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Abstract 

The research presented in this thesis endeavours to further understanding of the 

cytoskeletal protein keratin 15 (K15), and the role this protein has on maintaining the 

stem cell niche.  This study has focused on studying the role of K15 by using small 

interfering ribonucleic acid (siRNA) to knock-down K15 in different cell lines 

(HaCaT cells, MET 1, 2 and 4 cells and normal human epidermal keratinocytes).  To 

observe the effect of K15 on stem cells, adhesion, migration, differentiation and 

proliferation were assessed following K15 knock-down by siRNA. 

Although cell adhesion was not affected by K15 knock-down, cell spreading and 

morphology was affected.  K15 knock-down cells spread more quickly than their 

control cells, and cells were larger following K15 ablation.  Cell migration was 

studied using the scratch wound assay.  Cells without K15 were less motile than K15-

positive cells.  Involucrin expression was observed as an indicator of differentiation.  

Following K15 knock-down, involucrin expression increased, indicating 

differentiation.  Differentiation was assessed using the calcium switch assay, where 

higher levels of involucrin were observed in K15 siRNA transfected cells after only 6 

hours in high calcium media.  Cell proliferation was measured using the MTT assay, 

and K15 knock-down cells were shown to proliferate to a greater extent than control 

cells. 

Tissue sections were also probed for K15 and CD34.  K15 was observed in the basal 

layers of the epidermis and around the hair follicle in rat, mouse and human adult 

skin.  This study also observed a CD34-positive/K15-positive cell population and a 

CD34-negative/K15-positive population in adult human interfollicular epidermis.  For 

comparison between 2D cell culture and tissue sections, 3D (organotypic) cultures 

were utilised.  Variable K15 expression was observed in the squamous cell carcnoma 

lines MET 1, MET 2 and MET 4.  In HaCaT cells, K15 was observed to a greater 

extent at the base of the culture, similar to that observed in the epidermis. 

K15 ablation has been shown to affect cell spreading and morphology during 

adhesion, cell migration, differentiation and proliferation.  These results suggest that 

K15 does impact on the stem cell nature of keratinocytes, although the mechanisms 

require further investigation. 
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1: Introduction 

1.1: The Structure and Development of the Epidermis 
The epidermis consists of several layers of stratified epithelium, and basement 
membrane.  From the innermost layer to the outermost layer, the epidermis comprises 
the basal layer, spinous layer, granular layer and the stratum corneum.  Under normal 
conditions, cells divide by mitosis at the basal layer and move upwards towards the 
skin surface (for further details, see section 1.1.1).  As the cells move towards the 
surface, they change in size and protein expression profile, eventually becoming 
keratinised and forming the hydrophobic outermost layer of the skin; this process 
takes around thirty days. 
There are several populations of epidermal stem cell, important in maintaining the 
skin and hair follicle.  Populations of epidermal stem cells have been identified in the 
bulge region of the hair follicle, the interfollicular epidermis (IFE) and the sebaceous 
glands (Braun et al., 2003; Tiede et al., 2007; Kaur, 2006; Bieniek et al., 2007, Abbas 
and Mahalingam, 2009).  These niches are thought to be conserved through specific 
ectopic protein expression, although most of these proteins have yet to be definitely 
identified.  Two keratins have been investigated as potential stem cell markers: K15 
and K19.  K15 and K19 are observed in the human and mouse bulge (Michel et al., 
1996; Lyle et al., 1998; Braun et al., 2003; Kloepper et al., 2008; Hoang et al., 2009) 
and the basal layer of the epidermis in human skin (Michel et al., 1996; Kloepper et 

al., 2008).  K15 is considered important as it may be an early marker of 
differentiation, expressed prior to the fate of the keratinocyte being decided (i.e. either 
hair-like or epidermal) (Porter et al., 2000; Abbas and Mahalingam, 2009).  K19 may 
be expressed following commitment to an epidermal fate (Morris, 2004; Kloepper et 

al., 2008; Abbas and Mahalingam 2009). 
Ghazizadeh and Taichman (2001) used label-retaining studies to show that stem cells 
resided in the basal layer, the sebaceaous gland and the hair, an observation 
suggesting that distinct stem cell populations exist, each able to produce daughter 
cells capable of differentiating along each of the epidermal lineages.  Differentiation 
of these cells however usually occurs down a restricted lineage, in response to signals 
from the local environment (Niemann and Watt, 2002).  It is also possible for these 
cells to differentiate down a different lineage, in response to wounding, for example.  
Wherever these stem cells are, it is likely that they are related (Ghazizadeh and 
Taichman, 2001).   
 
1.1.1: Skin Development 
The epidermis stratifies during embryogenesis, forming as a result of a complex 
‘stratification program’ (Koster and Roop, 2007).  The epidermis forms from the 
ectoderm; in mice this occurs during E8.5-18.5, requiring (as yet unknown) signals 
from the underlying dermis, although some studies suggest that !-catenin expression 
is involved in this process (for example, Pearton et al., 2005), as are bone 
morphogenic protein (BMP) and Wnt, members of the developmental signaling 
pathways (Lefort and Dotto, 2004).  A change in the keratin expression pattern also 
occurs as cells move towards the outermost layers of the skin; this increases the 
strength of the cell at a cost to motility (Fuchs and Cleveland, 1998).  The ectoderm 
expresses the cytoskeletal proteins keratin (K)8 and K18, whereas cells with an 
epidermal fate express K5 and K14 (see section 1.2.4).  Once terminally 
differentiated, the cells express K1 and K10; the transcription factor p63 is specific to 
this lineage (Green et al., 2003), and is necessary for K5 and K14 expression, 
particularly "Np63# (an isoform lacking the ‘p53-like N-terminal transactivation 
[TA] domain’) (Parsa et al., 1999; Yang et al., 1998). 
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The mature epidermis can be considered to consist of four stages of differentiation 
(Fuchs, 1990).  The first layer to form is the basal layer, which, via asymmetric cell 
division, gives rise to the second layer: the periderm (this layer is shed before birth, 
and so can only be seen in embryos).  Basal cells have contact with the mature 
basement membrane, and express K5 and K14.  Unlike other keratinocytes, the 
specialised epithelial cells are responsible for cohesion, barrier function and renewal 
(Nelson and Sun, 1983).  An intermediate layer (expressing K1) can then form 
between the first two layers (Lechler and Fuchs, 2005); the only known transcription 
factor required for the production of the intermediate layer is "Np63# (Nguyen et al., 
2006).  It is this intermediate layer that develops spinous cells (the cells that 
eventually become granular and cornified cells), again via asymmetric division of 
basal cells detached from the basement membrane.  The intermediate layer is 
eventually replaced by these cells (Smart, 1970).  Spinous cells also express K1 and 
K10, considered to be two of the earliest markers of terminal differentiation (Fuchs 
and Green, 1980).  Granular cells express filaggrin, and the cornified layer precursors 
involucrin and loricrin, and transglutaminase, the enzyme responsible for crosslinking 
the cornified envelope components (Dale et al., 1985).  In human skin, the 
intermediate layer undergoes apoptosis, required for the development of the mature 
basal layer and further stratification (Haake and Cooklis, 1997).  In mice the cells of 
the intermediate layer become the spinous cells, and no cells are lost through 
apoptosis (Weiss and Zelickson, 1975); this development begins at the dorsal surface, 
and spreads towards the ventral surface, and takes around 24 hours in utero (Hardman 
et al., 1998).  The last stage of differentiation is the dissolution of organelles and 
nucleus, to form the cornified envelope (the cells are then metabolically inert) 
(Tomic-Canic et al., 1998). 
It is important for stratification that premature terminal differentiation of cells from 
the basal layer is precluded.  This is achieved by repressing expression of genes that 
would allow or cause differentiation (Koster and Roop, 2007). 
As previously mentioned, in the mature epidermis, no intermediate layer exists; 
instead, the keratinocytes of the basal layer differentiate directly into the (post-
mitotic) spinous cells.  This appears to be controlled by the Notch pathway (Nickeloff 
et al., 2002).  A further trigger of differentiation (in utero and beyond) is a calcium 
ion (Ca2+) gradient (which increases with maturity).  An increase in extracellular Ca2+ 
concentration is also involved in forming the epidermal barrier, spinous layer and 
granular layer (Yuspa et al 1989; Koster and Roop, 2007). 
The last step in the production of mature skin is barrier formation.  Several 
transcription factors have been implicated in this phase of development; one of the 
most studied is Klf4, which is expressed in the upper spinous and granular layers.  
Genetically altered mice which lack this transcription factor (Klf4

-/-) display normal 
spinous development, but poor cornifed envelope formation (causing barrier defects).  
Application of ectopic Klf4 expression is shown to accelerate barrier formation.  
Further work has shown that the transcription factors Grhl3 and Get1 are also 
involved, but mostly via cell adhesion and lipid metabolism routes, and Grhl3-
deficient mice display altered filaggrin, loricrin and involucrin expression.  The skin 
barrier requires the formation of tight cell-cell junctions to help prevent water loss (as 
observed in claudin-1-deficient mice).  The cornified envelope cells also produce 
lamellar granules filled with lipids.  These lipids are extruded into the cornified 
envelope protein scaffold, producing a hydrophobic (and therefore waterproof) layer, 
preventing unregulated fluid escape or permeation (Kalinin et al., 2002). 
After this stage, cells stop metabolic and transcriptional activity and undergo a 
process similar to a type of programmed cell death (Gandarillas, 2000).  These cell 
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remnants are eventually sloughed from the surface of the skin, being replaced by 
differentiating cells moving upwards from the basal layer: a process that takes 
between 10 and 14 days (Potten, 1974). 
 
1.1.1.1: Calcium Gradient-Driven Differentiation 

A change in calcium concentration has been observed between the basal layer (low 
calcium – up to 0.5mM) and the granular layer (high calcium – from 1mM) in vivo, 
influencing a change in keratin expression from K14 and K5 in the basal layers to K1 
and K10 in the granular layers (Yuspa et al., 1989).  Any increase in extracellular 
calcium concentration is followed by increases in both diacylglycerol and 
phosphatidylinositol metabolism via protein kinase C (PKC) (Lee and Yuspa, 1991).  
PKC# is specific to keratinocytes, and is responsive to changes in Ca2+ concentration 
(Eckert et al., 2004).  PKC$ appears in spinous cells during their transition to 
granular cells (coinciding with a decrease in both K1 and K10, and increases in 
loricrin, filaggrin and transglutaminase) (Eckert et al., 2004).  Ca2+-independent 
PKC$ can also induce differentiation in granular cells; these cells however do have 
Ca2+-sensing receptors, part of the Ca2+ binding protein family (Bikle et al., 1996).  
Interestingly, mice lack this receptor, and reduced amounts of both filaggrin and 
loricrin have been found in this animal compared to humans.  Increased extracellular 
calcium has been shown to activate the phospholipase C pathway (via a calcium 
receptor), which ultimately results in a rise in intracellular inositol triphosphate (IP3) 
and a rise in intracellular calcium.  This intracellular calcium activates chloride 
channels in the cell membrane, resulting in hyperpolarisation; voltage-independent 
cation channels also become permeable (also mediated by a calcium receptor), 
allowing calcium ion movement.  These actions combined produce a swift rise in 
intracellular calcium, followed by a prolonged increase (Bickle et al., 1996).  Bickle 
et al. (1996) have also demonstrated that undifferentiated cells are more sensitive to 
extracellular calcium than their more differentiated counterparts.  Extracellular 
calcium also affects other mechanisms important in differentiation.  Epidermal 
cadherins, for example, are calcium dependent, their extracellular domain containing 
calcium ion binding sites, where Ca2+-binding is necessary for cell-cell adhesion 
(important in keratinocyte differentiation) (Lefort and Dotto, 2004). 
In vitro, monolayers of cells cultured in low levels of extracellular calcium (<0.1mM) 
can be induced to differentiate with the addition of media containing 1-2mM Ca2+.  
This differentiation can be seen in changes to protein markers of differentiation; for 
example, changes in the keratin expression pattern and other markers, such as 
involucrin (Ponec et al., 1988).  (Further examples of the use of calcium to induce 
differentiation in vitro are given in section 3.1.4.) 
 
1.1.1.2: Selected Markers of Differentiation 

Cell-Cell Junctional Proteins 
There are several types of cell-cell junctions which form at various stages of 
differentiation (Figure 1.1).  The specific proteins associated with each type of 
junction can therefore be used to identify differentiation states.  For example, 
desmosomes have two roles in keratinocytes: to participate in growth, differentiation 
and motility, and as an anchor for scaffold structures, such as the keratin network  
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F igure 1.1: Schematic diagrams of cell-cell junctions in epithelial cells 

Adherens junctions (A) join adjacent cells via actin filaments, through 

transmembrane cadherins.  E-cadherin is the direct binding partner of !-catenin, 

which binds to several other proteins, including "-catenin.  This complex then binds 

to the actin cytoskeleton. 

Tight junctions tightly join cells between the apical and basolateral membrane 

regions (B).  Zonular occludens proteins 1, 2 and 3 (ZO-1, ZO-2 and ZO-3) form 

complexes with actin, whilst claudins and occludins mediate binding of the 

membranes. 

Desmosomes (C) contain several specialised proteins, including the plakins (such 

as plectin, periplakin, envoplakin), the desmogleins and desmocollins and armadillo 

proteins (plakophilin and plakoglobin), which anchor intermediate filaments 

between cells. 
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(Allen, Yu and Fuchs, 1996; Hatzfeld, 2007).  Hemidesmosomes are also linked to the 
keratin network, and form between epithelial cells and the underlying basement 
membrane, in a region known as the basement membrane zone’ (BMZ) (Hashmi and 
Marinkovich, 2011).  Interactions between the extracellular proteins and adjacent 
keratinocytes in this region help regulate apoptosis, proliferation, adhesion, migration 
and differentiation (Miner and Yurchenco, 2004).  Hemidesmosomes consist of four 
transmembrane proteins (pemphigoid antigen, CD151 and the two subunits of !6"4 
integrin) (Sterk et al., 2000).  The !6"4 integrin interacts with laminin-332 in the 
BMZ (Tsuruta et al., 2008) and the keratin cytoskeleton (Jones, Hopkinson and 
Goldfinger, 1998).  The latter is mediated by plectin, important in stabilising the 
hemidesmosome (Andrä et al., 1997).  Desmoplakin is the largest of the desmosomal 
proteins, which form oligomers with keratins which translocate to the cell borders 
(Godsel et al., 2005; Al-Amoudi et al., 2011).  Schoop et al. (1999) and Laprise et al. 
(2004) have demonstrated that desmosomes (and their constitutive protein expression 
levels) may directly correlate with keratinocyte differentiation and proliferation. 
Adherens junctions are important in maintaining the structural integrity of tissues 
(Lewis et al., 1994), and E-cadherin is the major cadherin in the human epidermis 
(Hung et al., 2006).  Like desmoplakin, E-cadherin layers, has been shown to link to 
the keratin network (Koch and Franke, 1994; Szegedi et al., 2008) and actin via #- 
and !–catenin (Kippenberger et al., 2005a). 
Zonula occludens protein-1 (ZO-1) is a protein found in tight junctions, located in the 
granular layer of the epithlium.  Other tight junction proteins include occludin, ZO-2, 
ZO-3, cingulin, 7H6, symplekin, claudin-1 and claudin-4 (Stevenson and Keon, 1998; 
Brandner et al., 2002; Peltonen et al., 2007).  Tight junctions are important in forming 
a permeable barrier regulating movement of solutes, water and immune cells in 
simple epithelia (Stevenson and Keon, 1998), and connecting to the actin cytoskeleton 
(Tsukita, Furuse and Itoh 1999).  ZO-1 is a member of the membrane-associated 
guanylate kinase homologue (MAGUK) protein family, and is thought to contribute 
to correct protein organisation of the tight junction plaque (Stevenson and Keon, 
1998; González-Mariscal, Beranzos and Avila-Flores 2000). 
 
Involucrin 
Involucrin was first described by Rice and Green in 1979, who identified an 83kDa 
protein which was incorporated into the cornified envelope.  Involucrin is expressed 
in differentiating keratinocytes and, as a precursor of the cross-linked envelope, is a 
marker of early differentiation (Watt, 1983; Crish et al., 2002).  This envelope 
consists of several proteins, covalently cross-linked into a submembranous structure 
(Rice and Green, 1979).  Involucrin is expressed after the cell has left the basal layer 
and before envelope cross-linking in the spinous and granular layers; this is at the 
same time as transglutaminase expression occurs, which is required for cornified 
envelope formation (Eckert et al., 1993; Tong et al., 2006).  Involucrin (alongside 
filaggrin and loricrin) serves as a calcium-dependent substrate for transglutaminase 1, 
also important in catalysing cornified envelope formation (Schroder et al., 1992; 
LaCelle et al., 1998; reviewed by Hitomi, 2005).  When synthesised, involucrin is 
localised next to the interior face of the plasma membrane, then cross-linked to other 
proteins by transglutaminase 1 (Thacher and Rice, 1985). 
In vivo, as keratinocytes differentiate, the cells of the granular and spinous layers 
become increasingly permeable to calcium (Rice and Green, 1979).  Increased levels 
of intracellular calcium affect PKC, in turn increasing involucrin and 
transglutaminase 1 expression.  As described later (section 3.1.4), PKC has a role in 
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differentiation, and has been shown to affect involucrin gene expression by inducing 
its promoter activity (Papp et al., 2003; Eckert et al., 2004).  Other protein kinases 
have also been shown to increase involucrin expression, including cAMP-dependent 
protein kinase A (PKA) and cGMP-dependent protein kinase G (PKG) (Paramio and 
Jorcano, 1997).  Increased cAMP levels were also shown to increase involucrin levels 
in HaCaT cells by Mammone et al. (1998) and Kawabata et al. (2002), along with 
other differentiation markers including K1, K10 and transglutaminase.   
 

Filaggrin 

Filaggrin was first purified in 1977, referred to as the stratum corneum basic protein 
(Dale, 1977), and is named as a shortened version of ‘filament aggregating protein’.   
In mouse keratinocytes cultured in high calcium media (1.2mM), filaggrin synthesis 
occurred (Dale et al., 1983).  Filaggrin is synthesised as a histidine-rich, 
phosphorylated polyprotein precursor, which is processed into 35kDa filaggrin 
subunits by the activity of phosphatase and proteolysis during terminal differentiation 
(Steven et al., 1990; McGrath, 2008).  The human precursor is comprised of 10-12 
filaggrin subunits, separated by linker peptides; this is known as profilaggrin 
(Presland et al., 1992; McGrath, 2008).  Filaggrin does not appear in vivo any lower 
than where keratohyalin granules occur (i.e. in the granular layer).  More filaggrin is 
observed throughout the stratum corneum, where it is incorporated into the matrix 
(Dale and Ling 1979; Stevens et al., 1990).  As previously mentioned, 
transglutaminase is required to cross-link filaggrin with loricrin and involucrin 
(Thacher and Rice, 1985).  Eventually, in the upper stratum corneum, filaggrin is 
degraded into free amino acids, which helps to maintain epidermal hydration (Scott, 
Harding and Barrett, 1982).  The influence of filaggrin as a natural moisturiser is 
evident, as individuals with 10 filaggrin repeats in profilaggrin have dryer skin than 
those with 12 repeats (McGrath, 2008). 
Recently, siRNA transfection methods have been used to knock-down filaggrin 
expression in organotypic skin models (Mildner et al., 2010).  K1, K2 and K10 
expression and organisation was normal, and a generally normal stratum corneum 
morphology was observed.  However, keratohyalin granule numbers were reduced 
and lamellar body formation was disrupted.  Lack of filaggrin also reduced the 
urocanic acid concentration, making the organotypic skin more susceptible to UVB-
induced apoptosis.  Mildner et al. (2010) suggest that their results also question the 
role of filaggrin as an IF aggregator whist establishing a previously unknown link 
between filaggrin and UVB protection. 
 
1.1.2: Hair Follicle Structure and Development 
Hair follicle formation takes place during skin development in the foetus.  Mesoderm-
derived cells develop into the connective tissue hair follicle sheath and dermal papilla 
whilst ectodermal hair follicle stem cells produce all the epithelial components of the 
hair follicle (Schneider, Schmidt-Ulrich and Paus, 2009).  The hair shaft is a product 
of the hair follicle, a complex ‘miniorgan’ of the skin, made up of the sebaceous 
gland, the arrector pili muscle, the apocrine gland and the pliosebaceous unit (with 
associated structures) (Schneider, Schmidt-Ulrich and Paus, 2009).  The hair shaft 
consists of compacted, fibrous, terminally differentiated keratinocytes (trichocytes).  
The hair itself grows from a group of cells at the base of the hair follicle, called the 
bulb, and is replaced with each cycle of growth.  The follicle cycles, as hair growth 
occurs and ceases.  At this resting stage (telogen), the lower follicle involutes and 
shortens, before regenerating to form a new hair (Morris et al., 2004).  During normal 
cycling in the hair follicle, the different regions of the follicle change in both form 
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and function.  In catagen, the upper third of the follicle remains whole (along with the 
mesenchymal cells of the dermal papilla), as the keratinocytes of the lower follicle are 
destroyed.  It is the upper portion that contains the stem cells. 
Stem cells of the hair follicle reside in a niche known as the ‘bulge’ (Cotsarelis et al., 
1990), which have been identified by activity of the promoter of the keratin 15 gene 
(Liu et al., 2003).  The bulge can be identified as the point of insertion of the arrector 
pili muscle (Cotsarelis et al., 1990).  Oshima et al. (2001) generated chimeric follicles 
in mice by replacing the wild-type hair follicles with those from Rosa 26 transgenic 
mice (which express a lacZ reporter gene under control of the SV40 promoter).  The 
Rosa 26 cells were found to contribute to all the lineages of the hair follicle: the outer 
root sheath, the inner root sheath and the hair shaft.  The progeny of the transplanted 
cells also contributed to the interfollicular epidermis and the sebaceous gland.  The 
bulge cells migrated to the base of the follicle during hair growth. 
It is not yet known conclusively whether the bulge cells contribute directly to hair 
regeneration or not (Panteleyev, Jahoda and Christiano, 2001; Lavker et al., 2003; 
Myung et al., 2009); Morris et al. attempted to address this in their 2004 study by 
producing a murine mutant, which showed as lacZ-positive if the KRT15 promoter 
was active.  The lacZ-positive cells were found in the bulge, in the lower region of the 
hair follicle and the hair shaft, demonstrating that bulge cells are at least partly 
responsible for regeneration of the follicles.  Label-retaining studies in mice also 
showed that cells from the bulge migrated towards the bulb of the follicle to a far 
greater extent than those which migrate upwards towards the surface (Braun et al., 
2003) (see section 1.4.2.4).  The same study allowed murine follicles to be observed 
over several time-points up to 42 days after birth, showing differences in different 
stages of hair follicle growth.  For example, anagen follicles at PN35 appeared longer 
and had more obvious bulges than those at PN28 (early anagen).  At PN42, the 
follicles were in telogen and so were very short; the label-retaining cells were 
observed extending from the follicle base to just below the sebaceous gland.  During 
this time however, no significant migration occurred during anagen, and no 
significant depletion of cell number was observed.  In another study, to determine 
whether the cells of the bulge region were necessary for epidermal renewal, Ito et al. 
(2005) targeted the KRT15 promoter with a suicide gene encoding the herpes simplex 
virus thymidine kinase (HSV-TK).  This demonstrated that ablation of the bulge cells 
led to survival of the epidermis, but not the hair follicle, which was completely lost.  
This study then demonstrated that the cells of the bulge region were required for 
maintenance of the hair follicle, but not the epidermis.  However, bulge cells were 
recruited into the epidermis following epidermal injury.  After several weeks, most of 
the bulge cells were again eliminated from the epidermis. 
More recently, Romano et al. (2010) have demonstrated that in transgenic mice 
expressing "Np63#, the hair follicle stem cell niche becomes depleted.  In normal 
mouse skin, "Np63# is expressed in the bulge (Rendl, Lewis and Fuchs, 2005), 
where it is thought it maintains the niche by balancing proliferation and 
differentiation of cells (Romano et al., 2010).  In mice overexpressing "Np63#, K15, 
Sox9 and S100-A6 expression are all lost, suggesting a depletion of the stem cell 
niche.  At PN16 in transgenic mice, hypertrophy of the follicles was observed and the 
hair shafts had been replaced by keratinised tissue.  This suggests that the 
keratinocytes from the hair follicle had switched to an interfollicular epidermal fate 
under the influence of "Np63#, affecting hair follicle development and later, cycling 
(Romano et al., 2010).  Examination of the hair follicles in the transgenic mice 
revealed a defect in differentiation, confirmed by lack of Gata3 expression 
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(previously described by Kaufman et al., 2003).  Levels of !-catenin, also 
demonstrated to be necessary for hair follicle formation (Andl et al., 2002), were 
reduced in the transgenic mice, further suggesting impeded differentiation of hair 
follicle cells (Romano et al., 2010).  Ki67 immunofluorescence also suggested loss of 
proliferation potential.  "Np63# has previously been shown to induce K1 expression 
(Ogawa et al., 2008), and Romano et al. (2010) demonstrated that overexpression of 
"Np63# led to K5 and K14 expression throughout the epidermis and increased K1/10 
expression.  Loricrin expression was reduced, suggesting a decrease in the number of 
terminally differentiated cells.  Filaggrin and involucrin levels however increased, 
which Romano et al. suggest could be due to compensatory mechanisms and/or direct 
transcriptional effects of the overexpressed "Np63#.  Western blotting results 
suggested that the basal and spinous layers of the epidermis expanded in mice 
overexpressing "Np63#.   
 
1.2: The Cytoskeleton 
The cytoskeleton has played an important role in the evolution of multicellular 
organisms, allowing cell compartmentalisation, specialisation, attachment, movement 
and division (Fuchs and Karakesisoglou, 2001; Fletcher and Mullins, 2010).  The 
cytoskeleton is maintained through regulated self-assembly, depending on physical 
constraints, such as size of the cell.  The architecture of the cytoskeleton is also 
capable of controlling some physical properties of the cell (such as size, rigidity, 
adhesions and shape), as well as maintaining links with the cell’s external 
environment (for example, Jamora and Fuchs, 2002).  The ability to attach to a 
surface, such as to extracellular matrix, allows cells to spread, which increases the 
opportunity for cells to attach to each other.  Cytoskeletal networks are dynamic – 
whilst resisting deformation, they are also capable of reorganisation (e.g. during cell 
division and in cells subjected to external stress).  This is important in maintaining the 
integrity of the cell and intracellular compartments and location of organelles (for 
example, Hershberg, 2002).  Cytoskeletal proteins also provide a scaffold for receptor 
proteins, protein kinases, motor proteins and signal transduction (Gniadecki, 
Olszewska and Gajkowska, 2001; Lund et al., 2010). 
The cytoskeleton is made up of three major filament types: microtubules, actin 
filaments (or ‘microfilaments’) and intermediate filaments (IFs) (Figure 1.2).  What 
differs between them is their polarities, the associated proteins, their mechanical 
stiffness and their assembly dynamics (for example, Heidemann et al., 1999; Kasas et 

al., 2005; Parsons, Horwitz and Schwartz, 2010).  Actin filaments and microtubules, 
for example, can polymerise and depolymerise to produce forces capable of changing 
cell shape and guiding the formation of intercellular compartments.  Several other 
classes of protein also aid in producing the complex cytoskeletal networks, including 
depolymerising and severing factors (which disassemble filaments), polymerases (to 
aid in filament growth), stablilising proteins and crosslinkers (to reinforce network 
structures once they are organised) and capping proteins (to terminate filament 
growth) (see section 1.2.3). 
 
1.2.1: Microfilaments 
Microfilaments comprise actin polymers (F-actin), actin-binding proteins and 
associated proteins (Stossel, 1993; Winsor and Schiebel, 1997), which together work 
for cell motility, polarity, contractility, cytokinesis, intracellular transport and 
phagocytosis (Schmidt and Hall, 1998; Iwatsuki and Suda, 2010).  Actin is a 43kDa 
globular protein consisting of 375 amino acids, containing two domains separated by 
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a cleft.  The monomer is highly conserved (Kron et al., 1992), highlighting the 
importance of this protein.  Globular actin (G-actin), the monomer, when bound with 
ATP can polymerise to form F-actin-ATP.  F-actin-ADP can also exist following 
hydrolysis.  Actin filaments are polarised, with growth occurring preferentially at one 
end, designated ‘+’ or barbed end, and dissociation of monomers facilitated by 
hydrolysis of ATP from the opposite end, designated ‘-‘ or pointed end.  Thus, F-actin 
is highly dynamic, and filaments containing actin proteins are capable of spontaneous 
formation (via non-covalent bonds).  Actin associates with other proteins in the cell; 
to date more than 150 proteins have been identified with actin-binding domains. 
Actin filaments are less rigid than microtubules, although when in large numbers, 
crosslinker proteins create highly organised, stiff structures.  Highly branched actin 
filaments support the leading edge of motile cells whilst bundles of filaments aid in 
cell-cell communications and chemotaxis (Zani, Indolfi and Edelman, 2010).  Rho, 
Rac and Cdc42 aid in coupling the actin cytoskeleton at sites where membrane 
trafficking and exocytosis occur (Gasman et al., 1999).  These actin structures are 
also dynamic.  Assembly and disassembly occurs in response to local signaling 
systems; for example, branching networks are formed at the leading edge of motile 
cells in response to chemotaxis (as in crawling leukocytes).  The growth of filaments 
stop when a capping protein attaches, preventing further actin monomers from 
attaching to the filament (Cooper and Sept, 2008).  Filopodium-like structures 
containing actin may protrude some length from the cell in order to establish cell-cell 
contacts; the extreme lengths of some of these structures demonstrate that actin needs 
to interact with the plasma membrane to stabilise the protrusion (Liu et al., 2008). 
Myosin proteins attach to actin filaments, and play a role in the organisation of the 
actin cytoskeleton.  Not all actin structures require myosin (such as the structure at the  
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F igure 1.2: Schematic diagrams of the cytoskeletal filament networks 

Microfilaments, or actin filaments (A) are two-stranded helical polymers of actin.  

This polymerisation of G-actin produces F-actin filaments.  Although found 

throughout the cell, actin filaments are generally observed beneath the plasma 

membrane. 
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leading edge of a motile cell); the contractile structure at the rear of a motile cell does 
however.  Myosin proteins also act upon actin filaments in stress fibres, enabling cell 
contraction in response to their external environment (Koenderink et al., 2009; 
Fletcher and Mullins, 2010).  Crosslinker proteins (such as #–actinin) allow some 
flexibility, as the actin bindng sites rotate.  The architecture of the actin network is 
therefore determined by the kinetics of this interaction.  Also, actin filaments are 
produced depending upon the dissociation rate of these crosslinkers; where this level 
is low, more branching occurs (apparently randomly).  At higher dissociation rates, 
filaments become bundles (Wachsstock et al., 1994).  Other actin associated proteins 
bind to other cytoskeletal structures.  For example, #-catenin, !-catenin and E-
cadherin assemble into ‘puncta’ (Yonemura et al., 1995; Adams et al., 1996) and 
become the site at which vinculin and VASP can reorganize and polymerise actin 
(Vasioukhin et al., 2000; Vaezi et al., 2002).  #-catenin is also required for the 
binding of the cytoskeleton to adherens junctions (Vasioukhin et al., 2001).  In 
addition, the actin nucleation-promoting factor WHAMM binds to actin, microtubules 
and membranes, whilst the GTPase Rac1 stimulates actin polymerization (creating 
lamellipodial protrusions) (Waterman-Storer et al., 1999; Campellone et al., 2008). 
As keratinocytes differentiate, they produce tighter cell-cell junctions (see section 
1.1.1.2).  This is to produce the barrier skin is required to be, preventing, for example,  
water loss and infection.  Actin has been shown to have an important role in this, 
contributing to cell reshaping, cadherin oligomerisation (Mége, Gavard and Lambert, 
2006), relocation of soluble desmoplakin and plakophillin (Jones and Goldman, 1985; 
Godsel et al., 2005) and finally production of tight junctions (Tsukita et al., 1999).  
Actin rearrangement during differentiation is affected by increases in extracellular 
calcium (for example, Vasioukhin et al., 2000).  Cell shape has been shown to be an 
important factor in epithelial cell differentiation; reduced cell surface area promotes 
differentiation (Connelly et al., 2010).  Cells cultured on larger surfaces have been 
shown to contain more filamenous actin (F-actin) than globular actin (G-actin).  
Preventing actin polymerisation by culturing keratinocytes on small surfaces has also 
been shown to inhibit differentiation (Connelly et al., 2010).  It is proposed that G-
actin affects differentiation by binding to MAL (megakaryotic acute leukaemia) 
protein in the cytoplasm.  This prevents MAL protein binding to serum response 
factor (SRF), inhibiting transcription (mediated by FOS and JUNB, both SRF targets).  
This suggests that without G-actin, MAL protein-mediated SRF activation promotes 
differentiation in epidermal cells, and leads Connelly et al. (2010) to suggest that 
actin is a primary sensor for epidermal stem cell differentiation. 
 
1.2.2: Microtubules 
Microtubules are the most complex cytoskeletal polymers with regards to their 
assembly and disassembly dynamics (Brangwynne et al., 2006).  Actin and myosin 
stress fibres attach to the rigid microtubule network during membrane rearrangement 
and cell motility (Hawkins et al., 2010).  Their stiff nature also allows radiating of the 
polymers facilitating intracellular trafficking (Fletcher and Mullins, 2010). 
In comparison with microtubules, which rely on the cellular concentration of subunits 
and regulatory proteins, microtubule polymers are capable of much quicker 
polymerisation and depolymerisation (Holy and Leibler, 1994); this process is known 
as ‘dynamic instability’ (Hawkins et al., 2010).  This allows cell motility as well as 
cellular organisation (such as vesicle and organelle separation) (Mitchison and 
Kirschner, 1984; Gross, Vershinin and Shubeita, 2007) and essential spindle 



! 14!

formation during mitosis (Jordan and Wilson, 2004).  Again the strength of 
microtubules is essential here, as they need to be able to withstand moving large 
structures (such as the chromosomes). 
Microtubules interact with proteins named microtubule associated proteins (MAPs).  
MAPs are considered to be important in linking microtubules to other cytoskeletal 
components, supporting the notion that all cytoskeletal proteins work together in the 
cell (for example Mandelkow and Mandelkow, 1995; Vanier et al., 2003; Faller and 
Brown, 2009).  These associated proteins (of which more than 600 have been 
identified) can manipulate the stability and rigidity of microtubules, as well as 
crosslinking them into bundles (Hawkins et al., 2010).  For example, much work has 
been carried out neuronal MAPs, and different proteins are observed in the axon 
(increasing stability and rigidity) and dendrites (stiffening the microtubule structure to 
a lesser extent than those in the axon) (reviewed by Hawkins et al., 2010).  Other 
MAPs (EB1 and CLIP-170) are observed at the barbed end of the filament, where the 
fastest growth and shrinkage occurs; it is possible that these proteins correct defects 
occurring during polymerisation.  E-MAP-115 has been shown to have a role in 
maintaining microtubule stability in keratinocytes, and is upregulated during terminal 
differentiation (Lee et al., 2005).  MAPs also exist to destabilise the microtubule; 
depolymerising kinesins (such as MCAK) act at the ends of the microtubule to 
remove dimers, whereas microtubule severing proteins (such as katanin) act all along 
the microtubule to remove dimers from the lattice, weakening the structure (Hawkins 
et al., 2010).  Where MAPs are defective or mutated, disease can occur.  Parkinson’s 
disease, Huntington’s disease and Alzheimer’s disease have all been linked with 
abnormal MAPs, although exactly how these are affecting microtubules to lead to 
disease states are currently unknown.  This does demonstrate however that the 
flexibility and stability of microtubules is essential for function, and where these 
properties are not altered appropriately, disorders can occur (Hawkins et al., 2010).  
Like the microfilament actin, microtubules are polar.  Because of this structural 
polarity, both actin and microtubules are useful as tracks for other molecules which 
prefer to move in a single direction (Fletcher and Mullins, 2010); microtubules are 
also relatively straight, which aids efficient long-distance transport (Hawkins et al., 
2010).  Microtubules are large filaments, each composed of 13 protofilaments, 
stacked side-to-side.  Each protofilament is 25nm in diameter and is comprised of a 
cylindrical ring of 13 hetrodimers of # and ! tubulin; these form a sheet that is then 
rolled into a tube.  There are several isoforms of # and ! tubulin, encoded on different 
genes, which can also be altered post-translationally, producing microtubules with 
different biochemical compositions (Linhartov# et al., 1992; Lee et al., 2005).  The 
heterodimers can associate or dissociate from either end of the microtubule after the 
tube nucleates.  The – end of the microtubule associates with the MTOC 
(microtubule-organising centre), whilst assembly occurs at the free, + end.  
Disassembly can occur at both ends upon microtubule disassociation with the MTOC 
(Kitanishi-Yumura and Fukui, 1987; Lee et al., 2005).  This lattice can adapt 
depending on cell type; for example, cilia microtubules are made up of an A-lattice 
(which is staggered) and a B-lattice (which has #-# and !-! lateral interactions except 
at the seam with the A-lattice) (Brinkley, 1997 and Hawkins et al., 2010).  The 
individual microtubule polymers are important as, unlike the other cytoskeletal 
proteins, microtubules do not function as large branched networks (Hawkins et al., 
2010). 
Lechler and Fuchs (2007) describe microtubule arrangement during epithelial 
differentiation; in the basal layer, microtubules are apically organised.  In stratified 
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cells however, microtubule networks are concentrated at cell-cell borders; there is 
also no obvious MTOC in these cells.  In contrast, in simple epithelia, despite the lack 
of MTOC, microtubules exhibit an apical-basal orientation.  There is an abundance of 
the class II !-tubulin isoform in the granular layer of the epidermis, although this does 
not extend into the cornified envelope; as keratinocytes differentiate, microtubules are 
degraded (Lee et al., 2005).  In less differentiated NHEK cells, class II !-tubulin is 
present in the nucleus (Lee et al., 2005), as has been described in other cell types 
(Ranganathan et al., 1997; Walss, Kreisberg and Ludue$a; 1999, Walss-Bass 
Kreisberg and Ludue$a, 2001; Xu and Ludue$a, 2002).  As the cells differentiate, 
there is acetylation of microtubules which become increasingly dense; both acetylated 
tubulin and class II tubulin stabilise the microtubules in differentiating NHEK cells 
(Lee et al., 2005).  Increased levels of class II !-tubulin are also observed in 
squamous cell carcinomas; low levels however are observed in hyperproliferative 
keratinocytes (such as in psoriasis).  Lee et al. (2005) suggest that this indicates the 
class II !-tubulin expression is correlated with differentiation. 
It has also been shown that desmoplakin affects organisation of the microtubule 
cytoskeleton during epithelial differentiation (Lechler and Fuchs, 2007).  Without 
desmoplakin, epithelial cells cultured in high calcium media do not lose their MTOC 
nor develop a cortical microtubule network.  It was also suggested that desmoplakin-
dependent re-localisation of the microtubule-anchoring protein ninein to desmosomes 
could affect microtubule reorganisation to the cell cortex. 
 
1.2.3: Intermediate Filaments 
Intermediate filaments (IFs) are the least stiff of the three cytoskeletal polymers; 
because of this, they are more resistant to tensile forces than compressive forces.  IFs 
are thought to have a major role in structurally supporting the cell; this can improve 
cell and tissue integrity (for example, through desmosomal cell junctions) and allow 
organisation of cells into tissues, such as muscle and the skin.  The IF cytoskeleton 
spans between the nucleus and cell membrane, anchored through desmosomal and 
hemidesmosomal linker proteins.  This organisation allows flexibility as well as 
structural stability, which is important in maintaining the integrity of epithelial tissues 
and coping with mechanical stress.  For example, in the epithelial cells of the 
oesophagus, keratin networks help prevent damage to the cell through shear stress 
(Lane et al., 1982; Fuchs and Cleveland 1998; Uitto, Richard and McGrath, 2007; 
Flitney et al., 2009).  This said, IFs are not polar so do not facilitate directional 
movement of molecular motors (unlike actin and microtubules).  Associated 
crosslinker proteins, such as plectin, link IFs together as well as to actin and 
microtubules.  Another function of IFs is to connect the plasma membrane to the 
nuclear compartments (the nucleus and cytoplasm contain different IF populations).  
Lamins are Type V IFs which contribute to the mechanical integrity of the nucleus.  
Phosphorylation of these lamins by cyclin-dependent kinases help the mitosis process 
by triggering nuclear envelope breakdown (Tsai et al., 2006).  The nucleus itself is 
surrounded by a 'cage' of cytoplasmic IFs (Gniadecki et al., 2001). 
IFs belong to a large multigene family, comprising over 70 members – one of the 
largest in the human genome (Hesse et al., 2001; Uitto, Richard and McGrath, 2007; 
Szeverenyi et al., 2008).  Genetic mutations resulting in abnormal or absent IFs have 
been linked with many human diseases, including progeria, epidermolysis bullosa 
simplex, motor neuron disease (also known as amyotrophic lateral sclerosis) and a 
predisposition to liver disease (for a review of diseases caused by keratin mutations, 
see Uitto, Richard and McGrath, 2007). 
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1.2.3.1: Intermediate Filament Nomeculature 

IFs can be divided to give six subfamilies (see Table 1.1).  These were created based 
on their dynamic properties, role in signalling, mechanical stabilisation, participation 
in cytoskeletal crosstalk and motility; grouping them by cell type was not an option as 
different IFs were expressed throughout differentiation in many cell types (for 
example, Franke et al., 1978; reviewed by Eriksson et al., 2009).  Similarities in 
structure eventually lead to classification based on the rod domain amino acid 
sequences, secondary structure and net acidic charge (Steinert and Roop, 1988; 
Eriksson et al., 2009).  The cytoplasmic IFs are grouped according to their sequence 
homology (Type I-IV), and the nuclear lamins form Type V.  More recently, a 
separate class (Type VI) was created for nestin (Herrman and Aebi, 2000), although 
now eye lens IFs are also included (Szeverenyi et al., 2008). 
(Type I and II [the cytokeratins] will be discussed in detail in section 1.2.4.1.) 
Type III IFs include glial fibrially acidic protein (GFAP) (found in astrocytes and 
glia), peripherin (in neurons), desmin (a major constituent of smooth muscle) and 
vimentin (often observed in cells of mesenchymal origin).  Vimentin has also been 
described in epithelial carcinoma cell lines, such as HeLa cells (for example, 
Moskalewski and Thyberg, 1984; Fortier et al., 2010).  In quiescent endothelial cells, 
the vimentin network shrinks toward the perinuclear region in response to platelet-
derived growth factor, and is continually rearranged in epithelial cells in response to 
chemical or mechanical stimulation (Tang, 2008).  Using siRNA to downregulate 
vimentin expression in endothelial cells, Lund et al. (2010) demonstrated that both 
migration and proliferation levels reduced.  Since it was demonstrated that vimentin 
colocalises with VASP, suppression of vimentin resulted in translocation of VASP 
from focal adhesions to the perinuclear region of cells.  The colocalisation of VASP 
with vimentin allows the phosphorylation of VASP; where vimentin levels are 
suppressed, VASP phosphorylation does not occur (Lund et al., 2010).  Taken 
together, Lund et al., 2010 suggest a role for vimentin in controlling endothelial cell 
morphogenesis.  There is also evidence that during mitosis, the type III IFs (and 
keratins) become spot-like structures during the transition of prophase to metaphase 
despite the observation of extensive networks in interphase (Tang, 2008).  During 
mitosis, reorganisation of vimentin IFs has been shown to be mediated by 
phosphorylation of the head domain by p34cdc2 kinase (Chou, Ngai and Goldman, 
1991), and more recently Bub1, a serine/threonine kinase protein (Ando et al., 2008). 
The type IV IFs are usually observed in nerve cells and muscle.  In neurons, type IV 
IFs are implicated in the growth of the axon, and it has been suggested that 
neurofilaments may facilitate elongation of axons inhibiting their retraction and 
stabilisation of the cytoskeleton (Lin and Szaro, 1995; Walker et al., 2001).  Type IV 
IFs observed in neurons include neurofilaments (heavy, medium and light) and nestin 
(sometimes classified separately) (Szeverenyi et al., 2008).  Another type IV IF is 
synemin, which is found in striated and smooth muscle, co-localising with vimentin 
filaments and interacting with desmin (both type III IF proteins) (Tang, 2008). 
Type V IFs are the nuclear lamins – major components of the nuclear lamina, closely 
associated with the inner nuclear membrane in non-mitotic cells.  Further 
investigation revealed three distinct proteins, named A, B and C; A and C are derived 
from alternate splicing of the same gene (LMNA).  Later, further proteins were 
identified (such as lamin B1 and lamin B2) (Höger et al., 1990; reviewed by Genschel 
and Schmidt, 2000).  Lamin A is, so far, the IF with the most number of identified 
mutations (currently around 230); these cause a complex set of diseases, including 
lipodystrophies, progeria syndromes and muscular dystrophies (Worman et al., 2009).  
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Due to the role of the lamins in the nuclear lamina, depolymerisation occurs between 
prophase and metaphase of dividing cells – vital for DNA distribution.  
Repolymerisation occurs following mitosis (Bridger et al., 2007). 
Type VI IFs are the eye lens IFs.  There are currently two proteins identified: 
phakinin (or CP49) and filensin (or CP115) (Hess et al., 1993; Merdes, Gounari and 
Georgatos, 1993).  These proteins are dissimilar to other IFs because of differences in 
their structure; the 5nm filament is dotted with beads periodically, making the ocular 
lens cytoskeleton appear as a beaded filament (Maisel and Perry, 1972; Hess et al., 
1996).  This said, genomic analysis has suggested that they are highly conserved 
amongst species (Hess et al., 1996). 
 

Table 1.1: Six Classes of IF 
Type Protein Components Tissue Specificity 
Type I Acidic keratins Epithelia 
Type II Basic keratins Epithelia 

Type III 
Vimentin, desmin, GFAP, 
peripherin 

Mesenchyme, muscle, glia, 
astrocytes, peripheral (and 
some central) nervous system 

Type IV 
NF-L, -M, -H, Internexin, 
Nestin 

Central nervous system, 
neuroepithelial stem cells 

Type V Lamins All cell types 

Type VI 
CP49/phakinin, 
filensin/CP115 

Eye 

 
 
1.2.3.2: Intermediate Filament Structure 
Intermediate filaments contain an #-helical rod domain, usually 310 residues long and 
flanked with non-helical carboxy- and amino-terminals.  These terminals vary 
depending on IF type (Coulombe et al., 2001; Parry et al., 2007; Goldman et al., 
2008).  The rod domain contains four subunits (1A, 1B, 2A and 2B), also known as 
heptad repeats (Coulombe et al., 2001; Qin, Buehler and Kreplak, 2010).  These 
regions facilitate dimerisation between rod domains of separate IFs.  The carboxy- (C) 
terminal domain of IFs contributes to filament assembly; the amino- (N) terminal 
domain is essential in formation of the tetramer, an early assembly intermediate 
(Figure 1.3). 
The rod domain of the protein consists of two !-helices; the !-helical structure aids in 
dimerisation.  Helix I (closer to the N-terminal) contains the LNDR motif, which is 
highly conserved and critical to IF assembly.  Mutations in this region have been 
shown to cause skin blistering diseases (for example, Hess et al., 1996).  Helix II 
(closer to the C-terminal) contains the TYRKLLEGE motif, which is also highly 
conserved.  In K14 a RELLEGEDAL deletion in the C-terminal caused filament 
collapse (Albers and Fuchs 1987; Hatzfeld and Weber 1991).   
IFs are capable of spontaneous assembly, forming non-polar tetramer filaments in the 
absence of ATP and GTP (Strelkov, Herrmann and Aebi, 2003).  These tetramers 
have a diameter of 8-9nm.  Free tetramers are rarely observed in cells, which are 
capable of regulating assembly of into rope-like filaments by phosphorylation of 
specific serine residues in the amino head domain (Izawa et al., 2006).  It is only the 
#–helical rod domain that is required for this dimerisation, and subsequent tetramer 
formation, to occur (Parry and Steinert 1992; Qin, Buehler and Kreplak, 2010).   
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In particular, type III IFs have shown that at neutral pH, dimers associate rapidly 
forming half-staggered, anti-parallel tetramers; these associate to form unit-length 
filaments (ULF) (Goldman et al., 2008).  Free tetramers are rarely observed in the 
cell, as serine-specific residues in the N-terminal are phosphorylated as a method of 
regulating IF assembly (Hatzfeld and Weber, 1990; Izawa et al., 2006).  These IF 
tetramers therefore assemble into rope-like polymers, which measure 7-10nm in 
diameter (Gniadecki et al., 2001; Qin, Buehler and Kreplak, 2010).  They may also 
form ULFs, which are comprised of four octamers (Sokolova et al., 2006).  Using 
electron microscopy and scanning force microscopy, Kirmse et al. (2007) 
demonstrated that IFs (in this study, vimentin) grow from the addition of ULFs (not 
dimers or tetramers); this has also been demonstrated in peripherin (Chang et al., 
2006).  Nonfilamentous peripherin particles comprise dimers, tetramers and ULFs 
(Chang and Goldman, 2004). 
Recently, there has been more focus on the atomic level.  The crystal structures of 
some IF protein domains, such as #–helices and coiled coils, have been elucidated by 
crystallography.  Papapostolou et al. (2007) built on this work by developing peptides 
with sticky ends, which would form coiled coils; this was important as coiled coil 
proteins do not crystallise in filament form (Smith and Parry, 2008).  This is due to 
the imperfect 3D structure produced as IFs polymerise and become filaments, 
although sophisticated computer modeling software has overcome this issue.  
Bertaud, Qin and Buehler (2009) identified that ‘biological protein materials’ feature, 
for example, sliding and folding; this requires the disruption of hydrogen bonds and 
covalent crosslinks.  This is particularly the case in the cytoskeleton, which are 
required to have strength, elasticity and robustness.  They therefore suggest that closer 
examination is needed alongside the macroscale studies (such as those described 
above).  Bertaud, Qin and Buehler (2009) and Herrmann et al. (2009) suggest that this 
‘multiscale’ understanding (using computational techniques) will provide further 
advances in the field. 
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Figure 1.3: The Structure of Intermediate Filaments 

Schematic diagram of the structural domains in intermediate filaments (A).  The head, tail, rod 

and linker domains are shown.  The head domain is thought to adopt a globular structure.  The 

rod domains, which form the coiled-coil heptad repeat (see B), are interrupted by linker regions 

(L1, L1-2, L2). 

Intermediate filaments are made up of fibrous proteins (fibrils) which together form a rope-like 

structure.  This structure allows intermediate filaments to withstand large forces, important in 

anchoring organelles and maintaining cell structure (B).  The monomer contains a head domain, 

a tail domain and a central !-helical rod domain of approximately 310 amino acids (350 in the 

nuclear lamins).  The central rod domains of two monomers wind around each other to form the 

dimer.  The dimers than associate in antiparallel to form tetramers.  Protofilaments are formed 

from end-to-end associations of tetramers, which then laterally form filaments.  Each filament 

contains eight protofilaments, which wind around each other to form the rope-like structure. 
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Phosphorylation of Intermediate Filaments 
Cytoskeletal proteins require reorganisation during mitosis, which is, at least in part, 
controlled by phosphorylation, particularly during S and G2/M phases of the cycle 
(Celis et al., 1983; Chou and Omary, 1994); the first evidence of this was observed in 
vimentin.  Phosphorylation state-specific antibodies, which recognise phosphorylated 
serine/threonine residues (Inagaki et al., 1997), can be used to detect phosphorylation 
of IFs at the cleavage furrow (Nishizawa et al., 1991).  In vivo analysis has 
demonstrated the importance of Rho-kinase, Aurora-B and Polo-like kinase 1 in 
phosphorylation (Kosako et al., 1997; Goto et al., 2003; Yamaguchi et al., 2005; 
Izawa and Inagaki 2006).  IF organisation is regulated by protein kinases causing 
phosphorylation as this induces disassembly; conversely, protein phosphatases 
dephosphorylate IFs, allowing assembly.  This ensures a constant turnover of 
filaments and the soluble pool of IF fragments.  Most phosphorylation sites are in the 
N-terminal domain.  During mitosis, phosphorylation of IFs is observed throughout 
the cell.  In a study specifically observing GFAP phosphorylation, Ser8 
phosphorylation began in prometaphase and continued through metaphase before 
declining; Thr7, Ser13 and Ser38 phosphorylation occurred during anaphase, 
continuing through telophase and only decreasing as the cell was exiting mitosis.  
This suggested that at least two different kinases are acting on GFAP during mitosis 
(Matsuoka et al., 1993; Izawa and Inagaki 2006).  Cdk1 was shown to be one of these 
kinases (Tsujimura et al., 1994a), which was also shown to act on Ser55 of vimentin 
(Tsujimura et al., 1994b).  The second was Rho-kinase (Kosako et al., 1997).  In cells 
transfected with a GFAP mutant (in which Thr7, Ser13 and Ser38 had been changed 
to alanine residues), a formation referred to as an ‘IF bridge’ was created between 
unseparated post-mitotic cells, demonstrating that no IF disassembly had occurred 
(Yasui et al., 1998).  In a similar experiment using vimentin, IF bridges were also 
observed between daughter cells (Yasui et al., 2001).  Kops, Weaver and Cleveland 
(2005) have described how defects in mitosis (such as those described here) promote 
aneuploidy and tumourigenesis.  Izawa and Inagaki (2006) speculate that impaired 
phosphorylation of IFs may contribute to the formation of tetraploid cells (with two 
nuclei); in normal cells this would cause apoptosis.  Without a tetraploid ‘checkpoint’, 
it is possible that tumourigenic aneuploid cells may develop.  A similar phenomenon 
has been observed in K8/K18 knockout mice, which are approximately 100 times 
more sensitive to TNF-induced apoptosis than control littermates (Caulin et al., 
2000).  Epithelial cells are more resistant to TNF-induced apoptosis; an association 
between TNFR1-associated death domain protein (TRADD) and K18 may attenuate 
the activated TNFR1, reducing the effects of TNF (Inada et al., 2001).  A similar 
mechanism of K14-TRADD interaction has been suggested to have a role in EBS 
(Yoneda et al., 2004).  Inhibition of K5 T150 phosphorylation in K5 P152L mutants 
may also contribute to EBS (Toivola et al., 2002). 
An example of the role of IF phosphorylation in the stress response can be seen in 
liver cirrhosis.  Mouse models expressing the K8 G61C mutation, which has been 
shown as a predisposing factor in human cirrhosis, demonstrate reduced keratin 
phosphorylation, as the mutation inhibits Ser73 phosphorylation which normally 
occurs through stress-activated proteins, such as JUNK and MAPK (Ku and Omary, 
2006).  In an injury model of lung alveolar epithelial cells, the keratin cytoskeleton 
has been shown to disassemble when exposed to shear stress; this co-insides with the 
PKC%-mediated phosphorylation of K8 at Ser73 (Ridge et al., 2005).  Flitney et al. 
(2009) also demonstrated that K18 was phosphorylated at Ser33 during shear stress.  
During shorter periods of stress, this Ser33 phosphorylation occurred closer to the 
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nucleus (where forces were greatest) (Barbee et al., 1995); increases in duration or 
shear force caused further phosphorylation, gradually advancing outward from the 
nucleus.  It was shown through electon microscopy that shear stress promotes the 
bundling of pre-existing keratin filaments, creating tonofibrils.  The role of 
phosphorylation in response to shear stress then is to reinforce the keratin 
cytoskeleton (demonstrating that phosphorylation is not always associated with 
filament disassembly) (Flitney et al., 2009).  Osmotic stress has also been shown to 
induce K20 phosphorylation in the small intestine; in colon-carcinoma derived cell 
lines Caco and HT29 cells, K8 was also altered under osmotic stress conditions (Tao 
et al., 2006a).  In hyposmotic conditions, K8 Ser431 becomes dephosphorylated (and 
hyperphosphorylated in hypertonic conditions); K8 Ser73 (phosphorylated during 
apoptosis and mitosis – Liao et al., 1997) becomes hyperphosphorylated after 
exposure to both hyposmotic and hypertonic conditions (Tao et al., 2006a).  In 
contrast, K18 phosphorylation sites were unaffected in these conditions. 
Phosphorylation has also been shown to have an effect on cell-cell junctions and cell 
motility, affecting wound healing.  For K17, this is an indirect effect, demonstrating 
the importance of keratins as scaffolds for other proteins, in addition to their role in 
maintaining mechanical integrity of cells.  Small epithelial cells and delayed wound 
closure has been reported in K17-null embryos (Mazzalupo et al., 2003); cultured 
K17-null keratinocytes are also small and demonstrate a ~20% reduction in protein 
synthesis (Kim, Wong and Coulombe, 2006).  It is possible that the epithelium-
specific mTOR kinase isoform 14-3-3 K17 associated protein regulates K17 
distribution (Hermeking and Benzinger, 2006).  Hypophosphorylation of K17 allows 
14-3-3 to relocate to the nucleus; this prevents activation of mTOR (mammalian 
target of rapamycin), a member of the phosphatidylinositol 3-kinase-related kinase 
family, which affects cell growth and the rate of cell replication (Kim et al., 2006; 
Cao and Wan 2009).  K8 and K18 are also required at 14-3-3 binding sites during 
mitosis (Ku et al., 2002).  Cdc2/CyclinB phosphorylation and dephosphorylation help 
to regulate mitosis through multiple signal cascades.  Action of the phosphatase 
Cdc25 (which dephosphorylates Cdc2/CyclinB during G2/M phase transition of the 
cell cycle) is regulated by binding to 14-3-3; again hyperphosphorylation of K8/K18 
increases 14-3-3-keratin interaction (Margolis et al., 2006).  K8 Ser73 has also been 
shown to be phosphorylated by the stress-activated kinase p38, a function important 
in causing reorganisation of the filament in vitro (Ku et al., 2002).  Toivola et al. 
(2002) have further demonstrated that p38 is also capable of phosphorylating K6b and 
K5 in a similar manner to K8, although K6b and K5 are phosphorylated on serine and 
threonine, as opposed to K8, which is only phosphorylated on serine.  Enhanced 
activity of p38 and mitogen-activated protein kinases (MAPK) has also been shown to 
induce differentiation in keratinocytes.  The activity of p38 increased in NHEK cells 
exposed to sulphur mustard, causing K1 and loricrin levels to rise (Popp et al., 2011).  
Hyperphosphorylation of 65kDa, 60kDa and 55kDa keratins were observed following 
treatment with okadaic acid in murine keratinocytes (Kasahara et al., 1993).  This 
phosphorylation, occurring at several sites in each keratin, caused a change in 
solubility of the keratins and reorganisation of the keratin network (which eventually 
collapsed into perinuclear aggregates) (Kasahara et al., 1993); this has also been 
demonstrated in SCC-13 cells (Toivola et al., 2002).  It has since been demonstrated 
that in primary keratinocytes, K4, K5 and K6 are phosphorylated and become 
solublised following treatment with okadaic acid (Toivola et al., 2002).   
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Intermediate Filament Dynamics 

As previously mentioned, intermediate filaments are dynamic proteins, forming 
dimers and filaments, assembling and disassembling as cells change shape, size, 
order, and differentiate.  Immunofluorescence has been used extensively to study 
cytoskeletal networks in cultured cells.  In a process called ‘dynamic subunit 
exchange’, it was noted that ectopically expressed keratin and vimentin could become 
incorporated into endogenous intermediate filaments (Albers and Fuchs, 1989; Ngai 
et al., 1989); similar results were observed when intermediate filaments were 
mincroinjected into cultured cells (Vikstrom, Borisy and Goldman, 1989; Miller, 
Vikstrom and Goldman, 1991).  Later, fluorescence recovery after photo-bleaching 
(FRAP) was used to confirm that subunit exchange could occur along the length of 
vimentin and keratins (Vikstrom et al., 1992; Yoon et al., 1998; Yoon et al., 2001), 
and that phosphorylation sites are important in this exchange.  It has also been 
possible to measure the rate of subunit turnover using FRAP (for example, Yoon et 

al., 2001).  Using GFP reporter proteins, Windoffer and Leube also demonstrated that 
individual IFs could change shape (Windoffer and Leube, 1999).  Since the 
observation that vimentin translocation is dependent on dynein and kinesin (Gyoeva 
and Gelfand 1991; Prahlad et al., 1998; Helfand et al., 2002), it has been noted that 
IFs are not only structural proteins, but organisers of different cellular processes 
(Eriksson et al., 2009).  Also assisting in this view were increasing numbers of 
diseases attributed to intermediate filaments, without being easily related to structural 
function (for example, see Table 1.2). 
 

Table 1.2:  Keratin Diseases 

Keratin Disease 

Ichthyosis hystrix of 
Curth-Macklin 
 

A disorder characterized by the appearance of ridges 
on the skin surface.  The hyperkeratosis observed 
may be caused by hyperproliferation, a response to 
the cell fragility caused by K1/10 mutations. 

Epidermolytic 
hyperkeratosis 
 

This condition is characterized by hypertrophy, 
blistering and redness.  Electron microscopy has 
shown that affected suprabasal cells often 
demonstrate clumping of the keratin cytoskeleton. 

K1/K10 

Striate keratoderma 
 

A type of palmoplantar keratoderma characterized 
by hyperkeratosis on the palms of the hand. 

K2e 
Ichthyosis bullosa of 
Siemens 

A milder form of epidermolytic hyperkeratosis, 
localised to flextures.  Aggregation of keratin 
filaments can be observed in the spinous and 
granular layers. 
 

K3/K12 
Meesman epithelial 
corneal dystrophy 

Characterised by the development of multiple 
opaque spots on the epithelium of the cornea. 

K4/K13 
White sponge nevus 
of Cannon 

This condition affects the non-cornifying stratified 
squamous epithelial tissues, such as in the mouth.  
The white plaques and loose skin in the mouth are 
caused by fragility of the suprabasal cells of buccal 
epithelium. 



! 25!

!

Keratin Disease 

K5/K14 
Epidermolysis 
bullosa simplex 

A skin blistering condition caused by fragility of the 
basal layer.  This is a result of mutations in K5 or 
K14 which disrupt the formation of K5/K14 
filaments.  Different mutations result in different 
phenotypes. 

K6a/K16 
Pachyonychia 
congenita type 1 

Also known as Jadassohn-Lewandowsky syndrome.  
Characterised by hyperkeratosis of the nail bed and 
distortion and thickening of the nail plate.  Oral 
leukokeratosis is also seen. 

Pachyonychia 
congenita type 2  

Also known as Jackson-Lawler syndrome.  
Symptoms as for type 1, without the oral 
leukokeratosis.  Those with type 2 are prone to 
pilosebaceous cysts, hair abnormalities, vellus hair 
cysts and natal teeth. K6b/K17 

Steatocystoma 
multiplex 

The sebaceous cysts which occur in steatocystoma 
multiplex are known as steatocysts, and can occur 
over the entire body.  In some patients, mild 
keratoderma and nail changes are observed. 

Pseudofolliculitis 
barbae 

A condition increasing the risk of  ingrowing hair 
occurrence and follicular infections. 

K6hf 
Loose anagen 
syndrome 

Hair in anagen is easily removed and demonstrates 
no inner or outer root sheath and a ruffled cuticle.  
Causes thinning hair in children.  

K8/K18 Cryptogenic cirrhosis 
Liver tissue is replaced by fibrotic scar tissue in 
liver disease.  This results in loss of liver function. 

K9 
Epidermolytic 
palmoplantar 
keratoderma 

This condition occurs as mutant K9 weakens the 
cytoskeleton in suprabasal cells of the palms and 
soles of the feet.  This results in thickening of the 
palms, which is characteristically yellow and has an 
erythematous border. 

 
More recently, keratins have been observed by incorporating a fluorescently-tagged 
keratin with an EGFP (enhanced green fluorescent protein) construct.  This 
demonstrated that keratins not only formed mature IFs, but also in two types of 
particles.  These were denoted S (for static, or slow) particles, which are less motile, 
and F (fast) particles, which are more dynamic.  The swift movement of these F 
particles is aligned with microtubules (Liovic et al., 2003).  Wöll, Windoffer and 
Leube (2005) observed similar results, identifying that keratin motility relied on 
microtubules and intact actin filaments.  Furthermore, Kölsch, Windoffer and Leube 
(2009) demonstrated that focal adhesion-dependent polymerization of keratin occurs 
in developing lamellipodia.  In addition, the transportation of newly-formed keratin 
particles is initially mediated by actin; this mechanism then would allow extension of 
the keratin IF network to the leading edge of cells during migration, important in 
wound healing. 
 
1.2.4: The Keratins 
The keratin network occupies the cytoplasm between the nucleus and the plasma 
membrane, where they act as protein scaffolds.  Once at the cell membrane, keratins 
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aid in the attachment of individual cells to each other through desmosomes.  As 
epithelial cells detach from the basal layer and move towards the skin surface, the IF 
network changes to increase the tensile strength of the cell.  This appears as a change 
in the keratin expression pattern (Fuchs and Cleveland, 1998; Gu et al., 2007). 
The important role of keratins is highlighted by the symptoms of many genetic 
diseases caused by keratin mutations (Uitto et al., 2007; Moll, Divo and Langbein, 
2008; Omary et al., 2009); for example, epidermolysis bullosa simplex, where 
mutations in K14 or K5 cause different severities of blistering, depending on the 
mutation, to the extent that such blistering can be fatal (Coulombe, Kerns and Fuchs, 
2009).  Keratins also have regulatory and highly specialized functions in the cell 
(Eichner et al., 1986; Magin, Vijayraj and Leube, 2007), and different keratins in 
different cell types may have different regulatory functions (discussed in more detail 
in section 1.2.4.2).   
 
1.2.4.1: Type I and Type II Keratins 

The keratin genes are part of a large family, comprising 54 members, divided into two 
groups based on sequence homology (Gu et al., 2007; Moll, Divo and Langbein, 
2008).  In 2006, Schweizer et al. instigated a new consensus nomenclature for 
mammalian keratins, which has since been widely adopted (for example, Karantza, 
2010). 
Acidic Type I keratins generally have a lower Mr than the basic Type II keratins (see 
Moll, Divo and Langbein, 2008).  Equimolar association of both types are required 
for polymer assembly (Eichner et al., 1986). 
The Type I keratins are named K9-10, K12-20, K23-28 and K31-40 (hair keratins); 
basic keratins are named K1-8, K71-80 and K81-86 (hair keratins).  There are 28 type 
I keratin genes (11 hair keratins and 17 epithelial keratins) and 26 type II genes (6 
hair keratins, 20 epithelial keratins).  These genes are designated as KRT1, KRT2, 
KRT3 etc. and clustered at two chromosomal sites: 12q13.13 (type II keratins and 
K18) and 17q21.2 (type I keratins excluding K18) (Moll, Divo and Langbein, 2008).  
Although most keratin pairs are consistently found together (for example, K10 and 
K1), this is not always the case (for example, K5 dimerises with both K14 and K15). 
 

1.2.4.2: Keratin Expression Patterns in Skin 

Not all keratin proteins are expressed in all epithelial cells, and cell type can often be 
identified by their specific keratin expression pattern.  For example, more stratified 
epithelia express keratins 5/6, 10, 15 and 14, whereas simple epithelia express simple 
epithelial keratins: 7, 18, 19 and 20 (see Table 1.3). 
As cells of the epidermis differentiate, the keratin expression pattern changes (Gu et 
al., 2007).  In the basal layers, K5/K15 and K5/K14 are most prominent.  K1 and K10 
(which replace K5 and K14) are therefore considered early-stage differentiation 
markers. 
 



! 27!

 

Table 1.3: Human Keratin Nomenclature and Gene Designation 

Keratin Type Protein Designation Gene Designation 

Type I Human Epithelial 
Keratins 

K9 KRT9 

 K10 KRT10 

 K12 KRT12 

 K13 KRT13 

 K14 KRT14 

 K15 KRT15 

 K16 KRT16 

 K17 KRT17 

 K18 KRT18 

 K19 KRT19 

 K20 KRT20 

Type I Human Epithelial 
Keratins 

K23 KRT23 

 K24 KRT24 

 K25 KRT25 

 K26 KRT26 

 K27 KRT27 

 K28 KRT28 

Type I Human Hair Keratins K31 KRT31 

 K32 KRT32 

 K33a KRT33A 

 K33b KRT33B 

 K34 KRT34 

 K35 KRT35 

 K36 KRT36 

 K37 KRT37 

 K38 KRT38 

 K39 KRT39 

 K40 KRT40 

Type II Human Epithelial 
Keratins 

K1 KRT1 

 K2 KRT2 

 K3 KRT3 

 K4 KRT4 

 K5 KRT5 

 K6a KRT6A 

 K6b KRT6B 

 K6c KRT6C 

 K7 KRT7 

 K8 KRT8 

 K71 KRT71 

 K72 KRT72 

 K73 KRT73 
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Keratin Type Protein Designation Gene Designation 

 K74 KRT74 

 K75 KRT75 

 K76 KRT76 

 K77 KRT77 

 K78 KRT78 

 K79 KRT79 

 K80 KRT80 

Type II Human Hair Keratins K81 KRT81 

 K82 KRT82 

 K83 KRT83 

 K84 KRT84 

 K85 KRT85 

 K86 KRT86 

 

1.2.4.3: The Epithelial Keratins 
This section will describe the keratins in epithelial tissue.  This will begin with 
K8/K18, a marker of embryonic cells committed to an epidermal fate.  K19, a 
possible marker of epithelial stem cells, is then discussed.  This is followed by basal 
keratinocytes K5 and K14, then K1/K10, observed in more differentiated 
keratinocytes.  The discussion of K6, K16 and K17 follows, since these keratins are 
not normally present in the epidermis. 
The epithelial keratin not discussed in this section is K15; since this protein requires a 
more detailed discussion, it will be reviewed in section 1.3. 
 

K8/18 

K8 is considered to be one of the earliest markers of embryonic cells committed to an 
epidermal fate.  In a study assessing in vitro differentiation of embryonic stem cells, 
Troy and Turksen (2005) describe ‘epithelial progenitor cells’ expressing K8 (as well 
as K19 and K17); these cells expand and differentiate into K14-positive cells (and 
continue towards terminal differentiation.  K8/18 is not present in human adult skin, 
but is present in some cell lines, such as HaCaT cells (Kazerounian, Uitto and Aho, 
2002). 
In the embryo, murine K8 can be detected at the 8-cell stage before becoming 
restricted to the trophectoderm and extraembryonic endoderm at the blastocyst stage 
(Jackson et al., 1980; Brûlet et al., 1980; Oshima et al., 1983; Thorey et al., 1993). 
Studies utilising K8 deletion have demonstrated the role of K8 in inflammation and 
epithelial barrier integrity (Baribault et al., 1994; Habtezion et al., 2005).  Different 
KRT8

-/- animals however demonstrate conflicting results; for example, KRT8
-/- 

Xenopus embryos show defective wound healing whereas KRT8
-/- mice demonstrate 

no difference in wound closure compared to the wild type (these mice also develop 
colonic hyperplasia); these different results are possibly due to subtle cell-type 
specific or species differences in keratin requirements for wound healing (Long et al., 
2006).  In a study downregulating K8 in simple epithelia, Long et al. (2006) 
demonstrated that lack of K8 reduces epithelial integrity and affects migration and 
wound healing in vitro.  Long et al. (2006) showed that K8 was essential for the 
integrity of migrating MCF-7 cells, where the keratin network is re-distributed to the 
edge of the epithelial sheet. 
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Both K8 and K18 expression increases following IL-6 increase (which can occur 
pathologically in diseases such as inflammatory bowel disease), and phosphorylation 
of K8 was induced (Wang et al., 2007).  K18 phosphorylation allows an interaction 
between K8 and K18 and the 14-3-3 protein family, promoting depolymerisation and 
the intracellular distribution of K8 and K18 in vitro.  K8 and K18 are also 
phosphorylated in response to cell stress (Ridge et al., 2005).  Phosphorylation at Ser-
431 increases during mitosis following filament reorganisation and epidermal growth 
factor exposure (Ridge et al., 2005), whereas K8 Ser-73 phosphorylation is mediated 
by PKC%.  It is this inhibition of PKC% which prevents keratin disassembly in shear-
stressed alveolar epithelial cells (Ridge et al., 2005).  As well as affecting simple 
epithelial wound healing and migration, RNAi depletion of K8 has also been shown 
to result in a breakdown of cell-cell adhesions (and redistribution of cytolinker 
proteins to the cytosol from the cell border) (Long et al., 2006). 
 
K19 

KRT19 is part of chromosome 17q21 and comprises 6 exons.  As yet, no disease or 
condition has been associated with KRT19 mutation(s) (Whittock, Eady and McGrath, 
2000), and K19 knockout mice do not display early embryonic defects.  However, 
when bred with KRT18

-/- mice, these K18/K19-null mice suffer from early embryonic 
lethality (E10.5), since both embryonic type I keratins have been removed (Hesse et 

al., 2000).  It has been suggested that this is due to cytolysis and necrosis of 
trophoblast giant cells.  E9.5 KRT18

-/-
/KRT19

-/- embryos were associated with 
trophoblast cells which had begun to separate from the maternal tissue due to 
necrosis.  Hesse et al. (2000) demonstrated that these trophoblast giant cells did not 
have a keratin cytoskeleton through immunofluorescence; only K8 aggregates were 
observed. 
The K19 protein is not restricted to stratified or simple epithelia, but has been 
described in the hair follicle bulge (Whittock, Eady and McGrath, 2000), nipple 
epidermis (Stasiak et al., 1989), epidermal basal cells (Whittock, Eady and McGrath, 
2000), superficial layers of the conjunctiva (Krenzer and Freddo, 1997) and corneal 
epithelial cells (Offord et al., 1999).  K19-positive cells have also been identified in 
tumours; K19 is often (but not always) observed in basal cell carcinomas, and 
occasionally observed in sebaceous tumours (Heyl and Mehregan, 2008).  Low levels 
of the soluble fragments of K19 in the blood stream are observed in patients with 
differentiated thyroid carcinomas, although this increases in more poorly 
differentiated carcinomas (Giovanella et al., 2008).  When blood levels of the soluble 
faction were investigated in breast cancer patients, no correlation was observed 
(Marrakchi et al., 2008).  An investigation of full length circulating K19 showed that 
the protein was expressed and released by breast cancer cell lines and colorectal 
cancer cell lines; this was an active process, not a consequence of cell death (Alix-
Panabières et al., 2009). 
K19 is also suggested to be a marker of epithelial stem cells in different tissues.  For 
example, Brembeck et al. (2001) suggest that the KRT19 promoter may be useful in 
studying transdifferentiation of epithelial cells in the stomach and pancreas.  K19 
immunofluorescence has also been used alongside 3H-thymidine incorporation 
(producing label retaining cells) to label epidermal stem cells both in vivo and in vitro 
(Larouche et al., 2005).  Low levels of K19 have been observed in murine embryonic 
stem cells, whereas human embryonic stem cells express moderate levels of K19 
mRNA.  Significant levels of K19 mRNA are expressed in human embryonal 
carcinoma cells (Maurer et al., 2008).  In the hair follicle, K19-positive cells have 
been observed in the ORS (alongside K15) (Raposio et al., 2007).  K19 is also 
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observed in the bulge of human hair follicles (Kloepper et al., 2008).  Extensive 
investigation by Kloepper et al. (2008) has demonstrated in human hair follicles, K19 
was present in the outermost layer of the ORS around the bulge region; heterogenous 
immunoreactivity was described around the bulge and distal to it. 
 
K5/K14 

K5 and K14 are expressed in mitotically active basal cells of the epithelium in the 
genito-urinary tract, digestive system, mammary glands and the skin.  Mutations in 
KRT5 and KRT14 are known to cause forms of the epidermal disorder epidermolysis 
bullosa simplex (Casatorres et al., 1994; Romano et al., 2009).  EBS patients display 
a large range of mutations in KRT5 or KRT14; patients with severe EBS frequently 
tend to have mutations near to the end of the #–helical rod region, necessary for 
filament elongation.  Milder forms of the condition display mutations outside of the 
#–helical domains (Chan et al., 1994).  For example, the highly conserved regions at 
the end of the !-helical 1A rod domain is connected to the 2B end of the next dimer 
by a 10-11 residue head-to-tail overlap.  Point mutations in these regions may affect 
filament formation (Steinert et al., 1993).  It is in these regions where mutations may 
occur in KRT5 or KRT14, causing EBS-DM (Dowling-Meara type) (Liovic et al., 
2001; Müller et al., 2006).  As mutations in these regions affect keratin filament 
assembly at an early stage, a more severe phenotype is expected (Irvine and McLean, 
1999; Porter and Lane, 2003).  This had previously been demonstrated by Letai et al. 
(1993): by engineering several transition mutations in vitro, the group showed that 
different keratin mutations had more or less severe affects on assembly, disease 
phenotype and susceptibility to mutagenesis.  This said, more recently, Arin et al. 
(2010a) have highlighted that established genotype-phenotype correlations do not 
always accurately predict the effects of the disease on individuals – this is possibly 
due to the high number of KRT5 and KRT14 mutations; more than 150 have been 
reported so far on the Interfil.org website (http://www.interfil.org - Szeverenyi et al., 
2008).  Furthermore, there are two rare subtypes of EBS where the phenotype 
includes pigmentation: EBS-MP (EBS mottled pigmentation) (Fine et al., 2008) and 
EBS-MCE (EBS migratory circinate erythema) (Gu et al., 2003), which are not fully 
understood. 
K8 and K18 (so-called ‘simple epithelial keratins’) are expressed in the embryo first, 
before K5 and K14 (the ‘stratified epithelial keratins’).  Romano et al. (2009) suggest 
that this is a critical event in development of the commitment to stratification in the 
epidermis.  Inactivation of KRT14 results in basal keratinocytes which lack a 
significant keratin network, leading to cytolysis (due to the inability to cope with the 
mechanical stresses of the skin).  This EBS-like phenotype results in death of KRT14-
null mice ~2 days after birth (Lloyd et al., 1995).  This also indicates that K5/K15 
keratin filaments are not capable of providing enough mechanical stability to support 
the integrity of the basal cells without K5/K14 fibres.  Paladini and Coulombe (1999) 
suggest that this raises the question as to whether basal cells require K14 to achieve a 
functional keratin filament network.  Lloyd et al. (1995) observe that there is no 
mechanism for upregulating K15 or any other type I keratin in the absence of K14, 
although Paladini and Coulombe (1999) claim that there is an increase in K15 levels 
in the absence of K14.  In addition, K5 levels were not as reduced in the KRT14-null 
mice as expected in this study, given that K5 has been shown to degrade where K14 is 
not present (Chan et al., 1994).  Where targeted deletion of K5 is used, research has 
suggested that K5 may also be a partner of K17 (as well as K15 and K14), and may 
induce K6 expression (this is different to the reaction of cells to K14 deletion) (Peters 
et al., 2001).  Studies utilitising cells from patients with EBS can aid in research on 
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the effects of K5 and K14 mutations or ablation.  For example, Morley et al. (2003) 
demonstrated that EBS keratinocytes migrated faster (following scratch wounding) 
than control keratinocytes (suggesting that this may be due to upregulation of stress-
activated kinase pathways in these cells).  Liovic et al. (2009) demonstrated that cell 
junction components are downregulated in EBS cells, caused by mutations in the 
helix boundary motifs of either K14 or K5 (the underlying mechanisms however are 
unclear).    This finding was supported by creating the same mutation from wild type 
keratinocytes.  In addition, real-time PCR was used to assess which junction proteins 
were affected.  These included plakophilin 1, periplakin, laminin, !6-integrin, 
desmoglein, desmocollin, connexion, claudin and E-cadherin.  Liovic et al. suggest 
that this may explain some EBS pathologies, such as acantholysis, and faster wound 
migration.  The usual stresses coupled with the weakened cell junctions may 
contribute to a possible increased risk of non-melanoma skin cancers in EBS patients.  
Other studies have remained concerned with the mechanical stability of cells with K5 
or K14 mutations; for example, Russell, Ross and Lane (2010) demonstrate that 
extracellular signal-regulated kinase (ERK) is expressed in mechanically stressed 
cells, inducing apoptosis. 
It is also possible that mutations may also affect the role of keratins beyond 
mechanical stability.  For example, Liovic et al. (2001) suggest that the location of the 
protein defect may be secondary in importance to the nature of the amino acid change 
when referring to genotype-phenotype correlations; no specific references to any 
function other than mechanic stabilisation were made however.  Later work did 
demonstrate the effect of other proteins associated with keratins in EBS patients 
(Liovic et al., 2009; as described previously). 
Bruen et al. (2004) studied burn re-epithelilisation in mice by creating transgenic 
mice expressing green fluorescent protein driven by the K5 promoter.  The enhanced 
green fluorescent protein (EGFP) was observed in basal cells throughout the mouse, 
and the expression was strongest in the epidermis.  It was noted that K5 promoter 
activity increased up to 75% during wound closure (up to approximately day 15 post-
wounding).  After this, K5 promoter activity gradually decreased, although was still 
greater than normal levels 21 days after wounding (Bruen et al., 2004).  Further work 
has been carried out to investigate the initiation of K5 (and K14) expression.  Several 
cis-regulatory regions in KRT5 and KRT14 have been identified, mostly toward the 5’ 
end (which are highly conserved between these particular keratins) (Sinha et al., 
2001; Kaufman et al., 2002); several expected transcription factors bind to the DNA 
regions studied, including AP-1 and AP-2, Sp1 and Ets (Romano et al., 2009).  None 
of these transcription factors are restricted to the basal layer however.  More recently, 
p63 and in particular the "Np63 isoform (which is restricted to the basal layer), has 
been identified as affecting K14 expression and K5 expression  (Romano et al., 2007; 
Romano et al., 2009). 
 
K1/K10 
K1/K10 filaments are considered to be less dynamic than many other keratin pairs, 
suggesting that these fibres are important in forming a more rigid cell structure 
(Coulombe and Omary, 2002).  K10 has been shown to aid cells resist mechanical 
trauma (Santos et al., 2002a), and K10 mutations have been shown to lead to severe 
skin fragility syndromes, such as epidermolytic hyperkeratosis (Syder et al., 1994; 
Reichelt and Magin, 2002).  K10 has also been suggested to play a role in influencing 
cell cycling: ectopic expression of K10 has been shown to induce cell cycle arrest in 
proliferating cells (both in vivo and in vitro) (Santos et al., 2002b).  Ectopic 
expression of K10 in the basal layer (in this case, under control of the KRT5 
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promoter) impaired tumour development and inhibited cell proliferation (Santos et al., 
2002b).  K10 levels are reduced during hyperproliferation, whether normal (such as in 
wound healing) or pathological (as in epidermal tumours, for example) (Santos et al., 
2002b).  Previously, Fuchs and Green (1980) had suggested that this was due to K10 
replacing K14 as keratinocytes lose contact with the basement membrane and entered 
terminal differentiation, becoming post-mitotic in the process (i.e. K10 is important in 
maintaining and/or inducing the post-mitotic state of suprabasal cells).  This is 
thought to be through the induction of the oncoprotein c-Myc, important in growth 
control and cell cycle progression; c-Myc expression is minimal under normal 
conditions, but increased levels were found in the basal layer in KRT10

-/- mice 
(Reichelt and Magin, 2002).  In this study, the basal cells were also found to increase 
in size (also thought to be as a result of increased c-Myc levels).  c-Myc plays a role 
in cell proliferation and differentiation: induction drives quienscent cells into the cell 
cycle (Yu et al., 2009).  Overexpression of c-Myc has been identified in several 
tumours, for example, breast cancer (Aulmann et al., 2006).  Arnold and Watt (2001) 
have also demonstrated that activation of c-Myc can drive keratinocyte stem cells to 
the transit amplifying compartment, stimulating proliferation and differentiation along 
the sebaceous and epidermal lineages.  Furthermore, it has been shown that c-Myc 
affects transcription of proteins important in maintenance of the cytoskeleton and cell 
adhesion.  This resulted in inhibited cell motility (and wound healing).  Cell spreading 
was also shown to be impaired (Frye et al., 2003).  KRT10

-/- mice have a faster 
keratinocyte turnover than wild-type mice; Reichelt et al. (2004) suggest that this 
accelerated turnover increases the rate of elimination of keratinocytes at the early 
stage of tumour development.  This increase in turnover is likely to be mediated by 
the activation of MAPK pathways in the epidermis (Reichelt et al., 2004).  Recently, 
AP-2# has been shown to block some of the detrimental effects of c-Myc 
overexpression in HaCaT cells, such as an increase in reactive oxygen species (ROS) 
and apoptois (Yu et al., 2009).  AP-2 has also been shown to affect K10 expression 
directly through interaction with C/EBP# and C/EBP! - C/EBP# and C/EBP! have 
three binding sites on the KRT10 promoter region.  This mechanism is threefold: 1) 
AP-2 and C/EBP! are most common in the lower epidermis and C/EBP# in the upper 
epidermis; 2) both C/EBP# and C/EBP! have binding sites in the AP-2# promoter 
region; 3) there are AP-2 binding sites in the C/EBP# promoter region (which 
suppresses C/EBP# transcription) (Maytin et al., 1999).  Zhu et al. (1999) also 
demonstrated that K1 and K10 expression was directly controlled (at least partially) 
by C/EBP! in BALB/MK2 keratinocytes, and C/EBP!-deficient mouse skin 
demonstrated decreased K1 and K10 expression in a hyperplastic epidermis.  A K10 
knockout mouse has been developed which has provided a murine model of the skin 
disorder epidermolytic hyperkeratosis.  Reichelt et al. (1997) suggest that the skin 
fragility observed in K10 knockout mice is as a consequence of the decrease in 
K1/K10 filaments and the compensatory increase in K6/K16 filaments, which are not 
as robust (Porter et al., 1996).  Where no K10 is present in KRT10

-/- mice, 
hyperproliferation was demonstrated, alongside induction of K6 and K16 (normally 
present in wound healing - and therefore hyperproliferative - situations) (Reichelt and 
Magin, 2002); McGowan and Coulombe (1998) previously suggested that 
hyperproliferation could occur because the presence of K10 is not compatible with 
cell migration or proliferation.  Reichelt and Magin’s study also found that there was 
no spontaneous tumour formation in KRT10

-/- mice.  Following in vivo ablation of 
K10 in suprabasal keratinocytes in mice, Reichelt and Magin (2002) demonstrated 
that proliferation was not induced in these cells, but in cells residing in the basal layer, 
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suggesting that hyperproliferation is an indirect consequence of K10 ablation, and that 
signaling must occur between these cell compartments.  Furthermore, Reichelt and 
Magin suggest that this could be due to susceptibility to mechanical stress and the 
signaling events which are involved, or through cytokines such as TGF-!.  Further 
work using targeted deletion of K10 has demonstrated an increase in the proliferation 
and differentiation of sebocytes; sebaceous glands of KRT10

-/- mice demonstrate 
increased cell turnover as well as an increase in secretions, such as wax esters, 
cholesterol esters and triglycerides (Reichelt et al., 2004).  This suggests that lack of 
K10 pushes cells towards sebocyte differentiation in this region. 
 

K6/16/17 

There are three isoforms of K6, as listed in Table 1.2.  K6a is more abundantly 
expressed than K6b; this is most obvious in mRNA studies of skin explant cultures 
(Tyner, Eichman and Fuchs, 1985).  K6 is expressed in glandular epithelia, the outer 
root sheath of the hair follicle, the stratified epithelia of the oesophasgus and oral 
mucosa and in the tongue (Moll et al., 1982; Ouhayoun et al., 1985; Stark et al., 
1987).  K6 is not usually present in epidermis (with the exception of some specific 
sites such as soles of the feet and palm), and K16/K6 induction is associated with a 
hyperproliferative state, such as during wound healing, disease, or cancer.  K6 
expression is also induced when primary epithelial cells are seeded in culture.  
Epidermal injury triggers induction of K6, K17 and K16 in activated keratinocytes at 
the wound edge (where K1 and K10 expression decreases).  Following wound 
closure, this pattern of keratin expression is reversed (Wong and Coulombe, 2003).  
Transgenic mice null for isoforms of K6 (K6a and K6b) die shortly after birth, due to 
the fragility of the epithelia in the oral mucosa; in their 2003 study, Wong and 
Coulombe use an ex vivo skin explant culture and in vivo tissue grafting to study K6 
following injury. K6a/K6b-null keratinocytes demonstrated a greater ability to 
migrate compared to the wild-type, and K16 levels were also decreased.  The cells at 
a wound edge were also observed to be more fragile than controls.  In explants from 
transgenic mice where K16 is upregulated, a delay in outgrowth is observed, and 
wound healing is slower than normal (Wawersik et al., 2001). 
In terms of primary structure, K6 is closely related to K5 and K16 and K17 are related 
to K14.  Due to their similarity in structure to K5 and K14, and the downregulation of 
K1 and K10 following induction of K6 and K16 and K17, Wong and Coulombe 
(2003) suggest that K6, K16 and K17 are intermediates between these other keratin 
pairings, particularly in terms of mechanical properties.  Reduced levels of K6/K16 
leave keratinocytes in a state observed in vivo in the basal layer (i.e. K5/K14-positive 
cells), which are more pliable and better equipped for migration.  K1/K10 however 
equip cells with greater mechanical strength, but without the same pliability.  
Furthermore, Wong and Coulombe (2003) suggest that K6/K16/K17 expression at the 
wound edge is a compromise between these two states – the pliability (for migration, 
for example) and the mechanical strength to withstand the wound environment. 
K6 has also been shown to be a marker of early mammary gland development 
(without being normally present in the adult) (Grimm et al., 2006).  In C/EBP! null 
mice however, K6 can be observed in the mature mammary gland (Grimm et al., 
2002). 
K17 is observed in both adult and foetal skin, although is expressed more so in foetal 
skin.  A study by Coolen et al. (2010) assessed K17 expression throughout 
development.  K17 was observed in the basal layer and periderm, and intermittently in 
the intermediate layer at 13-14 weeks post-conception.  Expression in the basal layer 
reduces between 16 and 20 weeks, whilst remaining constant in the periderm up to 22 
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weeks.  K17-positive cells in the hair follicles can be seen as they begin to develop at 
around 16 weeks (Coolen et al., 2010).  It is likely that the early K17-positive cells in 
the developing epidermis have a non-epidermal fate, such as contributing to the 
sebaceous gland, periderm or hair follicle.  K17 remains in the hair follicle of human 
adults in the ORS and medulla, and appears to be weakly expressed in cells lining the 
dermal papilla (Langbein et al., 2010).  Mutations in KRT17 give rise to 
steatocystoma multiplex (typified by sebaceous gland cysts) and type 2 pachyonychia 
congenital (which affects epithelial appendages, particularly nails) (Munro et al., 
1994; also reviewed by Irvine and McLean, 1999).  K17-null mice develop alopecia 
in the week after birth; this correlates with hair shaft fragility and apoptosis of the hair 
bulb (McGowan et al., 2002).  Tong and Coulombe (2006) have demonstrated that 
this apoptosis is due to the premature onset of catagen.  Primary keratinocytes of K17-
null mice grown in culture were also more sensitive to TNF# via TRADD and, as 
discussed previously, K17 is involved in 14-3-3 mediated regulation of mTOR.   
Ablation of TNF#, required for timely anagen-catagen transition in mice, partially 
rescues the hair-cycling defect observed in K17-null mice (Tong and Coulombe, 
2006).  K17 induction has also been associated with inflammation, and markers of 
immune cells in KRT17

-/- mice were reduced compared to controls (DePianto et al., 
2010). 
K17 is also expressed in some squamous cell carcinomas and cervical intraepithelial 
neoplasias; this correlated with increasing lesion grade (Ikeda et al., 2008).   
 
1.3: Keratin 15 
K15 is a Type I keratin of 50kDa, which forms heterodimers with the Type II keratin 
K5 (Chu and Weiss, 2002).  The K15 protein had been described in several papers as 
an acidic keratin as a minor component in epithelia (Whitbread and Powell, 1998), 
sebaceous glands, hair follicle ORS and the human adult epidermis (Moll et al., 
1982).  The majority of publications describing K15 study have focused on K15 as a 
stem cell marker because of its high expression in the hair follicle bulge. 
 
1.3.1: Keratin 15 Gene 
Nozaki et al. (1994) first isolated the K15 gene (KRT15) in mice and determined its 
nucleotide sequence, following isolation of K19, which was shown to have a high 
sequence homology to human KRT15; for example, there are homologous sequences 
around the TATA boxes in the 5’ upstream regions of both KRT15 and KRT19 genes.  
The first antibody created against K15 was a guinea pig polyclonal antibody (clone 
gp15.1); the antigen is the C-terminal ‘tail’ region (and part of the rod domain) of 
human K15.  As with other type I keratins (apart from KRT18 and KRT19), KRT15 
has seven introns and eight exons.  In another of the early papers discussing K15 in 
relation to K14 ablation, Jonkman et al. (1996) suggest that following K14 ablation, 
increased levels of K15 are observed; three years later, Paladine and Coulombe 
(1999) published similar findings (discussed above).  Jonkman et al. (1996) suggest 
that K15 did not aggregate to higher-order bundles, and this reduced the stability of 
the cell (as previously observed by Lloyd et al., 1995). 
 
1.3.2: Keratin 15 Expression 
K15 is specifically expressed in the basal cells of the sebaceous gland, epidermis and 
tongue, stomach, bronchial and cervical epithelia.  In addition, K15 expression has 
been described throughout the oesophageal epithelium and the hair follicle (Leube et 

al., 1988; Smedts et al., 1993; Lloyd et al., 1995; Waseem et al., 1999; Liu et al., 
2003) – in particular, the stem cells of the hair follicle.  This latter is currently still 
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under debate, with different K15 antibodies staining different cell populations (for 
example, Poblet et al., 2006; Kloepper et al., 2008; Tiede et al., 2010).  There is also 
debate over which cell population K15 is present in, depending on differentiation of 
cells occurring in or around the bulge region of the hair follicle (see section 1.1.2).   
Whitbread and Powell (1998) described K15-positive cells throughout the hair follicle 
and the outer root sheath (ORS) of sheep.  Cells in the bulge region of the hair follicle 
however were described as negative for K15, and the protein was observed at variable 
levels in the basal layer.  In contrast to K15 expression in human tissue, K15-positive 
cells were only noted in the basal layer of the oesophagus in sheep.  Whitbread and 
Powell (1998) also demonstrated that there were no consequences of overexpression 
of K15 in transgenic mice (with a cDNA sheep KRT15 construct).  From their results, 
Whitbread and Powell suggested that K15 expression marks an early stage of 
keratinocyte differentiation, preceding the decision to become epidermal or hair-like.  
Likewise, Waseem et al. (1999) demonstrated that K15 was present in the basal 
keratinocytes of stratified epithelia, and that the ORS was K15-positive.  In addition 
to the work by Jonkman et al. (1996) (which also utilised sections from patients who 
did not express K14) and Paladini and Coulombe (1999) (who used K14-null mice), 
Waseem et al. demonstrated that in sections from an individual in which both K14 
alleles were naturally ablated, K14 ablation in the ORS resulted in increased K15 
protein and mRNA expression throughout the follicle.  Conversely, K15 levels were 
seen to be reduced in activated (hyperproliferative) keratinocytes, which can be 
observed in conditions such as psoriasis – i.e. KRT15 expression is downregulated in 
order to maintain an activated phenotype in keratinocytes.  This is also observed in 

vitro in 3D cultures, were hyperproliferative cells are K15-negative.  Once grafted 
onto mice however, cells began to express K15 (Smiley et al., 2006).  Studies into 
psoriasis suggested that there are three key processes in psoriasis: proliferation, 
differentiation and inflammation (for example, Das et al., 1992).  A suggested marker 
of successful treatment is an increase in K15 levels (van der Velden et al., 2010). 
 
1.3.2.1: Keratin 15 Expression in Carcinomas 

Research studying K15 in cancers was also being carried out during the late 1990s.  
Jih et al. (1999) studied trichoepitheliomas and basal cell carcinomas from different 
patients for K15, using the C8/144B antibody (this DAKO monoclonal antibody was 
originally raised against CD8, although Jih et al. established that it also cross-reacted 
with K15).  All trichoepitheliomas and some tumours of follicular origin were found 
to be K15-positive; conversely, all squamous cell carcinomas studied were K15-
negative.  From their results, Jih et al. concluded that trichoepitheliomas and basal 
cell carcimomas originate from the (K15-positive) bulge region of the hair follicle.  
Utilising the same antibody to observe K15, Kanitakis et al. (1999) suggested that 
basal cell carcinomas were K15-positive, and were therefore not differentiating 
towards hair bulge cells.  Furthermore, Kanitakis et al. suggested that based on their 
results, K15 immunostaining was useful in differential diagnosis between 
trichoepitheliomas and basal cell carcinomas.  It has further been suggested that there 
is peripheral localisation of K15 in trichoepithelioma compared to basal cell 
carcinomas (Choi et al., 2008).  In cutaneous mixed tumours (i.e. those which contain 
both mesenchymal and epithelial cells, and can be apocrine or eccrine in nature), 
some regions were shown as K15-positive (using the C8/144B antibody); these were 
noted to be in ‘less differentiated’ regions of the tumours (Minami et al., 2004).  A 
small percentage (5%) of breast carcinomas were also found to be K15-positive (Celis 
et al., 2007).  However, use of the C8/144B antibody in identifying the K15 protein 
was recently questioned by Pontiggia et al. (2009), who demonstrated that the human 
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stratum basale was C8/144B-negative, but K15-positive. Bieniek et al. (2007) have 
also published finding several other tumours which contained K15-positive cells, 
including sebaceous carcinomas, adenomas and hyperplasias.  The K15-positive cells 
were observed in the basal, less differentiated regions of the tumour.  More 
differentiated cells were negative for K15.  Such findings could be considered as 
evidence for a (K15-positive) cancer stem cell population.  More recently, the 
presence of ‘tumour-initiating cells’ has been discussed, which are also positive for 
some stem cell markers, such as CD44.  These cells may not respond effectively to 
common therapeutic procedures (Costea et al., 2008).  Harper et al. (2010) have 
recently shown that populations of malignant human epithelial cells which have stem 
cell-like properties are more resistant to apoptosis.  This is likely to be associated with 
an extended G2 cell cycle phase.  In order to overcome this therapeutically, Harper et 

al. (2010) suggest targeting G2 checkpoint proteins, since those cells released from 
G2 are more prone to apoptosis. 
 
1.3.2.2: Regulation of K15 Expression 

Transcription Factors 
Some initiation of keratin expression occurs at the transcription factor level (Roop et 

al., 1987).  Most of the influential transcription factor binding sites are observed 
upstream of the gene, but some remain in introns and downstream regions.  Cell type-
specific enhancer regions have been observed in proliferating stratifying epithelial 
cells, yet not in their simple epithelial counterparts (Blessing et al., 1987). 
The only common transcription factor binding site found in all keratin gene promoter 
regions is the TATA box (or a variant) in the minimal core promoter region, showing 
that the TFIID transcription factor is essential in initiating all keratin gene 
transcription.  This is flanked by an Sp1 binding site, which is essential for the 
increased activity of the promoter (Delouis et al., 2005). 
Groups of keratins then have other transcription factors in common, for example, the 
CCAAT box.  There are several CCAAT-enhancer binding proteins (C/EBP) 
including (at least) C/EBP#, C/EBP! (also known as LAP, CRP2, NF-IL6, IL6DBP 
or NF-M), C/EBP% (or CRP3 or NF-IL6!), C/EBP& (Ig/EBP-1), CRP1, CHOP10 (or 
GADD153) and d/CEBP, all members of the DNA binding protein family bZIP.  
Heterodimerisation allows interaction between C/EBPs and other transcription 
factors, such as NF-'B (Stein et al., 1993) and AP-1 (Hsu et al., 1994); this adds a 
further level to the functional properties of these transcription factors.  Oh and Smart 
(1998) have demonstrated that C/EBP#, C/EBP! and C/EBP% mRNA are expressed 
at relatively high levels in murine epidermis and in primary keratinocytes (although 
C/EBP mRNA levels do not consistently coincide with protein levels i.e. protein 
expression is controlled at the translational level or post-transcriptionally).  The 
expression of C/EBP# and C/EBP! is upregulated in suprabasal keratinocytes in vivo 
and during calcium-induced differentiation of primary keratinocytes in vitro.  Most 
C/EBP# present in the epidermis is restricted to the nuclei and cytoplasm of 
suprabasal cells, although some is observed in a few basal cells.  However, as 
C/EBP# is observed in keratinocytes cultured in 0.05mM Ca2+, Oh and Smart (1998) 
suggest that there is a function for C/EBP# in basal keratinocytes in vivo.  During 
calcium-induced differentiation in vitro, Oh and Smart also observed increased levels 
of C/EBP# and C/EBP!, further suggesting that these isoforms are important in 
regulating genes affecting differentiation (or genes expressed during differentiation).  
Without C/EBP# and C/EBP! in the epidermis, there is increased keratinocyte 
proliferation and impaired differentiation.   
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Sp1 is a zinc-finger-containing DNA binding protein, distributed throughout several 
cell types.  There are four domains (A, B, C and D) required for optimal transcription, 
which is always enhancing (as opposed to suppressive).  However, in the epidermis, 
Sp1 activates transcription of genes for cornified envelope precursors and keratins 
throughout differentiation (Eckert, Crish and Robinson, 1997). 
Additional Sp family proteins have also been identified, named Sp2-Sp8; unlike Sp1, 
these can be both activators and suppressors of genes (Erkert, Crish and Robinson, 
1997; Bouwman and Philipsen, 2002).  Masson-Gadais et al. (2006) demonstrated 
that both Sp1 and Sp3 are expressed by both cultured adult keratinocytes and newborn 
foreskin keratinocytes.  Terminal differentiation also correlated with loss of Sp1 and 
Sp3.  Culturing cells in different levels of calcium also affected Sp1 and Sp3 levels in 
primary keratinocytes.  Furthermore, it was demonstrated that post-translational 
phosphorylation affected the DNA binding ability of Sp1 and Sp3 (Masson-Gadais et 

al., 2006).   
Activator protein 1 (AP-1) is important in upregulating several differentiation specific 
proteins involved in the conversion of basal keratinocytes to spinous and granular 
cells (Rossi et al., 1998).  AP-1 consists of heterodimers between fos (c-fos, fosB, 
fra1 and fra2) and jun (junB, junD and c-jun) transcription factors as well as 
homodimers of the latter (Angel and Karin, 1991).  c-jun and junD have been shown 
to positively regulate epidermal specific genes, whereas junB acts as a suppressor 
(Rossi et al., 1998). 
 
The KRT15 Promoter 

Following a paper by Whittock et al. (2000) describing the genomic organisation of 
K15, further research was carried out to study the promoter region of KRT15 and the 
transcription factors associated with it.  As well as the work by Whittock et al. (2000), 
Talbot, Loring and Schorle (1999) also identified a potentially important transcription 
factor in KRT15 expression by examining the skin of AP-2#–deficient mice.  AP-2 
levels have been reported to decrease during keratinocyte differentation (Wanner et 

al., 1996).  There are five known murine AP-2 proteins expressed in the skin, and AP-
2# has been shown to be the most highly expressed  (Byrne et al., 1994).  In contrast, 
low AP-2 mRNA levels were observed in postconfluent HaCaT cells; it is possible 
that this is either due to loss of proliferative capacity and/or initiation of 
differentiation.  It has also been observed that in vivo, AP-2# is expressed to a greater 
extent in basal cells (i.e. those not actively cycling).  From these results, Wanner et al. 
(1996) suggest that AP-2 has an important role at the onset of differentiation in 
activated keratinocytes.  AP-2 has also been observed in embryonic mice (E15.5), 
localised to the (proliferating) basal keratinocytes (and not observed in the 
differentiating suprabasal cells) (Byrne et al., 1994).  AP-2# is normally present in 
the nucleus of some basal and suprabasal cells of the epidermis (Wang et al., 2006).  
In an AP-2# knock-out targeted to the epithelium (using ‘Cre-lox’ methods), there 
were increased levels of epidermal growth factor receptor (EGFR, also known as 
ErbB1) in the epithelium compared to controls, leading to hyperproliferation (Wang 
et al., 2006).  It was also noted that other AP-2 proteins did not compensate for the 
loss of AP-2#.  AP-2# apparently represses K5 expression in cultured keratinocytes 
(Byrne et al., 1994), although in vivo it must be considered that K5 expression is 
restricted to the basal layer whereas AP-2 is not restricted to this region.  It has been 
demonstrated in vitro however that Akt, phosphoinositol-3-kinase and MAPK fail to 
function properly; this suggests that downregulation of AP-2 expression can 
contribute to tumourigenesis (Wang et al., 2006). 
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Growth Factors 

Growth factors have also been demonstrated to affect KRT15 expression.  TGF! was 
shown to suppress KRT15 when expressed during wound healing (where K14 levels 
increased) (Werner and Munz, 2000).  As in Waseem et al. (1999), activated 
keratinocytes were K15-negative.  K15 expression was also noted to be suppressed by 
TNF#, EGF and KGF.  In HaCaT cells, increased TGF!1 was shown decrease K15 
levels (Werner and Munz, 2000).  Transforming growth factor (TGF)# is one of the 
major factors controlling growth of epidermal cells.  In normal skin, TGF# has a role 
in controlling epidermal thickness during development and differentiation (Vassar and 
Fuchs, 1991).  Using the K14 promoter to target expression of TGF# to the squamous 
epithelia, the regions observed to be most responsive to this overexpression of TGF# 
were those areas of skin which were normally thick and where hair follicle density 
was low.  In these areas, these qualities were emphasised.  The increased epidermal 
thickening was found to be due to an increase in the number of basal, spinous, 
granular and stratum corneum cells coupled with cell hypertrophy.  It was also 
observed that EGFR expression was not affected by TGF# (Vassar and Fuchs, 1991).  
When calcium is used to initiate differentiation in vitro, TGF# prevents the 
expression of K1 and K10 whilst K8 and K18 are expressed. 
Due to the role of TGF# in epidermal thickening in normal skin, it is also thought to 
be involved in psoriasis (Vassar and Fuchs, 1991); presumably this is through the 
same route as the role KGF has in psoriasis (see Das et al., 2009).   
TGF! also regulates keratinocyte function.  Unlike TGF# however, TGF! suppresses 
cell proliferation and induces synthesis of extracellular matrix proteins.  TGF!1 is 
also a tumor suppressor in normal keratinocytes, acting via Smads (and other 
pathways) (Bae et al., 2009).  Alternately, TGF!1 may also enhance the malignant 
properties of tumor cells by affecting epithelial-mesenchymal transition (EMT), 
invasion, metastasis or anti-tumor immunity; this alteration may depend on other 
pathways, such as ras which are activated in tumors (Bae et al., 2009) or Wnt/!-
catenin activity (Roarty et al., 2009). 
Although the TGF! isoforms (TGF!1-3 in mammals) are very similar (conserved 
across species with 70-80% homology), they are differentially expressed in vivo in 
embryogenesis, carcinogenesis and tissue repair (for a review, see Cho et al., 2004).  
This suggests distinctive roles for these isoforms.  TGF!1 is localised to the upper, 
more differentiated layers of the epidermis.  TGF!2 and TGF!3 immunostaining 
suggests that these isoforms are present in the suprabasal layers.  A role for TGF! has 
also been described in psoriasis; in transgenic mice where TGF! expression was 
controlled by the K5 promoter, severe inflammation of the skin was observed (Han et 

al., 2010). 
K15 expression has also been shown to be affected by several other factors.  
Decreases in insulin and insulin-like growth factor also led to decreases in K15 levels 
in vivo (and further study demonstrated a loss in label retaining cells); Rac was shown 
to aid recovery (Stachelscheld et al., 2008).  Previously, retinoic acid, glucocorticoid 
receptors and NF-'B were shown to suppress the KRT15 promoter, whilst C/EBP! 
and AP-1 induced it (Radoja et al., 2004).  As thyroid hormone and IFN-& were also 
shown to activate the KRT15 promoter, Radoja et al. (2004) also suggested that these 
may be potential treatments for EBS (i.e. to aid upregulating K15 to compensate for 
inadequate K14).  As well as in HaCaT cells, K15 was also studied in a human breast 
epithelial cell line by Badock et al. (2001).  Badock et al. suggest that K15 is 
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responsible for the mechanical integrity of these cells, and that apoptosis-induced 
cleavage (by caspase) results in three fragments of the K15 protein. 
Binding of epidermal growth factor (EGF) to its receptor (EGFR) has been shown to 
increase motility, affect proliferation and cause degradation of the extracellular matrix 
in several cell types (Jiang et al., 1993).  Binding causes dimerisation of the EGFR 
activating the intracellular protein tyrosine kinase.  This begins a chain of 
phosphorylation events conveying the signal from the cell membrane to the nucleus, 
where nuclear proteins regulate gene expression and cell division (Jiang et al., 1993; 
Tomic-Canic et al., 1998).  In keratinocytes, the activation of the EGFR causes 
proliferation and degradation of the extracellular matrix which allows migration and 
cell spreading (for example, Barrandon and Green, 1987b; Jiang et al., 1993; 
Hernández-Quintero et al., 2006).  An increase in !-catenin is also observed in 
keratinocytes following treatment with EGF (Hernández-Quintero et al., 2006).  This 
response occurs in both pathological situations and under normal circumstances, such 
as in embryonic development (where EGFR are observed throughout all layers).  
(EGFR are also observed in the adult, although primarily in the basal layer and 
occasionally in the suprabasal layers.) 
Keratinocyte growth factor (KGF), part of the fibroblast growth factor (FGF) family, 
is synthesised by cells in the dermis and active in the epidermis (Guo et al., 1993).  
Guo et al. (1993) suggest that KGF interferes with the signaling of some 
mesenchymal-epithelial interactions, affecting development, differentiation and 
growth of skin.  In generated skin equivalents in vitro, added KGF induced 
thickening, flattening of the rete ridges, some disorganization including the granular 
layer and stratum corneum and morphological changes in basal cells.  
Immunostaining for Ki67 also demonstrated that proliferation extended above the 
basal layer and into the suprabasal layer, whilst K10 and transglutaminase expression 
was delayed (Andreadis et al., 2001).  It is also possible that the hyperproliferation of 
keratinocytes observed in psoriasis is (at least partially) due to excess KGF, possibly 
secreted by activated T-cells (Das et al., 2009). 
 
1.3.2.3: Keratin 15 Expression in the Foetus 

Islam and Zhou (2007) identified epidermal stem cells from goat foetus by their rapid 
adherence onto collagen type IV in vitro; these cells were also K15-positive.  Islam 
and Zhou also noted that these cells had a high nuclear to cytoplasmic ratio, typical of 
stem cells (see also Liu et al., 2008).  Talbot et al. (1999) observed that no K15-
positive ectodermal cells were observed where lens induction occurs in the eye in AP-
2#–deficient mice.  In human eye development, limbal cells were identified as K15-
positive, and remained so throughout embryonic development (from week 6 onwards) 
(Lyngholm et al., 2008). 
 
1.3.2.4: Keratin 15 in the Hair Follicle Bulge 
There is an ongoing debate about whether there are stem cell populations, progenitor 
cell populations or TAC populations in and around the hair follicle, despite the 
isolation and culture of several cell types from the region (for example, see Gutiérrez-
Rivera et al., 2010).  Hair follicle transplants of both upper and lower portions of the 
dissected follicle result in survival following transplantation.  The use of keratinocyte 
cultures and skin patches (for covering burns for example) have established through 
lineage tracing that ‘gene-corrected’ stem cells remain stable throughout the life of 
the patient (Mavillo et al., 2006; Gutiérrez-Rivera et al., 2010).  These studies and 
results suggest that several populations are available in and around the hair follicle 
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which can maintain the structure, which contributes to the ongoing controversy 
regarding the cell population with the greatest in vitro proliferative potential. 
In order to establish whether bulge cells were stem cells (and whether a suggested 
sub-population of K15-positive cells were bulge stem cells), the presence of other, 
more established stem cell markers have been examined in the hair follicle.  Trempus 
et al. (2003) observed the staining pattern of CD34 (a blood system stem cell marker) 
in mice, claiming co-localisation with K15 in label retaining cells.  CD34-positive 
cells were observed in the membrane of the bulge region in mice, and these cells were 
in G0 or G1 phase, indicating a higher proliferation potential that CD34-negative cells 
(which were found to be in G2/M or S phase).  A later study in human skin described 
a different CD34-positive population residing in the ORS below the bulge during 
anagen (no CD34-postive cells were identified during catagen or telogen).  There was 
also no K15/CD34 co-localisation (Poblet et al., 2006).  Raposio et al. (2007) suggest 
that there are some CD34-positive cells in the bulge region in human hair follicles, 
but these constitute a very low percentage (1-2%). 
Kloepper et al. (2008) suggest that the best in situ markers of human bulge cells are 
K15, K19 and CD200 (these cells were also CD34- and nestin-negative).  These cells 
were shown to be unaffected by aging.  Gutiérrez-Rivera et al., (2010) suggest that in 
human skin CD34-negative cells are stem cells or early progenitor cells, whilst CD34-
positive cells may be ‘transit-amplifying precursors’ for hair follicle sheath cells.  The 
CD34-postive cells of the ORS however apparently had the same properties 
(particularly with regards to migration and their ability to create an epidermis in short-
term organotypic cultures) as CD34-negative cells residing in the bulge region and 
IFE.  Hedgehog (Hh) affects these K15-positive, CD200-positive, K19-positive cells; 
Hh levels are raised in the bulge region, and is reduced in differentiated keratinocytes.  
In vitro, Hh was shown to maintain the bulge phenotype by sustaining K15 and K19 
levels (Rittié et al., 2009). 
Similarly to Trempus et al. (2003), Han et al. (2003) observed K15 expression in 
foetal murine epidermal stem cells (~95% of which were in G1 phase, indicating slow 
cycling cells).  The use of label retaining studies to establish stem cell populations 
was also utilised by Braun et al. (2003), who studied LRCs in the hair follicle.  
Despite changes in hair follicle morphology throughout hair cycling, the permanent 
region of the follicle contained K15-positive LRCs (see also Nijhof et al., 2006). 
Another group have however suggested that stem cells in the bulge region are K15-
negative.  Amoh et al. (2005a) used nestin (an established neural stem cell marker) to 
separate stem cells from other cells in the bulge.  Nestin-positive, CD34-positive, 
K15-negative cells isolated from the bulge were shown to be capable of 
differentiating into keratinocytes, melanocytes, smooth muscle cells and neurons in 

vitro (Amoh et al., 2005a) as well as Schwann cells and blood vessels (Amoh et al., 
2005b; also Hoffman, 2007).  From this study, Amoh et al. (2005b) suggest that K15-
negative cells in the bulge are multipotent stem cells, whereas K15-positive cells are 
more differentiated.  Later, Amoh et al. (2008) also demonstrated that hair follicle 
stem cells were capable of promoting repair of severed nerves in mice.  Kanoh et al. 
(2008) also considered hair follicle stem cells to be nestin-positive, and these cells 
gave rise to the ORS.  It is likely that these are mesenchymal cells.   
Despite the studies by Amoh et al. however, K15 continues to be used to mark 
epidermal bulge cells, which were frequently referred to as stem cells.  For example, 
K15 has been used as a bulge stem cell marker in a study investigating the effects of 
laser hair removal (where the bulge region was seen to remain unchanged) (Orringer 
et al., 2006).  In order to more closely study bulge cells, an in vitro cell line was 
established from human hair follicles (Tel-E6E7 cells); these cells were all K15-
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positive (Roh et al., 2008).  The study of the bulge region in alopecia has also utilised 
K15 as a marker.  For example, in primary scarring alopecia, K15-positive cells were 
observed throughout the stages of the scarring alopecia, suggesting that this condition 
is not caused by the destruction of the bulge stem cells (Pozdnyakova and 
Mahalingam, 2008, Hoang et al., 2009).  Only around 50% of non-scarring alopecia 
bulge regions were positive for K15, although K15 was observed in the ORS of both 
scarring and non-scarring alopecia samples (Hoang et al. 2009).  Similarly, K15-
positive bulge cells have been shown to be involved in the condition cutaneous lupus 
erythematosus.  Observed changes in the K15 expression of the bulge suggests a stem 
cell involvement; this may explain the scarring and irreversible alopecia associated 
with the condition.  Expression of K15 reduces as stem cells then become damaged  
(Al-Refu et al., 2009).  The role of bulge cells in primary cicatricial alopecia has also 
been investigated; this type of alopecia is caused by destruction of the bulge, 
described as an ‘immune privileged’ area.  Increases in MHC I and II in the bulge 
region leads to a decrease in K15 levels and ultimately eradication of the bulge 
(Harries et al., 2010). 
This said, Wu et al. (2005) warn that study of the bulge region using 
immunofluorescence needs careful controls, as autofluorescence is common in this 
area.   
 
Studies of Keratin 15 Promoter Activity in the Hair Follicle 

As well as elucidating the presence of the K15, some studies have examined the 
promotor region of KRT15 to look for activity.  For example, Liu et al. (2003) created 
KRT15/lacZ transgenic mice to measure K15 promoter activity throughout the life of 
the mouse.  Bulge cells remained K15-positive, despite KRT15 promoter activity 
changing with age.  KRT15 promoter activity also correlated with levels of 
differentiation throughout the epithelium (Liu et al., 2003).  In a study assessing the 
contribution of bulge stem cells to wound healing, Ito et al. (2005) used KRT15 
promoter activity as a marker of bulge stem cells and to elucidate their role following 
wounding in mice.  Ito et al. established that bulge cells were recruited to the 
epidermis following injury, producing TACs for acute wound repair; these were 
found to be eliminated from the healed wound site within weeks following healing.  
By inserting a suicide gene under the KRT15 promoter (herpes simples virus 
thymidine kinase – HSV-TK), in the same paper Ito et al. (2005) report that the hair 
follicle is lost, but the epidermis survives.  Driven by the KRT15 promoter, the HSV-
TK converts the nucleoside analog ganciclovir into a toxic anolog in mice; 
administration of ganciclovir caused bulge cell death and gastro-intestinal injuries.  
When skin containing this same insertion was grafted onto immunodeficient mice and 
ganciclovir administered, hair loss began 4 days post-treatment.  By 8 days post-
treatment, hair follicles had been lost from the graft.  This demonstrated that bulge 
cells were not required for epidermal survival. 
 
1.4: Aims of the Present Study 
K15 expression is generally recognised as a signal of early stage keratinocyte 
differentiation, and a marker of bulge cells, considered stem cells of the hair follicle.  
However, KRT15 expression has also been demonstrated in interfollicular epidermal 
cells.  More recently, publications have suggested that K15-positive cells may not be 
stem cells, but cells which are more differentiated.   
The aim of this study then is to use siRNA to knock-down K15 in keratinocytes and 
assess the effect of K15 on proliferation, differentiation, adhesion, spreading and 



! 42!

migration in both keratinocytes and squamous cell carcinoma cells.  This may give 
further indication of the differentiation state of cells which express K15. 



CHAPTER 2: 

MATERIALS AND METHODS 
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2: Materials and Methods 

All chemicals and reagents used in this study were of analytical or tissue culture 
grade. 
 

2.1: Cell Lines and Culture Methods 
Five cell lines have been used in this study.  The most extensively used were HaCaT 
cells, a spontaneously transformed human immortalised cell line that has been used 
extensively in the study of differentiation.  HaCaT cells, originally described by 
Boukamp et al. (1988), were established from a section of full thickness skin from a 
62 year old male.  The section had fat and dermis removed before being placed in 
trypsin solution, allowing the epidermis to be separated from the dermis and cultured.  
HaCaT cells became so widely used as they could be easily maintained in culture, 
were nontumourigenic and did not require, for example, infection with SV40 or 
similar to achieve immortality.  Boukamp et al. (1988) cultured the HaCaT cells to at 
least passage 140 and noted their continued capacity for normal differentiation and 
few (if any) chromosomal abnormalities. 
The MET cell lines, originally described by Proby et al. (2000) are spontaneously 
immortalised cells taken from a patient with squamous cell carcinoma.  MET 1 cells 
were isolated from a primary cutaneous tumour, MET 2 and 3 from local 
reoccurances and MET 4 from a distant metastases.  Since MET 2 and 3 cells are 
similar, only MET 2 cells were used in this study.  Further details about this cell line 
are described in Chapter 5. 
The fifth cell type used in this study is the normal human epidermal keratinocyte 
(NHEK) (PromoCell, UK).  These cells are primary cells isolated from juvenile 
foreskin.  These cells will only proliferate up to passage 3 or 4 before terminally 
differentiating.  This meant that large numbers of these cells could not be cultured, 
and not all experiments could be carried out using these cells.  This said however, 
they were useful as a ‘normal’ comparison to HaCaT cells. 
 
2.1.1: Cell Maintenance 
HaCaT and MET cells used in this study were cultured at 5% CO2 in Dulbecco’s 
modified Eagle’s media (DMEM) (Sigma-Aldrich, UK) supplemented with 10% 
foetal bovine serum (FBS) (Sigma-Aldrich, UK) and 1% antibiotics/antimycotics 
(Invitrogen, UK).  Stock cells were cultured in T75 flasks (Greiner Bio-one, UK), and 
not grown above 80% confluency (preventing differentiation).  Cells were passaged 
using 0.25% trypsin (Sigma-Aldrich, UK) in tissue culture grade 1x PBS (Sigma-
Aldrich, UK); all washes were also carried out using 1x PBS.  
To ensure that similar passages of cells were used throughout, stocks of cells were 
frozen for later use.  Cells were centrifuged at 800rpm for 5 minutes before any 
remaining liquid was discarded, leaving the cell pellet.  The cell pellet was then re-
suspended in appropriate media and serum containing 10% dimethyl sulphoxide 
(DMSO) (Sigma-Aldrich, UK) and frozen in cyrovials (Fisher Scientific, UK) to -
80°C.  For longer term storage, cells were stored in a liquid nitrogen cell bank. 
 
2.1.2: siRNA Transfection For Protein Depletion 
siRNA (‘short interfering RNA’) is a well defined method used to knock-down a 
protein of interest (in this study, K15) (see section 3.1.2 for details of the mechanisms 
involved). 
In this study, the same K15 siRNA was capable of knocking-down K15 in all cell 
lines.  The siRNA was part of a pre-designed selection from Ambion (see Table 2.1). 
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Table 2.1: Details of pre-designed siRNA for K15 (Ambion). 
 Sense Antisense 
Sequence 
(5’ – 3’) 

GCUCAUUUGUACAGUGUCUtt AGACACUGUACAAAUGAGCtt 

Length 21 21 
Percent 
G/C 

38.00% 38.00% 

Molecular 
Weight 

6585.2 6700.2 

Molar 
Extinction 
Coefficient 

201800 214600 

 
To transfect each cell line, oligofectamine (Invitrogen, UK) was used at 100nM 
siRNA 24 h prior to transfection, cells were washed and antibiotic/antimycotic-free 
media added to the flask(s) or plate(s).  This was replaced by fresh media containing 
1% antibiotic/antimycotics 6 h post-transfection.  This prevented prolonged cellular 
exposure to oligofectamine and reduced the risk of infection. 
After immunofluorescence analysis, the optimum knock-down was achieved in each 
cell type.  In HaCaT, MET 1, MET 2 and MET 4 cells, the optimum knock-down of 
K15 occurred at 48 h, lasting until 72 h.  By 96 h, the K15 levels appeared normal.  In 
NHEKs, the optimum was later, at 72 h, with some recovery (not 100%) by 96 h (see 
section 3.3.3.3).  These optimums were considered for all experiments. 
For details of the siRNA mechanism, please refer to section 3.1.2. 
 
2.1.3: Calcium Switch Assay 
For immunofluorescence staining, cells were seeded onto 13mm glass coverslips in 
24-well plates (Greiner Bio-one, UK); for protein extraction, cells were seeded into 
90mm petri dishes (Greiner Bio-one, UK).  Cells were then cultured in low calcium 
(0.07mM) media (defined keratinocyte serum-free media [Gibco, UK]).  At various 
time-points, media was switched to high calcium media (defined keratinocyte serum-
free media with additional calcium (1.5mM).  Cells were cultured for 96 hours; 
control cells were grown in low calcium media for 96 hours.  Experimental cells had 
their growth media changed from low to high calcium media for 72 h and 6 h, to 
assess the short-term and longer term effects of high levels of extracellular calcium. 
Cells grown on coverslips for immunofluorescence were washed and fixed in 4% 
paraformaldehyde (Agar Scientific, UK).  Cells in petri dishes for protein extraction 
were processed as detailed in sections 2.4.1 and 2.4.2. 
Additional calcium was added from tissue-culture quality 1M stock of CaCl2.  To 
produce 1.5mM calcium media, 75%l was added to 50ml defined keratinocyte serum-
free media (defined keratinocyte serum-free media contains 0.07mM calcium). 
 
2.1.4: Adhesion Assay 
Cells cultured in T75 flasks were removed using trypsin, then centrifuged (800rpm, 5 
minutes) to produce a cell pellet.  Cells were resuspended in growth media (with 
serum) and counted, using a haemocytometer.  5x105 cells were then seeded onto 
glass coverslips in 24-well plates (Greiner Bio-one, UK).  At pre-determined time-
points, cells were gently washed in PBS (to remove any non-adhering cells) then 
fixed in 4% paraformaldehyde (Agar Scientific, UK) for immunofluorescence 
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staining.  For live cell imaging, cells were and maintained in culture conditions (37°C 
and 5% CO2) for the duration of the experiment.  Phase contrast images could then be 
taken at pre-determined intervals, at 10x objective. 
 
2.1.5: Scratch Wound Assay 
Cells were grown to 100% confluent monolayers on 13mm glass coverslips in 24-well 
plates (Greiner Bio-one, UK).  A 200%l pipette tip (Star Lab, UK) was then used to 
scratch through the monolayer.  At varying time points following the scratch, cells 
were fixed using 4% paraformaldehyde, and followed by immunofluorescence 
probing to observe any changes at the edge of the wound.  For live cell imaging 
scratch wound assays, cells were seeded onto 6-well plates (Greiner Bio-one, UK).  
Once confluent, the monolayer was scratched and the plate mounted to the 
microscope (see section 2.3.3), and kept at 37°C and 5% CO2 for the duration of the 
experiment.  Phase contrast images could then be taken at pre-determined intervals, at 
10x objective. 
 
2.1.6: MTT Assay 
The 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) 
assay has been used as a colorimetric approach to studying cell proliferation in vitro 

(for example, by Ahmadian et al., 2009), by assessing the activity of mitochondrial 
dehydrogenase (where soluble yellow MTT becomes insoluble purple formazan).  As 
this assay is light-sensitive, all steps were carried out in the dark as far as possible. 
An MTT stock solution of 5mg/ml (0.25g of MTT in 50ml PBS) was made and stored 
at -20ºC until required.  A working solution of 0.5mg/ml was then made from the 
stock. 
Cells were counted using a haemocytometer, seeded into 6-well plates (Greiner Bio-
one, UK) and allowed to adhere for at least 4 hours.  Culture media was then removed 
and 1ml MTT working solution added to each well.  The plate was then incubated at 
37ºC and 5% CO2 for 2 hours.  As cells metabolise the yellow MTT, purple formazan 
is produced.  The cells were then washed twice in PBS and 300%l of 10% DMSO and 
90% isopropanol was added; the formazan is soluble in this solution.  The resulting 
solution was centrifuged (13000rpm, 5 minutes) and 200µl added to wells of a 96-
well plate (Greiner Bio-one, UK).  The plates are then read at OD 540nm. 
To correctly ascertain cell numbers in experimental procedures, a standard curve was 
previously created using the following numbers of cells: 0, 5x104, 1x105, 2x105, 
4x105, 6x105, 8x105, 1x106, 2x106. 
For the adhesion assay, cells were exposed to the MTT prior to being trypisinised, the 
cell number counted using a haemocytometer, and re-seeded for 40, 90 or 120 
minutes.  For cells to be seeded for 40 minutes, MTT was added 80 minutes prior to 
re-plating.  For 90 minutes, MTT was added 30 minutes prior to re-plating.  For the 
120 minute timepoint, cells were trypsinised and counted, and the MTT solution 
added once the cells were re-plated.  Once re-plated, all cells continued to be exposed 
to the MTT solution, making a total of 2 hours exposure.  The cells were then treated 
as above.   
 
2.1.7: Organotypic Cell Culture 
Previously, cells have been seeded onto collagen gels which could be raised to the air-
liquid interface (which in keratinocytes, promotes stratification) (for example, Schoop 
et al., 1999).  Collagen gels are made using 1 volume of rat tail collagen (First Link, 
UK), 7 volumes of 10xMEM medium (Sigma-Aldrich, UK) and 1 volume of 1M 
NaOH (some methods describe the addition of 1 volume of 0.5-5x106/ml fibroblasts 
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in FBS, although this was not used in this study).  All liquids were cold (4ºC) at the 
time of mixing to facilitate solidification.  Once mixed, 3ml of the collagen liquid was 
added to each well of a 6 well plate, and incubated at 37°C and 5% CO2 for at least 15 
minutes to solidify.  Once solidified, cells can be seeded directly onto the surface of 
the gel, facilitated by a sterile metal ring (to keep the cells on top of the gel following 
addition of media).  Media is added to the well to cover the gel.  The gel is incubated 
and submerged for 48h, after which the media can be changed and the collagen gel 
lifted.  The gel is raised onto a sterile metal grid and the metal ring surrounding the 
seeded cells removed.  Media is added to the well to reach the surface of the gel, 
without submerging the cells.  This creates the air-liquid interface that facilitates 
stratification.  The culture is then incubated for at least 7 days (with adequate media 
changes). 
More recently, an adaptation to the method has been suggested.  As opposed to 
seeding cells directly onto the collagen gel, a thin scaffold is placed on top of the 
collagen gel and cells seeded on top of this scaffold.  The scaffold is porous, and cells 
can penetrate the surface of the scaffold before adhering, producing a 3D environment 
from which stratification can begin (Bokhari et al., 2007; Knight et al., 2011).  The 
scaffold has been utilised in this study for seeding HaCaT and MET cells.  Some 3D 
cultures used in this study were donated by Dr. R Carnachan (University of 
Durham/ReInnervate Ltd.). 
The whole organotypic culture (i.e., cells, collagen and scaffold) is then fixed and 
stained using the same techniques used in tissue fixation and staining (see section 
2.2.1). 
 
2.2: Histology 
2.2.1: Preparation of Tissue Sections 
2.2.1.1: Frozen Sections 

Murine and rat skin is thin enough to be sectioned whole.  Back skin was used for 
sectioning. For ease, hair from the samples to be taken was removed; to minimise 
damage to the skin section, depilatory cream is used.  The sample(s) of skin can then 
be removed with a scalpel.   
The sample is immediately embedded in a mold in Cryo-M-Bed (Bright, UK), 
carefully to avoid air bubbles.  To freeze the sample quickly, the mold can be held 
over liquid nitrogen.  Once frozen, the mold can be placed into the liquid nitrogen 
until all samples have been collected.  The molds can then be stored until sectioned 
and mounted onto slides. 
Sections were taken at 7µm; this was found to be suitable for appropriate 
immunofluorescence and for integrity of the tissue.  Slides could then be stored at -
20°C. 
Slides of adult human skin sections (donated by those undergoing cosmetic surgery 
procedures) were donated by Dr N Ojeh (University of Durham). 
 
2.3: Immunofluorescence 
2.3.1: Immunofluorescence of Cell Monolayers 
Cells were grown in 24-well plates on uncoated 13mm glass coverslips.  Cells were 
fixed with 4% paraformaldehyde in PBS (from 16% paraformaldehyde stock solution 
[Agar Scientific, UK]) for 10 minutes, then permeabilised in 0.05% Triton X-100 
(Sigma Aldrich UK) (1:1 methanol:acetone fixation was also tested, although 
paraformaldehyde fixation was observed to produce better results).  Following 
permeabilisation, cells were blocked with 0.2% fish skin gelatin (Sigma Aldrich UK).  
After washing, primary antibody was added and cells incubated for 1 h at room 
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temperature.  Primary antibodies were detected using Alexa 488 or 594-labelled 
secondary antibodies (Invitrogen, UK); cells were incubated with secondary antibody 
for 45 minutes.  Filamentous actin was stained with TRITC labeled phalloidin (Sigma 
Aldrich, UK) for 45 minuites. 
Between steps, cells were washed three times with wash buffer (1x PBS, 0.02% 
BSA).  All steps following addition of the secondary antibody were carried out in the 
dark (including storage). 
In addition to the last wash step, some samples were also stained using  the DNA 
marker DAPI (4’,6-diamidino-2-phenylindole) (Invitorgen, UK) at 100ng/ml.  This 
stains nuclei blue. 
Coverslips were mounted sample side-down onto glass slides using Immunomount 
(Thermo, UK) and dried overnight.  Slides could then be stored at 4ºC without further 
exposure to light. 
 
2.3.2: Immunofluorescence of Tissue Sections 
The slides of frozen sections were removed from the freezer and allowed to air-dry 
(30 minutes).  The slides are then placed in an ice-cold methanol/acetone bath for 10 
minutes.  The slides are again allowed to air-dry (5 minutes).  Slides are then washed 
in a 1xPBS bath for 5 minutes.  At this stage it is useful to use a hydrophobic pen to 
draw around the section(s) to be probed.  A 1:5 dilution of gelatine from fish skin 
(Sigma Aldrich, UK) in 1x PBS was prepared, and added directly onto the section, 
until completely covered.  The slides were incubated in a humidified chamber for 20 
minutes.  The serum block was then removed and the primary antibody added, again 
directly to the section.  The slides were placed in the humidified chamber for 90 
minutes at 37°C.  The excess antibody was removed and the slides washed in a cold 
(4-8°C) PBS/BSA bath for 5 minutes.  The secondary antibody was then added 
directly to the section, and the slides again placed in the humidified chamber for 60 
minutes.  The slides were then washed twice in PBS.  At this point DAPI staining can 
be carried out if required.  Coverslips were mounted onto the sections after staining, 
and the slides air-dried overnight.  The slides were stored at 4-8°C. 
 
2.3.3: Microscopy 
Samples were viewed using the Biorad Radiance 2000 confocal microscope with 
LaserSharp software (BioRad) or using a Zeiss Axiovert microscope with Axiovision 
software.  40x and 63x/1.40 oil immersion and 10x and 20x lenses were used.  The 
power of the laser, the iris and gain were adjusted to achieve the best signal-to-noise 
ratio.  Images were captured at a resolution of 1024x1024. 
Live cell imaging was carried out using the Live Cell Imaging Zeiss Axiovert 
microscope with AxioCam and Axiovision software.  10x and 20x lenses were used. 
Images were generated and linear adjustments made (brightness and contrast only) 
using Image J software (NIH). 
 
2.4: Protein Analysis 
2.4.1: Whole Cell Protein Extract 
The cell media was aspirated from the adherent cells, which were then washed twice 
in PBS.  The cells were lysed on ice using 1x Laemmli’s Buffer (1% sodium dodecyl 
sulphate, 20%v/v glycerol, 1mM ethylenedinitrilotetraacetic acid, 50mM 
trishydroxymethylaminomethane-hydrochloric acid [pH 6.8]) supplemented with 
protease inhibitor cocktail; 1 tablet/10ml buffer (Roche, UK).  Circular movements 
were made on the bottom of the dish with a cell scraper to dislodge the cells and 
release the intercellular proteins.  Protein degradation is avoided by use of protease 
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inhibitor cocktails and low temperatures.  The suspension is then placed in an 
eppendorf tube and boiled for 5 minutes, then homogenised using a 25G syringe 
needle; this shears DNA, which can make the product sticky and difficult to use in 
later applications.  At this stage the extract can be frozen (-20ºC short term, -80ºC 
long term). 
 
2.4.2: Cytoskeletal Protein Extract 
The cells were lysed on ice with a small amount of 50mM 
trishydroxymethylaminomethane-hydrochloric acid (‘Tris buffer’); circular 
movements were made on the bottom of the dish with a cell scraper to dislodge the 
cells and help release the intercellular proteins.  Following lysis and homogenisation, 
cell extracts were mixed with solution 1 (20mM trishydroxymethylaminomethane-
hydrochloric acid [pH 7.4], 0.6M KCl, 1% Triton X-100 [Fisher Scientific, UK] plus 
protease inhibitor cocktail), and centrifuged at 14000g for 15 minutes at 4ºC.  The 
supernatant is discarded, and the previous step repeated twice.  The pellet is then re-
suspended in solution 2 (20mM trishydroxymethylaminomethane-hydrochloric acid 
[pH 7.5], 9M urea, 10% "-mercaptoethanol plus protease inhibitor cocktail).  The 
cytoskeletal extract is then ready for running on a 1D gel (section 2.4.4). 
 
2.4.3: Colorimetric Protein Concentration Quantification 
The concentration of the protein extract is calculated via the bicinchonic acid, or BCA 
method.  The kit used to carry out this assay is the BCA Protein Kit (Pierce, UK).  
The standards were made up as indicated from the stock protein solution in the kit.  
Standard protein concentrations were: 0, 0.25, 0.125, 0.25, 0.5, 0.75, 1.0, 1.5 and 
2.0mg/ml.  The protein extract is also diluted to 1:10.  The BCA solution is made 
(also from two solutions provided in the kit) and added to the standards and the 
diluted protein extract.  All samples are then incubated at 37ºC for 10 minutes. 
The samples and standards are read on a Beckman DU-600 spectrophotometer.  The 
standards produce a standard curve when read at OD 562nm.  The concentration of 
the protein extract can then be inferred from the standard curve. 
 
2.4.4: Gel Electrophoresis 
1D gels were run using the Thermo Electron Mini Gel System, using SDS (sodium 
dodecyl sulphate); a detergent which, due to its anionic nature, denatures proteins.  
Protein samples to be tested were mixed with equal volumes of Laemmli’s buffer 
(with an additional 0.2% bromophenol blue), and run on pre-made 4-12% Bis-Tris 
gels (Invitrogen, UK).  The gels were run at 100V through the stacking gel then 200V 
through the resolving gel in MOPS running buffer (0.2% 20xMOPS [Invitrogen, 
UK]). 
For 2D gel electrophoresis, samples were prepared as previously described.  Samples 
were run on pre-made Bis-Tris gels (Invitrogen, UK) with an IPG strip (Invitrogen, 
UK).  The gels were run at 200V. 
 
2.4.4.1: Coomassie Blue staining of 1D Gels 

Coomassie Blue solution (0.1% Coomassie Blue G-250 [Sigma Aldrich UK], 10% 
acetic acid, 40% methanol) was utilised to visualise the proteins separated in the gel.  
The gels were stained with Coomassie Blue overnight at room temperature.  Destain 
(10% acetic acid, 10% methanol in dH2O) was then used to remove excess Coomassie 
Blue over several hours at room temperature; the destain was changed frequently. 
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2.4.4.2: Immunoblotting (‘Western Blotting’) 

Proteins separated in the gel were transferred to Hybond nitrocellulose membranes 
(Amersham Pharmicia Biotech, UK) in NuPAGE transfer buffer (Invitrogen, UK).  
The method used for the transfer is known as wet blotting, as the transfer occurs 
within a cassette enveloped in transfer buffer.  A current is passed through the 
container for 1h at 30V.  Following the transfer, the gel may be discarded, and the 
nitrocellulose membrane was rinsed in 1x TTBS (10mM 
trishydroxymethylaminomethane-hydrochloric acid, 137mM NaCl, 2.68mM KCl and 
0.2% Tween 20 [Fisher Scientific, UK]).  After rinsing, the membrane was stained 
with Ponceau-S red (Sigma-Aldrich, UK), a stain which allows evaluation of transfer 
efficiency (including equal loading).  Membranes were then blocked for 2 hours at 
room temperature (or at 4ºC overnight) in 5% non-fat milk powder in 1x TTBS.  The 
membranes were probed with the primary antibody diluted in 3% non-fat milk 
powder in 1x TTBS for 1 hour at room temperature followed by a 1 hour room 
temperature incubation with the horseradish-peroxidase (HRP) conjugated secondary 
antibody.  Between incubations, membranes were washed with 1x TTBS for 3x 5 
minutes. 
Antibodies bound to the membrane were visualised using Enhanced 
Chemiluminescence (Amersham Pharmacia Biotech, UK), and FujiFilm Intelligent 
Dark Box II.  Image J software could then be used to calculate changes in intensity. 
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Table 2.2: Primary antibodies utilised in this study 

Primary 
Antibody 

 
Species 

 
Name 

 
Source 

 
IF 

(Working 
Solution) 

 
WB 

(Working 
Solution) 

Desmoplakin Mouse DP1/2 ICN 1:100  
E-cadherin Mouse  BD 

Biosciences 
Pharmingen 

1:500  

Filaggrin Rabbit  Covance 1:200  
Involucrin Mouse SY5 Sigma 1:200  
Keratin 6 Mouse  Abcam 1:100  
Keratin 8 Mouse AE3 Abcam 1:100  
Keratin 14 Rabbit AF64 Covance 1:100  
Keratin 15 Mouse LHK15 Thermo 

Scientific 
1:1000  

Keratin 15 Chicken HK15 Covance  1:1000 
Keratin 15 Mouse C8/144B Abcam   
Keratin 17 Mouse E3 Millipore 1:200  
Alexa-Fluor 
Phalloidin 
594 (Actin) 

  Invitrogen 1:600  

Vinculin Mouse V-11-5 Sigma 1:500  
ZO-1 Rabbit  Abcam 1:50  
(IF = immunofluorescence; WB = western blotting) 
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Table 2.3: Secondary antibodies utilized in this study 

Secondary 
Antibody 

 
Species 

 
Company 

 
IF 

 
WB 

Donkey Anti-chicken immunoglobulins HRP DakoCytomation  1:1000 
Goat Alexa-Fluor Anti-mouse  IgG 594 Invitrogen 1:800  
Goat Alexa-Fluor Anti-mouse  IgG 488 Invitrogen 1:800  
Goat Alexa-Fluor Anti-rabbit  IgG 594 Invitrogen 1:800  
Goat Alexa-Fluor Anti-rabbit  IgG 488 Invitrogen 1:800  
Donkey Alexa-Fluor Anti-mouse  IgG 594 Invitrogen 1:800  
Donkey Alexa-Fluor Anti-mouse  IgG 488 Invitrogen 1:800  
Donkey Alexa-Fluor Anti-rabbit  IgG 594 Invitrogen 1:800  
Donkey Alexa-Fluor Anti-rabbit  IgG 488 Invitrogen 1:800  
DAPI  Invitrogen 1:1000  
(IF = immunofluorescence; WB = western blotting) 
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3.1: Introduction 

3.1.1: Aims 
This chapter aims to achieve an overview of the effect of K15 expression on 
keratinocytes.  It has previously been established that K15 is a marker of 
undifferentiated cells (see section 1.4).  In order to elucidate a function for K15 in 
these undifferentiated cells and the effects its ablation has, K15 siRNA transfection 
was used to knock-down K15 expression in HaCaT cells, which normally express 
K15.  The effect of K15 ablation on cell proliferation and differentiation will be 
discussed. 
 
3.1.2: The siRNA Transfection Method 
RNA interference (RNAi) is a method of post-transcriptional gene-silencing (see 
Figure 3.1).  It is thought that this mechanism originally evolved to protect the host 
genome against viruses in organisms such as the fungus Neurospora crassa and the 
nematode Caenorhabditis elegans; some protozoa and plants also utilise this defence 
mechanism (Tenllado et al., 2004).  In mammalian cell studies, RNAi is mediated by 
small interfering RNAs (siRNAs) that are usually 20-25 nucletides long.  The small 
size of these siRNAs does not trigger the usual antiviral response to double-stranded 
RNA (dsRNA) in mammalian cells (i.e. RNA degradation and inhibition of protein 
synthesis), and so can successfully be used in experimentation (Bass, 2001).  
Successful protein knock-down using siRNA techniques in mammalian cell culture 
was first achieved by Elbashir et al., 2001b.  This technique has also been used in 
keratinocytes in vitro (for example, Boczonadi et al., 2007; Chang et al., 2011). 
 
3.1.2.1: The RNA-induced Silencing Complex 

The RNA-induced silencing complex (RISC) is part of the defence mechanism 
developed by higher cells in defence against viral infection.  The RISC uses siRNA or 
micro RNA (miRNA) as a template; when RNA complementary to this template is 
recognised, an RNase is activated and the RNA is cleaved.  This rids the cell of the 
infectious viral vector.  The RISC is utilised in laboratory siRNA methods to 
ultimately prevent translation by stopping ribosome translation of the RNA or 
cleaving the native complimentary RNA (for a review of the RISC, see Filipowicz, 
2001; Sontheimer, 2005; Rawlings, Krishnan and Walter, 2011). 
The siRNA, transfected into cells, assembles into endoribonuclease-containing 
complexes and unwinds, creating the RISC.  The RISC includes a RISC loading 
complex (RLC), containing a Dcr-2/R2D2 heterodimer, which binds the siRNA.  The 
argonaute protein (part of the core RISC) then displaces the Dcr-2/R2D2, and cleaves 
the sense strand of the dsRNA, activating the RISC (Rivas et al., 2005).  Hydrolysis 
of ATP at this point is thought to accelerate this process, although it appears not to be 
an absolute requirement.  The antisense strand of RNA then guides the RISC to the 
homologous mRNA, resulting in cleavage of the mRNA.  Release of the two mRNA 
fragments from the cleavage process requires ATP, unlike the previous dsRNA 
cleavage.  In the cytoplasm, the 5’ end fragment of cleaved mRNA is degraded by an 
exonuclease complex (the exosome).  It is possible that the 3’ end fragment is not 
degraded in human cells (Holen et al., 2002; Holmes et al., 2010).  The RISC also 
dissociates from the cleaved mRNA to repeat cleavage with other targets. 
This whole process prevents protein translation, resulting in protein knock-down, and 
allowing protein function to be inferred from its absence.  A key experimental 
parameter to be considered here is the half-life of the protein to be studied.   
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More recently, some adjustments to the method have been suggested to increase 
efficiency.  For example, incorporation of poly(&-glutamic acid) has been shown to 
increase cellular uptake of the siRNAs (Liao et al., 2010), and polymers have been 
developed with similar effect (Takemoto et al., 2010). 
 
3.1.3: Keratin Expression in HaCaT Cells 
HaCaT cells are a spontaneously transformed human epithelial cell line from adult 
skin.  This cell line has become a useful tool in research as these cells maintain their 
capacity for epidermal differentiation and are nontumourigenic.  DNA fingerprint 
testing and chromosomal analysis demonstrated that the genetic composition of these 
cells was unaffected in long-term culture (>140 passages) (Boukamp et al., 1988). 
HaCaT cells express a wide variety of keratins, and are capable of associating into 
stratified, epidermal organisation, including the changes in keratin expression 
throughout the stratified layers.  In vitro, HaCaT cells proliferate with a low degree of 
differentiation, expressing keratins associated with the basal layer.  Once confluent, 
layers begin to form; HaCaT cells stratify spontaneously and the keratin expression 
pattern changes in a similar way to that observed in normal skin (Merne and Syrjänen, 
2003; Sun et al., 2007; Prado et al., 2011).  As these cells are, at present, the only 
widely available clonal cell line which have the capacity to differentiate in this way, 
this cell line was considered the most appropriate for use in this study. 
 
3.1.3.1: Previous Studies of HaCaT Cells 

When HaCaT cells were cultured on collagen and allowed to stratify, involucrin and 
filaggrin expression has been observed as in normal skin sections (i.e. localized to the 
stratum corneum and stratum granulosum respectively) (as described in, for example, 
Kim et al., 2010b).  Basal and suprabasal cells were identified using the Pab421 
antibody, specific for epidermal basal cells, and by a K10/11 antibody (as previously 
described by Moll et al., 1982).  These findings correlated with keratin analysis by gel 
electrophoresis.  When compared with normal cells from adult foreskin and adult 
thigh skin, HaCaT keratin expression was similar.  This included strong expression of 
K1, K10, K5 and K14.  K6 and K16, observed in hyperproliferative epidermis, were 
also observed in HaCaT cells and normal cells, following transplantation.  Some K4 
and K13 expression was also observed.  HaCaT cells also express K17, which is only 
present in the epidermis in a hyperplastic state (for example, as observed by Müller et 

al., 2006).  Boukamp et al. (1988) highlight that the keratin expression pattern 
observed in HaCaT cells is comparable to the (hyperplastic) morphology of 
transplants and transplanted mouse keratinocytes. 
Boukamp et al.’s initial study (1988) was followed by a comparison between HaCaT 
cells and tumourigenic HaCaT-ras clones (Ryle et al., 1989).  HaCaT cells, as well as 
expressing K5, K6, K14, K16 and K17, were also shown to express K7, K8, K18 and 
K19.  These keratins are generally associated with simple epithelia.  Ryle et al. (1989) 
noted that these keratins were expressed whilst the HaCaT cells were cultured at low 
densities.  Confluent HaCaT cells expressed K4, K13 (as previously described) and 
K15; Ryle et al. contribute the expression of these keratins to the onset of 
stratification. 
 
Further study was carried out on the differentiation capability of HaCaT cells.  
Breitkreutz et al. (1998) carried out HaCaT surface transplants on the backs of nude 
mice, comparing appearance and protein expression to normal human keratinocytes 
grafted in the same way.  At day 1-4, the initial regeneration phase, poorly organised 
stratified epithelia formed, similar in appearance to normal keratinocytes.  By day 7, 
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proliferation had become restricted to basal layers, which were K14 and !1-integrin 
positive.  There was also strong suprabasal staining of K1 and K10.  By day 14, the 
late markers K2e, loricrin and filaggrin had appeared.  Differentiation continued with 
keratinisation by 3 weeks and a switch from parakeratotic to orthokeratotic by 6 
weeks.  This is comparable to keratinisation observed in normal keratinocytes grafted 
in the same way.  Furthermore, Breitkreutz et al. studied ultrastructural features, such 
as matrix and basement membrane components.  Again this was similar to the 
production of proteins in normal keratinocyte grafts, with laminin-5, collagen IV, 
BM-laminin and collagen VII deposition respectively.  To further examine the 
differentiation capacity of HaCaT cells, Schoop et al. (1999) compared stratification 
of HaCaT cells on athymic mice and on collagen gels.  Although orthokeratotic 
keratinisation was not reached, differentiation up to this point was comparable.  K10, 
K16, involucrin and transglutaminase I were identified in suprabasal layers after one 
week in culture, followed by K2e, loricrin and filaggrin after 2-3 weeks.  This 
coincided with a restriction in proliferation to basal cells. 
Differentiation in HaCaT cells has also been studied in monolayers, using changes in 
external calcium concentration to induce differentiation.  This will be discussed in 
section 3.1.4. 
The results described above indicate that HaCaT cells demonstrate differentiation 
typical of normal keratinocytes; as the study of K15 would need to note any changes 
in differentiation, HaCaT cells are a useful model to study differentiation in 
keratinocytes, in both 2D and 3D culture. 
 
3.1.4: The ‘Calcium Switch’ Assay 
In vitro, monolayers of keratinocytes cultured in low levels of extracellular calcium 
(<0.1mM) can be induced to differentiate with the addition of media containing 1-
2mM Ca2+.   
This differentiation can be seen in changes to protein markers of differentiation; for 
example, changes in the keratin expression pattern and other markers, such as 
involucrin (Ponec et al., 1988; see Tu et al., 2008 and Tu, Chang and Bikle, 2011 for 
reviews of the role of the calcium receptor in differentiation). 
A change in calcium concentration has been observed between the basal layer (low 
calcium – up to 0.5mM) and the granular layer (high calcium – from 1mM) in vivo, 
influencing a change in keratin expression from K14 and K5 in the basal layers to K1 
and K10 in the granular layers (Yuspa et al., 1989).  Any increase in extracellular 
Ca2+ concentration is followed by increases in both diacylglycerol and 
phosphatidylinositol metabolism via protein kinase C (PKC) (Lee and Yuspa, 1991).  
PKC# is specific to keratinocytes, and is responsive to changes in Ca2+ concentration 
(Eckert et al., 2004).  Ca2+-independent PKC$ appears in spinous cells during their 
transition to granular cells (coinciding with a decrease in both K1 and K10, and 
increases in loricrin, filaggrin and transglutaminase) (Eckert et al., 2004).  PKC$ can 
also induce differentiation in granular cells; these cells however do have Ca2+-sensing 
receptors, part of the Ca2+ binding protein family (Bikle et al., 1996).  Further 
research has shown that overexpression of PKC$ induces differentiation and G1 
arrest (Kashiwagi et al., 2002).  Interestingly, mice lack this receptor, and reduced 
amounts of both filaggrin and loricrin have been found in this animal compared to 
humans (for example, Komuves et al., 2002).  Stanley and Yuspa (1983) and Yuspa et 

al. (1989) describe the actions of murine keratinocytes in low and high calcium 
media: in low calcium cells proliferate without stratifying, whereas those cells in high 
calcium media develop cell-cell contacts, stratify and cornify.  DNA synthesis is 
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inhibited, and the cell eventually dies.  The same occurs in both HaCaT cells and 
normal human keratinocytes (Micallef et al., 2009).  This is comparable to cells in 

vivo (Stanley and Yuspa, 1983).  Bikle et al. (1996) showed that this rise in 
extracellular calcium shifted the intracellular calcium concentration, and it was this 
‘double’ action which initiated the differentation response. 
Increased extracellular calcium has been shown to activate the phospholipase C 
pathway (via a calcium receptor), which ultimately results in a rise in intracellular 
inositol triphosphate (IP3) and a rise in intracellular calcium.  This intracellular 
calcium activates chloride channels in the cell membrane, resulting in 
hyperpolarisation; voltage-independent cation channels also become permeable (also 
mediated by a calcium receptor), allowing calcium ion movement.  These actions 
combined produce a swift rise in intracellular calcium, followed by a prolonged 
increase (Bikle et al., 1996).  Bikle et al. (1996) have also demonstrated that less 
differentiated cells are more sensitive to extracellular calcium than their more 
differentiated counterparts (the molecular biology of calcium signaling has been 
reviewed more recently by Breitwieser, 2008).  Extracellular calcium also affects 
other mechanisms important in differentiation.  Epidermal cadherins, for example, are 
calcium dependent, their extracellular domain containing calcium ion binding sites, 
where Ca2+-binding is necessary for cell-cell adhesion (important in keratinocyte 
differentiation) (Lefort and Dotto, 2004; Tu et al., 2008).  Intracellular and 
extracellular calcium concentrations have been shown to affect cell-cell junctions in 
several ways.  For example, cell-cell junction formation in keratinocytes depends on 
actin fibre rearrangement, which occurs during the differentiation process, initiated by 
an increase in extracellular calcium (for example, Vasioukhin et al., 2000; Umapathy 
et al., 2010). 
In low calcium media, both mouse and human keratinocytes fail to form desmosomes.  
Once elevated above 0.1mM calcium, adherens junctions form within 5 minutes and 
desmosomes form over the following 2 hours (Hennings et al., 1980; Hennings, 
Holbrook and Yuspa, 1983; Mochizuki et al., 2002).  In DJM-1 keratinocytes (a 
squamous cell carcinoma line, where desmosome formation is similar to that observed 
in normal keratinocytes), desmocollin 3 interacts with plakoglobin after 10 minutes, 
and adherens junctions form.  Desmocollin 3 is then phosphorylated and interacts 
with desmoglein 3, initiating desmosome formation (Kitajima, Inoue and Yaoita, 
1987; Aoyama et al., 2009).  Desmosomes have also been shown to be resistant to 
disruption by chelexed extracellular calcium (Watt, Mattey and Garrod, 1984); it has 
been hypothesised that this ‘hyper-adhesiveness’ is to maintain epidermal integrity.  
When keratinocytes are cultured at lower densities however, desmosomes become 
calcium-dependent (Kimura, Merritt and Garrod, 2007).  Hyper-adhesiveness is also 
lost during wound healing, when desmosomes become calcium-dependent (Wallis et 

al., 2000; Kimura, Merritt and Garrod, 2007).  There is some evidence to suggest that 
this calcium-dependence is triggered by PKC, which alters the configuration of 
cadherins in the desmosome, reducing their binding affinity (Wallis et al., 2000; 
Garrod et al., 2005).  Kimura, Merritt and Garrod (2007) have demonstrated that 
desmosomes in both simple and stratified epithelia have similar adhesive properties, 
capable of hyper-adhesion. 
S100 proteins are similar to calmodulin proteins, although are able to bind to calcium 
in the millimolar range (as opposed to the micromolar range) (Heizmann and Cox, 
1998).  They have dual roles as chemoattractants and signal transductors, which are 
thought to be influential in keratinocyte differentiation and psoriasis (Jinquan et al., 
1996; Broome, Ryan and Erkert, 2003). 
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3.1.5: Organotypic Cell Culture 
Organotypic (also known as ‘raft’) cultures have been utilized in the study of 
differentiation and stratification (for example, Asselineau and Prunieras, 1984).  
These cultures are generally a collagen gel (often impregnated with fibroblasts) onto 
which keratinocytes can be directly seeded.  The gels are then raised so that the 
seeded cells are at the air-liquid interface, encouraging stratification and 
differentiation.  This 3D culture has been shown to be similar to in vivo conditions, 
making it an appropriate model to study skin, particularly human skin, where in vivo 
possibilities for study are limited.  For example, Slavik et al. (2007) used the model to 
study Wnt signaling, which was shown to induce differentiation in the organotypic 
keratinocyte culture.  Keratins have also been studied using this technique.  
Chamcheu et al. (2009) have used organotypic cultures seeded with cells from EBS 
patients, demonstrating that cells with mutant K5 or K14 were capable of stratifying 
in vitro in an identical fashion to normal controls (differences were observed in 
keratin filaments following heat shock compared to controls).  Okugawa and Hirai 
(2008) have also used organotypic cultures seeded with HaCaT cells to observe how 
K1 and K14 expression were affected by syntaxin2 (a stromal signaling factor) 
signaling. 
 

 

3.2: Materials and Methods 
The materials and methods used in investigation of the effect of K15 on 
differentiation and proliferation are described in Chapter 2.  No changes or variations 
were made to the methods described. 
The schematic diagram in Figure 3.2 shows the site of the pre-designed siRNA used 
in this study (see also section 2.2).  Although the other siRNAs shown were tested in 
HaCaT cells, similar knock-down effects were noted in each (as demonstrated by 
immunofluorescence).  The siRNA chosen also worked in NHEK cells and MET cell 
line cells. 
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3.3: Results 

3.3.1: Experimental Approach 
The aim of the work described in this chapter was to establish whether K15 siRNA 
transfection would be a useful tool in studying the effect of K15 ablation in human 
skin.  Initially, immunofluorescence was used to investigate where the K15 protein is 
present in mammalian skin.  Previous studies had shown contradictory results of K15 
expression, so it was considered useful to establish where the K15 protein exists in 
mammalian skin. 
In order to explore the importance of K15 expression in skin, K15 siRNA 
transfections were carried out in monolayer HaCaT cells.  Immunofluorescence, 
immunoblotting, cell viability tests and gel electrophoresis were used to demonstrate 
the effects of K15 knock-down on these cells in monolayer cultures.  Similarly, 
immunofluorescence was carried out in NHEK cells following K15 siRNA 
transfection. 
To investigate the effects of K15 ablation on differentiation, K15 siRNA transfections 
were carried out in cells which were cultured in either high or low calcium media.   
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F igure 3.4: Human whole skin sections probed for K15 (green) and C D34 (red). 
K15 immunofluorescence staining of a hair follicle and the IFE (A) (scale bar= 10µm).  

Although there are some regions around the hair follicle which appear brighter, in this 

plane the ORS appears surrounded by K15-positive cells. 

The IFE (B) (scale bar = 10µm) shows that the K15 is expressed to a greater extent in the 

basal layers, and the amount of K15 reduces as the cells differentiate and move upwards 

towards the skin surface. 

Merge of a section through a hair follicle (E), with K15 (green, C) and CD34 (red, D) 

immunofluorescence.  CD34 is present throughout at low levels, whilst K15 can be 

observed specifically in the cells surrounding the hair follicle. (scale bar = 10um). 

It is likely that the low levels of CD34 observed here is a non-specific cross reaction. 
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3.3.2: K15 Expression in Mammalian Skin 
Indirect immunofluorescence was used to detect K15 expression in rat, mouse and 
human skin.  K15 is present in the same regions in both mouse and rat (Figure 3.3).  
This includes a K15-positive outer root sheath and interfollicular epidermis (IFE).  In 
the IFE, K15 is expressed to a greater extent at the base (for example, ‘arrow’ Figure 

3.3 C).  Here K15 is more prominent than in cells closer to the surface of the skin.  
K15 is expressed in the basal layer, and as the cell differentiates and moves towards 
the surface of the skin, it is possible that expression desists and only residual K15 
remains.  Due to the angle of the murine skin section, the cells between the hair 
follicle and the IFE can be seen.  The cells in this region are also K15-positive (as 
also suggested by Liu et al., 2003).  This region can not be observed in the rat 
sections (Figure 3.3 A, B), however K15-positive cells can clearly be observed 
around the hair follicle and in the basal layers of the epidermis. 
K15 is present in similar regions in human skin as in rodent skin i.e. around the hair 
follicle and in the basal layers of the epidermis.  In Figure 3.4 A, the hair follicle and 
outer root sheath can be seen to contain K15.  The cells of the outer root sheath just 
below the sebaceous gland however appear to contain more K15 than surrounding 
cells.  This region has previously been described as the bulge (i.e. the stem cell niche) 
(Ohyama et al., 2006), and cells here are actively expressing K15 (Kloepper et al., 
2008).   
The basal layers of the epidermis are K15 positive (Figure 3.4 B); however, K15 can 
also be observed above the basal layers (probably residual).  As the cells begin to 
stratify closer to the surface of the epidermis, the K15 protein remains, but is present 
to a lesser extent than in the basal layers.  This residual K15 however does not last 
throughout all layers of the epidermis, and as the cells flatten most cells have 
metabolised any remaining K15.  K15 then can not be observed in the flat cells at the 
surface of the skin. 
CD34 has previously been suggested as a marker of stem cells in the bulge region of 
the hair follicle; Trempus et al. (2003) identified CD34 in the bulge region of murine 
hair follicles (co-localised with label-retaining cells), for example.  Cotsarelis (2006) 
however suggests that CD34 is not expressed in the (K15-positive) human bulge 
region (in the telogen hair follicle); this finding has recently been supported by Inoue 
et al., (2009) utilising flow cytometry and immunocytochemistry techniques. 
For these reasons it was considered useful to compare K15 and CD34 expression 
around the hair follicle in this study.  As expected, there is no CD34 in the epidermis, 
but K15 can clearly be observed (Figure 3.4 C, D, E).  Very low levels of CD34 are 
observed in the human IFE here (D and E), and it is likely that this is background 
immunofluorescence.  The section appears to stain uniformly for CD34, again 
indicating that no specific CD34 staining is occurring.  This would correspond with 
those observations made by Cotsarelis et al. (2006) and Inoue et al. (2009). 
 
3.3.3: K15 siRNA Transfection in HaCaT and NHEK Cells 
3.3.3.1: K15 siRNA Transfection in HaCaT Cells 
In the first instance, the efficiency of siRNA knock-down of K15 was evaluated by 
double immunofluorescence of K15 and K14 proteins.  Time points of 24, 48, 72 and 
96 hours after the transfection were chosen to identify the optimal period of K15 
expression reduction for future studies.  In order to establish that no autofluorescence 
was occurring, fixed cells were ‘stained’ with only secondary antibody and examined.  
This demonstrated that the fixed cells did not autofluoresce and that the secondary 
antibody did not bind to IF proteins nonspecifically, confirming that any 
immunofluorescence observed was as a result of the presence of primary antibody on 
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a sample.  In addition, use of double immunofluorescence with an anti-K14 antibody 
was designed to introduce an internal control for successful staining.   
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F igure 3.5: Expression of K14 and K15 in K15 siRN A knockdown HaCaT cells. 
Single plane confocal images of immunofluorescence showing both K14 and K15 in 

HaCaT cells following K15 siRNA transfection and control siRNA transfection (scale bar 

= 10um). 

24 h post-transfection, K14 expression appears normal in both K15 siRNA transfected (A, 

a) and control siRNA  transfected (A, d) HaCaT cells.  Normal levels of K15 can be 

observed in control siRNA transfected HaCaT cells (A, e) with slightly lower levels 

observed in K15 siRNA transfected HaCaT cells (A, b). 

At 48 h post-transfection, K14 levels are similar in both K15 siRNA transfected cells (B, 

a) and control siRNA transfected cells (B, d).  Levels of K15 appear similar to control 

levels in control siRNA transfected cells (B, e), however are greatly reduced in K15 

siRNA transfected HaCaT cells (B, b).  This can also be observed in the merge image (B, 

c). 

By 72 h post-transfection, K15 levels in K15 siRNA transfected HaCaT cells have 

recovered slightly (C, b) compared with 48 h post-transfection (B, b).  K14 expression in 

K15 siRNA transfected cells remains normal (C, a), as does K14 (C, d) and K15 (C, e) 

following control siRNA transfection. 

Levels of K15 at 96 h post-transfection with K15 siRNA (D, b) are similar to levels at 96 h 

post-transfection with control siRNA (D, e).  This suggests that the effect of K15 siRNA 

transfection is reversible in HaCaT cells.  K14 levels remain the same in both K15 siRNA 

transfected (D, a) and control siRNA transfected HaCaT cells (D, d). 

Based on data from this experiment, the most effective knockdown of K15 following 

siRNA transfection of HaCaT cells is 48 h post-transfection.  This was considered for all 

further experiments. 
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In Figure 3.5 A, the organisation of K15 and K14 arrangement appears similar, with 
the keratin network observed throughout the cytoplasm up to the edges of the cell; 
this can be particularly seen in Figure 3.5 A, f, as the merge image suggests K14 and 
K15 co-localisation (yellow in the merged image).  Far less K15 can be observed at 
48 h post-transfection in K15 siRNA transfected cells compared to control siRNA 
transfected cells (Figure 3.5 B, b), although K14 staining intensity (Figure 3.5 B, a) 
appears similar to that observed in control siRNA transfected cells (Figure 3.5 B, d).  
This suggests that the reduced K15 staining is not an artifact of the staining method.  
K14 network may appear over the nucleus to a greater extent in K15 siRNA 
transfected cells than in control siRNA transfected cells, although to accurately 
determine whether this is the case, several different optical slices would be required.  
At the 72 h time point, K15 expression begins to return (Figure 3.5 C, b).  
Arrangement of K15 in these cells appears similar to control transfected cells, 
suggesting that no permanent changes have occurred preventing K15 from being 
expressed normally or localising normally.  K14 expression remains similar at 72 and 
96 h post-transfection, suggesting that any compensatory mechanism which may be 
occurring is removed when K15 expression returns.  Thus, it was established that the 
most efficient time point for K15 knock-down by siRNA transfection was 48 h post-
transfection (Figure 3.5 B, b) after similar decreases in K15 expression were observed 
in repeat experiments.  This was taken into consideration when planning subsequent 
experiments.  A similar knock-down effect was also noted using another prepared 
K15 siRNA from Ambion (data not shown), suggesting that further testing of other 
siRNAs was not required. 
 
In order to confirm the immunofluorescence findings, immunoblotting was carried out 
on whole protein extracts taken at 48 h post-transfection.  Samples were run on a 1D 
and 2D gel, which were transferred to nitrocellulose via wet blotting.  These results 
confirmed successful knock-down of K15 compared to the control siRNA transfected 
sample (Figure 3.6; Figure 3.7).  The pI of K15 is 4.9 (MW 50kDa) (Kanitakis et al., 
1999), however appears higher in this 2D blot (Figure 3.6).  The same is true of K14, 
with a pI of 5.09 (MW 51.6kDa) (Fang, Zeng and Guo, 2008).  It is possible that this 
may be due to an experimental error or possibly due to glycosylation/phosphorylation.  
In the 2D electrophoresis, two spots observed on the control sample blot suggest some 
phosphorylation, a common post-translastional modification of keratins regulating the 
filament assembly (for example, as described by Liao et al., 1996) (Figure 3.6).  
There is only a weak indication of one of the two spots in the K15 siRNA transfected 
sample, also suggesting the reduction of protein expressed in the K15 siRNA 
transfected cells.  This also confirms the specificity of the antibody used, as no cross-
reaction with any other keratin was observed.  Figure 3.6 also shows the K14 
immunoblot in control siRNA transfected and K15 siRNA transfected samples.  This 
was carried out as a control.  The two spot patterns look identical, suggesting that K15 
siRNA transfection has no effect on K14 expression or post-translational modification 
of K14 (as the patterns were similar).  Staining for K14 also indicates equal loading 
(since imunofluorescence had previously demonstrated that transfection did not affect 
K14 expression).  The faint line upper of the spots observed on the K14 blot may be 
an unreduced keratin dimer, or cross-reaction of the antibody with another keratin. 
Western blotting (Figure 3.7) further demonstrates the reduced K15 48 h post-
transfection and the return of expression at 72 h.  This has been quantified using 
Image J, where the graph produced show the changes in staining intensity.  After 
transfer to the nitrocellulose, Ponceau staining was carried out to establish equal 
loading of the protein extracts used. 
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3.3.3.2: Keratin Expression in K15 siRNA Transfected HaCaT Cells 

It was considered important to assess the effect of K15 ablation on the expression of 
other keratins, as it has previously been suggested that keratin expression can change 
in response to expression of other keratins.  For example, keratins related to K17 
(such as K16) have been shown to be upregulated in KRT17-null mice (McGowan et 

al., 2002).  It has also been demonstrated using RNAi that severe suppression of 
dominant keratins in non-small cell lung cancer results in suppression of all other 
keratins, whilst moderate suppression results in downregulation of complimentary 
keratins and upregulation of other keratins (Kanaji et al., 2006). 
Although normally only expressed in hyperproliferative keratinocytes, K6 is 
constitutitively expressed in HaCaT cells (Boukamp et al., 1988; Mommers et al., 
2000; Ojeh et al., 2008a).  Examination of K6 expression and cellular arrangement 
may indicate if any other keratins that are normally expressed in HaCaT cells were 
affected by K15 ablation.  Expression levels appear similar with a concentration of 
filament bundles around the nucleus, although K6 can be observed throughout the 
cytoplasm (Figure 3.8 A, B).  It has been suggested that K6 and K17 expression in 
normal keratinocytes are an ‘intermediate’ between basal K5/K14 expression and 
differentiated cell K1/K10 expression, allowing pliability (for migration) yet 
providing a certain amount of mechanical stability (Wong and Coulombe, 2003).   



F igure 3.6: Immunoblotting following K15 siRN A transfection in HaCaT cells 

2D immunoblotting of K15 and K14 from whole cell protein extract of K15 siRNA 

transfected and control siRNA transfected HaCaT cells (obtained 48 h post-transfection).   

The 2D immunoblotting demonstrates a reduction in K15 in K15 siRNA transfected cell 

protein extract  (B) compared to the control siRNA transfected protein extract (A). 

The spotting pattern observed for K14 suggests that K14 expression is similar in both 

control  (C) and K15 siRNA transfected (D) cell protein extracts. 
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F igure 3.7: K15 Immunoblotting following K15 siRN A transfection in HaCaT cells. 
At 48 h post-transfection, K15 levels can be seen to be lower than control siRNA 

transfected HaCaT cells (A).  Recovery of K15 in K15 siRNA transfected cells can be 

observed by 72 h post-transfection.  No change in the amount of K15 can be observed in 

the control siRNA transfected cells.  Ponceau staining (not shown) was used to 

demonstrate equal loading. 

Using Image J, the intensity of the staining of the immunoblots in A were measured (B) 

(error bars =  standard deviation).  The control siRNA transfected blots at both 48 and 72 h 

post-transfection are similar, suggesting that K15 expression in these cells is unchanged 

between these timepoints.  The intensity of K15 staining at 72 h post-transfection in K15 

siRNA transfected cells is comparable to the control siRNA transfected cells, suggesting 

similar amounts of K15 in each protein extract.  At 48 h post-transfection in K15 siRNA 

transfected cells, the inverse intensity suggests that there is less K15 available for staining 

48 h post-transfection in K15 siRNA transfected HaCaT cells.  This result is comparable 

to those observed using immunofluorescence staining in transfected HaCaT cells (F igure  
3.5). 
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Like K6, K17 is normally expressed in HaCaT cells, so it would not be a useful 
indicator of differentiation, but would establish further whether K15 ablation affected 
arrangement of other keratins.  K17 expression and arrangement appears similar in 
both K15 siRNA transfected and control siRNA transfected cells, suggesting that K15 
ablation does not affect K17 expression in HaCaT cells.  K8 is usually associated with 
simple epithelia, although is also expressed in HaCaT cells (Ryle et al., 1989; 
Kazerounian, Uitto and Aho, 2002).  Like K17, K8 is also expressed in epithelial 
progenitor cells, as shown in a study describing differentiation of embryonic stem 
cells in vitro (Maurer et al., 2008).  K8 has been shown to have a role in cell integrity, 
for example, during epithelial wound healing (Baribault et al., 1994; Habtezion et al., 
2005; Long et al., 2006).  Depletion of K8 can affect wound healing, migration and 
cell-cell adhesions; it was deemed necessary to determine whether K8 levels were 
reduced following K15 siRNA transfection to ensure that if migration or cell-cell 
adhesions were affected, a role for K8 could be investigated further.  K8 expression in 
HaCaT cells has previously been shown to be variable and heterogenous expression 
was also observed here (Figure 3.8, Figure 3.9).  This makes determining the effect 
of K15 ablation on K8 expression and appearance more difficult to establish, however 
there appear to be no large differences between K8 in K15 siRNA transfected and 
control siRNA transfected cells.  Although assessment of K5 expression and 
arrangement would have been useful, immunofluorescence staining did not produce 
results of a high enough quality to determine arrangement of K5 within the HaCaT 
cells.  
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F igure 3.8: K eratin expression in control siRN A transfected and K15 siRN A 
transfected HaCaT cells. 

Similar expression patterns can be seen in both K15 siRNA transfected and control siRNA 

transfected HaCaTs for K6 (A, B) and K17 (C, D).  K8 expression in K15 knock-down 

cells (E) appears slightly reduced as compared to control siRNA transfected cells (F) 

(scale bar = 10µm). 
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F igure 3.9: Variable K8 expression in HaCaT cells. 
A: Measurement of average intensity of K8 staining in HaCaT cells.  In order to examine 

the reduction in K8 expression, Image J software was used to analyse the intensity of the 

!"#$% &'()$*.  The graphs indicate that the K8 staining is not as intense in the control cells 

compared to the K15 knock-down cells.  The line indicates the cross-section where the 

staining intensity was measured. 

B: This control siRNA transfected image of K8 shows where a cell is present which 

demonstrates a low level of K8 expression compared to nearby cells.  Similar variation 

can be observed in K15 knock-down cells (see A). 
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3.3.3.3: K15 siRNA Transfection in NHEK Cells 

In order to assess whether similar K15 ablation could be produced in normal 
keratinocytes, K15 siRNA transfection and control siRNA transfections were carried 
out using NHEK cells.  The same procedure was used as with HaCaT cells, although 
the optimum knock-down for K15 was 72 h post-transfection (Figure 3.10).  K15, 
K14 and actin arrangement were observed using immunofluorescence post-
transfection.  There is little difference between K14 expression in K15 siRNA 
transfected cells compared to control siRNA transfected cells (Figure 3.10 B, E).  
Similarly, actin expression and localisation remains unchanged following K15 
ablation (Figure 3.10 C, F).  However, due to limited numbers of NHEK cells 
available (for example, these cells can only be cultured to approximately passage 4 
before differentiation), few other experiments were carried out using these cells.  As 
similar results were obtained with HaCaT cells, these were considered a suitable 
immortalised cell-line compromise, with almost unlimited cell numbers available for 
experimentation. 
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F igure 3.10: Expression of K14 and K15 in K15 siRN A knockdown N H E K cells. 
Single plane confocal images of immunofluorescence showing K15, K14 and actin in 

NHEK cells following K15 siRNA transfection (scale bar = 20µm).  The levels of K15 in 

the K15 siRNA transfected cells can be seen to be lower than in control cells, 

demonstrating successful K15 knock-down.  Neither K14 or actin organisation have been 

changed by K15 knock-down. 
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3.3.4: Cell Viability following K15 siRNA Transfection 
An MTT assay was used in order to assess how HaCaT cell viability was affected by 
K15 ablation (Figure 3.11).  1x105 cells were seeded and allowed to settle (0 h 
timepoint), then transfected using either K15 siRNA or control siRNA.  48 h post-
transfection, an MTT assay was carried out.  Whilst there had been some increase in 
cell number in control siRNA transfected cells, this increase was greater in K15 
siRNA transfected cells.  The relatively low numbers of cells used here were due to 
the restrictions on the cell numbers that could be successfully and efficiently 
transfected.  However, the difference between K15 siRNA transfected and control 
siRNA transfected cell numbers at 48 h post-transfection remains significant 
(p=0.001). 
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F igure 3.11: Proliferation of K15 siRN A transfected and control transfected HaCaT 
cells. 
Cell numbers were calculated using the MTT assay and a standard curve (error bars = 

standard deviation).   An increase can be observed in the number of viable cells observed 

post-seeding in both control siRNA and K15 siRNA transfected cells, however a greater  

increase is observed in K15 siRNA transfected cells.  This difference is significant (***) 

(p=0.001). 
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3.3.5: Differentiation of K15 siRNA Transfected HaCaT Cells 
3.3.5.1: Effect of K15 Knock-down on Involucrin and Filaggrin 
It has been established that K15 is expressed in basal keratinocytes, and that 
expression is lost as cells differentiate and move upwards towards the surface of the 
skin.  It was considered an important part of this study to establish whether loss of 
K15 was a factor in inducing differentiation.  To investigate whether spontaneous 
differentiation (without calcium switch) was occurring, immunofluorescence was 
used to identify differentiation markers in HaCaT cells following K15 siRNA 
transfection. 
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F igure 3.12: Expression of involucr in following siRN A transfection in HaCaT cells. 
Single plane confocal images of immunofluorescence showing involucrin in HaCaT cells 

following K15 siRNA transfection (scale bar = 10µm). 

As K15 expression is reduced using K15 siRNA transfection, involucrin levels increase 

(A, C, E, G).  The increase continues after K15 expression has been shown to return to 

normal 96 h post-transfection (G). 

There appears to be less involucrin in the control siRNA transfected cells (B, D, F, H) 

compared to the K15 siRNA transfected cells, although the expression pattern is similar 

(i.e. concentrated around the nucleus). 

Where levels of involucrin are high, some non-specific staining can be observed in the 

nucleus (for example, G).  This is like to be as a result of cross-reaction of the rabbit 

antibody. 
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Figure 3.12 shows involucrin immunofluorescence between 24 and 96 h post-
transfection.  There is some variation in the involucrin expression between these time 
points in the control siRNA transfected HaCaT cells.  At 24, 72 and 96 h however 
(Figure 3.12 B, F and H), involucrin appears to be more highly concentrated around 
the nucleus (some non-specific staining of the nucleus is also observed, possibly due 
to the use of a rabbit antibody).  This also occurs in the K15 siRNA transfected cells.  
Throughout the experiment, involucrin staining becomes more intense in the K15 
ablated cells.  The perinuclear staining pattern however is comparable with control 
cells (for example, at 48 h post-transfection [Figure 3.12 C and D]). 
Involucrin, as a precursor of cross-linked envelope assembly in skin, is considered an 
early marker of keratinocyte differentiation (Watt, 1983; Crish et al., 2002).  As 
increased levels of involucrin are associated with differentiation, this result suggests 
that K15 siRNA transfected cells may be becoming more differentiated than control 
siRNA transfected counterparts.  Involucrin has a role as a substrate for 
transglutaminase 1, an important step in catalyzing the formation of the cornified 
envelope (Schroder et al., 1992; LaCelle et al., 1998; Hasegawa et al., 2011).  
Following synthesis then, involucrin is localised to the interior face of the plasma 
membrane, before being cross-linked by transglutaminase 1 (Thacher and Rice, 1985; 
Steinert and Marekov, 1997; Candi et al., 2001).  This suggests that involucrin should 
localise at the cell membrane prior to cross-linking in cornified envelope formation.  
It appears that this could be happening in Figure 3.12 G, where bright 
immunoflourescence staining throughout the cell may indicate involucrin localisation 
at the cell membrane.  This is in contrast to earlier time points where involucrin 
appears as perinuclear granules (Figure 3.12 C).  Possible non-specific staining can 
also be observed in the nucleus of some cells.  As K15 has previously been shown to 
be expressed in undifferentiated cells in the skin, it may be that K15 expression 
(either directly or indirectly) affects cell differentiation.  This theory required further 
investigation. 
 
We next investigated filaggrin immunofluorescence following transfection and in 
untransfected HaCaT cells.  Very low levels of non-specific staining were observed 
(data not shown), suggesting that filaggrin is not a protein expressed in HaCaT cells 
without calcium switch.  As filaggrin is usually expressed in the granular layer and 
above, it suggests that HaCaT cells are not differentiated enough to express this 
protein in vitro.  Similar, low level non-specific filaggrin staining was observed in 
K15 siRNA transfected cells, indicating that even without K15, HaCaT cells are not 
differentiated up to a granular level ‘stage’.  Papp et al. (2003) demonstrated that low 
levels of filaggrin were expressed in cultured HaCaT cells, increasing upon 
confluency (approximately 6 days post-seeding).  However, in order to increase 
efficiency of transfection, in this experiment cells were only cultured to 
approximately 60-70% confluency (at 48 h post-transfection).  This may also explain 
the reduced levels of filaggrin observed. 
 
3.3.5.2: Effects of K15 Knock-down on Cell Junctional Proteins 
With the differences observed in involucrin expression, it was considered useful to 
assess the effect of K15 ablation on cell junctional proteins.  Cell junctions are known 
to be affected during differentiation; for example, undifferentiated cells have fewer 
desmosomes than suprabasal cells.  As cells differentiate they migrate upwards 
forming more desmosomes and assembling tight junctions (and expressing tight 
junction proteins) to contribute to the skin barrier function.  To establish the type of 
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cell-cell interactions present in control transfected and K15 siRNA transfected HaCaT 
cells, E-cadherin, desmoplakin and ZO-1 expression and localisation were observed. 
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F igure 3.13: Expression of desmoplakin, E-cadher in and Z O-1 following K15 siRN A 
transfection in HaCaT cells. 
Single plane confocal images of immunofluorescence showing desmoplakin, E-cadherin 

and ZO-1 in HaCaT cells following K15 siRNA transfection (scale bar = 10µm). 

E-cadherin expression can be observed at cell-cell junctions in both control siRNA 

transfected (B) and K15 knock-down  (A) HaCaT cells. 

Some desmoplakin at cell junctions can be observed in control siRNA transfected cells (D, 

arrowhead) and K15 siRNA transfected cells (C, arrow). 

No ZO-1 can be seen at cell-cell junctions in control siRNA transfected (F) or K15 siRNA 

transfected (E) HaCaT cells. 



! 85!

E-cadherin expression was assessed using immunofluorescence; cells were fixed and 
stained 48 h post-transfection (Figure 3.13 A and B).  Cell-cell junctions in both 
control and K15 knock-down cells can be seen to stain for E-cadherin, and intensity 
of staining appears similar in both K15 knock-down cells and control siRNA 
transfected cells.    No increase or decrease was observed in E-cadherin following 
K15 ablation.  This suggests that ablation of K15 does not affect adherens junction 
formation. 
 
Desmoplakin is associated with desmosomes, which are formed after the initial cell-
cell interactions involving E-cadherin.  The role of desmoplakin is to anchor the 
keratin network to the desmosomal cadherins (Godsel et al., 2005); it was therefore 
considered useful to assess the effect of K15 ablation on desmoplakin expression and 
localisation.  Wan et al. (2007b) demonstrated that increased cell proliferation was 
observed in desmoplakin knock-down HaCaT cells.  Here desmoplakin expression 
was observed by immunofluorescence in HaCaT cells after siRNA transfection.  In 
control siRNA transfected cells, desmoplakin can be observed clearly at cell borders 
(Figure 3.13 C, arrowhead).  Without calcium switch not all cells formed 
desmosomes, however desmoplakin was detected at cell borders.  This suggests that 
K15 ablation does not affect desmoplakin expression or desmosome formation.  This 
is as expected, since no changes in E-cadherin expression are observed. 
 
The expression and subcellular localisation of the tight-junction protein ZO-1 was 
also assessed using immunofluorescence.  At 48 h post-transfection, HaCaT cells 
were fixed in paraformaldehyde and stained.  Low levels of cytoplasmic staining can 
be seen in both control siRNA transfected and K15 siRNA HaCaT cells; this suggests 
that neither control siRNA transfected nor K15 siRNA transfected HaCaT cells 
produce tight junctions (Figure 3.13 E and F).  Tight junctions are associated with 
well differentiated keratinocytes, so formation of these junctions in HaCaT cells 
cultured without high levels of calcium is unlikely.  Although some differentiation of 
HaCaT cells may be occurring in K15 ablated cells, differentiation does not occur to 
an extent where tight junctions begin to form.  If cells could be cultured to a more 
confluent stage, it may be possible to obtain evidence of tight junction formation.  
However, the 30-50% confluency required for effective transfection coupled with the 
transient nature of the K15 siRNA transfection prevents the possibility of culturing 
HaCaT cells for the length of time required to establish these higher levels of 
confluency. 
 
3.3.5.3: Effects of High Extracellular Calcium on K15 siRNA Transfected HaCaT 

Cells 

Since it is possible that K15 ablation may be promoting differentiation in HaCaT cells 
(as indicated by involucrin immunofluorescence), a calcium switch experiment was 
carried out to determine whether any similarities could be observed.  Increases in 
extracellular calcium concentration have been shown to increase differentiation in 
keratinocytes (for example, as described by Yuspa et al., 1989; Kolly et al., 2005).  
There are several mechanisms which can affect many proteins in keratinocytes 
dependent on extracellular and intracellular calcium, such as the PKC pathway (see 
section 3.1.4). 
HaCaT cells were transfected and culture media was switched to either low calcium 
or high calcium media, for 6 h (at 42 h post-transfection) or 72 h (where transfection 
was carried out 24 h after the initial change of media to high or low calcium media).  
Cells were then fixed and immunofluorescence used to observe K15, K14 and 
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involucrin.  This was to ensure that the cells were all harvested at the point of 
maximum K15 ablation. 
 

Table 3.1: Timeline of Calcium Switch Assay 
 

6 hour time point 
 
HaCaT cells seeded 
( 
Cells transfected 
( 
42 h later 
Media switched to either high or low calcium 
media 
( 
6 h later 
Cells fixed and immunofluorescence carried out 

 

72 hour time point 
 
HaCaT cells seeded 
( 
Media switched to either high or low calcium 
media 
( 
24 h later 
Cells transfected 
( 
48 h later 
Cells fixed and immunofluorescence carried out 
 

 
Firstly, the effect of increased extracellular calcium on K15 levels in HaCaT cells was 
assessed (Figure 3.14).  K15 siRNA transfected cells consistently show a lack of K15.  
Thus, siRNA ablation could be carried out in high calcium conditions.  Control 
siRNA transfected cells all show that HaCaT cells express K15, regardless of 
extracellular calcium concentration.  This also demonstrated that transfection of cells 
in high calcium media was equally efficient.  Similar levels of K15 are expressed 
throughout, with K15 being seen throughout the cytoplasm up to the edges of the 
cells, and around the nucleus.  As K15 is considered a marker of less differentiated 
cells, it was not expected for keratinocytes to express K15 when cultured in high 
calcium media for 72 h.  This may be because of the unusual keratin expression 
pattern observed in HaCaT cells, or due to relatively long half-life of intermediate 
filament proteins. 
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F igure 3.14: Expression of K15 in HaCaT cells following siRN A transfection after 
growth in high or low calcium media. 
Single plane confocal images of immunofluorescence showing K15 in HaCaT cells 

following K15 siRNA transfection (scale bar = 10µm). 

Low levels of K15 can be observed in K15 siRNA transfected cells after 6 h in low 

calcium media (A).  K15 expression in control siRNA transfected cells (B) appears 

normal, with K15 throughout the cytoplasm to the edge of the cell.  After culture in high 

calcium media for 6 h, low level K15 expression can be seen in K15 siRNA transfected 

cells (C).  In control siRNA transfected cells (D), some heterogeneic K15 expression can 

be observed, where some cells express more K15 than others. 

Low levels of K15 can be observed in K15 siRNA transfected cells (E) after culture in low 

calcium media for 72 h.  Expression of K15 in control siRNA transfected HaCaT cells (F) 

appears similar to K15 as observed at 6 h in low calcium media (B); expression is 

observed throughout the cytosplasm, to the edge of the cell.  Despite some heterogeneity 

after 6 h in high calcium media, no similar heterogeneity is observed after 72 h in control 

siRNA transfected HaCaT cells (H).  Although high calcium media induces differentiation 

in HaCaT cells, K15 expression remains.  K15 can be seen throughout the cytoplasm 

through to the edges of the cell.  Thicker K15 !"#$%&'( can be observed around the nucleus.  

Low levels of K15 are observed in K15 siRNA transfected cells (G). 
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F igure 3.15: Expression of K14 in HaCaT cells following siRN A transfection after 
growth in high or low calcium media. 
Single plane confocal images of immunofluorescence showing K14 in HaCaT cells 

following K15 siRNA transfection (scale bar = 10µm). 

Previous results have suggested that following K15 siRNA transfection, K14 is not 

observed to the edge of the cell.  This was not observed here after 6 h in low calcium 

media (A), as K14 was observed throughout the cytoplasm, around the nucleus and up to 

the edges of the cell.  This was also observed in control siRNA transfected cells (B).  In 

both K15 siRNA transfected cells (C) and control siRNA transfected cells (D), K14 fibres 

can be observed throughout the cytoplasm and around the nucleus after 6 h in high 

calcium media; this was comparable to K14 expression in HaCaT cells grown in low 

calcium media. 

Similar expression is observed in both control siRNA transfected (F) and siRNA 

transfected cells (E) after culture in low calcium media for 72 h, as K14 is expressed 

around the nucleus and throughout the cytoplasm.  In control siRNA transfected cells, K14 

can be observed up to the edge of the cell (F); however staining intensity appears reduced 

at the cell edge in K15 siRNA transfected cells (E), as observed previously following K15 

siRNA transfection.  After 72 h in high calcium media, K14 is expressed throughout the 

cytoplasm and around the nucleus in both K15 siRNA transfected (G) and control siRNA 

transfected cells (H).  K14 staining intensity also decreased at the cell edge in K15 siRNA 

transfected cells (G).  This is not observed to the same extent in control siRNA transfected 

cells (H).  K14 expression appears increased in K15 siRNA transfected cells after 72 h in 

high calcium media (G) compared to cells cultured for 6 h in high calcium media (C). 
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For comparison, K14 immunofluorescence was also carried out on transfected cells 
cultured in high or low calcium media (Figure 3.15).  In K15 siRNA transfected cells, 
K14 can be observed throughout the cytoplasm and around the nucleus; after 6 h 
culture in high or low calcium media, no differences could be observed in K14 
expression or localisation.  K14 staining could not be observed up to the cell edges in 
K15 siRNA transfected cells after 72 h in either high or low calcium media (Figure 

3.15 E and G).  This is comparable to results described in Chapter 4 (Figure 4.6, 
Figure 4.7) and support the observation that K14 organisation is dependent on K15 
expression.  Other than this slight change, K14 expression appears similar to control 
siRNA transfected cells; K14 expression level in high and low calcium-treated cells 
does not appear to change. 
To establish whether this was occurring, Image J software was used to quantify any 
changes in K14 arrangement during cell spreading (Figure 3.16); this is calculated as 
intensity of ‘grey value’.  The graphs produced show that K14 staining intensity peaks 
in the cytoplasm, before a drop is observed in the nucleus (this is due to the plane of 
the images taken).  In the untransfected HaCaT cells, the intensity of K14 staining is 
relatively uniform throughout the cytoplasm, and can be observed to the edge of the 
cell.  Similarly, in control siRNA transfected cells, the staining intensity peaks in the 
cytoplasm, although the staining is not as intense at the edges of the cell, the peak is 
reached in a relatively short distance.  In K15 siRNA transfected cells however, the 
staining intensity at the edge of the cell is far lower than in control cells; a peak of 
similar intensity is achieved in the cytoplasm closer to the nucleus.  This again shows 
that in K15 ablated cells there may be altered cytoskeletal protein arrangements at the 
cell edges during spreading (for further details on this see section 4.3.2.4).



Single plane confocal images of untransfected (A, B), control siRNA transfected (C, D) 

and K15 siRNA transfected (E, F) cells stained for K14 were analysed using Image J in 

order to examine any change in K14 expression (scale bar = 10µm).  The line (B, D, F) 

indicates the cross-section of the cell where the staining intensity was measured.  Peaks 

can be observed around the nucleus.  The plots for the control cells appear similar, 

although the cell size of the control siRNA transfected cell is slightly larger than the 

untransfected cell.  A comparison of the K15 siRNA transfected cell and the similarly 

sized untransfected cell suggest that although the peaks are similar, there is a reduction in 

the amount of K14 at the edge of the cell in the K15 siRNA transfected cell compared to 

the untransfected cell. 

F igure 3.16: Staining intensity measurement of K14 in untransfected, control siRN A 
transfected and K15 siRN A transfected HaCaT cells. 
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F igure 3.17: Expression of involucr in in 
HaCaT cells following siRN A 
transfection after growth in high or low 
calcium media. 
Single plane confocal images of 

immunofluorescence showing involucrin 

in HaCaT cells following K15 siRNA 

transfection (scale bar = 10µm).  

Low levels of involucrin are observed in 

both control siRNA transfected (B) and 

K15 siRNA transfected (A) cells after 6 h 

culture in low calcium media.  Both 

appear similar, with involucrin expressed 

throughout the cytoplasm without a 

granaular appearance.  Similar levels of 

involucrin can be observed in both K15 

ablated cells (C) and control cells (D) 

after 6 h culture in high calcium media; 

involucrin can be observed throughout the 

cytoplasm.  In control siRNA transfected 

cells, this concentrates around the nucleus 

to an extent, and in K15 siRNA 

transfected cells the involucrin appears 

more granular. 

Following 72 h culture in low calcium 

media, expression of involucrin in both 

control (F) and K15 ablated cells (E) 

appears similar to that observed after 6 h 

in low calcium media, with involucrin 

expressed at relatively low levels 

throughout the cytoplasm.  The staining 

intensity of involucrin in K15 siRNA 

transfected cells is slightly greater than in 

control siRNA transfected cells.  After 72 

h culture in high calcium media, 

involucrin staining varies between K15 

ablated and control HaCaT cells.  In K15 

siRNA transfected cells (G), staining is 

observed throughout the cytoplam, with 

some stronger staining around the nucleus; 

in some cells this appears granular.  

Regions around the nucleus are also 

strongly stained in control siRNA 

transfected cells (H), in a definite granular 

appearance, with little other staining 

appearing throughout the remainder of the 

cytoplasm. 
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Following 6 h exposure to low calcium media, no change in involucrin can be 
observed between K15 siRNA transfected cells and control siRNA transfected cells 
(Figure 3.17 A and B).  Low calcium conditions do not induce differentiation, which 
may contribute to the generally low levels of involucrin observed.  An increase in 
involucrin can be observed following 6 h exposure to high calcium media however 
(Figure 3.17 C and D).  Involucrin in both control siRNA transfected and K15 siRNA 
transfected cells is uniformly present throughout the cell, although to a greater extent 
in K15 knock-down cells.  It was previously demonstrated that involucrin expression 
possibly increases in K15 ablated cells (Figure 3.12); the increase in extracellular 
calcium could also be enhancing an effect.  Longer exposure to low levels of 
extracellular calcium appear to have little effect on involucrin expression in control 
siRNA transfected cells (Figure 3.17 F).  Slightly more involucrin can be observed in 
the K15 siRNA transfected HaCaT cells (Figure 3.17 E), suggesting that even at low 
levels of extracellular calcium, K15 ablation does have an effect on involucrin 
expression (and therefore differentiation).  This suggests that K15 ablation alone can 
affect involucrin levels (as previously observed in cells cultured without exposure to 
higher concentrations of extracellular calcium, in Figure 3.12).  There is some 
increased involucrin expression in control siRNA transfected cells following 72 h 
exposure to high calcium (Figure 3.17 H), which indicates that these cells have 
commenced differentiation.  A further increase can be observed in K15 siRNA 
transfected cells (Figure 3.17 G).  This said, the immunofluorescence data presented 
is not entirely conclusive; further examination of involucrin would be required to 
assess expression more conclusively. 
 
To assess the effect of the calcium switch assay on other keratins in HaCaT cells, 
cytoskeletal extracts were produced from cells cultured in high and low calcium 
media following transfection with either control or K15 siRNA.  Since this method 
had already demonstrated that no other keratins were affected by K15 ablation or the 
transfection procedure, any changes observed would be as a result of changes in 
extracellular calcium concentration after 72 h.   



F igure 3.18: HaCaT cytoskeletal protein extracts from a calcium switch assay.  
Samples 1-3 are from cells cultured in high calcium; samples 4-6 are cultured in low 

calcium, both for 72 hours (M = marker).  Samples 1 and 4 are untransfected, 2 and 5 are 

control siRNA transfected and 3 and 6 are K15 siRNA transfected.  In low calcium media, 

a slight increase in expression of the 59kDa keratin can be observed in K15 siRNA 

transfected cells (lane 6).  This increase is also observed in untransfected, control siRNA 

transfected and K15 siRNA transfected cells cultured in high calcium media (lanes 1, 2 

and 3).  Few differences can be observed here, although this assessment was carried out 

using cytoskeletal extract from only one replicate of the initial assay. 
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Figure 3.18 demonstrates that a slight increase in a 59kDa keratin (possibly K10) can 
be seen in K15 siRNA transfected cells compared to control siRNA transfected and 
untransfected cells in low calcium media; such a difference is not observed after cells 
are cultured in high calcium media; the 59kDa band is more prominent in control cells 
here, suggesting that there may be an increase in K10 expression following exposure 
to high calcium media.  K10 expression is associated with differentiating 
keratinocytes, and has been shown to be expressed in differentiating HaCaT cells 
(Micallef et al., 2009). 
 
3.3.5.4: Differentiation of HaCaT Cells in Organotypic Cell Culture 
Recently, a scaffold has been utilised to aid 3D culture of keratinocytes.  This is 
thought to be an improvement on the previously used technique of culturing cells on 
collagen gels.  The scaffolds allow cells to infiltrate the scaffold before growing out 
of the top of the scaffold to the air-liquid interface. 
The ability of the HaCaT cell line used in this study to differentiate was investigated 
by using 3D culture to examine K14, K15 and K1 expression following exposure to 
the air-liquid interface. 
After 14 days at the air-liquid interface, K14 expression was observed in cells 
throughout the stratified layers and in the scaffold (Figure 3.19 A).  This suggests that 
K14 expression remains active in HaCaT cells regardless of any differentiation 
occurring.  In contrast, although some K15 was observed throughout cells after 14 
days at the air-liquid interface (Figure 3.19 B), most of the K15-positive cells 
observed were either in the scaffold or just above the surface of the scaffold.  This is 
as expected of a basal layer keratin.  It also demonstrates the ability of HaCaT cells to 
reduce K15 expression during differentation. 
As for K14 expression, K1 was expressed in HaCaT cells throughout the 3D culture.  
Less K1 was observed in those cells in the scaffold, whilst most cells above the 
scaffold expressed K1.  Figure 3.19 C shows that K1 expression through the culture 
varied between cells, and was not only present in those cells above the basal layer. 
 



F igure 3.19: K14 and K15 in 
organotypic HaCaT cell cultures grown 
on scaffolds, raised to air-liquid 
interface for 14 days.  All sections have 

been stained with the nuclear marker DAPI 

(scale bar = 20µm). 

As characteristic in HaCaT cells, K14 (A) 

is expressed throughout the section, 

including cells within the scaffold.  K15 

(B) is expressed to some extent in those 

HaCaT cells within the scaffold (arrow).  It 

is also expressed in those cells just outside 

the scaffold (arrow head).  Some residual 

K15 is observed throughout the rest of the 

stratified cells.  K1 (C) appears to be 

expressed throughout the cells in the 

scaffold, and to some extent in those cells 

above.  Most K1 however appears to be 

present in those cells above the surface of 

the scaffold (arrowhead), with less K1 

expressed in the cells above.  Increased 

levels then appear again towards the 

surface of the culture.  DAPI staining 

clearly shows the larger nuclei of the cells 

above the scaffold, and flattened nuclei 

towards the top of the culture (arrowhead). 

A 

scaffold 

B 

scaffold 

C 

scaffold 
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3.4: Discussion 
3.4.1: K15 in Mammalian Skin 
This study used immunofluorescence to examine the appearance of K15 in 
mammalian whole skin.  A similar pattern was seen using different antibodies to stain 
mouse, rat and human skin.  It had been previously demonstrated that differential 
expression of K15 could be observed in either frozen or paraffin-embedded human 
skin sections (van der Velden et al., 2009).  In human skin, K15 was observed in the 
basal layers, as expected (and previously observed in, for example, Waseem et al., 
1999 and in intestinal epithelium by Zhan et al., 2007).  The intensity of K15 staining 
reduced towards the skin surface, suggesting a reduction in the amount of K15 in 
suprabasal, differentiating cells.  It is likely that the remaining protein is residual, as 
opposed to actively expressed (for example, as described in epidermolysis bullosa 
simplex skin sections by Peters et al., 2001).  Waseem et al. (1999) demonstrated 
using in situ hybrdisation that K15 mRNA was primarily located in the basal 
keratinocytes, suggesting that K15 mRNA is downregulated in activated cells.  In a 
study examining epidermolysis bullosa simplex mutations, Werner et al. (2004) 
suggest that although free keratin subunits have a half-life of less than 15 minutes, 
filaments were far more static.  These publications support the conclusion that K15 is 
actively expressed in the basal layers, whilst residual, stable K15 (K14 and K5) 
keratin filaments can be observed in more differentiated, stratifying cells. 
 
3.4.2: K15 siRNA Transfection in HaCaT Cells 
3.4.2.1: Keratin Expression in K15 Ablated HaCaT Cells 

One method of assessing the function of K15 expression in cells is to knock-down the 
protein using transient transfection methods and carry out further investigations. 
Cells were fixed at various time points and immunofluorescence carried out to assess 
the effectiveness of the transfection (24 hours, 48 hours, 72 hours and 96 hours).  
HaCaT cells showed the most effective K15 knock-down at 48 hours, with almost full 
recovery by 72 hours.  This recovery is swifter than a mesenchymal cytoskeletal 
protein, vimentin, where optimum knock-down using siRNA transfection is 72 hours 
post-transfection in MCF-7 cells (McInroy and Määttä, 2007).  Also in MCF-7 cells, 
siRNA transfection of K8 and periplakin was also optimal at between 48 and 72 hours 
(Long et al., 2006).  Experiments using RNAi techniques to knock-down K18 have 
also shown to be optimal (in HeLa cells) between 48 and 72  hours (Claser et al., 
2008), whereas K6 knock-down in HaCaT cells has been shown to be optimal (up to 
100%) between 72 and 96 hours post-transfection (Smith et al., 2008).  This suggests 
that the optimal knock-down of K15 at 48 hours is comparable, if slightly earlier than 
the optimal time scale for other cytoskeletal proteins, and may indicate a faster 
turnover of the protein.  In NHEK cells, the optimum K15 knock-down was at 72 
hours post-transfection, again comparable with similar techniques used to knock-
down similar proteins in keratinocytes.  The rapid recovery makes it difficult to 
analyse long-term effects of, for example, differentiation using siRNA transfections.  
More stable transfections (e.g. lentiviral transfection) would be useful to investigate 
longer term effects of K15 ablation. 
 
Post-transfection HaCaT cells at 24, 48, 72 and 96 h were observed for K14, K15 and 
involucrin using immunofluorescence.  The amount of K14 expressed did not appear 
to change following K15 ablation (Figure 3.5 and Figure 3.6).  Nijhof et al. (2006) 
have demonstrated that K14 is expressed in keratinocytes in the basal layer of the 
IFE; this study has shown that K15 is also present in this basal layer.  This indicates 
that both K14 and K15 are expressed simultaneously.  Although in K14 knockout 
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mice K15 was not shown to be upregulated (Jonkman et al., 1996), Waseem et al. 
(1999) demonstrated that K15 expression was upregulated in human subjects with 
EBS, where both alleles for K14 were inactivated.  In this study, no changes in K14 
expression are observed in K15 siRNA transfected cells.  However, some change in 
K14 organisation did occur.  Image J was used to demonstrate that K14 was not 
expressed to the cell edge in K15 knock-down cells, unlike control cells.  This could 
be due to cell spreading; this is further investigated in Chapter 4. 
 
As well as K15, other keratins were observed using immunofluorescence in order to 
assess any effect either the transfection procedure or K15 ablation had on expression 
and/or localisation.  K15 knock-down had no effect on K17 or K6.  This is a further 
indication that this siRNA transfection process does not affect other keratins.  It also 
suggests that these other keratins are not affected by a reduction in K15.  There was 
some small effect observed in K8 expression however, although this is possibly due to 
the nature of K8 expression in HaCaT cells, which can be variable (Kazerounian, 
Uitto and Aho, 2002); this can be seen in Figure 3.8.  This suggests that the effect 
may not then be due to the transfection method or K15 knock-down, but more likely 
to be a result of using HaCaT cells (rather than primary keratinocytes).  Although K8 
has previously been shown to have an effect on cell migration and wound healing 
(Long et al., 2006), it is unlikely that the heterogeneity observed in HaCaT cells will 
affect migration or wound healing to a great extent (as examined in Chapter 4). 
 
3.4.2.2: The Effect of K15 Ablation on Differentiation Markers 

Involucrin expression was greater in K15 knock-down cells compared to control 
siRNA transfected cells.  This was most obvious after 48 h in the granular appearance 
of involucrin around the nucleus.  Involucrin mRNA expression in HaCaT cells has 
been shown to increase when exposed to differentiation-inducing stimuli (such as 
increased extracellular calcium) (Micallef et al., 2009); however, this was suggested 
to occur after 5 days in high-calcium media (0.12M).  Here an increase in involucrin 
protein is observed after just 48 h of K15 ablation, and can be seen to continue to 
increase up to 96 h post-transfection.  As previously noted however, more conclusive 
evidence would be required to more accurately assess involucrin expression.  This 
could include immunoblotting or RNA analysis. 
Involucrin is useful as a differentiation marker as it is associated with cornified 
envelope formation.  Involucrin is expressed when differentiation is induced, and is 
eventually cross-linked to the insoluble cornified envelope by transglutaminase (Bikle 
et al., 2001).  Differentiation in keratinocytes is regulated by many transcription 
factors, for example the AP-1 family being the most prominent.  In vivo 
differentiation occurs as a result of the intracellular calcium gradient that forms, with 
calcium levels being higher in more differentiated cells (Zbytek et al., 2005).    The 
response of the involucrin gene to calcium in keratinocytes is affected by the 
transcription factor AP-1 (Ng et al., 1996; Tran and Crowe, 2004); this also occurs in 
KRT1.  In the promoter region of involucrin resides the calcium response element 
(CaRE), which responds to both calcium and 1,25 dihydroxyvitamin D (1,25(OH)2D).  
It is this region that contains the AP-1 site and an Sp1 site, which has also been shown 
to have a role in tissue-specific involucrin promoter activity (Bikle et al., 2001; Tran 
and Crowe, 2004).  (The response of HaCaT cells to calcium will be discussed in 
further detail in section 3.4.6.)  AP-1 has been shown to be important in upregulating 
differentiation-specific proteins involved in converting basal cells to spinous and 
granular cells (Rossi et al., 1998; Rorke et al., 2010).  The CCAAT-enhancer binding 
protein (C-EBP) transcription factors are also known to affect involucrin (Oh and 
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Smart, 1998; Crish et al., 2006); C-EBPs can interact with AP-1, which adds a further 
effect to (in this case) involucrin upregulation.  Disruption to the C-EBP binding site 
has been shown to result in discontinuous involucrin expression (Crish et al., 2006).  
Zbytek et al., (2005) demonstrated that involucrin was upregulated in HaCaT cells in 
response to corticotropin-releasing hormone (CRH); this was supported by Niderla-
Bielinska et al. (2009) who demonstrated that as well as involucrin, filaggrin and 
keratinocyte differentation associated protein (Kdap) are also upregulated following 
EGF treatment.  Involucrin upregulation in ORS cells of the hair follicle was also 
observed following EGF treatment. 
Although no calcium levels were changed during this initial experiment, involucrin 
levels were increased following K15 ablation.  This indicates that involucrin 
production can be induced via a pathway other than by increased intracellular calcium 
(for example, as in one of the pathways described above).  It is not yet known what it 
may be that causes involucrin induction as K15 levels are reduced, although it 
suggests that differentiation is occurring.  Involucrin RNA analysis or 
immunoblotting could be used to confirm these results. 
 
3.4.3: The Effect of K15 Ablation on Cell Viablity 
The MTT assay was used to assess the viability of HaCaT cells following K15 siRNA 
transfection.  The results of this study suggest that K15 ablated cells proliferate to a 
greater extent than control siRNA transfected (i.e. K15-positive) cells.  Tiede et al. 
(2009) carried out various experiments using K15-GFP+ cells (i.e. cells which have 
the KRT15 promoter region labelled with GFP), including a viability assay.  K15-
GFP+ cells demonstrated greater viability compared to ORS keratinocytes following 
exposure to butyric acid.  When Ki67 was used to identify proliferating cells, the 
percentage of Ki67-positive cells was far lower than in ORS keratinocytes.  This 
suggests that K15-negative cells proliferate to a greater extent than K15-positive cells; 
the same result as observed in this study using the MTT assay. 
 
3.4.4: The Effect of K15 Ablation on Junctional Proteins 
To further investigate the differentiation of HaCaT cells following K15 knock-down, 
the expression of cell junction proteins were also investigated.  Both desmoplakin and 
E-cadherin are expressed at similar levels in both control siRNA transfected cells and 
K15 siRNA transfected cells which were not cultured in high calcium media.  The 
observation that desmoplakin remains unchanged is important, as desmoplakin has 
previously been found to affect cell proliferation in addition to its role mediating 
epithelial integrity or differentiation (Wan, South and Hart, 2007).  Moreover, the 
targeting of desmoplakin to desmosomes is not dependent on K15.  Since no change 
in desmoplakin is observed here, any effects on cell proliferation seen are not as a 
result of changes in desmoplakin expression.  No ZO-1 was observed associated with 
cell-cell junctions; as ZO-1 is associated with highly differentiated cells, which would 
explain its absence in HaCaT cells cultured in low calcium media. 
 
Desmosomes link to keratins (desmosome/intermediate filament complex [DIFC]) in 
order to confer mechanical stability to tissues (Cirillo and Prime, 2009); Cirillo and 
Prime did not observe that K15 was associated with desmosomal adhesion sites in 
HaCaT cells.  The difficulty with assessing desmosome formation in transfected 
HaCaT cells is that transfection efficiency is reduced as cells become more confluent, 
and confluency is required to assess desmosome formation.  For this reason, cells 
were allowed to become approximately 50% confluent before the transfection 
procedure was carried out.  This ensured that some regions of HaCaT cells in culture 
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were confluent 48 h post-transfection and therefore it would be reasonable to assume 
that desmosome formation had the opportunity to occur.  This said, if it were possible 
to ensure a higher confluency percentage for a longer period of time, this would aid in 
confirming this conclusion. 
E-cadherin is associated with adherens junctions in epithelia, where it can bind to 
cytoskeletal and signalling proteins; it is thought that E-cadherin ‘primes’ the cell 
membrane, promoting adherens junction formation by altering its activity (Perez-
Moreno, Jamora and Fuchs, 2003), a process linked to !–catenin (Faux et al., 2010).  
Cadherin levels possibly have a role in spindle positioning, epithelial sheet 
movement, cell morphogenesis and intracellular adhesion; it has also been suggested 
that E-cadherin may have a role in maintaining the stem cell niche, as adherens 
junctions may promote asymmetrical division by multipotent cells (Perez-Moreno, 
Jamora and Fuchs, 2003). It was therefore considered important to assess the effects 
of K15 ablation (if any) on adherens junctions and E-cadherin.  There appears to be 
little difference between control and K15 siRNA transfected cells with regards to E-
cadherin localisation.   This suggests that adherens junctions are not affected by K15 
ablation; in turn this suggests that K15 ablated cells are not differentiated to an extent 
where adherens junctions are no longer present.  Furthermore, since it has been 
suggested that the presence of E-cadherin may be linked to asymmetrical cell division 
in tissue, it is possible that this may have relevance with regard to the HaCaT cells 
used in this study. 
ZO-1 was observed as a representative marker of tight junctions.  Tight junctions are 
observed in the granular cell layer of normal epidermis (Peltonen et al., 2007).  No 
cell junction-specific ZO-1 staining was observed in either control siRNA transfected 
or K15 knock-down HaCaT cells; this is as expected as HaCaT cells in monolayer 
cultures are not representative of the granular layer. 
 
In order to further investigate any differentiation which may have been occurring, 
additional exploration of this phenomenon was carried out using the calcium switch 
assay and organotypic cell cultures. 
 
3.4.5: Responses to Changes in Extracellular Calcium 
The ‘calcium switch’ assay has been used to assess differentiation in cells (for 
example, Kolly et al., 2005), although K15 expression has not previously been 
studied.  Increased levels of extracellular calcium induce differentiation in vivo and 
simple experimental methods have been established to mimic the effects of this in 

vitro for further study. 
 
K14 expression remains unchanged throughout this experiment, despite K14 being 
affected by differentiation (Nelson and Sun, 1983; Lena et al., 2010).  This is a 
relatively short experiment however, and the effects of high extracellular calcium on 
K14 may not be observed after only 72 hours.  Micallef et al. (2009) carried out a 
prolonged calcium switch assay which established that most changes occurred after 5 
days in increased extracellular calcium. 
However, Yuspa et al. (1989) carried out a calcium switch assay over a short period, 
and observed the effects on K1 and K10 (which would normally be expressed 
coinciding with repression of K14 expression [see also Lena et al., 2010]).  After 24 
hours a change can be observed in K1 expression, although only a slight change in 
K10 expression can be observed after 48 hours.  No change in K14 mRNA could be 
detected throughout in Yuspa et al.’s 1989 experiments, although K14 mRNA soon 
disappears in the suprabasal layer in vivo (Roop et al., 1988).  This may explain the 
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lack of change in K14 expression observed here (also observed by Paramio et al., 
1999).  K10 expression inhibits cell proliferation, although this may only contribute 
slightly to the increased proliferation observed in K15 knock-down cells (Figure 

3.11); a small increase in K10 can be observed in the calcium switch in this study, 
although this again may be due to the relatively short time scale used. 
 
Following exposure to low levels of calcium, involucrin expression is similar in 
control siRNA and K15 siRNA transfected cells after 6 hours, although after 72 
hours, more involucrin is observed in K15 knock-down cells (the expression pattern 
remains the same).  An increase in involucrin is observed in K15 knock-down cells 
following exposure to high extracellular calcium for 6 hours, despite reports that the 
involucrin response in HaCaT cells is slower than observed in NHEK cells (Micallef 
et al., 2009).  However, after 72 hours, involucrin expression is lower in K15 knock-
down cells than in controls.  This may be due to the cross-linking of involucrin by 
transglutaminase, making the protein unavailable for immunofluorescence staining.  
Involucrin has previously been observed to increase following exposure to high levels 
of extracellular calcium (for example, Micallef et al., 2010).  The transcription factor 
AP-1 has been associated with inducing involucrin expression in response to an 
increase in intracellular calcium, where it is effective at the CaRE (Bikle et al., 2001).  
RT-PCR studies using the calcium switch method have demonstrated that involucrin 
mRNA expression is greater in high calcium media compared to low calcium media 
(Micallef et al., 2009), although this was after 6 days in HaCaT cells (and between 
days 1 and 6 in NHEK cells).  This correlated with increases in the amount of protein.  
However, after 6 days both the NHEK and HaCaT cells became confluent; this was 
not allowed to occur in this study.  Post-confluent HaCaT cells have previously been 
shown to express genes usually associated with more differentiated cells in the upper 
layers of the skin (Garach-Jehoshua et al., 1998), as well as markers of differentiation 
following exposure to high extracellular calcium levels (Micallef et al., 2009).  As a 
measurable amount of involucrin (and involucrin mRNA) was observed at the first 
kinetic point of this study, it suggests that involucrin may be present in a mosaic 
pattern in in vitro monolayers.  Other studies (such as Papp et al., 2003) have shown 
that the greatly upregulated involucrin response in confluent HaCaT cells could be in 
response to PKC activation, which regulates the transition of spinous to granular cells 
in HaCaT cells induced to differentiate in confluent in vitro conditions.  Recently, 
expression of involucrin (and filaggrin) in HaCaT cells has been shown to be 
upregulated in cells expressing S100A8/A9 (via promotion of NADPH oxidase and 
KF'B activation) – usually produced in response to stress (Voss et al., 2011).  Voss et 

al. (2011) suggest that this demonstrates the importance of the S100A8/A9 response 
in tissue remodelling and repair. 
 
Cytoskeletal protein extracts from HaCaTs exposed to high and low extracellular 
calcium were run on a protein gel in order to separate the proteins in the extract.  This 
demonstrated that K15 siRNA transfection does not affect the expression of other 
keratins.  The keratins observed using this method were not affected by exposure to 
high levels of extracellular calcium for 72 hours (although as previously suggested, 
keratins are long-lasting proteins, and their presence in the cell extract could be 
residual).  It is also possible, as previously suggested, that HaCaT cells express a 
slightly abnormal compliment of keratins, which can vary in the same cell population.  
This could explain why subtle differences which would occur normally after being 
exposed to high calcium for 72 hours in (for example) NHEK cells, may not be as 
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obvious in HaCaT cells.  As both K15 and K16 are similar in size, it is not possible to 
distinguish between them using this method. 
 
3.4.6: Utilising the Organotypic Cell Culture System 
Using organotypic culture techniques, HaCaT cells were cultured for various time 
points at the air-liquid interface.  This helped to establish changes in cell morphology 
and protein expression as the cells stratify and flatten.  Using the organotypic culture 
system should give a more accurate representation of normal skin than HaCaT cells 
grown in a monolayer.  This said, HaCaT cells are an immortalised cell line, not a 
primary cell line, and have a slightly different protein expression pattern.  This 
suggests that some protein expression profiles may also be different in 3D culture.  
This was observed with K14 and K1 expression. 
 
3.4.7: Conclusions and Further Work 
3.4.7.1: Summary of Findings 

HaCaT cells were a suitable cell line to use for K15 siRNA transfection as the normal 
K15 expression observed in these cells was reduced to a low level.  HaCaT cells, 
although not primary cells, were considered a useful alternative to NHEK cells which, 
although normally expressed K15 and could be successfully transfected with K15 
siRNA, could only be cultured to approximately passage 4.  This would not yield the 
large cell numbers required for the experiments use in this study. 
The proliferation assay suggested that K15-positive cells proliferate less than K15-
negative cells; this finding has also been described elsewhere (Tiede et al., 2009). 
The only keratin affected by K15 siRNA transfection was K10, which appeared 
slightly increased following K15 ablation.  This indicated some HaCaT 
differentiation, particularly when considered alongside the increases in involucrin 
expression observed (which was comparable to that seen after HaCaT cells were 
cultured in high extracellular calcium).  The differentiation occurring however is not 
to a great extent, as expression of cell-cell junction markers and filaggrin remain 
unchanged. 
Organotypic cell cultures were used to more accurately assess the ability of HaCaT 
cells to differentiate and to compare keratin expression with those observed in 
monolayer cultures.  Keratin expression suggested that the slightly altered keratin 
profile of HaCaT cells remained. 
 
3.4.7.2: Further Work 

It was not possible to observe in this study whether the effects of increased 
extracellular calcium or K15 ablation had a great effect on involucrin levels in HaCaT 
cells.  A future study could culture HaCaT cells in various concentrations of 
extracellular calcium and compare this to K15 ablated cells at specific time points.  If 
the amount of involucrin (or involucrin mRNA) could then be quantified, this may 
give a measurable indication of the amount of differentiation K15 ablated cells 
undergo (since the differentiation of cells in increased levels of extracellular calcium 
is a known quantity).  Quantification of other data, such as expression of other 
keratins or transcription factors, would also be useful. 
Development of a more stable K15 knock-down (or knock-out) would also increase 
the amount of time cells could be cultured and experiments carried out.  For example, 
a stable transfected cell line (such as using lentiviral techniques) could be used to 
assess the longer term effects of high (or low) extracellular calcium exposure.  K15 
ablated cells could also be used to establish longer term (i.e., 35 day) organotypic 
cultures, which would give a useful indication of the effects of K15 ablation on skin 
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differentiation.  The technique has been shown to work well using HaCaT cells and 
immunofluorescence staining (Figure 3.19) and similar techniques could be used with 
more stable transfections. 
Likewise, if overexpression of K15 could be induced, and the experiments carried out 
here repeated, further information about the effects of K15 on cell proliferation and 
differentiation may be elucidated.  



CHAPTER 4: 

EFFECTS OF K15 

DOWNREGULATION ON 

DIFFERENTIATION AND 

PROLIFERATION 
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4.1: Introduction 
4.1.1: Aims 
Keratinocyte adhesion, attachment and migration are important in vivo, particularly 
during stratification and wound healing.  The mechanics of cell adhesion and cell 
spreading and volume regulation are also important in circumstances such as osmotic 
perturbation, proliferation, cell-cell contacts and cell shape change (Schön et al., 
1996; Blase et al, 2009).  In vivo epidermal cells would not only be attached to each 
other (through, for example, desmosomes) but also attached to proteins in the 
extracellular matrix at the basement membrane. As in in vivo conditions this would be 
the case particularly for K15-positive cells in the hair follicle bulge and the basal 
layer of the interfollicular epidermis, it was deemed useful to investigate the effect of 
K15 ablation on cell attachment.  Moreover, several intermediate filaments have been 
shown to influence adhesion and migration, such as vimentin (Ivaska et al., 2007), 
K14 and K5 (Morley et al., 2003), K6 (Wong and Coulombe 2003) and K8 (Long et 

al., 2006).  As other IF proteins had previously been demonstrated to affect adhesion 
and motility, it was considered important to assess the effect of K15 ablation on these 
properties. 
 
4.1.2: Types of Cell Migration 
Three types of distinct cell migration have been described (for example, Sahai, 2005).  
Firstly, individual mesenchymal cells (and those cancer cells which undergo epithelial 
to mesenchymal transition), for example, move slowly through a series of steps in a 
process termed mesenchymal or crawling cell migration (for a recent review, see 
Augello, Kurth and De Bari, 2010).  Lamellipodia, filopodia or pseudopodia form 
from actin protrusions, which adhere to the extracellular matrix (mediated via 
integrins at podosomes and focal adhesions) (for a review, see Bugyi and Carlier, 
2010).   This allows the contractile force of actomyosin to be transmitted to the 
extracellular matrix, moving the cell body from the leading edge.  Proteases, such as 
MMPs, degrade extracellular matrix proteins to aid movement through the matrix.  
Secondly, migration of some tumour cells has been described as amoeboid movement, 
a method also utilised by leukocytes, where cells with weak extracellular matrix 
interactions appear to crawl via pseudopodia; this is much faster than mesenchymal 
motility and does not require proteolysis of the matrix.  Instead, cells squeeze through 
gaps in matix in an amoeboid fashion (see Guck et al., 2010 for a review).  Finally, in 
wound healing, embryonic morphogenesis and primary cancers, collective migration 
is important.  Cells move together as a ‘sheet’, and not individually.  The cells 
maintain their integrity through cell-cell adherence junctions, whilst at the wound 
edge, leading cells use actin ruffles to pull sheets or clusters of cells.  MMPs again act 
to form a pathway for cells to move through.  Although further research is required, it 
is likely that this type of movement is similar to that which occurs during the 
development of epithelial sheets, utilising myosin- and actin-mediated protrusions 
guided by chemotactic cues (Sahai, 2005; Friedl and Gilmour, 2009). 
 
4.1.2.1: The Role of Actin in Cell Migration 

Changes in cell shape are mediated by the cytoskeleton.  The biophysical and 
molecular basis of these changes is still unclear, although it has been shown that actin 
microfilament rearrangement, assembly, severing and cross-linking occurs at the 
leading edge of migrating cells (for example, Theriot and Mitchison, 1991; Connelly 
et al., 2010). 
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Lamellipodia 

Actin assembly is converted into a protrusive force during cell migration; one such 
way this occurs is through the development of lamellipodia.  Lamellipodia are made 
up of branched actin filaments which form a thin mesh at the cell’s leading edge; 
lamellipodia are generally free from capping proteins (Miyoshi et al., 2006).  These 
networks of branches can vary in number, leading to varying breadths (usually 
between 1 and 5µm) (Small et al., 2002). 
The assembly of lamellipodia (and filopodia) are regulated by Rho family small 
GTPases; Rac1 signals the formation of lamellipodia (Nobes and Hall, 1995).  In 
order for the actin filament branching processes to be regulated, migrating cells 
nucleate actin filaments at 70° angles from existing filaments; the nucleating factor of 
lamellipodia is the Arp2/3 (actin related protein 2/3) complex, activated by WASP 
(for a review, see Goley and Welch, 2006).  Arp2/3 is also important in directing the 
lamellipodium protrusion (Le Clainche and Carlier, 2008).  Arp2/3 is a stable 
complex comprising of seven subunits: ARPC1, ARPC2, ARPC3, APRC4, ARPC5, 
Arp2 and Arp3; Arp3 is important for nucleation whilst ARPC1, ARPC3 and APRC5 
are activated by WASP (Wiskott-Aldrich syndrome protein) (Gournier et al., 2001). 
Recently, Watanabe (2010) has demonstrated that AIP1-associated filament 
disruption occurs 15 times more frequently than Arp2/3 nucleation, further adding to 
the processes which affect lamellipodia dynamics.  However, Watanabe (2010) 
admits that even when AIP1 disruption is considered, the rate of disruption still falls 
short of the predicted frequency, leading to the conclusion that other factors must 
have a role in the regulation of actin turnover (Tsuji et al., 2009).  VASP (vasodilator-
stimulated phosphoprotein) has also been shown to have a role in accelerating 
filament elongation; in vitro TIRF microscopy has confirmed that this occurs through 
the delivery of monomeric actin to the (growing) barbed end (Breitsprecher et al., 
2008). 
Using FRAP (fluorescence recovery after photobleaching), it has been possible to 
analyse fibroblast lamellipodium; this demonstrated that as actin filaments polymerise 
at the leading edge, the filaments are depolymerised at the rear (although it has since 
been demonstrated that FRAP data is inconsistent with current studies showing fast 
dissembling of actin) (Watanabe and Mitchison, 2002; Lai et al., 2008).  This process 
is known as ‘treadmilling’ (as described by Small et al., 2002).  Some of these effects 
are cell specific; for example, in keratinocytes, it was demonstrated that 
depolymerisation was occurring at the same rate as polymerisation (Theriot and 
Mitchison, 1991; Watanabe and Mitchison, 2002).  Calculations of the critical 
concentrations involved in ATP hydrolysis during polymerisation of actin has 
suggested that (on average) the filaments can move forward whilst maintaining its 
length (for more detail see Small et al., 2002).  This treadmilling process alone is too 
slow to account for the speed at which some cells migrate.  Some proteins however 
have been identified which are capable of accelerating the rate of treadmilling; these 
include cofilin (also known as ADF), profilin and capping proteins. 
Cofilin is present through lamellipodia apart from at the leading edge (Svitkina and 
Borisy, 1999).  It binds to ADP-actin resulting in a change in structure, leading to an 
increased rate of depolymerisation (Carlier et al., 1997; Carlier, Ressad and Pantaloni, 
1999).  This, in turn, increases the growth of the barbed end.  Profilin has also been 
shown to increase the treadmilling rate, a process whereby subunits simultaneously 
polymerise at the barbed end and depolymerise from the pointed end (Wegner, 1976) 
(for a review, see Yarmola and Bubb, 2006).  Unlike cofilin, profilin/actin complexes 
form exclusively at the barbed end.  Together, the combined effect of cofilin and 
profilin have been demonstrated to increase the treadmilling effect 125-fold (Didry, 
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Carlier and Pantaloni, 1998; Le Clainche and Carlier, 2008).  The effect of capping 
proteins is to block further polymerisation at barbed ends (reviewed by Pantaloni, Le 
Clainche and Carlier, 2001).  This process also aids in controlling the density of actin 
filaments (Wiesner et al., 2003). 
 
Filopodia 

Filopodia are long bundles of actin, which initiate from branches of lamellipodia at 
the cell’s leading edge.  These protrusions contain between 15 and 20 parallel 
filaments arranged into a bundle (Lewis and Bridgman, 1992). 
Filopodia formation is signalled by Cdc42, a small GTPase of the Rho family (Nobes 
and Hall, 1995).  Miki et al. (1998) demonstrated that N-WASP potentiates the ability 
of Cdc42 to induce filopodia; although this suggested that Arp2/3 may also have a 
role, it was later demonstrated that Arp2/3 is not observed in the tight, unbranched 
actin filament bundle of filopodia (reviewed by Le Clainche and Carlier, 2008).  
Instead, formins have been proposed to have a role in filopodia regulation.  Formins 
have two conserved domains: FH (forming homology) 1 interacts with profilin whilst 
FH2 stabilises actin dimers by nucleating the filaments (Higashida et al., 2004; 
reviewed by Le Clainche and Carlier, 2008).  Pellegrin and Mellor (2005) 
demonstrated that mDia2 (diaphanous-related formin) localises at the tip of filopodia, 
and has been shown to respond to Cdc42 in NIH 3T3 cells (Peng et al., 2003).  Rho 
was also observed to have a role (Pellegrin and Mellor, 2005).  Rho signalling 
determines the ratio of ‘open’ (active) to ‘closed’ mDia1 (Watanabe, 2010).   
 
4.1.2.2: The Scratch Wound Assay 

Several in vitro models have been developed to investigate the molecular mechanisms 
involved in migration.  Scratch wound assays can be used as a way of investigating 
epithelial and mesenchymal cell migration (Wong and Gotlieb, 1984), and has been 
utilised by several groups (for example Wong and Gotlieb, 1988; Long et al., 2006). 
When a confluent monolayer is scratched, cell-cell contacts are disrupted and growth 
factors in cell culture media aid in healing through proliferation and migration 
(Yarrow et al., 2004).  Scratch wound assays have been used to study the role of, for 
example, p53 (Sablina, Chumakov and Kopnin, 2003), Rac (Fenteany, Janmey and 
Stossel, 2000), Rho (Nobes and Hall, 1999) (all important for actin dynamics) and 
intermediate filament and cytoskeletal organisation (Long et al., 2006, Boczonadi et 

al., 2007).  The importance of the cytoskeleton in wound repair was shown to be 
important thirty years ago (Kreis and Bircheier, 1980), which has been elaborated on 
since; the role of K15 however has not been examined in this way previously.  
Other intermediate filament proteins have been shown to play an important role in 
wound healing.  For example, in immortalised cell lines with EBS mutations in K14 
or K5 migrate faster than control keratinocytes (Morley et al., 2003).  Morley et al. 
conclude that this is as a result of known upregulation of stress-activated kinase 
pathways in epidermolysis bullosa simplex (EBS) keratinocytes.  Vimentin has 
previously been shown to influence integrin recycling and hence regulate adhesion 
and migration (Ivaska et al., 2007).  Wong and Coulombe (2003) describe skin 
explant cultures from K6#/K6!-null mice to mimic the in vivo behaviour of 
keratinocytes at a wound edge.  Outgrowth of K6#/K6!-null cells was greater (1.8-
fold increase) than wild-type skin explants (and shown to be via migration as opposed 
to mitosis or increased cell size).  Wong and Coulombe also report altered F-actin 
content in K6#/K6!-null mouse skin.  Defective wound healing of these mice was 
observed in vivo.  Long et al. (2006) and Boczonadi et al. (2007) demonstrated that 
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keratin organisation at the wound edge is required for effective wound closure (aided 
by IF-binding proteins such as plectin and periplakin).  Boczonadi et al. (2007) used 
MCF-7 cells expressing the periplakin N-terminus to accelerate keratin reorganisation 
in scratch-wounded cells.  siNRA knock-down of plectin in these MCF-7 cells 
resulted in reduced keratin re-organisation at the wound edge.  In MCF-7 cells, 
keratin staining was generally increased 30 minutes after the in vitro scratch wound 
assay (particularly in forming a cage-like structure around the nucleus), and K8/K18 
fibres produced cable-like bundles at the wound edge within 2 hours (Long et al., 
2006). 
 
4.1.3: Keratinocyte Adhesion and Spreading 
4.1.3.1: Focal Adhesions in Keratinocytes 

Formation of focal adhesions is required for cell adhesion, whilst co-ordinated release 
is needed for cell migration.  Co-ordinated actin microtubule dynamics are likely to 
be important in mediating spatiotemporal regulation of focal adhesion dynamics 
during cell migration.  Microtubules can specifically target focal adhesions and 
promote turnover, possibly through microtubule motor-mediated supply of 
disassembly factors (Kaverina, Rottner and Small, 1998; Kaverina, Krylyshkina and 
Small, 1999; Krylyshkina et al., 2002; Krylyshkina et al., 2003; Wu, Kodama and 
Fuchs, 2008).  Ezratty, Partridge and Gundersen (2005) have further demonstrated the 
involvement of actin in focal adhesion turnover by showing that FAK (focal adhesion 
kinase) and dynamin have roles.  The co-ordination of actin and microtubule 
involvement in focal adhesion dynamics is possibly through + end tracking proteins, 
which mediate the cytoskeletal crosstalk (Carvalho et al., 2003; Wu et al., 2006; 
Akhmanova and Steinmetz 2008; Wu, Kodama and Fuchs, 2008). 
The ECM has an active role in maintaining focal adhesions with cells, and also 
providing a migration-initiating signal; this effect can be enhanced by growth factors.  
As a cell migrates, focal complexes form at the leading edge.  These focal complexes 
develop into focal adhesions (Gumbiner, 1996).  This allows the cell to polarise and 
to translocate across the focal adhesion, which is then released from the ECM 
(Mitchison and Cramer, 1996).  This polarisation occurs through clustering of 
integrins at the focal adhesion site.  These integrins are also capable of activating the 
Rho-GTPases, Rac and Cdc42, which aid in actin reassembly with lamellipodia and 
filopodia formation at the cell’s leading edge (Schwartz and Shattil, 2000; Ridley, 
2001). 
Adhesion sites are complex, comprising many different structural and signalling 
molecules and regulatory proteins (Schober et al., 2007; Möhl et al., 2009).  One such 
protein is vinculin; vinculin is a structural protein that has a role in polymerisation of 
the actin cytoskeleton where it localises at focal adhesions.  Vinculin is comprised of 
a globular head domain connected to the tail domain by a proline-rich region (Möhl et 

al., 2009).  When the head and tail domains are linked by intramolecular interactions, 
many binding sites are unavailable.  Activation releases the head and tail domains, 
making binding sites available; the mechanism of activation still remains unclear, 
although interaction with actin can make this occur in talin.  Phosphorylation has also 
been shown to have a role in activation, ligand binding and stabilisation (Möhl et al., 
2009; Küpper et al., 2010). 
 
4.1.3.2: The Role of Filopodia in Cell Adhesion 

As well as at focal adhesions, vinculin is also present in filopodia, particularly at the 
tip, which is believed to be involved in actin bundling, elongation and substrate 
sensing.  Filopodia have a fundamental role in formation of adhesions, determining 
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the shape and localisation of most adhesion sites (Schäfer et al., 2009).  Schäfer et al. 
(2009) have also suggested that filopodia are similar to lamellipodal focal complexes 
(without the late focal adhesion protein zyxin).  Vinculin immunofluorescence 
highlights focal contacts (Mahadi Abdul Jamil et al., 2008).  In motile cells, focal 
complexes are produced as integrins cluster at specific regions of the cell edge.  These 
are bound to matrix proteins such as laminin, collagen and fibronectin, and indirectly 
to F-actin via talin, paxillin and vinculin (Spinardi and Marchisio, 2006; Möhl et al., 
2009).  Such structures have been compared to the podosomes as observed in 
mesencymal cells (Spinardi and Marchisio, 2006).  Filopodia focal complexes 
increase in size following contact with lamellipodium, forming focal adhesion sites in 
the direction of the filopodia (Schäfer et al., 2009), incorporating proteins such as #-
actinin, zyxin and focal adhesion kinase (FAK) (Möhl et al., 2009).  These structures 
can mature further, into fibrillar adhesions.  These elongated, stable structures have a 
slightly different protein composition, which includes a lower level of vinculin; in 
addition, proteins are modified, where, for example FAK phosphorylates focal 
adhesion proteins.  For vinculin, this phosphorylation stabilises an open confirmation 
required to increase the binding affinity for other focal adhesion proteins (Möhl et al., 
2009). 
 
 
4.2: Materials and Methods 
The materials and methods used in investigation of the effect of K15 on 
differentiation and proliferation are described in Chapter 2.  No changes or variations 
were made to the methods described. 
 
 
4.3: Results 
4.3.1: Experimental Approach 
Chapter 3 demonstrated that K15 ablation in HaCaT cells may affect differentiation.  
The aim of this chapter is to further investigate other effects of K15 ablation in 
HaCaT cells.  In this chapter, using the same siRNA methods utilised in chapter 3, 
further investigation of the effects of K15 ablation was carried out.  The effects on 
other cytoskeletal proteins were examined, as well as how this affected cell size and 
shape.  Following the result that K15 ablation had little effect on cell-cell junctions, 
the effect of K15 ablation of cell adhesion was observed in this chapter.  Previous 
studies have shown that expression of adhesion molecules in the skin is regulated by 
several factors (such as calcium concentration) and are capable of affecting 
differentiation (Hennings et al., 1980; Lewis, Jensen and Wheelock, 1994; Denning et 

al., 1998; Denning et al., 2000; Szegedi et al., 2008); since the previous chapter 
indicated that K15 affected cell differentiation (although not cell-cell adhesion), it 
was considered useful to assess the effects of the same K15 ablation on cell adhesion 
and spreading. 
In addition, it was thought important to assess any effect of K15 knock-down on cell 
migration, since this has also been previously shown to be affected by differentiation 
in keratinocytes (for example, Hoffman, 2007). 
 
4.3.2: Adhesion of K15 Depleted HaCaT Cells 
4.3.2.1: Actin and Vinculin Expression and Localisation 

Using the same siRNA procedure as previously described, HaCaT cells were cultured 
on glass coverslips, siRNA transfected, and subjected to immunofluorescence 
staining.  Staining of filamentous actin with fluorescently labelled phalloidin 
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highlighted the actin arrangement in control siRNA transfected and K15 siRNA 
transfected cells.  There is little difference between K15 ablated cells and control 
siRNA transfected cells 48 h post-transfection in HaCaT cells (as also observed in 
NHEK cells – Figure 3.10).  This indicated that K15 ablation has no effect on actin 
expression or localisation in HaCaT cells.  Since cell spreading in HaCaT ablated 
cells appeared abnormal however, it was considered useful to use 
immunofluorescence to examine actin arrangement in attaching cells.  In addition, 
vinculin staining was used to examine focal adhesion sites in control siRNA and K15 
siRNA transfected cells. 
Cells were siRNA transfected, trypsinised 48 h later and re-seeded onto glass 
converslips.  The coverslips were then fixed at various timepoints following seeding, 
and immunofluorescence staining was carried out.  Actin, as expected in both control 
siRNA transfected and K15 siRNA transfected cells, was more prominent at the cell 
edges as the cells adhered and began to spread (Figure 4.2).  The thickness of the 
bundles at the cell edge was measured using Image J; this indicated that the bundles 
were thicker in K15 siRNA transfected cells compared to control siRNA transfected 
cells.  Statistical analysis demonstrated that the difference in thickness was significant 
(p=0.001).  This was complimented with vinculin staining, carried out at the same 
timepoints following seeding in transfected cells (Figure 4.1; Table 4.1). 
Vinculin, as a focal adhesion protein, would mark any focal adhesions produced in the 
HaCaT cells; Möhl et al. (2009) has previously demonstrated that low levels of 
vinculin can be observed throughout the cytoplasm whilst distinct bright spots 
indicated regions of a high concentration of bound vinculin (and therefore focal 
adhesions).  For comparison, the number of focal adhesions per cell were counted; the 
average number of adhesions per cell were higher in control cells (61.78) compared to 
K15 siRNA transfected cells (41.58) (Table 4.1).  Using Student’s T-test, these results 
are shown to be significantly different (p=0.001). 
 



Control siRNA Transfected K15 siRNA Transfected 

Actin 

 

Vinculin 

A B 

C D 

F igure 4.1: Expression of Actin and Vinculin in K15 siRN A Transfected HaCaT Cells 

Single plane confocal image of immunofluorescence showing actin expression at 180 

minutes post-seeding in control siRNA tranfected HaCaT cells (A), K15 siRNA 

transfected HaCaT cells (B), and single plane confocal images of vinculin 

immunofluorescence in control siRNA transfected HaCaT cells (C) and K15 siRNA 

transfected HaCaT cells (D) (scale bar = 10µm). Arrows: examples of vinculin-positive 

focal adhesions. 

There is bundling of actin fibres at the cell periphery, most apparent in K15 knock-down 

cells (B).  Both control siRNA transfected (C) and K15 siRNA transfected cells (D) 

produce vinculin-positive focal adhesions. 



F igure 4.2:  Actin organisation during cell spreading. 
Actin immunofluorescence in untransfected (A, D, G, J), control siRNA transfected (B, E, 

H, K) and K15 siRNA transfected (C, F, I, L) HaCaT cells (scale bar = 10µm).  The cells 

were allowed to spread for 10, 40, 90 and 120 minutes after seeding onto glass coverslips.  

Bundling of actin at the cell periphery can be seen at 90 minutes post seeding in 

untransfected (G), control siRNA transfected (H) and K15 siRNA transfected cells (I).  

The bundling persists in K15 siRNA transfected cells until at least 120 minutes post-

seeding (L); this is less obvious in untransfected (J) and control siRNA transfected cells 

(K) at the same timepoint. 
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F igure 4.3: Actin bundle thickness in K15 ablated HaCaT cells 

Measurements of actin bundle thickness at the edges of cells were made using Image J.  

10 measurements were made per cell, and 10 cells were measured.  Mean and standard 

error are shown.  The difference in bundle thickness between control siRNA transfected 

and K15 siRNA transfected cells is statistically significant (t-test, p<0.001) at 180 minutes 

post-seeding (***). 
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Number of focal 

adhesions 
Number of cells 

Average number of 

focal adhesions per 

cell 

Control siRNA 

transfected 
3089 50 61.78 

K15 siRNA 

transfected  
2079 50 41.58 

The average number of focal adhesions per cell were calculated from the 

immunofluorescence images.  K15 knock-down cells had, on average, fewer focal 

adhesions than control siRNA transfected cells. 

Table 4.1: Focal adhesions in K15 ablated HaCaT cells 
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4.3.2.2: Live Cell Imaging of HaCaT Adhesion 

An adhesion assay was carried out to observe actin arrangement in HaCaT cells 
during cell spreading and adhesion. 
Live cell imaging was used to observe initial cell adhesion.  Cells were seeded into 
wells of six-well plates and immediately mounted onto the Zeiss Axiovert live cell 
imaging microscope.  The chamber maintained a constant temperature and controlled 
CO2 levels.  Phase contrast images were then taken between 140 seconds post-seeding 
and 600 seconds (Figure 4.4).  Although a few cells can be seen to move little, no cell 
spreading can be observed up to 10 minutes post-seeding.  The cells seeded are still 
relatively small and spherical with a low cytoplasm:nucleus ratio.  This experiment 
was used to establish the time-point at which enough cells would be adhered to the 
glass coverslips for useful immunofluorescence.  As observed in Figure 4.4, cells did 
not begin to adhere prior to 10 minutes post-seeding; this was the time-point deemed 
appropriate to begin fixing cells for immunofluorescence. 
The marked difference observed in actin bundle thickness at the cell edge during cell 
spreading required further investigation; both K14 and K15 immunofluorenscence 
was carried out using the same adhesion assay. 
 



F igure 4.4: L ive cell imaging of HaCaT cell adherence and spreading 

Untransfected HaCaT cells between 140 seconds (A) and 600 seconds (J) post-seeding 

(scale bar = 50µm).  As shown by the example cell (arrow), little cell spreading occurs 

within the first 10 minutes post-seeding. 

I J 

E F G H 

A B C D 
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4.3.2.3: Keratin Localisation in HaCaT Cell Adhesion 

K15 expression in siRNA transfected cells is minimal (Figure 4.5 I).  There is normal 
K15 expression in untransfected and control siRNA transfected HaCaT cells.  K15 
can be observed throughout the cytoplasm up to the edge of the cell.  
K14 expression is observed as soon as cells begin to attach to the glass coverslip in 
untransfected, control siRNA transfected and K15 knock-down cells (10 minutes) 
(Figure 4.6).  As soon as the attached cells begin to spread, K14 arrangement can be 
observed and this appears normal in untransfected, control siRNA transfected and 
K15 knock-down cells.  In K15 siRNA transfected cells, K14 expression towards the 
spreading cell edges appears lower than in control cells (Figure 4.7).  This could be 
due to the abnormal spreading observed in K15 knock-down cells, as previously 
suggested by actin immunofluorescence (Figure 4.2). 



Control siRNA 

Transfected Untransfected 

10 min 

40min 

90min 
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Transfected 

F igure 4.5:  K15  organisation during cell spreading. 

A B 

C D 

E F 

G H 

I 

K15 immunofluorescence in untransfected (A, C, E G), control siRNA transfected (B, D, 

F, H) and K15 siRNA transfected (I) HaCaT cells.  The cells were seeded onto glass cover 

slips and fixed at 10, 40, 90, and 120 minutes (scale bar = 10µm).  K15 expression is 

similarly observed throughout the cells in both untransfected and control siRNA 

transfected HaCaT cells, with very low levels expression in K15 siRNA transfected cells. 
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F igure 4.6: K14  organisation during cell spreading. 

A B C 

D E F 

G H I 

J K L 

K14 immunofluorescence in untransfected (A, D, G, J), control siRNA transfected (B, E, 

H, K) and K15 siRNA transfected (C, F, I, L) HaCaT cells.  The cells have been seeded 

onto glass coverslips and fixed after 10, 40, 90, and 120 minutes (scale bar = 10µm).  K14 

expression in control siRNA transfected and untransfected cells appears similar, 

suggesting that the transfection procedure does not affect K14 expression.  K14 expression 

at the cell edge appears reduced in K15 ablated cells (L). 
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It was thought useful to investigate whether any correlation existed between the 
absence of K14 at the cell edges and the apparent increase in actin bundling at the cell 
edges in K15 ablated cells.  Using Image J, measurements between the cell edge and 
the K14 cytoskeleton were made.  Using Student’s T-test, it was established that the 
difference in absence of K14 at the cell edge was significantly different in K15 
ablated cells compared to control siRNA transfected cells (p=0.05). 
The distance between the edge of the K14 cytoskeleton and the cell edge in K15 
ablated spreading HaCaT cells is, on average, 2%m (Table 4.1).  Likewise, the 
thickness of actin bundling at the cell edge is 2.2%m (Figure 4.3).  Similarly, in 
control siRNA transfected cells, the distance between the K14 edge and the cell edge 
is 1.3%m (Table 4.1) and the thickness of the actin bundles are 1.2%m (Figure 4.3).  
The similarity between these measurements suggests some correlation between the 
two.  It is possible that the lack of K14 could be due to the increased amount of actin 
at the cell edges (i.e. no K14-positive, structural, IF cytoskeletal fibres are required 
because of the increased presence of actin in the region).  The opposite may also be 
true: that the lack of K14 at the cell edges requires structural support from the actin 
cytoskeleton.  It is more likely that the former, not the latter, is what is occurring here, 
since actin has already been shown to have a role in cell spreading (see, for example, 
section 4.1.3.2).  Since this occurs in control siRNA transfected cells as well as K15 
ablated cells (albeit to a lesser extent), it is likely that where this phenomena is 
observed in K15 ablated cells, it is an exaggeration of an event which occurs in 
normal keratinocytes.   
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F igure 4.7: K14 network in HaCaT cells 

Measurements of the gap between the edge of the cells and the K14 network were made 

using Image J.  Ten measurements were made per cell and 10 cells were measured.  Mean 

and standard error are shown.  The difference between the average gaps in K15 siRNA 

transfected and control siRNA transfected cells is statistically significant (t-test, p<0.05) at 

180 minutes post-seeding (**).  

** 
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4.3.2.4: Changes in Size and Shape of K15 Ablated HaCaT Cells 

To establish whether the cytoskeleton rearrangement had an effect on cell area and 

circularity, Image J was used to quantify these parameters (Figure 4.8).  In control 

siRNA transfected HaCaT cells, average cell area increased as the cells attached to 

the glass coverslip and spread; this peaked at approximately 90 minutes post-seeding.  

This increase in cell area is even greater in K15 knock-down HaCaT cells, where cell 

area can be seen to increase up to approximately 120 minutes post-seeding; the cell 

area also appears to increase at a faster rate compared to controls. 

As HaCaT cells attach, they begin to spread in order to form cell-cell contacts.  Cells 

without K15 spread to a greater extent than control siRNA transfected cells.  K15 has 

not been previously shown to be directly involved in cell spreading or migration, 

although it must have an effect to affect cell size to the extent observed here (at 120 

minutes, control average cell area was 205!m
2
; K15 knock-down average cell area 

was 409!m
2
).  These results are significantly different (p=0.001), suggesting that the 

larger cell area observed in K15 siRNA transfected cells is as a result of K15 ablation. 

As well as cell area, cell circularity could be calculated; this was deemed useful as 

cell shape may be affected by the differences observed in cytoskeletal arrangement.  

In both control siRNA transfected and K15 knock-down cells, cell circularity 

decreased as cells spread.  Despite a significant difference between cell size, there is 

no significant difference in circularity between control siRNA and K15 siRNA 

transfected cells (Figure 4.9), as established using Student’s T-test.  This indicates 

that despite differences in cell area and cytoskeletal arrangement, K15 ablated cells do 

not differ in their shape. 

 



F igure 4.8: HaCaT cell area during adhesion to uncoated glass coverslips.   

Calculations were made using Image J software.  K15 siRNA transfected cells have a 

larger average area 180 minutes post-seeding than control siRNA transfected HaCaT cells.  

Error bars = standard error.  
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F igure 4.9: HaCaT !"#!$%&#"'()*!&%!$%&'+,*$-"./*'0+*123#4*2&!'3#5*formula. 
In both K15 knock-down cells and control transfected cells, circularity decreases slightly 

as cells spread (1=perfect circle).  There is no significant difference between control 

siRNA transfected HaCaT cells and K15 siRNA transfected HaCaT cells.  Error bars = 

standard error. 
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4.3.2.5: NHEK Adhesion 

For comparison, the adhesion assay was also carried out on untransfected NHEK 

cells.  These cells took longer to initially adhere, which prevented useful 

immunofluorescence being carried out at 10 minutes post-seeding.  Between 40 and 

120 minutes post-seeding however, similar actin bundling at the cell edge can be 

observed (Figure 4.10, C, F, I).  K15 and K14 expression appears normal throughout 

the cells (Figure 4.10, A, B, D, E, G, H).  These results then are comparable with the 

results observed for untransfected and control siRNA transfected HaCaT cells.  Cell 

size and circularity in attatching cells were also calculated for NHEK cells.  

Circularity of the cells varied little during spreading (Table 4.2).  Cell area, as 

expected, increased during cell spreading, which indicates that the actin bundling 

observed is involved in increasing cell size following adhesion (Table 4.3). 

 



K15 K14 Actin 

40min 

90min 

120min 

NHEK cells were seeded onto glass coverslips and allowed to attach and spread for 40 (A, 

B, C), 90 (D, E, F) and 120 minutes (G, H, I).  This allowed K15, K14 and actin expression 

and configuration to be observed at different stages of attachment and spreading (scale bar 

= 10µm).  As in HaCaT cells, some bundling of actin at the edges of cells is observed (I).  

No changes in K14 (H) or K15 (G) expression were noted at 120 minutes post-seeding. 

A B C 

D E F 

G H I 

F igure 4.10:  K15, K14 and actin organisation in spreading N H E K cells 



Cell circularity decreases little between 40 and 180 minutes post-seeding of the 

untransfected NHEK cells (1=perfect circle). 

NHEK Cells 

Minutes Untransfected 

40 0.75 

90 0.77 

120 0.73 

180 0.71 

NHEK Cells 

Minutes Untransfected 

40 49.9 

90 68.2 

120 170.7 

180 257.2 

As the cells adhere, the NHEK cells spread and the area increases from 50 m3 to 257 m3 

180 minutes post-seeding (calculated using Image J software, measured in m3). 

Table 4.2: Table of NHEK cell circularity during attachment. 

Table 4.3: Table of NHEK cell area during adhesion to uncoated glass coverslips 
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4.3.2.6: Quantitation of HaCaT Adhesion 

The MTT assay was used to quantify the number of adhesive cells at various time 

points post-seeding (Figure 4.11).  Upon initial seeding of 5x10
5
 K15 siRNA 

transfected and control siRNA transfected cells, approximately 5% of these had 

adhered after 40 minutes.  At 90 minutes post-seeding, a significant difference can be 

observed (p<0.05), with fewer control siRNA transfected cells adhering compared to 

K15 siRNA transfected cells.  By 120 minutes post-seeding, the number of adhering 

K15 ablated cells has reached a plateau, whereas the number of control siRNA 

transfected cells are still adhering. 

 



F igure 4.11: Cell numbers up to 120 minutes post seeding. 
This graph shows that K15 siRNA transfected cells initially adhere faster than control 

siRNA transfected cells (90 minutes post-seeding).  However, by 120 minutes more 

control siRNA transfected cells have adhered compared to K15 knock-down cells. 

(500000 HaCaT cells were initially seeded.)  Error bars = standard error. 
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(arrow).  Scale bar = 25µm. 

F igure 4.12: Immunofluorescence of HaCaT scratch wound assay at 0 hours, 6 hours 
and 12 hours following scratching 
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4.3.3: How Cell Migration is Affected By K15 Ablation 
It has been suggested that cells from the hair follicle bulge (i.e., K15-positive cells) 
differentiate before migrating (Roh et al., 2005; Roh et al., 2008); this suggests that 
K15-positive cells would be less motile than K15-negative cells.  Considering this, it 
was deemed useful to assess the motility of HaCaT cells following K15 ablation by 
siRNA transfection.  To assess cell motility, a scratch wound assay was employed.  
Cells to be transfected were seeded onto glass coverslips and transfected 48 hours 
prior to scratching.  This assay required cells to be 100% confluent, however this 
produces two difficulties.  Firstly, confluent HaCaT cells have been shown to 
differentiate and stratify (for example, Capone et al., 2000).  Secondly, for successful 
siRNA transfection, cells must be between 30% and 50% confluent.  For these 
reasons, HaCaT cells could not be at 100% confluency before the scratch assay was 
carried out.  Instead, areas where cells were most confluent (without beginning to 
stratify) were identified before the scratch was made.  Cells were ‘scratched’ with a 
200%l pipette tip, and fixed at various timepoints following the scratch.  Live cell 
imaging techniques (as previously described) were used to produce phase contrast 
images of wound healing.  Coverslips were also fixed and immunofluoresence 
techniques used to enable the effects of K15 ablation to be observed in 2D in vitro 
wound healing. 
K15 siRNA transfected cells express very low levels of K15, as expected (Figure 
4.12, A - C).  Immediately following the scratch, K15 expression and organisation 
appear normal in control siRNA transfected cells (Figure 4.12, D - E).  No bundling 
of K15 can be observed at the wound edge 12 hours post-wounding (Figure 4.12, F), 
suggesting that K15 does not have the same role in organising collectively migrating 
epithelial sheets as K8 has in simple epithelial cells (Long et al., 2006). 
The immunofluorescence staining of actin and K14 in HaCaT cells shows that 
expression of these proteins are comparable in transfected and untransfected cells.  
Figure 4.12 G - L shows K14 expression in K15 knock-down and control HaCaT 
cells.  The arrangement of K14 in the confluent cells and at the wound edge appears 
similar; there is no bundling of K14 at the edge of the wound as seen in some other 
keratins (for example, K8: Long et al., 2006).  There does however appear to be an 
increase in K14 in the cells at the edge of the wound 6 h after wounding; this appears 
in both control HaCaT cells and K15 knock-down cells (expression and localisation 
of K14 appears similar to control cells in K15 knock-down cells, suggesting that K15 
siRNA transfection does not affect this K14 localisation).  In an investigation into the 
role of TGF! in wound healing, Werner, Werner and Munz (2000) demonstrated that 
K14 was upregulated by this cytokine during wound repair in HaCaT cells.  K14 
levels were also observed to increase continually for 5 days post-injury in mice.  In 
sections of wounded skin, K14 immunofluorescence was observed in all keratinocytes 
around the wound.  It may be a similar effect which has been observed in Figure 4.12, 
on a reduced scale (due to the monolayer of HaCaT cells used as opposed to in vivo 
testing). 
Actin expression appears normal throughout the cells in both control siRNA 
transfected and K15 siRNA transfected HaCaT cells, and at both 0 h and 12 h post-
scratch (Figure 4.12 M - R).  At 12 h post-scratch in K15 knock-down cells, some 
bundling of actin can be observed at the wound edge (Figure 4.12, O, arrow); such a 
phenomenon has previously been described (for example, Long et al., 2006 described 
this in MCF-7 cells).  Long et al. however used electron microscopy techniques to 
identify structures such as lamellipodia (the images in Figure 4.12 are a much lower 
magnification so such structures may not be seen).  This was also observed at 30 
minutes after wounding, compared to 12 h after wounding in this study.  This may be 
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an effect similar to that observed previously in spreading cells; actin bundling at the 
cell edges may indicate migration.  For this reason, the speed at which wound closure 
occurred was measured from microscope images of the wound region (Figure 4.13). 



0 h 

12 h 

6 h 9 h 

18 h 24 h 

A: Untransfected 

B: Control siRNA Transfected 

18 h 24 h 12 h 

9 h 0 h 6 h 

C: K15 siRNA Transfected 

0 h 6 h 9 h 

12 h 18 h 24 h  

 = edge of wound 

F igure 4.13: Wound 
healing in HaCaT cells. 
Phase contrast images of 

HaCaT wound healing in 

untransfected (A), control 

siRNA transfected (B) and 

K15 siRNA transfected 

(C) cells.  The time post-

wounding is noted. 

The wound edges become 

more undulated over time 

in all samples.  After 24 h, 

no wound had closed 

completely. 

(Scale bar = 100µm.) 



0

10

20

30

40

50

60

70

80

90

0 6 12 18 24

Control siRNA

Transfected

K15 siRNA Transfected

Hours 

%
 w

o
u

n
d

 c
lo

su
re

 

 

F igure 4.14: Percentage wound closure in K15 siRN A transfected and control siRN A 
transfected HaCaT cells 
Locations of three control siRNA transfected and K15 siRNA transfected HaCaT wounds 

were photographed at 0, 6, 12, 18 and 24 h.  Open wound distance at the start of the 

experiment is designated 0% and closure of the wound shown relative to this (i.e. % 

reduction of the wound area).  Ten measurements were made per wound at each time point 

at each of the three wound locations photographed.  Error bars denote standard error. The 

difference between the average wound closure at 18 h in control siRNA transfected cells 

and K15 siRNA transfected cells is not statistically significant.  
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Measurements were made from the phase contrast images produced from live cell 
imaging (Figure 4.13).  The percentage wound closure was then calculated.  Figure 

4.14 shows the percentage wound closure of control siRNA transfected and K15 
knock-down HaCaT cells (where 100% indicates a completely closed wound).   
Statistical analysis suggests that no significant difference is observed between wound 
closure times of K15 ablated and control siRNA transfected cells.  No conclusive 
results were observed here, although as only monolayer cultures were used in this 
study, it may be that findings in vivo are be different (as bulge cells migrate from the 
bulge to the injured IFE).  For example, Roh et al. (2008) suggested that more 
differentiated cells migrate faster than their stem cell counterparts. 
 
 
4.4: Discussion 
4.4.1: K15 Ablation Affects Keratinocyte Spreading 
4.4.1.1: The Role of Actin in Keratinocyte Spreading 

Using immunofluorescence, this study demonstrated that the actin bundles which 
form at the cell edge during cell spreading were significantly thicker in K15 ablated 
cells.  A well-defined actin arrangement can be observed as soon as cells have 
adhered, and filopodia-like protrusions seen; the difference between control siRNA 
transfected and K15 siRNA transfected cells can be observed at 90 minutes post-
seeding, where actin bundles at the cell edge to a greater extent in K15 knock-down 
cells.  Measurements of actin bundle thickness were made using Image J.  The 
average thickness of actin bundles in K15 knock-down cells was 2.2%m, compared to 
1.2%m in control siRNA transfected HaCaT cells.  This trend continues up to at least 
180 minutes post-seeding, although cells were not examined after this time point since 
the MTT assay demonstrated that cells were beginning to proliferate (Figure 4.12).  In 
a study concerned with establishing how cell shape is formed and maintained in 
epithelial cells, Zhang et al. (2005a) demonstrated that peripheral bundles of actin 
form upon induction of cell-cell contacts.  These peripheral bundles were important in 
establishing the cuboidal morphology of epithelial cells.  However, Zhang et al. 
(2005a) used established, confluent cultures of keratinocytes to establish the actin 
reorganisation which occurred after the formation of cell-cell junctions.  Since in this 
study the actin bundles were observed soon after seeding, a different mechanism may 
be in place to produce the peripheral bundles seen here.  Connelly et al. (2010) 
suggest that just as cytoskeletal tension controls mesenchymal stem cell 
differentiation, G-actin may have a similar effect in keratinocytes.  It has been noted 
that during trypsinisation in where cell formation changes from flat to round in a 
small amount of time, there is no change in total cellular F-actin (Bereiter-Hahn et al., 
1990), suggesting that organisation changes with altered adhesion (Ingber et al., 
1994).  Mooney et al. (1995) suggest that cell extension occurs through the resistance 
of the internal cytoskeleton and ECM tethers to the inward pull of the cytoskeleton; 
Mooney et al. (1995) refers to this as a ‘tensegrity’ mechanism.  Using rat 
hepatocytes induced to adhere to ECM, Mooney et al. (1995) demonstrate that 
microfilaments and microtubules function together to change form in response to 
changes in cell-ECM binding (see also Luo et al., 2008). 
 
4.4.1.2: Formation of Focal Adhesions during Keratinocyte Spreading 
As vinculin has been shown to be incorporated into structures important in 
keratinocyte adhesion and migration, vinculin expression (assessed using 
immunofluorescence) was investigated in K15 knock-down cells to investigate any 
effect this protein may have on focal adhesions and migration.  Despite no effect on 
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desmoplakin, E-cadherin or ZO-1 by K15 ablation (section 3.3.5.2), suggesting cell-
cell attachments are not affected, cell-ECM adhesions and migration are different 
conditions for keratinocytes, and required further study. 
Initial immunofluorescence of vinculin as a marker of focal adhesions highlighted 
these regions in attached HaCaT cells (Figure 4.1).  Staining was observed as 
described by Möhl et al. (2009): distinct intense staining highlighted high levels of 
bound vinculin whilst a low concentration can be observed throughout the cytoplasm.  
When the number of focal adhesions were counted, more adhesions were present in 
control siRNA transfected cells.  Since focal adhesions are important in actively 
migrating cells, this result suggests that cells with low levels of K15 migrate 
differently to K15-positive cells. 
 
4.4.1.3: K14 and K15 Expression in Spreading Keratinocytes 
K14 arrangement following K15 ablation in attaching cells was also investigated 
using immunofluorescence.  K14 had been previously shown not to be affected by 
K15 siRNA transfection (Figure 3.5, Figure 3.6), although when cells were initially 
seeded and spreading, K14 could not be observed at the edge of the cell in K15 
ablated cells at 120 minutes post-seeding.  Morley et al. (2008) suggest that seeding 
of keratinocytes in culture induces a keratin expression pattern analogous to a wound 
healing reaction.  K14 expression has been shown to increase during wound healing 
(Werner, Werner and Munz, 2000); this is not occurring here.  Other studies have 
been concerned with whether cells are K14-positive or K14-negative, without closer 
observation of K14 arrangement.  It may be that K14/K5 fibres are normal in K15 
ablated cells, although can not form quickly enough to extend to the cell edge during 
the rapid expansion occurring as soon as cells are seeded.  It may also be the case that 
the increased thickness of the actin bundles at the cell periphery prevent K14 
filaments reaching the cell edges.  K14 appearance is normal in K15 knock-down 
cells in cells which have been seeded at least 48 h prior (Figure 3.5) suggesting that 
the effect observed immediately post-seeding is not long-term.  Although K14 fibres 
did not expand to the edge of the cell, it is possible that this would not have affected 
the function of the cell.  Where cytoskeletal proteins were disrupted in newly-adhered 
hepatocytes, the cells remained smaller than controls for at least 48 hours (Mooney et 

al., 1995); similar work has not yet been carried out on keratinocytes. 
K14 is known to affect cell junctions and cell junctional protein expression; Liovic et 

al. (2009) observed that in K14 mutant cells (mimicking severe EBS), different K14 
abnormalities resulted in reduced amounts of connexin 43, desmoglein 3, 
desmoplakin and plakoglobin expression.  If this effect is observed in EBS cells, it is 
possible that cell junctional proteins may be affected in the short-term after seeding in 
K15 ablated cells, where K14 does not reach the cell edge.  As K14 arrangement is 
normal in K15 knock-down cells >48 h post-seeding, then this explains the normal 
expression of cell junctional proteins observed in this study (Figure 3.13).  If cell-cell 
adhesion is at low levels shortly after seeding, this aids in explaining the motility of 
cells observed in the live cell imaging, where cells could be seen to move relatively 
swiftly (Figure 4.4); cells were seen to move towards each other, typical behaviour 
for keratinocytes which do not thrive at low confluencies. 
 
4.4.1.4: Effects of K15 Ablation on Keratinocyte Size and Shape during Spreading 
Both control siRNA transfected and K15 siRNA transfected cell size increased post-
seeding.  However, cell size increased to a greater extent in K15 ablated cells. 
Connelly et al. (2010) showed that actin polymerisation inhibited cell spreading; cell 
size analysis in this study demonstrated that K15 knock-down cells were larger than 
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their control counterparts, suggesting that actin was not polymerising (or at least not 
to the same extent) as in control siRNA transfected cells.  Previously, actin had been 
shown to polymerise following hypotonic challenge and volume changes (Blase et al., 
2009).  Depolymerisation has also been shown to enhance the symptoms of the skin 
blistering disease pemphigus vulgaris, similarly demonstrating the role of 
polymerised actin in preventing cell dissociation (Gliem et al., 2010).  Where cell 
spreading is restricted and G-actin levels are reduced, JunB expression is stimulated, 
causing differentiation (Mehic et al., 2005).  If this could occur in vitro, then K15 
knock-down cells would become confluent more quickly (as they spread at an 
increased rate), and therefore induce JunB expression and differentiation stimulation.  
This could at least partially explain some of the differentiation observed in K15 
siRNA transfected cells in chapter 3. 
It has been shown that cell shape can control initiation of terminal differentiation 
(Connelly et al., 2010).  Cell circularity and cell area were calculated from 
immunofluorescence images using Image J.  As previously mentioned, cell area in 
K15 knock-down HaCaT cells is greater than in control siRNA transfected cells.  Cell 
size has previously been used as a measure of differentiation in keratinocytes; smaller 
cells with a larger nuclear-to-cytoplasmic ratio are considered less differentiated (for 
example, Zbytek et al., 2005; Wan et al., 2007b).  Cell shape has also been shown to 
be a factor: keratinocytes cultured in a manner which prevented cell-cell contact (such 
as suspension culture) lost the ability to divide and assemble cornified envelopes.  
Although inhibition of proliferation in spread cells was not found to produce a 
sufficient signal for terminal differentiation, the area of cell contact with the 
substratum aided in regulation of proliferation and differentiation.  Cell size increases 
as cells terminally differentiate, as part of a positive feedback system whereby 
confluent cells are induced to leave the basal layer and differentiate (Watt and Green, 
1981; Barrandon and Green, 1985; Watt, Jordan and O’Neill, 1988; Sevilla et al., 
2008; Charest et al., 2009). 
 
4.4.2: Effect of K15 Ablation on Keratinocyte Migration 
Cell migration is important in many vital processes, such as embryogenesis and tissue 
repair and regeneration, and in pathological conditions such as cancer and 
inflammation (Webb et al., 2002).  As it is possible that K15-positive cells from the 
hair follicle bulge differentiate (i.e. become K15-negative) before migrating (for 
example, Roh et al., 2008), it was considered important to assess the effect of K15 
ablation on motility.  For this, a scratch wound assay was employed; this has been 
previously utilised elsewhere (for example Wong and Gotlieb, 1988; Long et al., 
2006). 
Only small changes were noted in K14 arrangement during migration in both control 
siRNA transfected and K15 siRNA transfected cells.  The increase in K14 observed in 
the cells at the leading edge may be as a result of increases in TGF!, as described in 
section 4.3.2 (Werner, Werner and Munz, 2000).  Importantly for this study however 
was the indication that no difference in K14 expression occurred following ablation of 
K15.  This indicates that K15 does not affect the role of K14 during wound healing.  
This suggests that K15 does not have a role in organising collective migration, as K8 
does for example (Long et al., 2006).  K8 however is a simple epithelial keratin, 
found in single-layer epithelia; K14 and K15 are not expressed in single-layer 
epithelia but in complex epithelia consisting of several layers at different stages of 
differentiation.  This could explain the absence of keratin bundling in HaCaT cells.  
K14 expression has been observed in re-epithelialised epithelium following injury, 
suggesting that basal keratinocytes have an important role in wound healing (Hosoya 
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et al., 2008); this study did not carry out any investigation of K14 arrangement in the 
migrating cells however. 
Likewise, actin expression is similar in migrating cells following K15 ablation.  At 12 
h post-scratch in K15 siRNA transfected cells however, some actin bundling is 
observed at the cell edge.  During cell migration, focal contacts form which develop 
into focal adhesions.  The clustering of integrins, VASP and vimentin at the focal 
contact site converges alongside actin cables, or stress fibres (Reinhard et al., 1992).  
Actin bundles, perpendicular to the cell membrane, are also associated with puncta: 
clusters of !-catenin, #-catenin and E-cadherin which form at the early stages of cell-
cell adhesion (Adams et al., 1996; Adams et al., 1998).  These sites are important in 
actin polymerisation and reorganisation (Vasioukhin et al., 2000). 
It is possible that this is a similar effect to that observed in spreading cells.  Since in 
spreading cells this actin bundling coincided with an increased cell area, it was 
considered useful to further investigate the rate of wound closure following K15 
ablation. 
No significant differences were observed in the rate of migration between K15 siRNA 
and control siRNA transfected HaCaT cells.  Previous studies have suggested that 
more differentiated cells migrate faster than stem cells (Roh et al., 2008).  The results 
of this study suggest that K15 expression has little effect on keratinocyte migration.  
However, it has also been demonstrated that K15-positive bulge cells can contribute 
to wound repair in vivo (for example, Nakrieko et al., 2011).  This suggests that 
although the K15 protein may not have a direct functional role in keratinocyte 
migration, the K15-positive undifferentiated cells may have a role in wound healing. 
 
4.4.3: Conclusions and Further Work 
4.4.3.1: Summary of Findings 

K15 ablation had a significant effect on cell spreading and adhesion, resulting in 
increased actin bundling at the cell edge.  In turn, this increased cell size (although did 
not affect cell shape).  This is considered important as Zbytek et al. (2005), Wan et al. 
(2007b) and Connelly et al. (2010) observed that small cells, with a large nuclear-to-
cytoplasmic ratio, are considered less differentiated.  In this study, this would indicate 
that K15-negative cells are more differentiated than K15-postive cells, reinforcing the 
work which suggests that K15 is a marker of epithelial stem cells. 
In addition, the effect of K15 ablation on keratinocyte migration was examined.  It 
was established that no significant differences were observed in K15-negative 
keratinocytes compared to K15-positive keratinocytes.  This indicates that the 
K15/K5 filaments have no direct function in HaCaT cell motility. 
 
4.4.3.2: Further Work 

As previously mentioned, K14 has been demonstrated to affect cell junctional protein 
expression (for example, Liovic et al., 2009).  It was demonstrated that immediately 
after seeding, K14 was not expressed to the edge of K15 ablated HaCaT cells.  
However, this was not observed in cells which had been seeded for at least 50 h (as 
demonstrated by immunofluorescence in chapter 3).  Likewise, normal expression of 
E-cadherin, desmoplakin and ZO-1 were observed in K15 ablated cells after this time.  
It may be useful to carry out further investigation of the development of cell-cell 
junctions (and localisation of junctional proteins) immediately following cell seeding, 
to investigate whether the absence of K14 at the cell periphery in K15 ablated cells 
has an effect. 
To further investigate the role of K15 in wound healing, it would be useful to 
reproduce the in vitro wounding method using organotypic cell cultures following 



! 140!

control and K15 siRNA transfection.  This would be more similar to conditions 
observed in vivo, however a more stable transfection may be required first. 
Previously, electron microscopy has been used to identify laemellipodia at cell edges 
(for example, Ahmed, 2011).  This may also be useful in this study to more closely 
observe the organisation of the actin cytoskeleton during cell adhesion and spreading 
in K15 ablated cells. 
 



CHAPTER 5: 

EFFECTS OF K15 ABLATION IN 

SQUAMOUS CELL CARCINOMA 

CELLS 
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5.1: Introduction 
5.1.1: Aims 
The aims of this chapter are to elucidate the effect of K15 ablation on a squamous cell 
carcinoma cell line, ‘MET’ (Proby et al., 2000).  Three of the four cell lines isolated 
by Proby et al. (2000) will be used to establish whether K15, identified as being 
expressed in at least poorly differentiated SCCs (for example, Abbas et al., 2011), 
effects cell motility, differentiation, adhesion or spreading.  These will be tested as 
HaCaT cells were in chapters 3 and 4.  Although Proby et al. (2000) suggested that 
these cells did not produce good organotypic cell cultures, MET 1, 2 and 4 cells were 
cultured in this way to establish whether a different method may be more successful.  
It would also help to establish whether the MET cells were capable of organised 
stratification and differentiation. 
 
5.1.2: The MET Cell Lines 
Whereas normal human primary cells have a finite lifespan (proliferating for a limited 
number of generations before no longer dividing), isolated tumour cells can divide 
indefinitely (i.e. are immortal).  This occurs in the squamous cell carcinoma cell lines 
MET, isolated by Proby et al. (2000).  The MET 1-4 cells were isolated from a 
progressive primary epidermal tumour and distant metastasis from one patient.  The 
MET cell line cells were from an invasive, recurrent and metastatic squamous cell 
carcinoma (SCC), the most aggressive type of non-melanoma skin cancer.  MET 1 
cells were isolated from an SCC on the back of the left hand, MET 2 and 3 cells from 
two recurrent SCC from the same site, and MET 4 cells from the metastatic SCC from 
the lymph node (isolated at the same time as MET 3 cells).  As MET 2 and 3 cells 
were from similar tumours, MET 3 cells were not used in this study.  Although SCC 
sections isolated from the back of the hand were human papillomavirus (HPV) 
positive, all of the MET cell line cells were negative for HPV DNA.  No external 
immortalising agents were required to immortalise the MET cell lines.  Isolated cells 
were cultured in DMEM with 10% FCS, initially with 3T3 fibroblast feeder layers 
and EGF.  All of the cell lines were dependent on adhesion for growth (no colony 
formation was observed in soft agar) (Proby et al., 2000). 
 
5.1.3: Intermediate Filament Expression in SCC Cells 
5.1.3.1: Keratins 

In the original publication describing the MET cell line cells, Proby et al. (2000) 
demonstrated that the keratin profile of the in vitro MET cell lines were maintained 
from the in vivo sections of each tumour.   
Previous studies have observed the expression of keratins in SCC sections.  Watanabe 
et al. (1995) observed that the keratin expression profile of well-differentiated SCCs 
was similar to that observed in normal epidermis.  However, expression of 
differentiation-specific keratins was reduced in the immature tumour cells (in 
proportion to the malignancy of the SCC).  In poorly-differentiated SCCs (and in 
most lymph node metastases), keratins typical of simple and squamous epithelia were 
expressed.  Typical of this is the expression of simple epithelial keratin K7 in MET 3 
and MET 4 cells – abnormally expressed in advanced cutaneous malignancies 
(Markey et al., 1991).  As the SCC became malignant, the keratin profile also 
changed; this led Watanabe et al. (1995) to suggest that the expression of non-
cornifying stratified squamous epithelial or simple epithelial keratins could be a 
marker for metastatic or invasiveness potential. 
In their 2000 publication, Proby et al. define the keratin expression profile of the 
MET cell line cells, where it is described as typical of the keratin phenotype of the 
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tumour of origin.  Of the epidermal keratins, Proby et al. suggested that K14 has 
panepithelial staining in normal skin.  This was also observed in sections of the same 
SCC the MET cells were isolated from (including the lymph node).  In MET 1-3 cells, 
strong K14 expression was observed; K14 expression was also observed in MET 4 
cells, to a lesser extent.  No heterogenous staining was noted.  This is an unexpected 
result, as downregulation of K14 (and K15) has previously been reported in 
undifferentiated tumours (Markey et al., 1991; Morgan and Su, 1994). 
K1/10 staining, observed in the suprabasal layers of normal skin, had a different 
profile in the SCC sections.  There was no staining in the poorly differentiated regions 
of the primary SCC section or recurring SCC sections, with only a small amount of 
staining in the metastatic section.  All of the MET cell line cells were negative for 
K1/10 staining.  Likewise K4/13 staining was also negative in MET 1-4 cells and all 
sections (including normal skin). 
K6, despite no expression being observed in normal skin, was observed to some 
extent in the SCC sections.  In the SCC sections taken from the back of the hand, 
panepithelial K6 staining is observed.  Lymph node metastasis sections were also K6 
positive.  K16 staining was observed separately from its usual partner K6, and a 
different staining profile was established.  Suprabasal K16 staining was observed in 
the primary and reoccurrence SCC sections and strong K16 staining was seen in the 
metastatic lymph node section and all MET cell line cells (normal skin sections were, 
as expected, K16-negative). 
Lastly, K17 expression was examined.  Like K16, this was strongly positive in MET 
1-4 cells and the lymph node section.  In the reoccurring SCC section, K17 
panepithelial and basal layer staining was observed (this was panepithelial and 
suprabasal in the primary SCC section).  These results suggest some 
hyperproliferation. 
Proby et al. (2000) also established the staining pattern of some simple epithelial 
keratins: K7, K8, K18 and K19.  Despite pairing occurring between K7 and K18 or 
K19 and K8 with K18, different profiles were identified for all these keratins.  K7, 
negative in normal skin and the primary SCC sections, displayed some heterogenous 
staining in the reoccurring section and the lymph node metastatic section.  MET 1 and 
2 cells were negative, whist a low number of MET 3 and 4 cells were positive.  In the 
SCC reoccurring section, the SCC region was K18 positive, as were metastatic 
sections.  MET 2 and 3 cells were also K18 positive.  Some increase in limited K18 
staining was observed in higher passage MET 1 and MET 4 cells compared to low 
passage cells.  All sections (including normal skin) and MET cells were negative for 
K8 and K19.  This is an interesting result as previous work had suggested that SCC 
cells are K8/K18 positive (Markey et al., 1991).  Overall, the in vivo keratin profile is 
maintained in vitro. 
Whilst Proby et al. (2000) did not specifically look for K15 expression in the MET 
cell lines, other publications have described their considerations of K15 expression in 
SCC cells.  Recently, Abbas and Bhawan (2011) have described a study observing 
K19, K15 and nestin in SCC, basal cell carcinoma (BCC) and Merkel cell carcinoma 
(MCC) cells.  Whilst K15 was observed in 30% of BCC cases, only one SCC case 
was K15 positive (5%) (all MCC cases were negative).  In addition, SCC in situ K15 
expression was observed in 53% of cases investigated, and only 3% of SCCs (well 
differentiated) (Abbas et al., 2011).  These results suggest that K15 may be present in 
less differentiated SCC cells. 
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5.1.3.2: Actin 

Actin, central to cell motility, invasion and metastasis, has previously been 
investigated in SCCs (for example, Kelley, Shahab and Weed, 2008).  Actin 
polymerisation at the leading edge and the formation of lamellipodia, filopodia and 
podosomes (or invadopodia) are essential for tumour cell migration and invasion 
(Pollard and Borisy, 2003).  Podosomes, the structures which allow cells to migrate 
through the ECM, are comprised of several proteins including actin, adhesion 
molecules, matrix degradation enzymes, membrane remodelling proteins, signalling 
proteins and actin regulatory proteins (Buccione, Orth and McNiven, 2004; Even-
Ram and Yamada, 2005).  The chemoattractants Wiskott-Aldrich syndrome protein 
(WASP) and Arp2/3 complex, for example, have previously been identified as being 
overexpressed in cancers and breast tumours (Wang et al., 2004; Sahai, 2005; 
Yamaguchi and Condeelis, 2007; Yamada et al., 2010).  The WAVE-Arp2/3 complex 
for example is involved in the EGF pathway that promotes lamellipodia formation.  
Both N-WASP and cortactin are also components of podosomes.  The actin-
associated scaffold protein cortactin has recently been shown to be upregulated by 
expression of CRKII (CT10 regulator of kinase II) in aggressive oral SCC (Yamada et 

al., 2011).  Also in aggressive oral SCC cells, Iwai et al. (2010) demonstrated that the 
rearrangement of actin (and redistribution of E-cadherin) was induced by cytoplasmic 
accumulation of !-catenin; EMT was also induced, enhancing the ability of SCC cells 
to invade and migrate. 
Kelley, Shahab and Weed (2008) suggested that the amplification of chromosome 
segments 3q26-29, 8q23-24 and 11q13, as observed frequently in head and neck 
SCCs, contained actin regulatory regions (such as FAK, PI3-kinase and cortactin).  
This then promoted invasion (and metastases) in head and neck SCCs. 
 
5.1.4: Differentiation Marker Expression in MET Cell Line Cells 
5.1.4.1: Involucrin 

Involucrin, as a marker of differentation, has been previously observed in human 
SCCs, and was oxygen-regulated (for example, Raleigh et al., 2000; Chou et al., 
2004).  This oxygen-regulation is most likely to be via the AP-1 sites in the promotor 
region of the involucrin gene (Crish et al., 2002; Chou et al., 2004).  Chou et al. 
(2004) suggest that as involucrin is an early marker of terminal differentiation, 
hypoxia in tumours may arrest differentiation just short of the end stage.  As 
expected, involucrin expression in poorly differentiated regions of SCC tumours has 
been demonstrated to be relatively low (Azuma et al., 2003; Chou et al., 2004).  
Commandeur et al. (2009) describe involucrin expression in SCC sections as 
prominent throughout the suprabasal layers, with intense staining of squamous nests. 
Involucrin expression has also been observed in explant cultures.  In normal human 
skin, involucrin is present in the upper layers of the epidermis; in explants however, 
involucrin is expressed as low as the stratum corneum (Commandeur et al., 2009).  In 
primary SCC explants, the involucrin staining pattern was similar to that in primary 
SCC sections (i.e. all suprabasal layers were stained as well as staining in the 
squamous nests) (Commandeur et al., 2009). 
Generally, involucrin expression is higher in normal cells compared to SCC cultures 
(Gasparoni et al., 2004).  This again is thought to be due to changes in differentiation 
in SCC cultures compared to normal cell cultures.  Rice, Rong and Chakravarty 
(1988) (and later Chou et al., 2004) however demonstrated an increase in involucrin 
expression in postconfluent SCC9 cells (a moderately differentiated cell line).  Little 
involucrin staining was observed in the more poorly differentiated SCC4 cell line 
(Chou et al., 2004).  In another partially differentiated SCC cell line (SCC12B2), 
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Commandeur et al. (2009) demonstrated that involucrin staining occurred throughout 
a 3D skin model.  Also using SCC12B2 cells, Yang, Ng and Bikle (2003) 
demonstrated that calcium concentration had some effect on PKC# (and therefore 
involucrin expression).  No similar effect was observed in SCC4 cells.  Other SCC 
cell lines however are affected by extracellular calcium; Nakayama et al. (2005) 
demonstrated that filaggrin and involucrin expression could be induced by increasing 
the extracellular calcium concentration in two oral SCC cell lines (SAS and Ca9-22).  
IKK# (I'B kinase #), despite being recognised as a putative differentiation signal in 
normal keratinocytes, has also been shown to inhibit induction of involucrin (and 
filaggrin) expression by extracellular calcium in SCC cells (Nakayama, Ikebe and 
Shirasuna, 2005).  Nakayama, Ikebe and Shirasuna (2005) suggest that this may be 
due to serine phosphorylation of IKK# by PKC in SCC cells.  PMA (phorbol 12-
myristate 13-acetate) was also shown to inhibit involucrin expression in SCC cells 
(Nakayama, Ikebe and Shirasuna, 2005); this is again unexpected as the opposite 
effect has been observed in normal keratinocytes (for example, Efimova and Erkert, 
2000). 
 
5.1.4.2: Filaggrin 
The absence of the cornified envelope protein filaggrin in squamous cell carcinomas 
was first noted by Klein-Szanto et al. in 1984, who suggested that this absence could 
be used in the differential diagnosis of cutaneous tumours.  This is in contrast to 
benign lesions of the oral mucosa, where normal filaggrin distribution is observed 
(Grosso et al., 1990).  More recent studies have suggested that filaggrin is present in 
squamous cell carcinomas, but not lung squamous cell carcinomas (Miédougé et al., 
2001).  Cutaneous squamous cell carcinomas have also been shown to contain 
filaggrin-positive regions (for example, Akgül et al., 2011), and filaggrin-positive 
cells were identified in cultured SCC cells in vitro (Nakayama, Ikebe and Shirasuna, 
2005). 
Since filaggrin is a cornified envelope protein (and therefore a marker of late 
differentiation), it may be observed in the MET cell line cells used in this experiment.  
This will give an indication of how differentiated the cells of each MET cell line are. 
 
5.1.5: Adhesion Marker Expression in MET Cell Line Cells 
5.1.5.1: E-Cadherin 

As previously described, calcium-dependent E-cadherin is associated with 
desmosomes and adherens junctions; these structures are important in maintaining 
tissue integrity.  Proby et al. (2000) discuss the tendency of MET 1-4 cells to 
dissociate from each other (unlike normal keratinocytes), suggesting that cell-cell 
adhesion (and therefore E-cadherin expression) is likely to be different to that 
observed in normal keratinocytes.  In 1999, Koseki et al. examined E-cadherin 
expression in SCC tumour samples.  E-cadherin was reduced or absent in 70.9% of 
SCCs and 91.3% of lymph node metastasis.  Koseki et al. (1999) suggest that E-
cadherin is more frequently associated with well-differentiated SCCs, and may be 
useful as a metastatic marker.  A previous study (Fuller et al., 1996) had also shown 
that of 16 SCCs examined, E-cadherin was absent in four samples and attenuated in 
another eight.  Unlike Koseki et al. (1999), Lyakhovisky et al. (2004) suggest that E-
cadherin expression does not correlate with tumour differentiation, however 
correlation was observed between E-cadherin (and !–catenin) and SCC morphology. 
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Alt-Holland et al. (2008) used 3D cultures to study E-cadherin in the SCC cell line 
HaCaT-II-4.  The group found that individual, E-cadherin-deficient cells undergo 
transepithelial migration before becoming invasive. 
 
5.1.5.2: Desmoplakin 
Downregulation of desmosomal proteins is expected in metastasising cells as a 
reduction in cell adhesiveness occurs.  However, this does not appear to always be the 
case; Kurzen et al. (2003) observed that although still highly regulated, only 
desmoglein 2 expression correlated with metastasis risk.  In the same study, 
desmoplakin was observed in most SCC tumour cells, with the most intense staining 
observed in larger, more differentiated cells.  Similar results were observed by Bosch 
et al. (2005), where more desmoplakin was observed in tumour stage IV tumours 
compared to stage I-III.  A later study however reports a decrease in desmoplakin 
immunoreactivity in oral SCCs compared to normal epithelium (Narayana et al., 
2010).  Dysplasic tissues were observed to have disrupted desmoplakin localisation, 
with desmoplakin observed in the cytoplasm as opposed to the cell borders; the 
overall intensity of staining was also reduced.  In oral SCC samples, desmoplakin was 
localised to the cell borders, but with lower protein expression than controls.  Some 
SCC samples had no desmoplakin immunoreactivity. 
As yet, there has been little published material referring to desmoplakin in MET cell 
line cells.  As the above work on other SCC sections suggests however, desmoplakin 
is usually observed in SCC sections, suggesting that desmoplakin immunoreactivity 
should also be observed in the MET cell lines. 
 
5.1.6: MET Cell Line Genetics 
In a further study, MET 1-4 cells were shown to have chromosomal abnormalities, 
including loss of 3p, 8p, 5q, 17p and gain of 3q, 8q, 5p and 11q in most lines (Popp et 

al., 2000).  A further amplified region is 17q24-25, as previously observed in the 
original tumour which had metastasised, is also observed in the cell lines.  This also 
occurs with 10p and 20q gain, observed in all cell lines, was not observed in any of 
the original tumours (Popp et al., 2000).  A similar study was carried out by 
Welkoborsky et al. in 2003, using human cell lines isolated from SCCs on the head 
and neck.  The most frequent chromosomal anomalies in these lines were gains on 
15q, 7p, 3q, 5p, 11q and 17q; losses were noted on 3p, 18q, 19p and 7q.  Similar 
losses and gains (although not identical) were observed in primary lung SCCs by 
Boelens et al. (2009).  This group also noted that gains at 7q, 8p and 10q only 
occurred in SCCs with lymph node metastases; none of these were noted by Popp et 

al. (2000) despite MET 4 cells being isolated from lymph node metastases. 
As previously mentioned, Kelley, Shahab and Weed (2008) noted gains on 3q26-29, 
8q23-24 and 11q13, shown to contain actin regulatory regions.  This includes 
cortactin, a component of podosomes and therefore important in SCC cell invasion.  
Furthermore, McCaughan et al. (2010) observed 3q amplification in squamous lung 
cancer, noting that two known oncogenes, SOX2 and PIK3CA, are coded for in this 
region (SOX2 was demonstrated to be associated with the malignant progression of 
squamous lung carcinomas).  The oncogene c-Myc (8q24) has also been identified in 
melanomas, and amplification is likely to be associated with advanced cutaneous 
melanomas (Kraehn et al., 2001).  L-Myc (related to the c-Myc proto-oncogene) has 
also been identified on another region amplified in MET cells – the 5p region.  
Normal skin has no L-Myc expression, whereas it is expressed in MCCs (Paulson et 

al., 2009).  Gain of 8q has also been reported in lung SCCs (Boelens et al., 2009).  
Overexpression of this region has been reported in other epithelial cancers, and target 
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genes of metastatic potential have been identified, including CDH17, SPAG1, HAS2, 
MTBP, and RAD21 (Goeze et al., 2002; Oue et al., 2004; Thomassen, Tan and Kruse, 
2008).  Boelens et al. (2009) also suggest that a positive regulator of angiogenesis, 
ANGPT1, coded for in this region, may have a role in the development of distant 
metastases. 
Although MET cells are not isolated from an individual with a head and neck SCC, 
head and neck SCCs are also characterised by amplification of the 11q region (Parikh 
et al., 2007).  11q amplification has also been reported in oesophageal SCC (Hu et al., 
2009) and oral SCC (Reshmi et al., 2007).  The breakage-fusion-bridge cycle 
mechanism which results in the amplification however means that some genes are 
lost; Parikh et al. (2007) suggest that this includes three genes (MRE11A, ATM and 

H2AFX) important in the DNA damage response pathway.  Parikh et al. (2007) also 
demonstrated that SCC cells with 11q13 loss had a defective DNA damage response.  
Unlike MET cell lines however, several SCCs are reported to have losses at 11q; for 
example, lung SCCs (Rydzanicz et al., 2008) and cervical SCCs (Huang et al., 2007; 
Wilting et al., 2008). 
The short arm of chromosome 3 (3p), reported as lost in MET cell lines (Popp et al., 
2000) includes tumour suppressor genes which have a role in tumourigenesis (Li et 

al., 1994).  Hogg et al. (2002) found that 3p loss occurs at all stages of head and neck 
SCC, suggesting that 3p loss is an early event in the development of SCC.  More 
recent studies have highlighted several tumour suppressor genes involved, for 
example P300/CBP-associated factor (PCAF) (Zhu et al., 2009) and fragile histidine 
triad (FHIT) (Purdie et al., 2009).  Since 3p deletion occurs so frequently in (head and 
neck) SCCs, it has been suggested that, if tests demonstrate 3p deletion, active 
intervention (such as chemoprevention and regular check-ups) are required (Abou-
Elhamd et al., 2008). 
Tumour suppressor genes have also been found at 8p, which Popp et al. (2000) also 
reported as lost in MET cells; Qin et al. (2008) reported 8p deletions in oesophageal 
SCCs whilst Ono et al. (2003) and Zhou et al. (2005) also reported this deletion in 
oral SCCs.  Ono et al. (2003) observed that the tumour suppressor gene FEZ1 had 
absent or reduced mRNA expression in the oral SCCs examined.  Head and neck 
SCCs have also been shown to be affected by 8p loss (Braakhuis et al., 2004).  
Another tumour suppressor gene, mitochondrial tumor suppressor gene 1 (MTUS1) 
(located at approximately 8p21.3-22) has been shown to be downregulated in head 
and neck SCCs (Ye et al., 2007).  Examination of chromosomal abnormalities in lung 
SCCs suggested that 8p23 loss was associated with lymph node metastases (Boelens 
et al., 2009).  
Loss of 5q, reported in MET cells (Popp et al., 2000) has also been reported in other 
SCCs, including oesophageal (Li et al., 2004; Su et al., 2006), head and neck 
(Rybicki et al., 2003; De Schutter et al., 2006) and anus (Gervaz, Hirschel and Morel, 
2006).  Boelens et al. (2009) report that approximately 440 genes at 5q14.2-23.3 and 
5q31.1-35.2 which are lost in 41-68% of SCCs. 
The most important gene lost from 17p loss in MET cells and other SCCs is TP53; 
there are also other tumour suppressor genes in this region (Götte et al., 2001; Allegra 
et al., 2009).  This has been observed in oesophageal SCCs (Hu et al., 2009) and head 
and neck SCCs (for example, De Schutter et al., 2006; Ye et al., 2007).  In its role as 
a tumour suppressor, p53 works in several ways, including inducing growth arrest, 
activating DNA repair and initiation of apoptosis (Borrás, Gómez-Cabrera and Viña, 
2011).  Mutations or deletions of TP53 are present in approximately 50% of tumours 
(Hollstein et al., 1991; Vermeij et al., 2011). 
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5.1.7: Migration in SCC Cells 
The ability and likelihood of a tumour to become invasive relies, in part, to the cells’ 
ability to migrate.  SCC cells become motile and move through the basement 
membrane into the dermis, resulting in an invasive SCC.  The ability of these cells to 
migrate depends to a great extent on the rearrangement and phosphorylation of the 
actin cytoskeleton (see section 5.1.3.2.).  Recently, Yamashiro et al. (2010) have 
demonstrated that ectopic K8/18 co-expression and filament formation is associated 
with increased migration and invasion of some cancer cells (Hendrix et al., 1992; Chu 
et al., 1997), including LY cells (cutaneous SCC cells).  The same effect was not 
observed with Pam212 cells. 
Likewise, cadherins have been shown to have a role.  In SCC cell line A431, silencing 
of T-cadherin resulted in elongated, disorganised cells with increased motility.  This 
included an increase in invasive potential.  In vivo, SCCs classified as poorly-to-
moderately differentiated express higher levels of T-cadherin compared to well 
differentiated SCCs (Pfaff et al., 2010).  Loss of E-cadherin is also associated with 
increased motility in an SCC cell line (HaCaT-II-4) (Alt-Holland et al., 2008).  An 
increase in metastatic potential is observed in SCCs which lack functioning Type VII 
collagen (ColVII); mutations in the ColVII gene (COL7A1) (resulting in recessive 
dystrophic epidermolysis bullosa) increase an affected individual’s susceptibility to 
aggressive SCCs (Martins et al., 2009). 
Although little work on migration of MET cells has been carried out, the previous 
publications which refer to other SCCs and cell lines suggest that actin rearrangement, 
a change in keratin expression profile and changes in cell-cell adhesions would 
indicate that MET cells are more motile than normal keratinocytes. 
 
5.1.8: Epithelial-Mesenchymal Transition 
Epithelial-mesenchymal transition (EMT) is a series of events that convert epithelial 
cells to a more motile phenotype (Zeisberg and Neilson, 2009), through alteration of 
cell-cell and cell-ECM junctions and cytoskeletal reorganisation (Radisky, 2005).  
This process occurs under normal conditions, mostly in embryogenesis (such as in 
gastrulation and neural crest formation in amniotes) and is also a mechanism utilised 
by cancerous cells to disperse from the primary tumour (Acloque et al., 2009), via the 
Wnt and TGF" signaling pathways.  Snail and Slug transcription factors are also 
influential (Hay, 2005).  As the above suggests, EMT may occur in SCCs, as changes 
occur in keratin expression and cell-cell adhesions are lost.  In order to elucidate 
whether MET cells were capable of undergoing EMT in vitro, organotypic cultures 
were produced and immunofluorescence carried out. 
 
5.1.9: Three-dimensional Culture of SCC Cells 
Squamous cell carcinoma cell lines (MET cells) have been previously studied using 
the organotypic method.  In the original paper describing these cells, Proby et al. 
(2000) observed 3D growth on de-epidermised dermis (DED), although no accounts 
of invasion were recorded.   The original tumours from which the MET cell lines 
were derived were described as ‘deeply invasive’ so it is possible that these cells may 
act similarly in vitro.  More recent work studying SCC cells have used the 3D culture 
method to demonstrate invasiveness; for example, Brusevold et al., (2010) 
demonstrated that hypoxia could induce invasion in oral SCC 3D culture, whilst 
Grugan et al. (2010) have shown that fibroblast-secreted hepatocyte growth factor has 
a role in oesophagal SCC invasiveness. 
When cultured on de-epidermised dermis (DED), Proby et al. (2000) did however 
demonstrate that MET cell line cells did not stratify.  When cultured in this way, MET 
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1-4 cells were disorganised and appeared abnormal.  A previous study (Gioeli et al., 
1997), using another human SCC cell line (A388.6TG.c2) produced organotypic 
cultures as a method of investigating tumour suppression.  Again, the 3D cultures 
appeared abnormal, but some stratification did occur. 
 
 
5.2: Materials and Methods 
The materials and methods used in investigation of the effect of K15 on 
differentiation and proliferation are described in Chapter 2.  No changes or variations 
were made to the methods described. 
 

 

5.3: Results 

5.3.1: Experimental Approach 
The aims of this chapter were to observe the normal expression and appearance of 
K15 in the squamous carcinoma cell lines MET 1, 2 and 4.  The original paper 
describing these cells (Proby et al., 2000) did not describe K15 expression in these 
cells.  Once it had been established that K15 was expressed in MET cell line cells, the 
effects of K15 ablation on adhesion, spreading and migration was assessed.  These 
results could then be compared with HaCaT cells. 
 
5.3.2: Characterisation of K15 in MET 1, 2 and 4 Cells 
As previously carried out in HaCaT cells, double staining of K15 and K14 was carried 
out in all three MET cell lines used in this study (Figure 5.1).  The K14 observed in 
all three MET cell lines suggest a poorly organised IF network, with little filamentous 
staining observed.  Some non-specific nuclear staining can also be observed in MET 2 
cells (Figure 5.1 E).  Although Proby et al. (2000) stated that MET 1, 2 and 4 cells 
were K14-positive, no immunofluorescence images were included in the paper to 
indicate the arrangement or localisation of K14. 
The appearance of K15 is also different in the MET cell line cells compared to HaCaT 
cells.  K15 does not appear filamentous in any of the MET cell lines (Figure 5.1 B, F, 
J), instead having a more granular appearance.  This suggests that K15, although 
present in MET 1, 2 and 4 cells, is not filamentous.  This is particularly observed in 
MET 2 cells (Figure 5.1 F). 
The DAPI staining of the MET cell line cells suggest that the nuclei of the MET cells 
are also abnormal.  Nuclear abnormalies (such as polymorphism) has previously been 
described in cancer cells and more specifically in squamous cell carcinomas 
(Kurokawa et al., 2005). 
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F igure 5.1: K14 (green), K15 (red) and nuclear D API immunofluorescence in M E T 
cell line cells. 
Single plane confocal images of immunofluorescence showing both K14 and K15 in MET 

1 cells (A, B, C, D), MET 2 cells (E, F, G, H) and MET 4 cells (I, J, K, L) (scale bar = 

10!m). 

The immunofluorescence shows that cells can vary in the amount of K14 expressed.  K14 

appearance is not filamenous, as in HaCaT cells.  The arrangement of K14 is more 

concentrated around the nucleus, and does not appear throughout the cytoplasm to the cell 

edge. 

K15, although present, has not formed filaments in the MET cells, instead appearing 

granular, particularly in MET 2 cells (F).  K15 is present through the cytoplasm, up to the 

edges of the cells. 
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In addition, 14 day organotypic cell cultures were also created for each of the MET 
cell lines.  Although Proby et al. (2000) had difficulty culturing MET cells on DED 
scaffolds, it has been possible to culture MET cells on collagen gels (Figure 5.2).  All 
three MET cell lines were cultured for 14 days at the air-liquid interface and some 
stratification was observed; this was to the greatest extent in MET 1 cells and to a 
lesser extent in MET 4 cells.  MET 1 cells also demonstrated a slight change in cell 
morphology between those cells closest to the collagen gel and those at the surface; 
flatter cells are observed closer to the surface of the culture (Figure 5.2, A).  Some 
similar morphological changes were observed in MET 2 cells (Figure 5.2, B), 
although no changes were seen in MET 4 cells (Figure 5.2, C). 
K15, expressed in MET 1, 2 and 4 cells in monolayer culture, was also expressed 
throughout in 3D culture (Figure 5.2, A, B, C).  In MET 1 and 2 cells (Figure 5.2, A, 
B), K15 expression appears similar in all cells throughout all layers of the culture.  
There are cells throughout the MET 4 cell culture however (Figure 5.2, C) that appear 
brighter, indicating increased K15 expression.  This does not occur at any specific 
layer (as in normal skin sections), suggesting that the expression pattern here is due to 
the heterogenous K15 expression of MET 4 cells and is not occurring as a 
consequence of 3D culture.  This could also be a consequence of the aggregation of 
K15 observed in monolayer cultures (Figure 5.1, J). 
Further examination of MET 1 and MET 2 cell organotypic cultures demonstrated 
that cells had migrated into the collagen cells (no similar observation was made in 
MET 4 cells).  This was demonstrated by DAPI staining; these cells were K15-
negative (Figure 5.2, A, B; arrowheads).  This suggested that these cells had become 
invasive, and possible EMT had occurred. 
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F igure 5.2: O rganotypic M E T cell line 
cultures grown on collagen gels, raised 
to air-liquid interface for 14 days. 
K15 immunofluorescence in MET 1 (A), 

MET 2 (B) and MET 4 (C) cells.  

Sections A and B also show the nuclear 

marker DAPI (scale bar = 20µm).  In 

MET 1 cells (A), K15 expression appears 

uniform throughout the stratified layers.  

Cell morphology changes in a similar 

fashion to HaCaT cells.  Similarly, 

uniform expression of K15 is noted 

throughout the stratified MET 2 layers 

(B), although fewer changes in 

morphology can be seen.  In MET 4 cells, 

K15 expression appears disorganised 

throughout the cell layers, with regions of 

low and high brightness observed.  

Arrowheads in A and B indicate where 

K15-negative cells have invaded the 

collagen gels.  No similar observations 

were made in MET 4 cells (C).  
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5.3.3: Differentiation of MET 1, 2 and 4 Cells 
The results of the organotypic culture experiments suggested that MET 1 and 2 cells 
were still capable of some differentiation, resulting in morphological changes toward 
the surface of the 3D culture.  In order to investigate the differentiation potential of 
MET 1, 2 and 4 cells, cells were exposed to high and low calcium media for varying 
lengths of time. 
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F igure 5.3: K14 (green), K15 (red) and nuclear D API immunofluorescence in M E T 1 
cells following exposure to different levels of extracellular calcium. 
Single plane confocal images of immunofluorescence showing both K14 and K15 in MET 

1 cells following exposure to low calcium media for 6 h (A, B, C, D), high calcium media 

for 6 h (E, F, G, H), low calcium media for 72 h (I, J, K, L) and high calcium media for 72 

h (M, N, O, P) (scale bar = 10!m). 

K14 and K15 expression varies in MET 1 cells, particularly with exposure to high calcium 

media.  K15 (red) can be observed at the cell edges throughout, whereas K14 expression  

(green) is concentrated around the nucleus; this spreads further into the cytoplasm after 72 

h exposure to high calcium media, although does not reach the cell edge (as K15 does). 
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F igure 5.4: K14 (green), K15 (red) and nuclear D API immunofluorescence in M E T 2 
cells following exposure to different levels of extracellular calcium. 
Single plane confocal images of immunofluorescence showing both K14 and K15 in MET 

2 cells following exposure to low calcium media for 6 h (A, B, C, D), high calcium media 

for 6 h (E, F, G, H), low calcium media for 72 h (I, J, K, L) and high calcium media for 72 

h (M, N, O, P) (scale bar = 10!m). 

Immunofluorescence indicates that both K14 and K15 expression changes little in 

response to changes in extracellular calcium. 

Some heterogeneity can be observed in the expression of K14, with some cells expressing 

higher levels than others.  The merge panel also indicates that K14 expression is not 

observed to the edge of the cell, whereas K15 is. 



F igure 5.5: K14 (green), K15 (red) and nuclear D API immunofluorescence in M E T 4 
cells following exposure to different levels of extracellular calcium. 
Single plane confocal images of immunofluorescence showing both K14 and K15 in MET 

4 cells following exposure to low calcium media for 6 h (A, B, C, D), high calcium media 

for 6 h (E, F, G, H), low calcium media for 72 h (I, J, K, L) and high calcium media for 72 

h (M, N, O, P) (scale bar = 10!m). 

As observed with other MET cell lines, there is little change between K15 and K14 

expression following culture in different concentrations of extracellular calcium. 

There is some variation in K14 expression between MET 4 cells; K14 is also lacking at the 

cell edge (unlike K15). 
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5.3.3.1: K14 and K15 Expression in MET Cell Lines Exposed to High and Low 

Extracellular Calcium Concentrations 

As in Figure 5.1, the K14 network again appears poorly defined in MET 1 cells 
following exposure to varying levels of extracellular calcium.  This suggests that the 
irregular IF network observed is not as a result of changes in extracellular calcium 
concentration.  Some heterogeneity can be observed in K14 expression in MET 1 
cells after exposure to high calcium for 72 h (Figure 5.3 M, P), where some cells 
express low levels of K14.  Proby et al. (2000) observed keratin expression in their 
paper describing the four MET cell lines isolated, and no heterogeneity of K14 
expression is described.  Since Proby et al. (2000) used immunoblotting to establish 
the presence of keratins in the MET cell line cells, no comment on arrangement could 
be made or inferred from the results.  K15 expression however appears to remain 
around the nucleus more than towards the edge of the cells; it is possible that the K15 
network has collapsed into aggregates around the nucleus (for example, Figure 5.3 

N).  This said, K15 staining can be observed throughout the cytoplasm to the edge of 
the cells, whereas this is not always observed in K14.  An example of this can be seen 
at 6 h after exposure to high calcium, where K15 can be observed at the cell edges, 
unlike K14 (Figure 5.4, E, F). 
Similarly, in MET 2 cells, K15 can be observed throughout the cytoplasm up to the 
cell edges after 6 h in high calcium media, whereas K14 cannot (Figure 5.4, D).  The 
keratin staining in MET 2 cells following exposure to high and low calcium media 
again does not appear as expected for IF filaments, with K15 in particular forming 
aggregates (for example Figure 5.4 N).  Heterogeneity in K14 expression can also be 
observed; this can be seen in merge panels highlighting K15 staining in the absence of 
K14 staining (Figure 5.3 H, L, P), where K15-positive cells can be observed with 
little K14 staining. 
In MET 4 cells, K14 is not present at the cell edges in cells cultured in either high or 
low calcium (Figure 5.5 A, E, I M).  K14 and K15 staining in these cells again 
suggest that the normal IF network is not in tact; this is particularly the case in MET 4 
cells exposed to high calcium media for 6 h (Figure 5.5 E, F).  DAPI staining after 6 h 
exposure to low calcium media appears abnormal, which is likely to be an error 
during the staining process. 
 



F igure 5.6: Involucr in expression in M E T cell line cells following exposure to 
different levels of extracellular calcium. 
Single plane confocal images of immunofluorescence showing involucrin expression in 

MET cell line cells (scale bar = 10!m). 
Expression in MET 1 and 4 cells is similar, with low levels observed at 6h exposure to low 

calcium, and increased levels observed on exposure to high calcium.  Levels are expected 

to be high following 72 h exposure to high levels of extracellular calcium, although as 

cells differentiate involucrin be begin cross-linking other proteins, making it unavailable 

to immunofluorescence antibodies for staining.  Staining intensity of involucrin in MET 2 

cells is slightly lower than in MET 1 and 4 cells, although is still increased when cells are 

cultured in high calcium media. 
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5.3.3.2: Involucrin Expression in MET Cell Lines Exposed to High and Low 

Extracellular Calcium Concentrations 
It was considered useful to use immunofluorescence to establish whether exposure to 
varying levels of extracellular calcium would affect involucrin expression, since this 
had been established in HaCaT cells. 
In MET 1 cells, low levels of involucrin can be observed after 6 h exposure to low 
levels of calcium; this is as expected, as low calcium would not induce differentiation.  
Involucrin levels are raised after 6 h in high calcium media, with expression 
concentrated around the nucleus.  Lower levels of involucrin can be observed after 72 
h in high calcium media compared to 6 h; this could be because the involucrin has 
become cross-linked, preventing the protein from being available for 
immunofluorescence (a similar effect had been observed in K15 ablated HaCaT 
cells).  Levels of involucrin are still relatively high following 72 h exposure to low 
calcium media; this could indicate that some spontaneous differentiation is occurring 
in MET 1 cells, despite the presence of K15.  This suggests that the K15 expression in 
MET 1 cells may not correspond with a degree of differentiation.  Some involucrin 
staining appears nuclear in the MET 1 cells (for example, Figure 5.6 D), suggesting 
that some cross-reaction of the antibody may be occurring. 
Lower levels of involucrin can be observed in MET 2 cells compared to MET 1 and 
MET 4 cells (Figure 5.6, B, E, H, K).  Involucrin levels of cells cultured in low 
calcium media are low, suggesting that no differentiation is occurring.  Unlike MET 1 
cells, this indicates that these cells are less likely to spontaneously differentiate.  
Relatively low levels of involucrin can be observed after only 6 h in high calcium 
media, whereas more involucrin can be observed after 72 h.  This suggests that longer 
exposure to high levels of extracellular calcium induces some differentiation in MET 
2 cells. 
In MET 4 cells, involucrin is expressed at varying levels following exposure to high 
or low calcium media (Figure 5.6, C, F, I, L).  After 6 h in low calcium media, low 
levels of involucrin are observed (Figure 5.6, C); this is as expected, as involucrin is a 
marker of differentiation, which is not induced by low levels of extracellular calcium.  
At 72 h in low calcium media, an increase in involucrin can be observed, although 
levels have not increased to those seen when MET 4 cells are exposed to high calcium 
media (Figure 5.6, I).  After 6 h exposure to high calcium media, there is an increase 
in involucrin expression.  Involucrin is expressed throughout the cell, although more 
intense staining can be observed around the nucleus of some cells.  High levels of 
involucrin can also be observed after 72 h in high calcium media.  Again, this is 
mostly focused around the nucleus.  This would indicate that exposure to high levels 
of extracellular calcium does induce differentiation in MET 4 cells.  The slight 
reduction in involucrin observed after 72 h in high calcium media is possible due to 
the cross-linking of involucrin, rendering it unavailable for staining.  This is similar to 
the involucrin expression observed in MET 1 cells.  These results suggest that despite 
the disorganised arrangement of MET 4 cells in organotypic culture, they are capable 
of differentiation. 
 
5.3.4: K15 Ablation of MET 1, 2 and 4 Cells 
5.3.4.1: Cytoskeletal Protein Expression in K15 Ablated Cells 
K14 expression in MET cell line cells has previously been shown to vary between 
cells.  Following K15 siRNA transfection, K14 expression was again observed using 
immunofluorescence.  In MET 1, 2 and 4 cells, K14 expression appears to vary little 
between control siRNA transfected and K15 siRNA transfected cells (Figure 5.7). 
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As actin expression changed with K15 ablation in HaCaT cells, actin expression was 
observed in MET cell line cells. No changes can be observed in actin arrangement in 
K15 siRNA transfected cells compared to control siRNA transfected cells (Figure 

5.8).  Actin fibres can be seen throughout the cell, typically reaching the edge of the 
cells (and some filopodia-like actin protrusions can be seen).  This suggests that K15 
ablation has no effect on actin arrangement in MET cell line cells. 
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F igure 5.7: K14 expression in M E T cell line cells 48 h post-transfection. 
Single plane confocal images of immunofluorescence showing both K14 in control siRNA 

transfected (D, E, F) and K15 siRNA transfected cells (A, B, C) (scale bar = 10!m). 
As previously observed, K14 expression is heterogeneous.  K14 expression in MET 1, 2 

and 4 cells is similar in control siRNA transfected and K15 knock-down cells. 
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F igure 5.8: Actin expression in M E T cell line cells 48 h post-transfection. 
Single plane confocal images of immunofluorescence showing actin in control siRNA 

transfected (D, E, F) and K15 siRNA transfected (A, B, C) cells (scale bar = 10!m). 
Actin expression appears normal in all three cell lines, with expression throughout the 

cells.  Some filopodia-like protrusions can be observed, concurrent with the increased 

likelihood of cell dissociation in MET cell line cells. 
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5.3.4.2: Cell-Cell Adhesion Markers in K15 Ablated Cells 

Desmoplakin staining (data not shown) suggested that no desmosomes formed 
between any cells, in either control siRNA transfected and K15 siRNA transfected 
MET cell line cells.  This is possibly due to the low cell density; it is possible that 
MET cell line cells do produce desmosomes at increased cell densities. 
Control siRNA transfected MET 1, 2 and 4 cells demonstrate some E-cadherin-
positive cell-cell junctions, despite cells being somewhat dissociated (Figure 5.9, D, 
E, F).  Cells were more dissociated in K15 siRNA transfected MET 1 and MET 4 
cells, where few E-cadherin-positive cell-cell junctions can be observed due to the 
low cell density (Figure 5.9, A, C).  However, where cell-cell contact has been 
established, E-cadherin-positive adherens junctions do form.  The cell-cell adhesions 
in K15 siRNA transfected MET 2 cells are comparable to control siRNA transfected 
cells (Figure 5.9, B).  Fuller et al. (1996) and more recently Canavese et al. (2007) 
have suggested that lack of E-cadherin correlates with invasive potential.  MET 1 and 
MET 2 control siRNA transfected and K15 siRNA transfected cells all produce E-
cadherin-positive adherens junctions, suggesting that their invasive potential is 
limited.  Control siRNA transfected MET 4 cells appear to have more adherens 
junction formation compared to K15 siRNA transfected cells, suggesting that K15 
ablated MET 4 cells have an increased invasion potential.  However, the low cell 
density may reduce the number of adherens junctions in K15 siRNA transfected cells; 
increased cell densities may allow more cell-cell contact and increased opportunity to 
produce adherens junctions. 
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F igure 5.9: E-cadher in expression in M E T cell line cells 48 h post-transfection. 
Single plane confocal images of immunofluorescence showing E-cadherin in control 

siRNA transfected (D, E, F) and K15 siRNA transfected cells (A, B, C) (scale bar = 

10!m). 
Control siRNA transfected cells of all MET cell lines have some E-cadherin-positive cell-

cell junctions.  A similar staining pattern is observed in K15 siRNA transfected MET 2 

cells, suggesting that K15 ablation does not affect formation of cell-cell junctions.  Fewer 

junctions are identified in MET 1 and 4 K15 siRNA transfected cells, possibly due to 

increased cell dissociation. 
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F igure 5.10: F ilaggrin expression in M E T cell line cells 48 h post-transfection. 
Single plane confocal images of immunofluorescence showing filaggrin in control siRNA 

transfected (D, E, F) and K15 siRNA transfected cells (A, B, C) (scale bar = 10!m). 
All cells appear to have a similar level of filaggrin present, in both control siRNA 

transfected and K15 siRNA transfected cells.  Filaggrin appears around the nucleus in the 

cytoplasm, and in some cells has a granular appearance. 
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5.3.4.3: Filaggrin Expression in K15 Ablated Cells  
In monolayer cell culture, filaggrin expression in MET cell line cells was assessed.  
The calcium switch experiment had already established that all three MET cell lines 
used in this study were capable of differentiation.  Filaggrin expression, assessed 
following K15 ablation, would demonstrate whether K15 ablated cells could 
differentiate to the extent that filaggrin is produced above levels in undifferentiated 
cells.  Expression levels appear similar in both K15 ablated cells (Figure 5.10, A-C) 
and control siRNA transfected cells (Figure 5.10, D-E), suggesting that K15 
expression does not affect filaggrin expression in MET cells.  In all cells, filaggrin 
appears localised around to the nucleus in the cytoplasm.  In addition, filaggrin in 
MET 4 control siRNA and K15 siRNA transfected cells appears granular (Figure 

5.10, C, F).  These results indicate that K15 ablation does not initiate differentiation 
of MET cell line cells to an extent where filaggrin is upregulated. 
 



Like HaCaT cells, MET 1 cells (both K15 knock-down and control siRNA transfected) 

decrease in circularlity during spreading, although there is little difference between K15 

knock-down cells or control cells.  MET 4 cell circularity changes little between 40 and 

120 minutes post-seeding, and there is also no significant difference between K15 knock-

down cells and control siRNA transfected cells.  

MET 1 Cells 

Minutes K15 siRNA Transfected Control siRNA Transfected 

10 0.75 0.71 

20 0.57 0.61 

120 0.49 0.43 

MET 4 Cells 

Minutes K15 siRNA Transfected Control siRNA Transfected 

40 0.59 0.62 

120 0.58 0.63 

Table 5.1: Charts of MET 1 and MET 4 circularity, calculated using the !"#$% "&'(#$) 

formula (1=perfect circle). 
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5.3.4.4: Cell Circularity of K15 Ablated MET Cell Line Cells 

Although filaggrin immunofluorescence suggested that K15 ablation did not induce 
MET 1, 2 or 4 cells to differentiate, another indicator of differentiation (cell 
circularity) was tested.  Since MET 1 cells appeared to have the most differentiation 
potential (as demonstrated by the change in morphology in organotypic cultures) and 
MET 4 the least, measurements of these cell lines were used to calculate circularity 
(Table 5.1).  At 120 minutes post-seeding, there is no significant difference between 
K15 siRNA transfected and control siRNA transfected MET 1 cells.  Likewise, no 
significant difference was noted between control siRNA and K15 siRNA transfected 
MET 4 cells 120 minutes post seeding.  This suggests that cells were no more circular 
prior to K15 ablation than following it, which correlates with the unchanged actin 
distribution previously discussed.  Using Student’s t-test, the difference between MET 
1 and MET 4 control siRNA transfected cell circularities were found to be 
significantly different (p<0.05).  This would suggest that the MET 4 cells are less 
differentiated than MET 1 cells. 
 
5.3.5: Adhesion of K15 Ablated MET 1, 2 and 4 Cells 
To obtain live cell imaging images of MET cell line cells adhering and spreading, 
cells were suspended in media, and seeded into wells of a six-well plate.  As soon as 
the cells are seeded, the plate is mounted on a live cell imaging microscope and phase 
contrast images taken automatically at intervals of 46 seconds. 
Due to the small region which can reasonably observed at the magnification used, 
only a small number of cells were observed.  This prevented useful statistical analysis 
being carried out. 



F igure 5.11: L ive cell imaging of M E T 1 cell adherence. 

Ten images of control siRNA transfected MET 1 cells between 140 seconds (A) and 600 

seconds (J) post-seeding (scale bar = 50µm).  Arrowhead = time-elapsed images. 

As shown by the example cell (arrow), little cell spreading occurs within the first 10 

minutes post-seeding.  As cells are seeded, some cells begin to adhere to the plate 

immediately (for example, the cell highlighted by the arrow).  As the cell spreads the 

nucleus can be observed, as can the thicker cell edge produced as the cell is spreading. 
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F igure 5.12: L ive cell imaging of M E T 1 cell adherence. 
Ten images of K15 siRNA transfected MET 1 cells between 140 seconds (A) and 600 

seconds (J) post-seeding (scale bar = 50µm).  Arrowhead = time-elapsed images. 

As shown by the example cell (arrow), little cell spreading occurs within the first 10 

minutes post-seeding.  As cells are seeded, some cells begin to adhere to the plate (for 

example, the cell highlighted by the arrow).  As the cell spreads the nucleus can be 

observed, and by 600 seconds (J) the  thicker cell edge can also be observed. 
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F igure 5.13: L ive cell imaging of M E T 2 cell adherence. 
Ten images of control siRNA transfected MET 2 cells between 140 seconds (A) and 600 

seconds (J) post-seeding (scale bar = 50µm).  Arrowhead = time-elapsed images. 

The cell highlighted by the arrow begins to attach and spread approximately 232 seconds 

post-seeding (C).  As the cell spreads the nucleus can be observed, as can the thicker cell 

edge. 
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F igure 5.14: L ive cell imaging of M E T 2 cell adherence. 
Ten images of K15 siRNA transfected MET 2 cells between 140 seconds (A) and 600 

seconds (J) post-seeding (scale bar = 50µm).  Arrowhead = time-elapsed images. 

Although the cell highlighted by the arrow begins to attach and spread approximately 140 

seconds post-seeding (A), the cell does not spread to a great extent as observed, for 

example, in MET 2 control siRNA transfected cells by 600 seconds post-seeding (J).  The 

nucleus of the cell is visible, however the spreading cell edges are less obvious. 
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Control siRNA transfected MET 1 cells begin to adhere to the plastic of the six-well 
plate soon after seeding.  Figure 5.11 shows several cells attaching and spreading (for 
example, the cell highlighted by the arrow).  Some cells have attached and begun 
spreading within 10 minutes.  In these cells, the nucleus can be identified, as well as 
the thick contours of the cell edge.  Fewer numbers of cells have not yet begun to 
spread (smaller, very bright cells on the microscopy images). 
Similarly to control siRNA transfected cells, K15 siRNA transfected cells begin to 
attach soon after seeding (Figure 5.12).  However, when compared to control siRNA 
transfected MET 1 cells, fewer cells have begun to spread within 10 minutes, and 
most cells still appear to be small and round compared to spreading cells.  Those cells 
which are spreading appear similar in morphology to control siRNA transfected MET 
1 cells (i.e. the nucleus and defined cell edges can clearly be seen).  Morphologically 
however, spreading K15 siRNA transfected MET 1 cells are still smaller than their 
control counterparts 10 minutes post-seeding. 
Fewer control siRNA transfected MET 2 cells adhere within 10 minutes compared to 
MET 1 control siRNA transfected cells, and take slightly longer than MET 1 cells to 
adhere (Figure 5.13).  As this is the case, MET 2 control siRNA transfected cells have 
not spread to the same extent as MET 1 control cells 10 minutes post-seeding.  The 
nucleus and cell edge can clearly be observed in spreading cells (such as the cell 
highlighted by the arrow).  K15 siRNA transfected MET 2 cells appear to attach at a 
similar time to MET 2 control siRNA transfected cells (Figure 5.13, 5.14).  Nuclei 
and cell edges are also clearly defined although spreading cells have not spread to the 
same extent as MET 2 control siRNA transfected cells 10 minutes post-seeding.  
Many cells have adhered but have not yet begun to spread (these appear small and 
round in microscopy images). 
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F igure 5.15: L ive cell imaging of M E T 4 cell adherence. 
Ten images of control siRNA transfected MET 4 cells between 140 seconds (A) and 600 

seconds (J) post-seeding (scale bar = 50µm).  Arrowhead = time-elapsed images. 

Although a single cell is highlighted here, most cells seeded begin to attach and spread by 

370 seconds post-seeding (E).  By 600 seconds post-seeding the cells are almost all 

adhered and spreading; the cell highlighted again shows a thicker cell edge. 
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F igure 5.16: L ive cell imaging of M E T 4 cell adherence. 
Ten images of K15 siRNA transfected MET 4 cells between 140 seconds (A) and 600 

seconds (J) post-seeding (scale bar = 50µm).  Arrowhead = time-elapsed images. 

Similarly to MET 4 control siRNA transfected cells, MET 4 K15 ablated cells appear to 

adhere by 600 seconds post-seeding, although do not appear to have spread to the same 

extent.  As highlighted by the arrow, the adhered cells can be seen to have a thicker 

spreading cell edge. 
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Control siRNA tranfected MET 4 cells adhere and begin to spread earlier than control 
siRNA  transfected MET 1 and MET 2 cells; by 10 minutes post-seeding, most cells 
have adhered and started to spread (there are few small, round cells – Figure 5.15 J).  
The nucleus and defined cell edge can be seen in cells that have been spreading (for 
example, see arrow).  Similarly, K15 siRNA transfected MET 4 cells adhere swiftly 
(Figure 5.16).  These cells however take longer than their control siRNA transfected 
counterparts to begin spreading.  As this is the case, the average cell size is smaller 10 
minutes post-seeding than control cells.  The defined nucleus and cell edge are still 
visible however. 
 
5.3.6: Migration of K15 Ablated MET 1 Cells  
A scratch wound assay was used to assess the rate of sheet migration in MET cell line 
cells, as had been carried out in HaCaT cells (Chapter 4).  MET 1 cells were used for 
this assay as these cells would grow in a confluent monolayer in culture whereas 
MET 2 and MET 4 cells were more dissociated in monolayer cultures.  For the 
scratch would assay, a monolayer is required which is as close to 100% confluency as 
possible, without stratification.  MET 2 and MET 4 cells however would begin to 
stratify in regions of the well or flask before a confluent monolayer was established.  
For this reason, only MET 1 cells were available for this assay.  MET 1 cells were 
transfected and cultured as for HaCaT cells.  As soon as the 100% confluent 
monolayer was scratched, the six-well plate was mounted onto a live cell imaging 
microscope, and phase contrast images taken every 10 minutes. 



F igure 5.17: L ive cell imaging of a scratch wound assay 
MET 1 control siRNA transfected cells.  The 10 images are taken at the following 

timepoints post-scratch: 0 mins (A), 10 mins (B), 20 mins (C), 40 mins (D), 60 mins (E), 

90 mins (F), 120 mins (G), 180 mins (H), 240 mins (I), 300 mins (J) and 360 mins (K).  At 

this time, the wound is completely closed. 

Scale bar = 100µm. 
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F igure 5.18: L ive cell imaging of a scratch wound assay 
K15 siRNA transfected MET 1 cells.  The 10 images are taken at the following timepoints 

post-scratch: 0mins (A), 10 mins (B), 20 mins (C), 40 mins (D), 60 mins (E), 90 mins (F), 

120 mins (G), 180 mins (H), 240 mins (I), 300 mins (J) and 360 mins (K).  At this time, 

the wound is not yet completely closed, unlike control siRNA transfected MET 1 cells.  

This suggests cells are collectively migrating at a slower rate. 

Scale bar = 100µm. 

= edge of wound 
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In MET 1 cells, the wound healed faster than in HaCaT cells (as expected from 
tumour-derived cell lines).  Similar undulation of the wound edge can be observed.  In 
control siRNA transfected cells, the wound is closed by 300 minutes post-scratch 
(Figure 5.17).  This does not occur in the K15 siRNA transfected cells, where the 
wound is still open at 360 minutes post-scratch (Figure 5.18).  A graph showing 
percentage wound closure (Figure 5.19) suggests that initially, the K15 knock-down 
monolayer wound begins to heal more swiftly.  However, by 300 minutes the control 
siRNA transfected monolayer wound is closed and the K15 knock-down wound is 
not.  The effect of K15 ablation in HaCaT cells is opposite to the effects observed in 
MET 1 cells: in K15 ablated HaCaT cells, the wound heals slightly quicker than 
control siRNA transfected cells.  In MET 1 cells however, the control siRNA 
transfected wound heals quicker. 
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F igure 5.19: A graph to show the percentage wound closure of K15 siRN A transfected 
and control siRN A transfected M E T 1 cells. 
Wound closure was measured using the live cell imaging images (from F igure 5.17 and 
5.18) using Image J.  Wound closure was calculated at 0% at 0 mins, and closure 

calculated relative to this (i.e. 100% indicates a completely closed wound).  Error bars = 

standard deviation. 
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5.4: Discussion 
5.4.1: Keratin 14 Expression in MET Cell Lines 
In the initial study characterising MET cell line cells, Proby et al. (2000) carry out 
immunoblotting to establish the presence or absence of various keratins.  This 
however does not examine the appearance or localisation of these proteins in the cell.  
This study has used immunofluorescence techniques to observe the appearance of 
K14 (and K15) in MET 1, 2 and 4 cells.  K14 did not appear as expected in normal 
keratinocytes; instead, the filaments in the MET cell line cells were not clearly 
defined.  In addition, K14 was not expressed throughout the cytoplasm to the cell 
edge (for example, Figure 5.1 H).  These results suggest that K14 has a limited 
structural role in these cells. 
In control siRNA transfected cells (Figure 5.7), K14 appears as in untransfected cells 
(Figure 5.1); heterogeneous staining is observed in MET 2 and 4 cells; low levels of 
K14 are observed in MET 1 cells.  Following K15 knock-down, K14 expression in 
MET 1, 2 and 4 cells are comparable to control siRNA transfected cells.  Werner et 

al. (2000) demonstrated that after skin injury, K15 mRNA levels were reduced whilst 
K14 levels increased.  This suggests that such compensation is possible.  Since levels 
of K14 appeared generally higher in MET cells, it is possible that no such 
compensation was required due to loss of K15 in these cells. 
However, since the staining produced is not as expected (i.e. K14 does not appear 
filamentous and some nuclear staining has occurred), caution must be exercised when 
considering these results.  Further work could be carried out to confirm these possible 
findings; these will be discussed in section 5.4.7.2. 
 
5.4.2: Keratin 15 Expression in MET Cell Lines 
Unlike K14 expression, K15 levels are similar in all three MET cell lines examined.  
K15 expression has not been previously examined in MET cell line cells, although 
expression in SCC sections has been examined.  Kanoh et al. (2008) demonstrated 
that SCCs were K15-positive, nestin-negative and CD34-negative.  From these 
results, Kanoh et al. (2008) suggested that SCCs developed from keratinocytes in the 
basal layer of the epidermis.  In this study, K15 is expressed throughout to the edge of 
the MET cells, and in some regions has a granular appearance – this is most obviously 
seen in MET 4 cells.  A concentration of K15 can be observed around the nucleus. 
This abnormal appearance of K15 has been briefly described elsewhere.  Jonkman et 

al. (1996) demonstrated that K15 was upregulated in some EBS suffers with K14 
mutations.  However, the K15 assembled into protofilaments with K5, but not into 
larger intermediate filaments or higher order keratin bundles.  Aggregation of keratin 
has been described in murine squamous cell carcinomas: Frontelo et al. (1998) 
demonstrated that following exposure to TGF!1, the entire cytoskeleton became 
disorganised, with keratins forming focal juxtanuclear aggregates.  Although TGF!1 
expression has not been confirmed in MET cell lines, other SCCs are known to 
express this growth factor; alongside EGF, TGF!1 can induce EMT in SCCs (Walsh 
et al., 2011; Richter et al., 2011).  Since MET 4 cells are established from a metastatic 
tumour, it is possible that these cells are capable of EMT.  This study also 
demonstrated that MET 1 and 2 cells were capable of invasion (Figure 5.2 A, B), 
suggesting that these cell lines are also capable of EMT.  Confirmation of TGF!1 and 
EGF expression in these cells may aid in confirming this (see also section 5.4.7). 
As previously mentioned, Proby et al. (2000) were not successful in creating 
organotypic cultures of MET cell line cells using DED.  It has however been possible 
to culture MET 1, 2 and 4 cells on collagen scaffolds.  After 14 days at the air-liquid 
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interface, all MET 1, MET 2 and MET 4 cells were K15-positive, although variation 
was observed between and within cell types.  The change in morphology in MET 1 
and MET 2 cells cause the cells at the top of the culture to flatten; these cells are K15-
positive; this is not observed in normal skin sections.  The expression of K15 in MET 
4 cells varies, with some cells expressing K15 to a greater extent than others.  This 
aids in confirming the previous observation seen in monolayer cultures: i.e. keratin 
expression in MET cell line cells is heterogenous. 
 
5.4.2.1: Effect of K15 Ablation on MET Cells 

To assess the effect of K15 ablation in MET cell line cells, K15 siRNA transfection 
was used to reduce K15 expression.  The optimum knock-down of K15 in MET cell 
line cells occurred at 48 h post-transfection, as in HaCaT cells.  As previously 
mentioned, K14 expression does not appear to change in MET 1, 2 or 4 cells.  It is 
unlikely any compensatory mechanism occurs to increase the stability of the cell 
structure, since the granular appearance of K15 suggests that it’s role in MET cells in 
not structural.  In addition, it is unlikely that K14 has an important structural role, 
again considering the unusual expression pattern.  Windoffer and Leube (1999) 
demonstrated that keratin hetrodimers and tetramers (referred to as ‘granules’) are 
located at the cell membrane, since microfilaments or focal contacts or adhesions at 
the membrane may initiate keratin filament formation at the periphery and centre of 
the cell.  Modifications of keratins are capable of affecting filament structure, 
including glycosylation, deimination, phosphorylation and dephosphorylation, for 
example.  Phosphorylation of keratins can enable or prevent interaction with other 
keratins (Woll et al., 2007), signaling molecules, receptor molecules (Kirfel, Magin 
and Reichelt, 2003) and other proteins (Liao et al., 1995b; Strnad et al., 2002).  In 
addition, phosphorylation affects the solubility and organisation of filaments (Liao et 

al., 1995a; Strnad et al., 2002).  As phosphorylation has such an effect on keratin 
remodelling (Owens and Lane, 2003; Pekny and Lane 2007), it is possible that in the 
MET cells have defects in phosphorylation or dephosphorylation which may cause the 
effect on K15 and K14 observed.  Another explanation may be that where mature K14 
and K15 keratin filaments were present, actions such as deimination or proteolytic 
cleavage has resulted in conformational changes.  Deimination for example has been 
shown to cause conformational changes to K1 and K10 during terminal differentiation 
(Senshu et al., 1996).  Proteolytic cleavage has also been shown to occur as part of the 
keratinisation of stratified epithelia (Presland and Jurevic, 2002). 
There were also no changes in actin expression or arrangement in MET 1, 2 or 4 cells 
following K15 knock-down.  Since some filopodia-like protrusions can also be 
observed in both K15 siRNA transfected and control siRNA transfected cells, it is 
likely that cells are spreading in both control and K15 ablated MET 1, 2 and 4 cells.  
Although Iwai et al. (2010) demonstrated that actin is rearranged in SCC cells 
(induced by accumulation of !-catenin), increasing the potential of the cells to invade 
and migrate, no evidence of actin rearrangement was observed in this study.  This said 
however, it was noted that cells were more dissociated in K15 ablated cells (Figure 

5.8, A, B, C) and fewer E-cadherin-positive cell-cell adhesions were observed 
compared to control sRNA transfected cells in MET 4 cells.  Lack of E-cadherin has 
previously been linked with invasive potential (Fuller et al., 1996; Canavese et al., 
2007).  This lack of E-cadherin-positive adherens junction formation however may be 
as a result of low cell density, so caution must be taken with interpretation of this 
result.  In the original publication describing the MET cell lines however, Proby et al. 
(2000) describe the dissociation of MET cells, resulting in fewer cell-cell junctions.  
This result of this study then is consistent with a previous result. 
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Although it appears that K15 ablation may affect migration (see also section 5.3.6), it 
did not appear to affect differentiation (see also section 5.3.4).  Neither filaggrin 
levels nor appearance changed following K15 knock-down in all MET cell lines 
examined.  Likewise cell circularity calculations suggest that there is no significant 
difference in cell shape between control siRNA transfected cells and K15 siRNA 
transfected cells 120 minutes post seeding.  Some changes were observed however 
soon after seeding; in MET 1 cells, K15 knock-down cells did not adhere as quickly 
as control siRNA transfected cells.  In MET 2 and 4 cells, K15 siRNA transfected 
cells appear to adhere at the same time as control siRNA transfected cells, but spread 
more slowly.  It has previously been suggested that K15-positive cells (i.e. stem cell-
like cells) adhere rapidly in vitro (Liu, Zhou and Gao, 2008; Roh et al., 2008).  K15-
negative cells then adhere more slowly, as observed in MET 1 cells.  Since it is 
possible that the K15 observed in MET 2 and 4 cells is not having a substantial effect 
on differentiation (as suggested by the involucrin results in control siRNA and K15 
siRNA transfected MET cells), it is also possible that K15 expression is not a marker 
which would indicate rapid cell adhesion either.  It is also likely that K15 is only a 
‘marker’ of this phenomenon, and not directly involved in cell adhesion.  Further 
work is required to identify the mechanisms that highlight K15 as a marker of rapidly 
attaching cells.  In addition, further investigation the number of cells adhering is 
required using, for example, an MTT assay to quantify the number of attached cells at 
given timepoints (see section 5.4.7.2). 
 
5.4.3: Differentiation of MET Cell Line Cells 
Similar K14 and K15 arrangement was also seen in cells exposed to different levels of 
extracellular calcium.  Although a calcium switch assay has not previously been 
carried out on MET cells, some studies have been made with regards to 
differentiation.  In normal skin, as intracellular calcium levels increase, keratin 
expression changes from K14/K5 to K10/K1 (section 1.1.1.2.; Yuspa et al., 1989).  
Watanabe et al. (1995) observed that differentiation-specific keratins were expressed 
at reduced levels in immature SCC cells, whereas expression of simple epithelial or 
non-cornifying stratified squamous epithelial keratins could be a marker for 
metastatic or invasiveness potential.  Proby et al. (2000) noted that MET 1-4 cells 
were K14-positive, K10/K1 negative.  In this study, some reduction in K14 levels are 
observed following 72 h exposure to high extracellular calcium, suggesting that some 
differentiation may be occurring.  In MET 1 cells, a change in both K14 and K15 
arrangement can be observed after 72 h in high calcium media.  Both keratins 
switched from being concentrated around the nucleus to being spread throughout the 
cell cytoplasm.  To further examine differentiation in MET cell line cells following 
exposure to high or low levels of extracellular calcium, involucrin 
immunofluorescence was carried out.  In MET 1 cells, increased levels of involucrin 
were observed after 6 h exposure to high calcium; lower levels of staining were 
observed after 72 h exposure, possibly due to involucrin crosslinking (making the 
protein unavailable for immunofluorescence).  After 72 h exposure to high calcium 
levels, involucrin levels in MET 2 cells are increased, again suggesting that some 
differentiation may be occurring. 
Image J was used to calculate cell circularity in MET 1 and 4 cells.  It can be seen that 
in both cell types, at 120 minutes post-seeding, there is little difference between K15 
siRNA transfected cells and control siRNA transfected cells in both MET 1 and MET 
4 cell lines.  Control siRNA transfected MET 1 cells are slightly less circular than 
MET 4 cells (and has been shown to be statistically significant); this also occurs in 
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K15 ablated cells (although this is not statistically significant).  As circularity is an 
indicator of more undifferentiated cells, it is expected that K15-positive cells are more 
circular than K15 ablated cells.  Although the calculations would suggest that this 
occurs in MET 1 cells and not MET 4 cells, no statistical significance between control 
siRNA transfected and K15 siRNA transfected cells occurs in either cell type.  The 
reason that MET 4 cells are more circular could be related to actin arrangement and 
therefore E-cadherin expression.  Lack of E-cadherin in MET 4 cells may led to 
rearrangement of the actin cytoskeleton (Alt-Holland et al., 2008), typical of invasive 
tumour cell phenotypes (however, the actin cytoskeleton appeared normal in this 
study: Figure 5.8 F).  It could be then that the most invasive cell type (MET 4) are 
smaller and more circular than the other MET cell line types. 
 
5.4.4: Actin Arrangement and Cell Adhesion Marker Expression in MET Cells 
As actin arrangement was affected following K15 ablation in HaCaT cells, actin 
immunofluorescence was carried out following K15 siRNA transfection.  As with 
K14, levels of actin appeared to vary within cell populations.  In MET 4 cells, actin 
levels in both control siRNA transfected and K15 siRNA transfected cells are similar.  
In MET 1 and 2 cells, some heterogeneity can be observed, although the arrangement 
is similar.  In all MET cell line cells, actin can be observed up to the edge of the cell.  
Filopodia-like protrusions can also be observed at the cell edges, as in HaCaT cells.  
Actin arrangement and expression is linked to E-cadherin.  Alt-Holland et al. (2008) 
describe a lack of E-cadherin in HaCaT-II-4 cells leads to reorganisation of the actin 
cytoskeleton, including motility structure aquisition.  E-cadherin can be observed in 
both K15 siRNA transfected and control siRNA transfected MET 1 and 2 cells, in 
regions of cell-cell adhesion.  This is also seen in MET 4 control siRNA transfected 
cells, although not K15 ablated MET 4 cells.  As noted by Proby et al. (2000), these 
cells are predisposed to dissociate; this may be the reason for the absence of E-
cadherin-positive cell-cell adhesions in these cells.  It does however suggest that K15 
knock-down MET 4 cells dissociate to a greater extent than control siRNA transfected 
MET 4 cells (and also to a greater extent than K15 ablated MET 1 and 2 cells).  Alt-
Holland et al. (2008) note that E-cadherin suppression is linked to HaCaT-II-4 
migration in 3D culture; if low levels of E-cadherin are linked to a more motile cell 
phenotype, this would, in theory, be more obvious in MET 4 cells.  It has previously 
been suggested that K15-negative cells would be more motile than K15-positive cells 
(Roh et al., 2005; Roh et al., 2008); this study also observed that after 24 h, K15 
knock-down HaCaT cells (cultured as a monolayer) had closed a wound to a greater 
extent than control (K15-positive) cells.  It may be that this is also the case in the 
MET 4 cells.  In unaltered MET 4 cells, K15 expression (although high) is relatively 
granular in appearance compared to, for example, MET 1 cells (Figure 5.1); this may 
be either as an effect of increased motility, or a regulatory factor in this feature.  
However, as it is difficult to culture MET 4 cells in a confluent monolayer, it was not 
possible to complete a good scratch wound assay in order to assess MET 4 motility, 
either with or without K15.   
 
5.4.5: Migration of MET 1 Cells 
MET 1 cells could be grown to form a confluent monolayer, allowing wound closure 
speed (as a measure of motility) to be assessed (Figure 5.17, 5.18).  As is typical of 
cancer cells, SCC cells are more motile than normal keratinocytes.  Proby et al. 
(2000) suggest that MET 1-4 cells dissociate, and are therefore less likely to form 
junctions which would allow movement as a migratory sheet.  When cultured as a 
monolayer, HaCaT-II-4 cells had low levels of E-cadherin, induction of "–actin 
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production and reorganization of the actin cytoskeleton (Alt-Holland et al., 2008).  
Alt-Holland et al. (2008) suggest that these changes are likely to contribute to the 
activation of the invasive tumour cell phenotype from the precursor to the carcinoma, 
as observed in vivo.  Collagen has also been shown to have an effect on migration.  
Type VII collagen is the main component of attachment structures within the lamina 
densa of the basement membrane, called the anchoring fibrils.  Mutations to the Type 
VII collagen gene can cause a type of epidermolysis bullosa.  When the same 
mutation is inserted into MET 1 cells using RNAi, migration and invasion are 
promoted whilst differentiation is reduced; migration was increased two-fold (Martins 
et al., 2009). 
Although initially K15 siRNA transfected cells appeared to move to a greater extent, 
control siRNA transfected cells were the first to completely close the wound.  This 
could be as a result of the sheet of cells being ‘over stretched’ in the swift migration 
of K15 ablated cells at the wound front and needing to then compensate; this is 
unlikely however as control siRNA transfected cells have reached similar levels of 
wound closure by 120 minutes post-scratch.  It may also be an artifact of the MET 1 
cells’ tendency to dissociate.  If this is more likely in K15 ablated cells, then MET 1 
K15 siRNA transfected cells are less likely to ‘strive’ to close a wound compared to 
control cells; K15 ablated MET 1 cells need to be in contact with other cells to a 
lesser extent, therefore having a reduced requirement for wound closure. 
 
5.4.6: Conclusions and Further Work 
5.4.6.1: Summary of Findings 
These results suggest that MET cells do not differentiate normally.  The indicators of 
differentiation also produce different results in each of the cell lines tested.  For 
example, morphological changes (almost identical to those observed in HaCaT cells) 
could be observed in MET 1 cells, to a lesser extent in MET 2 cells and to no extent 
in MET 4 cells.  Some changes were observed in expression levels of involucrin 
following exposure to different concentrations of extracellular calcium, however these 
results were not as conclusive as those observed in HaCaT or NHEK cells.  Similarly, 
K15 ablation generally had little or no effect on MET cells which would indicate that 
without K15, cells being to differentiate. 
Since K15 is expressed in MET 1, 2 and 4 cells, it would suggest that these SCC cells 
arise from normal cells which already express K15 (i.e. are relatively 
undifferentiated). 
 

5.4.6.2: Further Work 
As previously indicated in section 5.4.3.1, several other experiments could be carried 
out.  To assess the structural integrity of cells with and without K15, cell stretching 
tests could be used to observe the ability of cells to sustain stretching with and 
without K15; this would indicate whether K15 had a role in maintaining the structure 
of the cell, and, if so, how influential this role was.  Such tests have been carried out 
before to assess remodeling of the keratin network in EBS (Russell et al., 2004), to 
establish phosphorylation of PKB and EGFR in keratinocytes (Kippenburger et al., 
2005) and more recently to demonstrate differences in mechanical stability in K10-
mutant keratinocytes (Obarzanek-Fojt et al., 2011). 
It would also be useful to establish whether cell-cell junctional proteins are expressed 
in more confluent monolayers of MET cell line cells.  This would be more difficult in 
successfully siRNA transfected cells, however only regions of high confluency are 
required to establish cell-cell contact and therefore cell-cell junctions.  
Immunofluorescence of desmoplakin, E-cadherin and ZO-1 would aid in establishing 
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whether MET cell line cells are capable of forming various cell-cell junctions, and 
whether K15 ablation has any effect.  Furthermore, to quanitatively assess whether 
K14 is upregulated in K15 ablated MET 1 cells (or MET 2 and 4 cells), western 
blotting could be carried out following K15 siRNA transfection in these cells.  Image 
J can be used to quantify these results.  In addition, the same antibody could be used 
as Proby et al. (2000) used in their study, allowing results to be more directly 
compared.   
It would also be useful to calculate cell circularity after a longer period post-seeding 
(for example, 24 h) to give a further indication of any changes in cell shape that occur 
in K15 ablated MET cells.  Although it appears that these cells are not necessarily 
undergoing ‘normal’ differentiation (section 5.4.8.1), cell shape is an indicator of how 
undifferentiated a cell may be.  It may also be useful to calculate nuclear:cytoplasm 
ratio as a further indication (for example, as in Roh et al., 2008).  As previously 
mentioned, additional work could be carried out to identify the mechanisms which 
highlight K15 as a marker of rapidly attaching cells.  Immunofluorecence images of 
cross sections of attaching cells may indicate whether K15 has a role at the cell 
periphery.  To further investigate the number of adhering cells, an MTT assay could 
be used to quantify the number of cells at various timepoints following seeding. 
It was also noted in section 5.4.2 and 5.4.6 that EMT may be occurring in MET 1 and 
2 cells.  To further examine this, it would be useful to use immunofluorescence to 
identify E-cadherin and "–catenin in organotypic cultures.  Cells undergoing EMT 
would demonstrate reduced E-cadherin levels whilst "-catenin levels increase; 
alteration may also be observed in actin arrangement (Alt-Holland et al., 2008), which 
could also be observed using immunofluorescence. 
This study observed that K15-negative MET 1 cells migrated more slowly than K15-
positive MET 1 cells.  This is similar to the initial results observed in HaCaT cells, 
where control siRNA transfected HaCaT cells migrate faster than K15 ablated HaCaT 
cells.  Proby et al. (2000) suggest that MET cells dissociate, form fewer cell-cell 
junctions, and therefore are not efficient as a migratory sheet.  In order to further 
investigate the motility of MET cells, organotypic cultures, as used in this study, 
could be scratched and immunofluorecence used to establish where K15 and cell-cell 
junctional proteins are expressed.  Since Martins et al. (2009) also demonstrated that 
collagen can have an effect on MET 1 cell migration, it may also be possible to 
culture monolayers of MET cell line cells onto collagen-coated plates prior to 
scratching to assess the effects of collagen on MET cell motility. 
 



CHAPTER 6: 

CONCLUSIONS AND FUTURE 

OUTLOOK 
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6.1: Aims 

The overall aim of this study was to establish the effect of K15 ablation on 
keratinocytes.  This was considered important as K15 has previously been shown to 
be expressed in primary keratinocytes and has been suggested as a marker of hair 
follicle stem cells.  To achieve this, siRNA techniques were used to transiently 
transfect five cell lines: the immortalised keratinocyte cell line HaCaT, the SCC cell 
lines MET 1, 2 and 4, and normal human epithelial keratinocytes (NHEK). 
 
6.2: Normal Expression of K15 

6.2.1: Expression of K15 in Whole Skin 
Normal K15 expression was observed in chapter 3 (mammalian skin, HaCaT and 
NHEK cells) and chapter 5 (SCC cells).  Some similar work had previously been 
carried out by, for example, Waseem et al. (1999), who identified K15 expression in 
the basal layers of human skin with a reduction in intensity towards the surface; a 
similar expression pattern was observed in this study (Figure 3.10).  Waseem et al. 
(1999) further confirmed this observation by using tissue in situ hybridization to 
demonstrate that K15 mRNA was located only in the basal cells.  This would suggest 
that the K15 observed above the basal layer is not actively expressed but is residual 
protein.  It has previously been shown that keratin subunits have a short half-life, 
whereas filaments are more stable (Werner et al., 2004); this suggests that K15/K5 
filaments are present in the cells above the basal layer, closer to the surface of the 
skin.  This also gives an indication of the functions of K15: since keratinocytes 
require more mechanical stability as they differentiate, the absence of K15 in the 
uppermost layers of the epidermis suggest that K15 is not a keratin which provides a 
significant amount of mechanical stability. 
 
6.2.2: Expression of K15 in HaCaT Cells and NHEKs 
Since K15 is expressed in basal cells, it was expected that HaCaT cells, as 
immortalised keratinocytes, and NHEK cells would also actively express K15.  This 
was found to be the case.  Previously, Werner, Werner and Muntz (2000) had also 
demonstrated that K15 was actively expressed in HaCaT cells by identifying K15 
mRNA expression, and several studies have demonstrated K15 expression in primary 
human keratinocytes in tissue sections (for example, Kloepper et al., 2008).  As can 
be seen in Figure 3.10, K15 expression appears similar to K14 expression when using 
immunofluorescence.  This suggests that the K14 staining (and therefore K15 
staining) in this study are comparable to other previously published works. 
 
6.2.3: K15 Expression in MET 1, 2 and 4 Cells 
K15 expression was not investigated in the original paper describing the SCC cell 
lines MET (Proby et al., 2000).  It has been demonstrated elsewhere however (for 
example, Kanoh et al., 2008) that SCCs were K15-positive, suggesting that SCC 
develop from the basal layers of the epidermis.  This study found that MET 1, 2 and 4 
cells were all positive for K15.  The existence of a cancer stem cell population, which 
express stem cell markers, has been suggested.  For example, Harper et al. (2010) 
have demonstrated that tumour-initiating cells in the skin are resistant to apoptosis.  It 
is possible that these cells are also K15-positive, although further investigation is 
required to establish this.  Furthermore, the presence of a cancer stem cell population 
suggests that K15 may be expressed not to confer mechanical stability to the MET 
cells, but to allow migration; in cancer cells, this may be an indicator of invasive 
potential. 
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As previously noted, keratin subunits have a shorter half-life than keratin filaments 
(Werner et al., 2004).  It was noted in MET cell line cells that K15 in particular was 
granular, and did not appear as filaments.  Granular staining of keratins has been 
previously noted: Windoffer and Leube (1999) and Windoffer et al. (2004) 
demonstrated that heterodomers and tetramers were observed at cell membranes, 
before forming filaments.  It is possible that this explains the appearance of K15 in 
MET cells.  Another possible explanation is that the granules are the remnants of K15 
filaments, which have been reduced to granules through processes such as 
deimination or proteolytic cleavage (see section 5.4.3.1).  This explanation is more 
likely, as in some cell populations few K15 filaments can be observed, which would 
be expected if the filaments were being degraded inside the cell.  It is possible that 
K15 filaments may form, but have a faster turnover than in non-carcinoma cells.  
Functions of keratins are to provide mechanical stability, to interact with signaling or 
receptor molecules (Kirfel, Magin and Reichelt, 2003) and to interact with other 
proteins (Liao et al., 1995b; Strnad, Windoffer and Leube, 2002).  If only a few, thin 
K15 filaments are formed, their contribution to these functions may be limited. 
 
 
6.3: K15 Knock-down using siRNA 

K15 siRNA was successfully used to knock-down K15 expression in all cell lines 
used in this study.  Since this technique would only transiently transfect the cells, an 
optimum time point was established for each cell line.  Previous studies including 
McInroy and Määttä, 2007, Long et al., 2006, Claser et al., 2008 and Smith et al., 
2008 suggested that an optimum time point for keratin ablation in similar cell lines 
would be between 48 and 96 hours post-transfection.  It was established that the 
optimum time for K15 ablation in HaCaT and MET 1, 2 and 4 cells was 48 h post-
transfection.  In NHEK cells the optimum was slightly later at 72 h post-transfection; 
all of these time scales are comparable to other studies using the technique to knock-
down similar proteins in other cell lines. 
Once these optimums were established, they were used for all following experiments. 
 
6.3.1: The Effects of K15 Ablation on Other Cytoskeletal Proteins 
6.3.1.1: Effect of K15 Ablation on Other Keratins 

It has previously been demonstrated that K14 is expressed in basal layer keratinocytes 
(Nijhof et al., 2006), suggesting that both K14 and K15 are expressed simultaneously 
in the IFE.  In this study, the amount of K14 expression does not appear to have 
changed, however an organisational change does occur.  It was observed that K14 was 
not expressed up to the cell edges in HaCaT cells following K15 ablation (Figure 

4.7).  This may be due to the abnormal spreading which has been seen to occur in K15 
ablated HaCaT cells.  Recently, Lee and Coulombe (2009) have shown that K14 
(paired with K5) can ‘self-organise’ into filaments in fibroblasts.  It has previously 
been shown that cytoskeletal bundling can generate an inward tension, which can 
prevent cell spreading; Gross and Kinzy (2005), Karakozova et al. (2006) and 
Kotadiya, McMichael and Lee (2008) demonstrated this with F-actin and Lee and 
Coulombe (2009) demonstrated a similar effect with keratins.  Lee and Coulombe 
(2009) observed that thicker bundles resulted occurred in cells with a reduced area.  
However the opposite appears to be occurring here with K14 – i.e. the apparent 
restriction of K14 from the outer edges of the cell occurs in cells which are spreading 
to a greater extent than control cells.  It is possible that the increased actin bundling 
observed at the edge of K15 ablated cells may prevent K14/K5 filament formation in 
this area. 
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This effect was not observed in MET cells however.  In MET 1, 2 and 4 cells, no 
change in K14 expression was noted following K15 ablation.  Western blotting could 
be used to further quantify whether any compensation of K14 for K15 was occurring.  
McGowan et al. (2002) and Fan and Yoon (2003) demonstrated compensation for 
K17 by other keratins can occur in both murine and human skin.  Since this can occur 
in other keratins, it is feasible for this to occur between K14 and K15, particularly 
since both produce dimers with K5. 
Neither K17 nor K6 were affected by K15 siRNA transfection in HaCaT cells.  K8 
expression in K15 ablated cells was variable, however this has previously been 
observed in HaCaT cells (Kazerounian et al., 2002). 
These results suggest that K15 does not affect the expression of other keratins in 
normal skin or in SCCs.  Furthermore, any results which demonstrated an effect 
following K15 ablation was likely to be as a result of K15 knock-down, and not as 
part of a secondary effect via another keratin affected by K15 knock-down. 
 
6.3.1.2: Effect of K15 Ablation on Actin 
Immunofluorescence of actin in NHEK cells suggested that actin arrangement was not 
affected by K15 ablation.  Similar effects were noted in HaCaT cells and MET cells, 
despite suggestion from Iwai et al. (2010) that actin rearrangement occurs in SCC 
cells transfected with mutant !-catenin.  This change was also suggested to increase 
the invasion and migration potential of these cells. 
The transfected NHEK cell results were obtained from cells which had been seeded 
for at least 72 h (i.e. at least 24 h prior to transfection).  Immediately following 
seeding, actin arrangement was shown to be different in K15 ablated cells (compared 
to control siRNA transfected cells).  This is discussed in section 6.6.2. 
 
6.4: K15 Ablation Results in Increased Differentiation 

Involucrin expression was assessed as a marker of differentiation.  Expression was 
greater in K15 knock-down HaCaT cells compared to control siRNA transfected cells 
48 h post-transfection.  Although involucrin levels have previously been shown to 
increase following exposure to extracellular calcium (for example, Bikle et al., 2001; 
Tran and Crowe, 2004), this study did not change the extracellular calcium levels for 
this experiment, demonstrating that a rise in involucrin expression can also be 
initiated by other pathways.  This result however indicated that since involucrin 
expression is initiated following K15 ablation, the cells appear to be differentiating. 
Filaggrin, usually expressed in cells of the granular layer and above, is only expressed 
in very low levels in HaCaT cells.  The level however increases once the cells become 
confluent and begin to stratify (Papp et al., 2003).  In this study, where confluent cells 
could not be efficiently transfected, levels of filaggrin were low in controls (as 
expected) and in K15 ablated cells.  This indicates that although some differentiation 
may be occurring (as indicated by the increase in involucrin), differentiation has not 
occurred to the extent that filaggrin levels increase.  For confirmation, western 
blotting could be used to demonstrate whether any profilaggrin processing was 
occurring (which can not be demonstrated using immunofluorescence), and to 
confirm the involucrin immunofluorescence results. 
 
6.4.1: Additional Effects of the Calcium Switch Assay 
Similar levels of K15 were observed in control siRNA transfected cells in both high 
and low calcium conditions.  This is most likely to be due to the slightly abnormal 
keratin expression pattern observed in HaCaT cells.  It may also be due to the 
relatively short length of time the cells were exposed to high extracellular calcium for.  
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Likewise, MET cell line cells tested also suggest that little change is occurring in K15 
expression following exposure to increased levels of extracellular calcium.  Again this 
could be due to the slightly altered keratin expression pattern observed in MET 1, 2 
and 4 (Proby et al., 2000). 
Although K14 expression has previously been shown to change during differentiation 
(Nelson and Sun, 1983; Lena et al., 2010), no changes in K14 expression were noted 
following the calcium switch assay.  This may have been due to the relatively short 
length of the experiment; in longer experiments, K14 expression was demonstrated to 
be affected after 5 days (Micallef et al., 2009).  This is supported by the findings of 
Yuspa et al. (1989), who demonstrated that no change in K14 mRNA levels could be 
detected after 48 h.  Lack of K14 mRNA is observed in the granular layer in vivo 
(Roop et al., 1988); it has been demonstrated by lack of filaggrin expression that 
differentiation in HaCaT cells does not occur in monolayer cultures, supporting the 
observation that no changes in K14 expression occur.  Despite no changes in K14 
expression occurring in HaCaT cells, a change was observed in MET 1 cells 
following exposure to high extracellular calcium for 72 h.  A slight reduction was 
observed, suggesting some differentiation.  Like K15, K14 localisation also changed, 
reducing the amount of keratin around the nucleus and becoming spread throughout 
the cytoplasm. 
As expected, involucrin levels in control siRNA transfected HaCaT cells exposed to 
high levels of extracellular calcium increased.  The levels of involucrin in K15 siRNA 
transfected HaCaT cells increased to a greater extent when exposed to high levels of 
extracellular calcium and continued to rise.  The opposite occurred in MET 2 cells, as 
expected since SCCs have previously been shown to express involucrin (for example, 
Zhou et al., 2011).  However, it is more likely that continuing differentiation in the 
MET 2 cells meant that the involucrin present was cross-linked by transglutaminase, 
which occurs as cells begin to form the cornified envelope.  This would make the 
involucrin unavailable for immunofluorescence, reducing the staining observed.  A 
similar effect was noted in MET 1 cells. 
This suggests that less involucrin was observed in MET 2 cells compared to MET 1 
cells.  Previously it has also been suggested that involucrin is downregulated in 
progressing oral carcinomas (Tseng et al., 2007).  These results are different to those 
observed in mice; Prince et al. (2007) demonstrated that K14 and involucrin were 
expressed in different populations of head and neck SCCs. 
 
 
6.5: Reduced K15 Expression Correlates with Increased Proliferation 

In this study, the MTT assay was used to assess cell viability as an indicator of 
proliferation.  Although the findings discussed suggest overall effects on proliferation, 
the MTT assay does not differentiate between proliferation, cell death or 
differentiation.  These results suggest that K15 ablated HaCaT cells proliferate to a 
greater extent than K15-positive cells.  However, the results were not statistically 
significant.  More replicates and larger cell numbers could be used to confirm this 
result and independent methods, such as FACS anaylsis of the DNA content could be 
employed.  Although the MTT assay was a different method than that utilized by 
Tiede et al. (2009), the result was similar (i.e. K15-negative cells proliferate to a 
greater extent than K15-positive cells).  Since K15-negative cells proliferate to a 
greater extent than K15-postive cells, it is also possible that this will have an effect on 
migration as assessed by the scratch wound assay (discussed in section 6.7.1). 
Over longer periods however (for example, several passages), K15-positive cells have 
been shown to have a greater colony formation efficiency than K15-negative cells.  
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For example, Liu, Zhou and Gao (2008) demonstrate that in K15-positive stem cells 
from adult goat skin, a high colony forming efficiency value can be achieved between 
passages 2 and 8. 
Stem cells need to be capable of high levels of controlled proliferation.  It is likely 
that in the short-term (such as the time scale investigated in this study), proliferation 
is generally slower.  However, over the longer term (such as that investigated by Liu, 
Zhou and Gao, 2008), proliferation of these cells can continue, producing, for 
example, a greater colony forming efficiency than more differentiated (K15-negative) 
cells. These cells may be capable of higher levels of proliferation initially, however 
their ability to proliferate reduces as the cells begin to terminally differentiate.  Over 
the longer term then these cells will have low colony forming efficiency values. 
 
 
6.6: K15 Ablation Affects Cell Adhesion and Spreading 

Using live cell imaging, HaCaT and MET 1, 2 and 4 cells were seeded and phase 
contrast images taken approximately every 42 seconds.  The HaCaT cells (both 
control siRNA transfected and K15 siRNA transfected) began to adhere after 
approximately 10 minutes.  The MET 2 and 4 control siRNA and K15 siRNA 
transfected cells also adhered at approximately the same rate (although spread more 
slowly); K15 ablated MET 1 cells however adhered slightly slower than control 
siRNA transfected cells.  Liu, Zhou and Gao (2008) and Roh et al. (2008) have 
previously suggested that K15-positive cells adhere rapidly in vitro; this appears to 
occur in MET 1 cells. 
Hormia et al. (1995) demonstrated that it took up to 24 h for HaCaT cells to adhere to 
plastic; HaCaT cells used in this study were the slowest of the cell lines to adhere but 
had begun to adhere after 10 minutes.  This meant that it was possible to start fixing 
cells to carry out immunofluorescence from this point.  This was carried out to 
establish how the cytoskeleton changed as the cells spread. 
 
6.6.1: K15 Ablation Does Not Affect Cell-Cell Junctions 
Initial immunofluorescence of cell-cell junctional proteins in HaCaT cells was carried 
out on cells which had been seeded for at least 72 h (i.e. 24 h prior to transfection).  
Desmoplakin was expressed at similar levels in control siRNA transfected cells and 
K15 siRNA transfected cells.  It has previously been shown that DIFCs do not 
associate with K15, suggesting that K15 does not have a role in linking into 
desmosomes to increase the mechanical stability of tissues (Cirillo and Prime, 2009).  
Wan, South and Hart (2007) demonstrated that changes in desmoplakin expression 
can affect proliferation; this suggests that the increase in proliferation identified in 
K15 ablated cells in this study was not as a result of changes to desmoplakin 
expression or localisation.  Further work using more confluent monolayers or 
organotypic cultures would be useful to confirm these findings. 
E-cadherin levels also remained unchanged in K15 ablated cells.  It has been 
suggested that E-cadherin, associated with adherens junction formation, has a role in 
maintaining the stem cell niche by allowing asymmetric division in multipotent cells 
(Perez-Moreno, Jamora and Fuchs, 2003).  ZO-1, associated with highly 
differentiated cells (of the granular layer in vivo), was not expressed in either control 
siRNA transfected or K15 siRNA transfected HaCaT cells.  Marthiens et al. (2010) 
suggest that the theory which states that adhesion molecules retain cells in the stem 
cell niche alone is outdated, and that more recently findings have demonstrated that 
proteins such as E-cadherin have other important roles in the stem cell niche, such as 
retention, division and exit.  Cadherins have also been shown to be important in 
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regulation of centrosome positioning and spindle angle formation, demonstrating the 
wide variety of functions these proteins have.  For example, ZO-1 (as part of adherens 
junctions) may be important in asymmetric cell division; Kadowaki et al. (2007) have 
demonstrated that both daughter cells inherit significant levels of ZO-1 (Konno et al., 
2008), but only one will inherit the fate determinants associated with adherens 
junctions in embryonic neural stem cell division.  Similarly, it is likely that E-
cadherin promotes self renewal of neural stem cells (Karpowicz et al., 2009).  Jin et 

al. (2008) have furthermore demonstrated that those cells expressing lower levels of 
E-cadherin are displaced from stem cell niches, suggesting that cadherin expression 
levels provide a mechanism for the removal of dysfunctional stem cells from a niche.  
E-cadherin knock-outs have also been shown to have reduced numbers of stem cells 
after aging compared to controls (for example, Boyle et al., 2007).  Although no 
changes in cell-cell junctional proteins were observed in K15 ablated cells in vitro, 
3D culture or tissue studies of a K15 knock-out mouse may provide further 
information as to whether cell-cell junctional proteins around the stem cell niche (in 
particular the hair follicle bulge) have any effect on, for example, ejecting cells from 
the niche.  Label retaining studies alongside study of adhesion molecules may also 
help to establish where asymmetrical division is occurring relative to K15 expression. 
 
6.6.2: K15 Ablated Cells Spread More Quickly than Controls 
Vinculin, a focal adhesion protein, was examined in HaCaT cells 180 minutes post-
seeding.  Möhl et al. (2009) previously demonstrated that low levels of vinculin can 
be observed throughout the HaCaT cell cytoplasm whilst ‘distinct bright spots’ 
indicate regions of a high concentration of bound vinculin.  Fewer focal adhesions 
were observed in K15 ablated HaCaT cells, suggesting that these cells were still 
spreading.  Focal adhesions are dynamic, forming at the leading edge of migrating 
cells (Schäfer et al., 2009; Möhl et al., 2009).  Since fixing and using 
immunofluorescence produces a ‘snapshot’ of cells, the fewer focal adhesions 
observed may be supportive of the observation that focal adhesions are dynamic.  
Möhl et al. (2009) further demonstrated that vinculin exchange occurs in focal 
adhesions of moving cells.  Schäfer et al. (2009) also demonstrated that vinculin-
containing focal adhesions form as maturations of filopodial focal adhesions; some 
filopodia and lamellipodia can be seen in spreading HaCaT cells (Figure 4.1) (see 
section 4.4.2).  
As expected in spreading cells, actin bundling can be observed at the cell edge in 
HaCaT cells up to 120 minutes post-seeding in both control siRNA transfected and 
K15 siRNA transfected cells.  In control siRNA transfected cells, the thicker bundles 
at the cell edges then dissipate and actin arrangement appears similar to that of control 
siRNA transfected cells which had been seeded for a longer period of time (for 
example, Figure 4.1).  In the absence of K15 however, the thicker actin bundles at the 
cell edges remain (Figure 4.2, Table 4.2).  As this is observed in control cells, it is 
likely that this is a normal part of cell spreading, however the continued arrangement 
of actin bundles in K15 ablated cells suggested that these cells may be spreading to a 
greater extent than controls – this has been demonstrated in this study (section 
4.3.2.3).  In a study observing changes in the actin cytoskeleton following cell volume 
changes, it was established that changes in keratinocyte cell volume resulted in rapid 
reorganisation of the actin cytoskeleton (Blasé et al., 2009).  This demonstrates the 
ability of the actin cytoskeleton to reorganise swiftly as and when required (such as, 
for example, following adhesion and subsequent cell spreading).  In addition, further 
studies have demonstrated the importance of filopodia and lamellipodia.  Since cell 
adhesion is required for cell function and movement, Schäfer et al. (2009) suggest 
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that this depends on focal complexes connecting the extracellular matrix to the actin 
cytoskeleton.  Using keratinocytes, Schäfer et al. (2009) demonstrate that once the 
VASP-containing tip makes contact with the substrate, a filopodal focal complex 
forms.  When these are reached by lamellipodia, the filopodal focal complexes 
increase in size resulting in focal adhesion (smaller focal complexes have a faster 
turnover, which allows more motility).  Larger focal adhesions increase stability, and 
are important in anchoring cells, reducing motility.  Vinculin, as a focal adhesion 
marker, was used in this study to highlight any focal adhesions formed (as previously 
used by, for example, Möhl et al., 2009).  On average it was observed that more focal 
adhesions were in place in control siRNA transfected HaCaT cells than in K15 siRNA 
transfected HaCaT cells (section 4.3.2.2).  It is possible that fewer focal adhesions 
were formed in K15 ablated cells due to the continued spreading of the cells at 180 
minutes post-seeding (Figure 4.2). 
 
It was also noted that changes in the arrangement of the K14 cytoskeleton occurred 
during cell adhesion and spreading in K15 ablated cells compared to control siRNA 
transfected cells.  In the absence of K15, reduced localisation of K14 is observed at 
the cell edges (Figure 4.7).  Alongside the abnormal actin localisation and the 
increased cell size measured in K15 ablated cells, it appears that in the absence of 
K15, HaCaT cells spread abnormally following seeding.  Using keratinocyte cell lines 
established from EBS patients, Morley et al. (1995) established that, following heat 
shock treatment and replating, cells containing mutant keratins were slower to spread 
than controls.  Morley et al. (1995) suggested that this was due to a delay in the 
restoration of the normal IF network.  If spreading is slowed by disruption of the 
normal IF network, it indicates that K15 can not have an important structural role in 
normal keratinocytes, since the rate of spreading increases following K15 ablation.  If 
K15 had a structural role, as K14 does, then the rate of spreading would be slower 
than controls (i.e. K15-positive cells), as demonstrated in K14-mutant keratinocytes 
by Morley et al. (1995).  It has also been demonstrated that keratin filament 
precursors (KFPs) move along actin stress fibres to focal adhesion sites (Windoffer et 

al., 2006).  This study has demonstrated that K15 ablated cells produce fewer focal 
adhesions than control siRNA transfected (i.e. K15-positive) cells.  If fewer focal 
adhesion sites results in a decrease in KFP formation (as postulated by Windoffer et 

al., 2006), it is possible that this is at least partially responsible for the initial lack of 
K14 expressed at the cell edges in K15 ablated cells. 
Webb, Li and Kaur (2004) have suggested that keratinocytes which are K10-negative 
and CD71-positive and have a greater cell size are transit amplifying cells; however 
Webb, Li and Kaur (2004) also found this population of cells to be K15-positive, 
suggesting a different underlying factor contributing to cell size.  In addition, smaller 
cells (which have been shown to occur following Myc knock-out in the epidermis) 
have been observed in the bulge, expressing K15, CD200 and not CD34 or CD271 
(Zanet et al., 2005; Inoue et al., 2009).  It is possible that the K15 ablated cells used in 
this study were undergoing differentiation, increasing their cell size as part of this 
process.  Garzia et al. (2011) have also noted that K15-positive cells are smaller than 
K15-negative cells in human hair follicles.  This provides additional support for the 
theory that K15 does not provide mechanical support for the cell; larger cells express 
a different keratin profile based on their requirement for more structural support.   
 
 
6.7: The Effects of K15 Ablation on Migration can Vary 

6.7.1: Effects of K15 Ablation on Migration in HaCaT Cells and MET 1 Cells 
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Roh et al. (2005) and Roh et al. (2008) have demonstrated that hair follicle bulge cells 
differentiate prior to migrating, suggesting that K15-negative cells are more motile 
than K15-positive cells.  In this experiment, K15 ablated cells initially migrated faster 
than control siRNA transfected cells, similar to those results observed by Roh et al. 
(2005) and Roh et al. (2008).  After 24 h however, K15-positive cells had migrated 
more than K15 ablated cells; it is possible that results in vivo would be more useful, 
for example, observing bulge cell migration using label-retaining studies followed by 
in situ hybridization to detect cells which produce K15 mRNA. 
In addition, no bundling of K15 or K14 was observed at the leading cells of the 
migrating sheet.  This is in contrast to K8/K18, which has been observed to bundle at 
the cell edge (Long et al., 2006).  Long et al. (2006) speculate that this may be a 
strengthening response to protect the migrating epithelial sheet against traction forces 
(as described by du Roure et al., 2005).  Since no bundling of K15 or K14 was 
observed, it is possible that these keratins are not required to protect migrating sheets 
against traction forces.  This would be logical since K14 and K15 are expressed in the 
basal layers, where cells have a lesser requirement for strength and need a more 
pliable keratin filament network to allow migration.  Furthermore, Long et al. (2006) 
suggest that IFs are involved in subcellular targeting of desmosomal proteins.  In K8 
knock-down cells, cell-cell adhesions were broken down and desmoplakin and 
periplakin were redistributed to the cytosol from the cell borders.  The absence of K15 
did not appear to affect the localisation of cell adhesion proteins desmoplakin, E-
cadherin, or ZO-1.  This suggests that although K8 may have a role in subcellular 
targeting for these proteins, K15 does not.  However, K15 ablated cells were found to 
produce fewer focal adhesions than K15-positive control cells. 
 
Actin bundling at the leading edge however was observed in K15 ablated HaCaT 
cells.  This has also been demonstrated in MCF-7 cells, where lamellipodia were also 
identified (Long et al., 2006).  This is likely to occur at the leading edge of the 
migrating monolayer since lamellipodia are an important mechanism used in 
migration and cell spreading.  In migrating keratinocytes cultured from K6-null mice, 
Wong and Coulombe (2003) also observed the increased intensity of actin staining 
following immunofluorescence (see also section 6.6.2). 
 
This study has demonstrated that K15 has little effect on differentiation in MET cell 
line cells, but did have some effect on migration in MET 1 cells.  Migration in control 
siRNA transfected MET 1 cells was quicker than in K15 ablated cells.  This suggests 
that K15 has an active role in migration in MET 1 cells.  In turn then, this implies that 
the function of K15 in MET 1 cells is not (only) to provide mechanical stability, but 
can affect other cell functions which results in increased migration capacity.  It has 
previously been demonstrated that transfection of vimentin, K8 and K18 to melanoma 
cells results in an increased migratory and invasive phenotype.  It was thought that 
this was due to an increase in the number of focal adhesions and actin stress fibre 
formation (Chu et al., 1996).  Chu et al. (1996) postulate that this is due to increased 
cytoskeletal interactions with extracellular matrices at focal adhesion sites.  It is 
possible that as K15-positive cells move more quickly than K15-negative cells, 
interaction with the extracellular matrix may also have an effect on cell migration as 
Chu et al. (1996) describe following expression of K8/18. 
Proliferation of MET 1 cells was not investigated, however the proliferation capacity 
of these cells may have affected the overall migration rate of MET 1 cells.  This said, 
the contribution may not be large as wounds were 100% closed in control siRNA 
transfected cells after 360 minutes, and approximately 85% closed by the same time 
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point in K15 siRNA transfected cells.  This would leave only a short period of time 
for cell proliferation to have a significant effect on wound closure times. 
This is opposite to the effect observed in K16 knock-down murine keratinocyte 
explants (Wawersik and Coulombe, 2000), likely to be due to reduced proliferation as 
opposed to impairment of migration (Wawersik et al., 2001).  Also using the scratch 
wound assay, Morley et al. (2003) demonstrated that migration was significantly 
faster in cells with severe EBS mutations (i.e. cells without fully functioning K5 or 
K14).  It was observed that this occurred independently of proliferation.  Chu et al. 
(1991) hypothesized that additional IF expression in melanoma tumour cells may 
allow cells to be more migratory.  The disruption of keratin in these cells resulted in 
disruption of keratin filament organization and a decrease in invasive (and metastatic) 
ability.  The same group carried out work in a human melanoma cell line (A375P), 
which normally only expresses vimentin.  By transfecting these cells it was possible 
to induce expression of K8 and K18, which increased the rate of migration in a cell 
line with low metastatic ability (Chu et al., 1993).  Murine fibroblasts transfected in 
the same way also demonstrated an increase in migration (Chu et al., 1993). 
It is suggested that increased migration is due to the upregulation of stress-activated 
kinase pathways, which has been known to occur in EBS-affected keratinocytes (see 
also section 6.7.2.6).  However, this is an effect observed in cells with mutant 
keratins, not in keratinocytes where siRNA has been used.  It has also been shown 
that the loss of intracellular junctions may affect migration in EBS-affected 
keratinocytes (Liovic et al., 2009).  In addition, using keratinocytes from K6-null 
mice, Wong and Coulombe (2003) observed enhanced outgrowth, resulting from 
migration (as opposed to mitosis).  A similar study using K6 knock-out mice 
demonstrated that a delay in the re-epithelialisation of hair follicles occurred, despite 
no similar delay in the migration or proliferation of keratinocytes (Wojcik, Bundman 
and Roop, 2000).  Upregulation of K16 in HaCaT cells has been shown to have the 
opposite effect (i.e. reduced migration) (Trost et al., 2010).  A reduction in tyrosine 
phosphorylation in K16 knock-down HaCaT cells was also observed (see also section 
6.7.2.4). It was demonstrated that the reduced migration observed in HaCaT cells 
which overexpress K16 was not mediated by any change in the morphology of the 
actin cytoskeleton, nor changes in cell-cell junctions or focal adhesions (Trost et al., 
2010).  However, Roth et al. (2009) have demonstrated that reduction in K5 
expression may affect the actin cytoskeleton via p120-catenin. 
 
6.7.2: Mechanisms Which May Cause Keratins to Affect Cell Migration 
6.7.2.1: p120-Catenin 
Roth et al. (2009) suggest a molecular link between K5 ablation, p120-catenin 
signaling and NF'B-targeted gene expression, possibly regulated through the activity 
of Rho family GTPases.  In wild-type basal keratinocytes, p120-catenin has been 
shown to colocalise with E-cadherin at adherens junctions (Roth et al., 2009), 
suggesting that as cells dissociate, p120-catenin levels are reduced.  This occurred in 
K5 knock-out cells (Roth et al., 2009).  This finding also demonstrated for the first 
time a regulatory function of an epidermal keratin which contributes to the EBS 
pathology (Roth et al., 2009).  Furthermore, p120-catenin is capable of regulating the 
actin cytoskeleton via modulation of RhoGTPase activity and transport and 
stabilization of cadherins at adherens junctions (Perez-Moreno and Fuchs, 2006; 
Perez-Moreno et al., 2008).  Roth et al. (2009) suggest that the keratin cytoskeleton 
(and therefore K15) may be an important regulator between adhesion and migration 
and connecting the epithelium and associated tissues to the immune system by 
regulating p120-catenin localisation and activity. 
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6.7.2.2: Stress-Activated Protein Kinase (SAPK) Pathways 

The SAPK pathways (and p38 reactivating kinase pathways) are part of the cellular 
response to physical stress, inflammatory cytokines and toxins.  Although the 
pathways are similar, the SAPK pathways are distinct from the MAPK pathway.  
Isoforms of SAPK have been identified; these are the Jun N-terminal kinases (JNKs) 
(Derijard et al., 1994; Kallunki et al., 1994; Tibbles and Woodgett, 1999; White et al., 
1999; Xia and Karin, 2004; Huang et al., 2004).  It has been suggested that JNK 
regulates migration by phosphorylating paxillin in the focal adhesion complex, 
through regulating assembly of microtubules (again by phosphorylation) and by 
phosphorylating c-Jun (a member of the AP-1 family of transcription factors) (White 
et al., 1999; Huang et al., 2003; Chang et al., 2003; Xia and Karin, 2004). It has been 
observed that a TGF"-activin signal leads to JNK activation, c-Jun phosphorylation 
and the formation of actin stress fibres.  This also results in epithelial cell migration 
(Zhang et al., 2003).  Furthermore, keratinocytes isolated from keratinocyte-specific 
c-Jun knockout mice have demonstrated a reduced migratory response to EGF (Li et 

al., 2003; Zenz et al., 2003).  Phosphorylation of c-Jun at the leading edge of a 
migratory tissue may also contribute to upregulation of the TGF!-EGFR-ERK 
pathway (Behrens et al., 1999).  Javelaud et al. (2003) demonstrated that JNK 
phosphorylation of c-Jun resulted in impaired migration in human fibroblasts.  More 
recently, it has been shown that the JNK1 isoform is important in mouse wound 
healing; the absence of this isoform delays the repair of mice injured by tape-
stripping.  A similar effect is not observed for JNK2 or JNK3 ablation (Koehler et al., 
2011).  The same study used human keratinocyte organotypic cultures to demonstrate 
that JNK1 activity increased during differentiation.  In JNK1-null mice, full-thickness 
wound repair was initially faster than in wild-type mice.  However, between seven 
and 14 days post-wounding, wound healing was significantly delayed compared to 
controls.  Koehler et al. (2011) remark that this demonstrates the importance of JNK1 
in full-thickness wound healing.  Since in this study no significant difference was 
observed in migration rates between K15 siRNA and control siRNA transfected 
HaCaT cells, further work is required to establish whether there is any connection 
between these findings. 
 

6.7.2.3: Tyrosine Phosphatase 

Tyrosine phosphatase inhibition has been shown to disrupt the keratin filament 
network in a few minutes, although takes longer to recover (approximately half an 
hour) (Strnad, Windoffer and Leube, 2002).  Inhibition of tyrosine phosphatase by 
orthovanadate results in the disappearance of the keratin filament network, which is 
replaced by numerous small granules, mediated by p38 MAPK (see section 6.7.2.2).  
This resulted in cells becoming more rounded and an increase in the number of actin 
stress fibres, which eventually concentrated in the cell cortex (Strnad, Windoffer and 
Leube, 2002).  Strnad, Windoffer and Leube (2002) used time-lapse fluorescent 
microscopy to establish how the breakdown of the keratin network occurred.  Bundles 
of filaments straightened, then fragmented and formed small rods or granules.  This 
also caused disruption to cell adhesion.  This said, it was postulated that these 
granules were still anchored to other parts of the cytoskeleton.  Removal of the 
orthovandate resulted in a reversal of this process, where granules were observed to 
elongate and fuse, initially creating thin filaments.  These filaments then increased in 
length and thickness, re-establishing the keratin network.  It is possible that such 
remodeling of the keratin filament network is occurring in some of the experiments 
described in this study.  K15 expression in MET cells appears more granular, similar 
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to some of the images of keratins produced in Strnad, Windoffer and Leube (2002).  It 
may be that K15 is undergoing modification by a tryrosine phosphatase resulting in 
this unexpected appearance in the cell.  Likewise, tyrosine phosphatase may also have 
a role in reducing the K14 network at the cell edges during cell adhesion in K15 
ablated cells, although no evidence of K14 granules were observed. 
 

6.7.2.4 Molecular Ratios and Compromise 
Julien (1999) suggested that disruption of the molar ratio between light, medium and 
heavy subunits of neurofilaments has consequences for assembly and therefore 
function in neurons.  Wawersik et al. (2001) suggest then that disruption of the 
balance of keratins may be responsible for changes in migration observed following 
artificial knock-down of some keratins.  This could particularly be the case when 
wound healing requires a compromise between mechanical stability and the plasticity 
required for cell migration; Bernot et al. (2002) and Wong and Coulombe (2003) 
suggest that K16 is an ideal candidate for this.  This is supported by the finding of 
Mazzalupo et al. (2003), who suggest that mouse embryos (~E11.5) have the ability 
to induce K6, K16 and K17 in response to injury.  Furthermore, Trost et al. (2010) 
have demonstrated that increased K16 expression alone reduces migration, however 
alongside a similar increase in K6, migration levels increase.  It has been suggested 
that K15 undergoes posttranslational modification (for example, Figure 3.6), which 
may affect the molar ratio of K15/K5 filaments and therefore affect migration.  This 
may particularly be the case in MET cells, where K15 expression was more granular 
and less filamentous than that observed in HaCaT cells. 
 
6.7.2.5 Cell Adhesions and Actin 
Cell-cell interactions have previously been shown to have a role in cell migration, 
both directly and indirectly.  For example, Kim and Joo (2002) have demonstrated 
that Cas (Crk-associated substrate), localised at focal adhesions, is involved in cell 
migration and induction of gene expression.  Tyrosine phosphorylation of Cas is 
induced by TGF"; TGF" signaling in turn is mediated by E-cadherin.  An intact actin 
cytoskeleton is also required. 
Focal complexes and adhesions are highly dynamic; alongside actin reorganization, 
these processed are vital for cell migration (Zamir et al., 2000; Webb, Parsons and 
Horwitz, 2002; Pollard and Borisy, 2003; Gupton and Waterman-Storer, 2006; 
Schäfer et al., 2009).  Recently, work has shown that newly-formed adhesions at the 
leading edge of a cell have different vinculin dynamics compared to more mature 
adhesions at the back of the cell.  As phosphorylation of vinculin decreases, the 
strength of focal adhesions increases (Möhl et al. 2009). 
The formation of filopodia is also important in keratinocyte migration, a process 
which begins in the embryo.  The migration process has been described as a four-step 
cycle: protrusion, formation of stable adhesion sites, contraction of the cell and rear 
release (Lauffenburger and Horwitz, 1996; Sheetz, Felsenfeld and Galbraith, 1998).  
Filopodia and lamellipodia are important during protrusion.  Formation of filopodia 
has been shown to occur as exact extentions of lamellipodal focal adhesion sites.  
Where they are not able to attach stably to a substrate, the filopodia collapse and 
retract, and no focal adhesions form (Schäfer et al., 2009).  There are two models 
which describe possible mechanisms for the formation of focal complexes.  In the 
first, filopodia act as sensors, detecting appropriate substrate conditions for adhesion 
(Wood and Martin, 2002).  In the second, small adhesion sites are already present 
along the filopodia which become more stable over time (Zaidel-Bar et al., 2004).  
This would explain the presence of VASP, vinculin, paxillin, talin, zyxin and tensin 
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which form filopodial focal complexes (Zaidel-Bar et al., 2004; Schäfer et al., 2009).  

Schäfer et al. (2009) suggest that filopodia move over the substrate until stable 

contact with VASP occurs at the tip spot.  Following this, filopodial focal complexes 

form directly behind this tip, and filopodia regain their ability to elongate.  Focal 

adhesion sites form once the cell body has moved enough for lamellipodia to reach 

the site.  As well as cell guiding, filopodia have been shown to contribute to the 

formation of actin stress fibres (Nemethova, Auinger and Small, 2008).  It has been 

shown that c-Jun, one of the SAPKs, is involved in forming filopodia. 

It has also been demonstrated in endothelial cells that inhibition of actin 

polymerisation and assembly of focal adhesions reduces migration (Cezar-de-Mello et 

al., 2006).  This was shown to involve the p38 (also known as stress-activated protein 

kinase 2) pathway.  In control cells, FAK and actin were shown to colocalise at focal 

adhesions along the cells periphery.  It is likely that the decrease in migration 

observed are also due to the lack of reorganization of actin and therefore defects in 

focal contact formation. 

 

 

6.8: Conclusions 

This study follows from the work of Werner, Werner and Munz (2000), which 

described the suppression of K15 expression in vitro by TGF! and TNF" in HaCaT 

cells, and by cutaneous injury in vivo.  Werner, Werner and Munz (2000) observed 

that levels of K15 mRNA were reduced in activated keratinocytes following skin 

injury.  This paper also suggested that K15 regulation may be important in migration, 

differentiation, proliferation and wound healing. 

All cell lines used in this study were found to be suitable for K15 siRNA transfection 

– i.e. all cells expressed K15 under control conditions and a marked reduction in K15 

expression was observed following transfection.  This allowed K15 ablation to be 

studied in primary keratinocytes, an immortalised keratinocyte cell line, and in SCC 

cells of different grades. 

It was found that in the absence of K15, cells proliferate to a greater extent, cells 

begin to differentiate, upon seeding cells spread faster than controls (a process which 

involves changes in K14 and actin localisation, and a reduction in the circularity of 

cells) and produce fewer focal adhesions, and has some effect on cell migration.  

However, further experiments are required for confirmation of these results. 

These results suggest that the structural role of K15/K5 filaments may not be as 

important as its role in signaling.  It has previously been suggested that K15 

expression in basal cells may prevent apoptosis, even under GVHD (graft-versus-host 

disease) conditions (Zhan et al., 2007).  Expression of K15 in human bulge cells has 

also been shown to be unaffected by aging (Rittié et al., 2009), which suggests that 

K15-positive cells are slower cycling. 

 

 

6.9: Future Outlook 

The following discusses several possible methods which would aid in further 

establishing the function of K15 in cells and tissues.  

Initially, additional markers of differentiation could be tested for.  

Immunofluorescence staining of K1 and K10, often used as differentiation markers 

(for example, Zhu et al., 1999), could be carried out on K15 siRNA transfected, 

control transfected and untransfected HaCaT cells.  It would also be useful to carry 

out K1 and K10 staining on skin sections, since this would show the transition of 

basal cells to the spinous layer (as described in Zhu et al., 1999, for example).  In 
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addition another useful technique would be the use of reverse transcription (RT)-PCR 

to validate the immunofluorescence data reported here.  This would demonstrate the 

abundance of each RNA of interest (i.e. the keratins in particular) to demonstrate 

relative gene expression. 

Long-term transfection could be used to carry out longer versions of the experiments 

carried out in this study (for example, longer exposure to high or low levels of 

extracellular calcium).  This would also make culture of K15-negative organotypic 

cell cultures more feasible, since the transfection would ablate K15 for the entire air-

liquid interface phase of culture growth. 

The creation of a K15-null mouse model would further indicate the importance of 

K15 function in development and the effect of K15 ablation in the IFE. 

Since keratins have also been shown to be important in signaling, posttranslational 

modifications of K15 would also aid in establishing which cellular responses K15 is 

involved in. 

 

6.9.1: Gene Targeting 

6.9.1.1 Genetically Engineered Mouse Models 

Genetically engineered mice, have, in recent years, allowed researchers to investigate 

the importance of genes and proteins in a mammal that shares a significant amount of 

its physiology and pathology with humans.  Animal models of disease have been 

produced which allow exploration of disease development and therapy testing.  

Several techniques have been developed for the creation of GEMMs (genetically 

engineered mouse models).  Transgenic GEMMs are created by microinsertion of 

recombinant DNA into the pronucleus of the oocyte and transplantation of the oocyte 

into a foster female.  The transgene(s) is inserted randomly into the mouse genome.  

Targeted mutation can be used to either knock-out or knock-in a gene.  This 

procedure requires the homologous recombination of embryonic stem cells, which are 

inserted into blastocysts before transplantation into a foster female.  These techniques 

allow the most control over genetic manipulation, compared to a technique such as 

random mutagenesis, where animals are exposed to DNA-altering chemicals or 

radiation.  However, these techniques are not without their drawbacks.  It is possible 

that interfering with the expression pattern of one gene may affect the expression 

pattern of genes near the inactivated gene locus or surrounding the (often randomly) 

inserted transgene. 

In particular, many targeted mutation GEMMs have been produced for examination 

of skin conditions such as EBS (for example, as utilised by Lu et al., 2007), and 

keratins in particular have been targeted using GEMMs, such as expression of mutant 

KRT6! leading to changes in skin and hair phenotype (for example, Wojcik, 

Bundman and Roop, 2000) (Wojcik et al., 1999).  In addition, tumour development 

has been studied using oncogene activation; ras has previously been shown to be 

involved in skin tumour initiation and several GEMMs are available to study this 

(Kemp, 2005).  GEMMs of SCCs have also been developed (for example, Gatesman 

Ammer et al., 2011). 

This study has demonstrated that K15 expression in murine skin is similar to that in 

human skin (chapter 3).  The production of a targeted mutation GEMM with a K15 

knock-out would demonstrate how the expression of this protein would affect skin 

development in the embryo and the effect on the IFE as an adult.  It would also 

indicate whether any other keratins may have a compensatory effect following K15 

ablation (for example, perhaps increased K14 levels).  In addition, further studies 

could be carried out such as assessing the effect of K15 knock-out on wound healing 

in vivo.  Primary keratinocytes from K15 knock-out mice could also be cultured in 
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vitro for further examination, such as immunofluorescence staining to establish any 

changes to the cytoskeletal structure of the cell.  Another possible area of research 

would be the insertion of a reporter gene (such as lacZ).  This would provide more 

information on when and where K15 is actively expressed, which would also give 

further clues to its function.  Many lacZ reporter mouse models already exist, 

including for lacZ reporters for keratins.  For example, Gu and Coulombe (2007) 

describe using a hK6a-lacZ reporter mouse model to analyse the regulation of mK6a 

mRNA during hair follicle cycling.  Using this transgenic mouse eluded specificity 

issues related to the high sequence homology between K6a and other type II keratins.  

KRT7-lacZ transgenic mice have also been developed.  Pujal et al. (2009) developed 

and used these mice to analyse in vivo activity of the gene.  If a similar KRT15-lacZ 

mouse could be developed, information about when and where K15 is actively 

expressed could be elucidated. 

 

6.9.1.2: Gene Targeting in Vitro 

Gene targeting can also be used to create cell cultures in vitro, which can alter alleles 

in transduced cells.  Recently, for example, Petek, Fleckman and Miller (2010) have 

produced human keratinocytes which have had one KRT14 allele altered using a gene-

targeted vector.  Petek, Fleckman and Miller (2010) used a vector which used 

promoter trapping; this desgn can shift the balance of detection towards the 

recombinants, since integration of the vector at random locations does not ‘trap’ the 

activity of an active promoter.  It was demonstrated that this system worked 

particularly well in keratinocytes.  A downside of this type of transduction is that the 

vector will integrate at random locations in up to 10% of cells (Hirata et al., 2002; 

Petek, Fleckman and Miller 2010).  This type of manipulation is useful for in vitro 

studies on human keratinocytes, such as 3D organotypic culture (it may also be 

possible to then graft these cultures onto athymic mice). 

 

6.9.1.3: Conditional Knock-out Experiments 

A common procedure for producing conditional knock-out mice is using the Cre/lox 

system.  A genetically modified mouse if produced in which the gene of interest is 

flanked by two lox sites.  This is then bred with a mouse expressing Cre recombinase; 

Cre recombines the two lox sites, removing the gene of interest from the genome. A 

similar procedure is followed when using the Flp/Frt recombination system, whereby 

Flp recombinase target (Frt) sequences flank the gene of interest, and flippase 

recombinase (Flp) excises the gene.  When used in combination with, for example, 

the ER/tamoxifen system, the timing of the knockout can be controlled by delivering 

the drug tamoxifen.  This technique would be particularly useful if the knockout of a 

gene would result in lethality during development, since the timing of the knockout 

can be delayed until adulthood if required.  Investigation of the use of such methods 

has been carried out with regards to keratins (for example Ramirez et al., 2001; 

Means et al., 2005; Fujioka et al., 2011). 

For investigation of K15 function, this would be a useful technique to employ if K15 

expression significantly affected IFE development in the embryo (making the study of 

the adult epidermis difficult to compare to normal (i.e. K15-positive) controls.  The 

development of a GEMM whereby K15 could be knocked-out in the adult would 

demonstrate how K15 affects normal skin turnover in the adult.  It may also aid in the 

study of alopecia, which has recently been linked to K15 in some studies (for 

example, Hoang et al., 2009).  In addition this may also demonstrate whether any 

compensatory mechanisms may be in place following K15 ablation. 
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6.9.1.4: Generation of Stable Knock-out Cell Lines and the use of Lentiviral Vectors 

The generation of long-term knock-out lines of a gene of interest can be achieved in 

several ways.  Generally this involves the integration of plasmid DNA into the 

genome.  To select those cells which have successfully incorporated the plasmid into 

the genome, antbiotic selection can be used.  Plasmid DNA, adenoviral, retroviral, 

and lentiviral techniques have all been used to produce stable knock-out (or knock-in) 

cell lines. 

Lentiviral transfection has previously been used in epidermal stem cells (for example 

Di Nunzio et al., 2008), to introduce oncogene expression (for example Siwko et al., 

2008) and importantly, to identify the activity of the K5 promoter (Endo et al., 2008).  

This latter injected lentiviral vectors encoding GFP into the K5 promoter during 

embryonic development, which allowed GFP production to be examined throughout 

development and in the adult.  Again, if a similar technique could be employed to 

examine K15 promotor activity, insights could be gained into the conditions required 

for K15 expression.  It would also indicate those conditions whereby K15 expression 

does not occur. 

 

6.9.2: Study of Posttranslational Modifications 

Part of the role of IFs is to modify cellular processes, such as the stress response, 

through their ability to regulate signaling molecules (Pallari and Eriksson, 2006).  

Posttranslational modifications (PTMs) are the key to functional diversity of IF 

proteins, affecting their structure and properties.  PTMs have been shown to control 

some aspects of IF functions as well as maintain their dynamic properties (as 

reviewed by Hyder et al., 2008).  Phosphorylation has so far been the most widely 

studied PTM, which is still considered to be the most consequential regulator of IF 

dynamics and function.  More recently, O-linked glycosylation has been investigated 

as an additional regulator of phosphorylation in IFs. 

It has been more than twenty years since phosphorylation was shown to be important 

in IF reorganisation during mitosis (Chou, Rosevear and Goldman, 1989); since then 

it has been demonstrated that the N-terminal domain of IFs (also important in 

polymerisation) is polymerised during mitosis (Ralton et al., 1994; Beuttenmuller et 

al., 1994).  K18, phosphorylated on Ser33 during mitosis (Sihag et al., 2007), is also 

phosphorylated at the same point during interphase (Ku, Liao and Omary, 1998), 

suggesting that phosphorylation can be modulated at several sites during different cell 

phases. 

O-linked glycoslylation (the addition or removal of saccharides onto or from the 

hydroxyl atoms of threonine or serine residues) has also been demonstrated to have a 

role during mitosis (Chou and Omary, 1993), whilst Slawson et al. (2006) 

demonstrated that it may have a role as a nutrient sensor and therefore signal 

transduction.  It has also been suggested that O-linked glycosylation may compete 

with phosphorylation, which Wells et al. (2004) calls the ‘yin-yang’ hypothesis.  Tao 

et al. (2006b) have shown for example that Ser48 O-linked glycosylation and 

phosphorylation on Ser52 of K18 could regulate each other. 

Structural modifications of IFs, regulated by phosphorylation, occurs during stresses 

and disease states (Magin, Reichelt and Hatzfeld, 2004; Pekny and Lane, 2007; 

Godsel, Hobbs and Green, 2008).  For example, Ridge et al. (2005) have 

demonstrated that K8 reorganisation is at least in part mediated by Ser73 

phosphorylation by PKC!, a downstream effector of activated PLC (which acts as a 

signal transducer of extracellular stimuli).  Hyperphosphorylation (and the following 

modification) can indicate a loss of mechanical integrity.  Phsphorylation of Ser24 of 

K8 determines where desmoplakin is deposited in the desmosome.  This process than 
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is important in maintaining membrane integrity and signaling scaffolds during cell 

stress (Loranger et al., 2006).  Furthermore, phosphorylation of keratins has also been 

shown to be important in keratin turnover.  For example, phosphorylation of multiple 

sites on K8 and K18 aids in protecting against ubiquitination (and therefore 

degradation) of K8/18 (Ku and Omary, 2000). 

PTM can also act as a regulator of signaling function.  For example, the members of 

the 14-3-3 family can modulate the function of several proteins by interaction with 

phoshorylated IFs.  For example, Ser33 phosphorylation of K18 during mitosis 

enhances K18 interaction with 14-3-3!, affecting K18 organisation and localisation 

(Liao and Omary, 1996; Ku, Liao and Omary, 1998).  In addition, 14-3-3" has been 

shown to be involved in hyperproliferation and an increase in keratinocyte size in 

K10-null mice (Reichelt and Magin, 2002).  Reichelt and Magin (2002) have also 

shown that 14-3-3" accumulates in the nucleus and binds to phosphorylation sites on 

K17.  This activates the mTOR/Akt pathway, important in cell growth. 

 

Several methods can be utilised in the study of PTMs.  Initial examination using 2D 

gel electrophoresis can indicate whether phosphorylation is occurring.  If used in 

combination with, for example, FACS, this could indicate particular cell stages where 

K15 phosphorylation was occurring.  Furthermore, immunofluorescence has also been 

used to demonstrate where keratins colocalise with proteins associated with 

phosphorylation, such as 14-3-3 (such as in Ku, Liao and Omary, 1998).  This is a 

simple method that would establish which proteins which may affect PTM of K15 by 

association.  Pittenger et al. (2008) used site-directed spin labeling and electon 

paramagnetic resonance (SDSL-EPR) to examine the structural changes to vinculin 

following PKA phosphorylation in vitro.  This established where phosphorylation was 

occurring, which meant that the effect this phosphorylation had could be 

hypothesised.  If SDSL-EPR could be used to investigate K15 phosphorylation, it 

may suggest where phosphorylation occurs, giving clues to the effect this PTM has on 

K15 structure and function.  Omary et al. (2006) also suggest that GEMMs are a 

useful way of studying phosphorylation.  For example, transgenic mice have been 

created which overexpress K18 Ser33Ala (Ku et al., 2002), K18 Ser52Ala (Ku, Liao 

and Omary, 1998) and K8 Ser73Ala (Ku and Omary, 2006); the phenotype of these 

‘phosphorylated’ mutant mice demonstrate the importance of phosphorylation in 

filament organisation, mitosis and cytoprotection.  Similar work, once 

phosphorylation sites have been identified, may elucidate similar functions for K15. 
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