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Let us go then, you and I , 

When the evening is spread out against the sky 

Like a patient etherised upon a table; 

Let us go, through certain half deserted streets. 

The muttering retreats 

Of restless nights in one-night cheap hotels 

And sawdust restaurants with oyster-shells: 

Streets that follow Uke a tedious argument 

Of insidious intent 

To lead you to an overwhelming question ... 

Oh, do not ask, 'What is it?' 

Let us go and make our visit. 

(From "The Love Song of J . Alfred Prufrock" by T.S . EUot) 
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Abstract 

The optical studies of organized dye multilayers constructed by the Langmuir-

Blodgett technique are described. A number of different organic dye materials 

are examined; and some warrant special attention. They are S120 a cyanine, the 

squaraines and perylene. It is shown that these dyes form particularly well ordered 

films with unique optical properties. Si20 forms J-aggregates, Sql and Sq3 both 

squaraines form hypsochromicaly shifted complexes (possibly H-aggregates) and 

Sq2 another squaraine exhibits band splitting (possibly Davydov). Fluorescence 

studies of perylene:tricosanoic acid films show that monomer and dimer species 

exist at room temperature, whilst at low temperature a third emitter is observed 

(excimer). 

Structural studies of perylene:tricosanoic acid films reveal a high degree of 

order. From the isotherms and polarized absorption spectra it is seen that the 

molecules are on their edges, tilted with respect to the substrate. R H E E D mea­

surements confirm the high degree of structural order. 

The dependence of surface plasmon resonance on the overlayers is demon­

strated. The silver thickness and history are shown to be important in subse­

quent surface plasmon resonance measurements. An overlayer containing a dye 

with a sharp intense absorption band can interact with the surface plasmons to 

give anomalous dispersion (backbending). Only single backbending is observed for 

S120 and Sql, indicating anisotropic films. Good agreement is found between S120 

backbending and data reported in the literature. 
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Chapter I 

Introduction 

Considerable effort has been expended by the semiconductor industry in its 

short history to reduce device sizes; this may ultimately require the necessity for 

molecular scale fabrication. In addition, it has become apparent that organic 

materials possess properties which enable them to perform functions not possible 

with inorganic materials; two examples are hquid crystals and tunable dye lasers. 

They also show promise for some applications such as nonUnear optics and sensing. 

Sensing is probably the most important area, since, in order for computers to fully 

realize their potential, they must be able to collect their own data. It was with 

these thoughts in mind that this project was initiated. 

Much work has been done on the properties of dyes in thin film form. The 

pioneering work in this area was performed by Kuhn^ and Drexhage^ who were 

particularly interested in energy transfer between dye systems. Kuhn and Drex-

hage utilized fatty acid monolayer assembly techniques to examine the distance 

dependence of energy transfer. More recently, Fromherz^, Penner'*, and Leitner^ 

have extended this work to include time-resolved fluorescence studies. Such sys­

tems provide important models for light-harvesting, photosynthetic processes and 

may form the basis for artificial molecular information-processing systems. 

Recently, physical phenomena which are sensitive monitors of a system have 

been sought. The surface plasmon resonance (SPR) technique provides a very sen­

sitive method for the investigation of overlayers. It has already been demonstrated 

by various workers that surface plasmon resonance might form the basis for several 

types of sensor for example: chemical; gas and bio-sensors^'^. 

An essential component of any sensor is a material whose properties change on 

exposure to the substance or stimulus to be measured. Since Langmuir-Blodgett 

( L B ) films are composed of organic material they might form an analogue to bio-

molecular systems. The L B technique off'ers an elegant method for constructing 



thin organic layers of known thickness, which have a unique order. The incorpo­

ration of dye chromophores enables oriented, precisely positioned assemblies to be 

engineered. 

Although the S P R technique is very sensitive to changes in the surface condi­

tions of an overlayer, it is non-specific, thus Umiting its uses in the application of 

bio-sensing. In an attempt to overcome these difficulties a technique widely used in 

microbiology is adopted. The species to be detected is labelled with a chromophore 

and it is an interaction between the chromophore and the surface plasmon which 

is measured. Therefore combining the L B and S P R techniques provides us with a 

method for modelUng the structure of a bio-sensor. 

The materials used in this work are macrocyclic molecules: porphyrins and 

phthalocyanines, which are known to have high extinction coefficients, perylene. 

Si20 a cyanine and three squaraine derivatives. Tricosanoic and 22-tricosenoic 

acids provide an environment for the chromophores. 

This thesis reports the formation of novel dye multilayers and the interactions 

between dyes and surface plasmon polaritons (SPPs). 

The principal aims of this project are summarized below: 

1) To produce of thin organic dye layers on a variety of substrates. 

2) To measure the optical properties of these layers. 

3) To study the interactions between dye layers and surface plasmons. 

Chapters 2 and 3 contain theory. Chapter 2 introduces the physics of surface 

plasmon resonance, its origins and production. The properties of organic dyes are 

discussed in Chapter 3. Particular attention is paid to the effects of aggregation 

on absorption and fluorescence. The experimental techniques used to produce, 

characterize and measure film properties are included in Chapter 4. The theory 

behind each technique is described briefly and then the specific experimental details 

used in the measurements are discussed. The optical and physical properties of 

the dye films are reported in Chapter 5. Comparisons are made between dyes in 

solution, cast films and L B films. The orientation of the chromophores is also 

investigated. Experimental results and data obtained from a model for surface 



plasmon resonance studies are presented in Chapter 6. Finally the experimental 

results are summarized, suggestions axe made for further work and conclusions are 

drawn in Chapter 7. 
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Chapter I I 

Surface Plasmons 

2.1 Introduction 

The object of this chapter is to introduce the physics of surface plasmons. 

The conditions for their existence are determined and the use of surface plasmon 

resonance as a sensitive measuring technique is considered. In section 2.2 the 

concepts of bulk plasma and dielectric function for a metal are defined. Plasmons 

are then investigated at an interface between two dielectric media and the surface 

modes that arise are discussed. The problems associated with surface plasmon 

excitation are explained in section 2.3 and various solutions are considered. One 

solution to these problems (introduction of a second interface) is described in both 

theory and practice. The sensitivity of surface plasmon resonance as a technique 

for detecting changes in surface conditions is demonstrated and the interaction 

between the surface plasmons and an absorbing layer, which gives rise to anomalous 

dispersion, is described. Some appUcations for which surface plasmon resonance 

has been utiUzed are outUned in section 2.5. Finally, in section 2.6, a summary is 

given. 

2.2 Surface Plasmon Polaritons 

2.2.1 B u l k pl£Lsma and dielectric function 

The dielectric function of a metal can be modeUed as an electron gas. The 

strong frequency dependence has a significant effect on the physical properties, of 

the soUd. 

The dielectric function is dependent on frequency and wavevector, that is e = 

e{uj,k). Ignoring spatial dispersion, e(w,0) gives rise to the coUective oscillations 

of the electron gas which are described as bulk plasmons. It should be noted that 

e, of course, is a complex quantity. 
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The dielectric function is defined as follows 

D = eoE + P = eeoE 2.1 

where D is the dielectric displacement, E is the electric field, P is polarization, eo 

is the permittivity of free space and e is the relative permittivity. 
> 

The dielectric response e(u;, 0) or just e{Lj) can be obtained from the equation 

of motion of an electron in an electric field (Kittel^). 

m — 7 = - e E 2.2 
dt^ 

where m is the mass of an electron, e is its charge, x is the distance moved by 

an electron, relative to fixed positive charge, in a field E , where x and E have a 

time dependence e~*̂ *. Diff'erentiating with respect to t we obtain 

. = ^ 2.3 

the dipole moment, is defined asp = AqAx where q is charge and x is distance. 

For one electron the dipole moment, relative to fixed positive charges, is 

-ex = 5" 2.4 

Polarization (dipole moment per unit vol) is given by 

—nê  
P = -nex = 5-E 2.5 

where n is electron concentration. 

We now have 
D(a;) P{u) 

13 



and therefore 

e(u;) = 1 - 2.7 

The plasma frequency ujp is defined as the frequency where e{u) is equal to 

zero. Hence 

2.8 

A plasma is a medium containing equal numbers of positive and negative 

charges, one of which is mobUe. In a metal the negative charges are the free 

electrons and the positive charges are the ion cores. 

We can rewrite the dielectric function in terms of the plasma frequency 

2.9 

This is plotted in figure 2.1 

Region of 
aoenuation 

Region of 
propagation 

Figure 2.1 The dielectric function e{uj) of an electron gas versus the 

frequency, in units of plasma frequency. 
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By substituting suitable values for n into equation (2.8) we can obtain values 

for Up for Au and Ag (u;p=1.3x 10^^ Hz) and for AI {up=2AxlO^^ Hz), which 

correspond to the ultra-violet part of the electromagnetic spectrum. 

2.2.2 Excitations and poleiritons 

Many forms of electronic excitation exist in the sohd state. Most of these decay 

rapidly and end in thermal excitation of the lattice. However, some are longer hved 

and these have been called elementary excitations. 

Elementary excitations involving electrons include: 

i) quasiparticles like screened electrons, Bloch electrons and polarons; 

ii) plasmons, energy quanta of collective electron oscillations; and 

iii) excitons (bound state between electron and a hole). 

The coupled state formed between a photon and an elementary excitation is 

called a polariton. Therefore the interaction between a plasma and a photon is 

known as a plasmon polariton. 

2.2.3 Plasmons at the surface (the single interface system) 

Figure 2.2 shows the interface between two media of different dielectric con­

stant ei and eg with z normal to the surface and x and y parallel. AH waves are 

propagating in the z direction. 

Only p-polarized fields will be considered, that is electromagnetic fields with 

a component of E incident in the {x,z) plane, because only electromagnetic fields 

with a component of E normal to the interface can produce surface charge polar­

ization owing to the discontinuity of E ^ . 

Therefore only the fields E i , E , and Hy are of interest. 

From Maxwell's equations 

V . D = V.(eeoE) = eeoV.E = 0 2.10 

15 



Figure 2.2 The interface at z=0 between two media with different di­

electric functions ei and 62. Where z is normal and x and y are parallel 

to the interfaces. 

V . B = V . ( ^ H ) = ^ V . H = 0 2.11 

dB dH 

V x H = — = « o ^ 

2.12 

2.13 

The plane wave equation in a nonmagnetic, homogeneous and isotropic dielec­

tric can now be derived. 

^ 2 
fieeo-T-ir = 0 2.14 

Assuming a solution of the form 

E = Eie»('=^*-'̂ *)e*'=^^ 2.15 

Substituting (2.15) into equation (2.14) gives 

16 



k, = Y//xea;2 _ ^2 2.16 

From Maxwell's equation a relationship between Ex and Hy can be obtained. 

dEx Hy = -eJ-
dt 

•dz 2.17 

Assuming that the fields of interest have a phase and time dependence e*(*̂ =̂ ~̂'̂ *) 

and are traveUing in the z direction, an equation for the electric field E can be 

formed and then by using the relationship equation (2.17) an equation for the 

magnetic field H can be obtained. 

The fields can be written as follows 

In medium 1 where z > 0 

E , = E i { ^ , 0, * )e'('=x-*)e«fczx. 2.18a 

H i = Ei{0, - y i l , 0)e''(* -̂'̂ *)e'*= î̂  2.186 

a;2 
k,i = ±\ ei^-k^ 2.18c 

c2 

In medium 2 where z < 0 

E3 = £ ; 2 ( - ^ , 0 , - i ^ ) e ' ( ^ - - ' ^ ' ) e - » ^ - ^ 2.19a 

Ha = .£2(0, -v/i^,0)e'('=^-'^*)e-'=^2z 2.196 

k^2 = ±]]e2'^-k^ 2.19c 

17 



Satisfying the boundary conditions at z = 0 that the tangential components 

of E and H are continuous, we have Ex2 = Exi and Hy2 = Hyi 

two simultaneous equations can be formed 

Ei--^E2 = 0 2.20a 

and 

- v / i l E i + = 0 2.206 

The nontrivial solution of these equations is 

£2 _ _kz2 2.21 

Substituting values for kzi and kz2 a familiar dispersion relationship for surface 

plasmons is obtained. 

k = - /_!2£i_ 2.22 
c V £2 + ei 

2.2.4 Radiative and non-radiative modes 

Raether'* referred to the surface modes as either radiative or non-radiative. 
Taking the dispersion equation 2.22, if damping is included £2 and ei can become 
complex, which means that k and u must also be treated as complex quantities. 

€2 = €2 + ie'2 and ei = e'l -f ie" 

Roots of the equation must be chosen such that (on insertion into field equa­

tions (2.18) and (2.19)) they do not produce fields that increase with time or in 

the direction of propagation. 

Let 62 > ^1 

18 



If €i is assumed to be real and positive (e" = 0) and £2 is also real and positive 

(corresponding to a lossless dielectric/dielectric interface) then the roots kiz and 

k2z are real and positive. The resulting radiative surface waves correspond to the 

Brewster mode. 

With £2 negative and real (lossless dielectric/metal interface) the roots of the 
equation kiz and k2z are imaginary. The waves decay exponentially away from the 
interface, this is the non-radiative surfcice mode called the Fano mode. 

A real surface active medium will have a complex dielectric constant. When 

£2 7̂  0 k2z and ku become complex and waves decay exponentially perpendicular 

to the interface, kx is also complex. The wave is therefore bound to the surface 

and decays as it propagates along the interface, this is called the 'Lossy Fano' 

mode which is the surface plasmon polariton (SPP). In this case £2 is the surface 

active medium and £1 is the surface inactive medium. The dispersion curves for 

the Brewster and Fano modes are plotted in figure 2.3. 

2.3 Excitation of Non-Radiative Surface Plasmons 

2.3.1 Matching momentum (the slow photon) 

As mentioned earlier there are two branches of the SPP dispersion curve, the ra­
diative and the non-radiative modes. Direct excitation of the non-radiative (Fano) 
mode by light on a smooth surface is not possible. However, SPP's can be excited 
on a statistically rough surface or a metal coated grating with light at grazing 
incidence, and in thin Al-foUs by electron energy loss. It is clear that, on inspec­
tion of the dispersion curve (figure 2.3) for a given u, the component of the light 
wavevector parallel to the surface will always be smaller than the parallel compo­
nent k of the SPP wavevector. The conditions for energy (u) and wavevector (k) 
conservation cannot be simultaneously satisfied, therefore no coupUng occurs. The 
coupling conditions can also be described in terms of phase velocity; the phase ve­
locity Vph. is always smaller than that of Ught. Otto^ suggested that a slow photon 
was required for coupling. 

19 



CO 

COp 

Brewster 

( 0 = COp 
Vi+e 

Figure 2.3 The dispersion curve, frequency (w) versus wavevector (/fĉ ), 
for electromagnetic waves at a single interfece. 



2.3.2 Introducing a second interface 

The problem of SPP excitation is overcome by the introduction of a second 

interfcice (figure 2.4). If a medium with 63 is introduced a.t z = d the equations for 

the electromagnetic fields Hy and Ex in each medium can be written. By including 

the boundary conditions a more complex dispersion relationship for the system can 

be produced (Welford"^). 

z 

X z-0 

/ 
/ / ; / / • 

Figure 2.4 The two interface system with a second interface at z=d 

between media with dielectric functions eg and £3 . 

63^2z {e2ku + eik2z) + e(^^>^^''^\eik2,-e2ku) 

^2hz {€2kiz + eiA:2z) - e(2»*2.<i)(eiA:2z - e2ku) 
2.23 

If €2 is a free electron metal and ei and €3 are real and positive and ei > £3, 

the dispersion relationship can be plotted (figure 2.5). There are two branches of 

the dispersion curve, one for each interface. The fight Hnes u) = ck/y/ei and u = 

ckj^JTi are drawn for media 1 and 3. As kx tends to 0 these become the asymptotic 

gradients. They show the maximum kx for an incident photon travelling parallel 

to the surface with frequency u. 

20 
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Figure 2.5 The dispersion curves for the two interface system. 



Looking at the form of kjz at points b and c of the dispersion curves which 
both he in a region where kx > Uy/Ti/c, The following are obtained 

which is imaginary 

which is imaginary and 

'Iz ' - k l 2.24a) 

k2z = )/e2fiou}^ - kl 2.246) 

k2z = \/« £3/zoa;2 - kl 2.24c) 

which is also imaginary 

These are clearly non-radiative modes which represent coupled Fano modes 

one at each metal/dielectric boundary. 

In the region a (where '^y/ei < kx < ^ y / ^ T ) ^22 and are imaginary and kiz 

is real. Therefore a photon incident in medium 0 with the correct wavevector can 
couple into surface plasmon modes at the metal(medium 2)/dielectric(medium 3) 
interface. At a fixed frequency UJ, the wavevector of Ught parallel to the surface can 
be made to match that of the surface plasmon by varying the angle of incidence 
9. This case is illustrated on the dispersion figure where u = ck/y/eisin9 crosses 
the curve at a. If the medium 1 is a glass prism and medium 3 is air then as 9 
increases kx > w^/ea/c the critical angle is exceeded. Couphng to SPP described 
by curve a only occurs beyond the critical angle. 

2.3.3 Prism coupling (attenuated total internal reflection) 

When light is totally internally reflected inside a prism, an evanescent field 

penetrates approximately an optical wavelength into the air. 

Otto^ (figure 2.6a) brought a silver surface close to a prism base and used the 

evanescent field to couple p-polarized Ught into SPP's at the sUver surface. Light 

is totally internally reflected from the prism unless the wavevector parallel to the 
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silver 
coating 
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Quartz prism 

Quartz plate in 
optical contact 
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Quartz plate 

Qir gap 

The Otto configuration for SPP excitation 

Quartz prism 

silver layer 

The Kretschman arrangement for SPP 
excitation 

Figure 2.6 a) The Otto and b) the Kretschmann and Raether prism 
configuration for attenuated total reflection coupling. 



surface matches the SPP wavevector. This parallel wavevector can be varied in 

two ways: by varying the angle of incidence at constant frequency or by fixing the 

angle and varying the wavelength. 

The Otto method has several problems associated with it . There is a diflB-

culty in matching the surfaces closely enough and a method for spacing the silver 

from the prism surfcice is required. Kretschmann and Raether^^ (figure 2.6b) over­

came these diflBculties by evaporating the sUver directly onto the prism base. The 

evanescent field couples through the sUver and the SPPs are excited at the silver/air 

interface. 

2.4 Surface Plasmons as Probes of the Surface 

2.4.1 Field enhancement 

Field enhancements of over 100 times can be achieved close to the surface. 

Figure 2.7 shows a plot of the Poynting vector against distance through the system 

at the point of resonance. The incident field is so small that it is not visible, the 

transmitted field can be seen to decay within a few microns of the surface. 

2.4.2 Sensitivity to over layers 

Resonance only occurs when both uj and k satisfy the SPP dispersion relation­

ship. I f the dispersion relation is modified by changing superficial conditions, the 

excitation does not occur for the same values of u and k. 

If there is a transition layer between eo and 62 which is homogeneous, isotropic 

and has a thickness df with a dielectric function ef = e'^ + ie'j, then the dispersion 

relationship can be written (Abeles and Lopez-Rios ^) 

Zo + Z2 = -i(-)df[ZoZ2{l -—) + M 2.25 

where 
e €2 

ZQ = I and Z2 = 

ZQ and Z2 are optical admittances. 
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Figure 2.7 The field distribution (Poynting Vector) through the glass 
silver, silver air interfaces (after Welford). 
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and 

£0 + 2̂ 

5 is known as the reduced wavevector. 

If u! is constant 

' dS = dS^ + ids' = ^ ^ 5 ^ ( ^ / - 'f^^^df 2.26 

It is immediately clear that dS is proportional to thickness. I f fŷ  = £2 or 

€/ = £0 then dS = 0 

For a highly reflecting substrate the imaginary part of dS is strongly related to 

the absorption of the surface layer. Both broadening and shifting of the resonance 

curves may be observed for overlayers. The shift in resonance is given by dS^ and 

the broadening by dS*. A change in resonance depth is sometimes seen and this 

can be related to the absorption of the overlayer ê . 

For fixed 5 and frequency independent eo 

du = du^ - idJ = 2^i(^0 + ^ 2 - e o £ 2 A / - e ; ) 2W, ^ ^7 

^ - ( ^ 0 + e2)(e2 - eo){de2/duj) ^ 

Again du is proportional to dj and du = 0 when either £y = £0 or £ŷ  = £2 

2.4.3 Anomedous dispersion (backbending) 

Small changes in the overlayer can affect the characteristics of SPP propaga­

tion; this was demonstrated earUer. The SPPs are particularly sensitive to ^he 

dielectric constant of the film £/. A singularity arises when the €f becomes either 

infinitely large or small. These two cases can occur for two difi"erent frequencies in 

ionic crystals. 
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u;io and OJTO being longitudinal and transverse vibrational frequencies. The re­
flectivity has singularities for uj = UITO and u = OJLO- The latter condition (ey = 0) 
also occurs in a free-electron metal at the plasma frequency Up. 

The interactions between absorbing layers (transition layers) and a surface 

cictive layer which can support an electromagnetic surface wave (surface plasmon) 

have been categorized by Agranovich^*^ as either quenched or resonance in nature. 

A resonance type interaction involves a thin absorbing layer on a surface active 

material which has a narrow absorption band in the frequency range of the surface 

plasmon. Quenching involves two surface active materials, one of which is a very 

thin film where absorption occurs over a wide frequency range. This corresponds 

to a metal covered by a nanometer thick film of a diflferent metal. 

As noted in 2.3.3 surface plasmons can be excited in two ways using the ATR 

method: either the angle can be fixed and the wavelength varied, or the wavelength 

fixed and the angle varied. If there is no damping in the superficial layer then the 

dispersion relationship is the same for both methods and the curve breaks into 

two branches (figure 2.8a). The modes decouple and tend towards the surface 

electromagnetic excitations at the two interfaces. However, i f damping is present 

the Brewster and Fano modes are mixed to form a continuous curve (figure 2.8b); 

this is referred to as anomalous dispersion or 'backbending', allowing the waves 

to propagate in the forbidden region. In the case of a metal interfacial layer, the 

backbending and gap in the dispersion curve occurs at the plasmon frequency Wp 

(Abeles and Lopez-Rios^"^). 

Pockrand et al^'^ studied the resonance type interaction using organic dye 

layers which have narrow absorption bands. They found that spUtting could occur 

at one or two exciton frequencies depending on the orientation of the dye. For 

dye transition dipole moments parallel to the surface spUtting occured at and 

for perpendicular orientation i t occurs at ui. I f the material is isotropic sphtting 

occurs at both frequencies. 

2.5 Applications 

The large field enhancements and sensitivity to changes in the surface condi­

tions has made the SPR technique of great interest for sensing and the measurement 
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of thin film parameters. 

The dependence of the uip on the charge carrier density has been utihzed by 

Evans and Hall^^ to construct a modulator using a silicon Schottky diode with a 

surface grating formed in the epitaxial layer prior to the evaporation of a silver film. 

Surface plasmons generated by light of A=1.3/im exist at the silver/air interface 

and the silver/silicon interface. The latter are strongly perturbed by the carrier 

density in the epitaxial layer causing a shift in the resonance angle. 

The sensitivity of the surface plasmon resonance to changes in overlayer per­

mittivity have been exploited by Liedberg et al^^ as the basis of gas detection 

and biosensing. These workers showed that i f a thin film of gas-absorbing organic 

material was deposited onto a silver film, small changes in the refractive index 

of the organic material on the absorption of gas could be detected by a shift in 

angle of the surface plasmon resonance. They also demonstrated that surface plas­

mon resonance measurements could be made at the metal/water interface. This 

enabled them to measure antibodies forming a single monolayer on the silver sur­

face from a solution. The introduction of an antigen resulted in antigen-antibody 

binding which could be detected by SPR. The relationship between the overlayer 

permittivity and the resonance conditions enabled Pockrand et al^^ to determine 

the optical properties of dye layers. They referred to this technique as surface plas­

mon spectroscopy. This technique was extended by Cross et al^^ to measure the 

linear Pockels effect by modulating the dielectric properties of a thin film through 

the application of a perpendicular electric field and detecting changes in the cou­

pling angle for SPP excitation. This method may be used to quantify the second 

order nonlinear properties of organic films. 

I t is possible to image the surface of a patterned film deposited onto the sil­

ver film in an SPR arrangement i f the sample is illuminated over a large area 

with an expanded laser beam. Yeatman et al^^ and Rothenhausler et al^^ have 

demonstrated that this might form the basis of surface plasmon microscopy. 

2.6 Summary 

The origins of bulk plasma in a semi-infinite medium have been outhned and 

the special situation at the boundary of a different medium has been investigated 
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in detail. These provided the conditions for the non-radiative surface modes or 
surfaxre plasmon polaritons. The difBculties associated with the generation of these 
modes have been described and the practical solutions were presented, particularly 
the prism coupling method which is the simplest experimentally. The sensitivity 
of surface plasmon resonance to surface conditions has been shown and the special 
case of anomalous dispersion was expanded on. Finally a few of the apphcations 
for SPR have been described. 

26 



2.7 References 

1. C.Kittel Introduction to Solid State Physics WUey New York 

2. A. Otto Excitation of Nonradiative Surface Plasma Waves in Silver by the 

Method of Frustrated Total Reflection Zeitschrift fiir Physik Vol 216 (1968) 

pp398-410 

3. K. Welford in Surface Plasmon Polaritons 10? Short Meetings Series No 9 

4. H. Raether Surface Plasma Oscillations and their Applications in G. Hass, 

M. Francombe and R. Hoffman (Eds) Physics of Thin Films (Academic Press 

New York 1977) Vol 9 ppl45-261 

5. F. Abeles and T. Lopez-Rios Surface Polaritons at Metal Surfaces and Inter­

faces in V.M. Agranovich and D.L. MiUs (Eds) Surface Polaritons pp239-274 

6. T. Lopez-Rios Modification of the Dispersion Relations for Surface Plasmons 

by Very Thin Surface Films in the Vicinity of their Plasma Frequency Optics 

Communications Vol 17 pp342-345 

7. T. Lopez-Rios, F. Abeles and G. Vuye Splitting of the Al Surface Plasmon 

Dispersion Curves by Ag Surface Layers Le Journal Physique Vol 39 (1978) 

pp645-650 

8. L Pockrand, J.D. Swalen, J.G. Gordon and M.R. Philpott Exciton-Surf ace 

Plasmon Interactions J.Chem.Phys. Vol 70 (1979) pp3401-3408 

9. L Pockrand, A. Brillante and D. Mobius Exciton-Surf ace Plasmon Coupling: 

An Experimental Investigation J.Chem.Phys. Vol 77 (1982) pp6289-6295 

10. V .M. Agranovich Crystal Optics of Surface Polaritons and the Properties of 

Surfaces Sov.Phys.Usp. Vol 18 (1975) pp99-117 

11. A.F. Evans and D.G. Hall Measurement of the Electrically Induced Refractive 

Index Change in Silicon for Wavelength A = 1.3/im Using a Schottky Diode 

App.Phys.Lett Vol 66 (1990) pp212-214 

27 



12. B. Liedberg, C. Nylander and I . Lundstrom Surface Plasmon Sensing for Gas 
Detection and Biosensing Sensors and Actuators Vol 4 (1983) pp299-304 

13. E. Yeatman and E.A. Ash Surface Plasmon Microscopy Electronics Letts. 

Vol 20 (1987) ppl091-1092 

14. B. Rothenhausler and W. Knoll Surface Plasmon Interferometry in the Visible 

Appl.Phys.Lett. Vol 52 No 19 (1988) ppl554-1556 

15. G. Cross, LR. Girling, LR. Peterson and N.A. Cade Linear Pockels Response 

of a Monolayer Langmuir-Blodgett Film Elec.Lett. Vol 22 (1986) ppll l l -1112 

16. L Pockrand, J.D. Swalen, R. Santo, A. Brillante and M.R. Philpott Opti­
cal Properties of Organic Dye Monolayers by Surface Plasmon Spectroscopy 
J.Chem.Phys. Vol 69 (1978) pp4001-4011 

17. E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch 

Anregung von Oberfiachenplasmaschwigungen Z.Physik Vol 216 (1968) pp398-

410 

28 



Chapter I I I 

Organic Dyes 

3.1 Introduction 

This chapter is intended to provide some background detail on the origins 
of the spectroscopic properties associated with organic dye molecules. In section 
3.2 the structural features which make an organic compound a dye are outlined. 
The absorption process is described in section 3.3 and the factors which determine 
the observed spectra are discussed. Emission from dye molecules is explained in 
section 3.4, with special attention paid to the types of emission and the effects of 
aggregation. Finally in section 3.5 there is a brief summary. 

3.2 Structure 

3.2.1 Definition of an organic dye 

Organic dyes are composed predominantly of carbon and hydrogen, but may 
also contain oxygen, nitrogen, phosphorous, sulphur and, in some macrocycHc 
molecules, metal atoms. These can be subdivided into saturated and unsaturated 
systems, the latter characterized by containing double or triple bonds. Double 
bonds profoundly affect the chemical reactivity and influence the spectroscopic 
properties. Organic compounds without double or triple bonds absorb below 160 
nm. When two double bonds are separated by a single bond they are said to be 
conjugated. Compounds containing conjugated double bonds absorb Ught at wave­
lengths above 200 nm. Al l dyes in the proper sense of the word (i.e. compounds 
absorbing in the visible part of the spectrum) possess several conjugated bonds. 

3.2.2 Bonding 

Bonding in organic molecules is generally covalent in nature. Interactions 

between two Is atomic orbitals give rise to a molecular orbital which is cyUndrically 

symmetrical about the internuclear axis. An electron in such a molecular orbital 
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has a high probability of being located between the nuclei. Such a molecular 

orbital forms a cr bond and the antibonding orbital a*. The sigma bond is usually 

associated with single bonds in organic molecules eg covalent bonds which have 

tightly bound electrons. Atoms held together by a bonds may also possess p-

atomic orbitaJs whose axes are perpendicular to the axis of the sigma bond. Side 

to side interactions of the p-orbitals results in the formation of bonding TT molecular 

orbitals and the antibonding molecular orbitals T T * . The multiple bonds formed 

in organic molecules arise from a combination of a cr bond and one or two TT 

bonds. The relative binding energies of these bonds are illustrated in the energy 

• diagram figure 3.1. Non-bonding n electrons are formed from inner or lone pair 

electrons. Absorption due to cr a* transitions is usually in the ultra-violet whilst 

TT — » • T T * and n —* T T * transitions are at longer wavelengths. In dye molecules (large 

unsaturated systems) there are as many TT levels as there are conjugated bonds. 

3.2.3 Delocalization and resonance hybrids 

Electron pairs may contribute to the bonding of more than two nuclei. Such 

electrons occupy a volume larger than that impHed by their common structural 

formulas, and are said to be delocaJized. DelocaUzation of electrons is most often 

associated with molecules containing conjugated double bonds. An example of this 

is in the benzene cychc conjugated system where the p orbitals ( cyclic TT orbitals) 

overlap above and below the plane of the benzene ring, see figure 3.2. The bond 

length of the C-C bond is somewhere between that of ethylene and ethane, and can­

not be accurately represented by covalent bonds. Resonance theory or mesomerism 

is used to describe the system; it is said to be a resonance hybrid of the classical 

structures, see figure 3.2. Electron-delocalized species (resonance hybrids) are en­

ergetically more favourable than any contributing resonance structures. Ground 

and excited states become possible owing to resonance. 

3.2.4 Chromophores 

A particular group of atoms, with an electronic transition at a specific wave­

length, which is transferable from one molecule to another is referred to as a chro-

mophore. The term chromophore is often used when discussing dye compounds as 
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Figure 3.2 Mesomerism of a Benzene ring and resonance hybrid. 

it refers to the active part of the molecule and the area of interest. A group can 

only act as a chromophore i f it is not conjugated to another TT electron system. 

3.3 Absorption of Light 

3.3.1 Transition dipole moment 

The promotion of an electron from a lower energy level to a higher energy level 
does not produce a permanent dipole moment. However, at some intermediate, 
transient stage in the transition, a lack of symmetry in the electron density distribu­
tion exists. The transition dipole moment which results enables light absorption 
to take place. The most intense absorption bands are those associated with an 
electric-dipole transition moment produced by a linear charge displacement in the 
absorption process. 

The transition dipole moment is a vector quantity, and therefore has direction 

as well as magnitude. Light will not be absorbed completely unless the oscillating 

electric field is parallel to the transition moment. The transition moment is fixed 

relative to the molecular structure, as for instance in ethylene where the TT T P * 
electronic transition, which is associated with the C-C bond, has the transition mo-
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ment polarized along the bond. When the radiation is isotropic cind the molecules 
eire randomly oriented, as in a solution, absorption occurs with a high degree of 
probability. Conversely, when plane-polarized light is incident on a dye in the form 
of a sifigle moleculcir crystal, the probability of absorption depends on the angle 
of incidence^. Complex molecules may have more than one transition moment. 
Anthracene, for example, has two transition moments, the long-wavelength ab­
sorption band is associated with the transition moment which lies along the short 
axis of the molecule and the short-wavelength absorption band is associated with 
the long axis (5o —> 52 transition), see figure 3.3. 

s 

L 

Figure 3.3 The two electronic transition moments for anthracene, po­
larized along the long (L) and short (S) axes of the molecule. 

3.3.2 Energy levels 

The energies available to a molecule can be conveniently illustrated by a simple 

energy level diagram, see figure 3.4. Each electronic level is divided into vibrational 

levels and each one of these in turn is subdivided iuto rotational levels. The energy 

gap between electronic levels can range from 0.4-3.0 eV; between vibrational levels 

from 0.04-0.4 eV and between rotational levels from 0.001-0.04 eV. The visible 

spectrum ranges from 1.6-3.1 eV, so it is the electronic levels that account for 
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Ught absorption. Nearly all molecules have an even number of electrons except for 

free radicals, and in the ground state the electrons occupy the orbitals in pairs. 

The singlet states SQ,SI etc result from electron configurations where all spins are 

paired so that the molecule has zero net spin, a multiplicity of 1. Triplet states 

Ti,T2 etc have an unpaired electron and can have three possible values for their spin 

quantum number, hence a multipHcity of 3. The ground state for most molecules 

is a singlet; an important exception to this is molecular oxygen which is a triplet. 

For every singlet state other than the ground, there is a corresponding triplet 

state. Absorption occurs between the zero vibrational level of the ground singlet 

state and the higher vibrational levels of the excited singlet states 5i, 52 etc . A 

transition between the zero vibrational levels of the ground and upper electronic 

states is often referred to as the 0-0 transition. The origin of this labeUng system is 

explained in the next section. Absorption also occurs between the first two triplet 

states Ti —» T2 but is only observed by flash photolysis. Transitions between 

5o —> T i are not allowed, however, very weak absorption can take place. 

3.3.3 The shape of absorption bands 

On the absorption of light in molecules, transitions take place between the 

lowest vibrational level of the ground electronic state to a higher state depending 

on the energy of the radiation. For all molecules in solution the rotational levels 

are so closely spaced that they cannot be distinguished spectroscopically and the 

vibrational levels are represented as bands containing rotational levels. It might 

be assumed that each electronic transition in organic molecules would be sharp, as 

in atomic spectra, but this is not the case. Some molecules have a simple pattern 

of vibrational levels and these appear in the absorption spectrum as a series of well 

separated maxima (structured bands). However, in other more complex molecules 

the pattern of vibrational levels is so complex it leads to one broad unstructured 

absorption band. 

The shape of the absorption bands can be explained by reference to Morse 

curves. A Morse curve is a plot of potential energy as a function of the nucleair 

distance r. In figure 3.5a the horizontal Unes represent the vibrational levels and 

each one of these has a vibrational quantum number associated with it j=0,l,2...n. 

An electronically excited diatomic molecule is represented by a second similar 
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Figure 3.5 Morse curves for a molecule showing the origin of the band 
shape. 



Morse curve which is displaced vertically (higher energy) and horizontally (due 

to vibration-increased bond length). The Franck-Condon principle imposes Um-

itations on the intensities of the vibronic transitions and also ciccounts for the 

charcicteristic symmetrical shape of the bands. Electronic transitions occur much 

more rapidly than vibrational transitions, which means that the nuclei have nearly 

the same position and velocity before cind after the transition. Electronic traxi-

sitions are therefore represented on the Morse curve by vertical Unes, since the 

internuclear distance does not change during the transition, drawn from the j=0 

level of the ground state to all possible levels of the excited state. This results in 

absorption bands rather than single sharp absorption Unes. 

The probability and thus the intensity of a vibronic transition will be greatest 

for a line drawn from the centre of the j=0 level of the ground state which inter­

cepts a region of high probabihty in a vibrational level of the excited state. As the 

Morse curve is shifted, see figure 3.5b, the transition of maximum probabUity will 

not occur between the j = 0 and j = 0 levels but will take place between the j=0 and 

a higher energy level in the excited state, this corresponds to A^ax for the band, 

and on either side of this the intensities will decrease to zero producing the famil­

iar bell shaped absorption band 3.5c. In polyatomic molecules the Morse curves 

are replaced by poly dimensional surfaces and the allowed vibronic transitions will 

become very large and absorption bands become smooth curves. In some cases 

vibrational fine structure can still be seen. 

3.3.4 Beer-Lambert law 

A relationship between the absorption and wavelength of materials is given by 

the Beer-Lambert law. Lambert's law states that the relationship between incident 

and absorbed radiation at a given wavelength is as follows 

/ = ke-'"^ (3.1) 

where IQ is the intensity of incident light, / is the intensity of transmitted Hght, k 

is absorption constant and d is the thickness. The above appHes to a transparent 

coloured substance of thickness d. 
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For solutions of coloured substances in a solvent, which has neghgible absorp­

tion, the Beer-Lambert law is used. 

A = \ n j = ect (3.2) 

where A is the absorbance, e is the molecular extinction coefficient, c is the concen­

tration in moles per litre and t is the thickness of the solution in cm. It is important 

to note that although Lambert's law is universal. Beer's law (which states that the 

light absorbed is proportioned to the number of molecules of the absorbing material 

through which it passes) is not valid when there is an interaction between the dye 

molecules (association) or between dye and solvent (solvatochromism). 

3.3.5 Association of dye molecules 

As noted in the previous section, organic dyes in solution do not always obey 
Beer's law, and the absorption spectra of dyes in films can be significantly different. 
These deviations are attributed to the association of dye molecules, by a process not 
involving their primary valencies, into dimers and higher aggregates. Aggregation 
is favoured by certain dye structural features and matrix compositions, and is 
particularly common in symmetrical cyanines and carbocyanines^. Aggregation of 
dyes was thought to be due to Van der Waals' forces but these are too weak to 
account for the dimerization energies. However, according to London^ the mutual 
potential energy of two identical molecules possessing a single long-wavelength 
electronic absorption band A is, to a first approximation, proportional to f'^X^ 
where / is a measure of the excitation probability (oscillator strength). This force 
is very large for dyes owing to their high absorption (oscillator strength). The 
London force is additive and can account for the existence of higher aggregates. 
Dimers and higher aggregates form a new light absorbing system with absorption 
properties which can be quite different from the monomer. The effects arise from 
the co-operative absorption of light by both dye molecules in the dimer. The two 
equivalent dye molecules A and B have ground state wavefunctions (̂ a and ({>i, and 
excited state wavefunctions (p'^ and . The ground stationary state of the dimer 
AB can be expressed as xo = 4>a(f>b • However, there cire two possible excited state 
configurations (/>a'06 and (f>a<f>b'\ a true stationary state must contain both, as the 
molecules each have an equal probability of absorbing light and becoming excited. 
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Two stationary states x + ^.nd X - ̂ •re possible, an in-phase and an out-of-phase 

solution. 

X ± = ^ (3.3) 

In the excited state both molecules carry averaged excitation energy and the 

energy is rapidly interchanged between them. The energies of the x + and x - differ 

from each other and from the excited monomer ( p j owing to the transition dipole 

interaction. The interaction is attractive for one dimer excited state, lowering 

the transition energy; and repulsive for the other, increasing the frequency of 

the photon required for the transition. These interactions are determined by the 

geometrical configuration of the dimer. 

In the case of cyanines in aqueous solution, as the concentration of the dye 
increases the position of the absorption band is progressively shifted to shorter 
wavelength relative to the monomeric dye band. This is termed hypsochromic 
or metachromic and the aggregates are called 'H ' . Shifts occurring toward the 
long-wavelength side are less progressive and are termed bathochromic they are 
more uncommon and are designated Scheibe or 'J' aggregates (after Jelley^); and 
are said to exhibit co-operative excitonic absorption. They were first observed in 
cyanines^"^^ but have recently been reported in squaryUum^^ It was proposed 
by Bucher and Kuhn^^ that J aggregates had a brickwork Uke structure and that 
they consisted of many thousands of molecules. According to Herz^^ these super-
aggregates consist of a group of 4 molecules (tetramer) which is repeated. 

There are three distinct geometrical configurations of the dimers, according to 
Kasha^"*, each giving rise to a specific change in the absorption band; these are: 
parallel or sandwich, head-to-tail and obUque dimers, see figure 3.6. 

In the sandwich dimer the transition dipoles of the lower energy dimer are 

antiparallel and therefore cancel so that the absorption xo X - is negUgible. 

Conversely the transition dipoles are parallel in the higher energy dimer and give 

a large vector sum, the absorption xo —̂  X+ therefore occurs with high intensity. 

The absorption band is blue shifted (hypsochromic) due to the increase in energy 

of the allowed transition xo ~* X+> see figure 3.6a. 
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In head-to-tail dimers the x o —* X - transition is forbidden since the transition 

dipoles are opposed and cancel. In the lower energy dimer where the transition 

dipoles are head-to-tail they reinforce and the xo ~* X+ transition is allowed. The 

absorption band is red shifted (bathochromic) because of the lower energy of the 

allowed transition, see figure 3.6b. 

The th i rd configuration is that of oblique transition dipoles, where both ex­

cited states are cdlowed and the intensities wi l l depend on the angular relatio'nship 

between them, see figure 3.6c. The result is that a split in the band occurs cor­

responding to "Davydov spl i t t ing", as observed in molecular crystals and recently 

in L B films^^ . 

I t should be pointed out that these three configurations are l imit ing cases 

aj id that in general the molecules are noncoplanar, both electronic transitions are 

allowed, and the dimer is potentially optically active. 

3.3.6 Solvent effects 

Solvent-solute interactions can influence greatly the absorption spectrum; po­

sition and intensity of bands may vary as well as band width and in some cases the 

vibrational structure can appear and disappear. Interactions between solvent and 

solute molecules are greatest for polar solvents which contain a strong permanent 

dipole, and are less pronounced for non-polar solvents. The effect is also large i f 

the solute molecules possess a permanent dipole and the solvent molecules arrttnge 

themselves around the solute to minimize the energy. This results in the stabi­

lization of the ground state solute molecules. When the solute molecule absorbs 

radiation, the excited state is produced so rapidly that the solvent cage does not 

have time to rearrange itself. I f the excited state is less polar than the ground 

state, the solvent cage is unable to stabilize the excited state effectively. This re­

sults in the solvent lowering the ground state energy more than the excited state; 

a hypsochromic (blue) shift of the spectrum takes place. I f the ground state is less 

polar than the excited state the solvent tends to stabilize the excited state more 

than the ground state. The energy of the excited state is reduced more than the 

ground state; and a bathochromic (red) shift of the spectrum occurs. 
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3.3.7 Solution spectra 

Solution spectra are generally structured in nature, although exceptions exist 

due to solvent type and solute concentration. The factors governing these have 

been discussed in some deteiil in previous sections. 

3.3.8 Crystal spectra 

Although the forces between molecules in crystals are weak and short range 

(Van der Waals'), and the overlap between orbitals of adjacent molecules in the 

lattice is small, there is st i l l a substanticd difference between the electronic spectra 

of molecular crystcds and free molecules. Some of these differences are caused by 

interactions between the electronic states of molecules in the vicinity; others are 

due to crystal lattice properties. Crystal spectra have absorption bands which are 

broader than those in solution because the molecular interactions are affected by 

thermal vibrations as well as relative orientation of the molecules. Bands are often 

shifted and split (Davydov splitting^^) when compared to solution. 

3.3.9 L B film spectra 

Fi lm spectra exhibit features which are somewhere between those of solution 

and crystal spectra. Bands are generally broader than in solution, wi th the excep­

t ion of J aggregates, and they lose any vibrational fine structure. The spectrum of 

a dye layer deposited onto another non-absorbing LB layer can be affected by the 

properties of the two layers; for example, Lehmann^ and Hada^^ found that the 

aggregation of cyanine dyes was determined by the charges of the two layers. When 

an optically passive material is mixed wi th a dye i t acts as a matrix, orienting and 

aggregating the dye. The degree to which these effects occur is determined by the 

concentration of the dye. Aggregation is the major factor affecting the spectra and 

has been covered in some detcdl in a preceding section. 

3.4 Fluorescence 

3.4.1 Emission spectra 

A molecule raised to an upper vibrational level of any excited state rapidly 

loses its excess vibrational energy through collisions wi th other molecules. Almost 
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all molecules raised to an electronic state higher than the first undergo a process 

called internal conversion. A molecule passes f rom a low vibrational level of an 

upper excited state to a high vibrational level of a lower excited state which has 

the same energy. Then through collision wi th solvent molecules i t rapidly loses 

its excess vibrational energy. In such a way molecules which are raised to excited 

states higher than the first, rapidly fall to the lowest vibrational level of 5 i . The 

net result of this is that emission f rom the upper excited levels are very rare due 

to the competing decay processes. Internal conversion f rom 5 i is a slow process so 

hght emission can easily take place. 

Emission generally occurs at longer wavelength (lower energy) than absorption 

(Stokes' law) but in rare cases very weak fluorescence can be observed at a shorter 

wavelength, and is referred to as anti-Stokes fluorescence. 

Emission bands often appear to be an approximate mirror image of the ab­

sorption bands, see figure 3.7, and attempts have been made to derive a formula to 

account for this^^. A simple explanation is that the vibronic levels in the ground 

and first excited state are very similar and i n the case of the 0-0 transition the 

levels are the same; hence the emission and absorption band associated with this 

transition should occur at the same wavelength (energy). There is often a differ­

ence between the emission and absorption 0-0 transitions in solution, which is due 

to the solvent eff"ects discussed earlier. The relative intensities of emission bands 

are determined by the Franck-Condon principle, as they are in absorption spectra. 

3.4.2 Fluorescence efficiency 

Fluorescence efficiency is governed by the competition between radiative and 

nonradiative processes. The fluorescence efficiency or quantum yield is defined as 

the fraction of excited molecules which emit light. The fluorescence efficiency, (fij, 

is given by 

<t>f{K,) = ^ (3.4) 
nex 

\ex excitation wavelength, Uem number emit t ing per second, Ugx number ex­

cited per second. 
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3.4.3 Types of emission 

The radiative transitions 5 i —+ SQ and T i SQ give characteristic emission 

spectra. Fluorescence is defined as the 5 i 5o transition and phosphorescence 

is defined as the T i —+ 5o transition. Fluorescence spectra occur immediately to 

the long-wavelength side of the first absorption band and. as noted above, are 

frequently the mirror image of i t . Phosphorescence occurs at longer wavelengths 

because the triplet state has a lower-energy than the first excited state. There are 

severed ways for the Si state to be populated and these give rise to different types 

of fluorescence. 

i ) Molecules which are excited directly to the Si state, wi th an average Ufetime 

of 10~^ , which then make the radiative transition 5 i —^ SQ, are said to exhibit 

prompt fluorescence. 

i i ) Molecules can be excited to the Ti state, then decay to the 5 i state and 

finally result i n a radiative transition Si SQ. The lifetime is much longer than 

the usual 5 i state and the emission is therefore called delayed fluorescence. Two 

forms of delayed fluorescence have been observed, E-type and P-type, and are 

classified according to the mechanism by which the Ti —> 5 i transition occurs. 

E-type, or eosin type (first observed in eosin), delayed fluorescence was studied 

by many workers but i t was Parker and Hatchard^^ who determined the mechanism 

involved. The transition f rom T i —> S\ occurs due to thermal activation. 

I n P-type, or pyrene type, delayed fluorescence, the intensity was found by 

Parker and Hatchard^^ to be proportional to the square of the rate of absorption 

of exciting light. This showed that the delayed fluorescence was produced by the 

transfer of energy between two triplet molecules, one molecule raised to the excited 

singlet state emit t ing delayed fluorescence that decayed at a rate equal to twice 

the rate of the triplet decay. 

^A*+^A*^{^A*2)^'^A*+^A+hu (3.5) 

where ^A is a tr iplet , is a singlet and * indicates an excited state. 
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3.4.4 Emission from aggregates 

Dimers, which are responsible for the changes in the absorption bands with 

concentration, are often nonfluorescent. The stability of a dimer is related to the 

free energy of formation, total heat energy or (enthalpy) - ^ H. The reversible 

combination of unexcited monomers results in the formation of a ground state 

dimer A + A [AA). Excitation of such a dimer wi l l produce an excited dimer 

{AA)* which can be assumed to be a combination of A and A*, forming A*A. I f 

the heat of formation is ( - A H*) < BT then dissociation is rapid. 

[AAY ^ A* + A (3.6) 

If — A H* is large enough to allow the formation of stable excited dimer and 

if — A H for the ground state dimer is zero or negative, the ground state dimer is 

unstable; the dimer formed in the excited state is termed an excimer^^. 

Excimer fluorescence results in a broad, unstructured band which is red shifted 

compared to the monomer^^ and does not correspond to a mirror image of any 

absorption band. 

Dimer fluorescence is generally weak and unstructured, and is the mirror image 

of an absorption band. However, the exact nature of the dimer fluorescence de­

pends on the geometrical configuration of dimers as described earher. In the case 

of parallel (sandwich) dimers, no radiative transition exists between x+ ^ ^ ' ^ XOi 

therefore fluorescence only occurs between x - and xo- X - has a long hfetime and 

fluorescence is red shifted and weak . However, in the case of head-to-tail dimers, 

the lifetime of the lowest excited state, x + , is almost half that of the monomer 

resulting in less quenching and far greater fluorescence efficiency. Emission from 

J aggregates generally coincides w i t h absorption and is very sharp, and is referred 

to as resonance fluorescence. 

3.5 Summary 

I n the preceding sections the absorption and emission of organic dyes in solu­

t ion, crystal and films have been discussed. Particular attention has been paid to 

the effect of aggregation, as this becomes very important in LB films. 

41 



3.6 References 

1. K . Fuke, K . Kaya, T . Kaj iwara and S. Nagakura The polarized reflection 

and absorption spectra of perylene crystals in monomeric and dimeric forms 

J.Mol.Spec. Vol 63 (1976) pp98-107 

2. D . M . Sturmer i n A. Weissberger and E. Taylor The chemistry of heterocyclic 

compounds Vol 30 Wiley New York (1977) pp441 

3. E. Rabinowitch and L.E. Epstein Polymerization of dyestuffs in solution 

J.Am.Chem.Soc. Vol 63 (1941) pp69-78 

4. E.E. Jelley Molecular, nematic and crystal states of l:l-Diethyl-x-Cyanine 

Chloride Nature (London) Vol 139 (1937) pp631-2 

5. U . Lehmann Aggregation of cyanine dyes at Langmuir-Blodgett monolayers 

T h i n SoUd FUms Vol 160 (1988) 257-269 

6. H.J. Nolte A model of the optically active Scheibe-aggregate of pseudoisocyanine 

Chem.Phys.Lett. Vol 31 (1975) ppl34-139 

7. T . L . Penner and D. Mobius The formation of mixed J aggregates of cyanine 

dyes in Langmuir-Blodgett monolayers T h i n Solid Films Vol 132 (1985) pp 

134-139 

8. D.F. O'Brien J aggregation in monomolecular layers of cyanine dyes Photo.Sc. 

and Eng. Vol 18 (1974) ppl6-21 

9. G. Biesmans, M.Van der Auweraer and F.C. DeSchryver Influence of deposition 

circumstances on the spectroscopic properties of mixed monolayers of dioctade-

cyloxacarbocyanine and arachidic acid Langmuir Vol 6 (1990) pp277-285 

10. S. De Boer and D.A. Wiersma Dephasing-induced damping of superradiant 

emission in J aggregates Chem.Phys.Lett. Vol 165 (1990) 45-53 

11. S. K i m , M . Furuki, L.S. Pu, H . Nakahara and K. Fukuda Multiplied monolayer 

assembly of J aggregates of squarylium dye with short alkyl chains Th in Solid 

FUms Vol 159 (1988) pp337-344 

42 



12. H . Bucher and H . K u h n Scheibe aggregate formation of cyanine dyes in mono­

layers Chem.Phys.Lett. Vol 6 (1970) ppl83-185 

13. M . . H . Herz Dye-dye interactions of cyanines in solution and at AgBr surfaces 

Photo.Sc. and Eng. Vol 18 (1974) pp323-335 

14. M . Kasha in B. DiBartoIo (ed) Spectroscopy of the excited state Plenum New 

York (1976) pp337-363 

15. K . Saito, K. Ikegami, S. Kuroda, M . Saito, Y . Tabe and M . Sugi Davy­

dov splitting in arachidic acid cyanine dye complex Langmuir-Blodgett films 

J.Appl.Phys. Vol 68 (1990) ppl968-1974 

16. A.S. Davydov Theory of molecular excitons Mc Graw-Hill Book Co, New York 

(1962) and Plenum, New York (1971) 

17. H . Hada, R. Hanawa, A . Haraguchi and Y. Yonezawa Preparation of the J 

aggregate of cyanine dyes by means of the Langmuir-Blodgett technique J.Phys. 

Chem. Vol 89 (1985) pp560-572 

18. J.B. Birks and D.J. Dyson The relationship between the fluorescence and ab­

sorption properties of organic molecules Proc.Roy.Soc. A275 (1963) ppl35-148 

19. G.N. Lewis and M . Kasha Phosphorescence and the triplet state J.Am.Chem. 

Soc. Vol 66 (1944) pp2100-2116 

20. C.A. Parker and P. Hatchard Delayed fluorescence from solutions of Anthra­

cene and Phenanthrene Proc.Roy.Soc. (London) A269 (1962) pp574-584 

21. T h . Forster and K . Kasper Ein Kozentrationsumschlag der Fluoreszenz Z.Phys. 

Chem. Vol 1 (1954) pp275-278 

22. J. Ferguson Absorption and emission spectra of the perylene dimer 

J.Chem.Phys. Vol 44 (1966) pp2677-2683 

43 



Chapter IV 

Experimental Methods 

4.1 Introduction 

This chapter contains descriptions of the methods employed to prepare samples 

for optical and structural characterization, and surface plasmon resonance studies. 

Particular attention has been paid to the Langmuir-Blodgett technique (section 

4.2), which was used to produce the th in organic films. Methods used to prepare 

substrates for film deposition are described in section 4.3. A n explanation is given 

of the techniques used to characterize the materials for their structural and optical 

properties in section 4.4; details are also given of any special procedures adopted. 

The experimental set-up used for surface plasmon resonance studies is described 

in some detail in section 4.4.7 along wi th the measuring procedures adopted. 

4.2 The Langmuir-Blodgett Technique 

4.2.1 The Langmuir-Blodgett trough 

The trough used to prepare al l the samples investigated was a bobbin and 

tape type trough, first described by Zi lversmit t \ and was very similar to those 

used by Blight et al^ and Roberts et al ^; a schematic of the trough is shown 

in figure 4.1. The barrier was a continuous PTFE coated glass fibre tape which 

was looped around the six P T F E bobbins. The bobbins were connected to two 

carriages-which were driven back and for th by an electric motor via a toothed 

drive belt. The motion of the carriages was halted when they came into contact 

w i t h micro-switches which were located at the maximum and minimum areas. 

The trough which held the water was constructed from three pieces of glass: one 

piece was curved to fo rm the base and the two long sides, whilst the other two 

pieces were flat and formed the short sides which were clamped to the ends and 

sealed wi th P T F E tape. The trough rested on a platform which could be raised 

or lowered by means of a jacking system. W i t h the trough positioned under the 
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barrier system, its height could be adjusted so that the correct water level on the 

barriers was achieved. This arrangement enabled the trough to be lowered until 

i t was clear of the barriers to facilitate removal for cleaning. The subpheise used 

in the trough was ultra-pure water, essenticil when manipulating molecules on the 

surface. I t was supplied by an Elga reverse osmosis and deionization system, fitted 

w i t h a U V sterilizer. The water, typically, had a total organic carbon content of 

10 ppb and a resistivity of 17 megohms cm measured by an Anatel water analyser. 

The water was constantly circulated through the filtration system via a reservoir 

tank. The troughs were regularly emptied of water ( about once a week or when a 

new type of material was being used) and cleaned in a fume cupboard, firstly wi th 

propan-2-ol, then w i t h chloroform and finally wi th pure water. The bobbins and 

tape were also cleaned by wiping wi th propan-2-ol and then refluxing in propan-

2-ol vapour. The surface pressure was measured by means of a WUhelmy plate, 

which consisted of a piece of chromatography paper cut to about 3cm length and 

1cm wid th ; this was hung on a hook which was suspended by a piece of thread 

f rom one arm of a modified C I microbalance. The paper formed a contact angle of 

zero w i t h the surface, and any change in the surface energy was translated into an 

upward or downward force on the WUhelmy plate. The microbalance output was 

connected to the control electronics. A desired surface pressure could be selected 

on the control box, the electronics would then close the barriers to achieve the 

set pressure and the feedback system would maintain i t . The film was an integral 

part of the feedback loop and the control of the film was critically dependent on 

certain properties of the film. The surface was cleaned by the use of a pipette tube 

connected to an aspirator pump, the t ip of the pipette being positioned so that 

the surface layer could be sucked off in a 'hoover-type' action. The surface was 

judged to be clean when the barriers could be compressed and the surface pressure 

changed by less than 0.5 m N m ~ ^ The surface pressure could be zeroed by the 

use of a potentiometer on the control electronics for fine adjustment, or, for coarse 

adjustment, by varying the water level. 

To spread a film, the surface was cleaned as described previously; the surface 

pressure was then zeroed and typically 100 / / I (the volume depended on the material 

and concentration of the solution) of material (dissolved in Aristar chloroform) was 

dispensed using a Kloehn microlitre syringe by gently dropping the solution onto 

the water surface. The chloroform was allowed to evaporate, aided by the use of 
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an electric fan which was built into the trough cabinet. After a few minutes, the 

film could be compressed to the set point pressure. This was achieved by setting 

the electronics to control wi th the gain at minimum and then increasing the gain 

gradually to reach the required pressure. The barrier position and surface pressure 

were recorded using an Y- t chart recorder. 

The substrate was clamped into a holder which was mounted onto the dipping 

head; this consisted of a micrometer driven by an electric motor. The speed of 

the dipping motion and the upper and lower limits were adjusted by means of the 

potentiometers on the control electronics. This enabled a predefined area of the 

substrate to be passed through the film on the water surface. 

4.2.2 Pressure versus area isotherms 

A pressure versus area isotherm measurement can be used to determine prop­

erties of the floating monolayer; many isotherm studies were made by Gaines^. 

A film spread on the surface was compressed at a slow, constant speed and the 

surface area was then plotted against the surface pressure. The resulting curve is 

shown in figure 4.2. There is an increase in surface pressure as the surface area 

decreases, the exact nature of this curve varies f rom material to material. Classic 

L B materials such as stearic acid were thought to show just three distinct phases in 

their isotherms. These were referred to as a) the quasi gas b) the quasi hquid and 

c) the quasi solid phases. However, work by Stenhagen^^ and recently Bibo et al^^ 

reveals some systems to be much more complex wi th many phases existing. These 

can be related to the disorder of the molecules on the water surface . Isotherms 

are good indicators of a material suitabili ty for L B deposition; a steep isotherm 

is generally desirable for good film control and transfer. Isotherms fall into two 

main catagories: the condensed isotherm where distinct phases are discernable, 

such as the curve for a fa t ty acid shown in fig 4.2a, and the expanded isotherm, 

where there is a smooth increase in pressure wi th area, as shown in fig 4.2b. I f the 

area is decreased too far, collapse of the monolayer may occur. For some materials 

the surface pressure may reach a constant value (plateau) before continuing to 

increase; this may be at tr ibuted to some reordering in the film. I f the film has not 

been compressed beyond its collapse pressure, the area can be increased and the 

film compressed again. This can be repeated several times to obtain information 
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on possible reordering of the molecules in the film. I t is also possible to deter­

mine the average area occupied by a molecule on the water surface, provided the 

concentration, volume and molecular weight of the solution spread are known. 

4.2.3 Film lifetime and stability 

Another important method for determining the film quality was to compress 

the film to a predetermined surface pressure and control at that set point, monitor­

ing the change in surface area. Many materials do not maintain a steady surface 

area at constant pressure. This may be due to reordering of molecules, dissolution 

. of molecules into the subphase or collapse of the film. For deposition, film stabil­

i ty is necessary in order tha t the film could be transferred successfully. A visucil 

inspection of the floating monolayer was a useful way of judging quality; however, 

most films were so th in that i t was impossible to see them on the water surface 

when viewed f rom above. Some materials formed islands that were probably many 

monolayers thick and these could be clearly seen. I f a material formed such is­

lands, deposition would not be good, as a patchy film would be transferred. W i t h 

the source of i l lumination f rom above, the floating monolayer became more clearly 

visible. A n important requirement of the film is that i t flowed easily on the surface 

so that when molecules were removed they were replaced immediately. The fluid­

i ty of the film could be determined by compression to a set surface pressure and 

the removal of some film by using the suction pump. The response of the barriers 

indicated the stiffness and rigidity of the film. For an ideal material, the barriers 

closed rapidly to compensate for the removal of the floating monolayer. For an 

inferior material, the barriers moved perceptibly slower and for an unsatisfactory 

material there was no change in the barriers position and a hole in the monolayer 

was quite often clearly visible. 

4.2.4 Film deposition 

Having determined the correct surface pressure for a particular material from 

an isotherm plot, the compressed film could then be transferred to a suitable 

substrate. For high quality, films i t was essential to have a well prepared substrate; 

this is mentioned later. There are various methods for transferring the film to a 

substrate: touching^, l i f t i ng^ , horizontal dipping^ and vertical dipping. A l l the 
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films produced in this work were made using the conventional vertical dipping 

method illustrated in figure 4.3. Three types of transfer were possible depending 

on the material c ind the substrate used. These were named by Blodgett^ as X , Y 

and Z-type and are shown in figure 4.3. In X-type deposition the material is 

transferred on the downstroke only so that the hydrophobic part of the matericd is 

in contact w i th the substrate and the hydrophihc region is away from the surface. 

A l l subsequent layers had the same orientation. When film is transferred on both 

the upstroke and the downstroke the deposition is called Y-type. Transfer only on 

the upstroke is called Z-type deposition. 

4.3 Substrate Preparation 

4.3.1 Glass 

Microscope slides were the most convenient source of precut glass available. 

These were obtained f rom Chance Propper, Warley, West Midlands. These pos­

sessed a refractive index of approximately 1.52 and measured 76mm by 26mm, 

1.0mm - 1.2mm thick. The first procedure used to clean the slides consisted of 

rubbing in a surface active cleaning agent (Decon 90 supphed by Decon Laborato­

ries L t d , Hove) and water solution w i t h gloved hands to remove any large pieces of 

dir t or grease. The slides were ultrasonicaUy agitated in a beaker containing De­

con 90 solution for approximately 10 minutes and then rinsed in ultra-pure water 

for a further 10 minutes in the ultrasonic bath. Two methods were employed to 

clean the slides further, depending on the type of surface required. I f a hydrophUic 

surface was needed, the glass slide was placed in a Soxhlet tube and refluxed wi th 

boiling propan-2-ol (Analar B D H ) for approximately 4 hours; finally i t was re­

moved and blow dried w i t h dry, MUlipore filtered nitrogen dispensed from an air 

gun. A second technique was to use a chromic acid etch; this treatment left the 

surface slightly hydrophobic. The slides were cleaned mechanically, as before, and 

then immersed overnight in the chromic acid. They were then rinsed thoroughly 

in ultra-pure water and were finally blow dried using the air gun. 

4.3.2 Silvered glass 

Glass slides, cleaned by one of the methods described above were mounted 

in a holder in the evaporator, three slides at a time, at a distance of 170 mm 
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from the source. The evaporator was an Edwards model E306A with the shutter 

automatically controlled by a thickness monitor gauge FTM4. The silver was 

resistively heated in a tungsten boat. Evaporations were performed at a pressure 

of 10""̂  torr at a deposition rate of 1.5 nm s~^ with a current of 62A passing 

through the boat. Approximately 50 nm of silver was evaporated with the aid of 

the thickness monitor. Occasionally a thin layer of chromium was evaporated first 

to ensure good silver adhesion (approximately 0.7 nm from a separate boat^). 

4.3.3 Quartz plates 

Quartz was first cleaned by wiping with Decon 90 and water solution as de­

scribed above; then rinsed in ultra-pure water, and finally refluxed in boiling 

propan-2-ol for 3 hours. 

4.3.4 Silicon 

Suitably sized pieces of silicon were cut from a wafer. These wafers were 

obtained from Dynamit Noble; they were 76.2 mm diameter, polished, (111) ori­

entated, and phosphorus doped. They were cut using a diamond scribe into rect­

angular pieces approximately 1 x 4 cm"̂ . Firstly they were wiped with Decon 90 

solution, rinsed in ultra-pure water and finally refluxed in propan-2-ol for approx­

imately 3 hours. 

4.3.5 Hydrophobic substrates 

Although glass slides became slightly hydrophobic when treated with chromic 

acid, they were not sufficiently hydrophobic for most purposes. In order to obtain 

a more hydrophobic surface on glass, quartz or silicon, it was necessary to treat the 

substrate with a silanizing solution 111-trichloroethane with 5% dichlorodimethyl-

sUane. The substrate was placed in a covered beaker with a small amount of the 

silanizing solution and left for 30 minutes; it was occassionally turned over and 

agitated to ensure that the whole surface was treated. The hydroxide groups on 

the silicon surface react with the chlorine on the dichlorodimethylsilane to pro­

duce water and HCl, the silicon is then free to bond to the surface. The result is 

a surface covered in methyl groups which is very hydrophobic. On removal from 

the silanizing solution, the substrates were rinsed immediately in ultra-pure water 
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to wash HCl from the surface. It was often necessary to rinse the substrates with 
chloroform to remove drying marks. 

4.4 Optical and Structural Characterization Techniques 

4.4.1 Absorption spectroscopy 

Absorption spectroscopy not only gives information on the position and inten­
sity of absorption bands but, from analysis of the spectra, details of the electronic 
transitions within the molecules and the aggregation of molecules into dimers and 
trimers can be obtained. Many absorption studies have been made on floating 
monolayers'^ and deposited LB films''''^. 

The absorption spectra were recorded on a Gary Varian model 2300 UV-Vis-

NIR scanning dual beam spectrophotometer, with a spectral range from 3152nm 

to 185nm and also on the Perkin Elmer Lambda 19. The spectrophotometer was 

designed to measure the spectra of materials in solution and was therefore fitted 

with sample holders which held small cuvettes. Special sample holders enabled 

film spectra to be recorded. These were designed so that a standard microscope 

sUde could be mounted normal to the beam. 

Before a solution spectrum could be taken, the cuvettes were rinsed out with 

Aristar chloroform; they were then filled with chloroform and a baseline was 

recorded over the range of wavelengths required. The sample cuvette was then 

removed and filled with the dye solution, which was diluted several times until the 

shape of the recorded spectrum became reproducible. 

Film spectra were recorded in a similar way to solution spectra. A baseline 
was recorded with two clean substrates of the same type as the sample. One of 
these was removed and the sample inserted in its place the other remained as a 
reference. Care was taken to make sure that the beam was incident on the area of 
the slide covered with film. 

4.4.2 Dichroism 

The electronic transition dipoles giving rise to optical absorption spectra in 

dye chromophores have a fixed orientation relative to the molecular structure. 
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Polarized absorption (dichroism) mezisurements coupled with knowledge of the 
transition dipoles in the chromophore can be used to obtain information about 
the orientation of the chromophores in the film and the degree of preferred or­
der present. This extension of absorption spectroscopy has been used by workers 
studying multilayer assemblies'"*"'*. An illustration of this technique is shown in 
figure 4.4. 

Parallel 

Perpendicular^ 

Polarization 
of the 
electric field 
veaor 

L B film. 

Incident beam 

-e-

Substrate 

Figure 4.4 The experimental configuration for polarized absorption spec­
troscopy. 

Dichroism measurements were made using the shghtly modified Gary 2300 
UV-Vis spectrophotometer. Matching polarizers were mounted in front of the two 
beams before they were incident on the sample and references slides. Each polarizer 
could be rotated so as to change the plane of polarization. The sample sHde was 
mounted in a special holder so that the angle of the shde relative to the incident 
beam could be changed. Only six angles of incidence 4> could be selected: 90°, 80°, 
70°, 60°, 50° and 45°. 

Samples were prepared in the same way as those used in the absorption spec­

troscopy measurements. The procedure for taking a measurement was similar to 

that used for absorption spectra, but with one difference - it was neccessary to 
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record a new baseline each time the sample was rotated or the plane of polariza­

tion was changed. The polarizers were only ever used pciraJlel and perpendicular 

to the dipping direction. 

4.4.3 Fluorescence spectroscopy 

Fluorescence spectra give the emission wavelengths and relative intensities of 

emitters present. Fluorescence decay rates used in conjunction with spectra can 

reveal information about the type and number of fluorescing species present^^"^^ 

The fluorescence spectra and decay of samples were measured by Dr A. Vi-

tukhnovsky and Dr M. I . Sluch at the P. N. Lebedev Physical Institute, Moscow. 

Fluorescence spectra were measured with an optical multichannel analyser OMA-2 

with nitrogen laser LG-21 excitation 337 nm and 50 Hz. The fluorescence decay 

curves were measured with an Edinburgh Instruments spectrofluorimeter using a 

Philips photomultiplier tube XP2020Q and a flashlamp at 380 nm with a repeti­

tion rate of 20 Hz and a single pulse duration of 1.1 ns (fwhm). A schematic of 

the experimental set-up is shown in figure 4.5. The fluorescence decay curves were 

analyzed using a nonlinear, least-squares iterative convolution method. 

Samples were prepared on glass and quartz plates, cleaned by the methods 

mentioned earlier. However, glass proved to be unsatisfactory due to its intense 

fluorescence at 420 nm, close to the region of interest. 

4.4.4 EUipsometry 

Ellipsometry provides a convenient method of accurately measuring the thick­

ness of LB films^^"^^. An ellipsometer uses collimated, monochromated light of a 

known polarization to measure the change in polarization of a reflected beam from 

the surface of a substance. A measurement involves the irradiation of a surface at a 

fixed angle (70°) with a coUimated monochromated beam which has a variable but 

known polarization, and comparing the states of polarization of the reflected and 

incident beams. From these diff'erences it is possible to determine various proper­

ties of the surface such as refractive index, absorption coefficient and thickness of 

overlayers. 
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Figure 4.5 The experimental arrangement used for fluorescence spec­
troscopy. 



The instrument used for all the measurements was a Rudolph Auto EL nulling 

type ellipsometer. Nulling can eliminate undesirable effects due to intensity fluc­

tuations in the incident beam and variations in the total reflectance of the sample. 

It could be operated at three wavelengths: 632.8, 546.1 and 405.0 nm. 

The normal procedure for measuring film thickness was to deposit films onto 

silicon substrates cleaned by the method stated earUer. In order to obtain an 

accurate measure of the film thickness a number of layers were deposited in steps on 

the same substrate, e.g. 20,40 and 60 layers, leaving a portion of silicon uncoated. 

Before a measurement of thickness could be made it was neccessary to know the 

substrate refractive index and absorption coefficient. These values were then used 

in the calculation program used to find the thickness of the overlayer. 

4.4.5 Reflection high energy electron diffraction 

Reflection high energy electron diffraction (RHEED) is a powerful technique 

for studying the surface order and arrangement of materials. The first use of elec­

tron diffraction to study a surface film was described by Davisson and Germer^^. 

I t was later used successfully to study LB films and has now become a standard 

technique^®"^^. Although i t does not give as much structural information as trans­

mission electron diffraction (TED), it has several advantages over the latter. In 

TED the sample and support must be thin enough for the electrons to pass through. 

However, films for RHEED studies may be deposited onto either glass coated with 

a thin metal film or silicon subsrates. I t is important that the substrate is con­

ducting as this reduces the charging of the LB layers by the electron beam. SUicon 

is preferred because i t has a polished surface. The substrate was mounted onto 

the goniometer head using silver paste to create a conducting bond. 

A beam of high-energy electrons incident on a surface at a grazing angle pro­

duce a diffraction pattern which is characteristic of the atomic arrangement of the 

surface because the component of the electrons momentum is small and is only 

able to penetrate a small distance. At high-energy, typically 100 KeV, the electron 

wavelength is small (A=0.0037 nm), much smaller than the interplanar spacing of 

LB films, which is typically 6 nm, therefore no diffraction will occur. However, the 

long-chain fatty acid molecules are composed of C2H4 repeat units. Diffraction 
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occurs from planes of CiH^ subcells and gives information on close-packing of the 

chain. 

RHEED studies were performed using a JEM 120 transmission electron micro­

scope operated at 100 kV with the sample stage located at the top of the projection 

chamber. Film anisotropy could be investigated by rotating the sample so that 

the incident beam was parallel or perpendicular to the dipping direction. 

4.4.6 Small angle X-ray diffraction 

The X-ray measurements were all made by Dr.Y.Lvov at the Institute of Crys­

tallography in Moscow. The diff'ractometer used was a purpose built small angle 

position-sensitive type (Moglievsky and Dembo 1983). The Cu Ka X-ray radiation 

(A=0.154nm) was nickel filtered and collimated by a three slit collimator. Both 

the incident and reflected rays passed through a vacuum. The samples were slowly 

rotated at a speed of about 20° h~^ and the diffraction pattern located with the 

use of a position sensitive detector. The sample to detector distance was 74.0 cm 

giving a good angular resolution. The detector sensitivity was 0.1 mm (equivalent 

to an angular resolution of approximately 0.001°; assuming the diameter of the 

X-ray beam to be 0.04° ). The measurements on one sample took approximately 

4 hours (because several scans were summed). The wavelength of the Ka fine is 

0.15 nm so X-rays will be diffracted fom the polar planes of the fatty acids rather 

than the CiH^ subceUs. The (001) reflection will have a Bragg angle 6 < 1°, hence 

the need for low-angle. The 9 and ultimately the d-spacings of planes parallel to 

the surface can be calculated. The interplanar spacings enable the thickness of 

individual monolayers to be determined"^°~^^. 

4.4.7 Surface plasmon resonance 

As already explained in Chapter 2, the surface plasmons extend only a few 
microns from the metal surface and therefore only the immediate environment is 
probed. Many studies have been made on the effect of surface layers on the surface 
plasmons^^"^^. 

There are two experimental configurations which use prism coupling to create 

surface plasmons: the Kretschmann-Raether and the Otto, both of which have 
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been fully discussed in the chapter 2. Al l measurements made for this work used 
the Kretschmann-Raether configuration. The prism with sample mounted Is shown 
in figure 4.6. 

LB film 

Index 
matching 
fluid 

Pnsm 

Figure 4.6 The sample arrangement for SPR using the Kretschmann-
Raether configuration. 

Two sets of experimental arrangements were built each with a different type 

of source and detector. The initial setup used a HeNe laser PMS model LSTPIO 

as a source, which was tunable between four wavelengths 632.8, 611.9, 594.1 and 

543.5 nm. The laser was plane-polarized and had to be rotated so that the plane 

of polarization was parallel to the optical bench (p-polarized with respect to the 

prism face, E-field in the plane of incidence). The laser output was found to be 

sufficiently stable, thus no reference beam spUtting was neccessary. All the optics 

were mounted on a Micro-Control optical bench and were housed in a light-tight 

cabinet. The rotation stage on which the prism was mounted was designed and 

built in Durham. The stage incorporated a detector mount driven by gearing so 

that it rotated by 26. The rotation stage was driven by a Berger Lahr 5 phase 

stepping motor which was reduced by a gear box (90:1) to give a minimum step 

of 0.008°. The stepper motor was controlled by a BBC Master computer via a 
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Berger Lahr D380 RDM 564/50 drive card. The detector used was a 100 mm^ 
silicon photodiode with a response from 350 to 1150 nm, used in the photovoltaic 
mode and connected via an op-amp to a Fluke 8840A multimeter. The intelh-
gent multimeter was connected via an IEEE interface to the BBG Master. Data 
obtained from this set up were transferred from floppy disc to the mainframe for 
plotting and analysis. 

In order to study the SPR in greater detail, a second experimental setup was 
designed with a monochromated white light source; a schematic is shown in figure 
4.7. Because of the low light levels, a chopped light system using a photo multipUer 

• tube (PMT) had to be used. The white light source was an Oriel lamp fitted 
with a lOOW quartz halogen bulb which was air cooled by an electric fan. The 
output intensity from the lamp was variable by use of a constant current supply. 
An Oriel 7155 filter monochromator was attached to the front of the lamp. The 
monochromator had a wavelength range of 400 - 700 nm, in 20 nm steps, and sHt 
widths of 1, 2, 4 and 6 mm. The sht width was always set at 1 mm to give the 
greatest wavelength resolution: 10 nm (fwhm) at 400 nm; 11.4 nm (fwhm) at 550 
nm; and 15 nm (fwhm) at 700 nm. The monochromated light was chopped at 1 
kHz with a Rofin Sinar chopper; it then passed through some coUimating optics, 
a polarizer to give p-polarized light and finally an aperture to give the required 
spot size. The prism and rotation stage were the same as before. The detector 
was a Hamamatsu IP28A photomultipUer tube with an extended red response and 
an operating range from 185 to 700 nm. The signal was converted by a current 
to voltage transformer and then input to an Ortec Brookdeal Lock-in-amplifier 
model 9501E synchronized to the chopper. The right-angled prism used measured 
40 x40 mm^ with a refractive index of 1.517 (BK 7 glass), obtained from EaJing 
Optics. Samples consisting of LB films on silver-coated glass slides had a small 
drop of index matching fluid (Cargille type B) put on their unsilvered side and 
were brought up to the base of the prism until the immersion oil came into contact 
with it; the oil was then allowed to spread drawing the sUde onto the prism. No 
clamp was used to hold the sample in position. It was just supported from beneath 
so that it did not slip off the prism. Before an SPR curve could be measured it was 
necessary to calibrate the rotation stage. The prism was cleaned with an acetone 
soaked tissue and wdth the use of the cursor controls on the keyboard, the prism 
was rotated so that the critical angle was roughly located. The critical angle was 
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then found more precisely by the program^^, which scanned an angle range to find 
the point where the gradient of the reflectivity dropped significantly. This position 
was then used as the calibration point for the angle values. The sample was then 
mounted and an SPR scan could be made over the angular region required. An 
example of this scan can be seen in figure 4.8. 
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Figure 4.8 A typical surface plasmon resonance curve with the critcal 
angle of the prism highlighted. 



4.5 References 

1. D.B. Zilversmit A method for compressing monomolecular films at oil-water 

interfaces J.CoUoid.Scl Vol 18 (1963) pp794-798 

2. L. Blight, C.W.N. Cumper and V. Kyte Manipulation of insoluble films at an 
oil/water interface J.Colloid.Sci. Vol 20 (1965) pp393-399 

3. G.G. Roberts, W.A. Barlow and P.S. Vincett Technological applications of 

Langmuir-Blodgett films Phys. in Tech. Vol 12c (1981) pp69-74 

, 4. J.H. Schulman, R.B. Waterhouse and J.A. Spink Adhesion of amphiphathic 

molecules to solid surfaces Kolloid Z. Vol 146 (1956) pp77-95 

5. I . Langmuir and V.J Schaefer Activities of urease and pepsin monolayers J.Am. 
Chem.Soc. Vol 60 (1938) ppl351-1360 

6. D. Day and J.B. Lando Morphology of crystalline diacetylene monolayers poly­

merized at the gas water interface Macromolecules Vol 13 (1980) ppl478-1483 

7. G.L. Gaines Insoluble monolayers at liquid-gas interfaces Interscience New York 
(1966) 

8. K.B. Blodgett Films built by depositing successive monomolecular layers on a 

solid surface J.Am.Chem.Soc. Vol 57 (1935) ppl007 

9. D.S. Campbell Mechanical properties of thin films in Handbook of thin film 

technology Maisel L . I . and Glang R., eds. McGraw-Hill, New York, 1970 ppl29 

10. M. Orrit, D. Mobius, U. Lehmann and H. Meyer Reflection and transmission 
of light by dye monolayers J.Chem.Phys. Vol 85 No 9 (1986) pp4966-4979 

11. H. Kuhn, D. Mobius and H. Biicher in Physical Methods of Chemistry edited 
by A. Weissberger and B. Rossiter (Wiley New York 1972) Vol 1 Part I I I B 
pp577 

12. T.L. Penner and D. Mobius The formation of mixed J-aggregates of cyanine 
dyes in Langmuir-Blodgett monolayers Thin Solid Films Vol 132 (1985) ppl85-

192 

58 



13. T.L. Penner Energy transfer between J-aggregate dye monolayers Thin SoUd 

FUms Vol 160 (1988) pp241-250 

14. K. Matsuki, Y. Nagahira and H. Fukutome The absorbtion spectra of fat-soluble 

vitamins and the orientations of their chromophores BuU.Chem.Soc.Jpn. Vol 

53 (1980) ppl817-1824 

15. J. Breton, M. Michel-Villaz, G. PaUlotin and M. Vandevyerer Application of 

linear dichroism to the study of the distribution of pigments in monomolecular 

layers Thin Solid FUms Vol 13 (1972) pp351-357 

16. H. Kuhn, D. Mobius and H. Biicher in Physical Methods of Chemistry edited 

by A. Weisberger and B. Rossiter (Wiley New York 1972) Vol 1 Part I I I B p588 

17. K. Saito, K. Ikegami, S. Kuroda, M. Saito, Y. Tabe, and M. Sugi Davy-

dov splitting in arachidic acid-cyanine dye complex Langmuir-Blodgett films 

J.Appl.Phys. Vol 68 (1990) ppl968-1974 

18. H. Biicher, K.H. Drexhage, M. Fleck, H. Kuhn, D. Mobius, F.P. Schafer, J. 

Sondermann, W. Sperling, P. TLlImann and J. Wiegand Controlled transfer of 

excitation energy through thin /ayers Molecular Grystals Vol 2 (1967) ppl99-230 

19. T. Yamazaki, N. Tamai and I . Yamazaki Molecular association of pyrene in 

Langmuir-Blodgett monolayer film: analysis of picosecond time-resolved fluo­

rescence spectra Ghem.Phys.Lett. Vol 124 (1986) pp326-330 

20. M. Van der Auweraer, B. Vershuere and F.C. Schryver Absorption and fluores­

cence properties of Rhodamine B derivatives forming Langmuir-Blodgett films 

Langmuir 4 (1988) pp583-588 

21. A. Leitner, M.E. Lippitsch, S. Draxler, M. Riegler and F.R. Aussenegg Energy 

transfer of dyes in Langmuir-Blodgett monolayers studied by picosecond time-

resolved fluorimetry Thin SoHd Films Vol 132 (1985) pp55-62 

22. D. den Engelsen Ellipsometry of anisotropic films J.Opt.Soc. Am. Vol 61 (1971) 

ppl460-1466 

59 



23. I.R. Peterson, J.D. Ejirls, W.L. Barnes and I.R. Girling Orientational in-
homogeneity and scattering in Langmuir-Blodgett films of 22-tricosenoic acid 
J.Phys.D:AppUed.Phys Vol 21 pp (1988) pp773-779 

24. H. Arwin and D.E. Aspnes Determination of optical properties of thin organic 

films by spectroellipsometry Thin SoUd Films Vol 138 (1986) ppl95-207 

25. R. Steiger Studies of oriented monolayers on solid surfaces by ellipsometry 

Helvetica Chimica Acta Vol 54 (1971) pp282-283 

26. L.H. Germer and K.H. Storks. Arrangement of molecules in a single layer and 

in multiple layers J.Chem.Phys. Vol 6 (1938) pp280-293 

27. C.A. Jones, G.J. Russell, M.C. Petty and G.G. Roberts A reflection high-
energy electron diffraction study of ultra-thin Langmuir-Blodgett films of u-
tricosenoic acid Phil.Mag.B Vol 54 No 3 (1986) L89-L94 

28. A. Bonnerot, P.A. Chollet, H. Frisby and M. Hoclet Infrared and electron 

diffraction studies of transient stages in very thin Langmuir-Blodgett films 

Chem.Phys. Vol 97 (1985) pp365-377 

29. D.B. Neal, G.J. RusseU, M.C. Petty, G.G. Roberts, M.M. Ahmed and W.J. 

Feast A highly ordered Langmuir-Blodgett monolayer of an amido nitrostilbene 
J.Mol.Elec. Vol 2 (1986) ppl35-138 

30. Y .M. Lvov, D. Svergun, L.A. Feigin, C. Pearson and M.C. Petty Small angle X-

ray analysis of alternate-layer Langmuir-Blodgett films Phil.Mag.Lett. Vol 59 

(1989) pp317-323 

31. M . Pomerantz and A. Segmuller High resolution X-ray diffraction from small 

numbers of Langmuir-Blodgett layers of manganese stearate Thin SoHd Films 

Vol 68 (1980) pp33-45 

32. B. Belbeoch, M. Roulliay and M. Tournarie Evidence of chain interdigitation 

in Langmuir-Blodgett films Thin SoHd Films Vol 134 (1985) pp89-99 

33. B. Liedberg, C. Nylander and I . Lundstrom Surface plasmon resonance for gas 

detection and biosensing Sensors and Actuators Vol 4 (1983) pp299-304 

60 



34. G. Wahling, H. Raether and D. Mobius Studies of organic monolayers on thin 
silver films using the attenuated total reflection method Thin Solid Films 58 
(1979) pp391-395 

35. I . Pockrand, A. Brillcinte and D. Mobius Nonradiative decay of excited 
molecules near a metal surface Chem. Phys. Lett. Vol 69 pp499-504 

36. J.G. Gordon and J.D. Swalen The effect of thin organic films on the surface 
plasma resonance on gold Optics Communications Vol 22 pp374-376 

37. N. KaUta The Pockels Effect in Langmuir Blodgett Films Ph.D. Thesis (1991) 
University of Durham 

38. A .M. Bibo, G.M. Knobler and I.R. Peterson A monolayer phase miscibility 
comparison of long-chain fatty acids and their ethyl esters J.Phys.Chem. Vol 
95 (1991) pp5591-5599 

61 



Chapter V 

Structural and Optical Properties of Organic Dyes in 
Langmuir-Blodgett Films 

5.1 Introduction 

A variety of dye materials are studied in this chapter and a brief description 
. of the different compounds is given in section 5.2. Their abUity to form LB films 
is determined from pressure versus area isotherm measurements in section 5.3 
and their possible orientation on the surface is discussed. The optical absorption 
of the dyes in solution, cast and LB film form (section 5.4) are also examined. 
The fluorescence spectrum of perylene is investigated in section 5.6. Polarized 
absorption spectroscopy is used in section 5.5 to find if there is any preferential 
orientation of chromophores in the films. Ellipsometry (section 5.7) and X-ray low 
angle diffraction (section 5.8) measurements provide further information on this 
aspect of the films. Electron difiraction studies described in section 5.9 are used 
to show the crystalline nature of films. Finally a summary of this work is made in 
section 5.10. 

5.2 Materials 

5.2.1 Requirements of a material 

Since the object of this work is to look at the interactions between organic dye 
molecules deposited by the LB technique and surface plasmons, materials were 
selected using several criteria. Firstly, they had to form a good floating layer on 
the subphase and readUy deposit onto a variety of substrates forming multilayer 
assemblies of high quality; it was also necessary for them to have absorption bands 
in the visible which were sharp and intense. Materials with strong fluorescence 
were also selected. 

Many dyes have been studied in the form of thin films. For example: phthalo-

cyanines^'^; porphyrins^'*; aromatic hydrocarbons^'^; cyanines '̂̂  and squaraines^'^°. 
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These have been produced by evaporation, polymer doping and by the LB tech­
nique. 

-^he materials studied here can be divided into four groups 

i) Phthalocyanines and porphyrins - macrocyclic molecules 

ii) Perylene - an aromatic hydrocarbon 

iii) Sq materials - derivatives of squaraine 

iv) S120 - a cyanine dye 

5.2.2 Phthzilocyanines and porphyrins 

These two groups of macrocychc molecules have been the subject of much 
interest (in particular the phthalocyanines) owing to their stability. They have 
some of the highest extinction coefficients and are extensively used in the dye 
industry. Many biological substances, such as haemoglobin and chlorophyll have 
porphyrin structures. 

The materials studied were provided by Dr Alexei Vitukhnovsky of the P.N. 

Lebedev Physical Institute, Academy of Sciences of Russia. Materials similar to 

these have been shown to form good LB films. Furthermore, these are stable dyes 

with strong absorption in the visible. 

The compounds studied (shown in figure 5.1) are as foUows:-

PPl Protoporphyrin 

PP3 Tetra-phenyl-porphyrin 

PP4 Zn-tetra-phenyl-porphyrin 

PP6 Ga-tetra-4-tert-butyl-phthalocyanine 

PP7 Ho-tetra-4-tert-butyl-phthalocyanine 

5.2.3 Squaraine materials 

Squaraine is the generic name for 1,3-derivatives of squaric acid. They can be 
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Figure 5.1 The molecular structure of macrocyclic molecules and TA 
and 22TA. 



broadly divided into two groups, depending on the nature of the 1,3-substituents, 

to form symmetrical or unsymmetrical squaraines. There are many pubUcations 

concerning evaporated (and some on LB deposited) films of squaraines for electro-

graphic processes"'*, solar-cells"'̂ ''*'̂ , photovoltaic cells'*^ and optical storage^*'. 

The dyes are strong absorbers in the visible, with oscillator strengths in excess 

of unity and readily form aggregates. The sharp absorption bands in solution are 

usually in the region 620-670 nm. One report has been made of them forming 

J-aggregates in LB films^^. The squaraine compounds structures are shown in 

figure 5.2. The materials Sql and bis 4-(4-chlorophenylmethyl)methylaniinophenyl 

" squaraine (referred to here as Sq2) were obtained from J.Sharp and R.Burt from the 

Xerox Corporation, Canada and (4-(3-(4-(N-EthyI-N-octadecylamino)-2-hydroxyl 

phenyl) -2-hydroxy-4-oxo-2-cyclobutene-l-ylidene)-3-hydroxy-2, 5-cyclohexadiene-

l-ylidene)-N-ethyl-N-octadecylammonium hydroxide (referred to here as Sq3) was 

purchased from Japanese Research Institute for Photosensitizing Dyes Co. Ltd. 

Sql and Sq3 are unsymmetrical squaraines whilst Sq2 is symmetrical. All the 

squaraine materials were used as bought, without any further purification. 

5.2.4 Perylene 

Very few publications exist concerning perylene in LB films^^'^^, although some 

optical and structural studies have been made of vacuum-evaporated perylene 

films^^'-^* and the spectroscopic properties of solutions-^^, solvent glasseŝ ^ and 

solids^^'^* have been extensively reported. The structure of perylene is shown in 

figure 5.2. Perylene fluoresces very strongly under white light and was the first 

dye to be selected for use in dye lasers. However, it was found to be unsatisfactory 

owing to its triplet-triplet quenching. The material used in this work was obtained 

from the Aldrich Chemical Company and was used without further treatment. 

5.2.5 S120 

Extensive studies have been made on cyanine dyes and they have been found 

to form a number of different aggregates for example: Scheibe or J aggregates, 

H and H* aggregates^ '̂̂ *'. The material used in this work l-octadecyl-l'-methyl-

2,2' cyanine perchlorate referred to as S120, and was obtained from Dr Dietmar 
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Figure 5.2 The molecular structure of S120, perylene and squaraines. 



Mobius, Max-Planck-Instituit fiir Biophysikalishe Chemie, Gottingen, Germany. 

The structure of S120 is shown in figure 5.2. 

5.3 Isbtherms and Film Deposition 

The area per molecule can be used to indicate the possible orientation of 
molecules on the water surface and hence the abihty of a material to form a mono­
layer. The area per molecule can be determined at different points of the pressure 
versus area isotherm. The two areas which are most often quoted are at the point 
of collapse and the area determined by extrapolating back to zero pressure from 

. the steepest part of the isotherm a^; the latter is the most commonly quoted and 
will be the only one referred to in this work. 

Errors in the average area per molecule are due to many causes: inaccuracies 
in the concentration of material, quantity of material spread on the surface and 
area of the surface. 

5.3.1 Porphyrins and phthalocyanines 

The isotherms of these materials (figure 5.3) were relatively condensed and did 
not exhibit any distinct phase changes. The calculated for each material are 
shown in table 5.1. 

Materia] ol (nm2) Comments 

PPl 0.480 

PP3 0.038 Islands Formed 

PP4 0.190 Yellow Islands Formed 

PP6 0.500 No Islands 

PPT 0.476 No Islands 

Table 5.1 Area per molecule for phthalocyanines and porphyrins. 

The values obtained for PP3 and PP4 were much smaller than expected from 

known dimensions of similar molecules which suggests that these materials do not 

form monolayers. For example, the dimensions for substituted Si phthalocyanine 

were reported by Hua et al̂ -̂  to be 1.38 nmxl.38 nmx 0.45 nm, giving the edge 
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of the molecule an area of 0.62 nm^ and the face an area of 1.9 nm'^. This would 

suggest that if monolayers were formed, the only orientation of the molecules pos­

sible would be on their edges. Visual inspection of the spread films revealed the 

presence of islands of material, confirming the assumption that monolayers were 

not formed. It is therefore likely that bilayers or multilayers occur as has been 

reported by Baker^ All the floating layers were stable; however, some became 

rigid and could not be transferred onto a substrate. 

5.3.2 Perylene 

A solution of perylene in chloroform formed a film on the surface which had is­

lands. On compression, a steep expanded type isotherm (figure 5.4a) was recorded. 

The is found to be 0.021 nm^, which is less than any areas obtained from a 

space filling model, therefore a monolayer is not formed. I f the material was com­

pressed and controlled, it was found not to be stable and collapse occurred. Thus 

the perylene is either dissolving into the subphase or it pUing up on the water sur­

face (i.e. forming multilayers). The latter is the most hkely since perylene crystals 

are found to be insoluble in water. 

In order to obtain a stable film that could be transferred to substrates, perylene 

was mixed with tricosanoic acid (TA) to form films with steep condensed isotherms. 

The molar mixing ratio of perylene to tricosanoic acid was varied and a series of 

isotherms were obtained (figures 5.4a and 5.4b). All the isotherms are steep and 

some exhibit the phase changes characteristic of TA. The was obtained by 

extrapolation from the pressure area isotherm for each mixture. I t was assumed 

that all the TA molecules were in contact with the subphase and occupied the same 

that they would i f i t was a pure TA film, i.e. 0.20 nm^. Using the equation 

where Nj^y^ and Nta are the numbers of each molecule on the surface, the was 

calculated for perylene only and the values for difl!"erent mixtures are shown in 

table 5.2. A similar procedure was adopted by Neal^^ and Matsumoto et al^^ to 

determine the area per molecule in a mixed film. 
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Molar ratio of perylene:TA (nm^) of mixture (nm" )̂ of perylene 

1:25 0.210 0.210 

1:13 0.210 0.210 

1:6 0.200 0.135 

1:3 0.184 0.101 

3:4 0.150 0.072 

3:2 0.100 0.029 

3:1 0.067 0.021 

pure 0.021 0.021 

Table 5.2 for peryleneiTA and perylene only. 

From the space filling model a value of 0.29 nm^ was obtained for the area of 

the shortest edge. I t was therefore conceivable that at molar ratios of 1:13 and 1:26 

the perylene molecules stand on their shortest edge of the perylene molecule. The 

results show that, on increasing the molar ratio of perylene, the area occupied per 

molecule decreases. The inference is that the perylene molecules become stacked, 

possibly on top of the TA monolayer. The for perylene at a ratio of 3:1 is the 

same as in the pure film; this may imply that islands of pure dye are formed. It 

is very difficult to elucidate the exact orientation of the perylene in the film from 

isotherm measurements alone. However, it seems clear that some of the molecules 

are in contact with the surface and are not squeezed out as reported by Steiger^\ 

who found that on mixing perylene with arachidic acid (AA), the value of for 

the mixture to be the same as that for AA. A 'squeezing out' mechanism has also 

been proposed by Matsumoto et al^^ to account for the behaviour of a squaraine 

in a mixed film. 

5.3.3 S120 

The isotherm obtained for S120 (figure 5.5) was steep but no phase changes 

were evident. The average area per molecule was calculated to be 0.68 nm^. The 

dimensions reported by Biicher and Kuhn^'* for a similar cyanine molecule are 

1.55 nmx 0.6 nmxO.4 nm, which gives a value of 0.62 nm^ for the area of the long 
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edge of the molecule. The value of 0.68 nm^, from the isotherm, could therefore 

correspond to the molecules being arranged on their longest edges on the water 

surface. This would be consistent with reports of a "brickstone work" structure, as 

suggested by Biicher and Kuhn^"*, and Nolte^^ to describe the J-aggregates formed 

by some cyanine dyes. 

S120 was mixed with TA to a molar ratio of 1:9. The isotherm (figure 5.5) was 

very similar to that for pure S120. However, the characteristic phase changes of the 

TA were visible. The average area per dye molecule was calculated to be 0.69 nm^, 

not very diff"erent from that for pure dye, and indicating that the inclusion of TA 

has httle eff'ect on the orientation of the S120 molecules. 

5.3.4 Squaraine materials 

Figure 5.6 shows a series of Sql isotherms for different molar mixtures of Sql 

and TA. The isotherm of pure Sql has some interesting features. On compression a 

condensed region is obtained below 10 m N m ~ \ but compressing beyond this point 

results in an apparent coUapse of the film, with the surface pressure dropping to 

approximately 7.5 mNm~^ Further compression results in the gradual increase in 

surface pressure and a second condensed region is attained beyond 10 mNm~^. 

Similar behaviour has been reported for a variety of squaraine derivatives by 

Kim et al^^ (with a transition pressure at 20 mNm"^), Matsumoto et al^^ (30 

mNm~^) and Law and Chen^''' (10 mNm""^). 

The average area per molecule, calculated from the Umiting area in the first 

condensed region, is 1.2 nm^ whilst above 10 m N m ~ \ in the second condensed 

region, the area per molecule is 0.58 nm^. The molecules are assumed to be 

rectangular in shape and the dimensions for similar squaraine molecules from the 

literature range from 1.7 nmx 0.7 nmxO.35 nm (Law and Chen^^) to 1.9 nmx 

0.8 nmxO.4 nm (Kim et al^^); using these dimensions areas can be calculated for 

the face of the molecules to give 1.2 nm^ or 1.52 nm^ and for the long edge 0.59 nm^ 

or 0.76 nm^. I t is possible that the of 1.2 nm^ corresponds to the largest face 

of the molecule and the of 0.59 nm^ to the edge. The molecule could therefore 

lie with its face on the subphase initially and on compression might rotate onto its 

edge. However, the a^, which is assumed to correspond to an 'edge' area, is also 

68 



T: T*: T: 

^ ^ ^ < 
CO < < < I — 

H I - I -
" " " <» b O- O- O- 3 

Q. CO CO CO Q. 

T5. 

.2 
a 
03 

u 

iH 
CO 

so 

s 
- ( J 
o 

.2 
0) 

v 

X 
on 
(1) 

OH 
(O 
lO 
(U 

(^ LUfsjUj) 8JnSS9jd 83Dpns 



half that of a face area; therefore it is equally possible that the molecules sUp onto 

each other to form a bilayer. Kim et al^^ and Matsumoto et al^"' suggested that 

initially the molecules were on their edges. On compression, the former workers 

reported stacking within the fatty acid matrix whilst the latter group proposed 

that the squaraine molecules were squeezed out onto the surface of the fatty acid 

layers. Law and Chen^^ reported a squaraine derivative (TSSQ) which initially lay 

flat on the surface and beyond the transition pressure it tilted or stacked. 

On mixing with TA similar isotherms were obtained for 1:1 and 1:4 ratios; 

however, the values obtained are different (table 5.3) . These may be due to 

errors in the calculations or sUghtly different tilting of the molecules. When the dye 

concentration was decreased to 1:12 no phase change was observed in the pressure 

versus area isotherm and the a°, is 1.14 nm^; this impUes that no rearrangement 

of the dye molecules takes place in the film. There is no evidence to suggest that 

squeezing out is taking place in these mixed films. 

Mixture of Sql:TA (nm^) low pressure region (nm^) high pressure region 

1:1 1.32 0.71 

1:4 1.56 0.56 

1:12 1.14 

Table 5.3 S q l in mixed film. 

Isotherms of Sq2 (figure 5.7) show none of the features of Sql and the is 

0.24 nm^. This value is very small and could conceivably correspond to the end 

face of the molecule. However, the existence of islands when the material was 

spread would seem to preclude the formation of a monolayer. Mixing with TA to 

a ratio of 1:3 Sq2:TA yields an of 0.25 nm^. The molecules may be end on or 

piled into a multilayer on the surface. Increasing the amount of TA in the mixtilre 

did not change the area per molecule of the Sq2, indicating that the orientation of 

the dye molecules does not alter. 

The isotherm of pure Sq3 in figure 5.8 exhibits similar features to Sql. How­

ever, the phase change occurs at a higher pressure (24 mNm~^) and only falls 

to 23 mNm~^ The below the transition pressure is 1.21 nm^ and 0.68 nra^ 
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above. These values are very similar to those obtained for Sql and imply that 

a similar rearrangement of the molecules on the surface is occurring. Although 

both molecules are unsymmetricaJ squaraines, Sq3 has long aikyl chains attached 

which one would expect to reduce the mobili ty of the molecules. This difference 

may account for the high transition pressure (24 mNm~^) observed for the Sq3 

molecules. 

Mix ing wi th TA to a ratio of 1:1 gives an isotherm wi th a less pronounced phase 

change at 25 m N m ~ ^ the values for the two condensed regions are 1.25 nm^ 

and 0.83 nm^. Further dilution of the Sq3 results in a loss of the inflexion at 25 

m N m ~ ^ A t a ratio of 1:3.8 Sq3:TA, the is 1.2 nm^, increasing to 1.38 nm^ for 

a molar ratio of 1:7.6 Sq3:TA. Since a value for the area per molecule is obtained 

which corresponds to one of the faces of Sq3, i t can be assumed that squeezing 

out is not occurring, but i t is difficult to ascertain exactly how the molecules 

are organized. The in the first condensed region of the pure and 1:1 films of 

1.25 nm^ may correspond to the face of the molecule as for Sql and compression 

might result in t i l t ing or stacking. Mix ing wi th TA has a very noticeable effect 

on this rearrangement. When the molar ratio of Sq3:TA becomes small, the phase 

change vanishes, indicating that the dye molecules become separated and can no 

longer interact. I t is assumed that the Sq molecules remain rigid and do not bend 

or twist . 

5.4 Optical Absorption of Solution, Cast and LB Films 

A l l the materials were found to be readily soluble in chloroform and solutions 

of the materials were made in 10 ml flasks. These solutions typically had to be 

diluted a thousand times (10~^ molar) in order for the absorption to be measured 

in the spectrophotometer. Concentrated solutions were also spread wi th a syringe 

onto an hydrophilic slide to form a cast f i lm . 

Materials were deposited both as pure films and mixed wi th TA onto glass or 

quartz slides. 

5.4.1 P o r p h y r i n s and phthalocyanines 

Solution spectra for these materials are shown in figures 5.9-5.11. The por-
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phyrins have very intense singlet transitions wi th shoulders in the blue region of 

the visible and vibronic peaks towards the red. The phthalocyanines have an in­

tense band associated wi th the singlet transition 0-0 (explained in chapter 3) in the 

red region of the visible and minor peaks towards the blue. Extinction coefficients 

are calculated for the most intense band (0-0) of each material and are shown in 

table 5.4. The materials have very high extinction coefficients, a typical value for 

phthalocyanine^ i ^ ~ 10^. 

The absorption spectra of these L B films are shown in figures 5.9-5.11 together 

wi th the solution spectra. I t is immediately obvious that the LB film absorption 

spectra are all broader than those in solution. The porphyrins' L B spectra are red 

shifted relative to the solution by ~10 nm. Phthalocyanine L B spectra of PP6 and 

PP7 are slightly blue shifted compared to the solution. This effect was observed 

by Baker^. Fuj ik i and Tabei" '̂̂  have attr ibuted such a shift to the formation of 

aggregates composed of a one-dimensional linear stack of phthalocyanine molecules. 

Material Absorption Band (nm) £ (extinction coefficient) 

P P l 408 L 7 x l 0 ^ 

PP3 420 2.3x10^ 

PP4 422 6.2x10^ 

PP6 695 1.8x10^ 

PP7 677 3.5x10^ 

Table 5.4 E x t i n c t i o n coeflScients for phthalocyanines and porphyrins 

5.4.2 Pery lene 

The solution spectrum in figure 5.12 is structured in nature and is typical of 

the monomer and is identical to that reported by F e r g u s o n T h e singlet vibronic 

transitions, in decreasing intensity, are 0-0 at 445 nm , 0-1 at 415 , 0-2 at 390 nm 

and 0-3 which forms a shoulder at 365 nm. The extinction coefficient for the 0-0 

transition is shown in table 5.5. The spectrum of the cast film is much broader 

than that of the solution: much of the structure is lost and i t is bathochromically 

shifted (red-shifted); this is combined wi th a change in the relative intensity of 
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the bands. The 0-0 and 0-1 transitions are still visible at 470 nm and 440 nm, a 

shift of 25 nm. Transitions 0-2 and 0-3 merge to form a band at 395 nm which is 

the most intense. This cast film spectrum is very similar to the crystal spectrum 

polarized parallel to the a crystallographic axis reported by Hochstrasser^^. These 

changes can probably be at t r ibuted to an interaction between molecules in the 

microcrystals making up the cast film. 

Material Absorption Band (nm) e (extinction coefficient) 

Sql 648 7.1x10^ 

Sq2 628 4.1x10^ 

Sq3 646 3.2x10^ 

perylene 440 3.7x10^ 

Table 5.5 E x t i n c t i o n coefficients for squaraines and perylene. 

The LB film absorption spectrum of perylene (figure 5.19) is broad and red-

shifted relative to the solution spectrum wi th the most intense band at 390 nm 

and shoulders implying bands at 430 nm and 465 nm. I t is very similar to that of 

the cast film; however, shoulders have replaced the clearly defined peaks observed 

in the cast film spectrum. 

5.4.3 S120 

The solution spectrum (figure 5.13), at 3.9 x 10"^ molar, is fairly broad and has 

two maxima at 525 nm (0-0 transition) and 495 nm (0-1 transition). The short-

wavelength maximum has a shoulder at 470 nm implying the existence of another 

band, possibly the 0-2 transition. Increasing the concentration to 3.9 x 10"^ molar 

results i n the 0-0 band becoming flatter on the top, but there is no change in the 

band at 495 nm confirming that this band is not due to a dimer. The cast film 

spectrum is featureless extending f rom 425 nm to 600 nm slightly broader than 

the solution, and shifted equally on both sides. 

Pure S120 did not transfer well onto glass but excellent films were produced 

on TA coated glass slides. A further 2 layers of TA were also deposited on top of 

the dye to form a "sandwich" structure - this improved the lifetime of the films. 
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Absorption spectra of these films revealed a very sharp, intense band at 580 nm 
which was red-shifted compared to solution; a shoulder was also evident at 530 
nm (figure 5.17). This intense bathochromically shifted band has been assigned 
by Pockrand et al''^ to J-aggregates (referred to in Chapter 3). 

The absorption spectrum of S120 mixed with TA to a molar ratio of 1:9 

S120:TA (figure 5.17) was much broader and slightly red-shifted with a maxi­

mum at 580 nm and a band at 515 nm. It more closefy resembles the solution 

spectrum in form. The narrowing and increase in intensity of the absorption might 

therefore result from an interaction between dye molecules. Mixing the dye with 

TA clearly affects this interaction in some way, possibly by inhibiting the order­

ing of the dye molecules. This would appear to contradict the results in section 

5.3.3 which suggest that there is no change in the orientation of the molecules in 

the mixed film. However, in section 3.3.5, J-aggregates were shown to be formed 

from four molecules, so although the S120 molecules are in the correct orientation 

on the surface, the TA molecules probably prevent them from coalescing to form 

sufficiently large aggregates. 

Figure 5.18 shows the change in intensity of the J-aggregate band with time, the 

solid line is the initial absorption spectrum, which took approximately 4 minutes 

to record, the dashed line was recorded 10 minutes later. The material has clearly 

become photo-bleached. 

5.4.4 Squaraines 

The 10~^ molar solutions of Sql, Sq2 and Sq3 showed a single absorption band 

in the visible region which was sharp and intense, typical of a singlet 0-0 transition, 

at 648 nm, 628 nm and 646 nm, respectively. This is characteristic of a monomer 

absorption (figures 5.14-5.16). Each of the bands has a small shoulder on the short-

wavelength side: at 600 nm for Sql and Sq3, and at 575 nm for Sq2. No change 

in these shoulders was observed when the concentration was increased to 10~^ 

molar, indicating that they are not the result of dimers. The only changes that 

did occur in the spectra were a flattening of the maxima, probably due to some 

concentration quenching effect. The extinction coefficients calculated are very high 

and are listed in table 5.4. These compare favourably with a value of ~ 3 x 10^ at 

638 nm reported by Loufty et al̂ ® and Law et al^^ for similar squaraines. 
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FOms were cast of Sql and Sq3, but it was not possible to cast a film of Sq2. 

The cast film spectrum of Sql is broad and asymmetric, with a maxima at 660 

nm, it is bathochromically shifted ~ 20 nm relative to the solution spectrum. 

Loufty et al reported the solution and soUd state absorption spectra of a number 

of squaraines. Some of their spectra are very similar to that observed for Sql; they 

attribute these to weak interaction between molecules in the crystal. 

In contrast, the spectrum of Sq3 is very different. Two absorption bands were 

observed at 655 nm and 494 nm: one was bathochromically shifted relative to 

the solution spectrum by ~12 nm, whilst the other was hypsochromically shifted 

(blue-shifted) by ~160 nm. Loufty et al attributed this behaviour to a strong 

interaction between molecules in aggregates in the film. 

Materials were deposited onto glass or quartz both as pure films and mixed 

with TA. 

Pure Sq3 was dipped in both the first and second condensed region of the 

pressure area isotherm. Both spectra (figure 5.21) have two bands. One occurs at 

approximately 652 nm, which corresponds to a slightly bathochromically shifted 

monomer band (628 nm as in solution). The other short wavelength band is more 

intense and is slightly different for each spectrum: for the first condensed region it 

is at 504 nm and was symmetric in form, whilst for the second condensed region 

spectrum it is at 492 nm and is noticeably asymmetric, suggesting the presence of 

more than one band. The films were stable and there was no significant change in 

the spectra with time. This is in contrast to data reported by Law and Chen^^. 

Pure Sql was also dipped in both condensed regions. Both spectra (figure 

5.20) are similar, possessing a sharp absorption band at 530-535 nm and a very 

pronounced shoulder at 650 nm, which corresponds to the monomer band.in 

solution. 

Sql was mixed with TA in a variety of molar ratios and was dipped at 30 

mNm~^. The absorption spectra for the films of 1:1 and 1:4 Sql:TA mole ratios 

(figure 5.22) are similar in shape; both have an intense band at 535 nm as was 

found to be the case for the first condensed region spectrum. Both 1:1 and 1:4 
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spectra possess a shoulder at the long-wavelength side of the main band but these 

are subtly different in shape . 

The absorption spectrum recorded for the 1:12 Sql:TA film (figure 5.22) is 

significantly different from those for 1:1 and 1:4 mole ratio films; there is no 

maximum at 535 nm, an intense band occurs at 650 nm and short-wavelength 

shoulder is evident between 600 nm and 550 nm. The change in the spectrum 

towards that of the solution suggests that less aggregation occurs owing to the 

dispersion of the dye molecules throughout the TA matrix. 

The pressure-area isotherm of Sq2 does not have two condensed regions char­

acteristic of Sql and Sq3, so the pure dye was dipped at only one surface pressure 

30 mNm~^. The absorption spectrum (figure 5.23) of the resulting film is also 

different in character to those of Sql and Sq3; i t is very broad with a maximum 

at 550 nm, another possible band at 650 nm and a shoulder at 750 nm. However, 

it is likely that this spectrum is composed of more than these three bands. 

On mixing with TA there was no change in the spectrum until a ratio of 1:7 

Sq2:TA was reached. The spectrum for a film with this composition appeared to 

possess two main peaks at 550 nm and 750 nm, with a shoulder at 670 nm. 

The absorption at 550 nm has a flat top suggesting that it is composed of several 

bands. Comparison between the solution spectra and the mixed LB film spectrum 

reveals that one maximum is red-shifted (~100 nm) whilst the other is blue-shifted 

(~90 nm) and may indicate that a strong dipole-dipole interaction is taking place 

(possibly Davydov splitting). 

The Sq3 was mixed with TA to different molar ratios and dipped in the second 

condensed region (above 60 mNm~^). For a molar mixing ratio of 1:1 Sq3:TA the 

spectrum (figure 5.24) is almost identical to that of the pure dye dipped in the 

second condensed region. 

A ratio of 1:3.8 Sq3:TA has a spectrum (figure 5.24) in which the relative 

intensity of the two bands is different: the long-wavelength band becomes more 

intense and the short-wavelength band is sUghtly red shifted to 496 nm, towards 

that of the band observed in the first condensed region. There is also a shoulder 

at 550 nm which is not visible in the spectrum of the 1:1 molar ratio film. 
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When the molar ratio is increased to 1:7.6 Sq3:TA, the short-wavelength band 
is further red-shifted to 504 nm, making it identical to that band in the first 
condensed region spectrum. The relative intensity of the two bands also changes 
so that the long-wavelength band is fractionally larger, and the shoulder at 550 
nm now becomes much clearer. As with Sql, these changes in absorption with 
molar ratio indicate that aggregates are formed in the film when the molecules are 
;n close proximity to each other. In section 5.3.4 a number of possible orientations 
were suggested for the molecules in the film at the above pressure. The for 
1:1 was calculated to be 0.83 nm^ and a tilting or stcicking of the molecules was 
hypothesised. At ratios of 1:3.8 and 1:7.6 the a°^ was larger (1.2 nm^ and 1.38 nm^, 
respectively) and it was assumed that the molecules remained flat on the surface. 
These proposed changes in dye orientation might help to explain the observed 
absorption spectra. The intense band at 492 nm is probably due to the interaction 
between molecules when they are stacked or tilted such that their faces are in 
contact. Dilution of the mixture then results in a reduction in this interaction. 
The observed shift in the absorption maximum is therefore due to the formation 
of aggregates in the film. However, it is not possible to state with certainty how 
large these are, but from the size of the shift it is reasonable to assume that they 
are greater than dimers and may be H aggregates (described in chapter 3). 

Authors who have reported broadened and red-shifted absorption bands in 

films compared to solution have attributed them to intermolecular charge transfer 

(CT) interactions between the donor (aniline) and acceptor (four-membered ring) 

groups in the squaraine. The blue-shifts observed for Sql and Sq3 indicate that 

such CT interactions are not taking place. Law and Chen^^ suggested that the 

C-0 dipole-dipole interaction between the squaraine chromophores was responsible 

for these observations. 

5.5 Polarized Optical Absorption 

The polarized absorption measurements were made on glass sUdes which were 

coated with film on only one side. I t has already been shown by Peterson and 

Russell^^ that LB films are composed of grains each of which may contain molecules 

with a common orientation. Thus, any dichroism observed in the film only indicates 

the average orientation of the molecules. 
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5.5.1 Perylene 

The polarized absorption spectra of perylene:TA film of molar ratio 1:13 in 

figure 5.25 shows very pronounced dichroism when the shde is at 45 degrees to 

the incident beam. Table 5.6 shows the dichroic ratio ( j | - ) of the film at different 

angles of incidence. The transition dipole moment for peryleue responsible for the 

absorption in the visible was found by Fuke et al^* to be polarized along the long 

molecular axis. From the dependence of the dichroic ratio with angle of incidence, 

it can be assumed firstly that the molecules are arranged predominantly with their 

long axis perpendicular to the substrate, and secondly that they are at an angle 

less than 90 degrees to the substrate. These assumptions are strengthened by the 

polarized absorption spectra in figure 5.26, which were both measured at 45 degrees 

with the polarizer parallel to the dipping direction but with the substrate reversed 

in each case, as illustrated in the inserted diagram. The greater absorption for 

the positive direction indicates that the molecules are preferentially oriented with 

their long axes perpendicular to the substrate and inchned at some angle, such 

that they are tilted upward relative to dipping. A schematic diagram showing a 

possible arrangement of the molecules is shown in figure 5.27. 

Angle to beam (degrees) M 
Al 

45 2.53 

50 2.27 

60 1.85 

70 1.37 

80 1.05 

90 1.13 

Table 5.6 Dichroic ratio of perylenerTA 1:13 at different angles of incidence 

5.5.2 S120 

Polarized absorption spectra of S120 sandwich films exhibited some dichroism 

when the slide was at 90° to the incident (figure 5.28) but not when it was at 45°. 

The electronic transition responsible for the absorption in the visible was found 
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Glass slide 
Dipping direction Perylene 

Figure 5.27 Possible orientation of molecules relative to the substrate 
and the direction of immersion. 
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by Biicher and Kuhn^* to be polarized along the long axis of the molecule. The 

molecules preferred orientation would appear to be with their long axes perpendic­

ular to the dipping direction. However, it is difficult to explain why no dichroism 

is observed when the slide is at 45° to the incident beam. 

5.5.3 Sql and Sq3 

Both Sql and Sq3 LB films show some degree of dichroism when polarized ab­

sorption spectra were recorded; however, the shape of the absorption band remains 

the same. Films were dipped in both condensed regions and table 5.7 shows the 

results of the polarized absorption measurements. Tristani-Kendra et al'̂ ^ found 

that the electronic transition moment responsible for absorption in the visible for 

squaraines was polarized along the long axis of the molecule. From the results in 

table 5.7, i t is difficult to draw any firm conclusions; however, a sHghtly preferred 

orientation perpendicular to the dipping direction is possible. 

Material ^ (90°) f (45°) 

Sql region 1 0.81 1.59 

Sql region 2 1.03 1.23 

Sq3 region 1 0.82 1.82 

Sq3 region 2 1.75 1.18 

Table 5.7 Dichroic ratio of squaraine L B films. 

5.5.4 Sq2 

Polarized absorption spectra for layers of Sq2:TA 1:7 on 2 layers of TA are 

shown in figures 5.29 and 5.30. With the slide at 90 degrees to the incident beam 

and the polarizer parallel to the dipping direction the spectrum resembles the 

unpolarized spectrum figure 5.23, but the peak at 550 nm is not flattened. When 

the plane of polarization is rotated so that it is perpendicular to the dipping 

direction the spectrum changes (figure 5.29), the intensity decreases and the short-

wavelength band is shifted by 25 nm to 575 nm. The band at 730 nm disappears 

and is replaced by a broad shoulder between 650 and 800 nm. The unpolarized 

spectrum is therefore composed of both these features. When the slide is rotated 
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so that it is 45 degrees to the incident beam there is no significant change in the 
shape of the spectra (figure 5.30) but their relative intensity is now reversed. The 
spectra are clearly complex and are composed of many bands some of which are 
red-shifted relative to the solution absorption others which are blue-shifted. One 
possible explanation is that J- and H-aggregates coexist in the film. The shift in 
some of these bands when the plane of polarization is changed suggests that the 
dipoles which are responsible for these bands are at an angle to each other. The 
sample was selectively irradiated with parallel polarized light to bleach the blue 
shifted band but it was found that both spectra decrecised in intensity indicating 
that only one complex exists. The observed absorption may therefore be due to 
Davydov splitting^'^^. 

5.6 Fluorescence studies 

5.6.1 Perylene at 293K 

Comparison of the fluorescence spectrum of perylerie solution (figure 5.31) and 
absorption spectrum (figure 5.12) reveals the mirror-image relationship often ob­
served in aromatic hydrocarbons^^. The fluorescence is intense and structured 
with maxima at 445 nm, 472 nm and 507 nm; these have been assigned to the 
monomer fluorescence singlet vibronic transitions. The fluorescence of microcrys-
tals of perylene, in marked contrast to that of solution, shows no structure and is 
broad and red shifted with a maxima at 560 nm (figure 5.31). 

Fluorescence spectra of perylene:TA films of molar ratios 2:1, 4:5, 1:4, 1:6 and 
1:13 show two distinct emitters (figure 5.32). The first is unstructured and has a 
maximum at 546 nm; the second is structured and is clearly the perylene monomer, 
with maxima at 445 nm, 472 nm and 507 nm. The unstructured band is assigned to 
dimers. On increasing the perylene concentration, the emission spectrum changes 
from that of monomer to dimer as increased aggregation takes place. 

The decay parameters were obtained by fitting to the fluorescence decay curves 

using two diff"erent decay models. A bi-exponential model was used for the emis­

sions at 546 nm and a mono-exponential model was used for 445 nm, including 

solution spectra. The lifetimes obtained from this fitting are given in table 5.8. 

The value of 5 ns compares well with 4.9 ns reported by Birks and Dyson^^ for 
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Material Molar ratio n (ns) T2 (ns) Bi B2 x' 

546 nm, 30 layers on glass 3:1 6.6 15.8 0.54 0.46 1.3 

3:2 6.5 15.9 0.55 0.45 1.1 

4:7 6.0 16.1 0.63 0.37 1.5 

546 nm, 50 layers on glass 2:1 5.6 14.7 0.69 0.31 1.3 

4:5 5.2 14.8 0.67 0.33 1.3 

1:4 4.1 13.9 0.68 0.32 1.5 

1:6 4.1 14.2 0.64 0.36 1.5 

560 nm, micro-crystals 34.2 0.31 1.6 

445 nm, perylene in solution 10~*M 5.4 0.26 1.1 

445 nm, perylene in solution 10~^M 4.9 0.31 1.2 

445 nm, 50 layers on quartz 2:1 5.4 0.26 1.3 

4:5 5.1 0.31 1.2 

1:4 4.5 0.28 1.2 

1:6 4.4 0.25 1.3 

1:13 4.2 0.24 1.2 

Table 5.8 The best-fit paxameters for fluorescence decay of LB-films of 
perylene:TA at 293K. I(t)=Biexp(-t/ri)-|-B2exp(-t/T2). 
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perylene in solution and therefore can be attributed to monomer fluorescence. It is 
noticed that the Ufetime of perylene in solution decreases with increasing concen­
tration, due to concentration quenching. When the molar ratio of perylene to TA 
in the film decreases, the number of monomers relative to dimers increases causing 
a corresponding decrease in monomer lifetime due to concentration quenching. The 
lifetime of approximately 15 ns can be attributed to perylene dimers. The lifetime 
for microcrystals of 34.2 ns implies that the LB films are not microcrystaUine in 
nature. 

5.6,2 Perylene fluorescence at l l O K 

Further studies of perylenerTA LB films of molar ratios 2:1, 4:5, 1:4, 1:6 and 
1:13 were undertaken at l lOK. Emission spectra are shown in figure 5.33, with 
bands evident at 445, 480, 546, 580 and 600 nm. The first two can be associated 
with monomer fluorescence whilst the third, which appears as a shoulder, can be 
attributed to dimers as it is the mirror image of the broad absorption band at 374 
nm. The origin of the fourth and fifth red-shifted bands may result from excimers. 
Similar spectra with excimer bands were reported by Ferguson^^ for a solvent glass 
of perylene. The emission spectrum becomes increasingly blue-shifted as the molar 
ratio of perylene to TA decreases. The unstructured emission finally disappears at 
a ratio of 1:13, leaving monomer and dimer bands only. These observations suggest 
that three emitters are present. Thus in order to determine the lifetimes from the 
fluorescence decay curves (figure 5.34) a tri-exponential model has to be used. 
The fluorescence decay curves show that the excimer (which emits from ~550-
650 nm) is much longer-lived than the monomer (which emits from ~440-500 nm) 
and the dimer (which emits from ~500-600 nm). The results obtained from this 
fitting are shown in table 5.9. The film with a molar ratio of 1:13 has monomer 
emitters only with a lifetime of 5 ns, corresponding to monomers in solution. 
When the molar ratio is increased to 1:6 and 1:4, two lifetimes are obtained at an 
emission wavelength of 480 nm. These describe the isolated monomer (5 ns) and 
the quenched monomer (0.6 ns). The lifetimes of dimers and excimers are seen 
to decrease with decreasing fluorescence wavelength. This is in marked contrast 
with the constant fluorescence lifetime versus wavelength results for monomers in 
solution. The difl̂ 'erence is explained by homogeneous broadening caused by the 
varied environment in which the perylene molecules exist. 
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\ f i (nm) Molar ratio ri (ns) 7-2 (ns) T3 (»is) Bi B2 Bs x' 

E E D E E D 

600 2:1 0.5 77.7 12.0 -0.86 85.39 15.47 1.3 

580 0.5 69.8 9.0 -1.67 79.59 22.09 1.6 

546 0.4 54.8 8.2 -4.43 56.14 48.20 1.7 

600 4:5 0.6 74.6 11.2 -1.19 86.85 14.34 1.2 

580 0.6 69.8 9.9 -1.98 82.27 19.70 1.3 

546 0.4 55.1 8.1 -6.25 61.91 44.35 1.7 

600 1:4 0.6 72.5 10.1 -4.5 85.00 19.50 1.2 

580 0.6 69.0 9.5 -7.1 81.97 25.13 1.4 

546 0.5 54.2 8.1 -8.9 60.07 48.83 1.5 

E M M-» E M 

480 0.5 5.2 47.95 51.66 1.5 

600 1:6 0.6 70.5 9.3 -5.52 86.63 18.88 1.1 

580 0.5 68.4 9.3 -7.88 80.39 27.08 1.2 

546 0.5 53.3 7.8 -9.7 58.98 50.72 1.5 

E M E M 

480 0.7 5.0 47.95 52.05 1.3 

M 

480 1:13 5.1 1.6 

Table 5.9 The best-fit parameters for fluorescence decay of LB-films of 
peryIene:TA at l lOK. I(t)=Biexp(-t/ri)-f B2exp(-t/T2)-|-B3exp(- t /rj) . 
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5.7 Ellipsometry 

5.7.1 S q l 

The film thickness of 20 layers of Sql dipped on 2 layers of TA in the second 

condensed phase was measured by ellipsometry. The first two layers of TA were 

assumed to have a thickness of 5.6 nm, the remaining layers were then found to 

have an average thickness of 1.8 nm. This value might correspond to the long 

axis of the molecule. However, the polarized absorption measurements disagree 

with this because it was found that the dipole moments are in the plane of the 

• substrate; this is also substantiated by the area per molecule.results. Therefore 

the most probable orientation of the molecules is that they are stacked on their 

longest edge in the form of a bilayer. 

5.7.2 Perylene:22TA 

The thickness of stepped layers of perylene:22TA were measured by ellipsome­

try at a wavelength of 632.8 nm, where the film was least absorbing. The average 

thickness per layer is 2.8 nm, corresponding almost exactly to the layer thickness 

obtained for pure 22TA layers. I t can therefore be concluded that either the pery­

lene is not transferred onto the substrate or it is incorporated into the fatty acid 

matrix. As optical absorption studies have shown that perylene is present in the 

films the latter conclusion would appear to be correct. However, the perylene 

molecules may form domains within the fatty acid films. 

5.8 X-Ray Diffraction 

5.8.1 Perylene 

X-ray low angle diffraction measurements were undertaken'on a number of 

perylene:TA LB films and the results are given in table 5.10. These values of 

d-spacing obtained are consistent with TA molecules tilted by 28 degrees to the 

perpendicular. I f squeezing out was taking place such that the perylene molecules 

were between the headgroups or the tails, two d-spacings would be obtained, cor­

responding to two different distances between the TA headgroups. 
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Perylene:TA Spacing d(nm) 

3:1 5.51 

3:2 5.44 

4:7 5.57 

Table 5.10a X-ray d-spacings for 30 layers of perylenerTA on glass 

Perylene:TA Spacing d(nm) 

2:1 5.55 

4:5 5.47 

1:4 5.58 

1:6 5.56 

1:13 5.48 

Table 5.10b X-ray d-spacings for 30 layers of perylene:TA on quartz 

As only one d-spacing is found which corresponds to that for a pure TA film it 

can be assumed that the perylene molecules are not squeezed out but are incorpo­

rated in the TA matrix. This is confirmed by elhpsometry of perylene/22TA films 

in section 5.8. 

5.8.2 Sq3 

The d-spacing for 76 layers of Sq3:22TA 5:1 was found to be 1.74 nm, giving 

a thickness per layer of 0.87 nm. From the dimensions of the molecule in section 

5.3.4 this distance would correspond to the molecule lying on its longest edge. This 

is in agreement with the elhpsometry results for Sql. 

5.9 Electron Diffraction 

RHEED studies are reported here for two dye:fatty acid LB systems. Sq3:TA 

was chosen for study because it was a high quality film and showed some anisotropy 

in polarized absorption studies. Perylene:TA was also selected for study because 

it showed significant dichroism. In both cases six layers of the mixed films were 
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deposited onto ( i l l ) Si. 

5.9.1 R H E E D of Sq3:TA 

The RHEED pattern of 6 layers of Sq3:TA 1:6 ( shown in figure 5.35) was taken 

with the electron beam pareillel to the direction of dipping. The diff'raction spots 

are smeared out to form arcs which are parallel to the shadow edge, indicating 

that the molecules are not tilted. This pattern is almost identical to a pattern 

of 22-tricosenoic acid obtained by Peterson and RusseU"̂ ,̂ suggesting that there is 

very little contribution from the Sq3. Rotating the sample relative to the electron 

beam had no effect on the diffraction pattern indicating that there is no anisotropy 

with dipping direction. 

5.9.2 R H E E D of perylenerTA 

The RHEED pattern obtained from 6 layers of 1:12 perylene:TA on hydropho­

bic (111) silicon (figure 5.36) is completely different from the previous pattern; the 

most striking observation is the profusion of diffraction spots and their sharpness. 

The spots are well defined and appear to form lines parallel to the central row of 

spots; a rectangular matrix of spots is almost visible. This quality of pattern is 

not obtained from simple fatty acid assembUes alone and has only been observed 

for an amido nitrostilbene^'* and C4 anthracene"^ .̂ The central row of spots shows 

fine splitting which is expected of bilayer periodicity. The pattern is indicative of 

a material with preferred orientation and a high degree of structural order. This is 

in agreement with the results obtained from polarized absorption measurements. 

5.10 Summary 

In this chapter a variety of dyes have been investigated for their abUity to form 

good quality LB films, with the desired spectroscopic properties required for SPR 

studies. I t has been shown in section 5.3 that some of the dyes undergo reordering 

on the surface. In section 5.4, the optical absorption of these dyes is shown to 

be linked to the reorientation of the molecules. Comparison between spectra in 

sections 5.4 reveals the formation of aggregates. Fluorescence studies of perylene 

in section 5.6 show that the aggregates in these films to be dimers. In sections 5.7 

and 5.8 layer thicknesses are determined which resolve the possible arrangement 
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Figiire 5.35 RHEED pattern for 6 layers of Sq3:TA 1:6. 

- * 

Figure 5.36 RHEED pattern for 6 layers of perylene:TA 1:12. 



of the molecules. Finally, perylene:TA films are shown from RHEED studies to be 
highly ordered. 
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Chapter V I 

Surface Plasmon Studies 

6.1 Introduction 

The object of this chapter is to demonstrate how the surface plasmon technique 

can be used to probe organic layers deposited on a silver coated shde. Section 

6.2 is concerned with the effect of silver parameters on the resonance curves and 

results from a theoretical model are compared to those obtained experimentally. 

The addition of absorbing and non-absorbing LB overlayers is studied in 6.3. In 

6.4 results obtained from a variable wavelength experimental setup are given and 

discussed. Data are presented for a new dye system containing a derivative of 

squaraine. Values for the permittivity of a similar dye which has been reported in 

the literature are inserted into the model and the results obtained are compared 

to experiment in 6.5. Finally, the surface plasmon work is summarized in section 

6.6. 

6.2 Surface Plasmon Resonance on Silver Films 

In Chapter 3 the theory of surface plasmon polaritons and the methods used 
to generate them were discussed in some detail; the importance of the evapo­
rated silver layer was also noted. In this section the silver parameters are varied 
in a modelling program and the resonance curves obtained compared to experi­
mental results. A qualitative explanation is made of the factors which affect the 
resonance conditions. The modelling program was written by J. CressweU and 
solves Maxwell's equations to find the reflectivity at each interface (a schematic 
of the layer structure is shown in fig 6.1); more details are given in his thesis^ 
AU the measurements were made using a HeNe laser which was tunable to four 
wavelengths: 632.8, 611.9, 594.1 and 543.0 nm. 

A surface plasmon resonance (SPR) curve can be described by three features: 

the angular position at which the resonance minimum occurs (^mm); the reflectivity 
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A i r 8o 

LB film 83 

Silver 82 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

^^^K Glass 81 

Figure 6.1 The layer structure used in the modelling progrzim. 

at this minimum (Rmm); and the ful l width of the curve at half maximum (fwhm); 
these are shown on an ideal SPR curve (in figure 6.2). Values obtained from 
SPR curves for each of these parameters are presented as a function of either 
thickness (d) or wavelength (A), in a graphical form; lines are drawn between 
points to indicate a trend in the results but this is not intended to show an absolute 
relationship. 

r"'"1 fwhm 

Incident Angle 

Figure 6.2 A typical S P R curve showing the important features. 
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6.2.1 Theoretically generated resonance curves 

The values of silver permittivity used in the modelling program were obtained 

from a pubUcation by Schroder^ (determined from SPR measurements) and are 

listed in table 6.1. 

\{nm) e" 

700 -22.4 0.91 

690 -21.7 0.88 

680 -21.0 0.85 

670 -20.3 0.81 

660 -19.7 0.77 

650 -19.0 0.74 

640 -18.3 0.69 

630 -17.6 0.67 

620 -16.9 0.65 

610 -16.3 0.62 

600 -15.6 0.59 

590 -14.9 0.55 

580 -14.3 0.52 

A(nTn) e' e" 

570 -13.6 0.49 

560 -13.0 0.47 

550 -12.4 0.45 

540 -11.8 0.43 

530 -11.2 0.41 

520 -10.6 0.39 

510 -10.0 0.38 

500 -9.4 0.37 

490 -8.9 0.35 

480 -8.4 0.34 

470 -7.7 0.33 

460 -7.2 0.32 

450 -6.6 0.31 

Table 6.1 Silver real an imaginary values of dielectric constant (after 

Schroder). 

The values for refractive index of the glass were taken from Melles Griot data 

for BK7 (borosilicate crown) glass and figures for ei were then calculated and are 

listed in table 6.2. The dispersion of the glass was not considered to be significant. 

To see the effect of silver thickness on the resonance, the wavelength was kept 

constant at 543 nm and values for the silver thickness were changed in the model. 
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\[nm] Refractive index Real permittivity e' 

660 1.5140 2.2922 

640 1.5147 2.2943 

620 1.5156 2.2967 

600 1.5164 2.2995 

580 1.5173 2.3022 

570 1.5176 2.3031 

560 1.5181 2.3046 

550 1.5185 2.3058 

540 1.5190 2.3074 

530 1.5194 2.3086 

520 1.5198 2.3108 

510 1.5205 2.3119 

500 1.5216 2.3153 

480 1.5230 2.3195 

Table 6.2 The refractive index and real part of permittivity for B K 7 

(MeUes Griot data). 

From the series of S P R curves (figure 6.3), the effect of silver thickness can be 

seen on dmin, Rmin and fwhm. The resonance angle 6 is not influenced greatly by 

the silver thickness. 

The change in silver thickness appears to have most effect on the reflectivity 

minimum. A plot of Rmin versus thickness (fig 6.4) clearly shows that Rmin passes 

through a minimum at 55 nm. Finally the width of the S P R curves decreases 

with increasing silver thickness. These observations fit well with the excepted 

behaviour of surface plasmon coupling"''^. The depth of the resonance minimum 

Rmtn is determined by the coupling eflBciency of the system which is the ratio of 

two damping processes, inner and radiation damping. Inner damping is caused by 
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Figure 6.3 S P R curves at 543 nm for different values of silver thickness, 
from theory. 
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Figure 6.4 Rmm versus thickness for silver from theory 

absorption in the layer system, including the sUver, and radiation damping results 

from back radiation into the halfspace (prism). Optimal coupling (Rr,im=0) is 

achieved when the two processes are of equal magnitude. When the silver layer 

is thin, radiation damping is dominant while inner damping becomes increasingly 

important as the layer is made thicker. Two thickness Umits exist for the silver 

layer: the upper is where the silver is too thick for the evanescent field to penetrate 

and the lower is where the silver layer is too thin to support surface plasma waves. 

At 543 nm the optimal thickness from figure 6.4 is therefore approximately 55 nm; 

this value will of course be different at other wavelengths. 
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The eff"ect of silver permittivity on the surface plasmon resonance curves can be 

determined by varying the real and imaginary parts of permittivity independently. 

A wavelength of 543 nm was chosen, and a constant value of -11.8 for the real part 

of permittivity €2 was used. There was no significant change in the SPR curves with 

the imaginary part of permittivity 62 between 0.4 and 0.5. The resonance angle 

remciined constant at 43.5°. The change in reflectivity minimum was virtually zero 

with increasing €2 and the resonance width, fwhm, remained almost constant. 

I f 62 was kept constant at 0.43 whilst e'2 was varied the following trends were 

observed in the SPR curves: the angle at which the resonance occurs did not change 

significantly with increasing e'2; and the resonance minimum decreased slightly with 

decreasing e'2. 
0.6-1 

0.55 H 

-11.5 

Figure 6.5 Fwhm versus e'2, with 62=0.43 from theory. 

The resonance width fwhm decreases significantly with decreasing e'2 (figure 

6.5). 

From these results it can be concluded that the imaginary part of the silver 

permittivity (associated with the damping) over a range between 0.4 and 0.5 has 

Uttle effect on the resonance conditions. However, the real part of permittivity 

(associated with the refractive index) has a much greater influence, particularly on 

the resonance width. 
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The thickness of the sUver layer was assumed to be 50 nm for all the theoretical 

modelling. However, this only gives optimum resonance conditions at a wavelength 

of 632.8 nm. This choice of thickness was convenient because the evaporator was set 

up specifically to deposit sUver films of approximately 50 nm thick. Wavelengths 

of interest were taken as 632.8 nm, 611.9 nm, 594.1 nm and 543.1 nm (HeNe 

wavelengths). The values of ^ , ^ ^ , 1 , Rmm and fwhm were observed to vary with 

A. This is not surprising since the medium is dispersive. As A increases, 9min 

decreases, but the relationship is not linear (figure 6.6a); Kmin decreases to zero 

at 611.9 nm (figure 6.6b); fwhm decreases with increasing A but reaches a plateau 

(figure 6.6c). 

6.2.2 Experimental silver resonances 

Values obtained for Omin, Rmm and fwhm on two evaporated silver films (evap>-

orated at different times and nominally 50 nm thick) are plotted alongside those 

predicted by the modelling program in figures 6.6a,b and c. The values for 9min 

are larger, by approximately 0.3° for silver, but follow a similar relationship and 

the two sets of experimental points are in good agreement with each other. Rmin 

also foUows a similar relationship to theory but values for the experimental silver 

films are considerably larger and there is also a difference between the experimental 

curves. The widths of the resonance, fwhm, for the experimental data are greater 

than theory and follow a slightly different form; they also differ from each other. 

The only two parameters which can give rise to the differences between ex­

perimental and theory are a difference in the real part of sUver permittivity (only 

e'2 has a significant effect on SPR) and the silver thickness. However, a variation 

in the silver thickness could not account for the difference in angle of 0.3°. Fit­

ting has shown that the real part of the silver permittivity £2 would have to be 

smaller for the experimental silver value to explain the results. An alternative 

explanation is that the silver layer is not pure, ie it is covered by a thin oxide or 

sulphide layer. The tarnishing of the film according to Pockrand^ is due to the 

formation of Ag2S, but this worker only observed tarnishing 2h after depositing 

the silver. The formation of a sulphide layer is conceivable since the atmosphere 

during measurements was probably rich in sulphur compounds. In fact, a yellow 

deposit could clearly be seen on a silvered slide only partially coated with an LB 
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Figure 6.6a d versus A for silver theory and experimental where the 
silver thickness is 50 nm. 
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Figure 6.6b Rmin versus A for silver theory and experimental where the 
silver thickness is 50 nm. 
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Figure 6.7a 6 versus A for experimental curves measured over a 56h 
period. The silver thickness is 50 nm. 
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Figure 6.7b Rmin versus A for experimental curves measured over a 56h 
period. The silver thickness is 50 nm. 
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film. The differences between the two sets of experimental points might be due to 

variations in the evaporation conditions or different ages of the silver films. 

A series of curves for 9,nin, Rmin and fwhm against A were recorded for the same 

sample over a period of a couple of days (fig 6.7a,b and c). The time between the 

evaporation of the silver film and each measurement was 1) Oh 2) 8h 3) 24h 4) 32h 5) 

48h 6) 56h. It is evident that the curves are shifted shghtly with time. For example, 

at 543 nm, 6min increases with time by 0.35° over the 56h period; Rmm decreases, 

by approximately 1.05 at 543 nm; and fwhm increases, by approximately 0.3. These 

observations confirm the suggestion that an oxide or sulphide layer is formed on 

the metal surface. Silver films must be used immediately or stored carefully under 

nitrogen, but in either case it is diflficult to avoid tarnishing completely. 

6.3 The Effect of L B Overlayers 

6.3.1 Non-absorbing layers 

Figure 6.8 shows the theoretical curves for a non-absorbing layer, with permit­

tivity €3= 2.5 -I- 0.002i, on silver 50 nm thick, at a wavelength of 543 nm. This 

value of permittivity was chosen to represent a typical fatty acid^. 

10-, 

O.B-i 

.•t; 0.6-

u 
.3? 

0.4 

0.2 H 

0.0 

1 
3 nm 
D m i 

12 nm 

IB m 
24 nm 

40 42 44 
—r-
46 48 

—r-
50 52 

Incident angle 

Figure 6.8 S P R curves, from theory, for a change in thickness of non-

absorbing layers. 
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An almost linear relationship is seen between Omin and the thickness of the 

layer. This is in excellent agreement with experimental data for a TA film (figure 

6.9). Rmin, from theory, remains constant with respect to the thickness, which is 

expected, since Rmin has been shown to depend on loss in the overlayer. However, 

the experimental values for Rmin (not shown) are larger than theory and are not 

constant with layer thickness. Both experimental and theoreticcd values of fwhm 

(not shown) are not constant but increase with thickness. The experimental values 

are again larger than for theory. 

50-1 

49-^ 

^ 4 8 H 
m 
V 

2 47H 
V 

T3 
^ 4 6 H 

45H 

44-A-

43-

-a- theoretled 
©•• experrnentd 

10 15 20 
—r-
25 30 

thickness (nm) 

Figure 6.9 Theory and experimental results of 6min versus d for a non-
absorbing layer on 50 nm thick silver film. 

The theoretical S P R curves at different wavelengths are shown in figure 6.10. 

The experimental values of dmin for a TA film are in good agreement with this data 

(figure 6.11. ) . Rmin values from theory are identical to those for silver only, which 

is not unexpected as the layer is non-absorbing. However, the experimental data 

for Rmtn (not shown) are greater than theory, but compare well with experimental 

values for silver only. The fwhm values for both experimental and theoretical curves 

bear little relation to the corresponding curves for silver (fig 6.6c), the latter values 

being much larger. The experimental values of fwhm are larger than theory and 

their relationship to the wavelength is slightly different in the long-wavelength 

region where the fwhm continues to decrease. 
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Figure 6.10 S P R curves from theory at different wavelengths for a 12 
nm thick non-absorbing layer on 50 nm thick silver film. 
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Figure 6.11 Omin versus A for a non-absorbing layer. 

These differences between theoretical and experimental curves for TA can be 
explained in terms of surface roughness of the TA and changes in the refractive 
index of the layers with increasing thickness (due to non-uniform layer thickness). 
The damping of the surface plasmon oscillations caused by scattering of energy 
out of the plasmon mode into other surface modes and radiative fields results in a 
change in the halfwidth and resonance depth. 
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6.3.2 Absorbing layers 

Figure 6.12 shows the effect of an absorbing overlayer on the SPR conditions 
using the model. The value of the film's permittivity was £3=2.3 -H 0.5i; this was 
taken from an isotropic fit to an SPR curve of a squaraine dye by Pockrand^ The 
resonance angle increases with decreasing A in the same way as for a non-absorbing 
layer, but the absolute values of 9min are greater. 
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.^0.7 
• > 
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| o . 5 -

0.4-

0.3-
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- 543.0 

40 42 
~ r -
44 46 48 

—1 
50 

Incident angle 

Figure 6.12 S P R curves at different wavelengths from theory for a 12 

nm thick absorbing layer on 50 nm thick silver film. 

Rmin, which is evident from the diagram above, does not remain constant 
as in the non-absorbing case but increases with increasing wavelength, indicating 
that there is some absorption at higher wavelengths. The fwhm increases with 
decreasing A but much more rapidly than for a non-absorbing film. A change in e'^ 
from 0.5 to 1 results in only a slight increase in the width but no change in 9min 

and the Rmin changes from 0.15 to 0.34. 

Values for 9min, Rmin and fwhm increase monotonically but not hnearly with 
thickness (figure 6.13). They follow a very similar pattern to those reported by 
Pockrand for a carbon coating^. 

Perylene:TA 1:6 was dipped in a stepped structure 2,4,6 layers (see figure 6.14) 

onto silver. 9min versus A for each step is shown in figure 6.15a and a similar graph 
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Figure 6.13 S P R curves at different thickness from theory for an ab­

sorbing layer at 543 nm on 50 nm thick silver film. 
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Figure 6.14 Schematic of stepped structure 

of 2,4,6 layers of TA alone is shown in figure 6.15b. Both show similar trends in 

^min versus A but the variation with thickness is greater for the perylene:TA than 

for the TA only. For the TA only, at 632.8 nm, there is an increase of approximately 

0.4° per layer, each layer is approximately 3 nm thick for TA, and at 543 nm the 

increase is 0.55°. For perylene:TA there is an increase in 6min of 1.5° at 632.8 nm 

and 3° at 543 nm. I t is clear from these that there is a pronounced wavelength 

dependence for the angle shift in the case of the perylene:TA. There is also a 
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significant difference between the Omin shifts for TA and perylene:TA. If this shift 

is solely due to thickness it impUes that the perylene:TA layers are thicker than 

the TA alone. However, the X-ray and ellipsometric results in Chapter 5 indicate 

that the perylene:TA has the same thickness as TA. 

Dye layers 

Silver 
Glass 

} TA layer. 7ZZZZZZ 

Figure 6.16 The structure of perylene:TA 1:6 on stepped T A layers. 

The differences are more clearly illustrated in figure 6.17, where Omin versus 

the number of layers is shown for three different multilayer structures a) TA, b) 

perylenerTA and c) 2 perylenerTA layers on a TA stepped structure (shown in 

figure 6.16), where A is fixed at 632.8 nm. 

As the thickness of structure b) (the perylene:TA) is increased the rate of 
change of 9min becomes greater. For system c) (the perylene:TA on stepped TA) 
the shift in 9min is fairly constant. The initial ^^ in shift for curve c) may be due 
to perylenerTA layers but subsequently the only variable is the thickness of the TA 
spacer layers ( as in curve a)). Since perylene only has absorption bands in the 
blue there should be no interaction between the dye and the surface plasmons. One 
possible explanation for the differences between curves b) and c) is that the dye 
has a different thickness to the TA. However, as noted above, the measurements 
discussed in Chapter 5 suggest that perylenerTA 1:6 has the same thickness as TA. 
Another possibility is that either the real or imaginary part of the permittivity 
(or both) are different for the dye. For example, it has been seen that varying 
63 has no effect on 6min but €3 has a small effect. I t can therefore be concluded 

101 



I - B - T A 
© Perylene/TA 

- A - PeryteneA* on TA 

V 46 

number of loyers 

Figure 6.17 Omin versus the number of layers for three different multilayer 
systems a) T A , b) perylene:TA 1:6 and c) 2 layers of perylene:TA on a 
stepped structure of T A . 

that although perylene does not absorb at these wavelengths it has a significantly 

different e'g than TA. 

Dye 
layers 

Silver. 

TA cover layers 1 

/ 
^ 1 TA spacer 
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Figure 6.18 A schematic for the dye sandwich structure. 

The SPR curves at four different wavelengths for an Si20 sandwich are shown 

in figure 6.19. Figure 6.18 shows a schematic diagram of this structure, a bilayer of 

8120 sandwiched between layers of TA. Plots oi 9min, Rmin and fwhm versus A are 
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shown in figure 6.20a,b and c for the S120 sandwich structure and a 6 layer film 

of TA. In the plot of 9min versus wavelength (fig 6.20a) the first obvious difference 

is that the resonance angles are much smaller for the S120 structure. 

1.0-n 

±i 0.6 H 

B32.8 rm 
611.9 rm 
594.1 nm 
543.0 rm 

^ 0 . 4 -

Incident Angle 

Figure 6.19 S P R curves at four wavelengths for an S120 sandwich struc­

ture. 

Secondly, the slope of the S120 curve deviates shghtly from the TA curve in 

the region below 595 nm. The Rmin versus wavelength (fig 6.20b) plot is markedly 

different for the 8120 structure, also in the below 595 nm. The observed difference 

in the angular position of the resonance for a given wavelength might well be due 

to the thickness of the sandwich structure or to a change in the layer's permittivity. 

There is no evidence for the former but the latter is almost certainly true. The 

dye layer is highly absorbing in the region of 580 nm due to the formation of J-

aggregates, as was reported in section 5.5.2. Some care had to be taken with the 

sample because of photo-bleaching of the dye as described in section 5.5.2. The 

Rrnin versus A curve for 8120 sandwich is very different from that for the TA layers 

in the region above 580 nm, since the dye is highly absorbing here. Thus it is 

reasonable to assume that the surface plasma waves are being strongly damped. 

The value of fwhm deviates from that for TA in the region of 590 nm close to 

the absorption maximum of the dye, indicating a strong interaction resulting in a 

broadening of the SPR curve; this is also attributable to damping (increase in 63). 
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Figure 6.20a 9 versus wavelength for an S120 sandwich and 6 layers of 
T A . 
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Figure 6.21a 9 versus wavelength for a perylene sandwich and 6 layers 
of T A . 
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Figure 6.21b R m i n versus wavelength for a perylene sandwich and 6 
layers of T A . 
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Figure 6.22a 9 versus wavelength for a PP6 sandwich and 6 layers of 

T A . 
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In contrast, perylene has no absorption bands in the red region of the spectrum, 
so no interaction between the chromophores and the surface plasmons would be 
expected. The first thing that is noticeable about the graph of 9min versus A for 
perylene ^hen compared to TA is that the VcJues of 9min ŝ re greater, but their 
relationship with A is essentially the same (figure 6.21a). 

Values for Rmm in figure 6.21b are also greater than those for a TA film, 

indicating that the film is lossy. In figure 6.21c, the values of fwhm are less for 

perylene than TA which is contradictory since it has been shown that e" has an 

influence on the fwhm. 

The phthalocyanine dye PP6 also has an absorption band in the red, but it is 
broad and most intense in the range 600 nm to 750 nm. The plot of 9min versus A 
(fig 6.22a) for PP6 shows values for 9min less than those for TA. So either the film 
is thinner or the permittivity of the film is smaller. In figure 6.22b, the values of 
Rmin for the PP6 film are larger than for TA and diverge at shorter wavelength. 
There is an anomaly at 600 nm which may correspond to the known absorption 
band of the dye reported in section 5.4. Hence, the increase in Rmin ma-y result 
from an increase in €3. The variation of fwhm with A (fig 6.12c) is similar to that 
of TA but deviates slightly in the region of 600 nm. This subtle change may signify 
an interaction between the surface plasmons and the dye chromophores. 

There is little doubt, however, in the case of the S120 system (figures 6.20a,b 

and c) that an interaction between the dye and the surface plasmon polaritons is 

observed, but owing to the limited number of wavelengths available from the laser 

it is not possible to obtain precise information about the phenomenon. 

6,4 Variable Wavelength S P R 

Two dyes. Si20 and Sql, which both possessed sharp absorption bands in the 
region 500 nm to 600 nm (see Chapter 5), were chosen for closer investigation using 
the variable wavelength system described in Chapter 4. 

6.4.1 Angle scans 

The reflectivity against angle was measured for a number of different wave­

lengths. The wavelengths selected covered the known absorption band of each dye 
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system. The experimental S P R curves of silver for ten different wavelengths are 

shown in figure 6.23. I t is evident that each curve is shifted to a higher angle as 

the wavelength is increased. 

"oi 
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Figure 6.23 Surface plasmon resonance curves for a 50 nm silver film at 

wavelengths of 1) 660 nm 2) 640 nm 3) 620 nm 4) 600 nm 5) 580 nm 6) 

560 nm 7) 540 nm 8) 520 nm 9) 500 nm and 10) 480 nm. 

This S P R progression was expected since it had been previously observed for 

the curves recorded with the laser and is a result of the dispersion of the silver 

film. A feature of the curves in figure 6.23, which is not seen in those recorded with 

the laser or from the theoretical model, is the decrease in Rmin with decreasing 

wavelength. One explanation may be a variation in Unewidth of the monochro-

mator with wavelength. At 700 nm the fwhm is 15 nm but at 400 nm it is only 

10 nm; this increase in resolution at lower wavelengths will improve the coupling 

conditions, hence the decreased reflectivity. 

The S P R curves at four selected wavelengths are shown in figures 6.24 for 

two layers of 8120 which are separated from the silver surface by two layers of 

TA and coated by a further two layers to give a total film thickness of 6 layers 

(see sandwich structure figure 6.18). The resonance angle increases for curves at 

620 nm to 600 nm but at 580 nm the angle is less than expected. This shifting 

backwards of the resonance curve corresponds with the absorption band of the 
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dye and signifies that an interaction is occurring between the dye and the surface 

plasmon polaritons (SPPs). When the wavelength reaches 550 nm, the resonance 

curve returns to its expected position. 
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Figure 6.24 Surface plasmon resonance curves for an S120 sandwich 

structure spaced at 2 layers from a silver surface, at four different wave­

lengths. 

When the spacing is increased to 12 nm (4 spacing layers of TA), so that there 

are a total of 8 layers, the resonance angle is shifted to higher angle as expected due 

to the increase in film thickness (figure 6.25). In addition, some of the curves are 

more clearly damped than for the 2-layer spaced sample. The depth is reduced and 

the width increased of the 600 nm curve, and at 580 nm the curve is shifted back 

so that it occurs at almost the same angle as the curve recorded at 620 nm. Again, 

the resonance curve resumes its normal angular position at 550 nm. It is evident 

that at 580 nm there is a very strong interaction between the dye chromophores 

and the surface plasmons. 

Four curves for Sql:TA separated by 6 nm (2 spacing layers of TA) were 

recorded at 660 nm, 600 nm, 540 nm and 520 nm. This range of wavelengths 

covers the absorption band for the dye in LB film (figure 6.26). In section 5.4.4 

there was shown to be maximum at 535 nm and a shoulder at 650 nm. The SPR 

curves at 660 nm and 600 nm foUow the expected progression but at 540 nm the 

106 



1.0-,.^ 

0.8 H 

.1 0.6-j 
o 

°=0.4H 

0.2-

I 1 I 1 1— 
42 44 46 48 50 52 

Incident angle 

Figure 6.25 Surface plasmon resonance curves for an S120 sandwich 
structure spaced at 4 layers from a silver surface, at different wave­
lengths. 

curve is broader, shallower and slightly shifted to a smaller angle. This indicates 

that there is a significant interaction between the surface plasmons and the dye 

molecules at 540 nm. Again, by 520 nm the resonance curve has returned to its 

expected position. 
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Figure 6.26 Surface plcismon resonance curves for an S q l : T A 1:1 sand­
wich structure spaced at 2 layers from a siver surface, at four different 
wavelengths. 
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Four SPR curves for Sql:TA, at a separation of 12 nm (4 spacing layers of 

TA) are shown in figure 6.27; the wavelengths selected are the same as for the 

previous example. The curves at 660 nm and 600 nm occur at higher angles than 

before but this is expected owing to an increase in thickness of the layers The 

curves are also broader which suggests a more absorbing film; this is not surprising 

when the absorption spectrum of the dye is examined. The curve at 540 nm is 

much shallower, broader and shifted to shorter angle (by about the same amount 

as for the 2 layer spaced sample), again indicating a strong interaction between 

the surface plasmons and the dye layer. Finally the curve at 520 nm resumes the 

form and position expected. 
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Figure 6.27 Surface plasmon resonance curves for an Sql :TA 1:1 sand­

wich structure spaced at 4 layers from a silver surface, at four different 

wavelengths 

6.4.2 Wavelength scans 

The curves in this section are generated by a different method to the previous 

ones. In this case the angle of the prism is kept constant and the wavelength is 

varied. The wavelength scan recorded for uncoated silver at an angle of 44° is shown 

in figure 6.28. Since there is a relationship between the angle and wavelength scans, 

a vertical line can be drawn on the angle scan curves (figure 6.23) corresponding 

to an angle of 44° and vcilues of reflectivity read oflT where each SPR curve crosses 
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the line; these values cire also plotted in figure 6.28. This angle scan curve should 
correspond exactly to the wavelength scan. It is evident from the diagram that it 
does not, i t is shifted to longer wavelength by approximately 10 nm. Thus, either 
there is an error in the angles or the wavelengths differ. The latter could be due 
to the increased linewidth of the monochromator. Apart from the shift in position 
the shape and width of the curves are identical. Both the curves for angle and 
wavelength scans are quite broad confirming that the hnewidth of the fight source 
is large. 

wcveJength scon 

550 600 
wavelength (nm) 

r 
650 

Figure 6.28 Reflectivity versus wavelength, for A scan and points derived 
from the angle scans, for 50 nm of silver. 

Similar plots to the above were made for S120 (6.29 and 6.30) and Sql (6.31 
and 6.32) dye systems. When the dye silver spacing is only two layers (6.29 and 
6.31) the agreement between angle and wavelength scans is quite good. However, 
when the separation is increased to four layers (6.30 and 6.32) the angle scan curve 
is shifted to longer wavelength, by approximately 10 nm, as in the case of silver. 
The most prominent feature of these curves is the double dip ii i the reflectivity; 
these only occur in the wavelength scans and their relative intensities depend on 
the angle of incidence at which the scan was recorded. From the theory in Chapter 
2 it was shown that these minima arise due to the spUtting of the dispersion curve 
into two branches on either side of a transition frequency (see figure 2.8). The A 
scan for the S120 dye system, separated by 2 layers from the silver surface, and 
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recorded at an angle of 45.5° is shown in figure 6.29. Two minima are visible but 

they are both quite shallow. The long wavelength minimum is slightly deeper than 

the short wavelength indicating that the lower branch of the dispersion curve is 

dominant. 
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Figure 6.29 Reflectivity versus wavelength, for A scan and points derived 
from the angle scans, for an S120 sandwich structure spaced 2 layers 
from 50 nm of silver 

The 4 layer spacing of S120, figure 6.30, recorded at an angle of 47° gives two 

much deeper resonances, with the short wavelength one being deeper than the long 

wavelength, indicating the upper branch of the dispersion curve is now dominant. 

The Sql sandwich system separated from the silver by 2 layers of TA is shown 

in figure 6.31. It was recorded at an angle of 48°. There are two distinct dips in 

the reflectivity curve, one deep one at 500 nm and a shallower one at 575 nm. This 

again indicates that the upper branch of the dispersion curve is dominant. 

When the spacing is increased to 4 layers and the angle at which the curve is 

recorded is 49° (figure 6.32), two dips are observed but their relative depths change 

and the position of the short wavelength is shifted to 510 nm. These changes 

suggest that lower branch of the dispersion curve is having more influence. 
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Figure 6.30 Reflectivity versus wavelength, for A scan and points derived 
from the angle scans, for an S120 sandwich structure spaced 4 layers 
from 50 nm of silver. 
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Figure 6.31 Reflectivity versus wavelength, for A scan and points derived 
from the Emgle scans, for an Sq l :TA 1:1 sandwich structure spaced 2 
layers from 50 nm of silver. 

I f the angle of the resonance minimum is plotted against the wavelength (from 

the angle scans), a dispersion curve can be obtained, since A and 9 are directly 

related to u and A:, respectively. The curve for silver is single valued in angle as 

expected but is not a straight line since there is some dispersion; however, the 
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Figure 6.32 Reflectivity versus wavelength, for A scan and points derived 
from the angle scans, for an Sql:TA 1:1 sandwich structure spaced 4 
layers from 50 nm of silver. 

dispersion curves for the S120 layers are multi-valued in angle and are said to 

exhibit anomalous dispersion. The point of inflection for each curve occurs at 580 

nm, corresponding to the transit ion frequency (which is the maximum between 

the two dips in the wavelength scan). I t is also the point where absorption in the 

dye is a maximum. The transition is f rom one branch where excitation of surface 

waves is of pure surface plasmon polariton character to a second branch which is 

due to excitation of transverse excitons wi th a mixture of SPPs (see figure 2.8). 

A comparison of the dispersion curves for S120 (fig 6.33) reveals the sample 

which is spaced by 4 layers to have more pronounced 'backbending' than the 2 

layer spaced sample. This is i n accordance wi th Pockrand's findings^. He suggests 

that the exciton states of the transition layer become increasingly damped as the 

proximity of the dye to the silver surface is reduced. 

A similar set of dispersion curves for Sql is shown in figure 6.34. There is also 

a difference in the degree of backbending between the two separations, and i t is 

not as pronounced in the case of S120. Indicating that the proximity of the dye to 

the silver is not so influential . 

The dielectric funct ion of a film, ey, may be related to the frequency of the 
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Figure 6.33 Dispersion curves for 50 nm of silver, S120 sandwich struc­
ture spaced by 2 layers of TA and S120 sandwich structure spaced by 4 
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Figure 6.34 Dispersion curves for 50 nm of silver, SqlrTA 1:1 sandwich 
structure spaced by 2 layers of TA and Sql:TA 1:1 sandwich structure 
spaced by 4 layers of TA 
surface exciton, a;̂ , by the following equation derived f rom the Drude-Lorentz 

formula 
1 u; 

)] 
-1 

T is the relaxation time (lifetime of the excited state), Up is the plasma frequency, 
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/ is the reduced oscillator strength, uj is the frequency of excitation and is the 

background dielectric function. 

The dielectric function of the film {ej) can be anisotropic or uniaxially isotropic 

in the x (ey) or z (ex) directions. I f the transition moments of the dye are orientated 

parallel to the substrate, £|| is equal ey in the above equation and £x is real and 

constant. Only a single backbending is observed giving rise to a structure at long 

wavelength (transverse exciton mode UJT). 

I f the transition moments are orientated perpendicular to the substrate, ex 

is described by the above equation and ey is real and constant. This also gives 

rise to a single backbending but i t occurs at a shorter wavelength (longitudinal 

exciton mode uji). Therefore isotropy leads to double backbending and anisotropy 

to single backbending. 

Anomalous dispersion is most pronounced for long relaxation times ( r ) ^. 

Anomalous dispersion and the large shift i n dmin occur close to the A values where 

e'=0. To be precise, they occur where the real part of the permit t ivi ty e' crosses 

the zero axis to become negative. There are two such points (see figure 6.35), the 

first crossing occurs where the imaginary part of the permit t iv i ty e" is a maximum. 

This corresponds to the frequency of the transverse exciton mode (o/y), which is 

also the maximum measured in the absorption spectrum. The second zero crossing 

point occurs at the frequency of the longitudinal exciton mode w^,, which is the 

point where (e")~^ is a maximum. 

For small damping (large IMST) we approach the resonance case where the exci­

ton removes energy f rom the plasmon surface polariton in a narrow frequency range 

and radiates the energy back, hence reducing the reflectivity minimum. Quench­

ing occurs at larger damping (small W J T ) for a transition wi th stronger oscUlator 

strength and the overlayer extracts energy over a wide frequency range from the 

surface polariton, which is damped by dissipative mechanisms. 

According to Pockrand*, the minimum at the longitudinal mode ui is larger 

than at the treinsverse mode UJT because the z component of the electromagnetic 

field strength of the plasmon surface polariton is larger by approximately [e\)^ 

than the x component. Therefore, a larger coupling between surface plasmons and 
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Figure 6.35 The real part of permittivity versus wavelength, showing 
the zero crossing points. 

exciton transitions polarized perpendicular to the surface should be observed. No 

backbending at QJL was observed for any of the films studied in this work. 

I f there is a perpendicular component of the exciton transition in the films 

studied i t might be masked out by damping. However, i t may be difficult to resolve 

the perpendicular exciton interaction due to the increased Unewidth of the Ught 

source and the hmited number of points measured. Alternatively no perpendicular 

component of the exciton transit ion suggests that the film is completely anisotropic. 

Polarized absorption measurements i n section 5.5.3 show that there is a degree of 

anisotropy associated w i t h the films, but that i t is not complete. 

Plots of Rmtn versus A f r o m the angle scans for Si20 and Sql are shown in 

figures 6.36 and 6.37. These plots are related to the absorption, k, and hence the 

imaginary part of the pe rmi t t iv i ty e'^. The maximum values of Rmm coincide wi th 

the absorption peak. Plots of Omin versus A are related to the refractive index n, 

and hence the real part of the pe rmi t t iv i ty eg. 

6.5 Backbending Predictions from Theoretical Curves 

Values obtained for the pe rmi t t iv i ty of a squaraine dye, similar to Sql , were 

taken f rom a paper by Pockrand^ and were inserted into the modelling program 

to obtain a series of SPR curves at different wavelengths. The Rmin values are 
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Figure 6.36a Rmin versus wavelength from angle scans for S120 sand­
wich structure spaced by 2 layers of TA. 
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Figure 6.36b Rmin versus wavelength from smgle scans for S120 sand­
wich structure spaced by 4 layers of TA. 
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Figure 6.37a Rmin versus wavelength from angle scans for Sql /TA 1:1 
sandwich structure spaced by 2 layers of TA. 

0.25H 

t 0.15 

0.05H 

e © 

1 1 1 1 1 r 

500 520 540 560 580 600 620 640 660 
wavelength (nm) 

Figure 6.37b Rmin versus wavelength from angle scans for Sql /TA 1:1 
sandwich structure spaced by 4 layers of TA. 



plotted against A and are compared to experimental vcJues for Sq l . Although the 

transition point is different, (530 nm as opposed to 540 nm for Sql) there cire some 

similarities. The values f rom the isotropic fit (ey and ex are varied) match best 

wi th the 2 layer spaced Sql sample. Whilst the anisotropic fit (only ey varied) 

curve coincides w i t h the 4 layer spaced sample. However, i t is not possible to draw 

any definite conclusions f rom these observations. 
-t 

- B - Sql 2 loyars apocing 
• © • Anisotropic fit 
--A- Isotropic fit 
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Figure 6.38 A comparison of backbending results for Sql and theoretical 
ones obtained from published values of permittivity. After Pockrand. 

6.6 Summary 

I n this chapter the SPR technique has been shown to be a sensitive method 

for studying the properties of a metal surface. In section 6.1 the effect on the SPR 

resulting f r o m changes in the silver parameters was demonstrated using a mod­

elling program. These were then compared to real silver results and the effect of 

tarnishing was seen to be important . A non-absorbing overlayer was introduced in 

section 6.3.1, theory and experimental results were shown to have some similarities. 

Theoretical curves were obtained in section 6.3.2 for an absorbing overlayer and 

compared well w i t h results by Pockrand; however, i t was not possible to compare 

these directly to experimental results since the dyes in question had absorptions 

which changed w i t h wavelength. These dye systems were investigated for dye-

plasmon interactions but the hmited choice of wavelengths available f rom the laser 
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made this dif f icul t . Two dye systems were selected in section 6.4 for further inves­

tigation using a monochromated source. Angle scans were made in section 6.4.1 

and wavelength scans were recorded in section 6.4.2. The results of these two dif­

ferent measurements were compared and were shown to have important similarities 

and differences. I n both cases clear interactions were observed between dye and 

surface plasmons. The form of these interactions was shown to have a relationship 

to the transition dipole orientation of the molecules. Good agreement was found 

between the results for Si20 and Pockrand's results, especially i n respect to the 

damping eflfect of the silver. Backbending was observed for the first time in the 

Sql squaraine derivative. Finally, in section 6.5, backbending results for the Sql 

dye system were compared to dispersion curves generated f rom permit t ivi ty values 

published by Pockrand for a very similar squaraine dye. 
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Chapter V I I 

Conclusions and Suggestions for Further Work 

7.1 Summary 

The L B technique has been sucessfully used to form organized dye multilayers. 

The effects of dye concentration on the absorption spectra were studied. The 

orientation of dye chromophores in pure films and those mixed wi th fatty acid 

were investigated. The sensitivity of the SPR technique to changes in the surface 

conditions was demonstrated. When dye multilayers w i t h sharp absorption bands 

coated the silver, a resonant interaction was observed between the chromophores 

and the surface plasmons; this was referred to as "backbending". 

The optical behaviour of dyes in solution, cast films and Langmuir-Blodgett 

films have been investigated. A comparison of cast and L B films is particularly 

revealing. The materials studied were: porphyrins and phthalocyanines (PP), 

a cyanine derivative S120, three squaraine derivatives Sql , Sq2 and Sq3 and an 

aromatic hydrocarbon perylene. 

A variety of studies were undertaken on the films, these could be divided into 

three groups. 

7.1.1 Structural studies 

I t was clear f rom isotherms that the phthalocyanine and porphyrin materials 

did not fo rm ordered films. Perylene, however, produced good quality films when 

mixed w i t h a fa t ty acid. A series of isotherms for different molar ratios of pery­

lene to tricosanoie acid suggested that the perylene molecules reside in the space 

between the fa t ty acid chains and are not squezzed-out as has been reported by 

Steiger. EUipsometric and X-ray measurements confirmed that the mixed layers 

were indeed the same thickness as T A only. Further evidence for the orientation of 

the perylene molecules was obtained by optical dichroism, which revealed that the 

molecules are probably t i l ted w i t h their large face at some angle between 45° and 
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90° to the substrate. This order was also shown by RHEED studies. Isotherms 

of the cyanine derivative S120 indicated that the molecules lay on their longest 

edge on the water surface. No change in this orientation was observed when S120 

was mixed wi th TA. A small amount of dichroisra, compatible wi th the molecules 

assumed orientation, was detected. Sql and Sq3 squaraine derivatives underwent 

a significant phase change in their isotherms which was attributed to the molecules 

moving f rom one orientation to another on the water surface. Sq2 did not exhibit 

any such changes. Dichroic measurements of Sql and Sq3 indicated only a slight 

preference in the molecules orientation. There was no obvious order in the RHEED 

of Sq3. Significant optical dichroism was observed for Sq2:TA films marked by a 

spl i t t ing of the bands (possibly Davydov). 

7.1.2 Opticsd studies 

AH the dyes studied had sharp absorption bands in solution, characteristic of 

monomers. The extinction coefficients measured compared well w i th reported val­

ues. The cast spectra of the dyes were broad and featureless wi th one exception 

Sq3, which had a spectra vnth two bands similar to those for its LB film spectrum. 

The absorption spectrum of perylenerTA L B films was broad and red shifted rela­

tive to the solution. No change in the spectrum was observed wi th molar ratio of 

perylenerTA. Pure S120 deposited onto TA had a sharper absorption band than 

in solution, due to the formation of J-aggregates. When mixed wi th TA, however, 

this band becomes much broader. The squaraine derivatives Sql and Sq3 were 

deposited in both high and low pressure phases; the spectra were similar for both 

phases and dyes. Both dyes had a band at the wavelength of the monomer and a 

more intense blue-shifted band. Mix ing Sql and Sq3 wi th T A to diff"erent molar ra­

tios had a significant eff'ect on the spectra; increasing the TA concentration caused 

the blue-shifted band to decrease and the monomer band to increase. The blue 

shifted band is probably due to aggregates, possibly H-aggregates. Pure Sq2 L B 

films had a broad absorption band, but on mixing wth TA this band appeared to 

split into red-shifted and blue-shifted bands. This behaviour suggests the forma­

tion of aggregates w i t h orthogonal dipoles (Davydov sphtting), which is supported 

by the optical dichroism observed. 

Fluorescence studies of perylene:TA L B films at 293 K revealed that two strong 
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7.2 Suggestions for Further Work 

Use of a dye laser as the source would improve the resolution and increase 

the wavelength range, this may make i t possible to observe ui. This work could 

easily be extended to investigate other more complex dye systems wi th overlapn 

ping absorption and fluorescence bands, where energy transfer might be possible. 

Different optical arrangements, such as pumping the dye from the sample side and 

monitoring the fluorescence back into plasmon modes could provide additional in­

formation about dye-plasmon interactions. An apphcation may be found for the 

phenomena of backbending. Ult imately a bio-sensor may be constructed based on 

absorption or fluorescence quenching. 

7.3 Conclusions 

Finally, to conclude the work presented in this thesis, there follows a brief 

evaluation of the L B and SPR techniques. The L B technique can be used to create 

ordered dye systems w i t h unique optical features arising f rom the orientation of 

the aggregated dye molecules. However, the behaviour of these multi-component 

systems is not fu l ly understood and further studies are required to fu l ly characterize 

them. Although L B films suffer f rom a lack of mechanical strength, they offer an 

excellent system for the study of energy transfer and other physical processes such 

as nonhnear optical effects. 

SPR is a very sensitive measuring technique. However, i t is significantly af­

fected by deposits on the metal layer and a large number of interelated parameters 

are responsible for changes in the resonance conditions. Therefore, i t cannot easUy 

provide absolute values and can, only accurately detect changes. 

Allowing for these drawbacks, there are sufficient advantages in both tech­

niques to make further investigation into the development of SPR based sensors 

worthwhile. 
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