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AFFINE TODA SOLITONS 

AND 

FUSING RULES 

by 

Richard Andrew Hall B . S c . 

Abstract 

This thesis is concerned with various soliton solutions to some of the affine Toda field 

theories. T h e s e are field theories in 1+1 dimensions that possess a rich underlying Lie alge­

braic structure and they are known to be integrable. The soliton solutions occur as a result 

of the multi-vacua that appear in the field theory when the coupling constant is taken to be 

purely imaginary. 

In chapter one a review of the affine Toda field theories is undertaken. This is meant to be 

a relatively complete and exhaustive survey of the literature that has appeared on the sub­

ject in recent years. A brief introduction to the theory of solitons and the methods of obtain­

ing such solutions in field theory is given in chapter two, resulting in the construction of the 

relevant machinery for the Toda theories. 

In chapter three, Hirota's method is used to construct single and double soliton solutions to 

these theories. A s a consequence of these explicit formulae the fusing structure of the soli-

tons may be investigated and shown to be equivalent to that found in the classical particle 

regime, supplemented by further 'annihilations' of 'soliton-antisoliton'. The calculations of 

the double soliton solutions are claimed to be original in this context. The fusing has also 

been examined by Olive, Turok and Underwood'^^' through an abstract group-theoretical ap­

proach to the affine Toda field theories, however very few explicit formulae are given by 

them, and hence all the solutions given here are important in their own right. 



An algebra-independent analysis of such phenomena is undertaken in chapter four where a 

vertex operator construction is given for the relevant interaction functions. Some properties 

of these functions are noted; (some of these facts correspond with those in [16] concerning 

the fusing structure of the solitons). 
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1. A R E V I E W O F A F F I N E T O D A F I E L D T H E O R Y 

1.1 Introduction 

In recent years one of the most dominant problems in the study of quantum field theories 

has been that of the renormalisation group flow on the space of quantum field theories. This 

has primarily manifested itself in the study of critical phenomena in two-dimensional Euclid­

ean quantum field theory. This is unique in the sense that the fixed points of the renorma­

lisation group have an 'infinite dimensional' conformal group associated with them, and 

hence the symmetry may well prove to be powerful enough to solve the theory exactly. 

There is a large c lass of two-dimensional quantum field theories associated with each of 

these points and each of these theories can be associated with a representation of the 

conformai algebra, more precisely that of the Virasoro algebra, 

[ L n , L m ] = (n - m)Ln+m + HO^l l i l - l l • 5n.,n,o (1 -01) 

which is a central extension of the Lie algebra of conformal transformations and the L„ are 

the generators of the algebra. A complete classification of conformal field theories, how­

ever does not exist at present. 

When these systems are shifted away from criticality the situation is by no means so well 

understood, but the field theories that correspond to the renormalisation group flow away 

from a fixed point, can be considered as a conformal field theory 'perturbed' by some oper­

ator. 

Pioneering work into this area was undertaken by A . B . Zamolodchikov'", who argued that 

certain relevant deformations away from criticality would preserve integrability and hence, 

the mass ive theory that resulted from the perturbation would have an infinite number of con­

served quantities associated with it. By calculating and conjecturing the spins of these 'inte­

grals of motion' he w a s able to conjecture the form of the relevant S-matrices for these 

perturbed field theories once an initial mass-ratio and coupling had been introduced. The 

'natural' description of the field theories in terms of their S-matrices resulted in a renewal of 



interest in S-matr ices for integrable two-dimensional systems in general. Because of the 

connection between the original work on perturbed conformal field theories and Toda field 

theories a flurry of activity soon developed around the construction of S-matrices for affine 

Toda theories based on various Lie algebras. This connection resulted from the fact that 

the integrals of motion in the P . C . F . T . had spin values that were labelled by the exponents 

of the Lie algebra modulo its Coxeter number and that the subsequent mass-ratios were 

equivalent. The Toda theories are a series of relativistic quantum field theories connected 

to the set of simple Lie algebras through their potential terms. If the root system of the Lie 

algebra is simply-laced, the quantum field theory is uniquely associated to that root system 

for all values of the coupling constant. Whereas for the non-simply-laced algebras a more 

complicated situation arises, where a single quantum field theory is associated with a dual 

pair of the algebras through the coupling. The field theories based on the finite-dimensional 

Lie algebras exhibit conformal invariance in the sense that their Lagrangians are scale in­

variant in light cone co-ordinates and hence, are mass less . Those associated with the infi­

nite-dimensional affine algebras have a well defined ground state and hence, are massive 

field theories. 

It has been conjectured that Toda field theories at specific values of the coupling constant 

correspond to conformal field theories In the minimal series of the Virasoro algebra, 

extended to a W-algebra based on a Lie algebra'^'. In particular, the statistical system the 

Ising model, which corresponds to a c = 1/2 confonmal field theory can be described by both 

an eg and a , Toda field theory. The affine versions of these theories then represent the 

perturbations of the statistical system away from criticality. The magnetic perturbation is 

described by the affine ej Toda field theory, whereas the affine a , theory is a 

representation of the thermal perturbation. Braaten, Curtright, Ghandour and Thom'^' 

calculated the value of the central charge that may be associated with the Toda field theory: 

c - i i 1 + h ( h + 1 ) ( i + ^ ) 2 (1.02) 

where r, h are the rank and Coxeter numbers of the Lie algebra under question, and p is a 

coupling constant. S o it can be seen that taking p to be purely imaginary allows the possi-



bility of values of c less than one, and hence representations of the discrete unitary series 

of conformal field theories. The construction of S-matrices for affine Toda theories based 

on the simply-laced Lie algebras a„<'', d„''' and eg''*, e/ '* , ej''* was successfully carried out a 

couple of years ago by a series of authors'^''*''^''^"''. Only recently, however, has the answer 

been discovered for the non-simply-laced algebras, since a more generalised method of at­

tack was required'^'. Furthermore, the construction of the scattering matrices for Toda 

theories based on Lie super-algebras has been initiated''"'. It appears as though only the 

minimal part of the S-matrix formulae that have been conjectured for the simply-laced 

A . T . F . T ' s are relevant to the discussion of a connection with the perturbed conformal field 

theory. This is because it is possible to compute the central charge of the ultraviolet limit of 

a theory solely from its scattering matrix, and only the minimal parts give rise to the charges 

of the relevant coset constructions of conformal field theories'"'. Moreover, the question of 

unitarity, in the field theory sense , is still not fully understood, since the potential terms in 

the Toda theories are in general not hermitian. This fact also is discussed in Klassen and 

Melzer"". 

Many of the puzzling features that were inherent in the initial studies of classical and quan­

tum affine Toda field theory have now been given a much clearer understanding by the 

gradual application of detailed group theory to the quantum field theories. Specifically such 

questions a s those of, the universal coupling formulae for simply-laced algebras, why the 

conserved quantities appeared as eigenvectors for the relevant Cartan matrix and the 

Clebsch-Gordon property of couplings have all been answered by utilisation of Lie algebra 

theory. Moreover, for example in the last c a s e , the relevant algebraic theory had only been 

proved a s recently ago a s 1988 but had been conjectured to be true twenty years earlier. 

An important aspect in gaining this knowledge has been the Coxeter element of the Lie 

algebra since it has tumed up in connections with a general formula for the S-matrices, the 

coupling rule conjectured by Dorey"^"'^' and the conserved charge spectrum, all which will 

be expanded upon later in this review chapter. 



Following recent work by T . J . Hollowood''"', the A . T . F . T ' s with imaginary coupling constant 

have been shown to possess soliton solutions due to the existence of multi-vacua. Roughly 

speaking, solitons are complex 'lump-like' solutions of non-linear equations which are loca­

lised in space and move at constant speed with little or no change in shape. They exist be­

cause the dispersion effects are exactly balanced by the non-linearity of the equations of 

motion and they interpolate between the vacuum states of the theory. This is quite unlike 

the c a s e of real coupling affine Toda field theories where oscillations about the ground state 

only give rise to particle states. Therefore, the extension of the coupling into the complex 

regime, must complicate the S-matr ices even more - Hollowood has conjectured S-matrices 

for the 'soliton states' in the a„'" ser ies of A . T . F . T ' s and these involve representations of 

quantum groups. 

Using techniques developed by Hirota'^'', Hollowood managed to construct single soliton 

solutions for the a„''' theories and wrote down a generalisation for n-solitons. He therefore 

extended the c a s e of g = a\^\ that is the sine-Gordon equation, which has been well studied 

in the past, and was manifestly the role model for study in this field. 

This is the area this thesis will be concerned with - the subject of solitons in A .T .F .T . . Spe­

cifically, single soliton solutions have been constructed by the author for some of the re­

maining simply-laced Lie algebras - namely eg''', e / ' and moreover, double solitons for all 

the simply-laced Lie algebras. A s a consequence, their fusing relationships have been ana­

lysed which have produced a coupling rule similar to that found in the real coupling regime, 

but augmented slightly by further 'annihilation' couplings. An initial study of the interaction 

terms has also been undertaken and it is shown how the leading order tenns may be con­

structed in terms of the underlying algebraic theory. An abstract approach to the solutions 

has been constructed by Olive, Turok and Underwood''^', in a manifestly group - theoretical 

way, but they give very few explicit results. Other approaches to this problem have also in­

cluded the construction of Backlund transformations''^', but here there appears to be diffi­

culties with regard to generalising it beyond the a„''' series of algebras. 



1.2 C l a s s i c a l Affine Toda Field Theory. 

The affine Toda theories associated with the affine untwisted Kac-Moody algebras g are 

mass ive two-dimensional bosonic field theories represented by the Lagrangians of the fonm: 

L = l 5 ^ 0 5 ^ ' 0 - - ^ X n i e P ' ^ i * . (1.03) 
P i=0 

Here, r denotes the rank of the respective finite Lie algebra g and O is a vector of the real 

sca lar fields, which takes values in the Cartan subalgebra and describes r massive particles. 

P is a coupling constant and the { a j are the simple roots of g augmented by the 'negative' of 

the highest root in the adjoint representation for the untwisted algebra. The inner products 

amongst these vectors are described by the affine Dynkin diagram. The K a c labels for this 

algebra (or 'marks') n, are such that, 
r 

Z niai = 0 
i=0 

and the mark corresponding to ao is normalised to unity; m sets the mass - scale for the field 

theory. (For the c a s e of Lie super algebras - which will not be mentioned again - the set of 

roots is divided into bosonic and fermionic ones, and the Lagrangians contain fennions as 

well). 

The exponential term involving a„ can be regarded as a perturbing term to the potential of 

the ordinary Toda field theory. It has the effect of breaking the conformal invariance that is 

manifest in the original Toda Lagrangian when the light-cone co-ordinates are transformed 

by 

x± -» .x '± = f(±*(x±) 

and the fields by 

4.(x) <t.'(xO = <t.(x) -1 ln(a.f(+)5-f(-)). 

Here 6 = J ] and A,, are the fundamental weights, defined by Xi ^ = 5^. (So, 5 • aj = 1 
i=1 k i l 

for i = 1 r and the Lagrangian is scaled by the product 5..fW5-f<-'). Hence, the A . T . F . T . 

can be regarded in this sense as a 'perturbed conformal field theory' and as such the extra 

potential term has the effect of stabilising the vacuum of the conformal field theory so that 

mass ive particle excitations exist around the minimum of the potential. The perturbing 



piece in the Lagrangian also has the property of maintaining the integrability of the 

equations, which results from the existence of a Lax pair, infinitely many conserved 

quantities and exact solvability''*'. The infinite set of cun"ents of increasing spin s+1 

are labelled by the exponents 's ' of the Lie algebra g modulo Its Coxeter number (the first of 

which is the stress-tensor). These are conserved by virtue of the Toda field equations 

derived from the Lagrangian: 

8^dy,<t> = 2 niaieP«i <f. (1.04) 
P i=0 

Hence, the Lagrangian may admit an infinite number of symmetries described by the 

corresponding conserved currents. Quantum mechanically, the existence of these 

symmetries has a profound effect on the structure of the scattering matrices of these 

theories, implying that the n-particle matrix must factorise into a product of elastic 

two-particle ones. This will be described later in this review. 

The infinitely many conserved charges Q,. (that are in involution) are similariy labelled by 

their spins since they transform under two-dimensional Lorentz transformations (x± X-x^) 

a s 

Q s - > ? i - ^ Q s . 

The Lagrangian for A . T . F . T . can be expanded about the minimum at 0 = 0, in order to 

perturbatively extract such data a s the m a s s matrix and three point couplings. For the 

potential part it is found that. 

n ••! • 2 ^ "I - - • e ^ 
^ 1=0 1=0 1=0 

and so the m a s s matrix and couplings are given by (neglecting combinatorial factors): 

M2 = m2 Xniafaf • 0̂ ""= = pm^ ^ niafafa? (1.05) 
i=0 i=0 

The calculations of the m a s s eigenstates were initiated by Arinshtein et al.'^' when they 

obtained those for the a„''' series of Toda models. Contributions by a multitude of authors 

have resulted in all such quantities (together with the couplings between them) for the 

simply-laced c a s e s , and a complete list of them may be found, for example, in"^'. It tums 



out that these two pieces of data contain the key to the quantum S-matrix for the 

simply-laced Lie algebras. 

A point worth noting is that the data for the non-simply-laced c a s e s (untwisted and twisted 

theories) can be obtained, as it were 'free', from the simply-laced c a s e s . This follows from 

the fact that the Dynkin diagrams for each of these theories may be obtained by "folding" 

one and only one of the untwisted simply-laced diagrams as explained by Olive and 

Turok'^"'. A reduction using a symmetry of the finite algebra's diagram results in an 

untwisted non-simply-laced case , whereas using any additional symmetry of the extended 

Dynkin diagram yields affine Toda theories based on the twisted affine Dynkin diagrams. 

However, when analysed carefully enough there appears to be an inherent difference 

between the field theories derived from the two c lasses of foldings. In the case of foldings 

leading to untwisted theories, degeneracies in the mass spectrum are removed, resulting in 

non-mass-degenerate fields that are linear combinations of the original degenerate fields 

from the parent theory. Attempting to derive S-matrices in this manner, however, reveals 

that they are not diagonal in this new basis of states which is invariant under the 

automorphism of the Dynkin diagram. Hence the non-simply-laced quantum theory will 

violate unitarity when restricted to these states. Therefore, already there is a definite 

distinction between the simply-laced and non-simply-laced based Toda theories. By 

comparison, foldings which lead to twisted theories leave some particles unchanged whilst 

removing others outright. The particles left merely form a subset of the three-point 

couplings. 

Once all the m a s s e s were known, it soon became evident'""^'' that (apart from in the twisted 

c a s e s ) they constituted the components of the Perron-Frobenius eigenvector of the Cartan 

matrix, associated with the finite dimensional Lie algebra g. Setting 

rn = ( m i , mr) 

it w a s noticed that, 

C m = Xminm = (4s in2^ )m, 



where 

^ 2ai • a , . . . . 
Cij = 5-^ i,J = 1 r. 

«i 

(A generalisation of this result occurs in the quantum theory, where it is found that the 

values of the conserved charges of the theory are proportional to the entries of the other 

eigenvectors of the Cartan matrix)'"'. The particles can then be unambiguously assigned to 

the spots of the Dynkin diagram, so a particle of mass m, could be assigned to a 

fundamental representation with the highest weight X^. A list of the diagrams with particle 

labels attached to them may be found in [6] or [12].. 

Any m a s s degeneracy corresponds to a symmetry of the Dynkin diagram. However the 

mass-degenerate particles are different, not only because they have different 

representations of the Lie algebra associated with them, but because the other conserved 

quantities distinguish them. 

A proof however, of this 'Pen-on-Frobenius' fact was not immediately forthcoming, and it was 

not until the application of more algebraic theory'^"^^' that the veil shrouding these 

observations was lifted. This will be explained later in this chapter (section 1.3.3). 

O n c e the m a s s e s were known, other curiosities were noticed when the couplings between 

the m a s s eigenstates were calculated. For example, it transpired that the magnitude of the 

coupling satisfied a universal rule. Namely that the non-zero, three-point couplings obey 

the 'area rule': 

Cijk = Gj jk-prAi jk 

where Sijk = ± 1 , h is the Coxeter number of the Lie algebra and Â ^̂  is the area of the triangle 

with s ides m,, mj, and m„. (Modified slightly in the case of the non-simply laced algebras; if 

the length^ of the highest root is denoted by then Hk always has the value ±1 

unless all three particles correspond to short roots, in which c a s e it is for b„"', c„"', f /" 

and ± - p = - for g,"'). It did not appear sufficient that the m a s s e s had to make a triangle for 

there to be a non-zero coupling, since the angles in the triangle were also required to be in 
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integer multiples of ^ . Moreover, a curious fact was noted'""^'', that the assignment of 
representations to the particles was also reflected in the couplings, but not in the most 
obvious manner. Namely that a necessary (although not always sufficient) condition for c^^ 
to be non-zero was that the irreducible decomposition of the tensor product of 
representations associated with a, b, c, should contain the trivial representation. That is: 

cabc^0=>(a)®(b)®(c)3(1) (1.06) 

which became known as the Clebsch-Gordon property of A.T.F.T., for obvious reasons. 

It was not until the conjecture (and case-by-case proof) by Dorey'̂ '̂ and its subsequent Lie 

algebraic proof by Olive, Liao and Fring'"', that these problems were finally put to rest and 

established firmly on a more group theoretical foothold. The rule that Dorey proposed 

specified precisely which couplings were non-vanishing and took the form: 

"A non-zero three point coupling c,,,, exists if there are integers r, s such that, 

ya+co^Yb + (B^yc = 0" (1.07) 

where to is a Coxeter element for the Lie algebra, that is, a product of the Weyl reflections 

in the simple roots of g. The simple roots have been pre-multiplied by the colour index 

c(i) = ± 1 , which comes from any bicolouration of the Dynkin diagram (i.e. adjoining spots 

possess opposite colour), to give y, = c(i)ai. 

Alternative forms for the rule which have proved to be just as useful may be found in''*', 

where the simple roots a^, a^, a,, are replaced by their respective fundamental weights, or 

the 'alternative roots', <t>i = (1 - co ') \ . Using one of the alternative forms of the rule, i.e. 

X\ +co''X.j + cô Xk = 0 <=> Cjjit ̂  0 

the Clebsch-Gordon property is proved by showing that is an irreducible component 

of V(A.j)®V(?ii(), where denotes the irreducible representation with highest weight h-

The PRV conjecture''^', proved in " '̂, specifies that for any element a in the Weyl group of g 

and highest weights X,, n; V([X+CTia])must occur in the irreducible decomposition of 

\/((j,)® V(?.), where the brackets denote the dominant weight conjugate to the argument. 
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Hence, since [-co''-^A.j] = [->Li] = >.-, the Clebsch-Gordon property appears as an immediate 
i 

consequence of the Dorey-ruie and the A.T.F.T's have been shown to possess this at the 

classical level. The apparent 'holes' in the Clebsch-Gordon correspondence, where a 

classically vanishing coupling is allowed, occur due to the fact that the PRV result is less 

restrictive, in a sense, than that required by the Dorey-rule. 

For example, in the algebra D,; V(X2)c \/(A,2)®V(A.2) where \/{k^ is the adjoint rep, but 

C222 = 0. Here >.2+ffl^^2 = (<jaa4a)a5C0a3ffla2)'̂ 2 which is not of the relevant form for a 

coupling since the product of Weyl reflections is not a power of the Coxeter element. 

It is also possible to showi'^' for the simply-laced (and even the twisted non-simply-laced) 

field theories, that each particle has h-2 non-vanishing couplings, that is Cyit ;t 0 for a fixed i 

and G, k) an ordered pair. This fact is slightly altered for the untwisted non-simply-laced 

cases'^*!. 

Expanding the potential term in (1.03) further, questions may be asked conceming the 

nature of the n-point couplings with n > 4. However, nothing new 'in a sense' occurs, since 

Fring'^*' has shown that, by expanding upon the work in'^''^^', all these couplings can be 

completely determined in terms of the masses and the three-point couplings. Furthermore, 

he has produced a general fusing rule, formulated in the root space of the Lie algebra for 

the couplings which, therefore generalises the three-point couplings rule of Dorey. 

Specifically, a generating function, for all of the couplings, is given by the compact form: 

n-2 
Cii C,„ = ( - ) - ! S Z f < r ^ X i X , mf^,5i^,,„ 

1=1 
X 

where the x, for each particular t are given either in terms of the three-point couplings, or the 

masses, and 
Q -

X l , ...X2(t+1)-n = S • X2t+3-n> ••• .Xt = mf̂ 6Q^ 

Here ^ denotes the sum over all possible permutations of the x, and the factor X, takes 
X 

care of the overcounting of permutations of any symmetric terms. Explicitly, 

Nt =(2t + 2 - n ) ! ( n - t - 2 ) ! 
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A proper understanding of this n-point coupling is necessary when the knowledge of the field 
theory is extended off-shell in order to compute form factors'^'. 

The generalised fusing rule is as follows: 'C|,...|„ for n>4 is non-zero if, and only if, there 

exist n roots in for i = 1 n which sum to zero, that is, 

tco«i)Yi = 0 
i=i 

where are again the pre-multiplied simple roots and £^ denotes the orbit of y, under the 

Coxeter element. This occurs together with the extra following constraints: 

(B«fl)Yj^ +CO«3)y3=co^''2Vf2 

such that 

Yf, e^Ji forsome i = 0, ...,r. 

That is, another n-2 triangles exist, which can be used to triangulate the resulting n-gon 

when the generalised fusing equation is projected onto any 'Coxeter invariant' subspace in 

the root space. Hence, the fusing rules which give a 'non-vanishing n-point coupling rule', 

are again based on the fundamental three-point coupling rule of Dorey. 

Many of the results of classical affine Toda field theory are carried through into the quantum 

regime. Specifically, those associated with the simply-laced algebras appear to follow 

through with little or no change. It is the classical data in these cases that enables 

construction of the scattering matrices through meticulous use of a 'bootstrap principle' and 

the fact that the renormalised masses appear to be in the same ratio as the classical ones, 

as suggested by one loop calculations'*'. The classical couplings then appear as fusing 

relations at imaginary rapidity values and no such fusings occur which are not present as 

three-point couplings in the classical theory when all particles are on their mass-shell. The 

account for theories based on the non-simply-laced algebras is much more subtle and will 

be expanded upon in section 1.3.2. It will suffice to say, at the moment, that the classical 
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masses do not renormalise in the same way and the pole residues in the S-matrices display 
a different pattern. In fact a single quantum field theory is not associated with each of these 
theories, but with 'pairs' in the sense that algebras that are dual give rise to one quantum 
field theory. (The exception is a2„*" which is self-dual). This quantum field theory then 
interpolates between the 'dual pair" as the coupling constant varies, the masses lying 
between the masses of the two non-simply-laced theories. 

1.3 Quantum Affine Toda Field Theory. 

The basic objects in the quantum field theory are the fields and the multi-particle states, the 

latter being labelled by the momenta and species of the particles. In two dimensions the 

momentum can be written in terms of a rapidity angle 9,, and hence there exist states 

where p(3> = ma(ch(ea),sh(ea)). These states are seen to be on-shell and are well defined 

when each particle is spatially well separated. 

The over-riding aim in the quantum theory is to calculate the scattering matrices and hence, 

the probability of a particular outcome of an event given some initial conditions, or states. 

Of course, the outcome is certain in all such integrable theories. Nevertheless S-matrices 

contain a great deal of information about the field theory, for example the fusing rules. 

Classically, the integrability of affine Toda field theory implies the existence of an infinite 

number of conserved charges associated with the theory. By assuming these remain so 

when considered in the quantum theory, then the scattering picture is considerably simpler. 

As it is possible to show*'"' that there can be no annihilation or production of particles in any 

physical final state and that the momenta must be preserved individually. 

For the Toda theories with a real coupling constant and associated with the simply-laced Lie 

algebras, the particles that appear in the quantum theory are just those that are manifest in 

the Lagrangian and nothing new appears - quite unlike the case of imaginary coupling 

where solitonic states also exist. The conservation of charges also enables a factorisation 
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of any n-particie S-matrix into a product of ^ n ( n - l ) two-particle S-matrices, elegantly 
portrayed in [19] by consideration of their effect on the wave functions of the states. The 
fact that the momenta are individually preserved implies that the interaction must be a 
phase: 

P''^•P"")out=Sab(©)|p(^^P^''>)i„ :0 = ea-eb (1.08) 

Because of Lorentz invariance, the scattering phase is only a function of the rapidity 

difference of the two interacting particles. Each S-matrix element is not trivial, since it can 

be, and generally is, a meromorphic function of 0. The two-particle S-matrix also has to 

satisfy the conditions of unitarity and crossing, after analytic continuations have been made. 

As a consequence of these two facts, all S-matrix elements are invariant under the shift 

0 ^ © + 2 7 i i and hence, may be expressed in terms of products of hyperbolic functions. 

The other key factor, and arguably most important concept in the generation of the 

S-matrices, is that of fusing and the 'bootstrap'. Simply put, the S-matrices may have 

bound state poles at purely imaginary values of 0 in the range O<lm(0)£7i, which has 

been given the name 'the physical strip'. Two particles a,b can 'fuse' to a third c when their 

S-matrix contains this pole; odd poles only appear to correspond to bound states. Hence, 

in considering a forward channel process, the bound state particle c will have momentum' 

equal to the Mandelstam quantity's' and the pole occurs in the amplitude when c is on 

shell. The rapidity difference 83-66 = 1636 where 631, is given the name 'the fusing angle' 

and the bootstrap hypothesis is that any bound state is itself one of the possible asymptotic 

states of the field theory. 

Hence, m? = (pa + Pb)^ = mi + mb+2mambCOs6ab 

for. 

which therefore, has the dual diagram. 
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When the Lagrangian is considered perturbatively, the pole can be traced to a Feynman 

diagram containing this vertex, and for the bound state to occur there has to be a non-zero 

three-point coupling c^^^. 

Poles in © on the physical strip correspond to s-channel ort-channel bound states acconjing 

to the sign of the residue (+1,-1 respectively). The idea behind the bootstrap equations is 

that near the rapidity difference © = ie^b, the two particle state |p^^H6a),P^'"(6b)) should be 

dominated by the one particle state Ip'^HQc)), where 90 = 63 + 1(71-632), fixed by 

conservation of momentum. The immediate consequence of this is that the following 

'scattering' pictures may be equated. 

^ c 

to yield the bootstrap equations: 

Sdc(©) = Sda(©-ieL)Sdb(®+iegc). e = 7 i - 6 (i.09) 

These allow the generation of some candidates for the S-matrices in the quantum field 

theory, given some suitable starting point, normally associated with the lightest particle(s). 
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These equations are an over-determined set of equations, but the solution to them is not 
unique. 

Before progressing, it would be worth while noting briefly the difference in the bootstrap 

equations which can be used for the simply-laced and non-simply-laced algebras. For the 

simply-laced cases these equations are applicable to any odd order pole with positive 

residue in the physical strip, and these poles do not move since the mass ratios are 

renormalisation invariant. In the non-simply-laced cases (other than a2„'̂ '), the poles depend 

on a parameter whose range lies between the relevant pairs of Coxeter numbers of dual 

pairs of algebras. It has been proposed'^' that only those poles which 'float' within the 

physical strip, with positive coefficients throughout this range, should participate in the 

bootstrap. Therefore, a more 'generalised' bootstrap has been suggested for the 

non-simply-laced algebras. 

The Yang-Baxter equation which appears due to a permutation of three two-particle 

S-matrix elements is trivially satisfied in A.T.F.T. because of the facts that there is no 

particle production in the theory and the particles are uniquely distinguished by the 

conserved quantities (that is, the S-matrices are diagonal). 

The conditions on the S-matrices that have discussed above are not the only pieces of 

information that the bootstrap yields, since another by-product is the fact that it places 

conditions on the conserved quantities in the quantum theory as well. 

Classically the existence of a Lax-pair implies the existence of an infinite set of conserved 

quantities as has already been mentioned. If they persist quantum mechanically then they 

will represent a set of mutually commuting operators whose eigenstates are the particle 

states and may be sufficient to define a form of quantum integrability. 

It is conjectured 

Qs|p(«0 = qi-e"^HP*^'> 
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where the rapidity dependence is a consequence of the correct Lorentz transfomnation 
property for . It is also easily seen that the charge q,̂  corresponding to spin 1 is purely 
the mass, m, of the particle state. The charge acts additively on multi-particle states for 
obvious asymptotic reasons. Again, the one-particle domination effect near © = le^t, places 
restrictions on the conserved quantity eigenvalues since Q s |p*^\ p''' ')w Q s |p*°^) gives a set 
of relations for the quantum numbers of any three particles involved in a 'fusing': 

q|e- i^s,^+qb.ei<=qc. (HO) 

These are known as the charge bootstrap equations. 

As has already been mentioned in the classical theory, the masses calculated from the 

mass matrix, form an eigenvector of the Cartan matrix, associated with the lowest 

eigenvalue. There is in fact a generalisation of this in the quantum theory, for the 

simply-laced cases (and aj^'^'). Using the classically allowed angles derived from the 

non-zero, three-point couplings, Klassen and Melzer verified originally on a case-by-case 

basis, that the eigenvalues of the conserved charges for a given spin s solved the charge 

bootstrap equations and could be assembled into a single vector, 

q =(qa, . . . ,qU 

such that this was an eigenvector of the Cartan matrix: 

Cq =nsq Hs = 4sin2|^ (1.11) 
- s ~ s ^n 

This should not be surprising and in essence may be considered a classical fact for the 

simply-laced cases, because here the mass ratios do not renormalise (at least to one loop) 

and so the fusing angles do not move away from their respective classical values. 

It should be noted that equation (1.11) is only a statement about the ratios of the 

eigenvalues of the conserved charges and the actual eigenvalues will be scaled by an 

unknown function of s and the coupling constant p. 

Details with regard to the conserved charges associated with the non-simply-laced cases 

may be found in [19], where it is described how the folding of the Dynkin diagram gives rise 
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to the relevant reduced set of spins, for the untwisted and twisted cases, again these are the 
exponents of the respective Lie algebras. 

1.3.1 The S-matrices for the Simply-Laced Affine Toda Field Theories 

For these cases the classical data appears to be sufficient to generate a solution to the 

S-matrix bootstrap which satisfies the additional constraints of unitarity and crossing. What 

is not so obvious however, is how these S-matrix elements could possibly be created from 

first principles, starting with the Lagrangian (1.03) and this still remains an open question. 

Perturbation theory is manifestly inadequate for such a task and so a new approach is 

required, maybe in the direction of quantum inverse scattering (also referred to as the 

Quantum Inverse Spectral method). 

Firstly, the conjectured S-matrix elements will merely be listed and then a brief description 

of their immediate properties will be given. Their explicit construction can be found in many 

papersW'^"^""""'. They are, 

ai'^: 
a+b-1 

Sab(0)= n 
|a-b|+1 
step 2 
a+b-1 

d^n'': Sab(©)= n { x } { h - x } 
|a-b|+1 
step 2 

h-1 
Sss(©)=s ,v (©)=n{x} 

1 
step 4 

h-3 

Sss/(©)=n{x} 
3 

step 4 
2a-2 

Ssa(©) = S5/a(©) = Yl{n-a + x} a = 1,2 n - 2 
0 

step 2 

and for e„'̂ '; consult [19]. 

The S-matrices for the ADE algebras are, as can be seen, constructed from a universal 

building block, 

(x+1)(x-1) (1.12) 
(x + 1 - B ) ( x - 1 + B ) 
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sinh(f + |^) 
where (x) = f - ^ (1.13) 

s i n h ( f - f ) 

andB = B(p); {x} has the following properties: {0} = {h} = 1, {x±2h} = {x}, { -x} = { x } - ^ 

The object (x) is a unitary block that contains no implicit dependence on the coupling 

constant p. 

Deletion of all the 'unitary' blocks that contain dependence on p through B, results in 

another solution to the bootstrap and S-matrix constraints, known as the 'minimal' matrix. In 

fact this minimal S-matrix was what was initially constructed by certain groups, for example 

[5], using the classical data and the dependence on p added later, since classically the 

coupling plays no role at all. The dependence is added in such a way, that taking the limit 

p ^ 0 a free field theory is obtained and so the S-matrix elements will tend to unity. It must 

also be such that no further poles are added in the physical strip and the residues of the odd 

order poles of the scattering matrices are consistent with perturtDation theory. The postulate 

B(p) = 2p2(p2+47i)-i (1.14) 

due to Arinshtein, Fateev and Zamolodchikov'''' for the a„'''-series over a decade ago, 

appears to be true for d„'̂ ' and the simply-laced exceptional algebras also, as suggested by 

low order perturbation theoryf̂ ''̂ '̂. 

Clearly { X } B = { X } 2 - B and, coupled with the fact that B ( y ) = 2 -B (P) , this implies the 

property, 

S(0;P) = S ( © ; ^ ) (1.15) 

and hence, there is a clear symmetry between weak and strong coupling, which is exactly 

what would be expected if A.T.F.T's were to describe perturbed conformal field theories, 

since the central charge in (1.02) exhibits this exact same symmetry as well. 

For the d„<''-series, it is manifest that for n even, all of the S-matrices are crossing 

symmetric representing the fact that all the particles are self conjugate. Whereas, in the 

case of n odd, S,,. and S^^ interchange under the crossing relation, since (s', s) are regarded 

as the anti-particles of one another, that is, as a conjugate pair. Similar properties hold for 
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the other algebras; in the cases of a n t h e particles labelled (a,n + 1 - a) are a conjugate 
pair; only Og'^' from the exceptional algebras has any such pairs. Another major fact which 
becomes apparent upon examination of these scattering matrices, is that upon closing the 
bootstrap, poles of order higher than one have been produced in many of the formulae, in 
addition to those higher order poles corresponding to fusings. However, it is proposed that 
all these may be explained away purely on the basis of perturbation theory and a detailed 
example of this concerning d̂ '̂ ' may be found in [5], where the double and fourth order 
poles occur at values of rapidity not corresponding to a particle mass. The mechanism for 
all double and triple poles of the simply-laced cases may be found in [6]. Examination of all 
simply-laced cases shows that this is true for all double order poles in the conjectured 
S-matrices, which gives some credence towards the fact that the bootstrap principle is 
consistent when only the odd order poles are considered. 

The Clebsch-Gordon property also appears to hold when Feynman diagrams at higher order 

are considered, since they cancel when all the particles are taken on-shell, in all the cases 

that have been examined. 

1.3.2 The S-matrices for the Non-Simply-Laced Affine Toda Field Theories 

Initial investigations into the structure of the S-matrices in these cases portrayed a distinct 

difference between those associated with the simply-laced algebras. For a start, the fact 

that the mass ratios were not renormaiization invariant meant that the field theory 

connection was problematical. A purely formal solution to the bootstrap was presented in 

[5], but in all cases it appeared as though little, if in fact any, of the multipole structure could 

be explained within perturbation theory based on the affine Toda Lagrangian. A distinct 

difference was noted between the twisted and the untwisted cases, since in the cases arising 

from folding using the extra symmetry of the affine diagram, "the S-matrix is a subset of the 

parent theory, closing under the bootstrap to form a sort of subalgebra", but there again the 

pole structure appeared inexplicable on the reduced set of particles. It could have been 

suggested that the classical integrability broke down at the quantum level in these models 

due to anomalies and hence, factorizable, elastic S-matrices did not exist for these Toda 

theories. However, this was not the case as Delius, Grisaru and Zanon''^' were able to 
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construct higher spin conserved currents at the quantum level, for both the simply-laced and 

non-simply-laced Toda theories, and so the difficulties in constructing S-matrices for the 

non-simply-laced cases were not because of such anomalies. 

The insightful jump that was required to solve this problem was provided again by this 

group'®', based upon the speculation that one merely had to give up the idea that the blocks 

(x) which determined the pole positions satisfied the bootstrap independently of (x±B) and 

inherited instead an implicit p dependence. Therefore, there should be no 'minimal' p -

independent S-matrix associated with these models. A new 'hybrid' block was the key which 

could take care of such things as the mass distortion and multipole structure. In fact, the 

existence of coupling constant dependent quantum corrections particular to each mass 

ratio, should have pointed the way to coupling constant dependent poles in the numerator 

blocks. A consistent construction for the S-matrices for bn \ Cn \ af^-i, d*-^^ and g^' was 

given in [9], with the remaining algebras 6f \ eg^^ and fl,̂ ' dealt with later by different 

groups'^". The conclusion Delius et al. came to was that the construction could be achieved 

with blocks very similar to the (x) used previously, but with one important difference; the 

Coxeter number which appeared in the mass fomnulae and blocks, was to be substituted by 

a coupling constant dependent Coxeter number H(p). In fact, what was really happening 

was that coupled with a renormalisation of the mass scale (to take account of the divergent 

tadpole diagrams which also occur in the simply-laced cases), in order to have a finite 

quantum theory, there is also a shift in the vacuum expectation values of the fields, which 

leads to a renormalisation of the Kac labels. The bare forms of the mass scale and Kac 

labels are taken in order that the quantum Lagrangian coincide with the classical Lagrangian 

(and with normal ordered exponentials of course). Grisaru et al. constructed the S-matrices 

by similar routes as those used in the simply-laced cases, but with two manifest differences: 

the S-matrix had simple particle poles at positions shifted away from the classical mass 

values by radiative corrections and the bootstrap principle was altered since a few of the 

simple poles were 'shifted' away from their respective single particle positions due to 

anomalous Landau singularities. (Feynman diagrams in two-dimensions that have all 

internal propagators on-shell). 
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In [9] a very explicit example is given, the case of af^.^ and the authors show how after 
having satisfied crossing symmetry, S(©, p = 0) = l, tree level amplitudes and no additional 
poles on the physical strip, the large number of extra poles that have been produced (in the 
sense that they can not be explained in perturbation theory) may be avoided by cancelling 
the relevant blocks to obtain a minimal number for the S-matrix. This is achieved by 
choosing constraints for the functions of p involved in the bootstrap generated matrices. 
After the cancellations, the simple poles correspond to the correct fusings at the p -
dependent angles (obtained by consideration of the Mandelstam quantities) in the s , u 
channels; moreover, there are several double poles which can all be explained by the 
Landau diagrams. 

The manipulation of notation allows the S-matrices for the af^_-^ case to be written in terms 

of: 

(X-1)H(X + 1)H „ _ S h ( f + i ) 
"̂"̂ ^ (x-1+B)H(x + 1-B)H ^ s h ( f - l ^ ) 

where H = h + f , s u c h that B = - 2 h T ^ and the renormalised mass conjecture has been 
Z 1 +e 

taken as , 

rfia = 2tfi sin(^(1 +8 (p))) = 2m s\n(^) 

So, it can be seen that the renormalised masses have the equivalent classical mass form, 

but h->H(P), that is, the Coxeter number of the Lie algebra has been replaced by the 

'coupling constant dependent Coxeter number". 

Subsequent perturbation theory on the respective classical Lagrangian was able to check 

agreement with such considerations as coupling constant dependence, pole coefficients, 

tree level-agreements and that for corrections to the masses at loop-level. The conjecture 

B(P) = 2p^(p2+47t)"^ was again consistent with Delius's results, achieved by comparing a 

specific residue from the exact S-matrix to the respective one loop calculation of the 

residue of a single particle pole and hence, the 'universal' simply-laced coupling constant 

dependence was manifestly evident here as well. 
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Similar results were found in all the cases that were examined by Grisaru et al., apart from 
the appearance of the S-matrices for g '̂̂ ', which could not be written in terms of the block 
{x}, but (x) only. 

However, this was not quite the end of the story for the field theories based on 

non-simply-laced algebras. As was well known, the S-matrices for the simply-laced theories 

exhibit an invariance under the so-called 'weak-coupling, strong-coupling' exchange P ->• ^ 

, since (x-1 +B)(x + 1 - B ) is invariant, if B(P) is as conjectured. The transformation in this 

context should produce something altogether different though, since (x) has an implicit p 

dependence. Examination of the ajn-i 'renormalised' Coxeter number showed that it 

transfonned 

H(2, = 2 n - 1 + | - j . 2 n - 1 + ^ = 2 n - | = H M , 

to that of the 'renormalised' Coxeter number associated with the algebra b„"'. Moreover, 

Snn""̂  —̂  Snn and hence, because of the fact that all the other elements are generated 

through the bootstrap, this showed that the a^^ ,̂, and b^n^ S-matrices switched under 

p ^ Similarly, c'n' and d[fji also switched and at p^ =4;: are equivalent. So what in 

effect was occuring was that the low p coupling aspect of one non-simply-laced theory 

became that corresponding to the high p coupling for another 'dual' theory and vice versa. 

Following the work of Watts and Weston'^"', Cho, Koh and Kim"*', it became clear that this 

'duality' property was very fundamental. The word 'duality' refers to the fact that the 

non-simply-laced affine root systems fall into dual pairs under the transformation 

ai = namely, (bi,",a^^„'_i), (c[,'\d[,^,\), (g^ \̂d^^^)and ( f<; \ef) , excepting the case 

of af^ which is self dual, as are all the simply-laced systems. 

Hence generalising, what in effect existed was that for each dual pair of root lattices there 

existed a parameterized set of quantum field theories (the parameter lying between the 

Coxeter numbers of the dual pair, since B(0) = 0, B(oo) = 2). The masses of the Q.F.T's 

'float' between the classical masses in each dual pair, as p changes and the "two 
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conjectured S-matrices' are just manifestations of the S-matrix for this parameterised field 
theory. [S(P = 0) = S(H = h^)) = S(H = h(2)) = S(p = oo) = I]. 

Following on this, Corrigan et al.'^' provided the missing (f/", e/̂ *) case and proposed a 

'generalised bootstrap principle'. This principle gave a restriction on the poles of the 

S-matrix which could be used in the bootstrap. The conjecture was that only odd order 

poles in the physical strip with positive coefficients throughout the parameter range could 

participate. This was consistent with all the S-matrices and, furthermore, all other 

singularities were explained by them, 'at least in principle', to be variations upon the theme 

of a Coleman-Thun mechanism'^^'. The latter first appeared in the literature in order to 

explain the double poles in the breather scattering matrix elements of the sine-Gordon 

model, (a/ ' ' - Toda field theory with imaginary coupling constant). The introduction of a 

new, more generalised form of block: 

( x - v B - 1 ) ( x + vB+1) 
^''^^-(x + vB + B - 1 ) ( x - v B - B + 1) ^̂ •̂ >̂ 

allowed the 'dual-pair* S-matrices to be written in a form more akin to that of the self-dual 

cases. However, the drawback was that the new block did not possess such an easy 

manipulation with respect to the bootstrap. Furthermore, the new notation helped with the 

problem that many 'zero / pole' cancellations were hidden in the older way of writing the 

matrices. It can be briefly noted that the case of af^ fits in exactly with all that has gone 

before, even though it is a non-simply-laced algebra, the classical and quantum mass ratios 

are equivalent'^' and 'floating' due to uneven renormalisation does not occur^". 

The Coleman-Thun mechanism and the generalisations which have been found, can as 

already stated, at least provide examples of how all the semi-positive simple, (double) and 

cubic poles, arise in terms of the field theory and are given at the end of [33]. It will suffice 

to say that it is the 'floating' zeros of the S-matrix elements that provide the crux of an 

explanation for the eventual 'many-signed' poles in these matrices. As noted, the fact that 

these zeros have a role is tantamount to exaggerating the non-perturbative nature of all 

these mechanisms. The scattering matrices for the dual pairs are in some respects similar 

to those of the sine-Gordon S-matrices for breathers. Perturbation theory would have to be 
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extrapolated to a very high order in order to see the full effect of the 'floating' over its 
Coxeter bounded range, quite unlike the case of the self-dual theories. There, the existence 
of fixed position multi-poles is explicable in standard perturbation theory and the coefficients 
of the poles calculated to any finite order in p. 

Nevertheless, it should be pointed out that despite the differences, the common ground for 

all the Toda theories is that the bootstrap can be performed on those odd order poles that 

possess a unique sign in the physical strip and leads in a consistent way to candidate 

S-matrices. 

The question may well be posed as to whether it is possible to find any other 'related 

features' between these two superficially very different classes of scattering matrix 

elements. In fact, a recent publication by Dore^"' has made some headway into resolving 

this problem. A 'naturally dual' notation is introduced, which enables both types of S-matrix 

to be written in terms of a new 'interpolating' block. Simultaneously a generalisation of the 

'simply-laced' B(p) is noted to be appropriate in the context of these blocks and for theories 

based on a general semi-simple Lie algebra as a whole. 

The way the new function of p has been introduced, has been to define a function specific to 

each Lie algebra that satisfies the same two boundary conditions as B, that is, B(0)=0, 

B(<») = 2 , but supplemented by the fact that all the poles and zeros in the S-matrices 

corresponding to that Lie algebra, must depend lineariy on this new function. Since the 

poles 'float' with p, then it is sufficient to check a single pole to fix this new B'̂ ' and it turns 

out that for all cases the function is given by: 

B[9l(p) = 2p2 . (p2+47 iJ |^ ) - i (1.17) 

where h" denotes the dual Coxeter number. This function satisfies the new dual property 

Bl9l(P) = 2 - B [ 9 ' ' l ( ^ ) . 

The interpolating block is defined to be: 

<x,y> = < ( 2 - B ) ^ + ( B ) ^ > (1.18) 
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s h ( f + f ) 

s h ( f - f ) 
where < x >= 

SO that a s p - ^ O , < x , y >~(x)h and as p -^c», <x ,y>~{y )hv . In order for the correspondence 

with the c lassical data to hold, the two indices x and y will label integer values since the 

pole positions should tend to integer multiples of ^ and ^ respectively. A new building 

block for the S-matrix elements can then be defined (which is akin to the block {x} in the 

simply-laced c a s e s ) , 

o ^ j ^ - 1 > o ^ ^ (1.19) 
^ < x - 1 , y + 1 ><x + 1 , y - 1 > ^ ' 

For the self-dual c a s e s it merely reduces to { x , x } = { x } . A s in the case of the old building 

block, {x, y } -»• I a s either p 0 or p oo. 

Dorey s u c c e e d s in showing how the cancellations between superfluous physical-strip zeros 

and poles may then occur in terms of these blocks, resulting in a generalised object with the 

s a m e number of poles and zeros as the new building block, 

fv «x - < x - a , y - b > < x + a , y + b > 
^ ^ ^ • y ^ ' ' - < x - a , y + b > < x + a , y - b > - ^^2° ) 

A s has already been stated, but repeated here to emphasise the point; for the 

non-simply-laced c a s e s (bar 32^) the zeros and poles are not independent, but go through 

the bootstrap as it were, 'hand-in-hand' and hence, a minimal 'p-independent' S-matrix 

cannot be defined here. In the simply-laced c a s e s they are independent and therefore, 

there is a minimal S-matrix. All of the S-matrix elements for all 'simply-laced and 

non-simply-laced' affine Toda field theories can then be written either as a product of these 

new building blocks {x,y} on their own, or, after the cancellations, in terms of the more 

sophisticated blocks a { x , y } b ' S o there exists a unified way of looking at the scattering 

matrices for all affine Toda field theories and hence it has become evident that the 

non-simply-laced S-matr ices have a great deal more in common with those of the 

simply-laced c a s e s than was realised when these objects were first analysed. 

The duality of these blocks works very simply and comes as a direct consequence of the 

dual property noted before given to B'^l From this it can be seen that the elements for the 



26 

dual theory are transcribed from those of the original blocks by simply interchanging the 
labels X and y and any other suffices, hence 

a { x , y } b < - ^ b { y , x } a 

S ince there now exists some common ground for the S-matrices, it would be an interesting 

investigation to s e e if the new formulae could be 'recast' in a more group theoretical or 

algebraic way, as has already been done for those of the simply-laced cases'^^', and which 

will be covered in the following section. A s was hinted at by Dorey, the way forward may lie 

in a geometrical interpretation. 

1.3.3 Further Developments in the Quantum Regime 

It has already been mentioned in the section on classical theory (section 1.2) that the 

m a s s e s in one of the 'untwisted' A . T . F . T ' s can be ordered such that they form an 

eigenvector of the corresponding Cartan matrix. It turns out that in the quantum field 

theory, a generalisation of this occurs for the simply-laced algebras, and the higher 

conserved charges q , ' become components of vectors which mimic the remaining 

eigenvectors of this matrix. That is C a b q l =>^sq| , where ?LS = 2-2COS2^MII,II9I.I2II 

At least for the simply-laced c a s e s , Dorey's rule for the three point couplings becomes 

quantum mechanically equivalent to the bootstrap equations and for fusings obeying this 

rule, it can be shown that these bootstrap equations are automatically satisfied by the 

eigenvectors of the Cartan matrix''^'. Hence, the components of these vectors become 

candidates for the set of conserved charges; both the eigenvectors and the spins of the 

charges being labelled by the exponents of the relevant Lie algebra modulo the Coxeter 

number. This is achieved by defining vectors a s = 2 ' ' s = ]2 q s ' p i , for S 6 { 

exponents of g } where again the bicolouration is used, (such that the q j are the components 

l a j = lb . 
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of the eigenvector corresponding to and { d i , P j } i s the dual basis to the simple roots) 

which span a 2-plane in SR̂  that the dihedral group <ncDai,ncop. > acts 'naturally' on, in the 

s e n s e that © acts as a rotation through an angle in each subspace, from to b̂ . It is 

clear that the period of co is the Coxeter number (using s = 1). The aftermath of this is that 

the projections of the simple roots into this ' s * ' subspace have components that are 

proportional to the q , ' , that is the components of the eigenvectors of the Cartan Matrix, 

Ps(a i ) = q s ' - a s & P s ( - p j ) = q s ' - b s 

noting that it is the 'signed' simple roots that are important in this context and that { a s , - b s } 

are vectors dual to {a^, b j in the 2-plane. 

Hence, the overall result is that the projections Ps(co^ai) and Ps(coP(-Pj)) lie on the rotation 

of a s , bs respectively, by for each s . The c a s e s = 1 where h-gons are obtained fixed 

in circles of radii given by the m a s s e s of the particles, allows the conclusion that 

{fflPyi; p = 0 , h - 1 ; i = 1 r} gives the set of all roots 0 of g. Generally, there exists a 

complete description of the projections of all the roots into the oa-invariant subspaces and 

the fact that a^^i-a) and a have a common projection onto every invariant subspace is 

sufficient information to define charge conjugation for the particles. 

This rule which corresponds with the couplings'*''^' in the field theory, then gives a solution 

to the bootstrap equations since the closing of a 'root-triangle' (co'vi +co'Yj +a)'<yi< = 0) in JH"̂  

projects to a closed triangle in each subspace. Noting that the charge bootstrap equations 

(1.10) can be rewritten a s : 

q | + qb e'̂ ^ab +qc e'^(u^,+ug,) ^ q 

where U are the fusing angles, they can be equated with the projections (since true for s = 1 

), to give the required solution to the bootstrap in terms of the relevant eigenvector of the 

Cartan Matrix. Moreover, this bootstrap is solved for all non-vanishing couplings 

simultaneously since the charge attributed to each particle is independent of the others. 

The coupling rule answers many more questions however, that have been raised following a 

purely calculational approach to the models. For example, it allows the fusing angles for 
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each coupling to be calculated in terms of the indices that the Coxeter element is raised to 

in each coupling. Moreover, as a by-product of the fact that roots corresponding to different 

colours are projected onto different axes in the 2-planes (and the intervening angle being an 

odd multiple of ^ ) , it is easily seen that, irrespective of the bound state particle produced, 

two particles of the s a m e colour must fuse at an even multiple of ^ and those of opposite 

colour at an odd multiple of ^ . Hence, this verifies the so-called 'brick wall' observation'^'' 

that in all S-matrix elements S^&), all the simple poles, which correspond to bound state 

formation, are spaced by even multiples of the basic angle ^ . 

Dorey's fusing rule has also been analysed in a thorough manner by Fring and Olive'^', who 

give a more detailed analysis of the structure of the rule, alternative solutions and 

formulations, and naturally the relation to the quantum conservation laws. Emphasis is 

placed upon the fact that given one solution to the fusing, there always exists another 

inequivalent solution, namely, 

S ^ a)^'C)-Y, = 0 (1.21) 
t=a,b,c t=a,b,c 

where, c(i) is arbitrary, and where (^(a), ^(b), ^(c)) is the triplet of Coxeter element integer 

powers for the first equivalence c lass . This can then be shown to lead to a contradiction if 

the two c l a s s e s are equated and hence, they must be different. (The properties used in 

deriving this are simply the identity Q)c(i)COc(j) = ffl ^ ,CL)c(j)Tj = - Y j and coc(i)Co'̂  =cD"^(Oc(i)). 

T h e s e two versions of the fusing rule, together with the ones used in proving the 

Clebsch-Gordon property of the coupling, 0 = ^ co-̂ ^^" .̂t and 0 = ^ m-^O-Xt where 
t=a,b,c l=a,b,c 

the X's are the fundamental weights of the Lie algebra associated with the particles, all play 

a crucial role in establishing properties of a hypothetical 'general' S-matrix to be reviewed 

shortly. 

Fring and Olive's analysis of the connection with the conservation laws, though much less 

geometrically orientated, results in exactly the statement that Dorey made. This appears 

by expanding the eigenvector of the Coxeter element in terms of those of the Cartan matrix: 

27115 

03X^ = 6 h X (1.22) 
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where x = ^ | ( Z Q " ' a i ) + e ' T r ( X q s ' a i ) (1.23) 
^ V2 sinBsV . o J 

and again s is an exponent of the algebra. Taking the scalar product of this with the fusing 

equation then yields the equations which can be regarded as conservation laws for the three 

particle process allowed by the coupling c^^. Where their discussion then differs is in 

pointing out that only r (the rank) lineariy independent conservation laws appear as a result 

of the three particle process. They are therefore, manifestly inadequate for representing the 

integrability of the theory. The conservation laws for the negative exponents are lineariy 

related to the ones for positive exponents. Those of any spin equal to an exponent mod h 

are proportional to one of the 'r* fundamental equations when considering a three particle 

process; so there exists a curtailed system of conservation laws to that probably expected. 

The conservation laws are re-interpreted a s components of a generalised energy 

momentum conservation for the process a + b + c ^ O allowed by the fusing mle. Viewing 

this geometrically (as Olive'^' did) it is then obvious that there are two, and only two, 

equivalence c lass solutions when the coupling is non-zero, since there are only two triangles 

which may be constructed from three lengths of a given magnitude in an orientated 

manner. 

( s = 1) 

Another by-product of the fusing rule is, given the fact that the three m a s s e s of the coupling 

particles must form a closed triangle, then by the triangle inequality it is evident that any one 

of these particle will be stable with respect to the decay into the other two antiparticles 

permitted by the coupling. This is simply because its m a s s is less than the sum of the other 

two, and hence, will be disallowed on the grounds of the kinematics involved. Until [12] 

appeared, the S-matr ices for the simply-laced A . T . F . T ' s had been constructed on a 

c a s e - b y - c a s e basis, and even though certain notation had been introduced which gave them 
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all a common ground, there had been no breakthrough in writing them in an 
algebra-independent way. That is, in such a manner that only depended on the much more 
abstract root systems and representation theory of the underiying Lie algebra. The first 
attempt (as far as is known) that resulted in general expressions for the S-matrix elements 
for any simply-laced A . T . F . T . was established in a 'colour' dependent way. It was then 
demonstrated that they satisfied the bootstrap equations, the colour dependence being 
inherent because of the form the fusing equations took. The proposed expressions for the 
general S-matrix element in the A D E scattering theories again had a manifest dependence 
upon the action of the Coxeter element in the space of roots of a Lie algebra, which had 
already occun-ed in describing the coupling rule in a more group theoretical way. The 
properties that the S-matrix elements had to satisfy, unitarity, crossing etc., are then 
reduced to identities satisfied by the inner products associated with the root and weight 
lattices, such a s , 

(otj, ©Paj) = (ttj, ©Pa,) = -((Xj, CD-P-^ttj) 1 

(ai,-CDPPj) = (pj,a)Pai) = - (di , -a) -Ppj) \ (1.24) 

(Pi , -C0PPj) = (Pj,-fflPpi) = -(Pi,-<B-|^1Pj) J 

where a , p denotes the bicolouration; a,, p,, the simple roots; d j , Pi the dual roots (they are 

fundamental weights for the simply-laced algebras) and co the Coxeter element. Merely the 

fact that the conjectures satisfied the bootstrap however, gave no evidence towards 

establishing that the correct physical pole structure was reproduced. The checks that were 

made with the previously calculated A D E S-matrix fonmulae centred on showing that the 

expansion of the supposed Coxeter element in temns of inner products in a basis of the 

simple roots was consistent with the properties which were supposed to hold. That is = 1 

, and that the characteristic polynomials of the matrices were in agreement with those of the 

known Coxeter element'^''. It was not until the conjectured fomulae were written in one 

encompassing way that the physical pole structure was eventually elucidated. In [13],[38] 

general formulae for the purely elastic S-matr ices were proposed which resulted in a 

derivation of many of the properties of the A D E matrices in a universal manner. Curiously, 
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it was noted that the crossing and bootstrap conditions could be verified in a general way 
which were valid for any Lie algebra, whether simply-laced, untwisted non-simply-laced or 
twisted, but the property of analyticity required the extra condition that restricted analysis 
solely to the simply-laced algebras. More importantly, attention was paid to the structure 
and positions of the poles in the proposed formulae and it was shown that the poles of odd 
order were the relevant ones to indicate bound states in the quantum theory. Furthenmore, 
they possessed residues with fixed signature. Various universally observed features of the 
S-matr ices were in effect, simple consequences of the properties of the root systems. 

Moreover^^^', a new labelling of the orbits of the Coxeter element based on the worit of 

Kostant'^' was utilized by Dorey. The main result was that if r, labels the orbit of 'the 

alternative roots' ()>, under <©>, then the r ; s are disjoint, each having h elements and thus 

their totality is the set of all roots O, of magnitude rh = ( d i m g ) - r. (The fundamental weight 

X; corresponding to the simple root a , can then be seen to be related by ^\ = (1 -co"^) ! , ) . 

Using these facts together with some convenient manipulation of the fundamental building 

block, the expression for the two-particle S-matrix that had been introduced before (albeit in 

a colour dependent way), can be rewritten compactly as 

Sab = n{2p + 1+Uij}i^^'""'*^^ . (1.25) 
p=0 

Here the block, 

, _ s h ( f - f ( x - B + 1 ) ) s h ( f - ^ ( x + B - 1 ) ) 

^ - s h ( f - f ( x + 1 ) ) s h ( f - f ( x - 1 ) ) 

is used for convenience in the discussion of the pole structure in the S-matrix formulae; 

Uij = u(<t)i,(t)j)is defined such that ^ Uij gives the (signed) angle between the projections of 

the roots (f), into the co'' e igenspace of the Coxeter element. Unitarity is then checked 

using (Xi,co-P<t)j) = -(X.i,coP*^''"'j(})j) and symmetry via {X\,(i)-fif\)^{X\,(Si~^"^\) . (The coupling 

dependent part plays no role in the analysis of the pole structure). 
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The fact that the fonmulae satisfy the S-matrix bootstrap is most easily seen by rewriting the 
bootstrap in a more succinct way. The crossing and unitarity identities allow it to be 
transformed to 

S d a ( © ) S d b ( © + i e L ) S d c ( ® - i e ^ c ) = 1 (1.26) 

which has a pictorial representation: 

a b c a b c 

(and is analogous to the rewritten conserved charge bootstrap equations). 

By defining (Tyf)(0) = f(© + ^ ) , the bootstrap may be written as 

(•Cu((t)<j,a(a))Sda)(tu((t)(j,a(b))Sdb)(tu((t)d,a(c))Sdc) = 1 

where the a ( i ) 6 r i such that a (a)+a(b)+a(c) = 0 . (The fusing relation). The bootstrap 

equations in this form are then seen to be immediately satisfied, from the properties of the 

block { x } - , the fact that the scattering matrix element can again be rewritten as . 

(Aa,a(b)) (1.27) S a b = n {U(^a,a(b) ) + 1} 
a(b)£rb 

and given that the fusing relation holds. 

The S-matrix formula (1.27) is readily open to a detailed examination of the physical pole 

structure and has been forthcoming in providing algebraic answers to questions that were 

left 'in situ' after study of the case-by-case calculations. For example, when the S-matrix 

elements were pictorially represented by 'blocks'''^', it became apparent that the positions of 

expected forward or crossed channel poles precisely corresponded to the downhill or uphill 

sections of the wall, which portrayed a very-well-established hypothesis between the fusing 

structure and value of pole residue. This was that the poles of odd order always have an 

interpretation in terms of the production of a bound state, the downhill poles with a '+i' 

residue being forward channel, whereas uphill with ' - i ' residue being crossed channel. (The 
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nomenclature 'residue' referring to the coefficient of the most singular part). Moreover, 
examination of the A D E elements in the case-by -case style made it apparent that the height 
of the wall never changed by more that one unit; excepting the points 0, m of the physical 
strip, where the S-matrix is analytic and change is from ±1 +1. 

All these facts p o s s e s s an explanation within the context of the conjectured general S-matrix 

formula (1.27) and the properties of the simply-laced root systems. Furthemnore, a total 

examination of the analytic structure is possible. 

A s a(t, runs through r^, the quantity u((j)„ a,^,) lies between 0 and h, and given the definition 

of the block, S j ^ may have poles such that ^ < j^-u((j)a,a(b))<i7i + j ^ . However, algebraic 

analysis has shown that any possible pole must lie inside the physical strip (0< l m ( © ) < n ) , 

s ince all the blocks contributing poles to locations outside this strip have zero exponents. 

The relevant parts of the S-matrix that contribute to a pole at ^(<iia,a(b)) aOab are, 

Sab = {u(<j)a,coa(b)) +1 }<^"'"'"f''»'.{u((t)a,a(b)) +11'^^;"'!')^. (using the full block) 

. 0 : : e ; ; J • l e ^ J (to the highest order of pole). 

Hence, given that (>^a.a(b))-(>^a,G)a(b)) = ((1-(o-'')>La,a(b)) = ((t)a,a(b)), the change in wall 

height at this relative rapidity is 6h = ((t)a,a,b)), and the use of simple algebraic arguments 

gives the result required. That is 5h = -1 c=> a bound state in the forward channel, similariy 

8h = +1 » a bound state in the crossed channel and 5h = ±2 implies <j)a = ±a(b) hence, a 

relative rapidity of 0 or \n. Similariy, the residue is a positive real multiple of i-<'''=•"('>)) and 

accordingly gives residues that are proportional to +i or - i for forward or crossed channel 

poles. 

The fact that the wall height is always positive in the physical strip can also be explained in 

terms of this new 'language' and refers to the fact that traversing each of the orbits r,, it is 

the positive roots which correspond to the region bounded by 0 and in rapidity values, hence 

any inner product with a fundamental weight will obviously be positive. Similar results have 

been found by others'^', whose starting point was notationally slightly different. In that case 
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Sab(©) = n 2q + 1 + - ^ (1.28) 
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also, very detailed checks were made to ensure symmetry in the indices, the crossing 
property held and that the bootstrap was satisfied. Again this was all based on properties of 
the block and identities satisfied by the Coxeter element. This group also noted the 
interesting fact, already briefly mentioned, that all the properties - apart from meromorphy -
held equally well when the algebra under concern is non-simply-laced. The breakdown 
appearing from the fact that in the non-simply-laced c a s e s , the powers to which the blocks 
are raised are not all integers, simply because of the variation in root length. Furthermore, 
they prove the equivalence between their conjectured formulae and that which appears in a 
vertex operator construction of the scattering matrix, due to Corrigan and Dorey'^^'. 

c ( a ) - c ( b ) ' 
I - I - 1 - r 

q=1 ^ 

A s already briefly mentioned, at the end of section (1.2) the vertex operators are 

constructed to provide a representation of the exchange relation which contains the S-matrix 

of a real-coupling simply-laced affine Toda theory. The S-matrix is found to be the ratio of 

the factors that are left over after normal ordering of the pairs of vertex operators has taken 

place in the usual manner. Here again, the Coxeter element is found to play a very 

important role in the s e n s e that it 'twists' the annihilation part of one of the vertex operators, 

which results in the destruction of all conformal character and hence, the eventual outcome 

of the non-trivial braiding relation. 

For the Toda theories a suitable operator has been found to take the form: 

V^(ea, Oa) = V^''(ea)V^»(ea)W^a(ea)W^'(ea) 

where the exchange of the V s provides a representation of one of the analytic continuations 

of the minimal S-matrix (off the © = - © submanifold) and the exchange of the W s is 

required in order to produce the extra coupling constant dependent part inherent in A .T .F .T . . 

^X(9) _ gX^(6)gXi(e) 

V H e ) = e'^(8)eX?\9) 

The V 's have the above form, illustrating the placement of co, which acts on the weight in 

the 'stringy' field X to shift the rapidity by ^ ; similariy W . 
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Another feature bome out of the use of the vertex operators in this manner was that the 
bootstrap relations for the S-matrices followed as a direct consequence of those for the 
conserved quantities, the 'delocalisation' having no effect in the sense that it was 
independent of particle type. 

Interestingly, it was noted that the construction of classical soliton solutions for other field 

theories in terms of x-functions involved the use of vertex operators with a similar 

structure'"^""^'. It does turn out that a basic 'building block' in the interaction terms for 

solitons associated with the Toda theories can be constructed using operators that are 

slightly different to the ones mentioned. This will be shown in section (4.3) and is claimed to 

be original in such a context. The 'full' answer to the problem of constructing such operators 

that create soliton solutions to the affine Toda field theory equations may be found in [16] 

and [56]. 
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2. SOLITON THEORY 

2.1 Solitons and Methods of Solution in Classical Field Theory. 

Class ica l soliton theory deals with the study of localised 'lump-like' solutions of 'special' 

non-linear partial differential equations. Just to obtain a specific solution of a non-linear 

system is in general very difficult to do and so these soliton solutions are indeed special. 

There are equations that have become popular nowadays that exhibit chaotic properties in 

the s e n s e that infinitesimal changes in any initial data propagate over a short period of time 

into wildly divergent evolutions. 

Very few non-linear wave equations exhibit soliton solutions since the inherent dispersion 

effects would dissipate the lump solution eventually, but in the few equations where the 

dispersion effects are exactly balanced by the non-linearity there is the possibility of soliton 

solutions that do not collapse. 

If, for the moment, the linear wave equation in two dimensions is considered, 

then this has the solution 

(i) = <t)l(X-Ct) + (|)2(X + Ct) 

and, imposing boundary conditions of |(t)|->0 as |x| ^ o o , any localised wave packet 

travelling with uniform velocity will satisfy these conditions. The wave packet will not 

disperse since all plane wave solutions to the wave equation have the same phase velocity 

^ = c and of course, the packet can be Fourier expanded in such a complete set. 

Solitons are in a s e n s e the equivalent of these wave packets for non-linear equations and, 

a s such , also p o s s e s s interaction properties ( i n the linear c a s e due to the principle of linear 

superposition). Specifically, in considering classical relativistic field theories, the solutions 

in Minkowski space-t ime will possess finite energy with a localised energy density that does 

not disperse with time, and moreover, propagate with unifonn velocity with little or no 

change in shape. In this sense the solitons are very much akin to particles, but are in fact 
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solutions to non-linear wave equations. It was this fact that led Skyrme to use relativistic 
solitons in a model of the nucleus of an atom'*''. 

The vast majority of the soliton solutions are non-perturbative, in the sense that they are not 

obtained by considering the exact solutions to the associated linear problem and then the 

non-linear parts in some perturbative scenario, but are usually constructed by some totally 

different method. The last twenty-five years has seen a rapid growth in the study of solitary 

wave-like phenomena and as such there are now many very powerful methods and 

techniques available for the analysis of these equations. Most notably 'the inverse 

scattering transform"''"', Hirota's method''*' and the use of the BScklund transformations'"'. 

T h e inverse scattering transform was developed after study of the Korteweg-de Vries (KdV) 

equation and its related conservation laws, and is in essence a forni of non-linear analogue 

of the Fourier transform. (The conservation laws are of course derived from the result that 

there is an associated current in the theory 

^^,'i^'^^oQ = 0 : Q = r ' ° j ° d x 
• —1© 

where for simplification the example of 1+1 dimensions is given and a suitable boundary 

condition on the spatial part of the current is assumed). 

The KdV equation has an infinite number of conserved quantities''^'. This is implied by the 

crux of the transform's mechanism, i.e. the fact that the equation can be written as the 

compatibility condition for an overdetermined set of linear equations - the Lax pair: 

B T = 5oT 1 
} => d±-lB,L]- = d.X 

L'¥ = X-'i' J 

where B, L are differential operators, X the so-called spectral parameter and [,]+ a 

commutator bracket; B^X vanishes if and only if the equations of motion are satisfied. The 

Lax system controls the time development of some associated initial scattering data which 

may then be transformed back into a solution of the original equation at time t, (at least in 

the c a s e s were there is a discrete set of data that appears in the spectrum of L) . Hence, the 
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inverse method solves the initial value problem in principle. Among the set of these 
solutions are the solitons. 

T h e fact that a field equation can be written as the compatibility condition for a Lax pair 

defines, essentially, what it means for the theory to be 'integrable' classically - as it goes 

hand-in-hand, that this theory then p o s s e s s e s an infinite number of conserved quantities 

and has exact solubility. 

However, the point that a field equation may be integrable does not immediately imply the 

constructibility of soliton solutions, even though it should be possible in principle. This is 

portrayed by the fact that there exist many integrable hierarchies with equations associated 

with any number of dimensions and generalised Lax systems, but very few exact soliton 

solutions have been constructed explicitly in more than 1+1 dimensions because of many 

technical mathematical details. 

The subject of BScklund transformations constitutes a transformation theory that in essence 

relates soliton solutions at some fixed time in their evolution through the use of recursion 

relationships. For the sine-Gordon equation (which will be analysed in detail in section 

(2.3)) the actual transformations were worked out a long time ago'*®' and arose in the context 

of differential geometry rather than soliton theory"' . The transformations have been an 

active subject of research in the theory of solitons since the discovery by Estabrook and 

Wahlquist'*^' of the relevant transformations for the KdV equation, resulting recently in the 

construction of Backlund transformations for some of the affine Toda field theories'"'. 

O n e of the most interesting results of this transformation theory is that it culminates in a 

simple superposition formula - the theorem of permutability - which allows the construction 

of multi-solitons from single (or even no) solitons by purely algebraic methods, given some 

appropriate boundary conditions. This is illustrated quite simply using the following diagram: 
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Initial Solution —> UQ 
U 4 

8 0 \ / a . 

'^2 
'1 

where a , , a j are the parameters of the Backlund transformations. Denoting B{a) to be the 

transfonmation associated to then B{a2)(Bia^)u^ is equated with B(a,)(B(a2)Uo) to obtain an 

expression for U3 in terms of u^, u,, u^ by algebraic means, without having to solve any of the 

initial differential equations. The action of B{a) adds a soliton to an already known solution. 

Having mentioned the sine-Gordon equation it may be appropriate, at this point, to note that 

it turns out in some field theories that the solitons may also possess a topological number", 

which is a consequence of the asymptotic behaviour of these solutions. For solitons this 

number turns out to be a conserved quantity, which later, hopefully, can be used to label the 

quantum state of the soliton if a way to quantize the classical field theory has been found. 

Referred to a s 'topological charge' in the context of A . T . F . T . with imaginary coupling and 

taking values in the weight lattice of the associated Lie algebra. The way to calculate these 

quantities is far less understood in these field theories. Only recently has progress been 

made on a general understanding of these topological quantities for the solitons associated 

with the simplest of the series, that is those related to a„''''''°'. The topological quantity is 

defined in (1+1) dimensions as: 

QoccD(x = + < » ) - 0 ( X = -oo) (2.01) 

with an associated conserved current, 

ji'oce^^dv^ (2.02) 

Hence, it is just proportional to the difference in asymptotic values of the field. It can be 

shown, for example in Rajaraman'*' ' , that for a single scalar field in two dimensions, 

non-trivial static solutions are necessarily topological - in the sense that Q^O for all such 

solutions. Moreover, these static solutions must interpolate between neighbouring minima 

of the potentials for such systems with multi-vacua where the potential is real. 
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Before giving a detailed examination of the sine-Gordon model however, a review of the 
Hirota method will be undertaken since it is a method central to constructing explicit soliton 
solutions for the A . T . F . T . ' s . 

2.2 Hirota's Method 

Initially, Hirota constructed his 'direct method' in 1972 as a means of obtaining the N-soliton 

solution to the KdV equation and, after manipulation, it gave exactly the same determinantal 

solution as calculated from the inverse scattering method by Gardner et al.. The method is 

direct in the s e n s e that no reference is made to an associated 'simpler* system such a s 

those that occur in the scattering problem and the Backlund transformations. 

Although primarily ad-hoc, the method has been abstracted to a deep algebraic setting by 

the Kyoto school, that is Sato, Date, Jimbo, Miwa and Kashiwara'*^"^'. This has involved 

the use of many areas of mathematics such as infinite dimensional GraBmannian 

manifolds, vertex operators and Kac-Moody algebras. 

The crux of the Hirota method is the ability to find a substitution for the field variable such 

that the equations of motion can be written in the 'Hirota bilinear form'. 

That is, a substitution 

0(X, t ) = Cl i (Ti (X, t ) Tn(X,t) (2.03) 

is made where the T^'S are the tau functions for the transformation, one for each of the 

independent fields that constitute the system. The non-linear evolufion equafion takes the 

form: 

F ( D t , D x ) T T = 0, (2.04) 

where F is a polynomial or exponential function of the operators D, and D„ known as the 

Hirota derivatives. T h e s e Hirota derivatives are defined by: 

- ̂  - (I - ' ( l e - ̂ ) Vt.x)x(t',xOl= 0 (2.05) 

For example, 

D 2 f - g a ( A _ ^ ) ' f ( x ) g ( x O U / 
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= f ' (x)g(x) - 2( f (x)g' (x) )+f(x)g"(x) 
A comprehensive list of properties of sucii operators may be found, for example, in [51] . 

If this is possible, then by expressing the in a power series in say e and recursively 

obtaining the terms in the expansion, it may also be possible to consistently truncate the 

expansion after a finite number of terms. Therefore the problem of summing an infinite 

ser ies to resurrect in a closed form does not arise. It has been shown by Hirota that if F 

satisfies the conditions: 

F ( 0 , 0 ) = 0 

and F ( D t , D x ) = F ( - D t , - D x ) 

then the equation will possess at least a two-soliton solution (and usually N-soliton 

solutions). This is also true in more than one spatial dimension. In the original solution to 

the KdV equation, for example, it is possible to truncate at order one to obtain a one-soliton 

solution which takes the form, 

(I) = 2(logT)xx 

where 
T = 1 + exp(kx - k^t) X, k constants. 

Addition of more single solitons to give an N-soliton solution can then be achieved 

consistently by truncating at order N: 

N N 

T = Z e x p ( ^ A ' i V i H + Z W^i) 
(1=0,1 u-j i=1 

where 

and 

exp^i = A,i exp(k iX-k f t ) 

e x p A ® = (k i -k j )2 / (k i + kj)2 

1 1 

( ^ is shorthand for ^ 2̂  . . . ^ , and 2̂  denotes the sum over all ordered pairs). 
^=0,1 m=0 H2=0 MN=0 i>j 

In the s e n s e that if it is possible to write an evolution equation in a bilinear way, then the 

truncation is possible to obtain a compact form for soliton solutions, there is a certain 

amount of mystery surrounding the Hirota method. However, its use as a computational tool 

w a s immediately obvious and exploited to obtain exact N-soliton solutions to an ever 
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increasing number of non-linear P .D .E 's and difference equations, including - as will be seen 
- the affine Toda field theories. However, in all the c a s e s (bar a„'") a subtle massage of the 
method is required in order to obtain soliton solutions since the equations of motion do not 
strictly take the bilinear form of Hirota after the proposed substitution has been made. 

2.3 A specific example of a soliton system - the sine-Gordon equation 

The sine-Gordon equation (or a/^' affine Toda field theory with imaginary coupling) arises in 

severa l a reas of physics. For example it arises in the Josephson junction in 

superconductivity where itdescribes the motion of magnetic flux in the system. It also 

appears in two-dimensional models of elementary particles such as the Skyrme model of 

the nucleon. It even arises in a very simple mechanical model. The system consists of a 

single scalar field 0(x,t) in (1+1) dimensions with an action: 

3(0), 5*^0) = f " d ^ x ^ r i ( 5 u 0 5 ' ^ O ) + ;^2(cos O -1 )1 (2.06) 

where are constants. 

Hence, considering the usual Euler Lagrange equations for a stationary point of the action 

the equation of motion is obtained: 

5*'5n<I) = -A.2sinO (2.07) 

that is, the sine-Gordon equation. 

By Taylor expansion it is obvious that the equation is a non-linear continuation of the 

Klein-Gordon equation, which is presumably how the name was obtained'"^'. 

Examination of the energy. 

E : = d x ' i ^ r i ( 5 o O ) 2 + l (a i ( t )2 + x 2 ( i _ c o s ( D ) (2.08) 

reveals that the sine-Gordon system has a discrete infinity of degenerate minima, given by, 

0 = 27iN : N € Z 

which also satisfy the equation of motion These are the trivial solutions (l)=constant. A s 

already stated, in section (2.1), any non-trivial static solution (in the sense of a single 
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soliton) must interpolate between neighbouring minima and so (working mod 2n) will have 

to interpolate between 0 and ±2n, or vice versa. Being a relativistic equation the moving 

soliton can then be obtained from the static solution by a Lorentz boost. 

The Lagrangian and field equation also possess the discrete symmetries -<D and 

0<-^<I)+2N7i and as before the topological index can be defined for the sine-Gordon 

equation to be given by 

The static single soliton solutions to equation (2.07) are given by: 

0 ( x ) = ±4 tan-'' ( e x p ^ x - xo)) 

and have index ±1 respectively and hence, are denoted the soliton and antisoliton. The 

moving soliton is then just the Lorentz boost of this: 

(D(x) = 4tan - 1 
X - Xo - vt 

e x p ? f (2.10) 

. / r - v 2 . . 

the antisoliton is related to this by the symmetry O <^ -<D. Calculations of the single soliton 

energy (2.08) and momentum (both of which are conserved) 

; = ^ . ? = dx^5o05iCD = — = = 
^1 - v 2 o'l J y i - v 2 

give 

which is in total accordance with the interpretation of the soliton as a relativistic particle of 

rest m a s s |i. and, gives weight to the idea of modelling elementary particles by solitons. 

There is in fact a third type of soliton solution to the equation of motion commonly denoted 

'the breather'. It occurs in the analysis of a specific soliton - antisoliton pair, whose 

scattering solution is given by: 

s inh(vt /y i - v ^ ) 
<I>sA(x) = 4tan-^ 

v c o s h ( x / V l - v 2 ) 
(2.11) 
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Asymptotically (i.e. as t ->±oo) it can be shown, using tan- ' 'x±tan-^y = t a n - ^ y ^ ^ that 
this solution is equivalent to that of the superposition of a single soliton and antisoliton that 
a re approaching or leaving one another with relative velocity ^ . However, the final 
configuration t ^ + o o has the second soliton shifted by an extra amount 5x = ± ( v 2 - i ) | o g v 
relative to the first. This is a by-product of the collision that has taken place at finite t and 
related to the non-linearity of the equation. This fact may be interpreted as an attractive 
force acting between the soliton and antisoliton that manifests itself when they are in local 
vicinity of one another. This system is an example of a solution that has an overall 
topological index of zero, but of course it does not con-espond to one that can be brought to 

rest in any frame. 

The breather solution which also satisfies the equations of motion, is obtained from this by 

setting v = iu (u real) and again results in a real solution, 

OBr(x) = 4 tan- i 
sin(ut/v' l + u 2 ) (2.12) 

u c o s h ( x / V l + u 2 ) 

However, this corresponds to a 'bound' pair in the sense that the solution is periodic in t with 

period ^ " ^ y ^ " -, and moreover the energy of the breather is less than 2n. The soliton and 

antisoliton oscillate about some centre of m a s s with this period and hence, are totally 

consistent with the notion of an attractive force at work, since they cannot separate past 

some finite distance. 

Similariy, there exist soliton-soliton, antisoliton-antisoliton solutions Oss, 'i>fiA = -'^ss which 

belong to the c lass of solutions with Q = 2, -2 respectively, but having no associated bound 

states. 

The general N-soliton solutions have been constructed using the inverse-scattering method 

by Ablowitz et al.'°^' and hence, all solutions of the time dependent equations are at least in 

practice known, even if difficult to write down. They may be generated recursively using the 

Backlund transformations which are the following first order coupled (partial) differential 

equations 
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^(u + v)^ = X - a - i . s i n ( M ^ 

l ( u - v ) , = ^ - a - s i n ( i i i ^ ) 

where 'a' is the parameter; ^ , T I = l ( x ± t ) are light-cone co-ordinates and u, v solutions of the 

sine-Gordon equation. The elegance of this method lies in the fact that only first order 

equations need to be solved rather than the original second order equation. It provides a 

simple way of obtaining the double soliton solutions above. 

The single soliton solution (2.10) can be rewritten in several ways; one of these (using a 

slightly different normalisation of the fields) 

y i - V 2 / 1 ^ 2 
(2.13) 

gives one clue to the correct substitution in order to obtain soliton solutions to affine Toda 

field theory by Hirota's method. However, it is not immediately obvious that there should be 

such solutions since the potential terms for general A . T . F . T . with imaginary coupling - unlike 

the c a s e of a/^ ' Toda here - are complex. Therefore they are inherently difficult to interpret, 

but this will be discussed further later. 

2.4 Hirota's Method for Solitons in Affine Toda Field Theory 

A s has been shown, the sine-Gordon equation (which after rescaling the fields con-esponds 

to a , ' ' ' Toda field theory) has a vacuum configuration that is manifestly degenerate. This is 

ultimately responsible for the topological soliton solutions that can be found in the field 

theory, given that there also exists an infinite number of conserved quantities associated 

with the system. 

Similarly, if the coupling constant p is taken to be purely imaginary in the classical Toda 

Lagrangian (1.03), then the potential term takes the form: 

j=0 

where p has been replaced by iy; where y e a i . 
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It is immediately apparent that with such a coupling the potential term is left invariant under 
the shift in fields O - ^ O + ^ X where keA^, the co-weight lattice of g. Moreover, unlike 
the c a s e of real coupling where the potential is minimized by a unique value 0 = 0, the 
potential is now zero whenever O = —k and hence, there is a countable infinity of 
degenerate vacua in the field theory. 

Again the topological charge for the field O can be defined to be: 

t = ^ 5 x O dx = ( O I ^.^-OI x=-oc) • ̂  (2.15) 

and hence, if the field interpolates between two of the degenerate vacuum states then the 

topological charge is the difference of two weights, so from the underiying construction of a 

lattice, is also an element of Aw • If the weights happen to be in the s a m e representation of 

the Lie algebra then the charge t E A R - the root lattice of g; a sublattice of A ^ . It is now 

easily s e e n that the infinity of vacua in the sine-Gordon equation just corresponds to the 

weight lattice of su(2) . 

The fact that there exist such degenerate vacua in a general A . T . F . T . (putting aside for the 

moment the questions conceming the complex nature of the potential terms and 

non-unitarity of the theory), prompted Hollowood""' to investigate the existence of solitonic 

solutions that interpolate these vacua. Guided by the Hirota substitution for the Toda lattice 

equations and sine-Gordon model the following substitution was conjectured: 

r ' f \ 
cD = _ i 2 : a j l o g T j = - i S a j l o g ^ (2.16) 

' j=0 ' j=1 V T Q / 

(This has been generalised slightly in'"', but the improvement is irrelevant for the case of 

the simply-laced Lie algebras, which is all that will be required here, since it reduces to the 

above formula. Moreover, some solutions for the non-simply-laced c a s e s may be obtained 

from folding the single soliton solutions of the simply-laced algebras). 

The question may be asked as to why there are r+1 tau functions in the substitution 

compared with the fact that the number of fields present is r Aratyn et al.'^'note that it is a 

remnant of the fact that the affine Toda field theory can be embedded in a larger field theory 
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(through the introduction of two extra fields -q, v) that possesses a form of confonmai 
invariance. The extra tau function can then be traced back to the field v in this "confonmal 
affine Toda system" (C.A.T . ) . 

Substitution of (2.16) into the equations of motion (2.14), where p has been replaced by iy 

then gives 

X a0^8, logxj) = 2 "jCm^nj JJ ^7'"^') •. (2-17) 
j=0 j=0 p=0 

This may be decoupled to give the set of equations 

f 
(Sgxj -52Tj)Tj + (SiTj)2 -(5oTj)2 = m ^ n j d l T * ' ^ - ^ f ) (2-18) 

p=0 

for j = 0 ,r (where Â p is the adjacency matrix for g defined to be Id^^-a-^.a^. These then 

take the Hirota form: 

( D f - D i ) T j •Ti = 2 m 2 n j ( n x ^ - T f ) . (2.19) 

Strictly, if nxp'" = txXy then the bilinear form of Hirota is obtained, however this only occurs 

for all j , when the affine algebras a„'^' are considered. Fortunately, all is not lost and 

consistent ser ies expansions of the x/s can be found that truncate after a finite number of 

terms. 

E a c h tau function is expanded in a power series of a dummy variable's' which is later set to 

unity, or similarly rescaled into the exponential terms: 

Xj = 1 + x | ^ ' - e U x f ' - 8 2 + 

and the temns are equated order by order after substitution into the equations of motion. 

Using the minimal ansatz that xo = 1 + e ' ^ • e ^ where T = o ( x - v t ) + ^ , the system of 

equations has a closed solution which takes the form 

Xj = 1 + x | ' ' . s U . . - + x|"^'.e") (2.20) 

where is the K a c label of the Dynkin spot j and 
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^(k )^^(k ) .gk .T : 8 f ' e C ; V j .e {0 r } , k e { 1 r} . (2.21) 

It is also required that a^Cl - v^) = Xm^, where X is an eigenvalue of the matrix Ky = niai a j . 

A s has been noticed previously'^^', the eigenvalues of this matrix are the same as those of 

M^'' = i n ia fa l ' and hence, correspond to the classical particle masses^ of the relevant 
i=i 

affine Toda field theory with real coupling constant. The fact that the expansion of each tau 

function terminates at the exponent corresponding to the K a c label can also be seen by 

examining the second form of the Hirota substitution for <t, (2.16). The fields are required 

to be finite as x ^ o o , and as has been discussed, must correspond to an element of the 

coweight lattice. If a is taken to be positive then <l)lx=-«> = 0 trivially and only the +oo limit 

becomes important. Hence the numerator in each must terminate at the n * power of e'^ 

for this finite property to hold. 

Expansion of the equations of motion for the T ' S to order e* , then gives: 

a2 (v2-1 )6 j^ ' = m2.n j 

= m^ • nj • 

J3(1+8(i).e>i' + ...)2Sik-ara._,2 
k=0 

/ r A 

V k=0 / 

and hence, s j^ ' is an eigenvector of the matrix Kij(i,j e {0 r}) corresponding to 

eigenvalue g^O -v^)m-^ = X , that is the classical particle m a s s l So there are r non-trivial 

distinct c lasses of soliton which can be associated to the relevant spots of the Dynkin 

diagram in just the s a m e way as the classical particles can be attached via the 

Perron-Frobenius eigenvector. The trivial solution is just a manifestation of the fact that the 

extended Cartan matrix Cij has a right eigenvector (corresponding to zero eigenvalue) of a 

vector comprising the K a c labels, 

implying tau functions of the form T J =(1 +e ^)"i and hence, a zero field. 

When X,7^0 it can be seen that i 6j^' = 0 from the sum over' i ' in: n i a f a f S ^ ' = 
i=o ' ' 
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The association of the soliton solutions to the spots on the Dynkin diagram also goes 
hand-in-hand with the fact that the topological charges of these solutions lie amongst the set 
of weights corresponding to those fundamental representations. (Although not all the 
weights are found for the single solitons, e.g. s e e [48]) . Moreover, the solitons having 
such a charge attached to a specific representation are degenerate in mass, this mass is 
proportional to the classical particle mass . 

Firstly, however, an important distinction must be noted between the solutions to the field 

theory based on a general Lie algebra and that of the sine-Gordon model. This is that the 

soliton solutions are real in the latter c a s e , but manifestly complex in the fonner. The 

question then immediately arises conceming the nature of the m a s s e s of such objects since 

the Hamiltonian and momentum densities : 

H = k 5 o O ) 2 + ( 5 i O ) 2 ) - nj • e*̂ "- * (2.22) 
j=0 

. P =-(5o<I))(5i<D). (2.23) 

are complex-valued. 

Initial computations of the m a s s e s on a case-by-case bas is ' " ' ' " ' suggested that they were 

real and moreover, proportional to those of the classical particles, the constant of 

proportionality being Hollowood"^' has argued that this is because it is possible to 

construct classical conservation equations for the solitons analogous to the quantum charge 

bootstrap equations and which possess precisely the same form. Since the solutions are 

unique given the spectrum of conserved charges for the algebra, then the integrals of 

motion are proportional up to an overall scale factor independent of particle type, as 

portrayed by the calculations of m a s s e s for the simply-laced c a s e s . 

Subsequent rigorous proofs of such facts have been given from a variety of directions of 

attack. Namely, via the use of Backlund transformations''^'; from consideration of the 

conformal affine Toda field theory'^"^^', and by utilization of a generalised Leznov-Saval iev 

solution for the affine Toda models'^^"'®'. The latter is ultimately linked to a construction of a 

vertex operator formalism for such theories and the representation theory of the K a c Moody 
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algebras in general. T h e relevant Backlund transformations were found only for a„''* and 
d / ' ' ; those corresponding to the a„''' series were, in fact, essentially those discovered over a 
decade ago by Fordy and Gibbons'^^', 

a4( t )n -$n) = ^^Are 'Pl$' 'H'n+l)-e'W?n-lH.n)] • ^„^((I>)„ 

yip 
5-((}>n - $ n - i ) = -5^5—A-''re'P"''"-^") - e'W*"-i-5n-i'" 

yip 
where x* denote the light-cone co-ordinates zH'^ and A is the Backiund parameter. 

When these are satisfied, the energy and momentum densities become total divergences 

leading to 'real' topological surface terms'^^' and hence, the reality of the stress energy 

tensor. It is also conjectured to be true for all affine Toda theories but the relevant 

Backlund transformations have been hard to uncover; notably for d / " , the equations 

corresponding to the outer spots of the Dynkin diagram are algebraic, whereas the equation 

corresponding to the central point has a square root associated with it. A s in the a„<̂ ' c a s e s , 

the transformations can be integrated to give single soliton solutions from the vacuum. 

Moreover, the exponential of the single soliton field takes the form of a ratio of functions 

akin to the tau functions, in total analogy with the Hirota substitution (2.16), after a specific 

representation of the simple roots has been taken, that is a = e - e , such that the e are 

orthonormal vectors, 1 = 0, . . . , r in iH^+\ and the physical fields O lie in an 'r" dimensional 

s u b s p a c e . 

The 'N' soliton solution then takes a particulariy neat form for the a / ' * series in this 

language. Using the Backlund transformations, it can be shown that, 

.1,2 N 
i i i r ; i 1 

e'i"*i=AiA2---AN 
(de tT i^ t : : fN ) 

(detTj j_N+i) 

where for example, 

d e t T j ! : ? j . 2 = T ; i T ^ 2 - T ^ J j l 2 

and the T' are exactly equivalent to the i* single soliton tau functions. In such a compact 

form, this can be compared favourably to the series solution found by Hollowood'"', which is 

similar in structure to that of the KdV solution. 
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The method of Aratyn et al . '" ' again involves the observation that all contributions to the 
soliton m a s s e s in the affine Toda models come from terms that can be written as a total 
divergence, but differing from the previous method in that they involve the Conformal affine 
Toda field v. Specifically the momentum equations gives 

: ^ = r j _ ^ d x 5 x a , ( 2 : -t-j+h-v) 
' ^^° ' (1 -V2)1 

:y5 ,(2 (t.j + h-v) l 
j=i 

-t-OO 
—00 

and hence, the m a s s e s of the solitons can be calculated given the asymptotic nature of the 

V field'*"'. This is not so surprising given the fact that the affine Toda equations appear in 

some 'gauge-fixed' s e n s e from the conformally invariant C .A .T . ones, a residual appearance 

of such a field in the m a s s term may be expected. 

S o , despite the non-unitary form of the Lagrangian, what has appeared is that the classical 

solitons possess real energy and momenta. However, it is also possible to show more than 

this, namely that the solitons are stable with respect to small perturtsations around their 

solutions'*"'. 

Denoting x to be the perturbation around any static solution 6 , then for small deviations 

around O equation (1.04) gives 

r 
5^5 '̂x + m2 V njajCaj •x)e'^^j-^ = 0. (2.24) 

j=0 

Therefore, only considering the asymptotic behaviour of % i e as x ±oo, the above gives 

r 

S^d^X + m2 2̂  njaj(aj • x) = 0 (2.25) 

which is simply equivalent to the linear classical equation of motion around the vacuum 

configuration. 

There are r lineariy independent solutions to (2.25) since % and <i) lie in a vector space with 

dimension given by the rank of the Lie algebra and possess the asymptotic behaviour 

r 

XaCx^") 4 e'"«^^'^^±' 2̂  coiaj a = 1 r 
1=0 
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such that the frequency is given by: 
v2 = k2 + m i 

in accordance with the Toda fundamental particle modes. Consideration of double-soliton 

solutions then gives the exact form of the solution. However, the fundamental point to note 

is that the solitons are classically stable since there are no modes with imaginary frequency. 

A s has been discussed, this is expected in the sine-Gordon model since the potential terms 

are real for a / ' ' Toda, however, it is not at all obvious for the more general complex valued 

potential terms for a„''' (n>1) and the other affine algebras. Coupled with the fact that the 

2-momenta of the solitons are real it may ultimately be explained by the discovery that there 

is a unitary theory somehow embedded in a non-unitary field theory. 

The proof by Olive et al.'^^' of the energy-momentum reality and positivity again involves 

consideration of the fact that affine Toda can be embedded in the higher conformal system 

and not only do they show such properties for the single soliton, but for the n-soliton solution 

in general. Arguably, their approach is the most systematic and powerful way of 

constructing such solutions for the Toda models since it involves the application of the 

representation theory of the simply-laced Kac-Moody algebras incorporated into a general 

solution for the affine models. This is akin to the Leznov-Savel iev solution to the Toda 

equations of motion and it takes the form, 

e-py ,o^ <Ai |A(x^)B(x-)|A|) .p^^.^^ 1 = 1 r. 
(Ao|A(x+)B(x-)|Ao) 

Here A, B are chiral fields; Ap A, the highest weights of the fundamental representations 

of the Kac-Moody algebra; Oj, is a free field (set to zero or one of the degenerate vacua for 

the c a s e of imaginary coupling soliton solutions) and the m, are the K a c labels. However, 

the theory is complicated, and for the sake of constructing single and double solitons 

'explicitly', the Hirota method may be considered preferable, though the inherent lack of any 

deep Lie algebraic theory associated with the method curtails explanation of many of the 

phenomena that appear in the multi-soliton solutions. Nevertheless, a certain amount of 

headway can be made after case -by -case consideration and formulae conjectured that go 

part of the way to describing the interaction pieces that appear in the simply-laced c a s e s . 
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Ultimately, a full explanation must lie in the domain of the underiying group theory, as 
elucidated in [16],[56]. 
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3. THE SINGLE / DOUBLE SOLITONS AND FUSING RULES FOR 
SIMPLY-LACED AFFINE TODA FIELD THEORY. 

3.1 Introduction 

The Hirota method is used to construct explicit expressions for the single and double soliton 

solutions for all the simply-laced c a s e s of affine Toda field theory. The solutions portray 

well the subtle form of non-linear superposition principle that is inherent in the method. 

However, the fact that only the a„"' series of affine Toda models can be written in the strict 

'Hirota - bilinear" form disturbs the principle somewhat, in a way that is only understood in 

this method via explicit calculation. (A group-theoretical understanding may be necessary 

to answer such questions fully). 

The double soliton solutions possess a natural physical interpretation in which two objects 

scatter as time evolves (when both velocities are taken to be real). This interpretation 

general ises to the n-soliton case , for all n>1. 

Slightly more rigorously, it can be supposed that Re(^ i ) < Re(42). v i > V 2 and as usual, the 

size parameters a i > 0, 1 = 1,2. Then in the limit t -> - o c , examination of the solution in the 

proximity of the first soliton such that x « v i t - a - ' ' •Re(^ i ) leads to the conclusion that the 

solution is given approximately by the single soliton tau functions: 

x!-°°'«1 +8!>'^" Vs i f e2>i"̂ ' + . . . + 8;,"'' • e"-"^"' 

where 

T f ) = a i ( x - v i t ) + ? i , 

which is what would, be naively expected in comparing this system to two 'non-interacting' 

isolated solitons. However, as will be seen , in taking the limit t ->+ooand again focusing on 

the region of x above, the solution in all simply-laced c a s e s takes the approximate form, 

x f " ' «5j"'^ • e")"^"' + {interaction parts involving sj"'' • e"i"^®} 

. 6; ;^ ' . e " i * ' ' ' . [1 + 6 | ; ' . e^< '̂ • A'^^' + • • • + sj,"'' • e"i^'' ' • iA<'^V>] 

= • e ' • Xj . 
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Here, A'^^' is a 'basic' interaction block associated with the extra spot on the affine Dynkin 
diagram in such a way that the ansatz 

to = 1+e '^" '+e" i '®+A( i2 ' . e ' i " ' ' - ' i " " (3.01) 

is given for the double soliton tau function attached to this point. This then gives the full set 

of tau functions from the appropriate equations of motion. 

(This interaction piece implicitly depends on the rapidity difference © of the two constituent 

solitons, however, for brevity in this chapter, this will not be explicitly portrayed, and only the 

other ' less fundamental' interaction terms will be written with such explicit dependence). 

Hence, comparing the limits t ^ ± o o for one of the solitons, it can be seen that the 

interaction c a u s e s the soliton to be displaced in such a way that Tj - > x j , which is equivalent 

to R e ( | i ) - > R e ( ^ i ) + log [A '^^ ' I- The size parameter, o , and velocity, v, of the soliton 

remain unchanged after the interaction, a reflection of the fact that there exists an infinite 

number of conservation laws associated with the soliton. So , in effect the result of the 

interaction is merely to shift the soliton along the x-axis by the amount log |Af^2>j. 

The single soliton solutions for the both the a„''* and d^''' (and n-solitons for a„''') were first 

written down by Ho l lowood ' fo l low ing the discovery of the relevant Hirota substitution. His 

methods were generalised slightly, resulting in all the single solitons for the simply-laced Lie 

algebras, by the author (see following reference), MacKay and McGhee'" ' and Aratyn et 

a l |54).|55| 

T h e calculations of the double solitons are claimed to be original and will be used to show 

that the classical fusing rule of Dorey, in the c a s e of particle excitations, also holds for the 

solitons but supplemented by some extra 'annihilation' couplings for the soliton and 

antisoliton. The fusing has been examined by Olive et al.''^' in the context of their 

group-theorectical approach and gives exactly the s a m e results as found here in the process 

of explicit calculation of the double soliton solutions. 
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The fusing structure may be revealed by shifting the arguments of the exponential terms in 
the tau functions (i.e. a rescaling) and by considering the poles in the interaction quantities 
A'^^'. The shift is taken to be 

« p i ^ > P ' - l | o g | A ( i 2 ) | (3.02) 

for each i, and it transpires that the solitons possess a fusing structure which occurs at the 

classical level, that is, in most part, identical to that of the real coupling particle fusing. The 

fusing that occurs in the real coupling regime, however, is manifestly different in the sense 

that it occurs at tree level in the quantum field theory. The values of rapidity difference at 

which all objects fuse are of course complex for on-shell physics, which is a reflection of 

the integrable structure of the field equations. The fact that the fusing angles are equivalent 

for the particles and solitons goes hand-in-hand with the proposal by Hollowood that there 

exist classical conservation equations for the solitons exactly the s a m e as the quantum 

charge bootstrap equations (1.10). However, there is also another piece of information that 

is associated with the solitons, that is their topological charge. It turns out that the fusing of 

the solitons' charges reflects the Clebsch-Gordon property of the classical particles, that is 

taking A-a, e A a , , e A a j , ^133 € Aa j Where K-^aiMz are the topological charges of 

particles a, , a^, respectively and A a , , 3 2 , 3 3 the fundamental representations, then: 

Caiajaa 0 => Aa3 C Ag, ® Aa2 

The equivalence of the a„"' 'fusings' for the solitons and the fundamental particles was first 

discovered by Hollowood'"" through explicit calculation. The check of all the remaining 

simply-laced c a s e s is also carried out here in an explicit manner and claimed as original in 

such a context. 

An investigation into the terms that appear in the double soliton solutions which are 

interpretable as the interaction terms (since they depend upon the rapidity difference of the 

two constituent solitons) will begin in the following chapter. However, the introduction of 

some relevant notation is advantageous here, for writing the leading terms of the tau 

functions in a compact manner. It is this notation that will lead to the association of these 

particular terms to the orbits of the simple roots, associated with the solitons, under the 
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Coxeter element, that will play a prominent part in chapter four, where objects similar to the 
vertex operators that appear in the construction of the Toda S-matrix'^^' will be shown to 
produce these highest order terms upon normal ordering. 

3.2 Solitons for the a„*̂ ' Series. 

The soliton solutions associated to this series of Kac-Moody algebras are by far the simplest 

in the s e n s e that the Hirota form of the equations of motion takes its true bilinear nature. 

The 'n' soliton tau functions then take the standard form (c.f. section (2.2) in the case of the 

KdV equation) such that the interaction parameter becomes a covariant function of the 

respective rapidity difference. 

For these algebras all the K a c labels n, are unity, hence Ky = Cj j , the extended Cartan 

matrix. The eigenvalues are: 

^ a = ( 2 s i n 2 ^ ) 2 a = 0 n 

where the Coxeter number h = n +1 for the a„ series. The Dynkin diagram for the affine 

algebra a„<̂ ' is given by: 

n^2 A 
A 

a , a n . i a n 

Given that all labels are understood to be taken mod h, due to the cyclic symmetry of the 

Dynkin diagram, the equations of motion are: 

f(Tj) = m 2 ( T j + i T j - i - T f ) j = 0 n (3.03) 

where the operator f is defined by, 

( ^ j - T f ) T j - t f + T f =f(Tj) . 

T h e s e can be solved to give the single soliton solutions'"' (using the specific choice 

xo = 1 + e * ) : 

k—1 
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where is an 'r+1' th root of unity and the dispersion relation 0 ^ ( 1 - v ^ ) = Xa • holds. 
There is obviously a non-trivial solution for each a e { 1 , . . . , n } , which may be associated to 
the respective spot on the Dynkin diagram. A s has already been mentioned in section (2.4) 
each of the <t>ia) may also be connected to the a * fundamental representation corresponding 
to the spot through their topological charge. The topological charge manifests itself as a 
weight in the representation, the actual weight being dependent on the imaginary part of ^ 
and only recently has a thorough understanding of the charges emerged''^'. The single 
soliton charges do not fill ail the fundamental representations, but only through excessive 
combinations of the single solitons (i.e. multi-soliton solutions) can all the weights be found. 

The double soliton solutions result from terminating the tau function expansion at a higher 

power of the expansion parameter. A s has been stated, a simple form of non-linear 

superposition principle pervades in these c a s e s s ince the tau functions obey proper bilinear 

equations and in fact, the whole argument easily generalises to the N-soliton case . 

By defining, 
T|''^ = a c , ( x - V g t ) + ^ q + ^ a q - j q = 1,2 

where a , , v^, Re(^q), Im(^q), denote the size parameter, velocity, position, offset and 

topological parameter of the soliton respectively. Then after the expansion parameter 

has been absorbed into the exponential terms, the double soliton tau functions take the 

following form: 

xj = 1+e^i + e * ' + A ' i 2 ) . e " -" î j = 0 n. (3.05) 

The function A'^^' may be written in several equivalent ways: 

A ( i 2 . , _ ( P i - P ^ ) ^ - < - a 2 (3 06) 
(P l+P2 )2 -m| ,+a2 

where 

( IK ^ 
P i = ( o i , - a i V i ) , m j = 2 m s i n [ ^ ^ ^ 

which allows the relativistic invariance of the interaction parameter to be self-evident. 

Alternatively it can be re-written as . 
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Ari2i • F ( a i - a 2 , a i V i - a 2 V 2 , a i - a 2 ) 
F ( a i + a 2 , a i V i + a 2 V 2 , a i + a 2 ) •' 

where 

F ( a , b , c ) = a 2 - b 2 - m i 

such that each single soliton's set of data (c i ,V i ,^ i , a i } satisfies F (a i ,a iV i ,a i ) = 0. 

Introduction of the rapidity variable, 6, such that the soliton's associated two-momentum can 

be written as , ma(coshe ,s inhe ) allows the interaction to take the form, 

^(12) _ c o s h 0 - c o s ( ^ ( a i - a 2 ) ) 

" c o s h © - c o s ( ^ ( a i + a 2 ) ) 

s inh( f . l :gr f^ )s lnh( f - :^ ) 

(3.08) 

(3.09) 

where © = 9i - 8 2 . This is equivalent to. 

a i -a2 ^^~^2 
( 1 - ( D ' ~ U Q ) ( 1 - c o " ' ~ ' . e Q ) 

3̂ +32 ^^•*•^2 
(1 - ( o ' ~ 2 - ' . e ® ) ( 1 - ( B - * ~ ' . e ® ) 

(3.10) 

The interaction function as a product of sinh functions has been known for a long time to 

possess a vertex operator construction, especially in the case of the sine-Gordon equation, 

s e e , for example, Skyrme'^^'. 

It turns out that not only the a„''' ser ies, but all simply-laced series possess this character, 

that is, that the leading terms of the 'interaction' (multi-soliton) tau functions can be 

expressed a s quotients of sinh functions. With such a point in mind it would be hoped that a 

vertex operator construction of such general objects would be possible within the frame 

work of the Lie algebra structure. A s wilfbe seen this can be done and involves the use of 

the simple roots and Coxeter element in a way very akin to that of the construction of the 

minimal S-matrix'^^'. It must be borne in mind, however, that this construction is only for the 

leading terms and not for the soliton solution as a whole. 

More generally, the N-soliton solution is given by the following, where the sums are 

equivalent to those in the KdV example: 

N 
T j = X e x p ( S H p < ' + E HpHqlogA^P"'). 

H=0,1 p=1 1<p<q<N 
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In addition to these scattering double solitons there also exist 'breathing solutions', i.e 
generalisations of the breather of a / " affine Toda theory and moreover, there are static 
configurations of double solitons which only exist for pairs associated to different spots on 
the affine Dynkin diagram. Such static double solitons are another artifact borrowed from 
the c a s e of a real potential in two dimensional physics. It is possible to show [for example, 
Rajaraman'"^'] that it is impossible to have identically static solitons which interpolate 
non-adjacent minima of the potential. In A . T . F . T . the situation is much more subtle since 
the potential terms are complex, and moreover, any of the solitons that possess topological 
charge in the s a m e fundamental representation are taken to be 'identical'. From (3.08) it 
can be seen that this definition of 'identical' for a static solution would result in a zero value 
forA<^^'. 

Taking v i = V2 in (3.05), so that with respect to some frame both solitons are stationary, the 

tau functions take the form: 

Tj = 1 +co«ij •exp(4')+a3^2j . e x p ( § ^ ( T - ^ i ) + ^ 2 ) + 

A(12). a)'^i-2)i e x p ( ( ^ ^ ) 4 ' + ( ^ ^ ) ^ 1 + ^2) 

where, 

( a i + a 2 ) 2 - ( 2 m s i n ^ ) 2 

f ( < ^ ^ _ a 2 ) 2 - ( 2 m s i n ^ ^ ) 2 l 

A s has been noted by Aratyn et al. (but from a different point of view, involving the 

non-trivial kernel of an operator), when ^ ^ ^ M T " (using the dispersion relation) then 

such double soliton solutions appear naturally in the Hirota formalism. Apart from the trivial 

c a s e when the 1^ symmetry of the Dynkin diagram for a„ is considered, such a condition 

only ar ises for a^pLi =su(6p) , when { s i n ( ^ ) , s i n ( ^ ) } c { 1 . - 1 , 1 , - 1 } . 

For example: a i + 8 2 =n + 1 = h , g ives 

__ f2msi. fe(n.1-2a,) ) | '^ _^ : , 
[ 2 a i J ^ n + V 4 1̂ 

and the static double soliton takes the form: (after a shift in T ) 

xj = 1 • e^i • e * +(B-^i'e^2e* +e^i^^2(i _ i m i ^ ) e 2 * . 
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It is easily seen that if either § i or ^2 -<» then these tau functions revert to those 
corresponding to the single soliton since the other soliton has been forced away to infinity. 

3.2.1 Fusing for a„'^' 

For the c a s e n = 1, that is, the sine-Gordon model the phenomenum known as fusing does 

not occur. This is a reflection of the fact that the solitons (antisolitons) have a topological 

index ±1 (in units of 2n). For a complete discussion of the c a s e s n > 2, see [14], however, a 

brief outline will be given below. 

The fusing occurs when a two soliton solution reduces to that of a single soliton at a rapidity 

difference taking a non-physical, complex value. Consider the double soliton solution 

(3.05), a simple rescaling E,-, j l o g A f ^ ) gives the new tau functions 

Tj = 1+A(i2r^" • (e^i + e * i ) + e^i (3.11) 

It can be seen that a pole in A<̂ '̂ removes the middle pair of terms, leaving a tau function 

appropriate to a single soliton. From the equivalent forms of A"^>, the pole is seen to exist 

at rapidity difference © when 

ch(©) = c o s ( ( a i + a 2 ) ^ ) . 

Hence, restricting analysis to the physical strip, that is the region of the complex plane 

0 < l m ( © ) < 7 i , the fusing 'ang les '63132 are given by: 

f(ai + a 2 ) J if a i +a2 <h 
h 

9aia2 = "i 

U2h-ai - a 2 ) r if a i +a2 > h 
h 

T h e s e are exactly equivalent to the three-point particle couplings for the classical Toda 

particles but here correspond to the closing of the soliton m a s s triangle since the m a s s e s 

are proportional to those in the real coupling c a s e . 

At these fusing values the solution (3.11) reduces to 

xj = 1 + e ^ r :4^!^' = 4 ' f ^ 4 ' f ' 

a single soliton tau function. The solution p o s s e s s e s mass , mai-aj , momentum, pa, +Pa2, 

and topological charge A.a3 =A.3i n-A-aj, such that ^̂ 33 e A'^i-^^zn'odn+D 
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3.3 Solitons for the d„*̂ ' series. 

B e c a u s e of the extra symmetry involved in the Dynkin diagram f o r d / ' ' when compared with 

the rest of the d„<''-series for values of n > 5, these c a s e s will be treated separately. The 

extra symmetry which gives rise to a triple degeneracy in the mass spectrum for the case 

d/^' also results in an equation of motion of a type not found in the higher 'n' c a s e s . A s will 

be s e e n , the equations of motion for all these affine algebras do not fit into the category of 

'Hirota bilinear type', but it is nevertheless consistently possible to obtain a solution to the 

equations, a s mentioned in the previous chapter (section 2.4). The fact that such a 'bili-

nearization' does not appear also complicates the structure of the multi-soliton solutions in 

comparison to the a„''' c a s e s . 

In a similar fashion to the method used for obtaining double solitons for the a„''' series, the 

tau function associated with the extra spot on the affine diagram is conjectured to take the 

form 

TO = 1 +e''"'' + e ^ ® +A(12) • e^'^'-*® (3.12) 

and the remaining tau functions to have exponential terms possessing orders up to 

nj • ( T C ' ) + *F'2)), where nj is the associated K a c label to spot j . All interaction temns then 

manifest themselves as polynbminals in A'''^) with coefficients that are functions of the 

rapidity difference of the two constituent solitons. 

Again, it is found that in all c a s e s the quantity A<'^', which will be refered to as the basic 

block, can be written a s a product of hyperbolic functions, moreover a new notation is intro­

duced in order to write this quantity in a more compact manner. 

3.3.1 d / ^ ' : 

With respect to the rank of the affine Lie algebra this is the smallest of the d„''' series, but is 

unique in the s e n s e that it p o s s e s s e s a form of symmetry that the other members of the 

ser ies do not possess . All the K a c labels corresponding to the outer spots of the Dynkin 

diagram (the spinor or antispinor and vector representations of the algebra) are unity, 

whereas that of the inner spot (the adjoint representation) takes the value two. The Dynkin 

diagram can be labelled: 
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This is in fact a different labelling to the standard one used in the literature, for example 

Goddard and Olive'^"' and is used for convenience when considering the equations of motion 

and the matrix K ĵ. 

The eigenvalues of the matrix are >. = 0 , 2 , 2 , 2 , 6 which reflects the triple degeneracy of 

the diagram corresponding to the finite dimensional Lie algebra. 

With such a labelling of the extended root system, the equations of motion for this algebra 

take the form, 

f ( T j ) = 1 - m 2 ( X 4 - T f ) j 6 { 0 3} 1 

} (3.13) 
3 

f ( T 4 ) = 2 - m 2 ( n x j - t ^ J 

j=0 

T h e s e may be solved using the minimal ansatz that was mentioned in chapter two, to give 

single soliton solutions which take the form 

X = 2: To = 1 + e ^ X = 6: TO, I ,2 ,3 = 1+e'*' 1 

Ti ; , , 3 = 1 ± e ' ' ' T 4 = 1-4e"^ + e2* , } (3.14) 

T 4 = 1+e2'i', J 
3 

with the restriction that in the degenerate c a s e ] S s r ' = 4 and hence, that there are three 
0 

distinct solutions - one for each of the degenerate X's. These non-trivial solutions can again 

be associated with the Dynkin diagram in the manner which by now must be familiar. 

In considering the double soliton solutions it was found advantageous to separate the 

solutions into four distinct c lasses (a) (d) as follows: 
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(a) " " (b) " " (c) - - (d) 

Here the pictorial representation is quite readily explained, since an arrow connecting any 

two points of the Dynkin diagram denotes a double soliton whose constituents are asso­

ciated with the two spots - one from either spot. 

It is also convenient to use the notation I, I', I"; h with reference to the points 1,...;4 respect­

ively, to denote the light and heavy m a s s structure associated with them. 

A basic point to note is that in calculating the solutions it is also required that each solution 

should appear as the two single solitons when these objects are widely separated. There­

fore, part of the structure of the double soliton is immediately laid down 'a priori'. 

The substitution of the general ansatz 

= + 4 ? ) • 1̂ + ^ 2 ) • f2 + VVj(0)f 1 f2 j 6 { 1 , 2 , 3 } 

T4 = 1 +6i,;|, • fi +f^ +8^;, • f2 +f^ + X ( 0 ) • f i f2 + Y ' i ) ( 0 ) . f2f2 + Y(2 ) (0 ) . f i f2 + Z ( © ) • f?f i 

into the equations of motion (3.13), where the TQ substitution (3.12) has been used and the 

6j''''s are given by coefficients from (3.14), reveals a certain amount of symmetry in the 

double soliton tau functions. Here f| denotes e''i'''" î'>^ î and the comment above has been 

kept in mind, that is, x ~ V i t - ^ , g ives the single soliton approximation. 

What is found after the substitution (keeping in mind n\f = X; and the fact that 

parameterization with respect to the rapidity variable © can be utilized) is that in all c a s e s 

the interaction quantities W, Y , Z are given simply by the products of the 8j''''s and powers of 

A'̂ ^*. Indeed, they take the form that might be guessed naively, if such a solution was to be 

attempted. The tau functions take the form: 
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X0 = 1+ f l+ f2+A< '2 ) . f i f 2 1 

î = 1 - C - f i - C - f ^ - O S - A < ^ ^ ^ - ^ ^ ^ ^ ^ (3.15) 

X4 = 1 + ?>Z • f 1 + f 1 + ^Z) • f2 + 2̂ + X(®) • 1̂ I 

• A(^2). f,f2 +5^;^, . A(12) . f2f2 + A'12)' • f2f2 . J 

The remaining interaction term X(©) which is the coefficient of the f,f2 piece of the tau 

function associated with the centre spot of the Dynkin diagram is in all c a s e s given by the 

following formula 

X ( 0 ) = ( 2 - ( p i + P2)2) • AC2) + ( 2 - ( p i - p2)2) 

^ f . ( © ) . A C 2 ) + f 4 © ) (3.16) 

where 

f± (0 ) = ( 2 - ? . - X ' ± 2 y u ^ c h ( 0 ) . (3.17) 

[For the c a s e of I, 1', that is (d), it was found more convenient to use the ansatz that the tau 

functions were given by xi = 1 +(-)' ' ' fi +(-)^' •f2+(-)^' •A(^^'fif2 for the outer spots, with 

the obvious constraints on the sums of the quantities p, and q| respectively. The equations of 

motion then give (-)Pi+ii+n = i , as above]. 

The basic blocks A''^* and the quantities X (0 ) derived from them may now be listed using 

(3.16),(3.17) for each of the separate c a s e s (a) (d): 

. , „ . , . , ( c h 6 - l , ( c h 6 - 1 ) 1 6 ( C h 9 - ^ ) ( c h e . ^ ) 

( c h 0 + i ) ( c h 0 + 1) (ch© + l ) ( c h 0 + 1) 

(b) ( c h © - ^ ) 

(ch© + ^ ) 

(c) (ch© + i ) ( c h © - 1 ) 

= 0 

( c h © - ^ ) ( c h © + 1) ( c h © - l ) ( c h © + 1) 

(d) ( c h © - l ) 

( c h 0 + l ) 

A s in the a„'^' ser ies, the interaction pieces A'^^' that appear as the leading tenms in the 

multisoliton solutions can now be written in terms of products of hyperbolic trigonometric 

functions. One way of achieving this is to use the fact that 
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s h ( # + x ) s h ( f - X ) = s h 2 ( f )ch2(x) - ch2 ( | ) sh2 (x ) 

and hence that, 

s h ( | + i x ) s h ( | - ix) = s h 2 ( | ) c o s 2 ( x ) + c h 2 ( | ) sin^cx). (3.18) 

Then the basic interaction blocks may be written in the following way, 

Sh ( f + f ) S h ( f - f ) S h ( f ) S h ( f ) 

S h ( f + f ) S h ( f - f ) S h ( f . f ) S h ( f - f ) 

C) s h ( f + f ) s h ( f - ^ ) 

Sh ( f + f ) S h ( f - f ) 

(c) s h ( f + f ) s h ( f - f ) s h ( f ) s h ( f ) 

" s h ( f + f ) S h ( f - f ) S h ( f + f ) S h ( f - f ) 

( . ) S h ( f - . f ) S h ( f - f ) 

S h ( f . f ) s h ( f - f ) 

^ (3.19) 

J 

One immediate fact to notice from these formulae is that on bicolouration of the Dynkin dia­

gram then the A''^' interaction term corresponding to a white - black configuration is con­

structed from sinh functions with an odd argument x in whereas, those 

corresponding to the s a m e colour all have even values for x; a similar fact has been noted 

and shown to be true in the scattering matrices and was discussed in the review chapter 

(section 1.3.3). 

Another fact to note is that in A^if'and Aj,^^' there are double poles in 0 coaesponding to a 

rapidity value of 'in'. In the formulae given above this is simply a consequence of the fact 

that sinh is anti-periodic in m. 

A new notation could be further introduced at this stage that will compactify the expressions 

for these blocks and prove to be very useful later when the simply-laced exceptional alge­

bras are considered. 

Denoting co = e , then on taking 

(1-cD''e®)V = (x)^ = (x)v, (3.20) 

the quantities A'^^' simply become the following in this new notation: 

A(i2) = (0)2(1 ) i (2) - i (3) -2(4) -V5) 
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(b) 
( i ) V | ) - V j ) - \ t ) ' ^ (3-21) 

= ( 0 )2 ( i r i ( 2 ) i ( 3 ) -2 (4 ) i ( 5 ) - i I 

t \ ^ ) \ 2 ) - \ 4 r \ 5 ) \ J 

3.3.2 The Fusing Rules for d '̂̂ ' 

Again the fusing rules mimic those for the real coupling particles that may be found, for 

example, in Braden et al.'^', but here they are supplement by some 'annihilation' couplings 

that always occur at rapidity difference @ = \n. The shift T -> ^logA*^^' again reveals that 

the fusing occurs at the poles of the interaction block A"^', as is true in all the simply-laced 

c a s e s . A s the Dynkin diagram has been labelled slightly differently from the aforemen­

tioned paper, the notation will not be borrowed, but a re-labelling gives exactly the same re­

sults a s were found in that paper. 

3.3.2(0 h, h 

This c a s e will be covered in slightly more detail and then the others should be self 

explanatory. From (3.19) it can be seen that the poles of A''^' occur at rapidity differences 

which lie in the physical strip at values ^ and \n. After the shift in the arguments of the 

exponential terms and 'evaluation at a pole' then the coefficient of f^fj in the tau function 

associated with the inner spot of the Dynkin diagram becomes 

X(©)AC2r 
1 6 ( c h 0 - ^ ) ( c h © + ^ ) 

pole ( c h © - l ) ( c h © - 1 ) 
= - 4 , 2 

respectively. Hence, the following fusings hh -> h and hh -^trivial, occur at rapidity values 

© = i7i repectively, since the following tau functions are obtained: 

Xi = 1 + f i f 2 i e { 0 3} 

X4 = 1 + ( - 4 , 2 ) - f i f2+f^f i • 

This is in complete accordance with'^', but in addition there is an 'annihilation' coupling 

where presumably all quantum numbers cancel in the fusion to give the zero field. In this 

situation the topological charges must correspond to +p and -p where p e A R , since this 

spot of the Dynkin diagram corresponds to the adjoint representation. 
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3.3.2^//;; I, h 

From (3.19) it can be seen that the pole of A''^' occurs in the physical strip at © = ^ . 

Moreover, the coefficient of f,f2 in x̂  is found to be zero: 

X - A ( i 2 r i = o , 

hence, the fusing Ih - » I is obtained at rapidity difference © = , as is found in the classical 

particle regime. 

3.3.2(iii) 1,1 

Again, from (3.19) the poles of the interaction block A'^^' can be seen to occur at rapidity 

differences 0 = ^ , 7 t i respectively, in the physical strip. Following the shift in the 

exponential terms of the tau functions the new coefficients of the fused soliton can then be 

obtained: 

X ( 0 ) - A C 2 ) - pole-
(ch© + ^ ) ( c h © - 1 ) 

= -4 ,+2 

h 

respectively, which gives the fusings I, I h and I, I -»trivial solution, at rapidity values 

© = in . S o , in the similar manner to that of c a s e (i) it is again found that an 'in' pole has 
h 

resulted in an 'annihilation' of the two constituent solitons after fusing. 

3.3.2(iv) I M 

Here, the fusing angle is found to be at © = ^ , and again trivially X • A^^ '̂"^ = 0. Hence, as 

a direct consequence of the more general ansatz that was commented on above, it can eas­

ily be seen that I, K -> \" at the rapidity difference stated above. That is, the fact that 

(_)Pi+qi+ri = +1 where, for example, {-)P< was the coefficient of the leading term for the i"̂  tau 

function (ie { 0 , 1 , 2 , 3 } ) of one of the single soliton solutions). Here, 1,1', I" all lie in different 

fundamental representations of the Lie algebra d^; corresponding to the outer spots of the d^ 

Dynkin diagram. The topological charge of the fused soliton is a representation of the fact 

that A|// c A i ® A | / . 
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3.3.3 d„''' ( n s 5 ) 

A s in the d/^' c a s e , none of these algebras give rise to equations of motion for the tau 

functions which take the true bilinear form, but again it is possible to obtain solutions using 

the conjecture (2.20) which builds upon the minimal ansatz of TO = 1 n-e"^. 

Again in all these c a s e s the K a c labels associated with the outer spots of the affine Dynkin 

diagram are unity, whereas all the labels corresponding to the inner arm of the diagram are 

two and the affine diagram is labelled as follows: 

The non-zero eigenvalues of the matrix Ky = nice. • a are given by 

^ a = 8sin2ea ( 1 < a < n - 2 ) , }.„,^=Xr,=2 (3.22) 

where the angle is defined as Ga = ^ = 2 ( n - i ) series of affine Lie algebras. T h e 

fact that X^, and X„ are equal is again a reflection of the degeneracy in the classical particle 

m a s s e s associated with the spinor and anti-spinor representations of these algebras. With 

such a labelling of the extended root system (on this occasion, conresponding with'®"") the 

equations of motion (2.18) take the fonn: 

f ( T i ) = 1 m 2 ( T 2 - T f ) 1 = 0,1 1 

f ( T 2 ) = 2 m 2 ( T 0 T l T 3 - T ^ ) I 

f (T j ) = 2 m 2 ( T j - i T j + i - T f ) j = 3 , n - 3 } (3.23) 

f( 'Cn-2) = 2 m 2 ( T n T n - l T n - 3 - T n . 2 ) I 

f ( T k ) = 1 m 2 ( T n - 2 - - r ^ ) k = n - 1 , n . J 

This set of equations may be consistently solved to all orders, using the technique 

mentioned briefly above, to give the following set of single soliton solutions'^''. 
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where the angle 9̂  is defined as above, and true for all values of n whether odd or even. 

^ = 2: } (3.24) 

6|,̂ > = -5V^ = 1 

5f^ = 0, 8 p = (-)j f o r j € { 2 n -2 } I 

8nJi = -d'h^ = ±1, (n even); 5^^]^ = = ±i, (n odd). J 

(These will be used in constructing part of the double soliton tau functions, and may be 

attached to the Dynkin diagram in the foresaid manner:) 

Again, a general tau function can be conjectured for the double soliton solution such that 

the ansatz (3.01) holds and that the other tau functions possess interaction terms with 

orders of the exponential terms up to nj(T'^>+T'2)). Similarly, it will be required that such 

functions approximate the single soliton tau functions when the constituent solitons are 

widely separated and the local proximity of one of them examined. The substitution of such 

a general solution into the equations of motion (2.18) again gives rise to tau functions of a 

similar type to those that appeared in d '̂̂ ': 

X 0 = 1+fl+f2+AC2)fif2 

= 1 ^ O ^ C ^ ^ - ^ i S f ^ X K e ) . f . f 2 + 

< • S ^ A ' - ' f i f l . 8 |><- . f?f2 . 8 £ 8 g A ( - ) = . f^fr . -

Xn-1 = 1 ^ C . h ^?^X.h +6 ' ; \ , , ,8 ' : \ , , A'i2.f,f, 

X„ = 1 +8l,;Vl +8n!2,f2 +6i,;\8<„]^,A'12>fif2 

Here, all the 8/' 's are those that appear in the relevant single soliton solutions (two 

paragraphs above) and again, X2(e) is given by the formula (3.16). S o it can be seen that all 

the members of the d„'^'-Toda field theories have common features when considering the 

form of their tau functions. 
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The double solitons can be separated into distinct c lasses , in particular they can be taken to 
be (k,'k') = {Xa,Xb), (Xa,2) and (2 ,2 ) . Parameterization with respect to © is again utilized 
and also the quantity 5 p (2 <j < n - 2 ) forX = Xa is given the label ri/̂ > in order to shorten the 
expressions in the interaction quantities. The calculations to obtain the interaction pieces in 
each of the three c a s e s will be given in elaborate detail since they require the solution of 
difference equations which have particulariy interesting properties. It will suffice to say that 
such properties allow relatively simple expressions for the remaining interaction pieces in 
the double soliton solutions to be obtained as will now be seen . 

(X^.X,) 

After the substitution of the double soliton ansatz into the equations of motion, consistency 

requires that the basic block A'^^' must take the form: 

^(12) ^ (Pi • P 2 ) ^ + (Pi •P2)A + B 
(pi • P 2 ) 2 - ( p i •P2)A + B 

where A = - l ( - 8 +4p? + 4p^ + 2TI2' nf^) 

and B = - l ( r l ^ ^ ^ ' ' ^ ( 4 - p ^ p ^ ) - 4 ( 4 ^ ^ ) 

which, after a somewhat lengthy trigonometric manipulation and parameterization, with 

respect to rapidity difference, gives the interaction piece as: 

^,12) ^ ch2Q + c h 0 ( - 2 s i n e a S i n 9 b ) + (1 - s i n ^ B a - s i n ^ e b ) 

ch2© + ch0(+2s ineaS ineb) + (1 - s i n ^ e a - s i n ^ G b ) 

(ch© + cos(Ha + eb))(chQ - cosCGa - e b)) 
(ch© - cosCGa +Gb))(ch© + cos(Ga - Gb)) • 

(3.25) 

Hence, it is easily seen that the poles of A'̂ '̂ occur at rapidity values of © = ^^^^^ and 

i7i(h + a - b ) ^ which, before going any further, may be noted to correspond to the fusing 
h 

values of rapidity difference for the real coupling particles. 

The calculation of the remaining interaction pieces, that is, the X|,(©)'s involves the solution 

of a difference equation which can then be matched with the boundary conditions X, and X^; 

(X, is obtained, as it were, backwards through the difference equation involving X^, X3, and 

is utilised because of its simpler form when compared with the form of X3). 

The difference equation takes the following form and at first sight appears formidable: 
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2Xn+i+2X,^i-fH(e3,eb,©)-Xn = 

^LV-fw(e3.eb,©)-2(Tii: ' ,Vn-'i 0 .26) 

where 

f(+) = (4 -8s in2e3-8s in2eb±16s ineaSinebCh©) . (3.27) 

Fortunately, this inhomogeneous equation can be solved relatively easily by rewriting the 

inhomogeneous part using several trigonometric identities. After much reshuffling it can be 

written in the form: 

2cos((2n-1)(ea+b))- {16 taneataneb(ch©-cos(ea -b ) ) }+ (3.28) 

2 cos((2n - 1 )(ea-b)) • {16 tan Ba tan 0 b(ch0 + cos(ea+b))} • 

Hence, a particular solution to the difference equation which has the form 

an = a ^ e a , O b , 0 ) • cos((2n - 1)(ea+b)) + a-(e3,Ob,0) • cos((2n -1 )(ea-b)) (3.29) 

may be sought, which gives 

a . = 2 s e c 9 3 s e c e b ! " ' ; ® ^ ' ^ ° t - : ^ i . (3.30) 
(Ch0 + COS(ea±eb) 

However, in the full solution to the inhomogeneous difference equation (3.26), it is found 

that the homogeneous part can not be written in a closed form purely involving a function of 

the form ch(k0) . Fortunately, however, an extremely lucky fact occurs, since a comparison 

with the boundary conditions X i ( © ) = 2A'^2) +2 and X2(0) (equation (3.16)), reveals that the 

solution to the homogeneous part plays no role in the final solution of the difference 

equation and that the functions Xk(0 ) = ak(ea,Gb,0) for all k e {2 n - 2 } . 

Re-examining the basic block A"^>, it can again be seen that the function can be written as a 

quotient of sinh functions: 

ch(-® j.!<£l5>IL-\chC® il±:^^ch/•® J.i^!!l!ll^^chC® i(h+a+b)7i, 
Arl2^_^"^2'^ 2h ^"''^2 2h ^^"4 2h >^"^2 2h > (2 3^) 

. ,e i(a+b)7t . e iia+b)7î ^ ,̂̂ 9 , i(h+a-b)n^^ ,̂̂ 9 i(h+a-b)7i, ^ " ' 
^"(•I ~2h~^^''vY 2h~^S'H 2 + 2f; )^"(2 2h f 

where the Coxeter number h = 2 ( n - 1 ) for d„<''. Again this may be written in terms of the 

new notation with o = e s e n :-

^(12) _ Szk Zh-a+b^ â+b̂  ~̂  ^2h-a-b^ ~̂  ĥ+a+b j ^h-a-b^ h+a-b^ ^^h-a+bj ^ (3 32) 
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Similarly, it can easily be seen that the arguments of such functions are integers if a, b are 
both even or both odd (or equivalently coloured the same), or they are half integers. 
2.3.3(ii) {X,,2) 

This case is by far the simplest of the three, since substitution of the general ansatz into the 

equations of motion (2.18) merely results in consistency at all orders if Xk(0) = O for 

1̂  e {2 n - 2 } and the basic interaction block A'̂ '̂ is given by the following: 

c h 0 - s i n e a A(12) = 
che + sinej 

_ sh(f + f (3(n -1 )+a) ) • sh(f - ^(3(n - 1 ) + a)) 

sh(f + ^ (n -1 + a))sh(f - ^(n -1 + a)) 

= ( n ^ ) ( l L d ± a ) - ^ 3 ( n ^ ^ ( 3 ^ ^ 3̂ 33^ 

Hence, the question as to whether the arguments of the (x) blocks are integers or 

half-integers depends on the algebra and also which point of the Dynkin diagram is being 

considered. 

2.3.Wi) 0^ = 2, X'= 2) 

Again, in this case the determination of the X„(0)'s requires the solution of a difference 

equation. However, here the equation is homogeneous and the solution to it may also be 

written in a neat closed form. The difference equation under consideration is given by: 

Xk+i+(Pi •P2)Xk + Xk-i =0 

which may be solved in the standard manner. Rewriting in terms of the rapidity difference 

and using the hyperbolic version of De Moivre's theorem, 

(ch0 ± sh©) I' = ch(k0) ± sh(k©) 

results (after comparison with the boundary conditions X,(©), X2(0) as above) in the 

interaction pieces, 

Xk(©) = 2(-)'<-i- A(12). 
^Sh((2!tl)0)^ ^ c h ( ( ^ ) 0 ) ^ 

ch(| ) . 
(3.34) 

a formula which is true whether n is odd or even. 
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Finally, the calculation of the basic interaction piece A'̂ '̂ reveals that it is dependent not 
only on the value of n, but also on 8^^\ and 5„'''. This may then be substituted into (3.34). 
What is found is that the functions are given by: 

^^,,^ch((V)e)sh(f) 
sh((]]^)e)ch(f) 

for (n odd, s'nVs'nV = +1; n even, s'nVsfij' = -1) 

, . , .sh( (V)e)sh( f ) 
Ch((^!^)0)ch(f) 

for (n odd, S îVsfiV = -1 ; n even, sLVsLV = +1). 

Hence, they give rise to the following interaction pieces: 

X,Me) = 2H'\ A (n odd, 5̂nV5<nV = +1;...etc...) (3.36a) 
sh((-5-)fc))cn(-5-) f 

odd, 8[,V5̂ ,2' = -1 ; . . .etc..) (3.36b) 

Therefore, all the rapidity dependent interaction pieces have been found in order to form a 

consistent double soliton solution to the equations of motion. 

Before examining the fusings it may be noted that the pole structure of the A"^''s in this case 

is a little more delicate than may first appear, due to a couple of cancellations in the 

numerator and denominator of these functions. In case (a) the © = 0 pole and zero cancel 

for all values of n and is supplemented in the 'n even' case by the cancellation of the '\n' 

pole. For n odd, an 'in' double pole remains. All the poles at their respective rapidity 

differences may be listed as follows: 

0 = ^ , ^ (i7i)x2, :fornodd 

= 2 ( n - 1 - a ) ^ where a = 0,2,4 n - 3 (n odd, a even); 

1 ^ - ^ " 

= 2(n -1 - a)^ where a = 1,3,5 n - 3 (n even, a odd). 
h 
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In case (b), the reverse of the above occurs in the sense that the 'in' pole cancels with an 
equivalent zero for n odd, whereas in the case n even a double 'in' pole persists. The poles 
exist at rapidity difference: 

0 = ^ , % i - l ^ - i ' ^ :fornodd 
h h 2 (n-1) 

= 2 ( n - 1 - a ) ^ where a = 1,3,5 n - 2 (n odd, a odd); 

0 = ^ , ^ (i7i)x2 :forneven 

= 2 ( n - 1 - a ) ^ where a = 0,2 n - 2 (n even, a even). 

Hence, (3.35a) may be written in the following manner (with similar expressions holding for 

(3.35b)) the proof of the equivalence of the formulae being completed by induction: 

f 4 s h ( f - | ( n - 2 - a ) ) s h ( f + > - 2 - a ) ) 
A(12) = Yi — ^ - r ^ - r for n even (3.37a) 

i f sh( f - ^(n - 1 - a))sh(f + H(n -1 - a)) 
step 2 ^ " ^ " 

" 4 s h ( | - ^(n - 2 - a))sh(| + ^(n - 2 - a)) 
^ '^ =11 n ' ^ f for n Odd (3.37b) 

to sh ( f - ^(n -1 - a))sh(f + H(n _ i _ a)) 
step 2 ^ " ^ " 

Hence, as in all previous cases, the interaction piece can be written as the product of sinh 

functions. The double pole in '\n' in the second expression has been disguised again using 

the periodicity property of the sinh function. 

For the sake of clarity at this point, it may be prudent to give a simple example - specifically 

that of the affine algebra dj'^' with sŷ ĵ Sg]̂ ^ = +1. From (3.37b) the interaction block A'''> may 

be seen to be written as, 

ch(2©)sh(|) 

sh(20)ch(f) • 

This may then be rearranged systematically (since n is comparatively small in this context) 

using the facts that chx = ±jsh(x + ^ ) and sh2x = 2shxchx. Alternatively, the above 

formula for general n (with n = 5, h = 8) gives, 

^02) . S h ( f + f ) S h ( f - f ) S h ( f + f ) S h ( f - f ) 
^ ' • e , in̂ ^̂ ,<•6 î ^^ ,̂/e izi\^h/-0 m\ Sh( f + ^ ) S h ( f - f ) S h ( f - f ) S h ( f - f ) 
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3.3.4 The Fusing Rules for d„'̂ ', (n > 5) 

The fusings of the solitons again correspond with those of the real coupling particles and 

may be treated on a case-by-case basis. Additional 'in' poles always appear in the soliton / 

antisoliton A'̂ '̂ interaction functions. 

3.3A(i) (Xa.^b) 

From (3.31) it can be seen that the poles occur at rapidity differences 0 = i(a + b)^ and 

i(h + a - b ) ^ in the physical strip. Following the shift in the arguments of the exponential 

terms the coefficient of the f,f2 term in for 2 < k < n - 2 becomes, 

X r«^A(i2r^ = 2C0S((2k-1)(Ha^b)) f ch© + cos(ea-b)^ 
^^^^'"^ COSBaCOSBb • U h 0 + COS(ea+b)^ 

^2cos((2k-1)(9a-b)) rCh©-C0S(9aib)^ 
COS 9 a COS Gb 'lch©-C0S(9a-b)>' 

Hence, evaluation of this quantity at the rapidity values i(a + b)^, i (h+a-b)^ gives Ti[f̂ ''̂  

and Tik'̂ '̂ "̂'" respectively. Therefore, the fusing of the double soliton solution corresponding 

to (X,, X^) results in the single solitons corresponding to (X^^ ,̂ at the respective 

imaginary rapidity differences above. If a = b there is an 'It:' pole in A''^', this corresponds to 

an annihilation of the soliton and antisoliton (since 'a' is self-conjugate) resulting in a trivial 

solution. 

3.3A(ii) (Xa,2) 

This case is by far the simplest because of the nature of the interaction terms. The 

interaction block A"'̂ ' possesses poles at ch© = sin(9a+7r) = cos(|^ + ea) , that is at the 

rapidity difference, © = -̂ Ĉn -1 + a). 

Since Xk(©) = 0 for 2 < k < n - 2 it can be seen that the fusing results in tau functions of the 

form, 

T0 = 1 + f 3 , T l = 1 - f 3 

Ti, = 1 + ( - ) K . f 2 2 < k < n - 2 

X n - 1 = 1 + C - ( - ) ' - f 3 
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X , = 1+8 'n '> - ( - )^ - f3 

where 

Examination of the cases n even, n odd, then reveals exactly the same fusing structure that 

is found, for example, in Braden et al.'^' for the real coupling particles. 

3.ZA(iii) (X = 2,X' = 2) 

The pole structure of the two cases of A"^' that appear through the calculations has already 

been dealt with, but summarizing, the poles occur at ©i^' = 2(n -1 - a ) ^ where, 
h 

a = 0,2,4 n - 3 (n odd, s'nMV = +1); a = 1,3,5 n - 3 (n even, 5i,V8i,V = -1); 

a = 0 ,2 ,4 , . . . ,n -2 (n even, s'nXl, '= +1); a = 1,3,5 n - 2 (n odd, 5'nV6{,V = -1). 

From (3.34) it may be seen that for all n and values of 8„'"; 

sh( (2! | l )2 (n-1-a) (H) ) 
Xk(©)A(^2r^ = 2 ( - ) ^ - ^ — — 

V 2 ^ n 'y 

which again may be re-written using some trigonometric identities as 

2(-)''-1 • i • Ch((2k - 1 )ea) ^ 2 C0S((2k - 1 )ea) ^ ^(a) 

i • ch(ea) cose. "^1^ 

where the notation Ba = i8a has been adopted. 

From consideration of the individual cases that arise in this example, it is apparent that 

SnVSnV = (-)^ and hence, the following fusing rules are obtained using the notation of [5]. 

For n odd V = 5", and for n even "s = s , s ' = s^" (that is, they are both self-conjugate) it is 

again seen that the fusings of the real coupling case are supplemented by 'soliton and 

antisoliton' annihilations. 

n odd (s^ = 5). 

ss' ss , s's' 

0 i i 

a even a odd 

+ 

n even (s = 5) 

ss, s's' ss' 

i i 

a even a odd 

+ 

where, for n odd: 5l,V5'nV = +1 = s s ' 

11 On2 =-1 ^ s s . s V 

n even: SnVSnV = +1 s ss, s ' s ' 

Oni On2 = - 1 = SS' 

{0} {0} 
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3.4 Solitons for Ge'̂ ' 

For this algebra, the affine Dynkin diagram has been labelled with respect to the extended 

root system in the following manner, 

9ao{1} 

6cx6{2} 

a% ^ } ^ } ^ } 

and correspondingly, the Kac labels associated with these roots have been bracketed next 

to the root labels. The non-zero eigenvalues of K^^ for this exceptional Lie algebra again 

reflect the symmetry embedded in the unextended diagram corresponding to the finite 

algebra and are given by X^ =7^5 = 3- J3 , X2=U = 3+ J3 , X3=2i3+j3) and finally, 

X.6 =2(3- y s ) . With such a labelling of the root system, the equations of motion for this 

algebra are. 

f(To) = m2(X6-Xo), f(T6) = 2m2(X0T3-Ti), 1 

f ( T l ) = m 2 ( T 2 - T ^ ) , 

f (T5) = m 2 ( X 4 - T ^ ) , 

f (T2) = 2 m 2 ( T l T 3 - T ^ ) , 1 (̂3.38) 

f (T4) = 2 m 2 ( T 5 T 3 - T ^ ) , & f(T3) = 3m2(T2T4T6 - T ^ ) , J 

and display the threefold symmetry of the extended diagram. The Coxeter number h = 12 

for eg. The equations of motion may be solved consistently to all orders to give the single 

soliton solutions of the form (2.20) which, as usual, can be associated with the spots on the 

Dynkin diagram through 6j'". 

X = 3±j3 : 

To = 1-1-6"*' 

T i =1 -t-o-e"^ 

T 2 = 1 -l-(2-X)a).e"J'-(-ffl2.e2H' 

T3 = 1+e3'i ' 

T S = 1-(-CD2-e"*' 

x6 = 1+(2-?.)e*-(-e2*, 

k = 6±2j3 : 

To = 1 -i-e"*' 

T i = 1 - H e * 

•c2 = ^+(2-X)e'^ + e2'^ 

T^ = ̂ +3iX- 3)e"J' + 3(X - 3)e2"^ -i- e^* 

x4 = 1+(2->.)e''' + e2"'' 

r6 = 1+(2-X)e'^ + e2'*. 
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The other two solutions corresponding to the eigenvalues X = 3±j3 are obtained through 
the exchange symmetry, co ^^co^, where co is defined to be the primitive third root of unity. 

As in the previous algebras a general tau function can be conjectured for the double soliton 

solution with the premiss that the ansatz (3.01) holds and that the tau functions are required 

to take the approximate form of the single soliton tau functions when the widely separated 

double solitons are observed locally. The substitution of the general form into (2.18) 

similariy gives rise to tau functions with a form of symmetry when the 5/'''s are taken to be 

the coefficients that occur in the single soliton solutions. Specifically, double soliton tau 

functions of the following form are obtained, 

x . = 1 . 5 ^ ; . f , . 5 ^ ; , . f 2 < 5 ^ ^ , . A ( - ) . f , f 2 

X2 = 1 +5^ ;̂, -fl +5g , - f^+Sg, .f2 + 5 g , . f i+X2(0 ) - f l f2+ 

X3=1 +5<;\ • fi + 5 g , • f?+f?+5<3;;, • f2+5^^;. f |+f |+X3(0) • f if2+ 

+Y3(0)(f?f2 + f 1 f^ + X3(0) • An2 ) . f2fI + 8^;!, • An2) . f 1 f| + 8^^;,. AOZ). f?f2+ 

• • f ^ f ^ s g , . A(12)^. f?f^ + A(12)^. f?f| 

X , ,ig. similar form to x̂  with 8̂ '̂ ^ ->'S4lj,.56j|, and X2 -»-X4,X6 respectively. 

X j , Xq: similar form to x, with 8!,'ĵ  ^ 8̂ '̂ ,̂ 8[)'J.̂ , such that 8gjj = 1 is understood. 

Hence, the tau functions display the characteristic three-fold symmetry of the extended 

Dynkin diagram. 

Only one interaction term is required for the f,̂  f̂^ terms in X 3 . This fact follows via the equa­

tions of motion, as a direct consequence of the fact that 83' =83 '̂ for each single soliton 

tau function. 

Again, the double solitons can be separated into classes in order to list the interaction func­

tions, in fact these may be taken to be, {X,X') = {6±2j3 ,Q±2j3), {Q±2j3 ,3± J3) and 

(3± ys ,3± y s ) respectively. The interaction terms X3(©),¥3(6) are expressible in terms 

of A''^', but these expressions are of no apparent importance and will be omitted; only the 
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explicit form of these functions will be given in each case. Of course, all the expressions 
could have been collectively left in terms of c h 0 , k, in each case, but because of the fact 
that the number of subcases is comparatively small for this algebra when compared with the 
other two simply-laced exceptional algebras, the explicit expressions for all the interaction 
terms for all cases will be given. 

ZA.O(i) (X = 6±2j3 ,X' = 6±2j3) 

The interaction terms for consistency at all orders of the equations of motion were found to 

be given by the following (where the fact that ^(k^-6X+6) = 3(k-3) proved to be of great 

use): 

(a) X = X' = 6 1 2 7 3 : 

(̂12) _ (ch© -1 )(2ch© -1 )(2chQ + J3 ) 

(ch© +1 )(2ch© +1 )(2ch© ± 7 3 ) ' 

and X3(±,(©) = ±9 

^ ^ (28 ± 16 )ch©(4ch^© + (2 + 3 73 )) 
" (ch© + 1)(2ch0 + 1 ) (2ch0±y3) 

= X4(,)(©),X6,„(©) 

'A(t)Ch^© + B(±)Ch^© + C(±)Ch© + D(±) 

. (ch© + 1)(2ch© + 1) (2ch©±y3) > 

'A(±)Ch^0 - B(±)Ch^0 + C(±)Ch© - D(±) 

. (Ch0 + 1)(2ch0 + 1) (2ch©±y3) Y3a,(0) = ±9 

where 

A(±) = 12(473 ±7) , B(±) = 2(1973 ±33), C(±) = -3373 +58, D(±) = -2573 +44 

It may be noted that there exists the symmetry 3<-^-j3 in all the above expressions when 

X = 6 + 2j3 <^X = 6-2j3 . 

(b) X = 6 + 2 7 3 . X' = 6-2jZ : 

( 2 7 2 ch0 - (1 + 7 3 ) ) (272 ch© + (1 - 73 )) A(12). 

X2(©) = 

( 2 7 2 ch© + (1 + 7 3 ) ) (272 ch©-(1 - 73 ) ) ' 

32ch^©-40 
( 2 7 2 ch©+(1 + 7 3 ) ) (272 ch©-(1 - 7 3 ) ) ' 



and X3(©) = 18 

Y3(©) = 18 
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^ Ach2© + Bch© + C 
V(272 ch© + (1 + 73 ))(272 c h © - ( 1 - 73 ))y 

^ A c h 2 © - B c h © + C 
. ( 2 7 2 ch© + (1 + 73 ))(272 c h © - ( 1 - 73 )), 

where A = - 1 2 , B = -2j6, C = 5. 

Again X2(©) = X4(©) =X6(©) in this case. 

2A.0(ii) (X = 6±2j3,X' = 3±j3). 

Here it is found that many of the interaction terms disappear when consistency at all orders 

is required, specifically that both functions X3(©) = Y3(©) = 0 . It was also found advantage­

ous to introduce the notation used in'^', with respect to the masses of the particles and util­

ized in the classification of the double soliton interaction terms. This was not necessarily 

required but is used to emphasise the degeneracy of the A, = 3 ± 73" solitons. The equations 

of motion for the algebra also reveal that X2(©) = 8̂ ]||5̂ ]̂ ^ •X6(©) and 

X4(0) = ^4(1)84(1, • X6(©). Hence, these quantities are merely, (co/co2)X6(©), where the coeffi­

cient is subcase dependent. 

(a) X = 6 + 2 7 3 , ?. ' = 3 + 7 3 : 

^(12) ^^(12) ̂  ( 7 2 c h © - 1 ) ( 2 7 2 c h © - ( 1 + 7 3 ) ) 
( 7 2 c h © + 1 ) ( 2 7 2 c h © + (1 + 7 3 ) ) ' 

X6(©) = 4 ( 1 0 + 6 7 3 ) ( c h 2 © - ( 5 - 7 3 ) ) 
^ ( 7 2 c h © + 1 ) ( 2 7 2 c h © + (1 + 7 3 ) ) ' 

(b) ?i = 6 - 2 7 3 , ?. ' = 3 + 7 3 : 

^(12)^^(12) ^ 2 c h © - ^ ^ 2 (273 -2)ch© 
2 c h © + 7 3 2 c h © + 7 3 

(c) X = 6+2j3, X' = 3-JJ : 

^(12, ^ ^ 0 2 ) ̂  2 c h 0 - ^ ^ 2 ( - 2 - 2 7 3 ) c h © 

2 c h © + 7 3 2 c h © + 7 3 

(d) ?t = 6 - 2 7 3 , >.' = 3 - 7 3 : 

^(12) ^ ^(12) ^ ( 7 2 c h 0 - 1 ) ( 2 7 2 chQ-(1 - 7 3 )) 
( 7 2 c h © + 1 ) ( 2 7 2 c h © + ( 1 - 7 3 ) ) ' 

X6(©) = - 4 ( 1 0 - 6 7 3 ) (ch2©- (5 + 7 3 ) ) 
( 7 2 ch© + 1 ) ( 2 7 2 c h © + (1 - 73"))' 

(That is, these are obtained by 7 3 7 3 in the case, X = 6 + 2 7 3 , X' = Z + j3). 
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3.A.0(iii) (,X = 3±j3,X' = 3±/3) 

This set of calculations may be split into two sub-sections, those that have.Si^'^ = sVjz, 

those with S^^l, = § 1 ^ , . where A denotes the complex conjugate of A. These double soliton 

solutions may be pictorially represented by the following, where the number label represents 

the spot of the Dynkin diagram with which the soliton is associated and the 'mass notation' is 

given below. Any line joining two such points represents a possible double soliton in each 

case: 

1 

(I 

2 

h 

4 

h I) 

(b)5V,\=5V (2) 

Again, X2(©) = 8 ]̂J, • 5̂ ^̂ 5jX6(©) and X4(©) = 8 ]̂Jj • 5yj^^X6(0) in all of these cases where X6(0) 

is given by the expression (?). The interaction terms can now be merely listed using the 

mass notation. All these terms again appear as polynomials in the basic block A'̂ '̂ with 

coefficients that are functions of the rapidity variable, that is, more precisely, 'ch©'. 
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(a) Abb -Ap5; -
(12) _ A (12) _ 4ch©(ch©-1) 

(2ch© + 1)(2ch©-Hy3)' 

^(12) ^ ^(12) ^ 4ch©(ch©-1) 
" " (2ch© + 1 ) ( 2 c h © - y 3 ) ' 

(that is J3 -^•-<j3\n the above expression), 

( c h © - - i ^ ) ( c h © + - ^ ) 
and A|h -Aj j ; - _ jj . 

(ch© + ( l | - ) ) ( c h © + ( i i = l ) ) 

From these are obtained, 

4(44-273 )ch 2 © + 2(1 + j3)che-2(3 + 2j3) 
X6(©)hh=X6(0)hh = 

(2ch© + 1)(2ch©+y3)' 

X6(©)ii=X6(0)n = [ y 3 ^ - 7 3 in the above], 

-2(ch© + ( 4 # l ) ) ( c h © + (4#!:)) 
X6(©),h =X6(©)ib = f̂̂ = j f f ; 

(Ch0 + ( ^ ) ) ( C h © + ( ^ ) ) 

finally, 

X3(©) = 0 for all pairs (h, h), (h, h), (I, I), (1, i), (I, h), (i, h). 
and 

18 + 973 
Y3(0)hh=Y3(©)Hh = (2ch© + 1)(2ch© + 7 3 ) 

Y3(©)ii = Y3(0)ii = 173 ^ - in the above] 

Y3(0),h = Y 3 ( © ) i H = ( 2 7 2 c h © + ( 1 + 7 3 ) ) ( 2 7 2 c h 0 + ( 7 3 - 1 ) ) -

(b) The interaction tenns are given by the following: 

(12) ^ ( 2 c h 0 - 1 ) ( 2 c h 0 - 7 3 ) 
hh 4ch©(ch0 + 1) 

A,y^' = [ 7 3 - » - 7 3 in the above], 

, (12. , . 2 ) (che-(^))(che-(|=l)) 
'h Ih (ch©- - l . ) (ch© + - ^ ) 

and from these are obtained 

(4 + 2 7 3 )ch20 + (-1 - 4 ) c h 0 + (-f - 7 3 ) 

^^^^^•'K - ch©(ch0 + 1) 
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X6(0)|j = [73 ' - ^ - 7 3 " in the above] 

- 2 ( c h 0 - ( 4 ^ ) ) ( c h 0 - ( 4 l ^ ) ) 
X6(0)|R=X6(0)lh = — ^ 

( C h 0 - - ^ ) ( C h 0 + - ^ ) 

and finally. 

Y3(0) = 0 for all pairs (h, h), (1,1), (I, h), and (I, h) 

v r f i^ _ _ l 8 + 9 7 3 _ 

X3(0)|j = [ 73 ^ - 73" in the above] 

X3(©)iH = Y3(0)jh = — = =^-7= . 
2 ( 7 2 c h 0 - 1 ) ( 7 2 c h 0 + 1) 

Hence, it can be seen that there is a substantial amount of symmetry displayed between the 

interaction quantities of the two subcases. Namely, there are (-) sign shifts in the odd 

powers of (ch©) in the numerators of the interaction pieces X6(©) and slightly different to the 

previous cases, the numerators of the two sets of interaction terms X3(©), Y3(©) are 

swapped between subcases (this is similar to the Coxeter rotated simple roots using the 

symmetry of the Dynkin diagram - see Appendix A). 

All the interaction terms A<'̂ ' that appear in cases (i),(ii) and (iii) may be written as products 

of sinh functions, as has occurred in all the other cases so far. Since these expressions are 

quite lengthy and not of direct importance (other than their existence) the quantities A<'̂ ' 

Shall only be listed in terms of the notation (x) where co is now taken to be e = e e and not 

to be confused with the third root of unity used in the single soliton solutions. They will be 

listed in an appendix to this chapter. 

3.4.1 The Fusing Rules for ê '̂ ' 

All the fusions possible for the double solitons either correspond to those appearing as three 

point couplings in the real coupling classical particle theory or, those that do not, can be ex­

plained away as 'annihilation' couplings of soliton - antisoliton. The latter always occur at 

rapidity difference '\n'. Namely there are HH, LL, ll, hh annihilations, the first two of these 

due to the fact that the particles/solitons are self conjugate in the classical theory. The fus-
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merely result in the production of the trivial field associated with the zeroth spot of the 

extended Dynkin diagram. 

3.4.2 Appendix 

Here is the list of interaction quantities A<'̂ ' for eg*", written in terms of the notation (x): 

(i) 

(ii) 

Ail^' = 

(12) 
Hh.Hh 

(12)_ 
Lh.Lh 

(1 )±1 (2)+i (4)-i (5)+i (6)-2(7)+'' (8)-i (10)+i (11 )*•• (12)+2 

i^^' i^r (|)-̂  {^V (f (f {fy' ifr' 
=(1)̂ ^ (f (f )-̂  i^r' (f )-̂  (f )-̂  ('ir' ify' 

- a 2 , ' U ( 1 ) - V 5 ) - V 7 ) - V 1 1 ) +1 

AL I u - (f (f)-̂  dr' dr' (f i^r' i^r' i^r' 

(iii)(a) A (12)_ 
hh.hh 

^ii,n -

(iii)(b) A 

v(12) _ 
^Hh.Hh 

(12) _ 
hh 

Al^^U 

a(12) _ 
'^Ih.ih ~ 

2-' '-2' ^2-' ^2-" ^ 2 - ' ^ 2 ' ' 

= (0)+2(3)+i(4)-i(5)-i(7)-i(8)-i (9)+i 

(0)+2(1)-i(3)+i(4)-i(8)-i(9)+i(11)-^ 

(1 )+i (2)+i (3)-i (6)-2 (9)-i (10)^1 (11 )+i 

(2)^1 (S)-! (5)+i (6)-2(7)+i (9)-i (1 Or^ 

(1 ) .1 ( |L) -1 (^).1 

^ (3.39) 

3.5 Solitons for ê '̂ ' 

The extended Dynkin diagram corresponding to this affine algebra is given by the following 

(where again the Kac labels associated with the extended root system have been bracketed 

after the root labels): 

an 

Q0Lj{2} 

a . 
{1} {2} {3} {4} {3} 

^5 
{2} {1} 
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The non-zero eigenvalues of the matrix K̂ j are given in this case by: 

X i = 8 73 s i n ( : ^ ) s i n ( f ) , x,=8s\n'[^) & ^2 =8sin^(j) =6 

X3 = 873 s i n ( ^ ) s i n ( ^ ) , ^6=8s in2( | ) 

^5 = 873 sin (f|) Sin (|), ^7=8sin<f) 

With such a labelling of the extended root system, the equations of motion take the form: 

f(X0)=1 •m2(Xl -xg) , f(X6)=1 •m2(X5-T i ) 1 

f(xl) = 2-m2(X0X2-X?), f(X5) = 2-m2(X4X6-xi) I 

f(X2) = 3-m2(XiX3-T^), f(X4) = 3-m2(X3T5-x5) } (3.40) 

and I 

f(X3) = 4-m2(X2X4T7-T§), f(X7) = 2 • m2(X3 - T )̂ J 

The symmetry of the affine diagram is manifestly portrayed in the first six of these 

equations under the substitution, 0 <-> 6, 1 •<-> 5 , 2 4 . The equations may be solved to 

all orders to give single soliton solutions for each eigenvalue. These take the following 

form: 

^4 ,6 ,7 -

Xo = X6 = 1 + f , XI =X5=T7 = 1 -4 f + f2 

X2=X4=(1+0^> X3 = (1+f)' ' 

Xo = X6 = 1-Hf, T1 = X 5 = 1 + ( 2 - ; . ) f + f2, X7 = 1+2(X , - 2)f + f2 

X2 = X4 = 1 + ^(^2 - 6>. + 6)f + 1(̂ .2 _ ^ g)f2 + f3 

X3 = 1 -(?,2 _ 6 X + 8)f+2(2>.2 -9X + 9)f2 - ( X ^ -6X + 8)f^ + f 

Xo = 1+f, X6 = 1 - f 

Xl = 1+(2-> . ) f + f2, X5 = 1 - ( 2 - ? L ) f + f2 

Z2 = ̂ +^(X^-6X + 6)f +1(^2 - 6>. + 6)f 2 + f3 

X4 = 1 -1(>.2 - 6X + 6 ) f + ^ ( X 2 - 6 X + 6)f 2 - f 3 

T3 = 1 + 2 ( X - 1 ) f 2 + f ' ' 

X7 = 1 - f2 
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and display the characteristic symmetry of the soliton solutions which appears due to a re-
scaling of the fields. That is, if ni< = 3 then sl,^-=+8[, '̂, 8^°' = ±6l, '̂ and if nk = 4 then 

o(1) (̂3) s r f O l . i : * ' ' ) 

All the non-trivial eigenvalues satisfy cubic polynomial constraints which are given by: 

X^-'i2-X^ + 36-X-24 = 0 for A. e { ; ^ 4 , ^ 6 , ^ 7 } (3.41a) 

X^-^8•X^ + 72•X-72 = 0 for Xe{X^,X3,X5) (3.41b) 

These characteristic polynomials are essential in simplifying the otherwise unwieldy ex­

pressions that appear for the 8/'>'s which result from the order-by-order check. 

For this affine algebra the double soliton tau functions take the following form; again this 

results from the substitution of a general ansatz into the equations of motion. (The 8/'''s are 

similariy the coefficients that appear in the single soliton solutions.) 

xo = 1+5 tV f i +5^ ;> . f 2 . 8 [ , ;X -A '^^ ' - f i f 2 

xi = 1 +5;,],. U +8(,;\ . f? + 8Vi • f2 +8'5,. f^Ai(0)fif2 +8';\8'5,. A ( 12 ) . f , f 2+ 

X2 = 1 +8^,;,. fi + 5 g , . f ^ 8 g , . f ? + 5^;j,.f2 + 5 g , . il +8g , . I l + A2(©)fif2+ 

B^'\©)f?f2 + (©)f 1 f̂  + C2(©) • A(12). f2f2+ 

4;!,5S,A'^^*.f1f| + 5g,8g;.A(-)^f2f3 + 5^^|,5<;>^ 

5S,5g ,A'- '^f?f^5^;*,5^^).A(-)^f3f3. 

X3 = 1 +8y,;;i + 8 g ; 2 5̂(3_)̂ f3 ^5(2)̂ ^2 + sg ; | + f̂  + A3(0)f^f2 + 
B < ' \ © ) f 2 f 2 + B^'\©)f 1 fi + C 3 ( © ) f ?f i + D3(©).(f3f2 + f 1 f3)+ 

BfA(12)f3f2+B^''(©)A(12)f2f3+A3(©)A(12)=f3f3 + 5(1)̂ A<12)fif2̂  + 

S'̂ j A(12)̂ f2f4 .,5(3) A(12)3f3f4 +5(;U(12)f4f3 + A(12)̂ f̂ f2^ 
( 1 ) " '1'2-"3(2,"- •'1'2-r^3,2)' 

5(3)̂ (̂12)3̂ 4̂ 3 ^A(12)\f4f4 _ 

T , : similar form to x^with 4'̂ , ^5^;^^ and A2(©), B'2'̂ (©), C 2 ( © ) A 4 ( © ) , B^''(©), C4(©) . 

x„ x,: similar form to x, with s!,'̂ ^ -» 8̂ '̂ ,̂ s'̂ 'Ĵ  and Ai (©) ^ As(©), A7(0) respectively, 

Xg: similar form to x̂  with 8[̂ ^̂  d'e^^, 

where the following constraints also hold: 
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c-(1) =.(1) j - ( l ) c-d) 

= JSf • A i (®) - • A i (0), A4(©) = » . A2(©) . 5y>y) . A2(0), 

and similariy, 

g(2) c.(1) g(1) g(2) 

^ ( ^ " I ( 2 ) 7 0 r 2 (0) = 56,2,-B2 (0). B4 (©)- (1) (2) •B2 (0) = 86(i,-B2 (0), 

also, 

g(2) g(2) g(2) g(2) 

c ^ ( ® > = i r r i ^ • - A2(0) C 4 ( 0 ) = • A4(0) - sŷ ŝy A4(0)=A2(0) . 

Hence, the set of tau functions display the two-fold symmetry associated with the affine 

Dynkin diagram. (As they should do, being solutions to the series of equations (3.40)). 

The remaining interaction functions may now be listed in a case-by-case manner, where the 

separate cases refer to the 'groupings' of the eigenvalues X^ which were utilised in the single 

soliton solutions. 

An interesting pure-mathematical problem concerning the subject of finite field extensions 

arose in the derivation of the quantity A'̂ *̂ for the case of X,X' e A.3,;^5}. This has 

been commented upon in the following listings. 

In all the cases where X-X' any degeneracy reflected by the presence of an upper index 

disappears and hence, accordingly, such functions will only be noted once. For example, 

By^(0) = Bf\&) will be written as BaC©). 

Moreover, a specific pattern occurs throughout particular interaction terms in the soliton sol­

utions, and this is true in all cases. (This is also true in the case of Og'" but is restricted to 

the solutions involving one or more of the self conjugate spots of the Dynkin diagram). This 

will be commented on further in chapter four, when its connection to the Lie algebra struc­

ture underiying part of the tau functions solutions is illuminated. 
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If n,, denotes the Kac label corresponding to the k* tau function then as has been mentioned 

already, there is a symmetry of =±s[,"''"^' in the single soliton solutions. Taking the nu­

merator of the interacton coefficient for the term f̂  f j (o < a < ^ j to have the form. 

ap -chPe + ap-i •chP-% + ap_2 •chP-20 +ap_3-chP-%+ • •• •. 

then the numerator of the f"''~^f2, f i f j " ^ ^ coefficients can be seen to be the function 

ap -chPO-ap^i -chP-^e + ap-a •chP-20-ap_3-chP^30 + 

Hence, when n^ is even (that is nk = 2t where t eZ*), the numerator of the coefficient for the 

f!,f2 term is either a function of purely odd or purely even powers of ch0. This is found to 

be true in all explicit calculations. 

In all cases, the term A''^' will be given first, followed by the numerators of all the remaining 

interaction pieces. These all possess the same denominator as the fundamental interaction 

block, apart from the Cj{<S) term where the denominator is squared. Again all the funda­

mental interaction pieces A''^' will be given in terms of the notation (x) in an appendix, after 

the full list of interaction terms. 

3.5.0(i) X = X'^X2 

This is manifestly the simplest case of the double soliton solutions. The fundamental inter­

action term is given by 

^(12) ^ 2 c h ^ 0 - 3 c h 0 + 1 ^ ( c h 0 - | ) ( c h 0 - 1 ) 
2ch20 + 3ch0 + 1 (ch0 + l ) ( ch0 + 1) 

and the numerators of the remaining interaction terms are as follows, (the denominators are 

as already stated, the same as that of A"^' - apart from the function C^{Q) where it is 

squared): 

A i (0) = A7(0) = 4 ( 8 c h 2 0 - 5) 

A2(0) = 9(2ch20 + ch0 + 1) 

B2(©) = 9 (2ch2©-ch0 + 1) 

A3(0) = 8 (4ch20 + 3ch0 + 2) 
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D3(0) = 8(4ch2© _ 3ch0 + 2) 

B3(e) = 24(2ch20 + 1) 

C3(©) = 36(4ch' '© + ch^e + 1). 

3.5.0(ii) >. = X4,6,7. ^ ' = ^ 2 

^(12) _ 8ch^Q-2y6rch© + (A -2 ) 
~ 8ch2© + 2 J6X ch© + (k-2)' 

and the other interaction numerators are given by the functions: 

Ai (©) = 32(k - 2)Ch2© +2(X +4)(2 - X) 

A2(©) = a ch2® + p ch©+y 

B2(0) = a ch^©- p ch©+Y 

where a = ^2(k^-6X->-6), ^ = (X^-6X+6)j6X , y = Z(-2l^+ 151-18) 

A3(©) = B f (0) = D3(0) = A7(©) = 0 

and finally, 

'(©) = 64(^ -1 )ch2© + 8(2 - X)0 + 2X) 

C3(0) = 766(X -1 )ch''0 + 96(4 + 3X- 2X^)ch^e +12(68 - 92?. + 23^2). 

Z.5.0(iii) A. = X i , 3 , s , X'=X2 

A(12) _ 4C3 - 6X • C2 + 3(X,2 - 12 )C + 9?t(6 - X) 
~ 4C3 + 6X-C2+3(X2-12)C-9X(6-l) 

where C has been defined to be yeTch©. The remaining numerators are given by: 

Ai (0) = - 1 • A7(©) = 16(X - 2)C3 + 48(-3 + 6X- 2X^)C 

A2(©) = a - C3 + p- C 2 + y . C + 5 

B2(0) = a - C 3 - p - C 2 + Y . C - 5 

where 

a = 6 (X2 -6^ + 6), ^ = 18i2X'^-11X + 12), 

Y = 27(-17X2 + 96X -108), 5 = 27(-107^2 + 532;^ _ 543 ) . 

A3(©) = H-C3 + v-C2+CT-C + p 

D3(0) = ^ - C 3 - v C 2 + a - C - p 
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where 

and 

^L = -16(X2-6X + 8), v = 48(-3>.2 + 16^-18), 

a = 48(10;t2 - 63>. + 78), p - 144(35>.2 - 192^ + 216). 

B^'(©) = 32(2?L2 - 9?. + 9)C3 + 72(-59>u2 + 300?. - 324)C 

B^̂ (̂©) = -24(>.2 _ 6^ + 8)C3 + 72(25^2 -144^1 +168)C 

C 3(0) = 192(2X2 _ 9 ^ + 9)c6 +1296(-4 U 2 + 208>. - 224)0"+ 

3888(337X2 _ ^ 7 4 6 ^ +1896)C2 + 209954(142^2 - 733X + 794). 

2.5.0(iv) X = Xi,3,s, X.' = X4,6,7 

This case is found to divide into three particular subcases. Namely that the fundamental in­

teraction block takes the form of a quotient of cubic polynomials in 'ch©' for the double soli-

tons associated with the pairs (1, 7), (3, 4) & (5, 6); whereas this function factorizes further 

in the remaining cases, to give a quadratic function for (1, 6), (3, 7) & (5, 4) and ultimately a 

linear function for (1, 4), (3, 6) & (5, 7). This information may be neatly summarized by the 

following table, where the entry refers to the degree of the polynomial associated with the 

fundamental interaction piece. 

Second Soliton 

4 6 7 

1 1 2 3 

First Soliton 3 3 1 2 

5 2 3 1 

Another feature which can be noted is that all of the interaction functions without an upper 

index are invariant under X<^X'. This is not apparent at first sight and has occured due to 

the simplification of such quantities through meticulous use of the constraints involving X. 

Obviously, B3'(0) <4 B3^'(0) under such a transformation. 

In all of the subcases 

A3(0) = B^'"(©) = D3(0) = A7(©) = 0. 
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(a) ri 4V (3 .61(5 .7) 

^ AC + Xk' 

where, 

and 

Ai(©) = 4 ( 2 - ^ ) ( 2 - ^ 0 C , 

A2(©) = a C + p 

B2(©) = a C - | 3 

p = (12X + 36;i' -12>.2 - ZQX'^ - 5 1 U ' + 2 A X ^ X ' + 39U '^ -11 X'^X'^) 

Bf\@) = -8(X' -1 )(X^ -6X + 8)C 

C3(0) = 64(X' -1 )(2^2 _Qx + 9)C2+ 

4(25920 + 25056 + 44928 V - 5352 X^-^82^6X^- 43056 XX'+ 

9036 X^X' + 'i 7208 U '^ - 3503 X'^X^) 

(b) (1.6V (3. 7). (5.4) 

The fundamental interaction temn is given by: 

, 2 ) _ a C ^ + p C + y 
a C 2 - p C + y 

where 

a = 16, p = - 4 U / , 

y = (144 - 96(;\. + X') + ^ 2{X^ +X^) + A8XX' - 6{X^X' +XX'2)+X^X'^). 

The remaining numerators are, 

where 

Ai(©) = 16(2-A.)(2->.0C2 + 

16(-108 + 8AX + 66X' -^5X^-^2X'^-45XX' + 9X^X' + 9XX'^ -2X2X'^) 

A2(e) = aC2+pC+Y, 

B2(0) = a C 2 - p C + y , 

a = 4(5.2 _Qx + 6)(X'2 - QX' + 6), 

p = 4(432 - 348 X - 396 +60 X'^ +72X^ + 309 XX' - 54 X^ X' 

- 5 7 U ' 2 + 10?c2?t^) 

Y = 3(144-48X + 1584X'-i-12?.2_468X '2-1560U'+294X2X' 
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+450U ' 2 -85XX ' 2 ) 

and 

B f ( 0 ) = - 3 2 ( X ' - 1 ) ( X 2 - 6 X + 8)C2 + 

8(4032 - 3648 X - 8976 X' + 708 X^ + 2484 + 8172 XX' - 1584 X^X' 

-2256 XX '2+437X2X^2) 

C3 ( 0 ) = 1024(X' -1 )(2X2 - 9X + 9)0" + 

64(1054944 - 972576 X -1436832 X' +187824 X^ + 335808 X'^ 

+1324656 XX' - 255816 X2X' - 309588 XX'2 + 59779 X2X'2)C'^2 + 

576(25453728 - 23468376 X - 34596576 X' + 4533180 X2 

+8140476 X'^ + 31898100 XX' - 6161480 X^X' - 7505532 XX'2 

+1449779 X2X'2). 

Finally, 

(c) (1.7). (3.4). (5. 6) 

In this example the coefficients f(X, X') of the polynomials in ' C may be further reduced 

through use of the constraint: 

X X ' - 6 X - 6 X ' + 2 4 - 0 

This then gives the following set of interaction functions [numerators]. The leading coeffi­

cients however, have been left in their original state in order to emphasise their explicit na­

ture. 

, i ; , _ a C 3 + pC2+YC+S 
a C 3 - p C 2 + Y C - 5 

a = 4 

P = 6 ( 4 - X - X ' ) 

Y = 3(-36+4X+4X' +X2 +X'2) 

5 = 3(108 -18X -12X' - 2X2 _ 3)^/2) 

Ai ( 0 ) = 4(2 - X)(2 - X')C3 +12(156 - 8X -14X' + 8X2 - 7X'2)C, 

A 2 ( 0 ) = [iC^+vC^+gC + p 

B 2 ( 0 ) = n C 3 - v C 2 + a C - p 

where 

^ = ( X 2 - 6 X + 6 ) ( X ' 2 - 6 X ' + 6), 

v = 6(-348 + 59X + 33X' + 7X2 + 12X '2) 
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a = 3(4644 -204X-672X'-239X^-^4^X'^) 

5 = 9(13932 - 1 1 7 8 > L -1680 X' - 582 X^ - 473X'^ ) 

and 

8 ^ ( 0 ) = -8(X' -1 )(X2 _ 6 X + 8)C3 + 48(-864 + 7 )L + 1 2 U ' + 53 ?.2 + 30 X^2)c 

C 3 ( 0 ) = 64(>.' -1 )(2 ;̂ 2 _ 9 ;̂  + 9)C6 

448(44040 - 3372 -1937 ^2 - 5256 X' - 1539 X'^)C^ 

+̂  44(-1115496 +120930 X + 40283 X.2 +117522 X' + 40605 X' 2)C2 

+432(7250688 - 754230 X - 269603 X^ - 779856 - 261906 X'^). 

Z.5.0(V) X = U.6.7, X ' = X 4 ; 6 , 7 

In a sense nothing 'abnormal' occurs here with respect to the subject of finite field 

extensions - see following case. Both fundamental blocks A"^' for X = X' and X X' are 

quotients of cubic polynomials in ch© and moreover, the restriction of X = X' applied to that 

for X X' gives the respective interaction terms. This was noted from direct calculation of 

both cases and, hence, it is only necessary to give the case X^X' with the proviso that C = 

A,.ch© when the restriction is made, and that (3.41a) may be utilised to reduce the degree of 

the coefficients. 

a C 3 + p c 2 + y C + 5 
" a C 3 - p C 2 + y C - 5 

where 

a = 16 

p = - 4 U ' 

y = (-96 + 96(X+X')-^ 2(X^ +X'^)-^ 08XX' +12(X^X' + XX'^)-X^X'^) 

5 = (192 - 216iX + X') + 24(?.2 + X' 2) ^ 240 XX' 

-2AQ?X' + XX'^) + 2X'^X'^). 

The numerators of the other interaction tenms are; 

A1 ( 0 ) = 16(2- X){2 -X')C^ + \2XX'{-A+2{X + X') -XX')C, 

A2(©) = +vC2 -i-aC H-p 

8 2 ( 0 ) = ^C3 - v C 2 - i - a C - p 

where 

H = 4 (?i2 -6A.+6)(X /2 -6X^ + 6) 

v = ^2^^Q-2'Q{X+X') + 4{X'^ + X'^) + 2bXX' 

-5(Xn' + XX'^)+X^X'^) 
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where 

a = 3 ( - 4 8 0 + 592(X + X' ) - 1 1 6 ( X 2 + X '2) - 724 X X ' 

+ 1 4 0 ( X 2 X ' + X X ' 2 ) - 2 7 X 2 X ' 2 ) 

p = 6 ( - 5 7 6 + 756( X + X ' ) - 160( X2 + X ' 2) - 992 X X ' 

+ 2 1 0 ( X 2 X ' + X X ' 2 ) - 4 5 X 2 X ' 2 ) , 

A 3 ( 0 ) ^ K C + e 

B3(©) = K C - e , 

A7(0) = - K 

K = 9 6 ( 1 6 - 2 0 ( X + X ' ) + 4(X2 + X '2) + 2 5 X X ' 

- 5 ( X 2 X ' + X X ' 2 ) + X 2 X ' 2 ) 

e = 48(128 - 1 6 8 ( X + X ' ) + 36(X2 + X ' 2) + 220 X X ' 

- 4 7 ( X 2 X ' + X X ' 2 ) + 10X2 X '2) 

b1^'(©) = B^^^(©) = 0 

and finally, 

C 3 = 1024(X - 1 ) (X ' - 1 ) C ^ + 1 9 2 ( - 1 2 8 +128(X + X ' ) - 1 2 0 X X ' - 4(X2x ' + XX'2) 

+X2X'2)C" + 384 ( -528 + 1 0 4 4 ( X + X ' ) - 4 6 2 ( X 2 + X'2) - 1 8 2 2 X X ' 

+€85(X2X' + XX'2) - 1 8 8 >,2^/2)c2 + 768(46032 

-63780 (X + X ' ) +15567(X2 + X ' 2) + 88290 XX' 

-21483(X2X ' + XX' 2) + 5173 X2X'2) 

Z.5.0(vi) X = Xi ,3,5 ,X' = Xi,3,5, 

This is quite unlike the previous case, where the 'naive' restriction of X = X' in the funda­

mental interaction block for X^X' gave the required block for X = X'. In this case the fact 

that the coefficients of the polynomials involved are elements of finite field extensions 

comes into play. Ultimately, it results in a quotient of quartics for X = X' and a quotient of 

quadratics for X ^ X'. Naturally, this is highly counter-intuitive and just does not occur when 

fields of characteristic zero are being considered. To see how such a factorisation occurs it 

may be deemed prudent to give a simple example, since it is only the essence of how such 

an event occurs that is important. 

Therefore, let X take the values a, b, c , then it is required to show that 

chQ + f(X,X') 
ch© + g(X,X') 
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is non-trivial when X = X', but trivial when X ^ X'. That is equivalent to finding 1{X, >;) & 
g(X, X') such that f g when X = X', and f = g when X ̂  X'. 

Hence, taking f = g + h, it is required that 

t\{X, X') * 0 when k = X 

= 0 vjhQuX^X'. 

It can easily be seen that'^'' 

h(>., X') = ax + X') - (a + b))-{(x + X') - (a + c))-{{X + X') - (b + c)) 

satisfies such conditions when a, b, c are all unequal. 

Having seen - at least in principle - how it is possible to obtain a factorisation of the required 

design, the interaction terms may now be given for both cases. 

(a) X = X' 

12 _ «• • C " + p C 3 +yC2 + 6 C + s 
~ a - C 4 - p C 3 + y C 2 - 8 C + e 

where 

where 

a = 4, 

P = - X 2 , 

y=: 1 4 4 - 1 3 8 1 + 25 5.2, 

5 = - 9 7 2 + 8 8 2 1 - 1 6 2 X 2 ^ 

£ = 2 1 6 0 - 1 9 8 0 ; i + 378X2. 

A1 ( 0 ) = 4(2 - X ) { 2 - A.)C^ + 4 ( - 6 8 4 + 636> . -125 ; ^2 ) c2 

+ 7 2 ( - 1 3 9 2 + 1 2 8 2 1 - 2 4 7 X 2 ) ^ 

A 2 ( 0 ) = K C ' ' + n C 3 + v C 2 + a C + p 

B2(©) = K C ' ' - n C 3 + v C 2 - a C + p 

K = ( 1 2 - 6 1 + 6 ) 2 = 1 2 ( 3 9 - 3 6 1 + 7X2) , 

H = 3 ( 2 1 6 0 - 1 9 9 2 1 + 3 8 5 l 2 ) , 

V = 2 7 ( - 1 8 2 4 + 1 6 8 2 1 - 3 2 5 1 2 ) , 

a = 5 4 ( - 1 5 8 1 0 + 1 4 5 7 9 1 - 2 8 1 7 1 2 ) , 

p = 162 ( -11064 + 1 0 2 0 2 1 - 1 9 7 1 1 2 ) . 
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A 3 ( 0 ) = 4 C " + (f) C 3 + v|/C 2 + n C + 71 

D3(©) = ^ C - (j) C3 + y C2 - T] C + 7t 

^ = 4 ( X 2 - 6 X + 8)2 = 32(62-57X +11X2), 

(j) = 32(1269 -1170 X + 226 X2), 

xi> = 64(-369 + 339 X - 65 X2) , 

Ti = 72(-63864 + 58882 X -11373 X2), 

71 = 144(-157548 +145262 X - 28059 X2) 

B3(©) = -8(X2 - 6 X+8)(2 X2 - 9 X + 9)0" +144(14370 - 13249 X + 2559 X2)C2 

+864(-125670 +115869 X - 22381 X2), 

A7 (0) = 16(X - 2)(X -2 )0^ + 16(-1386 +1284 X - 251 X2)C2 + 72(15384 

-14186X + 2741X2) 

C3(©) = 64(2X2-9 X +9)2 C8+ 

144(-530076 + 488754 X - 94415 X2)C^+ 

32(384137802 - 354181329 X + 68413977 X2) 0"+ 

11664(-72374812 + 66730652 X -12889703 X2)C2+ 

93312(223443942 - 206018625 X + 39794585 X2). 

(b) k*X' 

The fundamental block is given by a quotient of quadratics: 

. (12) ^ 48 C2 - (12 XX')C + XX'(XX' -12 ) 
48 C 2 + (12 XXOC + XX/(XX' - 12) 

and the numerator terms by, 

A1 (©) = 48(2 - X)(2 - X') C2 + 4(-36(X2 + X' 2) - 1 2 XX'+ 

42(X2X' + XX '2)-17X2X '2) , 

A2(©) = a C 2 + p C + Y 

B2(©) = a C 2 - p C + Y 

where 
a = 12 (X2 -6X + 6 ) (X '2 -6X ' + 6) 

p = 36(144 -132(X + X') + 24(X2 + X') +121 XX'-

22(X2X' + XX'2) + 4X2X'2) 

y = 9(-6912 + 6480(X + X') -1248(X2 + X' 2) - 6060 XX'+ 

+1164(X2X '+XX '2)-223X2X '2> 

A3(©) = 8 C 2 + e C + K 

D3(©) = 5 C 2 - s C + K 
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5 = 48(12 _Qx + 8)(i''2 - 6 1 ' + 8), 

e = 96(324 - 288(1 +1') + 54( l2 +1 '2) + 256 U ' -

4 8 ( l 2 V + l l ' 2 ) + 9 l 2 l ' 2 ) , 

K = 16(-49896 + 45900(1 +1') - 8856(12 +1^2^ _ 4222211'+ 

8 1 4 5 ( l 2 l ' + l l ' 2 ) - 1571121 / 2 ) . 

8 ^ ^ (0) = -96 (212-91 + 9)(1/ 2 - 6 1 ' + 8)C 2+ 

144(-26208 +- 24312 1 + 240841' - 472812 - 4620 X' 2 - 2234411' 

+4346121'+4287 l l ' 2 - 8 3 4 l 2 l ' 2 ) 

B f ' ( © ) : ( l < ^ l ' ' as above) 

A7 (0) = 192(1-2) (1 ' -2)C2 

+4(12960 -11664(1 +1')+2124( l2 +1' 2) +1042811' -

1884(121' + U ' 2 ) + 337 l 2 l ' 2 ) 

and finally, 

C3 ( 0 ) = 9216(212-91 + 9 ) (21 '2 -91 ' + 9)C'' 

+5184(-625728 + 577728(1 +1') -111944(12 +1'2) - 53341611' 

+103360(121' +11' 2) - 20029121' 2)C 2 

+31104(15032520 -13892316(1 +1')+2678646(12 +1'2) 

+1278320611' - 2470127(121' +11'2) + 477308 l2 l '2 ) . 

3.5.1 The Fusing Rules for e / ' ' 

All the ( non-' \n' ) fusings for this affine algebra were calculated numerically to arbitrary 

precision and found to agree with [5]; the ' \n' self-conjugate fusings corresponded to an 

annihilation of the constituent solitons. The numerical computations were carried out using 

Mathematica. 

3.5.2 Appendix 

The interaction tenms A<̂ *̂ for ê '̂ ' are again listed in tenms of the notation (x): 

A^i^' = (1 rH^y^ (4)-'' (5)^'' (6)-i (S)^! (9)-2 (10)^1 (12)--' (13)^-' (14)--' (15)^-' (17)--' (18) 

A^; ' '= ( i ) *n | ) -Hf ) ^ \ f ) - v f ) ^ \ f ) - n f ) - v i ^ ) ^ \ f ) - H f ) ^ v f ) - v f )̂ ^ 

A ^1^'= (1)+1 (4)^1 (5)-i (8)-i (10)-i (13)-i (14)^1 (17)^1 

A^s^^ = (2)^ V4)-i (5)^1 (7)-i (11 )-i (13)^1 (14)-i(16)+i 

A ^ ? ^ = ( f ) ^ V | ) - V ^ ) ^ H ? ) - ^ ( f ) - V f ) ^ V f ) - H f ) 

+2 
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A(12) 
" 7 1 ( § ) - (|)-^ if)-' Cir' (f)-' ( f r ' ( f ) ^ ' ( f ( f ) " ' ( y r ' ( f ) ^ ' 
A ( 1 2 ) 
A22 - ( 3 ) ^ ^ ( 6 ) - i 

( 9 ) - 2 ( 1 2 ) - V l 5 ) - V l 8 ) - 2 

A(12) 
" 3 2 

( I L ) - ( f ) - i ( f ) - i ( f ) - i if)-' ( f ) - i ( f ) - ^ ( f )^^ 

A ( 1 2 ) 
" 4 2 (2)^1 ( 7 ) - \ 8 ) - \ 1 0 ) - ! ( 1 1 )-Vl 6 )^1 (17 )^1 

A ( 1 2 ) 
" 5 2 = ( § ) " ( f ) " i^)-' ifr' ( f ) - ^ ( f ) - ^ ) - ^ if)-' ifr' if)-' ifr' (fr' 
A ( 1 2 ) 
" 6 2 = ( 2 ) - ^ (5)^1 ( 7 ) - ' ' ( 1 1 )-•• (13)+Vl 4 ) - ' ' ( 1 6 ) + i 

A(12) 
" 7 2 = { i r ' (4 )^1 ( 5 ) - ' ' ( 8 ) - i ( 1 0 ) - i ( 1 3 ) - ' ' (14 )^1 ( 1 7 ) + i 

A(12) 
" 3 3 = { i r ' (2)^1 (3 )+ ' ' ( 6 ) - i ( 7 ) - ' ' ( 8 ) - i ( 9 ) - 2 ( 1 0 ) - ! ( 1 1 ) - • • ( 1 2 ) - V I 5 ) + i ( 1 6 ) - ' ' ( 1 7 ) + ^ (18 )^2 

A(12) 
" 4 3 = ( ^ ) -

A(12 ) 
" 5 3 =oy' (2 ) ^1 ( 7 ) - ' ' ( 8 ) - ' ' ( 1 0 ) - ' ' ( 1 1 ) - • ' ( 1 6 ) - \ l 7 ) + i 

A(12) 
^ 6 3 ( f ) -

A (12 ) 
" 7 3 = ( i ) -

A ( 1 2 ) 
" 4 4 = ( 2 ) ^ ( 4 ) - i ( 5 ) - i ( 7 ) - i ( 9 ) - 2 ( 1 1 ) - i ( 1 3 ) - i ( 1 4 ) + ' ' ( 1 6 ) + ' ' (18 )+2 

A(12) 
" 5 4 

( l L ) - i ( : ^ ) - i ( f ) - i ( f ) - i ( f ) ^ i ( f ) ^ i 

A(12 ) 
" 6 4 =(i)+ ( 2 ) - i (3)-^i ( 6 ) - i (7)^1 ( 8 ) - ' ' ( 1 0 ) - i ( 1 1 )+i ( 1 2 ) - i ( 1 5 ) + i ( 1 6 ) - ' ' (17)*' 
A{12) 
" 7 4 = ( 1 ) " ^ ( 3 ) - i ( 4 ) - i ( 5 ) + i ( G ) - ! ( 8 ) - ' ' ( 1 0 ) - i ( 1 2 ) - i ( 1 3 ) + ' ' ( 1 4 ) - i ( 1 5 ) + i ( 1 7 ) - ' ' 

A ( 1 2 ) 
= ( 2 ) - ( 3 ) ^ ( 4 ) - - ' ( 5 ) - - ' (6)-' (7)^1 ( 9 ) - 2 ( 1 1 ) - • ' (12)-' ( 1 3 ) - ' ' ( 1 4 ) - ^ ( 1 5 ) - ^ ( 1 6 ) -

-1 (18)^2 

A(12) 
" 6 5 ' ( § ) - ^ ih^' if)-' if)'' if)-' if)-' if)'' if)-' if)" if)-' (fy' 
A(12) 
" 7 5 = ( § ) " V f ) -'if)-'if)" 
A(12) 
'^66 = ( 1 ) - ' ( 4 ) - (5)-' (8)^' ( 9 ) - 2 ( 1 0 ) + i ( 1 3 ) - ' ' ( 1 4 ) + ' ' (17)-' ( 1 8 ) ^ 2 

A(12) 
" 7 6 = ( 2 ) * 1 ( 3 ) - ' ( 4 ) - i ( 5 ) - ' ' (6 )+ ' ' ( 7 ) - ' ' ( 1 1 ) - i ( 1 2 ) - V I 3 ) - i (14 )^1 ( 1 5 ) " ^ ( 1 6 ) + i 

A(12) 
^^77 = ( 1 ) - 1 ( 2 ) - ' ( 7 ) - ' ' (8)-^i ( 9 ) - 2 ( 1 0 ) + i ( 1 1 ) - i ( 1 6 ) - 1 ( 1 7 ) - i ( 1 8 ) ^ 2 

3.6 S o l i t o n s fo r Gg* '̂ 

The affine Dynkin diagram for ej'" (including the Kac labels) is given by the following: 

8 { 3 } cp 

1 2 3 4 5 

{ 2 } { 4 } { 6 } { 5 } { 4 } 

6 7 

{ 3 } { 2 } { 1 } 

The eigenvalues of the matrix K̂^ (using the above labelling of the extended root system) 

may be listed as: 



100 

l i = 3 2 / 3 s i n ( ^ ) s i n ( | ) c o s 2 ( | ) 

1 2 = 8 / 3 s i n ( | j ) s i n ( | ^ ) 

13 = 5 1 2 y i s i n ( ^ ) s in ( | ) c o s 2 ( i | ) cos^( | ) 

14 = 8 y 3 s i n ( ^ ) s i n ( ^ ) 

15 = 8 y 3 s i n ( ^ ) s i n ( | ) 

16 = 3 2 y s s i n ( ^ ) s i n ( | ) c o s 2 ( ^ ) 

17 = 8 / 3 s in (^ )s in (J ) 

I s = 128 / S s i n ( ^ ) s i n ( | ) c o s 2 ( | ) c o s 2 ( g ) 

where a slight correction regarding Ig has been made, see [53]. These eigenvalues may 

further be split into two sets and shown to satisfy the following crucial constraints: 

1 e { l i , l3.X6,l8} : - 1 " = 3 0 1 ^ - 2 4 0 1 2 + 7 2 0 1 - 7 2 0 

1 e { I2,14 , Xs, X7} : - 1 " = 3 0 1 ^ - 30012 + 1 0 8 0 1 - 720 . 

Thses constraints appear from the factorization of the characteristic polynomial of the matrix 

The equations of motion reduce to the set of equations for the tau functions of: 

f ( T l ) = 2 m 2 ( T 2 - T ? ) , 1 

f ( T 2 ) = 4 m 2 ( T l T 3 - T ^ ) , 1 

f ( T 3 ) = 6 m 2 ( T 2 T 4 T 8 - T 3 ) , 1 

f ( T 4 ) = 5 m 2 ( T 3 T 5 - T 4 ) , 1 

f ( T 5 ) = 4 m 2 ( T 4 T 6 - T ^ ) , } 

f ( T 6 ) = 3 m 2 ( T 5 T 7 - T § ) , 1 

f ( T 7 ) = 2 m 2 ( T 6 T 0 - T f ) , 1 

f ( T 0 ) = 1 m 2 ( T 7 - T g ) , 1 

f ( T 8 ) = 3 m 2 ( T 3 - T ^ ) J 

} (3.42) 

This set of equations exhibits the fact that there is no symmetry in the affine diagram. 

The single soliton solutions to the field theory were first written down by Mc Ghee and ap­

pear in [53], although they will be given here for completeness. 
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The minimal ansatz -co = 1 +f (where f denotes e"^ = e x p ( a ( x - v t ) + Q) gives the following set 
of tau functions which satisfy (3.42) at all orders of 'f. The structure of the tau functions is 
apparent under rescaling and shifts in T . 

T0 = 1+f 

T l = 1 + A f + f2 

X2 = 1+Bf + Cf2+Bf3+f'' 

T3 = 1+Df + Ef2+Ff3 + Ef'' + Df5 + f6 

T4 = 1+Gf + H f2+Hf3 + Gf' '+f5 

T 5 = 1+l f + Jf2 + lf3+f'' 

T6 = 1+Kf + Kf2+f3 

T7 = 1+Lf + f2 

T8 = 1+Mf + Mf2+f3 

where f o r i e { l i . l s . X e . X a } 

A = -1(X3-24X2 + 132X-192) , 
D 

B = l (X3-6X2+24) , 

C = | (5X3-60X2+225X-261) , 

D = -^(X-2) (X2-6X+6) , 

E = (64 X3 - 668 X2 + 2214 X - 2325), 

F = -(303X3-3186X2+ 10614X-11180), 

G = :^ (X3 -12X2+48X-60 ) , 

H = | (11X3-116X2+3841-400) , 

l = - J ( l 3 - 1 2 l 2 + 3 6 l - 2 4 ) , 6 

J = 1(713-7812+2881-324) , 

K = l ( l 2 - 6 1 + 6), 

L = ( 2 - l ) , 

M = l ( l 3 - 1 8 l 2 + 8 4 l - 1 0 8 ) . 

Similarly for 1 6 { l2,X4,X5 , l7} 
A = l ( l 3 - 2 1 l 2 + 1 1 4 l - 8 4 ) , 

8 = - i ( 5 1 3 -10212 + 5401 - 384), 
D 
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C = - | ( l 3 - 2 4 1 2 + 1351-99) , 
D = ( l 2 - 9 1 + 6 ) , 
E = ( 3 l 3 - 5 0 l 2 + 2 3 4 1 - 1 6 5 ) , 
F = -2(313 - 5412 + 2671 -190) , 
G = : ^ ( l 3 - 1 8 l 2 + 8 4 1 - 6 0 ) , 
H = | ( l - 8 ) ( 3 l 2 - 2 6 1 + 20). 
l = - J ( l 3 - 1 2 l 2 + 3 6 1 - 2 4 ) , 

D 

J = 1(713 -10812 + 4681 - 324), 
o 

K = l ( l 2 - 6 1 + 6), 

L = ( 2 - l ) , 

M = l ( l 3 - 2 4 l 2 + 1 4 4 l - 1 0 8 ) . 
4 

As with the case of the algebra e,'^', the spots of the Dynkin diagram are self-conjugate in 

the sense that the fundamental representations associated with them and hence, particles/ 

solitons attached to them, are self-conjugate. In the previous case this led to tau functions 

that had an intrinsic pattern connected with them (also notable for the self-conjugate cases 

for the other affine algebras). What is found here is that this pattern is repeated for the tau 

functions and expanded upon in an obvious manner for those functions connected with the 

spots with Kac labels five and six. However, before a discussion of this is undertaken the 

problems associated with constructing the explicit double soliton solutions will be men­

tioned. 

The interaction function A''^*(©) which appears in the ansatz (3.01) may be found by equat­

ing the nine simultaneous equations appearing at order f,fj in the nine tau function equa­

tions (3.42). The remaining interaction terms can then be systematically constructed and ail 

equations can be shown to be consistent at all orders f,'f2^ for 0 < i, j < ni,: the Kac label of 

spot 'k'. 

However, it was found that the factorization of the object A''^'(©) (which appears as a quo­

tient of polynomials of degree nine in 'ch©' with coefficients that are elements of the finite 
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field extension Q[X, X']) proved to require too much memory space when using "Mathemati-
ca" or "Maple V" on the Sparc systems at Durham. 

Construction of this 'factorised quantity' backwards (using the data from Appendix 'A' and 

the fusing information in [5]) again proved to require too much memory for algebraic (that is 

exact) calculation, and moreover, was only possible in the simplest set of self-interacting 

cases, using a floating-point numerical calculation from "Maple V". This involved the inver­

sion of a 12 X 12 matrix whose elements were products of up to four dozen trigonometric 

quantities. 

The numerical algorithm in "Maple V" appears to breakdown for the other set of the self- in­

teractions where the matrix involved is of the order 20 x 20 . [The numerical routines in "Ma-

thematica" ran out of memory in all cases.] 

Nevertheless, this set of double soliton solutions is sufficient to display the afore mentioned 

pattern in the tau functions and this will be discussed now. The explicit interaction terms 

will be relegated to an appendix since they are very lengthy and only their existence is of 

any importance. However, it will be noted that the tenn A"^*(©) for X e {X2,X4,X5,X7} may 

be written as a quotient of sinh functions in each case. 

.\-^\0) ° ^ C ^ ^ P C 3 + y C 2 + 5 C + b 
^^^"aC ' '-pC3+YC2-5C + s 

where 

a = 4 

P=-X2 

Y = 3 ( - 2 0 + 3 0 X - 1 0 X 2 + x3) 

8 = - 1 5 ( - 1 3 2 + 192X -46X2 + 3X3) 

e = 3 0 ( - 2 6 4 + 378 X - 84X2 + 5 X^) 

and C = X ch©. Using the notation (x) they may be written as: 

A i=4 = (3) - i (5) - i (7) - i (8) - i (10)- i (12)- i (15 ) -2 (18)- i (20)- i (22 )+V23 ) - i (25 ) - i (27)- i (30 ) -2 ] 

Alll', = (2)^1 (3)^1 (5)^1 ( 1 0 ) - i ( 1 2 ) - i ( 1 3 ) - i ( 1 5 ) - 2 ( 1 7 ) - ^ ( 1 8 ) - ' ( 2 0 ) - ' ( 2 5 ) * ' (27)*' (28)*' (30)^2 | 

Allies = (4 ) -V5 ) - i (6 ) -V9 ) - i (10) - i (11) - i (15 ) -2 (19)- i (20) - i (21) - i (24 ) -V25 ) - i (26) - i (30) -^^ } 
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AxX = (1 )-•" (5)+̂  (e)-! (9)^1 (10)-Vl 4)+i (15)-2 (16)+i (20)-i (21 )+i (24)-̂  (25)̂ ^ (29)"^ (30)̂ 2 J 

(3.43) 

3.6.1 The general tau function pattern for self-conjugate solitons. 

The internal tau function structure for the case ê '̂ ' generalizes all the self-conjugate double 

soliton tau function structure that has appeared before. The functions corresponding to the 

Dynkin spots with labels 2, 3, and 6 may be graphically given as follows, where the 

interpolation from 3 to 6 should be immediate from the figures and accompanying 

information. Also, for simplicity, the leading onjer 5 -term of the single soliton tau function 

has been taken to be one: 

(a) Tj : Kac label '2' 

f? Aj(©) 

A - . X ^'^^ «^^^2 

A(«)'x f2f2 

(b) T, ; Kac label '3' 

« f 2 

5gf2 Aj(0)f if2 5g f i 

f3 Bj(©)f^f2 Bj (©)f l f^ i 

A(")x 5£f?f2 Aj(0)f?fi Sgf i f i 

A(«)^x 5gf?fi 5£f?f| 
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[where in (b), if the numera to r of the interact ion te rm Aj(©) is g iven by 

A j ( 0 ) = ap{X, X')ch^Q + ap.^ (X, XOchP-^© + ap_2(X, X')chP-^e + 

then 

B j ( 0 ) = a p ( l , X')chPe - ap_i (X, X^)chP-^e + ap.2(X, X')chf>-2e - ]. 

(c) Tj : Kac label '6 ' 

The structure of the tau funct ion is shown on the fo l lowing page. 

The relat ionships between the numera tor of the interact ion te rms on the diagonal lines in 

th is g raph ic descr ipt ion o f the tau funct ion , general ises that found for t , (nj = 3) in a straight 

fo rward way. 

[ In terchange of the superscr ipt (1) <^ (2) corresponds to the rep lacement of X <-> X' in the 

re levant fo rmulae. ] 

It w a s found that, 

i) A j ( 0 ) , B/(©), C/(©), E/(0) and 0^(0) are l inear polynomials in A<'^'(©). Moreover, the 

numera tors of the interact ion pairs (A j (0 ) , Gj(©)) and simi lar i ly ( 6 / ( 0 ) , E/(0)) are related by 

the po lynomia l coef f ic ient s ignature pattern ( + + + + + - + - ) that occured in the 

prev ious case. This goes hand- in-hand wi th the fact that the numerator of Cj'(©) was found 

to be a funct ion of only odd or even powers of ch©. 

ii) Dj(©), F/(©) and Hj (0) are quadrat ic po lynomia ls in A ' ' ^ ' (0 ) . The pair (Dj(©), Hj(0)) has 

numera to rs related by the above sign pattern extended to 2p+1 te rms (rather than p+1 in 

the prev ious case) . Aga in F/(0) is a funct ion of only odd or even powers of c h 0 . 

iii) lj(©) is a cubic po lynomia l in A ' ' ^ ' (0 ) and its numerator is again a funct ion of only odd or 

even powers of c h 0 . 

Hence the interact ion coef f ic ient of f ; f2' may be expressed as a polynomial in A"^ ' (0 ) of de­

gree min( i , j ) wi th coef f ic ients that are funct ions of the rapidity d i f ference. 
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3.6.2 The Fusing Rules for e / ' ' 

The fus ings fo r the few solut ions that were expl ici t ly found were again in accordance with [5] 

supp lemented by an annih i lat ion. A s wi th the case of e^'^' , these were carr ied out nu­

mer ica l ly (to high precis ion) using Mathemat ica . 
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4. AN ALGEBRA-INDEPENDENT APPROACH 
4.1 Introduction 

Fol lowing the expl ic i t construct ion of the double sol i ton solut ions for the s imply- laced Lie 

a lgebras v ia Hirota's me thod , an immed ia te quest ion to be addressed is that of what the in­

teract ion te rms have in c o m m o n . Moreove r how these features are related to the underlying 

Lie a lgebra ic structure. 

A s has been seen, the ansatz (3.01) leads to interact ion funct ions (in all cases) that are 

po lynomia ls in the basic interact ion p iece 'A'^^>' w i th coeff ic ients that are funct ions of the rap­

idity d i f fe rence 0 . Much more impor tant ly , the funct ion A''^* can a lways be wri t ten as a 

product of hyperbol ic t r igonometr ic funct ions. Th is fact in turn hints at the possibil i ty of an 

a l l -encompass ing construct ion of such quant i t ies in te rms of ver tex operators. 

The purpose of th is chapter is to show how this can be ach ieved for the case of the quan­

t i t ies A'^^', fundamenta l in the fact that these are the entit ies upon which all the rest of the in­

teract ion funct ions are based. Moreover , th is construct ion is ach ieved as a consequence of 

not ing that these ' fundamenta l ' quant i t ies m a y be wri t ten in an a lgebra- independent manner. 

G e o m e t r y can again be said to p lay a ma jo r role here in the sense that the orbits of the 

s imp le roots under the Coxeter e lement are crucial to the descr ipt ion of these objects. A 

few obv ious propert ies of the te rm A'^^* wil l be noted g iven such a descr ipt ion. 

The ver tex operator construct ion may in ef fect only be regarded as a piece of mathemat ics 

s ince it only goes partway to ach iev ing the representat ion of the sol i ton phenomena in te rms 

of such ent i t ies. Howeve r it is interest ing solely in it's own right and resembles very closely 

that o f the operator construct ion for the m in ima l part of the scatter ing matr ix that has ap­

peared in [25] . 

Be fore proceeding it must also be noted that such operators have s ince appeared indepen­

dent ly e lsewhere in the l i terature ( though wri t ten sl ightly d i f fent ly in [62]). In O l i ve , Turok & 

Underwood'^^' they appear as part of a ' thorough' analysis of the sol i ton solut ions for imagin-
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ary coup l ing a f f ine Toda f ie ld theory, th rough the appl icat ion of the representat ion theory of 
the K a c - M o o d y a lgebras to a general ised Leznov-Save l iev solut ion. 

4.2 The Fundamental Function A'̂ '̂{0) 

Centra l to the construct ion of the doub le sol i ton solut ions was the ansatz for the lau funct ion 

assoc ia ted wi th the 'af f ine' spot of the extended Dynkin d iagram. This took the fo rm (3.01) 

and hence g a v e rise to leading coef f ic ients fo r the remain ing tau funct ions that were powers 

of the fundamenta l funct ion, up to a tr iv ial factor. These powers are exact ly the marks of 

the Dynk in d iag ram. In turn the quant i ty A"^ ' was found to be expressib le - in al l cases - in 

te rms of a quot ient of s inh funct ions, and hence the quant i t ies (x). A compar ison of the 

equat ions (3.19a,b,c,d) fo r d , " ' , (3.43) fo r e j " ' , and the appendices 3.4.2, 3.5.2 for eg'", e / ' \ 

wi th the tab les of inner products in append ix A, gave rise to the conjecture that 

A '^i"i (0) = n ( l - « > ' ' e ' ^ ' = " ' - ° ^ " 5 h J . (4.01) 

P=i 

(This w a s first pointed out to me for the case d^' ' ' by E .Comgan ' " ' ) . Here co .m are taken to 

be the p* root of unity and the Coxeter e lement , respect ively. The bracketed superscripts 

1,2 (denot ing the first and second sol i ton) have been replaced by their respect ive associated 

s imple roots. 

To show that th is is also t rue for the inf inite sets of s imply- laced Lie algebras, i.e. a „ ' " and 

d „ ' ' ' is mani fest ly more invo lved, and the route is to expand the inner product in another 

basis a n d then di rect ly calculate th rough known results. 

The more r igorous proof is ach ieved by expand ing the s imple roots in te rms of one of the 

comp lex bases fo r t he e igenvectors of the Coxe te r e lement , wh ich has the propert ies: 

2iiis 

m (es) = e ^ es, B S ' B S / = iVs ' ,h (4.02) 

where the label s is one of the (r rank) exponents of the Lie algebra. The fol lowing repre­

sentat ion of the e igenvectors may be taken : 
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e s = ( a ( ^ ' - e h a'^ ') (4.03) 

where for examp le a'^ ' = S q ' ^ a i = Sql^'^^i for the s imply- laced algebras. These can then 

be seen to sat isfy (4.02) prov ided that the e igenvectors of the Cartan matr ix have unit 

length and sat isfy the condi t ions: 

q r = c(i)q|^-^', q f . q f ' ' = 6 3 , s . . (4.04) 

G i ven this, the inner product of an e igenvector with a s imple root g ives 

(I-C(l)'^ ink ,, 
a i . e i < - c ( l ) y 2 e ^ 2 J h qjk' (4 05) 

and hence the inner product ( a ; • m P a j ) may be writ ten in terms of the eigenvectors of the 

Car tan matr ix v ia (4.05). 

_ 2iiipn 
( a i » Q P a j ) = 2 ^ ( a i • e n ) ( a j • e h - n ) e ^ 

c(j)-c(l)'| i,n 
= 2 c ( l ) c a ) S e ^ ^ - ^ - ^ ^ - q j n ^ q i n ) (4 06^ 

n 

Here the sum is taken over the exponents of the relevant a lgebra. Explicit va lues for such 

e igenvectors may be found for all the s imply- laced Lie a lgebras in [12] and hence the inner 

product can be expl ic i t ly eva luated. 

For examp le , tak ing the a„'^* ser ies, the normal ised eigenvectors are g iven by 

q i ^ ' = s i n ( ^ ) and the exponents s are 1,2,3 h -1 . Therefore the term above 

becomes : 

2 , ^ c ( l ) c O ) e ^ 2 n ( g — - e — ) ( e i r - e — ) 
n=1 

which g ives zero unless (2p + ^ ^ ^ ^ ± l ± j ) « h. Expl ici t calculat ion determines that 

, a ;a i , . , , _ ( 1 - m ' ^ ' e e ) ( 1 - o r ' T ' e e ) 
A'^i") ( 0 ) = ^ " ' (4.07) 

(1 2Jec - ' ) (1 - c i r ' T ' e ® ) 

in accordance with (3.10), i r respect ive of colour and order ing. Simi lar results give the inter­

act ion p ieces for d„ ' ' ' . 
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4.3 The Operator Construction 

Given (4.01) and its equ iva lence to a quot ient of sinh funct ions, the quest ion begs as to 

whether it is possible to obtain such a quant i ty through the usual normal order ing procedure 

of ve r tex operators. 

In order to ach ieve this, a var iat ion on Corr igan & Dorey'^^' is used, and a str ing-l ike rapidity 

dependent f ie ld is def ined for each s imple root v ia the formula : 

r=s+kh 

The summat ion is taken over the exponents s of the algebra and all integers k; h denotes 

the re levant Coxeter number . Here, the quant i ty denotes the i'" s igned s imple root c(i)ai 

resul t ing f rom a bicolourat ion of the Dynk in d iag ram, and c(i) can be taken to be ' + 1 ' if ' i ' is 

black, ' - 1 ' if ' i ' is whi te , as in [12]. The superscr ipt denotes the (h-s)* component of an object 

expanded in a comp lex basis of the e igenvectors of the Coxeter e lement . That is 

ai = X (xS^ 'es = 2 (a i«eh-s) (4.09) 
s s 

The operators d, sat isfy the commuta t ion relat ions 

[ d r , d r O = ^e^r^r',0 (4-10) 

and it is impl ic i t ly assumed that there exists a 'ground state' annihi lated by all d , , r > 0. It is 

easi ly seen that the X°(e) are 27ii-periodic in 6 and moreover that the f ield is ' twisted' in the 

sense that a Coxeter rotat ion of the root shi f ts the rapidity by the value 27ii/h: 

af = I ( a r V . e s = 03(ai) : i a f y = e ' ^ . a f 

Then the commutu ta t ion relat ion invo lv ing the creat ion and annihi lat ion parts of such 

operators X°'(e) may be ca lcu la ted. 

x«i(9i),x '^j(ej)" = 
r>0 r/>0 

(_^h er(0+(c(i)-ca))f )^(h-s)^(h-s) (4.11) 

r>0 
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where (4.10) has been uti l ised and 0 has been def ined to be B-Q.^, that is the rapidity differ­
ence. Th is express ion is equiva lent to 

s Vrss(mod h) 

where X is taken to be e'^^'^*'^^'^'^^^^2h). This is fur ther s impl i f ied using the summat ion formula 

L n t " = ( - ) H S (4.13) 
nss(modh) 1=1 

to g i ve , 

j L r _ ^ 
I n ( l - c D ' X ) : R e ( 0 ) < O 

1=1 V s 

Not ing that a'^^yf^ = cO)(ro'aj)'^-^) , the commuta to r is easily seen to be equivalent to 

X [ c ( i ) c O ) ( a i . Q P a i ) J I n ( l - a ) P X ) . (4.14) 

Hence def in ing a ver tex operator to be the normal ordered exponent ia l of such a f ie ld: 

Y°'i(ei)= : e x p X « i ( 0 i ) : = expX«i (e i )expX«i (9 i ) 

then the product of two such operators can be normal ordered using the 

Baker -Campbe l l -Hausdor f fo rmula to g ive an extra rapidity dependent factor. 

Y" i (9 i )Y" j (9j) = A " ' " J ( 0 ) : Y" i (6 i)Y"j (9 j ) : 

where 

A" i " i (©) = exp [x« i (e i ) ,X ' ^ i (9 j ) ' 

= 1 1 1 4 )e® (4.15) 
7" ^ ^ p=1 

which is the required interact ion funct ion. 

Before proceeding into a discussion of the aspects of such a funct ion, it could be noted that 

the ve r tex operators that appear here are 'conformal ' in the sense that they g ive rise to a 

tr iv ia l braid ing relat ion. There is no need to perturb them in any way (compare [25]) since 
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this is all that is requi red. It wil l be seen however , that the interact ion funct ion satisf ies 
s o m e s imi lar propert ies as the scatter ing matr ices. 

4.4 Properties of the function A'̂ *̂(0) 

As has a l ready been ment ioned in sect ion 4 . 1 , the ,eading order coeff ic ient of a double sol i ­

ton tau funct ion must be tr iv ia l ly proport ional to ( a " I « 2 ( © ) ) Hence this funct ion governs 

the fus ing proceedure for the classical sol i tons. A thorough analysis of this phenomenon 

may be under taken through the use of (4.01), where the funct ion is wri t ten in an algebra- in­

dependent f o rm. 

The fus ings occur when the leading te rm has a pole in 0 and hence when c{\)cQ){a^,m''a) 

takes a negat ive va lue . Since a^a^ is a root of a s imply- laced algebra, this va lue can only 

e i ther be -1 or - 2 . Uti l is ing the fact that the orbits of y, are dist inct, then the value of -2 is 

obta ined only when = - © " y j i.e. when y^ l ies in the Coxeter orbit of - y j . Compar ison with the 

fact that 

Yt = -W^ ^ ' ^ y i (4.16) 

i.e the con jugate 's igned' root l ies in the same Coxeter orbit as the negat ive of the same 

's igned' root, requests i and j to be a conjugate pair, and p to take the va lue corresponding 

to the power of co, s ince all the orbits are disjoint. [This exponent is easi ly seen to lie in the 

integers s ince c(i)c(T)=(-) ' ' ] . Hence the pole occurs at the va lue of 0 when 

that is, at 0 = \n. Th is fact was borne out in all cases of conjugate pairs. 

The remain ing case, when (y i • m f y j ) = - 1 , impl ies that y i + f f l P y , ^ m ^ i y k s ince the W e y l ref lec­

t ion of any root in a s imple root must be another root, and then this is also expressible as 

the Coxe te r rotat ion of one of the y i . Therefore 

y i + m P y j + f f l ^ y k = 0 
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where r = q + | - ^ ^ ^ ^ ^ ^ , which is Dorey 's m le for the three-point coupl ings in the real 

-coup l ing reg ime of a f f ine Toda f ie ld theory. 

Hence it has been shown that in the imaginary coupl ing reg ime (specif ical ly with sol i ton 

so lut ions in mind) Dorey 's rule is augmented further by sol i ton-antisol i ton fusings 

(annihi lat ions) at rapidi ty d i f ference i7t, purely using the algebraic construct ion of the leading 

order t e rm . 

h 
It is also possible to note v ia (4.16) that when a root is sel f -conjugate, ffi2ai = - a i , and hence 

the interact ion funct ion takes the f o rm : 

s h ( f . i ^ ) s h ( f - i i l ) s h ( f . j i ^ ) s h ( f - l i i ) 

s h ( | . i ^ ) s h ( f - ^ ) s h ( f . i f i ) s h ( f - i f i ) 

where y, =Xi+h (mod 2h) and the poles of A<'^' occur at © f T ^ - Th is is equivalent to the fonm 

(ch© + cos © 1 ) ( c h © + c o s © n ) 

( c h © - c o s © i ) ( c h © - c o s 0 n ) ^'^•''^^ 

fo r the funct ion A'^^' , wh ich is u l t imately responsible for the phenomena noted in sect ion 

3.6.1 th rough express ions der ived f r om the equat ions of mot ion for the relevant interaction 

te rms . 

G i ven that the interact ion piece appears natural ly through a s imi lar ver tex operator con­

struct ion as the m in ima l S-matr ix , it m ight be considered that such a funct ion would possess 

s o m e propert ies akin to those held by the scat ter ing matr ix. This proposit ion is in fact true 

s ince it is easi ly shown that if part icles (sol i tons) a,b fuse to a th i rd, c say, then the funct ion 

A'^^' sat is f ies the s a m e 'bootstrap' property as that of the scatter ing matr ices, i.e. (1 .09) . 

A ' ' ^ (© - i(7i - etc)) A ' ' ^ © + i(7t - 9 ^ ) ) 

h n 1 - 0 ) ^ ' 'Ke^ 
h n 

q=1 V 

/ |Uac c(c)-c(a) / "be c(c)-c(b) 
h / ( . , c(d>-c(c)) (Yd 'e 2 4 .y3+a>' 2 4 .y^) 

= n 1-(o^'^ ~ ^ ^ . e ® 
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where , 

P=i 

= A'"=(0) (4.18) 

Uac c(c)-c(a) ^be c(c)-c(b) 
yc=f f l 2 4 . y a + m 2 4 .yb ( 4 1 9 ) 

and hence is equ iva lent to Dorey's fus ing rule. 

In the process of the calculat ion, the U's were def ined by o f b ^ f Ugb and the fact that co,© 

were per iodic in h a l lowed the appropr iate relabel l ing to be carr ied out: 

p^ = ^ + p - ^ eZ 

, £ (£h£ ( ^ + q + i | . e z . 

Ano the r property of th is ' leading order" funct ion wh ich is qui te readily proved is that 

( A ' ' ( 0 - f ) . A ' ' ( 0 + f ) ) = 1 (4-20) 
© = 1 7 1 

when ' i ' is taken to cor respond to any se l f -conjugate spot on the Dynk in d iagram. From (4.01) 

it is easi ly seen that t he L.H.S. of (4.20) is equiva lent to 

h_ f , r c( i>-c(T)>Vyi 'g' ' rr ) 

n 1 + 0 ) ^ " ^ " ^ ^ 
p=i ^ ^ 

and hence by tak ing q = p - j + ^^'^ ' ' " ' e Z af ter substi tut ing the expression (4.16) fo ry; - , 

the above becomes: 

q=1 ^ ^ q=1 

Compar ing the two fo rmu lae it can be seen that (4.20) must hold when ' i ' is sel f -conjugate. 

For examp le , tak ing the case of the Lie a lgebras a „ ' " , the fundementa l interact ion funct ion is 

g i ven by the express ion (4.07), and hence 

A ' ' ( © - f ) . A * * ( © + f ) 

l + i © ^ 2 ^.e® [ i + i © - U J .e® 1 - i f f i ^ 2 J . e ® i - j a ^ — J . t 

1 + i f f l ' ^ 2 ) . e e | ( i + i c D '^2).ee 1_iQ)V2J.e® 1 - i f f l"^2J . ee 
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1 + a 2 i . e ® ) ( l + c o - 2 i . e ^ ' 

1 + e ® 1 + e © 

There fo re f A ' \ 0 - f ) . A ' \ © + f ) J is undef ined unless i = i when it is equivalent to 
©=i7i 

unity. Th is property holds for all the re levant s imply- laced double sol i ton solut ions. 
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5 CONCLUSION AND OUTLOOK 

This thesis has been concerned wi th the expl ici t construct ion of single and double sol i ton 

solut ions to the set of f ie ld theor ies known as the s imply- laced aff ine Toda f ie ld theories. 

G i ven these solut ions, a thorough analysis of the fusing structure of such classical objects 

has been under taken and has also been abstracted into the sett ing of the underiying Lie 

a lgebra ic structure. A few basic propert ies of the funct ions invo lved have been noted and 

were c o m m e n t e d upon. 

A decade ago'^"^', it was found that tak ing the coupl ing constant to be purely imaginary led 

to representat ions of the unitary m in ima l ser ies of conformal f ield theor ies in the fo rm of 

quant ized Toda f ield theor ies. In the context of their associated aff ine models , it leads to 

the equal ly impor tant phenomena of topological soli ton solut ions interpolat ing the weight 

latt ice of the f inite Lie algebra. This appears through the infinite number of degenerate 

m in ima that occur in the potent ial te rms . 

Even though the Hami l ton ian is non-Hermi t ian , the explicit single sol i ton solut ions possess 

real energy and m o m e n t a . It is, therefore, hoped that a unitary f ield theory is somehow 

embedded in th is larger non-uni tary sys tem. These single sol i tons can be taken pairwise 

and scat tered classical ly and their result ing interact ions can be analysed. To this end, 

doub le sol i ton solut ions were constructed expl ici t ly using Hirota's method for all the 

s imply - laced theor ies, a l though it was found that the tau funct ion subst i tut ional ansatz 

i nvo lved , only led to 'proper" bi l inear equat ions for the s impler a„ ' ' ' - series of algebras. The 

f ini te expans ion of the tau funct ions found is considered to be a mani festat ion of the 

integrabi l i ty of the under iy ing f ie ld theory. 

The doub le sol i ton solut ions reveal the ex is tence of the 'h idden' Lie algebraic f ramework 

th rough thei r leading order tau funct ion behaviour . As also d iscovered in the real-coupl ing 

reg ime of af f ine Toda theory, the Coxe te r orbi ts of the s imple roots are found to be a crucial 

e lement in the analysis of the re levant interact ion terms. These solut ions are in essence 

fundamen ta l , s ince the N-soliton scatter ing matr ices should factor ize into products of 
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two-sol i ton scat ter ings because of the presence of the infinite number of conserved charges 
associated wi th the sys tem. Only those corresponding to the a „ " ' series of algebras have, 
however , been conjectured and these have invo lved aspects of the theory of quantum 
groups'^"'. Hence, this is an obv ious area for immedia te further research, since an extension 
to the other s imply- laced and non-s imply- laced theor ies is required. 

The leading order tau funct ion behav iour reveals a great deal more informat ion. Namely , 

the topological nature of such solut ions via the single sol i tons (not discussed here), and their 

fus ing relat ionships when double sol i ton solut ions are considered. It was found that these 

classical ly a l lowed fus ings occur at precisely the same rapidity d i f ferences that appear for 

the three point coupl ings [in the real-coupl ing af f ine Toda field theory] , but in all 

s imply- laced cases were supp lemented by sol i ton-ant isol i ton annihi lat ions. 

G iven that the topological charges of the single sol i tons classical ly do not appear to fil l out 

the who le of the weight sys tems of the fundamenta l representat ions (except for a / " , a j ' ' ' ) , it 

wou ld be an interest ing invest igat ion to determine whether a 'breathing' solution could be 

constructed with such a property. More exot ic breathers may be expected in the higher rank 

a lgebras when compared with the s ine-Gordon mode l , g iven the extra d imensions of the 

weight latt ices associated with such theor ies. 

Moreover , g iven the di f f icul t ies with construct ing the e g ' " double soliton solut ions , it would 

be instruct ive to de termine the level of complex i ty involved in producing these f rom the 

genera l ised Leznov-Save l iev solut ion (or ver tex operator fo rmal ism) introduced by Ol ive, 

Turok and Underwood'^^'. Certainly the Hirota method is tedious for all the exceptional 

a lgebras however it may be deemed preferent ial for generat ing expl ici t solut ions. 



119 

APPENDIX A 

The inner products fo r the orbits of the s imp le roots under the Coxeter e lement are g iven 

here for the a lgebras d^, e^, e^ and eg. 

Tak ing I, 1', I" & h to correspond wi th the outer and inner spots of the Dynkin d iagram, then 

the fo l lowing va lues for the scalar products are obta ined: 

(ah,fflPah) = ( + 1 , - 1 , - 2 , - 1 , + 1 , + 2 ) 

(ai,©Pah) = ( 0,+1,-H I , 0 , - 1 , - 1 ) 

(ai, fflPai) = ( - 1 , + 1 , - 2 , + 1 , - 1 , + 2 ) 

(ai,©Pa,/) = ( + 1 , - 1 , 0 , - 1 , + 1 , 0) 

where p takes the va lues f rom 1 ,..,6 respect ively. The label T corresponds to any of the de­

genera te ' l ight' spots , and the labels 1,1' refer to any non-equal pair f rom the set of such 

spots. 

Invar iance of t he inner products under the symmet ry ©P ^ O J - P , may be noted 

fo r equal ly -co loured, unequal ly-co loured s imple roots respect ively, af ter the Dynkin d iagram 

has been b ico loured as ment ioned in chapter four. More precisely there is an invar iance 

under p-^-p + ^^^^—^, where c(1) , c(2) refer to the colour indices of the first, second 

s imp le roots in the inner product. Th is is t rue for all the algebras. 

W i t h the label l ing o f the s imp le roots taken to be that corresponding to the subdiagram o f 

the a f f ine Dynk in d iag ram on page '85', they may be represented by the vectors: 

aj = e j - e j+ i , a 6 = ( a , a , a , a + 1 , a + 1 , a + 1 ) 

where i =1,. . . ,5 and the {Oj } denotes the standard or thonormal basis for R^ The constant a 

also sat isf ies the equat ion 

6a^+6a + ^ = 0 

if al l the s imp le roots possess a normal isat ion of two. Then the Coxeter e lement in this 

basis can be g iven by: 



= ((£> C£> CO )fC0 CO CD ) 
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f 1 - a 2 -a2 -a2 -ap -aP -ap 
-a2 1 - a 2 -a2 -aP -ap -aP 
-a2 -a2 1 - a 2 -ap -aP -ap 
-aP -aP -ap 1 - p 2 -P^ 
-aP -ap -aP -P^ 1 - p 2 -P^ 

V -ap -aP -aP -P' -P^ 1 - p 2 

( 1 0 

0 0 

0 1 

0 0 

0 0 

0 0 

1 

0 

0 

0 

0 

-a2 

1 - a 2 

-ap 
-ap 
-ap 

1 - a 2 

-a2 

-a2 

-ap 
-ap 
-ap 

-ap 
-ap 
-aP 
-P^ 

1 - p 2 

-P^ 

-a^ 
1 - a 2 

-a2 

-ap 
-ap 

-ap 
-ap 
-ap 
-P^ 
-P^ 

-ap ^ 
-ap 
-ap 

1 - p 2 

-P^ 
-P^ -ap 1 - p2 

where p ^ + 1 . [This construct ion easi ly general ises for e^ and eg.) 

Using (4.16) and the fact that the symmet r y of the e^ Dynkin d iagram impl ies c(i) = c ( i ) , then 

h h h 
©2ai = - a p There fo re ©2ai = -a5 , ©2a2 =-a4 and for the sel f -conjugate s imple roots , 

h 

Hence , as a result of these facts, it is mere ly suff ic ient to calculate each (a, .©"a^) f rom ' 1 ' to 

' (= 6) in order to possess the re levant in format ion to construct the inner product tables for 

the who le of the Coxe te r orbits. These scalars (for p=1 ,...,6) are now listed: 

(ai ,©Pai) = ( - 1 , 0 , + 1 , - 1 , 0, 0) 

(a2,©Pai) = ( - 1 , + 1 , - 1 , 0 , + 1 , 0) 

(a3,©Pai) = ( + 1 , 0, 0, 0 , + 1 , 0) 

(a4,©Pai) = ( 0 , - 1 , 0 , + 1 , - 1 , + 1 ) 

(a5,©Pai) = ( 0 , + 1 , - 1 , 0 , + 1 , - 2 ) 

(a6,©Pai) = ( 0 , - 1 , + 1 , - 1 , + 1 , 0 ) ; 
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( a i , f f l P a 2 ) = (+1 - 1 , 0,+1, 0, 0) 

= ( 0 0,+1,-1,-1, 0) 

= (-1 0, 0,+1,+1,+1) 

(a4,ffl''0C2) = (+1 +1,-1, 0, 0,-2) 

( a 5 , a P a 2 ) = (-1 0,+1,-1,+1,+1) 

( a 6 , r a P a 2 ) = (+1. 0, 0, 0 , -1 , 0); 

( a i , m P a 3 ) = (+1. 0, 0, 0 , -1 , 0) 

= ( -1 , - 1 , 0, 0,+1,+1) 

= (+1. +1, 0,-1,-1,-2) 

( a 4 , © ' ' a 3 ) = (-1. - 1 , 0, 0,+1,+1) 

( a s . c o P a a ) = (+1. 0, 0, 0 , -1 , 0) 

( a 6 , r a ' ' a 3 ) = (-1. 0,-1,+1, 0,+1); 

( a i , c o P a 4 ) = (-1 0,+1,-1,+1,+1) 

( a 2 , © P a 4 ) = (+1 +1,-1, 0, 0,-2) 

( a 3 , © P a 4 ) = (-1 0, 0,+1,+1,+1) 

( a 4 , coPa4) = ( 0 0,+1,-1,-1, 0) 

( a 5 , © P a 4 ) = (+1 - 1 , 0,+1, 0, 0) 

(a6 , f f lPa4) = (+1 0, 0, 0 , -1 , 0); 

( a i , f f l P a 5 ) = ( 0 +1,-1, 0,+1, -2) 

( a 2 , f f l P a s ) = ( 0 - 1 , 0,+1,-1,+1) 

( a 3 , © P a 5 ) = (+1 0, 0, 0 , -1 , 0) 

( a 4 , m P a 5 ) = (-1. +1,-1, 0,+1, 0) 

( a s , CO P a s ) = (-1, 0,+1, - 1 , 0, 0) 

(a6 , f f lPa5 ) = ( 0 -1,+1, -1,+1, 0); 

( a i . f f l P a e ) = (-1. +1,-1,+1, 0, 0) 

(a2,fflPoi6) = (+1 0, 0, 0 , -1 , 0) 

(a3 , f f lPa6 ) = ( 0 -1,+1, 0,+1,+1) 

( a 4 , c o P a 6 ) = (+1 0, 0, 0 , - 1 , 0) 
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( a 5 , © P a 6 ) = (-1,+1,-1,+1, 0, 0) 

( a 6 , o P a 6 ) = (-1,+1, 0,-1,+1,-2). 

Unlike the case of the algebra eg, the Dynkin diagram for ê  is devoid of symmetry and 
h 

hence all the simple roots are self-conjugate and satisfy co2ai = - a i . (This is also true for 

the case ). Therefore, only the values for p=1 ~ = 9 need to be calculated, the others 

coming as-it-were 'gratis'. 

a i , o o P a i 

a 3 , m P a i 

a s . c o P a i 

a 6 , © ' ' o t i 

a2,©P0C2 

Ot3,fflPa2 

a 4 , c o P a 2 

a 5 , r a P a 2 

0C6,©P0(.2 

a7 , f f lPa2 

- 1 , 0,+1,-1.+1,-1, 0,+1,-2) 

-1 ,+1, -1 , 0, 0, 0,+1,-1,+1) 

+1, 0, 0,+1,-1, 0, 0 , -1 , 0) 

0 , -1 , 0, 0, 0, 0, 0,+1, 0) 

0,+1, 0,-1,+1, 0 , -1 , 0, 0) 

0, 0,-1,+1, 0,-1,+1, 0, 0) 

0,-1,+1,-1, 0,+1,-1,+1, 0) ; 

+1,-1, 0, 0, 0,+1,-1,+1,+1) 

0, 0,+1, 0, 0 , - 1 , 0, 0,-2) 

- 1 , 0 , - 1 , 0,+1, 0,+1,+1,+1) 

+1,+1, 0, 0, 0, 0 , -1 , -1 , 0) 

-1 , -1 ,+1, 0,-1,+1,+1, 0, 0) 

0,+1, 0,-1,+1, 0 , -1 , 0, 0) 

+1, 0, 0,+1,-1, 0, 0 , -1 , 0); 

( a i , o o P a 3 ) = (+1, 0 0,+1, - 1 , 0, 0 , -1 , 0) 

(a2 , f f lPa3) = (-1,-1 0, - 1 , 0,+1, 0,+1,+1) 

( a 3 , r a P a 3 ) = (+1,+1 +1, 0, 0,--1 , -1 -1 , -2 ) 

( a 4 , © P a 3 ) = ( -1 , -1 , - 1 , 0, 0, 0,+1,+1,+1) 

(a5 , f f lPa3 ) = (+1,+1, 0, 0, 0, 0 , -1 , -1 , 0) 

( a e . f f l P a s ) = ( 0 , -1 , 0, 0, 0, 0, 0,+1, 0) 

( a y , © P a s ) = ( -1 , 0, - 1 , 0, 0, 0.+1, 0,+1); 
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( a i , f f l P a 4 ) = 

(a2,fflPo(.4) = 

( a 3 , c o P a 4 ) = 

(a4 , f f i ' ' a4 ) = 

( a s , f f l P a 4 ) = 

(a6 , f f lPa4 ) = 

{a7,aj'a4) = 

( a i , m P a 5 ) = 

( a 2 , m P a 5 ) = 

( a 3 , © P a 5 ) = 

( a 4 , © P a 5 ) = 

(a5 , f f lPa5 ) = 

( a 6 , c o P a 5 ) = 

( a 7 , m P a s ) = 

( a i , m P a 6 ) = 

( a 2 , c o P a 6 ) = 

( a 3 , m P a 6 ) = 

( a 4 , m P a 6 ) = 

( a 5 , Q P a 6 ) = 

( a e , © P a s ) = 

( a 7 , © P a 6 ) = 

( a i , © P a 7 ) = 

( a 2 . © P a 7 ) = 

( a 3 , m P a 7 ) = 

( a 4 , c o P a 7 ) = 

(a5 , f f iPa7 ) = 

( a 6 , c o P a 7 ) = 

(a7 , f f lPa7 ) = 

- 1 , 0, 0, 0, 0, 0,+1, 0, 0) 

+1,+1, 0, 0, 0, 0 , -1 , -1 , 0) 

- 1 , - 1 , 0, 0, 0,+1,+1,+1,+1) 

0,+1, 0,+1,-1, 0 , -1 , 0,-2) 

0, 0 , -1 , 0,+1, 0, 0,+1,+1) 

+1,-1,+1, 0, 0,-1,+1,-1, 0) 

+1, 0,+1,-1,+1,-1, 0 , -1 , 0); 

0,+1, 0,-1,+1, 0 , -1 , 0, 0) 

0,-1,-1,+1, 0,-1,+1,+1, 0) 

+1,+1, 0, 0, 0, 0 , -1 , -1 , 0) 

- 1 , 0, 0 , -1 , 0,+1, 0, 0,+1) 

0,-1,+1,+1,-1,-1,+1, 0,-2) 

-1,+1, 0 , - 1 , 0,+1, 0,-1,+1) 

0 , -1 , 0, 0, 0, 0, 0,+1, 0); 

0,-1,+1, 0,-1,+1, 0, 0, 0) 

0,+1, 0,-1,+1, 0 , -1 , 0, 0) 

- 1 , 0, 0, 0, 0, 0,+1, 0, 0) 

+1,-1,+1, 0. 0,-1,+1,-1, 0) 

+1, 0 , - 1 , 0,+1, 0,-1,+1,+1) 

- 1 , 0. 0,+1,-1, 0, 0,+1,-2) 

o ,+ i , - i ,+1, -1 .+1, -1 , 0, 0): 

-1 ,+1, -1 , 0,+1,-1,+1, 0, 0) 

+1, 0, 0,+1,-1, 0, 0 , -1 , 0) 

0 , -1 , 0, 0, 0,+1, 0,+1,+1) 

+1, 0,+1,-1,+1,-1, 0 , -1 , 0) 

- 1 , 0, 0, 0, 0, 0,+1, 0, 0) 

0,+1,-1,+1,-1.+1,-1, 0, 0) 

-1 ,+1. 0. 0, 0, 0,-1,+1.-2). 
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Again, all the simple roots are 'self-conjugate.' The Coxeter number h = 30 for this finite 

algebra and therefore only the values for p = 1 15 may be given:. 

( a i , f f i P a i ) = 

( a 2 , c o P a i ) = 

( a 3 , © ' ' a i ) = 

( a 4 , © P a i ) = 

( a 5 , © P a i ) = 

( a 6 , m P a i ) = 

( a 7 , m P a i ) = 

( a s . f f l P a i ) = 

( a i , f f l P a 2 ) = 

( a2 , f f lPa2 ) = 

( a 3 , © P a 2 ) = 

(a4 , f f lPa2 ) = 

( a 5 , r a P a 2 ) = 

( a 6 , © P a 2 ) = 

( a7 , f f lPa2 ) = 

( a 8 , c o P a 2 ) = 

( a i , m P a 3 ) = 

( a 2 , r a P a 3 ) = 

( a 3 , c o P a 3 ) = 

(a4 ,ooPa3) = 

(a5 , f f iPa3 ) = 

( a6 , ooPa3 ) = 

(a7 , f f iPa3 ) = 

( a8 , f f lPa3 ) = 

- 1 , 0,+1,-1,+1, 0,-1,+1, 0,-1,+1,-1, 0,+1,-2) 

-1 ,+1, -1 , 0, 0,-1,+1, 0,-1,+1, 0, 0,+1,-1,+1) 

+1, 0, 0,+1, 0, 0, 0, 0, 0, 0 , -1 , 0, 0 , -1 , 0) 

0 , - 1 , 0, 0,-1,+1,-1, 0,+1,-1,+1, 0, 0,+1, 0) 

0,+1, 0, 0, 0, 0,+1,-1, 0, 0, 0, 0 , -1 , 0, 0) 

0, 0 , -1 , 0,+1,-1, 0, 0, 0,+1,-1, 0,+1, 0, 0) 

0, 0,+1,-1, 0,+1,-1,+1,-1, 0,+1,-1, 0, 0, 0) 

0,-1,+1,-1, 0, 0, 0, 0, 0, 0, 0,+1,-1,+1, 0); 

+1, -1 , 0, 0,-1,+1, 0,-1,+1, 0, 0,+1,-1,+1,+1) 

0, 0,+1, 0,+1, 0,-1,+1, 0 , -1 , 0 , -1 , 0, 0,-2) 

- 1 , 0 , -1 , -1 , 0, 0, 0, 0, 0,+1,+1, 0,+1,+1,+1) 

+1,+1, 0,+1, 0, 0,+1,-1, 0, 0 , -1 , 0 , -1 , -1 , 0) 

- 1 , - 1 , 0, 0, 0 , -1 , 0,+1, 0, 0, 0,+1,+1, 0, 0) 

0,+1,+1,-1, 0,+1, 0, 0 , -1 , 0,+1,-1,-1, 0, 0) 

0 , -1 , 0,+1,-1, 0, 0, 0,+1,-1, 0,+1, 0, 0, 0) 

+1, 0, 0,+1, 0, 0, 0, 0, 0, 0 , -1 , 0, 0 , -1 , 0); 

+1, 0, 0,+1, 0, 0, 0, 0, 0, 0 , - 1 , 0, 0 , -1 , 0) 

- 1 , - 1 , 0 , -1 , -1 , 0, 0, 0, 0, 0,+1,+1, 0,+1,+1) 

+1,+1,+1,+1,+1, 0, 0, 0, 0,-1,-1,-1,-1,-1,-2) 

- 1 , - 1 , - 1 , - 1 , 0 , - 1 , 0, 0, 0,+1, 0,+1,+1,+1,+1) 

+1,+1,+1, 0, 0,+1, 0, 0 , - 1 , 0, 0 , -1 , -1 , -1 , 0) 

0 , -1 , -1 , 0, 0, 0 , - 1 , 0,+1, 0, 0, 0,+1,+1, 0) 

0,+1, 0, 0, 0, 0,+1,-1, 0, 0, 0, 0 , -1 , 0, 0) 

- 1 , 0 , -1 , 0 , -1 , 0, 0, 0, 0, 0,+1, 0,+1, 0,+1); 
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( a i , m P a 4 ) = ( -1 , 0, 0,-1,+1,-- 1 , 0,+1,--1,+1, 0, 0,+1, 0, 0) 

( a 2 , m P a 4 ) = (+1,+1, 0,+1, 0, 0,+1,-1, 0, 0 , -1 , 0 , -1 , -1 , 0) 

( a 3 , © P a 4 ) = ( -1 , -1 , -1 , 0 , -1 , 0, 0, 0,+1, 0,+1,+1,+1,+1,+1) 

( a 4 , © ' ' o t 4 ) = ( 0,+1,+1, 0,+1, 0, 0, 0, 0 , -1 , 0 , -1 , -1 , 0.-2) 

( a 5 , c o P a 4 ) = ( 0 , -1 , 0 , -1 , 0, 0, 0, 0, 0,+1, 0,+1, 0,+1,+1) 

(a6 , f f i ' '« '4 ) = (+1, 0, 0,+1, 0, 0, 0, 0, 0, 0 , -1 , 0, 0 , -1 , 0) 

(a7 , f f l ' ' a4 ) = (-1,+1,-1, 0, 0, 0, 0, 0, 0, 0,+1,-1,+1, 0, 0) 

( a8 ,©Pot4 ) = (+1, 0,+1, 0, 0,+1, -1,+1,-- 1 , 0, 0 , -1 , 0 , -1 , 0) 

a i , f f l P a s ) = 

a 2 , f f l P a s ) = 

a 3 , c o P a 5 ) = 

a 4 , r a P a s ) = 

a s , 00 P a s ) = 

a s , CO P a s ) = 

a 7 , c o P a s ) = 

aB,aPas) = 

a i . r a P a e ) = 

a 2 , c o P a 6 ) = 

a 3 , c o P a 6 ) = 

a 4 . c o P a 6 ) = 

a s , © P a s ) = 

a6 ,ooPa6 ) = 

a 7 , o o P a 6 ) = 

a s , fflPae) = 

0,+1, 0. 0, 0, 0,+1,-1, 0, 0, 0, 0 , -1 , 0, 0) 

0 , -1 , -1 , 0, 0, 0 , -1 , 0,+1, 0, 0, 0,+1,+1, 0) 

+1,+1,+1, 0, 0,+1, 0, 0 , - 1 , 0, 0 , -1 , -1 , -1 , 0) 

- 1 , 0 , -1 , 0 , -1 , 0, 0, 0, 0, 0,+1, 0,+1, 0,+1) 

0, 0, 0,+1,+1,-1, 0, 0,+1,-1,-1, 0, 0, 0,-2) 

1, 0,+1,-1,-1, 0,+1, 0 , -1 , 0,+1,+1,-1, 0,+1) 

+1,-1, 0,+1, 0, 0,-1,+1, 0, 0 , -1 , 0,+1,-1, 0) 

0,+1, 0,-1,+1,-1, 0, 0, 0,+1,-1,+1, 0,+1, 0); 

0 , -1 , 0,+1,-1, 0, 0, 0,+1,-1, 0,+1, 0, 0, 0) 

0,+1,+1,-1, 0,+1, 0, 0 , - 1 , 0,+1,-1,-1, 0, 0) 

- 1 , - 1 , 0, 0, 0 , -1 , 0,+1, 0, 0, 0,+1,+1, 0, 0) 

+1, 0, 0,+1, 0, 0, 0, 0, 0, 0 , -1 , 0, 0 , -1 , 0) 

0,+1,-1,-1, 0,+1, 0 , -1 , 0,+1,+1,-1, 0,+1,+1) 

0 , -1 , 0,+1,+1,-1,-1.+1.+1.-1.-1, 0.+1. 0,-2) 

+1, 0, 0 , -1 , 0,+1, 0 , -1 , 0,+1, 0, 0,-1,+1,+1) 

0,+1, 0, 0, 0, 0,+1,-1. 0. 0. 0. 0 , -1 , 0, 0); 
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( a i , c D P a 7 ) 

(a2 , f f lPa7 ) 

(a3 , f f lPa7 ) 

( a 4 , © P a 7 ) 

( a 5 , m P a 7 ) 

( a 6 , c o P a 7 ) 

(a7,CDPa7) 

( a 8 , © P a 7 ) 

( a i , f f l P a 8 ) 

( a 2 , © P a 8 ) 

( a 3 , c o P a 8 ) 

(a4 , f f lPa8 ) 

( a s . f f l P a s ) 

(a6 , f f iPa8 ) 

( a 7 , © ' ' a 8 ) 

(a8 , f f lPa8) 

0, 0,+1,-1, 0,+1,-1,+1,-1, 0,+1,-1, 0, 0, 0) 

0, 0 , -1 , 0,+1,-1, 0, 0, 0,+1,-1, 0,+1, 0, 0) 

0,+1, 0, 0, 0, 0,+1,-1, 0, 0, 0, 0 , -1 , 0, 0) 

0,-1,+1,-1, 0, 0, 0, 0, 0, 0, 0,+1,-1,+1, 0) 

+1, -1 , 0,+1, 0, 0,-1,+1, 0, 0 , -1 , 0,+1,-1, 0) 

-1 ,+1, 0, 0 , - 1 , 0,+1, 0 , - 1 , 0.+1, 0, 0,-1,+1) 

- 1 , 0, 0, 0,+1,-1, 0, 0,+1,-1, 0, 0, 0,+1,-2) 

0, 0,-1,+1,-1,+1,-1, 0,+1,-1,+1,-1,+1, 0, 0); 

-1 ,+1, -1 , 0, 0, 0, 0, 0, 0, 0,+1,-1,+1, 0, 0) 

+1, 0, 0,+1, 0, 0, 0, 0, 0, 0 , -1 , 0, 0 , -1 , 0) 

0 , - 1 , 0 , -1 , 0, 0, 0, 0, 0,+1, 0,+1, 0,+1,+1) 

+1, 0,+1, 0, 0,+1,-1,+1,-1, 0, 0 , -1 , 0 , -1 , 0) 

- 1 , 0,-1,+1,-1, 0, 0, 0,+1,-1,+1, 0,+1, 0, 0) 

0,+1, 0, 0, 0, 0,+1,-1, 0, 0, 0, 0 , -1 , 0, 0) 

0, -1,+1,-1,+1,-1, 0,+1,-1,+1,-1,+1, 0, 0, 0) 

1, - 1 , 0, 0,+1,-1,+1,-1,+1,-1, 0, 0 , -1 , -1 , -2) . 
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