cytotoxic effector T cells (Hunig and Bevan, 1980; Hale, 1980). 

Kennedy et al. have presented evidence that suggests that the spleen and 

lymph nodes in nude mice may serve as sites of this T cell maturation, although CD4"̂  

T cell maturation is driven inefficiently (Kennedy, Pierce, and Lake, 1992). These 

organs do contain T cell subsets characterised as immature, transitional and mature by 

analogy to thymocyte subsets and with age, these T cell subsets progress from 

immature to mainly mature phenotypes. 

The hypothesis that extrathymic T cell development occurs in nude animals is 

not, however, supported by the compromised immunocompetence displayed by these 

animals (Kung and Thomas, 1988). Thus, although CD8"'" T cells in nude mice can 

serve as CTL, the CTL repertoire appears restricted (Hunig and Bevan, 1980). There 

exists a non-thymus derived, natural killer (NK)-like mechanism in nude and euthymic 

mice and rats known as allogeneic lymphocyte cytotoxicity (ALC), which can be 

blocked by anti-CD8 antibody (Bell, 1989). The existence of this phenomenon 

indicates that there is an efficient effector mechanism outside the conventional CTL 

mechanisms, able to recognise alloantigens and kill specific targets. This may explain 

why athymic animals can survive and why they chronically reject allografts. 

1.2.3 y5 T-cell receptor positive lymphocytes 

It has been proposed that y5 receptor bearing cells and other T-like cells in 

nude mice arise from a pre- or non-T cell lineage and belong to a primitive cytotoxic 

defence system. The y5 receptor is, in evolutionary terms, considered to be pre-

thymic and arose before the aP-TCR. The aP-TCR is considered a phylogenetic 

advance linked with the evolution of the thymus (Bell, 1989). The level of expression 

of y5-receptor-bearing cells in nudes is equivalent to that of euthymics, suggesting 

that these cells can arise by a thymus independent pathway (Yoshikai et al., 1988). 

Other types of lymphoid cells and non-lymphoid cells also bear the y5 receptor, for 



example NK-like cells including IL-2 dependent large granular lymphocytes, intra­

epithelial lymphocytes of the intestine and cell lines of dendritic epidermal cells. 

However, recent work on chickens (Dunon, Cooper and Imhof, 1993) does not 

support the concept of thymus-independent yd T cell development. The yd positive T 

cells in the intestine of chicken appear to be thymus-derived. 

The fijnction of cells bearing the yd receptor is not yet known. The fact that 

they can be induced to become cytotoxic effector cells suggests that they are part of a 

defence system against environmental insult, or are designed to survey the organism 

for mutant clones. Janeway et al. (Janeway, Jones and Hayday, 1988) speculate that 

the y5 receptors may be largely specific for a group of class I MHC antigens different 

from those expressed on most somatic cells. The intraepithelial distribution of yd cells 

and their cytotoxic activity has led to the hypothesis that they are involved in immune 

surveillance of epithelial surfaces (Janeway, Jones and Hayday, 1988) acting as the 

first line of defence against invading pathogens, for example Mycobacterium 

tuberculosis, which can stimulate yd bearing cells. 

On activation of yd splenocytes and thymocytes with anti-CD3 (plus 

exogenous IL-1 or 2) or ConA, there is increased expression of CD8 molecules and 

IL-2 receptors on the cell surface, respectively. Y5 cells employ CD3-mediated 

activation pathways very similar to those of aP T cells (Mariisic-Galesic et al., 1988) 

and also mediate spontaneous cytolysis against a variety of tumour targets as do CD8 

positive aP TCR bearing cells (Roitt, Brostoff" and Male, 1993). 

Several lines of y6 receptor expressing cells have been established in mice 

which have cytotoxic activity. Therefore y5 positive T cells may account for some of 

the 'non-MHC restricted' cytotoxic activity seen in human and murine peripheral T 

cells. Murine and human yd T cells have been reported to lyse various targets, such as 

chicken erythrocytes, cells treated with mycobacteria or staphylococcal enterotoxin A 

(SEA) and various leukaemic cells, for example Molt 4. They also produce 

lymphokines, such as IL-4 and suppress B cell responses (Haas, Kaufman and 

Martinez-A, 1990). 



Attempts to identify the ligands for y5 TCR have focused on MHC class I -

like proteins, mycobacteria and heat shock proteins (hsp) (Ferrick, 1989, Allison and 

Havran, 1991). It appears that y5 T cells do not predominantly recognise antigens 

presented by 'classical' class I and class I I MHC proteins, the repertoire specificity of 

the y5-receptor appears to be more limited than that of the aP receptor and includes 

class I or class I-like MHC molecules (Matis, Cron and Bluestone, 1987). 

Recognition is reported to be NK-like and MHC unrestricted. 

1.3 The Immune System of Xenopus 

1.3.1 Lymphoid tissues 

The role of the Xenopus thymus in T lymphocyte dependent events has been 

examined in some depth by early thymectomy (Tx) experiments (Manning, 1971). 

The larval thymus is clearly visible through the transparent skin between the eyes and 

tympanum, which facilitates early Tx. Following Tx Xenopus grow at a normal rate 

and, although lymphoid tissues develop relatively normally, the spleen is reduced in 

weight (Horton and Manning, 1974). 

Tx has a profound effect on immunologic development: it abrogates acute 

allograft rejection and mixed leukocyte reaction (MLR) (Du Pasquier and Horton, 

1976; Horton and Manning, 1972); impairs responsiveness to ConA and PHA (Du 

Pasquier and Wabl, 1977; Du Pasquier and Horton, 1976); and it abolishes cellular 

and humoral responses to T lymphocyte dependent antigens and the low molecular 

weight, IgY, response to DNP-KLH (Tochinai and Katagiri, 1975). However in vitro 

proliferative responses to T-independent mitogens, for example Escherichia coli, LPS 

are not affected by early Tx (Donnelly, Manning and Cohen, 1976; Collie, Turner and 

Manning, 1975) and reactivity towards xenografts are relatively thymic independent 

(Horton et a/., 1992; Clothier et al, 1989). Tx thus showed the existence of thymus 

(T) -dependent and -independent components of the immune system of Xenopus 
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(Manning, 1971). Similar effects of Tx have also been found in other amphibian 

species (Rollins-Smith and Cohen, 1982). 

Immune responses abrogated by early Tx can be restored by grafting of 

allogeneic thymus or injection of dissociated thymocytes into Tx Xenopus (Katagiri 

and Tochinai, 1987; Du Pasquier and Horton, 1982; Rimmer and Horton, 1977). 

A second major lymphoid tissue in all amphibians is the spleen. In the adult, 

this organ is mainly involved in trapping antigen (Ag) and housing proliferating 

lymphoid cells after stimulation by Ag. In the larva it is a major source of B 

lymphocytes (Hadji-Azimi et al., 1990; Du Pasquier and Weiss, 1973). The mature 

spleen has regions of red and white pulp and is a convenient source of both T and B 

lymphocytes (maximum of about 4x10^ lymphocytes in 300g adults) for 

experimental use. The splenocytes of Xenopus can be selectively stimulated to 

proliferate by classic T- and B-cell mitogens, induced to react specifically in a mixed 

leukocyte reaction (MLR) and are capable of differentiation into cytotoxic 

lymphocytes. Perhaps surprisingly splenectomy has no major effect on immune 

responses (Turner, 1973). 

Other sources of lymphoid cells in Xenopus include liver, kidney, mesentery, 

gills and blood, also the ventral and dorsal cavity bodies in larvae and the adult 

intestinal lymphoid tissue. 

1.3.2 Mitogen reactivity and cytokine production 

As already mentioned Xenopus T and B lymphocytes have been shown to 

proliferate in response to classic T- and B-cell mitogens (Nagata, S., 1986) 

respectively. A mitogen is a substance which causes cells, particularly lymphocytes to 

undergo cell division, stimulating them to polyclonal proliferation and subsequent 

maturation. This contrasts with conventional antigens which stimulate specific clones 

of T or B cells, limited by antigen/MHC expression or antigen specificity, 

respectively, of their cell surface receptors. This means that usually only a fraction of 

1% of all the available T or B cells are activated. 
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Soluble concanavalin A (ConA) and phytohaemmaglutinin (PHA) are plant 

polyvalent carbohydrate binding proteins (lectins). These specifically stimulate T 

lymphocytes to synthesise deoxyribonucleic acid (DNA), divide and differentiate into 

effector cells capable of either helping or suppressing a B or T lymphocyte response, 

or acting as killer cells in a cytotoxic reaction. A product of the cell wall of E. coli, 

lipopolysaccharide (LPS) and purified protein derivative of tuberculin (PPD) both 

stimulate B lymphocytes to synthesise DNA, proliferate and differentiate into plasma 

cells, capable of secreting large amounts of immunoglobulins (Igs). This polyclonal 

responsiveness is commonly measured by the incorporation of tritiated thymidine 

([^HjTdR) into newly synthesised DNA which is considered to represent an increase 

in the numbers of dividing cells, a hallmark of the immune response to specific 

antigens. Continued presence of polyclonal mitogens achieves growth and 

differentiation (from precursors to effectors) of the activated lymphocytes. 

The proliferative response of Xenopus to PHA and ConA is apparent as soon 

as the spleen becomes lymphoid, stage 51 (Rollins-Smith, Parsons and Cohen, 1984). 

There is a slight drop in responsiveness at stages 57-59 and then an increase to 

maximal proliferation at about 3 months after metamorphosis. Larval thymocytes 

respond weakly to PHA and ConA, the thymic response to these mitogens largely 

emerging in post-metamorphic life (Williams etal, 1983). This contrasts with 

mammalian development in which thymocytes become responsive to mitogens in 

foetal stages and mitogen responsiveness appears in the spleen around the time of 

birth (Robinson and Owen, 1976). 

The existence of T and B cells in Xenopus was demonstrated by the fact that 

the traditional mammalian T and B cell mitogens also stimulate thymus dependent 

lymphocytes in Xenopus (Nagata, 1986). The cells stimulated by ConA and PHA are 

surface immunoglobulin (sig) negative (Bleicher and Cohen, 1981). Mitogen 

reactivities of lymphocyte suspensions from the spleen, blood, liver, bone marrow and 

thymus reveal organ compartmentalisation for reactivities to thymus-dependent and 

independent antigens. The splenocytes and thymocytes have a greater response to the 
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thymus dependent mitogens whereas cells from the liver and blood respond equally 

well to both groups of mitogens (Green (Donnelly) and Cohen, 1979). 

Splenocytes, but not thymocytes, from Xenopus stimulated in vitro with 

alloantigens or mitogens (PHA, ConA) produce supernatants with T cell growth 

factor like activity (Turner et al., 1991; Watkins and Cohen, 1987; Gearing, 1985). 

Maximal activity is obtained after 24 hours of culture while at 72 hours supematants 

are no longer stimulatory. Splenocytes from seven day thymectomised animals do not 

produce this T-cell growth factor (TCGF) (Turneretal., 1991). More detailed 

studies of PHA splenic lymphocyte culture supernatants showed that they can effect 

growth of thymic or splenic T lymphoblasts; promote growth of alloreactive T cell 

lines; and costimulate, with a submitogenic dose of PHA, thymocytes (Watkins and 

Cohen, 1987, Watkins, Harding and Cohen, 1988). However, these supernatants 

could not effect growth of resting splenocytes. This frog TCGF has a molecular mass 

of 14-21kDa. 

Additional studies demonstrated that PHA-generated supernatants promote 

proliferation of surface immunoglobulin negative cells from Tx Xenopus (Turner et 

al., 1991). Thus it appears that T lymphocytes are involved in producing a number of 

cytokines with mitogenic activity. These cytokines are thought to include interleukin-

1 (IL-1), -2, -4 and/or -5 like molecules. 

1.3.3 Alloreactivity and the major histocompatibility complex 

Allogeneic stimulation (stimulation due to intraspecies genetic variation) of T 

lymphocytes is most effective when foreign MHC antigens are found on the surface of 

the stimulator cells. Although the MHC was discovered in transplantation 

immunology it is now well established that in several species of mammals and birds 

products of the MHC play key roles in antigen presentation to T lymphocytes via the 

TCR, which recognises an antigen/MHC complex (see section 1.2.1). MHC 

molecules are receptors for small polypeptides. They are partly responsible, along 

with the TCR, for the properties we recognise as being characteristic of vertebrate 

13 



adaptive immunity, that is memory, specificity and self recognition. The role of MHC 

proteins is to present processed antigenic peptides to T lymphocytes. Binding of 

intracellular antigenic peptides by MHC molecules occurs within the endoplasmic 

reticulum prior to transport of the nascent MHC class I molecules to the cell surface. 

While, binding of extracellularly derived antigens by MHC class I I proteins occurs 

within endosomes of antigen presenting cells (APC's), that house internalised 

antigens. 

T cells are MHC restricted. This describes the necessity of an antigen-

specific T cell receptor (TCR) to interact with processed immunogenetic polypeptide 

in association with an MHC encoded molecule of the self type. This interaction can 

lead to activation of the T cell. The generation of cytotoxic T lymphocytes and 

collaboration between T and B cells are all self MHC restricted. However many T 

cells can also recognise foreign MHC proteins, for example in graft rejection and in 

mixed leukocyte reactions. This is believed to be due to cross reactivity of the T cells 

concerned, that is foreign MHC appears to be able to mimic the antigen/self MHC 

complex for which the TCR is specific. 

Lower down the phylogenetic scale, the South African toad, Xenopus, 

possesses the equivalent of an MHC. The existence of an MHC in Xenopus was first 

suggested in the 1970's (Du Pasquier, Chardonnens and Miggiano, 1975; Du Pasquier 

and Miggiano, 1973), from in vitro experiments involving the mixed lymphocyte 

reaction (MLR) and the generation of cytotoxic T lymphocytes (CTL), by in vivo skin 

grafting and by the use of antisera that recognise red cell antigens segregating with 

MLR determinants. The generation of CTL's (Bernard et ai, 1979), T-B 

collaboration (Bernard et al, 1981) and the graft versus host (GVH) reaction 

(Nakamura, 1985) were all found to be genetically controlled by the MHC. In 

addition, the role of the MHC in the positive and negative selection of T cells by the 

thymus of Xenopus was also suggested from experiments with thymus reconstitution 

of thymectomised animals (Du Pasquier, and Horton, 1982) and 

thymus/haematopoietic cell embryonic chimeras (Flajnik, Du Pasquier and Cohen, 
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1985). In Xenopus the thymus, transplanted embryonically or into thymectomised 

larval hosts, can confer in vivo tolerance to MHC antigens of the thymus and to 

subsequent skin grafts. However this tolerance is not complete since T cells reactive 

to the MHC of the thymus can be detected by MLR in almost all situations (Arnall 

and Horton, 1987; Flajnik, Du Pasquier and Cohen, 1985; Nagata and Cohen, 1984). 

Experiments using Xenopus chimeras indicate that thymus epithelium can 

effect suppression, rather than deletion, of developing T cells. Thus such chimeras 

will accept skin grafts of the head type, but their lymphocytes can still respond in 

MLC to head type stimulators. Transplanting of thymi, which had been depleted of 

their lymphocytes by y-irradiation, into Tx hosts has enabled studies into the role of 

thymic stromal cells in T cell education (Russ and Horton, 1987). These have shown 

that the irradiated thymus can restore T cell dependent antibody production and 

alloreactivity to early Tx Xenopus and induce in vivo allotolerance towards thymic 

donor strain skin grafts (Arnall and Horton, 1986; Gearing, Cribbin and Horton, 

1984). 

The MHC of Xenopus, Xenopus lymphocyte antigen (XLA), has now been 

documented both biochemically and fijnctionally (Flajnik and Du Pasquier, 1990). 

The MHC of Xenopus is expressed as a single genetic region (figure 1.2) 

Figure 1.2 Diagrammatic representation of the Xenopus major 

histocompatibility complex (Roitt, Brostoff and Male, 1993). 
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Class I , class I I and class I I I molecules have all been described in Xenopus. 

Xenopus is the only ectothermic species where both polymorphic class I and class I I 

MHC gene products have been formally documented (Flajnik and Du Pasquier, 1990; 

Flajnik et al, 1986; Kaufman et al, 1985; Kaufman, Flajnik and Du Pasquier, 1985; 

Flajnik et al, 1984). Evidence suggests that there are also minor histocompatible (H) 

loci in Xenopus, but that these exhibit limited polymorphism (Obara, Kawahara and 

Katagiri, 1983). 

The Xenopus class I I molecules look much like their mammalian counterparts 

and the a and P chains can be cross-linked. Class I I molecules are composed of two 

30-35 kDa integral membrane glycoproteins. Each XL A haplotype seems to carry 2a 

and up to 5 P genes (figure 1.2). Tadpoles and adults express identical class I I 

molecules but with different tissue distribution. Studies with anti-Ae«opM5 class I I 

mAbs (Du Pasquier and Flajnik, 1990; Flajnik, 1990) have shown that a subpopulation 

of splenic leukocytes in larvae (including B cells) are positive for class I I , but larval T 

cells do not express class I I . In the adult both B and T cells express class I I 

constitutively. This contrasts with the mammalian distribution were only B cells 

express class I I . Class I I positive Langerhans-like cells are found in the epidermis of 

Xenopus skin. 

Xenopus class I MHC also appears to be very similar to mammalian class I . 

There appears to be only one class I locus, there being no evidence for the K, D or L 

antigens found in the mouse. The class I a chain has a molecular weight ranging from 

40-44 kDa (depending on the allele examined), while the light chain (the homologue 

of P2-microglobulin), has a molecular weight of 13 kDa. Family studies confirmed 

that the heavy chains are encoded by XLA genes. Class I molecules are found on the 

cell surface of all tissues of the adult, with the highest expression on haematopoietic 

cells including erythrocytes. Tadpoles do not express class I molecules at the cell 

surface - they only appear at metamorphosis, which suggests that class I is not 

essential for function of the larval immune system. There does, however, appear to be 

cytoplasmic expression of a chains in several organs of the tadpole tissues, with 
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highest expression in the thymus (Flajnik and Du Pasquier, 1990). The reason for this 

lack o f expression o f class I during embryonic life may be that tadpoles commit their 

adaptive immune system to humoral immunity at the expense o f the class I-restricted 

cell mediated immunity. That is to say, because tadpoles possess few lymphocytes, 

selection o f a class I-restricted population is precluded and the T cells are then 

dedicated to antigen recognition only in the context of class I I . 

1.3.3.1 In vitro assays to study alloreactivity 

The immune response to MHC incompatibility in Xenopus has been studied 

in vitro by the M L R and cell mediated lympholysis (CML) and in vivo by graft 

rejection (Horton, Horton and Varley, 1989; Lallone and Horton, 1985; Bernard et 

ai, 1979). As in mammals these assays indicate that allogeneic M H C molecules 

stimulate a large proportion o f T cells (Bernard et al, 1979; Du Pasquier and Horton, 

1976; Tochinai and Katagiri, 1975). 

M L R is a model which represents the recognition phase of a response to an 

allogeneic stimulus. While a one-way M L R (in which the stimulating cells are 

inactivated, for example, by irradiation), provides a model for the study o f the 

behaviour o f cells which recognise and respond to the antigenic stimulation only. 

The standard conditions for M L C with Xenopus cells were initially developed 

in 1973 (Weiss and Du Pasquier, 1973), which led onto much wider use o f the M L C 

in genetic and ontogenic studies. It was early studies using this technique that 

indicated that the characteristics described for the genetic control o f M L R for 

mammals are also true for Xenopus (Du Pasquier and Miggiano, 1973). That is, one 

genetic region, a high degree o f polymorphism and haplotype effect (a difference of 2 

haplotypes resulting in a higher stimulation than a difference o f only 1 haplotype). 

Therefore these studies were first to suggest that an M H C exists in Xenopus. 

Generation o f T cell lines specific for certain M H C haplotypes (Watkins, 

Harding and Cohen, 1988) and use o f mAbs against class I and class I I molecules, 

have shown that the M L R is class I I specific (Harding, Flajnik and Cohen, In press). 
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Cell mediated lympholysis (CML) in adult Xenopus has been demonstrated 

against both adult (Lallone and Horton, 1985; Bernard et al. 1979) and larval 

(Horton, Horton and Varley, 1989) M H C disparate targets and also against minor H 

antigens (Cohen, 1971), by application o f several minor histoincompatible skin grafts 

to adult Xenopus over an 18 month period (Horton, Horton and Varley, 1989). 

The cytotoxic activity o f MLR-restimulated lymphocytes is mediated by T 

cells (Bernard et ai, 1979), as shown by the fact that removal o f B lymphocytes, by 

passage of effector spleen cells through a nylon wool column, improves killing on a 

per cell basis. I t therefore appears that the genes responsible for the highly specialised 

fiinction o f T killer cells emerged early in evolution at least at the time of the 

emergence of the amphibians (s 300 million years ago) and that they were already 

linked to the M H C of this species. The responding cytotoxic T-cells specifically 

recognise MHC-linked target molecules on PHA induced lymphoblasts (Bernard et 

al., 1979) as no lysis is observed when the target cells differ from the specific 

stimulators by 2 M H C haplotypes. 

Tadpole cells can be used as target lymphoblasts to be lysed in CML, this 

suggests that class I I restriction of killer cells exists in Xenopus, as larval cells are 

believed only to express class I I (see above). The possibility that higher specific 

chromium-51 (^^Cr) release occurs when adult rather than larval targets are used 

(Horton, Horton and Varley, 1989) may indicate that anti-class I cytotoxicity is also 

important in the adult. 

A study carried out to compare the in vivo and in vitro assays to determine 

which most accurately reflects MHC incompatibility and T lymphocyte function 

(Lallone and Horton, 1985) showed M L R but not C M L to be a good in vitro 

correlate o f the in vivo skin graft rejection. Cytotoxic cells could not be convincingly 

demonstrated against minor histocompatibility antigen disparate targets. 
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1.3.4 Transplantation immunology 

A large volume of research has been carried out to study the response to self 

and foreign grafts in Xenopus. This work, as well as numerous other Xenopus 

studies, has been greatly helped by the development of gynogenetic clones of Xenopus 

(Kobel and Du Pasquier, 1975). 

Production o f gynogenetic clones is a very usefial method for obtaining large 

numbers o f identical individuals o f Xenopus. When X. gilli or X. miilleri are crossed 

with X. laevis individuals some of the hybrid females lay two types of eggs, one 

almost twice as large as the other. The larger eggs are diploid which arises due to 

endoreduplication during meiosis (see figure 1.3). After fertilisation, with normal 

sperm, the larger eggs give rise to triploid individuals, whereas most o f the embryos 

o f the smaller eggs die during development. The diploid eggs have one complete 

chromosome set from each parental genome therefore such eggs have a genotype 

identical to that o f the hybrid mother, as they carry both the Z and W chromosomes. 

In Xenopus the female is heterogametic, ZW and the male homogametic ZZ (Chang 

and Witschi, 1956). Gynogenetic (development o f the ovum without fertilisation) 

development o f the diploid eggs thus results in isogeneic oflFspring. The use o f ultra­

violet (UV) irradiated sperm ensures gynogenetic development o f the eggs, without 

the participation o f the spermatozoan nucleus. 

Gynogenetic development can be confirmed by use o f four tests. First by 

ploidy: all tadpoles developing from diploid eggs activated by irradiated sperm will be 

diploid. Counts o f nucleoli in epidermal cells o f a tadpole show i f the egg was diploid 

(1.6-1.9 nucleoli/cell) or triploid (2.5-2.9 nucleoli/cell) (Kobel and Du Pasquier, 

1975). Secondly the sex of the offspring: all large eggs develop into females. Thirdly 

by the M L R : cells from gynogenetic siblings give a negative MLR, whereas M L R 

between triploid individuals would give positive activation. Fourthly skin graft 

reactions: skin grafts exchanged between gynogenetic siblings survive for greater than 

100 days with no signs o f rejection (Obara, Kawahara and Katagiri, 1983) whereas 

grafts exchanged between triploid siblings will acutely reject the graft. 
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Different families o f X. laevis x X. gilli cross (LG) clones exists whose MHC 

haplotypes have been characterised (Bernard et al., 1979). These clones are 

extremely usefiil in studies of the amphibian immune system. Antibody diversity and 

heterogeneity can be studied in identical individuals. Experiments involving cell 

transfers can be performed. Also investigations into the nature o f the generation o f 

cell tolerance at metamorphosis, can be performed by studying the interactions of 

populations o f larval and adult cells exhibiting no other differences than those due to 

age. 

The response to grafts has been studied in depth in adult Xenopus (Horton et 

al., 1992; Horton, Horton and Varley, 1989; Lallone and Horton, 1985; Obara, 

Kawahara and Katagiri, 1983). Xenopus will tolerate isografts and autografts, but 

reject allografts and xenografts within 3-5 weeks at 23°C (Nakamura et al., 1987). 

Grafts with just minor histocompatibility difi^erences are rejected in 5-8 weeks in 

adults (Obara, Kawahara and Katagiri, 1983; DiMarzo and Cohen, 1982a; DiMarzo 

and Cohen, 1982b). 

Following application o f a foreign skin graft the main sequence of events 

during rejection are: vascularisation of the graft; haemostasis (the graft becomes red 

in appearance, due to breakdown of blood vessels); loss o f graft pigment cells; finally 

complete pigment cell breakdown - this is usually taken as the endpoint o f rejection. 

Incompatible grafts are invaded by lymphocytes within one week, which forms the 

predominant part o f the host cellular invasion. Two to three weeks postgrafting 

necrosis o f the epidermis occurs, the graft being heavily invaded by lymphocytes, 

eosinophils and fibroblasts. 

T cells are intimately involved in allograft rejection, as has been shown by 

early Tx, which results in failure of or, at best, chronic graft rejection (Kaye and 

Tompkins, 1983; Du Pasquier and Horton, 1976; Horton and Manning, 1972). The 

rejection o f allografts in Xenopus is, at the cellular level, different to that o f 

xenografts. T cells predominate within allografts whereas B lineage cells, 

macrophages and polymorphonuclear leukocytes are responsible for the destruction of 
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xenografts (Horton et al., 1992; Clothier et al., 1989). This agrees with observations 

that show that early Tx does not impair xenograft rejection in Xenopus. This may be 

due to the xenogeneic M H C antigens being 'too different' from the self MHC antigens 

to be recognised as altered self by the cytotoxic T cells. Xenoantigens would be 

presented by host antigen presenting cells, thereby leading preferentially to T-helper 

cell activation and eventually to an antibody response. 

Figure 1.3 Formation of haploid (small) and diploid (large) eggs during meiosis 

in hybrid Xenopus. 
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1.3.4.1 Larval transplantation immunology and tolerance 

An interesting time to study the response to allografts in Xenopus is at 

metamorphosis. This is a time when Xenopus must become tolerant to new self 

antigens, for example class I antigens and adult forms o f keratin and haemoglobin. 

Profound immunological changes occur as tadpoles metamorphose into adult 

amphibians. These include the expression o f a different antibody repertoire, a 

lessening o f skin graft tolerance and the appearance o f class I M H C antigens on 

leukocytes. Larvae o f amphibians are immunologically mature, being capable of 

acutely rejecting MHC-disparate allografts in 15-30 days (Horton, 1969). However 

many cases o f tolerance have been observed, in fact minor H antigen disparate grafts 

are routinely tolerated by larvae (DiMarzo and Cohen, 1982a). It is thought that the 

tolerance to allografts at metamorphosis reveals a dampening o f the immune response 

when tolerance to newly arising adult-specific self antigens must occur. Tadpole anti-

adult M L R between lymphocytes o f an isogeneic clone has been observed (Du 

Pasquier, Schwager and Flajnik, 1989; Kaye, Schermer and Tompkins, 1983) which 

may relate to the tadpole recognising adult determinants to which it is not yet tolerant. 

In the larva the ultimate fate of MHC disparate grafts, tolerance or rejection, 

has been shown to depend on a number o f factors. In 1969 it was noted that a 

significant number o f grafts transplanted among siblings survived longer when they 

were transplanted during metamorphosis than when they were grafted after 

metamorphosis. This was shown to be a property of the host and not the graft. 

Chardonnens and Du Pasquier grafted larval and post-metamorphic siblings with skin 

f rom post-metamorphic members of the same sibship. Their analyses showed that for 

a period around metamorphosis Xenopus is predisposed to becoming tolerant 

(Chardonnens and Du Pasquier, 1973). They also proposed that perimetamorphic 

tolerance was preferentially induced to minor histocompatibility antigens 

(Chardonnens and Du Pasquier, 1975). In 1985 Cohen and colleagues carried out 

further experiments to study alio- and self-tolerance in larval Xenopus (Cohen et al., 

1985). Family studies showed that a significant number o f perimetamorphic recipients 
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(10-84% depending on the particular MHC haplotype combination), o f relatively large 

skin grafts, 4mm2, from a parent enjoyed prolonged survival, compared to grafts from 

unrelated individuals. These studies revealed that perimetamorphic tolerance can be 

induced to M H C antigens and that the frequency of tolerance to MHC antigens 

depends on the particular M H C haplotype by which the donor and host differ. These 

experiments also showed that survival times of MHC disparate grafts on 

metamorphosing frogs are similar to those associated with M H C identical but minor 

H locus disparate skin grafts on adult Xenopus. Although tolerance to grafts from 

unrelated individuals was shown to be significantly less easy to induce than when 

parental skin was used, the mean survival times o f unrelated grafts were still longer 

than those seen in postmetamorphic recipients. Therefore partial tolerance can be 

induced to alloantigens encoded for by two as well as by one M H C haplotype 

disparate skin grafts. 

Cohen et al extended the above findings to studies with MHC-defined 

strains, looking at three combinations, MHC identical but minor H locus disparate 

grafts, one M H C - and two MHC-haplotype disparate grafts. The first combination 

showed tolerance to the minor H antigens in every instance (DiMarzo and Cohen, 

1982a). Tolerance was also seen in the second combination, this tolerance being 

more frequent when the donor graft was larger, 89% compared to 10% for smaller 

grafts. As expected from the family studies, tolerance to a two M H C haplotype 

disparity was significantly less frequent, however it was still present. 

Although all the above work was carried out on perimetamorphic individuals, 

this period is not unique with respect to tolerance induction (Cohen et al., 1985; 

DiMarzo and Cohen, 1982a; DiMarzo and Cohen, 1982b). The ultimate outcome of 

a graft, tolerance or rejection, placed on a larva at any developmental stage depends 

on all the above parameters that affect allotolerance expression at the 

perimetamorphic period. 

Frogs which have tolerated a skin graft during premetamorphic or 

perimetamorphic life, have been shown to accept repeat skin grafts from the original 
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donor (but not from third party donors), when transplanted two and a half years 

afterwards whereas such grafts applied to control siblings, not 'tolerised' as tadpoles, 

are rejected (DiMarzo and Cohen, 1982a; DiMarzo and Cohen, 1982b; Barlow and 

Cohen, 1981). Moreover frogs that have received and rejected a graft during larval 

life have been found to reject a second-set graft with accelerated kinetics, showing 

that memory can develop in frogs. Third party grafts are always rejected (Flajnik et 

al, 1987). 

Skin grafts not rejected by tadpoles are not simply undetected by the immune 

system. Allografts are invaded by lymphocytes whether they are tolerated or rejected 

whilst lymphocytes are absent from autografts. This implies that despite tolerance 

allografts are always recognised as foreign (Barlow and Cohen, 1983). 

There are several lines of evidence from in vivo and in vitro experiments to 

suggest that allotolerance, effected by larval grafting, is not due to the absence of 

alloreactive T cell clones, in the tolerant animal. When lymphocytes from tolerant 

animals are placed in mixed leukocyte cultures, with irradiated donor cells, an M L R is 

often seen (Cohen et al, 1985; Barlow and Cohen, 1981). This split tolerance has 

also been observed in mammals. 

Cell transfer (multiple injections of thymocytes and splenocytes into an 

isogeneic adult f rom a metamorphosing animal) studies have shown that the higher 

frequency o f chronic responses or tolerance to skin allografts in larval and 

metamorphosing animals may relate to suppression o f the immune responses to 

histocompatibility antigens (Nakamura et al, 1987; Barlow and Cohen, 1983; 

DiMarzo and Cohen, 1982a; DiMarzo and Cohen, 1982b; Du Pasquier and Bernard, 

1980). Suppressor function in Xenopus is sensitive to cyclophosphamide (Kamali, 

Ruben and Gregg, 1986). 

Late larval thymectomy has also revealed that tolerance to M H C antigens 

induced during the perimetamorphic period is a thymus dependent event (Barlow and 

Cohen, 1983). When larval siblings were thymectomised one day before being grafted 

the frequency o f hosts that rejected grafts increased and mean survival times 
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decreased. However some degree o f tolerance was still seen indicating that there are 

also thymus independent suppressor systems. 

I t has been noted that there is a high corticosteroid plasma level present 

during Xenopus metamorphosis. Corticosteroids are known to inhibit suppressor 

activity therefore this suggests that suppressor fianction is not responsible for the 

allotolerance seen at metamorphosis (Ruben et al., 1989). Corticosteriods are also 

known to prevent proliferation of T cells by PHA. It is possible therefore that the 

compromised T cell fianction seen at metamorphosis may be due to a limited capacity 

for T cell clonal expansion in immune responses. 

1.4 Purpose of Study 

The main aim of this thesis was to probe aspects o f transplantation immunity 

in Xenopus. 

The availability o f monoclonal antibodies directed against Xenopus T cells 

and M H C antigens, which have recently been produced allow one to probe the 

Xenopus immune system in some considerable depth. Monoclonal antibodies (mAb's) 

directed against all Xenopus T cells, putative a|3 and y5 TCR's, the CDS receptor, 

M H C antigens and putative IL-2 receptors were utilised here to study the effect 

allogeneic stimuli have on the splenocyte T cell populations of Xenopus. To my 

knowledge little work has been carried out regarding this issue. I t is known that 

responding cells within the allograft consist largely of T-lymphocytes (Horton et al., 

1992) and that the spleen is a centre of alloimmune reactivity in Xenopus (Horton, 

Horton and Rimmer, 1977). In particular mAb's were used here to give insight into 

the possible role in graft rejection of Y5 T C R positive T cells within Xenopus. Little is 

known about this subpopulation o f T cells in Xenopus - where they originate and their 

fijnction. Evidence from nude mice (Bell, 1989) shows that cells expressing yd chains 

can develop independently o f the thymus; moreover Y5 T C R bearing T cells may be 

involved in cytotoxic responses against alloantigens (Haas, Kaufman and Martinez-A, 
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1990). It was therefore o f interest to probe whether putative yd positive T cells are 

involved in allograft rejection in Xenopus, especially as following early Tx, this 

species can often chronically reject allogeneic transplants (Horton and Manning, 

1972). 

In initial experiments in Chapter 2 flow cytometry was used with the anti-

Xenopus monoclonal antibodies, to identify possible cell surface antigen changes on 

splenocytes during in vivo allograft rejection, with an emphasis on the level o f 

expression of Xenopus aP and y5 TCR bearing cells. Flow cytometric studies were 

also carried out on spleens from Xenopus rendered tolerant to MHC-disparate skin, 

following skin transplantation in larval life. These animals allowed me to probe 

whether cellular changes occurring during rejection also occurred in animals where 

test grafts were being tolerated. Early-thymectomised Xenopus were also grafted to 

observe whether alloimmunisation affects the splenic profile as detected by the mAb's. 

In Chapter 3 various parameters o f the mixed lymphocyte reaction (MLR) 

were explored. Initial experiments addressed the issue of whether in vitro reactivity 

would be significantly elevated by the use of T cell mitogen-activated stimulator cells. 

The eventual goal o f this work (had time permitted!) was to avoid the necessity (Du 

Pasquier, Schwager and Flajnik, 1989; Bernard etal, 1979) o f having to immunise 

animals in vivo (by skin allograft rejection), prior to restimulation of lymphocytes in 

M L R , in order to generate cytotoxic T lymphocyte effectors in vitro. The avoidance 

o f having to carry out an in vivo grafting step would perhaps aid studies probing 

whether cytotoxic T cell responses can be generated in larvae, which are class I M H C 

deficient. I t is known that mitogenic stimulation o f human lymphocytes results in an 

increased expression o f class I I M H C molecules (Roitt, Brostoff and Male, 1993), 

therefore as Xenopus T cells also express class I I molecules, it was predicted that the 

ConA stimulated Xenopus splenocytes would also have increased M H C class I I 

expression. Furthermore a recent report by Harding et al (Harding, Flajnik and 

Cohen, In press) has suggested that stimulating Xenopus lymphocytes with an 

alloantigen or a mitogen does result in increased expression o f class I I M H C antigen. 
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The use o f ConA activated stimulators could result in improved alloantigen 

presentation by these cells, since Harding et ai revealed that class 11 is the effective 

stimulus o f in vitro MLR. 

Work in chapter 3 also characterised, by flow cytometry, the phenotypes of 

T cells from the spleen of Xenopus after alloantigenic and T cell mitogen stimulation 

in vitro. 

In chapter 4 a preliminary investigation into the effects o f the superantigen 

staphylococcal enterotoxin B (SEB), on stimulation of Xenopus lymphocytes, was 

also carried out. Since there are no published reports on whether Xenopus 

lymphocytes respond to such superantigens. In mammals superantigens are known to 

stimulate all T cells with certain Vp epitopes (Marrack and Kappler, 1990; White et 

al., J., 1989; Pullen, Marrack and Kappler, 1988). Although not directly related to 

the main theme o f the work presented in this thesis, these novel studies are reported 

here. 

Conclusions are outlined in chapter 5, which also considers fiature directions 

this work may take. 
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C H A P T E R 2 

F L O W C Y T O M E T R I C S T U D I E S F O L L O W I N G S K I N A L L O G R A F T I N G : 

C O M P A R I S O N O F T C E L L M A R K E R A N T I G E N E X P R E S S I O N I N 

C O N T R O L , E A R L Y - T H Y M E C T O M I S E D A N D S K I N A L L O T O L E R A N T 

XENOPUS 

2.1 I N T R O D U C T I O N 

The nature o f T lymphocyte changes in the spleen of Xenopus, when 

presented with an allogeneic stimulus, has been investigated. 

The major histocompatibility complex (MHC) of Xenopus is responsible for 

acute skin graft rejection and generation o f cytotoxic responses to allogeneic cells 

(Bernard et al., 1979). Adult Xenopus will accept grafts from M H C identical clones 

but reject MHC-disparate and xenogeneic grafts in 24 days. Minor histocompatibility 

antigen disparate grafts are rejected much more slowly. Thymectomy (Tx) results in 

prolonged survival o f allografts (Horton and Manning, 1972) which shows that 

allograft rejection is a thymus dependent event. However, Tx animals can still reject 

xenografts. Allografts and xenografts are rejected by two distinct mechanisms. 

Allograft rejection involves extensive lymphocytic infiltration of the graft tissues, 

while macrophages and polymorphonuclear leukocytes appear to be responsible for 

the destruction o f xenografts (Horton et al., 1992; Clothier et al., 1989). 

The main way in which the immune response to M H C incompatibility, in 

vivo, has been studied in Xenopus, is by grafting specific organs, primarily skin. 

Following application o f a foreign skin graft the main events in rejection are: 

vascularisation o f the graft; normal blood flow in the graft; haemostasis; the graft 

becomes red in appearance, due to breakdown of blood vessels; and loss o f graft 

pigment cells, with complete pigment cell breakdown usually being taken as the 

endpoint o f rejection. During rejection of an allograft, many elements o f the graft are 
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taken up by macrophages and transported via the blood to the liver and spleen (Du 

Pasquier, 1973), which may result in modification of the proportions o f various 

leukocytes within these organs. Therefore the effect that skin allografting has on the 

splenocyte populations, within grafted animals, has been explored here with the use o f 

several newly created monoclonal antibodies (mAb's). The availability o f mouse 

mAb's raised against Xenopus T cells and MHC antigens provide a very useful method 

to probe aspects o f T cell development and use within Xenopus. Particular emphasis 

is placed here on the expression o f the receptors, in grafted animals, to which the 

mouse mAb's D12.2 and D4.3 react. These mAb's react with discrete subpopulations 

o f immunoglobulin-negative lymphocytes. In this laboratory D12.2 usually stains 

between 5 and 10% of splenocytes, while D4.3 stains > 20% thymocytes and 

approximately 55% splenocytes (which represents most o f the 60% T cells found in 

the adult). D4.3 and D12.2 mAb's are thought to recognise the Xenopus TCR aP and 

Y5 homologues, respectively (Ibrahim etal, 1991). F17, a putative Xenopus anti-

CD8 receptor mAb, is also used in these studies, as is the pan-T cell marker 2B1. 

This chapter also probes whether T cell phenotype changes occur in spleens o f skin 

allografted Tx animals. 

Events following application of skin to specific allotolerant animals, have 

also been followed. Although larvae and metamorphosing Xenopus are capable o f 

acutely rejecting allogeneic skin grafts (Obara, Kawahara and Katagiri, 1983) they do 

not always reject grafts, in fact very often there is tolerance of MHC-incompatible 

skin (Cohen et al, 1985; Chardonnens, and Du Pasquier, 1973). The ultimate fate of 

M H C disparate grafts (tolerance or rejection) in larvae depends on size o f the graft, 

degree o f alloantigen disparity between donor and host and developmental stage of 

the recipient at the time of grafting (Cohen et al, 1985); tolerance particularly occurs 

to minor H antigens. Tolerance is immunologically specific to the host and is thought 

to arise as a consequence of the fact that larvae have to become tolerant to new self 

antigens at metamorphosis. It appears that tolerance is due mostly to anergy or 

suppression o f reactive T lymphocytes (Cohen et al, 1985). 

29 



2.2 M A T E R I A L S A N D M E T H O D S 

2.2.1 Animals 

Animals were bred and reared in the laboratory under standard conditions 

(Nieuwkoop and Faber, 1967). They were either outbred Xenopus laevis or 

gynogenetic clones ( L G or L M hybrids (Kobel and Du Pasquier, 1975)), from 3-4 

week old larvae up to 12 month old adults. The animals, and their ages, used in each 

experiment can be found in the Results section. 

The animals were reared at 23 ± 3°C, in dechlorinated tap water. Larvae 

were fed nettle powder twice weekly and after metamorphosis the froglets were fed 

Tubifex worms and ground pig's heart. 

2.2.2 Early Thymectomy 

Animals were thymectomised (Tx) by microcautery at 5-6 days as previously 

described (Horton and Manning, 1972). The absence of a thymus was routinely 

checked in larval life by stereomicroscopic observations and by dissection o f adults on 

killing. 

2.2.3 Skin Grafting 

The donor animal was heavily anaesthetised in a solution o f 3-aminobenzoic 

acid ethyl ester and the appropriate number o f squares, 3mm2, o f dorsal or ventral 

skin removed for grafting. Care was taken not to bruise the skin with the forceps as 

some areas o f the graft could then show signs of non-specific damage. 

Alio- or isogeneic skin was then transplanted to the graft bed, prepared by 

removing an appropriate piece o f dorsal skin from an anaesthetised adult. Autografts 

were also performed, here a 3mm2 square was cut in the dorsal skin o f an 

anaesthetised adult; one side of the graft was not cut through so as to help retention 

of the autograft (see Plate 2.1). After application of the graft the adult hosts were 

initially kept in a sufficient volume of water to keep just their ventral side wet for 8-10 
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hours and then placed in a normal volume of water (approximately 5 litres (1) in a 91 

tank) by which time the grafts had usually adhered to the host skin. 

Larvae (stage 54) received ventral skin allografts from adult donors, to 

enable long term monitoring. A l.Smrn^ graft was placed in a prepared graft bed just 

posterior to the eye. Grafted larvae were kept with their ventral surfaces moist for 1-

2 hours, prior to returning to aquaria (81 dechlorinated water). 

Al l animals were kept at 23°C and the grafts observed stereo-microscopically 

3 days a week for up to 6 weeks post-grafting, the state o f the grafts being noted and 

photographs taken. Rejection was considered complete when all signs o f 

guanophores (pigment cells) had been lost. 

2.2.4 Indirect-Immunofluorescent Staining and Flow Cytometry 

Immunofluorescent staining of the froglets splenocytes was carried out at 

various times post-grafting, to observe change in cell surface markers of the 

splenocyte population. 

The animals were heavily anaesthetised in 3-aminobenzoic acid ethyl ester, 

the spleen removed and placed in amphibian phosphate buffered saline (APBS) (see 

Appendix A) containing 0 .1% sodium azide and 0.1% bovine serum albumin (BSA), 

as a source o f irrelevant protein. A splenocyte suspension was then prepared by 

teasing the spleen with fine needles. The cells were washed in APBS, counted and 

adjusted to 1x10^ cells/ml. The cell suspension was then divided into 200|il aliquots 

(2x10^ cells for staining) in Falcon 5ml tubes, centrifiaged at 300g, at 4°C for 10 

minutes, the supernatant removed and the cells incubated on ice for 20 minutes with 

50|xl o f the appropriate monoclonal antibody (mAb - see Table 2.1). These stained 

cells were pelleted and washed twice in 2ml APBS. The cells were then incubated, on 

ice for 30 minutes in the dark, with 50|il of a 1:20 suspension o f a flourescein 

isothiocyanate (FITC)-conjugated secondary rabbit anti-mouse immunoglobulin (Ig) 

(Fab-fragment). The FITC-conjugated secondary antibody had been preabsorbed 

with a 1:20 dilution of Xenopus serum, to reduce non-specific staining. For single 
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staining, that is FITC only, the cells were then pelleted, washed twice in 2ml APBS 

and finally resuspended in 400|.il APBS. For dual staining, after incubation with the 

FITC-conjugated secondary antibody, the cells were washed twice in 2ml APBS 

containing mouse serum (1:100 dilution). The mouse serum was required to absorb 

any o f the FITC-labelled anti-mouse antibody not bound to the primary mAb's. Cells 

were then stained with 50|.il o f a phycoerythrin (PE)-conjugated mAb (see Table 2.1) 

for 20 minutes, on ice. Cells were finally washed twice in APBS and resuspended in 

400|il APBS. 

Cells (10,000 per sample) were analysed on either a Coulter Epics flow 

cytometer or a Becton Dickinson FACS Scan. During analysis the cells were gated to 

exclude erythrocytes and dead leukocytes (see Appendix B) , from the statistical 

analysis. Any counts that could be due to non-specific binding o f the mAb's were 

eliminated by staining 1 aliquot o f the cells with either the FITC control - a mouse 

anti-chicken thymocyte mAb (CT3), or the PE control - a non-specific mouse IgGl 

PE-conjugated mAb. These control samples were run through the flow cytometer 

and a gate set so that 97-98% of the CT3 or Ig-PE binding was not included when 

counting. 

2.2.5 Activation of Splenic T Cells with Concanavalin A 

Spleens were removed from intact and Tx X. laevis at 8, 21 and 27 days 

post-grafting to monitor the response of their T lymphocytes to concanavalin A 

(ConA). The spleen was dissociated by crushing between the frosted ends o f 2 sterile 

glass slides and washed in amphibian-strength Leibowitz-15 (L-15 - Flow Labs) 

amphibian culture media, supplemented with 1% foetal calf serum (FCS - Gibco), 

0.01 M HEPES buffer, 50 lU/ml penicillin, 50|.ig/ml streptomycin, 2.5ng/ml 

amphotericin B, 1.25 m M L-glutamine, 18|al/ml sodium bicarbonate (all from Flow 

Labs) and 0.083mM mercaptoethanol (BDH), The number o f viable lymphocytes was 

counted using a haemacytometer, by trypan blue exclusion: cells were diluted 1:1 in 

trypan blue, viable cells excluded trypan blue whereas dead cells took up the dye. 
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The lymphocytes were then adjusted to IxlO^ cells/ml and plated out in V-bottomed 

96 well tissue culture plates at IxlO^ cells/well in L-15 amphibian medium either with 

or without 2.5|^g/ml ConA (see Appendix C). The cells were cultured at 26°C in a 

humidified atmosphere of 5% carbon dioxide ( C O 2 ) in air, for 48 hours, then 

1 microCurie (|jCi) tritiated thymidine ([^HJTdR), specific activity 5 Ci/mmol, was 

added per well and the cells incubated for a further 24 hours. The cells were then 

harvested using a Skatron cell harvester onto 0.2fim Whatman filters, the filters dried 

and placed into 5ml scintillation vials. Four ml of scintillation cocktail (Betaflour, 

National Diagnostics) was added and the disintegrations per minute (dpm) calculated 

on a Packard scintillation counter. 
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2.3 R E S U L T S 

2.3.1 Comparison of the Response to Skin Allografts in Three Experimental 

Groups 

2.3.1.1 Control animals 

The external appearance following the typical stages of rejection of primary 

LG15 grafts on an adult X. laevis (thymus intact) are shown in Plate 2.1. The 

response to allografts seen on all the intact hosts was typical of allogeneic rejection 

seen by others, with vascularisation of the graft, followed by haemostasis and then 

pigment cell breakdown. 

Autografts were always permanently tolerated. As can be seen from Table 

2.2, intact X laevis, LG15 and LG3 of 3 months and older rejected allogeneic 

primary grafts from 16-22 days. Secondary grafts, carried out 1-2 months following 

primary skin graft rejection, were generally rejected in an accelerated manner. LG3 

and L G 5 Xenopus clones have the b MHC haplotype in common. This may explain 

the accelerated rejection of an LG5 skin graft applied to the LG15 animal which had 

previously received an LG3 skin graft (Table 2.2). 

2.3.1.2 Thymectomised animals 

Plate 2.2 shows the appearance of a healthy tolerated LG15 skin graft 21 

days post-grafting onto a 5 month old 5-day-Tx animal. 

Table 2.3 shows typical results of the outcome of allografting 5 and 6 day Tx 

X. laevis and LG3 animals. On animals of up to 5 months of age allografts showed no 

signs of rejection and were tolerated for at least 100 days. However the results reveal 

that four 6 month old Tx X. laevis acutely rejected LG15 skin grafts in 21 ± 4 days. 

This was an unexpected result as Tx animals of this age usually chronically reject 

allografts in greater than 60 days, if at all (data from this laboratory). 
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2.3.1.3 Tolerant animals 

The LG3 animals which initially received semi- and fiilly-MHC disparate, 

primary skin grafts when 3 week old larvae (stage 54) achieved vascularisation of the 

grafts and permanently tolerated them (Table 2.4). Only one transplant, from an LM3 

donor, was chronically rejected in 33 days. These animals had all passed through 

metamorphosis by 28 days post grafting. They were specifically tolerant only to the 

haplotype of the primary graft, as shown by regrafting at 7 and 9 months old (Table 

2.4). Thus LG3 animals which had tolerated LG5 or LM3 adult skin grafts tolerated 

subsequent skin grafts of the same origin whereas LG3, tolerised to LG5, 

subsequently acutely rejected LM3 skin grafts. 

2.3.2 Flow Cytometry of mAb-Stained Splenocytes from Grafted Animals 

Flow cytometry was carried out on intact and Tx X. laevis animals grafted 

with L G l 5 skin and also on LG3 animals, including those rendered tolerant by larval 

grafting. 

2.3.2.1 Control Xenopus laevis 

On harvesting the spleen for staining the number of lymphocytes was 

counted. This often revealed an increase in the number of cells from intact animals 

following allografting compared to control and autografted animals. 

Flow cytometry revealed no obvious increase in the size of the X. laevis 

lymphocytes following application of primary L G l 5 skin grafts. This can be seen 

from the dot plots, which show the size of the cells plotted against the granularity (see 

Appendix B). However there was a slight increase in the mean fluorescence of the 

2B1 and D12.2 positive cells between the control and allografted animals, for example 

at 14 days post-grafting, see Figure 2.1. The mean fluorescence reflects the number 

of markers per cell, so this suggests that following allogeneic challenge there is an 

increase in expression of these 2 cell surface receptors. 
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Slight variations were seen in the percentages of T cell markers in control 

and grafted intact X. laevis. There was a notable increase in the number of D12.2 

positive cells (see Figure 2.1 and Tables 2.5-2.7). However, no definite differences in 

the level of staining of any of the other mAb's could be concluded. Table 2.5 

compares T cell surface antigen expression 14 days post-autografting/allografting to 

5 month old Xenopus, when no dramatic differences in markers was evident, except 

for the 14% D12 .2, noted in one of the allografted animals. Table 2 .6 probes T cell 

markers, using dual colour fluorescence, at 24 days post-grafting. An increased level 

of D12.2 positive cells is again suggested, also these mostly co-express 2B1, F17 and, 

surprisingly, D4.3 (see Figure 2.2). Table 2.7A probes the splenic phenotypes in 5 

and 6 month old intact animals following allografting. Increased numbers of D12.2 

positive cells, which also bore the 2B1 T cell marker (indicating that they are indeed T 

cells) were found. The 2B1 marker is thought, in Xenopus, to stain the equivalent of 

the CDS cell surface receptor (Cooper, M. D., Unpublished), which is found on all 

mammalian T cells and a sub-population of B cells. 

2.3.2.2 Thymectomised Xenopus laevis 

Flow cytometry was also carried out on splenocytes taken from siblings of 

the above X laevis, which had been Tx at 5 days and had received LG15 grafts 

(Table 2.7B). Tx animals had a greatly reduced number of'T-like' cells compared to 

intact animals. By 5-6 months there was approximately 8-9% 2B1 positive cells, 

compared to no T cells in younger Tx animals (Horton et ai. In preparation). The 

mean fluorescence of the 2B1 positive cells from the Tx animals was always lower 

than that seen in intact animals (Figure 2.3), indicating less markers per cell. There 

was no obvious increase in the percentage or expression of any particular T-cell 

marker in the Tx animals, following application and tolerance of allografts. However 

4 of the Tx animals, studied here, had acutely rejected LG15 skin allografts (see Table 

2.3). Flow cytometry suggested a slightly increased percentage of D12.2 positive 

cells (11%)) in one of these latter animals, when examined at 20 days post-grafting. 
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This same Tx animal had 14% F17 positive cells compared to 3-7% seen in the other 

Tx animals (Figure 2.3). In vitro experiments showed that the low level of T cells, 

found in the Tx animals, did not allow a response to ConA (see section 3.2.2.1 and 

Table 2.8). However, the presence of the D12.2/F17 positive lymphocytes could 

explain the fairly acute allograft rejection. 

2.3.2.2.1 Response to ConA of splenocytes from 6 month old intact and Tx 

allografted X. laevis 

Response to ConA was carried out on splenocytes from 6 month old intact 

X. laevis and 5 day TxX. laevis which had received LG15 grafts (Tables 2.2 and 2.3). 

The intact animals had rejected their allografts within 17 days and the Tx animals 

were from the group which had rejected allografts within 28 days. 

Controls responded well to the ConA (see Table 2.8). The Tx animals did 

not respond to the mitogen (SI ~ 1, Table 2.8), at 8-27 days following allografting. 

This showed an absence of reactive T cell clones in the Tx animals, although members 

of this group had rejected allografts in an equivalent time to that seen in intact 

Xenopus (Table 2.3). 

2.3.2.3 Studies on LG3, including skin allotolerant animals 

These animals were used to probe whether the increase seen in D12.2 

positive cells, following allografting of normal controls, would appear when animals 

tolerant of a donor received a second graft from that donor. Since LG3 were used 

here, the studies began by observing cellular events in the spleens of adult LG3 

animals (which had not been rendered tolerant) following primary skin grafting. Table 

2.9 shows the splenocyte phenotypes, of intact LG3 animals grafted with L G l 5 skin. 

The intact LG3 animals did not show the increase in D12.2 and F17 positive cells seen 

in X. laevis following allograft rejection. However these animals had rejected the 

L G l 5 skin graft in 20 days (Table 2.2) and their splenocytes were stained 32 days 
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post-grafting. It is possible that the observed splenocyte phenotypes had returned to 

that of an unstimulated population. 

Studies on animals rendered tolerant in larval life are shown in Table 2.10 

(A and B). An increase in D12.2 positive T cells was not observed following grafting 

(at 9 months of age) with a transplant destined to be tolerated. There was however, 

an increase in D12.2 staining in two animals tolerant to LG5, which at 9 months had 

received LM3 grafts, 3 and 4 weeks prior to testing. 
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2.4 D I S C U S S I O N 

Flow cytometry was used with a.nt\-Xenopus monoclonal antibodies, to 

identify possible cell surface antigen changes on splenocytes during in vivo allograft 

rejection, with an emphasis on the level of expression of Xenopus T cell markers. The 

spleen has previously been identified as a centre of alloimmune reactivity in Xenopus 

(Horton, Horton and Rimmer, 1977). 

2.4.1 The Effect of Allografting on Splenocyte Phenotype in Intact Animals 

The acute rejection of skin allografts observed by the intact adults was as 

expected (Obara, Kawahara and Katagiri, 1983). T lymphocytes are intimately 

involved in this allograft rejection (Horton et ai, 1992; Clothier et al 1989). There is 

extensive lymphocytic infiltration of the graft tissues which could be related to T-

helper or T-cytotoxic activity, which is involved in allograft rejection in mammals. 

In Xenopus the spleen contains specific alloreactive cells capable of 

differentiation into cytotoxic lymphocytes which specifically recognise MHC-linked 

target molecules on lymphoblasts (Bernard et al, 1979). In mammals cytotoxic T 

cells express the CDS cell surface receptor and so during allograft rejection an 

increase in the number or expression of these cell surface molecules would be 

expected, probably in the spleen (Horton, Horton and Rimmer, 1977). The putative 

Xenopus anti-CD8 mAb, F17, was therefore utilised to see whether there was an 

increase in these cells in the spleen during the graft rejection response, to determine if 

these cells could possibly be the cytotoxic effector cells. Such a projected increase 

was not obvious, there being only a slight increase in CD8 positive cells during 

rejection, approximately 27% to 31%. However there was a difference in the number 

of CDS positive cells which also express the yb TCR: from 4% in autografted control 

spleens up to 11% of F17 positive splenocytes from animals which have received 

L G l 5 skin grafts. The majority of the yS positive cells in allografted Xenopus also 

express the putative CDS marker, as labelled by the mAb 2B1. After stimulation of 
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murine CD3+CD4-CD8- yd splenocytes, with anti-CD3 mAbs, or ConA, there is an 

increase of the yd cells which co-express C D S on their cell surface (Han Cheng et al, 

1991). The findings in Xenopus may reflect an increase in the number of yh T C R 

positive cells with cytolytic properties, following allogeneic challenge. It is thought 

that the D12,2 antibody recognises the Xenopus y6 T C R homologue (Ibrahim et al, 

1991). Little is known about this subpopulation of T cells in Xenopus, regarding their 

origin and their ftinction. Conversely, in mice and humans much is known of their 

origin and location. In humans there are approximately 12% C D 3 - Y 5 positive T cells 

in the spleen and a variable subset, 30-80% of yh positive lymphocytes also express 

C D S and/or C D S cell surface markers (Inghirami et al, 1990). 

The fiinction of Y5 T C R positive cells in mammals is under debate. Two 

potential roles of yS T C R positive cells have been suggested: surveillance of epithelia, 

monitoring the integrity of the cell layers that separate the internal from the external 

milieu; and differentiation of T cells bearing aP receptors in the thymus (Janeway, 

Jones and Hayday, 1988). All human CD3-Y5 cell lines express a broad range of 

cytolytic activities (Mariisic-Galesic et al. 1988) and in mice epithelial y5 positive cells 

can be induced to become cytotoxic effector cells. The ligands of y5 T C R positive 

cells in mammals remain to be ftilly elucidated, but they have been found to recognise 

evolutionary highly conserved antigens such as mycobacterium and/or heat shock 

proteins (Haas, Kaufman and Martinez-A, 1990; Lefrancois et al, 1990). In the 

majority of cases this recognition is not MHC restricted, however, they can also 

recognise class I or class I-like molecules in both humans and mice (Ferrick et al, 

1989). 

It has been suggested in mice that Y5 TCR-bearing T cells may be involved in 

cytotoxic responses against alloantigens (Haas, Kaufman and Martinez-A, 1990). 

This is in agreement with the results shown here which show an increase of y5 T C R 

positive/CD5 positive cells following allogeneic challenge in Xenopus. The 

expression of CDS by these cells would seem to suggest that they are not NK-cells, 

which are also y5 receptor positive in mice. 
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Stress proteins have also been suggested as ligands for y5 cells. These stress 

proteins are highly conserved through phylogeny from prokaryotes to eukaryotes 

(Lindquist and Craig, 1988). There is increased expression of these in response to 

environmental stress or following infections. An increased expression of stress 

proteins following application of allografts could therefore occur, resulting in the 

increased expression of yd cells seen in Xenopus. Stress proteins are also major 

immunogens for aP receptor positive T cells and B cells. 

The increase of yd T cells in the splenocyte population seen in animals 

rejecting allografts, indicates that y5 T cells in Xenopus are involved in the rejection 

process. They may act as accessory cells, producing lymphokines which enhance 

cytotoxicity, or could be directly involved, making use of their cytolytic properties to 

destroy allogeneic cells. 

2.4.2 The Effect of Allografting on Splenocyte Phenotype in Thymectomised 

Animals 

As expected the Tx animals generally tolerated allografts (Flajnik et al, 

1987; Du Pasquier, Schwager and Flajnik, 1989). However, unexpectedly, four Tx 

X. laevis acutely rejected L G l 5 skin grafts, although their splenocytes were unable to 

respond to the T cell mitogen, ConA. 

Early thymectomy resulted in a great reduction in the number and level of 

expression of cells staining with the T cell mAbs, as has been seen elsewhere (Horton 

et al 1992). However, by 6 months there were approximately 8-9%) 2B1 positive 

'T-like' cells. In nude mice an increase of CDS and 'T-like' cells is seen with age (Bell, 

1989). Normal levels of Y5 T C R positive cells can mature in nude mice, while there 

are greatly reduced levels of aP T C R positive cells. This was also seen in the Tx 

Xenopus where similar levels of yb T C R positive cells to intact animals were seen, but 

there was a profound reduction of aP T C R positive cells. In Tx Xenopus there was a 

1:1 ratio of a^.y5 T C R positive cells, whereas in intact animals this ratio was nearer 
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6-8:1. This may explain the inefficient allograft rejection, which involves aP T C R 

positive cells in mammals. 

The Tx animals which had rejected LG15 skin grafts displayed a slight rise in 

the number of y5 T C R positive cells. Such cells could account for the alloreactivity 

seen in these animals. 

The level of 2B1 positive cells in the Tx animals at 6 months of age deserves 

comment. At this time there was approximately 1x10^ cells present in the spleen of 

these Tx animals, of which 9% (that is, 0 .9x10^ cells) would be 2B1 positive. It has 

been shown that injection of just 1x10^ T lymphocytes is required to restore skin 

allograft rejection in nude mice (Bell, 1989). This suggests that these Tx Xenopus 

should be able to reject their allografts. However, the fact that the majority of these 

Tx animals tolerated allografts suggests that there may be a fundamental flaw in their 

TCR's, resulting in an inability to provide help, cytotoxicity or release cytokines. It 

has also been suggested with nude mice that there is an intrinsic defect in their T cell 

surface receptors which results in an inability to carry out normal functions such as 

response to T cell mitogens. This was also seen in the Tx Xenopus since the 'T-like' 

cells from these animals did not proliferate in the presence of ConA. This showed an 

absence of reactive T cell clones in these animals, although they had acutely rejected 

the skin grafts. 

Evidence from nude mice (Bell, 1989) shows that cells expressing y5 chains 

can develop independently of the thymus, maybe in the spleen or lymph nodes 

(Lefrancois et al., 1990), and therefore these could be the origin of the 'T-like' cells 

seen in the Tx Xenopus of above 5-6 months of age. XT-1 (an anti-T cell mAb) 

positive cells have been found in the basal epidermal layer of intact and Tx Xenopus 

skin (Horton et al., 1992). These cells may represent one population of non-thymus 

derived 'T-like' cells found in mammalian epithelia. It would be interesting to see if 

these cells also express the y5 TCR. 
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2.4.3 Flow Cytometric Studies on Allotolerant Xenopus 

In Xenopus the allodestructive mode of immunity matures gradually during 

the entire larval period. Larvae are capable of acutely rejecting allogeneic skin grafts 

(Obara, Kawahara and Katagiri, 1983), however larvae and metamorphosing A'enopw^ 

do not always reject grafts, in fact very often there is tolerance of MHC-incompatible 

skin (Cohen et al., 1985; Chardonnens, and Du Pasquier, 1973). 

The artificial induction of tolerance to non-self has served as a model for 

understanding the events responsible for induction and maintenance of self-tolerance. 

Specific immunological tolerance to alloantigens encoded for by major and minor H 

loci can be induced by simply skin grafting X. laevis at an appropriate stage of 

development and in an appropriate donor-host combination. This induction of 

tolerance was shown here by grafting LG3, stage 54, larvae with semi- and 

fully-disparate MHC skin grafts. This tolerance was also shown to be specific for the 

M H C type of the larval donor, which confirms previous reports (Cohen et al, 1985). 

The fact that this tolerance inducibility is dependent on the host and not lack of 

antigenicity of the graft (Chardonnens and Du Pasquier, 1973) was confirmed here by 

the fact that LG3 animals not 'tolerised' as larvae rejected equivalent skin grafts. 

There is a higher incidence of tolerance when the donor and host share H 

antigens (Cohen et al, 1985; Chardonnens and Du Pasquier, 1973), which may 

explain why one of the LM3 grafts was rejected by an LG3 larva. LM3 differs from 

L G 3 by two MHC loci, MHC haplotypes wy and bd respectively, whereas LG5 and 

L G 3 share the b MHC locus. Tolerance to two MHC haplotype disparate grafts is 

usually significantly less than that seen with one MHC haplotype difference (Cohen 

et al, 1985). The rejection of the LM3 {wy) graft by LG3 {bd) larvae was probably 

due to the double haplotype difference. Also the LM3 clone is a result of a cross 

between X. laevis and X. miilleri, and so contains MHC haplotypes from a different 

Xenopus species to that of the LG3 animals. This may therefore have been 

recognised as xenogeneic by the LG3 and have been rejected by an humoral rather 
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than a cellular response (Horton et al, 1992). However, this would not explain why 

six of the LM3 grafts were permanently tolerated. 

The splenocyte phenotypes of tolerant animals were observed to see if there 

was any decrease in the number of cells thought to be involved in allograft rejection. 

There was no obvious decrease in the cell numbers or level of expressions by any of 

the observed cell surface markers. 

It has been suggested that the cytotoxic effector part of the alloresponse is 

inhibited in tolerant Xenopus. The flow cytometric observations presented here 

revealed no alteration in the splenic T cell antigens following application of grafts 

from the tolerance-inducer donor, whereas increased y5 cell percentages were seen 

following third party graft application. Suppressor effector cells have been 

demonstrated in the spleen, but not the thymus of Xenopus. However, the thymus is 

thought to induce suppressor effector cells in splenic tissue by production of a 

humoral factor (Ruben et al., 1985). Therefore, although here there was no obvious 

increase or decrease of any of the T cell phenotypes in the tolerant Xenopus, there 

could conceivably be a rise of suppressor cells following test graft application, to 

which a marker has not been attributed. 

It appears from the above work that skin tolerant animals may not display 

alterations in splenocyte phenotype following application of skin from the tolerance-

inducing donor. 

Overall, the findings indicate that events such as elevated y5 T cells, in the 

spleen during normal graft rejection are associated with the rejection process. The 

increase not being caused by a property of the foreign skin, for example release of 

cytokines, which are unrelated to the rejection events. 
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Table 2.1 Summary of the Properties of the Monoclonal Antibodies which were 

used to probe changes in Splenocyte Phenotype 

All the mAb's used were raised in mice. The following table describes the 

properties and nature of the antibodies used: 

mAb Cell surface receptor 

stained 

Concentration 

used for staining 

Nature of mAb 

used 

CT3a chicken thymocytes 1:10 SN 

Ig-PEb mouse IgGl 

(specificity unknown) 

1:40 P 

2B1 All Xenopus T cells 1:200': P 

D4-3 Xenopus ap TCR? 1:200 P 

D12-2 Xenopus y5 TCR? 1:200 P 

F17 Xenopus CDS 

receptor 

l:200d P 

AM22 Xenopus CDS 

receptor 

1:4 SN 

8E4:S7 Xenopus surface IgM^ 1:20 SN 

X T l Xenopus X T L A 

receptor 

1:4 SN 

AM20 Xenopus MHC 

class II 

1:4 SN 

FJ17& 

20G2 

Xenopus IL-2 

receptor 

1:4 SN 

a = F I T C negative control; b = P E negative control; c = used at 1:100 for P E staining; 

d = PE-labelled only; e = shows the total number of B cells; T C R = T cell receptor; 

P = purified mAb solution; SN = crude hybridoma supernatant. 
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Plate 2.1 External appearance of (A) a healthy autograft on intact X. laevis 

6 days post grafting, showing where the skin has been left uncut to aid autograft 

retention (a); and (B) primary LG15 skin grafts on control A', laevis (i) 6, (ii) 13, 

(iii) 16 and (iv) 22 days post-grafting, showing enlarged blood vessels (b) and 

pigment cell destruction (c and d), leading to completion of rejection at 22 days. 

(A) Autograft 

0.5mm 

(B) Primary L G l 5 skin graft 

u) 

4(. 



(ii) 

(iii) 

1 

(iv) 

•1 
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Plate 2.2 External appearance of (A) tolerised and (B) rejected LG15 skin grafts 

on 5 day Tx and intact X. laevis, respectively, 21 days post grafting. 

(A) 

(B) 

0.6mm 

4S 



Table 2.2 Characterisation of the outcome of primary and secondary skin 

allografts in intact adults. 

Host 
(age in 

months) 

Donor Survival of 
primary grafts 

Survival of 
secondary grafts 

Host 
(age in 

months) 
Primary Secondary 

Survival of 
primary grafts 

Survival of 
secondary grafts 

X. laevis 
(3) 

LGlSb LG15 19 + 3 (n=5) 13 ± 2 

X. laevis 
(5) 

LG15 nd 19± 1 

X. laevis 
(7) 

LG15 nd 16 ± 1 

LG15 
(10) 

LG3C LG3 20 14 ± 1 

LG15 
(10) 

LG3 LG5 22 ± 2 16 (n=l) 

LG3 (3.5) LG15 nd 20 
LG3 (7) LG5d LG5 1 8 ± 2 20 (n=l) 

a = Survival times are shown in days ± standard deviation, n = 3 or 2 animals for 

primary and secondary grafts respectively, unless otherwise stated; b = MHC 

haplotype, ac, c = MHC haplotype, bd, d = MHC haplotype, be; nd = not done 
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Table 2.3 Outcome of primary and secondary skin allografts in 5 day Tx adults. 

Host 
(age in 

months) 

Donor Survival of 
primary grafts 

Survival of 
secondary 

grafts 

Host 
(age in 

months) 
Primary Secondary 

Survival of 
primary grafts 

Survival of 
secondary 

grafts 

X. laevis 
(3 & 5) 

LG15 LG15 > 100 > 100 

X. laevis 
(6) 

LG15 nd 21 +4 
(n=4) 

LG3 
(3) 

LG15 nd > 100 
(n-5) 

a = Survival times are shown in days ± standard deviation, n = 3 unless otherwise 

stated. 
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Table 2.5 Distribution of T cell subgroups in the spleen of 5 month old intact 

X. laevis 14 days post grafting with either an autograft or a primary LG15 skin 

graft. 

Treatment of X. laevis prior to 
staining^ 

Percentage of positive stained cells'' Treatment of X. laevis prior to 
staining^ 

mAb's used 

Treatment of X. laevis prior to 
staining^ 

2B1 D4-3 D12-2 F17 

Autograft 50 48 7 21 
Autograft 60 60 5 26 

LG15 60 54 14 24 
LG15 53 56 8 19 

a = graft survival times are shown in Table 2.2; b = the lymphocytes were stained with 

FITC-labelled antibody only. 
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Table 2.7 Distribution of T cell subgroups in the spleen of 5-6 month old intact 

and 5 day TxX. laevis following grafting with a primary LG15 skin graft. 

A: Intact laevis 
Treatment of X. laevis 

prior to staining^ 
Percentage of positive stained cells^ Treatment of X. laevis 

prior to staining^ 
mAb's used 

Treatment of X. laevis 
prior to staining^ 

2B1 D4.3+ D12.2+ F17 

Treatment of X. laevis 
prior to staining^ 

2B1 

2B1+ 2B1- 2B1+ 2B1-

F17 

20 days post grafting: 
No graft 64 60 5 5 5 32 

Autograft 76 65 2 6 3 38 
LG15 75 70 3 22 4 47 

27 days post grafting: 
No graft 67 57 2 5 2 37 

LG15 59 51 3 17 2 36 

B: 5 day Tx X. laevis 
Treatment of X. laevis 

prior to staining* 
Percentage of positive stained cells^ Treatment of X. laevis 

prior to staining* 
mAb's used 

Treatment of X. laevis 
prior to staining* 

2B1 D4.3+ D12.2+ F17 

Treatment of X. laevis 
prior to staining* 

2B1 

2B1+ 2B1- 2B1+ 2B1-

F17 

20 days post grafting: 
LG15<= 9 5 7 3 8 14 
LG15C 9 5 5 3 6 7 

27 days post grafting: 
No graft<= 8 4 5 4 4 7 

LGIS'^ 8 4 4 4 3 7 
LG15C 8 2 2 5 3 3 

131 days post 1st, and 
72 days post 2nd set 

grafting: 
2nd set LGIS^ 6 0.6 6 1 4 nd 
2nd setLG15d 9 0.6 2 2 4 nd 

a = graft survival times are shown in Tables 2.2 and 2.3; b = lymphocytes were 

stained with both FITC- and PE-labelled antibody; c = where grafted rejection was in 

18-28 days; d = tolerated both primary and secondary grafts; nd = not done 
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Table 2.8 Summary of the disintegrations per minute (dpm) and stimulation 

indices (Si's) of 6 month control and Tx X. laevis splenocytes to 2.5\ig/ml ConA 

harvested at 8, 21 and 27 days post-grafting. 

Treatment of X. laevis 
prior to stimulation 

8 days post-
grafting 

21 days post-
grafting 

27 days post-
grafting 

Treatment of X. laevis 
prior to stimulation 

dpm SI dpm SI dpm SI 
Controls: 

No graft 26,281 75 28,206 30 61,281 20 

Autograft 68,132 30 
LG15 skin graft 45,354 45 44,888 62 71,493 24 

5 day Tx: 
No graft 6,513 1 
Autograft 785 0.8 

L G l 5 skin graft 225 0.7 793 1.3 8,778 0.7 

Table 2.9 Distribution of T cell subgroups in the spleen of 4 and 7 month old 

L G 3 32 days post-first set grafting with LG15 skin. 

Treatment of LG3 
prior to staining^ 

Percentage of positive stained cells^ Treatment of LG3 
prior to staining^ 

mAb used 

Treatment of LG3 
prior to staining^ 

2B1 D4.3+ D12.2+ F17 

Treatment of LG3 
prior to staining^ 

2B1 

2B1+ 2B1- 2B1+ 2B1-

F17 

no graft 
53 45 3 3 3 30 

LGl 5 54 44 3 5 4 33 
L G l 5 53 44 3 4 4 30 

a = graft survival times for are shown in Tables 2.2 and 2.3; b = lymphocytes were 

stained with both FITC- and PE-labelled antibodies. 
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C H A P T E R 3 

U S E OF M I T O G E N A C T I V A T E D STIMULATORS TO ENHANCE T H E M I X E D 

L E U K O C Y T E R E A C T I O N AND CHANGES IN RESPONDER C E L L 

PHENOTYPE FOLLOWING IN VITRO ALLOSTIMULATION 

3.1 INTRODUCTION 

T cells recognise antigens in a MHC restricted fashion through a T-cell 

receptor (TCR) consisting of two disulphide linked glycoprotein chains (termed aP or 

Y5). These are noncovalently associated with an invariant complex of proteins, 

termed CD3, which appear to be responsible for signal transduction (Mariisic-Galesic 

et al., 1988). The aP TCR positive cells recognise antigens as peptide fi-agments in 

the context of class I or class I I MHC. They are helped in this by expressing the co-

receptors either CD8 or CD4 respectively. CD8 positive cells mediate cytotoxic 

reactions, while CD4 positive cells are referred to as helper cells (Allison and Lanier, 

1987) . The fijnctional TCR repertoire of the aP T-cell population is shaped by 

positive and negative selection events that occur during intrathymic maturation. 

Positive selection skews the T-cell repertoire to recognise foreign antigen in the 

context of'self-MHC molecules, while negative selection resuhs in clonal deletion of 

T cells which react strongly against self MHC. aP and Y5 TCR positive cells have 

very similar activation properties and fijnctional capacities (Marusi'c-Galesic et al, 

1988) . Induction of fiinction of yd TCR positive cells can be achieved by a variety of 

stimuli known to elicit activation signals on aP positive cells, for example 

concanavalin A (ConA). 

T cells are also able to respond to, and recognise, allogeneic MHC. This 

response is considered to be due to cross reactivity of TCR's, whose normal ligands 

would be self-MHC bound to peptide. 
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The MHC class I and I I molecules of Xetiopus have fiindamentally the same 

roles and structure as those of mammals (Flajnik et al., 1984; Kaufman et al, 1985). 

Xenopus is the only ectothermic species were polymorphic class I and class I I MHC 

gene products have been formally documented (Flajnik and Du Pasquier, 1990; 

Kaufman et al., 1985; Kaufman, Flajnik and Du Pasquier, 1985; Flajnik et al., 1984) 

and clones and inbred lines are available. As in mammals, graft rejection, MLR's and 

cell mediated cytotoxicity indicate that allogeneic MHC molecules stimulate a large 

proportion of T cells. Therefore Xenopiis represents an evolutionary significant and 

practically usefiil model for studying MHC ftjnction in lower vertebrates. 

The in vitro correlate of allograft rejection, the mixed lymphocyte reaction 

(MLR), is investigated in this chapter. MLR is an assay system for T cell recognition 

of allogeneic cells in which the response is measured by the extent of T cell 

proliferation. The MLR has been shown to be an accurate in vitro correlate of in vivo 

allograft rejection in Xenopus (Lallone and Horton, 1985). Thymectomy (Tx) was 

used to show that, like acute graft rejection, T lymphocytes are the responder cells in 

MLR in Xenopus (Flajnik et al, 1987; Du Pasquier and Horton, 1976). In adult 

Xenopus the spleen is a good source of helper T cells and MLR effector cells 

(Du Pasquier et al., 1985). 

It was first suggested in the early 1970's that MLR in Xenopus is under 

genetic control (Du Pasquier and Miggiano, 1973). It has later been confirmed to be 

controlled by class I I MHC molecules (Harding, Flajnik and Cohen, In press). That 

is, MLR alloreactivity in Xenopus is generated by T cells in response to class I I MHC 

molecules (Flajnik, Du Pasquier and Cohen, 1985; Du Pasquier and Horton, 1976). 

In Xenopus all adult T cells are positive for class I I and the latter can be 

up-regulated after stimulation with alloantigens or T-cell mitogens (Harding, Flajnik 

and Cohen, In press; Ho, 1992). In this Chapter attempts are made to elevate in vitro 

MLR by culturing MLR stimulator cells with the T-cell mitogen ConA prior to setting 

up the assay. The eventual goal of this work was to avoid the necessity of having to 

immunise animals in vivo (by skin allograft rejection), prior to restimulation of 
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lymphocytes in MLR, in order to generate cytotoxic T lymphocyte effectors in vitro 

(Du Pasquier, Schwager and Flajnik, 1989; Bernard el al, 1979). I f this goal could be 

achieved, then studies on cytotoxic T lymphocytes in larvae would be more feasible. 

The causative factors of any elevated MLR seen following use of T cell mitogen-

activated stimulator cells, was investigated by carrying out flow cytometry of the 

stimulating cells. Particular emphasis was placed on the level of expression of class I I 

MHC molecules and T cell antigen specific markers. 

As a result of the findings in Chapter 2 that in vivo skin allograft rejection 

can sometimes result in changes in the splenocyte phenotypes of the recipient animal, 

phenotypes of the responding cell population during in vitro MLR were examined 

here. Flow cytometry, making use of the anti-T cell surface receptor monoclonal 

antibodies (mAb's), 2B1, D4.3, D12.2 and F17, was utilised. 

Some splenocytes were set up in long term MLR's in order to represent, 

more accurately, the time scale seen in in vivo allograft rejection. Viability of the 

responding cell populations was maintained by adding T-cell growth factor- (TCGF) 

rich supernatants to the culture medium. TCGF is produced by ConA-and PHA-

stimulated Xenopus splenocytes. It is capable of stimulating proliferation of splenic 

and thymic lymphoblasts and supporting growth of alloreactive T-cell lines (Watkins 

and Cohen, 1987; Harding, Flajnik and Cohen, In press). Continued presence of both 

irradiated allogeneic cells and TCGF was required to maintain a high rate of 

proliferation of the responding cells. 
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3.2 M A T E R I A L S AND M E T H O D S 

3.2.1 Preparation of a Lymphocyte Cell Suspension 

Spleens from animals of 6-12 months of age were used for preparation of 

lymphocyte cell suspensions. 

The animal was heavily anaesthetised in a solution of 3-aminobenzoic acid 

ethyl ester. The spleen was then asceptically removed and placed in 2ml Leibowitz-

15 (L-15 - Flow Labs) amphibian strength culture medium, supplemented with 1% 

foetal calf serum (FCS - Gibco), 0.01 M HEPES buffer, 50 lU/ml penicillin, 50|ig/ml 

streptomycin, 2.5\xg/ml amphotericin B, 1.25 mM L-glutamine, 18|il/ml sodium 

bicarbonate (all from Flow Labs) and 0.083mM mercaptoethanol (BDH) in a Costar 

35 X 10mm petri dish. Single cell suspensions were then prepared by gently crushing 

the spleen between the frosted ends of two sterile glass slides. The splenocyte 

suspension was washed back into the culture dish with cold L-15 amphibian medium 

and the cell suspension transferred to a Falcon 5ml plastic tube and allowed to stand 

for a few minutes for the splenic capsule pieces to settle to the bottom of the tube. 

The supernatant cell suspension was transferred to a fresh tube and the cells washed 

twice by centrifijgation at 300g, at 4°C for 10 minutes and then resuspension in 1ml 

L-15 amphibian medium. The supernatant was removed and the cells resuspended in 

1ml L-15 amphibian medium. The cells were then diluted 1:1 in trypan blue and 

viable lymphocytes counted in a haemacytometer. Viable cells exclude trypan blue 

whereas dead cells take up the dye. 

3.2.2 Preparation of Stimulator Cells for Mixed Leukocyte Reactions 

These were either splenocytes freshly-harvested from the froglet or were 

cells that had been pre-cultured in the presence or absence of ConA (2.5\xg/m\) for 2-

3 days. 

Splenocytes to be used in pre-culture were prepared as in section 2.1 and 

washed in fully supplemented (as above) L-15 amphibian medium (complete medium). 
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Viable lymphocytes were counted and then plated out in 2ml L-15 complete medium 

at 3x106 cells/well in 24 well tissue culture plates. These were cultured for 2 or 3 

days at 26°C in a water saturated atmosphere of 5% carbon dioxide (CO2) in air, with 

or without ConA. 

Freshly taken or in vitro pre-cultured cells were placed in 5ml plastic tubes 

on ice. The cells were then subjected to y radiation from a Cobalt-60 source for 20 

minutes, 16cm from the source. This gave a total of 6,668 rads which was adequate 

to inactivate the cells (Appendices D and E). Fully irradiated cells were then washed 

twice prior to use as stimulators in one-way MLR. The pre-cultured cells were 

washed in complete L-15 medium containing ImM a-methyl mannoside, to bind the 

ConA present in the medium surrounding the cells. 

3.2.3 Tritiated Thymidine Incorporation Following One-way M L R 

3.2.3.1 Technical details of the MLR 

The responder spleen cell suspension was prepared directly from the 

animal and the cells washed twice in amphibian strength complete L-15 medium. 

Two hundred microlitres of L-15 containing 1x10^ responder splenocytes and 

1x10^ stimulators were plated out into individual wells of a 96 well V-bottomed 

tissue culture plate. Responder splenocytes were either from a non-grafled animal 

or an alio- or autografted animal. Control cultures were also set up which 

contained 1x10^ responders with 1x10^ irradiated responders. These provided 

background counts emanating from 'self-stimulated' cells. Cultures were also 

established with 2x10^ irradiated stimulator or responder cells only, to calculate 

counts coming from such stimulators. Each culture was carried out in triplicate, 

the cells being incubated at 26°C, in a water saturated atmosphere of 5% CO2 in 

air, for 3 days. One microCurie (^iCi) of tritiated thymidine ([^HjTdR) was then 

added per well (pulsed) and the cells cultured for a further 24 hours. The cells 

were then harvested using a Skatron cell harvester onto 0.2|am Whatman filters. 
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The filters were dried and then placed into 5ml scintillation vials. Four ml of 

scintillation cocktail (Betaflour, National Diagnostics) was then added and the 

disintegrations per minute (dpm) calculated on a Packard scintillation counter. 

The stimulation index (SI) for each culture was then calculated by use of the 

following formula: 

dpm (R Stimulators v. R Stimulators) 
g j ^ dpm (Responders v. R Stimulators) - 2 

dpm (Responders v. R Responders) - dpm (R Responders v. R Responders) 

where dpm = disintegrations per minute; v = incubated with; R = irradiated. 

3.2.3.2 Probing the use of concanavalin A activated stimulator cells to enhance 

M L R 

Several assays investigating the use of ConA-activated cells as stimulators in 

MLR were carried out. These were used to determine why pre-culturing the 

stimulator cells resulted in increased thymidine incorporation of mixed cultures, 

compared to those seen when the stimulator cells were not pre-cultured. 

3.2.3.2.1 Dynamics of thymidine incorporation of ConA-activated ceils following 

irradiation 

A lymphocyte cell suspension was prepared as in section 2.1. The cells were 

then plated out in a 24 well tissue culture plate, at 3x10^ lymphocytes/well with no, 

2.5^g/ml or 5|ig/ml ConA. They were then incubated at 26°C, for 48 hours, in a 

water saturated atmosphere of 5% CO2 in air. Each sample was then treated with 

ImM a-methyl mannoside to bind any free ConA and split into 2 aliquots. One 

aliquot of each sample was irradiated and then plated out in triplicate, at 
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IxlO^cells/well in a flat bottomed 96 well plate. Four replica plates were set up. The 

non-irradiated cells were plated out similarly. Plates were pulsed 1-4 days following 

irradiation, incubated for a further 24 hours, then thymidine incorporation was 

assessed as above. 

In a second experiment splenocytes from X. laevis animals were either 

pre-cultured, for 48 hours, with or without 2.5|ig/ml ConA or freshly prepared and 

then split into 2 aliquots. One aliquot of each sample was then irradiated. All the 

samples were then plated out in triplicate, at 1x10^ cells/well in a flat bottomed 96 

well plate and incubated as above for 4 hours and then pulsed. The cells were 

incubated for a further 24 hours after which thymidine incorporation assessed, as 

above. 

3.2.3.2.2 To investigate if ConA pre-stimulated cells still respond to alloantigens 

or ConA following irradiation 

These experiments were carried out to determine if the ConA pre-stimulated 

cells could still proliferate in response to alloantigens or ConA following irradiation. 

I f so, this could contribute to the high Si's seen when ConA-pre-cultured stimulators 

are used to establish MLR's. 

Spleens were removed from 12 month old X. laevis or LG15 animals and a 

spleen cell suspension prepared. The lymphocytes were then cultured at 

3xl06cells/well, in a 24 well plate, with or without 2.5|ag/ml ConA for 48 hours at 

2°C, 5% CO2 in air. After 48 hours incubation a fresh splenocyte population was also 

prepared. Each sample was then washed in L-15 complete containing ImM a-methyl 

mannoside and split into 2 aliquots, one of which was irradiated. 

The X. laevis splenocytes were then plated out in triplicate with or without 

2.5ng/ml ConA (see Tables 3.4 and 3.5) at lxl05cells/well in 2 V-bottomed 96 well 

plates. One plate was pulsed with [^HJTdR on the day of irradiation and the other 

after a further 48 hours incubation. Plates were harvested and thymidine 

incorporation assessed after overnight incubation with [^HJTdR. 
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Pre-cultured and freshly taken LG15 splenocytes were also set up in MLR 

with X. laevis splenocytes in various combinations (see Table 3.6). This was in order 

to determine whether irradiated freshly harvested or ConA-pre-cultured LG15 cells 

could respond to the X. laevis cells, thereby giving a 2-way MLR. 

3.2.3.2.3 To investigate whether the high stimulation indices are due to cytokine 

release 

The high Si's seen in MLR's employing ConA-activated stimulators could be 

partly due to cytokines released by the ConA-pre-cultured irradiated cells or to ConA 

remaining on the surface of the stimulator cells, even after washing in L-15 complete 

plus ImM a-methyl mannoside. 

. LGl 5 lymphocytes were incubated at 3x10^ cells/well, in a 24 well plate, 

with 2.5|j.g/ml ConA for 48 hours, as above. These cells were then irradiated and 

established in MLR's with freshly-harvested LGl5 responders. This determined 

whether the ConA-pre-cultured LGl 5 stimulator cells could, after irradiation, 

stimulate elevated thymidine incorporation of self responders. 

3.2.4 Flow Cytometry o f / « Vitro Cultured Cells 

3.2.4.1 Cells cultured with concanavalin A 

Spleens from 6-12 month old LGl 5 animals were used. A splenocyte cell 

suspension was prepared. 3x10^ splenocytes were then cultured, in 2ml complete 

L-15 amphibian medium ( 1 % FCS), for 3 or 7 days, with or without 2.5^g/ml ConA, 

in 24 well tissue culture plates at 26°C, 5% CO2 in air. These cells were then 

harvested, stained with various mAb's and analysed on a Couher Epics flow 

cytometer (see Chapter 2, section 2.4). 
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3.2.4.2 Cells established in M L R following in vivo grafting 

3.2.4.2.1 Experiment 1 

Ten month old LGl5 animals were immunised in vivo by grafting skin from 

LG5 donors. After graft rejection (18 days) spleens were removed, dissociated and 

cultured in 24 well tissue culture plates. Each well contained equal numbers of 

responders (either 2 or 5x10^) and irradiated stimulators, either allogeneic (LG5) or 

isogeneic, in 2ml L-15 amphibian complete medium supplemented with 5% FCS. 

The cells were cultured for 1 week at 26°C, in 5% CO2 in air. To act as controls 

spleens were also taken from non-grafted LG15's and placed in culture with irradiated 

isogeneic cells, as above. After 1 week incubation the cells were washed once and 

fractionated over Histopaque, 5=1.077 (Sigma). Cells at the interface (containing 

mostly viable responder lymphocytes) were collected, washed and plated out into 24 

well tissue culture plates in the ratio 10:1 responders (1x10^ or 2x10^) to irradiated 

stimulators, in 2ml medium containing 25% T-cell growth factor (TCGF). [TCGF = 

supernatant collected from the culture of cells stimulated with 2.5ng/ml ConA for 24 

hours and then treated with ImM a-methyl mannoside to remove the ConA]. After a 

total of 2 weeks in vitro the cells were harvested, stained with various mAb's and 

processed for flow cytometry as in Chapter 2, section 2.4, Flow cytometry was also 

carried out on freshly-harvested LGl 5 splenocytes from animals which had or had not 

rejected LGl 5 skin grafts. 

The degree of proliferation was also measured after 2 weeks in culture. 

1x10^ of the viable cultured cells were incubated with l^iCi [^HJTdR for 24 hours, 

harvested and counted by liquid scintillation. 

3.2.4.2.2 Experiment 2 

A second experiment was carried out using 5 month old X. laevis animals. 

Spleens were removed from both non-grafted animals and animals which had rejected 

an L G l 5 skin graft (20 days). These spleens were dissociated, the splenocytes 
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washed and set up as responders at 3.5x10^ splenocytes with or without 3.5x10^ 

irradiated LG15 stimulators, in 2 ml L-15 amphibian medium, in 24 well tissue culture 

plates. They were then cultured for 3 or 9 days at 26°C in 5% CO2 in air. The cells 

cultured for 9 days were separated over Histopaque after 6 days in vitro and the 

splenic lymphocytes restimulated for a further 3 days in 2ml L-15 containing 25% 

TCGF with or without 1x10^ irradiated LG15 stimulators, in a 1:1 ratio. All the 

populations were then processed for flow cytometry, see Chapter 2, section 2.4. 
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3.3 R E S U L T S 

3.3.1 Tritiated Thymidine Incorporation Following One-way M L R 

3.3.1.1 Effect of prior allografting 

Splenocytes from LG15 Xenopus (MHC haplotype, ac) that had rejected 

LG5 (MHC haplotype, be) skin, designated LG15 anti-LG5, gave Si's of 5 and 7 

(calculated by use of the dpm shown in Table 3.1) when established in 4 day MLR's 

with irradiated (R) LG5 splenocytes. The control non-grafted LG15 gave an SI of 3 

in both experiments. This suggests that the LGl 5 anti-LG5 animals had been 

'sensitised' to the LG5 MHC haplotype, thus giving a secondary MLR. 

After 2 weeks of culture, thymidine incorporation was assessed for the long-

term MLR cultures used in flow cytometry, experiment 1 (section 2.4.2.1). This 

revealed that the cells incubated with irradiated allogeneic cells, at the higher 

concentration, were proliferating at a significantly higher rate (19,028dpm), compared 

to those incubated with irradiated isogeneic cells (465dpm). Continued presence of 

the allogeneic cells was required to achieve this high rate of proliferation. 

3.3.1.2 Use of ConA-activated cells as stimulators in M L R 

The MLR's using stimulators which had been pre-cultured in medium alone 

gave higher Si's compared to MLR's in which the stimulator cells were prepared fresh 

(16 and 8, respectively). However, this elevated SI was even more marked when 

ConA pre-cultured T lymphoblasts were used as stimulators, SI = 56 (Table 3.2). 

3.3.1.2.1 Dynamics of thymidine incorporation of ConA-activated cells following 

irradiation 

Tables 3.3 and 3.4 show that the LGl5 and X. laevis lymphocytes 

respectively had been stimulated to proliferate by ConA (Si's of approximately 200 

and 39, respectively). Irradiation 24 hours prior to harvest inhibited this proliferation 
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by 4-6 fold (Table 3 ,4). The proliferation rate of the LGl 5 splenocytes continued to 

fall over the 5 days following irradiation (Table 3 .3), whereas the non-irradiated cells 

(which had been ConA pre-stimulated) maintained a high rate of proliferation 

throughout the 7 days of this assay (Table 3.3). 

An MLR assay is over a 4 day period. Therefore by pulsing on the third day 

of the assay, that is 3 days after the ConA pre-cultured cells have been irradiated, 

these stimulators would not incorporate sufficient tritiated thymidine to contribute 

significantly to the disintegrations per minute seen. Moreover, any counts due to 

incomplete inactivation of the responders are removed, during calculation of the SI 

(see section 2.3), by use of control cultures which contain either irradiated stimulators 

or irradiated responders, only and responders with irradiated self 

3.3.1.2.2 To investigate if ConA pre-stimulated cells still respond to ConA or 

alloantigens following irradiation 

The results shown in Table 3.5 indicate the degree of proliferation of 

X. laevis splenocytes following 48 hours pre-culture with or without ConA, followed 

by their irradiation and a further 72 hours incubation with or without ConA. The 

non-irradiated, freshly harvested X. laevis cells had responded well to the ConA (SI = 

66). However these cells showed no ConA-induced proliferation following 

irradiation. 

The ConA- and medium pre-cultured, non-irradiated cells could still respond 

to the mitogen, however ConA-pre-cultured cells only responded poorly. After 

irradiation the medium pre-cultured cells showed minimal response to ConA, whereas 

the ConA pre-cultured cells showed a significant response to the second ConA pulse 

(SI = 69, in experiment 1). Interestingly, the irradiated cells which had initially been 

pre-cultured for 2 days with ConA prior to irradiation did not show a high thymidine 

incorporation after a further 3 days in culture without additional ConA. 

Table 3.6 shows the results of MLR's to investigate whether irradiated ConA 

stimulated LGl 5 splenocytes could respond to alloantigens. X. laevis cells responded 
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well to irradiated ConA-treated LGl5 stimulators (dpm = 4,765). However, this was 

not due to counts from the stimulators, but to counts from the responders. This can 

be concluded from the observation that when the same ConA-treated LGl 5 

stimulators were mixed with irradiated X. laevis cells, the dpm decreased to 432. 

3.3.1.2.3 To investigate whether the high Si's are due to cytokine release 

The results, shown in Table 3.7, indicate that the fresh LGl5 responders 

have not been induced to proliferate in the presence of the ConA-pre-cultured 

irradiated LGl5 stimulators as the SI were 1.4 and 3.5 in 2 experiments. However, 

the^. laevis responders gave Si's of 42 and 10, to the same ConA-pre-cultured LGl 5 

stimulators. 

3.3.2 Flow Cytometric Studies o f / « Vitro Cultured Cells 

3.3.2.1 Cells cultured with concanavalin A 

Flow cytometric studies were carried out to investigate if the increase in 

stimulation seen in the MLR's using ConA pre-cultured irradiated stimulators was 

reflected by a change in cell surface marker expression of the ConA-stimulated cells. 

An increased class I I expression of these cells, as has been seen elsewhere following 

ConA stimulation (Harding, Flajnik and Cohen, In press), could lead to increased 

stimulation of allogeneic responders in MLR and explain the high Si's seen above. 

Flow cytometry of the cells incubated with ConA showed that by 3 days of 

culture they were larger than those incubated in medium alone or taken fresh (see 

Figure 3 .1), as shown by the dot plots of forward scatter (cell size) against the 

logarithm of side scatter (cell granularity), see Appendix B. This indicated that the 

lymphocytes were responding to ConA and forming lymphoblasts. 

The percentages of splenocytes expressing various antigens after 3 or 7 days 

in culture, with or without ConA, are shown in Table 3.8. There was a marginal 

increase in the number of 2B1 positive cells (but a distinct drop in the percentage of 
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D4.3 positive cells), following incubation with ConA. There were very few B cells 

remaining after 7 days in vitro with ConA. Figure 3.2 shows that the AM22 positive 

cells appeared to become less brightly stained as the cultures proceeded, which 

indicates a decreased expression of this cell surface marker. After 3 and 7 days in 

culture, mean fluorescence intensities with AM20 (anti-MHC class I I mAb) of ConA-

stimulated cells were compared with those found in fresh or medium pre-cultured 

cells. A small peak of very brightly stained AM20 positive cells could be seen in the 3 

day ConA treated cells, but this had disappeared by 7 days culture. Interestingly, the 

mean fluorescence intensity with AM20 was greater (mean = 124) with medium 

cultured cells, possibly explaining why such cells are better stimulators in MLR's than 

fresh cells. 

3.3.2.2 Cells established in M L R after in vivo grafting 

Tables 3 .9 and 3 .10 summarise the results of 2 separate experiments. There 

were variations in the number of 2B1, D4.3, XT-1, AM22/F17 and 8E4:57 positive 

cells following grafting and in vitro culture but no definite trends could be seen (see 

Table 3.9). However as shown in Table 3.10, the percentage of^ . laevis cells 

expressing 2B1 following in vivo grafting with LGl 5 skin and restimulation for 9 days 

in vitro with LGl 5 stimulators, reached 77%. The LGl 5 anti-LG5 (cells from an 

L G l 5 animal which had rejected an LG5 skin graft) and X. laevis anti-LG15 cells did, 

however, show a significant increase in cells staining with the mAb D12.2, following 

in vitro allogeneic challenge, with the same stimulators as used in vivo. Thus, D12.2 

positive percentages were 15%) and 19% respectively, from 3-8%), in control cultures 

(see Tables 3.9 and 3.10) Typical staining profiles of several mAb's onX. laevis cells 

are shown in Figure 3.3. 

The cells taken from X. laevis which had been grafted with LGl 5 skin and 

then cultured for 9 days with irradiated LGl5 cells (Table 3.10) had 2 distinct 

populations of lymphocytes (Figure 3 .4), based on forward and side scatter. The 

76 



larger lymphocyte population was relatively rich in D12.2 positive cells, containing 

22% y5 TCR positive cells. 
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3.4 D I S C U S S I O N 

The in vitro correlate of skin graft rejection, that is the mixed lymphocyte 

reaction (MLR), was examined here. Firstly, experiments were carried out to try to 

enhance stimulation of the responding cells by pre-incubation of the stimulator 

splenocytes with the T cell mitogen concanavalin A (ConA). This is known to 

increase the expression of class I I MHC molecules per cell (Harding, Flajnik and 

Cohen, In press). Furthermore, class I I MHC is the molecule which achieves 

stimulation in MLR, as shown by blocking experiments with anti-class I I mAbs 

(Harding, Flajnik and Cohen, In press). Second, long term MLR's were established to 

examine the responder cell phenotypes. Flow cytometry was used with anti-Xenopus 

monoclonal antibodies to identify possible cell surface antigen changes on splenocytes 

following mitogenic or allogeneic challenge in vitro, with an emphasis on the level of 

expression of Xenopus T-cell surface antigens and class I I MHC expression. 

3.4.1 Use of Concanavalin A Activated Cells as Stimulators in M L R 

The proliferative response of Xenopus splenocytes to ConA is evident as 

soon as the spleen becomes lymphoid (stage 51). As expected (Rollins-Smith, 

Parsons and Cohen, 1984; Williams et al, 1983) the splenic lymphocytes were highly 

stimulated by incubation with ConA, as shown by the disintegrations per minute 

(dpm) following 72 hours in vitro . Disintegrations per minute show the amount of 

tritiated thymidine incorporated into newly synthesised DNA and thus give an 

estimate of the degree of proliferation of the lymphocytes in culture. 

Use of ConA to enhance stimulation capacity of allogeneic stimulators in 

MLR was first carried out following a report by Harding et al. (Harding Flajnik and 

Cohen, In press). This suggested that stimulating Xenopus lymphocytes with an 

alloantigen or a mitogen results in increased expression of the class I I MHC antigens. 

MLR's involving such mitogen-activated stimulators should, therefore, be enhanced as 

MLR in Xenopus is known to be under control of the class I I MHC molecule 
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(Harding Flajnik and Cohen, In press). All T and B lymphocytes of adult Xenopus 

constitutively express class I I molecules (Du Pasquier and Flajnik, 1990; Flajnik et al, 

1990). This indicates that T cells, as well as B cells, in frogs may act as antigen 

presenting cells. T cells could therefore act as stimulating cells in an MLR in Xenopus 

but this has not been proven, as yet. 

The results shown in this Chapter indicate that incubation of the stimulators 

in vitro prior to use as irradiated stimulators in MLR does indeed increase their 

stimulatory properties. However, this was especially marked if the stimulator cells 

were pre-incubated with ConA. Pre-culturing of responders and stimulators for use in 

MLR's has been shown elsewhere to increase stimulation indices (Lallone and Horton, 

1985). This could be as a result of increased class I I MHC expression per cell due to 

stimulation by foetal calf serum present in the culture medium (Flajnik et al., 1990); 

this phenomenon is also indicated in the present study. 

The increased MLR stimulation, achieved by use of irradiated ConA-pre-

cultured stimulators, could be due to one or more of 5 factors. Firstly, ConA still 

present in the medium or on the surface of the stimulators. This should be removed 

by washing the cells in medium containing ImM a-methyl mannoside. Secondly, 

incomplete inactivation of the pre-cultured LGl 5 cells by irradiation. However, any 

counts due to incomplete inactivation of the responders are removed, during 

calculation of the SI (see section 2 .3), by setting up control cultures which contain 

irradiated stimulators only, irradiated responders only and responders with irradiated 

self Thirdly, 'enhanced' recognition of responders by irradiated ConA pre-treated, 

stimulators, causing back stimulation. Fourthly, production of cytokines, for 

example, IL-2, by the pre-cultured LGl 5 cells. Fifthly, change of cell surface markers 

producing a greater alloimmunity or change in antigen presentation abilities of 

stimulators. These possibilities were investigated (see section 2.3.1) and are 

discussed below. 
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3.4.1.1 Incomplete inactivation of the stimulators by irradiation 

As the T lymphocytes stimulated with ConA would have been proliferating 

rapidly (SI approximately 100), it was thought that the irradiation may not have 

inactivated all the cells. I f so, it would be possible for them to continue to proliferate 

sufficiently to take up a significant amount of tritiated-thymidine, to respond to the 

alloantigen of the responding cells (giving a two-way MLR), or give T cell help by 

producing cytokines. These factors would have contributed to the high dpm's seen. 

Xenopus helper T cells are known to more resistant to inactivation by irradiation than 

other T cells (Ruben et al., 1985). 

The experiments reported here indicate that the high proliferation rate of the 

ConA stimulated cells was immediately inhibited by irradiation. By three days 

following irradiation the ConA stimulated cells were proliferating only minimally. It 

was therefore concluded that the dpm seen from the MLR's, when irradiated ConA-

stimulators were used was mainly due to proliferation of the non-irradiated 

responders, following activation in response to the stimulators and not due to tritiated 

thymidine uptake by the irradiated stimulators. 

Incomplete inactivation of the responders was, however, suggested by the 

investigation as to whether the irradiated ConA-activated cells could be further 

stimulated by ConA. Further incubation of these irradiated cells with ConA did 

indeed result in enhanced proliferation, with Si's of 69 and 19 in two consecutive 

experiments. Cells which had been incubated in medium alone for 48 hours were also 

slightly resistant to the irradiation; following irradiation and incubation with ConA 

they gave stimulation indices of approximately 18 and 3 in the two experiments. In 

contrast, the cells which had been harvested from the animals immediately before 

irradiation were unable to respond to the ConA. This suggests that preincubation 

with medium or ConA does make cells more resistant to the irradiation. However, 

when in an MLR situation the cells would not be subjected to further stimulation by 

ConA as it is removed by the use of a-methyl mannoside. It was shown in this 

experiment that the irradiated cells from all three populations when subsequently 
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incubated in medium alone gave very low dpm (see Table 3 .5). This therefore 

suggests that the high dpm seen in the MLR's, when ConA stimulators are used, is 

due to thymidine uptake by the responding cells. 

The irradiated pre-cultured cells would, however, be in the presence of 

alloantigens and so could possibly respond to these, resuUing in a 2-way MLR. 

However, data presented in Table 3 .6 indicated there was no 2-way MLR occurring. 

Here, high stimulation indices seen in the MLR's using ConA pre-cultured stimulators 

are due to the X. laevis splenocytes responding to the irradiated pre-cultured LG15 

lymphocytes and not vice versa. 

3.4.1.2 Investigation to determine if the increased activation in the MLR's is 

due to cytokines released by the mitogen stimulated cells 

It is possible that the increased MLR, achieved by use of ConA-activated 

stimulators, could be due to cytokines released by the ConA stimulated cells. A 

variety of cytokines, collectively known as T-cell growth factor (TCGF), have been 

identified in culture supernatants harvested from Xenopus splenocytes after 

stimulation with T-cell mitogens or alloantigens (Watkins and Cohen, 1987). Such 

culture supernatants can achieve growth and proliferation of Xenopus splenic T 

lymphoblasts (Watkins and Cohen, 1987) and also of unstimulated Xenopus 

splenocytes (Turner and Horton, 1991). In mammals T lymphoblasts, but not 

unstimulated T cells, express high affmity interleukin-2 (IL-2) receptors comprised of 

both a and P chains (Smith, 1988), which promote their responsiveness to IL-2, 

formerly called TCGF. IL-2 is a lymphotropic hormone-like polypeptide that plays a 

critical role in regulation of the immune response. It binds to receptors on activated T 

cells and triggers their proliferation (Watkins and Cohen, 1987). IL-2 is known to 

be present in Xenopus (Ruben et al, 1985). TCGF supematants are thought to 

contain a variety of cytokines, including IL-2 (Turner et al., 1991). 

In an MLR the cells are being stimulated by the presence of allogeneic MHC 

molecules, which would presumably result in expression of receptors for different 
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cytokines, for example IL-2. The target of TCGF, T lymphocytes, are the responding 

cells in MLR (Du Pasquier and Horton, 1976; Horton and Manning, 1972); any 

cytokines produced by the ConA stimulated cell, still present in the medium could 

therefore lead to increased stimulation of the responding cells. 

It appears that any TCGF produced by the ConA pre-stimulated cells is no 

longer present in the above assays, as freshly taken LG15 cells have not been 

stimulated by the presence of the irradiated ConA pre-cultured LG15 lymphocytes 

(SI « 2.5; dpm « 77). The TCGF was probably removed when washing the cells prior 

to setting up in MLR and no more produced following irradiation. 

This experiment also shows that the LG15 cells have not been markedly 

altered by the ConA stimulation, making them appear 'foreign' to isogeneic cells. 

3.4.1.3 Flow cytometric studies of the concanavalin A stimulated cells 

The increased stimulation properties shown by the ConA pre-incubated cells 

in MLR studies presented here, together with previous published data (Harding, 

Flajnik and Cohen, In press), suggested a possible change of cell surface antigens on 

these cells. Flow cytometric analysis was therefore carried out on these cells, 

concentrating on the level of expression of class I IMHC molecules and T-cell surface 

receptors. 

This revealed that the ConA stimulated cells were larger than non-stimulated 

or freshly-harvested cells. An increase in the number of T cells following incubation 

with ConA is also indicated. Surprisingly, following incubation of the LG15 

splenocytes with ConA for 3 and 7 days, there was an almost complete loss of T cells 

bearing the putative aP T-cell receptor. This could possibly be due to endocytosis of 

the a(3 TCR by activated T cells, without re-expression. 

As expected (Flajnik and Du Pasquier, 1990), the anti-class I I MHC mAb 

AM20 stained approximately 100% of the LG15 splenocytes. However, there was 

little sign of any increased expression of class I I in the short term ConA studies 

reported here. Indeed, the mean fluorescence was highest for the LG15 cells 
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incubated without ConA than those with, possibly explaining why such cells are better 

stimulators in MLR's than fresh cells. I f the high Si's in MLR's are solely due to class 

I I MHC expression on the stimulators, then enhanced Si's would have been expected 

to have been seen with medium pre-cultured stimulators rather than with ConA-

activated stimulators. As this was not the case, it appears that increased class I I 

MHC expression alone does not explain the very high Si's given by the ConA pre-

incubated stimulators, compared to the slightly raised Si's given by the stimulators 

pre-incubated in medium alone. 

After three days in culture with ConA there was a small peak of very brightly 

stained class I I MHC positive cells. This may be significant as the MLR's were 

carried out over a three day period. This peak of brightly stained class I I positive 

splenocytes had disappeared by 7 days in vitro with ConA. An MLR set up using 

stimulators that had been cultured for 10 days with ConA failed to show the increased 

stimulation seen when using 3 day ConA pre-cultured stimulators (data not shown). 

This could relate to the loss of the bright peak of AM20 positive cells. 

3.4.2 Flow Cytometric Studies on In Vitro Aliostimulated Cells 

In Chapter 2, changes in the expression of certain cell surface markers (for 

example, elevation of D12.2 positive cells) were noted in the spleen as a result of 

allografting. MLR was utilised here to further examine these cell surface receptor 

changes. The main advantages of this in vitro approach are that cell maturation or 

change of cell surface markers of T cells can be observed without the complexities 

arising due to cell migration to, or from, the spleen. 

Allografting LG15 animals with LG5 skin prior to setting up in MLR with 

LG5 stimulators, resulted in an increased proliferation of the responding cells, 

compared with MLR's where the responders came from non-grafted Xenopiis. This is 

in agreement with previous studies (Barlow and Cohen, 1981). The results show that 

the LG15 animals had been sensitised to the LG5 haplotype, in vivo, giving a 

secondary MLR. 
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In vivo grafted animals re-stimulated with the same donor cell type in vitro 

showed a significant increase in cells staining with the putative anti-Y6 TCR mAb, 

D12.2 (Ibrahim etal, 1991), following in vitro allogeneic challenge, for 9-14 days. 

This consequence of allostimulation has been observed elsewhere in Chapter 2, 

section 3.2. The increase in the number of yS TCR positive cells was not seen after 

only 3 days in culture or after incubation with isogeneic cells. 

The assay protocol used in the above assays {in vivo allogeneic stimulation 

by skin grafting followed by in vitro allostimulation) is similar to that used to generate 

allospecific cytotoxic effector cells for use in cell mediated lympholysis (CML) assays 

(Horton, Horton and Varley, 1989; Lallone and Horton, 1985; Bernard etal., 1979). 

Following graft rejection and subsequent restimulation in MLC, splenic T cells 

become competent to kill donor target cells in vitro (DuPasquier, Schwager and 

Flajnik, 1989), therefore cytolytic cells would be present in these cultures. In 

mammals and chickens yb TCR positive cells are known to possess a number of 

cytolytic properties (Han Cheng et al, 1991; Haas, Kaufman and Martinez-A, 1990; 

Lefrancois et al., 1990; Mariisic-Galesic et al., 1988), thus the rise of Y5 TCR positive 

cells, here, could reflect a rise of alloreactive cytotoxic effector cells, which are active 

in CML's. 

Although the functions of aP TCR positive cells in mammals are well 

characterised, relatively little is known of the functional properties of 76 TCR positive 

cells in mammals. Accumulating evidence has shown that yd cells exhibit typical 

effector functions of the T lymphocytes (cytolysis of target cells and release of 

lymphokines), as well as recognising a wide range of ligands, including classical and 

non-classical MHC antigens, bacterial stress proteins, and some self-antigens (Han 

Cheng et al, 1991; Haas, Kaufman and Martinez-A, 1990; Ferrick et al., 1989). 

There is at least one human yd cytolytic T-lymphocyte line which is specific 

for MHC class I-like molecules (Han Cheng et al., 1991) and murine y5 cell lines 

reactive with allogeneic MHC molecules have been found (Matis, Cron and 

Bluestone, 1987). This alloreactivity includes recognition of MHC class I I I - E and 
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class I H-2D-encoded molecules. Moreover, yS cell lines which recognise non-

polymorphic MHC class I antigens encoded within the TL and Q regions, commonly 

known as class lb molecules have been described (Han Cheng et al, 1991; Matis, 

Cron and Bluestone, 1987). MHC unrestricted, NK-like recognition by yS-receptor 

positive cells has also been reported (Moingeon et al., 1987; Moingeon et al, 1986), 

MHC class Il-restricted antigen recognition has been suggested for y5 TCR/CD8 

positive intraepithelial lymphocytes (lEL's) (Lefrancois etai, 1990). 

Many of the putative y5 TCR positive spleen cells found in X. laevis which 

had been grafted with LGl 5 skin followed by 9 days culture with irradiated LGl 5 

cells, appeared to represent T lymphoblasts. Although it seems likely that Xenopus 

putative y5 TCR positive cells carry out a role in the response to the allogeneic 

stimulators, a study of over 2000 murine T cell hybridomas revealed many 

alloreactive aP T-cell hybridomas, but there were no alloreactive y5 T-cell 

hybridomas. Also, no alloreactivity has been found amongst chicken y5 T-cells (Haas, 

Kaufinan and Martinez-A, 1990). The increase of putative y5 TCR positive cells 

shown here following allogeneic stimulation may reflect a different role for these cells 

in the evolutionary more primitive vertebrate Xenopus. Xenopus yb TCR positive 

cells may exhibit properties more commonly associated with the aP TCR in higher 

vertebrates. 

Since it is known that y5 receptor positive cells are very responsive to IL-2 

in mice (Bell, 1989) and that these express IL-2 receptors (Han Cheng et al., 1991), 

the addition of the TCGF to Xenopus MLR cultures may have contributed to the 

increase seen in D12.2 positive cells. The TCGF was added after one week in vitro 

and the increase of y5 receptor positive cells was only seen in allogeneic stimulated 

splenocyte populations taken for staining after this time. 

The findings in this Chapter add further weight to the results shown in 

Chapter 2, namely that the rise in the putative y6-receptor positive T cell population 

in the spleen following allostimulation, is a property of the graft rejection process. 

85 



This may indicate that y5 TCR positive cells play a more important role in 

alloreactivity in Xenopus than they do in more evolutionary advanced mammals and 

birds. These cells now require further investigation to probe their precise role in the 

Xenopus immune system. 
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Table 3.1 Disintegrations per minute (dpm) ± standard error (SE) following 

M L R of splenocytes from in vivo grafted and non-grafted LG15 animals 

stimulated by irradiated LG5 splenocytes. 

MLR 
(4 day) 

dpm ± SE MLR 
(4 day) 

Experiment 1 Experiment 2 
LG15avRLG5 3108± 141 6448± 749 
LG15avRLG15 970 ± 222 2155± 966 

LG15bvRLG5 4440 ± 326 3489±1952 
LG15bvRLG15 934 ± 207 627± 326 

RLG15 VRLG15 108± 38 166 ± 82 
R LG5 v R LG5 77 ± 10 112± 26 

LG15^ = splenocytes taken from non-grafted LG15 animals; LGIS'' = splenocytes 

taken from LG15 animals which had rejected an LG5 skin graft; R = irradiated cells; 

V = incubated with. 

Table 3.2 Summary of Si's and increase over background^ disintegrations per 

minute (5dpm) of MLR's where the irradiated LG15 stimulators had been 

freshly taken or pre-cultured, with or without ConA. 

MLR 
(4 day) 

Experiment 1 Experiment 2 Experiment 3 MLR 
(4 day) 

SI 5dpm SI 5dpm SI 5dpm 
X. laevis vRLG\5 8 509 1.7 61 

X. laevis vRLGlS^ 16 1159 

X. laevis vRLG\5^ 56 4116 58 4591 42 3311 

a = see section 2.3.1 for explanation of control cultures; LG15 = cells taken on the 

day the MLR was established; LG15^ = cells incubated for 48 hours in medium before 

the MLR was established; LGIS'^ = cells incubated for 48 hours with ConA before the 

MLR was established; R = irradiated; v = incubated with. 
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Table 3.3 Summary of the thymidine incorporation following in vitro 

incubation of ConA-activated LG15 splenocytes; effect of irradiation. 

Cell culture^ dpm at indicated days of incubation Cell culture^ 

4 5 6 7 
LGl 5b 177 318 278 155 

R LGl 5b 101 74 79 115 

LGIS'^ 33,321 56,318 45,495 26,911 
RLG15'= 8092 3028 1265 1011 

LG15d 37,197 68,403 50,215 24,205 
RLG15d 6998 2869 683 1178 

a= On day 2 the cells were treated with a-methyl mannoside and were either 

irradiated or not, the cells were pulsed with [^HJTdR 24 hours prior to harvesting; 

b = cells incubated in L-15 medium alone prior to irradiation; c = cells incubated in 

complete L-15 medium and 2.5|ig/ml ConA prior to irradiation; d = cells incubated in 

L-15 medium and 5|ig/ml ConA prior to irradiation. 
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Table 3.4 Summary of thymidine incorporation of X. laevis following ConA 

stimulation and irradiation. 

Cell culture^ dpm ± SE Cell culture^ 

Experiment 1 Experiment 2 
X. laevis^ 1400± 152 3342 ± 162 

RX. laevis^ 183± 12 326± 51 

X. laevis^ 1251± 22 2564 ± 1026 
RX. laevis^ 201 ± 21 120± 45 

X. laevis^ 72,314 ±2193 87,736 ± 6387 
R X. laevis^ 14,488 ± 602 7044 ±3291 

a = cells pulsed 4 hours after irradiation and harvested 24 hours later; b = cells 

fi-eshly-harvested on the day of irradiation; c = cells incubated for 48 hours prior to 

irradiation; d = cells incubated for 48 hours with ConA prior to irradiation; R= 

irradiated. 
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Table 3.5 Summary of thymidine incorporation of X. laevis ConA-activated 

cultures at 120 hours total incubation, which were irradiated after 48 hours 

pre-culture and re-stimulated with ConA. 

Cell culture dpm ± SE Cell culture 

Experiment 1 Experiment 2 
X. laevis^ 364 ± 86 398± 79 

X. laevis^ + ConA 24,808 ± 1130 25,421 ± 1157 

RX. laevis^ 54 ± 12 66 ± 4 
RX. laevis^ + ConA 64 ± 15 86 ± 25 

X. laevis° 850± 207 1157± 193 
X. laevis^ + ConA 42,143 ±3033 44,992 ±5013 

KX. laevis^ 66 ± 4 93 ± 42 
RX. /aev/sb + ConA 1190± 166 307± 115 

X. laevis^ 2017± 229 10,714 ±2897 
X. laevi^ + ConA 19,622 ±3471 66,628 ± 4295 

RX. laevis^ 168 ± 100 137 ± 22 
RX. laevis^ + ConA 11,623 ± 1323 2665 ± 147 

a = cells freshly-harvested on the day of irradiation; b = cells pre-cultured for 48 

hours prior to irradiation; c = cells pre-cultured for 48 hours with ConA prior to 

irradiation; R = irradiated. 
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Table 3.6 Summary of the Si's and Sdpm" of MLR's to investigate whether the 

increased Si's, seen after using ConA pre-cultured irradiated stimulators, is due 

to a 2-way M L R occurring. 

MLR dpm ± SE SI 5dpm 

X. laevisvR\.G\5^ 4765 ± 443 58 4591 
X. laevis vRhG\5 116± 39 1.7 61 

RLG15bvRX. laevis 432± 197 4 308 
RLG15 vR ; r . laevis 106± 32 2 42.5 

a - 5dpm is calculated by dpm (responders v R stimulators) - dpm (responders v R 

responders) - dpm (R responders v R responders); b = cells incubated with ConA 

prior to the MLR; R = irradiated; v = incubated with. 

Table 3.7 Summary of the Si's and 5dpm of MLR's to investigate whether the 

increased Si's, seen after using ConA pre-cultured stimulators, is due to release 

of cytokines. 

MLR Experiment 1 Experiment 2 MLR 

SI 5dpm SI 5dpm 
X. laevis \RLG\S^ 42.0 3311 10.0 874 

LG15 vRLG15a 1.4 32 3.5 122 

a = cells incubated with ConA prior to MLR; R = irradiated; v incubated with. 
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Figure 3.1 Dot plots of LG15 spleen cells stained when freshly-harvested and 

after 3 days in culture with or without ConA - showing increased cell size after 

incubation with the mitogen. 

(A) L G l 5 splenocytes freshly-harvested. 

LSS 
(B) L G l 5 splenocytes cultured in L-15 medium for 3 days prior to staining. 

LSS 

(C) L G l 5 splenocytes cultured in L-15 medium and 2.5^g/ml ConA for 3 days prior 

to staining. 

LSS 

FS = forward scatter ('cell size'); LSS = log side scatter ('cell granularity'). 
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Table 3.9 Distribution of splenocyte phenotypes from skin allografted LG15 

animals, either freshly harvested or after 14 days culture with irradiated 

stimulators. 

Treatment of L G l 5 
cells prior to 

staining 

Percentage of positive stained cells 

mAb's used 
in vivo in vitro^ 2B1 D4.3 D12.2 XT-1 AM22 8E4:57 

flic 38 
59 

18 
35 

3 
8 

20 24 
35 

19 

LG5 skin 
graft 

flic 40 12 3 17 28 14 

RLG15 52 20 4 24 27 13 

LG5 skin 
graft 

RLG5 59 
42 

28 16 
14 

30 25 
26 

16 

LG5 skin 
graft 

RLG15 
10 11 

flic = freshly-harvested cells; Bold = cell proportions from a repeat experiment; a = 

splenocytes cultured for 14 days with shown irradiated stimulators, first week in a 1:1 

ratio and the second week in a 10:1 ratio (Experiment 1 described in section 2.4.2.1); 

R = irradiated. 

96 



Table 3.10 Distribution of T cell splenocyte phenotypes of skin allografted X. 

laevis, taken fresh or after 3 or 9 days culture with irradiated stimulators. 

Treatment of X. laevis 
cells prior to staining 

Percentage of positive stained cells 

mAb's used 
in vivo in vitro 2B1 D4.3 D12.2 F17 

Autograft fhc 65 61 6 23 

LG15 skin 
graft 

RLGlSa 38 7 

Autograft RLGlSa 55 43 4 22 

LG15 skin 
graft 

RLGlSb 77 54 19 

b 57 6 

fhc = splenocytes taken on the day of flow cytometry; Experiment 2 described in 

section 2.4.2.2 - a = splenocytes cultured for 3 days with shown stimulators; b = 

splenocytes cultured for 9 days alone or with shown irradiated stimulators; R = 

irradiated. 
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C H A P T E R 4 

D O E S S T A P H Y L O C O C C A L E N T E R O T O X I N B I N D U C E S T I M U L A T I O N O F 

XENOPUS S P L E N I C L Y M P H O C Y T E S ? 

4.1 INTRODUCTION 

A group of mitogens in which there has been considerable interest in recent 

years, as they stimulate proliferation of specific clones of T cells in mice and humans, 

are the superantigens. These were first detected in the early 1970's, through their 

ability to stimulate a strong primary mixed lymphocyte reaction (MLR) between cells 

from mice of the same MHC haplotype (Festenstein, 1973). It has also been known 

for many years that certain bacterial enterotoxins are potent T cell mitogens (Peavy, 

Adler and Smith, 1970). 

There are 2 main groups of superantigens, those produced endogenously by 

mice (minor lymphocyte stimulating (Mis) determinants), and toxins produced by 

certain bacteria of the gut. Among the best studied enterotoxins are those produced 

by Staphylococcus aureus; these include a number of structurally related, small basic 

proteins of 20-30 kDa, termed staphylococcal enterotoxin (SE) A, B, CI , C2, C3, D 

and E (Drake and Kotzin, 1992; Herman et al, 1991). 

The bacterial enterotoxins have been implicated as the causative agents in a 

number of diseases, for example the staphylococcal enterotoxins cause almost a 

quarter of food poisoning cases in the United States. Also the organisms that produce 

these toxins have been implemented in certain autoimmune disorders, for example. 

Mycoplasma arthriditis which causes arthritis in rats. 

There are 3 characteristics common to all superantigens. Firstly, they are VP 

TCR family specific (Marrack and Kappler, 1990; White et al., J., 1989). Secondly, 

they are MHC class I I dependent, that is they need to be bound to class I I in order to 

activate T cells (Tomai et ai, 1992; Qasim, Kehoe and Robinson, 1991). All MHC 
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class I I haplotypes will bind superantigens although some are more efficient than 

others (Robinson, Pyle and Kehoe, 1991). Thirdly, T cells recognise the intact 

superantigen on the MHC, that is superantigens are not processed and presented in 

the antigen presenting groove of the MHC like conventional antigens (Herman et al, 

1991). Also there is no requirement for accessory molecules, such as CD4 and CDS, 

on the surface of T cells to effect stimulation (Quaratino et al., 1991). 

Superantigens are so named as they stimulate virtually all T lymphocytes 

bearing specific T cell receptors (ICR's). ICR's are coded for by 5 variable gene 

segments, Va, Ja, Vp, DP and JP, all of which contribute to the specific interaction 

of I lymphocytes with conventional peptide antigens presented in the context of 

MHC molecules. Ihere are potentially millions of possible combinations of these 

genetic elements and so the frequency of responding I cells to a given antigen is 

usually very low, only a fraction of 1% of all I cells. Superantigens stimulate such 

large numbers of I cells, as many as 5-25% of a mouse's I cell repertoire, because 

they stimulate virtually all I cells expressing particular VP genes (Kappler etai, 

1988; Pullen, Marrack and Kappler, 1988). Ihese superantigens are not acting as 

mitogens as in the case of concanavalin A, as not all clones of I cells are activated. In 

mice SEB stimulates virtually all I cells bearing Vp3 and V p s . l , 8.2 and 8.3 epitopes, 

plus a few others. Administration of SEB to neonatal mice results in elimination of all 

mature and some immature I cells bearing these VP elements, resulting in tolerance, 

by clonal deletion, to SEB (White et al., 1989). Similarly there are 'gaps' in the Vp 

repertoire of mice which reflect the VP regions which Mis elements stimulate. It is 

thought that endogenous superantigens may have evolved to eliminate I cells which 

would be reactive to exogenous superantigens (Janeway, 1990). 

Superantigens combine with MHC class I I to form ligands that stimulate T 

cells (Herman etal., 1991; Marrack and Kappler, 1990). Ihey stimulate via sites that 

are distinct from those involved in presentation of conventional antigens: they do not 

bind to the groove on the surface of the MHC (Dellabona et al., 1990). Instead, it is 

thought that they act like a vice clamping the antigen presenting cells to I cells (see 
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Figure 4.1), resulting in T cell activation (Janeway et al., 1989; Marrack and Kappler, 

1990). 

Although the MHC allele is not important for superantigen presentation, 

several of the SE's show differential binding to class I I isotypes. For example, most of 

the SE's appear to bind with higher affinity to murine I-E than to I-A (Yagi et al., 

1990). 

Metabolically active antigen presenting cells (APC's) are required for 

stimulation of optimal T cell proliferation, by the superantigen streptococcal M 

protein, since active APC's are capable of producing co-stimulatory signals, for 

example cytokines. However, metabolically inactive APC's are capable of presenting 

SEB to T cells, therefore the requirements for presentation of different superantigens 

clearly vary (Tomai et al., 1992). 

There are no published reports on whether Xenopus lymphocytes respond to 

these antigens. Therefore it was decided to carry out some preliminary experiments 

to determine if Xenopus lymphocytes are stimulated by superantigens. 

Figure 4.1 The current consensus model of responses to staphylococcal 

enterotoxins (SE) showing binding of the superantigen to the outer faces of 

class n MHC and the VP region of the TCR (Janeway, 1990). 

TCR 

CP 

m 
Vp Va 

F CD4 

MHC 
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4.2 M A T E R I A L S AND METHODS 

Splenic lymphocytes from 6 month old outbred X. laevis were plated out in 

V-bottomed 96 well tissue culture plates and the appropriate quantity of SEB (Sigma) 

added to give a range of concentrations. All cultures were carried out in triplicate. 

The cells were cultured in amphibian strength L-15 complete medium (see Chapter 2, 

section 2.5) at 26°C, in a humidified atmosphere of 5% CO2 in air, for 2-6 days. 

One \iC\ [^H]TdR was then added per well and the cells incubated for a fiirther 

24 hours. The cells were then harvested and thymidine incorporation assessed, as in 

Chapter 2, section 2.5. 

Various parameters of the assay were investigated, including concentration 

of SEB, splenocyte concentration, the period of culture before pulsing and percentage 

of foetal calf serum (FCS) added to cultures. 

4.3 RESULTS 

There has been some indication that X. laevis lymphocytes respond weakly 

to SEB at doses above lO-^M and the response decreases as the dose becomes more 

dilute (Table 4.1). The response to SEB appears to be strongest at 3 days (Figure 

4.2) when the cells are cultured at IxlO^cells/well (Table 4.1), with lO-^M SEB 

(Table 4.2), in L-15 complete medium. Supplementing the media with higher than 1% 

FCS made little difference to the stimulation index. Higher doses of FCS resulted in a 

general increase in disintegrations per minute as a result of the mitogenicity of this 

medium supplement. 

Control cultures, stimulating the cells with ConA, were set up in conjunction 

with all the assays and these all gave high stimulation indices (S I« 102, Table 4.2), 

indicating that the T lymphocytes in the cultures were viable. 

The increase in disintegrations per minute of the activated cultures from the 

control culture was analysed by Students' t test to determine i f there was a significant 
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increase in lymphocyte proliferation following incubation with SEB (Appendix F). 

Ihis gave a p value of 0.1 with 4 degrees of freedom. Ihis indicates that the 

maximum proliferation seen is significantly different from the negative control and 

that the superantigen SEB exerts only minimal mitogenic influence on Xenopus 

lymphocytes. 
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4.4 DISCUSSION 

Initial studies have shown that Xenopus I cells respond only weakly to SEB. 

It appears thymidine incorporation is greatest at 3 days incubation with lO-^M SEB 

(Figure 4.2). Under similar assay conditions to those used with murine I cell lines, 

Xenopus splenocytes showed a 400-fold lower proliferation rate. Ihis may indicate 

that Xenopus class I I molecules or ICR's, or both, may have a lower affinity for SEB, 

than mice. Ihe affinities for the enterotoxins are usually within the nanomolar range, 

so only very few SE molecules need to be bound to a class I I positive cell for it to 

trigger a I cell response (Herman etal, 1991). Ihe lower proliferation may also be 

due to inappropriate culture conditions. Ihe assays with Xenopus have used a mixed 

population of cells from the spleen, compared to the I cell lines used in most murine 

and human studies. Enrichment of I lymphocytes (by panning or cell sorting) would 

seem advisable prior to subsequent experiments with Xenopus cells. 

In mice and humans the superantigen SEB has been found to activate I cells 

polyclonally in an MHC class I I dependent, but haplotype unrestricted manner 

(Drake and Kotzin, 1992; Herman et a/., 1991; Marrack and Kappler, 1990). Ihe 

biochemical and fijnctional attributes of Xenopus MHC and ICR molecules are quite 

similar to those of mammals (see Chapter 1, sections 1.2.1 and 1.3 .3). Additionally 

there are clues that indicate the basic structure of the Xenopus MHC is also 

fundamentally the same as those seen in mammals. For example, rabbit anti-human 

class I I P chain antibody can precipitate Xenopus class I I MHC molecules (Kaufman 

et al., 1985), indicating sequence similarity. Also very recently, cDNA clones for 

Xenopus class I I P chain have been identified which show structures fundamentally 

similar to their mammalian counterparts and nearly 50% amino acid homology with 

mammalian class I I P chains (Sato et al., 1993). Although the Xenopus MHC a chain 

has some N-terminal sequence homology with mammalian a chains, the genes 

encoding the a chains have yet to be cloned (Flajnik and Du Pasquier, 1990; 

Du Pasquier, Schwager and Flajnik, 1989). 
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Although activation of T cells by SEB is haplotype unrestricted there is a 

preference for certain MHC isotypes, for example SEB is preferentially presented by 

DR and I-E antigens expressed on humans and mice APC's respectively. Although 

antibodies to mammalian class I I molecules cross-react with Xenopus class I I there is 

no evidence for Xenopus isotypes homologous to the mammalian families, DQ/I-A or 

DP. However an antibody directed against human DR antigens has been shown to be 

capable of immunoprecipitating almost all of the same class I I molecules on Xenopus 

cells as various alloantisera reactive with the class I I molecules of several different 

haplotypes (Kaufman, Flajnik and Du Pasquier, 1985) suggesting that Xenopus has 

DR-like molecules. There is also evidence for the presence of I-E-like molecules in 

frogs, since I-E negative but not I-E positive mice produce class I I specific antibodies 

after immunisation with frog lymphocytes (Flajnik et al.., 1990; Shinohara et al., 

1981). 

In mammals SEB activates T cells via the VP elements of their TCR. It does 

not bind the TCR where conventional peptides bind, but engages VP on an exposed 

face, a region predicted to be a P pleated sheet (Marrack and Kappler, 1990). 

Xenopus may not possess Vp elements which recognise SEB. As the regions to 

which SEB binds are outside the conventional antigen binding site for both the MHC 

and TCR molecules, the sequences of these regions may not have been strictly 

conserved between mammals and amphibians. This may indicate why culture with 

SEB resulted in low proliferation. 

Staphylococcal strains are natural pathogens of mice and humans. It is 

possible, therefore, that these organisms have evolved so their toxins specifically bind 

sequences found on mammalian class I I molecules, sequences not present in Xenopus 

class I I molecules. It appears that their ability to cause disease comes from their 

property to activate a large number of T cells. S. aureus toxins do bind less well to 

mouse class I I than to human class I I proteins, since S. aureus is indigenous to 

humans. Indeed a different species, S. xylosis, is found in mice, so the differential 
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binding affinities may be the consequence of evolutionary divergence of the bacteria 

with their hosts. 

Further work will clearly have to be carried out to investigate whether 

Xenopus I lymphocytes can be made to proliferate more readily in response to SEB. 

Confirmation that it is I cells which are responding could be achieved by use of I x 

animals and by the use of mAbs which block I cell markers or class I I antigens. 

Ihese techniques have been used very successfully to reveal that the in vitro mixed 

lymphocyte response in Xenopus is mounted against class I I MHC proteins (Harding, 

Flajnik and Cohen, 1993). 
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Table 4.1 Stimulation indices of splenic lymphocytes following incubation, at 

different cell concentrations, with SEB for 3 days. 

Dose SEB (Molar) SI at various cell concentration (cells/ml) 

2x 104 1 X 105 3 X 105 

10-5 3 16 8 
10-6 1 2 2 
10-7 1 1 1 
10-8 1 1 1 
10-9 1 1 1 

Table 4.2 Typical dose response of splenic lymphocytes^, when cultured at 

IxlOScells/well, with SEB for 3 days. 

Dose SEB (Molar) dpm ± SEb SI 

0 402± 138 
10"* 2193 5.5 
10-5 3900 ±2819 10.0 
10-6 981± 423 2.4 
10-7 487 ± 110 1.2 
10-8 545 ± 348 1.3 
10-9 40 ± 99 1.0 

a = these cells were also cultured with 2.5|ig/ml ConA in L-15 complete medium, 

which gave dpm = 35,859 ± 4,029 and SI = 89; b = n = 3, except where the cells were 

cultured with lO^M SEB. Here only one well was tested due to lack of cells. 
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Figure 4.2 Kinetics of the response of X. laevis splenocytes (1 x 10̂  cells/well) to 

various concentrations of SEB following incubation for 3, 5 and 7 days. 

5000 T 

4000 + 

d 3000 •-

P 
m 2000 + 

1000 t 

DAYS 

a 
b 

where a = the negative control, b-f = incubation with lO-^M, lO-^M, 10-''M,10-8M and 

10-9M SEB. 
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C H A P T E R 5 

C O N C L U D I N G R E M A R K S AND F U T U R E W O R K 

The aim of this thesis was to investigate developmental aspects of the 

Xenopus immune system, especially T cell development and transplantation immunity. 

Work in Chapter 2 concentrated on the effects of in vivo allostimulation on the 

distribution of T cell surface antigens within the adult splenic population. Intact, 

thymectomised and skin tolerant Xenopus were used in these flow cytometric 

experiments, which employed a range of new monoclonal antibodies. The 

proliferative response of cultured Xenopus splenocytes to irradiated allogeneic 

stimulus was examined in Chapter 3 by carrying out thymidine incorporation studies. 

Such MLR's employed responder splenocytes from non-grafted or grafted animals and 

also compared the use of normal or T cell mitogen activated, irradiated stimulator 

cells. Surface antigenic profiles of cultured cells were again monitored by flow 

cytometry. The effect of thymectomy on alloreactivity, T cell mitogen responsiveness 

and on T cell phenotypes was also briefly assessed. In Chapter 4 preliminary 

experiments probing the response of Xenopus splenocytes to the superantigen, 

staphylococcal enterotoxin B (SEB), were carried out. 

The major findings of this work and suggestions for follow-up experiments 

are discussed below. 

5.1 Skin Graft Rejection 

As expected intact laevis, LG3 and LG15 animals acutely rejected 

allografts, while 5-day-thymectomised X. laevis and LG3 tolerated or chronically 

rejected allografts. Control LG3 animals given foreign skin in larval life subsequently 

tolerated secondary grafts from the same donor, but could reject third party grafts. 

Skin allografting LG15 animals with LG5 skin prior to restimulation in MLR resulted 
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in an increased thymidine incorporation of the responding cells, compared with MLR's 

where the responders came from non-grafted animals. This showed that the LG15 

animals had been sensitised to the LG5 haplotype, giving a secondary MLR. 

5.2 Mixed Leukocyte Reactions 

Pre-incubation of stimulator cells with ConA enabled these to affect very 

high levels of responder cell proliferation. Reasons for such enhanced stimulatory 

capacity were studied by carrying out flow cytometry of the stimulating cells, with 

particular emphasis on the level of expression of class I IMHC molecules and T cell 

antigen specific markers. The possibility of elevated cytokine production by the T-

cell-mitogen activated stimulators was also investigated. It was shown that the 

increase in stimulation did not appear to be solely due to cytokines in the medium or 

to correspond to any difference of cell surface antigen expression, as detected by flow 

cytometry, of the cells incubated with ConA. Also, there was little indication of any 

increased expression of class I I in the short term ConA studies reported here. The 

reasons for the elevated MLR achieved by the use of ConA-pre-incubated stimulators 

therefore remain to be assessed, although it would appear from the work of Harding 

et al. that increased class I I MHC expression will be a likely causative factor 

(Harding, Flajnik and Cohen, 1993). Blocking experiments with the anti-class I I 

MHC monoclonal antibodies could be carried out to see if this reduces the high 

stimulation indices seen. 

The ultimate goal of these assays was to probe the possibility of developing a 

CML assay using larval cells, where it is not readily possible to go through graft 

rejection (which takes 3 weeks) prior to in vitro MLR/CML. A CML assay in larvae 

would show if cytotoxic cells exist in the class I deficient larva. 
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5.2.1 Expression of the putative aP T-cell receptor following incubation with 

concanavalin A 

The complete loss of the putative aP T cell receptor positive (TCR) cells, 

following incubation with ConA, was interesting. This could be further investigated 

to see i f this affects stimulatory properties of these cells. To see i f there is a 

correlation between loss of aP TCR positive cells and increase in allo-stimulation. 

The loss of aP TCR positive cells could possibly make the stimulating cells' MHC 

class I I molecules more accessible, thus increasing the allostimulation. 

5.3 Expression of the Putative y5 T-Cell Receptor following In Vivo and In Vitro 

Allostimulation 

Flow cytometry of the in vivo and in vitro allostimulated splenocytes from 

normal Xenopus revealed no significant changes in the level of expression of any of 

the cell surface antigens examined, except for an increase in the number of cells 

staining with the monoclonal antibody D12.2, the putative yS TCR positive cells. It 

also appears that these yS TCR positive cells are active in the alloimmune response, as 

many of the y5 TCR positive splenocytes from X. laevis (which had been cultured for 

9 days with irradiated LG15 cells) appeared to represent T lymphoblasts. 

Flow cytometry of LG3 animals which had been induced to become 

specifically tolerant to certain MHC haplotypes, following application of skin 

allografts during larval life, revealed no obvious difference in the splenocyte 

phenotypes of these populations, compared with those from animals not rendered 

tolerant. That is to say, there was no obvious decrease in the spleen cell numbers or 

level of expressions of any of the observed cell surface markers, thought to be 

involved in allograft rejection. Furthermore, no increase in y5 expression was seen in 

the spleen when tolerant animals were given a new graft from the donor that induced 

tolerance. This suggests that where such an increase occurs in normal animals this is 

not simply due to properties of foreign skin unrelated to rejection events, rather it is 

associated with the rejection process. The increase in expression of the y6-receptor 
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when third party allografts were given to these allo-tolerant animals further confirms 

this suggestion. 

It is thought that the y5 receptor evolved before the aP complex and that the 

latter represents an advance, linked with the evolution of the thymus. It would be 

interesting to fiarther explore the appearance and function of y5 TCR positive cells in 

Xenopus, following allostimulation, in intact and Tx animals, by flow cytometry and 

transplantation reactions. By use of a fluorescence activated cell sorter (FACS) it 

would be possible to purify these y5 TCR positive cells and therefore determine 

whether they respond to the conventional T cell mitogens PHA and ConA. It may 

also be possible to inject the sorted y6 TCR positive cells into isogeneic animals to 

determine whether this enhances their response to allogeneic skin grafts. 

The increase of putative y5 TCR positive cells, shown here following 

allogeneic stimulation, may reflect a different role for these cells in the evolutionary 

more primitive vertebrate Xenopus. It may indicate that y5 TCR positive cells play a 

more important role in alloreactivity in Xenopus than they do in more evolutionary 

advanced mammals and birds. Xenopus y5 TCR positive cells may exhibit properties 

more commonly associated with the aP TCR in higher vertebrates. 

5.4 Response of Xenopus Splenocytes to the Superantigen, SEB 

Chapter 4 showed that Xenopus T cells could respond weakly to the 

superantigen SEB. The induced proliferation rate was 400-fold less than that seen in 

mice under similar assay conditions, suggesting a lower affinity of either Xenopus 

class I I MHC molecules or TCR's, or both, for the superantigen than those of mice. 

Further work is required to investigate whether Xenopus T lymphocytes can 

be made to proliferate more readily in response to SEB, by changing the assay 

conditions, for example. Also the response of Xenopus T cells to other superantigens, 

for example SEA or SEE could be investigated. Confirmation that it is T cells which 

are responding can be achieved by use of Tx animals and by the use of monoclonal 

antibodies which block T cell markers or class I I antigens. These techniques have 
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been used very successfully to reveal that the in vitro mixed lymphocyte response in 

Xenopus is mounted against class I I MHC proteins (Harding, Flajnik and Cohen, 

1993). 

116 



Appendix A - Amphibian Phosphate Buffered Saline 

Double distilled water 1000ml 
Sodium chloride (NaCl) 6.6g 
Di-sodium hydrogen phosphate (Na2HP04) 1.5g 

Potassium di-hydrogen orthophosphate (KH2PO4) 0.2g 

For immunostaining wash buffer add Ig bovine serum albumin 
Ig sodium azide (NaNs) 

Adjust to pH 7.4 
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Appendix B - Gating of Samples for Fluorescence Activated Cell Sorter 
Analysis 

Splenocyte suspensions were stained with the FITC control, CT3 and/or the 

PE control, Ig-PE and run through the flow cytometer. From this a dot plot was 

obtained (Figure B l ) of forward scatter (cell size) against the logarithm of side scatter 

(cell granularity). A gate could be manually placed around the concentrated 

lymphocyte population (labelled as 1 in Figure B l ) , to exclude the larger and more 

granular cell populations, for example erythrocytes. 

A histogram (Figure B2 - Coulter Epics flow cytometer) or a dot plot 

(Figure B3 - Becton Dickinson FACS Scan) of fluorescence intensities, was derived 

from this gated lymphocyte population containing 10,000 events. Markers were set 

using the FITC- or PE-controls (1 in Figure B2 and quadrants in Figure B3), so that 

the equivalent of 97-98% of the CT3 and/or Ig-PE labelled cells would not be 

included as positively stained cells during analyses. This eliminated events, due to 

non-specific binding of the mAb's, being included in the counts. 

Figure B l Typical dot plot obtained when splenocytes stained with CT3 or Ig-

P E controls are run through the flow cytometer, showing the gate around the 

concentrated lymphocyte population (1). 
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Figure B2 Typical histogram obtained, on the Coulter Epics flow cytometer, 

following gating as in Figure B l , showing the marker (1) set to remove 98% of 

the non-specifically labelled cells from being included in the analyses. 

. F L l 
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Figure B3 Typical dot plot obtained, on the Becton Dickinson FACS Scan, 

following gating as in Figure B l , showing the automatic placing of quadrants to 

remove 98% of the non-speciflcally labelled cells from being included in the 

analyses. 
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Appendix C - Determination of the Optimal Dose of ConA to Induce T Cell 

Proliferation 

A suspension of splenic lymphocytes was prepared and these were plated out 

in V-bottomed 96 well tissue culture plates at 1x10^ cells/well or in 24 well tissue 

culture plates at 3x10^ cells/well and the appropriate quantity of mitogen added, to 

give a range of concentrations. The cells were cultured at 26°C for 2 days, then l | iCi 

[^HJTdR was added per well and the cells incubated for a further 24 hours. The cells 

were then harvested and thymidine incorporation assessed as in Chapter 2, section 

2.5. 

The optimal dose at 1x10^ cells/well, in a 96 well V-bottomed plate was 

either 1 or 2.5\ig/m\ ConA (Figure CI) and in a 24 well plate, at 3x10^ cells/well the 

optimal dose was 2.5|ig/ml ConA. 

Figure C I Dose response of X laevis splenic T cells to ConA at 1x10^ cells/well 

in V-bottomed 96 well plates 
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Appendix D - Calculation of the Radiation Dose, from the Cobalt-60 

Source, used to Irradiate M L R Stimulator Cells 

In order to calculate the dose rate at various distances from the source the 

Inverse Square Law is used: 

Dose rate at an unknown distance from the Co-60 source (Krads/hr) 

= Known distance (cm) \ ^ ^^^^ ̂ ate at known distance from the Co-60 source (Krads/hr) 

Vnknown distance (cm) / 

By use of a curve of the change in dose rate of the Cobalt-60 source over 

5.25 years (Figure D l ) , the dose rate at 8cm from the source in January 1992 was 

80.025 Krads/hr. 

Therefore the dose rate at 16cm from the source 

_ x 80.025 
16 

20.006 Krads/hr 

6.668 Krads/20 minutes 
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Figure D l Change in dose rate of the cobalt-60 source over 5.25 years 
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Appendix E - Dose of Irradiation Required to Inactivate ConA Stimulated 

Cells 

This was carried out in order to confirm that following irradiation the T cell 

mitogen stimulated cells are unable to proliferate and therefore are suitable for use as 

MLR stimulators. 

Splenocytes from 1 year o\dX. laevis and LG46 were cultured in L-15 

complete medium with or without 2.5ng/ml ConA, for 48 hours. Each culture was 

then split into 6 aliquots and irradiated at 5 different doses, ranging from 5300 rads to 

8700 rads, with one aliquot left unirradiated. The cells were subsequently plated out 

in triplicates at IxlO^ cells/well, in a 96 well V-bottomed plate and pulsed with l^iCi 

[^HJTdR after 4 hours incubation. The cells were incubated for a further 24 hours 

and thymidine incorporation assessed as in Chapter 2, section 2.5. 

Table E l shows that the T cells had been stimulated by the ConA after 48 

hours incubation. Thymidine incorporation was greatly reduced after irradiation at all 

doses. It was calculated using the half life of the cobalt-60 source that 16cm from the 

source gave 6,668rads in 20 minutes. This was chosen as the dose to be given as 

16cm was a convenient distance from the source. 

Table E l Tritiated thymidine incorporation of splenic lymphocytes following 

ConA stimulation and irradiation. 

Dose radiation (rads) dpm of the splenocytes 24 hours post irradiation Dose radiation (rads) 

LG46 + 
ConA 

LG46 X. laevis + 
ConA 

X. laevis 

0 5558 85 874 71 
5300 318 94 107 76 
5900 269 70 162 69 
6668 279 145 107 57 
7590 525 74 71 71 
8700 260 91 162 58 
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Appendix F - Students t test to Determine if there was a Significant 

Increase in Lymphocyte Proliferation following Incubation with S E B 

For the dpm of the cells cultured with lO-^M SEB, the calculation was as 

follows: 

variance (s,2) = [ZXi^ - (ZXQ^/ N, + SX;^ - QDi^fl ] 

N i + N2-2 

= [61.47 X 106 -1.36 X 108/3 + 5.24 x 10^ - 1.45 x 10^/3] 

3 + 3 - 2 

8^2= 1.588 X 107 

8 ,̂2= 3.969x 106 

The value for t was then calculated using the value for s,,̂  by use of the 

following formula: 

t = X , - X2 
s,Vl/Ni + I/N2 

t = 3900 - 402 

I992.2V1/3 +1/3 

t = 2.15 

With 4 degrees of freedom, p = 0.1 

Therefore the maximum proliferation seen is weakly significantly different 

from the negative control, indicating that the superantigen SEB exerts only a small 

mitogenic influence on Xenopus lymphocytes. 
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