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All-Pairs Shortest Path Algorithms Using
CUDA

Jeremy M. Kemp

Utilising graph theory is a common activity in computer science. Algorithms
that perform computations on large graphs are not always cost effective, requir-
ing supercomputers to achieve results in a practical amount of time. Graphics
Processing Units provide a cost effective alternative to supercomputers, allow-
ing parallel algorithms to be executed directly on the Graphics Processing Unit.
Several algorithms exist to solve the All-Pairs Shortest Path problem on the
Graphics Processing Unit, but it can be difficult to determine whether the claims
made are true and verify the results listed. This research asks “Which All-Pairs
Shortest Path algorithms solve the All-Pairs Shortest Path problem the fastest,
and can the authors’ claims be verified?” The results we obtain when answering
this question show why it is important to be able to collate existing work, and
analyse them on a common platform to observe fair results retrieved from a
single system. In this way, the research shows us how effective each algorithm
is at performing its task, and suggest when a certain algorithm might be used
over another.
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Glossary

API Application Programming Interface.

APSP All-Pairs Shortest Path.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

device memory is the largest storage available on the GPU, similar to RAM
on a PC.

DRAM Dynamic Random Access Memory.

GB Gigabyte (109 bytes).

GPGPU General-Purpose Computing on Graphics Processing Units.

GPU Graphics Processing Unit.

KB Kilobyte (103 bytes).

kernel is a CUDA function that allows code to be executed in parallel on the
GPU.

MB Megabyte (106 bytes).

MIMD Multiple Instruction, Multiple Data.

MISD Multiple Instruction, Single Data.

RAM Random Access Memory.

SIMD Single Instruction, Multiple Data.

SISD Single Instruction, Single Data.

SSSP Single-Source Shortest Path.

thread block is a collection of CUDA threads that all execute on a single
CUDA core.

warp is a group of CUDA threads that reside in a thread block, and that all
execute the same instructions at the same time. Usually, in groups of 32.
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Chapter 1

Introduction

1.1 Research Overview

Parallel computing on the Graphics Processing Unit (GPU) has been selected
for use in an increasing number of systems and applications. The software sup-
porting parallel computing on the GPU is becoming more and more comprehen-
sive, with multiple Application Programming Interfaces (APIs) supporting the
so-called General-Purpose Computing on Graphics Processing Units (GPGPU)
era of parallel computing. With the growth in availability of said APIs, coupled
with powerful, discrete GPUs, software developers and researchers are putting a
greater amount of effort into parallelising their software to leverage the excellent
performance benefits that GPGPU has to offer.

A lot of effort has gone into creating highly optimised solutions on the Cen-
tral Processing Unit (CPU) in an attempt to squeeze as much performance out
of existing CPU technology as possible. A common method of such optimisa-
tion is making the application dependent on a particular CPU architecture, in
order to gain the benefits of using every feature available on that architecture.
GPGPU programming allows applications to be offloaded onto the GPU and en-
joy much greater performance than is currently available on the CPU by simply
leveraging hardware that already exits, and has existed, in modern computers
for many years.

Not all applications can enjoy this benefit however, as some problem areas
are far more susceptible to parallel computing than others. The research area of
graph theory has had some slight focus on GPGPU in recent years, with several
solutions being developed for classic graph theory problems such as state space
searching and implementing graph cuts (Vineet and Narayanan, 2008).

There has been an effort of research, investigating the All-Pairs Shortest
Path (APSP) problem using Compute Unified Device Architecture (CUDA).
CUDA is a GPGPU API from NVIDIA and is explained in much greater detail
in Chapter 2. Judging the results of this research, and determining which algo-
rithms are best to use in a given situation can be difficult, especially as they are
often tested on completely different platforms, with different inputs and anal-
ysis. This research asks “Which All-Pairs Shortest Path algorithms solve their
problem the fastest, and can the authors’ claims be verified?”.
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1.2 Intended Outcomes

As discussed in Section 1.1, this research intends to look at APSP algorithms
with CUDA, and compare their performance against each other. In doing so,
several additional research questions were considered and formulated to deliver:

� How do CUDA algorithms compare against their CPU counterparts?

� Can these CUDA algorithms be improved or modified in any beneficial
way?

1.3 Thesis Overview

This thesis aims to answer the research question that was asked in Section 1.1.
In Chapter 2, we look at key concepts behind parallel computing, GPGPU,

and CUDA. In doing so, several frameworks around parallel computing and
parallel computing classifications are examined. Some problems with parallel
computing are examined, such as race conditions and deadlocks as well as the
problem of barriers. In classifying a parallel computer, Flynn’s Taxonomy is ob-
served, providing a solid ground for parallel classification. Additionally, Chap-
ter 2 looks at the world of GPGPU and describes in detail NVIDIAs CUDA
API.

In Chapter 3, we investigate the APSP problem, and how it can be solved
on the CPU with several different algorithms using varying techniques. The
algorithms observed serve as the basis of the algorithms that this thesis will
implement with CUDA and so are important to understand.

In Chapter 4, the APSP problem is looked at in greater detail, specifically
in relation to how the problem can be solved with CUDA. Firstly, existing
methods of storing graphs on the GPU are examined, weighing their benefits
and shortcomings against each other. Finally, the CUDA implementations are
described in detail, complete with algorithmic listings showing their pseudo
code. Improvements to selected algorithms are also shown where possible, as
well as limitations that hamper algorithms where applicable.

In Chapter 5, the results of all CUDA and CPU algorithms are analysed,
comparing their results with each other. The authors’ claims are also examined
to see whether their comments can be verified. Each CUDA algorithm is cross
examined with every other, in an attempt to determine if there is a clear winner
amongst them, or if some are suited to specific tasks.

Finally, in Chapter 6, the findings of this thesis are summarised, providing
a clear overview of the entire body of work, the considerations to be taken into
account when creating CUDA algorithms, and areas for future work.
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Chapter 2

Definitions

2.1 Parallel Computing

Traditionally, computer programs have been written for standard CPUs, i.e.,
they have been written with sequential execution in mind. A sequential program
executes instructions in order, with each instruction occurring after the previous
instruction has completed.

Parallel computing is “a form of computation in which many calculations
are carried out simultaneously” (Almasi and Gottlieb, 1988). In order to obtain
parallelism, the computer hardware must be designed with parallel execution
in mind, so that many instructions can be executed at the same time. The
hardware could simply include having multiple processors or cores in the CPU,
having networked computers execute parallel executions, super computers, and
now, GPU.

Figures 2.1 and 2.2 show a visual comparison between a standard sequential
algorithm and a parallel algorithm running on a CPU with one core and a
CPU with four cores respectively. Barney (2010) describes a useful example
to help illustrate how a parallel algorithm relates to the real world. He states
that parallel computing is simply an evolution of sequential computing that
attempts to emulate what has always occurred in the real world with many
complex, interrelated events happening at the same time while also in sequence.

Figure 2.1: A representation of a sequential algorithm on the CPU (Barney,
2010)
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Figure 2.2: A representation of a parallel algorithm on multiple CPU (Barney,
2010)

2.1.1 Bernstein’s Conditions

There are many challenges in creating parallel algorithms. Data dependency
issues are key in implementing parallel algorithms, as not fully comprehending
them can severely affect the performance of an algorithm. In understanding
the data dependencies of a sequential program, we can see whether it can be
successfully parallelised or not.

Bernstein (1966) devised a set of conditions that must exist if two or more
processes can be executed in parallel. We say that Ii is the set of all inputs for
a process Pi. Similarly, Oi is the set of all outputs for a process Pi.

When given two processes P1 and P2, they may execute in parallel if the
following rules are observed:

I1 ∩O2 = ∅

I2 ∩O1 = ∅

O1 ∩O2 = ∅

The rules defined by Bernstein (1966) state that two processes cannot ex-
ecute in parallel unless they are flow independent (rule one), anti independent
(rule two) and output independent (rule three).

Flow Dependent S1 precedes S2 where at minimum one output of S1 is an
input to S2

Anti Independent S1 precedes S2 where the output of S2 overlaps input to S1

Output Independent S1 and S2 write to the same unique output

For example, Algorithm 1 below cannot be implemented in parallel success-
fully as there are issues with flow dependency. If we look at line four, we can
see that this line cannot be executed before line three, as line four requires an
input that depends on the outcome of line three.

12



However, Algorithm 2 is an example of a program that may be implemented
in parallel, as there are no dependencies between data and instruction. Each
line is independent and does not depend on the outcome of any other line.

Algorithm 1 dependency(int i, int j)

1: int k;
2: int l;
3: k = i * j;
4: l = 3 * k;

Algorithm 2 noDependency(int i, int j)

1: int k;
2: int l;
3: int m;
4: k = i * j;
5: l = 3 * j;
6: m = i + j;

2.1.2 Common Problems with Parallel Programming

Often, when creating parallel algorithms, desired tasks are split into threads
whose purpose is to solve some task in parallel with other threads. Often,
multiple threads will want to read, and modify a common variable in order
to perform some task. This can lead to a serious problem known as a race
condition. Race conditions occur when separate threads both depend on a
shared state. Without proper management, the threads can hold incorrect data
or process incorrect data that has not been updated correctly by a different
thread (Netzer et al., 1992).

Consider Algorithm 3 that helps to clarify race conditions. Ti refers to a
resident thread of the parallel algorithm. Likewise, Ti refers to a register.

Algorithm 3 raceCondition()

1: int i = 0
2: T1 reads i into R1

3: T2 reads i into R2

4: T1 i = i + 1 (in R1)
5: T2 i = i + 1 (in R2)
6: T1 writes R1 back to memory
7: T2 writes R2 back to memory

In Algorithm 3, the result in i at the end of the algorithm is 1. However,
the expected result is 2. To avoid this common problem, mutual exclusion must
be provided by using a lock. The lock will allow a thread to assume control
of a variable (in this case, i) and therefore stop any other thread from reading
and/or writing to it until the controlling thread has released the lock.

In utilising locks to solve race conditions, another serious problem is intro-
duced. Deadlocks occur when two or more threads are waiting for the other(s)
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to finish and neither of them ever do (Silberschatz et al., 2006). For example,
imagine two threads (Tx) and two printers (Rx). Now, imagine each thread
requesting the other’s printer. This situation will cause a deadlock as the print-
ers have not yet been released by the original threads. E.g. T1 is in control
of R1, but is also requesting R2. However, T2 currently controls R2; causing
a deadlock. This form of deadlock is known as circular deadlock, or a circular
chain, and can be seen in Figure 2.3.

 

R1 

T1 R2 

T2 

Figure 2.3: A Diagram Showing Two Threads in Circular Deadlock
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2.1.3 Flynn’s Taxonomy

When looking at the world of parallel computing, there are several ways in which
you can classify a parallel computing machine. These classes could be based on
the hardware architecture of the machine. For example, Flynn (1972) presents
a method of classifying a parallel computing machine based on its hardware
architecture, and therefore, programmability.

Flynn’s classification is based on two separate dimensions, Instruction and
Data. Furthermore, these dimensions are split into two states, Single or Multi-
ple. This leads to four possible classifications that form Flynn’s Taxonomy and
can be seen in Table 2.1.

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Table 2.1: Flynn’s Taxonomy

As we will see in Section 2.4, the GPU used for this project is a Single
Instruction, Multiple Data (SIMD) processor, capable of performing thousands
of identical instructions on any number of pieces of data.

Single Instruction, Single Data (SISD)

� Only a Single Instruction is being executed by the CPU during any
given clock cycle.

� Only a Single Data is being used as input for the current instruction
during any given clock cycle.

� “Represents most conventional computing equipment available today” (Flynn,
1972).

Previous Instruction
load A(1)
load B(1)

C(1) = A(1) + B(1)
store C(1)

Next Instruction

Table 2.2: Single Instruction, Single Data

Single Instruction, Multiple Data (SIMD)

� Only a Single Instruction is being executed by the CPU during any
given clock cycle.

� Multiple Data can be used by each processor to allow for multiple inputs.

� Best suited for systems with multiple streams of data, with a single in-
struction. E.g. a modern GPU.
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Previous Instruction
load A(1)
load B(1)

C(1) = A(1) + B(1)
store C(1)

Next Instruction

(a) Processor 1

Previous Instruction
load A(n)
load B(n)

C(n) = A(n) + B(n)
store C(n)

Next Instruction

(b) Processor n

Table 2.3: Single Instruction, Multiple Data

Multiple Instruction, Single Data (MISD)

� Multiple Instructions are being executed by each processor during any
given clock cycle.

� Only a Single Data is used by each processor for input in any given clock
cycle.

Previous Instruction
load A(1)
load B(1)

C(1) = A(1) + 1
store C(1)

Next Instruction

(a) Processor 1

Previous Instruction
load A(1)
load B(1)

C(1) = A(1) + 1
store C(1)

Next Instruction

(b) Processor n

Table 2.4: Multiple Instruction, Single Data

Multiple Instruction, Multiple Data (MIMD)

� Multiple Instructions are being executed by each processor during any
given clock cycle.

� Multiple Data can be used by each processor to allow for multiple inputs.

� Execution on a MIMD can be either synchronous or asynchronous.

� The most common form of parallel computer.

� The majority of the world’s super computers follow the MIMD architec-
ture.
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Previous Instruction
load A(1)
load B(1)

C(1) = A(1) + B(1)
store C(1)

Next Instruction

(a) Processor 1

Previous Instruction
load Z(n)

foo()
bar()

while Z is true
Next Instruction

(b) Processor n

Table 2.5: Multiple Instruction, Multiple Data
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2.2 GPGPU

In recent years, the advent of GPGPU has popularised the use of parallel com-
puting on the GPU in achieving significant performance gains on a relatively
cheap hardware device. GPGPU is a method of using the GPU to perform com-
putations that would usually be executed by the CPU, rather than performing
calculations to handle computer graphics, as is their traditional use. When
the GPU is used for GPGPU, it can be viewed as a coprocessor to the CPU,
offloading complex tasks that the GPU can tackle in parallel.

GPGPU provides an extremely cost effective alternative for parallel algo-
rithms that would normally be exclusive to supercomputers, with a low-end
CUDA enabled GPU costing approximately £25 compared to a super computer
such as IBM’s Blue Gene system at $1.3million.

Multiple GPUs in a single system can be utilised for a single problem, of-
ten increasing the performance of parallel applications. This project does not
utilise multiple GPU however. The applications of GPGPU are far reaching and
include some of the following:

� Graph Theory.

� Ray Tracing.

� Matrix and/or Vector Operations.

� Signal Processing.

� Image Processing.

� Speech Recognition.

� Physics Simulations.

� Medical Computation.

Multiple GPGPU APIs exist to utilise the GPU for parallel computing. Pop-
ular APIs include NVIDIAs CUDA, OpenCL Khronos (2011) and DirectX’s
DirectCompute platform (Microsoft, 2012). This research focuses solely on
NVIDIAs CUDA API. Each have their advantages and disadvantages, but all
provide a solid parallel computing API to utilise the powerful hardware of mod-
ern GPU.

Modern graphics cards have a specialised hardware architecture that can be
represented as a parallel computer. Unlike traditional graphics cards, GPUs
such as NVIDIAs 580GTX are equipped with 16 multiprocessors, each with 32
cores, providing an impressive 512 cores. Each core has access to a global bank
of memory, much like the Random Access Memory (RAM) on a PC, as well as a
block of shared memory per multiprocessor which provides fast storage that can
be used to share data between parallel processes. The potential of GPGPU is
extremely great, given this unique hardware architecture that can provide great
performance benefits to algorithms at a relatively low cost.
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2.3 What is CUDA?

CUDA is a parallel computing solution developed by NVIDIA, encompassing
both a software and hardware architecture for using an NVIDIA GPU as a par-
allel computing device without the need for a graphics API. CUDA is available
for all NVIDIA GPU following (and including) their G80 series of GPUs.

The CUDA API is an extension of the C programming language, providing
programmers with a set of tools to create parallel algorithms. By providing the
API in C, CUDA gives many programmers who already know C to quickly pick
up their tools and begin creating CUDA applications.

CUDA enabled GPUs now have an install base of at least 100 million units
(NVIDIA, 2009). Clearly, from this number, parallel algorithms utilising CUDA
can be distributed easily to the mass market with a large number of machines
supporting the technology, making CUDA an ideal candidate to boost the per-
formance of a wide range of applications, both academically and commercially,
examples of which are given in Section 2.2.

As a parallel computing platform, CUDA is designed to run thousands of
threads at the same time, each thread executing the same code, but acting on
multiple pieces of data, usually chosen programmatically to ensure that each
thread works on a different pieces of unique data. Using this method, applica-
tions can be executed on the GPU, rather than the CPU as described above.

The CUDA API provides both high and low level APIs to suit the program-
mers needs. The lower level API provides a greater level of granularity and
closeness to the underlying hardware, but decreases the readability and main-
tainability of CUDA code. These APIs are known as the runtime and driver
APIs, respectively. In older versions of CUDA, the driver API provided a greater
level of detail in querying the GPU memory, in providing more information than
the runtime API. However, large strides have been made in the latest CUDA re-
leases, both in API usability, and CUDA compiler performance. The two APIs
are mutually exclusive however, and their use must never overlap.

Despite providing greater control, the lower level driver API does not provide
a performance increase over runtime code, and should simply be used if a greater
amount of control over the GPU is required. Older versions of CUDA provided
an emulator, so that CUDA may be programmed without the presence of a
CUDA GPU. Emulation was not supported by the driver API, and the emulation
program was deprecated with CUDA 3.0.

Since its inception, there has been strong evidence showing that parallel
algorithms on the GPU can greatly improve the performance of classic problems
when compared to their sequential (CPU) equivalents, providing a justification
for research in this area.
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2.4 CUDA Hardware Model

The architecture of a CUDA enabled GPU can be represented as a massive
SIMD processor, examined in further detail in Section 2.1.3. A CUDA device
consists of a number of multiprocessors, each with an identical number of pro-
cessors (cores). Key to the architecture of CUDA devices is the different types
of memory available, and their layout. Or, in other words, CUDAs memory
hierarchy.

Table 2.6 gives a brief overview of the differing memory types, their access
types, scope and locality. Additionally, Figure 2.4 shows these different types of
memory that form CUDAs memory hierarchy and how they interact with the
CUDA architecture on a higher level.

Memory On/Off
Chip

Cached Access Scope Lifetime

Register On N/A R/W Thread Thread
Local Off Compute 2.x R/W Thread Thread

Shared On N/A R/W Block Block
Global Off Compute 2.x R/W Host + Device Host

Constant Off Yes R Host + Device Host
Texture Off Yes R Host + Device Host

Table 2.6: Device Memory Features (NVIDIA, 2012)

Firstly and perhaps most importantly is shared memory. Shared memory
is located directly on-chip with the multiprocessors, providing extremely fast
read and write times to and from the processor. In utilising shared memory,
an impressive performance gain of over 100x can be gained over global memory
(NVIDIA, 2011a).

When possible, the greatest amount of data should be moved from device
memory into shared memory to try and squeeze as much performance out of
CUDA as possible. Once data is in shared memory, computations can be per-
formed there before writing the results back to device memory and thus, re-
ducing the effects of latency between the multiprocessors and device memory.
Latency simply describes the delay in clock cycles between some action being
requested, and the action completing.

Unfortunately, shared memory is very small in comparison to the other mem-
ory types in CUDA. Older compute devices had just 16kb per multiprocessor
to leverage. Newer compute devices however are graced with an additional
16kb, totalling 32kb per multiprocessor. Using shared memory wherever pos-
sible in CUDA code is clearly very beneficial from a performance standpoint
when utilised correctly, but the programmer should be wary of the memory
constraints that go hand-in-hand with shared memory.

As well as shared memory, registers are located on-chip providing extremely
quick access for local variables stored in CUDA code. The use of too many
registers, increasing register pressure, can have a negative effect on system per-
formance and is explained in more detail in Section 2.6.

As we can see in Figure 2.4, texture and constant caches are provided on
top of shared memory, also located on-chip. Cache memory is read only, and
must be populated with data before CUDA code is executed. This can be
performed with one of the many memory allocation features provided by the
CUDA driver and runtime APIs. Whilst not as fast as shared memory, they
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provide a greater amount of storage, and are significantly faster than device
memory (global memory).

Device memory, (also known as global memory or Dynamic Random Access
Memory (DRAM)) is available to all multiprocessors and their cores, effectively
acting as the GPUs RAM. Device memory offers by far the greatest amount
of storage capacity on the GPU but also suffers from being the slowest of all
forms of memory. Device memory takes several clock cycles to both read and
write data to and from the multiprocessors. It is often necessary to use device
memory, due to its sheer capacity, so its speed must be kept in mind at all times
to ensure the greatest performance benefits when programming for CUDA.

Figure 2.4: CUDA Hardware Model, Demonstrating Memory Hierarchy and
Overall Hardware Architecture of CUDA GPUs (NVIDIA, 2009)

Fundamentally, understanding the benefits and drawbacks of these contrast-
ing memory types is important and can greatly affect the performance of code.
In knowing which storage type to use before creating a CUDA application, we
can speed-up our applications as much as possible.

When programming for CUDA, it is important to take into consideration the
time taken to physically move data between the host and the device. Minimising
data transfer between host and device is important because those transfers are
subject to much lower bandwidth than when moving data internally on the
device (NVIDIA, 2011a). In some cases, it may be beneficial to just compute
the data you need on the device, rather than copying it from host memory to
device memory. Due to the high bandwidth, low latency of shared memory, it is
always beneficial to use it wherever possible. Either by copying data from device
memory to shared, and performing calculations there, or by simply computing
the data required directly into shared memory (NVIDIA, 2011a).
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2.4.1 Coalesced Memory Access

“Perhaps the single most important performance consideration in programming
for the CUDA architecture is coalescing global memory accesses” (NVIDIA,
2011a).

Dehne and Yogaratnam (2010) state that the goal of coalescing memory ac-
cess is to combine multiple global memory access requests, by multiple threads,
concurrently, into a single memory transaction for an independent portion of
memory. The benefits of using this technique are vast, greatly improving the
performance of the application. Using coalesced memory access can be a diffi-
cult task to master, as the GPU hardware support for the system has changed
quite significantly with each version of CUDA.

Early versions of CUDA (1.0/1.1) required that the kernel explicitly align
memory access patterns so that each thread had to access consecutive memory
blocks that related to the order of the threads. Kernels are explained in greater
detail in Section 2.5. Imagine four threads, T0 to T3. To achieve coalesced
memory access, each thread must access memory locations A0 to A3 where
A0 < A1 < A2 < A3 and are in a block of contiguous memory (Dehne and
Yogaratnam, 2010). The memory accesses by these threads are coalesced using
a half-warp (explained a little further on) of threads, where a full warp consists
of thirty two threads. In this way, sixteen thirty two bit reads are coalesced
into one sixty four byte memory access. As noted by Dehne and Yogaratnam
(2010), this method of memory coalescing is really quite inflexible and rather
complicated to implement successfully.

With the release of CUDA 1.2, the rules for coalesced memory access were
relaxed, allowing for easier, and more successful use of the system (NVIDIA,
2011b). With CUDA 1.2 and above, if sixteen data accesses fit into a thirty
two byte memory segment, then a single memory access of thirty two bytes is
performed. If however, those sixteen accesses do not fit into a thirty two byte
segment, but do fit into a sixty four byte segment, a sixty four byte segment is
performed instead.

If the data stored in global memory does not map well for coalescing, it
can be beneficial to pad your data so that it may match the coalesced access
patterns. Padding data simply means to add extra data that has no meaning
in order to achieve some storage constraint. In that way, you can still benefit
from the performance improvement of coalesced access. This is only possible
however, if you have enough free memory that you can waste with data padding
(NVIDIA, 2011b). Clearly, using this coalesced system allows for a significant
performance improvement by allowing multiple pieces of data to be accessed in
parallel, rather than sequentially.
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2.5 CUDA Software Model

As explained in Section 2.3, two APIs are provided in order that CUDA might be
programmed. Both APIs allow programmers to write special functions known
as kernels that will be executed on the GPU. These kernels are structured in
the same way as normal C functions, but are provided with additional intrinsics
such as threadIdx that allow the executing thread to access information about
itself. In this case, a 3-Dimensional vector (threadIDx) that holds the current
thread’s address. Each component of the vector represents the threads x, y,
and z co-ordiantes inside the thread block (explained below). This information
can be used in a number of ways; most commonly in determining what data the
thread should operate on.

In order to create a CUDA application, it is not necessary to understand
the underlying hardware architecture, as it is hidden from the programmer.
While a programmer does not need to understand the hardware architecture,
it is extremely beneficial in being able to gain the most out of CUDA. By
understanding the hardware architecture, as well as the intricate details of how
CUDA threads operate and interact, the programmer can tailor his or her kernels
to obtain the best performance possible from the code in utilising the many
memory types and features of the CUDA architecture.

Instead of seeing the CUDA architecture when programming, threads are
seen as being organised into blocks. Blocks are a convenient structure to think
about threads in. A block is simply a 1, 2, or 3-Dimensional structure in which
threads reside. In this way, groups of threads can easily be partitioned, allowing
the programmer to easily decide how and where blocks should operate on data,
and how shared memory should be utilised. Each thread is executed following
the Single Program, Multiple Data (SPMD) model (see NVIDIA (2012)).

A programmer can define how many threads are executed for each kernel
that is written. Taking the NVIDIA 8800GTX as an example, the programmer
can define no more than 512 threads per block. Blocks can also be ordered into
grids, with each grid holding at most 232 blocks. Therefore, 241 total threads can
be executed per kernel. CUDA handles the assignment of threads and blocks to
multiprocessors as well as other tasks including thread scheduling by utilising
its GigaThread technology (see NVIDIA (2011b)).

The way in which threads are scheduled on the GPU differs greatly from the
CPU. Whilst one might say that threads execute independently on the CPU,
CUDA threads are scheduled in groups. These groups, known as warps, execute
following the Single Instruction Multiple Thread (SIMT) model as described
in Section 2.1.3. The minimum number of threads per warp is 32, with each
thread inside the warp executing exactly the same instruction. Therefore, if the
code being executed by the warp contains branches, each branch is expanded
by filling in with null values where appropriate. Clearly, avoiding branches is
critical as the performance of algorithms containing branches degrade as thread
execution time is increased by expanding both branches.

CUDA provides functions that allow threads to be synchronised within a
block. This synchronisation process acts as a barrier within the kernel which
forces all threads in a block to hang until every thread in the block has reached
the barrier. Blocks cannot be synchronised within a grid. Threads can be
addressed using either a 1, 2, or 3-Dimensional index. Likewise, blocks may be
addressed by a 1, 2, or 3-Dimensional index. CUDA provides thread and block
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ID variables which can be used in a variety of ways to ensure that the threads in
a kernel are performing the correct tasks on the correct piece or pieces of data.

A very important aspect of a block, is that threads within a block can
communicate via the GPU shared memory. This is the only form of thread
communication available with CUDA. The GPU automatically schedules where
and how blocks should be executed on the device. Blocks are always contained
to one core, i.e. a block and its threads can never be split between different
cores. This restriction ensures that each thread in the block can communicate
via shared memory as shared memory is located on-chip (as discussed in Sec-
tion 2.4). Organising threads and the data allocated to shared memory is often
a complex task, with additional issues such as avoiding bank conflicts.

Bank conflicts occur where one block’s shared memory data overlaps an-
other’s. Bank conflicts are discussed in more detail in Section 2.8. Evidently,
utilising shared memory is highly beneficial but requires skill to accomplish it
successfully. As mentioned previously, the programmer specifies the number of
threads that are used for each kernel. The programmer can also specify the
block size that is to be used for each kernel. A kernel can also be executed
multiple times with differing thread and block sizes for each execution to create
the desired results.

CUDA refers to the GPU as the device, whereas the CPU is the host. Ex-
ecuting a kernel does not stop the host from executing it’s own code, allowing
both device and host code to run simultaneously. This feature was only intro-
duced in a recent version of CUDA however, and kernel calls used to be blocking.
Having blocking code means that the CPU would not be able to continue the
CPU section of a CUDA program until the kernel returned control to the host.

If the host wishes to access device memory whilst a kernel is executing, it
is necessary for the kernel to finish its execution. Therefore, the host code is
blocked until kernel execution finishes, at which point the host may proceed. As
of CUDA compute version 1.1 and above, asynchronous memory access is sup-
ported whilst a kernel is executing, allowing host code to access device memory
during kernel execution. This feature can be useful in certain problem domains,
but for this project, its use is limited at best.

If the programmer wishes, multiple kernels can be executed asynchronously,
allowing multiple differing tasks to be completed at once. In this regard, the
kernels must be carefully written to ensure that enough memory is available
for each kernel and that performance isn’t harmed by executing more than one
kernel at any one time.
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2.6 Occupancy

CUDA executes instructions sequentially within a thread block, so executing a
warp whilst another is paused or blocked is the only way in which CUDA can
hide latencies and attempt to keep the GPU busy. CUDA defines a metric,
occupancy, that allows determination of how effectively the GPU is being kept
busy by CUDA (NVIDIA, 2012).

NVIDIA define occupancy as the “ratio of the number of active warps per
multiprocessor to the maximum number of possible active warps” (NVIDIA,
2012). Having a low occupancy can interfere with the ability of CUDA to
hide the performance issues related to memory latency which in turn results
in a decrease in performance of CUDA code. Conversely, having a high occu-
pancy rating does not always equal a higher performance rating of CUDA code.
NVIDIA (2012) state that there is a point in which additional occupancy does
not improve CUDAs performance.

Register availability is one of the major factors that can affect the occupancy
of CUDA code. Kernels use registers to enable threads to store local variables in
extremely efficient memory, allowing for low latency access by the thread. The
number of registers available are limited, making them a scarce resource for
thread blocks. They must be shared between all threads and blocks that reside
on a single multiprocessor. As registers are allocated by the CUDA compiler
all at one time, the number of threads that may reside on a multiprocessor
is reduced as there are a limited number of registers. This leads to a lower
occupancy rating due to the simple fact that fewer threads can be allocated to
a multiprocessor when lots of registers need to be allocated to a thread block.

In calculating occupancy, the number of registers used by a thread is very
important. CUDA devices with compute capability 1.0/1.1 have 8,192 registers
per multiprocessor and can also have at most 768 threads resident on a multi-
processor at any one time (NVIDIA, 2012). With these statistics, each thread
would have to use at most 10 registers to achieve 100% occupancy.

The exact nature of the relationship between register use and occupancy can
be difficult to determine (NVIDIA, 2012). Due to the fact that register alloca-
tion differs slightly between different compute versions of CUDA devices, and
the fact that a multiprocessor’s shared memory is also partitioned between dif-
fering thread blocks, exact occupancy calculation is a difficult task. To combat
this, NVIDIA provide CUDA developers with a spreadsheet in which critical
data about CUDA kernels can be entered to provide an occupancy rating for
the code. Additionally, NVIDIA provide a profiling tool that allows the CUDA
code to be executed and monitored to calculate an occupancy rating.

25



2.7 Thread and Block Heuristics

When choosing the number of threads per block, a multiple of 32 threads is
recommended by NVIDIA as to ensure “optimal computing efficiency” and fa-
cilitate coalescing (NVIDIA, 2012). By ensuring the correct parameters for the
number of threads per thread block, the balance between the latency of a CUDA
application and resource utilisation can be found.

Occupancy and latency hiding depend on the number of active warps per
multiprocessor which in turn depends on the register and shared memory con-
straints set by the compute capability of the GPU. To balance occupancy
with resource allocation, the correct execution parameters should be chosen
(NVIDIA, 2012).

Kernels should be designed to try and keep the GPU as active as possible,
ensuring that there is as little idle time as possible whilst a kernel is executing.
A simple way of doing this is to ensure that the number of blocks specified is
greater than the number of multiprocessors on the GPU. Different GPUs have
contrasting numbers of multiprocessors however, which is important to keep
in mind. In this way, each multiprocessor has at least one thread block to
execute. Increasing the number of thread blocks so that each multiprocessor is
assigned multiple thread blocks by the compiler is important. In doing this, if
a thread block is forced to wait by a syncthreads() command, execution can
be switched to another thread block, thus helping to keep the GPU busy at all
times. NVIDIA recommend using thousands of thread blocks per kernel launch
to ensure scalability with future GPUs (NVIDIA, 2011a).

Clearly, occupancy is not just determined by block size as many blocks may
be present on a single multiprocessor at any one time. NVIDIA (2012) give
the example that having a block size of 512 threads may result in occupancy
of 66% as the maximum number of threads is 768. Therefore, only one active
block would reside on a multiprocessor. However, a smaller block of 256 threads
could result in 100% occupancy as there would be three active blocks on the
multiprocessor.

Selecting the correct block size is important for the reasons described above,
but there are several factors in choosing the block size, depending on the task
at hand. Currently, experimenting with block sizes is needed to obtain the best
performance, but NVIDIA (2012) provide the following rules that should be
followed to ensure block and thread heuristics are set correctly.

� Threads per block should be a multiple of warp size to avoid wasting
computation, and to facilitate coalescing.

� At least 64 threads per block should be used.

� Between 128 and 256 threads per block is a better choice however. This
provides a good base range for initial experimentation of different block
sizes.

� If latency is an issue, use smaller thread blocks rather than one large one.
This is especially useful if syncthreads() is frequently used.
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2.8 Bank Conflicts

As we know from Sections 2.4 and 2.5, shared memory has a much higher band-
width and lower latency than global memory. This is not the case however
where bank conflicts occur. Shared memory is divided into equally sized block
(banks) that are accessible simultaneously by threads resident on a single mul-
tiprocessor. “Therefore, any memory load or store of n addresses that spans n
distinct memory banks can be serviced simultaneously” (NVIDIA, 2012). As a
result, thread blocks can achieve a bandwidth that is n times as great as the
bandwidth capabilities of a single bank on its own.

If however, there are several memory addresses in a request that map to the
same bank of shared memory, a bank conflict occurs and the access to the bank
is serialised, impacting the performance of the kernel. In an attempt to reduce
the effects of bank conflicts, the GPU will attempt to split each memory request
that will result in a bank conflict into as many requests as necessary, so as to
avoid conflicts, thus decreasing the bandwidth of the memory access.
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2.9 Chapter Summary

In this chapter, a general overview of parallel computing was discussed, as well
as an in-depth look at GPGPU and more specifically, CUDA.

We have seen how Bernstein’s Conditions can be used to identify whether
an algorithm or process can be implemented in parallel by understanding what
inherent dependencies are present in the process. In order that a process might
be implemented in parallel, it must be flow independent, anti independent, and
output independent.

Many new and interesting problems may present themselves in parallel com-
puting. We have seen how race conditions can drastically effect how a program
operates, in potentially resulting in incorrect data being read/written. This
problem can lead to deadlock, whereby different threads end up waiting for
other threads to finish a task, and therefore stall due to neither of them ever
finishing.

Flynn’s Taxonomy is an important framework for identifying how a parallel
computer might be implemented. Flynn (1972) presents three classifications,
SIMD, MISD, MIMD for identifying a parallel computer, and how it operates.
As well as one classification, SISD, which identifies a traditional sequential com-
puter. These classifications were later used in identifying how a CUDA GPU
operates.

On looking at the GPGPU space, we have seen many useful applications of
GPGPU, as well as several high profile APIs available for utilising the technol-
ogy. CUDA was identified as a GPGPU API, as well as the one that will be
utilised for this thesis. We have seen in great detail how the CUDA hardware
and software models are composed, providing a parallel platform in which many
thousands of resident threads may be executed in order to improve the perfor-
mance of a subject problem. Technicalities of CUDA were presented, such as
bank conflicts, and deciding on what memory type(s) should be utilised when
implementing applications for CUDA.
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Chapter 3

Introduction to the
All-Pairs Shortest Path
Problem

Graphs are an extremely common data structure in the field of computer science.
There are many different problems that can and are represented as graphs, and
algorithms to manipulate them are very important and widely used. This section
looks at graph algorithms in terms of the APSP problem.

3.1 What is the APSP Problem?

Imagine trying to find the shortest distance between all pairs of cities in an atlas.
This problem can be solved using an APSP algorithm by representing the cities
and roads between them as vertices and edges respectively. More formally, given
a directed, weighted graph G = (V,E), we wish to find for every pair of vertices
u, v ∈ V , a least weight (shortest) path from u to v, whose weight is the sum of
all edges in the path (Cormen et al., 2001). |V | denotes the number of vertices
in the set and |E| similarly denoting the number of edges in G.

The problem can be solved by running an algorithm that solves the Single-
Source Shortest Path (SSSP) problem by running it on every vertex in G. A
popular way of solving the problem using this means is using Dijkstra’s SSSP
algorithm. The edges’ weights must be non-negative in order to use Dijkstra’s
algorithm for APSP. If negative edge weights are allowed, the slower Bellman-
Ford algorithm must be used (Cormen et al., 2001). Where negative cycles are
allowed, there is no shortest path as the traversal of such a cycle continually
reduces the cost of the path. An algorithm using this approach is described in
Section 4.3. A “true” APSP algorithm does not take this approach however.
The following algorithms are expanded on in the following sections.
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3.2 Sequential Algorithms

3.2.1 The Floyd-Warshall APSP Algorithm (Floyd, 1962)

The majority of CUDA algorithms described in Chapter 4 are originally based
upon this algorithm so it is important to fully understand the theory behind it,
and how it is implemented correctly.

The Floyd-Warshall algorithm utilises a dynamic programming technique
and runs in O(n3) time (Cormen et al., 2001). The algorithm operates on a
directed graph G = (V,E) with non-negative edge weights. The algorithm can
however operate if required with negative edge weights. If a cycle was to exist
with total negative weight, the Floyd-Warshall algorithm can be used to detect
them. Initially, all path lengths are 0. If negative cycles exist between two
vertices, the path length between those two vertices will be negative.

Using the observations in Cormen et al. (2001), for any pair of vertices u
and v, observe all paths from u to v where the intermediate vertices are from
some subset of V {1, 2, ..., k} for any k. Additionally, let p be a path amongst
u and v that is of a minimum weight.

Floyd-Warshall uses the relationship between p and all shortest paths be-
tween both u and v with all of the intermediate vertices in the set {1, 2, ..., k−1}.
Depending on whether k is an intermediate vertex or not, one of two things can
happen. Where k is not an intermediate vertex of p, all of the intermediate ver-
tices in p must be in {1, 2, ..., k − 1}. To that end, the least cost path between
u and v will also be in the set {1, 2, ..., k}.

However, if k is an intermediate vertex of p, p can be split into two paths
such that p1 is that path from u to k and the path p2 is from k to v. As k is
no longer an intermediate vertex, p1 is the shortest path from u to k where all
intermediate vertices are in {1, 2, ..., k−1} and p2 is the shortest path from k to
v where all intermediate vertices are in {1, 2, ..., k − 1}. This observation holds
in that a subpath of a shortest path is in itself, a shortest path, as described by
Cormen et al. (2001).

Algorithm 4 Floyd-Warshall

1: for k= 0 to n
2: for u = 0 to n
3: for v = 0 to n
4: graph[u][v] = min(graph[u][v], graph[u][k] + graph[k][v])
5: end
6: end
7: end

Algorithm 4 demonstrates how simple the Floyd-Warshall algorithm is to
implement on the CPU. The computations can be done in place, meaning that
the graph does not need to be copied and therefore, keeping the same amount
of memory. This basic construct is used and modified by the majority of the
following CUDA algorithms, and is a classic solution to the APSP problem.
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3.2.2 Dijkstra’s Algorithm (Dijkstra, 1959)

As mentioned in Section 3.1, Dijkstra’s algorithm, which solves the SSSP prob-
lem, can be used to solve APSP by repeating the algorithm on every vertex in
a graph. Harish and Narayanan (2007) describe a CUDA algorithm based on
Dijkstra’s algorithm which is detailed in Section 4.3. A good implementation
of Dijkstra’s algorithm has a lower running time than that of the Bellman-Ford
algorithm described in Section 3.2.3.

Dijkstra’s algorithm maintains a set S of vertices whose shortest path weights
from the source vertex s have already been determined. The algorithm repeat-
edly selects a vertex v ∈ V − S with “the minimum shortest path estimate”
and then adds u to S, finally relaxing the edges that leave u. To improve on
the Bellman-Ford algorithm, a minimum-priority queue Q is used. The origi-
nal algorithmic description by Dijkstra does not use a minimum-priority queue
(Dijkstra, 1959).

Algorithm 5 Pseudo Code for Dijkstra’s Algorithm (Cormen et al., 2001)

1: S �∅
2: Q �V
3: while Q 6= ∅
4: do u �EXTRACT-MIN(Q)
5: S �S ∪ {u}
6: for each vertex v ∈ adj[u]
7: do RELAX(u, v, w)

We can see from Algorithm 5 that the loop invariant on line three will be
true at the start of the algorithm. As the algorithm proceeds through the
loop, a vertex u is extracted from Q and immediately added to S. This process
maintains the invariant, and from it, we can see that the algorithm loops exactly
|V | times. This holds as each vertex is removed from Q and added to S exactly
once each. As edges are relaxed on lines four to seven, the path cost estimate
is updated if the shortest path can be improved by passing through u to get to
v (Cormen et al., 2001).

Dijkstra’s algorithm uses a greedy approach in that it chooses the next closest
or lightest vertex. Greedy algorithms are not always optimal but in Dijkstra’s
case, this algorithm does present an optimal solution. A proof for this can be
found in the work by Cormen et al. (2001).

Dijkstra’s algorithm gives us a running time of O(|E| + |V | log |V |) when
implemented using a minimum-priority queue that is represented by a Fibonacci
heap. With this method, each call to EXTRACT-MIN only takes O(log |V |)
and each RELAX call takes just O(1) of which there are |E| calls. The Relax
algorithm is explained in Section 3.2.3 and shown in Algorithm 7.

The running time of the algorithm changes when solving the APSP problem.
As the algorithm is run |V | times for each vertex, the new running time is
O(|V |2 log |V |+ |V ||E|) (Cormen et al., 2001).
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3.2.3 The Bellman-Ford Algorithm (Bellman, 1958)

The Bellman-Ford algorithm solves the SSSP problem but like other SSSP al-
gorithms, it can be used to solve APSP as well, by running on each vertex in
G. Unlike Dijkstra’s algorithm, the Bellman-Ford algorithm may operate on
graphs with negative edge weightings and also has an asymptotic running time
that is worse than Dijkstra’s. For that reason, the Bellman-Ford algorithm is
usually used where negative edge weights may be present, as Dijkstra’s cannot
operate on such a graph.

The algorithm will return a boolean variable that specifies whether the graph
contains a negative weight cycle that may be reachable from the source vertex
s. If a cycle is found, the algorithm states that there is no solution and ceases
execution. If however, there is no cycle, the shortest paths and their weights
are calculated.

During the algorithm, all edges in G are relaxed (as shown in Algorithm 7).
The Relax algorithm looks at whether the path to v can be improved if the path
goes through u. If so, both d[v] and π[v] are updated. This continues until the
shortest paths have been calculated. Once completed, the algorithm will return
true if, and only if, no negative weight cycles are detected.

Algorithm 6 Pseudo Code for the Bellman-Ford Algorithm (Cormen et al.,
2001)

1: INITIALISE SINGLE SOURCE(G, s)
2: for i�1 to |V [G]| − 1
3: do for each edge (u, v) ∈ E[G]
4: do RELAX(u, v, w)
5: for each edge(u, v) ∈ E[G]
6: do if d[v] > d[u] + w(u, v)
7: then return FALSE
8: return TRUE

The Bellman-Ford algorithm runs inO(|V ||E|) time. Line one in Algorithm 6
takes Θ(|V |) time. Following that, each of the edge relaxations in line four take
Θ(|E|) time and the for loop over lines five - seven take O(|E|) time. Thus, the
running time results in O(|V ||E|).

Algorithm 7 Pseudo Code for the Relax Algorithm (Cormen et al., 2001)

1: RELAX(u, v, w)
2: if d[v] > d[u] + w(u, v)
3: then d[v] �d[u] + w(u, v)
4: π[v] �u
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3.2.4 Blocked Algorithm (Venkataraman et al., 2003)

The Blocked Algorithm by Venkataraman et al. (2003) was designed, and op-
timised, with CPU cache in mind, rather than optimising for RAM, which was
the standard at the time. In utilising cache, Venkataraman et al. (2003) can
achieve a substantial speed-up over the standard Floyd-Warshall algorithm in
solving the APSP problem.

The algorithm begins by partitioning the adjacency matrix into sub matrices
of size B × B where B is known as the blocking factor. Usually, it is normal
for B to divide wholly into |V |. The algorithm performs B iterations of line
one in Algorithm 4 on each B ×B block of D before it proceeds to the next B
iterations (Venkataraman et al., 2003).

To increase understanding of the algorithm, Venkataraman et al. (2003)
suggest thinking of each set of B iterations as being split into three separate
phases. In phase 1 of the first iteration, Algorithm 4 is used to compute the
elements within the sub matrix located at (0, 0). As this set of iterations only
accesses the elements within this block, Venkataraman et al. (2003) state that
the sub matrix is called the self-dependent block. In the following code snippets
we say that k is 1 ≤ k ≤ B.

In phase 2, a modified version of Algorithm 4 is used to compute the remain-
ing sub matrices that are on the same row and column as the self-dependent
block. For the sub matrices on the same row, the computation

Dk(i, j) = min{Dk−1(i, j), DB(i, k) +Dk−1(k, j)}

is used. Likewise, for the remaining sub matrices on the same column as the
self-dependent block, the computation

Dk(i, j) = min{Dk−1(i, j), Dk−1(i, k) +DB(k, j)}

is used.
Finally, in phase 3, the remaining sub matrices are computed. Like phase 2,

this computation is completed using a modified version of Algorithm 4:

Dk(i, j) = min{Dk−1(i, j), DB(i, k) +DB(k, j)}

Now that phase 3 is complete, the next round of B iterations is computed
by the Algorithm 8. This time however, the self-dependent block is located
at (1, 1). The process then repeats until B iterations of the algorithm have
been performed. We are left with an algorithm that solves the APSP problem
with the intention of improving running times when compared to the standard
Floyd-Warshall algorithm (Algorithm 4).
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Algorithm 8 Code for the Blocked Floyd-Warshall Algorithm (Venkataraman
et al., 2003)

for(round = 1; round≤ n / B; round ++)
for(k = (round - 1) * B + 1; k != round * B; k ++)

for(all i and j in block)
D[i][j] = min(D[i][j], D[i][k] + D[k][j]);

end
end

do the remaining for all remaining blocks:
phase 2 blocks
phase 3 blocks
for(k = (round - 1) * B + 1; k ≤ round * B; k ++)

for(all i and j in block)
D[i][j] = min(D[i][j], D[i][k] + D[k][j]);

end
end

end
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Proving the Blocked Algorithms Correctness

We begin with a bit of notation. Suppose that P1, P2 and P3 are sets of paths
in G. Suppose that some path p is the concatenation of a path p2 in P2 with
a path p3 in P3; so, in particular, the last vertex of p2 must be equal to the
first vertex of p3. We say that p2 is a prefix of p, with p3 the complementary
suffix . Define P2 · P3 as the set of paths in G having a prefix in P2 so that
the complementary suffix is in P3 (note that we disallow walks, obtained in this
way, that are not paths).

The following definitions are needed for this section.

1. We denote by P c(u, v) the set of all paths from vertex u to vertex v in G
where the internal vertices come from {1, 2, . . . , c}.

2. For any set of paths P , we denote by minP the minimum weight of the
paths of P or ∞ if P is empty.

3. We define the n × n matrix Ac so that Ac(u, v) = minP c(u, v); that
is, Ac(u, v) is the value lcu,v (see the previous section), with Ac(u, v) =
min{Ac−1(u, v), Ac−1(u, c) +Ac−1(c, v)}.

Define
ϕ(P1, P2, P3) = P1 ∪ (P2 · P3).

Note that if P1 ⊆ P ′1, P2 ⊆ P ′2 and P3 ⊆ P ′3 then ϕ(P1, P2, P3) ⊆ ϕ(P ′1, P
′
2, P

′
3)

(we shall return to this fact later). Also, note that

P c(u, v) = ϕ(P c−1(u, v), P c−1(u, c), P c(c, v)),

or
P c
x,y(i, j) = ϕ(P c−1

x,y (i, j), P c−1
x,z (i, k), P c−1

z,y (k, j))

where u = xb+ i, v = yb+ j and c = zb+ k.
Suppose that we amend the recurrence within Floyd-Warshall slightly so

that if u = xb + i, v = yb + j, c = zb + k and c̄ = (z + 1)b (and so c ≤ c̄) then
we define the following sets of paths:

� P̃ 0
x,y(i, j) = P 0

x,y(i, j)

� P̃ c
z,z(i, j) = P c

z,z(i, j)

� P̃ c
x,z(i, j) = ϕ(P̃ c−1

x,z (i, j), P̃ c−1
x,z (i, k), P c̄

z,z(k, j)), if x 6= z

� P̃ c
z,y(i, j) = ϕ(P̃ c−1

z,y (i, j), P c̄
z,z(i, k), P̃ c−1

z,y (k, j)), if y 6= z

� P̃ c
x,y(i, j) = ϕ(P̃ c−1

x,y (i, j), P c̄
x,z(i, k), P c̄

z,y(k, j)), if x 6= z 6= y

with Ãc
x,y(i, j) = min P̃ c

x,y(i, j).
We now detail two inductions. Our first induction hypothesis is that no

matter what the values of u and v, we have that the set of paths P̃ c−1
x,y (i, j)

from u to v in G is such that all internal vertices on any path come from
the set of vertices {1, 2, . . . , c̄}. The base case of the induction (when c = 0)
holds by definition, and the construction above immediately yields that we must
have that the set of paths P̃ c

x,y(i, j) from u to v in G must be such that all
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internal vertices on any path come from the set of vertices {1, 2, . . . , c̄}. Thus,
in particular, P̃ c

x,y(i, j) ⊆ P c̄
x,y(i, j).

Suppose as our induction hypothesis that no matter what the values of u
and v, we have a set of paths P̃ c−1

x,y (i, j) from u to v in G such that all internal
vertices on any path come from the set of vertices {1, 2, . . . , c̄} and such that
P c−1
x,y (i, j) ⊆ P̃ c−1

x,y (i, j). From the definitions above, we trivially have that every

path in P̃ c
x,y(i, j) only has internal vertices from the vertex set {1, 2, . . . , c̄}.

Furthermore, we have the following:

� if x 6= z then

P c
x,z(i, j) = ϕ(P c−1

x,z (i, j), P c−1
x,z (i, k), P c−1

z,z (k, j))

⊆ ϕ(P̃ c−1
x,z (i, j), P̃ c−1

x,z (i, k), P c̄
z,z(k, j))

= P̃ c
x,z(i, j)

� if y 6= z then

P c
z,y(i, j) = ϕ(P c−1

z,y (i, j), P c−1
z,z (i, k), P c−1

z,y (k, j))

⊆ ϕ(P̃ c−1
z,y (i, j), P c̄

z,z(i, k), P c−1
z,y (k, j))

= P̃ c
z,y(i, j)

� if x 6= z 6= y then

P c
x,y(i, j) = ϕ(P c−1

x,y (i, j), P c−1
x,z (i, k), P c−1

z,y (k, j))

⊆ ϕ(P̃ c−1
x,y (i, j), P c̄

x,z(i, k), P c̄
z,y(k, j))

= P̃ c
x,y(i, j).

So, by induction, we have that P c
x,y(i, j) ⊆ P̃ c

x,y(i, j) no matter what the values
of u and v and for all values c from {0, 1, . . . , n}.

However, when c = zb we also have that P̃ c
x,y(i, j) ⊆ P c

x,y(i, j), and so for

such c, P̃ c
x,y(i, j) = P c

x,y(i, j) with Ãn
x,y(i, j) = An(u, v). Consequently, we can

use the computations of Ãx,y in order to compute An.
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3.3 Chapter Summary

In this chapter, we have investigated the formulation of the APSP problem as
well as several sequential solutions to the problem.

In identifying the APSP problem, we have seen that it is a way of finding the
shortest path between every pair of vertices in a given weighted graph G. This
can be solved by utilising specific APSP algorithms, or by performing algorithms
that solve the SSSP problem on every vertex in G.

Several APSP algorithms are presented which will later be discussed in re-
lation to CUDA algorithms. These CUDA algorithms are originally based the
sequential algorithms presented in this chapter. We have seen a very popular
APSP algorithm presented by Floyd (1962) which solves the problem in place
in O(V 3). Additionally, we have seen the classic SSSP algorithm presented by
Dijkstra (1959) and how it can be utilised for the APSP problem. The Bellman-
Ford algorithm is also an SSSP algorithm that can solve the APSP problem by
executing it on every vertex in G. However, we have seen that the Bellman-
Ford algorithm has the added benefit of working on graphs with negative edge
weights, whereas Dijkstra’s algorithm does not have this capability. We have
seen that Dijkstra’s algorithm has a better running time than Bellman-Ford and
so should always be used unless there are negative edge weights.

Finally, a blocked CPU algorithm based on Floyd-Warshall’s APSP algo-
rithm is observed, which provides an improved running time over the Floyd-
Warshall algorithm. A proof of correctness is provided for this algorithm, as it
is based on the well documented Floyd-Warshall algorithm, but forms the basis
of a critical CUDA algorithm.

An understanding of these algorithms is critical in presenting CUDA imple-
mentations of APSP algorithms, as many of them are based on these classic
CPU algorithms.
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Chapter 4

Implementation of APSP
Algorithms Using CUDA

4.1 Graph Representations with CUDA

GPU memory layout is optimised for rendering graphics and cannot support
user-defined data structures efficiently (Harish et al., 2009). Whilst data struc-
tures for use on the CPU have been studied extensively, the use of hash tables
(Hyvonen et al., 2008) for example, that are efficient on the CPU, are not suit-
able for the GPU (Harish et al., 2009).

Of the algorithms detailed in this chapter, two different graph representa-
tions are used. These implementations are described here, to provide a full
understanding that may be used when describing the APSP algorithms. The
way in which a graph to be searched is stored on the GPU is critically impor-
tant. Trade-offs between time and memory constraints have to be considered
when choosing the memory layout for a graph. Let G = (V,E) be a graph with
the vertex set V and the edge set E. We will use this notation for the rest of
the paper to denote the graphs that we will perform searches on for all APSP
algorithms. In that way, we can maintain a coherent approach to the way in
which we describe all algorithms.

4.1.1 Adjacency Lists

Traditional methods of storing graphs, such as using an adjacency matrix, pro-
vide a constant time method, O(1), of determining whether there is an edge
e between two vertices, u and v, but compromises on memory usage, O(|V |2).
For sparse graphs, adjacency matrices are largely wasteful, holding data where
no edges exist in the graph.

Adjacency lists provide a method of storing graphs which requires vastly less
memory than an adjacency matrix, O(|V |+ |E|). An adjacency list achieves this
low memory usage by only holding vital information. However, the drawback of
using such a list is a more expensive lookup time to determine if there is an edge
between two vertices O(|V |). Harish and Narayanan (2007) and Harish et al.
(2009) describe the use of a compacted adjacency list represented in Figure 4.1.
They argue that due to the variable nature of graphs (number of vertices and
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edges per graph), using an adjacency list representation may not be completely
efficient on the GPU. Therefore, they use a modified version of an adjacency list,
known as a compacted adjacency list where all of the information that would
usually be stored in several lists, is compacted into a single, one dimensional
array.

Figure 4.1: Graph Representation as a Compacted Adjacency List (Harish et al.,
2009)

Demonstrating a compacted adjacency list, Figure 4.1 shows the vertex list
(Va) and the edge list (Ea). The vertex list points to a starting index in Ea

which then represents the vertices incident to it. This method of storing an input
graph is suitable for both undirected and directed graphs and can be expanded
with a further array of equal size to |Ea| to represent edge weights (Wa). Using
several one dimensional arrays is suitable for use in CUDA as several blocks of
contiguous memory can easily be allocated onto the GPU. When using a two
dimensional array with CUDA, the compiler simply allocates a contiguous block
of memory anyway, and automatically converts the two dimensional array into
a one dimensional array, adding a hidden cost to running times.

4.1.2 Adjacency Matrices

Katz and Kider (2008) and Buluc et al. (2010) look at an alternative way of
storing their graphs on the GPU, opting to use the standard adjacency matrix
representation. Despite the downsides to using an adjacency matrix as described
in section 4.1.1, this is an appropriate choice due to the way the computations
are calculated in the relevant algorithms. Their implementations make use of
shared memory which maps extremely well to the nature of an adjacency list.

Katz and Kider (2008) manage to store graphs with just over 11,000 vertices,
occupying a considerable 1.015Gigabyte (109 bytes)s (GBs) of data. Using the
compacted adjacency list, graphs of 10million vertices with a degree of six are
possible on a GPU with just 768Megabyte (106 bytes)s (MBs) of memory (Harish
and Narayanan, 2007).
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4.2 Mapping Threads to Vertices

It is often necessary to map each thread t to a vertex v such that each t has one
unique v corresponding to it. When dealing with thousands of blocks, threads
and vertices, it becomes convenient to have a common function to calculate this
for us. To that end, we created a function that takes the current information
about t, including its position in a thread block, as well as block and grid
dimensions, to return an integer value that will assign t to v. As described
in Section 2.5, CUDA provides multidimensional thread organisation as well
as the necessary naming constructs to identify thread and block co-ordinates.
Using threadID.x for example, will return that threads current x coordinate.
The same principle applies to thread blocks and grids, as well as y and z co-
ordinates. The function listed in Algorithm 9 is used throughout this paper and
will be referred to again several times as “obtainThreadID”.

Algorithm 9 This Function is used by Algorithms that use the Graph Structure
Described in Section 4.1.2
1: vertex = 0
2: vertex = vertex + threadIDX + (blockIDX * blockDimension.x)
3: vertex = vertex + (threadIDY + (blockIDY * blockDimension.y))
4: vertex = vertex + blockDimension.x * gridDimension.x
5: return vertex
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4.3 Harish and Narayanan’s Algorithm (Harish
and Narayanan, 2007)

This particular algorithm is the only CUDA algorithm implemented in this
paper that it is actually comprised of the solution to the SSSP problem and
simply repeated for each vertex in the graph, forming a complete solution to
the APSP problem.

Using the compacted adjacency list graph representation described in sec-
tion 4.1.1, additional arrays are used to hold the extra data required by the
algorithm. A boolean mask array, Ma, of size |V | is constructed, as well as a
weight array, Wa, of size |E|. Additionally, a cost array and updating cost array
are created. Ca and Ua respectively, each of size |V |. Each array holds standard
32-bit integers, excluding Ma, which as previously described is a boolean array.

The kernels in this algorithm utilise a one dimensional thread block structure
(Algorithms 10 and 11). Each thread block consists of 32 threads, with as many
thread blocks as necessary to accommodate |V |. Once the number of blocks has
been allocated, |V | may be padded to match the number of threads so as to
avoid memory access violations, for all edge weights w, 0 < w ≤ 1000.

The algorithm begins by setting the source vertex’s (s) entry in Ma to true,
where all other entries are false. During the first kernels execution, each vertex
u looks at Ma to see if it has a corresponding entry as true. If this is the case,
u will read its current cost from Ca. This cost is the current cost of getting
from s to u at the current stage of the algorithm. Additionally, u fetches its
neighbours, v, weight from Wa. If the cost of travelling from u to v is less than
travelling from s to u, its cost is updated in Ua. Finally, v sets its entry in Ma

to false so that it is not examined again.
The second kernel takes the values in Ua, and updates Ca with any changes

detected. Each vertex v checks if its entry in Ca is greater than in Ua. If so,
the cost in Ca is updated. Crucially, Ma is also updated to true, so that in the
next iteration, v may be examined.

These two kernels are repeated until all entries in Ma are false, at which
point, SSSP has been solved and the algorithm can stop. However, to solve the
APSP problem, the entire process is simply repeated |V | times, with a different
source vertex for each iteration. In that way, a solution to the APSP problem
is solved, using an algorithm that would otherwise solve SSSP.

Algorithm 10 APSP Kernel 1 (Va, Ea,Wa, Ca, Ua,Ma)

1: threadID =obtainThreadID
2: if Ma[threadID] == true then
3: Ma[threadID] = false
4: for all neighbours nThreadID of threadID do
5: if Ua[nThreadID] > Ca[threadID] + Wa[nThreadID] then
6: Ua[nThreadID] = Ca[threadID] + Wa[nThreadID]
7: end
8: end
9: end
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Algorithm 11 APSP Kernel 2 (Va, Ea,Wa, Ca, Ua,Ma)

1: threadID = obtainThreadID
2: if Ca[threadID] > Ua[threadID] then
3: Ca[tid] = Ua[tid]
4: Ma[tid] = true
5: end
6: Ma[threadID] = false

After each iteration, the algorithm must copy Ca back to host memory, so
that the result can be saved, and the path costs kept. If this were not completed,
due to the nature of the algorithm, the results would be overwritten by the next
iteration of the algorithm, thus resulting in only the final iterations results being
saved.

4.3.1 Modifications

When Harish and Narayanan (2007) designed the algorithm, CUDA had not
developed as it has today, and was vulnerable to race conditions. This resulted
in the need for Ua as well as the second kernel. It was not safe to simply
update Ca during the first kernel, as there was no way to synchronise between
multiprocessors with CUDA 1.0 (Harish and Narayanan, 2007). As of CUDA
1.1 however, atomic read and write operations were added to the architecture,
meaning that the algorithm could be modified to eliminate the need for both Ua

and the second kernel. As well as improving the running time of the algorithm,
this simple modification also allowed for slightly larger graphs as, Ua would no
longer be present.

Using some newer CUDA functions such as copying data whilst a kernel is
executing is not possible. For example, if we wished to eliminate the delay of
copying Ca by transferring the data during kernel execution, only incomplete
data would be returned as the kernel must finish to obtain the complete result
set. However, to try and reduce the effects of this data transfer with each
iteration, Ca is allocated using pinned memory, allowing CUDA to have direct
access to the relevant memory areas for faster data transfer between host and
device by providing bandwidth of at least 5GBps (NVIDIA, 2011a).
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4.4 Quoc-Nam Tran’s Floyd-Warshall Algorithm
(Tran, 2010)

Tran (2010) describe an algorithm to simply modify the Floyd-Warshall al-
gorithm so that it becomes parallelised on the GPU. Utilising the fact that
all threads can communicate via device memory, the algorithm essentially com-
putes the kth round of the Floyd-Warshall algorithm in one parallel step. Shared
memory is utilised by the algorithm in that each thread maps to its own vertex,
so inter-block communication can be used to compute Floyd-Warshall on small
chunks of the graph at one time.

The algorithm uses a duplicate copy of the graph, that is identical to the
original graph when the algorithm starts. To avoid global memory communica-
tion, the use of this identical graph P and the original graph G are interchanged.
The algorithm performs a series of iterations, where P initially holds the results
for the first iteration, its use is swapped so that the algorithm thinks P is now
G for the second iteration. This swapping occurs for every iteration until the
complete result is formulated. Utilising two data structures such as this ensures
that read-after-write inconsistencies are eliminated.

A thread block size of 16 x 16 is utilised for this algorithm. The intention
is that threads calculating the results will fit into a sub-block of the graph that
is dynamically assigned to the thread block. The kernel for this algorithm is
executed |V | times, with the use of G and P alternating with each execution.

As described in Section 2.5, CUDA threads within a block are executed in
a group of 32, known as a warp. As each half-warp share the row

G[k, j], j = blockIdx.x ∗ 16, blockIdx.x ∗ 16 + 1, ..., blockIdx.x ∗ 16 + 15

and one element G[i, k] where

i = blockIdx.y ∗ 16, blockIdx.y ∗ 16 + 1, ..., blockIdx.y ∗ 16 + 15

the row G[k, j] and the column G[i, k] are copied into shared memory for every
thread block.

Threads whose corresponding row address, blockIdx.y, is 0, copy the row
data, and threads with 0 for their column address, blockIdx.x, copy the column
data. The data for both row and column is copied fromG. Once this is complete,
the standard Floyd-Warshall computation is performed on the data that has
been copied into shared memory. The result is then written back to P as shown
in line nine of Algorithm 13.

Algorithm 12 CUDAFloyd-Warshall (G,P )

1: Allocate and copy G,P to device
2: for i = 0 to |V |
3: if i%2 6= 0 then
4: CUDAFWKernel(G,P )
6: else
7: CUDAFWKernel(P,G)
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Algorithm 13 CUDAFWKernel (G,P )

1: threadID = obtainThreadID
2: row[16] **Shared
3: column[16] **Shared
4: if threadIdx.y = 0 then
6: row[threadIdx.x] = G[threadID]
7: if threadIdx.x = 0 then
8: column[threadIdx.y] = G[threadID]
9: P [threadID] = min(G[threadID], row[threadIdx.x] + column[threadIdx.y])

Tran (2010) state that the running time of this algorithm is O(n3/|P |) where
|P | is the number of cores on the GPU. Clearly, this provides a slight asymptotic
speed-up over the standard CPU version of Floyd-Warshall that runs in O(n3)
time.

The algorithm has been optimised to ensure that read and write operations
from global memory are coalesced, so as to access as much data as possible in
one processor cycle, thus reducing the latency on memory accesses. Addition-
ally, Tran (2010) have stopped bank conflicts from occurring in shared memory,
ensuring that the efficiency of the memory is as great as possible. As with
the algorithm described in Section 4.7, this algorithm (Algorithm 12) can be
expanded to work across multiple GPUs, or simply with larger graphs than
the GPU can store at one time. However, Tran (2010) state that this has a
significantly negative effect on this algorithm.
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4.5 Quoc-Nam Tran’s CUDA APSP Algorithm
(Tran, 2010)

Tran (2010) describes a second algorithm that claims to provide an extremely
impressive speed-up of 2,500x over its sequential, single-core implementation.
However, the sequential algorithm runs in O(n3 log n) which is worse than Floyd-
Warshall’s O(n3) running time. Similar in construct to the algorithm described
in Section 4.4, this algorithm (Algorithm 14) differs slightly in the CUDA kernel,
as well as the CPU loop that calls the kernel.

As we know from our description of Floyd-Warshall in Section 3.2.1, the
shortest path with only two edges between any vertices u and v will go through
exactly one other vertex. We also know that the adjacency matrix A1 of shortest
paths that have a length of at most two is constructed as:

A1[u, v] = min(A0, A0[u, k] +A0[k, v]), whereA0 = A

Following from this, A2 could be constructed from A0 and A1 by agreeing
that the shortest path with three or less edges will be the shortest path with two
or less edges followed by the shortest path of length at most one (Tran, 2010).
Due to the fact that a path with N edges where N ≥ |V | must have a cycle,
AN−1 is the adjacency matrix which must hold the shortest path throughout
the entire graph. This algorithm by Tran (2010) constructs adjacency matrices
A1, A3, A4, ..., AN for the formulation of the APSP problem.

As each row in Ak is related to every column in Ak when calculating Ak+1,
Ak is partitioned into tiles that conveniently relate to the architecture of thread
blocks as in Section 4.4. These tiles are referred to as “A’s” and “B’s” for rows
and columns respectively. Each thread block in the kernel copies one tile from
the current row of Ak, and one column tile into shared memory. The data is
processed here and the result is simply written back to global memory. Tran
(2010) state that the algorithm is very similar to matrix multiplication, except
that the minimum value is taken rather than the summation. A fact that makes
implementation easier to complete.

As with the algorithm in Section 4.4, this algorithm uses two copies of the
graph, interchanging their use for storing results, and calculating necessary data.
The algorithms kernel is called dlog2(n− 1)e times.

Algorithm 14 CUDAAPSP (G,P )

1: Allocate and copy G,P to device
2: for i = 0 to dlog2(n− 1)e
3: if i%2 6= 0 then
4: CUDAAPSPKernel(G,P, i)
6: else
7: CUDAAPSPKernel(P,G, i)
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Algorithm 15 APSPKernel (G,P, i)

1: threadID = obtainThreadID
2: minimumValue = ∞
3: A[16][16] **Shared
4: B[16][16] **Shared
5: for each tile A and B in G
6: minimumValue = min(A[threadIdx.y, k + B[k, threadIdx.x], minimumValue)
7: P [threadID] = minimumValue
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4.6 Katz and Kider’s Algorithm (Katz and Kider,
2008)

The algorithm described by Katz and Kider (2008) utilises CUDAs shared mem-
ory constructs to a greater extent than those algorithms described by Harish
and Narayanan (2007), as well as the divide and conquer approach that maps
well to parallel programming. The algorithm is based upon a sequential algo-
rithm that was designed to make better use of the CPU cache (Venkataraman
et al., 2003). It is easy to see how this algorithm maps to CUDA by utilis-
ing shared memory instead of CPU cache, and its inherent divide and conquer
nature. The algorithm described by Venkataraman et al. (2003) is itself based
upon the Floyd-Warshall algorithm, and aims to improve its performance by
splitting the graph into several blocks, and computing the Floyd-Warshall on
smaller sets of data.

To begin, the algorithm partitions the graph into blocks of equal size. For
this implementation, each block is 16 x 16 vertices in size. In this way, a graph
block can easily be mapped to a CUDA thread block. The algorithm proceeds
in rounds, with each round consisting of 3 phases. Each of the 3 phases are an
individual CUDA kernel.

Each round gives the algorithm a new primary block. This primary block is
set along the diagonal axis of the graph, with the first primary block starting
at location (0, 0) and the final block at (|V | − 16, |V | − 16). From this, we can
see that the algorithm consists of |V |/16 rounds.

Phase 1 is the simplest of the phases, and simply computes the standard
Floyd-Warshall algorithm for the current primary block. Only one multiproces-
sor is active for this phase, as only one block (and therefore one CUDA block)
is being computed. The computation takes place in shared memory, so as to
speed-up the phase as much as possible. As only one thread block is currently
active, it is a trivial task for each thread to read its data into shared memory
using obtainThreadID. Each thread then computes its value, and saves it back
to global memory.

In Phase 2, blocks whose values are dependant on the primary block are
computed. In other words, all blocks on the same row and column as the primary
block are computed. To accomplish this, each CUDA block loads its relevant
graph block into shared memory, as well as the primary block; therefore creating
two arrays in shared memory. Once again, obtainThreadID is used to ensure
that each thread loads the correct graph data into shared memory. The result is
stored in the current block, and not the primary block. Once the computation
is complete, the result is written back to the graph in global memory.

Phase 2 employs a CUDA grid and block layout that helps to ease the data
processing (Katz and Kider, 2008). For a graph with n blocks per axis, 2∗(n−1)
blocks are processed. In this case, the blocks are organised into a grid with the
dimensions (n−1, 2). The first row in this grid processes the data that occupies
the same row as the primary block. Likewise, the second row of the grid, handles
the data on the same column as the primary block. In this way, the kernel reads
the current CUDA blocks y co-ordinate. As the value will be a 0 or 1, it is easy
for the block to determine whether it should be handling a row or a column.
Ensuring that each CUDA block skips the primary block is extremely important.
Katz and Kider (2008) give the equation shown in Figure 4.2 to ensure that this
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is accomplished successfully. If the equation returns 0, the current block is to
the left of the primary block (using x co-ordinates). However, if 1 is returned,
the current block is either in the same location as the primary block, or to the
right of it. In this case, the 1 is added to the addressing system, so that the
CUDA block can skip over the primary block.

skipPrimaryBlock(x) = min

(
blockIDx.x+ 1

primaryBlockID + 1
, 1

)

Figure 4.2: Equation to Skip Over x Thread Blocks

Finally, phase 3 computes the values for all remaining blocks that haven’t yet
been computed. In this phase, the primary block is not needed. Instead, values
from the same row and column as the current block that were computed in phase
2 are loaded into shared memory, along with the current block. Therefore, we
have three arrays in shared memory. Figure 4.4 visualises this memory access.

This final phase has a much larger grid and block layout than previous
phases. In this case, the CUDA blocks are organised into a grid with dimensions
(n−1, n−1). As with the equation in Figure 4.2, phase 3 must also skip over the
primary block. For this phase, two equations are needed, rather than just the
one in phase 2. The original equation in Figure 4.2 is used for the x direction,
however a new one is needed to skip over in the y direction. The equation is
listed in Figure 4.3.

skipPrimaryBlock(y) = min

(
blockIDx.y + 1

primaryBlockID + 1
, 1

)

Figure 4.3: Equation to Skip Over y Thread Blocks

Once phase 3 has finished, the primary block is relocated diagonally down
the graph. This begins the next round. Once all rounds have completed, the
APSP problem has been solved. The nature of the algorithm shows that, whilst
it is hard to reduce the Floyd-Warshall algorithm into smaller parts due to its
large data dependency, it is possible to do so in ways such as these to improve
the performance of the APSP problem and as such, reducing the O(n3) running
time of the standard Floyd-Warshall algorithm.
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Figure 4.4: Overview of Katz’s Data Access During Phase 3 (Katz and Kider,
2008)

In each phase, every block computes the Floyd-Warshall algorithm. Inside
the loop that computes these values, each thread within the block must be
synchronised to ensure that all the data is up to date for the next loop of the
algorithm. Without the synchronisation, incorrect values may be used for the
computation, resulting in an invalid result. Figure 4.5 helps to provide a higher
level view of the execution of all 3 phases where primary block is in location (0,
0).

Figure 4.5: Overview of Katz’s Algorithm Executing where 0,0 is the Primary
Block (Katz and Kider, 2008)

Algorithm 16 Phase1 Kernel (G, |V |, k)

1: threadId = obtainThreadID
2: primaryBlock[16][16] **Shared
3: Compute the Primary Block
4: G[threadId] = primaryBlock[threadIdx.x][threadIdx.y]
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Algorithm 17 Phase2 Kernel (G, |V |, k)

1: threadId =obtainThreadID
2: primary[16][16] **Shared
3: current[16][16] **Shared
4: primary = retrievePrimaryBlock
5: if blockIdx.y == 0 then
6: for i = 0 to 16
7: current[threadIdx.x][threadIdx.y] = min(current[threadIdx.x][threadIdx.y],

current[threadIdx.x][j] + primary[i][threadIdx.y])
8: else
9: for i = 0 to 16
10: current[threadIdx.x][threadIdx.y] = min(current[threadIdx.x][threadIdx.y],

primary[threadIdx.x][j] + current[i][threadIdx.y])
11: G[threadId] = primary[threadIdx.x][threadIdx.y]

Algorithm 18 Phase3 Kernel (G, |V |, k)

1: threadId = obtainThreadID
2: primary[16][16] **Shared
3: row[16][16] **Shared
4: column[16][16] **Shared
5: primary = retrievePrimaryBlock
6: for i = 0 to 16
7: currentBlock[threadIdx.x][threadIdx.y] = min(currentBlock[threadIdx.x][threadIdx.y],

rowBlock[threadIdx.x][j] + columnBlock[i][threadIdx.y])
8: G[threadId] = primary[threadIdx.x][threadIdx.y]

4.6.1 Limitations

Whilst this algorithm is very efficient and is shown to provide some very good
results, it is limited by the fact that the entire graph must be stored in global
memory. As such, the size of the graph is limited to whatever global memory
the GPU has. In the case of a GTX 470, this is 1.25GB. Additionally, the way
in which the graph is partitioned is limited in that it can only be 1

3 of the total
shared memory size which is just 16kB for old CUDA devices, and 32kB for
newer devices. This is due to the fact that phase 3 requires three equally sized
blocks to be stored in shared memory simultaneously.

In Section 4.7, we describe a significant modification to this algorithm that
allows graphs of any size, rather than being limited by the amount of global
memory on the GPU.
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4.7 Modified Katz and Kider’s Algorithm

As mentioned in Section 4.6.1, the entire graph must be able to fit onto the
GPU global memory. This is quite a restriction, as many graphs may be vastly
larger than the amount of memory available on the GPU. To that end, we have
created a modification that allows larger graphs to work with the algorithm.

In principle, it is the same algorithm, with some added steps. To accom-
modate larger graphs, each round and phase is split into stages. At each stage,
the large graph is partitioned so that as much of the graph can occupy as much
memory on the GPU as possible. For example, if we have a graph that occupies
2GB of memory, but only 1GB of memory is available on the GPU, the graph
will be partitioned into so that it occupies 1

3 of total global memory. In this
case, that would be approximately 333MB. Unfortunately, the graph cannot be
partitioned into a larger size (1GB), as the kernels require up to three different
sets of data (primary block, row block etc.).

During each phase of the algorithm, there are several stages that result in
large portions of the graph are copied to the GPU, whereby the algorithm then
proceeds as normal. The result is then copied back to host memory and the
process repeats until the entire graph has been used for that phase. This process
repeats until all three phases have run across the entire graph, and for as many
rounds as are needed. Undoubtedly, this version of the algorithm will be slower
than the one detailed in Section 4.6 due to the added operations of copying
data to and from the GPU, but it facilitates the operation on graphs of any size
which is a noticeable and worthy benefit. Katz and Kider (2008) also state that
a method similar to this can be used to run the algorithm across multiple GPUs
in parallel.

Algorithm 19 Modified Algorithms Host Code

1: for all rounds do
2: IDENTIFY PARTITION SIZE
3: IDENTIFY PARTITION LOCATION
4: for all partitions in G do
5: phase1Kernel(partition, |V |, k)
6: end
7: for all partitions in G do
8: phase2Kernel(partition, |V |, k)
9: end
10: for all partitions in G do
11: phase3Kernel(partition, |V |, k)
12: end
13: end
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4.8 Chapter Summary

In this chapter, we have observed the APSP problem in more detail, specifically
relating to how the APSP problem can be solved with CUDA, looking at CUDA
implementations, as well as the necessary data structures and considerations
taken into account when implementing the CUDA algorithms.

There were no major problems observed when implementing APSP solutions.
The most major obstacle was in ensuring our code was as close to the original
implementation as possible. Problems occurred due to the fact that descriptions
in some journals could be a little vague as to the technical details in how the
original algorithms were implemented.

We have seen four CUDA implementations of different APSP algorithms,
as well as two of our own modifications on those algorithms in an effort to
improve them, using new and contemporary techniques. The solutions described
highlight the different needs of each algorithm on memory utilisation and data
structures.
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Chapter 5

Results and Evaluation

In this Section, we will look at the results of running both CUDA and CPU
algorithms which will allow us to compare the claims made by each algorithm’s
author(s), as well as providing a common test suite for them. The results stem
from a number of graph searches that were conducted across a maximum of 21
graphs.

5.1 Evaluation Method

To evaluate each algorithm, a number of tests were conducted in which the
running time of each algorithm was recorded in order to compare and contrast
between each CUDA algorithm, as well as the CPU algorithms. 21 graphs were
searched, each with an increasing number of vertices but all with a similar aver-
age degree per vertex. To create the graphs, a graph creator was implemented.
This graph creator accepted as arguments: number of vertices required, min-
imum and maxiumum degree per vertex, and minimum and maximum weight
per edge. In this way, we could experiment with graph sizes and density very
easilly. Average edge weights per graph always varied between 2 and 6 edges.

Of course, whilst running the algorithms, both GPU and CPU are perform-
ing other tasks such as handling the operating system, and displaying output
on a monitor. Several MBs of the GPU memory are used by the computer in
order to create an output on the monitor and as such, less memory is available
for graph searching. 21 graphs were searched with differing numbers of vertices
{1024, 2048, 3096, ..., 21504}. The GPU used for the experiments was equipped
with 1.25GBs of global memory, meaning that a graph with at most 18, 000 ver-
tices could be present on the GPU when using the adjacency matrix method of
storage described in Section 4.1.2. Modifications to certain algorithms such as
that described in Section 4.7 allow for larger graphs, hence the greater number
of vertices tested.
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5.2 Algorithm Summary

Table 5.1 gives a brief overview of the algorithms inplemented in this paper,
allowing for quick reference to the location of the pseudo code for each algorithm.

Name Algorithm Number(s) Pseudo Code Page(s)
Harish and Narayanan’s 41 and 42 10 and 11

Quoc-Nam Tran’s Floyd-Warshall 12 and 13 43 and 44
Quoc-Nam Tran’s CUDA APSP 14 and 15 45 and 46

Katz and Kider’s 16, 17 and 18 49, 50 and 50
Modified Katz and Kider’s 19 51

Table 5.1: A Sumary of Each Implemented Algorithm

5.3 Evaluation Setup

All CUDA and CPU experiments were conducted on the same PC with the
specifications shown in Figure 5.1.

� CUDA 4.0

� NVIDIA 280.26 GeForce Driver

� NVIDIA GeForce GTX 470 GPU

� 1.2GB Dedicated GPU Memory

� Intel Core i5 CPU

� 4GB RAM 1333Mhz

� Windows 7 Professional x86

� Visual Studio Professional 2008

Figure 5.1: Experimental PC Specifications

In order to answer the research question posed in Section 1.1, it was neces-
sary to test all algorithms on the same computer, in order to be able to fairly
compare the results presented. If different computers had been used, external
factors would have affected the results, such as GPU speed, meaning that each
algorithm would not be comparable to another. Indeed, the same factors are
relevant for the CPU algorithms that were tested.

54



5.4 Quoc-Nam Tran’s Floyd-Warshall Results

Tran (2010) do not provide any statistical evidence as to any performance in-
crease or decrease when compared to Floyd-Warshall despite being based on
that algorithm. Instead, they simply state that their CUDA Floyd-Warshall al-
gorithm provides a speed-up of between 48x and 52x when compared to a single
core (sequential) Floyd-Warshall algorithm (Section 3.2.1).

Shown in Figure 5.2, we can see that the algorithm provided by Tran (2010)
provides a seemingly constant speed-up over the standard sequential Floyd-
Warshall algorithm. As the number of vertices in the graph increases, the time
taken to complete the APSP problem reduces when compared to the previous
graph, resulting in a moderately steep curve at the beginning of the graph, that
begins to flatten as the number of vertices increases.

The x axis of the graph in Figure 5.2 shows us that the graph with the
most vertices searched had 11,264 vertices. Due to the fact that graphs are
represented by this algorithm as an adjacency matrix consisting of integers,
each of which is four bytes, a larger graph could not be used. This is because
not enough global memory was present on the GPU. Such a comparatively low
number of vertices is achieved as Algorithm 13 utilises both the graph, and a
copy of that graph on the GPU; thus halving the number of possible vertices
due to there being effectively two graphs stored in device memory.

Based on the data shown in Figure 5.2 we can presume that the curve would
continue, with running times very gently flattening out as the graph suggests,
until a constant increase is achieved as running times will always increase slightly
for larger graphs.

The results show that Algorithm 13 provides on average, a 51x speed-up
over the CPU algorithm, with speed-ups in the range of between 49x and 53x.
These results are consistent with the claims made by Tran (2010) and validate
their results for the algorithm that we have implemented.

The GPU used in the experiments contains double the number of cores that
were used for Tran (2010) experiments, possibly accounting for the 2x speed-up
found in this research over the results presented by Tran (2010) which would
suggest that a linear speed-up can be achieved with this algorithm by simply
adding more cores. However, other factors may have resulted in this speed-up.
As the problem being solved is APSP, the degree per vertex in the graph has
no effect, as every element in the adjacency matrix is examined independently,
resulting in the same execution time for both dense, and sparsely populated
graphs.
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Figure 5.2: Quoc-Nam Tran CUDA Floyd-Warshall and CPU Floyd-Warshall
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5.5 Quoc-Nam Tran’s CUDA APSP Results

As in Section 5.4, Tran (2010) do not provide any numerical data that shows the
performance of Algorithm 14 in comparison to a CPU algorithm. Again, they
state that their CUDA APSP algorithm provides a speed-up of an impressive
2,500x over a CPU algorithm.

However, as stated in Section 4.5, this CPU algorithm has a running time
of O(n3 log n) which is significantly worse than that of the standard Floyd-
Warshall algorithm that runs in O(n3) time. As Algorithm 4 is much faster
asymptotically, these experiments compare the running time of this algorithm
against Floyd-Warshall, rather than the slower O(n3 log n) algorithm.

As we can see from Figure 5.3, the speed-up attained by this algorithm
follows the same curve as the execution times for Algorithm 4. The increase
in execution time between the 1024 vertex graph, and the 2048 vertex graph is
noticeably greater than that of other graphs, and highlights that larger graphs
have a smaller jump in execution time. We can presume from the curve displayed
in Figure 5.3 that for larger graphs than were tested, this trend would continue.

Several algorithms have been presented and implemented in this research,
with the aim of comparing their performance on a single platform, as well as
attempting to improve them where possible, and analyse their performance. As
seen in Chapter 5, some algorithms are better suited to specific graphs. For
example, we know that utilising Algorithm 16 is best suited to smaller graphs,
as the performance gained is much greater than any other algorithm. Similarly,
Algorithms 14 and 12 are best suited to smaller graphs, offering similar execution
times to Algorithm 16.

Additionally, Algorithm 10 is better suited to large graphs, offering speed
ups of at least 377x over the CPU Floyd-Warshall algorithm. For denser graphs,
this algorithm may not be better suited as it will have to process many more ele-
ments. This restriction does not apply to our modified algorithm (Algorithm 19)
however, and therefore this Algorithm (Algorithm 19) may prove to be a better
choice where graph density is unknown.

All of our algorithms provide significant performance increases over their
CPU counterparts, with an average speed-up of 154x over CPU Floyd-Warshall.
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Figure 5.3: Quoc-Nam Tran CUDA APSP and CPU Floyd-Warshall

The results show that Algorithm 14 provides an average speed-up of 39x over
Algorithm 4, with speed-ups between 34x and 49x. The claims made by Tran
(2010) of a 2,500x speed-up over a CPU algorithm are somewhat irrelevant, as
that CPU algorithm is inherently worse than the O(n3) Floyd-Warshall algo-
rithm and would obviously provide a much greater speed-up over it. As we will
see in Section 5.9, this algorithm is not the best in class for solving the APSP
problem.
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5.6 Katz and Kider’s Results

The results presented in Katz and Kider (2008) state that their CUDA algorithm
provides a speed-up of between 60x and 130x over the standard Floyd-Warshall
algorithm described in Algorithm 4. Additionally, a speed-up of between 45x
and 100x is offered over the blocked algorithm presented in Section 3.2.4 (on
which this CUDA algorithm is based). Furthermore, Katz and Kider (2008)
claim that their implementation is between 5x and 6x faster than the algorithm
by Harish and Narayanan (2007) discussed in Section 4.3. This final claim is
discussed in Section 5.9.

Figure 5.4 shows that Algorithm 16 provides an excellent speed-up over
Algorithm 4, with an apparent increase in speed-up as the size of the graph
increases. Indeed, with 1024 vertices, we see a speed-up of 104x, whilst when
we have 17,408 vertices, a speed-up of 153x is achieved by the algorithm.

Figure 5.4: Katz and Kider’s Algorithm, CPU Floyd-Warshall and CPU Blocked
Floyd-Warshall

We see a similar pattern when comparing Algorithm 16 against Algorithm 8.
Although, instead of seeing speed-ups of 104x and 153x, we see 38x and 54x
respectively. The cache efficient CPU algorithm presented in Section 3.2.4 does
not provide a linear speed-up over the Floyd-Warshall algorithm. Instead, as the
size of the graph increases, the speed-up gained over Floyd-Warshall increases.
This explains why the algorithm presented by Katz and Kider (2008) does not
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provide as stark a speed-up over Algorithm 8 as it does over Algorithm 4, due
to the fact that there is less performance difference between them as a result of
Algorithm 8’s speed-up.

As we can see in Figure 5.4, only 17,408 vertices were available in the largest
graph searched. This is due to the fact that the next largest graph, with 18,432
vertices, occupies just under 1.3GB which is too great for the GPU to hold. As
a result, searching was not attempted with any larger graphs. This problem
is solved by the modified version of this algorithm however, and its results are
presented in Section 5.7.

The results presented are slightly better than those claims made by Katz and
Kider (2008), in that speed-ups range between 104x and 153x when compared
to the standard Floyd-Warshall algorithm. Conversely, the results presented in
Figure 5.5 for comparison to the blocked algorithm (Algorithm 8) are slightly
worse than those presented by Katz and Kider (2008). For these results, we
see speed-ups of between 38x and 54x whereas Katz and Kider (2008) observed
between 45x and 100x.

A possible reason for this may be that the CPU used for this experiment
has a much better system for handling its cache, for which this CPU algorithm
was designed, as the CPU used for this test is many generations better than
that used by Katz and Kider (2008). This may have resulted in a speed-up
in the blocked algorithm’s code, as it was able to better utilise the features of
the CPU in comparison to the standard Floyd-Warshall algorithm, potentially
biasing the results of this test slightly.
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Figure 5.5: Katz and Kider’s Algorithm, Modified Algorithm, CPU Floyd-
Warshall and CPU Blocked Floyd-Warshall
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5.7 Modified Katz and Kider’s Results

As we know from Section 4.7, the subject graph is partitioned before kernel
execution, and relevant parts of the graph are copied to and from the device to
accommodate graphs whose size is larger than the capacity of device memory.
As a result, execution time is increased, due to the additional copies to and from
the device.

For this experiment, we ran the algorithm on all graph sizes, including
“small” graphs that would normally fit onto device memory. For these small
graphs, they were partitioned in the same way as a large graph would be, to
simulate the number of transfers between host and device for each kernel exe-
cution. In this way, we can compare the two algorithms directly, to see what
effect these extra memory copies have on execution.

As we can see in Figure 5.6, Algorithm 19 closely follows the same pattern
as Algorithm 16. As we get to graphs whose size is larger than can fit onto
device memory, the execution times continue along the same curve, showing a
predictable increase in execution time as graph size continues to increase.

Figure 5.6: Katz and Kider’s Shared Algorithm and Modified Algorithm

Despite being noticeably slower than the standard algorithm by Katz and
Kider (2008), roughly between 2x and 8x, there is still a vast improvement over
both Algorithm 4 and Algorithm 8. So much so that we could run experiments
on graphs larger than either CPU algorithm simply because the execution time
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was significantly faster. Both CPU algorithms (Algorithms 4 and 8) ran out
of system memory due to the requirements of their implementations whereas
Algorithm 19 was not bound by these requirements, and could continue for
larger graphs.

Figure 5.7 presents a speed-up of between 13x and 24x over the standard
Floyd-Warshall algorithm, and speed-ups of 4x and 9x over the Blocked Floyd-
Warshall algorithm presented in Section 3.2.4.

Figure 5.7: Katz and Kider’s Shared and Modified Algorithms with Floyd-
Warshall and Blocked Floyd-Warshall
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5.8 Harish and Narayanan’s Results

Algorithm 10 is the only algorithm described in Chapter 4 that utilises the
compacted adjacency list structure described in Section 4.1.1 and as such, is
able to search graphs with many more vertices. This is due to the memory
constraints being just O(|E| + |V |), rather than O(|V |2) as with a traditional
adjacency matrix.

As we can see in Figure 5.8, as the number of vertices in the graph increases,
the speed-up gained by Algorithm 10 also increases. For example, the graph
with 1024 vertices provides a speed-up of just under 2x, but we see a speed-up
of 7x for the next graph of 2048 vertices. This trend continues throughout each
graph searched, until the final graph where Floyd-Warshall was able to search
with 19,456 vertices. This provided a speed-up of 377x.

These results match closely with those presented by Harish and Narayanan
(2007), and confirm their claims. They did not however, run the Floyd-Warshall
algorithm on graphs with more than approximately 5000 vertices, whereas our
experiments continued until 19,456 vertices. In running our experiments on
larger graphs, we can see more evidence that greater speed-ups are attained as
the size of the graph increases.

It would appear that the memory transfer between host and device after
each execution of Algorithm 10 and Algorithm 11 does not have a great impact
on execution time. Due to the fact that the majority of the data copied is of
boolean type, the size of data transfer is limited, thus helping to reduce the
impact of memory transfer latency on the execution time of the algorithm.

64



Figure 5.8: Harish and Narayanan’s Algorithm with CPU Floyd-Warshall
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5.9 CUDA Results Comparison

Figure 5.9 gives us an overview of every CUDA algorithm detailed in Chapter 4,
comparing their running times with the number of vertices in the graph.

When comparing all CUDA algorithms to Floyd-Warshall, we find that the
algorithm with the best average speed-up over Floyd-Warshall is Algorithm 16
(Katz and Kider, 2008) with an average speed-up of 154x. However, we can see
that Algorithm 10 by (Harish and Narayanan, 2007) provides the best improve-
ment for large graphs of at least 9,216 vertices. This improvement is relative
however, where denser graphs will decrease the benefit of Algorithm 10 due to
the increased memory requirements of the algorithm. For denser graphs, our
modified Algorithm (Algorithm 19) would be better suited. This highlights the
improtatnce of memory optimisations when considering GPGPU.

Figure 5.9: All CUDA Algorithms
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5.9.1 Quoc-Nam Tran’s Algorithms

In this section, we will look at both CUDA Floyd-Warshall and CUDA APSP,
Algorithm 12 and Algorithm 14, respectively, both of which are presented by
Tran (2010). We look at both algorithms in this section. Both algorithms offer
extremely similar results, and are also architecturally similar.

If we look at Figure 5.9, we can see that Algorithm 12 starts off extremely
well, beaten only by Algorithm 16. In fact, this trend continues until we reach
a graph with 6,144 vertices at which point, Algorithm 10 gains an advantage.

After this point, Algorithm 12 remains the faster of the remaining two algo-
rithms (Algorithms 14 and 19). These results suggest that the algorithm is best
suited to smaller graphs, where it is known that the subject graph will never
exceed a certain size. In this case, approximately 6000 vertices.

As we know from Section 4.4, the algorithm does not copy data to and from
the device between kernel calls. Additionally, the kernel also utilises shared
memory. From this, we know that data transfer between host and device is
not affecting the performance of the algorithm and does not account for the
algorithm starting so well, but falling short as the size of the graph increases.

Looking more closely at the algorithm, we know that each kernel call results
in 24 reads from device memory per block, and 24 writes to device memory
per block where the block size is 16 x 16. Additionally, only one computation
is performed by each thread in the block, whereas other algorithms perform
multiple computations.

The ratio between computations in shared memory, and the reading/writing
to device memory would appear to have a negative effect on the performance of
the algorithm as the graph size increases, resulting in more overall reads/writes
to device memory as more data is needed.

This is likely to be the reason why Algorithm 16 is faster than either Algo-
rithm 12 or 14 for large graphs. If we look at Algorithm 16, we know that it
makes extensive use of shared memory in order to perform its computations and
also breaks the graph into manageable chunks. Additionally, every thread in
Algorithm 16 performs the same instruction, whereas both of the algorithms pre-
sented by Tran (2010) have instructions that only a subset of threads perform.
Adding to the performance decrease, both algorithms perform multiple condi-
tional checks, whereas Katz and Kider (2008) have no conditionals in phases 1
and 2.

As we know from Figure 5.9, both of the algorithms given by Tran (2010)
are faster than Algorithm 16 for smaller graphs. This can be explained by the
offset of cost between conditionals as used by Tran (2010), and loops utilised by
Katz and Kider (2008). For small graphs, the cost of the conditional statements
is lower than that of the for loops as there is not as much data to process.
However, as the graph sizes increase, we can see that utilising loops becomes
more effective than the conditional checks, and provides greater performance.

When comparing Algorithms 12 and 14, we see that their results are very
similar. Each share the same number of threads and blocks, in the same layout.
Additionally, kernel structure is very similar, with rows and columns being
copied into shared memory for computation. However, Algorithm 14 utilises a
loop structure with conditionals nested inside the loop. Algorithm 12 simply
utilises a conditional without the need for the looping structure. The lack of loop
could account for the increased performance which is displayed in Figure 5.9.
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As we can see, both algorithms follow an extremely similar curve on the graph,
suggesting that the performance penalty paid by having a looping structure is
related to the size of the graph and accounts for the difference in performance.
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5.9.2 Katz and Kider’s Algorithm

In this section, we look at the results of the algorithm presented by Katz and
Kider (2008) (Algorithm 16) and compare the results against the other CUDA
algorithms implemented.

When we observe Figure 5.9, we can see that Algorithm 16 starts off ex-
tremely well, offering the lowest execution time of all algorithms. During that
time, execution time steadily increases in a fairly steep curve, reflecting every
other algorithm (excluding Algorithm 10). When we reach 10,240 vertices, the
algorithm becomes slower than Algorithm 10 for all remaining graphs. At its
peak, this algorithm is at least 2.3x faster than any other algorithm imple-
mented.

Despite being overtaken performance-wise by Algorithm 10, this algorithm
(Algorithm 16) still remains a good performer in comparison to the remaining
algorithms, ensuring that it is always faster than them. If we look at the curve
presented in Figure 5.9, it appears to be levelling out towards the end, for the
largest graphs searched. For example, when performing the algorithm on 16,384
vertices, the decrease in performance to the next graph (17,408 vertices) is less
than from 13,312 vertices to 16,384. If this trend were to continue, we could
surmise that the performance of this algorithm may once again overtake the per-
formance of the algorithm given by Harish and Narayanan (2007) (Section 4.3).
This is due to the fact that Algorithm 10 appears to have a linear increase in
execution time of 1.1x for larger graphs of at least 12,000 vertices.

In order to be able to test this, a GPU with a much larger global memory
is required, and may not be available for several years depending on the GPUs
released by NVIDIA in that time.
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5.9.3 Harish and Narayanan’s Algorithm

Looking at Figure 5.9, we can see that Algorithm 10 is by far the slowest algo-
rithm initially, where graph sizes are small. However, the curve is much more
gentle than other graphs, as its performance decreases only slightly as the graph
size increases. In fact, the algorithm given by Harish and Narayanan (2007) is
only 32x slower for the largest graph searched when compared to the smallest
graph. However, if we look at Algorithm 12, we see an increase of 1322x.

This results in the algorithm becoming the fastest for larger graphs of approx-
imately 10,000 vertices and above. The structure of the algorithm is drastically
different to all other implementations, as it utilises the compacted adjacency list
structure as described in Section 4.1.1. Additionally, rather than utilising one
data structure, supplemental information is required such as the Ma array (as
described in Section 4.3). Despite the extra arrays required, the physical size
of the graph is still a lot smaller when compared to the traditional adjacency
matrix. O(|V |+ |E|) as opposed to O(V 2).

This may explain why there is only a comparatively small decrease in per-
formance as graph size increases. Due to the reduced storage requirements of
the compacted adjacency list, increasing graph size has a smaller effect on the
number of elements that the algorithm must process.

This algorithm is able to handle the largest graphs of all other implemen-
tations, excluding the modifications that we made to the original algorithm
implemented by Katz and Kider (2008). This is solely down to the fact that the
compacted adjacency list is used, which has the benefit of eradicating redun-
dant data. However, if an intensely dense graph were to appear, the modified
algorithm (Algorithm 19) would continue to be able to operate, whereas this
algorithm would not, as the storage required would be too great. To that end,
it can be said that this algorithm operates best on graphs that are not densely
populated.

When comparing our modified Katz and Kider (2008) algorithm with the
algorithm given by Harish and Narayanan (2007), we notice that Algorithm 10
is on average, 7.5x faster. However, at its peak, the algorithm is actually 19x
faster for a graph with 21,504 vertices. A major factor contributing to the
difference in execution times is the copying of data to and from the device for
Algorithm 19. As we know from Section 4.7, in order to facilitate large graphs,
Algorithm 19 partitions the graph into sections, and copies it to the GPU in
stages, building up the computation piece by pieces. This results in many large
data transfers, impacting significantly on execution times, providing an added
speed-up for Algorithm 10.

From Figure 5.9, we see that this algorithm is initially slower than both
algorithms given by Tran (2010). However, this is not the case when the graphs
have at least 7,168 vertices as the algorithm provides an increasing speed-up
as graph size increases. As only 11 graphs searched are operated on by Tran
(2010), this algorithm only provides a speed-up on six of them despite utilising
more graphs overall. This is simply due to the fact that the adjacency matrix
method of storing graphs used by Tran (2010) requires O(V 2) as two copies of
the graph are stored in device memory. We have seen that Algorithm 10 operates
well on the graphs utilised for these tests. However, further work needs to be
conducted to assess its suitability on densely populated graphs when compared
to our modified algorithm (Algorithm 19).
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Chapter 6

Conclusions

In this thesis, the research documented was designed to look at the APSP prob-
lem in the GPGPU space, investigating existing work, determining which algo-
rithms are best, and attempting to improve upon the authors’ work investigated
where possible.

The APSP problem is a common problem throughout many different sub-
ject areas. Fast, sequential algorithms are often expensive to run as they re-
quire a very fast computer, such as a supercomputer, to execute on. Parallel
computing on the GPU provides a much cheaper alternative, allowing for fast
algorithms to be written at a fraction of the cost. CUDA is one such parallel
computing technology that enables parallel algorithms to be written for CUDAs
enabled GPU manufactured by NVIDIA. Using CUDA to create these parallel
algorithms allows them to be distributed to at least 100 million machines with
CUDA enabled GPUs and so are not solely restricted to scientific applications
due to their commercial status.

We have seen several APSP algorithms implemented in Chapter 4 as well as
their results in Chapter 5. Each algorithm was tested on the same machine, so
that their performance might be critically and fairly compared and analysed so
as to establish patterns and trends between each algorithm.

The same graphs were used on each algorithm so as to ensure that different
data could not affect the results, and the machine was left in a constant state
so as to ensure fairness and comparability between results.

As we saw in Chapter 5, different algorithms are best suited to different
tasks. For example, Figure 5.9 shows us that Algorithm 16 is best suited to
graphs whose total number of vertices is comparatively small. The algorithm
gives the best performance boost when compared to any other of the CUDA
algorithms that were tested and analysed. However, Algorithms 14 and 12 also
provide a significant performance increase over their CPU counterparts.

For larger graphs, Algorithm 10, originally described by Harish and Narayanan
(2007), is the best of the five algorithms, providing a significant performance in-
crease over its CPU counterpart (Dijkstra’s algorithm). However, Algorithm 19
also provides a performance increase, but not as much as Algorithm 10. More-
over, as we saw in Chapter 5, we know that Algorithm 10 is dependent on the
density of the graph. If there are more edges on the graph, it will take longer
to execute. Our modified algorithm (Algorithm 19) does not suffer from this
restriction, and will have the same execution time no matter what the density of
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the graph. For that reason, it may be beneficial to use our modified algorithm
over Algorithm 10 when the density of the graph is unknown.

All of our implementations provide a significant performance increase over
their CPU counterparts, with an average performance increase of 154x over
Floyd-Warshall. We have seen in Chapter 5 that all the authors’ claims have
been verified, in that similar results were observed in our codes, and when
comparing the CUDA algorithms against each other. It is clear that different
graphs are best used by different algorithms, with no one algorithm being a clear
winner. An informed decision should be made before a particular algorithm is
used, based on the properties of the subject graph and the intended application
of the algorithm.

Additionally, the machine used to execute the algorithms must be taken into
consideration. A data transfer heavy algorithm such as Algorithm 10 should not
be used where the data bus does not have a high enough bandwidth, as data
transfer times will be impacted significantly during kernel execution.

Our modified algorithm presented in Section 4.7 provides an excellent im-
provement over the traditional algorithm in allowing for much larger graphs to
be utilised. The small performance impact of allowing these graphs is offset by
the fact that the algorithm is much more versatile in the operations that it can
perform.

Furthermore, this work provides application for many important research
areas and spans many subject areas, including, but not limited to, medical
research in the analysis of biological networks (Shi and Zhang, 2011). The vast
utility of such applications means that any future research into such an area
would be extremely beneficial. Section 6.1 details such examples of future work.

6.1 Future Work

The research presented in this thesis was successful in implementing APSP al-
gorithms and comparing their performance on a common platform, as well as
improving them where possible. The work completed and the solutions imple-
mented can provide a strong basis for future work where improvements in CUDA
may apply. Additionally, new solutions can be implemented following the sen-
timents in this thesis, so that they might be compared to the work presented
here.

Solutions for creating a new data structure for graph storage could be im-
plemented. New data structures would give way to a host of new CUDA APSP
algorithms with the potential of improving on the performance of traditional
APSP algorithms. The focus of new research would benefit from these imple-
mentations by giving a wider variety of options for graph storage to choose
from. Currently a compromise must be made between access times and storage
requirements. Researching a new storage method that combines the two may
be beneficial in certain scenarios.

More tests could be conducted on Algorithm 10 (Section 4.3) to determine
what effect the density of subject graphs has on the performance of the algo-
rithm. Out of the CUDA algorithms implemented, Algorithm 10 is the only
one that presents differing performance based on the density of the graph. As
described in Chapter 4, algorithms utilising the adjacency matrix method of
graph storage operate over all the data in the matrix. Algorithm 10 operates
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on a compacted adjacency list which eradicates redundant data meaning that
it only operates on the necessary data, potentially reducing execution times for
sparse graphs.

6.2 Final Conclusion

The research questions posed in Chapter 1 have been answered successfully by
this research. To show this, the questions are repeated here with a summarised
view of their answers.

1. Which All-Pairs Shortest Path algorithms solve their problem
the fastest, and can the authors’ claims be verified?

We have seen that all CUDA algorithms solve the APSP problem faster
than their CPU counterparts. Algorithms 16 and 10 in particular solve
the APSP problem in the fastest amount of time, providing average speed-
ups of 113x and 129x respectively. Chapter 5 clarifies that the authors’
original claims are valid, with our results reflecting their claims. From
this, we can deem that our original question posed in Chapter 1 has been
answered successfully.

2. How do CUDA algorithms compare against their CPU counter-
parts?

Chapter 5 gives us plenty of evidence that all CUDA algorithms are sig-
nificantly faster than their CPU counterparts. We see that over all the
CUDA algorithms implemented, there is an average speed-up of 76x over
the Floyd-Warshall algorithm (Algorithm 4) and 27x over the Blocked
Floyd-Warshall algorithm (Algorithm 8).

3. Can these CUDA algorithms be improved or modified in any
beneficial way?

We have seen from Chapter 4 that we have improved the algorithm given
by Harish and Narayanan (2007). Additionally, we have dramatically mod-
ified the blocked algorithm presented by Katz and Kider (2008) in order
that graphs larger than DRAM might be used. Both of these modifications
are beneficial to the algorithm. Firstly, the modifications to Algorithm 10
allow the algorithm to better utilise CUDA hardware in order to achieve
improved performance. Finally, the modification to Algorithm 16 is ex-
tremely beneficial in giving us a flexible algorithm capable of being utilised
on a much larger number of graphs.
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