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Liam Edward O’Hara

The identification of potential cis- and trans-acting factors in

the regulation of DARK INDUCIBLE 3 (DIN3) expression

during darkness and chilling in Arabidopsis thaliana

Abstract

Plant responses to environmental stimuli are co-ordinated by a variety of sensing and

signalling mechanisms, which bring appropriate internal changes so that plants are able

to adapt to a changing environment. It was the aim of this project to investigate the

regulation of one gene: DARK INDUCIBLE 3 (DIN3), specifically the cis- and trans-

acting factors. To achieve these aims, the investigative approach centred on gene

expression analysis of linker-scan mutation analysis of 50 base-pairs (bp) of the

minimal functional promoter of DIN3. To investigate the contribution made by trans-

acting factors, the effects of over-expression of candidate transcription factor genes

were analysed. This project determined that in addition to dark-induced expression

already described in the literature, the dark-induction of DIN3 expression could be

repressed by low temperature. Specific motifs within the crucial 50bp of the DIN3

promoter were found to be necessary for dark-induced expression, which together was

hypothesised to constitute a sugar-responsive sequence. No cis-acting regulatory motifs

were found to contribute definitely to the cold-responsiveness of DIN3. None of the

transcription factor genes investigated, were revealed to have a major role in the dark

and cold responsiveness of DIN3. The results of this project suggest that there is

considerable cross-talk between dark/sugar regulation and low temperature at the cis-

and trans-acting level.
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Introduction

This project concerns the contribution of various cis- and trans-acting regulatory factors

of DARK INDUCIBLE 3 (DIN3) during chilling and darkness. In order to provide a

better account of the research undertaken the current understanding light, temperature

and sugar sensing and responses has been reviewed and is presented here below,

starting with light sensing then proceeding to consider temperature and sugar signalling,

finally exploring plant responses to low light conditions

1.1.1 Light Sensing

Light is, for plants the most dominant environmental signal that can be perceived,

unsurprising given their autotrophic nature. Light is also the dominant factor

influencing plant growth and development. This is not a new understanding, Charles

Darwin made detailed observations of the dramatic transformation that seedlings

undergo when they are exposed to light for the first time (photomorphogenesis), as well

as growth towards the direction of light (phototropism) (Franklin & Quail, 2009). Dark-

grown (etiolated) and light-grown (de-etiolated) seedlings have strikingly different

morphologies, the former has highly elongated hypocotyls, closed (maintained apical

hook) and unexpanded cotyledons and an absence or low abundance of photosynthetic

pigments in etioplasts. By contrast, seedlings that have been de-etiolated have reduced

hypocotyl elongation, apical hook opening, expansion of the cotyledons and the

synthesis of photosynthetic pigments in plastids (Franklin & Quail, 2009; Terzaghi &

Cashmore, 1995). Plants are able to perceive the quantity (fluence), quality

(wavelength) periodicity (day length) and direction of the light that they receive

(Franklin et al., 2005). This ability allows plants to co-ordinate their growth and

development appropriately for the prevailing environmental conditions. Light

perception information is mediated by a group of proteins known as photoreceptors. The

photoreceptors can be divided into three families: the phytochromes, which absorb red

(R) / far-red (FR) light and the cryptochromes and phototropins, which both absorb blue

/ ultraviolet-A (UV-A) (Franklin et al., 2005).

Phytochromes (Red and Far-red light perception)

The first conclusive evidence for the role of phytochromes in plant development was

provided by Borthwick and colleagues (Borthwick et al., 1952) who demonstrated that

germination of lettuce seeds was dependent on exposure to minute levels of red light

(R) (Very Low Fluence Response – VLFR) and inhibited by FR even after R treatment.
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They proposed the presence of a single photoreceptor (phytochrome) that was reversibly

inter-convertible between two forms through the action of R and FR (photo-

reversibility). In their model phytochrome existed in an inactive Pr, R sensitive form,

and an active Pfr, FR sensitive form. Accumulation of sufficient Pfr, through the

conversion of Pr by R, would trigger the onset of germination (Franklin & Quail, 2009).

In vitro confirmation of the inter-convertibility of a single phytochrome from Pr to Pfr,

was achieved by (Butler et al., 1959).

Phytochrome structure and function

Phytochrome is understood to be a soluble ~125kDa chromoprotein (holoprotein –

complex of an apoprotein and a chromophore) forming a ~240kDa homodimer (Schäfer

& Bowler, 2002) each consisting of two functional domains located towards the

opposite ends of the molecule (fig. 1.1.1.1) (Nakasako et al., 2005). The 70kDa

photosensory domain is located at the N-terminal end of the molecule and the 55kDa

regulatory domain on the C-terminal portion. The photosensory domain includes a

cysteine residue to which is attached a linear tetrapyrrole chromophore –

phytochromobilin, together known as the bilin lyase domain (BLD). A part of the BLD

exhibits α-helical structure following the conversion from Pr to Pfr, this structure

stabilises the Pfr form to facilitate the functioning of the molecule. Towards the

proximal end of the N-terminal portion, closer to the regulatory domain, there is the

phytochrome (PHY) domain. The PHY domain gives the molecule its absorption

spectra specificity. The regulatory domain proper is composed of two period and single-

minded, and the vertebrate aryl hydrocarbon receptor nuclear transporter

(Per/ARNT/Sim) PAS-related domains (PRDs) within which reside an essential signal

transduction motif called a Quail box (QB). Located on the proximal half of the N-

terminal portion and one histidine-kinase-related domain (HKRD) – a histidine

paralogue with Ser/Thr kinase specificity. The HKRD is overlapped by a nuclear

localisation signal (NLS), which facilitates the translocation of Pfr to the nucleus

(Nakasako et al., 2005).

Phytochrome apoproteins exist in three conserved forms across the angiosperms (phyA

– C), a further two (phyD & E) are present in Arabidopsis thaliana. phyA (formerly

type I phytochrome) is the dominant phytochrome found in etiolated seedlings and is

rapidly converted from Pr to Pfr in a VLFR, thereby allowing swift de-etiolation. Under

higher R fluence phyA is degraded and found at much lower levels. However under FR

high irradiance, where the Pr form is dominant, phyA undergoes rapid photo-cycling



between the forms, which produces the signal. Phytochromes B

mediate the responses to low fluence (LFRs) and high irradiance (R

where the Pfr form predominant and active. This ability of phytochromes to convert

between the Pr and Pfr forms is termed photo

established whereby the Pr or Pfr is favoured. phyB is the most abundant of the

phytochromes in de-etiolated plants,which demonstrate LFRs and R

Quail, 2009; Kreslavski et

Figure 1.1.1.1 Schematic of a phytochrome molecule illustrating photo
reversibility/conversion

Phytochromes exist in two photo
an active Pfr, sensitive to far
homodimers consisting of two functional subunits: the photosensory domain on the N
portion and the regulatory domain on the C
residue at the distal end of photosensor
phytochromobilin, known as the bilin
(PHY) domain that maintains the spectral absorption specificity. On the regulatory domain there
are two PAS-related domains (PRDs) within which reside an essential signal transduction motif

between the forms, which produces the signal. Phytochromes B

mediate the responses to low fluence (LFRs) and high irradiance (R

where the Pfr form predominant and active. This ability of phytochromes to convert

between the Pr and Pfr forms is termed photo-reversibility – a dynamic e

established whereby the Pr or Pfr is favoured. phyB is the most abundant of the

etiolated plants,which demonstrate LFRs and R

Quail, 2009; Kreslavski et al., 2009).

Figure 1.1.1.1 Schematic of a phytochrome molecule illustrating photo
reversibility/conversion

Phytochromes exist in two photo-convertible forms: an inactive Pr, sensitive to red light (R), and
an active Pfr, sensitive to far-red light (FR) (Taiz & Zeiger, 2006). Phytochromes are
homodimers consisting of two functional subunits: the photosensory domain on the N
portion and the regulatory domain on the C-terminal portion. Attached to a conserved cysteine
residue at the distal end of photosensory domain is a linear tetrapyrrole chromophore
phytochromobilin, known as the bilin-lyase domain (BLD). Proximally, is found the phytochrome
(PHY) domain that maintains the spectral absorption specificity. On the regulatory domain there

d domains (PRDs) within which reside an essential signal transduction motif

3

between the forms, which produces the signal. Phytochromes B – E (formerly type II)

mediate the responses to low fluence (LFRs) and high irradiance (R-HIR) in red light,

where the Pfr form predominant and active. This ability of phytochromes to convert

a dynamic equilibrium is

established whereby the Pr or Pfr is favoured. phyB is the most abundant of the

etiolated plants,which demonstrate LFRs and R-HIRs (Franklin &

Figure 1.1.1.1 Schematic of a phytochrome molecule illustrating photo-

convertible forms: an inactive Pr, sensitive to red light (R), and
. Phytochromes are

homodimers consisting of two functional subunits: the photosensory domain on the N-terminal
terminal portion. Attached to a conserved cysteine

y domain is a linear tetrapyrrole chromophore –
lyase domain (BLD). Proximally, is found the phytochrome

(PHY) domain that maintains the spectral absorption specificity. On the regulatory domain there
d domains (PRDs) within which reside an essential signal transduction motif
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called a Quail box (QB). Distal to the PRDs is the histidine-kinase-related domain (HKRD) a
histidine kinase paralogue with Ser/Thr specificity. This region is overlapped by a nuclear
localisation signal (NLS) motif, required for nuclear trafficking of the active Pfr form (Nakasako
et al., 2005). Adapted from figures found in (Taiz & Zeiger, 2006; Nakasako et al., 2005).
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The conformational change from Pr to Pfr (fig. 1.1.1.1) is associated with a change in

the localisation of the phytochromes. Using green fluorescent protein (GFP)

(Yamaguchi et al., 1999) and immunological analysis (Hisada et al., 2000), R irradiation

causes some of the Pfr pool to be trafficked from the cytosol to the nucleus, a processes

reversible with FR treatment (fig. 1.1.1.2). Once in the nucleus, tagged Pfr molecules

aggregate into what might be a transcriptome complex to bring about changes in gene

expression (Nagy & Schäfer, 2000; Quail, 2002; Kreslavski et al., 2009).

Cytosolic signal transduction

The HKRD of Pfr increases the phosphorylation level of, the cytosol-localised,

phytochrome-kinase substrate 1 (PKS1) by around two-fold compared with Pr. The

exact mechanism of HKRD and PKS1 interaction remains to be elucidated since HKRD

is an atypical kinase (Fankhauser et al., 1999; Quail, 2002). PKS1 has been proposed as

a negative regulator of phytochrome signalling, inhibiting nuclear translocation, since

plants overexpressing PKS1 exhibit elongated hypocotyls (Fankhauser et al., 1999).

Another protein, interacting at a different C-terminal domain, is nucleoside-diphosphate

kinase 2 (NDPK2), it is reversibly phosphorylated by in R mediated by phytochrome

(Tanaka et al., 1998). The phytochrome-NDPK2 interaction has a cytosolic and nuclear

component, and there is preferential binding with the Pfr form, which increases NDPK2

activity by 70%. The phosphorylation of NDPK2 is thought to positively regulate the

phytochrome signalling events, since ndpk2 mutants have defects in cotyledon opening

and apical hook straightening (Choi et al., 1999; Kreslavski et al., 2009).

Transcriptional control

The majority of phytochrome interacting proteins localise to the nucleus, one of these,

phytochrome-interacting factor 3 (PIF3), is a member of the basic helix-loop-helix

(bHLH) superfamily of transcriptional regulators and it physically interacts with Pfr via

the C- and N-terminal domains (Ni et al., 1999) executing the primary mechanism of

phytochrome signal transduction (fig. 1.1.1.2) (Franklin & Quail, 2009; Schäfer &

Bowler, 2002; Quail, 2002). Pfr interacts with other members of the bHLH superfamily

such as other PIFs (Huq & Quail, 2002), ARR4 (Sweere et al., 2001) or form dimers

with PIF3 and HFR1 (Fairchild et al., 2000; Schäfer & Bowler, 2002). The bHLH

superfamily proteins are transcription factors that recognise the E-box motif: CANNTG,

the most common type of E-box in A. thaliana is the G-box: CACGTG (Martínez-
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García et al., 2000). The G-box motif has been found in a number of promoter regions

of light-regulated or light-responsive genes such as chlorophyll a/b binding protein

(CAB) and ribulose-1,5-bisphosphate-carboxylase/oxygenase small subunit (RBCS)

(Gilmartin et al., 1990; Terzaghi & Cashmore, 1995), genes which regulate or influence

the rates of photosynthesis. The interaction of bHLH transcription factors with light-

regulated genes, gives credence to the theory that phytochrome-bHLH binding is the

first step in initiating de-etiolation (Franklin & Quail, 2009). PIFs and other members of

the bHLH superfamily are negative regulators in the phytochrome signalling pathway.

bHLH proteins are rapidly degraded in the light (Bauer et al., 2004; Monte et al., 2004;

Monte et al., 2007), which reduces the support for any model with PIFs as positive

regulators of phytochrome signalling. However pif3 mutants exhibit delayed chloroplast

development early in de-etiolation, after the initial exposure to light (Monte et al.,

2004). PIF3 appears to have a role in mediation of the first stages of de-etiolation. In the

dark, PIFs bind to G-boxes (Martínez-García et al., 2000) acting as repressors of genes

involved in de-etiolation (fig. 1.1.1.2). In the light, Phy Pfr mediated degradation of

PIFs via the ubiquitin-26S proteasome system (Park et al., 2004) would permit the rapid

activation of de-etiolation (Duek & Fankhauser, 2005; Monte et al., 2007; Franklin &

Quail, 2009). Similarly, a basic leucine zipper (bZIP) transcription factor, which binds

G-boxes (Andronis et al., 2008; Chattopadhyay et al., 1998; Oyama et al., 1997) and is a

positive regulator of photomorphogenesis (Chory, 1992), Long Hypocotyl 5 (HY5) is

degraded in the dark by interaction with Constitutive Photomorphogensis 1 (COP1),

part of the COP9 signalosome (CSN) mediating ubiquitin-26S-directed proteolysis

(Osterlund et al., 2000). In the light COP1 is translocated, following the interaction of

cryptochromes and phytochromes (Yang et al., 2001), from the nucleus to the cytosol

(von Arnim & Deng, 1994); HY5 accumulates so that it can act as a positive

transcriptional regulator of photomorphogenic processes (fig. 1.1.1.2) (Waters &

Langdale, 2009; Chory, 1992; Andronis et al., 2008).
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Figure 1.1.1.2 Simplified model of light signalling events during photomorphogenesis

In the dark, the COP9 signalosome (CSN), a mediator of ubiquitin-26S proteolysis is active with
the presence of COP1 in the nucleus. HY5, a bZIP transcription factor and positive regulator of
photomorphogenesis associated genes via G-boxes, is targeted by CSN and COP1 for
ubiquitin-26S directed proteolysis. PIF3, a bHLH transcription factor and negative regulator of
photomorphogenesis associated genes, binds to the G-boxes of light-regulated genes
repressing expression. In the light, phytochromes are converted to Pfr and interact with PIF3
promoting its degradation, freeing the G-boxes. Cryptochrome, CRY1, inactivates COP1 and
promotes its translocation to the cytosol, thereby relieving the inactivation of HY5. The binding
of HY5 to the G-boxes of photomorphogenesis associated genes brings about the process of
de-etiolation (Waters & Langdale, 2009; Franklin & Quail, 2009; Duek & Fankhauser, 2005;
Monte et al., 2007). Figure reproduced from figure 1 in (Waters & Langdale, 2009).
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Fast responses (ion channels and G-proteins)

The role of phytochromes in modulating transcriptional events is without doubt. Whilst

rapid phytochrome-mediated changes in light-regulated transcriptions have been

recorded occurring within eight minutes (Salter et al., 2003), there are however light-

dependent responses that are too rapid to be explained by changes at the transcriptional

level. Examples of such responses include protoplast turgor (Shacklock et al., 1992),

chloroplast light alignment (Serlin et al., 1996), changes in membrane potential

(Ermolayeva et al., 1996), cytoskeleton reconfiguration (Takagi et al., 2003) and

ethylene synthesis (Kreslavski et al., 1997; Kreslavski et al., 2009). Some fast

responses: phototropism, chloroplast phototaxis, stomatal movements and changes in

intracelluar Ca2+, are phototropin mediated (Harada et al., 2003). Ion channels are a

universal mechanism of fast signalling and their states may be altered through substrate-

receptor or ligand binding or be voltage-dependent (e.g. membrane depolarisation)

(Medvedev, 2005). Light is able to trigger the opening of Ca2+-permeable slow vacuolar

channels via membrane depolarisation caused by Cl- channel activation (Spalding,

2000). It is important to note that a fraction of the phytochrome pool is bound to the

plasma membrane (Nagy & Schäfer, 2000), so this supports previous conclusions that

exogenous phytochrome could rapidly depolarise artificial phospholipid bilayer

membrane depending on its Pr/Pfr form (Roux & Yguerabide, 1973) and R-induced

depolarisation of the plasma membrane in moss (Ermolayeva et al., 1996) therefore

directly interacting with ion exchange proteins. However the existence of a GTP

binding protein (G-protein) specific to phytochrome that would provide a basis of this

mechanism has yet to be found (Maheshwari et al., 1999; Kreslavski et al., 2009). There

is reason to suggest interaction with other secondary messengers: GTPases / guanine

nucleotide-binding proteins (G-proteins) (Assmann, 2002; Nagy & Schäfer, 2000) and

phosphatidylinositols, e.g. inositol-1,4,5-triphosphate (IP3) (Chen et al., 2008) and links

to the Ca2+-calmodulin (CaM) dependent protein kinases (Zielinski, 1998). The

signalling cascades, which these secondary messengers trigger, mediate physiological

and transcriptional responses to environmental, but specifically here, light stimuli

(Kreslavski et al., 2009).

Crytochromes (blue and UV-A perception)

The cryptochromes are another class of photoreceptor found in the animal and,

ubiquitously, in the plant kingdoms. They perceive light at the blue (400 – 500nm) and

UV-A portions of the spectrum (Cashmore et al., 1999). There are two main

cryptochromes: CRY1 and CRY2 (Li & Yang, 2007). Their absorption spectra are
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similar to flavin molecules, and they share considerable sequence homology in their N-

terminal photolyase-related (PHR) domain with flavoprotein photolyases, which are

responsible for mediating light-dependent repair of UV-B damaged DNA, e.g.

pyrimidine dimers. This suggests an evolutionary development from photolyases to

cryptochromes (Li & Yang, 2007; Cashmore et al., 1999). Cryptochromes are

structurally differentiated from photolyases by a C-terminal domain, absent from

photolyases. However it is the N-terminal domain of cryptochromes that confers the

function of the molecule. The cryptochrome light signalling mechanism involves the

homodimerisation of COP1 to the N-terminal domain (Li & Yang, 2007), mediating the

translocation of COP1 from the nucleus to the cytosol and potentially facilitating the

release of HY5 from COP1 (fig. 1.1.1.2) so that light-inducible genes are expressed via

HY5 (Schäfer & Bowler, 2002; Waters & Langdale, 2009). Cryptochromes mediate

anthocyanin production in response to blue light as well as contributing towards the

development of de-etiolation (Franklin et al., 2005; Waters & Langdale, 2009).

Phototropism and phototropins

Phototropism, that is growth towards the direction of light, is in response, primarily, to

blue light. Although not the first to describe the phenomenon, phototropism, like

photomorphogenesis, was also investigated by Charles Darwin (Celaya & Liscum,

2005). However it was until the latter half of the 20th century that the biochemical

(Short & Briggs, 1990) and genetic basis (Reymond et al., 1992) of phototropism was

elucidated (Celaya & Liscum, 2005). Cryptochrome double mutant cry1cry2 exhibits no

loss in phototropic responsiveness. This indicates that phototropism is conferred by a

separate set of blue light sensing proteins, termed phototropins (Lasceve et al., 1999).

The existence of two phototropins was discovered through the identification of a mutant

for PHOT1, which whilst lacking phototropism in response to low fluence blue light,

continued to respond to high fluence blue light (Liscum & Briggs, 1995). The locus of a

second phototropin PHOT2 was discovered and subsequent experiments with

phot1phot2 double mutants phototropism was severely impaired (Sakai et al., 2001;

Franklin et al., 2005). Transgenic expression of NPH1/PHOT1 protein in insect cells

revealed that the protein become phosphorylated in response to blue light; additionally

recombinant NPH1 binds to flavin mononucleotide (FMN) (Christie et al., 1998; Celaya

& Liscum, 2005). Phototropins are ~120kDa proteins, responsible for the ability of

plant to detect the direction of light. They contain a PAS-like domains, with interactions

with light, oxygen and voltage (LOV), interact with a flavin mononucleotide (FMN)
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that acts a chromophore providing the UV-A / blue light sensitivity of the phototropin

(Christie et al., 1999; Celaya & Liscum, 2005).

Summary

Plants have a variety of photoreceptors which allow them to perceive the quantity,

quality, periodicity and direction of the light that they receive. Phytochromes, divided

into five distinct proteins, perceive the R and FR wavelengths and are responsible for

mediating photomorphogenesis (phyA) and responses to changes in the quantity and

periodicity of light (phyB – E). The topic of responses to low light will be discussed in

Section 1.2.1. Cryptochromes, another set photoreceptors sensitive to the blue and UV-

A portions of the spectrum, additionally mediate photomorphogenesis and entrainment

of the circadian clock. Phototropins are also sensitive to the blue and UV-A

wavelengths, however they are distinct from the cryptochromes and mediate

phototropism. Signal transduction of light signals is greatly reliant on bHLH

transcription factors, especially the PIFs, and their interaction with the phytochromes in

providing transcriptional regulation of light-responsive genes. Faster responses are

mediated through ion channel, Ca2+ and G-protein signalling in the cytosol and plasma

membrane.
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1.1.2 Low temperature responses

As with light, temperature is an important environmental stimulus for plants to monitor.

For poikilotherms, such as plants, the ambient temperature dictates the rate biochemical

reactions, membrane fluidity and proper protein folding. Temperature at either extreme

of the normal tolerance of plant can result in damage, so it is vital for its survival that a

plant is sensitive to changes in temperature and respond rapidly. This study only

considers gene regulation at warm and low temperature, so the effects and response to

high temperature will not be discussed here. The adverse effects of low temperature on

plants are above freezing, i.e. chilling, and freezing stress.

Effects of chilling

Low temperatures above freezing are injurious and represent a stress for some plants,

especially those from tropical climes. Innate and induced tolerances to low temperature

vary greatly between plant species, which means providing a universal definition of

chilling stress difficult. Arabidopsis thaliana are chilling tolerant, and do not sustain

above freezing damage, but do undergo cold acclimation (Tokuhisa et al., 1997).

Discussion of the injuries sustained by chilling sensitive species is useful to understand

the processes of freezing tolerance. Chilling stress can be understood as injury or

damage of one kind or another that plants sustain at temperatures from 10 or 12°C to

freezing (Lyons, 1973; Levitt, 1980a). Injury due to chilling may be divided into direct,

indirect and secondary damage. Direct injuries result from sudden, brief cold shocks

close to freezing, which are associated with membrane permeability from

pseudoplasmolysis and electrolyte leakage (Patterson et al., 1976; Levitt, 1980a).

Indirect damage arises from gradual, sustained chilling causing metabolic disturbances

reducing rates of aerobic respiration and photosynthesis (Labate & Leegood, 1988),

toxin accumulation e.g. reactive oxygen species (ROS) (Foyer et al., 1997), metabolic

deficits, e.g. of ATP, which results in decreased ion uptake and protein synthesis.

Secondary effects, also resulting from gradual and sustained chilling, cause crises such

as water stress, even though transpiration is much reduced, due to poor water uptake

from the roots (St. John & Christiansen, 1976; Levitt, 1980a).

Effects of freezing injury

Injuries from freezing temperatures arise from two effects: dehydration and membrane

damage. From 0°C ice begins to form in the intercellular spaces first, since the

cytoplasm has a much high solute potential hence a high freezing point. This
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extracellular freezing is facilitated by the presence of heterogeneous nucleation agents

such as dust and bacterial proteins (Xin & Browse, 2000). Homogeneous ice-nucleation

occurs at -32°C, above which water remains in a supercooled state (Thomashow, 1998).

Water in the form of ice has a much lower water potential than liquid water and the

differential increases as temperature decreases. The extracellular ice therefore has a

dehydrating effect on plants, such that water moves out of the cells via osmosis

(Thomashow, 1998; Xin & Browse, 2000); at -10°C more 90% of intracellular liquid

will move out into the intercellular space, leaving a balanced osmolarity (Osm) of 5

Osm. Freeze-induced dehydration is likely to cause damage via the denaturation of

proteins and the precipitation of various molecules (Thomashow, 1998) provoked by the

change in osmolarity. This would severely impair cells to carry out the biochemistry

required to sustain life. Freezing temperatures cause membrane lesions – ultrastructural

changes to the plasma membrane, such as the appearance of hexagonal II phase in the

plasma membrane and subtending lamellae (Uemura et al., 1995). These ultrastructural

changes are associated with increased electrolyte leakage and cell death in cereal

protoplasts.

Cold acclimation

Plants of temperate climates are exposed to seasonal variation in temperature which

may range between +40 to -30°C. Wheat and rye are able to survive temperatures as

low as -20 and -30°C respectively. However this freezing tolerance is not seen in wheat

and rye grown at warm temperatures. It is only after a period of cold acclimation –

growth at low, but non-freezing temperatures, that this freezing tolerance seen

(Thomashow, 1994; Thomashow, 1998). Freezing tolerance is not acquired until plants

have undergone a period of low temperature above freezing (Gilmour et al., 1988;

Levitt, 1980b). This period of chilling that improves freezing tolerance, known as cold

acclimation, is associated with broad alterations to membrane structure, gene expression

and associated downstream changes in metabolism and cellular function mediating

freezing tolerance. Freezing injury occurred at different temperatures depending on

whether protoplasts received cold acclimation first (Webb et al., 1994).

Membrane changes

Low temperatures provoke a transition in membranes from a liquid crystalline state to a

gel-like phase and with it a reduction in membrane fluidity. Maintenance of membrane

fluidity is crucial for the normal function of essential membrane proteins, which

otherwise become deactivated (Upchurch, 2008). In cold acclimated A. thaliana,
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freezing conditions, which caused membrane damage to non-acclimated protoplasts,

resulted in none of the observed membrane ultrastructural changes, which cause

membrane destabilisation. A week of cold acclimation at 2°C resulted in a significant

modification to the lipid composition of the plasma membrane to the effect of

increasing the proportion of unsaturated fatty acids and sterols (Uemura et al., 1995).

Such changes will maintain membrane fluidity and the lower temperatures, reducing the

incidence of membrane destabilisation (Watanabe et al., 1990; Falcone et al., 2004).

During abiotic stress, especially osmotic and cold stress, there is an accumulation of

compatible solutes, which in plants include carbohydrates, such as Glc, Fru and Suc;

amino acids and derivatives, such as proline (Pro), glycinebetaine and polyamines

(Yancey et al., 1982; Alberdi & Corcuera, 1991; Hare & Cress, 1997). The

cryoprotectant properties of compatible solutes extended beyond their effects on the

colligative properties of a solution; compatible solutes interact with membranes

improving their stability at low and freezing temperatures. Carbohydrates interact with

the head groups of phospholipids, whereas amino acids and their derivatives take part in

hydrophobic interactions within the bilayer (Anchordoguy et al., 1987).

Changes in Cold Regulated (COR) gene expression

The identification of seven mutants sensitive to freezing 1 – 7 (sfr1-7) provided a clearer

genetic basis for the acquisition of freezing tolerance. Mutants sfr3, 4, 6 and 7 were

deficient or had entirely absent accumulation of anthocyanin in response to during cold

acclimation; sfr4 did not accumulate carbohydrates; sfr4 and sfr7 affected fatty acid

composition after cold acclimation; sfr1, sfr2 and sfr5 had no altered biochemistry

compared with wild-type despite being freezing sensitive (McKown et al., 1996). The

sfr6 mutants were found to be deficient in their expression of cold-inducible genes

KIN1, COR15a, LTI78. These genes are regulated via the CRT/DRE motif; the sfr6

exhibited normal cold-induced expression of CBFs 1-3, which lack the CRT/DRE motif

(Knight et al., 1999). Expression of COR15a, whose protein is targeted to the

chloroplast outer membrane, reduces the propensity for the formation of hexagonal II

phase membrane lesions associated with freezing damage. After cold acclimation in

winter cereals the formation of the hexagonal II phase lesion is prevented, however

overexpression of COR15a without cold acclimation only delays lesion formation to a

lower temperature. Clearly other factors, such as lipid composition and compatible

solutes accumulation, are necessary in cold acclimation (Steponkus et al., 1998).

Chromatin remodelling has been implicated in the genome-wide transcriptional changes

in response to low temperature. The expression and activity of a number of histone
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modification enzymes, chromatin binding proteins and other chromatin remodelling

factors is affected by low temperature and other abiotic stresses (Kim et al., 2010).

Given that cold acclimation is required for the development of freezing tolerance, the

sensing of low temperature must be associated with signalling processes upstream of its

regulation. (Guy et al., 1985) were the first to report altered gene expression during cold

acclimation and since the early 1990s a number of cold-regulated genes have been

described and designated cold regulated (COR), low-temperature-induced (LTI), kykna-

indusoitu (KIN) (Finnish meaning: cold-induced) (Thomashow, 1994), responsive to

dessication (RD) or early dehydration-inducible (ERD) (Thomashow, 1998). An early

described COR gene was COR47 that coded for a protein which remained stable

following boiling in an aqueous solution, it was suggested that such a protein was a

cryoprotectant (Lin et al., 1990). Another, COR15a, was found to code for a protein

with cryoprotectant qualities and stabilised the cold-labile enzyme lactate

dehydrogenase against inactivation with greater efficacy than either Suc or bovine

serum albumin (BSA) (Lin & Thomashow, 1992). Genome-wide gene expression assay

with ~24,000 genes represented, detected 939 cold-regulated genes with 655 (69.8%)

up-regulated in response to cold (0°C) and 248 (30.2%) down-regulated by low

temperature (Lee et al., 2005). The majority of the cold-regulated genes identified by

(Lee et al., 2005) are late-responsive, that is responding between at the 24 hour interval;

66.4% of the up-regulated genes and 91.5% of the down-regulated genes were late-

responders. There is considerable redundancy in the cold-regulated genes (Xin &

Browse, 2000): mutants of two cold-regulated genes involved in anthocyanin

biosynthesis: phenylalanine ammonia lyase and chalcone synthase do not have impaired

freezing tolerance (Leyva et al., 1995). Certain cold-regulated genes however do seem

to play a prominent role in mediating cold acclimation (Xin & Browse, 2000):

constitutive expression of COR15a confers enhanced in vivo freezing tolerance to non-

acclimated plants and in vitro survival of non-acclimated protoplast compared with

wild-type (Artus et al., 1996).
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Cold Sensing

Membrane mediated

The observed changes in membrane lipid composition in response to low temperature

may also be a site of temperature perception. Chemical modulation of membrane

fluidity using membrane ‘rigidifier’ Dimethyl sulphoxide (DMSO) and membrane

‘fluidizer’ Benzyl alcohol (BA) was found to induce cold acclimation without cold

treatment or reduce the development of cold acclimation and therefore reduce freezing

tolerance respectively. Similarly, artificial membrane fluidisation prevents the cold-

induction of cold up-regulated transcripts, whilst artificial membrane rigidification was

able to induce cold up-regulated transcripts and Ca2+ influx at 25°C with associated

increases in freezing tolerance (Örvar et al., 2000). The state of actin filaments, also

reported by Örvar et al., (2000), influences the development of freezing tolerance:

artificial stabilisation of actin filaments at 4°C prevents Ca2+ influx and the induction of

cold-regulated transcripts; artificial destabilisation of actin at 25°C had the opposite

effect.

Calcium signalling

The first definitive evidence for the role of calcium signalling in low temperature

responses came with the innovation of plants expressing aequorin, a calcium-sensitive

protein originating from the cnidarian, Aequoria victoria, allowing the measurement of

changes in Ca2+ flux. The transition of seedlings from 20°C to 5 or 0°C was associated

with a strong increase in the intracellular calcium concentration, which could be

increased further when 10mM Ca2+ was applied to the chilling medium (Knight et al.,

1991). Treatments with an antagonist of calcium-binding protein, calmodulin, and of

calcium-dependent protein kinases or the Ca2+ channel blocked lanthanum (La3+)

resulted in a decrease in cold-induced protein phosphorylation and an abolition of

freezing tolerance (Monroy et al., 1993). The majority of extracellular calcium is found

in the apoplast attached the cell wall (Cleland et al., 1990). More sensitive aequorin

measurements found that La3+ and EGTA were only able to partially inhibit Ca2+ influx

and cold-induced gene KIN1 suggesting an intracellular store of Ca2+. Aequorin targeted

to the vacuolar membrane confirmed that the vacuole was indeed the source of

intracellular Ca2+ release. Treatments with inhibitors of inositol trisphosphate (IP3),

indicated a role for vacuolar membrane localised pool of this secondary messenger in

mediating Ca2+ release into the cytosol (Knight et al., 1996). Calcium does not bind

DNA directly but signals are transduced via the binding of proteins with affinity for
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calcium such as calmodulin (CaM) and analogous molecules (Bouché et al., 2005) as

well as interacting with calcium-dependent kinases (Harper et al., 2004; Kaplan et al.,

2006).

The COR/CBF/ICE Pathway

Transcript levels of COR genes increase rapidly and strongly within four hours of

moving plants to 5°C and peak around 12 hours and remain highly expressed until

restored to 22°C (Hajela et al., 1990). The first cis-acting regulatory element responsive

to drought, low-temperature or high salinity was called the drought responsive element

(DRE) with the nine base-pair (bp) motif: TACCGACAT. This motif was bound by, then

uncharacterised nuclear proteins, which induced expression in genes RD29a (COR78)

and RD29b (LTI65) (Yamaguchi-Shinozaki & Shinozaki, 1994). One such nuclear

protein and its associated gene were characterised and termed C-repeat/DRE binding

factor 1 (CBF1), binding a core motif of CCGAC. CBF proteins possess an APETELA

(AP2) domain, which has a DNA-binding region that may bind the CRT/DRE

(Stockinger et al., 1997). Overexpression of CBF3 (DREB1A), whose expression is

cold-inducible, results in strong induction of its target genes under non-stress condition,

dwarfed phenotypes and tolerance to freezing and drought (Liu et al., 1998). A 125bp

region of the CBF2 promoter was found to be sufficient to confer cold-responsive gene

expression; mutation analysis revealed motifs required for cold responsiveness,

designated inducer of CBF expression (ICE) boxes (Zarka et al., 2003). The existence

of ICE boxes recognised by ICE transcription factors was hypothesised by (Gilmour et

al., 1998) since CBF transcripts accumulated within 15 minutes, suggesting a pre-

existing transcription factor mediating CBF cold-induction. An ICE1 locus was

identified and with it, from an ethylmethane sulfonate (EMS) mutagenesis screen, an

ice1 mutant which exhibits almost no CBF3::LUC or native CBF expression.

Expression of downstream targets of CBF genes, COR15a and COR47a, were also

much reduced in ice1 mutants. The warm-ground phenotype of ice1 was little changed

from wild-type however, after cold acclimation the freezing tolerance of ice1 was

impaired compared to wild-type. The ICE1 gene was found to code for a MYC-like

basic-helix-loop-helix (bHLH) transcription factor. Expression analysis using

ICE1::GUS revealed a constitutive expression in the roots, leaves, stems and

inflorescences but with stronger localisation to leaves and stems. ICE1 expression is

mildly induced by cold, salt and ABA, but insensitive to dehydration. ICE1-GFP

revealed a subcellular to the nucleus independent of temperature. ICE1 is a

transcriptional activator of CBF expression (Chinnusamy et al., 2003). These findings
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suggest that post-translation modification of ICE1 is required in order for activation of

downstream genes (Chinnusamy et al., 2007). ICE1 directly interacts with MYC sites,

which are found in the promoter of CBF3 (Chinnusamy et al., 2003). MYC-like bHLH

transcription factors form a complex with MYB transcription factors in order to activate

transcription (Spelt et al., 2000) and numerous MYB and MYC binding sites have been

identified in the promoters of CBF1-3 (Shinwari et al., 1998). Analysis of the cold-

responsive transcriptome, carried out by (Lee et al., 2005), revealed that in the ice1

mutant there was altered expression of: transcription factor genes notably of the bZIP

and WKRY classes; genes involved in Ca2+ signalling, lipid signalling and receptor-like

protein kinases.

Negative regulation of the COR/CBF/ICE pathway

The CBF transcription factors negatively feedback onto each other; the cbf2 null mutant

exhibits greater freezing tolerance arising from greater levels of CBF1 and CBF3

compared with wild-type; complementation of the mutant with CBF2 behind its native

promoter restored wild-type expression of CBF1 and CBF3, confirming CBF2 as a

negatively regulator of CBFs 1 and 3. Transcripts of CBF1 and CBF3 begin to

accumulate within 15 minutes and peaking after 90 minutes then rapidly declining,

whereas CBF2 accumulates more slowly and peaks after two-and-a-half hours followed

by a gradual decline (Novillo et al., 2004). Using a similar rational the lack of CBF3

expression in the ice1 mutant and increased levels of CBF2 (Chinnusamy et al., 2003)

could make CBF3 a repressor of CBF2 (Chinnusamy et al., 2007). As noted above ICE-

boxes / MYC sites are found along site MYB transcription factor binding sites in the

promoters of CBF genes; such a transcription factor, MYB15, is up-regulated during

cold stress and binds to MYB sites in CBF promoters. MYB15 interacts with ICE1 as

revealed by yeast-2-hybrid and co-localises to the nucleus. Overexpression of MYB15

resulted in a reduction in CBF gene expression under cold stress and concomitant

impairment of freezing tolerance. A myb15 mutant had increased CBF gene expression

and elevate expression was seen in CBF downstream COR gene targets; myb15 had

increase freezing tolerance compared to wild-type (Agarwal et al., 2006). These results

indicate MYB15 as an upstream negative regulator of CBFs (Chinnusamy et al., 2007).

A cold-induced C2H2 zinc finger transcription factor gene, ZAT12 has been implicated

as a negative regulator of CBFs (Chinnusamy et al., 2007); following the peak in CBF

expression after two hours there is induction of ZAT12 expression – pursuant is a swift

decline in CBF transcript. Overexpression of ZAT12 reduced the levels to which CBF1,
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2 and 3 accumulated in result to low temperature; downstream target of the CBFs were

marginally decreased from wild-type levels (Vogel et al., 2004).

Abscisic acid signalling

Experiments with ABA insensitive (abi) and ABA deficient (aba) revealed a role for

ABA signalling in regulation of COR genes. The abi mutants had no discernable

impairment in their cold acclimation and subsequent freezing tolerance, whereas the aba

mutants were severely impaired in terms of their freezing tolerance compared to wild-

type. Electrolyte leakage in aba mutants was much greater than in wild-type (Gilmour

& Thomashow, 1991). Earlier studies revealed that ABA treatment at warm

temperatures was able to provoke cold acclimation and the development of freezing

tolerance (Lång et al., 1989) and ABA accumulates transiently in response to low

temperature and strongly in response to drought (Chen et al., 1983; Lång & Palva, 1992;

Lång et al., 1994). Expression of CRT/DRE::LUC is also induced by ABA treatments,

responding within one hour and peaking after three. Expression of CBF genes 1 – 3

(DREB1a, b, c) was found to be inducible by ABA application; levels of transcript

peaked after one hour and subsequently declined. CBF promoter β-glucuronidase

(GUS) fusions had the same responsiveness to ABA as native CBF genes, indicating

that ABA exerted it influence via transcriptional rather than post-transcriptional control

(Knight et al., 2004). ABA signalling is mediated via the ABA response elements

(ABRE) and the ABRE binding factors (ABF) (Choi et al., 2000). Whilst the ABRE is

found in the promoters of some COR genes, others lack these elements and ABA

signalling has be shown also act via the CRT/DRE (Knight et al., 2004). The role of

ABA signalling in low temperature sensing has been questioned since ABA levels

increase only transiently in response to low temperature (Chen et al., 1983) that

endogenous ABA does not reach sufficient levels to implicate ABA in cold sensing

(Shinozaki & Yamaguchi-Shinozaki, 2000). Knight et al., (2004) propose that ABA

might potentiate the cold-induced CBF signalling even without ABA and cold

signalling occurring simultaneously. Knight et al., (2004) offer an alternative hypothesis

whereby there is ‘cross-talk’ between drought responsive ABA signalling that recruits

the CBF transcription factors of the cold response pathway.
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1.1.3 Sugar sensing and signalling

Just as light and temperature influence metabolism at a biochemical level, they also

provide important environmental cues by which plants are able to direct their growth

and development appropriately to their environment. So too then, are sugars more than

just metabolites but are also indicators of energy status detected in order to regulate

plant growth and development. Consonant with sugars having a role as regulators in

metabolism, QTL analysis (Meyer et al., 2007) has revealed that there is an inverse

correlation between growth rate and metabolite levels. This suggests that mere

availability of metabolites does not determine growth rate, but rather a more subtle

combination of developmental and physiological cues, with resource availability,

modulates growth (Hanson & Smeekens, 2009).

Glucose sensing

Glucose (Glc) can be considered a universal carbon-energy molecule given its common

role across diversity of life (Ramon et al., 2008). Glc delivers energy via glycolysis, but

also acts as a ‘carbon-skeleton’ for the biosynthesis of larger molecules such as

cellulose for cell walls (Moore et al., 2003) or functional sugars via the pentose-

phosphate-pathway (Claeyssen & Rivoal, 2007). The first step in glycolysis is the

phosphorylation of Glc to glucose-6-phosphate (G6P). Hexokinase (HXK) is the

enzyme responsible for this and was first described in Saccharomyces cerevisiae

(Meyerhof, 1927). Otto Meyerhof together with Gustav Embden and Jakub Karol

Parnas fully described the eponymous Embden-Meyerhof-Parnas pathway more

commonly known as glycolysis. HXK catalyses the phosphorylation, with ATP, of Glc

to G6P, however as the name suggests it also has affinity for fructose (Fru), mannose

(Man), and galactose (Gal) and is distinct from the kinases with single-hexose affinities

(Claeyssen & Rivoal, 2007).

Hexokinase

The broad affinity of HXK renders the enzyme the primary entry to glycolysis and

biosynthetic pathways for sucrose (Suc) and starch breakdown products (Claeyssen &

Rivoal, 2007). It is this central metabolic position which HXK occupies that also makes

it an ideal sensor of cellular energy status. The first evidence for sugars being involved

in signalling pathways comes from findings that sugars were capable of repressing

photosynthetic gene expression in maize mesophyll protoplasts in a concentration

dependent manner (Sheen, 1990). Later work on Chenopodium corroborated this

finding and additional found that when exogenous carbohydrates had been exhausted,
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the repression of photosynthetic gene expression began to be relieved and prior to any

significant change in carbohydrate content. This suggested that sugar-induced

repression was linked with either the transport or metabolism of sugar, rather than sugar

per se (Krapp et al., 1993). The implication of hexokinase came when research

discovered that genes induced during starvation conditions and repressed by Suc or

hexose treatment, but also by 2-deoxyglucose (2-DG) and Man, which can be

phosphorylated but do not contribute towards glycolysis (Graham et al., 1994). This

suggests that sugar-regulated genes are HXK dependent (Graham et al., 1994); further

supported by the fact that 3-O-methylglucose (3-OMG) and G6P, which are not

substrates of HXK do not elicit repression (Jang & Sheen, 1994). In A. thaliana there

are two HXK genes: HXK1 and HXK2 which are able to complement yeast hxk1 and

hxk2 mutants respectively (Jang et al., 1997). Whilst sharing 82% nucleotide and 85%

amino acid homology (Jang et al., 1997), HXK1 and HXK2 have distinct functions

attested to by glucose insensitive (gin) mutants. gin2-1 and gin2-2 are null and missense

mutants respectively, with gin2-1 producing no HXK1 protein at detectable levels, but

with normal HXK2 transcript levels. gin2-1 mutants are not retarded in their

development, but their leaves appear much smaller and of a darker green than wild-type,

suggesting a role for HXK1 in regulating growth. The exhibited mutant phenotype

could be complemented with a 35S::HXK1 transgene, but not by 35S::HXK2,

demonstrating that HXK1 is the Glc sensor in plants (Moore et al., 2003). In addition to

HXK1 and HXK2 there are a further four HXK genes, with disparate localisations within

the plant and expression profiles (da-Silva et al., 2001; Claeyssen & Rivoal, 2007).

HXK isoforms have been found to have a cytosol, mitochondrial and plastidic

localisations: HXK2 and At1g50460 were found attached to the outer mitochondrial

membrane (Giegé et al., 2003). Studies have shown that HXK1 has a nuclear

(Yanagisawa et al., 2003) localisation and attachment to the chloroplast outer membrane

(Wiese et al., 1999). Attachment to chloroplasts and mitochondria would facilitate the

rapid acquisition of metabolites from starch breakdown (Wiese et al., 1999) and the

transfer of the products of glycolysis to mitochondria for oxidative-phosphorylation

(Yamamoto et al., 2000)

HXK Signal transduction

The nuclear localisation of HXK1 suggests direct role for this enzyme in the

transduction of resource availability signals (Claeyssen & Rivoal, 2007). This

hypothesis is corroborated by the fact that Glc, via HXK1, promotes the proteasome-

dependent degradation of transcription factor ethylene insensitive 3 (EIN3)
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(Yanagisawa et al., 2003). This finding was followed up with research demonstrating an

interaction between HXK1, ATPase B1 (VHA-B1) and the 19S regulatory particle of

proteasome subunit (RPT5B). This complex directly binds to the promoters of Glc-

regulated genes in a Glc-dependent manner (Cho et al., 2006). Mutants of vha-b1 and

rpt5b phenocopy the HXK1 null, gin2-1 (Cho et al., 2006) pointing to the requirement

of the complex for HXK1-dependent Glc signalling (Hanson & Smeekens, 2009).

HXK-independent pathways

Other Glc-responsive genes such ADP-glucose pyrophosphorylase (AGPase), cell-wall

invertase (CIN), chalcone synthase (CHS), phenylalanine ammonia-lyase (PAL), which

are positively regulated, and asparagine synthetase (ASN), which is negatively

regulated, all maintained their wild-type responsiveness in plants over-expressing HXK1

or expressing anti-sense HXK1 transcripts. This finding demonstrated that HXK-

independently Glc-regulated genes exist (Xiao et al., 2000). The HXK-dependent and –

independent regulatory pathways sometimes cooperate in the regulation of the same

gene. Expression of a monosaccharide transporter is repressed by Glc; regulation at the

transcriptional level is HXK mediated, where at the post-translational level it is HXK-

independent (Conde et al., 2006; Ramon et al., 2008). Plants, as in yeast and animals,

use cell surface receptors to mediate extracellular signalling one these is the G-protein

coupled receptors (GPCRs) (Chen et al., 2003; Rolland et al., 2006). GPCRs upon

activation interact with G-proteins causing the α-subunit (GPA1) to exchange

guanosine-diphosphate (GDP) for guanosine-triphosphate (GTP). In addition to

interacting with G-protein coupled receptor 1 (GPCR1), GPA1 also interacts with a

seven-transmembrane domain protein, regulator of G-protein signalling 1 (RGS1). rgs1

mutants exhibit increased GPA1 activity as well as hypocotyl elongation in darkness

(Chen et al., 2003). The rgs1 mutants were insensitive to 6% Glc, which for wild-type

causes severe stunting of growth. These mutants exhibited wild-type response for sugar-

analogues confirming the HXK-independence of this pathway (Chen & Jones, 2004;

Chen et al., 2003; Rolland et al., 2006).

Kinase-mediated signal transduction

In yeast glucose-mediated repression is relieved by the activity of a protein Ser/Thr

kinase, sucrose-non-fermenting 1 (SNF1) (Smeekens, 2000). An equivalent kinase,

SNF-related kinase 1 (SnRK1) has been found in plants (Halford & Grahame Hardie,

1998). In yeast SNF1 acts a transcriptional regulator of the genes involved in

carbohydrate metabolism and expression of rye SnRK1 was found to restore SNF1
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function in snf1 yeast mutants. Additionally expression of anti-sense SnRK1 in potato

was found to severely reduce expression of sucrose synthetase (Halford & Grahame

Hardie, 1998). Further researched demonstrated that SnRK1 is involved in regulating

sucrose biosynthesis, nitrogen assimilation and secondary metabolic pathways (Sugden

et al., 1999). There is some dispute as to the regulation of SnRK1; Baena-González et

al., (2007) report that a SnRK1 homologue KIN10, when activated, promotes genes of

catabolic pathways ways such as the degradation of starch, sucrose and cell walls and

represses genes involved in anabolism / biosynthesis. However (Halford & Hey, 2009)

cast doubt on this, citing a 1998 article by Purcell et al. that describes results of the

expression of anti-sense SnRK1 in potato, to effect of decreased expression of sucrose

synthetase in tubers and loss of sucrose-inducibility sucrose synthetase in leaves.

Further conflicting evidence comes from tubers of potatoes overexpressing SnRK1,

which had higher levels of starch and lower Glc, likely resulting from an increase in the

expression of sucrose synthase and AGPase (McKibbin et al., 2006). Halford & Hey,

(2009) point out that these findings are not compatible with the model put forward by

Baena-González et al., (2007) of SnRK1 being activated under sugar-starvation

conditions and repressed in times of plenty. Application of a comparatively low

concentration (25mM) of the non-reducing disaccharide, trehalose (Tre) results in

strong inhibition of seedling root growth with accumulation of starch in the shoots. The

growth inhibition is relieved by the application of Glc or Suc alongside Tre. The

accumulation of starch was associated with elevated AGPase activity, an enzyme which

catalyses the first step in starch synthesis. Expression of APL3, an AGPase gene, is

mildly induced by 50mM Suc, but this is further increased by the application of 5mM

Tre (Wingler et al., 2000). Mutants of trehalose phosphate synthase (tps1), which codes

for an enzyme catalysing the synthesis of trehalose 6-phosphate (T6P) – the immediate

precursor to Tre, are embryo lethal: arrested at the torpedo stage of development. This is

the phase of embryo development associated with increases in Suc and the formation of

storage reserves (Eastmond et al., 2002). Expression of Escherichia coli TPS (otsA), in

tps1 mutants was able to rescue their embryo lethality. Seedlings expressing otsA

accumulate anthocyanins and the rosettes of developing plantlets are smaller and darker

green than wild-type; seed set is poor. The expression of E.coli trehalose phosphate

phosphatase (TPP) (otsB), which converts T6P to Tre, and trehalose phosphate

hydrolase (TPH) (treC) which converts T6P to Glc and G6P, in wild-type background,

both produce the same phenotype: delayed development and flowering, but as mature

plants with larger, lighter green leaves than wild-type; seed set is plentiful. The growth
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of otsB and treC seedlings was severely inhibited by addition of Glc or Suc to the

medium, whereas growth of otsA is accelerated over wild-type with sugar

supplementation. This indicated that T6P is crucial for the carbohydrate utilisation

(Schluepmann et al., 2003). Levels of T6P increase with Suc and Tre feeding, the pool

of hexoses also increases with Suc treatment, the changes in T6P levels in response to

Suc, place T6P in a role as a signalling molecule for energy status. The growth arrest

seen with the application of Tre is caused by the accumulation of T6P (the conversion

of T6P to Tre is irreversible), since treC expression overcomes the effects of T6P

supplementation by converting it back to G6P and Glc (Schluepmann et al., 2004).

Furthermore, any growth inhibition caused by T6P accumulation is relieved by the

application of metabolisable sugar. The role of T6P as a signalling molecule is indicated

by the correlation of levels of T6P with the expression of KIN11, a gene for of the

catalytic subunits of SnRK1 (Fragoso et al., 2009), such that expression of KIN11 is

elevated with high levels of T6P and reduced when T6P levels are low (Schluepmann et

al., 2004). T6P at micromolar concentrations, which reflect in vivo levels, was found to

be an inhibitor of SnRK1 (KIN10/11) protein activity, requiring a thousandth the

concentration of G6P to achieve the same level of inhibition. The inhibition of SnRK1

by T6P requires an intermediate not found in mature plant leaf extract. The lack of T6P

inhibition of SnRK1 in mature tissue may mean that the other role for T6P in regulating

starch synthesis is predominant in these tissues. Taken together, these findings place

T6P in a role of signalling energy status, inactivating SnRK1, which mediates the sugar-

starvation responsive inhibition of biosynthesis genes, thereby promoting growth

(Zhang et al., 2009).

Sucrose sensing and signalling

Since Suc is readily degraded to hexoses by invertase, the search for a Suc sensing

mechanism has been difficult to uncouple from that of the hexoses. However use of Suc

analogues, palatinose and turanose, demonstrated repression of α-amylase via another

method than seen with Glc and Suc treatments, which cause destabilisation of α-

amylase transcript (Loreti et al., 2000). Many specifically Suc regulated genes have

been identified (Gonzali et al., 2006), along with evidence of Suc regulated gene

expression and signalling independent of hexoses (Ramon et al., 2008). Investigation of

a light regulated gene ATHB2, which encodes an S-class bZIP transcription factor

bZIP11, found that Suc was able to repress the activity of an ATHB2-promoter-GUS

(ATHB2::GUS) activity, with hexoses and other disaccharides having no effect. It was

found that levels of native ATHB2 and ATHB2::GUS transcripts were not repressed, but
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in fact upregulated, meaning that Suc has its effect on the post-transcriptional level

(Rook et al., 1998). Further investigation revealed that regulation was at the

translational level, focussed on a small upstream open reading frame (uORF) in the 5’

UTR, which is conserved amongst the S-class bZIP transcription factors (Rook et al.,

1998; Wiese et al., 2004; Ramon et al., 2008).

Sugar-regulated transcription

The responsiveness to sugars is not regulated exclusively at the transcriptional level, but

there are many genes that are regulated via sugar responsive elements found in their

promoter regions. Sucrose-responsive elements (SURE) were identified in the promoter

of potato tuber storage protein gene, patatin. SUREs have similarity to sporamin

promoter motif-8 (SP8) and SUREs are bound by sucrose response factors and both

SUREs and SP8 motifs are bound by SP8BF rather than any direct interaction with

sucrose per se (Grierson et al., 1994). Other sugar responsive cis-acting elements

include A- and B-boxes, and the TGGACGG element (Rolland et al., 2006). A WRKY-

like transcription factor, SPF1 binds to SP8 motifs acting as sucrose-repressed, negative

regulator of gene expression (Rolland et al., 2006). Others of this type also bind W-

boxes and SUREs (Rolland et al., 2002; Rolland et al., 2006). Sugars modulate the

expression of plant hormones such as abscisic acid (ABA) (Arroyo et al., 2003) and

ethylene biosynthesis (Rolland et al., 2006). Transcripts of abscisic acid insensitive:

ABI4 and ABI5, which encode transcription factors of the APETALA 2 (AP2) domain

and bZIP family respectively, accumulate at high (7% w/v) levels of Glc

supplementation, but not at lower levels (2% w/v) (Arroyo et al., 2003; León & Sheen,

2003). The induction of ABI4/5 by Glc is in an ABA-dependent fashion (León & Sheen,

2003). abi4 and abi5 mutants are insensitive to Glc exhibiting no stunting of growth or

development at 7% w/v Glc (Arroyo et al., 2003); additionally, overexpression of ABI5

results in sugar hypersensitivity (León & Sheen, 2003).

ABA-response element (ABRE) binding factor 2 (ABF2), a bZIP class transcription

factor (recognising the cis-element CACGTG) is a repressor of genes upregulated by

ABA signalling. Overexpression of ABF2 results in a reduction in ABA and Glc

sensitivity. The abf2 null mutant has a defective Glc response and lacking inhibition,

grows faster (Kim et al., 2004). The rice α-amylase gene is repressed by sugars and

linker-scan analysis, whereby portions of the promoter were replaced by an EcoRI

restriction site, isolated a sugar response sequence (SRS) in the promoter containing a
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GC-box, a G-box and a TATCCA element (Lu et al., 1998). Lu et al., (1998) found that

the SRS was able to render a sugar-insensitive actin gene responsive to sugar and the

presence of a GC-box with either a G-box or a TATCCA element would mediate a

sugar response. The TATCCA element is required for high level responses to sugar and

GA, mutations of the element result in declines of up to 20% in responsiveness (Lu et

al., 1998). The genes OsMYBS1, 2, and 3 encode MYB transcription factors that bind

the TATCCA element, recognising the core TATCC. OsMYB1 and 2 are transcriptional

activators, with OsMYB1 exhibiting a strong effect and OsMYB2 only weakly;

OsMYBS3 appears to have no such function. OsMYBS1 and 2 both induce expression

of a reporter gene with a promoter containing SRS with or without sugar, suggesting

transcriptional control. OsMYBS2 is expressed highly and binds to TATCCA when

sugar is present, but only induces low level expression of α-amylase. Under sugar

starvation conditions, OsMYB1 is expressed highly with a concomitant suppression of

OsMYBS2. OsMYBS1 binds TATCCA inducing high level α-amylase expression.

OsMYBS3 is most abundant in senescing leaves, so OsMYBS3 may block α-amylase

expression. The TATCCA is also a necessary cis-element in α-amylase genes regulated

by GA, along with a GARE sequence upstream of TATCCA, which is bound by

HvMYBGa. GA signalling is inhibited by ABA and these two hormones have opposite

effect on OsMYB1 and 2: GA suppresses OsMYB1 accumulation but has no effect on

OsMYB2; ABA suppresses OsMYB2 but has no effect on OsMYB1. In the presence of

GA α-amylase promoter activity was with either OsMYB1 or OsMYB3 but was

maintained by OsMYB2 and even further by HvMYBGa (Lu et al., 2002).

Summary

Plants are able to detect sugars either as hexoses or sucrose, such ability provides

important information for the monitoring of the resource availability so that growth and

development may proceed appropriately. Plants can detect hexoses in the extracellular

environment via GPCRs and within the intracellular milieu via the HXK or SnRK1

pathways. There is evidence of Glc-responsive genes being regulated independently of

HXK, as well as regulation at the post-transcriptional / translational level. Although the

cytosolic Suc and hexose pools are linked, genes specifically regulated by Suc have

been identified. Suc was found to repress the bZIP11 transcription factor at the post-

transcriptional level. Many sugar responsive cis-acting elements have been identified in

the promoters of transcription factor genes with considerable inter-regulation with plant

hormones.



26

1.2.1 Short-term responses to low light

Fixed at one location and reliant on sunlight for energy, plants must adapt to changes in

environmental conditions in situ. Changes in light flux, especially low light, is one of

the most severe threats plants can experience (Franklin & Quail, 2009). The stress of

shading or prolonged darkness will naturally cause a large decline in photosynthetic

output, requiring the plant to rely on carbohydrate reserves which become rapidly

exhausted (Fujiki et al., 2000; Gibon et al., 2004). The name given to the strategy and

the processes involved, used by plants to maintain their access to light, is the shade

avoidance response (Franklin, 2008).

Sensing shade

As explored in the first section of this chapter, plants have sophisticated mechanisms for

perceiving the quality, quantity, periodicity and direction of light. These stimuli are

sensed and the signals integrated to coordinate plant growth and development

appropriately for the prevailing environmental conditions. Plants are able to detect

shading via the quality and quantity of light that they receive (Smith, 1982).

Phytochromes are reversibly converted between the Pr and Pfr forms by R and FR

respectively. The abundance of either form therefore, allows plants to assess the R:FR

(eq. 1.2.1.1) of the incident light.

ܴܨ:ܴ =
݊ݐℎ ݂݈ ݊݁ݑ ܿ݁ 660݊݉ݐܽ ± 5݊݉ (ܴ)

݊ݐℎ ݂݈ ݊݁ݑ ܿ݁ 730݊݉ݐܽ ± 5݊݉ (ܴܨ)

Equation 1.2.1.1 Equation for ratio of Red to Far-red light flux

Reproduced from (Smith, 1982).

The R:FR will therefore vary according to the time of day, the site aspect and latitude

and greatly on the surrounding plant canopy structure. The R:FR is influenced little by

weather conditions or the season (Table 1.2.1.1) (Franklin, 2008; Smith, 1982). It is

evident that wavelength is crucial in determining the R:FR; moonlight has a tiny

fraction of daylight flux, but there is only a small reduction in its R:FR (Table 1.2.1.1).

The strikingly obvious property of the ivy canopy light parameters, is the very low

R:FR; even under 5mm of soil, which has about half the flux of ivy canopy, has a much

higher R:FR (Table 1.2.1.1). The unique property of plant canopies of course, is their

filtering of the blue and R portions of the light spectrum due to the absorption spectra of

photosynthetic pigments (carotenoids and chlorophyll respectively). Leaves reflect and
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transmit the remainder, which in the visible spectrum gives them their green

appearance. However they also leave FR unabsorbed, so underneath a canopy, not only

is the light flux much reduced, it is depleted in R and blue light – the photosynthetically

active radiation (PAR), resulting in a low R:FR (Franklin, 2008; Franklin & Quail,

2009).

Table 1.2.1.1 Light parameters of environmental conditions.

Reproduced from Table 1 in (Smith, 1982).

Photon Flux Density (μmol m
-2

s
-1

) R:FR

Daylight 1900 1.19

Sunset 26.5 0.96

Moonlight 0.005 0.94

Ivy canopy 17.7 0.13

Lakes, depth 1m - -

Black Loch 680 17.2

Loch Leven 300 3.1

Loch Borralie 1200 1.2

Soil, depth 5mm 8.6 0.88

A decline in R:FR is due to the depletion of PAR most often caused by the shade

generated by surrounding vegetation. Without the PAR component of light, plants will

be unable to maintain effective photosynthetic output, therefore they must initiate

strategies that allow them to tolerate or escape shading; the latter of these two is known

as the shade avoidance syndrome (Smith & Whitelam, 1997) or response (Franklin,

2008). As established above, there is a crucial difference between shade characterised

by low photo flux and canopy shade: the markedly lower R:FR ratio of the latter (Table

1.2.1.1). However a decline in R:FR was not established as the sine qua non for the

initiation of shade avoidance syndrome until work carried out by (Morgan & Smith,

1976; Morgan & Smith, 1978; Morgan & Smith, 1981; Smith & Whitelam, 1997).

Given that other plants are the source of shading to which plants are responsive, ecology

regards shade avoidance as a response to competition for resources – specifically light

(Ballaré et al., 1997).

Shade avoidance

In order to be effective, shade avoidance is a pre-emptive strategy in response to a

decline in R:FR prior to actual shading (Ballaré et al., 1990). The shade avoidance

syndrome can be summarised (Table 1.2.1.2) as shoot elongation and arrested leaf

development with a strengthening of apical dominance. In dicotyledonous plants, such

as A. thaliana, shoot extension is achieved by increases in the length of internodes on
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the stem and elongation of leaf petioles. The strengthening of apical dominance ensures

that resources are focussed on increasing vertical height of the plant and also promotes

the increase in leaf angle (hyponasty). There is a reduction in chlorophyll synthesis,

visible as chlorosis (Smith & Whitelam, 1997). This accelerated apical growth requires

a reallocation of resources away from the storage organs (Smith & Whitelam, 1997).

There is an accumulation of hexose sugars in the leaves and petioles of plants grown in

white light enriched with FR (Keiller & Smith, 1989). RNA interference (RNAi) of

potato sucrose transporter 1 (StSUT1) inhibits development of shade avoidance

syndrome (Chincinska et al., 2007). Low R:FR promotes early onset of flowering in

wild-type (Halliday et al., 1994) and this phenomenon is not lost, but only reduced in

phyABD triple mutants, which are early flowering in high R:FR (Devlin et al., 1996).

This suggested phytochrome redundancy and a role for an additional phytochrome, viz.

phyC; furthermore evinced by the phyABDE quadruple mutants lacking leaf elongation

or accelerated flowering in response to low R:FR (Franklin et al., 2003). Resources will

need to be reallocated to support flowering, so the onset of senescence (Levey &

Wingler, 2005) and autophagy (Hanaoka et al., 2002) in leaves can remobilise nutrients

from leaves to support reproduction (Himelblau & Amasino, 2001).

Table 1.2.1.2 Physiological processes characterising shade avoidance syndrome

Reproduced from Table 1 in (Smith & Whitelam, 1997)

Physiological process Shade response (low R:FR)

Germination Retarded

Extension growth Accelerated

Internode extension Rapidly increased (lag c. 5 min)

Petiole extension Rapidly increase

Leaf extension Increased in cereals

Leaf development Retarded

Leaf area growth Marginally reduced

Leaf thickness Reduced

Chloroplast development Retarded

Chlorophyll synthesis Reduced

Chlorophyll a:b ratio Balance changed

Apical dominance Strengthened

Branching Inhibited

Tillering (in cereals and grasses) Inhibited

Flowering Accelerated

Rate of flowering Markedly increased

Seed set Severe reduction

Fruit development Truncated

Assimilate distribution Marked change

Storage organ deposition Severe reduction
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Molecular regulation of shade avoidance

PIF/PIL-mediated shade avoidance

The first genes identified whose expression was found to be reversibly inducible by

R:FR was the A. thaliana homeobox 2 and 4 (ATHB2,4). ATHB2 and ATHB4 are

homeodomain ZIP transcription factors whose expression is induced by low R:FR and

repressed under high R:FR conditions (Carabelli et al., 1996; Carabelli et al., 1993).

phyABDE quadruple mutants, as mentioned above, are not responsive to low R:FR

conditions. Dark-adapted phyABDE mutant plants demonstrate repression of ATHB2

expression upon transfer to white light, suggesting a role for phyC in mediating R-

dependent repression of ATHB2 and shade avoidance responses (Franklin et al., 2003).

The largest and most rapid increases in transcript levels, following low R:FR treatment,

are seen for PIF3-like 1 (PIL1): ~35-fold increase after one hour. PIL1 encodes a bHLH

protein that interacts with the circadian clock central oscillator component, TOC1.

Mutants of PIL1 exhibited reduced hypocotyl elongation following transient R:FR

exposure (Salter et al., 2003). PIF4 and PIF5 (phytochrome-interacting factor) promote

the shade avoidance response and constitutive expression of either PIF4 or PIF5 results

in plants displaying the shade avoid response constitutively. phyB null mutants

demonstrate a constitutive shade-avoidance phenotype under high R:FR, however in

phyBpif4pif5 triple mutants this phenotype is not seen (Lorrain et al., 2008). The

abundance of PIF3 rapidly declines in response to light, either FR-mediated by phyA as

part of phytochrome-mediated de-etiolation, or by R-mediated by phyB in the Pfr form

(Bauer et al., 2004). This decline in abundance is mediated by the ubiquitin-26S

proteasome system, whereby PIF3 is polyubiquitinated, mediated by phytochrome Pfr,

and then degraded by the 26S proteasome (Park et al., 2004). As with PIF3, PIF4 and

PIF5 abundance is light dependent, they accumulate in the dark and decline upon

exposure to R; FR did not have a significant effect on their abundance (Lorrain et al.,

2008). PIF4 binds preferentially to the Pfr form of phyB in the nucleus. However PIF4

does not interact with phyB when bound to a G-box (Huq & Quail, 2002). The swift

decline in PIF4 and PIF5 abundance following a two-hour R pulse to etiolated

seedlings, which were returned to darkness, suggested that effect was mediated by the

phytochrome low-fluence response. PIF4 and PIF5 are responsive to high and low R:FR

treatments; high R:FR decreases the abundance of both PIFs, and low R:FR results in

their rapid re-accumulation. As with PIF3, the degradation of PIF4 and PIF5 is

proteasome mediated; treatment of etiolated seedlings with proteasome inhibitors and R

light sees no decline in the abundance of either PIF (Lorrain et al., 2008).
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DELLA mediated shade avoidance

There is further redundancy in the shade avoidance regulation, since pif4pif5 double

mutants still exhibit shade avoidance responses (Lorrain et al., 2008; Franklin, 2008).

Implicated are nuclear-localised DELLA proteins, which are known to down-regulate

growth by down-regulating gibberelic acid (GA) biosynthesis. External cues cause the

activation of GA that represses DELLA genes and so increasing the levels of GA and

promoting growth (Silverstone et al., 2001). GA mediates the phosphorylation of the

DELLAs which are in turn polyubiquitinated and targeted for degradation by the 26S

proteasome (Alvey & Harberd, 2005). Treatment with low R:FR results in a petiole

elongation, concomitant with this is a decline in the abundance of DELLA proteins. In

GA deficient mutants there is no petiole elongation, but these can be ‘rescued’ by

addition of GA (Djakovic-Petrovic et al., 2007). Whilst the degradation of DELLAs is

R:FR-dependent and therefore phytochrome mediated, there is no evidence to suggest a

direct interaction between DELLAs and phytochromes. As described above, the extent

and manner of the interaction between phytochromes and PIFs has been elucidated

(Bauer et al., 2004; Park et al., 2004). Co-immunoprecipitation, yeast-two-hybrid, pull-

down and chromatin immunoprecipitation (ChIP) studies confirmed that there is a direct

interaction between DELLA protein, RGA, and individual PIF4 (de Lucas et al., 2008)

and PIF3 (Feng et al., 2008), whereby under high R:FR DELLAs bind to individual

PIFs and block their transcriptional activity (de Lucas et al., 2008; Feng et al., 2008).

Quintuple mutants of the DELLAs have a phenotype resembling wild-type treated with

GA, underlining the GA-dependent abundance of DELLA proteins. Nuclear localised

GA receptors, GID1 proteins, were found to interact with DELLAs. The co-

immunoprecipitated DELLAs could be bound by anti-ubiquitin antibodies (Feng et al.,

2008). These taken together (Feng et al., 2008) conclude, suggest that GA, whose

biosynthesis is promoted by light, binds GID1 which in turn binds DELLAs targeting

them for degradation via the ubiquitin-26S proteasome system.

Temperature cross-talk in shade avoidance

Temperature has been found to modulate light-responses; early flowering mutant phyB,

no longer exhibits its phenotype when the temperature is reduced from 22 to 16°C. The

role of phyB at lower temperatures becomes redundant as phyD and phyE also

contribute (Halliday & Whitelam, 2003). The expression of cold regulated (COR) genes

could be induced in seedlings treated with low R:FR at 16°C, but not 22°C (Franklin &

Whitelam, 2007). The COR genes have C-repeat/drought responsive (CRT/DRE)

elements in their promoters, conferring the responsiveness to drought and low
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temperature and to this cis-element binds, the CRT/DRE binding-factor (CBF) family

transcription factors (Knight et al., 2004). Overexpression of CBF genes confers

improved freezing tolerance in the absence of cold acclimation (Jaglo-Ottosen et al.,

1998), similarly plants grown at 16°C under low R:FR leads to 87% survival versus

38% and severe damage for those grown high R:FR at 16°C. phyD mutants grown at

16°C have elevated COR gene expression and improved freezing tolerance (Franklin &

Whitelam, 2007). There is extensive phenotypic plasticity in response to temperature: at

16°C plants have a small, compact rosette; at 22°C the leaf area and growth rate is at its

highest; growth at 28°C results in petiole elongation, leaf hyponasty and reduced leaf

area – a phenotype similar to the shade avoidance response (Atkin et al., 2006; Franklin,

2009). Mutants of an ancillary auxin biosynthesis pathway exhibit defective shade

avoidance responses (Tao et al., 2008), similar mutants for auxin transport or response

pathways exhibit impaired high temperature hypocotyl elongation in seedlings (Gray et

al., 1998). High temperature combined with low R:FR had a synergistic effect on the

shade avoidance response (Weinig, 2000); these findings point to shared signalling

pathways (crosstalk) between light and temperature (Franklin, 2009).

Carbon scavenging and sugar signalling

Physiological responses to dark-induced sugar starvation

Plants, as we have seen, are able to trigger processes that facilitate their overcoming of

shade, however those processes require resources. In the light photosynthesis takes

place, providing the plants with a source of energy in the form of fixed carbon. Sucrose

synthesis takes place in source tissues so supports growth in sink tissues. During

darkness photosynthesis cannot proceed and so plants are reliant on their reserves of

energy in the form of starch (Geiger & Servaites, 1994; Gibon et al., 2004). Plants are

able to perceive the day length and store up sufficient starch to support respiration

during the night (Gibon et al., 2004). Starch synthesis is under circadian control – being

initiated one to two hours into the light phase and slowing about two hours before

darkness. A circadian rhythm of starch synthesis is seen even with plants kept in

constant light (Geiger & Servaites, 1994). By the start of the next light cycle very little

starch remains (Kerr et al., 1985; Fondy & Geiger, 1985; Gibon et al., 2004). Indeed

plants exposed to extended darkness exhibited a dramatic decline in soluble sugars, far

beyond that seen with diurnal fluctuations (Kerr et al., 1985; Brouquisse et al., 1998). A

significant decrease in protein levels was also seen in mature root, root tips and young

leaves. There are no significant diurnal fluctuations in proteolysis, but during extended
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night protein degradation was induced, concomitant with a change in the glutamine

(Gln) / asparagine (Asn) balance, whereby levels of free Gln dropped with Asn

abundance increasing up to 18 times in mature roots (Brouquisse et al., 1998).

Proteolysis will liberate significant amounts of toxic NH4
+, which is assimilated by the

conversion of aspartate (Asp) to Asn. Asn synthesis is preferred to Gln synthesis under

carbon limiting conditions such as extended darkness (Lam et al., 1996; Brouquisse et

al., 1998). Studies using mutants for the gene coding phosphoglucomutase (pgm), which

are unable to convert G6P to glucose 1-phosphate (G1P) and hence are unable to

synthesise starch, revealed that with a 12-hour photoperiod pgm mutants accumulated

high levels of soluble sugar compared to wild-type and their phenotype and growth was

indistinguishable from wild-type under constant light. However when grown under

short-day (seven-hour photoperiod) conditions the pgm growth rate was severely

impaired and photosynthetic rate depressed compared to wild-type (Caspar et al., 1985).

Protein degradation, of up to 45% of original intracellular protein, was induced in

tobacco (Nicotiana tabacum) suspension-cultured cells upon transfer from liquid

Murashige-Skoog (MS) medium containing 3% (w/v) Suc to MS without Suc

(Moriyasu & Ohsumi, 1996). The large scale degradation of protein triggered by sugar

starvation / extended darkness (Brouquisse et al., 1998) is known as autophagy and is

mediated by the vacuolar degradation pathways (Hanaoka et al., 2002). Sugar starvation

of cultured sycamore (Acer pseudoplatanus L.) cells resulted in the formation of double

membrane-bound autophagosomes (vacuoles) which fused with the central vacuole. The

initiation of autophagy was found to dependent of supply of pyruvate or glycerol to the

mitochondria, independent of Suc or hexose sensing (Aubert et al., 1996). 25 genes in

A. thaliana have been identified as orthologues to nine yeast genes essential for

autophagy. Mutants for these genes in yeast were found to exhibit impaired protein

degradation, reduced survival under sugar starvation conditions and defective diploid

cell sporulation. The A. thaliana apg9-1 mutant, orthologue of yeast APG9, exhibited

accelerated chlorosis (leaf yellowing) compared to wild-type after eight days of 24-hour

darkness. agp9-1 mutants demonstrated elevated expression of senescence associated

genes, SEN1 (DIN1) and YSL4, prior to the induction of senescence, unlike wild-type

(Hanaoka et al., 2002). (Yu, 1999) summarised the physiological changes in response to

sugar-starvation as follows: arrest of cell growth; rapid depletion of carbohydrates;

decrease in respiration rate; degradation of proteins and lipids, accumulation of

inorganic phosphate (Pi), phosphorylcholin, free amino acids and a decline in

glycolysis. The reduction in biosynthetic processes and respiration will help to conserve



33

resources and the induction of catabolic processes will liberate alternative sources of

carbon from lipids, proteins and structural carbohydrates (Yu, 1999).

Mediation of sugar starvation responses

A whole-genome expression profile array, which analysed the responses to six-hour

extended night, having been grown in a 14-hour photoperiod, allow a comparison

between wild-type and pgm mutant expression patterns at the end of the night period,

revealed similarities between both genotypes: there was repression of genes involved in

photosynthesis, nutrient acquisition and biosynthesis; changes in Tre metabolism

suggested a role for T6P signalling sugar-starvation; alterations in transcript levels of

receptor kinases, transcription factors and signalling pathways; changes to genes

controlling protein turnover and post-translational modifications; modifications to the

genes involved in the synthesis and signalling pathways of plant hormones such as

cytokinins, ABA and ethylene (Thimm et al., 2004). The Thimm (2004) study has

identified a complex, multi-level regulatory network in mediate responses to low sugar

availability.

The transcripts of two genes, coding for the E1β- and E2-subunits of branched-chain α-

ketoacid dehydrogenase (BCKDH) of A. thaliana, henceforth DIN4 and DIN3

respectively, were found to accumulate in leaves after three hours of darkness, with a

concomitant increase in BCKDH activity. The induction of DIN3/4 expression could be

replicated by the application of a photosynthesis inhibitor (DCMU) even with

illumination. Furthermore it was discovered that the induction of DIN3/4 was repressed

by supplementation with Suc but not Man, thus indicating that DIN3/4 is regulated

primarily by carbon status, rather than directly by light (Fujiki et al., 2000). Fujiki et al.,

(2001) identified a number of other DIN genes, reporting that they code for a variety of

functionally diverse proteins: DIN1 (SEN1) is a senescence-associated gene with an

unknown role (Schenk et al., 2005); DIN2 encodes a protein with strong similarity to β-

glycosidases involved in cell wall degradation; DIN6 is identical to ASN1 that encodes

asparagine synthetase (AS); DIN9 encodes a protein with homology to mannose

synthesis enzyme, phosphomannose isomerase (PMI); DIN10 encodes a protein

homologous to seed imbibition protein, both of which share similarities with stachyose

and raffinose synthases – enzymes that produce oligosaccharides which accumulate

during response to senescence (Fialho & Bücker, 1996), drought and low temperatures

(Bachmann et al., 1994); DIN11 results in a protein similar to dioxyenases, which are

active in senescent leaves (Woodson et al., 1992), involved in the biosynthesis of GA,
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ethylene, flavinoids and alkaloids (Prescott & John, 1996). (Fujiki et al., 2005) divide

the DIN genes into two groups: early responders and late responders. The early

responders include DIN3, 4, 6 and 10 whose transcripts accumulate within three hours

of a dark treatment, peaking between 24 – 48 hours, and the late responders, including

DIN2, 9, and 11, detected only after 24 hours and continuing to accumulate after 72

hours (Fujiki et al., 2000; Fujiki et al., 2001). This dichotomy in transcript kinetics is

also reflected in developmental transcript abundance. Levels of late-responsive DIN2

and DIN9 were accumulated during darkness more strongly in old leaves than younger

leaves and in early senescence mutant hys1; conversely the abundance of early-

responsive DIN3 was independent of leaf age or accumulated more strongly in younger

leaves (Fujiki et al., 2005).

Dark-inducible gene regulation

Further experiments using Glc analogues 2-DG and 3-OMG, revealed that 2-DG, which

can be phosphorylated by HXK but not metabolised, was able to suppress DIN gene

expression, whereas 3-OMG, which is not phosphorylated by HXK, could not.

Additionally, application of a Ser/Thr protein kinase inhibitor, K-252a, prevented the

induction of DIN genes following dark treatment, as did protein synthesis inhibitor,

cycloheximide (Fujiki et al., 2000). SnRK1 (discussed in detail in §1.1.3) is such a

Ser/Thr kinase (Smeekens, 2000), which under sugar-starvation conditions has been

shown to be a positive regulator of genes involved in starch and protein catabolism

(Baena-González et al., 2007), and so may be involved in regulating DIN genes. Use of

two protein phosphatase inhibitors, okadaic acid, which preferentially inhibits protein

phosphatase type 2A (PP2A), and calyculin A, which is more potent and inhibits both

PP1 and PP2, revealed a role for protein dephosphorylation in regulating sugar-induced

gene expression (Fujiki et al., 2000). Okadaic acid application caused enhancement of

DIN gene transcripts in sugar-starved cells except for DIN6 and DIN10. Calyculin A

had the precisely the reverse effect, inhibiting DIN gene transcripts in sugar-starved

cells, but not DIN2 and DIN9 transcripts. These results suggested that PP2A, which is

preferentially inhibited by okadaic acid, has an inhibitory role on most DIN genes,

whilst calyculin A sensitive PP1 is required for sugar-induced expression of DIN genes;

therefore protein phosphorylation events are involved in sugar-responsive gene

expression (Fujiki et al., 2000). Hence Fujiki et al., (2000) divide the DIN genes into

two groups, the first consisting of DIN1, 3 and 4, which are negatively regulated by

PP2A and positively by PP1. The second group: DIN6 and 10, insensitive to PP2A and

positively regulated by PP1. Then a third: DIN2 and DIN9, negatively regulated by both
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protein phosphatase types (Fujiki et al., 2000). Use of calmodulin inhibitor W-7 caused

increased dark-induced accumulation of DIN2 and DIN9 transcripts, whereas no effect

was seen with DIN3 transcripts. This suggests that Ca2+/calmodulin signalling regulates

the late-responsive, senescence-associated DIN2 and DIN9, negatively in darkness.

Slight enhanced dark-induced expression of DIN3 was seen with two other calmodulin

inhibitors, which may indicated a role for Ca2+/calmodulin mediated repression of DIN3

(Fujiki et al., 2005). However (Fujiki et al., 2005) found no putative cis-acting elements

for calmodulin binding proteins, senescence responsive elements or conserved novel

motifs in the promoters of DIN2 and DIN9.

Summary

Using information from the quantity and quality of incident light borne out in the R:FR

and the resultant Pr/Pfr equilibrium, plants are able to perceive shading. Plants undergo

various physiological changes in response to shading, which are collectively called the

shade avoidance response. This response is mediated by phytochromes and the

differential localisation between the two forms. Phytochromes and interact with PIF/PIL

proteins and PIFs with DELLA proteins to bring about the swift physiological changes

required. Light and temperature signalling are integrated into common regulatory

pathways, such that low R:FR at 16°C can initiate increases in COR gene expression

and high temperature can produce phenotypes resembling the shade avoidance response,

which have the same reliance on auxin signalling. Insufficient light from deep shade or

complete darkness outside the normal diurnal cycle results in acute sugar starvation.

Depletion of carbohydrates combined with the cessation of photosynthesis constitutes a

severe energy crisis for a plant, which results in genome-wide changes in gene

expression to conserve energy by reducing carbon consuming processes and liberate

energy from alternative carbon sources. Studies of the regulation of dark inducible

(DIN) genes have revealed that the mediation of the response to sugar starvation is

multifarious: requiring functioning protein kinases, which may include HXK and

SnRK1, (de-)phosphorylation events as well as indicating a role for Ca2+/calmodulin

signalling pathways.

Project aims

It has been the aim of this project to investigate the contribution made by cis- and trans-

acting regulatory elements to the responsiveness of DIN3 expression to environmental

stimuli: specifically darkness and chilling. Continuing previous work (Knight, H.,

unpublished), which revealed the minimal dark-responsive promoter sequence of DIN3,
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and via linker-scan mutation analysis primarily, the contribution of cis-acting factors

within a crucial 50 base-pair (bp) region of the promoter were investigated. Secondly,

through the creation and analysis of transgenic plant lines over-expressing transcription

factor genes, candidates for trans-acting factors regulating DIN3 were analysed.

Following the Chapter 2 – Materials and Methods, the results are divided up in the

former manner with consideration of the cis-acting factors in Chapter 3 followed by the

trans-acting factors in Chapter 4. The results in their entirety will be discussed in

Chapter 5.
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2 Materials and Methods

2.1 Materials

2.1.1 Chemicals

All chemicals used in this project were obtained from Sigma-Aldrich Company Ltd.

(Dorset, England) unless stated otherwise in the method. Antibiotics for selection media

used in the culture of transformed E. coli or A. tumefaciens were all sourced from

Melford Laboratories Ltd. (Ipswich, UK).

2.1.2 Plant Materials

The wild type Arabidopsis thaliana plants used in the experiments described in this

work were of the Columbia ecotype, accession 0 (Col-0) unless otherwise stated. All

wild type plants were grown from seeds originally obtained from Lehle Seeds (Round

Rock, USA). Plants over-expressing various transcription factor genes were transformed

in the laboratory. Plants of various TILLING lines were originally obtained from the

Seattle TILLING Project (http://tilling.fhcrc.org/) and the T-DNA insertion lines were

grown from seeds originally obtained from GABI – Genomanalyse im biologischen

System Pflanze (Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam,

Germany). Plants of the 12 linker scan lines were available in the lab at the start of this

project.

2.1.3 Bacterial Strains

Escherichia coli competent cells were DH5α cells (Bioline Ltd., London, UK) and

transformed using plasmids previously designed. Chemcially competent cells were

made in the lab from the Agrobacterium tumefaciens strain C58C1.

2.1.4 Enzymes for Nucleic Acid Modification

Enzymes used in the modification or treatment of nucleic acids were sourced from a

variety of suppliers. Taq-DNA polymerase (BIOTAQ™ Red DNA Polymerase) used in

regular PCR reactions was sourced from Bioline UK Ltd. (London, UK). Reverse

Transcriptase (MultiScribe™ Reverse Transcriptase) for random-primed (random

hexamers) cDNA synthesis from RNA was obtained from Applied Biosystems (Foster

City, USA). Full-length cDNA transcription from RNA was carried out using Epicentre

MMLV-RT 1st Strand cDNA Synthesis Kit (EPICENTRE Biotechnologies, Madison,

USA). The reaction mix including the enzyme for Real-Time PCR using Taqman®

probes (TaqMan® Gene Expression Master Mix) was also obtained from Applied
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Biosystems (Foster City, USA). The reaction mix for qRT-PCR carried out using

SYBR® Green with primers (SensiMix SYBR Kit) was also obtained from Bioline UK

Ltd.

2.1.5 Oligonucleotides

All oligonucleotides for primers for PCR and qRT-PCR were synthesised by Invitrogen

Ltd. (Paisley, UK).

2.2 Preparation of Biological Materials

2.2.1 Sterilisation Techniques

2.2.1.1 Solutions and Media

Solutions and media, whose components are tolerant of the high temperatures and

pressures, were sterilised using an autoclave set to deliver a temperature of 121ºC at a

pressure of 1.03 x 105 Pa for 20 minutes. Those solutions and media not tolerant to

autoclave conditions were filter sterilised using 0.2μm cellulose acetate sterile syringe

filters, sourced from VWR International Ltd. (Leicestershire, UK), and attached to a

10ml syringe obtained from BD (Oxford, UK).

2.2.2 Growth Media

2.2.2.1 Plant Growth Media

2.2.2.1.1 Standard Petri Plate Media

A. thaliana plants used in the majority of experiments of this work were sown as seeds

onto solid agar media (Murashige & Skoog, 1962) in Petri dishes. Triple vent Petri

dishes of 90 (Scientific Laboratory Supplied Ltd., Hessle, UK) and 55mm (Fisher

Scientific UK Ltd., Loughborough, UK) were used with solid agar based media. The

media consisted of 0.8% (w/v) plant cell culture tested agar (Sigma-Aldrich Company

Ltd., Dorset, UK) with 1 x Murashige and Skoog (MS) nutrient medium (Duchefa

Biochemie, Ipswich, UK) with a pH of 5.8 set using 0.1M Potassium Hydroxide (KOH).

Sterile autoclaved media was poured into the Petri dishes in a laminar flow hood once

hand-hot (~50°C). The lids were replaced whilst the media set to prevent changes in the

relative concentration of the components of the media due to evaporation.

2.2.2.1.2 Vertical Petri Plate Media

A. thaliana plants grown in the vertical position, as opposite to the standard horizontal

orientation, were grown on 120mm square Petri dishes (VWR International Ltd.,
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Lutterworth, UK) with solid agar media composed of 1.2% (w/v) plant cell culture test

agar with 1x MS and adjusted to pH 5.8. The medium was poured within a laminar flow

hood. Seedlings were transplanted to this medium after 7 days of being grown on the

standard Petri plate media in the horizontal position.

2.2.2.1.3 Selection Media

Plant media for the selection of primary transformant plant requires the addition of

chemicals to eliminate those plants, which do not carry the transgene. The sole plant

selection media used in this project was composed of 0.8% (w/v) plant cell culture

tested agar, with 1x MS, 1% (w/v) Sucrose (SUC) with Kanamycin to a concentration

of 50μg/ml and adjusted to a pH of 5.8. The Kanamycin antibiotic was applied to the

autoclaved medium once hand-hot within a laminar flow hood. The complete medium

was poured into circular 140mm triple vent Petri dishes.

2.2.2.2 Bacterial Growth Media

2.2.2.2.1 E. coli Media

The liquid media used for the culture of E. coli was composed of Luria-Bertani (LB)

broth with the addition of an antibiotic selection, if required. The only antibiotic used in

regard to the culture of E. coli in this project, was Spectinomycin at a concentration of

50µg/ml. E. coli were also cultured on 90mm Petri dishes filled with a medium

composed of 1.5% (w/v) agar, 2% (w/v) LB and with Spectinomycin (50µg/ml) applied

once the autoclaved media had cooled to hand-hot within a laminar flow hood. The

media was poured into the plates within the laminar flow hood and allowed to set with

the lids off. The long term storage of bacterial cultures was achieved using 0.5ml 50%

(v/v) Glycerol and 0.5ml of the bacterial culture, which was flash frozen in liquid

nitrogen and stored at -80°C.

2.2.2.2.2 A. tumefaciens Media

The media used for the culture of A. tumefaciens was identical in composition for those

used for E. coli (2.2.2.2.1 E. coli Media) except that the antibiotic used in all A.

tumefaciens media was Rifampicin at a concentration of 100µg/ml. The C58C1 strain

of A. tumefaciens contains a resistance gene to Rifampicin on its chromosomal plasmid.

Additional antibiotics were required to select for A. tumefaciens transformed by binary

plasmids which contained antibiotic resistance genes.
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2.3 Culture of Biological Materials

2.3.1 Sterilisation of A. thaliana seeds

2.3.1.1 Ethanol Sterilisation Technique

Sterilisation of seeds, indicated to have low levels of contamination from mould or

fungi, was carried out using the Ethanol technique whereby the required amount of

seeds was placed into a 1.5ml microcentrifuge tube to which was added 70% (v/v)

Ethanol. The tubes of seeds were then shaken on a low speeding using a bench-top

Labnet (Oakham, UK) vortex with the necessary attachment for 10 minutes. The seeds

were then removed from the tubes via pipette onto 90mm filter circles (Whatman Plc.,

Maidstone, UK) to dry within a laminar flow hood prior to sowing onto the appropriate

medium.

2.3.1.2 Bleach Sterilisation Technique

Sterilisation of seeds, indicated to have high levels of contamination from mould or

fungi, was carried using the bleach technique. This technique was also used when

harvesting the seeds of plants dipped with A. tumefaciens. The bleach method was most

often used to sterilise large quantities of seeds so carried out using 50-ml Fisher

(Fischer Scientific, Loughborough, UK) centrifuge tubes. Along with the seeds, 70%

(v/v) Ethanol was added to almost fill the centrifuge tube and agitated on at 300 rpm on

a flat-bed shaker for 5 minutes. Transferred to a laminar flow hood, the Ethanol was

decanted from the tubes and replaced with a solution of 10% (v/v) Sodium Hypochlorite

and 0.25% (v/v) Sodium Dodecyl Sulphate (SDS). The tubes were returned to the

shaker and agitated at 300 rpm for 10 minutes. Returned to the laminar flow hood, the

solution was decanted and the seeds washed six times with sterile MilliQ (MQ) water.

The sterilised seeds could then be transferred via a Pasteur pipette to plates of an

appropriate medium.

2.3.2 Plant tissue culture

Plants were sterilised using the appropriate technique (2.3.1Sterilisation of A. thaliana

seeds) and sown onto the required Petri plate medium within a laminar flow hood and

the plate sealed with Micropore™ tape (3M United Kingdom PLC., Bracknell, UK). In

some cases seeds were sown directly onto soil, composed of mixture J Arthur

Multipurpose Compost and sharp sand, using an adapted 50-ml centrifuge tube filled

with baked sand to provide an even distribution of seeds. The lid of the 50-ml centrifuge

tube was pierced to create several holes and the seeds mixed well with the baked sand
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so to that seeds were widely dispersed across the soil. Once sown onto the medium the

seeds were stratified for 48 hours in a cold room set to 5°C. If the plants were to be

grown under long-day conditions this was carried out within a Sanyo MLR-351 plant

growth chamber (Sanyo E&E Europe BV, Biomedical Division (UK), Loughborough,

UK) set to a 16 hour light/8 hour dark cycle at a continuous temperature of 20°C unless

otherwise stated. For plants grown under short-day conditions this meant an 8 hour

dark/16 hour light cycle at a continuous temperature of 20°C unless otherwise stated (in

the same chamber). The mean light intensity with these growth chambers was 150

Einsteins. Any other conditions for plant tissue culture will be described in figure

legends. Three and six hour dark treatments were achieved by wrapping whole Petri

plates in aluminium foil and returning then to the plant growth chamber of appropriate

temperature (5 or 20°C) for the length of the treatment. Plants used in experiments

which required growth beyond 14 days post germination, seedlings were transferred to

38mm peat plugs (LBS Horticulture Ltd., Lancashire, UK) and grown under the

conditions stated in the experimental method.

2.3.3 Bacterial culture

2.3.3.1 Small scale plasmid preparation

Small scale preparation of bacterial cultures was carried out using a 5ml overnight

bottle containing 2% (w/v) LB broth and any required antibiotics (Rifamicin 100µg/ml

for A. tumefaciens). These overnight bottles were inoculated either using a flamed

inoculation loop or a sterile pipette tip. The loop or pipette tip was used to touch a

colony on plate or scratch the surface of a frozen glycerol stock and then dipped or

ejected into the overnight bottle. The aseptic technique of flaming inoculation loops

before and after use and the necks of bottle after opening and closing their lids. The

inoculation of the overnight bottles was carried out in the immediate vicinity of a lit

Bunsen burner. If inoculated with E. coli the overnight bottles were placed in an

incubator set to 37°C and shaking at 200 rpm and left overnight. If inoculated with A.

tumefaciens the overnight bottles were placed in an incubator set to 28°C and shaking at

200 rpm and left for 48 hours.

2.2.3.2 Medium scale plasmid preparation

Medium scale preparations were carried out in baffled 500ml flasks containing 200ml

of 2% (w/v) LB broth in addition to any required antibiotics. These flasks were then

inoculated with 1ml of starter culture (2.3.3.1 Small scale plasmid preparation).
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These flasks were then moved to incubators set the appropriate conditions for the

bacterial strain as described in the above section.

2.2.4.3 Petri plate culture

Bacterial cultures were grown on Petri plates as described above (2.2.2.2 Bacterial

Growth Media) an inoculated using either a flamed inoculation loop to streak out a

picked colony or glycerol stock, or with 100µl from a starter culture (2.3.3.1 Small

scale plasmid preparation) and spread across the surface of the plate using a sterile glass

spreader. The inoculation of the plates was carried out in the immediate vicinity of a lit

Bunsen burner. If the plates had been inoculated with E. coli the plates were transferred

to an incubator set to 37°C and left overnight. If the plates were inoculated with A.

tumefaciens then the plates were transferred to an incubator set to 28°C and left for 48

hours.

2.4 Plant transformation

The transformation of A. thaliana requires a number of preparatory steps. The methods

are described here in sequence.

2.4.1 Transformation of E. coli

The transformation of E. coli using plasmid DNA (see below) was achieved using

DH5α cells (Bioline Ltd., London, UK) which had been stored at -80°C in 25µl aliquots.

These cells were transformed using 2.5µl (10% of their volume) and heat shocked

according to the prescribed Bioline protocol. The transformed E. coli were used

inoculate 5ml overnight bottles for a small scale preparation (2.3.3.1 Small scale

plasmid preparation).

2.4.2 Mini-scale Plasmid Preps from E. coli

When the plasmid carrying the required transgene needed to be purified from a bacterial

culture for diagnostic sequencing or subsequent cloning, a small-scale plasmid prep was

carried out using Qiagen Qiaprep spin miniprep kits (Qiagen Ltd., Crawley, UK). The

plasmid prep was carried out according to the method described in the protocol

provided by the manufacturer.

2.4.3 Transformation of A. tumefaciens

The transformation of A. tumefaciens with the desired plasmid was achieved using the

competent strain C58C1. Competent cells were prepared by the following procedure,

beginning with streaking cells onto an LB + Rifampicin (100µg/ml) plates and
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incubating at 28°C for 48 hours. A single colony from this plate was picked and used to

inoculate a 5ml overnight bottle containing LB + Rifampicin (100µg/ml) which was

incubated at 28°C and shaking at 200 rpm overnight. 4ml of this starter culture was then

used to inoculate a sterile 500ml flask contain 100ml of LB without any antibiotics. The

flask was then incubated at 28°C and shaking at 250 rpm until the optical density at

600nm (OD600) reached between 0.5 and 1.0, determined by a spectrophotometer. This

usually takes between 4 and 8 hours. The culture was then chilled on ice prior to

centrifugation at 3000g and at 4°C using a Beckman Coulter table top centrifuge model

Allegra X-22R with rotor 2402 (Beckman Coulter UK Ltd., High Wycombe, UK). The

supernatant was discarded and the pellet resuspended in 2ml of ice-cold 20mM CaCl2

solution. The cells were then dispensed into pre-chilled 1.5ml microcentrifuge tubes as

100µl aliquots then frozen in liquid nitrogen and stored at -80°C for future use.

A 100µl aliquot of the C58C1 strain of A. tumefaciens was thawed on ice then up to 1µg

of plasmid in a maximum volume of 12µl was applied to the cells and the

microcentrifuge tube was gently inverted a few times to mix them and returned to the

ice. Next the cells were heat-shocked by placing the microcentrifuge tube in a 37°C

water bath for 5 minutes to stimulate the uptake of the DNA by the competent cells. The

cells were then transferred via pipette to a sterile overnight bottle containing 1ml of LB

without antibiotics and thence placed in an incubator set to 28°C and shaking an no

more than 150 rpm for 1 – 2 hours. The contents of the sterile overnight bottle was then

transferred to a fresh microcentrifuge tube and centrifuged for 30 seconds and

maximum speed. The majority of the supernatant was discarded, but leaving about

200µl in which to resuspend the cells. The resuspended cells were then transferred and

spread across an agar plate containing LB + Rifampicin (100µg/ml) and any other

antibiotic required to select for the plasmid (Kanamcyin at 100 µg/ml or Spectinomycin

at 50µg/ml were used for transformations in this project). The plate was incubated for 3

days at 28°C.

2.4.4 Transformation of A. thaliana

The transformation of A. thaliana requires planning and careful timing to ensure that

both the plants and the A. tumefaciens are ready simultaneously. This method is adapted

from (Clough & Bent, 1998) who originally described the ‘floral dip’ method of A.

thaliana transformation. Wild type A. thaliana plants of Columbia ecotype, accession 0

were used in all plant transformation in this project. Wild type seeds were sown on
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standard Petri plate media and grown for 7 days under long-day conditions. Three

seedlings were transplanted to each 42mm peat plug and placed into clear boxes with

the lids one for the first two days and removed gradually over a few days. These plants

were grown under long-day conditions until the first bolts began to form. These were

cut immediately and the process of A. tumefaciens transformation (above) was begun.

Once single transformed colonies were identified, one was used to inoculate an

overnight bottle containing 5ml LB + Rifampicin and the additional antibiotic

(100µg/ml) then incubated at 28°C and shaking at 200 rpm for 48 hours. 1ml of this

starter culture was then used to inoculate a 500ml flash containing 200ml of LB with the

appropriate antibiotics (200ml provides sufficient culture to dip 20 – 30 peat plugs) then

incubated at 28°C and shaking at 250 rpm for 24 hours. The remaining starter culture

was used to make glycerol stocks (2.2.2.2.1 E. coli Media). The 200ml A. tumefaciens

culture was centrifuged for 15 minutes at 3500g at room temperature and the

supernatant discarded. Meanwhile a 5% (w/v) sucrose solution was prepared to a

volume between 0.5 and 1 times that of the original culture (i.e. 100 – 200ml).

Immediately prior to use 50µl of Vac-in-Stuff (Silwet L-77 surfactant) (Lehle Seeds,

Round Rock, USA) was added to the sucrose solution in which the pelleted cells were

resuspended gently by Pasteur pipette. Some this culture was then transferred to a small

beaker and the aerial portion of each plant was dipped into it for a few seconds. The

plants were placed horizontally in a large tray lined with tissue paper then covered with

cling film or a propagator lid and returned to where they had been growing, overnight.

The next day the film or the lids were removed and the plants righted to the vertical

orientation. If high efficiency transformation was required a further floral dip was

carried out 7 – 14 days after the first.

2.4.5 Selection of transformed seedlings

After the dipped plants had completed their life cycle and their seeds harvested (2.4.6

Seed collection), transformant plants had to be identified. Two strategies were

used in the selection of primary transformants: those transformed using a plasmid

conferring Kanamycin resistance were sown as seeds on plant selective media plates

containing 1% (w/v) sucrose and Kanamycin to a concentration of 50µg/ml (2.2.2.1.3

Selection Media). These were grown under long-day conditions for 7 – 10 days

post germination following an extended 4 day stratification at 5°C. Seedlings which had

produced their first set of true leaves and appear healthy were transplanted to 38mm

peat plugs and placed in trays (LBS Horticulture Ltd., Lancashire, UK). Alternatively
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those transformed using a plasmid conferring Basta (Glufosinate) resistance were sown

as seeds directly onto trays of compost (2.3.2 Plant tissue culture), covered with

aluminium foil and stratified at 5°C for 5 days, after which the trays were moved to a

growth chamber set to long-day conditions. 7 days after the seedlings had germinated

they were sprayed with Basta (40mg/l ~200µM) (Bayer CropScience, Cambridge, UK)

so that they were all covered with a fine mist of the solution. The Basta treatment was

repeated at 5 day intervals until resistant seedlings had been identified and could be

transplanted to 38mm peat plugs and trays. These primary transformant plants were then

grown to produce seeds which were harvested for subsequent confirmation of the

presence of transgene via PCR using genomic DNA and transgene expressing via QRT-

PCR, prior to use in any experiments.

2.4.6 Seed collection

Once A. thaliana plants had completed their lifecycle and entirely dried out, their seeds

were ready for harvest. Plants grown on peat discs next to others of a different genotype

were isolated using the Arasystem (BETATECH bvba, Ghent, Belgium) composed of

Aratrays to hold the water, Araflats to hold the peat discs contained within Arabaskets;

Aracons composed of bases and tubes, were made of clear plastic through which the

aerial portion of the plants grew. Dried plants were cut at their base and their siliques

striped from their stems on A3 paper. Using a fine tea strainer the seeds were separated

from the chaff and placed into small re-sealable plastic bags. The collected seeds were

then placed in a 37°C incubator for 48 hours to dry.

2.5 Nucleic Acid Preparation

2.5.1 DNA extraction

The extraction of DNA from bacterial plasmids has already been described (2.4.2 Mini-

scale Plasmid Preps from E. coli) this section will concern extracting genomic DNA

from plants and purifying DNA from bands extracted from DNA gel electrophoresis or

PCR products.

2.5.1.1 Genomic DNA extraction from plant tissue

The technique used to extract genomic DNA from plant tissues was modified from that

described by (Edwards et al., 1991). As far as possible, two young leaves (~10mm x

5mm) or around 5 7-day-old seedlings were harvested and placed into a sterile 1.5ml

microcentrifuge tube. The tissue was ground using a pellet pestle (Anachem Ltd., Luton,

UK) for 15 seconds, then 400µl of extraction buffer (Tris HCl 200mM, pH 7.5; NaCl
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250mM; EDTA 25mM; 0.5% (v/v) SDS) was added to each microcentrifuge tube and

vortexed for 5 seconds. The microcentrifuge tubes were centrifuged at maximum speed

for 1 minute and then 300µl of the supernatant transferred to fresh labelled

microcentrifuge tubes. To each tube 300µl of propan-2-ol was added and the samples

inverted gently twice and left to stand for at least 2 minutes. The samples were

centrifuged at maximum speed for 5 minutes and the supernatant discarded. Residual

supernatant was removed by tapping the tubes onto tissue paper. Any remaining solvent

was allowed to evaporate by leaving the tubes open for about 30 minutes. The pellets in

each tube were resuspended in 100µl of 1x TE buffer (10mM Tris HCL, pH 8; 1mM

EDTA) and left to fully dissolve overnight at 5°C before being stored at -20°C.

2.5.1.2 Purifying DNA from electrophoresis gels

DNA isolated and subsequently separated by gel electrophoresis can be extracted for

further manipulation such as sequencing or cloning. Isolated DNA appeared as bands on

gel pre-stained with Ethidium Bromide (EtBr) (10mg/ml) when visualised on a UV

transilluminator (Uvitec Ltd., Cambridge, UK). To extract the isolated DNA the band

were excised using a scalpel and placed into a sterile 1.5ml microcentrifuge tube and

purified according the protocol provided with the Qiagen MinElute Gel Extraction Kit

(Qiagen Ltd., Crawley, UK).

2.5.1.3 Purifying DNA PCR products from reaction mixes

In a similar fashion amplified DNA from Polymerase Chain rection (PCR) could be

purified directly from the PCR reaction mix. The entire mixture was treated according

to the protocol provided with the Qiagen Qiaquick PCR Purification Kit in order to

extract the purfied PCR product (Qiagen Ltd., Crawley, UK).

2.5.2 RNA extraction

The extraction of RNA from plant tissue was always carried out using ~25 7-day-old A.

thaliana seedlings and following the technique described in the method supplied the

Qiagen RNeasy MiniKit (Qiagen Ltd., Crawley, UK).

2.6 Nucleic Acid Analyses

2.6.1 DNA Gel Electrophoresis

All DNA in this project was visualised by gel electrophoresis on gels of the following

composition unless otherwise stated in figure legends: 1% (w/v) agarose in 0.5x TBE

buffer, pre-stained with EtBr (10mg/ml) to a final concentration of 5µg/ml. The EtBr
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was added to the molten gel once hand-hot, mixed and then the gel poured into the

mould with the appropriate gel combs. All DNA visualised by gel electrophoresis in this

project were products of PCR using Bioline BIOTAQ Red DNA Polymerase (Bioline

Ltd., London, UK) which already contained loading buffer. The size ladder used in all

gel electrophoresis to approximate the fragment size was Bioline HyperLadder™ I

(Bioline Ltd., London, UK).

2.6.2 Nucleic Acid quantification

The concentration of purified DNA and RNA samples were determined using a

Nanodrop Spectrophotometer model ND-100 (Nanodrop Products, Delaware, USA).

2µl of undiluted sample was loaded on the spectrophotometer pedestal and the reading

recorded.

2.6.3 Polymerase Chain Reaction (PCR)

2.6.3.1 Reaction mix composition

Bioline BIOTAQ Red DNA Polymerase (Bioline Ltd., London, UK) was used for all

PCR carried out in this project. Supplied with Bioline BIOTAQ Red DNA Polymerase,

were 10x NH4
+ reaction buffer and MgCl2 (50mM). A dNTPs were supplied by Bioline

(Bioline Ltd., London, UK) these together with the 10x buffer and MgCl2 were used at

final concentrations of 1.5mM and 10µM respectively as recommended by the Bioline

protocol. Primers were used from stocks at 50µM or 100µM to give a final

concentration of 1mM in the reaction. Reactions had total volumes of 25 or 50µl.

2.6.3.2 PCR conditions

All PCRs were carried out in one of either three thermal cycler models: Px2 Thermal

Cycler (Thermo Fisher Scientific, Waltham, Massachusetts, USA), Hybaid Omn-E or

PCR Express (Thermo Hybaid, Ashford, UK). The typical PCR conditions are outlined

in Table 2.6.3.2.1, with only the number of cycles and annealing temperature, which is

dependent on the melting temperature of the primer pairs used, varying between

reactions.
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Table 2.6.3.2.1 Typical PCR Conditions

Step Temperature (°C) Time (Mins) No. Cycles

1 94 5 1

2 55 - 62 2 1

3 72 2 1

4 94 1

25 - 355 55 - 62 1

6 72 2

7 72 10 1

8 4 ∞ END

2.6.3 DNA sequencing

All sequencing of DNA was carried out in-house using the Durham University School

of Biological and Biomedical Sciences Sequencing Facility.

2.7 Bioinformatics

2.7.1 Genetic Databases

Various online genetic databases were used course of this project. The National Centre

for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) and The

Arabidopsis Information Resource (TAIR) (http://www.arabidopsis.org) were used to

search for and acquire gene sequences in the bioinformatic aspects of the methods.

2.7.2 Sequence handling software

Gene sequences used in this project were stored, handled and annotated using GENtle.

This software was developed by Magnus Manske (University of Cologne, Germany)

and released under the GNU General Public Licence (http://gentle.magnusmanske.de/).

2.7.3 Primer design

Novel primers for standard PCR were designed using Primer3 (Rozen & Skaletsky,

2000, pp.pp 365-386) online primer design program (http://frodo.wi.mit.edu/primer3/).

Primers were subsequently checked for their specificity for the gene using TAIR

BLAST (http://www.arabidopsis.org/Blast/index.jsp) and self-complementarity and

potential for secondary structure formations using the Primer Stats Tool on the

Sequence Manipulation Suite (Stothard, 2000)

(http://www.bioinformatics.org/sms2/index.html). Primers for qRT-PCR specifically

using the SYBR® Green method were designed using Applied Biosystems Primer

Express 3.0 (Applied Biosystems Inc., Foster City, USA) according to the

recommendations found in the user guide. A list of primers used in this project can be

found in Table 2.7.3.1.
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Table 2.7.3.1 List of primers used in this project

Displayed are the primers used in this project and their relevant properties and intended application: either PCR or qRT-PCR.

Name Gene Sequence Length (bp) Tm (°C) GC (%)
Product Size

(bp) Application

MYB_AT5G47390_F
AtMYB

AT5G47390 GGCTGATAAAGCTTTGTGAAGGA 23 61.89 43.48 - PCR

MYB_AT5G47390_R “ CGACCCGATTTGCTTCTCTT 20 61.63 50 - PCR

MYB_AT5G47390_SEQ “ TCCTCTGTCCATGGAGTTCCTA 22 61.01 50 - PCR

GABI-Kat Left Border
(135) “ GACAGACTGCCTAGCATTTGAGT 23 65.05 47.83 - PCR

AtSRMYB-Exon1-
antisense (206) “ GAAATCCTCAGAAGCGTAACCAT 23 63.50 43.48 - PCR

SRMYB-Promoter-
Sense (227) “ GGATAATCACAAATGCATTAAACC 24 59.68 33.33 - PCR

MYB_T-DNA_SEQ
(Rev) “ ACTTTTCCGGATCGAACCTT 20 59.94 45 - PCR

GUS_F GUS CAACGAACTGAACTGGCAGA 20 60.02 50 492 PCR

GUS_R GUS GCATCTTCATGACGACCAAA 20 59.65 45 492 PCR

bZIP1_F
bZIP1

AT5G49450 GGTCGCGTTTGAAGAAACAG 20 60.81 50 340 PCR

bZIP1_R “ AAGGACGCCATTGGTTGTAG 20 59.99 50 340 PCR

GATA21_F
GATA21

AT5G56860 GAAAGCTGGGTTACCGTGAA 20 60.11 50 463 PCR

GATA21_R “ TGGTATTCGGCAAAGAAAGG 20 60.07 45 463 PCR

CAMTA1_F
CAMTA1

AT5G09410 ATTGCATGGACCACTGTTGA 20 60.16 55 491 PCR

CAMTA1_R “ ATCCCTGTGAGCAAGCATCT 20 59.92 55 491 PCR

PEX4_F
PEX4

AT5G2576 GCAGGCATCAAGAGCGCGACTGTTT 25 71.79 56 PCR

PEX4_R “ GGCGAGGCGTGTATACATTTGTGCC 25 70.45 56 PCR
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Name Gene Sequence Length (bp) Tm (°C) GC (%)
Product Size

(bp) Application

LUC_F Luc
INT

PCR

LUC_R Luc
INT

PCR

bZIP1_SYBR_F
bZIP1

AT5G49450 TTCAGGTTCCGACATAGATGAGAA 24 59 42 N/A qRT-PCR

bZIP1_SYBR_R “ AAACGCGACCTCCTTGCA 18 59 56 N/A qRT-PCR

GUS_SYBR_F GUS GAGCATCAGGGCGGCTATAC 20 58 60 N/A qRT-PCR

GUS_SYBR_R GUS CGTACACTTTTCCCGGCAAT 20 59 50 N/A qRT-PCR

PEX_SYBR_F
PEX4

AT5G2576 TCATAGCATTGATGGCTCATCCT 23 60 43 N/A qRT-PCR

PEX4_SYBR_R “ ACCCTCTCACATCACCAGATCTTAG 25 59 48 N/A qRT-PCR

GATA21_F
GATA21

AT5G56860 ACCGTGAACCATTCCATACGA 21 59 48 N/A qRT-PCR

GATA21_R “ AAGCGTTCCCACAAGATGAGA 21 58 48 N/A qRT-PCR

SRMYB_SYBR_F
AtMYB

AT5G47390 CCGACCTACTTTTCACCATATTACC 25 58 44 N/A qRT-PCR

SRMYB_SYBR_R “ TCTTGGGTGGTTCAGGAACATA 22 58 45 N/A qRT-PCR

Tubulin_F AT5G44340 CCTGATAACTTCGTCTTTGG 20 58.93 45 ~550 PCR

Tubulin_R AT5G44340 GTGAACTCCATCTCGTCCAT 20 62.33 50 ~550 PCR



51

2.7.4 Sequence alignment and searching

The alignment of gene sequences or short sequences to each other and searching for

similar or related gene was carried using the Basic Local Alignment Search Tool

(BLAST) (Altschul et al., 1997) provided by TAIR and NCBI. The alignment of

multiple sequences was carried out using ClustalW2 (Larkin et al., 2007) hosted by

EMBL-EBI (http://www.ebi.ac.uk/Tools/clustalw2/index.html). ClustalW2 was also

used to produce cladograms to represent sequence similarities.

2.7.5 Detection of cis-acting regulatory DNA elements

The promoter sequences (-500bp upstream of the coding region) of genes analysed in

this project were acquired from TAIR using the Sequence Bulk Download and Analysis

Tool (http://www.arabidopsis.org/tools/bulk/sequences/index.jsp) then submitted to the

Databaseof Plant Cis-acting Regulatory DNA Elements (PLACE)

(http://www.dna.affrc.go.jp/PLACE/) using the Signal Scan Tool (Higo et al., 1999).

The data outputs were then analysed according criteria described in the results section.

2.8 Gene expression analysis

2.8.1 Complementary DNA (cDNA) synthesis

The cDNA synthesised for gene expression analysis was produced as two forms:

random-primed or full length synthesis. Random-primed cDNA provided templates for

QRT-PCR and was synthesised using purified RNA as the template and the Applied

Biosystems MultiScribe™ Reverse Transcriptase (Foster City, USA) primed with

random hexamers according to the supplied protocol. Full length cDNA synthesis was

used where comparisons of the transcript lengths were made and carried out using

purified RNA as the template, synthesis using the Epicentre MMLV-RT 1st Strand

cDNA Synthesis Kit (Madison, USA), primed using Oligo(dT)21 and carried out

according to the supplied protocol.

2.8.2 Quantitative Real-Time PCR (qRT-PCR)

The expression of DIN3 and the endogenous control genes were analysed by

quantitative real-time PCR which directly measured the amplified PCR product to

provide the relative abundance of the original cDNA transcript in each sample. The

transcript abundance of the endogenous control gene was used to normalise the relative

quantification to account for variation in the amount of cDNA present at the start of the

reaction due to inaccuracies in the estimation of RNA concentration and differences in
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reverse transcription efficiencies. In the calculation of the relative abundance of

transcripts in the samples, they were compared to the transcript abundance found in the

treatment control. Gene expression analysis was carried out using the Applied

Biosystems 7300 Real-Time PCR System and the associated Sequence Detection

Software (v1.4) (Applied Biosystems Inc., Foster City, USA). Analysis of DIN3 and

DIN3::LUC expression in the linker scan lines was achieved using Applied Biosystems

TaqMan® probes with the FAM dye. The TaqMan qRT-PCR chemistry makes use of

fluorogenic-labelled probes activated by the 5’ nuclease activity of Taq DNA

polymerase. These oligonucleotide probes are specific to a region of the amplification

products (amplicons) between the forward and reverse primers. The fluorescent

reporter dye used on the 5’ end of all the probes used 6-carboxyfluorescein (FAM) and

minor groove binder (MGB) to increase the melting point (Tm) and a non-fluorescent

quencher (NFQ) on the 3’ end. During polymerisation the probe is bound to its target

sequence and whilst it remains intact the quencher dye eliminates any significant

fluorescence from the reporter dye. As the polymerisation progresses the probe is

cleaved by 5’ nuclease activity of Taq DNA polymerase. Probe cleavage separates the

reporter dye from the quencher rendering the fluorescent reporter signal detectable.

Polymerisation of the amplicon continues unhindered. As other reporter dye molecules

are cleaved from their probes, the intensity of the detected fluorescent signal increases

proportional to the amount of amplicon produced (Applied Biosystems, n.d.). All other

gene expression used SRBYB® Green probes and associated method, whereby the

SYBR Green I dye binds to each new copy of double-stranded DNA and so an increase

in fluorescence intensity is proportionate to the amount of amplicon produced (Applied

Biosystems, n.d.). The sequence detection software provided ‘Threshold cycle’ or CT

values (fig. 2.8.2.1) which were the fractional number of reaction cycles required to

reach a pre-defined fluorescence threshold. These values were processed manually to

give a ‘relative quantitation’ of gene expression or RQ value (Applied Biosystems,

2007). The CT method requires validation demonstrating that the efficiencies of the

target and endogenous control amplifications are approximately equal (Applied

Biosystems, n.d.; Livak & Schmittgen, 2001). Statistics were performed on the gene

expression data according to the Applied Biosystems User Bulletin ‘Relative

Quantitation (RQ) Algorithms in Applied Biosystems Real-Time PCR Systems Software’

(PN 4378622). All qRT-PCRs were carried out in 96-well semi-skirted, qPCR

compatible plates (STARLAB (UK) Ltd., Milton Keynes, UK).
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Figure 2.8.2.1 Example amplification plot for qRT-PCR gene expression analysis

The SYBR Green® or Taqman® methods provide fluorescence which is measured by the
Applied Biosystems RT-PCR Analysis System at the end of every amplification cycle. The
threshold is set to where the plot for each reaction and probe is increasing exponentially. This
gives the ‘threshold cycle’ or CT value for gene expression analysis.

2.8.2.1 TaqMan® Probes

The use of the TaqMan® probes was restricted to cDNA samples from experiments

using linker scan line plants and in the confirmation of MYB overexpression. Probes

used against these samples targeted DIN3 (AT3G06850), PEX4 (AT5G25760) and the

reporter gene DIN3::LUC. Probes to DIN3 (Part No. 4351372) and DIN3::LUC (Part

No. 4331348 - designed using Applied Biosystems File Builder Software) were

produced to order by Applied Biosystems (Foster City, USA), whilst PEX4 (Part No.

4351372) was an inventoried probe. All TaqMan® probes contained the FAM and NFQ

dyes. qRT-PCRs carried out using these probes were set up with the TaqMan® Gene

Expression Master Mix (Applied Biosystems Inc., Foster City, USA) and a 1-in-10

dilution (optimised after validation of amplification efficiencies) of cDNA synthesised

using MultiScribe™ Reverse Transcriptase (Applied Biosystems Inc., Foster City, USA)

according to the manufacturer protocol.

2.8.2.2 SYBR® Green method

The SYBR® Green qRT-PCR method relies on amplification of a PCR product using

gene specific primers, which were designed using Applied Biosystems Primer Express
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3.0 then synthesised by Invitrogen Ltd. (Paisley, UK). SYBR® Green qRT-PCRs were

carried out using the Bioline SensiMix SYBR Kit (Bioline UK Ltd., London, UK).

Unlike the TaqMan® method, SYBR® Green primers require optimisation to determine

their optimum concentration in the reaction mix and the corresponding optimum

concentration of cDNA template. Once the optimum concentrations had been

determined the QRT-PCRs were set up using the Bioline SensiMix SYBR Kit according

to the supplied protocol.

2.9 Sugar assays

Assaying sugar content in plant tissues was carried out using the Glucose Assay Kit and

Sucrose Assay Kit (Sigma-Aldrich Company Ltd., Dorset, UK) for glucose and sucrose

assays respectively. Both kits used a hexokinase-based assay. All sugar values obtained

from the assays were standardised against the protein content of the samples the

readings were processed using the formula and method described in the protocol

provided with the kit to give the concentration of sucrose in the tissue samples as

mg/ml. These data were standardised against their protein content (2.10 Protein

assays).

2.9.1 Extraction and analysis

2.9.1.1 Glucose

The protocol provided with the Glucose Assay Kit did not have a prescribed method for

the extraction of glucose from plant tissues. A modification of the extraction protocol

was produced by Kerry Franklin (personal communication). 250mg of plant tissue was

used in the glucose assays. A mortar of appropriate size was pre-chilled with liquid

nitrogen and 250mg of plant tissue transferred from the liquid nitrogen (either freshly

harvested or stored at -80°C) to the mortar then ground into a fine powder. Next 1ml of

MQ water was added to the mortar and washed around its sides. The water froze rapidly

and took about 10 – 15 minutes to thaw during which time further samples can be

processed. Once completely thawed the lysate was transferred to a 15-ml centrifuge

tube and incubated for 30 minutes in a 60°C water bath after which all samples were

centrifuged at maximum speed for 15 minutes. The supernatant was then used in the

assay according to the protocol provided with the kit. The absorbance of the samples

were measured at 340nm using a BOECO S-20 spectrophotometer (Boeckel + Co

(GmbH + Co), Hamburg, Germany). The readings were processed using the formula

and method described in the protocol provided with the kit to give the concentration of

glucose in the tissue samples as mg/ml. These data were standardised against their
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protein content the readings were processed using the formula and method described in

the protocol provided with the kit to give the concentration of sucrose in the tissue

samples as mg/ml. These data were standardised against their protein content (2.10

Protein assays).

2.9.1.2 Sucrose

Sucrose assays were carried out using the extraction method described above, then

according to the supplied protocol. As with the glucose assays, the absorbance of the

samples was measured at 340nm and the readings were processed using the formula and

method described in the protocol provided with the kit to give the concentration of

sucrose in the tissue samples as mg/ml. These data were standardised against their

protein content (2.10 Protein assays).

2.10 Protein assays

Protein assays were carried out using the Bio-Rad DC Protein Assay Kit (Bio-Rad

Laboratories Ltd., Hemel Hempstead, UK).

2.10.1 Extraction and analysis

The protein assays were carried out according to the protocol supplied with the Bio-Rad

DC Protein Assay Kit. Protein assays carried out on plant tissue samples extracted using

a detergent based cell lysis buffer, such as used in luminometry assays (2.11.1 Tissue

preparation), then the sample was diluted 1-in-2 with MQ water. Samples extracted

without a detergent were used directly in the assay without dilution. The absorbance of

the samples were measured at 750nm and the readings processed by using the equation

of the line of the graph of standards known protein concentration (bovine serum

albumin).

2.11 Luciferase reporter gene

Plant tissue samples expressing the DIN3::LUC gene were also analysed by

luminometry, that is: measuring the amount of luminescence produced with the addition

of luciferin to a lysate of 10, 7-day-old seedlings grown under long-day condition

having been treated with 6 hour of light or darkness at 20°C. This measurement

provided an assessment of the DIN3::LUC gene expression following the treatment.

Seedlings expressing an unmodified version of the DIN3::LUC gene were grown and

treated alongside those of the linker scan lines and included in the assay to deduct their

luminescence readings from those of the linker scan lines.
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2.11.1 Tissue preparation and luminescence assays

Two samples of 10, 7-day-old seedlings of each transformant line, of each linker scan

line and of each treatment (six hours of light or darkness at 20°C) were harvested

following the end of the treatment to a 1.5-ml microcentrifuge tube and then frozen in

liquid nitrogen. The samples were then stored at -80°C until an appropriate time to carry

out the luminescence assay. The frozen seedlings were ground with a pellet pestle

(Anachem Ltd., Luton, UK) for a few seconds and then 200μl of Promega 1x Luciferase

Cell Culture Lysis Reagent (Promega UK Ltd., Southampton, UK) added. The pestle

was then attached to a cordless pestle motor (Anachem Ltd., Luton, UK) and the

seedlings homogenised to a lysate. The samples in the microcentrifuge tubes were then

centrifuged at maximum speed for 2 minutes. The supernatant was used in the

luminescence assays. The luminescence assays were carried out using a photo-

multiplier tube based luminometer of custom design (Knight & Knight, 1995). 80μl of

each sample was transferred to 1ml sample cuvette to which was added 20μl of

Promega Luciferase Assay Reagent (Promega UK Ltd., Southampton, UK) and mixed

by pipette. The sample was then assayed using the luminometer for 20 seconds and the

luminescence reading recorded.

2.11 Statistics

Descriptive statistics were carried out using the appropriate functions available in

Microsoft Office Excel® 2003/7. Student’s t-tests were performed using the data

analysis toolkit addin for Microsoft Office Excel®. Analyses of variance (ANOVA)

were carried out using SPSS Statistics for Windows 15 (SPSS Inc., Chicago, USA).



57

3.1 Analysis of DIN genes promoter motifs

The corpus of published research regarding cis-acting regulatory elements found in

promoter regions is always increasing. Several databases have been established which

enable the input of promoters sequence to be searched for motifs of previously

described cis-acting regulatory elements. This can be a powerful tool for preliminary in

silico analysis of the factors which may be involved in the regulation of the gene of

interest. The aim of the promoter motif analysis was to investigate whether the DIN

genes have common regulatory motifs that help explain their shared response to light

and whether they exhibit other collective regulatory elements. The identification of

these regulatory motifs provides candidate transcription factors which then may be

targeted more directly in latter experiments to better determine the nature and extent of

the regulatory role indicated by the promoter analysis. Sections of the (500bp upstream

of the ATG) promoter regions of the DIN genes, were acquired from The Arabidopsis

Information Resource (TAIR) website (http://www.arabidopsis.org) using a tool to

download sequences selectively from their database. The sequences of the 500bp

portions of DIN genes: 1 – 4, 6 and 9 – 11 (i.e. all the DIN genes that were available)

were downloaded and then submitted to Plant Cis-acting Regulatory DNA Elements

(PLACE) online database signal scanner (http://www.dna.affrc.go.jp/PLACE) (Higo et

al., 1999). The results of this analysis was then compared using the TAIR Statisical

Motif Analysis (http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp) with 20

randomly selected A. thaliana genes (using RSAT (van Helden, 2003; Thomas-Chollier

et al., 2008)) to determine whether the frequency of regulatory motifs in the DIN genes

were usual amongst others in the genome and so better assess the extent to which the

motifs might contribute towards the regulation of the DIN genes. Finally focussing on

the subject of this study, DIN3, the motifs present in the -300 to -230bp portion of the

DIN3 promoter were analysed using PLACE to indentify the loci of known cis-acting

regulatory elements, which may be involved in the response of DIN3 expression to

darkness, to aid the interpretation of the results from unbiased mutations of that section

of the promoter.
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Table 3.1.1 Frequency of motifs with relevance to light/dark or cold regulation found in the promoters of the DIN genes.

The data presented in this table were assembled from -500bp promoter sequences of DIN genes 1 – 4 (AT4G35770, AT3G60140, AT3G06850, AT3G13450), 6
(AT3G47340) and 9 – 11 (AT1G67070, AT5G20250, AT3G49620) (obtained from The Arabidopsis Information Resource (TAIR) website), which were subsequently
submitted to Plant Cis-acting Regulatory DNA Elements (PLACE) (http://www.dna.affrc.go.jp/PLACE) online database signal scanner (Higo et al., 1999). The motifs
associated with light/dark or cold regulation occurring in the promoters of DIN genes are presented in this table with the frequency of the specific signal sequence of a
recognised consensus or at least possessing a core consensus of a described cis-acting regulatory element. The promoter of the genes in which they are found are
indicated and brief notes from the literature added for explanation as to their function or association. Probabilities indicate the likelihood that the presence of the motif is
due to chance; determined using the TAIR Statistics Motif Analysis Tool (http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp).
In addition to the usual nucleotide base letter symbol s, the following letters represent loci where one base may be substituted for one or more others in the consensus of
the motif: B = C, G or T; D = A, G or T; H = A, C or T; K = G or T; M = A or C; N = A, C, G or T; R = A or G; S = C or G; V = A, C or G; W = A or T; Y = C or T. (R-C)
stands for reverse complemented; (P) for partial coverage but include the core consensus.

Motif Name Consensus Signal Sequence
Presence in
DIN genes

Frequency in
DIN genes

Probability Notes from Literature

ABRERATCAL
MACGYGB

ACGT

(R-C) (P) CACGT DIN2, 9 2 0.104

(R-C) ACGCGTG DIN3 1

(P) ACGTGG DIN4, 10 2 1.06 x 10
-4 ABRERATCAL, a Ca

2+
-responsive cis-element found in

the upstream regions of 162 Ca
2+

-responsive
upregulated genes (Kaplan et al., 2006) from (Gupta et
al., 2008) K+ Transporters.

CACGTGT DIN6 1 2.62 x 10
-2

CACGTGG DIN6 1 1.06 x 10
-4

(R-C) ACAGTG DIN6, 11 3
(P) ACGTGT DIN10 1 2.62 x 10

-2

CCAATBOX1 CCAAT

(R-C) ATTGG DIN1, 6 4 0.958

CCAATBOX1 motif found in ~25% eukaryotic
promoters; CCAATBOX1 motif bound by Heme

Activator Protein (HAP) complex. Isoforms of HAP
complex interact with CONSTANS (CO) which is

involved in regulating flowering time (Wenkel et al.,
2006)

CCAAT
DIN3, 4, 6, 10,

11
8 0.152
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Motif Name Consensus Signal Sequence
Presence in
DIN genes

Frequency in
DIN genes

Probability Notes from Literature

CGCGBOXAT VCGCGB ACGCGT DIN3
2

(Palindromes)

The CG-1 domain recognizes the core consensus
sequence,vCGCGb, referred to as the CG-1 element
(Silva, 1994). In Roles for Arabidopsis CAMTA
Transcription Factors in Cold-Regulated Gene
Expression and Freezing Tolerance (Doherty et al.,
2009).

DPBFCOREDCDC ACACNNG

ACACATG DIN1 1 0.199 DPBFCORE (ACACNNG) is a core-binding motif of a
novel class of bZIP transcription factors (DPBF-1 and
DPBF-2), found in the carrot Dc3 gene promoter; ABA
inducible (Kim et al., 1997).

CGCGTGT DIN3, 6 2 1.24 x 10
-2

ACACGTG DIN6, 11 3 2.62 x 10
-2

GATABOX GATA
GATA

DIN1, 2, 3, 4,
6, 9, 11

25 1
GATA motif is strongly implicated in light regulated
genes; highly conserved in genes such as chlorophyll
a/b binding protein and the small subunit of rubisco
(Gilmartin et al., 1990).

(R-C) TATC
DIN1, 2, 3, 4,
6, 9, 10, 11

31 1

GT-1 BOX GRWAAW

(R-C) TTTACC DIN1 1 -

GT-1 Motif over-represented in the promoter of the light-
regulated gene for the small subunit of rubisco
(Gilmartin et al., 1990; Le Gourrierec et al., 1999; Lam &
Chua, 1990).

(R-C) ATTATC DIN1, 11 2 0.199

(R-C) TTTATC
DIN1, 4, 10,

11
7 0.168

GATAAT DIN1, 2, 3, 11 4 0.199
GAAAAA DIN2, 3, 6, 10 2 0.244

(R-C) ATTTCC DIN2, 11 2 0.258
(R-C) ATTACC DIN2 1 -

GGAAAA DIN3, 6 2 0.263

(R-C) TTTTTC DIN3, 4, 6, 11 7 0.244

GATAAA DIN4, 6, 11 4 0.168

(R-C) ATTTTC DIN4, 6 2 0.11

(R-C) TTTTCC DIN6, 11 2 0.263

GAAAAT DIN10 1 0.11

GGTAAT DIN11 1 -

IBOX GATAAG GATAAG
DIN1, 3, 4, 6,

9, 11 6
2.64 x 10

-3 I Boxes have a GATA motif as their core and are
similarly over- represented in the promoters of light
regulated genes such as the small subunit of rubisco
(Gilmartin et al., 1990; Giuliano et al., 1988).(R-C) CTTATC DIN1, 6, 9, 11 7

2.64 x 10
-3
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Motif Name Consensus Signal Sequence
Presence in
DIN genes

Frequency in
DIN genes

Probability Notes from Literature

MYB2CONSENSUS YAACKG

(R-C) CCGTTG DIN3 1 - The AtMYB2 recognition site is found in the promoters
of drought responsive genes. The AtMYB2 gene is itself
upregulated by drought and ABA treatments (Abe et al.,
2003).

(R-C) CAGTTA DIN9 1 -

CAACGG DIN10 1 -

CAACTG DIN10 1 -

MYCCONSENSUSAT

CANNTG CATATG DIN1, 6 10 -
MYC motif binding site for Inducer of CBF Expression
(ICE). C - repeat Binding Factor family of transcription
factors mediate cold acclimation (Chinnusamy et al.,
2003).

Forms
palindromes

on either
strand

CAAATG DIN2 1 7.32 x 10
-2

CAAGTG DIN9 3 0.125

CAATTG DIN3, 10, 11 6 -

MYBST1 GGATA

GGATA DIN1, 2, 3, 6 4 2.09 x 10
-2 Binding site of DNA binding protein MybSt1 – a

transcriptional activator (Baranowskij et al., 1994).
TATCC part of the TATCCA element of the Sugar
Responsive Sequence (SRS) found in promoter of rice
α-Amylase gene (Lu et al., 1998). TATCCA element
bound by three rice sugar responsive Myb
transcriptional activator proteins: OsMYBS1, OsMYBS2
& OsMYBS3 (Lu et al., 2002).(R-C) TATCC

DIN1, 6, 10,
11 10

1.49 x 10
-2

LTRE1HVBLT49/

CCGANN

CCGAAA DIN1 1 9.1 x 10
-2

Low Temperature Responsive Element (LTRE) is found
in low temperature responsive gene (blt.49) in Hordeum
Vulgare (Dunn et al., 1998).

LTRECOREATCOR15
(CRT/DRE)

CCGAC DIN1, 4 2 -
(R-C) GTCGG DIN3 1

-

SORLIP1 GSSMC

GCCAC DIN1 1 3.56 x 10
-2

Sequences over-represented in light-induced promoters
1 (SORLIP1) is a phyA motif which is over-represented
in light-induced genes (Hudson & Quail, 2003; Jiao et
al., 2005).

(R-C) GTGGC DIN3, 4, 10 3 3.56 x 10
-2

GGGCC DIN1 2 -

(R-C) GGCCC DIN1 1
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Table 3.1.2 Frequency of DIN motifs in 20 random A. thaliana genes
The data presented in this table were assembled from -500bp promoter sequences of 20 random A. thaliana genes (AT5G56570, AT5G45510, AT3G28690,
AT2G42210, AT3G58790, AT1G31340, AT1G68430, AT4G35950, AT5G13300, AT3G51830, AT5G36680, AT5G05160, AT1G20620, AT5G10980, AT3G10330,
AT3G63370, AT4G05360, AT5G11230, AT2G43945, AT4G14690) chosen using RSAT (van Helden, 2003; Thomas-Chollier et al., 2008) then the -500bp promoter
regions analysed using TAIR Statistics Motif Analysis Tool (http://www.arabidopsis.org/tools/bulk/motiffinder/index.jsp) to determine the frequency of each motif amongst
the 20 genes. The same motifs as displayed in Table 3.1.1 were searched for amongst the 20 genes to determine their frequency in promoters of a random cross-section
of A. thaliana genes.

Motif Name Consensus Signal Sequence
Frequency in 20
random genes

Notes from Literature

ABRERATCAL
MACGYGB

ACGT

(R-C) (P) CACGT 12

(R-C) ACGCGTG 0 ABRERATCAL, a Ca
2+

-responsive cis-element found in the upstream regions of 162
Ca

2+
-responsive upregulated genes (Kaplan et al., 2006) from (Gupta et al., 2008) K+

Transporters.
(P) ACGTGG 3

CACGTGT 13

CACGTGG 9
(R-C) ACAGTG 0

(P) ACGTGT 7

CCAATBOX1 CCAAT
(R-C) ATTGG 21 CCAATBOX1 motif found in ~25% eukaryotic promoters; CCAATBOX1 motif bound

by Heme Activator Protein (HAP) complex. Isoforms of HAP complex interact with
CONSTANS (CO) which is involved in regulating flowering time (Wenkel et al., 2006)

CCAAT 21

CGCGBOXAT VCGCGB ACGCGT 0

The CG-1 domain recognizes the core consensus sequence,vCGCGb, referred to as
the CG-1 element (Silva, 1994). In Roles for Arabidopsis CAMTA Transcription
Factors in Cold-Regulated Gene Expression and Freezing Tolerance (Doherty et al.,
2009).
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Motif Name Consensus Signal Sequence
Frequency in 20
random genes

Notes from Literature

DPBFCOREDCDC ACACNNG

ACACATG 15
DPBFCORE (ACACNNG) is a core-binding motif of a novel class of bZIP
transcription factors (DPBF-1 and DPBF-2), found in the carrot Dc3 gene promoter;
ABA inducible (Kim et al., 1997).

CGCGTGT 3

ACACGTG 13

GATABOX GATA
GATA 36 GATA motif is strongly implicated in light regulated genes; highly conserved in genes

such as chlorophyll a/b binding protein and the small subunit of rubisco (Gilmartin et
al., 1990).(R-C) TATC 36

GT-1 BOX GRWAAW

(R-C) TTTACC 8

GT-1 Motif over-represented in the promoter of the light-regulated gene for the small
subunit of rubisco (Gilmartin et al., 1990; Le Gourrierec et al., 1999; Lam & Chua,
1990).

(R-C) ATTATC 12
(R-C) TTTATC 11

GATAAT 12
GAAAAA 42

(R-C) ATTTCC 3
(R-C) ATTACC 4

GGAAAA 17

(R-C) TTTTTC 42

GATAAA 11

(R-C) ATTTTC 19

(R-C) TTTTCC 17

GAAAAT 19

GGTAAT 4

IBOX GATAAG
GATAAG 4 I Boxes have a GATA motif as their core and are similarly over- represented in the

promoters of light regulated genes such as the small subunit of rubisco (Gilmartin et
al., 1990; Giuliano et al., 1988).(R-C) CTTATC 4

MYB2CONSENSUS YAACKG

(R-C) CCGTTG 0

The AtMYB2 recognition site is found in the promoters of drought responsive genes.
The AtMYB2 gene is itself upregulated by drought and ABA treatments (Abe et al.,
2003).

(R-C) CAGTTA 4

CAACGG 0

CAACTG 0
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Motif Name Consensus Signal Sequence
Frequency in 20
random genes

Notes from Literature

MYCCONSENSUSAT

CANNTG CATATG 0
MYC motif binding site for Inducer of CBF Expression (ICE). C - repeat Binding
Factor family of transcription factors mediate cold acclimation (Chinnusamy et al.,
2003).

Forms
palindromes

on either
strand

CAAATG 7

CAAGTG 0

CAATTG 6

MYBST1 GGATA

GGATA 8 Binding site of DNA binding protein MybSt1 – a transcriptional activator (Baranowskij
et al., 1994). TATCC part of the TATCCA element of the Sugar Responsive Sequence
(SRS) found in promoter of rice α-Amylase gene (Lu et al., 1998). TATCCA element
bound by three rice sugar responsive Myb transcriptional activator proteins:
OsMYBS1, OsMYBS2 & OsMYBS3 (Lu et al., 2002).(R-C) TATCC 8

LTRE1HVBLT49/
CCGANN

CCGAAA 0
Low Temperature Responsive Element (LTRE) is found in low temperature
responsive gene (blt.49) in Hordeum Vulgare (Dunn et al., 1998).

LTRECOREATCOR15
(CRT/DRE)

CCGAC 6
(R-C) GTCGG 6

SORLIP1 GSSMC

GCCAC 15
Sequences over-represented in light-induced promoters 1 (SORLIP1) is a phyA motif
which is over-represented in light-induced genes (Hudson & Quail, 2003; Jiao et al.,
2005).

(R-C) GTGGC 15

GGGCC 15

(R-C) GGCCC 15
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Figure 3.1.1 Occurrence of cis-acting regulatory motifs in the DIN genes
The bars represent the proportion (expressed as a percentage) of the -500bp promoter regions
of the DIN genes (Table 3.1.3), out of a total of eight surveyed, in which the various cis-acting
regulatory motifs, implicated in light/dark (white bars) or cold regulation (striped), in addition to
Ca

2+
responsive (grey), flowering time (black with dots), ABA/bZIP inducible (white with dots),

drought responsive (checked) and MybSt1 sites (black), occur. These data were produced from
outputs of analyses carried out using PLACE (Higo et al., 1999). Median number of DIN genes
for motif to be found in = 6.
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Figure 3.1.2 Per-gene frequency of cis-acting regulatory motifs in DIN and 20 random
genes
The grey bars represent the number of instances (frequency) in which each cis-acting
regulatory motif, implicated in light/dark (white bars) or cold regulation (striped), in addition to
Ca

2+
responsive (grey), flowering time (black with dots), ABA inducible (white with dots), drought

responsive (checked), and MybSt1 sites (black), were found in the -500bp promoter regions of
DIN genes (D) and 20 randomly selected A. thaliana genes (Table 3.1.3). These data were
produced from outputs of analyses carried out using PLACE (Higo et al., 1999).
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Table 3.1.3 Motif frequencies in -500bp promoter regions of DIN and 20 random A.
thaliana genes

The data presented in this table used the frequencies of cis-acting regulatory motifs
identified in the DIN (Table 3.1.1) and 20 randomly selected A. thaliana genes (Table
3.1.2) to generate the median, total and total per gene motif frequencies group according
to function or regulatory association (motif type).

Motif type 8 DIN genes 20 random A. thaliana genes

Median Total
Per gene

total
Median Total

Per gene
total

Light 25.5 114 14.25 66 361 18.05

Cold 4 26 3.25 12 25 1.25

Flowering 12 42 5.25 42 42 2.1

ABA/bZIP 6 6 0.75 31 31 1.55

Drought 4 4 0.5 4 4 0.2

MybSt1 14 14 1.75 16 16 0.8

Calcium 11 11 1.375 44 44 2.2
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Table 3.1.4 Motifs found in the -300 to -230bp of the DIN3 promoter with relevance to light/dark or cold regulation
The data presented in this table were assembled from the DIN3 promoter sequence (obtained from The Arabidopsis Information Resource (TAIR) website), which
were subsequently submitted to Plant Cis-acting Regulatory DNA Elements (PLACE) (http://www.dna.affrc.go.jp/PLACE) online database signal scanner (Higo et al.,
1999). The motifs occurring in the -300 to -230bp region (fig. 3.1.3) of the DIN3 promoter, relevant to light/dark or cold regulation, are presented in this table with
their locus and brief notes from the literature added for explanation as to their function or association. (R-C) stands for reverse complemented.

Motif Name Consensus Sequence Locus Function

ABRERATCAL MACGYGB (R-C) ACGCGTG -282bp
ABRERATCAL, a Ca

2+
-responsive cis-element found in the upstream regions of 162

Ca
2+

-responsive upregulated genes (Kaplan et al., 2006) from (Gupta et al., 2008) K+
Transporters.

CAATBOX1 CAAT CAAT -253bp
CCAATBOX1 motif found in ~25% eukaryotic promoters; CCAATBOX1 motif bound
by Heme Activator Protein (HAP) complex. Isoforms of HAP complex interact with
CONSTANS (CO) which is involved in regulating flowering time (Wenkel et al., 2006).

CGCGBOXAT VCGCGB ACGCGT -282bp

The CG-1 domain recognizes the core consensus sequence, vCGCGb, referred to as
the CG-1 element (Silva, 1994). In Roles for Arabidopsis CAMTA Transcription
Factors in Cold-Regulated Gene Expression and Freezing Tolerance (Doherty et al.,
2009).

DPBFCOREDCDC ACACNNG (R-C) CGCGTGT -281bp
DPBFCORE (ACACNNG) is a core-binding motif of a novel class of bZIP transcription
factors (DPBF-1 and DPBF-2), found in the carrot Dc3 gene promoter; ABA inducible
(Kim et al., 1997).

GATABOX GATA
GATA -285bp GATA motif is strongly implicated in light regulated genes; highly conserved in genes

such as chlorophyll a/b binding protein and the small subunit of rubisco (Gilmartin et
al., 1990).

GATA -256bp
GATA -236bp

IBOX GATAAG GATAAG -236bp
I Boxes have a GATA motif as their core and are similarly over-represented in the
promoters of light regulated genes such as the small subunit of rubisco (Gilmartin et
al., 1990; Giuliano et al., 1988).

MYB2CONSENSUSAT YAACKG (R-C) CCGTTG -273bp
The AtMYB2 recognition site is found in the promoters of drought responsive genes.
The AtMYB2 gene is itself upregulated by drought and ABA treatments (Abe et al.,
2003).

MYBST1 GGATA GGATA -286bp

Binding site of DNA binding protein MybSt1 – a transcriptional activator (Baranowskij
et al., 1994). TATCC part of the TATCCA element of the Sugar Responsive Sequence
(SRS) found in promoter of rice α-Amylase gene (Lu et al., 1998). TATCCA element
bound by three rice sugar responsive Myb transcriptional activator proteins:
OsMYBS1, OsMYBS2 & OsMYBS3 (Lu et al., 2002).

SORLIP1 GCCAC (R-C) GTGGC -244bp
SORLIP1 is a phyA motif which is over-represented in light-induced genes (Hudson &
Quail, 2003; Jiao et al., 2005).



Table 3.1.5 Cis-acting regulatory motifs present at the loci of the linker scan lines

The data presented in this table use the loci of the cis
to -250bp region (fig. 3.1.3) of the
230bp of the DIN3 promoter with relevance to light/dark or cold regulation
linker scan lines (third base of the six bases of the EcoRI site) to indentify the known motifs
likely to be disrupted by each linker scan line. Since the EcoRI substitution overlaps two base
pairs of the previous scan line and each motif sequence va
affected by two scan lines.

Linker Scan Line Locus

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10 -

11 -

12 -

Figure 3.1.3 Map of DIN3
motifs

The loci (first base) of the cis
DIN3 promoter region described in
lines). The portion of the promoter region coloured in grey indicates that covered by the linker
scan analyses, the loci of which and affected motifs are described in Table 3.1.5. Motif
DPBFCOREDCDC is found on the antisense strand and hence the l
base.

Review of the analytical approach to the promoter motif analysis

The scope of this project limited the promoter analysis to the search for motifs relevant

to light/dark or cold regulation. The output from PLACE provides a

the putative association of the cis

along with supporting references.

selected primarily due to their over

described as being cis

associations with transcription factors known to be involved in light/dark or cold

acting regulatory motifs present at the loci of the linker scan lines

The data presented in this table use the loci of the cis-acting regulatory motifs found in the
(fig. 3.1.3) of the DIN3 promoter (Table 3.1.4 Motifs found in the

promoter with relevance to light/dark or cold regulation
linker scan lines (third base of the six bases of the EcoRI site) to indentify the known motifs
likely to be disrupted by each linker scan line. Since the EcoRI substitution overlaps two base
pairs of the previous scan line and each motif sequence varies in length, one motif may be
affected by two scan lines.

Locus Motif

-297bp -

-293bp -

-289bp MYBST1

-285bp MYBST1, GATA, DPBFCOREDCDC (

-281bp ABRERATCAL, CGCGBOXAT, DPBFCOREDCDC

-277bp ABRERATCAL, CGCGBOXAT

-273bp MYB2CONSENSUSAT

-269bp MYB2CONSENSUSAT

-265bp -

-261bp -

-257bp GATABOX

-253bp CCAATBOX1

DIN3 promoter region annotated with loci of cis

The loci (first base) of the cis-acting regulatory motifs found in the -300 to
promoter region described in Tables 3.1.4 and 3.1.5 are annotated on this map (th

lines). The portion of the promoter region coloured in grey indicates that covered by the linker
scan analyses, the loci of which and affected motifs are described in Table 3.1.5. Motif
DPBFCOREDCDC is found on the antisense strand and hence the locus indicated is its final

Review of the analytical approach to the promoter motif analysis

The scope of this project limited the promoter analysis to the search for motifs relevant

to light/dark or cold regulation. The output from PLACE provides a

the putative association of the cis-acting regulatory elements with transcription factors

along with supporting references. Those motifs included in the promoter analysis were

selected primarily due to their over-representation and subordinately because they were

described as being cis-acting regulatory elements which were indicated either to have

associations with transcription factors known to be involved in light/dark or cold
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acting regulatory motifs present at the loci of the linker scan lines

acting regulatory motifs found in the -300
Motifs found in the -300 to -

promoter with relevance to light/dark or cold regulation) and the loci of the
linker scan lines (third base of the six bases of the EcoRI site) to indentify the known motifs
likely to be disrupted by each linker scan line. Since the EcoRI substitution overlaps two base-

ries in length, one motif may be

MYBST1, GATA, DPBFCOREDCDC (-ve strand)

ABRERATCAL, CGCGBOXAT, DPBFCOREDCDC

ABRERATCAL, CGCGBOXAT

MYB2CONSENSUSAT

MYB2CONSENSUSAT

promoter region annotated with loci of cis-acting regulatory

300 to -230bp portion of the
and 3.1.5 are annotated on this map (thin black

lines). The portion of the promoter region coloured in grey indicates that covered by the linker
scan analyses, the loci of which and affected motifs are described in Table 3.1.5. Motif

ocus indicated is its final

Review of the analytical approach to the promoter motif analysis

The scope of this project limited the promoter analysis to the search for motifs relevant

to light/dark or cold regulation. The output from PLACE provides a brief description of

acting regulatory elements with transcription factors

Those motifs included in the promoter analysis were

ordinately because they were

acting regulatory elements which were indicated either to have

associations with transcription factors known to be involved in light/dark or cold
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regulation or were themselves over-represented in the promoters of genes which are

light/dark or cold regulated. Motifs not meeting these criteria were ignored. Firstly the

of the members of the DIN genes, whose -500bp portions of their promoters were

submitted to PLACE and analysed for the occurrence, frequency and the exact signal

sequence of relevant cis-acting regulatory elements (Table 3.1.3; figs. 3.1.1). The

frequencies of the motifs identified in the first analysis were compared with their

frequencies in 20 randomly selected A. thaliana genes (Tables 3.1.2/3/4; fig. 3.1.2). The

-300 to -230bp (fig. 3.1.3) of the DIN3 promoter was submitted to PLACE for the same

analysis, the exact loci of the cis-acting elements within this portion, 5’ to 3’, were also

recorded (Table 3.1.4). Finally the loci of the motifs identified in the -300 to -230bp of

the DIN3 promoter were matched the loci of the 12 linker scan lines (Table 3.1.5).

Analysis of the -500bp section of the promoters of the DIN genes

Charting the occurrence of the cis-acting regulatory motifs (fig. 3.1.1), indicated by the

PLACE analysis to be involved in either light/dark or cold gene regulation, revealed a

variation between them with respect to how many of which were found in the eight

members of the DIN genes (Table 3.1.1). The motifs may also be grouped according to

their regulatory function as described in the literature (Table 3.1.1; fig. 3.1.1). Ranked

according the median occurrence of the regulatory group in the DIN genes, Ca2+

responsive motif (ABRERATCAL) with 7/8 genes; the light associated motifs, the

largest group with four members: GATABOX, GT-1 BOX, IBOX and SORLIP1 had

the largest median occurrence found in 6.5 out of the eight DIN genes (Table 3.1.3; fig.

3.1.1). This was followed by flowering (CCAATBOX1) and the MYBST1 binding site,

both found in 6/8 genes; ABA/bZIP induction (DPBFCOREDCDC) with 4/8 then the

cold (CGCGBOXAT, MYCCONSENSUSAT and the LTRE-type motifs) and drought

responsive motifs (MYB2CONSENSUS) with 3/8 (Table 3.1.3; fig. 3.1.1). It is worth

noting that DIN3 is the only member of the DIN genes which possesses all three of the

cold regulatory motifs analysed and all four of the light regulatory motifs were found in

DIN3 (Table 3.1.3; fig. 3.1.1).

Charting the incidence (frequency) at which each of the 12 motifs occur in the DIN

genes (fig. 3.1.2) produces a very similar pattern to that seen when the proportion of the

DIN genes that each motif was found in was analysed (fig. 3.1.1). This suggests that the

abundance of the motifs in the DIN genes is at least partly due to the proportion of the

eight DIN genes in which they are found. When ranked in order of frequency, the

groups with the greatest incidence were the light regulatory motifs, flowering, cold
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responsive, the MybSt1 binding motif, the Ca2+ responsive motif, ABA/bZIP inducible

motif and least common the drought responsive motif (Table 3.1.3).

Comparison with 20 random A. thaliana genes

Considering that the high incidence of light regulatory motifs appears to be similar

between the DIN and group of 20 random genes suggests that the dominance light

regulatory motifs is not necessarily associated with DIN genes per se, but perhaps a

commonly shared feature in the regulation of plant genes (Table 3.1.3; fig. 3.1.2). The

incidence of cold, flowering, drought and the MybSt1 binding sites were all 2.2 times

greater amongst the DIN genes than the group of 20 random genes (Table 3.1.3; fig.

3.1.2). This difference is potentially more significant, suggesting that these regulatory

motifs are associated with the DIN genes more strongly than others in the A. thaliana

genome, thereby alluding to a deeper regulatory role for their associated transcription

factors. The incidence ABA/bZIP associated motif and calcium responsive element

were depreciated amongst the DIN genes, with these elements 2.1 and 1.6 times more

common amongst the 20 random genes respectively (Table 3.1.3; fig. 3.1.2).

Analysis of the -300 to -230bp portion of the DIN3 promoter

As with the results of the cis-acting regulatory element analysis of the -500bp promoters

of the eight members of the DIN genes, the results for the -300 to -230bp of the DIN3

promoter can be divided along the types of regulation. The largest group is made up of

three motifs GATABOX, IBOX and SORLIP1. The remaining groups have just a single

member; cold regulation is represented by the CGCGBOXAT motif, that of Ca2+

regulation by ABRERATCAL, flowering time by CCAATBOX1, ABA/bZIP1

induction by DPBFCOREDCDC, drought response by MYB2CONSENSUSAT and the

MybSt1 binding site (Table 3.1.4). The light regulatory motifs have the highest number

of instances within this section of the DIN3 promoter, a total of four. All other motifs

occur just once in the 70bp section (Table 3.1.4). It is worth considering that the first

50bp of the 70bp section, submitted to PLACE to scan for cis-acting regulatory

elements, is essential for normal expression of the DIN3 gene. Once deleted the

responsiveness of the gene to environmental stimuli, notably extended darkness, is lost.

This is also the section of the promoter analysed by linker scan analysis, the results of

which will be considered in §3.5 – 3.6. With this fact in mind, it is reasonable to deduce

that there is at least one cis-acting regulatory element listed in Table 3.1.4, which plays

an essential role in the normal regulation of DIN3. The types of elements found in this

section of the promoter could also suggest which cis-acting factors and thereby



71

environmental and endogenous stimuli are dominant in the regulation of DIN3. Such

factors have already been listed, but combining the dominant motifs for the DIN genes

(Table 3.1.4; figs. 3.1.1/2), light, sugar state and cold temperatures are likely to

dominate the regulation of DIN3. Light and cold are particularly indicated since only in

DIN3 were all the motifs of the light and cold regulatory groups present (Table 3.1.3).

DIN3 promoter motifs disrupted by linker scanning mutagenesis lines

The loci linker scan lines were compared with the loci of cis-acting regulatory motifs

identified in the -300 to -230bp using PLACE (Table 3.1.5; fig. 3.1.3). It revealed that

the MybSt1 binding site would be disrupted by linker scan lines 3 and 4. Two identified

GATA sites (light regulation) are disrupted by scan lines 4 and 11. Linker scan line 5

disrupts the regulatory elements of ABRERATCAL (calcium responsive),

CGCGBOXAT (cold) and DPBFCOREDCDC (ABA/bZIP) combined (Table 3.1.5; fig.

3.1.3). The drought regulatory element (MYB2CONSENSUSAT) is disrupted by linker

scan line 7 (Table 3.1.5; fig. 3.1.3). Scan line 12 was found to disrupt the flowering

associated motif (CCAATBOX1) (Table 3.1.5; fig. 3.1.3). Pleasingly this means that

every grouping of over-represented cis-acting regulatory motifs identified in these

analyses has at least one motif disrupted by linker scan analysis.
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3.2 Cellular Localisation of DIN3 expression

To avoid the erroneous interpretation of results, investigation into gene regulation

should always be carried out in awareness of the physiological context in which the

gene under investigation is expressed. The determination of the cellular expression of

was achieved using 17-day-old seedlings expressing a transcriptional fusion of

promoter with the lucINT gene (Mankin et al., 1997)

Seedlings were grown in a 16:8h light:dark cycle then kept in darkness for 24h prior to

measurement to guarantee a reliable detection of DIN3 expression. Luciferin was

applied to the seedlings and the resulting luminescence was monitored using

counting camera. The luminescence image (fig. 3.2.1: right) obtained represents

DIN3::LUC after 24 hours in darkness. This was compared with

seedlings that had a further 16:8h light:dark cycle (fig. 3.2.1: left). The seedl

measured one hour into the apparent 16:8h light:dark cycle.

Localisation of DIN3 expression

image of 17-day-old plants expressing a transcriptional fusion of 1000bp of the
INT

(Mankin et al., 1997) (DIN3::LUC) following light treatment

expression in those seedlings, which received a 24h dark treatment (fig.

3.2.1: right) clearly exceeded DIN3::LUC expression in the seedlings which received a

16:8h light:dark cycle (fig. 3.2.1: left). Luminescence was observed in both the aerial

d roots of the seedlings, with the greatest intensity of luminescence principally

restricted to the area of the leaf petiole. These data demonstrate that

in the roots in addition to the aerial or green tissue
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expression

To avoid the erroneous interpretation of results, investigation into gene regulation

should always be carried out in awareness of the physiological context in which the

gene under investigation is expressed. The determination of the cellular expression of

old seedlings expressing a transcriptional fusion of

(Mankin et al., 1997) (DIN3::LUC).

Seedlings were grown in a 16:8h light:dark cycle then kept in darkness for 24h prior to

expression. Luciferin was

applied to the seedlings and the resulting luminescence was monitored using a Photek

counting camera. The luminescence image (fig. 3.2.1: right) obtained represents

after 24 hours in darkness. This was compared with

seedlings that had a further 16:8h light:dark cycle (fig. 3.2.1: left). The seedlings were

old plants expressing a transcriptional fusion of 1000bp of the
following light treatment (left) or

expression in those seedlings, which received a 24h dark treatment (fig.

expression in the seedlings which received a

16:8h light:dark cycle (fig. 3.2.1: left). Luminescence was observed in both the aerial

d roots of the seedlings, with the greatest intensity of luminescence principally

restricted to the area of the leaf petiole. These data demonstrate that DIN3 is expressed
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3.3 Measurement of sugar levels during cold and dark

treatment

Given the evidence for the role of sugar state in the regulation of the DIN family of

genes (Fujiki et al., 2000; Rolland et al., 2006), it is instructive to investigate what

effect, if any, the light and temperature treatments had on the sugar levels in the

seedlings. Treatments used in these sugar state experiments included three hours of light

at 20°C and 5°C and three hours of darkness at 20°C and 5°C. These treatments covered

the same conditions used in the latter scanner linker experiments. The seedlings used in

these experiments were wild-type Columbia accession 0, grown to 7 days old on 1%

MS, 0.8% agar plates under long day conditions (16h:8h; light:dark) at 20°C. Once

reaching the necessary age, the treatments were carried out a couple of hours into the

light cycle. Three 250mg samples of seedlings which underwent each of the four

treatments were harvested and frozen immediately in liquid nitrogen for latter

extraction. The samples were extracted according to modified method (Franklin, K.,

Per. Comm., 2009; §2.9) to that recommended by the Sigma glucose/sucrose assay kit.

Remaining extracts were also assayed for protein content, against which to standardise

the sugar assays.

The concentration of glucose was 1.71 and 1.46 times greater in seedlings treated with

three hours in light and darkness at 20°C respectively, compared with those at 5°C (fig.

3.3.1). The difference in glucose concentration between the temperature treatments was

significant at the 95% confidence level as determined by a two-tailed t-test. This

confirmed the significance of the difference between the temperature treatments as

indicated by the error bars (fig. 3.3.1).

Interestingly, the difference in glucose concentration between the light and dark

treatments within the same temperature treatment was marginal, especially at 20°C. In

both cases the error bars overlap and the t-test p values were greater than 0.05. These

results demonstrate that within three hours, glucose levels in 7-day-old seedlings do not

vary significantly following a dark treatment compared with those remaining in the

light, but that glucose levels decline significantly after three hours at 5°C compared

with those staying at 20°C.
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Figure 3.3.1 Mean glucose levels per mg protein in 7-day-old Col 0 wild-type seedlings
following three hours of light or dark treatment at 5 or 20°C.

Mean glucose levels per mg protein after 3h light (white bars) or dark (grey bars) at 5°C or
20°C. The error bars represent the standard error of the mean. The asterisk (*) represents a
two-tailed t-test carried out between the light-cold and light-ambient treatments p=0.027; df=2; t
critical= 3.12. The dagger (†) represents a two-tailed t-test carried out between the dark-cold
and dark-ambient treatments p=0.032; df=2; t critical= 3.12.

Due to spoiled reagents used in the sucrose assay, only the data from the 5°C treated

samples were for further analysis. The concentration of sucrose was 3 times greater in

the seedlings which remained in the light at 5°C compared with those that spent three in

darkness at 5°C (fig. 3.3.2). This difference in the means of these two samples is more

than 2 S.E.M. from each other and so can be considered significant.

Without at least one sample of sucrose concentration at 20°C as a control comparison

against which to compare the effects of the three hour 5°C treatment on sucrose

concentration, it is tenuous to draw any profound conclusions from these results. The

implications of these results will be explored in greater detail in the discussion.
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Figure 3.3.2 Mean sucrose concentration per mg protein in 7-day-old Col 0 wild-type
seedlings treated with three hours of light or dark at 5°C.

Mean sucrose concentration per mg protein after 3h light (white bars) or dark (grey bars) at 5°C.
The error bars represent the standard error of the mean. The asterisk (*) indicates that the dark
5°C average was ≥2 S.E.M. from the light 5°C; n=3.
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3.4 Analysis of DIN3 expression over developmental

stages

Given the variability seen in the quality of seedling growth between transformant lines,

it seemed instructive to assay the expression patterns of DIN3 and DIN3::LUC in order

to determine what, if any, effect developmental stage had. To mimic the range of

growth quality, Columbia accession 0 (Col 0) seedlings, expressing a transcriptional

fusion (DIN3::LUC) of 300bp of the DIN3 promoter with the LUCINT (Mankin et al.,

1997) gene were grown under long days (16:8h light:dark) to 5, 6, 7 and 8 days post

germination then subjected to six-hour treatments in the light or darkness at 20°C, the

same used on transformant lines, then analysed by luminometry and qRT-PCR to

determine the expression patterns of DIN3 and DIN3::LUC genes.

At every stage of seedling development studied, the DIN3::LUC expression, as

determined by luciferase luminometry, was greater in those seedlings which received a

6h dark treatment. The DIN3::LUC expression was greatest in the 6-day-old seedlings,

however the difference between the light and dark DIN3::LUC expression was greatest

amongst the 7-day-old seedlings, with DIN3::LUC expression the dark treated seedlings

8.97 times greater than those remaining in the light. The light/dark difference between

the DIN3::LUC expression was greatest in the 5-day-old seedlings. A two-tailed t-test

revealed that only the 8-day-old seedlings had DIN3::LUC expression significantly

different at the 95% confidence level between the light and dark treatments (fig. 3.4.1).

As was the procedure in all luciferase luminometry assays, 10 seedlings were used in

each sample. This was the only method used ensure that the amount of tissue remained

constant between samples. However with variability in growth, the efficacy such a

method of control is questionable. Therefore to ascertain the controls efficacy, the

protein content of the samples was determined.
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Figure 3.4.1 DIN3::LUC expression across developmental stages

Mean DIN3::LUC expression, determined by luminometry, in five, six, seven and eight-day-old
Col 0 seedlings expressing a transcriptional fusion of 300bp of the DIN3 promoter with the
LUC

INT
gene (Mankin et al., 1997) following six-hour light or dark treatment. Assays used two

samples of 10 seedlings. Error bars represent the standard error of the mean. The asterisk (*)
indicates those light and dark treatments whose data are significantly different from each other
as determined by a two-tailed t-test (t-test result for 8-day-old seedlings: p=0.001; df=1; t
critical= 12.71.)

The determination of the protein content of the samples the luciferase luminometry data

(fig. 3.4.1) was corrected, thereby accounting for variation of seedling size in the

samples which could have caused the pattern seen from the luciferase luminometry

alone (fig. 3.4.1). The DIN3::LUC expression pattern across the development stages,

seen with the luminometry data alone (fig. 3.4.1), remains intact when the data is

corrected for the individual protein content in each sample (fig. 3.4.2). Slight

differences, are noticeable; the difference between the highest DIN3::LUC expression,

that of the 6-day-old seedlings, and the next, that of the 7-day-old seedlings, is more

pronounced once corrected for protein, increasing from 1.22 to 1.69 times. The

magnitude difference between light and dark DIN3::LUC expression in the 8-day-old

seedlings is smaller, declining from 3.7 times to 3.4 times once corrected for protein.

However the t-test suggests this difference is more significant, at the 95% confidence

level, once corrected for protein (fig. 3.4.2).
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Figure 3.4.2 DIN3::LUC expression per mg of protein across developmental stages

Mean DIN3::LUC activity, determined by luminometry and standardised against mg protein, in
five, six, seven and eight day old Col 0 seedlings expressing a transcriptional fusion of 300bp of
the DIN3 promoter with the LUC

INT
gene (Mankin et al., 1997)following six-hour light or dark

treatment. Error bars represent the standard error of the mean. The asterisk indicates those
light and dark treatments whose data are significantly different from each other as determined
by a two-tailed t-test (t-test result for 8-day-old seedlings: p=0.0003; df=1; t critical= 12.71.)

Analysis by qRT-PCR is internally corrected for variation in template (cDNA) amounts

to an endogenous reference gene (in most cases PEX4), whose expression is not

significantly affected by the experimental treatments. The qRT-PCR provides a direct

measurement of relative gene expression; it additionally permits the measurement of the

DIN3 and DIN3::LUC expression following the dark cold treatments. Although qRT-

PCR is corrected for variation in sample quality, it is still instructive to determine

whether development stage per se, rather than the sample quality, affects DIN3 and

DIN3::LUC expression patterns.

At every stage in development the DIN3 expression was greater amongst the 6h dark

treated than those treated in light for six-hours (fig. 3.4.3). This observation holds true

for the DIN3::LUC expression, whose pattern matches that of DIN3 at every

developmental stage.

The difference in light/dark DIN3 expression was least amongst the 6-day-old seedlings,

at 4.42 times, and was greatest amongst the 7-day-old seedlings at 11.74 times. The

magnitude of dark induction increase with developmental age, from 5.24 times the 7-

day-old light sample to a peak at 7 days old at 11.74 times. The increase DIN3::LUC
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expression with developmental and peak at 7 days old mirrored that seen in the DIN3

expression. The light/dark difference in DIN3::LUC expression was least in the 5-day-

old seedlings, rather than those of 6 days in age, as seen with DIN3 expression. The

DIN3::LUC light/dark expression difference was greatest in the 7-day-old seedlings,

mirroring that of DIN3 expression. Although with no determinable DIN3::LUC

expression for 8-day-old light treated seedlings, the light/dark difference can only be

assumed to be at least 14.76 times as compared with the 18.49 times in the 7-day-old

seedlings (fig. 3.4.3). The greatest light/dark expression difference as determined by

qRT-PCR to be within the 7-day-old seedlings (fig. 3.4.3) matched that determined

luminometry (figs 3.4.1/2). However the peak DIN3::LUC expression determined by

qRT-PCR to be within the 7-day-old seedlings (fig. 3.4.3) was not mirrored by the

results from the luminometry (figs. 3.4.1/2), which indicated peak DIN3::LUC

expression to be within the 6-day-old seedlings.
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Figure 3.4.3 Relative DIN3 and DIN3::LUC expression across developmental stages

Relative DIN3 and DIN3::LUC expression levels in Col 0 seedlings expressing a transcriptional
fusion of 300bp of the DIN3 promoter with the LUC

INT
gene (Mankin et al., 1997) (standardised

against PEX4 expression) between 5 and 8 days post germination and after a 6h light or dark
treatment at 20°C. Expression levels are relative to the light sample for the 7-day-old seedlings.
U.D. = Expression Undetermined i.e. so low as beyond the limits of detectability. The asterisk
(*) indicates those data sets which were outside the distribution of the corresponding light
ambient data set. Error bars represent the Student’s t-distribution maxima and minima, d.f.= 7.

These analyses of the effect of developmental stage on the expression of DIN3 /

DIN3::LUC demonstrated that there was maintenance in the overall pattern of DIN3

expression, which is recognised to be an increase or induction of DIN3 expression after

a period of extended darkness (Fujiki et al., 2000). However there were differences in

both peak DIN3 expression and the magnitude of the difference between the light and

dark treatments across the seedling age range. Luminometry indicated that the peak

DIN3::LUC expression is found at the 6-day-old stage, whereas qRT-PCR determined

the peak DIN3 and DIN3::LUC expression to be at the 7-day-old stage. Both methods

produced results indicating that the seedlings which exhibited greatest difference

between their light and their dark DIN3 / DIN3::LUC expression, were 7 days old.
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3.5 Linker Scan Analysis of 50bp of 300bp minimal DIN3

promoter

Previous research (Knight, H., personal communication), revealed that the 300bp of the

DIN3 promoter upstream of the ATG start codon was essential for responsiveness of

DIN3 to darkness, reported previously by (Fujiki et al., 2000)). This result was derived

from promoter deletion analysis, constructing a number of successively smaller

truncations of the DIN3 promoter fused to luciferase gene (lucINT) (Mankin et al., 1997)

as a reporter. The lucINT gene has an artificial intron to ensure that observed

luminescence is due to in planta expression rather than ectopic bacterial expression.

When the promoter was reduced to 250bp it became non-responsive, making the 300bp

the minimum functional promoter of DIN3. Therefore it was hypothesised that the 50bp

from the 5’ end of the 300bp DIN3 promoter contained cis-acting elements without

which no induction of DIN3 was possible.

To investigate the essential 50bp more fully, transgenes were assembled from the 300bp

DIN3::LUC promoter fusion and analysed by the linker-scanning method of

mutagenesis (McKnight & Kingsbury, 1982). This required the creation of 12 individual

linker scan lines which had the sequence of the EcoRI site (GAATTC) substituted for

6bp of the native 300bp DIN3 promoter sequence. Starting from -300bp upstream of the

start codon, the substitutions in subsequent linker scan lines overlapped, by 2bp, relative

locus of the substitution of the preceding linker-scanning line (henceforth scan lines), so

that the 12 lines covered the entire 50bp (fig. 3.5.1). Substitution mutagenesis ensures

maintenance of an identical frame to the original sequence. Severally independently

transformed lines expressing the unmodified 300bp of the DIN3::LUC fusion (hereafter

DIN3 promoter reporting lines) were used for controls for the experimental method, but

also as controls against which to compare the scan lines since their expression patterns

should mirror that of the native DIN3. When the control and scan lines were originally

transformed (§2.4 Plant Transformation) multiple independent transformant lines came

through the selection screen expressing the same transgene. These are replicates in

themselves, which demonstrate the consensus of the effect of the promoter

modification. The mode of transformation is such that the eventual transgene locus is

random and will be different in each transformant line. If the transgene locus is not

significant, one would anticipate that the expression pattern will be the same, if not of

the same magnitude of expression, creating a consensus. Initially the effects of the



promoter modifications were analysed by applying luciferin to the lysate of 10, 7

old seedlings of the various scan and control lines treated either with six

or darkness at 20°C and measuring the resulting luminescence via a luminometer. It is

the results of such analyses which will be considered in this section.

Figure 3.5.1 Loci of linker
lines

The loci of the linker-scanning mutations
at their relative positions in the
ATG. The numbers (base
The second linker-scanning substitution mutation overlaps the locus of the previous by two
bases pairs, providing optimal disruption of any cis
the linker-scanning mutations is present in eac

promoter modifications were analysed by applying luciferin to the lysate of 10, 7

old seedlings of the various scan and control lines treated either with six

ness at 20°C and measuring the resulting luminescence via a luminometer. It is

the results of such analyses which will be considered in this section.

Figure 3.5.1 Loci of linker-scanning mutations in the promoter of DIN3::LUC

scanning mutations – EcoRI (GAATTC) substitutions (black lines)
at their relative positions in the -300bp to -250bp portion DIN3::LUC promoter upstream of the

. The numbers (base-pairs) indicate the locus of the third base of the E
scanning substitution mutation overlaps the locus of the previous by two

bases pairs, providing optimal disruption of any cis-acting regulatory motifs present. Only one of
scanning mutations is present in each linker scan line concurrently.

82

promoter modifications were analysed by applying luciferin to the lysate of 10, 7-day-

old seedlings of the various scan and control lines treated either with six-hours of light

ness at 20°C and measuring the resulting luminescence via a luminometer. It is

the results of such analyses which will be considered in this section.

DIN3::LUC of the scan

substitutions (black lines) – shown
promoter upstream of the

pairs) indicate the locus of the third base of the EcoRI substitution.
scanning substitution mutation overlaps the locus of the previous by two

acting regulatory motifs present. Only one of
h linker scan line concurrently.



83

Seedlings of transformant lines 1 and 3 of Scan Line 1 exhibited an increase in

DIN3::LUC expression following a 6h dark treatment compared to expression after the

6h light treatment (fig. 3.5.2). The 6h dark treatment did not elicit detectable levels of

DIN3::LUC expression in lines 7 and 8; line 9, whilst detectable for DIN3::LUC

expression, did not exhibit significantly different light/dark DIN3::LUC expression (fig.

3.5.2). Overall, the pattern of DIN3::LUC expression appears to match that of the native

DIN3 expression, as seen in DIN3 promoter reporting line 6, whereby dark treated

seedlings display DIN3::LUC expression levels significantly above their light treated

siblings. The modified DIN3::LUC expressed by Scan Line 1 seedlings appears

unaffected when compared with unmodified DIN3::LUC reporter expression (RL6),

that is it has retains the characteristic expression (fig. 3.4.3). The Scan Line 1 mutation

changes GTGATG of the native sequence to GAATTC; no known cis-acting motifs in part

or entirety were detected within the 6 base-pairs of the EcoRI substitution.

Figure 3.5.2 Mean DIN3::LUC expression in 7-day-old Scan Line 1 seedlings following six-
hour light and dark treatment.

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 1 seedlings
following either 6h light (white) or dark (grey) treatment. The error bars represent the standard
error of the mean. DIN3 promoter reporting line 6 (RL6) was included as a comparison; this line
expresses the unmodified 300bp of the DIN3 promoter fused to luciferase. These data are not
normally distributed as can be seen by the larger S.E.M. for those data with greater expression.
These data were transformed by a log10(x+1) transformation and compared with the background
luminescence. The asterisk (*) indicates those data sets which were at least 2 S.E.M. from the
background. The dagger (†) indicates those transformant lines whose light/dark DIN3::LUC
expression was >2 S.E.M. apart.
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Seedlings of transformant line 3 of Scan Line 2 exhibited an increased DIN3::LUC

expression following a 6h dark treatment over a 6h light treatment (fig. 3.5.3); lines 1,

2, 4 and 7 did not exhibit detectable levels of DIN3::LUC; line 5, whilst detectable for

DIN3::LUC expression, did not exhibit a significant difference in light/dark DIN3::LUC

expression (fig. 3.5.3). Since only one out of two lines, which expressed DIN3::LUC at

detectable levels exhibited the characteristic induction of DIN3::LUC following a 6h

dark treatment, as seen in the DIN3 promoter reporting line, the effect of the

modification expressed Scan Line 2 cannot be determined. The Scan Line 2 mutation

changes TGTACA of the native sequence to GAATTC; no known cis-acting motifs in part

or entirety were detected within the 6 base-pairs of the EcoRI substitution.

Figure 3.5.3 Mean DIN3::LUC expression in 7-day-old Scan Line 2 seedlings following six-
hour light and dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 2 seedlings
following either 6h light (white) or dark (grey) treatment. The error bars represent the standard
error of the mean. DIN3 promoter reporting line 13 (RL13) was included as a comparison; this
line expresses the unmodified 300bp of the DIN3 promoter fused to luciferase. These data are
not normally distributed as can be seen by the larger S.E.M. for those data with greater
expression. These data were transformed by a log10(x+1) transformation and compared with the
background luminescence. The asterisk (*) indicates those data sets which were at least 2
S.E.M. from the background. The dagger (†) indicates those transformant lines whose light/dark
DIN3::LUC expression was >2 S.E.M. apart.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 RL13

D
IN

3
::

L
U

C
E

x
p

re
s
s
io

n
(L

u
m

in
e
s
c
e
n

c
e
)

Light
Dark

Transformant

*

*

*

†

†



85

Seedlings of Scan Line 3 were treated with a 6h light or dark treatment, however it was

found that the differences between the DIN3::LUC expression in the light and dark

treatments were not significant. The experiment was repeated (results herein) with a 6h

dark treatment alone. Seedlings of transformant lines 3 and 4 of Scan Line 3 exhibited

DIN3::LUC expression at detectable levels following the 6h dark treatment (fig. 3.5.4).

Lines 1, 2, 5, 6, 7 and 8 did not exhibit detectable levels of DIN3::LUC expression.

Since only two out of eight lines exhibited DIN3::LUC expression at detectable levels

and none the characteristic induction of DIN3::LUC following a 6h dark treatment, as

seen in the DIN3 promoter reporting line, the effect of the mutation in the version of

DIN3::LUC expressed by Scan Line 3, can be said to have disrupted DIN3::LUC

expression compared to native DIN3 expression. The Scan Line 3 mutation changes

CATGAG of the native sequence to GAATTC; a MYBST1 cis-acting motif (CGATA) was

detected within the 6 base-pairs of the EcoRI substitution.

Figure 3.5.4 Mean DIN3::LUC expression in 7-day-old Scan Line 3 seedlings following six-
hour dark treatment.

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 3 seedlings
following a 6h dark treatment. The error bars represent the standard error of the mean. DIN3
promoter reporting line 2 (RL2) was included as a comparison; this line expresses the
unmodified 300bp of the DIN3 promoter fused to luciferase. These data are not normally
distributed as can be seen by the larger S.E.M. for those data with greater expression. These
data were transformed by a log10(x+1) transformation and compared with the background
luminescence. The asterisk (*) indicates those data sets which were at least 2 S.E.M. from the
background.
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Seedlings of Scan Line 4 were treated with a 6h light or dark treatment, however it was

found that the differences between the DIN3::LUC expression of the light and dark

treatments were not significant. The experiment was repeated (results herein) with a 6h

dark treatment alone. Seedlings of transformant line 8 of Scan Line 4 exhibited

detectable levels DIN3::LUC expression following a 6h dark treatment (fig. 3.5.5) All

other lines, excluding DIN3 promoter reporting line 2, did not exhibit detectable levels

of DIN3::LUC expression . Since only one out of nine lines exhibited DIN3::LUC

expression at detectable levels and none the characteristic induction of DIN3::LUC

following a 6h dark treatment, as seen in the DIN3 promoter reporting line, the effect of

the mutation in the version of DIN3::LUC expressed by Scan Line 4, can be said to

have disrupted DIN3::LUC expression compared to native DIN3 expression. The Scan

Line 4 mutation changes AGGATA of the native sequence to GAATTC; the MYBST1

(CGATA), GATABOX (GATA) and DPBFCOREDCDC (CGCGTGT) cis-acting motifs in

part or entirety were detected within the 6 base-pairs of the EcoRI substitution.
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Figure 3.5.5 Mean DIN3::LUC expression in 7-day-old Scan Line 4 seedlings following six-
hour dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 4 seedlings
following 6h dark treatment. The error bars represent the standard error of the mean. DIN3
promoter reporting line 2 (RL2) was included as a comparison this line expresses the
unmodified 300bp of the DIN3 promoter fused to luciferase. These data are not normally
distributed as can be seen by the larger S.E.M. for those data with greater expression. These
data were transformed by a log10(x+1) transformation and compared with the background
luminescence. The asterisk (*) indicates those data sets which were at least 2 S.E.M. from the
background.
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Seedlings of Scan Line 5 were treated with a 6h light or dark treatment, however it was

found that the difference between the

treatments were not significant. A second experiment whereby seedlings of Scan Line 5

were treated with six

of the transformant lines. The absence of detectable

question: whether the transformants of Scan Line 5 were genuinely possessed the

transgene in their genom

lucINT gene and genomic DNA, as the template, from seedlings of transformants 2, 4 and

8, in addition to DIN3

serving as positive and

Scan Line 5 were genuine, then a band similar to that of the positive control,

promoter reporting line 2, should be present in the gel. The PCR confirmed that the

presence of DIN3::LUC

therefore these were genuine transformants (fig. 3.5.6). These results indicate that

expression of the modified version of

seedlings has been severely

TACGGCG of the native sequence to

ABRERATCAL (ACGCGTG

(CGCGTGT) by disrupting part of or their entire sequence.

Figure 3.5.6 Gel electrophoresis of PCR confirming presence of
5.

Figure 3.5.6 Image of a 1% agarose electrophoretic gel of PCR products using primers to the
LUC gene. The templates for the PCR were samples of extracted genomic DNA of Scan
transformant Lines 2 (T2), 4 (T4) and 8 (T8) compared alongside
(RL2) and Columbia 0 wild
(numbers denote base-

Line 5 were treated with a 6h light or dark treatment, however it was

found that the difference between the DIN3::LUC expression of the light and dark

treatments were not significant. A second experiment whereby seedlings of Scan Line 5

ix-hours of darkness found no detectable lines of

of the transformant lines. The absence of detectable DIN3::LUC

question: whether the transformants of Scan Line 5 were genuinely possessed the

transgene in their genomes. To confirm this, a PCR was set up using primers to the

gene and genomic DNA, as the template, from seedlings of transformants 2, 4 and

DIN3 promoter reporting line 2 and Columbia 0 wild

serving as positive and the latter as negative controls. If transformants 2, 4 and 8 of

Scan Line 5 were genuine, then a band similar to that of the positive control,

promoter reporting line 2, should be present in the gel. The PCR confirmed that the

DIN3::LUC in the genomes of transformants 2, 4 and 8 of Scan Line 5,

therefore these were genuine transformants (fig. 3.5.6). These results indicate that

expression of the modified version of DIN3::LUC found in the genome of Scan Line 5

seedlings has been severely inhibited by the linker-scanning mutation which changed

of the native sequence to GAATTC affecting the cis

ACGCGTG), CGCGBOXAT (ACGCGT) and DPBFCOREDCDC

by disrupting part of or their entire sequence.

3.5.6 Gel electrophoresis of PCR confirming presence of DIN3::LUC

Figure 3.5.6 Image of a 1% agarose electrophoretic gel of PCR products using primers to the
gene. The templates for the PCR were samples of extracted genomic DNA of Scan

transformant Lines 2 (T2), 4 (T4) and 8 (T8) compared alongside DIN3 promoter reporting line 2
(RL2) and Columbia 0 wild-type (Col 0). Bioline HyperLadder I was used as a size marker

-pairs).
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Line 5 were treated with a 6h light or dark treatment, however it was

expression of the light and dark

treatments were not significant. A second experiment whereby seedlings of Scan Line 5

hours of darkness found no detectable lines of DIN3::LUC in any

expression begged the

question: whether the transformants of Scan Line 5 were genuinely possessed the

es. To confirm this, a PCR was set up using primers to the

gene and genomic DNA, as the template, from seedlings of transformants 2, 4 and

promoter reporting line 2 and Columbia 0 wild-type; the former

the latter as negative controls. If transformants 2, 4 and 8 of

Scan Line 5 were genuine, then a band similar to that of the positive control, DIN3

promoter reporting line 2, should be present in the gel. The PCR confirmed that the

in the genomes of transformants 2, 4 and 8 of Scan Line 5,

therefore these were genuine transformants (fig. 3.5.6). These results indicate that

found in the genome of Scan Line 5

scanning mutation which changed

affecting the cis-acting motifs of

) and DPBFCOREDCDC

DIN3::LUC in Scan Line

Figure 3.5.6 Image of a 1% agarose electrophoretic gel of PCR products using primers to the
gene. The templates for the PCR were samples of extracted genomic DNA of Scan Line 5

promoter reporting line 2
type (Col 0). Bioline HyperLadder I was used as a size marker
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Seedlings of Scan Line 6 were treated with a 6h light or dark treatment, however it was

found that the differences between the DIN3::LUC expression of the light and dark

treatments were not significant. A second experiment found that seedlings of

transformant line 6 of Scan Line 6 exhibited detectable levels of DIN3::LUC expression

following a 6h dark treatment (fig. 3.5.7). All other lines, excluding DIN3 promoter

reporting line 2, did not exhibit DIN3::LUC expression at detectable levels. Since only

one out of nine lines expressed DIN3::LUC at detectable levels and none exhibited the

characteristic induction of DIN3::LUC following a 6h dark treatment, the effect of the

mutation in the version of DIN3::LUC expressed by Scan Line 6 can be said to have

disrupted DIN3::LUC expression compared to native DIN3 expression. The Scan Line 6

mutation changes CGTGTA of the native sequence to GAATTC; ABRERATCAL

(ACGCGTG), CGCGBOXAT (ACGCGT) cis-acting motifs in part or entirety were

detected within the 6 base-pairs of the EcoRI substitution.

Figure 3.5.7 Mean DIN3::LUC expression in 7-day-old Scan Line 6 seedlings following

six-hour light and dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 6 seedlings
following 6h dark treatment. The error bars represent the standard error of the mean. DIN3
promoter reporting line 2 (RL2) was included as a comparison; this line expresses the
unmodified 300bp of the DIN3 promoter fused to luciferase. These data are not normally
distributed as can be seen by the larger S.E.M. for those data with greater expression. These
data were transformed by a log10(x+1) transformation and compared with the background
luminescence. The asterisk (*) indicates those data sets which were at least 2 S.E.M. from the
background.
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All transformant lines of Scan Line 7 exhibited DIN3::LUC expression which was

greater following the 6h dark treatment compared with the 6h light treatment (fig.

3.5.8). However with transformant lines 6, 7 and 8 this difference was not significant

(fig. 3.5.8). Amongst all the transformant lines and DIN3 promoter reporting lines,

DIN3::LUC was expressed at detectable levels following 6h dark treatment. It should

also be noted that except for transformant line 6, all other lines demonstrated a much

greater DIN3::LUC expression than DIN3 promoter reporting line 2 (up to 13.45 times

greater), which exhibits the highest level of DIN3::LUC expression amongst the

reporting lines. Even the DIN3::LUC expression levels of Scan Line 7, following the 6h

light treatment, were greater than the DIN3 promoter reporting line 2 dark average.

Overall, the pattern of DIN3::LUC expression seems to match that of DIN3 promoter

reporting lines 2 and 3. However the magnitude of the DIN3::LUC expression amongst

Scan Line 7 is unparalleled, either amongst the other Scan Lines or the DIN3 promoter

reporting lines. The mutation in the version of DIN3::LUC expressed by the Scan Line

7 seedlings did not disrupt or eliminate the characteristic dark induction seen in the

native DIN3 expression. However, whether the modification of the DIN3::LUC

expressed by Scan Line 7 is the cause of the high expression levels observed is a matter

for discussion. The Scan Line 7 mutation changes TACCGT of the native sequence to

GAATTC; a MYB2CONSENSUSAT cis-acting motif (CCGTTG) in part or entirety were

detected within the 6 base-pairs of the EcoRI substitution.
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Figure 3.5.8 Mean DIN3::LUC expression in 7-day-old Scan Line 7 seedlings following

six-hour light and dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 7 seedlings
following either 6h light (white) or dark (grey) treatment. The error bars represent the standard
error of the mean. DIN3 promoter reporting lines 2 and 3 (RL2/3) were included for comparison;
these lines express the unmodified 300bp of the DIN3 promoter fused to luciferase. These data
are not normally distributed as can be seen by the larger S.E.M. for those data with greater
expression. These data were transformed by a log10(x+1) transformation and compared with the
background luminescence. The asterisk (*) indicates those data sets which were at least 2
S.E.M. from the background. The dagger (†) indicates those transformant lines whose light/dark
DIN3::LUC expression was >2 S.E.M. apart.
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Seedlings of Scan Line 8 were treated with a 6h light or dark treatment, however it was

found that the differences between the DIN3::LUC expression of the light and dark

treatments were not significant. A second experiment found that following a 6h dark

treatment, seedlings of transformant lines 4, 5 and 8 of Scan Line 8 exhibited

DIN3::LUC expression at detectable levels (fig. 3.5.9). All other lines, excluding DIN3

promoter reporting line 2, did not exhibit DIN3::LUC expression at detectable levels.

Since only three out of nine lines expressed DIN3::LUC at detectable levels and none

exhibited the characteristic induction of DIN3::LUC following a 6h dark treatment, the

effect of the mutation in the version of DIN3::LUC expressed by Scan Line 8 can be

said to have disrupted DIN3::LUC expression compared to native DIN3 expression. The

Scan Line 8 mutation changes GTTGAT of the native sequence to GAATTC; a

MYB2CONSENSUSAT cis-acting motif (CCGTTG) was detected within the 6 base-

pairs of the EcoRI substitution.

Figure 3.5.9 Mean DIN3::LUC expression in 7-day-old Scan Line 8 seedlings following six-
hour dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 8 seedlings
following either 6h dark treatment. The error bars represent the standard error of the mean.
DIN3 promoter reporting line 2 (RL2) was included as a comparison this line expresses the
unmodified 300bp of the DIN3 promoter fused to luciferase. These data are not normally
distributed as can be seen by the larger S.E.M. for those data with greater expression. These
data were transformed by a log10(x+1) transformation and compared with the background
luminescence. The asterisk (*) indicates those data sets which were at least 2 S.E.M. from the
background.
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Seedlings of Scan Line 9 were treated with a 6h light or dark treatment, however it was

found that the differences between the DIN3::LUC expression of the light and dark

treatments were not significant. A second experiment found that seedlings of

transformant lines 1, 2, 3, 5 and 6 of Scan Line 9 expressed DIN3::LUC at detectable

levels following a 6h dark treatment (fig. 3.5.10). All other lines, excluding DIN3

promoter reporting line 2, did not exhibit detectable levels DIN3::LUC expression.

Since only three out of nine lines expressed DIN3::LUC at detectable levels and none

exhibited the characteristic induction of DIN3::LUC following a 6h dark treatment, the

effect of the mutation in the version of DIN3::LUC expressed by Scan Line 9 can be

said to have disrupted DIN3::LUC expression compared to native DIN3 expression. The

Scan Line 9 mutation changes ATCCTC of the native sequence to GAATTC; no known

cis-acting motifs in part or entirety were detected within the 6 base-pairs of the EcoRI

substitution.

Figure 3.5.10 Mean DIN3::LUC expression in 7-day-old Scan Line 9 seedlings following
six-hour dark treatment.

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 9 seedlings
following either 6h dark treatment. The error bars represent the standard error of the mean.
Control Line 2 (RL2) was included as a comparison; this line expresses the unmodified 300bp of
the DIN3 promoter fused to luciferase. These data are not normally distributed as can be seen
by the larger S.E.M. for those data with greater expression. These data were transformed by a
log10(x+1) transformation and compared with the background luminescence. The asterisk (*)
indicates those data sets which were at least 2 S.E.M. from the background.
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In all but lines 6 and 13, the transformant lines of Scan Line 10 exhibited DIN3::LUC

expression which was greater following the 6h dark treatment compared with the 6h

light treatment (fig. 3.5.11). However with transformant lines 3, 6, 8, 11, 13 and DIN3

promoter reporting line 3 this difference was not significant (fig. 3.5.11). Only

transformant line 8 of Scan Line 10 was DIN3::LUC expression undetectable following

6h dark treatment. Transformant lines 2, 9, 12 and 15 of Scan Line 10 exhibited

DIN3::LUC expression greater than that of DIN3 promoter reporting line 2, up to 2.3

times in the case of transformant line 15. With 10 out of 15 transformant lines

demonstrating significant dark inducible DIN3::LUC expression patterns, the modified

DIN3::LUC expressed by Scan Line 10 seedlings appears unaffected when compared

with native DIN3 expression. The Scan Line 10 mutation changes TCTCCG of the native

sequence to GAATTC; no known cis-acting motifs in part or entirety were detected

within the 6 base-pairs of the EcoRI substitution.

Figure 3.5.11 Mean DIN3::LUC expression in 7-day-old Scan Line 10 seedlings following
six-hour light and dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 10 seedlings
following either 6h light (white) or dark (grey) treatment. The error bars represent the standard
error of the mean. DIN3 promoter reporting line 2 and 3 (RL2/3) were included for comparison;
these lines express the unmodified 300bp of the DIN3 promoter fused to luciferase. These data
are not normally distributed as can be seen by the larger S.E.M. for those data with greater
expression. These data were transformed by a log10(x+1) transformation and compared with the
background luminescence. All data sets (except line 8) were at least 2 S.E.M. from the
background. A figure for this analysis is available in the appendix. The dagger (†) indicates
those transformant lines whose light/dark DIN3::LUC expression was >2 S.E.M. apart.
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In all the transformant lines of Scan Line 11 exhibited DIN3::LUC expression which

was greater following the 6h dark treatment compared with the 6h light treatment (fig.

3.5.12). However with transformant lines 4, 5, 6, 7, 8 and DIN3 promoter reporting line

7 this difference was not significant (fig. 3.5.12). Only in transformant lines 6 and 8 of

Scan Line 11 was DIN3::LUC expression undetectable following 6h dark treatment.

Transformant lines 1, 3, 5 and 7 of Scan Line 11 exhibited DIN3::LUC expression

greater than that of DIN3 promoter reporting line 3, up to 3 times in the case of

transformant line 5. With all nine transformant lines demonstrating dark induction of

DIN3::LUC expression and four out of nine significantly, the modified DIN3::LUC

expressed by Scan Line 11 seedlings appears unaffected when compared with native

DIN3 expression. The Scan Line 11 mutation changes CGTGAT of the native sequence

to GAATTC; a GATA cis-acting motif (GATA) was detected within the 6 base-pairs of

the EcoRI substitution.

Figure 3.5.12 Mean DIN3::LUC expression in 7-day-old Scan Line 11 seedlings following
six-hour light and dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 11 seedlings
following either 6h light (white) or dark (grey) treatment. The error bars represent the standard
error of the mean. DIN3 promoter reporting line 3 and 7 (RL3/7) were included for comparison;
these lines express the unmodified 300bp of the DIN3 promoter fused to luciferase. These data
are not normally distributed as can be seen by the larger S.E.M. for those data with greater
expression. These data were transformed by a log10(x+1) transformation and compared with the
background luminescence. All data sets (except lines 6 & 8) were at least 2 S.E.M. from the
background. A figure for this analysis is available in the appendix. The dagger (†) indicates
those transformant lines whose light/dark DIN3::LUC expression was >2 S.E.M. apart.
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In all but lines 3 and 6, the transformant lines of Scan Line 12 exhibited DIN3::LUC

expression which was greater following the 6h dark treatment compared with the 6h

light treatment (fig. 3.5.13). However with transformant lines 3, 6, 10 and DIN3

promoter reporting line 3 this difference was not significant (fig. 3.5.13). Only in

transformant lines 6 and 10 of Scan Line 12 was DIN3::LUC expression undetectable

following 6h dark treatment . Transformant lines 5 and 7 of Scan Line 12 exhibited

DIN3::LUC expression greater than that of DIN3 promoter reporting lines 7, up to 3.4

times in the case of transformant line 7. With eight out of 10 transformant lines

demonstrating dark induction of DIN3::LUC expression and seven significantly, the

modified DIN3::LUC expressed by Scan Line 12 seedlings appears unaffected when

compared with native DIN3 expression. The Scan Line 12 mutation changes ATATTG

of the native sequence to GAATTC; a CCAATBOX1 cis-acting motif (CCAAT) was

detected within the 6 base-pairs of the EcoRI substitution.

Figure 3.5.13 Mean DIN3::LUC expression in 7-day-old Scan Line 12 seedlings following
six-hour light and dark treatment

Mean DIN3::LUC expression, determined by luminometry, in 7-day-old Scan Line 12 seedlings
following either 6h light (white) or dark (grey) treatment. The error bars represent the standard
error of the mean. DIN3 promoter reporting lines 3 and 7 (RL3/7) were included for comparison;
these lines express the unmodified 300bp of the DIN3 promoter fused to luciferase. These data
are not normally distributed as can be seen by the larger S.E.M. for those data with greater
expression. These data were transformed by a log10(x+1) transformation and compared with the
background luminescence. All data sets (except lines 6 & 10) were at least 2 S.E.M. from the
background. A figure for this analysis is available in the appendix. The dagger (†) indicates
those transformant lines whose light/dark DIN3::LUC expression was >2 S.E.M. apart.
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3.6 Linker Scan Analysis of dark and cold DIN3::LUC

expression

The luminometry method of following gene expression is a proxy for analysing the

transient level of the gene of interest and requires the reporter gene (lucINT) (Mankin et

al., 1997) to be successfully transcribed and translated to luciferase. Using the

luminometry method the effect of the linker-scan mutations on the dark inducible

expression of DIN3::LUC was investigated. Herein, the effect of those same mutations

on the dark induction and the effect of low temperature on DIN3::LUC expression will

be considered. Various endogenous factors can influence and affect translation;

additionally environmental factors too can have a great effect. The cold treatment used

in these experiments, is just such an environmental factor that affects translation such

that, the luminometry method is rendered useless for analysing gene expression after

cold treatment. This problem can be overcome by analysis of gene expression directly

from the RNA present in the seedlings at the end of the treatment in a process called

quantitative Real-Time PCR (qRT-PCR). However using qRT-PCR to analysis the

expression of the DIN3::LUC does not take account of 3’UTR of DIN3 which is

missing having been replaced by the luciferase (lucINT) gene. This issue was addressed

by the first experiment (fig. 3.6.1) described in this section. qRT-PCR provides

quantitative assay of gene expression, although all qRT-PCR analyses in this work use a

relative, rather than absolute, quantitative method. qRT-PCR also has the potential to be

more sensitive than luminometry or methods relying on the successfully translation of

the reporter gene for the reasons mentioned earlier.

The approach taken in this section was similar to that of the previous using

luminometry. Seedlings of the various scan lines were grown to 7 days old and then

underwent treatments consisting of either three hours of light or darkness at 20°C or

darkness at 5°C. About 25 seedlings were then harvested and their RNA extracted and

cDNA synthesised, whereupon it was analysed by qRT-PCR for the expression levels of

DIN3 and DIN3::LUC. This section will consider the effect that the promoter

modifications had on low temperature regulation of DIN3::LUC expression.
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For both DIN3 and DIN3::LUC, the expression is represented relative to that of the light

sample. The gene expression shown in this and following analyses is therefore not an

absolute measure of gene transcripts in a given sample. This first experiment was

carried out on 7-day-old DIN3 promoter reporting line 2 seedlings expressing the

unmodified DIN3::LUC gene. Following every treatment, the expression of DIN3::LUC

is compared against the expression of DIN3 which acts an endogenous control. It should

be noted that a single sample of seedlings was taken from each environmental treatment

and this one sample went on to produce the expression measurement of each gene,

hence the expression of the two genes can be directly compared.

Starting with DIN3 expression, seedlings which underwent ambient (20°C) dark

treatments of three hours or six hours had greater DIN3 expression than those which

remained in the light as expected. The increase in DIN3 expression was greatest after

three hours (4.3 times relative to the light treated seedlings) and declined after six hours

(1.9 times relative to the light treatment) (fig. 3.6.1). However without a three-hour time

point for the light treated seedlings this comparison cannot be made directly and the

three-hour peak may be artefactual. When dark treatment was carried out under cold

conditions (5°C), this induction of DIN3 expression was not observed. In fact amongst

those seedlings treated to three and six hours of darkness at 5°C had 0.4 and 0.2 times of

DIN3 expression respectively relative to light treated expression (fig. 3.6.1).

Considering now DIN3::LUC expression, it is immediately evident that the pattern of

luciferase expression mirrored that of the native DIN3 expression (fig. 3.6.1). This is a

crucial finding since it demonstrates that the DIN3::LUC expression changes in

response to a change in environmental conditions in the same manner as the native

DIN3. This proves that despite lacking the 3’ UTR, the 300bp portion of the DIN3

promoter fused to lucINT is sufficient for normal regulation of DIN3 in response the

environmental conditions used in these experiments. It also demonstrates that

DIN3::LUC is a reliable reporter of the effects of the linker-scanning mutations in the

versions DIN3::LUC expressed by the scan lines and hence the effect of the disruption

of various motifs found at the loci of the mutations (fig. 3.5.1). The magnitude of the

changes in DIN3::LUC expression across the treatments was less than that of native

DIN3. Seedlings given either three or six hours of darkness at 20°C had DIN3::LUC

expression 2.4 and 0.9 times of that of the light treated sample respectively. Seedlings
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treated with three or six hours of darkness at 5°C had DIN3::LUC expression levels 0.3

and 0.2 times that of the light treated seedlings (fig. 3.6.1).

In summary, DIN3 expression increases following a period of darkness at 20°C peaking

sometime around three hours and declining after that. Without a three-hour time point

for the light treated seedlings against which to compare it this peak may be artefactual.

This induction of DIN3 expression is not seen when the dark treatment is combined

with exposure to cold conditions (5°C); DIN3 expression declines relative to basal

expression after three hours, but even further after six hours of darkness at 5°C (fig.

3.6.1).

DIN3::LUC expression mirrors this pattern almost precisely, with an induction of its

expression following a period of darkness at 20°C. This treatment appears most potent

around three hours; its effect declines beyond this so that after six hours of darkness at

20°C, DIN3::LUC expression levels are similar to those seen in the light treated

seedlings. The same inhibition of the dark induction is seen with DIN3::LUC expression

when seedlings are exposed to darkness and chilling conditions; expression levels are

fractions of the basal expression and the effect seems to increase with time (fig. 3.6.1).

It is worth stressing that this experiment has demonstrated that, since DIN3::LUC

exhibited the same expression patterns as DIN3, it clearly possesses a sufficient portion

of the DIN3 promoter to study cold regulation via linker-scanning mutagenesis.
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Figure 3.6.1 DIN3 and DIN3::LUC expression in 7-day-old DIN3 promoter reporting line 2
seedlings following six hour light ambient and three and six hour dark ambient and dark
cold treatments

Relative DIN3 and DIN3::LUC expression levels in 7-day-old DIN3 promoter reporting line 2
(standardised against TUB4 expression) seedlings after 6h light ambient (20°C) (white), 3h dark
ambient (grey dots), 6h dark ambient (solid grey), 3h dark cold (5°C) (grey stripes) or 6h dark
cold (black stripes) treatments. Expression levels are relative to the light sample. The asterisk
(*) indicates those data sets which were outside the distribution of the corresponding light
ambient (20°C) data set. Error bars represent the Student’s t-distribution maxima and minima;
df=4.
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In all subsequent experiments carried out on the scan lines, three hour treatments were

employed since this produced the greatest and therefore most easily detectible change in

expression levels. The results of first qRT-PCR analyses informed the decisions made

as to which transformant lines from each scan line would be used in the final cold

temperature regulation experiments, the results of which are presented in the figures of

this section. A link between the DIN3::LUC expression measured via luminometry and

the quality of qRT-PCR results was formed so that transformant lines exhibiting

approximately median level of DIN3::LUC expression for the scan line were chosen for

the experiments. As far as possible three representative transformant lines were chosen,

but in some cases the DIN3::LUC expression levels were so low that this was not

possible. DIN3 expression was also measured for all the scan lines, to act as an

endogenous control and to provide confirmation that the experimental treatments were

carried out correctly eliciting the characteristic native response.

In both transformants 1 and 3 of Scan Line 1 the pattern of DIN3 expression across the

three treatments matched that of response of DIN3 promoter reporting line 2 (figs. 3.6.2

& 3.6.1). However the magnitude of the response was very small in both cases. Three

hours of darkness at 20°C elicited DIN3 expression only 1.6 and 2.9 times over basal

expression in transformant lines 1 and 3 respectively. The three hour dark treatment at

5°C, as anticipated, inhibited any dark induction so that DIN3 expression was 1.1 and

0.8 times that of basal expression (fig. 3.6.2)

Considering now the DIN3::LUC expression following the three hour treatments,

transformant line 1 exhibited the characteristic pattern and as with DIN3, the magnitude

of the response was less than anticipated: 3.6 and 1.4 times basal expression following

three hour dark treatments at 20°C and 5°C respectively (fig. 3.6.2). DIN3::LUC

expression in transformant line 3 also exhibited the characteristic pattern over the

treatments. However the overall magnitude of expression was much greater than

transformant line 1, to which its expression is relative. The light associated DIN3::LUC

expression of transformant line 3 was 37.3 times that of line 1. Three hours of darkness

at 20°C induced DIN3::LUC expression which was 44.9 times that of the basal

expression of line 1, although only 1.2 times that of line 3. DIN3::LUC expression

following three hours of darkness at 5°C provided undetectable (figs. 3.6.2 & 3.6.1).
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Overall the transformant lines 1 and 3 of Scan Line 1 exhibited the characteristic dark

induction of DIN3::LUC following three hours of darkness at 20°C and an inhibition of

this increase in expression over basal levels following three hours of darkness at 5°C for

DIN3 and DIN3::LUC genes. The light sample of transformant 3 exhibited

exceptionally high levels of DIN3::LUC expression when compared with transformant

1 or its own DIN3 expression. Despite this the DIN3::LUC expression pattern remained

the same as DIN3. DIN3::LUC expression across the treatments appears unaffected by

Scan Line 1 mutation, which changes GTGATG of the native sequence to GAATTC; no

known cis-acting motifs in part or entirety were detected within the 6 base-pairs of the

EcoRI substitution.

Figure 3.6.2 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 1 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Figure 3.6.2 Relative DIN3 (solid colours) and DIN3::LUC (textured) expression levels in 7-day-
old Scan Line 1 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light
(white), dark (grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the
light sample of transformant line 1. U.D. = Expression Undetermined i.e. so low as beyond the
limits of detectability. The asterisk (*) indicates those data sets which were outside the
distribution of the corresponding light ambient (20°C) data set. Error bars represent the
Student’s t-distribution maxima and minima; df=4.
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In the case of Scan Line 2, only one transformant line had both suitable seedling growth

and sufficient DIN3::LUC expression, as determined by luminometry, to be viable for

analysis by qRT-PCR to produce meaningful data. The DIN3 expression across the

treatments for Scan Line 2 matched the expected pattern with a clear dark induction

with 3.5 times DIN3 expression in seedlings treated with three hours of darkness at

20°C compared with those remaining in the light. This induction was inhibited in those

seedlings which experienced three hours of darkness at 5°C whose DIN3 expression

was 1.2 times that of basal expression (fig. 3.6.3). In those same seedlings, DIN3::LUC

expression did not mirror that of DIN3. Three hours of darkness at 20°C failed to induce

DIN3::LUC expression in Scan Line 2 with 0.8 times that of basal expression. After

three of darkness at 5°C the DIN3::LUC expression was even lower: 0.6 of basal

expression (fig. 3.6.3).

Scan Line 2 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. However this pattern was not seen with the

DIN3::LUC expression. No dark induction of DIN3::LUC was triggered by the three

hours of darkness at 20°C. Without a dark-ambient induction against which to compare

it, dark-cold inhibition of DIN3::LUC is meaningless. The Scan Line 2 mutation

changes TGTACA of the native sequence to GAATTC, no known cis-acting motifs no

known cis-acting motifs in part or entirety were detected within the 6 base-pairs of the

EcoRI substitution. The effect of the mutation in the version of DIN3::LUC expressed

by Scan Line 2 can be said to have disrupted DIN3::LUC expression compared to native

DIN3 expression.
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Figure 3.6.3 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 2 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colours) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
2 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample.
The asterisk (*) indicates those data sets which were outside the distribution of the
corresponding light ambient (20°C) data set. Error bars represent the Student’s t-distribution
maxima and minima; df=4.
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The DIN3 expression across the treatments for Scan Line 3 matched the expected

pattern with a clear dark induction with 3.5 and 2.4 times DIN3 expression in seedlings

of transformant lines 3 and 4 respectively, which were treated with three hours of

darkness at 20°C, compared with transformant line 3 seedlings remaining in the light.

This induction was inhibited in those seedlings which experienced three hours of

darkness at 5°C whose DIN3 expression was 1.7 and 0.7 times that of basal expression

in lines 3 and 4 respectively (fig. 3.6.4).

In those same seedlings, DIN3::LUC expression did not mirror that of DIN3. Three

hours of darkness at 20°C induced DIN3::LUC expression in transformant line 3,

although perhaps weakly, with 1.8. Dark-induction was absent in transformant line 4:

0.8 times that of basal expression after three hours of darkness at 20°C. The dark-cold

inhibition of DIN3::LUC was absent in transformant line 3; after three of darkness at

5°C the DIN3::LUC expression was elevated: 7.7 of basal expression. With the

presence of dark-induction of DIN3::LUC expression in the seedlings of transformant

line 4 the dark-cold inhibition of DIN3::LUC cannot be determined (fig. 3.6.4).

Scan Line 3 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. However this pattern was not seen with the

DIN3::LUC expression. Weak dark-induction of DIN3::LUC was triggered by the three

hours of darkness at 20°C in transformant line 3 but not in line 4. The characteristic

dark-cold inhibition of DIN3::LUC was entirely absent in transformant line 3 and

without dark-induction in transformant line 4, the maintenance of dark-cold inhibition is

meaningless. The Scan Line 3 mutation changes CATGAG of the native sequence to

GAATTC, a MYBST1 cis-acting motif (CGATA) was detected within the 6 base-pairs of

the EcoRI substitution. The effect of the mutation in the version of DIN3::LUC

expressed by Scan Line 3 can be said to have disrupted DIN3::LUC expression

compared to native DIN3 expression.
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Figure 3.6.4 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 3 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colours) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
3 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample
of transformant line 3. The asterisk (*) indicates those data sets which were outside the
distribution of the corresponding light ambient (20°C) data set. Error bars represent the
Student’s t-distribution maxima and minima; df=4.
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It should be noted that the data presented in figure 3.6.5 are the products of two

independent experiments; a second was carried out to reduce the variance in the data.

Additionally, only one transformant line of Scan Line 4 was found to express

DIN3::LUC at a level sufficient for qRT-PCR analysis. The DIN3 expression across the

treatments for Scan Line 4 matched the expected pattern with a weak dark-induction 1.3

times DIN3 expression in seedlings treated with three hours of darkness at 20°C

compared with those remaining in the light. This induction was inhibited in those

seedlings which experienced three hours of darkness at 5°C whose DIN3 expression

was 0.97 times that of basal expression (fig. 3.6.5).

In those same seedlings, DIN3::LUC expression did not mirror that of DIN3. Three

hours of darkness at 20°C failed to induce DIN3::LUC expression in Scan Line 4, with

0.72 times that of basal expression. Without dark-induction, nothing conclusive can be

said of the dark-cold inhibition of DIN3::LUC in Scan Line 4; after three of darkness at

5°C the DIN3::LUC expression 0.67 times that of basal expression (fig. 3.6.5).

Scan Line 4 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. However this pattern was not seen with the

DIN3::LUC expression. No dark-induction of DIN3::LUC was seen after three hours of

darkness at 20°C in Scan Line 4. The without dark-induction for comparison, the

presence of dark-cold inhibition of DIN3::LUC cannot be determined. The Scan Line 4

mutation changes AGGATA of the native sequence to GAATTC, the MYBST1 (CGATA),

GATABOX (GATA) and DPBFCOREDCDC (CGCGTGT) cis-acting motifs were

detected in part or entirety were detected within the 6 base-pairs of the EcoRI

substitution. The effect of the mutation in the version of DIN3::LUC expressed by Scan

Line 4 can be said to have disrupted DIN3::LUC expression compared to native DIN3

expression.
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Figure 3.6.5 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 4 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colours) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
4 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample.
Error bars represent the Student’s t-distribution maxima and minima; df=7.
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Only one transformant line of Scan Line 6 was found to express DIN3::LUC at a level

sufficient for qRT-PCR analysis. The DIN3 expression across the treatments for Scan

Line 6 matched the expected pattern with a weak dark-induction 1.6 times DIN3

expression in seedlings treated with three hours of darkness at 20°C compared with

those remaining in the light. This induction was inhibited in those seedlings which

experienced three hours of darkness at 5°C whose DIN3 expression was 0.9 times that

of basal expression (fig. 3.6.6).

In those same seedlings, DIN3::LUC expression did not mirror that of DIN3. Three

hours of darkness at 20°C induced DIN3::LUC expression in Scan Line 6, although

weakly, with 1.3 times that of basal expression. The dark-cold inhibition of DIN3::LUC

was absent in Scan Line 6; after three hours of darkness at 5°C the DIN3::LUC

expression was elevated: 6.6 of basal expression (fig. 3.6.5).

Scan Line 6 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. However this pattern was not seen with the

DIN3::LUC expression. Weak dark-induction of DIN3::LUC was triggered by the three

hours of darkness at 20°C in Scan Line 6. The characteristic dark-cold inhibition of

DIN3::LUC was entirely absent with elevated DIN3::LUC expression following the

dark-cold treatment. The Scan Line 6 mutation changes CGTGTA of the native

sequence to GAATTC; ABRERATCAL (ACGCGTG), CGCGBOXAT (ACGCGT) cis-

acting motifs in part or entirety were detected within the 6 base-pairs of the EcoRI

substitution. The effect of the mutation in the version of DIN3::LUC expressed by Scan

Line 6 can be said to have disrupted DIN3::LUC expression compared to native DIN3

expression.
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Figure 3.6.6 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 6 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colours) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
6 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample.
The asterisk (*) indicates those data sets which were outside the distribution of the
corresponding light ambient (20°C) data set. Error bars represent the Student’s t-distribution
maxima and minima; df=4.
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The DIN3 expression across the treatments for Scan Line 7 matched the expected

pattern, with a strong dark-induction: 13.4 and 9.3 times DIN3 expression in seedlings

of transformant lines 3 and 4 respectively, when treated with three hours of darkness at

20°C compared with the transformant line 3 light sample. This induction was inhibited

in seedlings of transformant lines 4 and 5 which experienced three hours of darkness at

5°C whose DIN3 expression was 1.7 and 2.9 times that of basal expression,

respectively. In all cases the differences quoted were significantly different from the

transformant line 3 light sample (fig. 3.6.7).

In those same seedlings, DIN3::LUC expression mirrored that of DIN3. Three hours of

darkness at 20°C elicited an induction in DIN3::LUC expression by 27.5 and 29.4 times

that of the basal expression in transformant lines 3 and 4 respectively. Following three

hours in darkness at 5°C DIN3::LUC induction was inhibited, with expression 1.4 and

6.3 times that of the light sample in transformant lines 3 and 4 respectively (fig. 3.6.7).

Scan Line 7 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. This pattern was replicated by the DIN3::LUC

expression, with dark induction of DIN3::LUC by the three hours of darkness at 20°C

and its inhibition by the cold treatment. The Scan Line 7 mutation changes TACCGT of

the native sequence to GAATTC; a MYB2CONSENSUSAT cis-acting motif (CCGTTG)

in part or entirety were detected within the 6 base-pairs of the EcoRI substitution. The

mutation in the version of DIN3::LUC expressed by the Scan Line 7 seedlings did not

disrupt or eliminate the characteristic dark induction seen in the native DIN3 expression.
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Figure 3.6.7 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 7 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colour) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
7 (standardised against TUB4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample
of transformant line 3. The asterisk (*) indicates those data sets which were outside the
distribution of the corresponding light ambient (20°C) data set. Error bars represent the
Student’s t-distribution maxima and minima; df=4.
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It should be noted that the data presented in figure 3.6.8 are the products of two

independent experiments; a second was carried out to reduce the variance in the data.

The DIN3 expression across the treatments for Scan Line 8 matched the expected

pattern with clear dark-induction with 1.9 and 2.1 times DIN3 expression in seedlings of

transformant lines 5 and 6 respectively, when treated with three hours of darkness at

20°C compared with transformant line 5 light sample. This induction was inhibited in

seedlings of transformant lines 5 and 6 which experienced three hours of darkness at

5°C whose DIN3 expression was 0.9 and 1.4 times that of basal expression respectively

(fig. 3.6.8).

In those same seedlings, DIN3::LUC expression did not mirror that of DIN3. Three

hours of darkness at 20°C failed to induce DIN3::LUC expression in transformant line

5: 0.4 times basal. Neither was dark-induction seen in line 6: 1.3 times the basal

expression, but lower than its own light sample. Without dark-induction of DIN3::LUC

expression commentary on cold-inhibition is meaningless; however DIN3::LUC

following the three hours of darkness at 5°C 2.6 and 8.5 times basal expression

respectively (fig. 3.6.8).

Scan Line 8 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. However this pattern was not seen with the

DIN3::LUC expression. The three hours of darkness at 20°C failed to induce either

transformant line 5 or 6 of Scan Line 8. With no dark-induction of DIN3::LUC, dark-

cold inhibition of DIN3::LUC in lines 5 and 6 cannot be determined; dark-cold

expression of DIN3::LUC expression was however considerably above either their light

or dark 20°C samples. The Scan Line 8 mutation changes GTTGAT of the native

sequence to GAATTC; a MYB2CONSENSUSAT cis-acting motif (CCGTTG) was

detected within the 6 base-pairs of the EcoRI substitution.

The effect of the mutation in the version of DIN3::LUC expressed by Scan Line 8 can

be said to have disrupted DIN3::LUC expression compared to native DIN3 expression.
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Figure 3.6.8 DIN3 and DIN3::LUC Expression in 7-day-old Scan Line 8 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colour) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
8 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample
of transformant line 5. U.D. = Expression Undetermined i.e. so low as beyond the limits of
detectability. The asterisk (*) indicates those data sets which were outside the distribution of the
corresponding light ambient (20°C) data set. Error bars represent the Student’s t-distribution
maxima and minima; df=7.

0

2

4

6

8

10

12

5 6

DIN3 Light Ambient

DIN3 Dark Ambient

DIN3 Dark Cold

DIN3::LUC Light Ambient

DIN3::LUC Dark Ambient

DIN3::LUC Dark Cold

R
e
la

ti
v
e

E
x
p

re
s
s
io

n
(D

e
te

rm
in

e
d

b
y

q
R

T
-

P
C

R
)

Transformant

*

*

*

*



115

It should be noted that the data presented in figure 3.6.9 are the products of two

independent experiments; a second was carried out to reduce the variance in the data.

The DIN3 expression across the treatments for Scan Line 9 matched the expected

pattern with clear dark-induction with 3 and 3.2 times DIN3 expression in seedlings of

transformant lines 1 and 3 respectively, when treated with three hours of darkness at

20°C compared with transformant line 1 light sample. This induction was inhibited in

seedlings of transformant lines 1 and 3 which experienced three hours of darkness at

5°C whose DIN3 expression was 1.3 and 1.1 times that of basal expression (fig. 3.6.9).

In those same seedlings, DIN3::LUC expression did not mirror that of DIN3. Three

hours of darkness at 20°C failed to induce DIN3::LUC expression in any of the

transformant lines; line 1 had 0.5 and line 3 0.6 times basal. Without dark-induction of

DIN3::LUC expression it is meaningless to considering cold-inhibition of DIN3::LUC

in lines 1 and 3; DIN3::LUC following the three hours of darkness at 5°C was 2.7 and

1.3 times basal expression respectively (fig. 3.6.9).

Scan Line 9 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. However this pattern was not seen with the

DIN3::LUC expression. The three hours of darkness at 20°C failed to induce either

transformant line 1 or 3 of Scan Line 9. The lack of dark-induction of DIN3::LUC

means that nothing conclusive can be said about the cold-inhibition. The Scan Line 9

mutation changes ATCCTC of the native sequence to GAATTC; no known cis-acting

motifs in part or entirety were detected within the 6 base-pairs of the EcoRI substitution.

The effect of the mutation in the version of DIN3::LUC expressed by Scan Line 9 can

be said to have disrupted DIN3::LUC expression compared to native DIN3 expression.
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Figure 3.6.9 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 9 seedlings following
three hour light ambient, dark ambient and dark cold treatments

Figure 3.6.9 Relative DIN3 (solid colour) and DIN3::LUC (textured) expression levels in 7-day-
old Scan Line 9 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light
(white), dark (grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the
light sample of transformant line 1. Error bars represent the Student’s t-distribution maxima and
minima; df=7.
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The DIN3 expression across the treatments for Scan Line 10 matched the expected

pattern, with strong induction in lines 1, 4 and 9: 20.1, 17.2 and 13.5 times DIN3

expression respectively, when treated with three hours of darkness at 20°C, compared

with transformant line 1 light-sample. This induction was inhibited in seedlings of all

lines, which experienced three hours of darkness at 5°C whose DIN3 expression was

1.7, 1.3 and 0.3 times that of basal expression. All dark-induced DIN3 expression was

significantly different from that of the transformant 1 light sample (fig. 3.6.10).

In those same seedlings, DIN3::LUC expression mirrored that of DIN3 but at much

greater expression level. Three hours of darkness at 20°C induced DIN3::LUC

expression in transformant lines 1, 4 and 9: 39.5, 18.5 and 141 times the basal

expression respectively. The dark-cold inhibition of DIN3::LUC expression was seen in

all lines, DIN3::LUC expression following the three hours of darkness at 5°C was 1.5,

6.5 and 2 times basal expression respectively. All dark-induced DIN3::LUC expression

was significantly different from that of the transformant 1 light sample (fig. 3.6.10).

Scan Line 10 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. This pattern was replicated in the DIN3::LUC

expression but with the dark-induced DIN3::LUC expression at several times the DIN3

expression level. The Scan Line 10 mutation changes TCTCCG of the native sequence to

GAATTC; no known cis-acting motifs in part or entirety were detected within the 6 base-

pairs of the EcoRI substitution. The mutation in the version of DIN3::LUC expressed by

the Scan Line 10 seedlings did not disrupt or eliminate the characteristic dark induction

seen in the native DIN3 expression.
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Figure 3.6.10 DIN3 and DIN3::LUC Expression in 7-day-old Scan Line 10 seedlings
following three hour light ambient, dark ambient and dark cold treatments

Figure 3.6.10 Relative DIN3 (solid colour) and DIN3::LUC (textured) expression levels in 7-day-
old Scan Line 10 (standardised against PEX4 expression) seedlings after 3h ambient (20°C)
light (white), dark (grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to
the light sample of transformant line 1. The asterisk (*) indicates those data sets which were
outside the distribution of the corresponding light ambient (20°C) data set. Error bars represent
the Student’s t-distribution maxima and minima; df=4.
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The DIN3 expression across the treatments for Scan Line 11 matched the expected

pattern, with strong induction in lines 2, 5 and 7: 12.1, 7.6 and 5.6 times DIN3

expression respectively, when treated with three hours of darkness at 20°C compared

with the transformant line 2 light sample. This induction was inhibited in seedlings of

all lines, which experienced three hours of darkness at 5°C whose DIN3 expression was

1.2, 1.1 and 1.01 times that of basal expression. All dark-induced DIN3 expression was

significantly different from that of the transformant 2 light sample (fig. 3.6.11).

In those same seedlings, DIN3::LUC expression mirrored that of DIN3 and with similar

levels of expression. Three hours of darkness at 20°C elicited strong DIN3::LUC

expression in transformant lines 2, 5 and 7: 7.2, 10.1 and 3.3 times basal respectively.

The dark-cold inhibition of DIN3::LUC expression was seen in all lines, DIN3::LUC

expression following the three hours of darkness at 5°C was 1.1, 2.4 and 0.7 times basal

expression respectively (fig. 3.6.11).

Scan Line 11 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. This pattern was replicated in the DIN3::LUC

expression and with similar expression levels. The Scan Line 11 mutation changes

CGTGAT of the native sequence to GAATTC; a GATA cis-acting motif (GATA) was

detected within the 6 base-pairs of the EcoRI substitution. The mutation in the version

of DIN3::LUC expressed by the Scan Line 11 seedlings did not disrupt or eliminate the

characteristic dark induction seen in the native DIN3 expression.



120

Figure 3.6.11 DIN3 and DIN3::LUC expression in 7-day-old Scan Line 11 seedlings
following three hour light ambient, dark ambient and dark cold treatments

Figure 3.6.11 Relative DIN3 (solid colour) and DIN3::LUC (textured) expression levels in 7-day-
old Scan Line 11 (standardised against PEX4 expression) seedlings after 3h ambient (20°C)
light (white), dark (grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to
the light sample of transformant line 2. The asterisk (*) indicates those data sets which were
outside the distribution of the corresponding light ambient (20°C) data set. Error bars represent
the Student’s t-distribution maxima and minima; df=4.
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The DIN3 expression across the treatments for Scan Line 12 matched the expected

pattern, with strong induction in lines 4, 5 and 7: 4.7, 17.2 and 6.9 times DIN3

expression respectively, when treated with three hours of darkness at 20°C compared

with transformant line 4 light sample. This induction was inhibited in seedlings of all

lines, which experienced three hours of darkness at 5°C whose DIN3 expression was

1.5, 2.2 and 2.3 times that of basal expression. The dark-induced DIN3 expression in

transformant lines 4 and 5 was significantly different from that of the transformant 4

light sample (fig. 3.6.12).

In those same seedlings, DIN3::LUC expression broadly mirrored that of DIN3, three

hours of darkness at 20°C elicited a strong induction of DIN3::LUC expression in

transformant line 5 and 7: 71 and 27.1 times basal respectively. Three hours of darkness

at 20°C elicited very weak induction of DIN3::LUC expression in line 4: 1.3 times basal

and not statistically significant. With an unconfirmed dark-induction of DIN3::LUC

expression in line 4, it was not possible to determine cold-inhibition in this line. The

cold-inhibition of DIN3::LUC expression was seen in lines 5 and 7, DIN3::LUC

expression following the three hours of darkness at 5°C was 16.9 and 13.9 times basal

expression respectively. Only the dark-induced DIN3::LUC expression in transformant

line 5 was significantly different from the basal expression (fig. 3.6.12).

Scan Line 12 exhibited the characteristic DIN3 expression pattern with an induction in

DIN3 expression following three hours at 20°C and an inhibition of this effect when the

dark treatment was combined with 5°C. This pattern was replicated in the DIN3::LUC

expression of lines 5 and 7 but with the dark-induced DIN3::LUC expression at several

times the DIN3 expression level. The three hours of darkness at 20°C failed to induce

DIN3::LUC expression in line 4 and neither could the presence of cold-inhibition of

DIN3::LUC be determined. The Scan Line 12 mutation changes ATATTG of the native

sequence to GAATTC; within the 6 base-pairs of the EcoRI substitution. With two out

of the three transformant lines of Scan Line 12 tested exhibiting DIN3::LUC expression

replicating the native DIN3 expression pattern, the mutation in the version of

DIN3::LUC expressed by the Scan Line 12 seedlings did not disrupt or eliminate the

characteristic dark induction seen in the native DIN3 expression.
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Figure 3.6.12 DIN3 and DIN3::LUC Expression in 7-day-old Scan Line 12 seedlings
following three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 (solid colour) and DIN3::LUC (textured) expression levels in 7-day-old Scan Line
12 (standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample
of transformant line 5. U.D. = Expression Undetermined i.e. so low as beyond the limits of
detectability. The asterisk (*) indicates those data sets which were outside the distribution of the
corresponding light ambient (20°C) data set. Error bars represent the Student’s t-distribution
maxima and minima; df=4.
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When the entire results of the linker-scanning mutagenesis of the -300 to -250bp of the

DIN3 promoter is assembled (Table 3.6.1), it is evident that luminometry method,

which confirmed whether DIN3::LUC was being expressed and whether a significant

induction of DIN::LUC was seen after the 6h dark treatment, and the qRT-PCR, which

directly monitored relative levels of DIN3::LUC expression follow 3h dark treatments

at 20°C and 5°C, both provide results which accord with each other. The DIN3::LUC

expression patterns of scan lines 2, 3, 4, 5, 6, 8 and 9 were not that seen in the DIN3

promoter reporting lines or the native DIN3 expression measured in the same sample of

seedlings. The aberration in the DIN3::LUC expression patterns of these lines was the

same – a loss of the characteristic induction of DIN3::LUC expression following a six

or three dark treatment at 20°C. This fact prevented any meaningful analysis of the

DIN3::LUC expression following the three dark treatments at 5°C via qRT-PCR.

However it should be noted that never was there a loss of cold-inhibition of DIN3::LUC

expression in those scan lines which exhibited a dark-induction. The linker-scanning

mutation in those scan lines which exhibited aberrant DIN3::LUC expression did not

always substitute part of or the entire sequence of a known cis-acting regulatory motif

(Table 3.6.1). For example scan lines 2 and 9 exhibited aberrant DIN3::LUC expression

but their mutations did not coincide with a known motif. Similarly, scan lines 7, 11 and

12 exhibited the characteristic expression patterns in response to the treatments, but

expressed versions of DIN3::LUC with mutations which did coincide with known

motifs.
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Table 3.6.1 Summary of Linker-Scanning Mutagenesis results via luminometry and qRT-PCR

A summary of the results of the linker-scanning mutagenesis of the essential -300 to -250bp of the DIN3 promoter investigating possible cis-acting regulatory
motifs which contribute towards the regulation of DIN3 expression following dark and cold temperature treatments. ‘Detectable DIN3::LUC expression’ refers
to the proportion of the transformant lines which exhibited levels of DIN3::LUC expression which was > 2 S.E.M. from the background. ‘Significant Dark
Induction’ refers to the proportion of transformants expressing DIN3::LUC following a 6h dark treatment at levels > 2 S.E.M. from the light sample. ‘Normal
DIN3 expression pattern’ refers to the induction of DIN3 expression following a 3h dark treatment at 20°C and its inhibition at 5°C as determined by qRT-PCR.
‘Disrupted Motifs’ refers to the number of known cis-acting regulatory motifs detected whose sequences were partly or entirely substituted by the EcoRI site
present in the version of DIN3::LUC expressed by each scan line.

Luminometry qRT-PCR

Scan Line
Detectable DIN3::LUC

Expression
Significant Dark

Induction of DIN3::LUC

Normal DIN3
expression

pattern
Dark Induction of

DIN3::LUC
Cold-inhibition of

DIN3::LUC
Disrupted

Motifs
1 3/5 Tranformants 2/5 Transformants Yes 2/2 Transformants 2/2 Transformants 0
2 2/7 Transformants 1/7 Transformants Yes None Unknown 0
3 2/8 Transformants 0/8 Transformants Yes None Unknown 1
4 1/9 Transformants 0/9 Transformants Yes None Unknown 3
5 0 Transformants 0 Transformants No Data No Data No Data 3
6 1/9 Transformants 0/9 Transformants Yes None Unknown 2
7 6/6 Transformants 4/6 Transformants Yes 2/2 Transformants 2/2 Transformants 1
8 3/9 Transformants 0/9 Transformants Yes None Unknown 1
9 5/7 Transformants 0/7 Transformants Yes None Unknown 0

10 14/15 Transformants 10/15 Transformants Yes 3/3 Transformants 3/3 Transformants 0
11 7/9 Transformants 4/9 Transformants Yes 3/3 Transformants 3/3 Transformants 1
12 8/10 Transformants 7/10 Transformants Yes 2/3 Transformants 2/3 Transformants 1
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3.7 Analysis of putative dark/sugar responsive element

Three transgenic lines were created in order to investigate the role of a putative

dark/sugar responsive element (TATCCT), previously referred to as MYBST1, in the -

300bp portion of the DIN3 promoter. Two different approaches were taken, the first

involved the introduction of a -300bp DIN3 promoter fused to a luciferase reporter

where the TATCCT motif for the DIN3 dark/sugar responsive element had been changed

to TAAAAT, whilst leaving the rest of the promoter unmodified. The second approach

was to create two concatamer lines (fig. 3.7.1), one using the hypothesised TATCCT A.

thaliana sequence (Knight, H., unpublished data) for the DIN3 dark/sugar responsive

element (DARK1) and the second using the TATCCA Oryza sativa motif sequence for

the MYB3 dark/sugar responsive element (Lu et al., 1998) (DARK2). In both

concatamers the elements were repeated four times attached to a 35S cauliflower mosaic

virus (CaMV) minimal (90bp) promoter, which in turn was attached to the luciferase

reporter gene (lucINT).

1)
3’GTGATGTACATGAGGATACGCGTGTACCGTTGATCCTCTC 5’

2)

3’GGCCAAGCTTGTGATGTACATGATTTTACGCGTGTACCGTTGATCCTCTC 5’

3)

5’GCGCAAGCTTCGTATCCTCACGTATCCTCACGTATCCTCACGTATCCTCAGATATCTCCACT

GACGTAAG 3’

4)

5’GCGCAAGCTTCGTATCCACACGTATCCACACGTATCCACACGTATCCACAGATATCTCCACT

GACGTAAG 3’

Figure 3.7.1 Sequences of constructs for the putative dark/sugar responsive element

Relevant portions of the sequence of the constructs used for investigating the putative
dark/responsive element: 1) the unmodified -300bp of DIN3 promoter fused to luc

INT

(DIN3::LUC); 2) the version of DIN3::LUC with a mutated putative dark/responsive element; 3)
concatamer of three TATCCT motifs fused to the 35S CaMV minimal promoter; 4) concatamer
of three TATACCA motifs fused to the 35S CaMV minimal promoter. The relevant motifs are
indicated by the bold and underlined nucleotides. In sequence 2 the grey highlighted sequence
is the GC-clamp and restriction site; the mutation is indicated by the black highlighting and white
text. Note that sequences 1 and 2 are shown in the anti-sense; therefore the sense site is
changed from TATCCT to TAAAAT.
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Seedlings of these lines were then grown to 7 days old and then underwent treatments of

three hours of light or darkness at 20°C or darkness at 5°C. qRT-PCR was used to

analyse their subsequent DIN3 and DIN3::LUC or lucINT expression. Measuring

DIN3::LUC expression permitted the investigation of what effect, the modified DIN3

promoter had on the expression of the luciferase reporter gene (lucINT). Measuring the

lucINT expression in the concatamer lines permitted the investigation of what role the

two different putative dark/sugar responsive elements might have in the regulation of

DIN3.

The DIN3 expression across the treatments for DIN3 TTT mutation line (figure 3.7.1)

matched the expected pattern with clear dark-induction in transformant lines 7 and 21,

both with 2.1 times DIN3 expression; and weak dark-induction in line 23: 1.2 times

DIN3 expression, following three hours of darkness at 20°C, compared with

transformant line 7 seedlings remaining in the light (basal). This induction was inhibited

in seedlings of transformant lines 7, 21 and 23 which experienced three hours of

darkness at 5°C whose DIN3 expression was 0.9, 0.8 and 0.7 times that of basal

expression respectively (fig. 3.7.2).

In those same seedlings, DIN3::LUC expression broadly mirrored that of DIN3. Three

hours of darkness at 20°C induced DIN3::LUC expression in transformant lines 7 and

21: 1.6 and 3.6 times basal respectively; however in line 23 dark-induction was absent:

0.5 times basal. The dark-cold inhibition of DIN3::LUC expression was present in all

lines; DIN3::LUC expression following the three hours of darkness at 5°C was 1.1, 2.1

and 0.2 times basal expression in lines 7, 21 and 23 respectively (fig. 3.7.2).

The DIN3 TTT mutation line exhibited the characteristic DIN3 expression pattern with

an induction in DIN3 expression following three hours at 20°C and an inhibition of this

effect when the dark treated combined 5°C. This pattern was broadly mirrored by the

DIN3::LUC expression. The three hours of darkness at 20°C induced DIN3::LUC

expression in transformant lines 7 and 21 but failed to do so in line 23. The

characteristic dark-cold inhibition of DIN3::LUC remained intact in all lines. The

modified version of DIN3::LUC expressed by TTT was only disrupted in one out of

three lines.
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Figure 3.7.2 DIN3 and DIN3::LUC expression in 7-day-old TTT seedlings following three
hour light ambient, dark ambient and dark cold treatments

Relative DIN3 and DIN3::LUC expression levels in 7-day-old DIN3 TTT muatation line
(standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. Expression levels are relative to the light sample
of transformant line 7. The asterisk (*) indicates those data sets which were outside the
distribution of the corresponding light ambient (20°C) data set. Error bars represent the
Student’s t-distribution maxima and minima; df=4.

The DIN3 expression across the treatments for Concatamer DARK1 matched the

expected pattern with clear dark-induction in transformant lines 2, 7 and 15: 2.7, 2.9 and

4 times DIN3 expression following three hours of darkness at 20°C, compared with

transformant line 2 seedlings remaining in the light (basal). This induction was inhibited

in seedlings of transformant lines 7, 21 and 23 which experienced three hours of

darkness at 5°C whose DIN3 expression was 0.6, 1.6 and 0.9 times that of basal

expression respectively (fig. 3.7.3).

In those same seedlings, expression of the lucINT did not match that of DIN3. After three

hours of darkness at 20°C the DARK1 concatamer seedlings of transformant line 7 did

not exhibit an induction in lucINT expression: 0.9 times the expression of the light treated

seedlings of transformant line 2. Three hours of darkness at 20°C triggered only a very

weak increase in lucINT expression relative to basal expression in lines 2 and 15: 1.1 and

1.2 times respectively, however no line had lucINT expression significantly exceeding

their light sample. Without clear dark-induction, the presence of dark-cold inhibition of

expression could not be determined, but in none of the lines was dark-cold expression

significantly greater than the light sample (fig. 3.7.3).
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DARK1 concatamer seedlings exhibited the characteristic DIN3 expression pattern with

an induction in DIN3 expression following three hours at 20°C and an inhibition of this

effect when the dark treatment was carried out at 5°C. This pattern was absent in the

lucINT expression. After three hours of darkness at 20°C the DARK1 concatamer

seedlings did not exhibit lucINT expression significantly greater than expression

following the light treatments; therefore the any dark-cold inhibition of expression

could not be determined. The DARK1 concatamer containing three TATCCT motifs

did not regulate the expression of the lucINT in the manner of DIN3 following the three

hour treatments.

Figure 3.7.3 DIN3 and luc
INT

expression in 7-day-old DARK1 Concatamer seedlings
following three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 and luc
INT

expression levels in 7-day-old DARK1 (TATCCT) concatamer
(standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. The asterisk (*) indicates those data sets which
were outside the distribution of the corresponding light ambient (20°C) data set. Expression
levels are relative to the light sample of transformant line 2. Error bars represent the Student’s t-
distribution maxima and minima; df=7.

The DIN3 expression across the treatments for concatamer DARK2 matched the

expected pattern with dark-induction in transformant lines 5, 6 and 7: 1.8, 1.5 and 1.8

times DIN3 expression following three hours of darkness at 20°C, compared with

transformant line 5 seedlings remaining in the light (basal). This induction was inhibited

in seedlings of transformant lines 5, 6 and 7 which experienced three hours of darkness

at 5°C whose DIN3 expression was 0.97, 0.7 and 0.95 times that of basal expression

respectively (fig. 3.7.4).
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In those same seedlings, lucINT expression did not match that of DIN3. After three hours

of darkness at 20°C there was no induction of lucINT expression in transformant line 5:

0.8 times basal and only weak induction in lines 6 and 7: both 1.5 times basal. In all

cases, their light-ambient expression was higher: 1, 2.2 and 1.7 times basal respectively.

Without clear dark-induction of lucINT expression, the dark-cold inhibition, following

the three hours of darkness at 5°C, could not be determined (fig. 3.7.4).

Concatamer DARK2 exhibited the characteristic DIN3 expression pattern with an

induction in DIN3 expression following three hours at 20°C and an inhibition of this

effect when the dark treated combined 5°C. This pattern was absent in the lucINT

expression. After three hours of darkness at 20°C the DARK2 concatamer none of the

seedlings exhibited lucINT expression significantly greater than expression compared

light treatments, in fact all exhibited lower expression; therefore any dark-cold

inhibition of expression could not be determined. The DARK2 concatamer containing

three TATCCA motifs did not regulate the expression of the lucINT in the manner of

DIN3 following the three hour treatments.

Figure 3.7.4 DIN3 and luc
INT

expression in 7-day-old DARK2 Concatamer seedlings
following three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 and luc
INT

expression levels in 7-day-old DARK2 (TATCCA) concatamer
(standardised against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark
(grey) or dark cold (5°C) (striped) treatments. The asterisk (*) indicates those data sets which
were outside the distribution of the corresponding light ambient (20°C) data set. Expression
levels are relative to the light sample of transformant line 5. Error bars represent the Student’s t-
distribution maxima and minima; df=4.

0

0.5

1

1.5

2

2.5

3

5 6 7

DIN3 Light Ambient
DIN3 Dark Ambient
DIN3 Dark Cold
lucINT Light Ambient
lucINT Dark Ambient
lucINT Dark Cold

Transformant

R
e
la

ti
v
e

E
x
p

re
s
s
io

n
(D

e
te

rm
in

e
d

b
y

q
R

T
-P

C
R

)

*

*



130

Neither the mutation of the putative dark/sugar responsive element in the DIN3::LUC

line nor the two concatamer lines, DARK1 and DARK2, indicated any significant role

for this motif in the regulation of the DIN3 response to the three hour dark treatment.

Two out of three of the transformant lines of seedlings expressing DIN3::LUC with the

mutation of the putative dark/sugar responsive element, exhibited an induction in the

expression of DIN3::LUC after three hours of darkness at 20°C and an inhibition of this

effect when the dark treatment was carried out at 5°C, thereby mirroring the native

DIN3 response to the treatments. All of the transformant lines of seedlings expressing

the concatamer of TATCCT (DARK1) or TATCCA (DARK2) attached to the 35S CaMV

minimal promoter and fused to lucINT did not exhibit patterns lucINT expression in the

manner of the native DIN3 expression. Based on these experiments, no evidence was

found supporting a role of the putative dark/sugar responsive element acting alone in the

regulating the expression of DIN3 in response to prolonged darkness.
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3.8 DIN3 expression in plants insensitive to sugars via

hexokinase

The current view of the literature gives the hexokinase-1 (HXK1) a central role in the

regulatory mechanism of the DIN genes (Fujiki et al., 2000; Moore et al., 2003; Rolland

et al., 2006). HXK1 acts as sensor of sugar state, specifically glucose, mediating the

transduction of this signal to the nucleus. This elicits the up-regulation of transcription

factor genes, which in turn regulate the expression of various sugar responsive genes,

including the DINs (§1.1.3). Evidence for this mechanism comes from work carried out

by Fujiki et al., (2000), whose experiments sought to indicate a mechanism by which

the repression of DIN gene expression was mediated. Confirming the primacy of sugar

over light in bringing about DIN gene repression, they proposed a role for the

hexokinase pathway as the mechanism through which signals of sugar state are

transduced and subsequently repress DIN gene expression. Experiments described

earlier (§3.3) found that the mean glucose concentration of seedlings kept at 20°C was

significantly greater than those at 5°C for three hours; there was no difference between

the light and dark treatments (fig. 3.3.1). However the mean sucrose concentration was

significantly higher in those seedlings keep in light at 5°C for three hours, compared

with those in the dark at 5°C (fig. 3.3.2). To test this theory further, an experiment was

designed using the gin2-1 mutant line, which is a null-mutant for hexokinase-1 (HXK1)

and so does not produce detectable levels of the enzyme (Moore et al., 2003). The gin2-

1 mutant line is in the Landsberg (Ler-0) ecotype and so seedlings of gin2-1 were grown

on 1% MS agar under long day conditions (16h:8h/light:dark) at 20°C for 7 days

alongside Ler-0 wild-type. At 7 days old, the seedlings were treated to either 3h of light

or darkness at 20°C or darkness at 5°C, before harvest and measurement of DIN3

expression analysis by qRT-PCR. The rationale of the experiment was thus: the gin2-1

seedlings lacking HXK1, which is not compensated by HXK2 (Moore et al., 2003), will

be unable to sense a reduction in available sugar brought about by sudden and

unexpected period of darkness within the entrained photoperiod. If DIN3 relies on the

HXK1 pathway for detecting sugar levels, then it would be expected that in the HXK1

null-mutant, gin2-1, the normal induction of DIN3 after three hours of darkness would

be absent due the lack of a sensory mechanism necessary to detect the change in sugar

state.
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The characteristic dark induction and cold repression of DIN3 expression was observed

in both the gin2-1 mutant seedling and wild-type. The DIN3 expression seen in the three

hour dark treated plants kept at 20°C increased by 3 and 2.18 times in gin2-1 and wild-

type, respectively, compared to that of their corresponding light samples. In both cases

this induction of DIN3 expression was found to be significantly different to their light

samples (fig. 3.8.1). Induction of DIN3 expression in gin2-1 following the 3h dark

treatment at 5°C was inhibited, matching that of wild-type.

Figure 3.8.1 DIN3 expression in 7-day-old gin2-1 and wild type Arabidopsis seedlings
following three hour light ambient, dark ambient and dark cold treatments

Relative DIN3 expression in 7-day-old Arabidopsis (Ler-0) gin2-1 and wild type (standardised
against PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark (light grey) or
dark cold (5°C) (dark grey) treatments. Expression levels are relative to the light sample of wild
type. The asterisk (*) indicates those data sets which were outside the distribution of the
corresponding light ambient (20°C) data set. Error bars represent the Student’s t-distribution
maxima and minima; df=4.

Although the gin2-1 mutant seedlings lacked a functioning HXK1 pathway, the

response in their DIN3 expression to the dark treatments at 20°C and 5°C matched that

of the wild-type seedlings. This was the typical response to those treatments previous

characterised in the Columbia ecotype (fig. 3.6.1), that is: a significant induction in

DIN3 expression following three hours of darkness at 20°C compared to those

remaining in the light and a inhibition or repression of this response when the dark

treatment is carried out at 5°C. This experiment demonstrates that HXK1 is not required
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for normal regulation of DIN3 by light and low temperature. This is despite data

indicating that glucose concentration is elevated in cold treated seedlings within three

hours and that sucrose concentrations decline in seedlings which are kept in the dark for

three hours at 5°C. The experiments conducted by Fujiki et al., (2000) all applied sugar

treatments externally, leaf discs were suspended in solutions of different sugar

concentrations. The implications of these findings, which seem to go against the

conclusions made by the current literature, will be explored in the discussion.
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4.1 Sequencing of transgenic and mutant lines

A number of different transgenic and mutant lines were used in this project. In a number

of cases the sites of the mutations or T-DNA insertions (pAC161 vector) required

confirmation by sequencing. Verification of constructs by sequencing was also required

where it had not been done previously. A number of TILLING and T-DNA insertion

lines of the SRMYB transcription factor gene were used to study the role of transcription

factors. The TILLING lines were obtained from the Seattle TILLING Project

(http://tilling.fhcrc.org/) and are lines generated by Ethyl Methanesulphonate (EMS)

mutagenesis and screened for mutations in various genes. The loci of these mutations

was listed in the TILLING Project database, however it required confirmation.

Sequencing the gene in which these mutations occur will provide the exact loci of the

mutations and their type. Likewise with the T-DNA insertions lines, (obtained from

GABI-Kat, Universität Bielefeld) the exact locus of the T-DNA insertion found in line

516B12 had not been confirmed at the start of this project. Sequencing of the SRMYB

gene within this line would identify the T-DNA locus. Binary vector overexpression

plasmids carrying transcription factor genes were transfected into Agrobacterium thence

used to transform Arabidopsis in order to overexpress these transcription factors in

whole plants.

A PCR was carried using full length cDNA, synthesised from RNA of 7-day-old

seedlings of SRMYB TILLING lines N94748, N90558 and wild type. The single base

substitution mutations created by EMS in exons have the potential to alter the amino

acid sequence, whereas if the mutation lies within an intron has the potential to alter

splicing. If the intron mutation does affect splicing a different transcript length will be

expected when the extracted RNA is transcribed to cDNA and a PCR carried out. It was

hoped that the PCR would reveal any differences in splicing of the SRMYB gene in the

TILLING lines compared to wild type, resulting from their intron mutations.

A 1% (w/v) agarose gel, stained with EtBr, was used to visualise the approximate the

size of the products (fig. 4.1.1). The pair of gene-specific primers (primers 119 and 120;

see Materials and Methods: Table 2.x for sequences) used for the SRMYB gene should

produce a product with a theoretical maximum size of 1498bp, covering the majority of

the coding region of the SRMYB gene. A pair of primers designed to genes TUB1 – 4

(Knight et al., 1999) to act as an endogenous control produce a theoretical maximum



product size of 928bp. Two bands can be seen for each of the three templates, one

larger, fainter band probably around 1100bp in size and the other around 980bp. The

former is band is a portion of

using primers TUB_F and TUB_R (Table 2.7.3.1). The tubulin band for all three

templates is of the same intensity; this provides evidence that each reaction had the

same starting amount of template (fig. 4.1.1) The bands for the

far as the gel resolution allows, to be almost identical in size (fig. 4.1.1). This suggests

that there are no significant differences in the splicing of the transcripts of the

TILLING lines N94748, N90558 compared to wild type.

Figure 4.1.1 Gel electrophoresis of PCR using cDNA to detect spl

Image of a 1% agarose gel electrophoresis of PCR products using primers to the
and TUB1 – 4 (T) genes. The PCR templates were full length cDNA synthesised from RNA
extracted from 7-day-old
of Columbia 0 wild-type (Col 0). Bioline HyperLadder I was used as a size ladder (scale in base
pairs).
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(T) genes. The PCR templates were full length cDNA synthesised from RNA
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In previous work (Knight, H., unpublished), and again in this project via a semi-

quantitative PCR analysing SRMYB gene expression in 7-day-old seedlings of SRMYB

T-DNA insertion lines 516B12 and 783B02 and wild type (data not shown), it was

found that seedlings of 783B02 had SRMYB gene that was completely knocked-out by

the T-DNA insertion. However these results were not a quantitative assessment of gene

expression, therefore a qRT-PCR analysis was conducted (fig. 4.5.1).

The location of the T-DNA insertions within the SRMYB gene was available from

GABI-Kat (http://www.gabi-kat.de/db/picture.php?genecode=At5g47390) (Li et al.,

2007); but required confirmation. Previous work in our laboratory confirmed the site of

the insertion in 783B02 as in the third exon (Knight, H., unpublished). However the

location of the T-DNA insertion in 516B12 was yet to be confired. The location of the

T-DNA insertion is useful in better interpreting the results of analysis carried out into

the expression levels of SRMYB in the 516B12 plants. Since SRMYB transcript of the

expected length was detected in the 516B12 plants by PCR, it was hypothesised that the

coding region was not interrupted by an insertion, hence the T-DNA insertion was

likely to reside upstream of the coding region somewhere within the promoter. This was

contrary to the annotation given on the GABI-Kat database, which predicted the

insertion to be shortly downstream of the ATG start codon. A PCR was set up using

combinations of primers, one (206) designed 220bp downstream of the ATG another

(227) 659bp upstream into the promoter and another specific to the sequence of the T-

DNA insertion (135) (fig. 4.1.2) in the aim of producing a product which could be sent

for sequencing.

The PCR products were visualised on a 1% (w/v) agarose gel, stained with EtBr, to

approximate the size and quantity of the products against Bioline HyperLadder I (fig.

4.1.3). The aforementioned primers were used in the following two combinations of

pairs: 135 with 206 and 227 with 206, which give two products of distinctly different

size. The pair 227 and 206 should give a theoretical maximum size of 882bp. Without

knowing the location of the T-DNA insertion, it was impossible to predict the exact size

of the product of a PCR using primers 135 and 206. Alongside the genomic DNA of

516B12, the two genomic DNAs of Col 0 wild type were used as controls. No band was

produced for the 516B12 DNA using primers 227 and 206, which suggested that the T-

DNA insertion laid somewhere, in between the primer binding sites of 227 and 206 (fig.

4.1.3: lane 1). Bands of the anticipated size were received for the wild type DNAs using



primers 227 and 206 (fig. 4.2.1.3: lanes 2 & 3). A band of around of 800bp was

acquired for 516B12 using primers 135 and 206, this band was of a p

included part of the T

was spliced, upstream of the

bands were produced for the wild type DNAs using the 135 and 206 pr

lanes 5 & 6).

The 800bp band amplified from 516B12 was extracted using the

Extraction Kit (Qiagen Ltd

that the exact location of the T

Figure 4.1.2 Schematic

A schematic of the hypothesised and confirmed location of the T
triangle) within the promoter of the
line. The relative locations of binding sites of primers 135, 206 and 227 are indicated by the
single headed arrows labelled with the primer reference. The location of the ATG is included as
a point of reference and separates the upstream promoter regi
region. The portions of the
combinations of the primers are indicted by the numbered lines in between the primer binding
sites. (1) is the product of primer pairs 227 and 206;
206.

primers 227 and 206 (fig. 4.2.1.3: lanes 2 & 3). A band of around of 800bp was

acquired for 516B12 using primers 135 and 206, this band was of a p

included part of the T-DNA insertion and the remainder of the promoter, into which it

was spliced, upstream of the ATG and the 206 primer binding site (fig. 4.1.3: lane 4). No

bands were produced for the wild type DNAs using the 135 and 206 pr

The 800bp band amplified from 516B12 was extracted using the

Qiagen Ltd., Crawley, UK) and the purified DNA sent for sequencing so

that the exact location of the T-DNA could be determined.

Figure 4.1.2 Schematic SRMYB gene map with annotations of relevant features

A schematic of the hypothesised and confirmed location of the T-DNA insertion (inverted
triangle) within the promoter of the SRMYB gene (grey arrow) of the 516B12 T
line. The relative locations of binding sites of primers 135, 206 and 227 are indicated by the
single headed arrows labelled with the primer reference. The location of the ATG is included as
a point of reference and separates the upstream promoter region from the downstream coding
region. The portions of the SRMYB gene which would be amplified by a PCR using
combinations of the primers are indicted by the numbered lines in between the primer binding
sites. (1) is the product of primer pairs 227 and 206; (2) is the product of primer pairs 135 and
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Figure 4.1.3 Gel electrophoresis of PCR using genomic DNA to map the location of the T
DNA insertion within the

Image of a 1% agarose gel electrophoresis of PCR products using primers to various positions
of the SRMYB gene (fig. 4.2.1.3). Lane 1 using 516B12 DNA with primers 227 & 206; lanes 2 &
3 used Col 0 WT DNAs with primers 227 & 206; lane 4 used 516B12 DNA wi
206; lanes 5 & 6 used Col 0 WT DNAs with primers 135 and 206. The PCR templates were
genomic DNA extracted from 7
of two extractions of Columbia 0 wild
ladder (scale in base-pairs).

Sequencing carried out by Heather Knight on the

line 783B02 revealed the location of the T

(fig. 4.1.4). A primer designed d

into exon 3 revealing T

783B02 does not occur within an intron, so is unlikely to deleteriously affect splicing of

the gene following transcription. Su

entirely disrupt the successfully translation of the transcript or the assembly of the

polypeptide as a functional protein. This hypothesis seems to be supported by the

absence of a SRMYB

Figure 4.1.3 Gel electrophoresis of PCR using genomic DNA to map the location of the T
DNA insertion within the SRMYB gene of T-DNA line 516B12.

Image of a 1% agarose gel electrophoresis of PCR products using primers to various positions
gene (fig. 4.2.1.3). Lane 1 using 516B12 DNA with primers 227 & 206; lanes 2 &

3 used Col 0 WT DNAs with primers 227 & 206; lane 4 used 516B12 DNA wi
206; lanes 5 & 6 used Col 0 WT DNAs with primers 135 and 206. The PCR templates were
genomic DNA extracted from 7-day-old SRMYB T-DNA lines 516B12 compared alongside that
of two extractions of Columbia 0 wild-type (Col 0). Bioline HyperLadder I was used as a size

pairs).

Sequencing carried out by Heather Knight on the SRMYB gene possessed by the T

line 783B02 revealed the location of the T-DNA insertion to be located within exon 3

(fig. 4.1.4). A primer designed downstream of exon 3 was used to sequence upstream

into exon 3 revealing T-DNA sequence. The T-DNA insertion in the

783B02 does not occur within an intron, so is unlikely to deleteriously affect splicing of

the gene following transcription. Such a large piece (~10kb) of foreign DNA will

entirely disrupt the successfully translation of the transcript or the assembly of the

polypeptide as a functional protein. This hypothesis seems to be supported by the

transcript in 783B02 when analysed by PCR.
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AT5G47390.1 SRMYB

Genomic:
AAATAAAAAAAAAAATCCGGCCAGATAAATCGAATTTATGTAATAAATCC
GACCAGATAAACTGATATTATTGTCTTTCTTCCGCTCCTTTGTCTCTCTA
TCTCTTTCTCACAATTAGATTCTGTGCTTCTTCTGCGATCAACTAAGATC
CGATCCGCGAGCGTTTCAGACTTCGATCAGATCCGATTAAGAGAAGCAAA
TCGGGTCGGGTATGACTCGTCGATGTTCTCACTGCAATCACAATGGCCAC
AACTCTCGGACTTGTCCCAATCGCGGCGTGAAGCTCTTTGGTGTTCGGCT
CACCGAAGGTTCGATCCGGAAAAGTGCAAGTATGGGTAATCTTAGCCATT
ACACGGGTTCTGGATCGGGTGGGCATGGAACCGGGTCCAACACTCCGGGT
TCTCCGGGTGATGTCCCTGACCATGTCGCTGGTGATGGTTACGCTTCTGA
GGATTTCGTTGCTGGCTCTTCCTCTAGCCGCGAGAGAAAGAAAGGTATCT
TCGTTTGATTTCTGAGATTAAATTTTTTATCAAATTCCAAATTTTTGTAA
TTGAGTTTATTTTGCATCAAAGTCGTTGATTGCATTATGTAACAAGTGGT
GATCTGGTTTATGTAACAAGATTTTGATGTGTGTTTGATATTGGTTTTGT
TGTAGGAACTCCATGGACAGAGGAAGAACACAGGATGTTCTTATTAGGTT
TACAGAAGCTGGGTAAAGGTGATTGGAGAGGTATCTCAAGAAACTATGTG
ACCACTAGGACACCTACACAAGTTGCTAGCCATGCTCAGAAGTATTTCAT
CAGACAATCCAATGTCTCTCGTCGCAAAAGACGTTCTAGTCTCTTTGATA
TGGTTCCTGATGAGGTTTGTTCCTTCTTCATTCAAAAACACCATTTTTAT
TTATATTGGAGTGGTTACAAAATGTGTTGAGATACTGATTTAAAGGATTC
AGAAGCTTATTAGGTGGATTGGTTTGCCTTCTACATTTCAATATGAAAAG
TTGAAGTCTGTTGGGGTTCTAATTGATATGCTTGAGGATATCATTTTGTA
GCCAATCCTGCTTAAGCATTTTGGTCTTCTCATGGGAATGTGATCTTGAA
ATGTAATTCTCTTTCTTTATTCTGCTTATGCTGTGTGATTTGTCCTTGTA
GGTTGGAGATATTCCCATGGATTTGCAAGAACCAGAGGAAGATAATATTC
CTGTGGAAACTGAAATGCAAGGTGCTGACTCTATTCATCAGACACTTGCT
CCTAGCTCACTTCACGCACCGTCAATCTTGGAAATCGAAGAATGTGAATC
AATGGACTCCACAAACTCTACCACCGGGGAACCAACCGCAACTGCCGCTG
CTGCTTCTTCTTCTTCCAGACTAGAAGAAACCACACAACTGCAATCACAA
CTGCAACCGCAGCCGCAACTACCTGGCTCATTCCCCATACTATATCCGAC
CTACTTTTCACCATATTACCCGTTTCCATTCCCAATATGGCCTGCTGGTT
ATGTTCCTGAACCACCCAAGAAAGAGGAAACTCATGAAATTCTCAGACCA
ACTGCTGTGCACTCGAAAGCTCCTATCAATGTTGACGAGCTTCTTGGTAT
GTCTAAGCTCAGCCTTGCAGAGTCCAACAAACATGGAGAATCCGATCAGT
CTCTTTCATTGAAGCTAGGTGGCGGGTCATCTTCAAGACAATCAGCATTT
CACCCGAATCCTAGCTCTGATAGTTCAGACATCAAAAGCGTGATACACGC
TTTATAAAAGACCTGAGGAAGTGATGGTCTAAAATGGGATCTGGTTTGGG
GTTTACAGGTTAGTTGTTGGTCACAGTAACTTAAATAAGTTTTTCTTTGT
TAGGTTGTTTAACTTGGGTAGGATGTTTTAGTTCAGCTTTGATCATTAGG
GAAAAGAAAAAAGAAAAAAAAAAGGGAGAAAAACAAATTATTATTTTTTG
CTTACATTTCTTTATATTTGTATGCTTTTATTTTGACTCTAGGATGCGTT
AATTTTCGTTTAATCTGTACTAAAAATTAGAATTTATTAGTTTTGAATAA

ATAAAATCACAGTTTGTTT
EXON1
EXON2
EXON3
Part of EXON3 bound by TaqMan probe
BASE before which the T-DNA insertion is located
Primer binding site for sequencing into the EXON3 and the T-DNA
insertion. TaqMan SRMYB probe binding site spans Exons 2 and 3.
Underlined section of Exon 2 indicates the site. The grey highlighted
sequence is the part of Exon 3 bound by the probe is duplicated
following the Exon 2 sequence.

Figure 4.1.4 Genomic sequence of AT5G47390.1: SRMYB of T-DNA line 783B02

The annotated genomic sequence (obtained from TAIR) of (AT5G47390.1) the SRMYB of T-
DNA line 783B02 indicating the location of the T-DNA insertion (pink base), the three exons
(exon 1 – yellow; exon 2 – red; exon 3 – green), the primer binding site for sequencing (blue
underlined text).
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Following the sequencing of the 516B12 PCR product (fig. 4.1.3), the returned

sequence was submitted to the TAIR BLAST to quickly determine how much the

product aligned with the gene and crucially at which point it departed from this

alignment. As was hypothesised from the results earlier PCR (fig. 4.1.3), the T-DNA

insertion lies upstream of the ATG in the promoter region of SRMYB (fig. 4.1.5).

Without knowing the location of important regulatory motifs within the promoter of

SRMYB it is hard to say whether the position of the T-DNA is particular deleterious to

the regulation of the gene. However given the position of large piece of foreign DNA

close to the start codon, any regulation provided by native promoter, now upstream of

the T-DNA insertion, will be lost. The regulation of the gene will now be controlled by

the new promoter in the form of the T-DNA and the remaining native promoter

downstream of it, so undoubtedly the levels of gene expression will be altered

significantly compared with wild-type. The effect of the T-DNA insertions on the

SRMYB gene expression are considered later in the discussion.
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AT5G47390.1 SRMYB
Genomic:

AAATAAAAAAAAAAATCCGGCCAGATAAATCGAATTTATGTAATAAATCC
GACCAGATAAACTGATATTATTGTCTTTCTTCCGCTCCTTTGTCTCTCTA
TCTCTTTCTCACAATTAGATTCTGTGCTTCTTCTGCGATCAACTAAGATC
CGATCCGCGAGCGTTTCAGACTTCGATCAGATCCGATTAAGAGAAGCAAA
TCGGGTCGGGTATGACTCGTCGATGTTCTCACTGCAATCACAATGGCCAC
AACTCTCGGACTTGTCCCAATCGCGGCGTGAAGCTCTTTGGTGTTCGGCT
CACCGAAGGTTCGATCCGGAAAAGTGCAAGTATGGGTAATCTTAGCCATT
ACACGGGTTCTGGATCGGGTGGGCATGGAACCGGGTCCAACACTCCGGGT
TCTCCGGGTGATGTCCCTGACCATGTCGCTGGTGATGGTTACGCTTCTGA
GGATTTCGTTGCTGGCTCTTCCTCTAGCCGCGAGAGAAAGAAAGGTATCT
TCGTTTGATTTCTGAGATTAAATTTTTTATCAAATTCCAAATTTTTGTAA
TTGAGTTTATTTTGCATCAAAGTCGTTGATTGCATTATGTAACAAGTGGT
GATCTGGTTTATGTAACAAGATTTTGATGTGTGTTTGATATTGGTTTTGT
TGTAGGAACTCCATGGACAGAGGAAGAACACAGGATGTTCTTATTAGGTT
TACAGAAGCTGGGTAAAGGTGATTGGAGAGGTATCTCAAGAAACTATGTG
ACCACTAGGACACCTACACAAGTTGCTAGCCATGCTCAGAAGTATTTCAT
CAGACAATCCAATGTCTCTCGTCGCAAAAGACGTTCTAGTCTCTTTGATA
TGGTTCCTGATGAGGTTTGTTCCTTCTTCATTCAAAAACACCATTTTTAT
TTATATTGGAGTGGTTACAAAATGTGTTGAGATACTGATTTAAAGGATTC
AGAAGCTTATTAGGTGGATTGGTTTGCCTTCTACATTTCAATATGAAAAG
TTGAAGTCTGTTGGGGTTCTAATTGATATGCTTGAGGATATCATTTTGTA
GCCAATCCTGCTTAAGCATTTTGGTCTTCTCATGGGAATGTGATCTTGAA
ATGTAATTCTCTTTCTTTATTCTGCTTATGCTGTGTGATTTGTCCTTGTA
GGTTGGAGATATTCCCATGGATTTGCAAGAACCAGAGGAAGATAATATTC
CTGTGGAAACTGAAATGCAAGGTGCTGACTCTATTCATCAGACACTTGCT
CCTAGCTCACTTCACGCACCGTCAATCTTGGAAATCGAAGAATGTGAATC
AATGGACTCCACAAACTCTACCACCGGGGAACCAACCGCAACTGCCGCTG
CTGCTTCTTCTTCTTCCAGACTAGAAGAAACCACACAACTGCAATCACAA
CTGCAACCGCAGCCGCAACTACCTGGCTCATTCCCCATACTATATCCGAC
CTACTTTTCACCATATTACCCGTTTCCATTCCCAATATGGCCTGCTGGTT
ATGTTCCTGAACCACCCAAGAAAGAGGAAACTCATGAAATTCTCAGACCA
ACTGCTGTGCACTCGAAAGCTCCTATCAATGTTGACGAGCTTCTTGGTAT
GTCTAAGCTCAGCCTTGCAGAGTCCAACAAACATGGAGAATCCGATCAGT
CTCTTTCATTGAAGCTAGGTGGCGGGTCATCTTCAAGACAATCAGCATTT
CACCCGAATCCTAGCTCTGATAGTTCAGACATCAAAAGCGTGATACACGC
TTTATAAAAGACCTGAGGAAGTGATGGTCTAAAATGGGATCTGGTTTGGG
GTTTACAGGTTAGTTGTTGGTCACAGTAACTTAAATAAGTTTTTCTTTGT
TAGGTTGTTTAACTTGGGTAGGATGTTTTAGTTCAGCTTTGATCATTAGG
GAAAAGAAAAAAGAAAAAAAAAAGGGAGAAAAACAAATTATTATTTTTTG
CTTACATTTCTTTATATTTGTATGCTTTTATTTTGACTCTAGGATGCGTT
AATTTTCGTTTAATCTGTACTAAAAATTAGAATTTATTAGTTTTGAATAA

ATAAAATCACAGTTTGTTT
EXON1
EXON2
EXON3
Part of EXON3 bound by TaqMan probe
BASE before which the T-DNA insertion is located
Primer binding site for sequencing into the EXON3 and the T-DNA
insertion. TaqMan SRMYB probe binding site spans Exons 2 and 3.
Underlined section of Exon 2 indicates the site. The grey highlighted
sequence is the part of Exon 3 bound by the probe is duplicated
following the Exon 2 sequence.

Figure 4.1.5 Genomic sequence of AT5G47390.1: SRMYB of T-DNA line 516B12

The annotated genomic sequence (obtained from TAIR) of (AT5G47390.1) the SRMYB of T-
DNA line 783B02 indicating the location of the T-DNA insertion (pink base), the three exons
(exon 1 – yellow; exon 2 – red; exon 3 – green), the primer binding site for sequencing (blue
underlined text).
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The only TILLING line mutation in the SRMYB detected by the sequencing of genomic

DNAs (using gene-specific primers 119 & 120) of TILLING lines N90558, N92046 and

N94640 was that present in N92046 (fig. 4.1.6). Despite the sequenced PCR product of

N90558 covering the region between exons 1 and 3, no difference between the wild

type SRMYB sequence and that of N90558 was found using TAIR BLAST. It may be

that the TILLING line N90558 was incorrectly annotated by the Seatle TILLING

Project database. From the sequencing results it appears that there is no intron mutation

present in TILLING line N90558 as was described in the database. The described exon

mutation present in TILLING line N92046 was localised to exon 3 (fig. 4.1.6) following

the sequencing of its purified PCR product. TILLING line N92046 was described as

possessing a silent exon mutation that is one which has no effect on the subsequent

protein structure or function. TILLING line N94640 was described in the database as

possessing a substitution mutation in an exon, following the sequencing of its purified

PCR product no difference in its sequence compared to the wild type SRMYB sequence

was identified using TAIR BLAST. The sequenced N94640 PCR product contained just

a single base from exon 1 and around half of the sequence of exon 3. Clearly the

sequence obtained was insufficient for the localisation of the N94640 mutation. The 119

and 120 primers start from the ATG of exon 1, in the case of primer 119, and end eight

base-pairs upstream of the end of exon 3, in the case of primer 120. Another amplicon

could have been produced from different combination of primers designed to amplify

more of the 5’ portion of the SRMYB gene. In addition an internal primer could have

been used to sequence further upstream into exon 1 and two products sequenced and

assembled to give a fuller assessment of the version of SRMYB found in N94640 and

N90558.



Figure 4.1.6 TAIR BLAST output for N92046
SRMYB

PCR product (QUERY) of N92046 genomic DNA using 119 and 120 SRMYB primers purified
and sequenced then analysed using TAIR BLAST. Red ellipse indicates
TILLING line present in exon 3.

Figure 4.1.6 TAIR BLAST output for N92046 SRMYB against wild type AT5G473901.1:

PCR product (QUERY) of N92046 genomic DNA using 119 and 120 SRMYB primers purified
and sequenced then analysed using TAIR BLAST. Red ellipse indicates
TILLING line present in exon 3.
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against wild type AT5G473901.1:

PCR product (QUERY) of N92046 genomic DNA using 119 and 120 SRMYB primers purified
and sequenced then analysed using TAIR BLAST. Red ellipse indicates the mutation in the
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Prior to the transformation of Agrobacterium or Arabidopsis with a transgene, it is wise

to check that the plasmid containing the transgene matches that in the database or the

original design. All but one of the transcription factor overexpression plasmids were

generated prior to the start of this project in our laboratory and had been sequenced

(Ülker, B., unpublished) and verified as being correct. However the plasmid (obtained

from Philip Gilmartin) containing the GATA21 transcription factor gene had not. In this

case, plasmid DNA was sent for sequencing and then checked against the sequence for

GATA21 found in the TAIR database using TAIR BLAST (fig. 4.1.7). Six

misalignments were identified. Such errors will naturally cast doubt on any results

obtained from using plants over-expressing the version of GATA21 carried by this

plasmid.
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Figure 4.1.7 TAIR BLAST output for the portion the plasmid containing GATA21

The sequenced portion of the plasmid containing GATA21 obtained via mini plasmid prep. The
red ellipses indicate misalignments between the plasmid sequence and the database sequence
for GATA21.
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4.2 Confirmation of over-expression

The seedlings which passed through the BASTA selection required further screening in

order to confirm that they were truly overexpressing the transcription factor coded in the

transgene. To achieve this, seedlings of these putative overexpressing lines were grown

under long-day conditions to seven days old. Following RNA extraction and a full

length cDNA synthesis, a PCR was carried out and visualised on an agarose gel to

provide a rough semi-quantitative analysis of the expression levels of the transcription

factor genes. In many cases the results were in consistent, but the consensus was used to

pick transformant lines for further analysis by RT PCR. The results of these analyses are

presently described.
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Initially, ten transformants (selected by BASTA spraying) were assayed for their bZIP1

(AT5G49450) expression via PCR of cDNA and visualised on a gel. The results from

which were not conclusive, but did indicate candidate over-expressing transformant

lines; these were latterly analysed by qRT-PCR (SYBR Green) for definitive

confirmation of bZIP1 over-expression. Seedlings of transformant lines 3, 5 and 8 were

100.1, 78.6 and 107.2 times greater in their expression of bZIP1 than Col 0 WT

seedlings (fig. 4.2.1). Additionally the bZIP1 expression of all the transformant lines

was significantly different from the Col 0 WT expression.

Figure 4.2.1 bZIP1 expression in 7-day-old seedlings of putative overexpressors relative
to Col 0 WT expression levels

Relative bZIP1 expression levels in 7-day-old Col 0 WT and putative bZIP1 over-expressing
(standardised against PEX4 expression) seedlings grown under long-day (16h light / 8h dark)
conditions at 20°C. Expression levels are relative to that of the Col 0 WT sample. The asterisk
(*) indicates those data sets which were outside the distribution of the Col 0 WT data set. Error
bars represent the Student’s t-distribution maxima and minima; df=4.
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Initially, ten transformants (selected by BASTA spraying) were assayed for their CBF1

(AT4G25490) expression via PCR of cDNA and visualised on a gel. The results from

which were conclusive, indicating just a single over-expressing transformant line; line

4. This was latterly analysed by qRT-PCR (Taqman®) for definitive confirmation of

CBF1 over-expression. Seedlings of transformant line 4 were 628.5 times greater in

their expression of CBF1 than Col 0 WT seedlings (fig. 4.2.2). Additionally the CBF1

expression of all the transformant lines was significantly different from the Col 0 WT

expression.

Figure 4.2.2 CBF1 expression in 7-day-old seedlings of putative overexpressors relative
to Col 0 WT expression levels

Relative CBF1 expression levels in 7-day-old Col 0 WT and putative CBF1 over-expressing
(standardised against PEX4 expression) seedlings grown under long-day (16h light / 8h dark)
conditions at 20°C. Expression levels are relative to that of the Col 0 WT sample. The asterisk
(*) indicates those data sets which were outside the distribution of the Col 0 WT data set. Error
bars represent the Student’s t-distribution maxima and minima; df=4.
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Initially, ten transformants (selected by BASTA spraying) were assayed for their

GATA21 (AT5G56860) expression via PCR of cDNA and visualised on a gel. The

results from which were not conclusive, but did indicate candidate over-expressing

transformant lines; these were latterly analysed by qRT-PCR (SYBR Green) for

definitive confirmation of GATA21 over-expression. Seedlings of transformant lines 1,

4 and 6 were 17.4, 10 and 13.3 times greater in their expression of GATA21 than Col 0

WT seedlings (fig. 4.2.3). Additionally the GATA21 expression of all the transformant

lines was significantly different from the Col 0 WT expression.

Figure 4.2.3 GATA21 expression in 7-day-old seedlings of putative overexpressors
relative to Col 0 WT expression levels

Relative GATA21 expression levels in 7-day-old Col 0 WT and putative GATA21 over-
expressing (standardised against PEX4 expression) seedlings grown under long-day (16h light /
8h dark) conditions at 20°C. Expression levels are relative to that of the Col 0 WT sample. The
asterisk (*) indicates those data sets which were outside the distribution of the Col 0 WT data
set. Error bars represent the Student’s t-distribution maxima and minima; df=4.
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Plants were dipped with A. tumefaciens carrying a 35S::GUS construct, transformants

from which were to be used as controls against which to compare the effects of

transcription factor overexpression. Initially, eight transformants (selected by BASTA

spraying) were assayed for their GUS expression via PCR of cDNA and visualised on a

gel. The results from which were not conclusive, but did identify candidate transformant

lines; these were latterly analysed by qRT-PCR (SYBR Green) for definitive

confirmation of expression of the 35S::GUS gene. Seedlings of transformant lines 3, 6

and 7 expressed GUS at 0.47, 0.67 and 0.49 times that of Col 0 WT seedlings (fig.

4.2.4). In transformant line 7 this difference was significant. GUS is not found in wild-

type so there should no GUS expression detected in the wild-type sample, and so its

presence suggests that the level of GUS expression in the putative transformants is

lower than what can be detected by qRT-PCR. Therefore analysis of GUS expressed in

the putative 35S::GUS transformants, revealed that none of the three lines selected from

semi-quantitative PCR were true transformants, but false positives.

Figure 4.2.4 GUS expression in 7-day-old seedlings of putative 35S::GUS transformants
elative to Col 0 WT expression levels

Relative GUS expression levels in 7-day-old Col 0 WT and putative 35S::GUS transformants
(standardised against PEX4 expression) seedlings grown under long-day (16h light / 8h dark)
conditions at 20°C. Expression levels are relative to that of the Col 0 WT sample. Error bars
represent the Student’s t-distribution maxima and minima; df=4.
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Ten transformants (selected by BASTA spraying) were assayed for their SRMYB

(AT5G47390) expression by qRT-PCR (Taqman®) relative to Col 0 WT expression.

Only transformant lines 3 and 10 had expression levels more than double that of Col 0

WT: 18.2 and 11.5 times respectively. Only with transformant line 10 was this

difference in expression significantly from Col 0 WT (fig. 4.2.5). These analyses

permitted the identification of which transformant lines were genuinely overexpressing

the particular transcription factor.

Figure 4.2.5 SRMYB expression in 7-day-old seedlings of putative overexpressors
relative to Col 0 WT expression levels

Relative SRMYB expression levels in 7-day-old Col 0 WT and putative SRMYB over-expressing
(standardised against PEX4 expression) seedlings grown under long-day (16h light / 8h dark)
conditions at 20°C. Expression levels are relative to that of the Col 0 WT sample. The asterisk
(*) indicates those data sets which were outside the distribution of the Col 0 WT data set. Error
bars represent the Student’s t-distribution maxima and minima; df=4.
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4.3 Effect of transcription factor over-expression on

DIN3 expression

The transcription factors under investigation were chosen for their putative role in the

regulating DIN3 expression in response to changes in environmental conditions, namely

extended darkness and chilling (§4.1). In order to test the hypothesis that these

transcription factors indeed have a role in regulating DIN3 expression, the transcription

factors were overexpressed singly in planta (§2.4.4; §4.2 ) and then the transformants

treated to three hours of light or darkness at 20°C or darkness at 5°C. The DIN3

expression within the seedlings was analysed following the treatments to determine

what, if any, effect the overexpression of the transcription factors had compared to wild-

type. The results of these analyses are considered presently.
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The DIN3 expression in the three transformant lines over-expressing bZIP1

(AT5G49450) demonstrated the characteristic dark induction, following three hours of

darkness at 20°C. The DIN3 expression of over-expressing lines 3, 5 and 8, following

the three hour dark treatment, was 2, 3.1 and 2.8 times that of DIN3 expression of the

light sample of Col 0 WT. The DIN3 expression of lines 3, 5 and 8 was 1.4, 2.1 and 1.9

times greater than the dark sample of Col 0 WT. In all cases these differences were

significant (fig. 4.3.1).

Figure 4.3.1 DIN3 Expression in 7-day-old Col 0 WT and bZIP1 over-expressing seedlings
following three hour light and dark ambient treatments

Relative DIN3 expression levels in 7-day-old Col 0 WT and putative bZIP1 over-expressing
(standardised against PEX4 expression) seedlings following 3h in light (white) or darkness
(grey) at 20°C. Expression levels are relative to that of the Col 0 WT light sample. The asterisk
(*) indicates those data sets which were outside the distribution of the corresponding light data
set. The dagger (†) indicates those data sets which were outside the distribution of the Col 0
WT dark data set. Error bars represent the Student’s t-distribution maxima and minima; df=4.
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The DIN3 expression in the transformant line over-expressing CBF1 (AT4G25490)

demonstrated the characteristic dark induction, following three hours of darkness at

20°C. The DIN3 expression of over-expressing line 4, following the three hour dark

treatment, was 2 times that of DIN3 expression of the light sample of Col 0 WT. The

dark DIN3 expression of Col 0 WT was 1.4 times greater than that of CBF1 over-

expressing line 4. However this difference was not significant (fig. 4.3.2).

Figure 4.3.2 DIN3 Expression in 7-day-old Col 0 WT and CBF1 over-expressing seedlings
following three hour light and dark ambient treatments

Relative DIN3 expression levels in 7-day-old Col 0 WT and putative CBF1 over-expressing
(standardised against PEX4 expression) seedlings following 3h in light (white) or darkness
(grey) at 20°C. Expression levels are relative to that of the Col 0 WT light sample. The asterisk
(*) indicates those data sets which were outside the distribution of the corresponding light data
set. Error bars represent the Student’s t-distribution maxima and minima; df=4.
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The DIN3 expression in the three transformant lines over-expressing GATA21

(AT5G56860) lacked the characteristic dark induction, following three hours of

darkness at 20°C. The DIN3 expression of over-expressing lines 3, 5 and 8, following

the three hour dark treatment, was 1.3, and 0.6 times that of DIN3 expression of the

light sample of Col 0 WT respectively. However the DIN3 expression of these lines

following three hours in the light was 1.2, 1.9 and 1.4 respectively. The dark DIN3

expression of Col 0 WT was 1.5 and 3 times greater than lines 3, 5 and 8 respectively.

However none of these differences were significant (fig. 4.3.3).

Figure 4.3.3 DIN3 Expression in 7-day-old Col 0 WT and GATA21 over-expressing
seedlings following three hour light and dark ambient treatments

Relative DIN3 expression levels in 7-day-old Col 0 WT and putative GATA21 over-expressing
(standardised against PEX4 expression) seedlings following 3h in light (white) or darkness
(grey) at 20°C. Expression levels are relative to that of the Col 0 WT light sample. The asterisk
(*) indicates those data sets which were outside the distribution of the corresponding light data
set. Error bars represent the Student’s t-distribution maxima and minima; df=4.
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The DIN3 expression in two out of the three putative 35S::GUS transformant lines

demonstrated the characteristic dark induction, following three hours of darkness at

20°C. The DIN3 expression of putative transformant lines 3, 6 and 7, following the

three hour dark treatment, was 1.4, 1.4 and 5 times that of DIN3 expression of the light

sample of Col 0 WT (constitutive). Notably line 6 lacked dark induction, with the light

DIN3 expression exceeding that of dark: 2.2 times wild-type expression. The dark DIN3

expression of Col 0 WT was 1.2 and 1.3 times greater than lines 3 and 6 respectively.

DIN3 expression of line 7 was 2.8 times greater than the dark sample of Col 0 WT.

However none of these differences were significant (fig. 4.3.4).

Figure 4.3.4 DIN3 Expression in 7-day-old Col 0 WT and 35S::GUS expressing seedlings
following three hour Light and Dark Ambient Treatments.

Figure 4.3.4 Relative DIN3 expression levels in 7-day-old Col 0 WT and putative 35::GUS
expressing (standardised against PEX4 expression) seedlings following 3h in light (white) or
darkness (grey) at 20°C. Expression levels are relative to that of the Col 0 WT light sample. The
asterisk (*) indicates those data sets which were outside the distribution of the corresponding
light data set. The dagger (†) indicates those data sets which were outside the distribution of the
Col 0 WT dark data set. Error bars represent the Student’s t-distribution maxima and minima;
df=4.
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The DIN3 expression in the three transformant lines over-expressing SRMYB

(AT5G47390) demonstrated the characteristic dark induction, following three hours of

darkness at 20°C. The DIN3 expression of over-expressing lines 3, and 10, following

the three hour dark treatment, was 1.4 and 2.2 times that of DIN3 expression of the light

sample of Col 0 WT. The DIN3 expression of line 10 was 1.5 times greater than the

dark sample of Col 0 WT. In line 10 the increase in DIN3 expression, following three

hours of darkness at 20°C, compared with Col 0 WT was significantly different (fig.

4.3.5).

Figure 4.3.5 DIN3 Expression in 7-day-old Col 0 WT and SRMYB over-expressing
seedlings following three hour light and dark ambient treatments

Figure 4.3.5 Relative DIN3 expression levels in 7-day-old Col 0 WT and putative SRMYB over-
expressing (standardised against PEX4 expression) seedlings following 3h in light (white) or
darkness (grey) at 20°C. Expression levels are relative to that of the Col 0 WT light sample. The
asterisk (*) indicates those data sets which were outside the distribution of the corresponding
light data set. The dagger (†) indicates those data sets which were outside the distribution of the
Col 0 WT dark data set. Error bars represent the Student’s t-distribution maxima and minima;
df=4.
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overexpressing GATA21 lost the characteristic induction of DIN3 expression following

a three hour dark treatment at 20°C as seen in the wild type seedlings. Instead they had

elevated DIN3 expression in the light compared to wild type and their own dark treated

samples. Only in two lines was the difference between the light and dark treatments

significant. Three independently transformed lines putatively expressing 35S::GUS had

no consistent DIN3 expression pattern between them. Two out of three exhibited a dark

induction and out of those two, one was expressed DIN3 at significantly lower levels,

the other at significantly higher levels. It is worth remembering that all these supposed

35::GUS expressing lines did so at lower levels than the wild type control (fig. 4.2.4).

This result adds further doubt as to whether these seedlings were 35S::GUS

transformants at all. Two independently transformed lines overexpressing SRMYB

exhibited the characteristic dark induction of DIN3 expression following a three hour

dark treatment at 20°C and did at a marginally higher magnitude than wild type.

However this difference was only significant in one line.
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4.4 Effect of the over-expression of transcription

factors

Transcription factors play an essential role in gene regulation. Their effects can be

subtle, which is best detected via gene expression analysis, or it may have a more

pronounced and discernable effect on the phenotype. And so it is in this section that the

results of monitoring the effects on the phenotypes, of transformant plants

overexpressing transcription factor genes, will be described. The overexpressors

(bZIP1: AT5G49450; CBF1: AT4G25490; GATA21: AT5G56860; SRMYB:

AT5G47390), chosen for their potentially significant effects on light/dark responses,

were previously analysed for changes in DIN3 expression (§4.3). The growth regimes

were designed to provide conditions under which the potential effects of the

overpression of the transcription factors might be seen. The overexpressors were grown

initially on 1% MS agar plates under long day conditions (16h:8h/light:dark) at 20°C for

7 days, after which individual seedlings were transplanted to peat discs. Each

transformant line was, at the point of transplantation, represented by 30 seedlings. 30

seedlings of Columbia 0 wild-type were also grown alongside for comparison. These 30

seedlings were divided into three batches of ten for two experiments.

Effect on dark-induced chlorosis

Two batches of ten 7-day-old seedlings of each overexpressing line were grown for a

further week under long-day conditions at 20°C, so that they were 14 days old at the

time of the commencement of the experiment. One of these batches of 14–day-old

seedlings was transferred to a greenhouse, with supplemented light to produce long day

conditions and with a median daytime temperature of 23°C. The other batch was kept in

a growth cabinet at 20°C, but deprived of light for 11 days.

Effect on growth under short-day conditions

A batch of ten 7-day-old seedlings of each overexpressing line, was grown for seven

weeks under short day conditions (8h:16h/light:dark) at 20°C. The short day grown

plants were analysed quantitatively by measuring their aerial fresh weight and number

of rosette leaves at the end of the 7 weeks. The aerial dry weight would have been a

better indicator as to the efficiency of biomass production, however only the fresh

weight was recorded. The number of leaves compared with the fresh weight provides a

measure of development. Additionally, photographs were taken of each plant prior to

harvest. This experiment provides a gross assessment of the effects of overexpressing
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the various transcription factor genes and crucially determines whether transcription

factor overexpression improves growth.

Results of growth under short-days

After seven weeks grown under short day conditions, the mean aerial fresh weight of all

the transformant lines of A. thaliana overexpressing bZIP1 was lighter than the mean of

the wild-type plants. The mean aerial fresh weight of transformant lines 3, 5 and 8 were

0.4, 0.36 and 0.62 times that of wild-type respectively, in all cases these differences

were significant at the 99.9% confidence level as determined by a two-tailed Student’s

t-test (fig. 4.4.1).

Plants overexpressing bZIP1 exhibit reduced biomass, producing around half the aerial

biomass of wild-type plants when grown under short day conditions.

Figure 4.4.1 Mean aerial fresh weight of 7-week-old A. thaliana plants overexpressing
bZIP1 compared to wild-type

Grey bars represent the mean aerial fresh weight of short-day grown 7-week-old A. thaliana
plants overexpressing bZIP1 and Columbia 0 wild-type. Error bars represent the standard error
of the mean. The asterisk (*) indicates those transformant lines whose means were significantly
different from Col 0 WT as determined by a two-tailed t-test (t-test results for transformant lines
3, 5 & 8 were all: p=<0.001; df=19; t critical= 2.1).
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After seven weeks grown under short day conditions, the mean aerial fresh weight of A.

thaliana plants overexpressing CBF1 was lighter than the mean of the wild-type plants.

The mean aerial fresh weight of transformant line 4 – the only transformant – was 0.15

times that of wild-type, this difference was significant at the 99.9% confidence level as

determined by a two-tailed Student’s t-test (fig. 4.4.2).

Plants overexpressing CBF1 produce less than one fifth the aerial biomass of wild-type

plants when grown under short day conditions. However there was only one

transformant line from which the plants overexpressing CBF1 were derived.

Figure 4.4.2 Mean aerial fresh weight of 7-week-old A. thaliana plants overexpressing
CBF1 compared to wild-type

Grey bars represent the mean aerial fresh weight of short-day grown 7-week-old A. thaliana
plants overexpressing CBF1 and Columbia 0 wild-type. Error bars represent the standard error
of the mean. The asterisk (*) indicates those transformant lines whose means were significantly
different from Col 0 WT as determined by a two-tailed t-test (t-test result for transformant line 4
was: p=<0.001; df=18; t critical= 2.2)
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After seven weeks grown under short day conditions, the mean aerial fresh weight of all

the transformant lines of A. thaliana overexpressing GATA21 was less than that of wild-

type. The mean aerial fresh weight of transformant lines 1, 4 and 6 were 0.62, 0.42 and

0.72 times that of wild-type respectively, in all cases these differences were significant

at the 99.9% confidence level as determined by a two-tailed Student’s t-test (fig. 4.4.3).

Plants overexpressing GATA21 exhibited a reduced biomass, producing less than two-

thirds the aerial biomass of wild-type plants when grown under short day conditions.

Figure 4.4.3 Mean aerial fresh weight of 7-week-old A. thaliana plants overexpressing
GATA21 compared to wild-type

Grey bars represent the mean aerial fresh weight of short-day grown 7-week-old A. thaliana
plants overexpressing GATA21 and Columbia 0 wild-type. Error bars represent the standard
error of the mean. The asterisk (*) indicates those transformant lines whose means were
significantly different from Col 0 WT as determined by a two-tailed t-test (t-test results for
transformant lines 1, 4 & 6 were all: p=<0.001; df=19 (Transformant 6 df=18); t critical= 2.1).
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After seven weeks grown under short day conditions, the mean aerial fresh weight of all

the transformant lines of A. thaliana overexpressing SRMYB was less than that of wild-

type. The mean aerial fresh weight of transformant lines 3, 10 and 11 were 0.67, 0.63

and 0.65 times that of wild-type respectively, in all cases these differences were

significant at the 99.9% confidence level as determined by a two-tailed Student’s t-test

(fig. 4.4.4).

Plants overexpressing SRMYB exhibit reduced biomass, producing around two-thirds

the aerial biomass of wild-type plants when grown under short day conditions. It is

worth considering comparing the growth effects seen in the MYB mutants (§4.3.4) to

these overexpressors. Two of the mutants had a mean aerial fresh weight significantly

different from wild-type. The first, 516B12, has a T-DNA insertion the SRMYB

(AT5G47390) promoter. This mutation did not create a significant change in the

SRMYB expression levels in 516B12 plants compared to wild-type. The second N90558

has an unconfirmed intron mutation and had expression levels similar to wild-type.

783B02, a mutant with significantly reduced SRMYB expression levels, did not exhibit

significantly different mean aerial fresh weight compared to wild-type. The

overexpression results combined with those of the SRMYB mutant lines suggest that

levels of SRMYB are important in plant productivity or growth rate, although it is

unlikely to be correlated directly to absolute transcript abundance.
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Figure 4.4.4 Mean aerial fresh weight of 7-week-old A. thaliana plants overexpressing
SRMYB compared to wild-type

Grey bars represent the mean aerial fresh weight of short-day grown 7-week-old A. thaliana
plants overexpressing SRMYB and Columbia 0 wild-type. Error bars represent the standard
error of the mean. The asterisk (*) indicates those transformant lines whose means were
significantly different from Col 0 WT as determined by a two-tailed t-test (t-test results for
transformant lines 3, 10 & 11 were all: p=<0.001; df=19 (Transformant 3 df=17); t critical= 2.1).
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After seven weeks grown under short day conditions, the mean number of rosette leaves

of all the transformant lines of A. thaliana overexpressing bZIP1 was lower than wild-

type. The mean number of rosette leaves found on transformant lines 3, 5 and 8 were

0.81, 0.79 and 0.93 times fewer respectively, than the mean number found on the wild-

type plants. In transformant lines 3 and 5 these differences were significant at the 99.9%

and in transformant 8 at the 95% confidence level as determined by a two-tailed

Student’s t-test (fig. 4.4.5).

Plants overexpressing bZIP1 appear to develop more slowly, producing, within seven

weeks, around four-fifths the number of rosette leaves as wild-type plants. It is worth

noting that the difference in rosette leaf number amongst the transformant lines of the

bZIP1 overexpressors, mirrors their pattern of bZIP1 well (fig. 4.2.1), whereby

transformants 3 and 8 have a very similar levels of expression: but with line 8 the

highest and with line 5 expressing bZIP1 at at lowest levels of the three. This pattern

has been reproduced above in the number of rosette leaves (fig. 4.4.5) and suggests that

levels of bZIP1 influence the development phenotype in a dose-dependent manner.
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Figure 4.4.5 Mean number of rosette leaves on 7-week-old A. thaliana plants
overexpressing bZIP1 compared to wild-type

Grey bars represent the mean number of rosette leaves on short-day grown 7-week-old A.
thaliana plants overexpressing bZIP1 and Columbia 0 wild-type. Error bars represent the
standard error of the mean. The asterisk (*) indicates those transformant lines whose means
were significantly different from Col 0 WT as determined by a two-tailed t-test (t-test results for
transformant lines 3, 5 & 8 were all: p=<0.001 (Transformant 8 p=<0.05); df=19; t critical= 2.1).
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After seven weeks grown under short day conditions, the mean number of rosette leaves

of all the A. thaliana plants of the single transformant line overexpressing CBF1 was

lower than wild-type. The mean number of rosette leaves found on transformant line 4

was 0.66 times fewer than the mean number found on the wild-type plants. This

difference was significant at the 99.9% confidence level as determined by a two-tailed

Student’s t-test (fig. 4.4.6).

Plants overexpressing CBF1 appear to develop more slowly, producing, within seven

weeks, just under two-thirds the number of rosette leaves as wild-type plants.

Figure 4.4.6 Mean number of rosette leaves on 7-week-old A. thaliana plants
overexpressing CBF1 compared to wild-type

Grey bars represent the mean number of rosette leaves on short-day grown 7-week-old A.
thaliana plants overexpressing CBF1 and Columbia 0 wild-type. Error bars represent the
standard error of the mean. The asterisk (*) indicates that plants of the single transformant line
had means significantly different from Col 0 WT as determined by a two-tailed t-test (t-test result
for transformant line 4 was: p=<0.001; df=18; t critical= 2.2)

0

5

10

15

20

25

30

4 COL WT

M
e
a
n

N
u

m
b

e
r

o
f

L
e
a
v
e
s

Transformant

*



168

After seven weeks grown under short day conditions, the mean number of rosette leaves

of all the transformant lines of A. thaliana overexpressing GATA21 was comparable to

wild-type. The mean number of rosette leaves found on transformant lines 1, 4 and 6

were 1.01, 0.77 and 0.99 times fewer respectively, than the mean number found on the

wild-type plants. In transformant lines 4 the difference was significant at the 99.9%

confidence level as determined by a two-tailed Student’s t-test (fig. 4.4.7).

Given that after seven weeks only one out of three of the transformant lines

overexpressing GATA21 had mean number of rosette leaves outside the distribution of

the mean of wild-type, with the others lying within, it is reasonable to deduce that plants

overexpressing GATA21 do not differ from wild-type in terms of their developmental

progress.

Figure 4.4.7 Mean number of rosette leaves on 7-week-old A. thaliana plants
overexpressing GATA21 compared to wild-type

Grey bars represent the mean number of rosette leaves on short-day grown 7-week-old A.
thaliana plants overexpressing GATA21 and Columbia 0 wild-type. Error bars represent the
standard error of the mean. The asterisk (*) indicates those transformant lines whose means
were significantly different from Col 0 WT as determined by a two-tailed t-test (t-test results for
transformant lines 4 was: p=<0.001; df=19; t critical= 2.1).
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After seven weeks grown under short day conditions, the mean number of rosette leaves

of all the transformant lines of A. thaliana overexpressing SRMYB was lower than wild-

type. The mean number of rosette leaves found on transformant lines 3, 10 and 11 were

0.73, 0.82 and 0.89 times fewer respectively, than the mean number found on the wild-

type plants. In all transformant lines these differences were significant at the 99.9% and

in transformant 11 at the 95% confidence level as determined by a two-tailed Student’s

t-test (fig. 4.4.8).

Plants overexpressing SRMYB appear to develop more slowly, producing, within seven

weeks, around four-fifths the number of rosette leaves as wild-type plants.

Figure 4.4.8 Mean number of rosette leaves on 7-week-old A. thaliana plants
overexpressing SRMYB compared to wild-type

Grey bars represent the mean number of rosette leaves on short-day grown 7-week-old A.
thaliana plants overexpressing SRMYB and Columbia 0 wild-type. Error bars represent the
standard error of the mean. The asterisk (*) indicates those transformant lines whose means
were significantly different from Col 0 WT as determined by a two-tailed t-test (t-test results for
transformant lines 3, 5 & 8 were all: p=<0.001 (Transformant DARK L9 p=<0.0.5); df=19
(Transformant L3 df=17); t critical= 2.1).
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Results Summary

Plants overexpressing bZIP1 had a substantial reduction in their aerial fresh weight after

seven weeks of growth compared to wild-type (fig. 4.4.1), however the number of

rosette leaves produced, although significantly different from wild-type, was only

reduced by a fifth of wild-type (fig. 4.4.5). This would suggest that the overexpression

of bZIP1 has implications on the production of aerial biomass, but little or no effect on

development. Considering the plants overexpressing CBF1, there was a dramatic

reduction in the aerial fresh weight: less than a fifth of that produced by the seven week

wild-type plants (fig. 4.4.2). The number of rosette leaves found on CBF1

overexpressing plants was similarly affected, although not as severely, with roughly a

third fewer leaves compared with wild-type (fig. 4.4.6). The combination of these

effects suggests the overexpression of CBF1 has profound deleterious effects on growth

and development. Plants overexpressing GATA21 were found to be around a third

lighter in their aerial fresh weight compared with wild-type plants (fig. 4.4.3), but with

very similar number of rosette leaves as wild-type after seven weeks growth (fig. 4.4.7).

Considering both these results, it is difficult indentify any strong effects associated with

the overexpression of GATA21. A reduction by about a third was seen in plants

overexpressing SRMYB compared to wild-type (fig. 4.4.4), a smaller reduction of

around a fifth was seen in the number of rosettes found on the same plants compared

with wild-type (fig 4.4.8). Given that both these reductions were of similar magnitude, it

could be suggested that the overexpression of SRMYB reduced overall rate of growth

and development.

The patterns described above, can be roughly identified from the photographs,

particularly those with the greatest fresh weight differences such as CBF1 (fig. 4.4.9).

There are some more qualitative remarks which can be made regarding the phenotypes

of the overexpressing lines which underwent seven weeks under short-day conditions.

bZIP1 overexpressors, especially lines 3 and 5 (fig. 4.4.9: A & B), had ‘spoon-shaped’

(Ichihashi et al., 2010) leaves when compared to wild-type (fig. 4.4.9: N), characterised

by an elongated petiole with a circular leaf, whereas wild-type had a more elliptical leaf

which started more proximally up the petiole. CBF1 overexpressors (fig. 4.4.9: D)

appeared very stunted in their growth and vertical height compared to wild-type, with

darker leaves to wild-type but with normal morphology, which accords with

observations made about CBF1 overexpressors in the literature (Gilmour et al., 2004).

Plants overexpressing GATA21 did not exhibit any phenotypes that distinguished them
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from wild-type. SRMYB overexpressing plants (fig. 4.4.9: H – J) demonstrated a slightly

elongated petiole, but not as extreme as bZIP1.



Figure 4.4.9 Photographs of 7-week-old A. thaliana plants overexpressing transc

Photographs of a single, seven week old representative
20°C. bZIP1 3, 5 & 8: A – C; CBF1: D; GATA21 1, 4 & 6: E
4500.

172

plants overexpressing transcription factor genes grown under short

Photographs of a single, seven week old representative A. thaliana plant from each overexpressing line ground under short day conditions (8h:16h;light/dark) at
1, 4 & 6: E – G; SRMYB 3, 10 DARKL9: H – J; Col 0 WT: K. Bar = 40mm. Photographs taken with a Nikon CoolPix

ription factor genes grown under short-day conditions

plant from each overexpressing line ground under short day conditions (8h:16h;light/dark) at
J; Col 0 WT: K. Bar = 40mm. Photographs taken with a Nikon CoolPix
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Results of prolonged darkness treatment

The expression of DIN3 has been shown to be induced by periods of prolonged

darkness (Fujiki et al., 2000) (§3.5/6). Conditions such as those used in the experiments

of this project cause plants to experience sugar starvation, since at the end of the night-

period, plants possess only a small amount of starch (Gibon et al., 2004) – most has

been turned over during the night to support respiration. It is therefore instructive to

consider the effects which the overexpression of transcription factors, implicated in

light/dark response, have on the adaptation to even longer periods of darkness which are

likely to start the processes of starvation-induced autophagy and/or senescence

(Hanaoka et al., 2002).

The onset of chlorosis appeared to be the same for all the overexpressing lines of bZIP1

and wild-type, occurring at most after four days in complete darkness at 20°C. Chlorosis

progressed slowly between the fourth and eighth days, with the degree of chlorosis

similar amongst both the overexpressing lines and wild-type. However transformant line

5 overexpressors and wild-type plants generally yellowed more rapidly. By 11th day, the

wild-type plants reached the maximum level of chlorosis: 10; characterised by having

not a single green leaf on any of the plants. A large increase in the extent of chlorosis

was delayed until after the eighth day in the overexpressing lines, with transformant line

5 reaching the maximum degree of senescence followed by line 3 at third less and line 8

a quarter (ratio) of the degree of chlorosis exhibited by transformant line 5 and wild-

type. Amongst the control plants (kept under long-days), the chlorosis factor of bZIP1

overexpressors 3, 5 and 8 was 0.1, 0.9 and 0.8 respectively; for wild-type this was 0.3.

Two out of three of the transformant lines overexpressing bZIP1 included plants whose

degree of chlorosis was considerably lower than wild-type (fig. 4.4.10). All three

transformant lines expressed bZIP1 at levels far exceeding wild-type, however lines 3

and 8 expressed bZIP1 at greater levels than line 5 (fig. 4.2.1).
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Figure 4.4.10 Observed chlorosis in A. thaliana plants of transformant lines
overexpressing bZIP1 treated with complete darkness at 20°C for 11 days compared to
wild-type

Ten 14-day-old A. thaliana plants of independently transformed lines 3 (light grey), 5 (mid grey)
and 8 (black) overexpressing bZIP1 and wild-type (white bars), grown under long day conditions
(16h:8h/light:dark) at 20°C were then moved to complete darkness at 20°C. The observed
development of chlorosis is summarised in this figure as ‘Degree of Chlorisis’ which is the ratio
of number of plants (out of 10) which had ≥1 yellow leaves to the number which had ≥1 green
leaves. These data were extracted from photographs taken at the time intervals indicated.
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The onset of chlorosis appeared to be the same for all the overexpressing lines of CBF1

and wild-type, occurring at most after four days in complete darkness at 20°C. Chlorosis

progressed slowly between the fourth and eighth days, with the degree of chlorosis of

the plants overexpressing CBF1 usually exhibited half that of wild-type. By 11th day,

the wild-type plants reached the maximum level of chlorosis: 10. With the CBF1

overexpressing plants the increase in the degree of chlorosis increase between the eighth

and 11th days of the dark treatment so that by the end, the degree of chlorosis was 1.4 as

opposed to 10 in the wild-type plants (fig. 4.4.11). Amongst the control plants (kept

under long-days), the degree of chlorosis in the plants overexpressing CBF1 was 0

compared with 0.3 for wild-type. Onset of chlorosis is much delayed in plants

overexpressing CBF1 compared with wild-type.

Figure 4.4.11 Observed chlorosis in A. thaliana plants of transformant lines
overexpressing CBF1 treated with complete darkness at 20°C for 11 days compared to
wild-type

Ten 14-day-old A. thaliana plants of independently transformed lines overexpressing CBF1
(black bars) and wild-type (white bars), grown under long day conditions (16h:8h/light:dark) at
20°C were then moved to complete darkness at 20°C. The observed development of chlorosis
is summarised in this figure as ‘Degree of Chlorosis’ which is the ratio of number of plants (out
of 10) which had ≥1 yellow leaves to the number which had ≥1 green leaves. These data were
extracted from photographs taken at the time intervals indicated.
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The onset of chlorosis appeared to be the same for all the overexpressing lines of

GATA21 and wild-type, occurring at most after four days in complete darkness at 20°C.

Chlorosis progressed appreciably in the same manner amongst both the overexpressing

lines and wild-type. By the 11th day wild-type plants had reached the maximum level of

chlorosis: 10 as well as two out of three of the overexpressing lines (4 and 6) and line 1

half that extent. Amongst the control plants (kept under long-days), the degree of

chlorosis of GATA21 overexpressors 1, 4 and 6 was 0.2, 0.4 and 0 respectively; for

wild-type this was 0.3. Overall the transformant lines overexpressing GATA21 exhibited

no appreciable difference in the progress of chlorosis and two out of three of the lines

reached the maximum degree of chlorosis by the 11th day matching that of wild-type

(fig. 4.4.12).

Figure 4.4.12 Observed chlorosis in A. thaliana plants of transformant lines
overexpressing GATA21 treated with complete darkness at 20°C for 11 days compared to
wild-type

Ten 14-day-old A. thaliana plants of independently transformed lines 1 (light grey), 4 (mid grey)
and 6 (black) overexpressing GATA21 and wild-type (white bars), grown under long day
conditions (16h:8h/light:dark) at 20°C were then moved to complete darkness at 20°C. The
observed development of chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which
is the ratio of number of plants (out of 10) which had ≥1 yellow leaves to the number which had
≥1 green leaves. These data were extracted from photographs taken at the time intervals
indicated.
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The onset of chlorosis occurred at different times for the overexpressing lines of

SRMYB and wild-type, with wild-type and lines 3 and 10 occurring at most after four

and line 11 after six days in complete darkness at 20°C. Until the eighth day of the

treatment wild-type the progression of chlorosis amongst the wild-type plants was more

advanced. There were some signs of chlorosis amongst lines 3 and 10 on the fourth day,

however it was not until the six day that their degree of chlorosis become more similar

but still slightly lower than wild-type. By the sixth day line 11 had also caught up with

the other transformant lines overexpressing SRMYB. On the eighth day, the extent of

chlorosis in plants of SRMYB lines 3 and 11 had progressed beyond wild-type and line

10. Following another three days in complete darkness the wild-type plants had reached

the maximum level of chlorosis, matched by line 11. SRMYB lines 3 and 10 exhibited

just under a half and a quarter the levels of chlorosis seen in either the line 11 or wild-

type plants. Two out of three transformant lines overexpressing SRMYB, had plants

whose degree of chlorosis was considerably lower than wild-type (fig. 4.4.13).

Comparing the final extent of chlorosis between SRMYB lines 3 and 10 and their

relative SRMYB expression levels (fig. 4.2.5), it is reasonable to suggest that the greater

extent of chlorosis in line 3 is due to its higher expression of SRMYB compared to line

10. SRMYB overexpressing line 11 was produced previously using a different 35S

expression vector to the other two SRMYB overexpression lines. A Northern blot found

very high levels of SRMYB expression in this line (data not shown). However its

expression was not compared with the other SRMYB lines via qRT-PCR. Along with the

mean fresh weight (fig. 4.4.4) this result emphasises that the level of SRMYB transcript

has a dramatic effect on growth and development as well as the response to starvation-

induced chlorosis. However since there is no one SRMYB overexpressor phenotype,

especially in terms of autophagy /senescence, it is not merely the absolute levels of

SRMYB transcript which mediate this effect, since all lines expressed SRMYB at many

times the levels found in wild-type plants. Instead the different levels of SRMYB seen in

the three overexpressors must cause a different physiological response.
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Figure 4.4.13 Observed chlorosis in A. thaliana plants of transformant lines
overexpressing SRMYB treated with complete darkness at 20°C for 11 days compared to
wild-type

Ten 14-day-old A. thaliana plants of independently transformed lines 3 (light grey), 10 (mid
grey) and 11 (black) overexpressing SRMYB and wild-type (white bars), grown under long day
conditions (16h:8h/light:dark) at 20°C were then moved to complete darkness at 20°C. The
observed development of chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which
is the ratio of number of plants (out of 10) which had ≥1 yellow leaves to the number which had
≥1 green leaves. These data were extracted from photographs taken at the time intervals
indicated.

Results Summary

The starvation-induced chlorosis patterns observed in the overexpressing lines can be

divided into two principal groups. The first are those plants which have a broadly

similar pattern to wild-type and included GATA21 overexpressors. These had two out of

three of their overexpressing lines with the same degree of chlorosis at the end of the 11

day dark treatment. These two lines did have chlorosis profiles which different appeared

different to wild-type in the progression to the final stages of chlorosis (fig. 4.4.12). The

second group contain those plants, the majority of which had a considerably lower

degree of chlorosis at the end of the 11 day dark treatment compared to wild-type and

included plants overexpressing bZIP1, CBF1 and SRMYB (figs. 4.4.10/11/13). All of

these lines had two out of three of their transformant lines with degrees of chlorosis at

least less than half of that of wild-type. In all cases the chlorosis profiles were different

to wild-type: bZIP1 took longer to enter into the latter stages of chlorosis (fig. 4.4.10),
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CBF1 never reached the latter stages within the 11 days (fig. 4.4.11) and two out of

three of the SRMYB lines progressed and consistently slower rate to wild-type (fig.

4.4.13).
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4.5 Comparison of SRMYB expression between

mutants and Col 0 WT

In addition to using seedlings overexpressing SRMYB to investigate the effect of the

SRMYB transcription factor on DIN3 expression and growth and development,

seedlings with lesions caused by point mutations or T-DNA insertions in their SRMYB

gene were tested for the effect of SRMYB at the other end of its expression range. In

designing experiments using these tilling lines there was the assumption that the tilling

lines would have reduced SRMYB expression compared to wild-type. For sound

conclusions to be drawn from subsequent experiments using the tilling lines, this

assumption would have to be proved correct.

The tilling line accessions N90558, 516B12, 783B02 came through a preliminary

screen, using semi-quantitative PCR using full length cDNA, as having potentially

altered SRMYB expression levels compared to wild-type. A more definitive analysis was

required and the results of the qRT-PCR analysis are considered presently.

The qRT-PCR analysis of SRMYB expression carried out on the SRMYB tilling lines

was relative to the SRMYB expression found in Col 0 WT. All the tilling lines

demonstrate altered SRMYB expression compared with to wild-type expression levels.

In lines N90558 and 516B12 SRMYB expression is 0.98 and 0.88 times that of wild-type

respectively and was found not to be significantly different from wild-type expression

in this analysis. Line 783B02 however, demonstrated dramatically lower expression:

0.18 times that of wild-type expression which was found to be significantly different at

the 95% confidence level (fig. 4.5.1).

This analysis shows that the lesions to the SRMYB gene possessed by the tilling lines

did in fact alter SRMYB expression compared with wild-type. Whilst only in one

accession, 783B02, was expression significantly reduced compared with wild-type, both

the other accessions were lower in recorded SRMYB expression. Crucially for the

purposes of the latter experiments, all the tillings were confirmed not to express SRMYB

at greater levels than wild-type.
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Figure 4.5.1 SRMYB expression amongst 7-day-old seedlings of SRMYB tilling lines
relative to Col 0 WT expression levels.

Relative SRMYB expression levels in 7-day-old seedlings of SRMYB mutant lines (standardised
against PEX4 expression) and Col 0 WT grown under long day (16h/8h light/dark) at 20°C.
Expression levels are relative to the Col 0 WT sample. The asterisk (*) indicates those data sets
which were outside the distribution of the Col 0 WT data set. Error bars represent the Student’s
t-distribution maxima and minima; df=4.
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4.6 Analysis of DIN3 expression in SRMYB tilling lines

under various conditions

As explained in the previous section, the use of SRMYB tilling lines with reduced

expression levels of SRMYB (§4.5), a transcription factor with a putative regulatory role

over DIN3, provides additional information in the investigation of this role but at the

other end of the SRMYB expression level range to the experiments using lines

overexpressing SRMYB.

The approach of the experiment was the same, seedlings of the three tilling line

accessions, N90558, 516B12 and 783B02, were grown alongside Col 0 WT to 7 days

old and then treated with either three hours of light or darkness at 20°C or darkness at

5°C, in order to investigate what effect, if any, reduced levels of SRMYB subsequently

had on the expression of DIN3 under these environmental conditions. Expression levels

of DIN3 were analysed by qRT-PCR.

DIN3 expression amongst the seedlings of the SRMYB tilling lines mirrored the

characteristic expression pattern seen in the Col 0 WT: an induction in DIN3 expression

following a period of extended darkness at 20°C, with repression if carried out at 5°C.

The dark-induction of DIN3 expression was weaker than Col 0 WT in tilling lines

N90558 and 516B12, both 1.2 times the DIN3 expression seen in the light sample of

Col 0 WT (constitutive). The overall magnitude of DIN3 expression in tilling line

783B02 was greater than Col 0 WT. Three hours of darkness at 20°C elicited a strong

induction in DIN3 expression, 2.5 times that of constitutive. In all cases the dark-

induced expression of DIN3 was greater than the light sample; in the case of 783B02, as

with Col 0 WT, these were significantly different.

Mirroring Col 0 WT, there was a repression of the dark-induction of DIN3 expression

following three hours of darkness at 5°C in tilling lines N90558, 516B12 and 783B02:

0.98, 1.1 and 1.4 times constitutive respectively (fig. 4.6.1).

It is also important to compare the dark-induced DIN3 expression of the tilling lines

with that of Col 0 WT. Following three hours of darkness at 20°C the DIN3 expression

of tilling lines N90558, 516B12 and 783B02 were 0.82, 0.83 and 1.66 times that of the

Col 0 WT expression level. Only the 783B02 expression was found to be significant

(fig. 4.6.1).
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In all tilling lines the characteristic dark-induction and cold repression of DIN3

expression was seen. This dark induction was greatest in the 783B02 seedlings, whose

DIN3 expression was significantly greater than Col 0 WT. Lines N90558 and 516B12

did not exhibition DIN3 expression level significantly different to Col 0 WT, but were

slightly lower overall. It is evident then than lesions to the SRMYB gene which result in

a reduction of SRMYB expression to varying degree result in a change in DIN3

expression levels, but not the character of the response to changes in environmental

conditions.

Figure 4.6.1 DIN3 expression in 7-day-old SRMYB tilling line seedlings relative to Col 0
WT following three hour light and dark ambient and dark cold treatments.

Relative DIN3 expression levels in 7-day-old SRMYB tilling line seedlings (standardised against
PEX4 expression) seedlings after 3h ambient (20°C) light (white), dark (light grey) or dark cold
(5°C) (dark grey) treatments. Expression levels are relative to the light sample of Col 0 WT. The
asterisk (*) indicates those data sets which were outside the distribution of the corresponding
light ambient (20°C) data set. Error bars represent the Student’s t-distribution maxima and
minima; df=9.
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4.7 Growth effects of SRMYB tilling and T-DNA lines

Earlier work (Knight, H., unpublished) using three tilling lines and two others with T-

DNA insertions within the SRMYB revealed novel phenotypes arising when these plants

were grown under short-day conditions. With the putative role of SRMYB as a negative

regulator of sugar state, it was considered instructive to design an experiment to

investigate this. The experiment sought to achieve this by observing the phenotype and

response to short-days (8h:16h/light:dark) for nine weeks and prolonged darkness at

20°C and 5°C (20 and 49 days respectively), all treatments which decrease the

availability of carbon from photosynthesis to a lesser or greater degree, in MYB mutant

plants compared with those of wild-type.

The short-day grown plants were analysed quantitatively by measuring their aerial fresh

weight, but also by taking photographs during the last few weeks of the experiment to

monitor the emergence of a specific senescing phenotype (Dong et al., 2009). The other

two experiments treating the MYB line plants to either complete darkness at 5 or 20°C

were photographed at day 0, 5, 7, 10, 13, 20, 24, 31, 38, 45 and 49. Latterly, a

comparison was made of the ratio of the number of plants, of each line, of each

treatment temperature, which had ≥1 yellow leaf to the number of plants which had ≥1

green leaf. In each case this ratio is compared alongside Col 0 wild-type plants; the

wild-type data are not pair-wise comparisons rather the same wild-type data is use each

time. This analysis permitted the charting of the course of the dark-induced senescence

comparing the effects of both temperature and mutations to the SRMYB gene.
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Results of growth under short-days

Following nine weeks growing under short-days at 20°C a variation in the mean aerial

fresh weight of the tilling and T-DNA insertion lines emerged when compared to wild-

type. Plants of two of the tilling lines, N92046 and N94640, were almost identical in

their mean fresh weight compared to wild-type 0.98 and 0.97 times the mean fresh

weight of wild-type. Plants of T-DNA insertion line 783B02 had a lower mean fresh

weight compared to wild-type: 0.85 times that of wild-type (fig. 4.7.1). However a two-

tailed Student’s t-test revealed this difference not to be significant at the 95%

confidence level. Plants of tilling line N90558 and T-DNA insertion line 516B12 had

mean aerial fresh weights 0.7 and 0.63 times that of wild-type, both these differences

were found to be significant at the 99.9% confidence level by a two-tailed Student’s t-

test.

Figure 4.7.1 Mean aerial fresh weight of short-day grown 9-week-old A. thaliana plants of
EMS tilling lines or T-DNA insertional SRMYB mutants compared to wild-type

Grey bars represent the mean aerial fresh weight of 9-week-old A. thaliana plants (grown under
short-days (8h:16h/light:dark) at 20°C) of EMS (tilling) lines and T-DNA insertional SRMYB
mutants compared to wild-type. Error bars represent the standard error of the mean. The
asterisk (*) indicates those transformant lines whose means were significantly different from Col
0 WT as determined by a two-tailed t-test (t-test results for N90558 and 516B12 were both:
p=<0.001; df=18; t critical= 2.2).
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Qualitative comparisons can be made of particular phenotypes which arose after nine

weeks under short-day conditions. This wild-type short-day phenotype was

characterised by a darker green inner rosette with narrow in-rolling leaves, and in the

outer rosette some senescing leaves, identified by a yellow (chlorosis) and/or purple

(indicative of anthocyanin accumulation; (Peng et al., 2008) tint. The SRMYB tilling

lines did not exhibit phenotypes distinguishable from wild-type during the course of the

nine weeks of ground under short-day conditions (fig. 4.7.2: A – C). They did match the

wild-type plants in their phenotypic response to growth in short-day conditions with

senescence of their older outer rosette leaves. The SRMYB T-DNA lines had identifiable

differences in their short-day phenotypes with 516B12 exhibiting the symptoms

senescence to a greater degree and more extensive in terms of the number of leaves

affected (fig. 4.7.2: D). 783B02 had extensive chlorosis amongst its old outer rosette

leave and senescence appeared to be restricted to these leaves. Notably 783B02 plants

lacked any purple tint to senescing leaves, which may suggest a lack of anthocyanin

accumulation. Where senescence was in progress a characteristic phenotype was seen

manifested by banded yellow and green leaves (fig. 4.7.2: E1). The centre of the rosette

remained a very dark green (fig. 4.7.2: E).



Figure 4.7.2 Photographs of ni

Photographs of a single, nine
tilling or T-DNA line or Col 0 WT, ground under short
N90558: A; N92046: B; N94640: C; 516B12: D; 783B02: E; detail of 783B02 leaf senescence
phenotype: E1. Bar = 40mm. Photographs taken with a Nikon CoolPix 4500.

Figure 4.7.2 Photographs of nine-week-old A. thaliana grown under short

Photographs of a single, nine- week-old representative A. thaliana plant from each a
DNA line or Col 0 WT, ground under short-day conditions (8h:16h;light/dark) at 20
; N92046: B; N94640: C; 516B12: D; 783B02: E; detail of 783B02 leaf senescence

phenotype: E1. Bar = 40mm. Photographs taken with a Nikon CoolPix 4500.

187

grown under short-day conditions.

plant from each a SRMYB
day conditions (8h:16h;light/dark) at 20°C.

; N92046: B; N94640: C; 516B12: D; 783B02: E; detail of 783B02 leaf senescence
phenotype: E1. Bar = 40mm. Photographs taken with a Nikon CoolPix 4500.
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Results of prolonged darkness treatment

Differences are identifiable in both the onset and rate of senescence between the

temperature treatments carried out on the light starved plants. In both tilling line

N90558 and wild-type senescence began earlier in those plants in darkness at 20°C

compared with 5°C, with onset occurring at least 15 and 19 days earlier in plants of

N90558 and wild-type respectively (fig. 4.7.3). The progression of senescence at 20°C

remained broadly the same up to 10 days into the dark treatment, after which

senescence appeared to proceed more rapidly in the wild-type plants, and their degree of

senescence was greater than those of N90558. The onset of senescence occurred earlier

in the wild-type plants at 5°C and their senescence continued more rapidly compared

with the N90558 plants (fig. 4.7.3).

Figure 4.7.3 Observed chlorosis in A. thaliana plants of EMS tilling line N90558 treated
with complete darkness at 5 and 20°C for 49 days compared to wild-type

Ten, 16-day-old A. thaliana plants of tilling line N90558 (patterned bars) and wild-type (solid
bars), grown under long day conditions (16h:8h/light:dark) at 20°C were then moved to
complete darkness at either 5 (white bars) or 20°C (grey bars). The observed development of
chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which is the ratio of number of
plants (out of 10) which had ≥1 yellow leaves to the number which had ≥1 green leaves. These
data were extracted from photographs taken at the time intervals indicated.
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The same overall differences were identifiable in both the onset and rate of senescence

between the temperature treatments carried out on these light starved plants. In both

tilling line N92046 and wild-type chlorosis began earlier in those plants in darkness at

20°C compared with 5°C, with onset occurring at least 15 and 20 days earlier in wild-

type and plants of N92046 respectively (fig. 4.7.4). The progression of chlorosis at 20°C

appeared to proceed more rapidly in the N92046 plants, and their degree of chlorosis

was greater than those of wild-type. Whilst the onset of senescence occurred

simultaneously between the plant types at 5°C, the progression of chlorosis continued

more rapidly in those of wild-type compared with the N90558 plants (fig. 4.7.4).

Figure 4.7.4 Observed chlorosis in A. thaliana plants of tilling line N92046 treated with
complete darkness at 5 and 20°C for 49 days compared to wild-type

Ten, 16-day-old A. thaliana plants of tilling line N92046 (patterned bars) and wild-type (solid
bars), grown under long day conditions (16h:8h/light:dark) at 20°C were then moved to
complete darkness at either 5 (white bars) or 20°C (grey bars). The observed development of
chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which is the ratio of number of
plants (out of 10) which had ≥1 yellow leaves to the number which had ≥1 green leaves. These
data were extracted from photographs taken at the time intervals indicated.
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The same overall differences were identifiable in both the onset and progression of

chlorosis between the temperature treatments carried out on these light starved plants. In

both tilling line N94640 and wild-type chlorosis began earlier in those plants in

darkness at 20°C compared with 5°C, with onset occurring at least 15 days earlier in

both types plants (fig. 4.7.5). The progression of chlorosis at 20°C at first appeared to

proceed more rapidly in the wild-type plants. However N94640 caught up and

proceeded at broadly the same pace until overtaking with twice the degree of chlorosis

compared to wild-type. Whilst the onset of chlorosis occurred simultaneously between

the plant types at 5°C, the progression of chlorosis continued more rapidly in those of

wild-type compared with the N94640 plants, where it seemed to progress very slowly

after 20 days and never reaching the same extent as wild-type (fig. 4.7.5).

Figure 4.7.5 Observed chlorosis in A. thaliana plants of tilling line N94640 treated with
complete darkness at 5 and 20°C for 49 days compared to wild-type

Ten, 16-day-old A. thaliana plants of tilling line N94640 (patterned bars) and wild-type (solid
bars), grown under long day conditions (16h:8h/light:dark) at 20°C were then moved to
complete darkness at either 5 (white bars) or 20°C (grey bars). The observed development of
chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which is the ratio of number of
plants (out of 10) which had ≥1 yellow leaves to the number which had ≥1 green leaves. These
data were extracted from photographs taken at the time intervals indicated.
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The same overall differences were identifiable in both the onset and progression of

chlorosis between the temperature treatments carried out on these light starved plants. In

both T-DNA line 516B12 and wild-type chlorosis began earlier in those plants in

darkness at 20°C compared with 5°C, with onset occurring at least 15 days earlier in

both types plants (fig. 4.4.6). The progression of chlorosis at 20°C appeared to proceed

much more rapidly in the 516B12 plants, and their degree of chlorosis was twice that of

wild-type. The progression of chlorosis at 5°C was broadly the same between the plant

types, however wild-type overtook the 516B12 plants after the 24th day, and chlorosis in

516B12 plants progressed more slowly never reached the same degree as wild-type (fig.

4.7.6).

Figure 4.7.6 Observed chlorosis in A. thaliana plants of T-DNA line 516B12 treated with
complete darkness at 5 and 20°C for 49 days compared to wild-type

Ten, 16-day-old A. thaliana plants of T-DNA line 516B12 (patterned bars) and wild-type (solid
bars), grown under long day conditions (16h:8h/light:dark) at 20°C were then moved to
complete darkness at either 5 (white bars) or 20°C (grey bars). The observed development of
chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which is the ratio of number of
plants (out of 10) which had ≥1 yellow leaves to the number which had ≥1 green leaves. These
data were extracted from photographs taken at the time intervals indicated.
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The same overall differences were identifiable in both the onset and progression of

chlorosis between the temperature treatments carried out on these light starved plants. In

both T-DNA line 783B02 and wild-type chlorosis began earlier in those plants in

darkness at 20°C compared with 5°C, with onset occurring at least 5 and 19 days earlier

in plants of 783B02 and wild-type respectively (fig. 4.7.7). The progression of chlorosis

at 20°C at first appeared to proceed more rapidly in the 783B02 plants, however wild-

type caught up around the 10th day and proceeded at broadly the same pace until

overtaking with more than eight times the degree of chlorosis compared to 783B02. The

onset of chlorosis occurred much earlier in the 783B02 plant types at 5°C, which began

senescing at least 10 days before wild-type. The progression of chlorosis in the 783B02

plants continued very much more rapidly compared with those of wild-type, and also

reached at least twice the degree of senescence (fig. 4.7.7).

Figure 4.7.7 Observed chlorosis in A. thaliana plants of T-DNA line 783B02 treated with
complete darkness at 5 and 20°C for 49 days compared to wild-type

Ten, 16-day-old A. thaliana plants of T-DNA line 783B02 (patterned bars) and wild-type (solid
bars), grown under long day conditions (16h:8h/light:dark) at 20°C were then moved to
complete darkness at either 5 (white bars) or 20°C (grey bars). The observed development of
chlorosis is summarised in this figure as ‘Degree of Chlorosis’ which is the ratio of number of
plants (out of 10) which had ≥1 yellow leaves to the number which had ≥1 green leaves. These
data were extracted from photographs taken at the time intervals indicated.
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Results Summary

The effect of growth under short-days was analysed by mean aerial fresh weight, from

this three groups within the EMS tilling and T-DNA insertional mutant lines emerged.

The first includes lines N90558 and 516B12 which had significantly smaller mean

aerial fresh weights compared to wild-type. The second includes 783B02 alone, which

although having a mean fresh weight lower than wild-type; however it was not

significantly different at the 95% confidence level. The third group contains lines

N92046 and N94640 whose mean aerial fresh weight was effectively the same as wild-

type. Two phenotypes were identified visually after seven weeks under short-day

conditions: 516B12 exhibiting chlorosis and signs of anthocyanin accumulation to a

much greater extent than wild-type; 783B02 had accelerated chlorosis of outer rosette

leaves, but delayed senescence of inner rosette, with a characteristic banded appearance

of senescing leaves.

Considering the senescence analysis, the tilling and T-DNA lines can again be divided

into groups according to their response to the temperature treatment. Two senescing

phenotypes were identified for the 5°C treatment, the first included all but 783B02 and

were characterised by chlorosis proceeding at a slower rate and never reaching the same

degree as wild-type. The second included just 783B02 and characterised by accelerated

chlorosis at 5°C and reaching a greater than wild-type. There were also three distinct

chlorosis onset phenotypes observed in the 5°C treated plants, the first was later onset

and included N90558, where chlorosis appeared at most four days later than wild-type.

The second included N92046, N94640 and 516B12 where chlorosis onset was identical

to wild-type. The third group included 783B02 alone and was characterised by an early

start to senescence around 10 days sooner than wild-type. Two principal phenotypic

groups were seen in the 20°C treated plants, the first including N90558 and 783B02

characterised by a slower or similar progression of senescence, respectively and both

with a lesser degree of senescence compared with wild-type. The second included the

rest: N92046, 516B12 and N94640 whose senescence at 20°C proceeded more rapidly

or at a similar rate, respectively and both to a greater degree than wild-type. The onset

of chlorosis at 20°C was identical in all plant lines to wild-type.
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5. Discussion

Aims and approaches

The discovery of the minimal functional DIN3 promoter narrowed the location of the

regulatory sequences, responsible for conferring the dark-responsiveness, to a 50bp

portion between 300 and 250bp upstream of the site of transcription initiation (Knight,

H., unpublished). It was the aim of this project to identify which cis-acting elements

were crucial for the dark-responsiveness by the Fujiki group as well as investigating the

contribution of trans-acting factors that have been reported in the literature as being

associated with the identified regulatory motifs. The first aim to identify the cis-acting

elements was achieved via linker-scan mutation analysis, which replaced 6bp portions

of the essential 50bp with an EcoRI site, so that every cis-acting motif would be

disrupted by at least one linker-scan line and the effect on expression analysed. The role

of candidate trans-acting factors was investigated by observing the effects constitutive

over-expression or mutation of the transcription factor gene had on DIN3 expression

and phenotype under limiting growth conditions. In this way, it was the hope of this

study to demonstrate the mechanism by which darkness responsiveness is conferred on

DIN3. Early in the course of the project, qRT-PCR gene expression analysis of DIN3

revealed that low temperature (5°C) in darkness failed to induce expression. Therefore

the aims of the project were extended into include the investigation of which cis- and

trans-acting regulatory factors were responsible for the cold repression of DIN3

expression.

Regulatory cis-acting motifs and associated transacting factors

MYBS1 / SRMYB (TATCCA/T)

Cis-acting element

The first motif to be disrupted was MYBST1 / MYBS1 (AGGATA/TATCCT) – the

putative sugar responsive MYB binding site (SRMYB). The binding site itself was

disrupted by scan lines 3 and 4 (Table 3.1.5) and resulted in a loss of dark induction of

the DIN3::LUC reporter expression (Table 3.6.1). Interestingly, scan line 2 also resulted

in a loss of DIN3::LUC dark induction without actually disrupting the motif itself. This

may be due to disruption of 5’ flanking region important for a putative AtMYBS1

homodimer, working in an analogous manner to OsMYBS1 described in rice (Lu et al.,

2002). In promoter of rice (Oryza sativa) α-amylase-3 (αAmy3) there is sugar response

sequence (SRS) made up of three cis-acting elements: the GC-box, G-box and the
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TATCCA element; disruption of any one of these resulted in loss of dark / sugar

responsiveness (Lu et al., 1998). Results from scan lines 2, 3 and 4 are consistent with

the linker-scan mutation analysis carried out by Lu et al., (1998) on the sugar response

sequence (SRS), which contained the TATCCA/T element. A truncated promoter

containing just two copies of the GC- and G-boxes still retained responsiveness but

much lower than wild-type; the same effect was seen with a promoter containing to

TATCCA elements, but with a higher responsiveness. Furthermore as the number of

TATCCA elements was increased, there was an almost linear increase in Glc-

responsiveness. Linker-scan mutation analysis confirmed the essential nature of the

three elements of the SRS (Lu et al., 1998). A version of the DIN3::LUC construct with

substitution mutations converting the TATCCT element in the DIN3 -300bp promoter to

TAAAAT (fig. 3.7.1), was analysed for altered DIN3::LUC expression compared with

endogenous DIN3. Two out of three of the mutant lines analysed demonstrated wild-

type expression patterns (fig. 3.7.2). Additionally, two concatamer lines which had four

copies of either TATCCA or TATCCT (DIN3 type) separated by four bases fused to the

35S CaMV minimal (90bp) promoter (fig. 3.7.1), exhibited no dark-responsiveness

(figs. 3.7.3/4). Results using the concatamer lines are consistent with the findings of Lu

et al., (1998) that a single element of the SRS is not sufficient to confer dark-

responsiveness. However the maintenance of responsiveness following the mutation of

the TATCCT element is, prima facie, neither consistent with the findings of the linker-

scan analysis of this project nor those of Lu et al., (1998) who found that disruption of

any one of the SRS elements resulted in loss of induction. However Lu et al., (1998)

demonstrated the importance of flanking regions for nuclear factor binding to the

TATCCA element in rice, this is supported by results of scan line 2 which result in a

loss of dark-induction when it only disrupts the 5’ flanking region. It may be that the

putative A. thaliana SRMYB protein is reliant on the flanking regions and less specific

to the TATCCT element itself.

Trans-acting factors

The first trans-acting factor identified as being associated with the MYBS1 / SRMYB

motif, was a MYB family transcription factor, MybSt1 (StMYBS1) identified in potato

(Solanum tuberosum) and with a binding affinity for the motif GGATA (Baranowskij et

al., 1994). Reverse complemented this is TATCC, which is obviously the majority of the

TATCCA element described by Lu et al., (1998). In the DIN genes, the MYBS1 motif

in some cases contains a terminal A, T or G. In DIN3 there is a single MYBS1 site
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which reads AGGATA/TATCCT; DIN6 has four: one TGGATA/TATCCA and three of

CGGATA/TATCCG. Three genes encoding three MYBSt1-like proteins have been

identified in rice: OsMYB1, 2 and 3. The StMYBS1 (Baranowskij et al., 1994) shares

92%, 87% and 85% homology with OsMYBS3, 2 and 1 respectively. All three

OsMYBSs bind to the TATCCA element specifically, with transcript abundance sugar-

dependent: OsMYBS1 and OsMYBS3 transcripts were in high abundance with low Suc,

whereas they exhibited low abundance when Suc was high; the opposite was true for

OsMYB2. OsMYBS1 and OsMYBS2 were revealed to be transcriptional activators of

the TATCCA element, whereas OsMYBS3 acts as a repressor (Lu et al., 2002). More

recently it has been demonstrated that OsMYBS3 functions in the cold signalling

pathways and is essential for cold tolerance in rice and acts to induce or repress many

genes (Su et al., 2010). However Su et al., (2010) report that OsMYBS3 responds

slowly perhaps too slowly to account for DIN3 cold-repression should an orthologuous

protein function in the same manner in A. thaliana. Lu et al., (2002) propose that

OsMYBS1, forming a homodimer, acts as an activator of genes such as αAmy3 during

sugar starvation, whereas OsMYBS2 which is much less potent an activator, maintains

only a low level of αAmy3 when sugar is plentiful, so playing part of the sugar repressed

state. OsMYBS3 transcripts are extremely abundant in senescent levels, where

OsMYBS3 strongly represses αAmy3. In rice it has been established that SnRK1 is

essential for expression of OsMYBS1 and αAmy3 under carbon limiting conditions (Lu

et al., 2007). An analogous A. thaliana MYBS3 protein has been identified, with close

homology to MybSt1 and OsMYBS3 (fig. 5.1) (Knight, M.R. pers. comm.). It has not

been established as to whether the SRMYB protein interacts in the same manner as

OsMYB3. Analysing the effect of over-expression of SRMYB on DIN3 expression, no

profound effects were identified: dark induction of DIN3 was maintained and dark

expression levels were only significantly greater than wild-type in one over-expressing

line (fig. 4.3.5). Under short-day conditions, SRMYB over-expression lines had small,

but significant phenotypic effects: a third lower aerial biomass (fig. 4.4.4) and between

a quarter and 10% fewer rosette leaves (fig. 4.4.8). Comparing this with short-day

grown SRMYB tilling line mutants, those with close to normal levels of SRMYB

expression (fig. 4.5.1) had significantly lower aerial biomass (516B12 & N90558) (fig.

4.7.1), whereas line 783B02, which had a significantly lower SRMYB expression (fig.

4.5.1), had an short-day aerial biomass lower than wild-type but not significantly so

(fig. 4.7.1). The over-expression results combined with those of the SRMYB mutant

lines suggest that levels of SRMYB are important in plant productivity or growth rate,
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although it is unlikely to be correlated directly to absolute transcript abundance. Over-

expression of SRMYB resulted in delayed chlorosis compared to wild-type in an 11-day

experiment in complete darkness at 20°C (fig. 4.4.13). However there was a variation in

starvation phenotype between in the over-expression lines that seemed to correlate,

qualitatively at least, with their SRMYB expression levels: the over-expressors with the

greater SRMYB levels exhibited more rapid chlorosis and similar to wild-type. As seen

with the other phenotypic experiments, the levels of SRMYB transcript do have a simple

direct correlation with phenotype. Although SRMYB shows homology to the

OsMYBS3 protein (fig. 5.1), results do not implicate SRMYB as a repressor of DIN3.

Fujiki et al., (2000) established that DIN3 expression was associated with senescence:

leaves whose area was 75% yellow had high DIN3 expression levels. Elevated DIN3

expression during senescence requires induction, whether this is due to the SRMYB

transcription factor is unclear, however it seems unlikely that SRMYB acts as a

repressor in the manner of its rice homologue OsMYBS3.

Figure 5.1 Phylogram of protein sequences with homology to putative AtMYBS3 (SRMYB)

Figure reproduced, with permission, from Knight, M.R. (unpublished).

Contribution to dark and cold-responsiveness

Scan lines 3 and 4 disrupt the motif TATCCT, which shares the core sequence of the

MYBS1 binding site in potato (Baranowskij et al., 1994) and rice (Lu et al., 2002),

resulting in a loss of dark-responsiveness. In rice the TATCCA motif is an indispensible

part of the SRS and together with the other elements can confer dark-responsiveness to

previously non-responsive promoters (Lu et al., 1998). The DIN3 TATCCT element is

the putative binding site for an A. thaliana homology of MybSt1 and OsMYB3. This

research indicates that the 5’ flanking region is important to the function of this motif,

the flanking region is also important in rice TATCCA (Lu et al., 1998). Over-expression

of SRMYB does not produce a clear dose-dependent phenotype carbon limiting

conditions, indicating the role of post-transcriptional regulation in SRMYB and a more

complex relationship between SRMYB levels and DIN3 regulation. No evidence was

found to support a role for SRMYB acting as a repressor in the manner of OsMYB3 its
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closest rice homologue. Together these results indicate that the TATCCT element, as

part of a putative SRS in DIN3, does not regulate dark-responsiveness alone, which is

consistent with conclusions of Lu et al., (1998) on SRS function. The linker-scan

mutation analysis in this project did not identify a single instance of a loss of cold

repression. The introduced linker-scan mutations only ever resulted in a complete loss

of induction (Table 3.6.1). The literature ascribes no role for MYBS1/2/3 transcription

factors in the regulation of cold-responsive transcription. Low temperature has be

reported to induce an accumulation of hexose and hexose phosphates (Kaplan et al.,

2007), causing the inactivation of SnRK1 (Zhang et al., 2009), which has a role in the

Glc-repression of MYBS1 expression and the activation of MYBS1 (Lu et al., 2007).

ABRERATCAL and CGCG-box

Cis-acting element

Scan line 5 disrupted the next downstream motifs, which shared a core CGCG motif:

ABRERATCAL and the CGCG-box (Table 3.1.5). No DIN3::LUC expression could be

detected from the seedlings of scan line 5 (Table 3.6.1; fig. 3.5.6), which indicates that

the linker-scan mutation disrupts a crucial cis-acting element. Scan line 6 also disrupts

the ABRERATCAL and CGCG-box; there is no dark induction of DIN3::LUC

expression in scan line 6. These elements have dark and cold regulatory functions; the

dark-responsiveness will be considered first, followed by low temperature regulation.

Disruption of either the ABRERATCAL or CGCG-box, two motifs associated with

ABA-dependent (Doherty et al., 2009) and –independent (Yang & Poovaiah, 2002) cold

response pathways, resulted in a loss of dark-induction of DIN3::LUC. The other

component element of the SRS is the G-box (ACGT) (Lu et al., 1998), whilst this

specific element is not found in the promoter of DIN3, however a similar and related

element the ABRE ‘coupling element 3’ (CE3), which has the consensus sequence

(ACGCGTG) (Choi et al., 2000), is (Table 3.1.4). The CE3 type ABRE is over-

represented in rice, but is very rare in A.thaliana (Gómez-Porras et al., 2007); the same

study found the CE3 motif in the promoter of DIN3, confirming the finding of this

project. CE3 were found to be associated with G-box ABREs (Suzuki et al., 2005) and

an earlier study found that CE3 and G-box ABRE are functionally equivalent (Hobo et

al., 1999). The literature indicates that S1-group bZIP transcription factors have a role in

activating genes such as ProDH during sugar starvation (Hanson et al., 2008), however

their specificity is to a G-box (ACGT) (Kang et al., 2010), not the CE3 motif

(ACGCGTG) (Choi et al., 2000; Doherty et al., 2009) found in DIN3 at the loci of dark
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non-responsive scan lines 5 and 6. It may be there is an, as yet undiscovered, kinase-

dependent bZIP transcript factor with specificity to the CE3 motif. If so, this would give

DIN3 a variant of the classical SRS with a TATCCT, rather than a TATCCA and a CE3

motif rather than a G-box. Apart from two base changes, this is exactly what is found in

DIN3 and the linker-scan mutation analysis carried in this project produced similar

results to that of Lu et al., (1998) – that disruption of one or other members of the SRS

results in loss of dark/sugar responsiveness. The ABRERATCAL / ABRE – Abscisic

acid responsive element, has been implicated in ABA signalling and annotated as a

cold-regulatory motif. Evidence for a cis-acting element mediating ABA responsive

gene expression was discovered in wheat with the core consensus motif: ACGT

(Marcotte Jr et al., 1989). More recent work in A. thaliana has revealed a greater degree

of degeneracy in the ABRE, which has the consensus (C/A)ACG(T/C)G(T/G/C) (Kaplan

et al., 2006) and so includes the version found in DIN3. Doherty et al., (2009) found

evidence that the ABRE-CE3 motif had cold-repressive properties. The CGCGBOXAT

/ CG-1 Box motif, which was identified as member of a common set of regulatory motif

found in the promoters of cold response transcription factors CBF2 and ZAT12

(Doherty et al., 2009). CBF2 and ZAT12 bind the C-repeat/Dehydration responsive

element (CRT/DRE) found in the promoters of, amongst others (Vogel et al., 2004),

COR genes which mediate cold acclimation and freezing tolerance (Thomashow, 1998).

One of the six conserved motifs (CM2) identified by Doherty et al., (2009) contains the

core motif of the AtSR1 (CAMTA3) binding site, a calcium-dependent calmodulin

(CaM) binding protein. The optimal motif sequence for AtSR1 is ACGCGG, but it also

binds ACGCGT (Yang & Poovaiah, 2002), which is the sequence of the CGCG motif

found in the promoter of DIN3 (Table 3.1.4); this is found within the ABRERATCAL

motif. The core CGCG motif was detected in all other DIN genes, except DIN1 (Table

3.1.1). As commented above, the linker-scan analysis did not identify a single instance

of loss of cold-repression independent of a loss of dark-induction. Despite the literature

ascribing cold regulation to the ABRE-CE3 and CGCG-box motifs, results from this

project could not implicate the cis-acting elements conclusively in cold regulation.

Trans-acting factors

The ABRERATCAL and CGCG-box motifs typically constitute a G-box, which is

bound by bZIP transcription factors. bZIP11 and 53, which are members of the S1

group of bZIP transcription factors have been implicated in abiotic stress responses

particularly hypoosmolarity following recovery from drought, salinity or freezing
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stresses (Jakoby et al., 2002; Satoh et al., 2004; Weltmeier et al., 2006). More recently it

has been established that bZIP1 (AT5G49450), another S1 group member, is repressed

by Glc in a fast, sensitive and reversible manner (Kang et al., 2010). Kang et al., (2010)

demonstrate that bZIP1 binds to the ACGT core motif and other bZIP family

transcription factors also recognise the ACGT core motif (Thomas, 1993). As

hypothesised above, it may be that an uncharacterised bZIP transcription factor exists

with specificity for the ABRE-CE3 found in DIN3. Transgenic plants were created

over-expressing bZIP1, to investigate the role of this transcription factor in the ABRE

and CGCG-box motifs indicated as important in dark-responsiveness by the linker-scan

mutation analysis. Of three bZIP1 over-expressing lines, all were found to exhibit dark-

induced DIN3 expression at significantly greater levels, between one-and-a-half and two

times greater than wild-type (fig. 4.3.1). The over-expression of bZIP1 also resulted in a

significantly lower, around a half, aerial biomass (fig. 4.4.1) and a fifth fewer rosette

leaves (fig. 4.4.5) than wild-type. Qualitatively, the bZIP1 over-expressor phenotype

was characterised by an elongated petiole with circular, spoon-shaped leaves (fig. 4.4.9:

A & B). Two out of three bZIP1 over-expressing lines had delayed chlorosis after 11

days in complete darkness (fig. 4.4.10). Superficially, the elongated petioles and change

in leaf morphology resembles the shade avoidance phenotype (Smith & Whitelam,

1997). The stunted growth and improved tolerance to prolonged darkness in the bZIP1

over-expressors, appear to provide further evidence that S1 group bZIPs are involved in

metabolite status signal transduction, thereby influencing plant growth and development

(Kang et al., 2010; Hanson et al., 2008). Two genes up-regulated during carbon limiting

conditions, coding for Asparagine synthase1 (ASN1) and Pro dehydrogenase (ProDH)

are rapidly induced by bZIP11. More generally, the majority of genes induced by

bZIP11 are repressed by sugar and the majority of bZIP11-repressed genes are induced

by sugar (Hanson et al., 2008). As the expression and activation of OsMYBS1/2/3 are

regulated by SnRK1 (Lu et al., 2007), the S1 group bZIPs work synergistically with

KIN10/11 (SnRK1) to regulator DIN6 (Baena-González et al., 2007). The role of the

sugar sensing kinase, HXK in DIN3 regulation is not an essential one; no impairment of

dark-induction of DIN3 expression was identified using the HXK null mutant gin2-1

(fig. 3.8.1), as with DIN6 (Baena-González et al., 2007).
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Given the presence of CGCG-box motifs in the promoters of CBF genes and the role of

ABA signalling in CBF expression, CBF1 over-expressing lines were generated. The

one confirmed transformant line had a lower dark-induced DIN3::LUC expression than

wild-type however this difference was not significant (fig. 4.3.2). The over-expression

of CBF1 resulted in a large and significant reduction, by an 80%, in aerial biomass (fig.

4.4.2) and third fewer rosette leaves (fig. 4.4.6). Qualitatively, CBF1 over-expressors

appeared stunted in their growth habit, with low vertical height, small rosettes and dark

green leaves compared with wild-type; otherwise leaf morphology appeared normal

(fig. 4.4.9: D). These observations accord with those made in the literature (Gilmour et

al., 2004). After 11 days in complete darkness, very little chlorosis was seen in plants

over-expression CBF1 (fig. 4.4.11), the effect this over-expression is analogous to wild-

type plants kept in darkness at 5°C (fig. 4.7.3). CaM and Ca2+ signalling have been

implicated in early low temperature perception (Knight et al., 1991; Kaplan et al.,

2006). A family of Ca2+-dependent CaM binding proteins, the CaM transcriptional

activators (CAMTA) were found to preferentially bind the CGCG motif (Bouché et al.,

2002). Doherty et al., (2009) confirmed CAMTA binding affinity for the CGCG motif

and further demonstrated that CAMTA could induce expression of CBF2; Doherty et

al., (2009) reported the impaired freezing tolerance of camta1camta3 double mutants.

The CGCG motif and other conserved motifs identified by Doherty et al., (2009) were

over-represented in the promoters of early cold-responsive genes and the CGCG motif,

along with three others, exhibit transcriptional repression properties. An attempt was

made to generate CAMTA1 over-expressing plants, however no transformants were

identified. This follows the earlier failed attempts at producing CAMTA1 over-

expression lines, in which it was postulated that CAMTA1 over-expression is lethal

(Boyce, Knight & Fromm, unpublished data). Mutants of camta3 (AtSR1) have higher

biotic stress tolerance than wild-type, thus implicating CAMTA3 as a repressor of

transcription (Galon et al., 2008). CAMTA1 was show to be a transcriptional regulator

of abiotic stress-responsive genes cause the up- and down-regulation of many genes

(Galon et al., 2010).

Contribution to dark and cold-responsiveness

Scan lines 5 and 6 disrupt the ABRERATCAL and the CGCG-box elements which

share a common CGCG core motif (Table 3.1.5). In both these scan lines no dark-

induction of DIN3::LUC expression was seen (Table 3.6.1). The SRS described by Lu

et al., (1998) includes a G-box motif, whilst this is not found in the DIN3 promoter, the

ABRE-CE3 motif is, which is functionally equivalent to a G-box (Hobo et al., 1999;
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Choi et al., 2000). As the TATCCT motif seems to be a variant of the TATCCA in rice,

so the ABRE-CE3 could be a variant of the G-box element. These variants do not depart

greatly from the Lu et al., (1998) model of the SRS and so the TATCCT and ABRE-

CE3 elements could constitute part of a SRS in DIN3. The loss of dark-induction

following the disruption of either of these two elements accords with the original

findings of Lu et al., (1998) that the all the elements of the SRS are necessary. Using an

ABRE::LUC construct used in Kaplan et al., (2006), no difference was seen between

light or dark treated gene expression (data not shown). This confirms Lu et al., (1998)

finding that no single element can confer dark-responsiveness. The literature also

ascribes cold-responsiveness to these elements; ABA induces CBF expression, factors

which regulate COR genes (Knight et al., 2004) and the CGCG motif is over-

represented in cold-regulated genes (Doherty et al., 2009). The ABRE-CE3 found in

DIN3 is bound by an ABRE-binding protein in rice (RoyChoudhury et al., 2008), where

the motif is common (Gómez-Porras et al., 2007). The linker-scan mutation analysis

was unable to establish a role for these elements in the cold-responsive of DIN3.

However the ABRE-CE3 motif, found in DIN3, has been found to have transcription

repression properties (Doherty et al., 2009). The S1 group bZIP transcription factors are

implicated in abiotic stress (Jakoby et al., 2002; Satoh et al., 2004; Weltmeier et al.,

2006), they are also sugar repressed (Kang et al., 2010; Hanson et al., 2008). Over-

expression of bZIP1 up-regulates DIN3 expression and significantly alters the growth

phenotype and delays the development of chlorosis during complete darkness. Whilst

this project has not shown that bZIP1 binds to the ABRE-CE3 motif and to-date S1

group bZIPs are only known to bind to G-boxes (ACGT core), it has established that it is

required for dark-induction of DIN3. It may be that there is an as yet undiscovered

factor which binds to the ABRE-CE3 in DIN3. As for bZIP1 it may exact its effect up-

or downstream of the crucial 50bp. Regrettably no CAMTA1 over-expressing lines were

generated, however CAMTA1 has been shown to be a transcriptional repressor during

abiotic stress (Galon et al., 2010) with affinity for ABRE-CE3 (Kaplan et al., 2006),

which given that all other trans-acting factors with affinity for ABRE-CE3 are

transcriptional activators (Pandey et al., 2005) makes CAMTA1 a good candidate for

cold-repression meriting further investigation. Over-expression of CBF, a regulator of

the COR and other cold-responsive, did result in a reduction in DIN3 expression, but not

significantly so. The CRT/DRE motif, to which CBFs bind, was not present in the

crucial 50bp of the DIN3 promoter, but it was found further downstream of this region

(Table 3.1.1) and therefore undisrupted by the linker-scan mutation analysis.
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MYB2CONSENSUSAT

Cis-acting element

Scan lines 7 and 8 disrupt the MYB2CONSENSUSAT element, the form found in DIN3

(5’  3’: CAACGG) (Table 3.1.5) which is bound by the AtMYB2 transcription factor

(Abe et al., 2003). Only dark-induction of DIN3::LUC was indentified in scan line 7,

but not in scan line 8; no dark-induction of DIN3::LUC was exhibited by scan line 9

seedlings (Table 3.6.1). The element is found on the opposite strand, which together

with the linker-scan mutation analysis, suggesting that the 5’ portion and its flanking

region is more important for DIN3 dark-induction. The AtMYB2 transcription factor

binding site is required for ABA-mediated drought-induction of rd22 (Abe et al., 2003).

The other ABA associated cis-acting element in DIN3, ABRE-CE3, also results in loss

of dark-induction when disrupted by the linker-scan mutation analysis. The consensus

sequence for the AtMYB2 binding motif is fairly degenerate (A/T AACCA or C/T

AAC G/T G), which like the ABRE-CE3 / CGCG-box may permit the binding of an

unknown transcription factor. It may be the third element of a putative DIN3 SRS: Lu et

al., (1998) originally described three essential motifs constituting a SRS. Together scan

lines 8 and 9 disrupt a common sequence: AGTGTG (5’  3’: CACACT), which on the

opposite strand could be read as a MYC binding site (CANNTG) (Shinwari et al., 1998).

This putative motif bears a vague resemblance to a gibberellic acid response element

(GARE), which in A. thaliana reads CAACTGTC and is bound by GA-responsive MYB-

family transcriptional activators. GAREs are found in the promoters of α-amylase genes

(Gocal et al., 2001). In rice, genes with GAREs are GA-induced and ABA-repressed

(Sutoh & Yamauchi, 2003), which is analogous to the expression patterns of DIN3. A

GARE motif is also shown in the promoter of αAmy7 in the analysis by Lu et al.,

(1998). The approach taken by this project did not reveal a role for this element in cold-

repression of DIN3. However cold-regulatory roles may emerge from consideration of

associated transcription factors below.

Trans-acting factors

The only known transcription factor that binds the identified cis-acting element

disrupted by the linker-scan mutation analysis is AtMYB2. It is a Ca2+-dependent CaM

binding protein, whose affinity for the cis-acting element is enhanced by this interaction

(Yoo et al., 2005). Yoo et al., (2005) report that AtMYB2 induces the expression of

salt- and dehydration-responsive genes such as rd22 and Δ1-pyrroline-5-carboxylate

synthetase (P5CS), the latter responsible for Pro biosynthesis; Pro is a compatible solute
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that accumulates during dehydration stress caused by salt, drought or freezing stress

(Anchordoguy et al., 1987). Despite its potential link to cold-responsive genes, the

literature reports nothing to suggest that AtMYB2 acts as a transcriptional-repressor. A

similar conclusion can be made about the putative MYC binding site disrupted by scan

lines 8 and 9; the AtMYC2 transcription factor is a transcriptional activator, responsive

to drought and salinity (Abe et al., 2003). No direct links to low temperature or

transcriptional repression have been reported. The GARE is found in the promoter of

αAmy7 (Lu et al., 1998), however the MYB transcription factors that bind to the GARE

are implicated in GA-dependent germination and flowering (Gocal et al., 2001).

Contribution to dark and cold-responsiveness

The region disrupted by scan lines 7, 8 and 9 certainly contribute towards dark-

responsiveness (Tables 3.6.1). As with the rest of the linker-scan mutation analysis

results, the contribution of this region to cold-responsiveness could not be identified.

The region disrupted by scan lines 7 and 8 the MYB2CONSENSUSAT element, found

on the opposite strand, which is the binding site for AtMYB2 (Abe et al., 2003). The

linker-scan mutation analysis indicated that the 5’ portion of this element was the most

important, since scan line 7 retained dark-induction of DIN3::LUC. The common

sequence disrupted by scan lines 8 and 9, on the opposite strand, is the binding site for

AtMYC2 (Shinwari et al., 1998). Both AtMYB2 and AtMYC2 are transcriptional

activators, responsive to drought and salinity stresses, with no direct links to cold

regulation (Abe et al., 2003). The immediate relevance to DIN3 is unclear. The common

scan line 8 and 9 sequence bears vague resemblance to a GARE, but the associated

MYB transcription factors are only implicated in GA-dependent, regulation of

germination and flowering (Gocal et al., 2001). This site may be the target of a yet

uncharacterised transcription factor within the MYB or bHLH family, which mediates

the dark-responsive properties of this region. What is certain is that this is the third

portion of the crucial 50bp of the DIN3 that has been confirmed to be required for dark-

induction and it likely the third element in a putative DIN3 SRS fitting the model

postulated by Lu et al., (1998).

Other cis-acting elements

Scan line 4 also disrupts a GATA, which is part of the TATCCT motif, however despite

the prevalence of LREs in the -500bp promoter region of the DIN genes, the

significance of their contribution to DIN gene light/dark regulation is not likely to be

great given the very conclusive experiments of Fujiki et al., (2000) with photosynthesis
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inhibitors producing DIN gene induction in the light. This is further supported by the

disruption of another GATA motif not part of a SRMYB motif by scan lines 11 and 12

(Table 3.1.5), which results in no loss of dark induction of DIN3::LUC (Table 3.6.1).

Therefore GATA is unlikely to be functioning as a light responsive element in DIN3.

Over-expression of GATA21 transcription appeared to cause a loss of dark-induction,

however in none of the transformant lines was this significantly different from wild-

type (fig. 4.3.3). The GATA21 over-expressor exhibited a significantly lower, by around

a third, aerial biomass than wild-type (fig. 4.4.3); in one line there was a significant,

albeit small, reduction in the number rosette leaves (fig. 4.4.7). No visual short-day

grown phenotype was identified in GATA21 over-expressors (fig. 4.4.9: E – G), neither

was there a significant effect on development of chlorosis during complete darkness

treatment (fig. 4.4.12). The role of the GATA21 transcription factor in dark-regulation is

inconclusive from the over-expression study.

Conclusions

This project demonstrated that the -300bp minimal promoter contains all the essential

cis-acting elements require for dark-induction and cold-repression of DIN3 expression.

The linker-scan mutation analysis combined with the in silico analysis revealed that

three cis-acting elements: TATCCT, ABRE-CE3 and putative AtMYB2/AtMYC2

binding site are indispensible for the dark-induction of DIN3. These constitute a

putative DIN3 SRS. The approach taken by this project did not identify any cis-acting

elements that when disrupted, manifested a loss a cold-repression in the expression of

DIN3::LUC reporter. Analysis of candidate trans-acting factors for a potential role in

mediating the dark- and cold-responsiveness of DIN3 indicated that the putative A.

thaliana orthologue of the TATCCA-specific O. Sativa MYBS3, SRMYB, had a role in

dark-responsiveness but this effect was not a direct dose-dependent one, indicating the

importance of other cis- and trans-acting factors. Over-expression of bZIP1 increased

the overall expression of DIN3 and significantly modified the growth habit and dark-

induced starvation response. However bZIP1 has not been described as having affinity

for ABRE-CE3 motif, opening the possibility of an unknown transcription factor. No

evidence was found of direct role for the other transcription factors in the regulation of

DIN3.

There are two possible conclusions from the available results; the first is that the

dark/sugar responsive and cold responsive regulatory motifs are shared. This is certainly
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borne by the annotation of the cis-acting elements in the literature. Focussing on the

ABRE-CE3/CGCG-box the best candidate for cold regulation in the DIN3 promoter,

this motif is also shown to be required for dark-induction and is a putative non-G-box

motif as part of a putative SRS in DIN3. This particular motif would likely be bound by

some S1-group bZIP transcription factor. bZIP11, a member of the S1-group, is

repressed by dehydration stress (Kiyosue et al., 1996), so there would be no competition

for this motif should an ABRE-binding protein such as CAMTA wish to bind. At the

same time low temperature has been reported to induce an accumulation of hexose and

hexose phosphates (Kaplan et al., 2007), causing the inactivation of SnRK1 (Zhang et

al., 2009), which has a role in the Glc-repression of S1-group bZIPs (Baena-González et

al., 2007) and the activation of OsMYBS1 and OsMYBS1 expression (Lu et al., 2007);

HXK may play a limited role in the Glc-repression of DIN3 (Baena-González et al.,

2007). The elevated hexose levels during low temperature mean that the motifs of a

putative DIN3 SRS will be unoccupied for transcriptional repressors to bind at the same

site. The second interpretation, which is more parsimonious, would be that there is no

binding of a cold-induced transcriptional repressor, but instead cold-repression is

merely lack of induction due to sugar-repression of the trans-acting factors: the S1-

group bZIPs and MYBS1. Indeed, for there is no evidence of the binding of any trans-

acting factor to bring about sugar-repression of DIN3. This is attested to by the gene

expression analysis (qRT-PCR) that demonstrates no significant difference between

light DIN3::LUC expression and cold-inhibition and DIN3 cold expression is not

significantly lower than that during the light (fig. 3.6.1). Fujiki et al., (2001) found no

different between light-repressed and dark sugar-repressed DIN3 expression.

Further work and improvements

The most seriously short coming of this project was its inability to identify conclusively

a cis-acting element or trans-acting factor responsible for the cold-repression identified.

It may be suggested above, that there is a cold-responsive trans-acting factor that shares

one of the dark-responsive cis-acting elements in which case the linker-scan mutation

analysis would not be able to decouple the two responses. Alternatively, there may be

an element downstream of the 50bp that mediates the cold-repression. Indeed there is a

CRT/DRE motif downstream of this portion of the promoter. As Su et al., (2010) report

in rice, a cold repressive OsMYBS3 orthologuous may be too slow to account for the

rapid cold-repression of DIN3; Su et al., (2010) place the DREB1/CBF pathway in the

rapid response cold signalling model. The role of a downstream CRT/DRE motif in

cold-repression of DIN3 merits further investigation. The in silico analysis indicated the
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presence of a CATMA binding site – ABRE-CE3, but the generation of a viable

CAMTA over-expressing lines has provided in effective. Further work to assess the

contribution of CATMA to DIN3 cold-regulation could make use of an inducible

promoter so that potential lethality associated with constitutive expression can be

avoided. The use monitoring of the effects of dark-induced starvation was crude and

qualitative at best. If this particular experiment were to be repeat use of a fluorimeter to

record the photosynthetic capacity of photosystem II and providing a Fv/Fm

measurement (Oxborough, 2004; Maxwell & Johnson, 2000) may yield more

conclusive results.
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