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ABSTRACT 
MONTE CARLO SIMULATIONS OF ELECTRON TRANSPORT 

IN QUANTUM WELL HETEROSTRUCTURES 

Ph.D. Thesis 1993, by David Hoare, B.Sc. 

The parallel transport of electrons in pseudomorphic InxGa1_xAs/GaAs 

quantum wells is influenced by the degree of spacial confinement and by 

the effect of the indium concentration which determines, the amount of alloy 

scattering, the subband structure, and material parameters. The indium 

content changes the bandstructure and material parameters through both 

direct compositional and strain effects. We use the single particle and ensemble 

methods of Monte-Carlo simulation to investigate how the above phenomena 

influence the transport properties of electrons in InxGa1-xAs/GaAs quantum 

wells. 

To understand the effects of alloying and strain on the electron transport 

properties we first consider electrons in bulk InxGa1_xAs. Alloying and strain 

are considered in artificial systems were the effect(s) of these factors on electron 

transport may be isolated. For a range of indium compositions, we consider 

independently the effects of alloying (with and without alloy scattering) and 

strain on the bandstructure and material parameters and, in turn, their 

effects on the electron transport properties. We show that increasing the 

indium concentration generally improves the carrier low field mobility and 

peak velocity of unstrained materials but has a detrimental effect on the 

saturation velocity. Strain reduces the low field mobility and peak velocity 

but gives a slightly higher saturation velocity when compared to GaAs, and 

the unstrained system. 

Comparison of transient and steady state transport phenomena is made for 

strained Ino.lsGao.ssAs/GaAs quantum well structures, at fields high enough 

for real- and reciprocal-space transfer to occur. An artificial case, called 

the unstrained system, where the strain effects on the bandstructure and 

material parameters are neglected is also considered. Differences between the 

strained and unstrained well results are small and mainly transient. At steady 

state, most of the electrons for almost all fields reside in unbound states. 

The strained and unstrained systems show higher low field mobilities when 

compared to bulk GaAs. 

Lattice vibrations are also affected by heterostructures and we have made 

a study of the effects on the low field transport of electrons in a 70A 

Alo.3Gao.7As/GaAs quantum well when the polar optical phonon modes which 

interact with the electrons are described by three phonon models which describe 

the lattice vibrations of the heterostructure; the Hydrodynamic Model (HDM), 

the Dielectric Continuum Model (D CM), and the Bulk Phonon Approximation 

(BPA). We show that the BPA and HDM predict similar transport effects 

and are in good agreement with experimental results. We conclude that, at 

present, the BPA is an adequate model to describe the phonon modes in 

heterostructure quantum wells for use in transport calculations. 
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CHAPTER ONE 

INTRODUCTION 

Although silicon is well established as the mainstream material 

for use in integrated circuits, GaAs and other III-V semiconductors are used 

in some specialist areas in which they have advantages over silicon (due to 

smaller effective masses, direct band gaps, etc.) despite an inferior materials 

technology. One particular area of application, that has been a commercial 

success, is the low noise, high frequency transistors for use in satellite 

communication receivers (including satellite T.V.). The transistors used are 

the so called high electron mobility transistors (HEMTs), a development of 

the GaAs field effect transistor (FET). 

The speed of operation of a HEMT is determined principally by the 

time it takes carriers to cross the region of the conducting channel under 

the gate. This is a small, high-field region where the electrons attain high 

transient-overshoot and saturation velocities. The region between source and 

gate is a low field region and materials with a high low field mobility are 
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desirable in order to provide a low source-gate region resistence. A well 

defined gate voltage at which all earners are ejected from the channel (the 

pinch-off voltage) IS another desirable characteristic m HEMT operation. 

The first HEMT devices used an AlGaAs supply layer grown on an 

GaAs 'channel' layer which itself was grown on a GaAs substrate. In the 

HEMT the electrons originate from the doping of the supply layer but are 

confined in the potential well formed at the interface between the supply 

layer and the channel material which has a lower band gap. This modulation 

doping of devices is an improvement over the FET where the donor atoms 

and carriers are not spacially separated and ionised impurity scattering 

limits mobility. Further improvements have been made by use of a spacer­

layer, a layer of undoped AlGaAs, which further separates the electrons 

from their donor atoms and so reduces remote ionised impurity scattering. 

Other ways of improving HEMT performance are being investigated. One 

development which seems to be particularly advantageous is the introduction 

of a strained InGaAs channel between the GaAs buffer and AlGaAs supply 

layers. InGaAs, when compared to GaAs, has a smaller r valley effective 

mass, a higher energy separation between the r valley and the satellite 

valleys, and a smaller band gap. It is hoped that, the smaller r valley 

effective mass will increase carrier velocity in the low field region between 

the source and gate, the higher energy of the satellite valleys, coupled with 

the lower f valley mass, will decrease the transit time across the region 

under the gate, and in the high field region between gate and drain real 
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space transfer will be inhibitted by the smaller band gap of InGaAs causing 

a deeper confining potential. This smaller band gap also improves carrier 

control due to the back barrier between it and the GaAs substrate leading 

to a well defined pinch-off voltage. 

It is to the investigation, using the Monte-Carlo method, of transport 

in a simplified form of this quantum well channel region that the work of this 

thesis is directed. The Monte-Carlo technique is a very powerful and much 

used technique for simulation of carrier transport in semiconductor materials 

and devices. One particularly useful aspect of this method of simulation is 

the ease in which the effect on the transport properties of specific parameters 

or processes can be examined. The single particle method is used to study 

steady state phenomena in homogenous and non-time-varying systems and 

the ensemble method to investigate inhomogeneous systems and transient 

effects. Chapter two gives a brief overview of our simulations of electron 

transport in bulk III-V semiconductors using both the single particle and 

ensemble Monte-Carlo methods. We report simulations of electron transport 

in GaAs and InAs and then consider the important issues when simulating 

electron transport in ternary alloys. Amongst the subjects discussed are 

the bandstructure and material parameters of alloys along with the electron 

scattering mechanism, alloy scattering, which is in addition to those in the 

constituent binary materials. The effect of these matters on the transport 

properties are considered with particular reference to lno.s3Gao.47As which 

can be grown epitaxially on InP to which it is lattice matched. 
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When a material is grown on a substrate of different lattice constant 

the lattice mismatch can be accommodated in two ways; the lattice constant 

in either or both materials may change or dislocations may occur. If a thin 

epitaxial layer is grown on a thick substrate in such a way that the lattice 

mismatch between the two materials is wholly taken up by a change of the 

in-plane lattice constant of the layer to that of the substrate then the layer 

is pseudomorphically strained. Strain has the effect of changing the band 

structure and other material parameters so that the strained material has 

different electronic transport properties to that of the unstrained semicon­

ductor. Often the epitaxial layer thickness is sufficiently small to introduce 

quantum size effects. Also in chapter two, strain effects on bandstructure, 

material parameters, and transport properties are explored, without carrier 

quantisation effects, for the artifical system of bulk InxGal-xAs (x ::; 0.25) 

strained as though it were a pseudomorphically strained layer. 

Longitudinal polar optical phonon scattering is one of the main 

factors affecting the electron transport properties of III-V semiconductors. 

It is well agreed how the electron states are affected by semiconductor 

heterostructures but there is less understanding of how the lattice vibrations 

are influenced by the interfaces between materials and the geometry of the 

device. Although the description of the scattering processes and phonon 

modes in bulk materials is well agreed upon, there is more controversy over 

the continuum models which describe phonon states of heterostructures and 

how they interact with the carriers. In chapter three we compare the electron 
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scattering rates by optical phonons predicted by three continuum phonon 

models and use a single particle Monte-Carlo model to investigate their 

effects on electron transport in the subbands of a 70A Alo.3Gao.7As/GaAs 

quantum well. 

In the high field regions of the HEMT channel the electrons attain 

energies at which scattering to unbound states of the r valley or the 

bound and· unbound states of the satellite valleys is probable. We therefore 

need to consider real-space transfer (the scattering between bound and 

unbound states), reciprocal-space transfer (the scattering between valleys) 

and a more complete bandstructure model. In chapter four we compare 

the transport properties predicted by an ensemble Monte-Carlo model of 

electrons in the quantised states of the r, L and X valleys in strained and 

unstrained In0.15 Ga0.85 As/GaAs structures. The bandstructure, and how 

the scattering rates between bound and unbound states is calculated are 

discussed along with an interpretation of the significant results obtained from 

these simulations. 

Chapter five gives an overview of the work reported in this thesis, 

some general conclusions, and suggestions as to how this work may be 

developed. 



CHAPTER TWO 

SIMULATIONS OF BULK III-V SEMICONDUCTORS 

2.1 Introduction. 

Recently a lot of research has been devoted to improving the 

performance of AlGaAs/GaAs high electron mobility transistors (HEMTs), 

in particular the velocity and control of carriers in the conducting channel. 

Two areas in which advancements have been sought are in the materials 

used and the device design. 

InxGat-xAs (x :S 0.25) has been grown between the AlGaAs supply 

and GaAs buffer layers to act as the conducting channel. It IS hoped 

to provide a higher low field mobility because it has a lower r valley 

effective mass than GaAs, and better carrier control due to the extra 

confinement provided by the conduction band discontinuity between it and 

GaAs. However, it has two main drawbacks; i) because it has a larger 

lattice constant than GaAs (or AlGaAs) it can only be grown in thin 

pseudomorphically strained layers and, ii) because it is a ternary alloy the 
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carriers within it will be scattered due to the random fluctuations of the 

lattice potential. 

Obtaining an understanding of these new structures is complicated 

by the many contributory factors which affect their performance. The factors 

we are mainly interested in are due to alloying, strain, and quantisation. 

In real devices some of these factors cannot be separated, for example 

strain limits the size of the channel layer and so quantum size effects are 

introduced, but in our computer simulations each factor can be introduced 

one at a time and its effect(s) on the transport properties examined. 

We shall leave consideration of quantisation effects to later chapters 

and consider only those effects due to alloying and strain on the electron 

transport properties of bulk semiconductors. 

In order to simulate steady state and transient electron transport in 

these materials we have used the single particle and ensemble Monte-Carlo 

methods. A brief description of these methods of numerical solution as 

applied to carrier transport is given m section 2.2 along with an outline 

of the material model we have used. The bandstructure used in, and the 

results from, simulating transport in the binary materials GaAs and InAs 

are given in section 2.3. In section 2.4 we introduce alloy scattering for 

ternary III-V semiconductor compounds and describe the mam effects, due 

to alloying, on the conduction bandstructure. Section 2.5 gives the results 

obtained when we used our Monte-Carlo programs to simulate electrons 

subjected to electric fields in bulk Ino.53Gao.47As. The effects of strain on 
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the bandstructure and material parameters of bulk alloys are discussed m 

section 2.6, and results of electron transport simulation in unstrained and 

strained bulk InxGal-xAs (x = 0.05, 0.10, 0.15, 0.20 and 0.25) are given 

m section 2.7. We finish this chapter with section 2.8 which is a brief 

summary of the main points of interest and conclusions drawn. 

2.2 General features of the simulation model. 

2.2.1 Monte-Carlo Method 

We have used the Monte-Carlo method to simulate electron transport 

m a range of III-V semiconductor bulk materials. The method has been 

extensively discussed and reviewed elsewhere (Jacoboni & Regianni 1983, 

Fawcett et al 1970) and therefore only a brief general summary of the basic 

features of interest is given here. 

Electron transport in semiconductors can be described by the integra­

differential equation known as the Boltzmann equation (see for example 

Butcher 1973). In general no closed form algebraic solution of the Boltz­

mann equation exists but various methods of numerical solution have been 

developed (see for example Moglestue 1993). Monte-Carlo simulation is 

one such method widely used to describe the behaviour of systems which 

can only be defined probabilistically. When applied to charge transport in 
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semiconductors, the method consists of a simulation of the motion of one or 

more particles which represent the electrons inside the crystal. The electrons 

are subject to the action of external forces due to the applied electric (and 

magnetic) fields and the effect of certain scattering mechanisms, such as 

phonon, impurity, and alloy scattering. The duration of the carrier free 

flight and the scattering events that terminate the free flights are selected 

stochastically in the simulation, in accordance with the known probabilities 

describing the microscopic processes, by using random numbers generated 

by the computer. 

When the purpose of the simulation is the investigation of a steady­

state transport phenomenon in a spacially homogeneous system, it is normally 

sufficient to simulate the motion of a single particle. From ergodicity 

considerations we may assume that the simulation of a sufficiently long path 

of this particle will give information on the behaviour of the entire electron 

gas. However, when the transport phenomenon under investigation is time 

varying in nature or relates to a non-homogeneous system it is necessary 

to simulate an ensemble of particles. Averages over the whole ensemble at 

specific times may be taken to determine the time evolution of the system. 

Normally the quantities of interest are the wavevector, velocity, energy and 

real space distribution functions and the average drift velocity, although 

additional microscopic information may be extracted if required. 

We have used the single particle Monte-Carlo method to simulate the 

equilibrium motion of electrons under a fixed electric field. The ensemble 



General features of the s£mulation model 10 

method has been used to model the behaviour of an electron gas to a 

step function electric field applied at time t=O. These models have been 

developed from software written by members of the Theory of Semiconductor 

Materials and Devices Group at the University of Durham, Dr. R. W. Kelsall 

and Dr. D. T. Hughes. 

2.2.2 Scattering processes 

The scattering processes included in the simulation of electron trans­

port in bulk binary III-V materials are:-

Polar Optical Phonon Scattering:-

In a polar crystal (e.g. GaAs), the optical modes 

of lattice vibration (essentially the contrary displacement of 

adjacent, oppositely charged atoms) create a polarisation, 

and hence an electric field which acts on the electrons. The 

associated phonons cause inelastic scattering of the carriers, 

and are well known as an important scattering mechanism 

in III-V semiconductors at room temperature. 

Non-Polar Optical Phonon Scattering:-

The optical modes generate a strain in the lattice 

which, through its effect on the bandstructure described by 

a deformation potential, interacts with the electron. It can 

be shown by symmetry considerations (Harrison, 1956) that 
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negligible coupling between electrons and non-polar optical 

phonons takes place in the r and X valleys. Therefore 

this form of inelastic scattering has only to be included for 

scattering in the L valleys. 

Acoustic Phonon Scattering:-

For acoustic modes of the lattice vibration the displace­

ment of the atoms in the unit cell are in the same direction 

and causes a strain which interacts with the electron through 

a deformation potential. At room temperature most scatter­

ing events involve phonon energies small compared to typical 

electron energies, and it is common to assume that electron 

scattering by acoustic phonons is an elastic process. 

Inter-valley Scattering:-

Although in principle inter-valley scattering can be 

caused by both acoustic and optical large wavevector phonons, 

we follow the common procedure (see for example Nag 1972) 

of incorporating an effective phonon scattering mechanism in 

the deformation potential approximation. 

Other mechanisms such as ionised impurity and piezoelectric scat­

tering can also be readily included in Monte-Carlo simulations but have not 

been taken into account here. 
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Ionised Impurity Scattering:-

Ionised impurity scattering is a result of the interaction 

of carriers with the electric field of dopant atoms substituted 

into the lattice and so does not occur in pure materials. 

This scattering becomes less effective with increasing carrier 

kinetic energy. Our concern here is only with low doped or 

pure materials. 

Piezoelectric Scattering:-

In a polar material the strain associated with the acous­

tic modes creates an electric field which interacts with the 

carriers. Piezoelectric scattering is insignificant in III-V semi­

conductors at room temperature (Moglestue 1993). 

2.2.3 Band structure. 

For GaAs and InAs the three lowest sets of conduction band valleys 

occur at the f, L and X points, in order of increasing energy, and it is 

sufficient to model only these three sets for the range of fields ( 0-20k V em -l) 

we are considering. At the band edge, the r valley, of the unstrained 

semiconductor, is spherically symmetric in k-space. The satellite valleys 

have constant energy surfaces which are ellipsoids of revolution. However, 

unless otherwise stated, we take all valleys to be spherically symmetric 

with a parabolic E-k relationship. The satellite valley effective masses 

are taken as the effective density of states mass of that valley (Moglestue 
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1993)( = [mimt 2]t, where mi and m; are the longitudinal and transverse 

effective masses in the valley). These are common approximations in Monte­

Carlo models which have proved satisfactory for most purposes. 

2.3 Simulation of electron transport in GaAs and InAs. 

2.3.1 The bandstructure and related parameters 

The conduction bandstructure of GaAs has been extensively investi­

gated and the main features are known with some confidence (Aspnes 1976, 

Adams et al 1977, Littlejohn et al 1977, Landolt & Bornstein 1982). The 

r to L separation ( ~Er L) is 0.33e V and the f to X ( ~Er x) is 0.522e V at 

room temperature. The effective masses are 0.067mo, 0.220mo and 0.580mo 

for the r, L and X valleys respectively. 

The lnAs conduction band parameters required for the simulations 

are not as well known as in GaAs. The r valley effective mass is taken as 

0.023mo (Landolt & Bornstein, 1982). The other aspects of the conduction 

bandstructure are taken from Brennan & Hess, 1984, who used a pseudopo­

tential method to calculate a ~ErL of 1.082eV, a ~Erx of 1.620eV, and 

effective masses in the L and X valleys of 0.286m0 and 0.640m0 respectively. 

The remaining material data is taken from Adachi, 1982, who collected 

parameters from many different sources. 
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Figures 2.1 and 2.2 show the conduction band valley energies and 

effective masses for GaAs and lnAs used in our simulations. Features to note 

are the smaller effective mass in the r valley, the larger r to L separation 

and the larger effective masses of the satellite valleys of in InAs compared 

to GaAs. 

2.3.2 Steady state simulation results. 

The velocity field characteristics of GaAs and InAs, at room temper­

ature, predicted by our model are shown in figure 2.3 and can be explained 

and understood in terms of the bandstructure of the two materials. 

The slopes of the curves close to zero field give the low field 

mobilities as J-LGaAs = 0.9m2V-1 s-1 and f.linAs = 3.3m2V-1 s-1. The smaller 

value for GaAs is explained by its larger r valley effective mass. The field 

value at which the peak velocity occurs and the peak velocity itself are 

determined by the r valley effective mass and the energy separation of the 

f and L valleys. As 6.ErL increases the peak velocity and peak-velocity 

field values increase. When the effective mass decreases the average velocity 

increases and the electrons reach higher energies for a given field strength 

pnor to significant satellite valley population. However, the peak velocity 

although possibly higher may occur at lower field strengths. So, as can be 

seen in figure 2.3, InAs with its smaller r valley effective mass and larger 

t1ErL has a greater peak velocity at a lower field strength in comparison 

with GaAs. The effective masses of the L and X valleys are greater m 

InAs and are the reason for a saturation velocity which IS lower than in 
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The energy separations and effective masses of the conduction 

band valleys in GaAs. 
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The energy separations and effective masses of the conduction 

band valleys in InAs. 
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GaAs. These results are in good agreement with experiments {see for 

example, Landolt & Bornstein 1982, Masselink 1989) and other Monte-Carlo 

simulations (see for example, Brennan & Hess 1984, Littlejohn et al 1977). 

2.3.3 Transient behaviour 

The transient responses of carriers m InAs and GaAs to a step 

function electric field were simulated using the ensemble method. The 

results for different field strengths are shown in figures 2.4 and 2.5. For the 

higher applied fields the velocity rises to a peak before falling to its steady 

state value. This is the well known and much studied velocity overshoot 

effect (see for example Glisson et a/ 1982 or Ghosal et a/ 1984) which is due 

to the electrons being able to attain a high non-equilibrium average velocity 

before the scattering has had time to impose the steady state. 

The results of figure 2.4 and 2.5 show that the peak velocity also in­

creases with field, exceeding 2.5x106ms- 1 in InAs with a field of 20.0kVcm-1. 

For both IrtAs and GaAs the equilibrium velocities, which are achieved by 

5.0ps in almost all cases, agreed well with those obtained with the steady 

state model as would be expected. 

Our average drift velocity results for GaAs show very good agreement 

with those from the Monte-Carlo simulations of Glisson et a/ 1982. 
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Mean electron drift velocity as a function of 

time for different electric fields in GaAs. 
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2.4 Ternary alloys. 

To simulate electron transport in alloys it is necessary to include 

alloy scattering in the transport model. For the ternary alloy AxBl-zC the 

C atoms occupy all the sites of one type in the zinc blende crystal. The 

other atoms, A and B, are distributed in some way on the other sites. In an 

ideal alloy system the A and B atoms would each be arranged regularly and 

periodically throughout the lattice. However, this is generally not the case, 

and they are distributed in some other way. One possibility is that large 

clusters of A and B atoms are found throughout the lattice with hardly any 

mixing between them, whilst another is that there is no correlation between 

atoms and the distribution of A and B atoms is totally random. We have 

made the assumption that the distribution of A and B atoms is totally 

random. Thus, although there is a periodic lattice in a random alloy the 

crystal potential is actually non-periodic because of the chemical disorder. 

A simple model of the electronic structure of the random alloy is 

based on the virtual crystal approximation. This amounts to replacing the 

potential due to the A and B atoms by some average and so recovering 

a periodic system for the purposes of calculating band stucture. However 

the difference between the actual and virtual crystal potentials scatters the 

Bloch waves, and must be included in the simulation of carrier transport. 

The alloy scattering is in addition to the scattering mechanisms present in 

elements and compounds which do not have this chemical disorder. In this 
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model the alloy disorder is considered to be produced by a set of short 

range scatterers (Harrison & Hauser 1976). If the A and B atoms are 

arranged randomly without any correlation the alloy scattering rate, Palloy' 

is (Harrison & Hauser, 1976, Asch & Hall, 1963, Littlejohn et a/ 1978), 

3VZ7rm*~x(1- x)(L\U) 2 1 
p ll - E2 a oy- 16Nh4 • 

2.1 

In equation 2.1 m* is the effective mass of the valley occupied by the 

electron, x is the concentration of A atoms in the alloy, E is the electron 

energy, L\U the magnitude of the short range scattering potential associated 

with each site, and N is the density of sites available to the A and B 

atoms (four in each cubic unit cell). There 1s no firm agreement on how 

L\U should be derived or determined. For example, one approach is to 

use the difference in the value of the band gaps of the associated binary 

compounds (Littlejohn et a/ 1978), whilst another is to use the differences 

in their electron affinities (Harrison and Hauser 1976). Other workers have 

fitted values to experimental transport data to obtain a value of 0.42e V 

(Marsh et a/ 1981, Basu & Nag 1983). 

Because of the large number of alloys available, each with a con-

tinuous range of compositions, the bandstructure and related parameters 

are generally not available from experiment. Interpolation between the end 

point binary material is normally used to obtain bandstructure and scatter-

ing parameters (Adachi 1982 & 1985, Marsh et a/ 1981, and Harrison & 

Hauser 1976). The values of most interest are the conduction band valley 

separations and their effective masses. We have used linear interpolation 
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for these parameters. Although the mass values may be calculated using a 

quadratic instead of a linear interpolation the bowing factor parameters are 

not reliably known at present. (Inclusion of a bowing factor in calculating 

the effective masses would alter the values from those used here and so have 

a corresponding effect on the velocities of the electrons; slower for larger 

masses, faster for lower ones.) For the effective masses (m*(x)) 

m*(x) = xmAc + (1- x)mi3c 2.2 

and for the inter-valley separations (b.ErL and b.Erx) 

b.Eri(x) = xb.EriAC + (1- x)b.EriBC i = L or X 2.3 

The ternary III-V alloys such as InxGa1-xAs are known to have two 

modes of lattice vibration with frequencies close to those of the individual 

binary materials (Chen et al 1966, Veleur & Barker 1966). The strength of 

these modes is dependent on the alloy composition (Kim & Spitzer 1979). 

The theory of this two mode behaviour of alloys has been discussed by 

many authors (Chang & Mitra 1970, Nash et al 1987, Verleur & Barker 

1966) but we have found no satisfactory model to calculate scattering rates 

for materials with this two mode behaviour. We have therefore taken the 

common procedure in transport calculations, which is to model the lattice 

vibrations in terms of one mode with an effective phonon frequency. In this 

approach the effective longitudinal optical phonon frequency for the alloy 

(wtt(x)) is defined as {Adachi 1985) 

wt~(x) = xwC8(x) + (1- x)wf8(x) 2.4 
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where wtf](x) and wEfJ(x) are the AC-like and BC-like lattice vibration 

modes of the alloy. 

Transport in lno.s3G<l.Q.47As has been extensively studied theoretically 

(Littlejohn et al 1978, Ahmed et al 1985 Harrison & Hauser 1976) and 

experimentally (Windhorn et al 1982, Marsh et al 1981) and is therefore a 

useful test of our simulation model. In the next section we describe the 

results of our transport simulations and compare these with published work 

and the results for GaAs reported in section 2.3. 

2.5 Simulation of transport in bulk In0 .53 Gao.47As. 

Bcause Ino.53Gacl.47As is lattice matched to lnP, it has been 

grown in thick layers and the electron drift velocity for bulk samples 

determined experimentally. 

The important parameters used m the simulations are listed in 

table 2.1 and have been calculated usmg equations 2.2, 2.3, and 2.4. 

The Monte-Carlo programs have been used to calculate both steady 

state and transient transport of electrons in the Ino.s3Gao.47As alloy. The 

steady state model has been used to calculate the effects of different values 

of the alloy scattering potential b.U. The value of b.U fitted to experiment 

was then used in the ensemble program to simulate the transient response 
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to a step function electric field applied at time t=O. 

r valley effective mass (mf(0.53)) 0.0437m0 

. L valley effective mass (m£(0.53)) 0.26m0 

X valley effective mass (mx(0.53)) 0.612m0 

r to L separation (~Er£(0.53)) 0.723eV 

r to X separation (~Erx(0.53)) 1.104eV 

GaAs-like phonon energy 1iwf0A 8 (0.53) 34mevt 

InAs-like phonon energy liwf0A 8 (0.53) 29mevt 

Effective phonon energy nwfJ (0.53) 31meV 

Table 2.1 

Parameters used in bulk Ino.s3Ga0.47As simulation 

t from Nash et al 1986 

2.5.1 Steady state simulation 

The effects of different values of ~U on the transport of electrons 

m bulk lno.s3Gao.47As using the single particle Monte-Carlo program have 

been compared. Consideration has been given to ~U = 1.08eV, obtained 

from the difference in electron affinity of lnAs and GaAs (from Littlejohn 

et al 1978), ~U = 0.83eV from the difference in band gap (from Harrison & 

Hauser 1976) and ~U = 0.42e V which has been shown (Marsh et al 1981) 

to be a good fit to experiment. It is useful to separate the scattering effects 

of alloying from those derived from the bandstructure effects and the case 

in which no alloy scattering is present (effectively ~ U = O.Oe V) has also 
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been examined. 

The results of the transport simulations are shown in figure 2.6. 

The general trend in the velocity-field curves is a reduction of the drift 

velocity with increased alloy scattering potential. This is expected as an 

increase in alloy potential increases the total scattering rate and decreases 

the electron free flight time. The occupancy of the L valleys versus electric 

field presented in figure 2. 7, shows that as the alloy potential is increased, 

a larger field is needed to achieve a given level of L valley population. 

This can also be explained by the reduction of the time between collisions. 

As the free flight time falls the energy gained in this time decreases, and 

so a higher field is needed for the electron to attain the energy at which 

scattering to the L valleys becomes possible. A direct consequence of this 

is that the electron population in the r valley at any given field increases 

with alloy scattering strength and results in the shift of the peak velocity 

to higher fields seen in figure 2.6. 

Table 2.2 compares the low field mobilities for different values of 

t:J.U with that for GaAs. 

If we compare the transport results for GaAs with those for 

In0.53Ga0.47As with !:J.U = O.OOeV we see the effect due to the changes 

in bandstructure and material parameters from alloying alone. As expected, 

the alloy has a greater low field mobility and higher peak velocity which is 

in turn because it has a lower r valley effective mass and a larger I::J.ErL· 

The alloy also has a lower saturation velocity due to its larger satellite valley 
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effective masses. As b.U increases the positive effect introduced from the 

changes in bandstructure and other material parameters is negated some-

what, but only for the higher values of b.U (0.83eV & 1.08eV) considered do 

we see a lower peak velocity, and for b.U = 1.08eV alone a lower mobility, 

than in GaAs. 

b.U ( eV) 0.00 0.42 0.83 1.08 GaAs 

J.L (m2v-Is-I) 1.46 1.22 0.97 0.81 0.9 

Peak velocity ( x 105ms- 1) 2.7 2.5 2.1 1.8 2.2 

Table 2.2 

Comparison of the low field mobility, p, and peak velocity 

for GaAs and Ino.53Gao.47As with different values of b.U 

Comparison of low field mobilities and saturation velocities reported 

in the literature show significant variation between sources. However, the re-

suits presented here show a good agreement with the Monte-Carlo simulation 

work of Brennan & Park 1989, and Thobe! et al 1990, and the experimental 

and Monte-Carlo results reported by Marsh et al in 1981, Littlejohn et al 

in 1978 and Windhorn et al in 1982, for b.U = 0.42eV. We have therefore 

taken b.U = 0.42eV to simulate the transient behaviour of Ino.53Gao.47As 

which is described in the next section. 

2.5.2 Transient behaviour of !71{).53 G0.0.47 As 

Figure 2.8 shows the mean drift velocity of electrons in Ino.53Gao.47As 
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when the material is subjected to an electric field switched on at t=O.O. 

The results are qualitatively similar to those for GaAs and InAs. 

The ensemble simulation results show good agreement with the 

theoretical calculations of Ghosal et al 1984, with a peak in the velocity­

time curve at about 0.15 ps. for a field of 20.0kVcm- 1. 

2.6 Strain effects . 

. f:t mentioned m section 2.1 lnxGa1-xAs (normally x :S 0.25) is 

used as the conducting channel in some strained high electron mobility 

transistors (HEMTs) based on GaAs technology. The layers for such devices 

are produced by epitaxial growth on a GaAs substrate. Although InxGa1_xAs 

has a larger lattice constant than GaAs, the channel in the HEMT is made 

sufficiently thin (:S 150A) that its growth is pseudomorphic. That is, the 

in-plane lattice constant of the alloy layer adjusts to that of the GaAs 

substrate (with no dislocations or other defects at the interface) and there 

is an accompanying expansion of the alloy lattice in the growth direction. 

Of interest here is the effect the strain has on the bandstructure and other 

material parameters which determine the electronic transport properties of 

the material. 

Hence we have a system m which the transport properties are 
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influenced by both alloying and strain. In fact we should also recognise the 

effects of confinement of the electron in the thin layer, including quantum 

size effects. However, we delay consideration of the latter to isolate the 

effects of strain achieved by alloying. To do this we consider a case which 

is physically unrealistic but nevertheless instructive; electron transport m a 

bulk sample which 1s strained as if it were a pseudomorphic layer. 

This following discussion on the effects of strain on the conduction 

band is based on the model solid theory of C. G. Van de Walle, 1989. We 

shall refer to the strained alloy as the layer material, and the material that 

determines the amount of strain as the substrate material. A quantity is 

described as in-plane when it is parallel to the imaginary interface between 

the layer material and the substrate. Similarly a quantity is perpendicular 

when it is normal to this interface. 

The strain in the layer is defined in terms of the lattice constants of 

the bulk layer and substrate materials ( az and a5 ) and the elastic constants 

of the layer material (cu and c12). The in-plane strain Ell (= Exx = Eyy) is 

defined for the layer 

2.5 

and the perpendicular strain Ej_ ( = Ezz) thus 

2.6 

where a 1s Poisson's ratio. 
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The strain tensor can be thought of as having isotropic (t:xx+t:yy+t:zz) 

and uniaxial ( f..L - ~:11) parts. The isotropic part has the same effect as an 

applied hydrostatic pressure, defined as 

p = -Bb.O 
0' 2.7 

where B is the bulk modulus of the alloy (= -(c11 + 2c12)/3) and b.0/0 

is the fractional volume change ( = Exx + Eyy + Ezz). A consequence of this 

hydrostatic pressure is a shift in the energies of the valley minima away 

from their unstrained positions. The r and L valleys increase in energy, 

at different rates, ( 8lJ = 10.73meVkBar-1 and 88~r, = 5.58meVkBar-1 for 

GaAs, Landolt & Bornstein 1982) and the X valleys are lowered m energy 

(
8:1 = -1.34meVkBar-1 for GaAs, Landolt & Bornstein 1982). 

The uniaxial part of the strain lowers the lattice symmetry with 

the consequences that the r valley becomes anisotropic in k-space and the 

X valleys are split in energy. 

For growth along the (100) direction the six-fold degenerate X valleys 

are split into a four-fold quadruplet and a two-fold pair with the weighted 

mean energy of the valleys remaining unchanged. The energy splitting of 

the X valleys (b.Ex2x4 = Ex2 - Ex4 ) is obtained using the deformation 

potential, <I>u, as 

2.8 

<I>u was calculated usmg a linear interpolation between the values of <I>u of 

GaAs and InAs (8.61eV and 4.5eV respectively, Van de Walle 1989) 
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We have used the GaAs values for the rate of change of the valley 

separations m the conduction band of the alloys. This is a reasonable 

approximation as the percentage of indium m the materials considered is 

small. 

For growth along the (100) direction the L valleys are not split by 

the uniaxial component of the strain as they all have equivalent alignments 

to the substrate/layer interface. 

The strain causes the f valley to become anisotropic. The constant 

energy surfaces are ellipsoids of revolution with different effective masses 

perpendicular and parallel to the substrate/layer interface. The perpendicular 

and parallel effective masses were calculated using an 8 band k · p program, 

supplied by colleagues G. C. Crow and M. Walmsley, which calculates the 

bulk bandstructure of strained III-V semiconductors. 
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2. 7 Simulations of transport in strained InxGa 1-xAs. 

7:study the effects of alloy composition and strain on the electron 

transport properties of bulk InxGal-xAs we have used the single particle 

Monte-Carlo program to simulate the five alloy compositions x = 0.05, 0.10, 

0.15, 0.20 and 0.25. In particular, simulations have been carried out for 

the unstrained alloy, corresponding to bulk material where the changes in 

bandstructure are entirely due to compositional effects; and for the strained 

material corresponding to a pseudomorphic layer on a GaAs substrate. In 

the latter case both electric fields applied perpendicular and parallel to the 

substrate/layer interface are considered. 

Figure 2.9 shows the velocity-field characteristics of the x = 0.15 

alloy with and without strain. It is apparent that the strained material has 

a smaller low field mobility and peak velocity than the unstrained material 

but the saturation velocity is greater. The electron velocity is generally 

lower for an electric field perpendicular to the substrate/layer interface but 

there is no significant difference between the saturation velocities for the 

two field directions. 

The low field mobilities and peak velocities are compared with GaAs 

m table 2.3. The results of figure 2.9 and table 2.3 can be explained 

with reference to the bandstructure of the materials and the relative carrier 

occupancy of the conduction band valleys. 

Table 2.4 shows the effects on the r valley effective masses m both 



Unstrained Strained 

Parallel field Perpendicular field 

Indium Mobility Peak Mobility Peak Mobility Peak 

concentration J.l Velocity J.l Velocity J.l Velocity 

(m2v-Is-1) (x 105ms-1) (m2v-ls-1) (x105ms-1) (m2v-Is-1) ( x 105ms-1) 

O% 0.90 1.94 0.90 1.94 0.90 1.94 

5% 0.89 1.98 0.87 2.00 0.84 1.98 

10% 0.88 2.03 0.82 2.01 0.78 1.97 

15% 0.95 2.22 0.83 2.04 0.75 1.96 

20% 0.96 2.26 0.81 2.11 0.71 1.97 

25% 0.99 2.30 0.83 2.20 0.70 2.03 

Table 2.3 

Effect of alloy composition and strain on the mobility and peak velocity of lnxGal-xAs. 

(Fluctuations in the general trend of the values are due to statistical errors in the method.) 
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Mean electron drift velocity versus eleCtric field for Ino.l5 Gao.ssAs 

with and without strain. In the strained case the strain IS 

appropriate to a pseudomorphic layer on a GaAs substrate, and 

field directions parallel and perpendicular to the substrate/layer 

interface are considered. 
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the parallel and perpendicular directions as predicted by a k · p bandstructure 

calculation. The r valley effective mass of the strained material is anisotropic 

with an in-plane component (m0) which is lighter than the perpendicular 

component (mj_). Both effective masses, m 0 and mj_, increase with strain 

but at different rates. The other influence to consider is the direct effect 

of the indium on the effective mass, so that unstrained InGaAs has a lower 

mass than GaAs. The net result of compositional and strain effects is for mo 

to be smaller, and mj_ to be greater than the isotropic mass of unstrained 

GaAs. 

Strained 

Indium Compressive Unstrained Parallel Perpendicular 

concentration strain effective mass effective mass effective mass 

(%) m* mo m* _l 
.. 

5% 0.42 0.065m0 0.066m0 0.068m0 

10% 0.77 0.063m0 0.066m0 0.069m0 

15% 1.13 0.060m0 0.064m0 0.071m0 

20% 1.48 0.058m0 0.063m0 0.072m0 

25% 1.83 0.056m0 0.062m0 0.075m0 

Table 2.4 

Effect of alloy composition and strain on the 

f valley effective mass of InxGa1-xAs 

The changes in the effective mass have a direct effect on the low field 

mobility. It is known that as the effective mass of the r valley increases, 
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the low field mobility reduces which explains why as seen in figure 2.10, the 

unstrained material always has a greater low field mobility, than the strained 

material. When the field is applied parallel to the interface between the 

layer and the substrate materials, the effective mass is smaller than in the 

perpendicular direction, and the mobility is correspondingly higher. It is 

apparent from table 2.3 and figure 2.10 that the strain (coupled with alloy 

scattering) reduces the low field mobility to less than that of bulk GaAs 

(x=O.O). 

Table 2.5 shows the conduction band valley separations of the strained 

and unstrained alloys. As the strain increases the energy separations between 

the r valley and the L and X valleys decrease, compensated to some degree 

by the increase in the valley separation due to the increase in indium 

concentration. The strain effects in the conduction band give a general 

reduction of the peak velocity is shown in figure 2.11. This decrease is a 

result of two main effects. First, the increase in the r valley effective mass 

makes the resident electrons less mobile, and second, the decrease in the r 

to L valley separation means the electrons are able to scatter into the L 

valleys at lower energies. 

The relative occupancy of the valleys versus electric field for 

Ino.1sGao.ssAs is shown in figure 2.12. The strained material has a greater 

fraction of carriers in the r valley than the unstrained materials for the 

larger fields and although other cases are not shown here, this behaviour 

is common to all alloy compositions considered. This is due to the larger 
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Electron mobility as a fu:rict~on of indium concentration (x) in 

bulk InxGal-xAs. Both unstrained and strained materials, with 

electric fields in the parallel and perpendicular directions in the 

latter case, are considered. 
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latter case, are considered. 
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f valley effective masses in the strained material inhibiting electron heating 

and transfer to the satellite valleys. Although the r valley effective mass is 

larger in the strained material the electrons in the r valley of the strained 

material are more mobile than in the satellite valleys of the unstrained (or 

strained) material. As a result, the higher fraction of carriers in the r valley 

of the strained material gives the higher average saturation velocity seen in 

figure 2.13. 

Unstrained Strained 

Indium i:::J.ErL l:::J.Erx i:::J.ErL L1Erx4 L1Erx2 

concentration eV eV eV eV eV 

5% 0.367 0.577 0.354 0.536 0.586 

10% 0.405 0.632 0.377 0.546 0.652 

15% 0.442 0.687 0.400 0.558 0.717 

20% 0.479 0.742 0.424 0.571 0.781 

25% 0.516 0.797 0.448 0.587 0.844 

Table 2.5 

Effect of strain on the conduction bandstructure of lnxGal-xAs 

Figure 2.12 shows a small fraction of carriers in the X valleys. The 

reduction in energy between the r and X valleys in the strained material is 

more substantial than the change in r to L separation and results in a greater 

fractional population in the X valleys of the strained material. Although 

it is not indicated in the figure all the carriers reside in the X4 valleys 
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because the large effective mass of the X valleys inhibits significant heating 

of resident carriers. 

The results reported above are in good general agreement with those 

of Thobe! et al 1990 but differ in that they found a decrease in the saturation 

velocity with strain. It is not possible to investigate this difference further 

because of the limited information provided on their model. 

2.8 Summary & conclusions. 

Z this chapter we have introduced and examined the effects of 

alloy concentration and strain on the bandstructure and material parameters 

of bulk InxGal-xAs (x= 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.53, and 1.00), 

and how this effects the transport properties, especially the average drift 

velocity, predicted by our Monte-Carlo simulation programs. 

We found that, for x = 0.53, the alloy scattering potential !:l.U had 

an important effect on the carrier velocity, as !:l.U increased the scattering 

rate increased and the carrier velocity was reduced. However, for the most 

of the range of !:l.U considered and especially' the value fitted to experimental 

results !:l.U = 0.42 we found a higher low field mobility and increased peak 

velocity over that for GaAs, due to the smaller r valley effective mass and 

larger !:l.Er L in the alloy. 
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We have found that (with t::.U = 0.42) increasing indium concentra-

tion, (0.00 ~ x ~ 0.25), 

[i] generally improved low field mobility, due to the smaller r valley 

effective mass, 

[ii] increased the peak velocity, because of the larger value of t::.ErL, 

[iii] reduced the saturation velocity, which we attributed to the larger 

satellite valley effective masses. 

Strain had the effect of; 

[i] reducing the low field mobility to values lower than GaAs, because 

of the increase in f valley effective mass with strain, 

[ii] reducing the peak velocity below that of the unstrained material 

(but still larger than in GaAs), because of the general reduction in 

energy separation between satellite valleys. 

[iii] increasing the saturation velocity, which was due to the higher 

percentage of carriers m the r valley. 
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CHAPTER THREE 

A COMPARISON OF LOW FIELD ELECTRON TRANSPORT 

IN AN Alo.3Gao.1AsjGaAs QUANTUM WELL USING 

DIFFERENT PHONON MODELS. 

3.1 Introduction. 

'7:e electronic states of semiconductor heterostructures have been 

the subject of considerable attention in recent years but much less research 

effort has been devoted to the properties of the phonon states in these sys­

tems. Nevertheless microscopic models of lattice vibration in heterostructures 

have been developed and appear to provide a satisfactory description of the 

phonon states in a number of structures (see for example Molinari et a/ 1992, 

Ren et al 1989). Such models, dealing with the dynamics of the individual 

atoms or ions and involving large scale numerical calculations, are not the 

most appropriate to incorporate in theories of electron transport. They may, 

however, be used to compare with the ionic displacements, electron-phonon 

interactions, and scattering rates predicted by the simpler macroscopic con-
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tinuum models, which describe the lattice vibrations in terms of an elastic 

continuum rather than being concerned with individual particles, and are 

more suitable for transport calculations, including Monte-Carlo simulation. 

A number of continuum models have been developed to describe 

the optical phonon states present in heterostructure quantum wells. At the 

time this work was carried out the Dielectric Continuum Model (DCM), and 

related models (Huang & Zhu 1988, Haupt & Wendler 1991), based on the 

work of Fuchs and Kliewer ( 1965), were particularly prevalent but alternative 

approaches had been proposed including the Hydrodynamic Model (HDM) 

of Babiker and co-workers (Babiker 1986, Ridley 1989, Chamberlain 1987 & 

1990). These two models approach the problem in different ways, the first 

is an electromagnetic treatment using standard boundary conditions between 

dielectrics of different permitivities, the second an electro-mechanical treat­

ment of the lattice employing hydrodynamic boundary conditions. These 

two models predict different phonon modes, both of which have some incon­

sistencies when compared to the modes from microscopic models. 

Recently developed continuum models, which are more in line with 

microscopic model calculations, are the so called Hybrid Models (Zianni 

et al 1992, Ridley et al 1993). These models include dispersion, realistic 

boundary conditions and more importantly allow coupling between confined 

and interface modes. 

Another option in electron transport calculations is simply to ignore 

the effects of the heterostructures on the lattice vibrations and to assume the 
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phonon modes are the same as in a bulk sample of the well semiconductor 

(Riddoch & Ridley 1983, Ridley 1982, Price 1981). We called this the Bulk 

Phonon Approximation (BPA). 

In collaboration with Dr. M. P. Chamberlain of the Max Planck 

Institute, Stuttgart, we have considered how each of the three phonon 

models (DCM, HDM & BPA) would affect parallel electron transport in 

a semiconductor quantum well (Chamberlain et al 1992). A comparison 

of the rates of electron scattering between subbands has been made and 

of the results of single particle Monte-Carlo simulations of parallel electron 

transport. A comparison with results predicted using Hybrid model phonon 

modes is not included as these models were not fully developed when this 

work was carried out. 

We first describe the quantum well heterostructure, including its 

electron subbands. This is followed by a brief review of scattering processes 

in quantum wells and a description of each phonon model in sections 3.3 and 

3.4 respectively. Section 3.5 compares the results obtained for each phonon 

model when Fermi's Golden Rule is used to calculate the electron-phonon 

scattering rates. The low field average drift velocity, electron energies, and a 

comparison of the number of phonon absorption and emission events obtained 

when these rates were included in a Monte-Carlo transport simulation are 

reported and discussed in section 3.6. 
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3.2 Alo.3Gao.7As/GaAs quantum well model. 

'!.e system used to compare the effects of the different phonon 

models is the quantum well in the r valley formed by growing 70A of GaAs 

between two semi-infinite layers of Al0.3Ga0.7As, as shown in figure 3.1. 

The parameters of the system are specified in table 3.1. Growth is along 

the (001) crystalographic direction for both well and barrier materials with 

perfectly smooth interfaces between them. The difference in lattice constant 

between Alo.3Gao.1As and GaAs is very small and we have taken them to 

be lattice matched ( ao = 5.66A for AlAs and, a0 = 5.65A for GaAs, Landolt 

& Bornstein 1982), and there are no effects on the band structure or other 

material parameters due to strain. The effective mass of GaAs (m~) has 

been taken to be 0.063mo (Littlejohn 1977) and the alloy mass (m;) derived 

using a linear interpolation between values for AlAs (0.146m0 ) and GaAs 

(Casey & Panish 1978, Adachi 1985); 

m; = 0.063 + 0.083x 3.1 

The r valley effective masses of AlGaAs and GaAs were assumed isotropic 

and wavevector independent. 

The conduction band offset, which forms the confining potential well, 

between AlxGal-xAs and GaAs is generally accepted to be ~ 60% of the 

difference in the bulk material band gaps (Rogers & Nicholas 1985). The 

band gap of Al0.3Gao.7As is derived as a linear interpolation between the 

band gaps of AlAs and GaAs (Adachi, 1985). 
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Schematic diagram of Alo.3 Gao.7As/ GaAs heterostructure studied 

Well effective mass (m~J 0.063m0 

Barrier effective mass (mb) 0.088m0 

Well width (L) 7o.oA 

Lattice temperature (T L) 300K 

Potential well depth (Vo) 0.19eV 

Ground state energy (Eo) 0.047eV 

First excited state energy (E1) 0.17eV 

Table 3.1 

Parameters used in Alo.3 Gao.7As/ GaAs quantum well simulation 
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The doping density of the heterostructure is taken to be sufficiently 

small that there are no effects on the electron states due to band bending. 

The effective mass model, and standard theory (Bastard 1988) for the 

quantum well has been used to describe the electron states. The well is 

deep enough to bind two states at the band minima (kll = 0), and produce 

two subbands for non-zero values of parallel electron wavevector (ku), as 

shown in figure 3.2. The effective potential well depth decreases with k11 

because the effective mass of the alloy (barrier) is greater than that of GaAs 

(well). As a consequence the first excited state becomes unbound for values 

of k11 2: 0.063A -l, as apparent in figure 3.2. 

We have simulated parallel electron transport at 300K for electric 

fields applied perpendicular to the growth direction. The electric field is 

restricted to values sufficiently low that electron scattering out of the well 

(real space transfer) or scattering to valleys other than the r valley are 

improbable. This simplifies our problem and localises the electrons to the 

region where the effect of the heterostructure on the phonon modes is 

dominant. 
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Figure 3.2 

Electron energy states in the quantum well. 

(a) at k11 = 0, (b) with increasing k11• 



Scatter£ng events m quantum wells 42 

3.3 Scattering events in quantum wells. 

longitudinal polar optical (LPO) phonon scattering of electrons 

IS well known to be the dominant process in limiting the room temperature 

low field mobility of earners m III-V semiconductors and has been in­

cluded in our simulation, along with elastic scattering via acoustic phonons. 

Piezoelectric scattering is not included as it is only significant at low tem­

peratures. The two mode character of the lattice vibrations in AlGaAs has 

been approximated for simplicity by one effective mode, as in chapter two. 

Doping the barrier material to supply earners for the quantum well 

IS a common way of reducing ionised impurity scattering of the bound 

states while maintaining the required density of charge in the well. Often 

there is a layer of undoped barrier, a spacer layer, to separate further 

the charge in the well from their donor atoms in the barrier. However, 

this spacer layer is usually thin enough that the potential of the donor 

atoms still has some interaction with the bound carriers; this causes remote 

ionised impurity scattering. However, as we are only considering low doped 

structures, remote ionised impurity scattering is small and has not been 

included in our simulations. Also, as the well material is undoped, there is 

no local ionised impurity scattering of the electrons. 

In real devices the interfaces between the well layer and the barrier 

materials are not perfectly smooth. The fluctuations in layer width affect 

the energy levels in the potential well causing them to deviate from their 
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average positions. This can be modelled as fluctuations of the potential well 

depth away from a perfect well layer potential, and its effect on the electron 

transport is described as interface roughness scattering. Interface roughness 

scattering is dependent on the electron density; the higher the density the 

greater the effect. In low doped structures like ours, interface roughness 

scattering will be negligible and has not been included (Weisbuch & Vinter, 

1991). 

That portion of the electron probability density which penetrates the 

alloy barrier will interact with the randomly arranged scattering potentials 

of the Alo.sGa0.1As lattice. However, this interaction will be small due to 

the small penetration of the bound states into the barrier (Bastard 1983) 

and so alloy scattering has not been included in our simulations. 

As can be seen the mam scattering process in our quantum well 

under these conditions is LPO phonon scattering. Therefore, this model will 

provide a good comparison of the effects the scattering rates from the three 

phonon models have on the parallel transport properties of bound eletrons. 
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3.4 Polar optical phonon models. 

lor LPO phonons the electron-phonon interaction energy is given 

by e~, where e is the charge on the electron and <P is the scalar potential 

of the electric field associated with the lattice vibration. For each of the 

phonon models introduced in section 3.1 the scalar potential will have, due to 

isotropy and translational symmetry perpendicular to the growth direction, 

a plane wave form for the parallel phonon wavevector ( qll) (Huang & Zhu 

1988, Chamberlain 1987), 

3.2 

The variation of the potential in the growth direction, </>z ( z), for each model 

is derived from the boundary conditions of that model. 

3.4.1 Bulk phonon approx£mat£on (BPA) 

The Bulk Phonon Approximation neglects any effect due to the 

heterostructure. Before the introduction of macroscopic theories for phonons 

in double heterostructures the BPA was widely used in simulation of transport 

in quantum wells (Tanimoto et al 1988, Riddoch & Ridley 1983). We use 

it here as a method of measuring the effects of phonon confinement on the 

electron-phonon interaction and transport properties. 

Since the electron probability is concentrated in the well region of 

the heterostructure it is appropriate to consider the phonon properties of the 

system as those of a bulk sample of the well material. The scalar potential 
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for a bulk phonon mode is (Kelsall 1989) 

3.3 

where q is the phonon wavevector, w LO is the phonon frequency and c00 

and c8 are the high and low frequency dielectric functions respectively. 

3.4.2 Dielectric Continuum Model (DCM) 

The DCM model is based on the Fuchs and Kliewer (1965) treat-

ment of an ionic film. At the interface between two materials of different 

permitivities it is necessary, in electromagnetic theory, to have continuity 

of the parallel component of the electric field Ell and, the perpendicular 

component of the displacement field D .1. These requirements are used in 

conjunction with the equations of electrostatics; 

VxE=O 3.4 

and, 

V · c(w)E = p(x). 3.5 

where p(x) is the free charge density (for our low doped device approximated 

as =0) and c( w) is the frequency dependent form of the dielectric function 

given as (Born & Huang 1954, Huang & Zhu 1988), 

3.6 

In equation 3.6, w LO and wro are the longitudinal and transverse optical 

zone centre phonon frequencies of the bulk lattice vibration. 
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For longitudinal optical modes equation 3.4 is satisfied by E = 

- V'«P(r) which gives for equation 3.5 

3.7 

The solutions to equation 3. 7, together with the boundary con-

ditions and the dielectric functions of the well and barrier materials, 

cw(w) and cB(w), specify the scalar potentials for this model. These solu-

tions are divided into confined and interface modes. The confined modes 

are strictly confined to the quantum well and vibrate with the well material 

phonon frequencies. The interface modes have a maximum in the scalar 

potential at the well edges which decays exponentially into both the well 

and barrier, and vibrate with phonon frequencies between the 10 and TO 

mode values of the barrier and well materials. 

The scalar potential for the confined LOP modes m the Dielectric 

Continuum Model is given by 

3.8 cp = [ h(cs- coo)wlo ] ~ {cos (Yz)} eiq
11

.x
11 

Ococoocs ( qO + q;) sin ( y z) 
n=1,3,5, ... 

n = 2,4,6, ... 

where L IS the thickness of the confining layer, z has its origin at the 

midpoint of the layer, x11 and qll are the position and wavevector parallel to 

the barrier-well interface (the x-y plane), qz is the wavevector in the growth 

direction [= 't) and all other quantities are defined as in the BPA case 

above. 

Substitution for the form of «P (equation 3.2) into equation 3. 7 and 

use of the boundary conditions, for solutions that do not vibrate with bulk 
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well material phonon frequencies, gives the general form for the interface 

modes and sets Qz = qll· For the boundary condition equations to have a 

non-trivial solution requires (Fuchs & Kliewer 1965) 

e-qiiL = ± (c-w + cB) 
(c-w- cB)' 

3.9 

which can be thought of as a dispersion relation defining the vibrational 

frequencies of the interface modes, see figure 3.3. Here the energy of the 

phonon ( = liw) is plotted against the parallel phonon wavevector times the 

well width, L. As can be seen, for small in-plane wavevectors there are four 

distinct frequencies of vibration which have values very close to the bulk 

10 and TO modes of the well and barrier materials(wLow, WTow, WLQB, 

WTOB). However, for large wavevectors these four frequencies converge to 

give two values. The four modes of vibration are made up of two even 

parity, cosh-like potentials and two odd parity, sinh-like potentials. The 

form of the scalar potential for both even modes IS the same 

L z< -­- 2 
_!!_ <z< !!. 

2 - - 2 

!!. <z 
2 -

3.10 

with only the phonon frequency branch defining which of the two even 

potentials is being considered. Similarly with the odd potentials, which have 

the form 
z< _!!_ 

- 2 
L L -- <z< -. 2 - - 2 
!!. <z 2 -

3.11 
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where, m equations 3.10 and 3.11 

lA 1
2 _ hw [ ( c:0 ) 

2 
( 2 2 ) { cosh

2 
( ¥) } 

2 - -- 2 - W + W LOB ( ) 
4Aqll aB sinh2 ¥ 

-1 

+ (;:)'(w' +wwlv) sinh(q,L)l 3.12 

with the upper case for cosh modes and the lower case for sinh modes. ai 

is defined as 

i = W or B. 3.13 

3.4.3 The Hydrodynamic Model (HDM) 

Babiker and co-workers (Babiker 1986, Ridley 1989, Chamberlain 

1987 & 1990) have made use of the lattice dynamical treatment of Born and 

Huang (1965) with hydrodynamic boundary conditions at the well edges to 

describe the phonon states of the heterostructure quantum well. The het-

erointerface conditions are that the pressure and the velocity perpendicular 

to the well-barrier interface are continuous across the boundary. The hydro-

dynamic model also includes the effects of optical phonon mode dispersion 

on the heterostructure phonon. 

Both guided and interface modes are predicted by the model and 

the derivation of the scalar potential and dispersion relations for both are 

the same but for the definition of the growth direction (z) component of 

the wavevector in the well region, qw. There are four guided modes in our 

70A well (Chamberlain 1987) and they have ionic displacements that decay 

exponentially away from the interface in the barriers and have cos-like or 
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sin-like displacements in the well. There are two interface modes in the 

HDM, one cosh-like the other sinh-like, which have ionic displacements that 

are at a maximum at the well edges and decay exponentially into both the 

well and barriers. Both guided and interface modes for the HDM give a 

scalar potential of the form (Chamberlain 1990) 

sin(~) [qwpi] e-q~L eqnz 
qnPw 

~=2At cos(qwz) eiqwxll 

• (~) [~] _J.Jl..!:. -qnz sm 2 1 e 2 e qnpJ., 

for the even modes and 

cos(~) [qwpJ] e_'I~L eqnz 
qnPw 

~ = 2iAt sin ( qw z) eiq11·x11 

cos(~) [qwpJ] e-q~L e-qnz 
qnpJ., 

for the odd modes. Here A 1 is defined by, 

L z::; -2 

_!:. <z< !:.2 2--

!:. <z 2 -

L z::; -2 

_f:. <z< !:.2 2--

!:. <z 2 -

3.14 

3.15 

3.16 

with the upper/lower choice of sign and function for the even/odd modes 

respectively. Pi is the material density, CXi is defined in section 3.4.2, and Qi 

is the Qz component of the wavevector in the the well or barrier material, 

defined as, 

i = W orB 3.17 
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with f3i the velocity parameter in the bulk dispersion relation of the well 

or barrier material. The z component of the wavevector in the well region, 

qw, is real for the guided modes and imaginary for the interface modes. 

3.4.4 Comparison & criticism of the phonon models. 

The mam differences in the three phonon models can be seen with 

reference to figure 3.4, which is a schematic pictorial representation of the 

scalar potentials and ionic displacements for the interface modes of both the 

HDM and the DCM, the two lowest guided and confined modes of the HDM 

and DCM models respectively and a microscopic model (Rucker et a/ 1992). 

The microscopic model has been included for comparison as it provides 

an accurate description of the actual lattice vibrations of a quantum well 

heterostructure. The DCM confined modes are strictly confined to the well 

region and at the heterointerface there are nodes in the scalar potentials 

with anti-nodes and discontinuities in the ionic displacements. Conversely 

the HDM guided modes penetrate into the barrier region and have ionic 

displacements that approach zero with anti-nodes and discontinuities in the 

scalar potentials at the well edges. The microscopic model is continuous 

across the boundaries in both scalar potential and ionic displacement. Also 

note that the lowest mode scalar potential of the DCM confined state is 

cos-like while that of the HDM guided mode is sin-like, this is important 

when calculating scattering rates as will be discussed later. The DCM and 

HDM are alike in that they both predict interface modes of a similar form, 

although they have different dispersion relations. The BPA, as it neglects 
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the heterostructure entirely, is continuous in both scalar potential and ionic 

displacement but is not necessarily nodal at the interfaces. 

There are two mam criticisms of the DCM theory. First, the 

discontinuities in the ionic displacement at the well edges is un-physical and 

does not agree with microscopic models, and secondly, it neglects the effects 

of phonon dispersion in the bulk materials. Modified models which set the 

ionic displacement to zero at the interfaces have recently been developed 

(Huang & Zhu 1988). Haupt & Wendler (1991) have shown that the modified 

DCM theory predicts similar though slightly smaller scattering rates to the 

original. In the transport calculations we have used the original formulation 

for simplicity. 

The HDM is also defective in that it predicts anti-nodes and discon­

tinuities in the scalar potential at the well edges and the lowest order guided 

mode scalar potential is sin-like. All of these points are in contradiction 

with the results of the microscopic model. 

A problem which the DCM and HDM models have in common is 

that they do not allow the confined and interface modes to couple, which 

is again predicted by the microscopic models, although hybrid continuum 

models which account for these main discrepencies between continuum and 

microscopic models have recently been developed (Ridley 1992, Zianni et al 

1992). 
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3.5 The scattering rates. 

lam Fermi's Golden rule, we can obtain the formula for scattering 

a bound electron from a state k to a state k' by optical phonons as (Kelsall 

1989, Chamberlain 1987); 

where 

A 
R = (21r)2 and dQ = dqll 3.19 

for the HDM and DCM, as the z component of the phonon wavevector, qz, 

is already defined by the phonon mode under consideration, and, 

0 
R = (

2
1r) 3 and dQ = dq 3.20 

for the BPA. In equations 3.18 to 3.20, A is the area of the well plane, 

Nq is the phonon mode occupation number, Ekl Ek' and Eph are the initial 

and final electron state energies and, the phonon energy respectively. The 

upper options are for absorption of a phonon and the lower options are for 

the emission of a phonon. I(k', k) is the matrix element; 

3.21 

where e is the charge on an electron and <I> IS the phonon scalar potential 

defined (in equation 3.2) as 

3.22 
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(The form of </Jz can be seen with reference to section 3.4). 

The initial and final electron state wavefunctions are designated by 

tPk and tPk' respectively, and are functions of the form:-

3.23 

where uk(r) is the periodic part of the bulk Bloch function, and f(z) 

describes the z dependence of the wavefunction. 

After substituting for the electron and phonon states into the matrix 

element (equation 3.21) and expanding the periodic function uk,(r)uk (r), as 

a Fourier series over reciprocal lattice vectors, g, we get 

where the Cg are the coefficients of the Fourier senes and are defined by:-

1 1 · I * I I -tg·r I cg = -- uk,(r )uk (r )e dr. 
Vcell cell 

3.25 

As the smallest non-zero value of gil is much larger than kll and qll, 

the argument of the delta function can vanish only if gil = 0. On this basis, 

we assume only terms with g = 0 contribute to the scattering rate (Kelsall 

1989). The total probability of scattering from a bound state k for polar 

optical scattering is then 
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where G(k',k) IS the overlap integral; 

G(k',k) = T} 1 uZ,(r')uk (r1)dr1
, 

· v cell cell 
3.27 

and, 

3.28 

Making the standard assumption that the functions uk(r) can be approx-

imated by the zone centre Bloch functions JG(k~, kz) J

2 is unity for all 

transitions. Integrating over q/1 in equation 3.26 then gives 

3.29 

for the BPA where Lz is the total device length, and 

for the DCM and HDM. 

To get the total scattering rate, P (k), we must integrate over all 

final electron states 

p (k) = ~~p (k,k') dkfl· 
(27r) 

3.31 

The integral over all final electron states is only over the parallel wavevector 

component of the state (kfl) as the final kz component is already defined 

for the process we are considering. It is convenient in equations 3.31 to 
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convert the delta function argument to wavevectors usmg 

b(E'-E) = b(k'-kt) 
t laE'I , 8k1 

3.32 

and change the vector integral to 

3.33 

where 0 Is taken as the angle between kj
1 

and k11 . Integrating over kll now 

gives 

- n { Nq } r2rr/oo I 12 kilt 
P(k)-h(2 )2 N +1 Jn J(qll,qz)l -k-k'II8E'Idqzd0, 3.34 

7r q o -oo qll- II II 8k' 

for the BP A, and 

A { N } r2rr I 12 kilt 
P(k)=2h7T' Nq+l lo J(qll,qz)lq=k-k'llaE'IdO, 3.35 

II II II Bk' 

for the DCM and HDM. 

The integral over 0 is straightforward for the BPA and DCM confined 

modes but, due to the complex nature of ¢ and the dependence of qz on 

qll in the DCM interface and HDM modes, we have to evaluate the integral 

m 0 numerically for these cases. The integral over qz in the BPA has to 

be evaluated numerically. 

9.5.1 Acoustic scattering 

When this work was carried out there were, to our knowledge, 

no continuum models which describe quantum well acoustic phonon modes 
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that took into account the heterostructure. In bulk semiconductors, rates 

for acoustic phonon scattering of electrons are well known to be small in 

comparison with polar optical phonon scattering, and it is expected that the 

same will be true when considering scattering by phonons in heterostructure 

quantum wells. 

Scattering by acoustic phonons was described in all cases by the 

standard deformation potential theory in the bulk phonon approximation. 

The calculation is similar for the BPA optical phonon scattering described 

above except for the matrix element definition which in the acoustic phonon 

case is (Kelsall 1989) 

3.36 

where 8 is the deformation potential, V 8 lS the sound velocity, and p is the 

material density. 

Figure 3.5 shows the rate for total scattering of electrons in the 

ground state by acoustic phonons including intra- and inter-subband elastic 

scattering, and a comparison with the infinite well approximation of Price 

(1981), and with the rate for the bulk material. The total rate is plotted 

against initial electron energy measured from the subband minimum. It 

can be seen that the quantum well rates are of a similar magnitude to 

the bulk. The bulk rate gradually increases from zero with a square root 

dependence on energy, which can be directly attributed to the bulk density 

of states. However, rates for our finite well model and the infinite well 
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Acoustic phonon scattering rates for our finite well model, 

the infinite well approximation (Price 1981) and bulk GaAs. 
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approximation have non-zero rates at zero initial energy and sharp step-like 

changes in probability. These features are due to the step-like form of the 

electronic density of states in a quantum well, and the sharp increase in 

scattering occurs at an initial energy of ~ 0.13eV where transitions to the 

first excited state become probable. Transitions to the first excited state 

stop in the finite well model at about 0.33eV, which is where this state 

becomes unbound. 

3.5.2 Optical phonon scattering rates 

In order to conserve parity the scalar potentials have to be symmetric 

with respect to the centre of the well for intra-subband scattering and anti­

symmetric for inter-subband transitions. For the DCM confined modes it is 

the potential of the first even/odd mode which has the greatest interaction 

with the electrons for intra- /inter-sub band scattering. The potentials of 

higher order modes give rates at least an order of magnitude lower, and so 

only the potential of the first mode of each parity has been used m our 

calculations. A similar trend is seen for the guided modes of the HDM, but 

it should be noted that the scalar potential of the first even mode comes 

not from the lowest order phonon mode, and Chamberlain (1987) has shown 

that this and subsequent even modes interact weakly with the electrons, and 

so have not been included in our simulations. Scattering by all interface 

modes' potentials of the DCM have been included but only the even parity 

interface mode's potential of the HDM is used to calculate scattering rates 

as the odd one has a weak interaction with the electrons. 
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The two mam scattering rates which have been compared for the 

three phonon models are the phonon emission rates for scatterings in the 

ground state and from the first excited state to the ground state. The 

results can be seen in figures 3.6 and 3.7, where the scattering rate is plotted 

against the initial electron energy measured from the subband minimum. 

In figure 3.6 intra-subband polar optical phonon emission is plotted for the 

three phonon models, and as can be seen each model rate has a sharp 

mcrease at the point where the initial electron energy equals the phonon 

energy. This non-zero rate at threshold is due to the non-zero density of 

states at the subband mm1mum. The BPA and HDM models agree at 

the threshold but the BPA rate reduces while the HDM rate maintains a 

high value for a large range of energy. The total DCM rate (interface and 

confined modes) is much higher and reduces with increasing energy in a 

manner similar to the BPA. 

Figure 3. 7 shows the transition rates for an electron in the first 

excited state scattering to the ground state subband. Each model has 

the same general trend, with a maximum rate at the subband minimum 

gradually reducing with increasing energy. There is a non-zero rate at zero 

initial energy because the electron is emitting a phonon and falling into the 

lower energy ground state subband. The BPA and HDM predict rates of a 

similar magnitude, and again the total DCM gives a rate larger than the 

other two models. Note, that the inter-subband rate is nearly an order of 

magnitude lower than the intra-subband rates. 
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(The step-like changes in the HDM rate are artifacts due 

to the numerical method used to calculate these rates.) 
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The close agreement between the intrasubband rates for the HDM 

and the BPA is in contrast to previous work (Rudin & Reinecke 1990, 

Weber et al 1991), which compared the magnitude of the scattering rates 

predicted by these models, and is entirely due to the HDM interface modes 

which were not considered in these previous comparisons. 

3.6 Results of Monte-Carlo simulations. 

Sngle particle Monte-Carlo simulations of parallel transport in 

the quantum well with an applied parallel electric field have been carried out 

for all three phonon models. The purpose was to consider how macroscopic 

and microscopic transport properties are influenced by the different phonon 

models. The simulation scheme is based on a well established Monte-Carlo 

model of transport in quantum wells (Kelsall 1989, 1991 & 1992) which 

has been adapted to the particular physical system under consideration 

(Chamberlain et al 1992). The simulation has been used to examine the 

electron drift velocity, average energy and the frequency of ground state 

intra-subband absorption and emission events with steady state electric 

fields which are sufficiently low to avoid significant excitation of electrons 

out of the r valley well. 
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3. 6.1 Dnft velocities and mobihties 

A comparison of the drift velocity against electric field for the three 

phonon models is shown in figure 3.8. The maximum electric field considered 

for each case is different because the different scattering rates affect the level 

of electric field which will cause significant emission from the well. The BPA 

and HDM models predict similar drift velocities and maximum field although 

it should be noted that the HDM velocities are slightly smaller than those 

predicted by the BPA. The DCM however, predicts velocities much lower 

than, and a maximum electric field seventy percent larger than, those for 

the BPA and HDM. The low field mobilities (at 300K) are, 1.16 m2V-1s-1 

for the BPA, 0.99 m2V-1s- 1 for the HDM and 0.462 m2V-1s-1 for the 

DCM. 

We can explain the differences in the three models with reference to 

the scattering rates in figure 3.6 and the average energy plot in figure 3.9. 

Figure 3.9 shows the average energy measured from the subband minimum 

plotted against electric field for the three models. It shows that the BP A 

and HDM have similar values for all fields (although the values in the 

HDM are smaller than in the BPA at higher fields), and the DCM predicts 

energies that are always much less than those in the other two models. 

For low electron energies (:S 0.035eV at fields less than ~ 2.0kVcm-1 ) the 

scattering rates for the BPA and HDM are very similar and the velocities 

and energies are roughly equal but as the field increases, and the average 

electron energy rises, the scattering rate in the BPA becomes less than in 
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the HDM, and so electrons can achieve higher energies and velocities. The 

DCM has higher scattering rates and the velocity is correspondingly lower. 

A contributory factor to the lower DCM drift velocity, which is not 

immediately apparent, is the dependence on (), the angle between kfl and 

k11, in the scattering rate. If we return to equation 3.29 and 3.30, which 

give the probability of scattering from a state k to another state k', we find 

a dependence on qll of the form 

3.37 

for the DCM and HDM models, and 

3.38 

for the BPA, where 

3.39 

Generally, for the HDM and DCM, the functional form of f ( qz, qll) 

is complicated but equation 3.37 can be taken t to a good approximation as 

3.40 

This can be further simplified for the DCM interface modes, and in the 

HDM, by realising that qz = qll for DCM interface modes and qz = Fqll for 

the HDM (where F is a number less than unity). Equation 3.40 is now 

p ( qll) = 
1
z 

qll 
3.41 

t Only for calculation of the angle kfl makes to k11 after scattering. 
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for the DCM interface and HDM modes. For the DCM confined modes 

equation 3.40 becomes 

3.42 

In the BPA the function f ( qz, qll) is sharply peaked at qz = 0 which 

allows equation 3.38 to be approximated t as 

3.43 

Figure 3.10 shows the general dependence on f) for the BPA, HDM 

and DCM confined and interface modes. The probability is normalised for 

each model at cos fJ = 1 as it is only the shape of the curve that is important. 

At cos 0 = 1 the final electron parallel wavevector points the same way as 

the initial one, and at cos f) = -1 it is in the opposite direction. 

The BPA, HDM and DCM interface (IF) modes have exactly the 

same dependence and are all strongly forward scattering. The DCM confined 

(bulk) modes, due to the large constant factor ([mr j L] 2) in equation 3.42 

which flattens the dependence curve, is more velocity randomising in nature, 

and has the effect of further reducing the average drift velocity. 

Balkan et al 1989 have measured the drift velocities of electrons in 

GaAs/ AlxGal-xAs multiple quantum wells. Their sample OC82 was an 85A 

GaAs well, 100A Alo.3Gao.1As barrier multiple quantum well structure with 

t Again, only for calculation of the angle kfl makes to k11 after 

scattering. 
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Comparison of the scattering angle, (), dependence of the 
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an electron density in the well of 1.2 x 1010cm-2 . The doping density of this 

sample is relatively small and the well has a width not far removed from 

our 70A, and so our results should be comparable. We have plotted their 

results along side ours in figure 3.8 and, as can be seen, the experimentally 

determined dependence of drift velocity on electric field is in close agreement 

with the results for the HDM and BPA simulations. 

3.6.2 Scattering events 

It is informative to study the microscopic aspects of the electron 

transport. For example, the number of intra-subband optical phonon ab­

sorption and emission events as a percentage of the total scattering events 

for transitions originating in the ground state, plotted against electric field, 

are shown in figure 3.11. Each model displays the same characteristic shape; 

at low fields the absorption and emission events are equal but as the field 

increases the emission events prevail and the absorption events become a 

smaller fraction of the total. 

Again we see that the BPA and HDM are in close agreement with a 

similar percentage of each intra-subband scattering event for all fields. The 

DCM model predicts a larger percentage for both events at low fields but 

as the strength of the field increases the rise of emission events and fall of 

absorption events is not as rapid as in the BP A and HDM. The general 

and specific shape of these curves can be explained with reference to the 

average energy plot in figure 3.9 and the scattering rate plot in figure 3.6. 

At low fields the average energy is well below the threshold for phonon 
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emiSSion (::::::::: 36me V) and so electrons have to absorb a phonon before being 

able to emit one and so the number of absorption and emission events are 

roughly equal. As the field increases more electrons reach energies where 

they are able to emit a phonon without having to absorb one first and 

as the emission rate is ::::::::: 4.3 times the absorption rate t there is a greater 

percentage of phonons emitted than absorbed. The results for the BPA 

and HDM are in close agreement because their scattering rates are similar 

for the range of electron energies studied. The DCM predicts higher LPO 

scattering rates and so there are a greater percentage of these events. In 

the DCM, as the scattering rates are so high, the energy is suppressed and 

larger fields are needed for the electrons to reach equivalent BPA and HDM 

simulation electron energies. As it is the energies that are important when 

considering the relative percentages of LPO phonon scattering events, this 

explains the slower change in relative proportions of each event for the DCM 

in figure 3 .11. 
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3.7 Conclusion. 

'!ree continuum phonon models for quantum well heterostructures, 

the bulk phonon approximation, the dielectic continuum model and the 

hydrodynamic model, have been used to calculate scattering rates and 

velocity field curves for a 70A AlGaAs/GaAs quantum well at 300K. We 

have shown that the BPA and the HDM predict similar transport effects, 

which are in agreement with experimental results, but the DCM model gives 

rather higher electron scattering rates and a lower mobility. 

Heterostructure phonon theory is a rapidly developing field, and 

there are now new models predicting phonon modes with longitudinal and 

transverse components which also obey both mechanical and electromagnetic 

boundary conditions. These new continuum phonon models couple together 

interface and confined modes and give excellent agreement with microscopic 

models. Therefore, further simulations are now required to investigate the 

transport properties of electrons in quantum well heterostructures when the 

scattering rates are calculated using phonon modes derived from these new 

models. Until then, the BPA appears to provide an adequate model for use 

in transport calculations. 
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CHAPTER FOUR 

SIMULATION OF ELECTRON TRANSPORT IN 

Ino.IsGao.ssAs/GaAs QUANTUM WELLS 

4.1 Introduction. 

L recent years high electron mobility transistor (HEMT) develop­

ment has turned towards the inclusion of a strained lnxGa1-xAs (x:::; 25%) 

layer within the conventional AlGaAs/GaAs device. The channel alloy layer 

is pseudomorphically grown between the GaAs buffer and AlGaAs supply 

layers, and has to be thin enough (:::; 150A) that no defects, due to strain, 

occur. The incorporation of the layer is intended to provide better control 

over the electrons in the conducting channel and to increase carrier velocity. 

Improved control is attained due to the 'back barrier' introduced by the 

conduction band discontinuity between the lower band gap InGaAs layer and 

the GaAs substrate. Increased carrier velocity is hoped for in the low field 

regions of the channel because lnGaAs alloy has a lower f valley effective 

mass than GaAs. Although the transport simulations of electrons in bulk 
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strained InGaAs show a mobility reduced from that of bulk GaAs (chapter 

two), we need also consider effects on the transport properties arising from 

the quantum confinement of the carriers. 

In the conventional HEMT, the band bending due to charge transfer 

generally introduces a triangular well region at the AlGaAs/GaAs interface, 

in which the electrons exist in subbands due to quantisation of energy 

associated with confinement. In the pseudomorphic HEMT, the strained 

layer is sufficiently thin that the subband structure is determined by the 

conduction band discontinuities between the channel layer and the supply 

and buffer layers (see figure 4.1). However, in Monte-Carlo simulations of 

heterojunction devices such as HEMTs (Kelsall & Abram 1992, Kim et a/ 

1991, Dollfus et al 1992, Jensen et al 1991), it is common to neglect the 

effects of quantisation on the carriers and treat them as classical particles. 

This simplifies the model and therefore reduces computation time. 

Quantisation effects have been taken into account when calculating 

the mobility of electrons in triangular wells, such as would be found at 

the supply-layer/conducting-channel interface (Walukiewicz et a/ 1984, Lee 

et al 1983), and for double heterostructure wells (Brum & Bastard 1985, 

Thobe! et al 1993). However these workers only consider low fields, for 

which the electrons remain in confined states and do not discuss the escape 

of carriers which will occur in an operating HEMT. Monte-Carlo simulations 

which do include quantisation effects in HEMTs, triangular quantum wells 

(Artaki & Hess 1988, Park & Brennan 1988, 1989, 1990, Kobayashi et a/ 
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1989), and double heterostructure wells (Chamberlain et a/ 1992, Crow et a/ 

1992, Kelsall et al 1992, Thobe! et al 1991) either introduce some effective 

transition between bound and unbound states or only consider fields low 

enough that transfer out of the well is improbable. 

Electron escape from the well can be considered as a quantum 

mechanical transition between bound and unbound states of the well, caused 

by some scattering mechanism such as lattice vibrations after the earner 

has been heated by the applied electric field. Carrier capture is the mverse 

process. Calculations of the rate of capture due to longitudinal polar optical 

phonon scattering have been performed for a finite square well system by 

Brum & Bastard 1985. They considered a finite square well within effective 

mass theory. However, we are not aware of any incorporation of this 

approach in Monte-Carlo simulations of carrier transport in a semiconductor 

quantum well. 

Most models and simulations of single heterostructures or HEMTs 

treat the conduction band satellite valleys as bulk-like with no quantisation 

effects. One notable exception is Kobayashi et al 1989, who have included 

quantum confined states in both the L and X satellite valleys. Simulations 

of the satellite valleys in double heterostructure wells have been done by 

Mosko & Novak 1989, who made the well regions so large that the electrons 

could be treated in the classical limit, and Tanimoto et a/ 1988 who have 

calculated quantised electron states in satellite valleys but did not included 

any scattering to unbound regions. 
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We have used the Monte-Carlo method to simulate the response of 

an ensemble of electrons in the double heterostructure lno.15Gao.s5AsjGaAs 

quantum well system to a range of electric fields applied parallel to the 

well/barrier interface. All the electrons start in the ground state of the 

r valley well but some of the fields are high enough that transitions 

to unbound states and scattering to satellite valley states are probable. 

Full descriptions of the bound and unbound states in all valley wells, 

and scattering between them, have been included within the effective mass 

approximation. 

In section 4.2 we present the model for the quantum well system, 

and demonstrate the particular effects of strain. A brief description of 

the scattering processes that have been considered is given in section 4.3, 

and an outline of how the scattering rates between bound and unbound 

states are calculated is presented in section 4.4. Results of three valley 

simulations showing the effects of strain on the electron transport properties 

of the quantum well are discussed in section 4.5. The chapter finishes with 

section 4.6, which gives a brief summary of the conclusions drawn from our 

work on strained semiconductor quantum wells. 
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4.2 The quantum well model. 

'7:e quantum well device we have modelled is a thin layer of 

Ino.tsGao.ssAs forming the electron well, grown between two semi-infinite 

layers of GaAs. Growth is along the (001) crystallographic direction for 

both well and barrier materials with the lattice constant of Ino.IsGao.ssAs 

being larger than that of GaAs. The total device width is lJtm, with the 

well of width 70A in the centre. This well layer is sufficiently thin to be 

pseudomorphically strained and for the familiar electron subbands associated 

with quasi-two-dimensional structures to exist. Hence the system is one in 

which the electron transport properties are affected by both strain and size 

quantisation. 

The simulations of electron transport in a bulk alloy, which is 

artificially strained as if it were a psuedomorphic layer, are reported and 

discussed in chapter two. Here we consider electron transport in a strained 

layer, including the effects of quantisation due to confinement of the electronic 

states, and compare the results with the same system in which the effects 

of strain are artificially left out. 

We have simulated electron transport in Ino.1sGao.ssAs/GaAs quan­

tum wells at fields sufficiently large that real space and reciprocal space 

transfer effects are probable. In order to study these phenomena we have 

included the electronic states of the three lowest conduction bands of the 

well and of the barrier materials. The bulk band structure of GaAs, a de-
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scription of the effects of strain on the band structure of Ino.1s Gao.ssAs, and 

other relevant material parameters are presented in chapter two. However, 

since this work has been done we have received data that better fits the 

experimental transport measurements of In0.53 Ga0 .47 As (Kelsall 1992), and 

the bandstructure we have used for Ino.1s Gao.ssAs has been calculated from 

this. 

Table 4.1 shows the differences in the data used to simulate transport 

m bulk Ino.IsGao.ssAs (chapter two) and the new data used for the simula­

tions reported in this chapter. The effective masses in both cases agree to 

within 4%, and the valley separations in the quantum well simulations are 

slightly less, but still within 10% of the bulk simulation figures. 

Bulk data Quantum 

well data 

r valley effective mass 0.060mo o.060mo 

L valley effective mass 0.238m0 o.233mo 

X valley effective mass 0.589mo o.S91mo 

r to L energy separation 0.441 0.426 

~ErL(eV) 

r to X energy separation 0.687 0.629 

~Erx(eV) 

Table 4.1 

Comparison of the bandstructure data used for bulk simulation of 

Ino.IsGao.ssAs and that used in this chapter. 
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The band gap of the alloy is smaller than the barrier material and, 

for this type I interface, the conduction band offset between the well and 

barrier is ~ 68% ( Ji et al 1987). From this information it is possible 

to determine the energy offsets at all the valley minima using the known 

inter-valley separations of the well and barrier materials. There are then 

three groups of quantum well to be considered; those at the r, L and X 

points. 

All the conduction band valley m1mma for the bulk materials have 

been taken as spherically symmetric with parabolic E-k dependences, except 

for the r valley of the strained alloy, which has constant energy surfaces 

that are ellipsoids of revolution (m~ = 0.01lmo compared to mo = 0.064mo)· 

Valley Parallel effective Well depth Number of bound 

mass mu (in mo) (eV) states at k11 = 0 

Barrier Well 

Unstrnd Strnd Unstrnd Strnd Unstrnd I Strnd 

r 0.067 0.060 0.064 0.1492 0.1106 2 

L 0.2320 0.2328 0.0529 0.0552 2 

X 0.5800 0.5913 0.0422 0.128 2 I 4 

Table 4.2 

Comparison of the unstrained (Unstrnd) and strained (Strnd) 

Ino.IsGao.ssAs/GaAs quantum well bandstructure. 
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Figure 4.2 and Table 4.2 show the differences in the strained and 

unstrained band structure of the quantum well device. As was explained in 

chapter two, the isotropic component of the strain reduces the inter-valley 

energy separation, with the r and L minima increasing, and the X points 

reducing in energy. Therefore, in the strained layer, the potential well at 

the f point diminishes and those at the X and L points deepen. The 

X4 valleys are further reduced in energy, increasing their well depth, due to 

the X valley splitting caused by the uniaxial component of strain. We have 

included in our bandstructure model only the X4 valleys of the strained 

well material as the X2 valleys are increased in energy so much that the 

well disappears. Furthermore, the electron population of the X2 valleys for 

the fields we consider was shown to be negligible for simulation of electron 

transport in the bulk material (chapter two). 

As explained in chapter three, the depth of a quantum well changes 

with in-plane wavevector due to the different effective masses of the well and 

barrier materials. The change with the parallel electron wavevector relative 

to the valley minima, k11, of the potential wells in both the strained and 

unstrained structures have the same general trends. The parallel f valley 

effective mass in the alloy is less than in the barrier and so, as with 

the AlGaAs/GaAs well described in chapter three, the depth of this well 

decreases with increasing k/1. Conversely the satellite valley effective masses 

are lighter in the barrier than in the well, and so these wells deepen as k/1 

mcreases. 
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It is assumed that the GaAs doping density is low and the 

Ino.IsGao.ssAs is undoped. It is therefore appropriate to model the quantum 

well system in the flat band limit, as in chapter three. We have solved 

Schrodinger's equation for the subbands of the wells using the effective mass 

approximation. With our simple model of the conduction band and electron 

states we are unable to include effects on the energy levels due to the 

interaction of equivalent and non-equivalent valley states. More complex 

band structure calculations, such as the pseudopotential method, can offer 

a description of these effects but are beyond the scope of this work. 

There are two bound states at the valley minima (kll = 0) in the r, 

L and X wells of the unstrained layer. The first excited state in the r valley 

well is unbound for k11 2: 0.054A - 1 , conversely, due to the increasing well 

depth of the X valley wells a third state becomes bound for k11 2: 0.274A - 1. 

The strained layer has two bound states at kll = 0 for the r and L valleys 

and four in the X4 valley wells. The first excited state in the r valley is 

unbound for k11 2: 0.031A -l. 

Two models for the unbound electron states are used, depending on 

the process of interest. For scattering between a bound and an unbound 

state, the unbound state is obtained by solving the finite square well problem 

of the well-barrier structure, within the effective mass theory. For a given 

energy there will exist two unbound states which correspond to a carrier 

moving along the z axis from the left to the right or vice versa. We 

consider symmetric and anti-symmetric combinations of these states to form 
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standing waves with parities similar to the bound states of a well, as shown 

in figure 4.3. This is a common way to treat unbound electron states in 

the calculation of scattering rates. However, for electron scattering between 

unbound states or in the simulation of the transport of an unbound electron 

the effects of the well region are neglected, and the state is treated as a 

bulk barrier state. This is a good approximation as the well region is only 

0. 7% of the total device width. 

4.3 Scattering events. 

Room temperature simulations of electron transport in a quantum 

layer device are carried out with electron scattering via longitudinal polar 

optical phonons, acoustic phonons, non-polar optical phonons in the L valleys, 

inter-valley phonons described in the deformation potential approximation 

and alloy scattering due to the fluctuations of the well material crystal 

potential. All phonon scatterings explicitly include emission and absorption 

events except for scattering via acoustic phonons which is treated in the 

elastic approximation. The two mode phonon behaviour of lno.1sGao.ssAs 

has been approximated to one average mode as in chapter two. Bulk 

phonon approximations are used to describe all types of phonon scattering. 

Scattering processes involving one or two bound states are considered due 

to phonons of the bulk well material. The results of chapter three suggest 
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that this approach is a reasonable approximation. The scattering between 

unbound electron states is taken as via bulk barrier material phonons. This 

is expected to be a good approximation because the unbound electrons are 

in states that extend throughout the system and the barrier makes up 99.3% 

of the total device. 

Alloy scattering in the two dimensional system is modelled in a 

similar way as for bulk materials. The scattering IS caused by a sum 

of short range potentials, randomly arranged within the lattice, that are 

deviations from the averaged crystal potential. Alloy scattering rate, Palloy' 

involving bound states is described as (Walukiewicz et al 1984, Bastard 

1984) 

4.1 

where l:lU ( = 0.42e V), the alloy scattering potential, acts over a region which 

has the volume of the primitive unit cell. If scattering to all subbands is 

considered in the limit of an infinitely wide quantum well, equation 4.1 

reduces to the expression for the bulk scattering rate calculated under the 

same assumptions. x is the concentration of indium and a0 is the lattice 

constant of the alloy. kiiJ is the final parallel electron wavevector, 1:~~ I 

is the conversion factor to change from an energy to a wavevector delta 

function, and f ( z), f' ( z) give the z dependences of the initial, final electron 

wavefunctions respectively. 

In the system considered here only the well material IS a ternary 
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alloy, therefore only those parts of the electron wavefunction inside the 

well region contribute to the scattering rate. That is, the z integral in 

equation 4.1 is only over the well width. The interaction of unbound 

electron states with the random alloy potential of the well is negligible due 

to the small percentage of electron probability inside the well region. 

Because the structures have low doping, the remote ionised impurity 

scattering of bound electrons and the ionised impurity scattering of unbound 

electrons can be neglected, and the effects due to interface roughness are 

negligible. Piezoelectric scattering of electrons has not been included as it 

is only significant at low temperatures. 

All the possible scattering events, both intra- and inter-valley, be­

tween the bound and unbound states of the three quantum well valleys have 

been included, except for alloy scattering of unbound electron states. It 

is apparent from the description of the electron states and the scattering 

processes included in our model that there are a large number of transitions 

possible for every electron state. For example, a bound electron in an 

L valley can be scattered in 50 different ways. 

Scattering between two bound subbands has been discussed in chapter 

three. The scattering between two unbound states is treated as for the bulk 

barrier material. It remains to give details of the description of scattering 

between bound and unbound states. 
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4.4 Phonon scattering between bound and unbound states. 

Sarting from Fermi's Golden rule, the generalised formula for a 

bulk phonon mode scattering a quantum well electron state from k to k' 

can be obtained as {Kelsall 1989) 

where the matrix element IS defined thus:-

4.3 

In equations 4.2 and 4.3, the upper options are for absorption with 

the lower options for emission of a phonon. C(q) is a function of the 

phonon wavevector q and is dependent on the mode of phonon involved in 

the scattering, Nq is the phonon mode occupation number, Eb Ek', and 

fph are the initial and final electron state energies, and the phonon energy 

respectively. The initial and final electron state wavefunctions are designated 

by '1/Jk and '1/Jk' respectively, and are functions of the form:-

4.4 

where A is the area of the well plane, u k( r) is the periodic part of the bulk 

Bloch function, and f(z) describes the z dependence of the wavefunction. 

If the wavefunctions of equation 4.4 are substituted into the ex­

pression for J{k',k) and the periodic function uk,(r)uk (r) is expanded as a 
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Fourier senes over reciprocal lattice vectors, g,: 

I(k', k) = L cg (~) 8(kil- kll ± qil +gil) I!'* (z)ei(±q.+g.)·z f(z)dz, 4.5 
g 

where cg are the coefficients of the Fourier senes defined as:-

1 ~ · I * I I -tg·r I cg =- uk'(r )uk (r )e dr. 
Vcell cell 

4.6 

As the smallest non-zero value of gil is much larger than kil and qil, 

the argument of the delta function can vanish only if gil = 0, retaining only 

the term with g = 0. The probability of scattering from a state k to state 

k 1 follows from equation 4.2 as 

where G(k', k) 1s the overlap integral; 

G(k', k) = -
1
- { uk' (r1)uk (r1)dr1

, 
Vcell J cell 

4.7 

4.8 

and, J(k~, qz) is the envelope function integral over z on the right hand side 

of equation 4.5: 

J(k~, Qz) =If'* (z)e±iqzz f(z)dz. 4.9 

Making the standard assumption that the functions uk(r) can be approx-

imated by the zone centre Bloch functions, IG(k~, kz) 1
2 

is unity for all 

transitions. Integrating over qil in equation 4.7 gives 

p (k,k') = :z !+oo c2(qil,qz)l - -'I { NN+ 1} 
n -oo qll-kll kll q 

X IJ(k~,qz)l 2 

8 (Ek'- Ek =f Eph) dqz. 4.10 
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To find the total probability for an electron to be scattered from 

state k by a phonon process (with properties defined by C(q)), P(k,k') 

must be integrated over all possible final electron states. The number of 

these final states is determined by considering whether the scattering is to 

a bound or an unbound state. 

4.4.1 Scattering from a bound state to an unbound state 

The total rate of scattering of an electron in a state k by a phonon 

of wavevector q, to any unbound state k' is given by:-

Pscat = ( 2~)3 / P(k,k')dk' 4.11 

where the integral 1s over all possible final states k'. 

Now dk' can be written m spherical polar coordinates as 

dk' = k12 sin fJdk' dfJd</> 4.12 

where the ongm of (} is along the z axis (growth direction), and that of 4> 

along the in-plane component of the initial wavevector. Hence (} is the angle 

between k' and kz and 4> is the angle between kfl and k11. The components 

of k' are given by 

k~ =k' cos(}' 

k~ =k' sin(} cos</>, 

k~ =k' sin(} sin</>. 

4.13.a 

4.13.b 

4.13.c 
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Changing from an energy delta function to a wavevector delta func-

tion usmg 

, _ o(k'- k1) 
8 ( E - E f) - I a E' I , 

8k' 

4.14 

where k1 1s the well material wavevector which satisfies 

4.15 

and EJ(= E ± Eph) is measured from the well minimum. In equation 4.15 

the effective mass appropriate to the final state is approximated by that of 

the well, m:U. The barrier wavevector component of the final wavefunction 

in the scattering rate is automatically picked out by the definition of kz in 

the barrier as shown in figure 4.4 (a). Pscat becomes 

For scattering to parabolic bands 

l
aE'I = h

2
k'. 

ak' m* w 
4.17 

The delta function now gives us limits to the integral over (} (see 

figure 4.4). There are two regions in which scattering is possible, those for 

() = 0 to Omax and (} = 7r - Om ax to 1r. Where Omax is defined as the largest 

possible angle for which the z component of the barrier wavefunction is still 

real. This gives then for the generalised rate for scattering to unbound 
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states, 

Usually the integral over <P may be done analytically, but we have 

found the 0 and qz integrals to be intractable, and have evaluated those 

numerically. 

C2(q) Nq 

Polar optical phonons e
2

1iwpof (-1- _ _L) 
20eoq eoo es 

e kBT - 1 (~-1 r 
Acoustic phonons 'B21iq N ~ N + 1 ~ kBT 

pOv, q q 1iv.q 

Non-polar optical phonons 1iD?wp (~-1 r 
2p0wnop 

e kBT - 1 

( r Inter-valley phonons Zt1iDfv 
liwj 11 1 

2p0wiv 
ekBT- - 1 

Table 4.3 

C( q) and phonon occupation number Nq functions for the 

general scattering formula defined in text. 

Table 4.3 gives the form of the function C ( q) and Nq for polar optical, 

acoustic, non-polar optical and inter-valley phonon scattering, Where e is 

the electronic charge, Wz ( x = pop, nap iv) are the phonon frequencies for 

polar optical phonons, non-polar optical phonons and inter-valley phonons 

respectively, co, c00 and c8 are the permitivity of free space, high and low 
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frequency dielectric constants, kB is Boltzmann's constant, B is the acoustic 

deformation potential, p the material density, v8 the velocity of sound in 

the material, Dx ( x = nop, iv) are the deformation potentials for optical 

phonon scattering and Z 1 is the number of equivalent destination valleys. 

4.4.2 Scattering from an unbound to a bound state 

We shall now calculate the scattering rate for scattering from an 

unbound state to one within a well. For scattering to a bound state the z 

component of the final wavefunction is already determined by the transition 

process considered, i.e. we are calculating scattering to a specific bound 

state, and so the sum over all final states is over kfl only, thus 

A I ') I Pscat = (21r) 2 P(k,k dkll. 4.19 

Here dkfl can be written 

4.20 

where ¢> 1s the angle between the initial and final parallel wavevectors. 

Following a similar procedure as above we arnve at 

4.21 
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This gives us then the total rate for scattering from an unbound 

state to a bound state; 

4.22 

As with the bound to unbound state scattering case described above 

the integral over ¢> is generally straightforward and can be evaluated ana-

lytic ally. 

It should be noted that Pscat does depend on the angle the initial 

wavevector makes with the kz direction (B). Since the rate of unbound to 

bound state scattering is low in comparison with the rate of unbound to 

unbound state scattering we have made use of a single (} averaged scattering 

rate in the simulations. 

,4.,4.3 Bound state scattering 

Figure 4.5 compares the scattering rates for electrons in the bound 

states of the f valley well of the unstrained and strained layers. Plotted are 

the rates for intra-valley and inter-valley scattering to bound and unbound 

states. Below about 0.37eV in the unstrained well, and 0.33eV in the 

strained well, only intra-valley scattering is present with the dominant rates 

being intrasubband optical phonon emission and absorption, followed by 

intrasubband alloy scattering and acoustic phonon scattering in that order. 

Scattering to the first excited state of the r valley occurs only over a 
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limited range of energies because this state becomes unbound at relatively 

small in-plane wavevector as described in section 4.2. Intra-valley scattering 

rates for transitions to unbound states are small in comparison with the 

intra-subband scattering rates. 

The destination satellite valleys for the inter-valley rates are indicated 

m figure 4.5. The curves that have sharp thresholds refer to bound states 

where the final density of states has a step like form. Those rates which 

gradually increase from zero are for scattering to unbound states where there 

is a continuous density of states. 

The energy at which scattering to the satellite valleys becomes 

probable is less in the strained layer case due to the general reduction in 

inter-valley separation with strain. A consequence of this is that scattering 

to bound states in the X4 valleys becomes probable around the same energy 

as scattering to the unbound states in the L valleys. As the X4 valley wells 

have more bound states than the X valleys of the unstrained system there 

are more transitions possible to these valleys. 

Also note the regwn between the threshold for intra-subband polar 

optical phonon emission and inter-valley scattering, where the intra-subband 

rates are relatively low and so the bound to unbound transitions have a 

correspondingly higher probability of occurring, which is indicated on the 

diagram. 
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4.4.4 Unbound state scattering 

Figure 4.6 compares the scattering from an unbound state of the 

r valley well of the strained and unstrained systems. Plotted are the rates 

for intra-valley scattering via polar optical phonon emission and absorption, 

elastic acoustic phonon scattering, and inter-valley scattering. The rates 

for scattering from unbound odd or even states to unbound odd and even 

states are the same, for any specific process. Scattering to bound states 

1s negligible in comparison. The well constitutes only a small fraction 

of the total system volume. Since the difference between the strained and 

unstrained systems is associated only with the well, the results for a strained 

system are essentially identical to those in figure 4.6. 

4.5 Electron transport simulation results. 

W have examined how an ensemble of electrons react when 

subjected to a range of electric fields, from O.OkVcm- 1 to 20.0kVcm-1
, 

applied parallel to the well-barrier interface. The transient and steady 

state response of the electrons has been studied with specific reference to 

their average drift velocity, average energy and real- and reciprocal-space 

distributions. All the electrons are in the ground state of the r valley well 

with zero average velocity until the electric field is 'switched on' at time 

t=O.Ops. Unless otherwise stated all results and discussions refer to the 
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strained layer system. 

4.5.1 Average energy response 

The average energy of the electrons, measured from the bottom of 

the r valley well, IS plotted for a range of fields against time in figure 4.7. 

The response has similar basic features for each field strength; the energy 

increases with time until it reaches some value which it maintains for the 

rest of the simulation. For low fields the rise in energy is small and the time 

taken to reach steady state large, but as the field is increased the energy 

increases more rapidly to a higher value which is achieved in a shorter time. 

Also it should be noted that the increase in saturation energy for a unit 

increase in field strength goes through a peak at about 3.0 to 4.0kVcm -l. 

The shape of the curves can be explained in terms of the opposmg 

actions of the field, and the carrier scattering. At the start of the simulation, 

the field is the dominant influence and the electrons rise in energy until 

the two effects balance. This occurs at larger energies for stronger fields 

as, generally, the scattering rates are greater at these larger energies. In 

particular the electrons may scatter to the satellite valleys where the effective 

masses are greater. Also, for higher fields, the initial rate of energy gain 

increases and so the electrons more quickly reach energies where they can 

scatter to the heavier satellite states and a balance is arrived at in a shorter 

time. 

The trend in the curves may be explained with reference to the 
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well bandstructure, plotted against time for a range of fields (0.1 to 

20.0kVcm- 1) in the strained Ino.tsGao.ssAs/GaAs quantum well structure. 
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scattering rate diagram for the ground state of the r valley well, figure 4.5. 

At the low fields the average energy of the electrons is a little below 

the threshold for intra-subband phonon emission and so the electrons are 

inhibited from rising further in energy. As the field is slowly increased 

the electrons enter an energy region where the intra-valley scattering rates 

are smaller than at threshold and there is still little probability of making 

a transition to the satellite valley states. Therefore, in this region, the 

extra energy gained for an increment in field is larger than at lower fields. 

This largest rise in energy occurs between 3.0 and 4.0kVcm- 1• After this, 

however, the number of possible scattering events rises considerably because 

the inter-valley transitions occur readily. This has the effect of repressing 

any nse m energy, and reducing the increase in energy for a given increment 

in field. 

4.5.2 Transient real- and reciprocal-space distributions 

The electron distributions among the bound and unbound states of 

all the valleys considered are plotted with time for a range of fields m 

figures 4.8 (a) to 4.8 (j). To show why the states are occupied as they are 

the average energy as a function of time is plotted on each graph. For low 

fields (< 2.0kVcm-1
, figures 4.8 (a) to 4.8 (d)) only the r valley is occupied 

although there is a steady leakage of carriers from the well to the barrier 

(unbound) states. This transfer of carriers continues until the distribution of 

earners between the bound and unbound states reaches steady state, which 

can be after tens of picoseconds. For very low fields ~ 0.5kVcm-1 the 
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majority of the electrons remain in the subbands of the r valley well, but 

for stronger fields than this there is a greater proportion of the electrons 

in the unbound states at steady state. As the field intensifies the r valley 

well states depopulate faster and the steady state is reached quicker. 

At 2.0k V em - 1 the L valleys states start to populate, slowly at first. 

We can see the time dependence of the population of the L valleys if we 

study fields above 4.0kVcm-1 (figure 4.8 (e) to (j)), initially it is the bound 

states that are occupied, however as the simulation progresses, it is in the 

L valley unbound states that the electrons are more likely to inhabit. 

The X4 valley states begin to fill at fields in excess of lO.OkVcm- 1 

(figure 4.8 (h) to(j)), and follow a similar trend to the L valley states 

described above. That is, it is the bound states that are the first to 

populate, but in the steady state a majority of the electrons in the X4 valleys 

reside in the unbound states. For fields greater than 6.0kV em -l for the 

L valleys, and lS.OkVcm- 1 for the X4 valleys, the bound state populations 

exhibit a transient overshoot which increases with field. 

When considering the average energy curves of in figures 4.8 (a) to 

4.8 (j) it should be remembered that what is plotted is the average energy, 

and the ensemble of electrons will have a distribution about this mean. 

Consider first the low field curves of figures 4.8 (a) to 4.8 (d), in which the 

average energy rises slowly. The emission of carriers from the well into the 

unbound r valley states, from which they have a very small probability of 

returning to the bound states, is slow and so steady state is reached only 



Electron transport simulation results 93 

after a long time. At the lowest fields the average energy is below the 

threshold at which scattering to the unbound states is possible, but there 

are carriers with energies above this average that are able to make this 

transition. However the probability of scattering to the unbound states is 

low and only a small fraction of the electrons at these energies make the 

transition. As the field is increased the number of electrons that are at 

energies where they are able to scatter to the barrier states increases, and 

the rate of population of the unbound states increases. This trend is also 

enhanced because, as mentioned above, there is a region of energy where 

the relative probability of scattering to unbound states is increased. 

At the higher fields, there is also an increasing number of (un)bound 

electrons that reach energies at which scattering to the (un)bound states of 

the L valleys is probable, and so these states start to populate. Further 

increase of the field promotes the scattering of electrons in the bound states 

of the L valley, as well as the bound and unbound r valley states, to the 

unbound L valleys states. 

The threshold for scattering to bound L valley states is lower in 

energy than for transitions to unbound L valley states. Also scattering to the 

bound states has a step-like form as a function of energy as opposed to the 

softer increase of the rates for transitions to the unbound states. As a result, 

there is significant transfer of electrons to bound L valley states as r valley 

bound electrons heated by the field pass through the relevant energy range. 

This has the effect of removing electrons which would otherwise have reached 
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the threshold for scattering to the unbound L valley states. Furthermore, 

the rate at which the electrons increase in energy in the heavier L valley is 

much less than in r valley and consequently they are slower to reach energies 

where they can scatter to the unbound states. In effect the L valley bound 

states cause a bottleneck which results in the transient build-up of carriers 

in those states which is seen in the simulations and has been commented on 

above. The peak m the population increases with field as electrons arrive 

at a greater rate at energies where scattering to these states is probable. 

The transient occupancy is shorter lived for higher fields as the excitation 

out of the L valley bound states occurs at a greater rate. At still higher 

fields similar processes occur involving the X4 valley states. The L and 

X4 valley unbound states are also populated by electrons transfering from 

the unbound r valley states. 

The X valley populations are small for the fields we consider and so 

the assumption of using only the X4 valleys for the strained well material 

is justified. 

4.5.3 Transient velocity characteristics 

The time dependence of the average drift velocity for different fields 

IS shown in figure 4.9. The general nature of the response is similar to 

that for bulk semiconductors (see for example figure 2.4). The average drift 

velocity rises from zero, exhibiting transient velocity overshoot at the higher 

fields to reach what appears to be a steady state value within about 5.0ps. 

The velocity peak develops, that is, it increases in magnitude but exists for 
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Average drift velocity against time for a range of fields 

(0.0 to 20.0kV/cm) for the strained In15Ga85As/GaAs quantum well. 
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shorter periods, as the field is increased above 4.0kVcm- 1
. To understand 

why the peak changes as it does, it is instructive to consider the real­

and reciprocal-space distributions of the carriers along with the velocities. 

These are plotted for a range of fields in figures 4.10 (a) to 4.10 (j), where 

the average drift velocity and the fractional valley occupancy are plotted 

together as a function of time. As a guide to the relative velocities attained 

for each field, all the velocity curves are plotted on the same scale. 

As we now know from examining the average energy response to the 

fields, and the distribution of the carriers, the system is not in a steady 

state within 5.0ps for low fields and may take many tens of picoseconds 

to reach this balance. However, the velocity appears to have reached some 

sort of steady state due to the similarity in effective masses of the well 

and barrier material states. In quantum wells where the barrier material 

has an appreciably larger effective mass than the well material, such as the 

AlGaAs/GaAs well discussed in chapter three (also Mosko & Novak 1989, 

Masselink et al 1988), transfer of carriers into the barrier causes a reduction 

in the average drift velocity and has a major effect on the velocity-field 

characteristic; this is the real space transfer induced negative differential 

mobility (Hess et al 1979). 

As can be seen from the graphs, there is an obvious correlation 

between the valley populations, the fields and the velocity. As the field 

is increased the velocity rises more quickly. When transfer to the satellite 

valleys occurs, the velocity rise is repressed and may, as more carriers enter 
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the satellite ·Valley states, be reversed causing the overshoot effect. 

For high fields the earners can attain large velocities quickly, but 

a rapid transfer to the L and X valleys occurs, which is even faster than 

transfer to the f valley unbound states for fields > lS.OkVcm- 1, and this 

causes the velocity to drop substantially in a short period. This fast 

re-distribution of carriers allows the system to reach equilibrium quickly. 

4.5.4 Compar£son of transport sz'mulatz'on results of the strained and un­

stra£ned well systems 

The mam differences in the results of the strained and unstrained 

layer simulations are to be seen in the average drift velocity and the real­

and reciprocal-space distributions. Figure 4.11 (a) to (c) compares these 

quantities plotted against time for three fields (one low = O.Sk V em - 1 , one 

medium = 4.0kVcm- 1 , and one high = 20.0kVcm- 1) to highlight the major 

points of interest. 

At low fields (figure 4.11 (a)), where there is no transfer of charge to 

the satellite valleys, the velocity profile for both systems is closely matched 

at all times. For the unstrained layer the rate of electron emission from the 

bound states of the r valley well is smaller and there is a larger fraction 

of carriers still bound at steady state. 

For medium fields (figure 4.11 (b)), in which electrons populate 

the L valleys, a higher peak in the average drift velocity develops in the 

unstrained device when compared with the results of the strained layer 
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simulation, but at steady state the velocities for both layers are equal. 

When considering relative populations of the states in the quantum well 

heterostructures at this field, we see that initial electron emission to the un­

bound states of the r valley is faster in strained layer than in the unstrained 

one and when the L valleys start to populate the relative populations of the 

valleys in both systems is similar, although there is always a slightly higher 

fraction of carriers in r valley subbands of the unstrained heterostructure. 

High field drift velocities like those of figure 4.11 (c), where all 

valleys are populated, again show a larger peak in the average drift velocity 

of the unstrained layer but at steady state both simulations agree. Before 

the satellite valleys are occupied the emission rate in the strained device 

is again bigger than in the unstrained one. However, when the satellite 

valleys start to populate the general trend is the same in both cases; there 

is an overshoot in both X valley and L valley subband occupancy and at 

steady state most of the carriers are in the unbound states. The transient 

population overshoot of the X valley subbands is larger in the strained well 

than in the unstrained one. 

The steady state velocity of both structures is compared in the 

next section; here we shall discuss the transient velocity effects and the 

occupancy of states. The larger valley separations of the well material in 

the unstrained layer coupled with a slightly lower r valley effective mass 

causes the higher transient peak velocity seen in that system because the 

electrons are able to attain higher energies/velocities more quickly before 
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intervalley scattering occurs. Another consequence of this difference in the 

bandstructure of the well material is that more electrons are able to reach 

energies where scattering to the X valley subbands is probable before they 

are emitted from the well. This results in the higher transient population 

of the X valley subbands in that system. 

The slower em1sswn rate for, and larger population at steady state 

of, electrons in the unstrained r valley subbands is attributed to the greater 

depth of this well. 

4.5.5 Steady state veloc£ty character£st£cs 

Figure 4.12 shows the average drift velocity results plotted against 

electric field for bulk GaAs and for the strained and unstrained quantum 

wells, at a time when the simulation had reached steady state. As can be 

seen, the quantum well models have the same low field mobility (slightly 

higher than bulk GaAs) but generally the three curves are very similar. It 

is perhaps not surprising that the steady state velocity /field characteristic 

of the quantum well is similar that of bulk GaAs, as in steady state most 

of the carriers are in the barrier material. 

4.5.6 Compar£son w£th exper£ments and other s£mulat£ons 

Despite the use of InGaAs in HEMTs, we are unaware of other 

theoretical studies or any basic experimental measurements of transport 

in Ino.1sGao.ssAs/GaAs double heterostructure quantum wells. Under the 

conditions relevant to the devices the closest simulation results we have 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS, 

& SUGGESTIONS FOR FURTHER WORK 

5.1 Summary & conclusions. 

"7:e main aim of the work presented m this thesis was the study, 

usmg the Monte-Carlo method, of the significant factors affecting electron 

transport m strained Ino.I5 Gao.85 As/ GaAs quantum well heterostructures at 

room temperature. 

In chapter two we explored the effects of strain and alloying on the 

electron transport properties of bulk III-V semiconductors. After first testing 

our model on bulk GaAs, InAs, and Ino.5sGao.47As, we simulated electron 

transport in InxGal-xAs (x = 0.05, 0.10, 0.15, 0.20, and 0.25) with particular 

consideration of the effects of alloying and strain on the low field mobility, 

peak velocity, and saturation velocity. In the unstrained material, we found a 

higher low field mobility, greater peak velocity and lower saturation velocity 

with increasing indium concentration x (despite the accompanying increase 
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m alloy scattering), which were attributed to the reduced r valley effective 

mass, the higher r to L valley separation, and the larger effective masses 

of the satellite valleys, respectively. Strain increased the r valley effective 

mass and decreased the inter-valley energies, which caused a lower low field 

mobility than in the unstrained material and bulk GaAs and a lower peak 

velocity than in the unstrained material but still larger than in bulk GaAs. 

The lattice vibrational modes of heterostructures are different from 

bulk materials. We have compared three continuum phonon models (the 

Hydrodynamic Model (HDM), the Dielectric Continuum Model (DCM), and 

the Bulk Phonon Approximation (BPA)) with specific reference to the 

electron-phonon scattering rates they predict and how the scattering affects 

the low field transport properties of electrons bound in an Alo.3Gao.7As/GaAs 

quantum well. This work was reported in chapter three. We found that the 

transport properties from simulations which used the HDM and BPA were in 

good agreement and compared well with experimental velocity-field results 

of a similar system. We concluded that, until more realistic continuum 

phonon models have been investigated with respect to electron transport in 

quantum wells, the BPA was a suitable model to use in carrier transport 

simulations. 

In chapter four we developed the r valley quantum well model 

introduced m chapter three, and included the L and X valleys, alloy scat­

tering, strain effects, and scattering rates for transitions between bound 

and unbound states. We compared the latter scattering rates and found 
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them to be small in companson to unbound-to-unbound and bound-to-

bound state scattering rates due to the small overlap between bound and 

unbound states. The transient and steady state transport characteristics 

of electrons in the strained and (artificially) unstrained Ino.lsGao.ssAs/GaAs 

quantum well heterostructure were studied at fields large enough that real­

and reciprocal-space transfer effects occurred. The differences in the strained 

and unstrained transient and steady state properties were found to be small 

and mainly transient, which is to be expected because at steady state most of 

the electrons inhabit the unbound states, which are nearly identical in both 

systems. The low field mobilities of the strained and unstrained quantum 

wells were slightly larger than in bulk GaAs. 

Although electrons in bulk and artificially strained Ino.1sGao.ssAs 

have a smaller low field mobility, the results from the strained quantum well 

model showed a larger value, when both were compared to bulk GaAs. 
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5.2 Suggestions for further work. 

Our model may be used with little extra development work 

to study electron transport in a range of quantum wells with different 

indium concentrations or, in fact, wells made from other III-V semiconductor 

materials. 

One way in which to refine the quantum well model of chapter 

four further is by the introduction of a more complex bandstructure model. 

Models derived using, for example, pseudopotential calculations offer one way 

of modelling the effects on energy levels due to the interaction of equivalent 

and non-equivalent valley states, non-parabolicity, and non-spherical bands. 

However, the complexity of the simulation is already considerable due to 

the multiplicity of scattering processes and bands, and the incorporation of 

more complete bandstructure information would be a substantial task. 

As was mentioned in chapter three, the development of sophisti­

cated, hybrid, continuum phonon models, which show good agreement with 

the results of microscopic models of lattice vibrations in quantum well het­

erostructures, occurred too late to be studied in this work. It would be 

worthwhile to carry out further work to investigate the transport properties 

of carriers in quantum wells when the scattering rates are calculated from 

the new hybrid phonon models. 


